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Chapter 1
Introduction

Abstract The abatement of fresh water and groundwater resources, increasing
population as well as industrial demands render the protection and preservation of
these resources all the more important. Water quality is a term applied to indicate
the suitability or unsuitability of water for various uses. Each type of water uses
needs certain physical, chemical and biological characteristic while various uses
have some common characteristic. Water quality management is the management
of water quality of the physical, chemical and biological characteristic of water;
therefore, management and regulatory agencies can use to evaluate alternatives and
make necessary decisions. In this chapter, after defining a few water quality terms
and a brief review of the significance of water quality management, the framework
of the book was described.

1.1 Introduction

Life on this planet is positively linked to water. The dwindling fresh water resources,
increasing population as well as industrial demands render the protection and
preservation of these resources all the more important. The situation is particularly of
concern in semiarid and arid countries with growing population and industry.
Groundwater resources are scanty and the rainfall, though meager, is not uniform.
One such country is Iran, located in the Middle East, to receive merely enough
rainfall in its Northern and Western parts to sustain those regions themselves, while
the rest of the land mass is either semi arid or arid. Hence, healthy sized budgets and
time need to be devoted to constructing infrastructure for the transportation of
drinking water from the more endowed parts of drier ones. Needless to say, pro-
tection and maintenance of water quality over the long haul is very important.

It is necessary to establish the current quality of surface and ground water
resources before measures can be taken to control water pollution. Briefly, the
process involves establishing water quality monitoring stations along the waterway
to collect samples for the analysis of the characteristic of water followed by rig-
orous interpretation of the collected data since the colossal amount of data without
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proper interpretation can, in no way, lend any effective aid to water quality man-
agement. Many methods have been developed to interpret the data. Deterministic
and statistical methods are examples. However, among all the methods available
today, water quality indices are perhaps among the simplest and yet extremely
useful methods. The results of interpretations derived from this method are
understandable for both water quality managers and the general public.

Water quality is a term applied to indicate the suitability of water for various
uses. Each type of water uses needs certain physical, chemical and biological
characteristic while various uses have some common characteristic. The composi-
tion of surface and ground water depends on the characteristic of the catchment area
such as geological, topographical, meteorological and biological of the area. Water
quality in various areas is hardly ever constant, and the variations are caused by
changes in concentration of any inputs to water body. Such variations may be
natural or man—made and either cyclic or random. Random variation of water
owing to unpredictable events. As an example, storm can increase flow and
increasing pollution due to the wash of its catchment area. Therefore, the nature of
water quality is stochastic and deterministic. Consequently, for proper interpretation
of the data understating both of the characteristic is vital.

Water quality monitoring is the effort to find quantitative information on the
physical. Chemical and biological characteristics of water using statistical sample
(Sander 1983). Monitoring means watching the ongoing flow of water to make sure
no law and regulation are broken. However, the word has a different meaning when
utilized to refer to water quality measurements, as a result has the term network
taken on a meaning beyond the strict definition of the word when referring to water
quality monitoring. Network design means to determine the location of sampling
stations (Sander 1983). The location of sampling stations and type of water quality
parameters depends on the objective of water usage. The water quality situation is a
function of complex natural and man-made causes and of the resulting integration
in both space and time. Therefore, abstracting the core of the water quality con-
ditions at a reasonable cost is very difficult.

For water pollution control, it is necessary to figure out surface and ground water
quality. The first stage in this process is to establish water quality monitoring
stations to collect samples to analyze the characteristic of water. The second stage is
type of sample collection which is very important because collected samples should
be representative of the water body. The third stage involves interpreting the col-
lected data since huge amounts of data without proper interpretation cannot help
water quality management effectively (Asadollahfardi 2000).

The first stage in water quality management is establishing enough and suitable
selected monitoring stations considering the objective of water uses. The Second
stage is the availability of enough data with proper precision regarding the aim of
water use. The third stage is an interpretation of the data which the outcome of this
step can help water quality management for water quality planning to control water
quality.

The principal aim of the global freshwater quality monitoring project, Global
Environment Monitoring System (GEMS)/WATER presents a descriptive example
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of the intricacy of the assessment task and its relation to management (WHO 1987),
to offer water quality assessments to governments, the scientific society and the
public, on the quality of the world’s fresh water in relation to human and aquatic
ecosystem health, and global environmental concerns, specifically:

• To describe the rank of water quality;
• To spot and quantify trends in water quality;
• To define the cause of observed conditions and trends
• To identify the types of water quality difficulty that happen in specific geo-

graphical areas; and
• To provide the accumulated information and assessments in a form that is for

resource

In other words, water quality management is the management of water quality of
the physical, chemical and biological characteristic of water (Sanders 1983);
therefore, management and regulatory agencies can use to evaluate alternatives and
make necessary decisions.

This book consists of six chapters. This chapter includes significance and defi-
nition a few terms of water, and necessary steps for water quality planning; in
Chap. 2, in the first step the significance of appropriate water quality site selection is
defined and then a summary of Sanders method, Multiple-Criteria Decision Making
(MCDM) and Dynamic Programming Approach (DPA) is described and finally, an
application of the Sanders method for existing water quality monitoring stations in
the Kārūn River is assessed. Chapter 3 encompasses the previous researchers’ work,
detailed information of National Sanitation Foundation Water Quality Index
(NSFWQI) and British Columbia WQI and two case studies using NSFWQI and
British Columbia WQI. In Chap. 4, the historical background of using time series, a
summary of Box-Jenkins time series and method of building, diagnostic and pre-
dicting the future of the time series model, as well as a brief explanation of
exponential smoothing and the Winter’s method is described. Finally, as a practical
exercise, an application of time series model as a case study is depicted. Eventually
in Chap. 5 a summary of artificial neural network and as a case study is discussed.
In Chap. 6 introduces the deterministic model Ce-Qual-W2 and then two applica-
tions of the model are described. The first application is to study changing of total
dissolved solids in Karkheh Dam in southwest of Iran and the second study is about
Kārūn River in Khouzestan province, Iran.
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Chapter 2
Selection of Water Quality Monitoring
Stations

Abstract Due to financial constraints and improper selection of water quality sta-
tions considering the objective of water uses, water quality monitoring network
design is an efficient method to manage water quality. The most crucial part is to find
appropriate locations for monitoring stations. In the past, most of water quality
selection stations were subjective and the designs on the network had some human
error. However, now there are several mathematical methods using experimental data
for assessment of existing monitoring stations or designing new network such as
Sanders method, multiple criteria decision making (MCDM) and dynamic pro-
gramming approach (DPA) that developed by researchers. In the following chapter,
after reviewing the historical background of developing and application of the
methods, the theory of these methods was described in details. Finally, the application
of the Sanders Method to design number of water quality monitoring stations in the
Kārūn River which located in the south west of Iran was studied.

2.1 Historical Background

Allocation of the water quality monitoring site is the first and the significant step in the
design of the water quality network. The importance of water quality network control
concerning pollution causes creation of water quality stations in the network. How-
ever, finical constraints causes to decrease the number of water quality station in the
network. Regarding optimizations of a number of monitoring stations some tech-
niques were developed such as Sanders method, artificial neural network, Multi-
Criteria Decision Method (MCDM) and Dynamic Program Approach (DPA). Some
researches were carried out by Sharp (1970, 1971); Dandy (1976); Sanders (1983);
Schilperoort and Groot (1983); Ward and Loftis (1986); MacKenzie et al. (1987);
Woldt and Bogardi (1992); Harmancioglu and Alpaslan (1992); Hudak and Loaiciga
(1993); Karemi (2002); Ozkul et al. (2003); Khalil and Quarda (2009); Noori et al.
(2007); Karamouz et al. (2009); Khalil et al. (2011); Asadollahfardi et al. (2011).
The DPA technique, which is a general method for maximizing and minimizing
mathematical functions for solving a problem together with Multi-Criteria Decision,
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was introduced by Bellman (1957). Letternmaier et al. (1984) suggested an optimi-
zationmethod, which they used the DPA, for inspection of water quality station. They
applied the technique for reduction of the number of stations in the urbanwater quality
monitoring network. The results showed a reduction ofmonitoring stations from 81 to
47. The DPA was studied and extended by some researchers such as Harmancioglu
et al. (1994, 2004) and Icaga (2005). Harmancioglu et al. (2004) applied the DPA on
Gediz River in the West of Turkey for reduction of water quality monitoring stations.
Icaga (2005) assessed existing water quality monitoring stations of the Gediz River
applying the DPA for different water usage and allocated a different weight for indices
of each water quality monitoring site. Cetinkaya and Harmancioglu (2012), applied
the DPA for assessment of water quality monitoring stations. The results showed that
the DPA was a suitable tool for optimization of the number of monitoring stations
which are going to be remaining. Asadollahfardi et al. (2014) used the DPA for
assessment of existing water quality of Sefı ̄d-Rūd River in North of Iran. The results
described that the DPA reduced the number of stations of the network.

As mentioned previously, there are numbers of methods for selection of stations.
In this chapter Sanders, MCDM and dynamic approach is briefly described.

2.2 Sanders Method

The method proposed by Sanders et al. (1983) involves the identification of sam-
pling reaches in a river basin (Macro location) when the intent is to allocate
monitoring sites along the entire basin. According to Sanders et al. (1983), the
objectives of the sampling must be defined prior to the actual design process.

The emphasis on water quality management efforts has recently been shifted from
detection of stream standard violations to the assessment of overall trends in water
quality because of various complications in compliance monitoring, such as inter-
mittent or random sampling practices and incorrectly selected sampling locations. As
a result, restrictions on effluent quality have become more significant than those on
stream quality. In this case, a network developed for the assessment of trends must
cover sampling points which will yield information characteristic of reaches of the
river and in composite with other stations will yield information characteristic of the
condition of the river system in general (Sanders et al. 1983). Sanders et al. (1983)
proposed their method for site selection in a water quality monitoring network with
the primary objective of detecting, isolating and identifying a source of pollution.
Sanders et al. (1983) describe three approaches for macro location:

• Allocation by the number of contributing tributaries;
• Allocation by the number of pollutant discharges;
• Allocation by measures of BOD loadings.

These approaches, although theymay produce a rather different system of stations,
work pretty well in initiating a network when no data or very limited amounts of data
are available. It must be noted that, by applying these methods, one may roughly
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specify the appropriate sampling sites. To pinpoint the locations more precisely,
micro location and representative sampling considerations must be followed.

The first approach systematically locates the sampling sites so as to divide the
river network into sections which are equal in respect to the number of contributing
tributaries. The first stem involves stream ordering, where each exterior tributary or
link contributing to the main stem of the river, (one which has no other tributaries or
one with a certain minimum mean flow) is considered to be of the first order.
Ordering is carried out along the entire river such that a section of the river formed by
the intersection of two upstream tributaries will have an order described as the sum
of the orders of the intersecting streams. At the mount of the river, the magnitude
(order) of the final river section will be equal to the number of all contributing
exterior tributaries.

Next, the river is divided into hierarchical sampling reach by defining centroids
for each reach. The major centroid which divides the basin into two equal parts is
found by dividing the magnitude of the final stretch of the river by two. Accord-
ingly, the major centroid where a first hierarchy station is to be placed is located in
that link whose magnitude is closest to:

Mij ¼ ½ðN0 þ 1Þ=2� ð2:1Þ

whereMij = the first hierarchical location; withM = the magnitude (order) of the link,
i = the hierarchical level of the station to be placed on that link, and j = the order of
that station within the ith hierarchical level (e.g., M11 = the first station at the first
hierarchical level andM12 = the second station of the same hierarchy). N0 = the total
number of exterior tributaries at the most downstream point of the basin where
station M11 is placed M12 (Or the stream number closest to it) divides the total
catchment area into two equal parts for which new centroids may be determined.

In the above procedure, it must be noted that a link determined at a given
hierarchy does not necessarily have the value of Mij because a link of that number
may not exist. In this case, the link closest in magnitude is chosen as the centroid
when this link is specified a sampling location is placed at its downstream junction.
Although Sanders et al. (1983) located the station Mij at the downstream point of
the reach that has the corresponding stream order number, it may be allocated to
any site along that reach, considering such local factors as accessibility of the site or
the presence of a stream gauging station also; note here that the squared brackets in
Eq. (2.1) indicate a truncation of the enclosed value to an integer value.

As noted above, M12 divides the total basin into two equal parts where new
centroids may be determined for the upstream part, the first station with the second
hierarchical order is found by which is the magnitude of the link that divides the
region upstream of M12 into two equal areas with respect to their drainage density.

M21 ¼ ½M12 þ 1
2

� ð2:2Þ
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Essentially Eq. (2.2) applies the same procedure as in Eq. (2.1) by replacing N0

with M12.
For the downstream portion of M12, one can either renumber the tributaries, or

alternatively, the centroid may be found as the location with an order closest to
either:

Mij ¼ ðMd �Mu þ 1Þ=2 ð2:3Þ

M0
ij ¼ Mu þMij ð2:4Þ

where, i = the hierarchy order; j = the order of the station; Md = the order where the
basin is divided on the downstream side; Mu = the order where the basin is divided
on the upstream side. This procedure locates the station at the second hierarchical
level as M12 and M22. So that’s two more sampling locations are added to the
system, which now has four stations altogether in the first and second hierarchical
levels.

Next, new stations may be allocated upstream and downstream of both M21 and
M22 to constitute stations at the third hierarchical levels. This is accomplished by
applying the same procedure described in Eqs. (2.1–2.4). Eventually, four new
locations will be designated at the third hierarchical level so that the network now
comprises eight stations altogether.

Having specified third hierarchical stations, the same procedure is applied to
select higher order hierarchy locations, if necessary. Here hierarchy levels indicate
sampling priorities so that increasing hierarchies show decreased levels of sampling
priorities. How far the hierarchical divisions should be continued depends on
economic considerations and information expectations from sampling at each
hierarchy.

In the second approach proposed by Sanders et al. (1983), the same procedure is
used by cumulatively numbering the discharges from polluting sources as if they
are exterior tributaries. Consequently, the sampling locations are determined as
functions of populations and industrial activities. In both approaches, the sampling
stations are to be placed at the downstream end of a river segment before an
intersection.

2.3 Multiple-Criteria Decision Making (MCDM) Method

MCDM is applied in complicated decisions making processes. The differentiating
feature of these methods is their application of more than one criterion. The models
are divided into two main groups: First, Multiple Objective Decision Making
(MODM) models and second, Multiple Attribute Decision Making models
(MADM). MODM models are applied for design whereas MADM models are
employed to select the best options. The MADM is defined by the following matrix
(Table 2.1).
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A1;A2; . . .;Am, in decision making matrix D, indicate m predetermined alterna-
tives (Such as sampling stations in this work), X1;X2; . . .;Xn show n attributes (such
as population, area of basin, water qualitative parameters, …) to assess desirability
of each attribute. The members of matrix describe the special values of jth attribute
for jth alternative. The optimal solution for a MADM consists of the most suitable
assumed alternative A�.

A� ¼ fA�
1;A

�
2; . . .:;A

�
ng

X�
j ¼ max i uj ðrijÞ ð2:5Þ

i ¼ 1; 2; . . .:;m

A� consists of the most preferable desirability of every existing alternative in
decision (Asgharpoor 2004). The various steps of this method will be presented as
follows.

2.3.1 Making Dimensionless

To compare various measurement scales (for various attributes), it is necessary to
use a dimensionless method (Asgharpoor 2004). There are several techniques to
make dimensionless (none missing), but the normal method is explained. First
normality of data is checked using the Shapiro-Wilk test. If data is not normal,
Box–Cox technique can be used for normality. Finally, Uniform Function is applied
to unify and perform dimensions of data.

In Box–Cox method, it is necessary to estimate a value for k, and then the
following equation can be applied for normality.

yi ¼ xki
k

for k 6¼ 0 ð2:6Þ

where yi = normalized data, xi = original data and λ = a value which we substitute
in Eq. (2.6).

Table 2.1 Matrix of MADM X1 X2 X3 …. Xn

A1 r11 r12 r13 …. r1n
A2 r21 r22 r23 …. r2n
Am rm1 rm2 rm3 …. rmn
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2.3.2 Assessment of Weighting (Wj) for Attributes

In the majority of MCDM problems, particularly the part of MADM, it is essential
to be acquainted with the relative significance of existing attributes, considering the
sum of them should be equal to 1, and this relative significance assesses the
preference rank of each attribute compared with other attributes for specified
decision. There are various methods of weighting in MCDM. Considering the
experts’ opinions and the existing conditions, it is selected and weighted parameters
that have a specific significance in the standard and have a high significance in
special consumptions and also parameters which are given a higher worth for water
quality attributes.

The final stage of decision is ranking of stations using Simple Additives
weighting method (SAW).

In the SAW method vector w (weights of significant attributes that obtained in
previous) is assumed and suitable alternative A* is calculated as follows:

A� ¼ Aijmax
P

wirijP
wj

� �
ð2:7Þ

And if
P

wj ¼ 1:

A� ¼ Ai jmax
X

wirij
n o

ð2:8Þ

Final weights that were obtained in the previous part are used in this stage and
multiplied to equalized and dimensionless values of MADM matrix, and are the cal-
culated sum of the parameters in each line. Therefore, for each station, a number was
obtained that can be our selection attribute and based on that the stationswere specified.

2.4 Dynamic Programming Approach (DPA) Method

The DPA is one of most applicable technique which nowadays is applied for
modeling of operation systems. The DPA is a method for solving the problems joint
with the Multi-stage Decision. In this method concerning the characteristic of
staging the problem, we solve the problem with n staging and single variable
instead of solving the problem with n variables.

2.4.1 The DPA Theory

At the first stage, reduction of the network is achieved by dividing river catchment
area to N (K = 1, 2,… N) Primary basin. This division should not be according to the

10 2 Selection of Water Quality Monitoring Stations



hydrology of the basin. The characteristic of the catchment area such as topography,
geology, meteorology, land uses, population density and rivers crossing each other
may be as criteria for dividing a catchment area to primary catchment area. Each
sub catchment area must have a minimum one water quality monitoring station
(Harmancioglu and Fistikoglu 1999).

In each primary catchment area named K, PK is the number of existing stations
in that catchment area, and Rk is the number of selected stations in the primary
catchment area named K.

Thereby, the numbers of the possible cases of stations selection can be deter-
mined which if during determination of possible combination of stations which they
must remain in each sub catchment area; in this case all the catchment area of the
river must be considered. Number of substitution combinations can be obtained
from binomial distribution (Eq. (2.9)).

CðTPN ; TRNÞ ¼
TPN

TRN

 !
¼ TPN !

TRN !ðTPN � TRNÞ! ð2:8Þ

where TPN = the number of existing stations in all catchment area of the river, and
TRN = the number stations to be retained in all networks. When the catchment area
is divided by N sub catchment area, K = 1,…. N, each primary catchment area has
PK of primary station which is part of total existing stations in all catchment areas
(TPN) (Eq. (2.9)) therefore:

TPN ¼
XN

K¼1
PK ð2:9Þ

where TRN = the sum of the number of existing stations in each sub-basin
Eq. (2.10). When TRN = total number of stations to be retained in the basin; number
of stations which must remain in primary catchment area K = RK, which can be
defined according to Eq. (2.10).

TRN ¼
XN

K¼1
RK ð2:10Þ

Consequently, number of feasible answers for each sub catchment area with
availability of RK can be determined by Eq. (2.11).

CðPK ;RKÞ ¼
PK

RK

 !
¼ PK !

PK !ðPK � RKÞ! ð2:11Þ

where RK = 0, 1, 2, …, PK.
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Therefore, the number of total combinations of catchment areas substitution in
the K primary catchment area can be obtained by Eq. (2.12).

TASCK ¼
XPK

RK

CðPK ;RKÞ ¼ 2PK � 1 ð2:12Þ

where TASCk = the number of total combinations of substitution catchment area
in the primary catchment area. The RK in each primary catchment area depends on
RK of other primary catchment area (Eqs. (2.2–2.10)). Total number of substitution
stations in all catchment areas will be TASC (Harmancioglu and Fistikoglu 1999).

TASC ¼ TASC1 � TASC2 � � � � � TASCN ð2:12Þ

Or

TASC ¼
YN
K¼1

TASCK ð2:12Þ

The TASC will assume a very large number according to the amount of TASCK.
For solving this problem, Letternmaier et al. (1984) suggested the stream order
number method for the limitation of combination of substitution stations in the
primary catchment area.

2.4.2 Normalization and Uniformization Procedure

For comparison of different scale measurements, data should be Dimensionless,
thereby, the converted indices elements (nij) were computed with dimensionless
quantity. Several methods are available to change the quantity to dimensionless. If
the data was not normal, Box–Cox method was used for normality (Eq. 2.6).
Subsequently for uniformization and dimensions the uniform function was used.

SRj(i)kl = the original data, SUj(i)kl = the normal and uniform data for the station i
and sub catchment k.

For each quantity of TRN, it is necessary to determine the number of selected
stations in each primary catchment area k, named RK. Therefore, the selected stations
are the stations at which their sum of normalized data (SUj(i)kl) are maximized.

We indicate SUj(i)kl with TSj(i)K (Eq. (2.14)).

TSjðiÞk ¼
XlN
l¼1

SUjðiÞkl ð2:14Þ

Where lN = number of parameters in the station i and in sub catchment area k.
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While the significance of the parameters differs when they are compared with
each other; we use relative weight for each parameter concerning the objective of
monitoring, and the Eq. (2.14) will be converted to Eq. (2.15).

TSjðiÞk ¼
XlN
l¼1

Wl � SUjðiÞkl ð2:15Þ

where, Wl = relative weight for parameter i.
By Eq. (2.15) can be obtained total(all) amounts of the parameters in primary

catchment area k and in the station i. In each primary catchment area k, different
selections of the stations which depends on Rk, and the amount of TSj ið Þk in each
station is different. Therefore, the calculations must be with the combinations which
the amount of TSj ið Þk will be maximized (Eq. 2.16).

MTSjðiÞk ¼ maxTSjðiÞk ð2:16Þ

By determination of the TRN, the RK options are the selections which have a
maximum amount of MTSj ið Þk (Eq. (2.17)

SMTS ¼ max
XN
K¼1

XRK

i¼1

MTSjðiÞk ð2:17Þ

Equation (2.17) has two dimensions for solving it, we applied the DPA.
The objective is to find the combination of the stations which the amount of

MTSj ið Þk will be maximized (Eq. 2.18). TRN is counter with known amount.
The objective function is Eq. (2.18).

V ¼ max
XN
K¼1

XRK

i¼1

MTSjðiÞk ð2:18Þ

The constraints are as follows:

XN
K¼1

RK ¼ TRN 0�RK � TRN

0� jðiÞ�PK ; jðiÞ 6¼ jðhÞ; i 6¼ h

ð2:19Þ

where j(i) = the number of stations in primary catchment area K. V = the objective
function, N = total number of primary catchment area, RK = the number of stations
which are retained in the primary catchment area, i = an index of the station in k
primary station, j(i) = numbers of index stations i in the k primary station, and
PK = the number of existing stations in the k primary station.
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2.5 Application of Sanders Method

In a study, designing the number of water quality monitoring stations on the Kārūn
River, Iran, was carried out. We applied the Sanders method on the basis of
irrigation and drinking water quality indices. The specified sites were compared to
the existing sites in the system and the matched stations to this scheme were
selected. Water quality sampling was carried out on 20 stations by the Iranian
Department of Environment (DOE) in Khuzestan Province during the years
1995–2005. (Table 2.2 and Fig. 2.1).

At the first step, the catchment area (Fig. 2.2) was divided into four sub-basins
which were named A, B, C and D. Gotvand Dam to Band-e-Gheer, Dez Dam to
Band-e-Gheer, Band-e-Gheer to the south of Ahvaz City and Darkhoveyn to the
Persian Gulf were considered as sub-basins A, B, C and D, respectively. Water
quality parameters including the Biochemical Oxygen Demand (BOD), Chemical
Oxygen Demand (COD) as degradable and Total Dissolved Solid (TDS) as the non
degradable were selected which weighted by coefficients of 0.2, 0.3 and 0.5,
respectively. The combined results of these coefficients were the basis of the
evaluation and weighting of the amount of pollution discharged by each of the
pollution sources. For this matter, the mass discharge of effluent BOD, COD and
TDS along with their weighting percentage for each pollution source of all sub-
basins were calculated (Tables 2.3, 2.4, 2.5 and 2.6). Then, by adding the number of
entering branches, as presented in the Fig. 2.2, and allocation one of the number of
the main branches of the river, the number of pollutants entering each pollution
source was calculated.

As an example, for Pars Paper Factory in sub-basin B, BOD, COD and TDS
weighting percentages due to their total values, are 19.87, 57.36 and 10.8. The
pollution load of this factory is calculated as follows:

0.2(19.87) + 0.3(57.36) + 0.5(1.08) = 21.7 � 22

Table 2.2 Monitoring Station on the Kārūn River

Station number Station name Station number Station name

1 Gotvand 11 Kārūn–Band-e-Gheer
2 Kārūn–Band-e-Mizan 12 Mollasani

3 Shotayt–Arab Asad 13 Zargan

4 Shotayt–Band-e-Gheer 14 Pol-e-panjom

5 Gargar–Shushtar 15 Ommotamir

6 Kargar–Band-e-Gheer 16 Darkhoveyn

7 Dez–Chamgolak 17 Saboon sazi

8 Dez–Ab-e-sheerin 18 Haffar

9 Dez–Mostoafi 19 Abolhasan

10 Dez–Band-e-Gheer 20 Choabadeh
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Eventually, we determined the water quality of each station using the Sanders
Method. The results described that the situation on stations located on Chobdeh,
Abolhasan, Hafar, Soap Factory, Darkhoveyn, Omoltamir, Pol-e-Panjom, Zargan,
Mollahasani and Kārūn-Band-e-Gheer was more crucial than others. On the other
hand, the water quality of stations located on Gotvand and Dez-Chamgalk was
more favorable. Totally the water quality of the Kārūn River for drinking and
irrigation purposes in the sub-basins A and B is considerably better than sub-basins
C and D (Table 2.7).

Fig. 2.1 The study area
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Fig. 2.2 Water quality sampling of the Kārūn River
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Table 2.3 Amount of pollution load for sub-basin A

Pollution source location
and number on the map

Weighting
percentage
BOD5

Weighting
percentage
COD

Weighting
percentage
TDS

Final
weighting

Kārūn sugar cane factory
(2)

0.3 1 0.15 0.5

Fish cultivated field (7) 0.65 0.63 5.47 3.5

Kārūn sugar cane drain-
age (9)

3.4 7.3 10 8

Agheli drainage (8) 0.04 0.16 0.74 0.5

Janat Makan drainage GE
(3)

0.015 0.01 0.31 0.5

Janat Makan drainage Gd
(4)

0.02 0.02 0.21 0.5

Ghaghar agricultural
drainage (6)

0.11636 0.5 5.98 3.5

Ghotvand (1) 0.596 0.21 0.15 0.5

Shoshtar (5) 1.097 0.57 0.19 0.5

Table 2.4 Amount of pollution load for sub-basin B

Pollution source location
and number on the map

Weighting
percentage
BOD5

Weighting
percentage
COD

Weighting
percentage
TDS

Final
weighting

Dezful sugar factory (11) 2.9 0.63 0.25 1

Haft Tapeh sugar cane
factory (15)

7.999 1.94 1.01 3

Pars paper production
factory (16)

19.87 57.36 1.08 22

Saghari drainage (12) 0.4551 1.18 1.7 1.5

Solameh and agirob
drainages (13)

1.21 3.86 3.82 3.5

Haft Tapeh drainage (14) 11.37 2.58 2.89 4.5

Meyanab drainage (18) 0.455 0.61 11.29 6

Kārūn sugar cane drain-
age (17)

0.96 0.84 6.67 4

Shoaybeh drainage (19) 0.2528 4.18 20.75 15
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Table 2.5 Amount of pollution load for sub-basin C

Pollution source location
and number on the map

Weighting
percentage
BOD5

Weighting
percentage
COD

Weighting
percentage
TDS

Final
weighting

Ramin power plant (23) 0.51 0.19 0.25 0.5

Zargan power plant (25) 0.081 0.05 0.19 0.5

Ahvaz sugar organization
(24)

12.33 0.02 5.6 5.5

Sepanta factory (28) 0.045 0.01 0.06 0.5

Farsit factory (29) 0.0506 0.02 0.21 0.5

Ahvaz pipe production
factory (30)

0.0976 0.02 0.07 0.5

National group factory
(31)

0.6675 0.29 0.28 0.5

National group industrial
plant (32)

0.1365 0.05 0.02 0.5

Ahvaz Khoramnoosh (26) 0.1766 0.18 0.3 0.5

Ahvaz slaughterhouse
(20)

0.41 0.23 2.62 1.5

Mollahsani (22) 0.591 0.2 0.15 0.5

Vaes (22) 0.6118 0.38 0.12 0.5

Ahvaz city (27) 24.262 9.17 7.78 11.5

Table 2.6 Amount of pollution load for sub-basin D

Pollution source location and
number on the map

Weighting
percentage
BOD5

Weighting
percentage
COD

Weighting
percentage
TDS

Final
weighting

Stris milk factory and
Pasargad (33)

0.1264 0.05 0.34 0.5

Soap factory (34) 0.4955 1.4 0.24 1

Khorramshahr Khorram nosh
soft drink production factory
(35)

0.6068 0.05 0.04 0.5

Khorramshahr city (36) 2.4 0.97 1.26 1.5

Abadan refinery (39) 0.0 0.5 1.26 1.0

Abadan petrochemical
production plant (37)

0.0 0.36 5.26 3.0

Abadan city (38) 1.03 0.5 0.84 1.0
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2.5.1 Comment on the Application

Subjective selection of water quality monitoring may elevate a number of stations
and may cause increasing errors in selection of the stations. As a result, the financial
cost of installation and operation of the monitoring network can be increased.
Therefore, mathematical methods which using experimental data such as Sanders
method and dynamic programming approach may help to determine the locations
and number of water quality monitoring stations, economically and correctly.
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Chapter 3
Water Quality Indices (WQI)

Abstract Having a lot of data for different water quality parameters in surface
water without proper interpretation are not useful for water quality management.
Due to the extent of water quality parameters, water quality indices (WQI) could be
used as a point scale for interpretation of these parameters. WQI is the essential
prerequisite of water quality management. Since 1978, much effort have been done
to present techniques to summarize water quality data to a defined numeric digit
which describes the degree of water quality. In this chapter, at the first step, the
historical background of WQI was reviewed. Afterward, National Sanitation
Foundation’s Water Quality Index (NSFWQI) method and British Colombia water
quality index (BCWQI) Method that are used frequently, described in details.
Finally, the application of NSFWQI in the Kārūn River and Sefīd-Rūd River, which
located on the south-west and north of Iran, were described. In addition the WQI of
the Sefīd-Rūd River was investigated by BCWQI.

3.1 Historical Background

Huge amount of water quality data without precise interpretation cannot help water
quality management properly. Therefore, it is necessary to summarize water quality
data to a defined numeric digit which indicates the degree of water quality. To solve
this problem there is a technique which is called water quality indices. Water
quality indices are methods that can help water quality management to determine
existing water quality.

A survey on the types and extent to which water quality indices are being used in
the USA was conducted by Ott (1978). It is; however, noteworthy that comparison
of different indices is rather controversial since the underlying assumptions and the
aim of the different applications vary (Canter 1985).

Schaefer and Janardan (1979) studied five water quality indices among which,
two indices, P1 and I, employed to rank data and followed the beta distribution.
These two indices, which are true statistical measures of water quality, can be used
with any set of water quality parameters, and also correlate highly with biological
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and subjective engineering assessments of water quality. Schaefer and Janardan
(1979) also described another three indices using raw material and Chi-square
distribution. Two of these three mentioned indices, B1 and B2, do not exhibit
sufficient bias to serve as a general measure of water quality, although they may
prove very useful in some specific situations. The third index, index C, can be
applied quantitatively on monitoring stations. Steinhart et al. (1982) presented an
index to help summarize technical information on the status of, and trends in lake
water quality. Although the index was developed for the near-shore water of the
Great Lakes of North America, they claimed that the index concept was practicable
to other temperate lakes of generally high water quality. They attempted to mini-
mize the vulnerability of the index by employing the following strategies:

• Selecting variables relevant to the uses of the lake under study
• Constructing rating curves based on established criteria
• Focusing on variables for which data are available and reliable
• Providing a reporting format that supplements the overall index number
• Creating an index that can be revised easily to reflect new knowledge or

changing priorities
• Noting possible pitfall in suitable places, and
• Providing an optional user guide on request to further safeguard against possible

nuisances.

House (1990) compared the results of the WQI applied to data collected by the
Severn Trent Water Authority for fiscal years 1978/1979 and 1979/1980, and the
value of the information derived using this index to that produced by the application
of the National Water Council classification employed by the United Kingdom
water industry. The study highlighted a number of advantages of using an index
over NWC classification. Smith (1990) studied the WQI in New Zealand. The index
development in the country was linked to the legislation of recommended Water
Quality Standards. The indices were intended to assist in the dissemination of water
quality information, particularly to lay-people.

Barbiroli et al. (1992) proposed a new three structured method to obtain syn-
thetic quality indices for air and water. The index is unique in the sense that besides
the final indices, several intermediate indices are also computed, allowing the
environmental managers to have indices at different degrees of aggregate. This
particular methodology is permitted for:

• Selection of physical, chemical, and biological parameters for air and water,
definition of the variability of the selected parameters, the transformation of the
value assumed by the various parameters in sub indices characterizes by a variable
interval from 0, which represents minimum quality to 10, the maximum quality;

• Eventual weighting of parameters; and
• Construction of intermediate indices and the final synthetic index through the

use of a suitable aggregate function. The method was designed to be as general
and objective as possible, while still having the luxury of being adaptable to fit
particular situations.
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Doylido et al. (1994) studied water quality index in the Vistula river basin in
Poland. Bocci et al. (1994) investigated Marine bacteria as indicators of water
quality. They also developed a water quality index during the course of their
research. Erondu et al. (1993) studied the classification of the new Calaba River at
Aluu Port Harcourt in Nigeria using an experimental model. The primary indicators
of water quality were BOD, Dissolved Oxygen (DO), temperature, sulfide and other
physic-chemical and biological parameters. Jonnalagadda and Mhere (2001) stud-
ied the water quality of Odzi River, the main river issuing forth from the Eastern
Highlands of Zimbabwe, using water quality indices. They monitored chemical
parameters namely temperature, conductivity, total suspended solid, BOD, total
phosphate and nitrate for 6 months sampling stations during 9 months. The results
indicated that while the water was medium to good quality in the upper stream, the
quality vitiated downstream, possibly due to the seepage from the abandoned mine
dumps and discharges from farm land which infiltrated the river. Vollenweider et al.
(1998) developed a new trophic index (TRIX) based on chlorophyll, oxygen sat-
uration, mineral and Total Nitrogen (TN) and phosphorus, which is applicable to
coastal marine water. The index is scaled from 0 to 10 covering a wide range of
trophic conditions from oligotrophy to eutrophy. Secchi disk transparency com-
bined with chlorophyll; instead, define a turbidity index (TRBIX) that serves as a
complementary water quality index. The two indices are combined in a General
Water Quality Index (GWQI). Ladson et al. (1999) developed an index of stream
conditions (ISC) to assist water management by providing an integrated measure of
their environmental condition. The ISC scores five aspects of the stream conditions:

• Hydrology: evaluated by tabulating changes in volume and seasonality of the
flow from the natural condition

• Physical form: assessed by the bank stability, bed erosion or aggregations,
influence of artificial barriers, as well as the abundance and the origin of the
coarse woody debris

• Stream side zone: based on the types of plants, spatial extent, width and
intactness of the riparian vegetation, regeneration of over story species, and the
condition of wetlands and billabongs

• Water quality: based on an assessment of phosphors, turbidity, electrical con-
ductivity and pH

• Aquatic life: appraised by the number of macro invertebrate families present.

Karydis and Tsritisis (1996) assessed the efficiency of 12 ecological indices
expressing diversity, abundance, evenness, dominance and the biomass of phyto-
plankton to describe the tropic levels in the coastal area in the Eastern Mediterra-
nean. They found that some of the commonly used indices such as the Simpsons’
Shannon and Mayalef indices did not perform quite satisfactorily when used to
establish eutrophic trends. On the other hand, the Menhinick’s index, Kothe ‘s
index, Species Evenness, Species Number and Total Number of individuals proved
effective for distinction among oligotrophic, mesotrophic and eutrophic waters. The
most efficient among this lot; however, was the Kothe sand species number indices.
Bordalo et al. (2001) studied the water quality of the Bangpakong River, the most
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important river basin in Eastern Thailand, using Scottish water quality indices.
They collected samples from June 1998 through 1999 at 11 monitoring stations
covering a total of 227 km of river path. The monitored parameters included
temperature, DO, turbidity, suspended solid, pH, ammonia, fecal coli form, BOD,
COD, phosphate, conductivity and heavy metals. The average WQI was found to be
very low at a meager 41 % and quality of the water declined further during dry
season. Schultz (2001) critiqued the index watershed indicator on the basis of these
tests as well as some other considerations, and suggested that if the index were to be
explicitly based on multi-attributed utility theory and methods, some of the diffi-
culties could be considerably resolved.

Khan et al. (2003) studied the water quality of the three selected catchment areas
of the Atlantic region: Mersey River, the Point Wolfe River and the Dunk River,
using the Canadian Water Quality Index and British Columbia Water Quality
Index. They also applied linear and quadratic models to analyze the water quality
trends. The results demonstrated that the water quality trend for raw water (before
treatment) used for drinking has improved considerably on the Point Wolf River.

Said et al. (2004) described the limitations of the application of a few water
quality indices such as NSWQI, British Columbia Water Quality Index (BCWQI),
Oregon WQI, Florida WQI and Watershed Enhancement Program WQI, and then
they developed a new WQI which proceeds in two steps. The first step ranks the
water quality parameters according to their significance. These parameters include
DO, total phosphate, fecal coli form, turbidity, and specific conductivity. They give
higher rank for DO than fecal coli form and total phosphate. Turbidity and specific
conductivity, on the other hand, are given less influence. Jafarnejad (2005) studied
water quality index of Kaurn River and using NSWQI. Debles et al. (2005)
employed water quality index from nine physicochemical parameters, periodically
measured through January 2000 to November 2000 at sampling stations on the
Chillan River in central Chile. Their results showed that the river boasted good water
quality in the upper and middle parts of the catchment area, but downstream,
especially during dry season, the quality deteriorated. This was due to the discharge
of urban wastewater into the river. They also applied principal component to modify
existing water quality. The study indicated that the application of modified WQI
reduces the cost associated with its implementation. Taebi et al. (2005) applied three
eutrophication indices to define water quality in north east of Persian Gulf.

Bordalo et al. (2006) applied a modified nine–parameter Scottish WQI to assess
the monthly water quality of the Doura River, an internationally shared River basin,
during a 10 year period (1992–2001). The 98,000 km2 of the Dorian River split
between upstream Spain (80 %) and Portugal downstream (20 %). The water
received by Portugal from Spain was of much reduced quality (WQI 47.3 ± 0.7 %).
Quality; however, increased steadily downstream up to 61.7 ± 0.7. In general, the
water quality in all of the monitoring stations was at best mediocre and often poor.

Lumb et al. (2006) applied Canadian Council of Ministers of the Environment
Water Quality Index (CCMEWQI) to determine the water quality of the ackenzie-
Great Bear Sub-basin. The results of their study showed that the water quality of the
basin is impacted by high turbidity and total trace metals (mostly particulate) due to
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highly suspended sediment load during the open water season. Fernandez et al.
(2004) reviewed 36 WQI and water pollution index (WPI); the results of their
works showed that appreciable differences exist between different WQI on the same
water sample. They concluded that the WPI developed in Colombia by Rmiirez
et al. (1997) and the AMOEBA strategy which was developed by De Zwart (1995)
in Netherland offered considerable advantages over more traditional formulations.
Using the systems of Lake Kinneret, Israel and the Northern Lakes of Belarus,
Parparov et al. (2006) demonstrated that water quality can be quantified to be part
of sustainable management in relation to lake management activities. They used
WQI and rating curve to reach their objective. For both Lake Kinneret and Naroch,
they established rating curves under the assumptions that the conservation of the
lake ecosystem is the prime objective of the resource managers. They proposed
three separate levels of WQI integration, which are as follows:

• An expanded WQI system which, being the base system, was proper for
describing different aspects of water resource uses. It served as a “common
language” for communication between associates in lake management.

• Reduced system of WQI
• Composite water quality index (CWQI): This highest level of integration of

water quality

Sedeno-Dias and Lopez-Lopez (2007) studied the water quality of the Rio
Lerma catchment area, the notoriously polluted area of Mexico. They used water
quality index multiplicative and weighted water quality index and principal com-
ponent in their work. WQI scores judged the water unsuitable for drinking and
demonstrated that it was vitally important to treat the water. Pinto et al. (2009)
mainly reviewed and evaluated benthic community based biotic indices. They
supplied a general overview of some indices premises and assumptions as well as
their main advantages and disadvantages. Asadollahfardi (2009) applied NSFWQI
method to surface water quality in Tehran and his results was satisfactory. Juttner
et al. (2010) studied periphytic diatoms to evaluate the water quality of a newly
created lake formed by the enclosure of the formerly tidal Cardiff Bay (Wales, UK)
and the effects of two inflowing rivers which drain the densely populated and
industrialized basin. They selected seven sampling stations in Cardiff Bay and two
stations on the inflowing river and collected samples for diatoms and chemistry of
water for 2 years. They used a revised UK trophic diatom index (TDI) and a new
technique to figure out ecological quality ratios and ecological states classes as
required by the EU Water Framework Directive. In the bay, diatoms reflected
differences in river quality and possibly of local pollution in certain areas of the
lake. The high rates of TDI indicate eutrophic to hypertrophic conditions in both the
rivers and the bay and diatoms indicate poor ecological status.
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3.2 Summary of WQI Methods

WQI can generally be divided into five groups, which are as follows:

• General WQI methods:
These can be applied to determine the overall water quality. They do not;
however, take into account the water usage.

• Specific WQI techniques:
These are employed to define water quality for specific usage such as drinking,
irrigation, industrial and protection of the aquatic life.

• Design Index:
They enjoy immense use in decision making processes in management. In such
cases, water quality classification is not taken into account. These methods are
merely tools to help assess the impact of decisions and plan future measure for
water management.

• Statistical Index:
Statistical indices are perhaps the most objective methods in service for water
quality classification. Since they use statistical models, little individual judgment
is present.

• Biological Index:
These classifications define water quality according to the effects of water on the
aquatic life.

In each of the above mentioned general categories, researchers have developed
many methods to assess water quality that employ diverse water quality parameters
and mathematical equations.

Two methods of water quality indices described in detail which are as follows.

3.3 National Sanitation Foundation’s Water Quality Index
(NSFWQI) Method

With the support of the National Sanitation, Brown et al. (1970) presented an index
for water quality. Their work can be summarized as follows:

First, Brown et al. (2000) prepared a questionnaire (No. 1) and sent it to a carefully
chosen panel, whose members came from a variety of backgrounds including reg-
ulatory offices, local utilities management, consulting engineers, academics and
waste control engineers. They were asked to consider 35 water quality parameters for
possible selection in a water quality index. The panel members were also asked to
give an importance rating for each parameter on a scale of 1–5, where 1 corresponded
to the highest significance while 5 corresponded to the lowest significance.

To obtain greater convergence of opinion regarding the significance of each
parameter for the index, a second questionnaire was prepared in which each
member was asked to review the original rating while considering their peers’
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opinions and modify their choices, if desirable. However, little changes were noted
in the modified responses.

Finally, the parameters which had emerged from the second questionnaire as
being the most significant were presented that curves assigning variation in water
quality for different water quality parameter values should be drawn for each
parameter were requested from the panel. Two of these graphs are indicated in
Figs. 3.1 and 3.2. In each figure, the solid line represents the arithmetic mean of the
all of the respondents’ curves, while the dotted lines bounding the shaded area

Fig. 3.1 Functional
relationship for dissolved
oxygen

Fig. 3.2 Functional
relationship for BOD
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represent the 80 % confidence limits. Other rating curves for other parameters can
be found in Ott (1978). The participants were also requested to give a relative
significance grading on a five point scale to each parameter. This enables weighting
for the parameters to be obtained.

The investigators sought to derive a set of weights for the index which would
sum to 1.0, but more importantly, reflect the significance rating of the parameters by
the panelist. The following three step procedure was used:

• The arithmetic means of significant rating were calculated from the parameters
• Temporary Weight was then calculated by the following formula:

Temporary Weight = Significant rating of each parameter/Highest significant
rating

• Final weights as sub index weights were calculated by:
Final Weight = Temporary Weight/Sum of Temporary weights

The NSFWQI is calculated based on arithmetic and geometric means as given
below:

NFWQI ¼
Xi¼n

i¼1

WiIi

NFWQI ¼
YW
i¼1

Ii

ð3:1Þ

To calculate the index, the sub-index value I is read from the appropriate rating
curves for pollutant parameter I, and then is multiplied by the sub-index weights
calculated for each parameter, and summed over all the parameters. Tables 3.1 and
3.2 indicate the river classification using this method.

Table 3.1 Stream
classification system
suggested by NSFWQI (Ott
1978)

Representing color spectrum Numerical range Class

Red 0–25 Very bad

Orange 26–50 Bad

Yellow 51–70 Medium

Green 71–90 Good

Blue 91–100 Excellent

Red 0–25 Very bad

Table 3.2 Subdivisions of
the WQI scale (House and
Ellis 1980)

NWC Class WQI range

1A 91–100

1B 71–90

2 41–70

3 21–40

4 10–20
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The NSFWQI is a subjective method and opinions of practicing professionals
have affected the result of classification because the rating curves and intermediate
weighting, the two parts of this technique, arise from experts’ opinions. This
method cannot describe temporary variation of surface water quality. On the other
hand, this is a simple and easy method for analyzing water quality. All the
parameters of water quality, which are employed in this method, are usually
available in most monitoring programs. Most non technical people can Conve-
niently understand the result of classification. The NSFWQI relates to some other
water quality index methods such as Horton, Prati and Dinius (Ott 1978) having a
less ambiguous region for aggregation of sub-indices.

3.4 British Colombia Water Quality Index as (BCWQI)
Method

The BCWQI method as an additive index in 1999 by the ministry of environment,
land and parks of Canada was created to assess water quality. In this method, water
quality parameters are calibrated with a certain limit and the amount of exceeding
was determined. This limit can include recommended guidelines for maintaining
the operational capability of the water in a certain design or each standard in which
amount of the different uses of the water is. Therefore, so the use of standards in
every area, region or country is one of the advantages of this method and the quality
classification based on all measured parameters existed in each standard is possible.
Equation (3.2) is used to calculate the final index.

BCWQI ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðF2

1 þ F2
2 þ ðF3

3
Þ2

r" #
=1:435 ð3:2Þ

where F1 = the percentage of parameters that have exceeded a certain limit,
F2 = the number of times generally that exceed certain limits, as a percentage of the
total number of impressions and F3 = the maximum exceeding of a certain limit
(standard limit). The percentages of exceeding are defined as follows:

Percentage of exceeding = [(maximum allowed limit−measured value) /measured
value]*100

Number 1.453 is chosen to ensure maximum number of BCWQI method reaches
to number 100. Sampling frequency and increase the number of stations are the
important notes that enhance the accuracy. About the disadvantage of this method it
can be stated that this index is not able to describe the trend of water quality until are
not exceeding from standard limits. Also, due to using the maximum exceed (F3),
not specifying how many impressions are located above the maximum standard.
Table 3.3 presents the interpretation of the pollution based on the BCWQI method.

In a specific use, high values of a parameter may be desirable, while in the other
use this amount is not acceptable. Accordingly, some experts believe the
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classification should be conducted based on the type of the water use. Determining
the specifications of the water quality will show how desirable for intended use.
Hence, the water quality classification is the most important step in the management
of water quality. Among the water quality indices, N.S.F. WQI is one of the most
used indices and among the specially used indices (drinking purposes and agri-
cultural), BCWQI is a newer and a more acceptable index. Therefore, application of
the two methods is described.

3.5 Application of NFSWQI Method, a Case Study:
Kārūn River (Iran)

The Kārūn River basin occupies an area of about 67,000 km2, and is situated in the
Khuzestan province in south of Iran. The excessive waste water discharge coupled
with the withdrawal of pure water for domestic uses adds to the pollution in Kārūn
River and has critically endangered aquatic life in the river. Since, it is one of the
main rivers in Iran, water pollution in the Kārūn River system can significantly
affect the development of Khuzestan Province and consequently, the economic
development of the country since the province has a high potential for agricultural
and industrial development. Therefore, maintaining the water quality of Kārūn
River is of strategic significance. A large amount of used agricultural water returns
to the rivers through drainage and return flows. However, because of its excursion
through agricultural land, it returns with a high concentration of fertilizers, heavy
metals, suspended and dissolved solids and pesticides. Therefore, it violates the
national effluent standards. Agricultural and agro- industrial return flows, domestic
wastewater of the cities and villages and industrial effluents are the main pollution
point sources of the Kārūn River. The river system supplies the water demands of
16 cities, several villages, thousands of hectares of agricultural lands, and several
hydropower plants. Ever increasing population, resulting in a hike in domestic
water demands as well as industrial demand including but not limited to devel-
opment of agricultural networks, fish hatchery projects, and inter-basin water
transfers, darken the outlook for water quality of the Kārūn River Karamouz (2008)
Fig. 3.3 indicates the water quality monitoring locations on the river.

In this case study, nine water quality parameters, DO, BOD5, NO
3-, PO4-, Total

Solid (TS), pH, T, Turbidity and fecal coli form, was selected. To obtain the final
weighting factor, 50 questionnaires were sent to faculty members of some of the

Table 3.3 Interpretation of
the pollution based on the
BCWQI method

Definition Numerical value of the index

Excellent 0–3

Good 4–17

Suitable 18–43

Medium 44–59

Poor 60–100
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universities in Iran as well as water quality experts and managers in Water andWaste
Water Company in Tehran. Only eighteen people were able to respond. Then,
according to the mentioned methodology, final weighting factor was calculated
(Table 3.4). If final weighting of the study and NSFWQI are compared, the results
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show that the two final weightings are about the same, and the maximum differences
belong to BOD and temperature (Table 3.5). Therefore, the use of the questionnaire
responses may be acceptable to apply to the study. Finally, water quality was com-
puted according to mentioned methodology. Table 3.6 presents the results.

One of the advantages of the NSFWQI is its simplicity and availability of water
quality parameters in the most water quality monitoring programs, and again, as
previously mentioned, while the subjectivity of the method’s is a disadvantage, it
caused minimum effects in the final result. Another notable disadvantage is the
method inability to indicate water quality trends, but that was not among the
objectives of this case study. The aim of this case study was to clarify the existing
situation of water quality and show the application of the methodology.

As described in Table 3.6, Kārūn River water quality from Shahhid Abahpoor to
Shoshtar city was average, but as water circulated through the city, in Gargar
branch, water quality worsened due to the discharge of raw domestic wastewater to
the river. Dez River from Dez dam to Band Gheer and from Band Gheer to Ramin
water station also possesses medium water quality. The water quality of the Dez
River in Ahvaz city of Zargan monitoring station is not satisfactory, since industrial
and domestic wastewater discharges to the river at that point. The quality of the
water moving toward the Darkhovain monitoring station was middling as well.

Table 3.4 The results of
opinion for Kārūn River
Water Quality data
(Asadolahfardi et al. 2005)

Water quality
parameters

Mean of all
significance

Temporary
weights

Final
weight

DO 1.89 0.83 0.13

BOD5 1.56 1.00 0.15

pH 2.33 0.67 0.11

NO3 2.11 0.74 0.11

PO4 2.72 0.57 0.09

TS 2.33 0.67 0.1

Temperature 3.44 0.45 0.07

Turbidity 2.40 0.65 0.1

Fecal coli form 1.67 0.93 0.14

Table 3.5 Comparison of
NSFWQI weighting factors
and weighting factor in this
case study

Water quality
parameters

NSFWQI weight-
ing factors

Weighting factor in
this study

DO 0.17 0.13

BOD5 0.15 0.11

pH 0.10 0.11

NO3 0.11 0.10

PO4 0.09 0.10

TS 0.10 0.07

Temperature 0.07 0.10

Fecal coli form 0.14 0.15
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Subsequently, around Khoramshahr city, water qualities aggravates. River water
quality from this point to the nearby Persian Gulf again improves to medium. It is
worth mentioning that Noroozian (2000) also studied the water quality of the river
albeit using the fuzzy method and obtained different results. The explanation lies in
the fact that the NSFWQI is not for a specific application, while in the fuzzy study,
standards of protection of aquatic life was considered. In addition, the definition of
water quality in NSFWQI and fuzzy method is not quite the same.

3.6 Application of NSFWQI Method in Sefid-Rud River
(Iran)

The case study area is Sefid-Rud River which is located in the province of Gilan,
Iran (Fig. 3.4). This river originates from branches of Ghezelozan and Shahrod to
Caspian Sea. The branch of Ghezelozan originated from the mountains of Kurdistan

Table 3.6 Final NSFWQI and interpretation of water quality of Kārūn River

Monitoring
station

Final
WQI

Water quality
interpretation

Monitoring
station

Final
WQI

Water quality
interpretation

Dez-Dez dam 59.42 Medium Kārūn-
Bandegher

51.69 Medium

Dez-
Chamgalak

66.38 Medium Kārūn-Ramin 51.76 Medium

Dez-Sugar
factory

60.96 Medium Kārūn-Zargan 49.04 Bad-medium

Dez-Abshrin 56.64 Medium Kārūn-
Newsite

51.45 Medium

Dez-Mostofei 53.29 Medium Kārūn-
Polpanjom

50.77 Bad-medium

Dez-
Bandegher

58.10 Medium Kārūn-
Choneibeh

49.15 Bad-medium

Kārūn-Ab-
baspour dam

65.74 Medium Kārūn-
Omotayer

49.45 Bad

Kārūn-Gatv-
and dam

61.96 Medium Kārūn-
Darkhovein

51.75 Medium

Kroon-
Bandmezan

61.08 Medium Kārūn-Nahr 51.16 Medium

Gargar-
Bandshushtar

50.11 Medium Kārūn-
Saboonsazi

47.15 Bad

Shotait-
Shushtar

51.72 Medium Hafar-
Gomrok

58.58 Medium

Gargar-
Bandegher

51.62 Medium Bahmansher-
Abolhasan

59.05 Medium

Shotait—
Bandegher

52.89 Medium Bahmansher-
Choedeh

58.08 Medium
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and Azarbaijan with the maximum flow of 2,000 m3/s and the minimum of 4 m3/s.
Another branch is Shahrud that is originated from the mountains of Alamot and
Talaghan with the maximum flow of 800 m3/s and the minimum flow of 6 m3/s
(Figs. 3.5 and 3.6). The dam constructed on the river is located at 200 km to
northwest of Tehran and 100 km to Caspian sea at the confluence of two rivers of
Ghezelozan and Shahrod. Basin’s area is 57,880 km2 and length of this river is
670 km; the basin is located in orbit of 49.9422° eastern and 37.4692° northern.

Water samples collected from upstream and downstream of the Sefid-Rud dam
which it’s location is illustrate in Fig. 3.5 for upstream and Fig. 3.6 for downstream.

The aim of this case study was to indicate the application of NSWQI methods for
general water quality index and using BCWQI techniques for drinking purposes
and agriculture in Sefid-Rud River.

The mean of the water quality data of the 21 stations which was monitored by
Water Research Institute (Iran) between 2005 and 2006 is presented in Table 3.7. In
this part, the numerical value of the NSFWQI method calculated for each of the 21
qualitative monitoring stations which is shown in Figs. 3.5 and 3.6. Equation 3.1 used
to calculate the NSWQI. Due to lack of reliable data for fecal coli form and turbidity
for all the stations, other parameters include DO, BOD5, PO4, NO3, pH, TS and
temperature were used to compute the WQI. Figure 3.7 indicates the results. As
indicated in Fig. 3.7, according to the NSFWQI method the GSW5 station with the
47.41 had poor water quality and other stations were in themediumwater quality. The
ST2.1 station with 66.9 was in medium quality and had better condition than others.

Fig. 3.4 Location of the Sefid-Rud River
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Fig. 3.6 The sampling stations of downstream

Fig. 3.5 The sampling stations of upstream
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3.7 Application of BCWQI Method in Sefid-Rud River
(Iran)

The BCWQImethod, which is an index for special purposes, was applied for drinking
purposes and agriculture of the 21 stations on the Sefid-Rud River (Figs. 3.5 and 3.6).
The parameters were used including DO, BOD5, PO4, NO3, pH, TS and temperature.

Table 3.7 The mean of water quality data for 21 stations in the case study area

Station DO
(mg/l)

Temperature
(°C)

pH TS
(Mg/L)

PO4

(Mg/L)
NO3

(Mg/L)
COD
(Mg/L)

BOD5

(mg/l)

ST 01 5.6 17.9 8.2 43.9 0.5 4.1 16.5 8.2

ST 02 7.4 17.8 8.2 103.2 0.3 4.3 19.2 9.6

ST 2.1 9.5 18.1 8.2 86.9 0.2 4.3 22 11

ST 03 7.3 18.4 8.2 255.8 0.2 4.9 18.4 9.2

ST 04 6.4 19.1 8.3 375.3 0.1 4.4 16.3 8.2

ST 4.1 8 19.3 8.2 369.5 0.1 4.4 24.2 12.1

ST 05 8.9 18.9 8.2 143.8 0.1 4.6 26.4 13.2

ST 06 6.4 19.6 8.2 104.7 0.2 4.7 24.9 12.5

ST 07 7.6 21.8 8.1 156.0 0.2 3.2 30.2 15.1

ST 08 7.6 22.2 8.1 122.3 0.2 3.2 26.5 13.2

ST 09 7.9 21.6 8.1 101.1 0.1 3.6 25.1 12.6

ST 10 5.8 22.1 8.1 115.8 0.2 2.8 25.4 12.7

ST 11 6.1 22.2 8.1 130 0.2 2.7 26.8 13.4

GSW3 8.9 20 7.3 153.6 0.2 4.9 33 15.8

GSW4 9.5 17.6 8.0 37.2 0.2 4.6 25 12.6

GSW5 7.6 14.4 5.1 200.3 0.3 4.6 18 8.7
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Fig. 3.7 The result of the NSFWQI of the Sefid-Rud River
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Thus, the different monthlymeasured values were selected in each station (Table 3.7).
Figures 3.8 and 3.9 show the results of the method based on drinking purposes and
agriculture putting these parameter data into Eq. 3.2 Accordingly, when a numerical
index is high the station is more critical, the ST9 station with the 104 index for the
agriculture and the ST6 station with 2909 index for drinking purposes were at the
critical situation. The SSW2 station with BCWQI method was 38 for the agriculture
and 62 for drinking purposes. The two stations were the suitable water quality.
Generally, the river’s water for drinking purposes is not at the suitable situation;
therefore, so, for drinking purposes need to be treated. Except for the ST9 station, the
river’s water for agriculture uses was in the media situation.
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Fig. 3.8 The results of BCWQI method for of Sefid-Rud River regarding drinking uses
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Fig. 3.9 The amounts of BCWQI of the Sefid Rud River for 2005–2007 data regarding irrigation
uses
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3.8 Comments on Application

The study describes:

The NSFWQI method has easy application and subjective technique.
According to the results of the NSFWQI method, the water quality of the
Sepidrud River from the environmental view was medium station and the ST2.1
station had the best water quality and the GSW5 station was in the worst
condition.
According to the results of the BCWQI method, the water quality of the Se-
pidrud River for drinking purposes was not suitable and needs to be fully
treated. The ST6 and the SSW2 stations were the critics and suitable water
quality, respectively.
Application of BCWQI method showed the river water quality for agriculture
uses was in a medium situation. The ST9 and the SSW2 stations were in critical
and suitable situation, respectively.
Considering the available data, the mentioned methods to define water quality
may be acceptable tools.
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Chapter 4
Time Series Modeling

Abstract When in surface water such as rivers, ponds and lakes detailed charac-
teristic are not available, especially in developing countries, application of deter-
ministic model are not applicable. In this regards, stochastic modeling are applied
for estimating the future value of water quality parameters. There has been much
effort in developing this technique for solving other engineering matters. Time
series modeling as a stochastic model is trying to make probabilistic statements
about the relation between system components and their future values and is used
frequently in water quality management. In this chapter, after a preliminary
explaining historical background of the method and introducing of time series
modeling, the various methods such as Box-Jenkins methodology including sta-
tionary and non-stationary models and seasonal and non-seasonal models, expo-
nential smoothing methods and Winter’s method, was stated and described in
detail. Finally the application of time series modeling on Latian Dam, which located
in the southeastern part of Tehran province in Iran, was discussed.

4.1 Introduction

Planning a water pollution control program in rivers requires the following steps:

• The design of an experimental program and analyzing the water quality parameters,
• The study of mathematical methods for fitting equations to the parameters,
• Forecasting the future values of the parameters, and
• The development of appropriate control strategies.

Mathematical modeling plays a major part in formulating control strategies.
Building mathematical models require special techniques, whereby one can express
the natural phenomenon by mathematical equations. In general, there are two
approaches to mathematical modeling, as stated below:

1. Deterministic, and
2. Stochastic.

© The Author(s) 2015
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The deterministic approach is based on a cause–effect relationship, and the
models could occasionally be built by knowing the structural relations between
components of a system. These relations are usually expressed in terms of differ-
ential equations whose solutions provide the desired models. Considering the
independent variable is time, the resulting model can explain the variation of a
system component or the whole system with respect to time. This makes it possible
to forecast the future values of time dependent trends and other characteristics quite
accurately. However, due to the presence of various unknown factors in nature,
models are not completely deterministic. Therefore, in most cases it is required to
study various phenomena under uncertain conditions, resulting from the effects of
unknown factors. This leads to consideration of stochastic modeling.

In this approach, one is only able to make probabilistic statements about the
relation between system components and their future values. A good example of
this approach is stochastic hydrology. Numerous studies have proved the suitability
of statistical methods in various hydrological problems. Especially, when the var-
iation of the magnitude of one or more parameters of water quality is studied as a
function of time, statistical method known as time series analysis are very helpful.
By these methods, one can identify the trends, the periodic changes, and the random
parts present in the natural series of data. Identification, estimation, and subsequent
synthesis of these model components envisage the future path of the series, which
in turn could help to take control measures (Bowerman and O’Connell 1987).

4.2 Historical Background

The emergence of stochastic hydrology goes back to 1914 when estimated the
“probability of dry year”. The arrival of digital computers provided suitable means
for application of complex methods for statistical analysis such as time series.

Early applications of time series approach analyzing water resources were
undertaken by Thomann (1967) who studied the time variation of temperature and
dissolved oxygen of the Delaware Estuary. The data were obtained by continuously
recording monitoring stations, operated jointly by the US Geological Survey
Department and the city of Philadelphia. Carlson et al. (1970) and McMichael and
Hunter (1972) have reported the successful use of Box-Jenkins method for time
series analysis. The former applied this method to model and forecast annual stream
flow data, where significant reductions in variance with one or two parameters is
reported to be achieved. Other researchers use this method in developing models for
daily temperature and flow in rivers. These models also incorporated deterministic
components, which was preferable from a numerical and a rational point of view to
a purely stochastic or purely deterministic model.

The Box-Jenkins method of time series analysis was applied in modelling the
hourly water quality data recorded in the St. Clair River near Corunna, Ontario for
chloride and dissolved oxygen level by Huck and Farquhar (1974). The models
were parsimonious and physically reasonable and successful results were obtained.
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Autoregressive and the first difference in moving average models represented the
chloride data have been used to study the monthly water quality data in Chung
Kang river located at the northern part of Miao-Li Country in the middle of Taiwan.
Five years of investigation were conducted and 12 monthly water quality param-
eters were studied. The result was that forecasting with seasonable data seems to
perform well when the Box-Jenkins technique is combined with non-parametric
transformation.

Jayawardena and Lai (1989) undertook a very large research program. A time
series analysis approach was applied to model the monthly COD values in the
Yuancan and Fangcan and Guangzle reach of the Pearl River in southern mean
China for a 21 year period. The basic properties of the water quality were deter-
mined, time and frequency-domain analyses were carried out, and the various
stochastic models represent the dependent stochastic component. Using the prob-
ability distribution of the independent residuals generated synthetic water quality
data, and the future water quality was forecasted.

For handling missing data and analyzing water quality data, Mahloch (1974)
demonstrated the application of multivariate statistical techniques. The results of the
study indicate that a simultaneous multiple regression technique may be used for
supplying the missing observations and that at any particular level, the entire data
matrix may be considered, thereby reducing the computational effort.

The sequential order of observations is a key concept, which is incorporated in
stochastic modeling, especially in time series models. The 1960’s witnessed a keen
interest in the probabilistic structure of the sequence dependence of observations. It
brought up the application of autocorrelation, an essential tool in the analysis of
Autoregressive Integrated Moving Average (ARIMA) models.

To establish a working language, a concise description of time series analysis
and its application in water quality studies is given in the following section.

Considering the deficit of water in Iran, protection of water resources against
pollution is vital. In this regard, water quality monitoring is a tool which produces
up to date information. Having a great amount of raw data without interpretation is
not sufficient and it is necessary to analyze data and predict the variation of water
quality in the future for any decision making on water quality management.
Recently, more researchers have become interested in the application of time series
models for the prediction of water quality.

Time series approach for analyzing water resources were first applied by Tho-
mann (1967) who studied variation of temperature by the time and dissolved
Delaware Estuary. The data was obtained by continuous recording by monitoring
stations, operated jointly by the U.S. Geological Survey Department and the city of
Philadelphia. Carlson et al. (1970) and McMichael and Hunter (1972) reported the
successful use of the Box-Jenkins method for time series analysis.

The Box-Jenkins method for the time series analysis was applied to model the
hourly water quality data recorded in the St. Clair River near Corunna, Ontario, for
chloride and dissolved oxygen levels by Huck and Farquhar (1974), the models
were physically reasonable and successful results were obtained. Autoregressive
(AR) and first difference moving average (MA) models represented the chloride
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data well. Lohani and Wang (1987) also reported to have used this model to study
the monthly water quality data in the Chung Kang River located at the northern part
of Miao-Li County in the middle of Taiwan. Jayawardena and Lai (1991) applied an
adaptive Auto Regressive Moving Average (ARMA) model approach for water
quality forecasting. MacLeod and Whitfield (1996) analyzed water quality data
using Box-Jenkins time series analysis of the Columbia River at Revelstoke.
Caissie et al. (1998) studied water temperature in the Catamaran Brook stream. The
short-term residual temperatures were modeled using different air to water relations,
namely a multiple regression analysis, a second-order Marcov for process, and a
Box-Jenkins time series model. Asadollahfardi (2002) applied Box Jenkins and
Exponential smoothing models to monthly surface water quality data in Tehran for
3 years. Most of the models indicated seasonality. Kurunc et al. (2004) applied
Auto Regressive Integrated Moving Average (ARIMA) and Thomas—firing tech-
niques for 13 years of monthly data about the Duruacasu station at Yesilirmark
River. Asadollahfardi et al. (2012) also worked about water quality of Jaj-Rud
River and applied ARMA time series models.

4.3 Time Series

A time series is a chronological sequence of observations on a particular variable,
such as daily, monthly or annual air or water quality, daily mean temperature, and
so on (Box and Jenkins 1976).

Time series data are often examined in the hope of discovering a historical
pattern that can be exploited in the preparation of a forecast. To identify this pattern,
it is often convenient to think of a time series as consisting of several components.
The components of a time series are trend, cycle, seasonal variations, and irregular
fluctuations (Haan 1977).

Trend refers to the upward or downward movement, which characterize a time
series over a period of time. Thus, the trend reflects the long-run growth or decline
in time series. Its movements can represent a variety of factors. For example, long-
run downward movements in DO might be due to gradual pollution (Bowerman and
O’Connell 1987; Haan 1977).

Cycle refers to recurring up and down movements around trend levels. These
fluctuations can have a duration of 2–10 years or even longer, measured from peak
to peak or trough to trough. For instance, in arid zones, a cycle of an 11 year length
is expected, for dry and wet years.

Seasonal variations are periodic patterns in a time series which repeat themselves
in a certain length of time, (e.g. in a calendar year). Seasonal variations are usually
caused by factors such as weather and customs (Cruz and Yevjevich 1972). The
obvious example is the average monthly temperature, which is clearly seasonal in
nature. Other examples are those of water quality parameter related to temperature.
Average DO is high in winter and lower in the summer months, exhibiting a
seasonal pattern.
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Irregular fluctuations are erratic movements in a time series, which follow no
recognizable or regular pattern. Such movements represent what is “left over” in a
time series after trend, cycle, and seasonal variations have been accounted for.
Many irregular fluctuations in the time series are caused by “unusual” events that
cannot be forecasted. Events such as earthquakes, accidents, wars, and strikes might
cause irregular fluctuations. These can also result from errors made by the time
series analyst.

The time series components already discussed above, do not always occur alone.
They can occur in any combination or can occur altogether. Therefore, no single
best forecasting model exists. A forecasting model suitable for forecasting a certain
component alone may not suit the other components. Thus, one of the most
important problems in forecasting is matching the appropriate forecasting model to
the pattern of the available time series data (Box and Jenkins 1976). In Fig. 4.1
indicated time series exhibiting trend, seasonal and cyclical components.

There are many forecasting methods that could be used to predict future values
of a time series. These methods can be divided into two broad categories-qualitative
methods and quantitative methods (Bowerman and O’Connell 1987).

Qualitative forecasting methods, generally, use the opinion of experts to sub-
jectively predict future events. These methods are often used when historical data are
either not available at all, or are scarce. Qualitative forecasting techniques are also
used to predict the changes in historical data patterns. Since the use of these data to
predict future events are based on the assumption that the pattern of historical data
will persist, changes in the data pattern cannot be predicted. The qualitative methods
will not be used to analyze the current research data, so the discussion, on this
method is ignored.
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Quantitative methods of forecasting techniques, involve the analysis of historical
data in an attempt to predict future values of a variable of interest. Quantitative
forecasting models can be grouped into two kinds-univariate models and causal
models.

Univariate models are the common types of quantitative forecasting methods.
Such models predict future values of a time series, solely on the basis of the past
values of the time series. When using such models, historical data are analyzed in
an attempt to identify a data pattern. Then, if it will prevail in the future, this pattern
is projected into the future to produce forecasts. Univariate forecasting is therefore;
most useful when conditions are expected to remain the same. Changes, which are
functionally related to time, can be incorporated into this method.

The use of causal forecasting involves the identification of other variables, which
influence the variable to be predicted. Having identified these related variables, a
statistical model such as time series regression or transfer function analysis is used
to describe the relation between these variables and the variable to be forecasted.
The statistical relationship derived is then used to forecast the variable of interest
(Matalas 1966; Kisiel 1969).

For example, the BOD might be related to active bacteria and so on. In such a
case, BOD is referred as the dependent variable, while the other variables are
referred to as the independent variables. The analyst’s task is to statistically estimate
the functional relationship between the BOD and the independent variables. Having
estimated this relationship with a good degree of confidence, it can be used to
predict the future values of the independent variables to predict the future values of
BOD (the dependent variable). These models are advantageous because they allow
us to evaluate the impact of various alternate policies.

4.4 Forecast Error

Unfortunately, all forecasting situations involve some degree of uncertainty. This
fact is recognized by including an irregular component in the description of a time
series. This term, which is referred to as an error term, is the resultant of all errors
made in the measurement, save for model choice. Given the model is correctly
chosen, its parameters estimated from the data. Then this estimated model is used
for prediction purposes. Thus, the forecast error for a particular forecast value is the
difference between its actual value when it is observed and the predicted value
obtained from the model. Let us denote an observation made at the time t by yt and
its forecast by ŷt. Thus, the forecast error is given by:

et = yt � ŷt ð4:1Þ

Examination of forecast errors over time can often indicate whether the fore-
casting technique, being used, does or does not match the data pattern. For example,
if a forecasting technique accurately forecasts the trend, seasonal, and cyclical
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components, which are present in a data pattern, the forecast error should reflect
only the irregular component. That is, in such a case, forecast errors should appear
purely randomly. Any sign of non-random nature present in forecast errors reveals
the flaw in the model, which calls for the modification of the model. For example, if
forecast errors describe a seasonal pattern, it is required to include a seasonal
component in the initial model.

If the forecasting errors of the forecasting methodology over time is appropriate
(i.e., errors are randomly distributed), it is important to measure the magnitude of
errors in order to evaluate the accuracy of forecasts. As the “average errors” become
larger, the forecasts get poorer. To this end, a measure often used is defined as:

MeanSquaredErrorðMSEÞ =
Pn
t¼1

e2t

n
=

Pn
t¼1

ðyt � ŷtÞ2

n
ð4:2Þ

4.5 Box-Jenkins Methodology for Time Series Modeling

Decomposition of a time series data into its components, while being instructive
and revealing, is a difficult job. Moreover, it causes greater errors by accumulation
of component errors. To avoid these difficulties, Box and Jenkins (1976) developed
a new methodology, which in essence, does the same job but unifies all concepts
discussed above. In this method, using some transformations such as simple and
seasonal differences the trends, seasonal and cyclical components present in the
data are removed. Then, a family of models is entertained for the transformed data,
which is expected to be as simple as possible. Having estimated the parameters
of the model, the accuracy is checked and the model is appropriately modified.
Iterating this process gives a model which fits the data well. This final model is used
for prediction.

Essentially the Box-Jenkins procedure consists of four basic steps: tentative
identification, estimation, diagnostic checking, and forecasting. Identification is
based on the comparison of Sample Autocorrelation Function (SACF) and Sample
Partial Autocorrelation Function (SPACF) of the time series data with those of
known families of models. These families of models are autoregressives of order
(AR) p = 1, 2,…, moving averages (MA) of order q = 1, 2,…, mixed autoregressive-
moving averages of order (p, q), and autoregressive integrated moving averages of
order (p, d, q), d = 0, 1, 2,…, where d is the degree of differencing to reach stationary.
Estimation is done by exploiting the general method of estimation of the maximum
likelihood.

Diagnostic checking is concerned with ascertaining the adequacy of the enter-
tained model. If the model proves to be inadequate, it must be modified and
improved. The diagnostic methods use the forecast errors to detect the flaws in the
chosen model. They help in deciding the method of improving the model.
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When a final model is determined, a model is used to compute the future values.
These values are expressed in two forms: point estimates and interval estimates.
The future values along with their respective probability limits are the products of
time series modelling.

A point to be considered in forecasting future values of a positive variable is that
negative lower limit for the forecast is obtained. In this situation, zero is used in
place of a negative lower limit.

The Box-Jenkins approach is based on the notion of stationary time series briefly
explained in the following section.

4.6 Stationary and Non-stationary Time Series

Classical Box-Jenkins models are used for stationary time series. Thus, to tenta-
tively identify a Box-Jenkins model, it is necessary to verify that the time series
used in forecasting is stationary. If it is not, the time series should be transformed
into a series of stationary time series values.

Intuitively, a time series is called stationary if their statistical property, such as
mean, variance remains essentially constant through time. If n values of y1, y2,…, yn
of a time series are observed, by examining their plot against time, their stationery
can be checked. If n values seem to fluctuate with constant variation around a
constant level, then it is reasonable to believe that the time series is stationary.
In practice, this is done with the help of sample autocorrelation function (SACF) and
sample partial autocorrelation function (SPACF). If n values do not fluctuate around
a constant mean or do not fluctuate with constant variation, then it is reasonable to
believe that the time series is nonstationary. In this case, one can sometimes trans-
form the nonstationary time series values into stationary time series values, by taking
the first, second or higher differences of the nonstationary time series values (Bendat
and Piersol 1966).

The first difference of the time series values y1, y2,…, yn are defined as:

Zt = yt � yt�1 = ryt
t = 2; . . .; n

ð4:3Þ

where, the difference operator ∇ is related to backward shift operator B, i

e:r = 1� B ð4:4Þ

where By = yt−1 and consequently, Bjyt = yt−j.
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4.7 The Sample Autocorrelation and Partial
Autocorrelation Functions

The behavior of the SACF and the SPACF are important in tentative identification
of stationary time series models. For the values of a stationary time series Zb, Zb+1,
…, Zn which may be the original time series values or the transformed time series
values, SACF is defined as follows. The sample autocorrelation at lag k denoted by
rk is:

rk =

Pn�k

t=b
ðzt � zÞðztþk � zcÞ
Pn
t=b

ðzt � zcÞ2

�z =

Pn
t=b

zt

n� bþ 1

ð4:5Þ

Considering rk a function of lag k, for k = 1, 2,…, K, it calls the sample
autocorrelation function (SACF). This quantity measures the linear relationship
between time series observations separated by a lag of k time units. The rk is a
coefficient of correlation and it is always between −1 and +1. The standard error of
rk is given by:

srk =

1þ2
Pk�1

j¼1

r2j

n�bþ1

2
64

3
75

2
k = 1; 2; . . .

ð4:6Þ

The trk statistic is then computed as:

trk =
rk
srk

ð4:7Þ

which is used to test the significance of rk, for k = 1, 2,…
Plotting rk against k provides the SACF. The behavior of this function is a key

tool for identification of the stationary of a time series and its order.
To employ the Box-Jenkins approach, one must examine and try to classify the

behavior of the SACF. The SACF for a non-seasonal time series can display a
variety of behaviors (Bowerman and O’Connell 1987). These are explained as
follows:
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• If the SACF of the time series values Zb, Zb+1,… Zn either cuts off fairly fast or
dies down fairly quickly, then this series should be considered as stationary.

• If the SACF of the time series dies down extremely slowly then the series should
be considered as non-stationary.

Thus the procedure for finding a stationary time series is to compute SACF of
the original series and then examine its behavior. If it is not stationary, by methods
such as differencing or taking logs, the data is transformed. The SACF for the
transformed series is computed and the new SACF is examined. The procedure is
continued until stationarity is reached.

The SPACF is another important tool for identification of time series models.
The sample partial autocorrelation at lag k is defined with:

k = 1 ) rkk = r1

k = 2; 3; . . . ) rkk = rk �
Xk�i

j¼1

rðk�1Þ; j:rk�j

 !,
1�

Xk�i

j¼1

rðk�1Þ; j:rk�j

 !
ð4:8Þ

where

rkj = rðk�1Þj � rkkrðk�1Þ;ðk�jÞ
j = 1; 2; . . .; ðk � 1Þ ð4:9Þ

The standard error of risk is defined as:

Srkk =
1

ðn� bþ 1Þ
� �0:5

ð4:10Þ

And the student’s tkk—statistic is given by:

trkk = trkk=srkk ð4:11Þ

The precise interpretation of the SPACF at lag k is rather complicated. However,
this quantity can intuitively be thought of as the sample autocorrelation of time
series observations, separated by a lag of k time units, with the effects of the
intervening observations eliminated.

As with SACF, one must examine the behavior of SPACF and classify it to
provide guidelines for identification of time series models: the SPACF can also
display a variety of different behaviors. First the SPACF can cut off. This can occur
when rkk is not statistically significant beyond some number K. In general, K is at
most equal to 3. In such a case trkkj j would be small and generally less than 2 for
k < K. Second, the SPACF may die down if this function does not cut off but rather
decreases in a “steady manner”. This function may exhibit exponential decay,
damped sine-wave or as a mixture of them, Bowerman and O’Connell (1987).
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4.8 Classification of Non-seasonal Time Series Models

For a time series consisting of Zb; Zbþ1; . . .; Zn, where Zt is the original or trans-
formed values of a time series, an autoregressive model of order p;AR ðpÞ, is
defined as:

Zt = /1Zt�1 þ /2Zt�2 þ � � � þ /rZt�p þ at ð4:12Þ

where ϕ1 ··· ϕr are fixed coefficients and at, t = 1, 2,…, n are independent random
variables with zero mean and constant variance r2t . They are usually assumed as
normally distributed. Using the backward shift operator B, Eq. (4.12) can be written
as:

/pðBÞZt = at ð4:13Þ

where /pðBÞ = 1� /1B� � � � � /pBp and BZt = Zt�1; . . .;BpZt = Zt�p.
A moving average model of order q, MA (q), is represented as:

Zt = at � h1at�1 � � � � � hqat�q ð4:14Þ

Or employing the backward shift operator B,

Zt = hqðBÞat ð4:15Þ

With

hqðBÞ = 1� h1B � � � � � hqBq ð4:16Þ

The general nonseasonal autoregressive moving average model of order (p, q) is

Zt = dþ /1Zt�1 þ � � � þ /pZt�p þ at � h1at�1 � � � � � hqat�q ð4:17Þ

This model utilizes a constant term δ. It has an autoregressive part which expresses
the current value Zt as a function of past values Zt�1; Zt�2; . . .; Zt�p with unknown
coefficients (parameters) ϕ1,…, ϕp. In addition, it has a moving average part which is
represented by at; at�1; . . .; at�q, with unknown fixed parameters q1; . . .; qq. The
variable Zt is also considered as a function of a random variable, as, at�1; . . .; at�q.

In Eq. (4.17), the constant term δ can be shown as equal to equal μϕp (B), where
μ is the mean of the stationary time series Zt. In concise notation, Eq. (4.17) is
presented as:

/pðBÞZt = dþ hqðBÞat ð4:18Þ

There are statistical tests, which can be used to decide whether to include δ in the
model.
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If the stationary time series Zb; Zbþ1; . . .; Zn is the original series, then assuming
μ is equal to zero, this implies that these original time series values are fluctuating
around a zero mean, whereas l 6¼ 0 implies that these original values are fluctu-
ating around a non-zero mean. In such a case one can use Zt � �Z in place of Zt.
Then δ can be removed from the model. If the stationary time series
Zb; Zbþ1; . . .; Zn are different from those of the original time series values, where μ
is not assumed to be zero, it can be assumed that there is a deterministic trend in
those original values. Here the deterministic trend refers to a tendency to the
original values to move persistently upward (if δ > 0) or downward (if δ < 0). If a
time series does not exhibit a deterministic trend, then any trend (or failure of the
series to fluctuate around a central value) is stochastic. The stochastic trend is more
realistic in practical situations since it does not dictate a certain path to be taken by
the future values.

4.9 Guidelines for Choosing a Non-seasonal Models

ARMA (p, q) models of Eq. (4.17) are specified by choosing suitable orders for AR
operator ϕp (B) and MA operator θq (B). This boils down to specifying p and q as
positive integers. It is illustrated by some guidelines for choosing such numbers.
See Bowerman and O’Connell (1987).

4.10 Seasonal Box-Jenkins Models

Seasonality may be defined as the common feature of most time series data being
the periodic pattern of fluctuations in time series values. For example the meteo-
rological time series recorded in a location such as temperature, rainfall, and
radiation, exhibit a marked periodic behavior of 12 months. River discharges have
periodic nature too. This feature can be accompanied by any one or more of a trend,
cyclical and irregular fluctuations. Seasonal change is an example of non-sta-
tionarity, which can be removed by a seasonal differentiation. Seasonal differencing
takes the differences of two similar observations, one from each period. For
example in the case of monthly average temperature, the difference of the values of
the same months from consecutive years removes seasonality. For seasonal dif-
ferencing, the seasonal operator ∇s is defined as:

rs ¼ 1� Bs ð4:19Þ
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where S is the length of season, for instance S = 4 for quarterly data and S = 12 for
monthly data. Let y�t denote an appropriate pre-differencing transformation. This can
be shown as, y�t ¼ ln yt if a logarithmic transformation is needed. Another example is
the normalizing transformation of Box and Cox (1964) which is defined as:

yt ¼
ykl�1
ykl k 6¼ 0
lny; k ¼ 0

(
ð4:20Þ

where y�k is the geometric mean of yk values.
Then the general stationery transformation is given by:

Zt ¼ rD
Srdy�t ¼ ð1� BsÞDð1� BÞdy�t ð4:21Þ

where d is the degree of non-seasonal differencing and D is the degree of seasonal
differencing used to reach stationary. Either of D and d can be taken as 0, 1, 2 or at
most 3.

The SACF within each season behaves as it was described for non-seasonal
models. Ignoring the behavior of the SACF within each season and only consid-
ering it at lag’s multiples of S can describe the seasonal behavior of the time series.

Similarly, the SPACF of seasonal models can be studied within and between
seasons. Once the stationarity transformation is performed, there is:

Zt ¼ ð1� BsÞDð1� BÞdy�t ð4:22Þ

which provides Zb; Zbþ1; . . .; Zn model describing these values. This model con-
sists of two components determined by their respective operators. One set of
operator’s models the seasonal pattern while the other set does the non-seasonal
pattern, of the data. The general model of order (p, P, q, Q) is written as:

/pðBÞUpðBsÞZt ¼ dþ hqðBÞHQðBsÞat ð4:23Þ

where /p Bð Þ ¼ 1� /1B� � � � � /pBp is the non-seasonal autoregressive operator
of order p, Up Bsð Þ ¼ 1� U1;sBs � U2;sB2s � � � � � UP;sBPs is called the seasonal
autoregressive operator of order P; hq Bð Þ ¼ 1� h1 Bð Þ � � � � � hqBq is the non-
seasonal moving average operator of order q, HQ Bsð Þ ¼ 1�H1;sBs �H2;sB2s �
� � � �HQ;sBQs is called the seasonal moving average operator of order Q, and δ is a
constant term. /1;/2; . . .;/p;U1; s;U2; s; . . .;UP; s; h1; h2; . . .; hq; h1; s; h2; s; . . .; hQ; s
and δ are unknown parameters which can be estimated from sample data.
at; at�1; . . . are random shocks which are assumed to be statistically independent of
each other, and identically distributed as normal with zero mean, and a constant
variance. This is true for each and every time period t.
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4.11 Guidelines for Identification of Seasonal Models

As in case of non-seasonal identification of the seasonal model (Eq. (4.23)),
requires whether to include δ in the model. This task is accomplished by performing
a significant test using �Z.

The behavior of the SACF and PSACF of the Zb; Zbþ1; . . .; Zn values at the non-
seasonal level is used to decide which (if any) of the non-seasonal moving average
operators of order q, and hq Bð Þ ¼ 1� h1 Bð Þ � � � � � hqBq and the non-seasonal
autoregressive operator of order p, and /p Bð Þ ¼ 1� /1B� � � � � /pBp should be
employed.

The behavior of the SACF and the SPACF of Zb; Zbþ1; . . .; Zn values at the
seasonal level are used to determine which (if any) of the seasonal moving average
operators of order Q, and HQ Bsð Þ ¼ 1�H1;sBs �H2;sB2s � � � � �HQ;sBQs and the
seasonal autoregressive operator of order P, and Fp Bsð Þ ¼ 1� F1;sBs � F2;sB2s �
� � � � FP;sBPs should be utilised. In this regard, some guidelines are available which
are used to specify a tentative model, see Bowerman and O’Connell (1987).

Having identified the appropriate operators, and inserting the appropriate sta-
tionarity transformation, one obtains the model.

/pðBÞ/pðBsÞrD
Srdy�t ¼ dþ hqðBÞhQðBsÞat ð4:24Þ

whose parameters should be estimated and its accuracy should be checked. These
steps are similar to those of non-seasonal models.

4.12 Diagnostic Checking

Diagnostic checking is used to see whether or not the identified and estimated
model is adequate. If the model proved to be inadequate, it must be modified and
improved. The diagnostic methods employed will help to decide how the model can
be improved.

A good way of finding the adequacy of an overall model is to analyze the
residuals obtained from the model. According to the assumptions, which the model
is based upon, the residuals should be independent and identically distributed. They
should follow a normal distribution. Thus, the diagnostic examination methods
consist of checking for independence, normality, and the absence of any systematic
behavior in the residuals.

Before embarking on a specific test, an overall check, which utilizes the sample
autocorrelation function of the residuals, is employed. This is called a portmanteau
lack offit test. The test statistic for the portmanteau test is either the Box-Pierce (Box

and Jenkins 1976) Statistic Q ¼ n0
PK
i¼1

r2i ðâÞ or the preferred Ljung-Box (Box and

Jenkins 1976) statisticQ ¼ n0ðn0 þ 2ÞPK
i¼1

r2i ðâÞ=ðn0 � iÞ.where n0 ¼ n� ðd � SDÞ
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in which n is the number of observations in the original time series, and S is the
length of the season in the series. A good choice of K is 2

ffiffiffiffi
n0

p
. These statistics both

have χ2 distribution with υ degrees of freedom, where υ ¼ K � mp and mp are the
number of parameters that must be estimated in the model under consideration.
Large values of Q or Q* signify a lack of fitting the model, whose sources can be
traced by the following specific tests.

Independence of residuals could be checked by various routine statistical
methods. However, this is best carried out by sample autocorrelation function of the
residuals (RSAC). If independence holds, the RSAC would reflect it by having no
significant correlations.

Normality could also be checked by several methods but the easiest one is the
p-p plot (normal probability plot) of the residuals. In this method, a plot is drawn in
which the x-axis indicates the percentiles of the standard normal distribution and
y-axis represents the observed percentiles of the standardized residuals. If residuals
follow a normal distribution, the p-p plot would resemble a straight line from (0, 0)
to (1, 1). Wild departures from this line are a sign of non-normality and may need
some sort of transformation for the data to make them normal.

To ascertain the absence of any systematic pattern in the residuals, especially of
the periodic nature, the integrated paradigm can be used. The integrated (cumulative)
periodogram for a random series having no periodic feature is a straight line of 45°
passing through (0, 0) and (0.5, 1). A significant departure from this line suggests
some periodic aspects left in the residuals, which could be retrieved and incorpo-
rated, in the model.

In general a flow diagram of the iterative approach for the Box-Jenkins model
building and stages to reach an adequate model is illustrated in Fig. 4.2, and
Table 4.1.

Postulate General Class of Models

Identify Model to be Tentatively Entertained

Estimate Parameters in Tentatively Entertained Model

No
Diagnostic Checking 

(is the model adequate ?)

Yes

Use Model for Forecasting or Control

Fig. 4.2 Stage in the iterative approach to model building (Box and Jenkins 1976)
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4.13 Exponential Smoothing Methods

Exponential smoothing is a forecasting technique that attempts to track changes in a
time series. This is done by using newly observed values to update the estimates of
parameters in the time series model. The well-known methods of exponential
smoothing are:

1. Simple exponential smoothing,
2. Winter’s Method appropriates for seasonal data, and
3. One- and two- parameter double exponential smoothing.

When using an exponential smoothing method, it is often useful to employ
adaptive control procedures to monitor the accuracy of the forecasting system
(Chow 1965).

Exponential smoothing techniques are essentially equivalent to some special
Box-Jenkins models (McKenzie 1984). For this reason, only a brief mention of their
main features is presented (Bowerman and O’Connell 1987).

Table 4.1 Stage of Box-Jenkins modeling (Lohani and Wang 1987)

Step Description

1 Check the data for normality

No transformation

Square root transformation

Logarithmic transformation

Power transformation

2 Identification

Plot of the transformed series

Autocorrelation function (ACF)

Partial autocorrelation function (PACF)

3 Estimation

Maximum likelihood estimate (MLE) for the model parameters (Ansley algorithm)

4 Diagnostic checks

Over-fitting

Examination of residuals (modified Portmanteau test)

5 Model Structure Selection Criteria

(a) AIC criteria

(b) PP criteria

(c) BIC criteria
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4.13.1 Simple Exponential Smoothing

For a stationary series, suppose:

yt = b0 þ et ð4:25Þ

In general, if ao Tð Þ is the estimate in time period T for the average level b0 of
Eq. 4.25 then, a point forecast τ steps ahead made in time period T for yTþs, is given
by:

ŷTþsðTÞ = aoðTÞ ð4:26Þ

To start the forecasting process, ao(0) is needed which is usually the average of
the first one third or half of historical data, depending on the length of the series.
That is:

aoð0Þ =
X½n=k�

t¼1
yt=½n=k� ð4:27Þ

where k = 2 or 3 and [n/k] is the integral part of n/k. The portion used to estimate
ao(0) should not be too long or too short.

The updating equation for ao(T) is given by:

aoðT þ 1Þ = cyTþ1 þ ð1� cÞaoðTÞ ð4:28Þ

where γ is the smoothing constant, often taking a value between 0.01 and 0.30 in
most applications. Its best value can be obtained by trial and error via minimizing
the sum of squared forecast errors. However, the guiding principle is that the
smaller value of γ indicates that the average level of the time series does not change
much over time.

Equations 4.26 and 4.28 allow the computation the forecasting of the values for
the desired time points.

The expression for constructing interval forecasts, of giving confidence level, for
ytþs in time period T, is given by:

½ŷtþsðTÞ � B½100ð1�xÞ�
tþs ðTÞ; ŷTþsðTÞ � B½100ð1�xÞ�

Tþs ðTÞ� ð4:29Þ

where, B½100ð1�xÞ�
tþs ðTÞ = Za=21:25DðTÞ and Δ(T) is the average absolute forecast error

for the time period T, i.e.

DðTÞ =
XT
t¼1

yt � aoðt � 1Þj j=T ð4:30Þ

The value of Za=2 is the 100(1 − α/2) the centile of standard normal distribution.
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Moreover, considering the time series value yT+1, one can update ao(T) to
ao(T + 1) by Eq. 4.28, and also update Δ(T) to Δ(T + 1) by:

DðT þ 1Þ = TDðTÞ þ yTþ1 � aoðTÞj j
T þ 1

ð4:31Þ

Now, using Eqs. 4.28 and 4.31 in Eqs. 4.26 and 4.29, the update forecast is
obtained.

4.14 Winter’s Method

Winter’s method is an exponential smoothing procedure appropriate for seasonal
data (Winters 1960). Winter’s multiplicative model is given by:

yt ¼ ðb0 þ b1tÞSNt þ et ð4:32Þ

That, this model assumes a linear trend and a multiplicative seasonal variation.
In order to apply this method, the following calculations are required:

1. An initial estimate b1(0) of β1
2. An initial estimate ao(0) of β0
3. An initial estimate snt (0) of SNt

From the historical data of the last m year, an average �yi is defined (for the i th
year, i ¼ 1; 2; . . .; m. then b1ð0Þ = ð�ym � �y1Þ=ðm� 1Þs. s is the length of season),
the initial estimate for β0, the average level of the series at t = 0 is given by:

aoð0Þ = �y1 � s
2
b1ð0Þ ð4:33Þ

The initial estimate for the s seasonal factors is given by:

st = yt= �yi � ½ðsþ 1Þ=2� j�b1ð0Þf g ð4:34Þ

where �yi is the average of the observations for the year in which season t occurs (if
1� t� s, then i = 1, if sþ 1� t� 2s, then i = 2, etc.).

The letter j represents the position of season t within the year. For monthly data,
j = 1 represents January, j = 2 is February and so forth. [St must be computed for
each season (month, quarter, etc.) t occurring in the year 1 through m].

Equation 4.32 yields m values for St. These m distinct estimates for seasonal
factor are averaged to give

s�nt =
1
m

Xm�1

k¼0

Stþks

t = 1; 2; . . .; s

ð4:35Þ
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which is the average seasonal index for each different season. Finally, the initial
estimate snt(0) of SNt is given by:

sntð0Þ ¼ s�nt
SPS

t¼1
s�nt

2
6664

3
7775

t ¼ 1; 2; . . .; s

ð4:36Þ

The updating equations are defined as:

aoðTÞ ¼ c
yT

snTðT � sÞ þ ð1� cÞ½aoðT � 1Þ þ ðT � 1Þ� ð4:37Þ

where γ is a smoothing constant, 0 < γ<1.

b1ðTÞ = h½a0ðTÞ � a0ðT � 1Þ� þ ð1� hÞb1ðT � 1Þ ð4:38Þ

where θ is a smoothing constant, 0 < θ < 1.

sntðTÞ = x
yT

a0ðTÞ þ ð1� xÞsnTðT � SÞ ð4:39Þ

where ω is a smoothing constant, 0 < ω<1.
Having the updated values for the components of Eq. (4.32), which are given in

Eqs. 4.37–4.39, a point forecast made at time T for yT+τ is obtained by:

ŷTþsðTÞ = ½a0ðTÞ þ b1ðTÞs�snTþsðT þ s� sÞ ð4:40Þ

Interval forecasts based on complicated formulas can be constructed which can
be found in Bowerman and O’connell (1987).

4.15 One and Two-Parameter Double Exponential
Smoothing

The two parameter exponential smoothing is a special case of Winter’s method
where SNt equated to unity for all values of t. That is, yt = b0 þ b1t þ et. Thus, the
previous results in the Winter’s method also apply in this case.

In one-parameter of exponential smoothing, the smoothing constants are related
to each other, hence one parameter suffices. Thus let c = 1� w2 and h = 2w

1þw where
w = 1� d, and δ is a smoothing constant which is chosen to lie between the values
of 0 and 1. Therefore;

ŷTþsðTÞ = a0ðTÞ þ b1ðTÞs ð4:41Þ
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4.16 Adaptive Control Procedures

One cannot expect a forecasting system to produce perfect forecasts of a time series.
Therefore, it is required to determine whether the forecast errors are tolerable or are
beyond the reasonable bounds. To this end, assume a history of T one-step ahead
forecast errors, e1ðcÞ; e2ðcÞ; . . .; eTðcÞ is computed. Here, γ denotes the fact that the
forecast errors are dependent on the smoothing constant γ, used to compute a one-step

ahead forecast. The cumulative forecast error can be defined by Cðc; TÞ ¼PT
t¼1

etðcÞ
until time period T is reached. Then C(γ, T) will be equal to Cðc; T � 1Þ þ eTðcÞ.

Now, the mean absolute deviation is defined by:

Dðc; TÞ =
PT
t¼1

etðcÞj j
T

ð4:42Þ
Then the tracking signal TS(γ, t) is defined as:

TSðc; TÞ = Cðc; TÞ
Dðc; TÞ
����

���� ð4:43Þ

If TS(γ, T) is “large”, it means that C(γ, T) is also large relative to D(γ, T).
Equivalently this reflects that absolute errors are large and some measures should be
taken. These measures can be taken as:

1. Change the smoothing constant,
2. Change the model,
3. Use different values of smoothing constant at different times.

Some procedures have been developed to implement these measures on the
computer (Chow 1965).

Considering the deficit of water in Iran, protection of water resources against
pollution is vital. In this regard, water quality monitoring is a tool which produces
up to date information. Having a great amount of raw data without interpretation is
not sufficient, and it is necessary to analysis data and predicts the variation of water
quality in the future for any decision making on water quality management.
Recently, more researchers have become interested in the application of time series
models for the prediction of water quality. Time series approach for analyzing water
resources were first applied by Thomann (1967) who studied variation of temper-
ature by the time and dissolved oxygen level for the Delaware Estuary. The data
was obtained by continuous recording by monitoring stations, operated jointly by
the U.S. Geological Survey Department and the city of Philadelphia. Carlson et al.
(1970) and McMichael and Hunter (1972) reported the successful use of the
Box-Jenkins method for time series analysis.

The Box-Jenkins method for the time series analysis was applied to model the
hourly water quality data recorded in the St. Clair River near Corunna, Ontario, for
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chloride and dissolved oxygen levels by Huck and Farquhar (1974), the models
which were obtained physically reasonable and successful. Autoregressive and first
difference moving average models represented the chloride data well. Lohan and
Wang (1987) also reported to have used this model to study the monthly water
quality data in the Chung Kang River located at the northern part of Miao-Li County
in the middle of Taiwan. Jayawardena and Lai (1991) applied an adaptive ARMA
model approach for water quality forecasting. MacLeod and Whitfield (1996) ana-
lyzed water quality data using Box-Jenkins time series analysis of the Columbia
River at Revelstoke. Caissie et al. (1998) studied water temperature in the Catamaran
Brook stream. The short-term residual temperatures were modeled using different air
to water relations, namely a multiple regression analysis, a second-order Mar for
process, and a Box-Jenkins time series model. Asadollahfardi (2002) applied Box
Jenkins and. Exponential smoothing models to monthly surface water quality data in
Tehran for 3 years. Most of the models indicated seasonality. Kurunc et al. (2004)
applied ARIMA and Thomas- Fiering techniques for 13 years to monthly data of the
Duruacasu station at Yesilirmark River. Hasmida (2009) applied ARIMA model
(parametric method) and Mann-Kendall test (non-parametric method) to analyze the
water quality (NH4, turbidity, color, SS pH, Al, Mn and Fe.) and rainfall-runoff data
for Johor River recorded for a long period (2004 to 2007). He described that all of the
water quality parameters were generated by ARIMA processes ranges from ARIMA
(1,1,1) to (2,1,2). He concluded that color, Turbidity, SS, NH4 and Mn follow a
similar trend with the rainfall-runoff pattern while pH, Al and Fe have the opposite
trend compare to rainfall-runoff pattern.

4.17 Application of Time Series

4.17.1 A Case Study: Latian Dam Water Quality

Time series models were applied to some parameters of inlet and outlet water
quality in Latian dam, Tehran. There are five water quality monitoring stations
downstream and upstream of the dam. Among which there are remarkably signif-
icant because of passing of the greatest volume of water (Fig. 4.1). These stations
are Roudak on Jadjrud River, Aliabad on the Lavark River and Zir-e-pol on the
outlet of the dam. Table 4.2 and Fig. 4.3 show the situation and characteristics of
the dam and the stations.

The study area is a 71,000 hectare river basin in the Alborz Mountains. The
rainfall regime is primarily derived from the Mediterranean region. According to
pluviometry data of 14 stations in the region, annual rainfall variations in height
with a 20-year statistical period follows the equation below:

P ¼ �185:3þ 0:379Z ð4:44Þ

where, Z is height above sea level and P is the annual rainfall (Kakavand 2001).
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In the catchment area, annual average temperature is 10 °C. The hottest month of
the year is late of July to late of August with a maximum temperature of 34 °C and
the coldest is late of December to late of January with the minimum temperature of
−8 °C. Average rainfall of Latian basin is more than 500 mm a year. Latian Dam is
located at 35°47′ N, 51°40′ E. In addition to producing 70,000 MW/hours hydro-
power energy, it supplies drinking water to some parts of Tehran and also agri-
cultural water to some parts of the Southeastern part of Tehran (Varamin Plain).
Some characteristics of the dam are shown in Table 4.2.

This case study was primarily aimed at developing suitable and confident time
series models for water quality data in two inlets and an outlet of the dam. The
second objective was to predict variations in water quality from developed models
to be used in water quality management. Third aim is to show application of time
series in water quality (Asadollahfardi et al. 2012).

4.17.1.1 The Software

Statistical Analysis System (SAS) version9/1 was applied for calculations and
analyze of the models of this case study. This software needs to be programmed;
however, there are also some menus for simplicity. First, it is necessary to build a
library in the software to save data and calculations of each stage. Figure 4.4 shows
the procedures for building, confirming and, forecasting models with SAS software.

The aim of this case study was to develop proper models for
Caþþ;Mgþþ; SO��

4 ; pH;HCO�
3 ;Na

þ;Cl� and TDS parameters. The data used in
building time series model as well as confirming and comparing the models were
monthly collected for 24 years (1981–2005) by local water authorities in Tehran.
For validation of the models, the predicted monthly values from September till
March 2005 were compared to the observed values. Finally, a relation was made for
every parameter (Asadollahfardi et al. 2012). The results are presented in
Tables (4.4), (4.5) and (4.6).

As shown in Tables 4.4 and 4.5 most of the models developed for water quality
in Aliabad and Roudak stations were Auto Regressive Integrated Moving Average

Table 4.2 Situation and characteristics of stations upstream and downstream of Latian dam

River Station Longitude
(degree/min)

Latitude
(degree/min)

Altitude
(m)

Basin area
(km2)

Jadj Rud Roodak 51o33′ 35o51′ 1,690 416

Lavark Ali
Abad

51o41′ 35o48′ 1,600 103

Afjah Narvan 51o40′ 35o50′ 1,750 30

Galandovak Najar
Kola

51o38′ 35o49′ 1,700 59

JadjRud Zir-e-
pol

51o41′ 35o47′ 1,560 710
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(ARIMA) type; however, for Zir-e-pol station, there were seasonal models as well
as non- seasonal ones. The obtained values were as follows: ARIMA models with
autoregressive order 2 and seasonal autoregressive order one for Naþ;Mgþþ and

Fig. 4.3 Location of water quality on Latian Dam
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SO��
4 parameters; as non-seasonal ARIMA with autoregressive order two for

Cl� pH, Caþþ and seasonal ARIMA with autoregressive order 1 and moving
average order one for TDS and HCO�

3 non. Some of the models indicated in
Tables 4.3, 5.4 and 6.4, will be discussed in detail in the following section.

If p-Value is more than 0. 9, the model has proven to be excellent, from 0.75 to
0.9 it is evaluated as good and p-value between 0.5 and 0.75 indicates that the
model is average.

Fig. 4.4 Stages for building models in SAS software

Table 4.3 Characteristics of Latian Dam

Type of dam Concrete and weight

Height from foundation 107 m`

Height from riverbed 80 m

Length of crest 450 m

Total capacity of reservoir 95 × 106 m3

Useful capacity of reservoir 85 × 106 m3

Capacity of evacuation of spillways Uncovered 650 m3

Tunnel 1,100 m3
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4.17.1.2 Selected Models of Few Water Quality Parameters in Zir-e-Pol
Station

Ca++

As described in Fig. 4.5 the proper model for calcium (Caþþ) was ARIMA.
(2,0,0)(0,0,0) The relation of the model is as follows:

Zt = 2:186þ 1:02Zt�1 � 0:338Zt�2 þ at ð4:45Þ

where Zt is the amount of calcium, and at stands for error. The standard error is
0.331 according to comparison approaches. Akaike Information Criteria (AIC) and
Schwartz Bayesian Information Criteria are less than the other models. Also cor-
relation coefficient is 0.95 which is proper.

p-Value is 0.99 which indicates that the model is excellent (Table 4.6).

SO4
– –

Figure 4.5 shows variations of sulfate parameter and the best model for SO4 is an
ARIMA (2,0,0) (1,0,0) S with seasonal components (Table 4.4).

Fig. 4.5 Diagram of time series for each of water quality parameters and their predictions (the
predictions are based on 1 month ahead projections)
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The equation of the model is as follow:

Zt = 0:88þ ð0:997Zt � 1� 0:381Zt�2 þ atÞð0:207Zt � 12þ etÞ ð4:46Þ

In this equation, part of ð0:997Zt � 1� 0:381Zt�2 þ atÞ is non-seasonal auto-
regressive component of the model and ð0:2076Zt � 12þ etÞ is its seasonal auto-
regressive component. The standard error is 0.202. Akaike Information Criteria
(AIC) and Schwartz Bayesian Information Criteria (SBC) of the model are less than
other suggested models. The correlation coefficient is 0.53 (Table 4.6). The risk is
less than 0.0001 and confidence level p-Value is 0.99 which proves the model to be
excellent (Asadollahfardi et al. 2012).

Acidity (pH)

The best developed model for pH parameter was ARMA (2,0,0) (0,0,0) (Fig. 4.5).
The equation for acidity is as follows:

Zt = 7:775þ 0:842Zt�1 � 0:142Zt�2 þ at ð4:47Þ

According to comparison methods, standard error of the model is 0.267. The
AIC and the SBC of the model are less than other developed models. The corre-
lation coefficient is 0.83 which is proper (Table 4.4). According to given
assumptions, the amount of risk is less than 0.0297 and a confidence level of
p-Value equals 0.97.

Total Dissolved Solid (TDS)

In Fig. 4 variations of TDS are shown. The best model developed for TDS is an
ARIMA (1,0,1) (0,0,0) with autoregressive order one component and moving
average order one. The equation of the model is as follows:

Zt = 228:8þ 0:8Zt�1 þ at þ 0:591at�1 ð4:48Þ

The standard error of the model is 29.36 and AIC and SBC are less than other
developed models; the correlation coefficient is 0.91 which is proper (Table 4.4).
The amount of the risk is 0.0001 and p-Value is 0.99 which evaluates the model as
excellent.

The characteristics of all the models are shown in Tables 4.4, 4.5 and 4.6. It
should be noted that there is no negative value in practice and 95 % confidence
level considered in the calculation has caused the lower limit to be negative. Hence,
negative values should be omitted or replaced by zero.
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4.18 Summary

The study indicates Box-Jenkins and exponential time series may be suitable for
prediction of water quality.

The developed models for Mg+, Na+, SO4
−2 parameters in Zir-e-pol station (only

outlet), a TDS model in Lavark station and HCO3
− model in Roodak station

described seasonality behaviors and the rest of the models are non- seasonal.
Approximation of the trend of observations shows that the amounts of TDS,Mg +,

Na+, and SO4
−2 parameters are maximum in April and minimum in September. This

may be due to a maximum amount of rainfall in early spring and diminishing rainfall
in summer.

All the developed models have p-Values above 0.9 which implies they are
excellent according to the definition. Comparison of predicted and observation data
for the last 6 months shows good conformity. Hence, the developed models are
proper and confident and may be useful tools for water quality management in inlets
and outlet of water in the dam.
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Chapter 5
Artificial Neural Network

Abstract Often in water quality management, understanding the relationship
between input and output data might be a complicated process. In this situation Data
Driven Models using information and collected data (input data) find out the rela-
tionship between inputs and outputs. In this regard, Artificial Neural Network (ANN)
is one of the Data Driven Models which has recently been applied as a tool for
modeling complicated processes. In this chapter, after reviewing the developing
process of ANN in water quality management, the theory of the ANN is mentioned in
detail for both static and dynamic methods. Data preparation, learning rate and model
efficiency including selection of number of neurons in hiding layer which has a
minimum error in learning rate and network efficiency is described in detail. At the
end step, as a case studywater quality of Zaribar Lake located in theNorthwestern part
of Iran, using Multilayer Perceptron (MLP) neural network method are described.

5.1 Introduction

Lack of water resources and optimum management has been two recent challenges
of water resources engineering. Population growth, decline of useable water
resources, improvements in lifestyle, growing rate of consumption, climate change
and several other parameters have caused useable water to be a noteworthy problem
for the future. Economic and efficient use of water resources and its management
have an increasingly important role.

Other challenges which water quality managements and environmental engi-
neers are facing are controlling the nutrients released to surface waters. Despite all
efforts, eutrophication is also other major problems with water quality management.
Eutrophication is defined as a cultural or accelerated enrichment of nutrient in lakes,
rivers, estuaries and marine waters in which the natural eutrophication process has
gone forward by hundreds or more years of human activities that add nutrients
(Burkholder 2000). Two important parameters which cause eutrophication are
phosphor and nitrogen. Analyzing sample data of Phosphor and Nitrogen param-
eters, in surface water is necessary for understanding the eutrophication situation
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and the development of a model to predict understanding would help to manage
water resources effectively. There are different methods for data analyses, such as
statistic techniques. For Prediction of water quality parameters, first, accurate study
of different processes which can affect water quality and developing statistical or
deterministic models according to the obtained information is necessary. Second,
developing Data Driven Models using information and collected data is an essential
tool. In the latter technique, relationship between input and output data can be
found using input data, but still physical understanding of the phenomena is sig-
nificant for having proper input data for model; however, it is not needed to sim-
ulate a complicate processes. ANN is one of the Data Driven Models which has
recently been applied as a tool for modeling complicated processes.

5.2 Historical Background

French and Recknagel (1994) used the back propagation of ANN to predict seven
kinds of algae with nine defined environmental variables in a Reendbatch tank in
Germany and obtained acceptable results. Recknagel et al. (1997) developed and
validated the ANN by limn logical time series from four different freshwater systems.
The water-specific time-series comprised cell numbers or biomass of the ten domi-
nating algae—species as observed over up to 12 years and the measured environ-
mental driving variable. The resulting prediction of the ANN can fit the nonlinearity
of ecological phenomena to a high degree. Maier et al. (1998) applied the ANN back
propagation type to model a group of Ciano bacteria type of Cyanobacteria Anabaena
inMurray River in Morgan, North Australia. The results were relatively successful in
providing a good forecast for both incidence andmagnitude of growth peak.Wei et al.
(2001) applied the ANN to forecast algal blooms and they achieved accurate result.
Rectnagel et al. (2002) compared potentials and the achievement of the ANN and
genetic algorithms in the term offorecasting and understanding of algal bloom in Lake
Kasumigaura, Japan. The ANN predicted the timing and the magnitude of the algal
bloom 7 days in advance. Karul et al. (2000) also modeled the eutrophication process
of Keban dam, reservoir Morgan and Eymir Lake uses ANN and the results were
successful. Wilson and Recknagel (2001) suggested a generalized architecture of a
feed forward ANN for prediction of algal abundance, their model was validated by
mean of time-series data from six different freshwater lakes. Huang and Foo (2002)
studied neural network modeling of salinity variation in Apalachicola River and their
results was acceptable. French and Recknagel (1994) developed a model to quantify
the interaction between biotic factors and algal genera in Lake Kasumigaura, Japan
uses ANN method and results showed that the timing and magnitude of algal blooms
of Microcystis phormidium and Synedra in the mentioned lake could be successfully
predicted. Markus et al. (2003) applied the ANN to predict uncertainty of weekly
nitrate-nitrogen. Panda et al. (2004) used the ANN to predict water quality using
satellite imagery data and thus, indicates that it has the potential to make the water
quality determination process cost effective, quick and sensible. Jiang et al. (2006)
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studied an improved back propagation of the ANN model for eutrophication of
eastern china, the model was applied to four eastern lakes and results described the
ANN is suitable for predicting eutrophication. Kuo et al. (2007) used back-propa-
gation neural network to relate the number of water quality indicators such as DO, TP,
Chl-a and secchi dish depth in a reservoir in central Taiwan and they concluded that
the ANN is able to predict these indicators with reasonable accuracy. Kanani et al.
(2008) predicted the salinity levels for 1 month in advance in a Talkheh Rud River
(Iran) by applying the MLP and IDNNmodels, the result was reasonable The Illinois
state water survey conducted a study to assess the potential of the ANN in forecasting
weekly nitrate-nitrogen concentration. Three ANN models were applied to predict
weekly Nitrate—N concentration in the Sangamon River near Decatar, Illinois, based
on the previous week’s precipitation, air temperature, and discharge and past nitrate
concentration. The result model was more accurate than the linear regression model
having the same input and output (Momcilo et al. 2003). Asadollahfardi et al. (2010)
applied the MLP for predication of eutrophication in Anzalily Wetland using TN, TP
as input in the MLP and predicted BOD parameters, the results indicated reasonable
accuracy. Asadollahfardi et al. (2011) studied static and dynamic neural network to
TDS of Talkheh-Rud River, Iran, and predicted the future of salinity. Asadollahfardi
et al. (2013) predicted sodium adsorbtion ratio (SAR) of Chelghazy River in Kurd-
istan (Iran) using MLP neural network, and the results was acceptable.

5.3 Artificial Neural Network Theory

5.3.1 Theory of ANN

Bearing in mind natural neural and its components, scientists developed an artificial
neural system. This is the smallest unit of an ANN. An artificial neural system
consists of three components including weighting (W), bias (b) and transfer func-
tion (f). These three components are unique to each neural system. In Fig. 5.1, “p”
and “n” are input and output while “a” is net output. The junctions 1 and 2 in the
figure indicate the schematic of an artificial neural system. Function of an artificial
neural network would be called “p”.

n = wpþ b ð5:1Þ

a = f nð Þ = f wpþ bð Þ ð5:2Þ

Generally, the ANN is divided into two groups, static and dynamic. Time is not a
key parameter in the static of the ANN but it is one of the main parameters in
dynamic networks.

Hornik et al. (1989) proved the “universal approximator theory” which expressed
that a feedforward neural network with a hidden layer of sigmoid tangent and linear
output layer would be able to estimate each complex function (Cybenko 1989;
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Hornik 1991, 1993; Leshno et al. 1993). Figure 5.2 presents the schematic of the
ANN. Figure 5.3 shows schematic tangent—sigmoid transfer function and linear
transfer function. Number of neurons in hidden layers for each model may be
obtained using trial and error. In this network, number of input vector component.

R = the number of input vector components; S1 and S2 = number of Neurals in
hidden and output layers, respectively.

Number of network output would be S2. Function of the network can be mod-
eled by Eqs. 5.3 and 5.4 (Menhaj 1998):

a1j ðtÞ = F
XR
i¼1

w1
j;ipiðtÞ þ b1j

( )
ð5:3Þ

a2j ðtÞ = G
Xs1
j¼1

w2
k;ia

1
JðtÞ þ b2k

( )
ð5:4Þ

Fig. 5.1 Schematic of an artificial neuron

Fig. 5.2 Transfer function
tangent sigmoid
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where R = numbers of input vector components. S1 and S2 = numbers of neurons in
hidden and output layers, respectively. P = input vector. w1 and w2 = weighting
matrix in hidden and output layers, respectively. b1 = b2 are bias vectors in Hidden
and output layers, respectively. G and F = neuron transfer functions in hidden and
output layers respectively (Menhaj and Safepoor 1998).

For further reading see references (Menhaj and Safepoor 1998).

5.3.2 Dynamic ANN Models

The inputs of dynamic are the same as the static model; the difference is that the
effect of the past period is considered in this model. There are several methods by
which a static model can be turned to dynamic. One of them is Time Delay Neural
Network (TDNN) operators. A TDNN operator receives an input signal and keeps it
for a time step. And in the next time step the input signal emerges as an output
result. By connecting N series of TDNN operator, Tapped Delay Line (TDL) will
be obtained. The output is a vector with N + 1 components. The N + 1 components
include the input in the current time step and N time steps before.

5.3.3 Data Preparation

Considering the application of sigmoid tangent in the hidden layers of the networks
and the special formula of this function, the scale of input data have to be changed.
Considering Fig. 5.2 sigmoid tangent function, it is clear that the slope of this function
is differentiated according to the sums in the interval (1, −1) of the ambient and has
few changes out of this interval. For all data, output and input should be transformed
to the (1, −1) interval to prevent the network saturation (Asadollahfardi 2012).

Fig. 5.3 Schematic of MLP
with a hidden layer
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5.3.4 Learning Rate

There is a parameter called learning rate in the training algorithm of back propa-
gation, which is on the basis of the steepest descent. Its aim is to minimize the sum
square error of outputs. Determining the proper learning rate is one of the most
sensitive processes to use the algorithm of back propagation (Menhaj and Safepoor
1998). The learning rate is indicated by a symbol α and determines the velocity of
convergence in this algorithm. The performance of the steepest descent algorithm is
improved if the learning rate is permitted to change during the training process. An
adaptive learning rate attempts to make the learning step as big as possible to
keep the learning stable and requires some alters in the training procedure
(Asadollahfardi 2012).

5.3.5 Model Efficiency

Three error criterions of VE, MAE, and RMSE are used to evaluate the output of
obtained models. Equations (5.5), (5.6) and (5.7) show these expressions (Kennedy
and Neville 1976):

Volume Error ðVE) = 1
T

XT
t¼1

Obst � Fort
Obst

����
����� 100 ð5:5Þ

Mean Absolute Error (MAE) =
1
T

XT
t¼1

Obst � Fortj j ð5:6Þ

Root Mean Square Error (RMSE) =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
T

XT
t¼1

ðObst � FortÞ2
vuut ð5:7Þ

where, T = discrete time, t = length of time series, Obst = observed parameter in
time of t (1 ≤ t ≤ T) and Fort = predicted parameter in time of t (1 ≤ t ≤ T). Also the
correlation coefficient R is applied to show the validity between real data and
predicted ones which are described in Eq. 5.6.

R =
P ðx� �xÞðy� �yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP ðx� �xÞ2 P ðy� �yÞ2

q ð5:8Þ

where �x, �y = means of x and y series. R shows the relationship between observed
data and predicted data. If relations are very strong, R approaches one.
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5.4 Application of Artificial Neural Network

5.4.1 A Case Study: Zaribar Water Quality (Iran)

Zaribar Lake is located near the North West of Marivan (North West of Iran), in
46°, 6′ longitude and 35°, 31′ latitude and at an altitude of 1,250 m from the sea
surface. The lake area varies due to the variation in water volume during different
seasons of the year. The minimum depth is about 2 m and the maximum is 6 m. The
perimeter of the lake is about 22.5 km. The average rate of rainfall is 786 mm per
year and relative humidity is 58.4 %; average vaporization is 1,900 mm annually.
Figure 5.4 and Table 5.1 indicates the location and a statistical summary of water
quality data in Zaribar Lake, respectively (Irani 1991).

Sewages from Marivan city and its surrounding villages are discharged into
Zaribar Lake. This resulted in high amounts of Phosphor and Nitrogen and phos-
phate and nitrate chemicals which are washed up by rain water from the adjacent
farmland. Unfortunately, this causes a decrease of DO of water by growth of algae.
This may cause an eutrifcation phenomena in the lake. Figure 5.4 presents the
situation of Mari van (Zaribar Lake) in the map of Iran.

The aim of this case study was to find effects of TP and TN parameters in
increasing and predicating BOD parameter (eutrophication) in Zaribar Lake using
the MLP technique and indicating application of MLP neural network.

Twelve year data of Zaribar Lake (Table 5.1) with 1 month time delay was used
to the modeling process. Eight years of the data were used for network training and

Fig. 5.4 Situation of Marivan
(Zaribar Lake) in map of Iran
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remaining data for the testing of the network. The software applied for modeling
was Neural Network Toolbox and was the MATLAB version (2007).

Data used, including the amount of TN and TP and BOD parameters was
monitored by the Water Authority of Kurdistan province (Iran) for a period of
12 years from 1994 to 2006. This was the only data available for this work.

Considering the theory of universal approximation as mentioned previously, all
of the ANN which was applied in this study has relatively similar structure with the
main difference being the numbers of neurons in the hidden layer.

Tables 5.2 and 5.3 present the amount of errors in training, testing and total with
various number of neuron using VE, MAE, RMSE standard errors when input data
were TP and TN in case of using 2–20 neurons in the hidden layer. As indicated in
the tables, using both parameters of TP and TN, minimum errors obtained when
13 neurons were applied in the hidden layer. Correlation of determination for TP
input into training, testing and total were 0.981, 0.964 and 0.974 respectively,
which indicates reasonable conformity between actual BOD parameters data and
the model predictions (Figs. 5.5, 5.6 and 5.7) and when TN is applied as input to the
model, the correlation of determination in training, testing and total are 0.963, 0.957
and 0.968 respectively (Figs. 5.8, 5.9 and 5.10). In Figs. 5.11 and 5.12 the con-
formity between predicted BOD parameter and real one when input parameters
were TP and TN is illustrated.

Fig. 5.5 Correlation of determination diagram between actual BOD (mg/l) data and prediction
(TN as an input data)

Fig. 5.6 Correlation of determination diagram between actual BOD (mg/l) data and prediction
(TN as the input data)
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Fig. 5.7 Correlation of determination diagram between actual BOD (mg/l) data and prediction
(TN as the input data)

Fig. 5.8 Correlation of
determination diagram
between actual BOD (mg/l)
data and prediction (TP as the
input data)

Fig. 5.9 Correlation of
determination diagram
between actual BOD (mg/l)
data and prediction (TP as
input data)

Fig. 5.10 Correlation of
determination diagram
between actual BOD (mg/l)
data and prediction (TP as the
input data)
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TP parameter was found to have marginally less error than TN when used as an
input for the MLP model. This may present that TP parameter may have a greater
role to play than TN in generating pollution (BOD) in the wetland. This can be
proved by applying sensitively analyze.

5.4.1.1 Comment

As a general, MLP neural network is a suitable tool for analyzing surface water
quality and comment related to mentioned case study is as follows:

In the testing model, with 13 neurons in the hidden layer, when TP was used as
an input parameter to the MLP model for prediction of the BOD, the error was
8.32 % which was less than the error obtained with TN as the input. This may
describe that TP is more influential in producing pollution (BOD) than TN. This
was also the minimum error in this study. Also, the correlation coefficients in
training, testing and total were 0.981, 0.964 and 0.974 respectively, which shows
reasonable conformity between real BOD parameter data and the model predictions.
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Fig. 5.11 Comparison
between BOD prediction and
actual BOD data, considering
TN as input data
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The least amount error when applying the TN as an input to the MLP model was
10.73 % with 13 neuron chosen in the hidden layer. Correlation coefficients in
training, testing and total are 0.963, 0.957 and 0.968 respectively, which may
indicate acceptability of the MLP model and may present the role of the TN
parameter in contamination of the wetland.

As a whole, the results of this study may help to decision makers in water quality
management in Zaribar Lake and application of the technique may apply to another
part of the world.
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Chapter 6
Introducing of Ce-Qual-W2 Model
and Its Application

Abstract Water authority organizations are interested in information the existing
situation, seasonal variations and expectations of the future situation of the water
quality parameters of surface and groundwater. While detail information about
surface water or ground water are available, deterministic models for predicting
future values of water quality is more proper than stochastic models. In this regard,
numerical models demonstrated an impressive capacity to support important water
resource decisions. Therefore, in this chapter Ce-Quel-W2 and Qual-2K models as
numerical models that are applied to simulate water quality are described in details.
At the end, using Ce-Qual-W2 model the water quality of Karkheh Dam, which
located in the Northwestern province of Khūzestān in Iran as a case study, is
investigated. In addition the application of Qual-2K models for simulating water
quality of the Kārūn River, which located in the south west of Iran, was described.

6.1 Introduction

The first step of a water quality study is to identify the relevant parameter, which
affects the water quality. Rivers and streams are an important component of the
natural environment, and need to be protected from all sources of pollution because
man’s own survival depends on their use. Rivers; however, are increasingly under
human threat from different pollutants, which include conventional pollutants
(organic matter and inorganic nutrients) and hazardous substances (organic con-
taminants and heavy metals). Despite the fact that the river water quality can be
influenced by natural phenomena such as climate and geology (Boorman 2003), the
main sources of pollution are related to anthropogenic activities: mining, agricul-
ture, forestry, cattle farming and urbanization. As a result, river water quality is
affected by both point and diffuse sources of pollution. To tackle these typical water
quality problems, and for the sake of both ecological and human welfare, rivers (all
water resources in general) must be protected, restored and sustained (Deksissa
2004).
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There are many water quality parameters, but TDS is an important water quality
parameter especially in reservoirs. In fact, TDS can be considered a pollutant for
this reason, it is vital to have information about the existing situation, seasonal
variations and expectations of the future situation of the parameter.

The Department of Environment (DOE) and Institute of Standards and Industrial
Research of Iran (ISIRI) (2007) have specified that the permitted amount of TDS in
drinking water should be less than 500 mg/l (milligrams per liter) and water for
irrigation should be 1,000 mg/l.

If the amount of TDS increases above the standard level, it may cause some
problems which are as follows (Tebbutt 1997):

1. Providing an undesirable taste in water.
2. If there is magnesium or calcium carbonate in the water, they may cause a core

problem in the equipment of a dam such as erosion.
3. Increasing cost of water treatment to reduce the amount of TDS.
4. The increasing amount of TDS in water causes a reduction in dissolved oxygen.

In practice, a minimum in stream flow standards are usually based on some
combination of the following: historic discharge, channel morphology, water
quality, the ecology of aquatic species, empirical evidence, modeling, and ulti-
mately arbitrated between user groups. For a particular area, in stream flow
requirements will depend on local and downstream conditions and can vary con-
siderably within areas of similar climate and hydrology (Beecher 1990).

To predict the damage caused by these problems, modeling of the water
resources is essential. The need for predictive water quality modeling has arisen
largely as a result of increased eutrophication of lakes throughout the world
(Canfield and Bachmann 1981).

Numerical models have demonstrated an impressive capacity to support
important water resource decisions. Models are typically used to support devel-
opment and public policy decisions in a variety of areas: simulation of discharges,
outfalls, and intakes; changes to wastewater treatment systems; approval of changes
in industrial processes; operation of dams and reservoirs; and water resource
allocations, among other uses. The value of modeling is important in economic and
financial terms with regard to determining particular project options and phased
investment programs (Cox 2003).

6.2 Historical Background

There are many studies for modeling river and reservoir water quality which were
used Ce-Qual-W2 model.

Previous studies used the Dyresm model for Mymeh dam in Iran, using salinity
and temperature data from 1970 to 1979. The result indicated, there were very weak
stratification (TDS) during winter and stratification started in spring and during the
summer there was strong stratification. Comparison between salinity before and
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after construction of the dam across the river described a reduction in salinity
(Shiati 1996).

Bookan dam in Kurdistan province across the Zareneh River in Iran was also
studied for variations in salinity. The result of the study presented weak stratifi-
cation (TDS) (Sarang and Tajreshi 2001). This may be due to the low height of the
reservoir and the temperate climate situation.

TDS and temperature parameters were also evaluated in long lake reservoir with
40 km length across Spokane River and compared to the data generated using the
Ce-Qual-W2 model for simulation. The result of the model and the observed data
were the same (Berger and Wells 2001).

Using the Dyresm model to evaluate TDS data between 1961–1990 in Raes Ali
Delvary above the Shapoor dam in Iran, the result indicated strong stratification of
TDS and Temperature.

Rounds (2001) indicated success and failure of CEQUAL-W2 by a modeling
study of the Tualatin River in northwestern Oregon. In his study, CEQUAL-W2
was used successfully to assess the sources and transport of phosphorus, quantify
the river’s ammonia assimilative capacity, determine the relative significance of the
sources and sinks of dissolved oxygen, quantify the factors that affect phyto-
plankton growth, and test the effects of potential management strategies.

Razdar et al. (2011) compared the results of the CE-QUAL-W2 model with the
WASP5 and MIKE11 models to assess the water quality of Pasikhan River. The
contaminant loadings of Nitrate and Phosphate was utilized in the CE-QUAL-W2,
WASP5 and MIKE11 simulations. The sensitivity analysis for CE-QUAL-W2
model indicated that the model is highly sensitive to the Manning coefficient and
point source flow rate. The calibrated model responses was in good agreement with
the actual data and could be applied as scenario generators in a general strategy to
conserveor improve the water quality. During the period of intense stratification,
forecasting from CE-QUALW2 are inconsistent better to the actual data than those
from Mike11 and WASP5 due to the improved transport scheme applied in
CE-QUAL-W2.

6.3 Theory of the Model

Generally the study of water quality in a reservoir consists of two sections which
are as follows:

1. Experimental study
2. Water quality simulation of mathematical model

Domain equations in the Ce-Qual-W2 program are presented in Table 6.1, where,
in this chapter the QUAL2K (Chapra and Pelletier 2003) stream and river quality
model was used. QUAL2K is a modernized version of the QUAL2E (or Q2E)
model (Brown and Barnwell 1987). The model is supplied by the Watershed &
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Water Quality Technical Support Center of the EPA (U.S. Environmental Protection
Agency).

The U.S. EPA Enhanced Stream Water Quality Model (QUAL2K) is frequently
used to simulate water quality in streams receiving pollutant discharges. The model
capabilities that are relevant to water quality include reactions of carbonaceous,
nitrogenous, and benthic oxygen demand, atmospheric reaeration, and the effects of
these processes on the dissolved oxygen in a receiving stream.

The model, integrates inputs from point and non-point sources to determine
impacts on water quality in receiving water bodies. This model determines
assimilative capacities of the water body, level of best management practices, or
allows predicting the time required for a system to recover after being altered.

QUAL2K simulates up to 15 water quality constituents in branching stream
systems. The model uses a finite-difference solution of the advective-dispersive mass
transport and reaction equations. A stream reach is divided into a number of com-
putational elements, and for each computational element, a hydrologic balance in
terms of stream flow (e.g., m/s), a heat balance in terms of temperature (e.g., 3 °C),
and a material balance in terms of concentration (e.g., mg/l) are written.

Both advective and dispersive transport processes are considered in the material
balance. Mass is gained or lost from the computational element by transport pro-
cesses, wastewater discharges, and withdrawals. Mass can also be gained or lost by
internal processes such as release of mass from benthic sources or biological
transformations.

Table 6.1 Governing equations in Ce-Qual-W2 model

Equation The governing equation
assuming no channel slope

The governing equation assuming an arbitrary
channel slope and conservation of momentum at
branch intersections
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U = horizontal velocity, ms−4 ; W = vertical velocity, ms−4 ; B = channel width; P = pressure;
τx = x-direction lateral average shear stress; τy = y-direction lateral average shear stress;
ρ = density; η = water surface
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The program simulates changes in flow conditions along the stream by com-
puting a series of steady state water surface profiles. The calculated stream flow
rate, velocity, cross-sectional area, and water depth serve as a basis for determining
the heat and mass fluxes into and out of each computational element due to flow.
Mass balance determines the concentrations of conservative minerals, coliform
bacteria, and non-conservative constituents at each computational element.

In addition to material fluxes, major processes included in the mass balance are
the transformation of nutrients, algal production, benthic and carbonaceous
demand, atmospheric reaeration, and the effect of these processes on the dissolved
oxygen balance. QUAL2K uses chlorophyll a as the indicator of planktonic algae
biomass. The nitrogen cycle is divided into four components: organic nitrogen,
ammonia nitrogen, nitrite nitrogen, and nitrate nitrogen. In a similar manner, the
phosphorus cycle is modeled by using two components. The primary internal sink
of dissolved oxygen in the model is biochemical oxygen demand (BOD). The major
sources of dissolved oxygen are algal photosynthesis and atmospheric reaeration
(Khodadadi Darban 2010) .

The hydrodynamic model was developed on the foundation of the continuity
equation, the momentum equation, and the mass-balance equation for salt. The
water quality model is based on the laterally integrated equation describing the
mass-balance of a dissolved or suspended substance in the water column
(Eq. (6.1)).

oðCBÞ
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þ oðCBuÞ
ot

þ oðCBwÞ
ot

¼ o
ox

KxB
oC
ox

� �
þ o
oz

KzB
oC
oz

� �
þ BSi þ BSe ð6:1Þ

where; t = time [T]; x = distance seaward along river axis [L]; z = distance upward
in the vertical direction [L]; B = river width [L]; C = laterally averaged concen-
tration [M/L3]; u and w = laterally averaged velocities in the x and z directions,
respectively [L/T]; Kx and Kz = turbulent diffusion coefficients in the x and z
directions, respectively [L2/T]; Si = time rate of internal increase (or decrease) by
biochemical reaction processes [M/L3T]; Se = time rate of external addition (or
withdrawal) across the boundaries [M/L3T].

As indicated on Fig. 6.1, the water quality model consists of eight interlinked
components including organic nitrogen (ON), ammonium nitrogen (NH4

–N),
nitrite–nitrate nitrogen (NO2

+NO3
–N), organic phosphorus (OP), inorganic phos-

phorus (PO4
–P), chlorophyll ‘a’ (chl), carbonaceous biochemical oxygen demand

(CBOD), and the dissolved oxygen (DO) (Khodadadi Darban 2010).
Each of the water quality components can be represented by the same equation as

Eq. (6.1), but with its own representations of external (Se) and internal (Si) source
and sink terms. Each rectangular box in Fig. 6.1 represents a component being
simulated by the model. The arrows between components represent the biochemical
transformation of one substance to the other. An arrow with one end unattached to a
component (rectangular box) represents an internal source (or sink) due to the
biochemical reaction or an external source (or sink) (Khodadadi Darban 2010).
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6.3.1 Boundary Conditions

Boundary conditions need to be specified in the water quality model at four
boundaries: the free surface, bottom, upstream and downstream boundaries. At the
free surface, the wind-induced DO aeration is incorporated into the model using the
equation developed by Banks and Herrera (1977).

There is no other mass flux through the free surface. The mass fluxes at the
bottom are specified specifically for each state variable by settling and benthic
fluxes. The contributions of non-point source loadings from the upstream drainage
area are specified as mass fluxes at the upstream boundary for each of the state
variables (Khodadadi Darban 2010).

The surface elevation is specified as a function of time either with harmonic
functions or with time-series data measured at this boundary. In calculating
velocities at the open boundary, the horizontal velocities are linearly extrapolated to
a fictitious model transecting outside the estuarine mouth, and the advective and
diffusive terms are calculated over this fictitious model segment.

6.4 Study Area

6.4.1 The First Case Study

Karkheh dam is located 40 km far from West of Andimeshk city and 160 km far
from Ahwaz city. Figure 6.2 shows the location of the Dam. The main objective of

Fig. 6.1 Schematic diagram
of interacting water quality
state variable (Khodadadi
Darban 2010)
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construction of the dam was to supply water for irrigation of Abbas, Hmidiyeh,
Ghods and Azadegan plains, for generating electricity and to control the seasonal
flooding.

In this case study, we monitored TDS and Temperature parameters in different
water depth in the axes of the dam for 8 months, and then applied the two
dimensional Ce-Qual-W2 model to the data and with secondary data from different
Iranian organizations, (Meteorological Organization, and Power Ministry) used to
develop a suitable model with which it is possible predict the variation of TDS in
the future.

Data was collected at three stations (Jologeir, inside the reservoir and Payapol
stations) which are shown in Fig. 6.2.

Considering all conditions and constraints governed in this study, it was decided
for experimental work to be carried out during stratification of the reservoir. All
experimental work was carried out in 2003. For water quality simulation in the
Karkheh reservoir, it was necessary to have some the following information
(Barderghasemi 2002):

1. Reservoir Geometry
2. Inlet and outlet discharge
3. Reservoir water level
4. Meteorology data (air temperature, speed and direction of wind, dew point,

cloud cover)
5. Water quality parameters (water temperature, TDS)

Fig. 6.2 Situation of Karkheh Dam
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Item 1–4 was gathered from Power Ministry and Meteorological Organization
data and item 5 were assessed monthly from May 2003 to December 2003 by
Badrghasemi (2002) for two reasons which are as follows:

Collection of water quality data which is necessary for Ce-Qual-W2 model
calibration and confirmation including water temperature and TDS parameters.

Confirmation of two dimensional assumption of the reservoir.
Data of Jologeir and Payapol stations was applied as boundary conditions and

data from inside the reservoir was used for calibration and confirmation of the
model (temperature profile and TDS of May 2003 were used as initial conditions of
the model).

Considering the shape of the reservoir which is 65 km long and 5 km widths and
variation of TDS, temperature parameter at the surface of the water was about
3–5 %. It was assumed that the variation of water quality across the width of the
reservoir was negligible. Therefore, for simulation of TDS and Temperature a two
dimensional model (Ce-Qual-w2), was considered suitable for the evaluation of the
reservoir.

Another reason for selecting the two dimensional model was that the distance
between two outlets of the reservoir which was relatively high (Dashte Abbas
tunnel in 40 km and outlet of the reservoir in 65 km) and variations in length of the
reservoir are visible.

Ce-Qual-W2 is a two-dimensional model which was applied to simulation of
hydrodynamic and water quality of the reservoir in length and height, it was used
for all mean parameters in the width of a reservoir.

The selected model in this case study was carried out for 688 days of simulation,
and the data of TDS and temperature of the first 200 days of simulation were used
for confirmation of the model and the rest of the data used for prediction of
variation of water quality in the reservoir. The first day of experimental work was
Mays 5th 2003; this was the day also selected as the first day of simulation.

The length of the reservoir was divided into 66 equal parts, each of them equal to
1,000 m and the height of the reservoir was divided into 62 layers, the height of
each layer was between 1.5 and 4 m. Figure 6.3 indicates a simulation of the
geometry of the reservoir.

First, the reservoir geometry defined for the model, second, meteorological data
file, initial conditions, boundary condition and wind confinement correction
defined.

The first step of constructing a model is model calibration and also Ce-Qual-W2
model needs to evaluate the temperature and the amounts of TDS of each layer for
analyzing densities of different layers. Hence, before the simulation of TDS, it is
necessary to construct temperature stratification models and then it is necessary to
calibrate temperature and TDS parameters. Whenever the results of simulation are
confident, then the prediction of TDS parameter will be carried out for future.

The result for the first temperature and TDS simulation models were not matched
to the experimental study. Therefore, the calibration of the model begun. First, the
geometry and second the water level of the reservoir was calibrated.
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The maximum percentage of the difference between actual and model evaluated
volumes of the reservoir was about 0.5 % and the maximum percentage of the
difference between actual water levels and the model evaluation in the reservoir was
about 0.61 m. Figure 6.4 indicates a comparison between actual and model of water
level from May to December 2003.

After calibration of hydrodynamic characteristics of the reservoir, the water
quality of the reservoir was calibrated. Results of model sensitivity analysis are as
follows: Vertical distribution coefficient AZ (man) had affected the model result
when analysis was carried out in a vertical direction. Increasing the mentioned
coefficient in the model, lead to breaking thermo cline in depth and also surface
absorption radiation coefficient in depth affected the construction of the model and
the use of a bigger coefficient led to a simulation result closer to reality.

Cloud cover coefficient also had a significant effect in the reduction of solar
radiation and correction of it caused an improvement in the result. The wind
velocity correction was an important parameter for model calibration.

Figures 6.5, 6.6, 6.7 and 6.8 describe the comparison between results of simu-
lation of temperature and TDS profiles with experimental work which was carried
out from May to December 2003.

As presented in Fig. 6.5 in late June and early July 2003, water temperature and
TDS on the top of the water level were about 32 °C and 370 mg/l respectively; and
in the bottom of the reservoir temperature and TDS was 14 °C and 680 TDS mg/l
respectively. According to the results, there was stratification, also the inlet water to
the reservoir had a water temperature about 20 °C and TDS 690 mg/l.

Fig. 6.3 Reservoir geometry simulation (Badrghasemi 2002)
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In late June and early July 2003, weather conditions relating to May and early
June were hot.

The water temperature at the inlet increased up to 28.5 °C from July to August.
The increase of TDS in the inlet to 1,033 mg/l in August caused an increase in the
TDS gradient in Termocline in the same month. At the end of September, the depth
of Epilimnion gradually increased because the weather was cold. Thus, the strati-
fication of the reservoir was changed to be homogeneous in it’s depth. In addition,
because of the decrease of the water temperature and consequently the increase of
inlet water density, the newly inlet water flow will penetrate the lower layers of water
relating to last month and the temperature increased to 21° in November. In addition,
the TDS in inlet water decreased to 770 mg/l. At this time the surface water tem-
perature will be 26 °C and the amount of TDS was 500 mg/l. In December, because
of the decrease in air temperature, the inlet water density was increased and thus, the
water tends to move to the deepest layers of the reservoir and the Hipolimnion layer
direction. During this period, the water temperature was 14 °C.

In January a further reduction in air temperature and the increased sun shine
leads to an increase of the Epilimnion layer. At the end of January, the thickness of
upper and bottom layers increases and the Termocline layer is broken. In February,
the amount of TDS in the surface layers is a little bit more than in the bottom layers.
On this month, the changes in TDS density in the lower layers of the reservoir,
which the input water tends to move, depend on the TDS of the input water.
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Fig. 6.4 Comparison between the actual and model of the water level from May to December
2003 (Badrghasemi 2002)
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In March, the air temperature gradually increases and the density of entering water
decreases minimally, so that the input water tends to move in the upper layers of the
reservoir. In addition, because of an increase in the surface temperature of the
reservoir, the situation to further layer is provided. During this month, the TDS of
input water decreases and the TDS levels in the upper layers of the reservoir are
attenuated, but in the lower layers the TDS density remains unchanged. This lay-
ering cycle is repeated each year. In the event of a flood in the first months of a year,
the cycle will be interrupted for a short period before returning to the normal.
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Figures 6.9, 6.10 and 6.11 indicates prediction results from the Simulation
Models of Temperature and TDS in January, February and March 2003. However,
real data for confirmation was not available.

Also Fig. 6.12 presented the comparison between the amount of the TDS in the
inlet and outlet of the Karkheh reservoir from 2003 to 2004.
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6.4.1.1 Comment

As a whole, CE-QUAL-W2 model is a suitable tool for water quality prediction on
in reservoir. The results of the simulation in this case study showed that the existing
water has a good quality inside the whole of the reservoir and in 2003; there was no
accumulation of TDS at any points in the Dam. It is necessary to propose different
theories to estimate the quality of possible brininess of Karkhe reservoir.

In the simulation, it was assumed that with the increase of the discharge of 2004
relating 2003, the inlet water to the reservoir increased, and the amount of TDS in
2004was equal to TDS in 2003.With this assumption, the simulation results indicated
that TDS in the reservoir in March 2004 was 17 mg/l more than in March 2003.
Considering these results if the circumstances do not change during the next few
years, the TDS in Karkhe reservoir may increase by 17 mg/l each year. Taking the
projected increase of TDS into account it is therefore possible to identify the timepoint
at which TDS pollution of the reservoir water will render it unsuitable for irrigation.

Considering the EPA standard, and also above preconception, it will take
24 years for the amount of TDS in the Karkhe reservoir to reach 1,000 mg/l from a
starting point of 600 mg/l in 2003. In other words, the Karkheh may not be suitable
for agricultural use in 24 years.

The mentioned theory depends on gaining the accurate information about
changing of TDS in Karkhe reservoir. If, as we project, the amounts of TDS
increase each year, the assumption will be reasonable.

As presented in Fig. 6.12 when inlet water has a high amount of TDS, the outlet
water has TDS. Hence, the water in the reservoir will gradually become salty.

Fig. 6.12 The comparison between the amount of the TDS in the inlet and outlet of the Karkheh
reservoir from 2003 to 2004 (Badrghasemi 2002)
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Fig. 6.13 Map of study area in Kārūn River

This graph shows inequality between the inlet and output TDS. The inlet TDS is
usually more than the outlet TDS (Badrghasemi 2002).

This study indicates that a TDS buildup is to be expected in the Kharkheh
reservoir in the coming years and that this will limit the use of the water for
irrigation purposes. Thus, we concluded that the implementation of TDS accu-
mulation prevention strategies is necessary to ensure long-term usage of the
reservoir.

6.4.2 Second Case Study

The Kārūn River is the most important river in the south of Iran. However, it
receives various wastewaters from a wide range of sources, including domestic,
agricultural and industrial. Thus, analyzing the effects of pollutants on the water
quality of the Kārūn River is inevitable. Studies have been conducted in other parts
of this river, or similar rivers in Iran but a lack of analysis on this lake persists.

The study area is the region upstream of the Gotvand Dam on the Kārūn River
which is 32,425 km2 to well beyond Gotvand Dam and two main cities following it.
The Gotvand Dam is located in the south west part of Iran in the Khuzestan
province between 48°49′ to 48°57′E and 32°12′ to 32°17′N.

In this case study the QUAL2K was applied, a numerical hydrodynamic and
water quality model provided by the U.S. EPA, to analyze the effects of pollutants on
the water quality of the Kārūn River in the Gotvand-Shooshtar region. The Kārūn
River is located in South West of Iran and many dams are constructed and are being
constructed on this river for the generation of electricity and water consumption. At
the same time the Kārūn River extends through a large part of the south–west thus
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receiving lots of wastewater from different sources. The water quality model is used
to simulate the water quality condition in the Kārūn River, estimating the minimum
in stream flow for ecosystem survival especially fish survival and propose man-
agement strategies to improve the water quality (Khodadadi Darban 2010).

In this work we focused on the region upstream of the Gotvand dam, to the Dam
and two cities which are located downstream of the dam. The reason mainly being
that the Gotvand dam is the last major dam in the Kārūn River, so all the untreated
waste from upstream and the many pollutants in this region make this segment of
the river critical for analysis, and the reduction in flow after the Gotvand dam makes
analyzing its effects on the water quality downstream of the dam (Fig. 6.13).

During low-flow periods the in stream flow becomes minimal and the Dissolved
Oxygen (DO) declines. In this event, the biological habitat of the river is endan-
gered, fish deaths happen in low DO concentrations, and thus studying the DO is of
importance for this research (Jöhnk and Umlauf 2001). The Gotvand Dam reservoir
is also used for municipal and agricultural water supplies, making water quality
studies in this part inevitable (Lindenschmidt et al. 2004).

6.4.2.1 Model Calibration and Verification

Reliable simulation can be undertaken for management planning by calibrating and
verifying the model. A water quality model needs to be calibrated and verified with
respect to the prototype conditions of the water body to which it is applied. The model
was calibrated by hydraulic constants and coefficients provided byDezAb for 1999 and
coefficient values from calibration conducted by the Water Resources Management
Company of Iran in 2001. The model was then recalibrated and verified with respect
to the field data taken in 2004–2005 for the Kārūn River (Khodadadi Daran 2010).

The recalibration is far more difficult for the water quality model than for the
hydrodynamic model, due to the large number of water quality state variables and
biochemical reaction coefficients involved. Since the model predictions will change
depending upon the selection of the values of biochemical coefficients, consistent
coefficient values should be used for different simulation runs. That is, the coeffi-
cient values should be transferable for the model predictions to compare with
independent sets of field observations (Snowling and Kramer 2001, Wells 2001).

The model was run for the year 2005. The model results for daily average
concentrations at the surface and bottom layers was compared with the observed
values at the corresponding stations. The model results and field measurements are
provided in the respective figures, they indicate that the model results and field
measurements are generally in good agreement, with errors of less than 6.5 %.

The temporal variability of the model results is generally different from those of
the field data, because the model results represent the daily average values of the
lateral average concentrations while the field data were point measurements, and
also because of the random variability inherent to a natural system, thus errors to
this extent were allowable.
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The errors averaged over all stations were 0.5 and −0.3 mg/l, respectively, for
CBOD, and DO. The negative values indicate that the measured data are higher
than the model results.

Analyzing the values of Dissolved Oxygen in normal conditions in the river
(Fig. 6.13) indicated a general decrease, as a result of agricultural, industrial and
municipal polluting sources, and then a sudden peak resulting from the Gotvand
dam. A decrease was again witnessed after the dam from agricultural sources and
two municipal sources. The lowest the DO reaches was 6 mg/l which is acceptable,
but could endanger aquatic life in the early stages of life based the Dissolved
Oxygen Levels for Aquatic Life in Table 6.1. Fish deaths have occurred in the
Kārūn River in recent years, causing a stench and raising concerns. The main
streams that fish kills happen are in cities that high volumes of wastewater enter the
river, especially in the region of Ahvaz City. The fish in these regions if not dead
are is not edible due to the pollution in the river.

Investigation of fish deaths by researchers has shown that low Dissolved Oxygen
(DO) was the main reason for this problem to occur (Meyer and Barclay 1990).

Oxygen is essential for fish to survive. Fish deaths will occur if oxygen levels
drop below a certain critical concentration that depends on the fish species. For
example Gheze Ala fish can live when the DO concentration in the river is
maintained above 5 mg/L (Fig. 6.14).

Figure 6.15 presents the changes in BOD during normal conditions in the Kārūn
River. The main locations affecting the quality are labeled in the figure. The BOD
changes in the stream are affected as a result of the receiving pollutants; however,
due to the relatively high water flow the changes are not considerable and the rivers
self-restoration is affecting the quality more and is creating an acceptable water
quality with a BOD of less than 3 mg/l, which is acceptable by Iran’s standards
based on Table 6.2 and most International Water Quality standards.

Fig. 6.14 Dissolved oxygen (DO) in the study area during normal conditions (mg/l)
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Studying the water quality of the river under critical conditions is then consid-
ered as the quality is not affected much during normal conditions. Figure 6.15
presents the changes in DO in low flow periods. The reduction in flow greatly
affects the Dissolved Oxygen variations due to incoming pollutants, and a lower
DO with greater variations is noticeable. Based on Table 6.2 aquatic life at early
and other stages of life is endangered in the cold season as DO falls to about 6 mg/l.
However, it passes Iran’s criteria for water quality compared to Table 6.3.

Figure 6.16 illustrates BOD variations in the Kārūn River during low flow
periods. BOD variations are also more considerable in low flow periods and the
changes due to receiving pollutants are much greater than in the normal flow as
shown in Fig. 6.16. Comparing the values to General Criteria for Water Quality in
Iran (Table 6.3) and EPA Dissolved Oxygen Levels for Aquatic Life (Table 6.2)
again proves the BOD is in agreement with the current standards and is not con-
sidered critical.

The daily freshwater discharge in the Kārūn River during 2005 was higher than in
many other years and may not be representative of the danger to fish survival during

Table 6.2 Dissolved oxygen level (mg/l) for aquatic life (mg/l); Quality Criteria for Water (1986)
(EPA 440/5-86-001)

Warm water conditions Cold water conditions

Other stages
of life

Early stages
of life

Other stages
of life

Early stages
of life

30 day average 5.5 – 6.5 –

7 day average – 6 – (6.5) 9.5

Minimum 7 day average 4.0 – 5.0 –

1 day minimum 3.0 5.0 4.0 (5.5) 8.5

Fig. 6.15 BOD in the study area during normal conditions (mg/l)
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drought periods. Therefore, a designed flow must be maintained during the con-
struction of the Gotvand Dam and after Operation for the keeping the eco-system
safe for aquatic lives. Based on the results of this study as indicated in the Figs. 6.16
and 6.17, a flow of 90 m3/s must be maintained in the river. This design flow may be
predicted higher if the effects of pollutants sources in the entire Kārūn region in the
downstream of the Gotvand Dam are considered (Khodadadi Darban 2010).

Fig. 6.17 BOD variations in Kārūn River during low flow periods (mg/l)

Fig. 6.16 DO variations in Kārūn River during low flow periods (mg/l)

Table 6.3 General criteria for water quality in Iran; Iran’s Department of Environment (DOE)
(2003)

DO (mg/l) BOD5 (mg/l)

5 5
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However, it may be questioned to what extent a one-dimensional model ade-
quately represents a natural system such as a river. From the point of view of the
hydrodynamics, provided that the river is extremely long, narrow and shallow, a
one-dimensional hydrodynamic approach is satisfactory (Orlob 1983). Gradients in
the horizontal directions are generally small when compared to the vertical gradi-
ents that exist for much of the year, and are rapidly annihilated by gravitational
adjustments. Simple force balances can be used to make a general confirmation of
this assumption and to verify its applicability in particular.

By contrast, water quality variables, for example nutrient concentrations, exert a
negligible effect on the density distribution, and therefore could potentially display
a two- or three-dimensional distribution despite a 1D density distribution. While
this is recognized as a shortcoming of a 1D model, it does not necessarily imply that
a multi-dimensional approach would produce a more correct picture. Indeed, given
the difficulty of setting realistic initial conditions for all water quality variables in a
multi-dimensional model and the difficulty of knowing all of the input fluxes at the
spatial scale of the model, a multi-dimensional predictive capacity (as opposed to a
multi-dimensional verification capacity) is a highly uncertain outcome in many
natural systems. By explicitly recognizing that the output from a 1D model is a
horizontally averaged result, the 1D assumption provides a base level prediction
which can be achieved with a greater degree of certainty and from which inferences
about possible horizontal distributions can be drawn (Khodadadi Darban 2010).

6.4.2.2 Comment

A time-dependent, laterally averaged, one-dimensional hydrodynamic and water
quality model was applied to the Gotvand-Shooshtar Region of the Kārūn River
system to simulate the effects of pollutants on dissolved oxygen and CBOD dis-
tributions. The water quality model, supplied with the information for physical
transport processes from the hydrodynamic model, provides real-time predictions of
water quality state variables. Hydrodynamic model calibration and verification were
conducted with mean data range, time varying surface elevation and longitudinal
velocity, turbulent mixing, and salinity distribution in the Kārūn River system. The
model was updated with the geometric data for 2005 and recalibrated with field data
for water surface elevation and velocity measured in the same year. The overall
performance of the model was in qualitative agreement with field data. The water
quality model was also recalibrated using field data collected in 2005. Considering
the random variability inherent to natural systems and the goal of consistency in
calibrated coefficients, the agreement between the model predictions and field
observations is more than satisfactory.

The recalibrated model was used to perform sensitivity analyses. It is demon-
strated that the DO concentration in the river is very sensitive to the magnitude of
river flow, particularly during the low-flow period. Increasing river flow signifi-
cantly raises the DO level. The model is then used to simulate various water quality
management strategies including river flow management and wastewater loading
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reduction. The Gotvand Dam may impound water during the high flow periods and
release freshwater to maintain the required instream flow during the drought periods
(Khodadadi Darban 2010).
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