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This book has been written to enhance understanding of the uncertainty encountered 
in estimating greenhouse gas (GHG) emissions and in dealing with the challenges 
resulting from those estimates. Such challenges include, but are not limited to i) 
monitoring emissions; ii) adhering to emission commitments; iii) securing the proper 
functioning of emission trading markets; and iv) meeting low-carbon or low-GHG 
futures in the long term. 

The title of the book, Uncertainties in Greenhouse Gas Inventories: Expanding 
Our Perspective, indicates that researching uncertainty is not a quick exercise but 
involves a fairly painstaking long-term commitment. Moreover, proper treatment of 
uncertainty is costly in terms of both time and effort because it forces us to make the 
step from “simple” to “complex” in order to grasp a wider and more holistic systems 
view and, only after that, to discuss any simplifications that may be warranted. 

predecessors, it is intended for readers who prefer hardcover books to the paperback 
format of special journal issues. It brings together 16 key papers presented at, or 
produced subsequent to, the 2010 (3rd) International Workshop on Uncertainty in 
Greenhouse Gas Inventories. The Workshop was jointly organized by the Lviv 
Polytechnic National University (http://www.lp.edu.ua/en), Ukraine; the Systems 
Research Institute of the Polish Academy of Sciences (http://www.ibspan.waw.pl/ 
glowna/en); and the International Institute for Applied Systems Analysis 
(http://www.iiasa.ac.at/), Austria. 

This book follows on from Accounting for Climate Change: Uncertainty in 
Greenhouse Gas Inventories – Verification, Compliance, and Trading (Lieberman et 
al. 2007); and Greenhouse Gas Inventories: Dealing with Uncertainty (White et al. 
2011), two books that reflect the outcome of the 2004 (1st) and 2007 (2nd) Workshops 
on Uncertainty in Greenhouse Gas Inventories held in Poland and Austria, 
respectively. 

The issues of concern at the 3rd Uncertainty Workshop continue to be rooted in the 
level of confidence with which national emission inventories can be performed. They 
also go beyond this, bringing new approaches, as explained below. The topics 
addressed by the 16 key papers in this book follow a structure based on the Workshop 
sessions: 

 

Preface

This book is a reprint of the 2014 Special Issue 124(3) of Climatic Change. Like its 
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 Introduction (written in retrospect): see paper by Ometto et al. 2014a 
 General & Policy: see papers by Jonas et al. 2014; Rafaj et al. 2013; Lesiv et al. 

2014; and Hryniewicz et al. 2014 
 Energy: see paper by Uvarova et al. 2014; 
 Land Use, Land-Use Change, and Forestry: see paper by Ometto et al. 2014b 
 Spatial Inventories: see papers by Boychuk and Bun 2014; Horabik and Nahorski 

2014; and Verstraete 2014;  
 Non-CO2 / Waste: see papers by Joerss 2013; 
 Economy and Climate Change: see papers by Xu et al. 2014; Ermolieva et al. 

2013; Nahorski et al. 2014; Dolgopolova et al. 2014; and Nijnik and Pajot 2014. 
Unsurprisingly, the most important take-home message from the 3rd Uncertainty 
Workshop is that the existing rationale for improving and conducting uncertainty 
analyses (see Box 1) is still considered to hold true. The alternative, the past policy 
approach of ignoring inventory uncertainty altogether (inventory uncertainty was 
monitored, but not regulated, under the Kyoto Protocol) at the country, sector, 
corporate, or other level, is problematical. Emission reductions are activity- and gas-
dependent and can be wide-ranging. Biases (discrepancies between true and reported 
emissions) are not uniform across space and time and can discredit flux-difference 
schemes which tacitly assume that biases cancel out. Human impact on nature is not 
necessarily constant and/or negligible and can jeopardize a partial GHG accounting 
approach that is not a logical subset of, and safeguarded by, a full GHG accounting 
approach. Thus, the legitimate concern was, and still is, that policy agreements are 
trying to tie down a system that, while considered certain, is not truly controlled. 
Being aware of the uncertainties involved will help to strengthen future political 
decision making, for example, the UNFCCC negotiations toward a new universal 
climate agreement in 2015. 

This leads to the important question as to the advances made at the 3rd Uncertainty 
Workshop. Box 2 provides a summary of the status quo of uncertainty research as it 
unfolded after the 2007 (2nd) Uncertainty Workshop. Six interdependent key insights 
materialized at the time which, according to experts, would require further attention. 
These insights center around (abridged) 

1. Verification: reconciling bottom-up and top-down GHG emission analyses;  
2. Avoiding systemic surprises: distinguishing between subsystems with fundamentally 

different emission-dynamic and uncertainty characteristics before superimposing 
them;  

3. Making uncertainty analysis a key component of national GHG inventory analysis 
to support the development of informed policy in the framing of international 
environmental agreements: providing advanced guidance, beyond the methodologies 
offered by the IPCC, to ensureuncertainty is dealt with appropriately in an 
internationally consistent way across countries, subsystems, sources and sinks, 
GHGs, and sectors; 

4. Minimizing the impact of uncertainty to support the design of advanced policy 
agreements: providing approaches that allow subsystems to be treated individually 
and differently rather than collectively (in terms of CO2-equivalence) and equally 
(not distinguishing between emissions and removals). 
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5. Full GHG accounting: ensuring that any differentiated approach to accounting 
forms a logical subset of a full GHG accounting approach; 

6. Compliance versus reporting (bifurcation of agreements) but in a complementary 
manner: providing options that allow for smarter treatment of subsystems, for 
example, individually and differently, while at the same time following full GHG 
accounting. 

 
BOX 1 Rationale for improving and conducting uncertainty analyses. Source: White 

et al. (2011: 3–18) 
 

 Calculations of greenhouse gas (GHG) emissions contain uncertainty for a variety 
of reasons such as the lack of availability of sufficient and appropriate data and the 
techniques for processing them. 

 Understanding the basic science of GHG gas sources and sinks requires an 
understanding of the uncertainty in their estimates. 

 Schemes to reduce human-induced global climate impact rely on confidence that 
inventories of GHG emissions allow the accurate assessment of emissions and 
emission changes. To ensure such confidence, it is vital that the uncertainty present 
in emissions estimates is transparent. Clearer communication of the forces 
underlying inventory uncertainty may be needed so that the implications are better 
understood. 

 Uncertainty estimates are not necessarily intended to dispute the validity of national 
GHG inventories, but they can help improve them. 

 Uncertainty is higher for some aspects of a GHG inventory than for others. For 
example, past experience shows that, in general, methods used to estimate nitrous 
oxide (N2O) emissions are more uncertain than methane (CH4) and much more 
uncertain than carbon dioxide (CO2). If uncertainty analysis is to play a role in 
cross-sectoral or international comparison or in trading systems or compliance 
mechanisms, then approaches to uncertainty analysis need to be robust and 
standardized across sectors and gases, as well as among countries. 

 Uncertainty analysis helps to understand uncertainties: better science helps to 
reduce them. Better science needs support, encouragement, and greater investment. 
Full carbon accounting (FCA), or full accounting of emissions and removals, 
including all GHGs, in national GHG inventories is important for advancing the 
science. 

 FCA is a prerequisite for reducing uncertainties in our understanding of the global 
climate system. From a policy viewpoint, FCA could be encouraged by including it 
in reporting commitments, but it might be separated from negotiation of reduction 
targets. Future climate agreements will be made more robust, explicitly accounting 
for the uncertainties associated with emission estimates. 

 
We give here a brief overview of how the 15 core papers of this book contribute to 

the key insights mentioned in Box 2—or of the likely consequences should insights 
not be heeded. Ometto et al. 2014a provide an in-depth look at the papers in their 
Introduction.  

Together, all the papers confirm or advance key insights 1–4.  
Jonas et al. and Rafaj et al. advance key insights 2 and 3, respectively. Jonas et al. 

broaden our thinking on emissions accounting systems by stepping out of the “here 
and now” of national emission inventories. They provide a framework that i) allows a 
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country to be consistently embedded in a global emissions and long-term warming 
context; ii) enables a country’s performance—past as well as projected achievements—
in complying with a future warming target to be monitored, while at the same time iii) 
considering uncertainty in historic and projected emissions and quantifying the 
associated risks of missing target and/or pledged emissions. It is the combination of 
uncertainty and risk that postulates the need for even stricter emission reductions so 
as to limit the increase in global mean surface temperature until 2050 and beyond, as 
currently broadly discussed in the wake of the 5th Assessment Report of the 
Intergovernmental Panel on Climate Change (IPCC 2013: SPM). The paper by Rafaj 
et al., which identifies the principal determinants of the changes in SO2, NOx, and 
CO2 emissions in Europe from 1960 to 2010, is interesting from two perspectives: i) it 
also includes ozone precursors; and ii) it does not, ostensibly, focus on uncertainty. 
However, the authors’ methodology is important, as it allows a better understanding 
of uncertainty in projecting emission changes through isolation and quantification of 
the main factors that are most influential in reducing emissions. 

The three papers by Lesiv et al., Hryniewicz et al., and Uvarova et al. also center 
on key insight 3, but more from a methodological perspective. Lesiv et al. and 
Hryniewicz et al. advance our knowledge by studying two important, though rather 
neglected, issues. Lesiv et al. seek to shed light on changes in the uncertainty of 
emission estimates due to learning (change in knowledge) and/or structural change in 
emissions. Hryniewicz et al. provide an answer to a vexing problemthat arises in 
comparing two parties (e.g., countries), A and B, whose uncertainties encompass the 
same emissions target—party A manages to just comply with the target but reveals a 
much greater uncertainty than that of party B, which slightly misses the target. Which 
party should we consider more credible in terms of meeting this emission target? 
Finally, Uvarova et al. illustrate the impact of learning, thus confirming Lesiv et al. 
The authors show how accuracy improves and relative uncertainty decreases through 
the use of more appropriate (higher-tier) accounting methods where these are 
available. 

The paper by Ometto et al. 2014b centers on key insight 1. They are the only 
authors in the book to confirm the importance of full GHG accounting. With the focus 
on bottom-up accounting, the authors show how notable differences among existing 
biomass maps for the Brazilian Amazon, which combine remote sensing and field 
data analyses, lead to a wide spread in the estimated carbon emissions from 
deforestation. The general understanding among all Workshop participants was that it 
will take carbon-monitoring satellites such as NASA’s OCO-2 (Orbiting Carbon 
Observatory), successfully relaunched in the meantime (Nature: http://blogs.nature.com/ 
news/2014/07/nasa-launches-carbon-monitoring-satellite.html), to take the global 
carbon cycle and the issue of verification to new levels. 

 
BOX 2 Lessons learned from uncertainty treatment: Conclusions drawn after the 

2007 (2nd) International Workshop on Uncertainty in Greenhouse Gas 
Inventories. Source: White et al. (2011: 339–343) 

1. The currently used bottom-up approach to accounting for greenhouse gas (GHG) 
emissions is incomplete in itself, as it cannot deal with the issue of accuracy. 
Bottom-up accounting for emissions is important in the sense that it shows which 
activities and actors are responsible for emissions. However, the ultimate 
accounting must be directed top-down, and reductions in emissions must be 
reflected in reductions in atmospheric GHG concentrations. 

http://blogs.nature.com/news/2014/07/nasa-launches-carbon-monitoring-satellite.html
http://blogs.nature.com/news/2014/07/nasa-launches-carbon-monitoring-satellite.html
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 There are two immediate consequences of this: i) bottom-up accounting will be 
subject to continued revision in the future and must remain flexible; ii) this 
perception of emissions accounting runs counter to the ways in which emission 
trading schemes have been set up to date. To produce the desired results, these 
trading schemes need to be anchored, not least legally, within a reliable reference 
system, and this is not the case with current bottom-up accounting. Emission 
permits by country, which countries can sell at a given point in time but the number 
of which change because of continuous revisions in the estimates, fall outside 
conventional economic thinking. As a consequence, anything that raises doubt 
about the integrity of emission reductions is excluded because such doubt could 
potentially damage the market. 

2. Earth’s ecology acts as a complex and nonlinear system that is in a constant state of 
change. This system can be best understood over a long-term perspective; one 
should not expect to utilize nature to reduce anthropogenic GHG emissions in the 
same way that we use technological opportunities. By anticipating some accounting 
pitfalls, we can state that, to avoid surprises, we need to exercise caution in 
superposing subsystems with different emission-dynamic and uncertainty 
characteristics. 

3. Uncertainty analysis should be used to develop clear understanding and informed 
policy in the framing of international environmental agreements. To ensure that 
uncertainty analysis becomes a key component of national GHG inventory analysis 
in support of international environmental policy, advanced guidance is needed so 
that uncertainty can be dealt with appropriately in an internationally consistent way 
across countries, subsystems, sources and sinks, GHGs, and sectors. This guidance 
goes beyond the methodologies offered by the Intergovernmental Panel on Climate 
Change (IPCC) to conduct and execute uncertainty analyses. 

4. Uncertainty is higher for some GHGs and some sectors of an inventory than for 
others. Nature-related emissions and removals (e.g., in the land use, land-use 
change, and forestry (LULUCF) and the landfill sector) have greater uncertainty 
than technospheric emissions (e.g., in the fossil-fuel sector); and current estimates 
of nitrous oxide (N2O) emissions are more uncertain than those of methane (CH4) 
and carbon dioxide (CO2). This raises the option that in designing future policy 
agreements, some components of a GHG inventory could be treated differently 
from others. The approach of treating subsystems individually and differently 
would allow emissions and uncertainty to be looked at simultaneously and would 
thus allow for differentiated emission reduction policies. This approach could have 
an advantage over treating all GHG emissions and removals collectively (in terms 
of CO2-equivalence) and equally (not distinguishing between emissions and 
removals), which usually leads to increased uncertainty, with potentially important 
scientific and policy implications (e.g., in cases where countries claim fulfillment of 
their commitments to reduce or limit emissions). To recall, under the Kyoto 
Protocol the agreed emission changes for most countries were of the same order of 
magnitude as the uncertainty that underlay their combined emission estimates. 

5. Any differentiated approach to accounting must form a logical subset of a full 
GHG accounting approach. Full accounting is the only way to reach a proper 
understanding of the global climate system and is a prerequisite for reducing the 
uncertainties in that understanding. Providing reliable and comprehensive estimates 
of uncertainty cannot necessarily be achieved by applying the approach favored 
under the UN Framework Convention on Climate Change (UNFCCC) and the 
Kyoto Protocol, which provided only for partial accounting of GHG fluxes to and 
from the atmosphere. It is virtually impossible to estimate the reliability of any 
system output if only part of the system is considered. 
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 6. The option of treating subsystems individually and differently, while at the same 
time following full GHG accounting, forces us to deal with subsystems more skillfully 
than we have in the past. The maxim to follow would be to treat the technosphere, 
our built environment, and the biosphere individually but also holistically. Dealing 
with the technosphere and biosphere individually and differently, but not 
independently, although leading to agreement bifurcation, has clear advantages for 
emission inventories. First, it does not jeopardize verification—atmospheric 
measurements can discriminate between fossil fuel, terrestrial biosphere, and ocean 
carbon by means of their carbon isotope fingerprints in combination with 
measurement of atmospheric O2; but they cannot identify individual fluxes within 
any of these categories. Second, differentiated accounting offers the option of i) 
placing emissions from the technosphere, where uncertainty is believed to be 
lowest, under stringent compliance with clear rules for dealing with uncertainty; 
while ii) putting biospheric emissions and removals, with their greater uncertainties, 
under consistent reporting by means of a global monitoring framework. 

 
The three papers by Boychuk and Bun, Horabik and Nahorski and Verstraete are 

all unique in their own way. However, they should be seen collectively as advancing 
key insight 3 from the perspective of accounting for emissions of GHGs and air 
pollutants consistently across spatial (from local/regional to national) scales as well as 
from the methodological standpoint—a perspective that has not been given adequate 
importance in the context of insight 3. 

The paper by Joerss advances key insight 4. By applying Monte Carlo simulation, 
it expands the issue of statistical dependence in input data for the overall uncertainty 
of a country’s (here: Germany’s) emission inventory from GHGs to particulate matter 
(PM10 and PM2.5) and ozone precursors (SO2, NOx, NH3, and NMVOV). This research 
paves the way for a better, that is, differentiated, understanding of uncertainty in 
emissions by gas or pollutant and sector. 

Finally, the last five papers by Xu et al., Ermolieva et al., Nahorski et al., 
Dolgopolova et al., and Nijnik and Pajot can also be looked at en bloc. They advance 
our knowledge of emissions trading under uncertainty—and thus of key insight 1 
(emissions trading is considered under verification; cf. Box 2)—in various specific 
ways pertaining to 

- the impact of uncertainty on the price of certified emission reductions by 
examining a gas and sector specific example (Xu et al.); 

- the impact of robustness on achieving emission reductions in a multi-country 
setting by considering decentralized bilateral trade and constraining the 
probability-based risk that emissions in combination with their uncertainty 
exceed a priori agreed emissions targets (Ermolieva et al.); 

- the impact of uncertainty on trading rules in a multi-country setting by simulating 
bilateral trade and simple, reverse sealed auction mimicking the Kyoto Protocol 
with modified, uncertainty dependent rules and with learning versus non-learning 
agents (Nahorski et al.); 

- the impact of economic, institutional and technological uncertainties on trading 
carbon emissions both at national and business levels by conducting simulations 
with the help of two systems dynamics models (Dolgopolova et al.); 

- and, last but not least, the impact of varying discounting rates for carbon uptake 
specifically and economic cost-benefit analyses and the policy-making process in 
general (Nijnik and Pajot). 
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However, none of these approaches advance key insight 1 from a more fundamental 
perspective, the reason being that they are still subject to a bottom-up emissions 
accounting bias and are not yet anchored in a two-sided (bottom-up versus top-down) 
or verified emissions accounting framework. This means that the approaches cannot 
handle inaccuracy (at least, not beyond a certain magnitude), only imprecision. Thus, 
it remains to be seen how economists face up to the challenge of shaping emissions 
trading under conditions of a changing reference system—until bottom-up/top-down 
accounting is in place and conducted. 

To conclude, it is noted that the challenges of addressing key insights 5 and 6 still 
exist; they were not tackled at the Workshop. However, on a general note, the 
approaches to addressing uncertainty discussed by all authors attempt to improve 
national inventories, not only for their own sake but also from a wider, systems 
analytical perspective that seeks to strengthen their usefulness under a compliance 
and/or global monitoring and reporting framework. They thus show the challenges 
and benefits of including inventory uncertainty in policy analysis, and where 
advances are being made. The issues that are raised by the authors and featured in 
their papers, and the role that uncertainty analysis plays in many of their arguments, 
highlight the importance of such efforts. The general understanding among all 
Workshop participants was unanimous: uncertainty analysis is needed for developing 
clear understanding and informed policy. Uncertainty matters, and it is key to many 
issues related to inventorying and reducing emissions. Dealing proactively with 
uncertainty allows useful knowledge to be generated that the international community 
should have to hand before negotiating international successor agreements to the 
Kyoto Protocol. 
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Strategies for mitigating global climate change require accurate estimates of the emissions of
greenhouse gases (GHGs). A strong consensus in the global scientific community states that
efforts to control climate change require stabilization of the atmospheric concentration of
GHGs (as per a recent compilation; (IPCC 2013)). Estimates of the amounts of carbon dioxide
and other GHGs emitted to the atmosphere, as well as the amounts absorbed by terrestrial and
aquatic systems, are crucial for planning, analyzing, validating and at global scale verifying
mitigation efforts and for analyzing scenarios of future emissions. The magnitude and distri-
bution of current emissions and the path of future emissions are both of considerable
importance. It is critical that we have estimates of emissions and that we acknowledge and
deal with the uncertainty in our best estimates. The range of issues that derive from uncertainty
in emissions estimates was the subject of the 3rd International Uncertainty Workshop held in
Lviv, Ukraine, 2010, and is the subject of this special issue.

Resolving national or regional contributions to changes in atmospheric GHG concentra-
tions involves international agreements and national inventories of emissions. Countries, cities,
companies, and individuals are now commonly calculating their GHG emissions, and markets
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exist that allow trading emissions permits of carbon. Companies report corporate-level emis-
sions or even the carbon footprint of products. But GHG emissions are seldom measured
directly. For instance, it may be considered important that total, and trend, uncertainty in
national emissions estimates is smaller than the reductions to which countries agree to under an
international compliance regime, as well that emissions mitigation strategies, and trade, be
based on accurate knowledge of the magnitudes and sources of emissions.

The 2010 United Nations Framework Convention on Climate Change (UNFCCC-COP 16;
Cancun, Mexico) produced an agreement with the desire to limit global average surface
temperature to 2oC above the pre-industrial level. To achieve this objective, the total amount
of greenhouse gas emissions emitted to the atmosphere in 2020 has to be targeted at around 44
Pg CO2-eq, from the current estimated value of 48 Pg CO2-eq [assuming a linear target path].
However the current emissions trajectories follow the most carbon intensive path of the
recently published scenarios of the Intergovernmental Panel on Climate Change Fifth Assess-
ment Report (IPCC 2013) (based on Representative Concentration Pathways; www.
globalcarbonproject.org/). Experience with the Kyoto Protocol shows that quantitative
estimation of uncertainty increases the value of the inventory provided by reporting
authorities. Yet, only a few Annex I Parties report full uncertainty analysis, although default
methods and underlying data are available for all countries.

of the GHG inventory estimates and provide validation reports (for data and models used). The
Intergovernmental Panel on Climate Change (IPCC) has proposed standardized methodologies
for adequate accounting of national, natural and human-induced GHG sources and sinks. The
methods, applied to national scales, have guided the production of emissions assessments at the
country level for several years. Comparable methodologies have been developed within countries
and trade groups. The constant evolution of the IPCC scientific review, associated with increasing
international concerns over anticipated changes in the future climate, has raised a number of
issues about compliance and verification, and about proposed and agreed strategies meant to
reduce the impact on the global climate associated with human activities.

Because of the accumulation of GHGs in the atmosphere, concern focuses on not just
current rates of emissions but on the trend in emissions and in cumulative emissions totals.
Cumulative GHG emission budgets (i.e., for 2000 2050) have been shown to be a robust
indicator for global temperatures at, and beyond, 2050 (Meinshausen et al., 2009), and are thus
well suited to link long-term global warming targets with near and mid-term emissions.
Cumulative global emissions targets can be translated into near term national emissions
objectives, but uncertainty in both natural and anthropogenic fluxes of GHGs must be
incorporated in monitoring and projecting emissions trends.

The international workshop in Lviv, Ukraine, was the third in a series exploring themagnitude
and implications of uncertainty in GHG emissions estimates. Papers presented at the workshop
and peer reviewed for this Climatic Change Special Issue explore the uncertainty in emissions
estimates but also focus on detecting and evaluating changes in emissions; independent moni-
toring and verification of emissions estimates; and determining how to obtain critical informa-
tion, and how to proceed without information that cannot be obtained. The papers are presented
under general themes such as: Spatial Inventories; Land Use, Land Use Change and Forestry;
Energy; Non-CO2 and Waste emissions; Economy and Climate Change; and General & Policy.

In General & Policy, Jonas et al. ask how uncertainty over time will affect short-term GHG
emission commitments and long-term efforts to meet global temperature targets for 2050 and
beyond. The study addresses a fundamental problem: how to combine uncertainty about
current and historic emissions (diagnostic uncertainty) with uncertainty about projected future
emissions (prognostic uncertainty). Although the authors’ mode of bridging uncertainty across
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a valuable first step toward that objective. The proposed emissions-temperature-uncertainty
framework assumes that cumulative emissions can be constrained over time by binding
international agreements, as well as that emissions can be estimated only imprecisely, and
whether or not they will achieve an agreed temperature target is also uncertain. The framework
allows policymakers to understand diagnostic and prognostic uncertainty so that they can
make more informed (precautionary) decisions for reducing emissions given an agreed future
temperature target. The paper by Rafaj et al. examines key factors that have driven the
observed evolution of SO2, NOx, and CO2 emissions in Europe from 1960 to 2010, contrib-
uting to the understanding of the relationship between emissions and economic growth. It has
often been suggested that emissions first increase with growing income and social welfare and
subsequently decrease once a certain level of wealth has been attained. However, the authors’
analysis demonstrates that observed turning points occur for different countries and pollutants
at different income levels, and no turning point has yet been identified for CO2. Although there
are factors determined by economic parameters (e.g. energy intensity, fuel mix, technological
advances), the results provide little evidence that the emission control measures are directly
linked to economic growth, but their adoption is rather driven by enforcement of deliberate
mitigation policies. The methodology presented by the authors provides a quantitative basis for
investigating uncertainties related to the determinants of emission projections. Their exemplary
decomposition analysis allows for identifying those parameters that are most relevant in
assessing the uncertainty of GHG emission inventories. Under the same theme, Lesiv et al.
deal with the change in the uncertainty of emission estimates which, in general, results from
both learning (improvement of knowledge) and the structural change in emissions (change in
emitters). Understanding the change in uncertainty due to the two processes and being able to
distinguish between them becomes particularly important under a compliance regime when
countries claim fulfillment of their commitments to reduce or limit emissions, or for trading
emission quotas under such a regime. In the first part of their study, focusing on the individual
Member States of the former EU-15, the historical change in the total uncertainty of CO2

emissions from stationary sources is analyzed. In the second part of their study, the authors
present examples of changes in total uncertainty considering scenarios of structural changes in
the emitters consistent with the EU’s “20–20–20” targets. This exercise shows that the
increased knowledge of inventory processes has determined the change in total uncertainty
in the past and should also be considered as the driving factor in the prospective future. In the
final contribution withinGeneral & Policy, Hryniewicz et al. return to the problem of checking
compliance of uncertain GHG inventories with agreed emission targets. That is, why a direct
comparison of emissions with targets is not scientifically robust. The starting point of this
study is the IPPC Good Practice Guidelines statement that reporting of inventories should be
consistent, comparable and transparent. Thus, there exists the need to explain why inventoried
emissions satisfy a target or are closer to it in one case than in another. This idea led the authors
to look at a compliance procedure via comparison of uncertain alternatives. Traditionally,
probabilistic methods have been used, in which emissions are treated as a random variable.
Comparison rules based on moments, such as mean values and variances, are not suitable for
the comparison of emissions. More appropriate methods use percentiles and critical values,
like a so-called undershooting technique which was discussed earlier, e.g. by Nahorski et al.
(Nahorski et al. 2007) and Nahorski and Horabik (Nahorski and Horabik 2010). However,
emissions are inventoried usually only once per year, and they are typically not random, so it is
difficult to treat them as probabilistic variables. This is why possibility theory, which has
grown out of the fuzzy sets, is more suitable to the problem. A possibility distribution is not
based on frequencies of observations, but may be constructed, e.g., by experts. Despite the
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differences in the probability/possibility paradigms, the methods behind both approaches show
similarities and the checking rules are often alike. Taking uncertainty into account, additional
parameters are proposed to be included in a checking rule: how stringent do we understand
compliance; or to which extent is the target met. Such a rule allows for classifying inventories:
how credible are these in satisfying the target? This information can be used in elaborating
advanced decision rules, which would allow for taking a more or less conservative position.

The evolution in reducing uncertainty in emissions estimates reflects: (1) improvements in
knowledge within the scientific community (e.g., more precisely known emission factors and
improvements in energy data); and (2) structural changes in the emissions (e.g., an increasing
fraction of emissions from the sectors where data can be estimated with smaller uncertainty,
such as energy). Within the Energy category of the contribution to this Special Issue volume,
Uvarova et al. focus on a prime emitter – emissions from oil operations in the Russian
Federation. The authors provide a good example to illustrate the impact of learning. They
investigate improvement in accuracy of emission estimates under a shift of accounting
methods: from the production-based IPCC (IPCC 2000) Tier 1 to the mass-balance-based
IPCC (IPCC 2006) Tier 2. The authors’ comparison shows that the estimates in accordance
with the higher-tier method result in a greater accuracy and lower relative uncertainty (26 %
under Tier 2 versus 54 % under Tier 1). The authors suggest that this uncertainty can be
reduced further, e.g., by improving the accuracy of the parameters, including the use of more
geographically explicit emission factors, employed in the emissions calculations.

Furthermore, in the session dedicated to emissions associated with Land Use, Land Use
Change and Forestry, Ometto et al., explore uncertainties associated with emissions related to
land use change in the tropics, focusing on deforestation. As reported by Le Quéré et al. (Le
Quéré et al. 2013), net emissions from deforestation are decreasing, although this issue is far
from resolved. The carbon stock in the terrestrial biosphere is enormous and the pressure for
land use and agricultural expansion is constant, especially in tropical systems (Dalla-Nora et al.
2014). The methods currently adopted to estimate the spatial variation of above- and below-
ground biomass in tropical forests are usually based on remote sensing analyses coupled with
field datasets. Field measurements in tropical forests are, typically, relatively scarce and often
limited in their spatial distribution. Thus, lack of data is one major step to be overcome
concerning reducing uncertainty in estimating GHG emissions from land use change, in
particular in tropical regions. In this paper, the authors do a comparative analysis of recently
published biomass maps of the Amazon region, including the official data used by the
Brazilian government for its report to the UNFCCC Secretariat. Among the outcomes of their
analysis, the evolvement to higher resolved, spatially distributed forest biomass data is key to
reduce uncertainty in emissions estimates in tropical regions. Establishing national systems of
GHG emissions estimation and reporting in Land Use, Land Use Change, and Forestry
(LULUCF) is under continuous improvement, with key features given by the availability of
datasets and in-country improving capacity of data generation. However, regional harmoniza-
tion of methods involved in national GHG estimation systems is rather poor. There are also
necessary within-country steps toward better coordination of the research effort supporting
GHG estimation, reporting and accounting under UNFCCC requirements. As well, the
increase of data availability for external evaluation is an important step further toward better
estimates of uncertainty.

The spatial distribution and estimates of emissions are further explored in the Spatial
Inventories Section. Emission inventories with high spatial and temporal resolution can be
related to a process-level understanding of emissions sources and yield many advantages in the
realm of designing and evaluating emission control strategies; and they would be very helpful
for climate models and for monitoring emissions and checking emissions commitments in
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greater detail where necessary. Boychuk and Bun, also referring to the Energy Section of this
Special Issue, present a Geographical Information System (GIS) approach to the spatial
inventory of GHG emissions in the energy sector. It includes the mathematical background
for creating the spatial inventories of point-, line-, and area-type emission sources, caused by
fossil-fuel use for power and heat production, the residential sector, industrial and agricultural
sectors, and transport. The approach is based on the IPCC guidelines, official statistics on fuel
consumption, and digital maps of the region under investigation. As an example, the western
Ukraine region with an area of 110.6th km2 was used for experiments. The uncertainty of
inventory results is calculated, and the results of sensitivity analysis are investigated. The
approach proposes that allocating emissions to the places where they actually occur helps to
improve the inventory process and to reduce the overall uncertainty. Such methodology is
useful for large countries with uneven distribution of emission sources. Spatial inventories
support decision making in reducing emissions at the regional level. Such mathematical tools
and algorithms can also be used in climate models, for the analysis and prediction of the
emission processes and their structure for a variety of scenarios. In a similar vein, Horabik and
Nahorski present an original approach to allocating spatially correlated data, such as GHG
emission inventories, to finer spatial scales, based on covariate information observable in a fine
grid. This approach is useful for data disaggregation, like activity data in some categories of
human activity, during GHG spatial inventory. Dependences are modeled with the conditional
autoregressive structure introduced into a linear model as a random effect. The maximum
likelihood approach to inference is employed, and the optimal predictors are developed to
assess missing values in a fine grid. The authors propose a relevant disaggregation model and
illustrate the approach using a real dataset of ammonia emission inventory in a region of
Poland in 15 km, 10 km, and 5 km grids. For the considered inventory, the fourfold allocation
benefits greatly from the incorporation of the spatial component, while for the ninefold
allocation, this advantage is limited, but still evident. Also, the proposed method is found to
be particularly useful in correcting the prediction bias encountered for upper range emissions
in the linear regression models. In this case study, the authors use the original data in a fine grid
to assess the quality of resulting predictions, but for the purpose of potential applications, they
also developed a relevant measure of prediction error. It is an important step to quantify the
prediction error in situations, where original emissions in a fine grid are not known. The
method of improving resolution opens the door to uncertainty reduction of spatially explicit
GHG emission inventories.

Processing spatial data, such as GHG inventories, poses several problems, as the data are
represented as grids. Verstraete proposes an approach to optimize the mapping of values in
mismatched grids. When data that are represented using different grids need to be combined,
the main problem is that the underlying distribution of activity data or any other parameter is
not known, and thus a remapping from one grid onto another grid is difficult. Traditional
methods work by making simple assumptions regarding the underlying distribution, but as
those often do not match reality, it decreases the accuracy of the data. However, often there is
knowledge available that can help with better estimating the real distribution. In the article, the
author presents a new method, which allows additional data to be used. The method presented
uses techniques from artificial intelligence (fuzzy sets, inference systems, etc.) to determine
how one grid can be remapped onto another grid. Even with additional data, this is not
straightforward, as data may not match exactly or may be incomplete. The article describes the
concept of the approach, and discusses the results of experiments on artificial datasets.

Joerss, contributing to the Non-CO2 / Waste Section, compares results of air pollutant
inventories from several European countries with the results of the PArticle REduction
Strategies (PAREST) research project in Germany. The author uses a Monte-Carlo simulation
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for assessing the uncertainties in emissions of particulate matter (PM10 & PM2.5) and aerosol
precursors (SO2, NOx, NH3 and NMVOC). The methodology and analysis for uncertainty
assessment in the emissions inventories is successful for particulate matter and aerosol
precursors. The uncertainty of the pollutant species analyses is determined and falls in the
range of recent uncertainty assessments of European countries. The analysis by Xu et al, also
part of this section, reveals a link between Non-CO2 emissions and economy, where the
authors tackle the problem of uncertainty assessment in coal mine methane emissions projects,
and estimation of its impact on a negotiated Certified Emission Reduction (CER) price. They
use the Rubinstein-Ståhl bargaining model to fill the gaps in the database and to simulate
negotiations concerning CER price, assuming that a buyer’s willingness to negotiate a CER
depends on the uncertainty associated with the emission reduction. The bargaining model is
broadened by introducing dependence of some parameters on the probability of a contracted
CER amount not to be realized. To quantify this probability, the authors develop a conditional
distribution given information on the point estimate of methane emissions for the project under
consideration, and on the distribution of available estimates from coalmines having similar
characteristics. The proposed methodology is applied to a coalmine methane project imple-
mented in the Huainan coalmine, the Anhui Province in Eastern China. The parameters of
uncertainty distribution of the methane content are estimated using data, which are gathered
from 25 Chinese coalmines with similar geological conditions. The results indicate that the
uncertainty influence on price is significant, particularly when the credibility of a seller
increases, and the probability of a failure to fulfill the project decreases.

The aggregated impact of climate change on society, economy and ecosystems,
comprises the total impact across regions. Producing results of aggregated impact
involves the challenge of discerning how adaptation will occur in society and eco-
systems (what is the resilience of natural systems) and what are the paths that future
development (economic and social) will follow (IPCC AR5). The section dedicated to
the Economy & Climate Change brings some of these elements to the discussion.
Ermolieva et al. develop a novel trading-market model which mimics decentralized
bilateral trade of emission permits under uncertainty. In contrast to existing emissions
markets, the proposed model allows for addressing long-term socio-economic and
environmental consequences of trade, irreversibility, and inherent uncertainty including
asymmetric information of agents (countries). The model relies on an anonymous
computerized optimization system (computerized market system) that can be viewed
as “cloud computing”. Trading between both countries and regions is shown to be
robust. The trading process converges to the core solution and the trading parties
create the stable (core) solution without incentives to leave the trading coalition.
Numerical results show that the explicit treatment of uncertainty may significantly
change the trading process by turning sellers of emission permits into buyers.

Looking at the carbon market under the Kyoto Protocol, Nahorski et al. present a simulation
system that mimics trading of GHG emissions among parties, according to the Protocol’s rules.
It is admitted that the emissions are uncertain and this knowledge affects the trading rules, as
presented in earlier studies by Nahorski et al. (Nahorski et al. 2007) and Nahorski and Horabik
(Nahorski and Horabik 2010). These rules lead to more uncertain emissions that are less
expensive on the market. The simulation does not assume an ideal market: the equilibrium
prices are not known during the trade. Bilateral negotiations and sealed bid reverse auctions are
considered for pricing the traded emissions. Only transactions profitable for both participants
are accepted. A multi-agent approach is used as a tool for simulating the trading process. Non-
learning and learning agents are considered. The former use fixed probability distributions for
placing orders, while the latter learn to modify the distribution according to the success/lack
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of success in winning transactions. Negotiation examples present phenomena similar to those
spotted in real markets.

Following up on carbon trading, and on the influence of uncertainty on driving the market
and defining prices,Dolgopolova et al. employ system dynamics models to analyze the impact
of different uncertainties on emission trading - both on national and business levels. Economic,
institutional and technological uncertainties determine the benefits from trading emissions
permits. For any country participating in an international trading market, the uncertainty in the
price range becomes crucial. In the case of business investment decisions for implementing
resource-saving technologies, the proposed system dynamics model shows that the first-mover
investor will obtain significantly fewer advantages than his followers, which leads to a delay in
primary investments.

Nijnik & Pajot analyze the social function of forests and the opportunity for
mitigation through maintaining and replanting trees, and discuss the economic
impact of dealing with uncertainties in using forests to mitigate climatic change.
Limiting the analysis of uncertainty to discounting, the authors challenge the tradi-
tional cost-benefit analysis. Different settings of discounting are tested for carbon
sequestration of the forestry sector in Scotland and Ukraine. The policy conse-
quences of the exercise are also investigated. The choices of discounting protocols
are shown to have a major influence on both the economic analysis and the
decision-making process, which directly affect the climate change mitigation strate-
gies in these countries. The authors highlight the implications on the policy deci-
sions when uncertainty is considered in mitigating climate change through forestry.

Changes in relative uncertainty over time and scientific understanding of the main deter-
minants of that change have obvious implications, e.g., for assessing the uncertainty of
emissions with regard to compliance with emission reduction commitments and for trading
emission quotas under the Kyoto Protocol or REDD+ mechanisms. Advances in methodology
and mathematical modelling to constrain uncertainties associated with ecosystems and some
carbon pools, are observed. However, investments in methodology-oriented research are
particularly important for a full-system uncertainty estimate. In terrestrial systems, historical
patterns and long-term datasets are important to draw a more accurate picture of the carbon
pools evolution. In this respect we see the following scientific advances evolving from the
workshop that should be considered in future studies: (i) combining diagnostic and prognostic
uncertainty in a (e.g.) emissions-temperature setting that seeks to constrain global warming and
linking uncertainty consistently across temporal scales; (ii) developing methodologies and
information technologies that allow estimating GHG emissions and sinks with lower uncer-
tainties, e.g., spatial GHG cadastres, and higher level tier methods; (iii) evaluating the
influence of uncertainty on GHG emission markets aiming at robust and efficient emission
trading; (iv) studying issues that influence the dynamics of GHG emissions estimates, e.g.,
learning curves and structural changes in emitters, as well as social, political and economic
drivers, etc.; (v) constraining uncertainties in land use change emissions, as having great
potential for reduction, and per its influence on ecosystem services and social aspects; and
developing marked strategies for making emissions reduction economically attractive.
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Abstract Our study focuses on uncertainty in greenhouse gas (GHG) emissions from anthro-
pogenic sources, including land use and land-use change activities. We aim to understand the
relevance of diagnostic (retrospective) and prognostic (prospective) uncertainty in an
emissions-temperature setting that seeks to constrain global warming and to link uncertainty
consistently across temporal scales. We discuss diagnostic and prognostic uncertainty in a
systems setting that allows any country to understand its national and near-term mitigation and
adaptation efforts in a globally consistent and long-term context. Cumulative emissions are not
only constrained and globally binding but exhibit quantitative uncertainty; and whether or not
compliance with an agreed temperature target will be achieved is also uncertain. To facilitate
discussions, we focus on two countries, the USA and China. While our study addresses whether
or not future increase in global temperature can be kept below 2, 3, or 4 °C targets, its primary
aim is to use those targets to demonstrate the relevance of both diagnostic and prognostic
uncertainty. We show how to combine diagnostic and prognostic uncertainty to take more
educated (precautionary) decisions for reducing emissions toward an agreed temperature
target; and how to perceive combined diagnostic and prognostic uncertainty-related risk.
Diagnostic uncertainty is the uncertainty contained in inventoried emission estimates and
relates to the risk that true GHG emissions are greater than inventoried emission
estimates reported in a specified year; prognostic uncertainty refers to cumulative emissions
between a start year and a future target year, and relates to the risk that an agreed temperature
target is exceeded.
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1 Introduction

This study focuses on the uncertainty in estimates of anthropogenic greenhouse gas (GHG)
emissions, including land use and land-use change activities. It aims to provide an overview of
how to perceive uncertainty in a systems context seeking to constrain global warming.

It focuses on understanding uncertainty across temporal scales and on reconciling short-
term GHG emission commitments with long-term efforts to meet average global temperature
targets in 2050 and beyond. The discussion is a legacy of the 2nd International Workshop on
Uncertainty in Greenhouse Gas Inventories, which concluded:

the consequence of including inventory uncertainty in policy analysis has not been
quantified to date. The benefit would be both short-term and long-term, for example, an
improved understanding of compliance … or of the sensitivity of climate stabilization
goals to the range of possible emissions, given a single reported emissions inventory”
(Jonas et al. 2010a).

It addresses a fundamental problem: how to combine diagnostic (retrospective) and prog-
nostic (prospective) uncertainty. Current (and historic) GHG emission inventories contain
uncertainty in relation to our ability to estimate emissions (Lieberman et al. 2007; White
et al. 2011). Diagnostic uncertainty results from grasping emissions accurately but imprecisely
(our initial assumption). It can be related to the risk that true GHG emissions are greater than
inventoried estimates reported at a given time point (Jonas et al. 2010b: Tab. 3). (The opposite
case, true emissions being smaller than inventoried estimates, is not relevant from a precau-
tionary perspective.)

Diagnostic uncertainty, our ability to estimate current emissions, stays with us also in the
future. Assuming that compliance with an agreed emissions target is met in a target year allows
prognostic uncertainty to be eliminated entirely. How this target was reached is irrelevant; only
our real diagnostic capabilities of estimating emissions in the target year matter. This is how
experts proceeded, e.g., when they evaluated ex ante the impact of uncertainty in the case of
compliance with the Kyoto Protocol (KP) in 2008–2012, the Protocol’s commitment period
(Jonas et al. 2010b).

Emissions accounting in a target year can involve constant, increased or decreased uncer-
tainty compared with the start (reference) year, depending on whether or not our knowledge of
emission-generating activities and emission factors becomes more precise. The typical ap-
proach to date has been to assume that, in relative terms, our knowledge of uncertainty in the
target year will be the same as it was in the start year.

However, uncertainty under a prognostic scenario always increases with time. The further
we look into the future, the greater the uncertainty. This important difference suggests that
diagnostic and prognostic uncertainty are independent. This differs from how prognostic
modelers usually argue. A prevalent approach is to realize a number of scenarios and grasp
prognostic uncertainty by means of the spread in these scenarios over time—which increases
with increasing uncertainty in the starting conditions built into their models. However, this
approach nullifies diagnostic uncertainty once a target (future) is reached.

To stabilize Earth’s climate within 2 °C of historic levels, treaty negotiations have pursued
mechanisms that reduce GHG emissions globally and lead to sustainable management of the
atmosphere at a “safe,” steady-state level. In recent years, international climate policy has
increasingly focused on limiting temperature rise as opposed to achieving GHG concentra-
tion–related objectives (Rogelj et al. 2011). A promising and robust methodology for adhering
to a long-term global warming target appears to be to constrain cumulative GHG emissions in
the future (WBGU2009; Allen et al. 2009;Matthews et al. 2009;Meinshausen et al. 2009; Zickfeld
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et al. (2009); Raupach et al. 2011). Cumulative emissions, defined by the area under an emissions
scenario path, are a good predictor for the expected temperature rise. The concept of cumulative
emissions began influencing climate policymaking after the 2009 climate conference in
Copenhagen, where it was first discussed broadly and publicly. The emission reductions required
from the fossil-fuel and land-use sectors to comply with the concept of constraining cumulative
emissions until 2050 to limit global warming to 2 °C in 2050 and beyond are daunting: 50–85 %
below the 1990 global annual emissions, with even greater reductions for industrialized countries
(Fisher et al. 2007; Jonas et al. 2010a).

The cumulative emissions concept is particularly suited to linking diagnostic and prognostic
uncertainty because it allows compliance with both emissions and temperature targets to be
investigated at a selected future time point. Here, we employ Meinshausen et al.’s (2009)
global-scale research, which centers on limiting the increase in average global temperature to
2 °C from its pre-industrial level. Meinshausen et al. express compliance with this temperature
target in terms of constraining cumulative CO2 or CO2 equivalent (CO2-eq) emissions between
2000 and 2049 while accounting for a multitude of model-based, forward-looking emission-
climate change scenarios. Thus, the relationship between cumulative emissions and the risk of
exceeding the 2 °C target—an S-shaped curve broadening between its end points (see Fig. 3
and S1a in Meinshausen et al.)—is not unequivocal. For a given cumulative emissions value,
multiple emission pathways per modeling exercise are conceivable that comply, or not, with
the 2 °C target, thus allowing the risk of exceedance pertinent to this cumulative emissions
value to be defined. The risk value translates into an interval, if many modeling exercises are
considered.

The broadened S-curve shows that a sharp cumulative emissions value translates into a risk
interval for exceeding 2 °C; vice versa, a sharp risk value translates into a cumulative
emissions interval. The latter interval comprises all cumulative emissions allowing at least
one emissions pathway that exhibits this risk. These intervals can be interpreted in terms of
(prognostic) uncertainty, subsuming our lack of knowledge in toto (from the climate system
and its key characteristics through to model representation). Here, we employ the two extreme
alternatives—sharp cumulative emissions versus uncertain risk, and uncertain cumulative
emissions versus sharp risk—without further investigating the two uncertainties’
interdependence.

We discuss diagnostic and prognostic uncertainty in an emissions-temperature
setting that allows any country to understand its national and near-term mitigation
and adaptation efforts in a globally consistent and long-term context. In this systems
context, cumulative emissions are constrained and globally binding but exhibit quan-
titative uncertainty (i.e., they can be estimated only imprecisely); and whether or not
compliance with an agreed temperature target will be achieved is also uncertain.
Because more data are available, we focus on the 2 °C temperature target,
disregarding the current dispute about the achievability of this target (Victor 2009).
Later in the analysis we consider higher temperature targets (3 and 4 °C), our
objective being to understand the relevance of diagnostic and prognostic uncertainty
in a global emissions-temperature context and across temporal scales. Although our
mode of bridging uncertainty across temporal scales still relies on discrete points in
time and is not yet continuous, it provides a valuable first step toward that objective.

Our study is structured as follows: Section 2 links to the data, techniques, and models we
employ; it provides the methodological overview and describes the steps taken to establish the
systems context. It prepares the basis for addressing our objective—in Section 3—where we
present uncertainty in the elaborated emissions-temperature context for selected countries.
Findings and conclusions are summarized in Section 4.
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2 Methodology

We use publicly available emission and other data (Supplementary Information [henceforth
“SI”]: Tab. S1). The time period 1990–2008/09 is the diagnostic part (D) of our study
(although some data to 2008/09 are lacking). The time period 2008/09 and beyond is its
prognostic part (P).

In establishing the emissions-temperature-uncertainty context for countries, we also employ
a number of techniques and models that are publicly available and/or described in the scientific
literature. Table S2 in SI provides an overview of the techniques and models, their mode of
application, and how their output is used.

2.1 Global emission constraints

The notion of constraining cumulative emissions gained momentum with a number of
publications in 2009, among them Meinshausen et al. and the German Advisory Council on
Global Change (WBGU). WBGU in 1995 raised the idea of determining an upper limit for the
tolerable increase of the mean global temperature and deriving a global CO2 reduction target
through an inverse approach (i.e., a backward calculation [WBGU 1995]). The budget concept
(WBGU 2009) is the further development of this idea.

To limit atmospheric warming, total anthropogenic CO2 emitted to the atmosphere must be
constrained. Concerning 2 °C, WBGU (2009) proposed adoption of a binding upper limit for
the total CO2 emitted from fossil-fuel sources up to 2050 and allocation of the defined amount
of emissions among countries, subject to negotiation but based on various principles, among
them “polluter-pays,” precautionary principle, and the principle of equality.

WBGU thus separated the global emissions budget into national emissions budgets based
on an equal per capita (p/c) basis. The budget concept contains four political (i.e., negotiable)
parameters: (i) the start year and (ii) end year for the total budget period; (iii) the cumulative
emissions constraint or, equivalently, the probability of exceeding the 2 °C temperature target;
and (iv) the reference year for global population. Our choices for the four parameters—(i) 1990
(to conform with the KP) and 2000 (to study the impact of a different start year on national
emission budgets); (ii) 2050; (iii) alternative combinations of uncertainty in both cumulative
emissions and risk of exceeding temperature targets ranging from 2 to 4 °C; and (iv) 2050—
differ from the options investigated by WBGU.1 We also assess both alternative and imper-
ative global emission reduction concepts. These are linked, e.g., to reducing emission intensity
for technospheric emissions and to achieving sustainability across total land use and land-use
change (LU) activities. Costs of mitigation measures (and the uncertainty in costs resulting
from emissions uncertainty) can be expressed as marginal costs and p/c costs. Here we refer to
p/c costs.

2.2 From global to national: per capita emissions equity in 2050

We apply a “contraction & convergence” approach as an initial reference approach (GCI
2012). This allows establishment of global linear target paths for 1990–2050 (from 36.8 Pg
CO2-eq in 1990 to 25.9 Pg CO2-eq in 2050) and for 2000– 2-eq in 2000
to 20.5 Pg CO2-eq in 2050), and derivation of global emission targets for 2050 (Fig. 1 and SI:

1 The four parameters in WBGU’s “historical responsibility” approach are (i) 1990, (ii) 2050, (iii) 25 %, and (iv)
1990; and (i) 2010, (ii) 2050, (iii) 33 %, and (iv) 2010 in its “future responsibility” approach. In both approaches,
the probability of exceeding the 2 ºC temperature target refers to cumulative emission constraints for 2000–2049.
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Tab. S3). In conformity with Meinshausen et al. (2009) we apply an emissions constraint of
1500 Pg CO2-eq for the period 2000–2049 (2050 is hereafter the “end year”) to which we add
the CO2-eq emissions emitted cumulatively between 1990 and 1999 if we choose 1990 as start
year. We also stipulate that the emission targets derived for 2050 are exclusively available for
technospheric emissions. The imperative we follow for net emissions from LU activities is that
these will be reduced linearly to zero by 2050; that is, we assume that deforestation and other
LU mismanagement will cease and that net emissions balance. Our underlying assumptions
are that (i) the remainder of the biosphere (including oceans) stays in or returns to an emissions
balance—which must be questioned (Canadell et al. 2007); (ii) this return, which refers to
CO2-C, implies in turn that emissions and removals of CH4, N2O, etc. also return to an
emissions balance; and (iii) these returns happen without systemic surprises of the terrestrial
biosphere.

To achieve universally applicable global emissions equity (GEE) by 2050, we divide the
aforementioned global emission targets by the global population we expect by 2050—esti-
mated as ranging between 7.5 and 10.2 109 with a best estimate of 8.8 109 and a confidence
interval (CI) of 95 %.2 We find 2050 GEE values of 3.0 and 2.3 t CO2-eq/cap for 1990–2050
and 2000–2050, respectively (Fig. 1 and SI: Tab. S3).

2.3 Uncertainty in cumulative emissions and risk of exceeding 2 °C in 2050

Figure 3 of Meinshausen et al. (2009) and Figure S1a in their supplementary information show
that a sharp cumulative CO2 (or CO2-eq) emissions value for 2000–2050 translates into a risk
interval of exceeding 2 °C in 2050 and beyond; vice versa, a sharp risk value translates into a
cumulative emissions interval. We interpret these intervals in terms of prognostic uncertainty
and apply the 2 °C Check Tool of Meinshausen et al. (SI: Tab. S2) to derive the two extreme
alternatives: sharp cumulative emissions versus uncertain risk (min/max) and uncertain cumu-
lative emissions versus sharp risk (max/min). If we choose 1990 as start year, the cumulative

Fig. 1 Global linear emission target paths for 1990–2050 and global emission targets (global emissions equity,
GEE, in parentheses) for 2050 (see also SI: Tab. S3). Emissions between 2000 and 2050 are constrained by 1500
Pg CO2-eq. Emissions are in Pg CO2-eq (GEE in t CO2-eq/cap). The global target paths are for (i) total GHG
emissions (solid red line); (ii) total emission excluding emissions from land use and land-use change (LU), i.e.,

2 (“FF-
plus”: solid brown line); and (iii) emissions from LU (solid green line). The 2050 global targets for total GHG
emissions and FF-plus emissions are identical (25.9 Pg CO2-eq and 3.0 t CO2-eq/cap, respectively) because the
2050 global target for LU emissions is set to zero. The solid black and dashed black curves show actual estimates
of total GHG emissions and LU emissions

2 IIASA’s World Population Program reports 7.8 and 9.9 for the 10th and 90th percentiles.
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CO2-eq emissions for 1990–1999 are added to the cumulative CO2-eq emissions for 2000–
2050, but the risk and the uncertainty in the risk do not change.

The 2000–2050 constraint of 1500 Pg CO2-eq entails a risk ranging from 10 to
43 % of exceeding 2 °C, with its center at 26 % (SI: Tab. S4; see also Tab. 1 in
Meinshausen et al.). For comparison, we ran the 2 °C Check Tool (in a repetitive,
trial-and-error mode) to determine the upper and lower CO2-eq constraints for keeping
the risk of exceeding 2 °C constant at 26 %, we found 1189 and 1945 Pg CO2-eq
cumulative emissions, respectively; acknowledging that the 2 °C Check Tool does not
allow insertion of cumulative constraints for 2000–2050 below 1189 Pg CO2-eq (see
also Fig. S1a in Meinshausen et al.).

The uncertainty in cumulative emissions of 1189–1945 Pg CO2-eq for 2000–2050 trans-
lates into an uncertainty in GEE values in 2050 that depends on start year choice (1990 or
2000). For 1990, we find a GEE interval of 1.8–4.7 with its center at 3.0 t CO2-eq/cap; for
2000, we find a GEE interval of 0.9–4.4 with its center at 2.3 t CO2-eq/cap. Considering, in
addition, the uncertainty in the 2050 population estimate, we find 1.5–5.4 t CO2-eq/cap for
1990–2050 and 0.8–5.1 t CO2-eq/cap for 2000–2050 (Table 1: column “1500 Pg CO2-eq”).

Finally, we tweak the min-max uncertainty combination. The case of no uncertainty in the
cumulative emissions constraint (1500 Pg CO2-eq) is impacted, if expressed on a p/c basis, by
the uncertainty in the population estimate. The respective GEE intervals are 2.5–3.5 t CO2-eq/
cap for 1990–2050 and 2.0–2.7 t CO2-eq/cap for 2000–2050 (these adjusted GEE intervals are
reported in Table 1). We did not reapply the 2 °C Check Tool to adjust the uncertainty in the
risk of exceeding 2 °C.

2.4 Uncertainty in cumulative emissions and risk of exceeding 3 and 4 °C in 2050

In this section we translate the min/max and max/min uncertainty combinations for cumulative
emissions and risk from 2 to 3 and 4 °C. This translation is graphically based and approximate
but sufficient for present purposes. The stepwise release of the global temperature target for
2050 and beyond from 2 to 4 °C translates into a stepwise increase of the 2050 GEE values.
The crucial question is whether these values can still be distinguished from each other given
the underlying uncertainties in cumulative emissions and risk.

The translation is realized with the help of Figures 33 and 34 in Meinshausen (2005),
which quantify the risk of overshooting global mean equilibrium warming ranging from 1.5

2-eq concentration. The details are outlined in
SI (Note 5).

With this translation to hand and supported by the 2 °C Check Tool, we can explore the
min/max and max/min uncertainty combinations investigated in Section 2.3 for: (i) cumulative
emission constraints for 2000–2050 other than 1500 Pg CO2-eq and (ii) temperature targets for
2050 and beyond other than 2 °C. In the first step, we keep the temperature target at 2 °C and
expand our investigation of the min/max and max/min uncertainty combinations over a range
of cumulative emission constraints that is well covered by the 2 °C Check Tool, here to
constraints of 1800, 2100, and 2400 Pg CO2-eq. In the next step we translate the risk contained
in these min/max and max/min uncertainty combinations into the risk of exceeding 3 and 4 °C.
Table 1 summarizes the expansion and translation process.

Prudence is needed, however. The assumptions underlying this expansion and translation
process are that (i) the risk of overshooting is comparatively stable and independent of the
particular warming situation, equilibrium or transient, when going from, e.g., 2 to 3 °C; and (ii)
deviations from this assumption are minor compared to the considerable change in risk when
going from 2 to 3 °C under either warming, equilibrium or transient.
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Table 1 should be read as follows: the cumulative GHG emissions constraint for 2000–2050
of 1800 Gt CO2-eq with reference to start year 1990 (Table 1a) results in a risk of between 20
and 58 % of exceeding the 2 °C temperature target if the p/c emissions (GEE) in 2050 center at
4.1 t CO2-eq within the interval from 3.5 to 4.8 t CO2-eq. If the latter interval is increased to
2.1–6.3 t CO2-eq, the risk interval of exceeding the 2 °C temperature target decreases to about
38 %.3 The two examples result in lower risks ranging between 5 and 26 % and 12–17 %,
respectively, if the 1800 Gt CO2-eq constraint is interpreted with regard to exceeding the 3 °C
temperature target.

The comparison of the min/max uncertainty combinations—i.e., minimal uncertainty in
GEE in 2050 and maximal uncertainty in the risk of exceeding 2, 3, or 4 °C in 2050 and
beyond—across cumulative emission constraints for 2000–2050 ranging from 1500 to 2400
Pg CO2-eq (or for GEE in 2050 ranging from 3.0 to 6.4 t CO2-eq/cap) shows that the GEE
values increasingly overlap. That is, distinguishing GEE values from each other for the various
cumulative emission constraints becomes increasingly difficult. For example, with regard to
exceeding the 4 °C temperature target: for the cumulative emissions constraint of 2100 Gt
CO2-eq the GEE uncertainty range goes from 4.5 to 6.1 t CO2-eq/cap (with its center at 5.2
t CO2-eq/cap). For comparison, for the cumulative emissions constraint of 2400 Gt CO2-eq the
GEE uncertainty range goes from 5.5 to 7.4 t CO2-eq/cap (with its center at 6.4 t CO2-eq/cap)
(columns “2100 Pg CO2-eq” and “2400 Pg CO2-eq” in Table 1a).

Comparison of Table 1a (start year 1990) with Table 1b (start year 2000) also indicates
uncertainty becoming too large for cumulative emission constraints for 2000–2050 above
~2100 Gt CO2-eq. GEE values in 2050 can no longer be properly distinguished. We are at the
limits in resolution terms of our graphical-based approach. Uncertainty overshadows differ-
ences in the GEE values resulting from differences in both cumulative emissions and start year.

2.5 Uncertainty in inventoried emissions

In this section we introduce diagnostic uncertainty which is related to the risk that true GHG
emissions are greater than inventoried emission estimates reported at given time points. We are
interested in the order of magnitude involved in correcting cumulative emission constraints so
that this diagnostic uncertainty-related risk vanishes.

Analyzing uncertainty is an important tool for improving emission inventories containing
uncertainty for various reasons (Lieberman et al. 2007, White et al. 2011). Jonas et al. (2010b)
describe six techniques to analyze uncertain emission changes (signals) and we apply two of
those techniques here: the undershooting (Und) and the combined undershooting and verifi-
cation time concept (Und&VT). The two techniques differ, but common to them is that they
apply undershooting to limit, or even reduce, the risk that true emissions are greater than
agreed emissions in a target year—from 50 % (no undershooting: ignoring uncertainty
altogether) to 0 % (with undershooting: the undershooting needed to make the diagnostic
uncertainty-related risk vanish can be calculated).

The Und concept accounts for the trend uncertainty in the emission estimates between any
two time points, e.g., start year and target year, and correlates uncertainty between these. The
Und&VT concept also allows undershooting but accounts for the linear dynamics of the

3 Note that applying the 2 °C Check Tool as described in Section 2.3 but to a cumulative emissions constraint for
2000–2050 of 1800, instead of 1500 Pg CO2-eq, does not encounter any limitations, which is why the risk
interval is minimal for maximal uncertainty in p/c emissions and consists of a single value only.
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SI (Note 6) illustrates the combining of diagnostic and prognostic uncertainty graphically. We
find a downward shift for representative values of both diagnostic uncertainty (10 % constant in
relative terms) and correlation in diagnostic uncertainty (0.75) of global emissions between start and
target year, from 36.8 to 24.6 Pg CO2-eq (Und technique) and from 36.8 to 23.5 Pg CO2-eq

Table 1 Interpreting the global cumulative GHG emission constraints for 2000–2050 of 1500 to 2400
Pg CO2-eq with reference to start year a) 1990 and b) 2000; and in terms of uncertainty in both p/c emissions
(GEE) in 2050 and risk of exceeding a temperature target in 2050 and beyond ranging between 2 and 4 °C. The
table lists min/max and max/min combinations of these two uncertainties

a) Start year 1990 (1990–2050):

T Uncertainty in 2050 under a cumulative GHG emissions constraint for 2000–2050 of

min/max – max/min 1500 Pg CO2-eq 1800 Pg CO2-eq 2100 Pg CO2-eq 2400 Pg CO2-eq

°C Uncertainty in emissions t CO2-eq/cap t CO2-eq/cap t CO2-eq/cap t CO2-eq/cap

Uncertainty in risk % % % %

2 in emissions 3.0 [2.5 – 3.5] 4.1 [3.5 – 4.8]

in risk of exceeding 2 °C 10 – 43 20 – 58

in emissions 1.5 – 5.4 2.1 – 6.3

in risk of exceeding 2 °C 26 – 31 38

3 in emissions 4.1 [3.5 – 4.8] 5.2 [4.5 – 6.1]

in risk of exceeding 3 °C 5 – 26 11 – 40

in emissions 2.1 – 6.3 3.5 – 7.8

in risk of exceeding 3 °C 12 – 17 21 – 26

4 in emissions 5.2 [4.5 – 6.1] 6.4 [5.5 – 7.4]

in risk of exceeding 4 °C 4 – 21 8 – 36

in emissions 3.5 – 7.8 4.5 – 9.5

in risk of exceeding 4 °C 9 – 13 17 – 21

b) Start year 2000 (2000–2050):

T Uncertainty in 2050 under a cumulative GHG emissions constraint for 2000–2050 of

min/max – max/min 1500 Pg CO2-eq 1800 Pg CO2-eq 2100 Pg CO2-eq 2400 Pg CO2-eq

°C Uncertainty in emissions t CO2-eq/cap t CO -eq/cap t CO2-eq/cap t CO2-eq/cap

Uncertainty in risk % % % %

2 in emissions 2.3 [2.0 – 2.7] 3.7 [3.2 – 4.3]

in risk of exceeding 2 °C 10 – 43 20 – 58

in emissions 0.8 5.1 1.5 – 6.2

in risk of exceeding 2 °C 26 – 31 38

3 in emissions 3.7 [3.2 – 4.3] 5.1 [4.4 – 5.9]

in risk of exceeding 3 °C 5 – 26 11 – 40

in emissions 1.5 – 6.2 3.2 – 7.9

in risk of exceeding 3 °C 12 – 17 21 – 26

4 in emissions 5.1 [4.4 – 5.9] 6.5 [5.5 – 7.5]

in risk of exceeding 4 °C 4 – 21 8 – 36

in emissions 3.2 – 7.9 4.4 – 10.0

in risk of exceeding 4 °C 9 – 13 17 – 21
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(Und&VT technique), respectively, between 1990 and 2050 (see also Fig. 1). This translates into a
downward shift of about 2–5% of the 1500 Pg CO2-eq cumulative constraint for 2000–2050. GEE
in 2050 are then 2.8 and 2.7 t CO2-eq/cap, respectively. That is, to nullify the diagnostic uncertainty-
related risk, the GEE intervals listed in the column “1500 Pg CO2-eq” of Table 1a would need to be
shifted downward by an additional 0.2 or 0.3 t CO2-eq/cap, while the prognostic uncertainty-related
risk of exceeding 2 °C is unimpaired.

2.6 Land use and land-use change until 2050

In this section we explain how we deal with emissions from LU activities, which are included
in the model-based, global emission-climate change scenarios of Meinshausen et al. (2009).
The cumulative CO2 emissions from land-use activities range from -35 to 248 Pg CO2 (80 %
interval range) over the 2007–2050 period, with a median of 24 Pg CO2. Cumulative emissions
of 24 Pg CO2 translate into an average of 0.56 Pg CO2/yr.

Net emissions from LU activities are the least certain in our current understanding of
anthropogenic changes in the global carbon cycle (Peters et al. 2011a). They are about 3.3±2.6
Pg CO2 in 2010 and have apparently declined on average, from 5.5 Pg CO2/yr during 1990–
1999 to 4.0 Pg CO2/yr during 2000–2009 (http://www.globalcarbonproject.org/carbonbudget/
10/hl-full.htm, available via archive-org.com; and Pan et al. 2011). The net atmospheric carbon
flux from 1850 to 2010 is modeled as a function of documented land-use change and changes
in above- and belowground carbon from land-use change, with unmanaged ecosystems not
considered (Houghton 2008).

Country-level LU emissions are equally difficult to deal with (IIASA 2007; Jonas et al.
2010c, 2011; Salk et al. 2013) and have at least comparable uncertainty.

As no fundamental analysis of the future state of terrestrial biospheric carbon stocks exists,
we consider the case that the emission targets derived for 2050 are exclusively available for
technospheric emissions and that deforestation and other LU mismanagement will cease by
2050, when we require net emissions from LU activities to balance at zero.

We consider this case unrealistic; however, it does allow us to evaluate the challenge of
reducing technospheric GHG emissions globally under the assumption that the terrestrial
biosphere behaves deterministically (without surprises and unknown feedbacks).

2.7 Accounting for known CO2 emission transfers

Accounting for emissions can be viewed from both production and consumption perspectives.
Historical emission estimates from a consumption perspective are becoming available, but not
their uncertainties.

Under the KP, mitigation policy takes place at the country level and applies only to GHG
emissions and removals within the country’s national or offshore territorial jurisdiction. This
territorial-based approach (production perspective) does not consider emission transfers be-
tween countries from international trade and may give a misleading interpretation of factors
driving emission trends and therefore mitigation policies (EC 2011). To account for interna-
tional CO2 transfers, we employ the trade-linked global database for CO2 emissions of Peters
et al. (2011b). This covers 113 countries and/or regions and 57 economic sectors through time
(1990–2008; see also Tab. S1 in the SI: the Global Carbon Project (GCP) provides updated
data up to 2010) while excluding emissions from LU.

Grasping the spatial disconnect between biomass production and consumption is less ad-
vanced. Erb et al. (2009b) use the concept of embodied human appropriation of net primary
production (HANPP) to map the global pattern of net-producing and net-consuming regions in
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2000 (see also Haberl et al. 2007; Erb et al. 2009a). HANPPmeasures the extent to which “human
activities affect NPP (net primary production) and its availability in the ecosystem as a source of
nutritional energy and other ecosystem processes.“4 In contrast, embodied HANPP (eHANPP) is
defined as ”the NPP appropriated in the course of biomass production, encompassing losses along
the production chain as well as productivity changes induced through land conversion or harvest.
By making the pressure exerted on ecosystems associated with imports and exports visible,
eHANPP allows for the analysis of teleconnections between producing and consuming regions”
(Haberl et al. 2009: 119, 121). According to Erb et al. (2009b), international net transfers of
eHANPP amount to 6.2 Pg CO2 in 2000 and are thus of global significance.

Reducing emissions from LU to zero requires discussion of the state of sustainability
(including the uncertainties involved) that the terrestrial biosphere will assumedly attain in
2050 under a 2, 3 or 4 °C temperature target. Although the intention behind developing the
HANPP concept was different at the time, we consider it useful for tracking sustainability (SI:
Note 7).

We employ HANPP embodied in biomass trade to estimate the fraction of global LU
emissions traded. This side-step is necessary given the current problematic situation of LU
data. Net emissions from LU for 1850–2010 (GCP’s carbon budget 2010; Peters et al. 2011a),
currently resolve only large regions/continents, not large countries. We preserve GCP’s
previous set of global LU emission data because, although it only lists emissions until 2005,
it does resolve a small number of large countries or units of countries (Canada, China, the
USA, and Europe as a whole). Their emission estimates can show considerable discrepancies
when compared to the land use, land-use change, and forestry (LULUCF) emission estimates
reported by these countries under the UNFCCC (United Nations Framework Convention on
Climate Change). These discrepancies are also noted by the World Resources Institute, whose
Climate Analysis Indicators Tool (CAIT) employs additional land-use change and forestry data
from the 2010 World Development Report to resolve the 25 largest emissions contributors for
1990–2005 (WRI 2011).

We consider LU and LULUCF emissions data—which typically disagree with each other
and also underestimate real emissions as observed top-down by the “atmosphere”—as suffi-
ciently good to indicate whether the directly human-impacted part of a country’s terrestrial
biosphere is a net source or net sink. We also use HANPP embodied in biomass trade
(eTradeNPP=ImpNPP−ExpNPP) to indicate whether a country is a net importer or net exporter
of biomass (SI: Note 8).

We apply a globally averaged approach to link eTradeNPP with national LU emissions. This
assumes that HANPP and LU emissions refer to the same directly human-impacted part of the
terrestrial biosphere. A direct consequence of our approach is that the human appropriation of
biomass results in a positive flux to the atmosphere. We use the ratio of net transfer of
embodied HANPP to total HANPP to specify the fraction of global LU emissions traded
(eTradeLU) by country.5 Traded LU emissions are added to a country’s national LU (or
LULUCF) emissions, thereby switching from a production to a consumption perspective.
Net transfers of LU emissions balance when globally summed. This approach is simple and
straightforward, and the calculation of national plus traded emissions is unambiguous.

4 Ito (2011) provides a historical meta-analysis of global NPP (1860s–2000s) which allows Haberl and Erb’s
HANPP concept with reference to 2000 to be put into a long-term temporal perspective.
5 Haberl et al. (2007: Tab. 1) estimate total HANPP in 2000 to be 57.2 Pg CO2 (including human-induced fires),
of which about 6.2 Pg CO2 is internationally transferred (net transfer) according to Erb et al. (2009b: Tab. 2)
(about 7.2 Pg CO2 according to the data communicated to us).
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2.8 Additional insights from models

We employ two types of models that are prognostic or run in a prognostic mode to help bridge
reference concepts and norms (SI: Tab. S2). The first type encompasses IIASA’s GAINS
(Greenhouse gas – Air pollution INteractions and Synergies) model. GAINS allows broaden-
ing of the applied contraction & convergence approach by making the step from emissions p/c
to costs p/c in the context of discussing Annex I countries’ mitigation pledges for 2020.6

The second model type encompasses the class of large-scale, energy-economic, and
integrated assessment models, from which we selected three illustrative scenarios to 2100 that
stabilize atmospheric GHG concentrations at low levels. The scenarios help us deviate from
the contraction & convergence reference approach by making the step from emissions p/c to
emission intensities measured as emissions per GDP (gross domestic product) in the context of
discussing emission reduction scenarios to 2100. We discuss the models in SI (Note 3). In
Section 3 below we apply them with the focus on technospheric emissions and exclude CO2

emissions from land use and land-use change.

3 Results

For illustration, we present uncertainty in the elaborated emissions-temperature systems
context for two selected countries, the USA and China. A third example, Austria, is included
in SI (Note 9). We select 1990 as start year.

3.1 USA, a data-rich country with high total and p/c emissions

Figure 2a (see also Table 2) shows that to meet global cumulative emission constraints
between 1500 and 2400 Pg CO2-eq for 2000–2050, each individual within the USA must
reduce his/her production-based GHG emissions on average by between 88 % and 74 % from
1990 to 2050. The dark- and light-gray lines (solid and broken) indicate the target paths
emissions must follow to achieve universal p/c targets between 3.0 and 6.4 t CO2-eq. Countries
currently emitting p/c quantities above these lines will need to compensate by emitting below
the gray lines before 2050 to ensure targets are reached.

As explained in Sections 2.3 and 2.4, the emission target paths can be interpreted in terms
of min/max and max/min combinations of uncertainty in both p/c emissions in 2050 and risk
of exceeding a specified temperature target in the 2–4 °C range in 2050 and beyond. Table 1a
reproduces these min/max uncertainty combinations (see below).

The thick solid black curve in Fig. 2a shows the technosperic emissions of the six Kyoto
GHGs (CO2, CH4, N2O, HFCs, PFCs, and SF6

7; excluding CO2 emissions from land use and
land-use change) between 1990 and 2009 as reported by the USA to the UNFCCC; the thin
solid black curve additionally considers fossil-fuel emissions embodied in trade, indicating that
the USA turned from net exporter to net importer between 1994 and 1998. Comparison with
the aforementioned emission target paths shows the USA to be operating beyond a 4 °C global
warming. The USA’s technospheric emissions are far above the uppermost emission target
path, which satisfies a cumulative emissions constraint of 2400 Pg CO2-eq for 2000–2050 and

6 See http://unfccc.int/parties_and_observers/parties/annex_i/items/2774.php for Annex I countries to the
UNFCCC.
7 Respectively, carbon dioxide, methane, nitrous oxide, hydrofluorocarbon, sulfur hexafluoride,
perfluorocarbon
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which, as Table 1a indicates, must preferably be interpreted with reference to 4 °C (and higher)
temperatures in 2050 and beyond.

Underneath, the (hardly visible) red line shows what p/c emission levels the USA would
have committed to in 2010 had it ratified the Kyoto Protocol which stipulates a 7 % emission
reduction. Per capita emissions would have practically followed the 2400 Pg CO2-eq
constraint.

The solid black dot shows estimated production-based emissions for 2010 according to
IIASA’s GAINS model.

The broken blue and orange lines (the latter covers the first) show expected p/c emission
reductions for 2010–2020 according to the USA’s conservative and optimistic pledges in 2010
(the two pledges—17 % reduction until 2020 relative to 2005—are identical in the case of the
USA). The costs for achieving these pledges by applying known mitigation techniques are
mentioned in the blue- and orange-framed boxes (GAINS output). The conservative and
optimistic pledges to reduce emissions until 2020 are not necessarily identical for the other
Annex I countries. IIASA’s GAINS model is run in a mode that allows emissions exchange
among Annex I countries, and between Annex I and developing countries (i.e., “with Annex I
trading” and “with CDM measures”). The conservative and optimistic pledges of the other
Annex I countries do not affect the USA’s pledge to reduce emissions but do impact the costs
of achieving these reductions. The costs differ depending on whether GAINS applies conser-
vative or optimistic country pledges. Negative costs mean that implemented emission reduc-
tion measures pay back during their lifetime.

The ranges shown numerically in the red, blue, and orange boxes and graphically by the “I”
shape at the end of the red, blue, and orange lines reflect the current range of diagnostic
uncertainty (0.7–1.3 t CO2-eq/cap) in estimating emissions; or, alternatively, the undershooting
required to reduce the risk from 50 to 0 % that true emissions are greater than agreed targets or
pledges. The uncertainty ranges take into account: (i) uncertainty in GHG inventories in both
start and target year; and (ii) uncertainty in the GHG inventory in only the target year.8 They
are derived by applying the two emission change-uncertainty analysis techniques mentioned in
Section 2.5. Adjusting the pledges of a country for undershooting—in the USA’s case from
17.2 to 16.5 t CO2-eq/cap according to the Und concept and from 17.2 to 16.0 t CO2-eq/cap
according to the Und&VT concept and reapplying GAINS allows the uncertainty in mitigation
costs to be specified (see blue and orange boxes).

Fig. 2 a USA (1990–2050): National GHG emissions and removals and near-term mitigation policies and
measures in a globally consistent and long-term GHG emissions-temperature-uncertainty context. Technospheric
emissions are budget-constrained globally for 2000–2050 but exhibit quantitative uncertainty; while emissions
from land use and land-use change (LU and LULUCF) reduce to zero, global temperature targets for 2050 and
beyond range between 2 and 4 °C, and compliance with an agreed temperature target is uncertain and entails a
risk of exceedance. For further explanations see text. b USA (1990–2050): The figure takes over relevant
technospheric emission entries of Fig. 2a. In addition, the figure shows three globally-embedded, long-term
emission reduction scenarios as realized by GTEM, IMAGE and POLES for the USA. They allow switching
between emission reduction perspectives, here from emission reduction p/c (thick solid, dark to light, green lines;
in t CO2-eq/cap) to emission reduction per GDP (thick broken, dark to light, green lines; in kg CO2-eq per 2005
US $). The additional thin solid, light green line also belongs to POLES. It shows how POLES performs globally
(in t CO2-eq/cap). It allows the effectiveness of the USAs emission reduction to be put into a global perspective.
c China (1990–2050): See caption to Fig. 2a and text. d China (1990–2050): See caption to Fig. 2b and text

�

8 We employ a total uncertainty in relative terms of 7.5 % (representing the median of the relative uncertainty
class 5–10 %) for reporting the emissions of the six Kyoto GHGs excluding emissions from land use and land-

2010b).
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Diagnostic uncertainty has not been introduced and combined with the prognostic uncer-
tainties which we show (in gray) for the lowest and highest GEE targets in 2050 (3.0 and 6.4
t CO2-eq/cap, respectively). Reducing diagnostic uncertainty to 0 % results in a downward shift
of the prognostic uncertainty intervals (and the respective target paths). For instance, the min/max
interval, [2.5 ; 3.5], around the lowest GEE target (3.0 t CO2-eq/cap), by an additional 0.2 or 0.3
t CO2-eq/cap, dependent on emission change-uncertainty analysis technique applied. This
downward shift will not impair the prognostic-uncertainty related risk of exceeding the agreed
temperature targets (SI: Note 6).

Both the solid green line and the solid brown line show p/c emissions from land use and
land-use change within US territory, the first LU emissions for 1990–2005 (from GCP’s LU
emissions for 1850–2005) and the second LULUCF emissions for 1990–2009 (reported by the
USA under the UNFCCC). The difference between the two is considerable. For comparison,
the thin solid green line shows LU emissions for 1990–2010 (from GCP’s LU emissions for
1850–2010) but for North America as a whole. GCP’s LU emissions for 1850–2005 classify
the USA as a moderate sink and Canada as a moderate source (the first slightly greater than the
second in absolute terms), while North America as a whole only turns from moderate source to
moderate sink around 2006/07, according to GCP’s LU emissions for 1850–2010.

Both the solid green and solid brown dots correct the USA’s p/c emissions from land use
and land-use change for biomass embodied in trade (eTradeLU) in 2000. The corrections refer
to the GCP LU emissions for 1850–2005 and to the UNFCCC LULUCF emissions for 1990–
2009. With these corrections we switch the perspective from production to consumption
indicating that, while the directly human-impacted part of the USA’s terrestrial biosphere acts
as a net sink, the country is also a net biomass exporter. It would greatly benefit the USA to
switch to reporting that accounts for eTradeLU (SI: Fig. S3 – case 4, solid arrow).

Although only 2000 data are available to study eTradeLU, the magnitude of the adjustment
involved in switching from a production to consumption perspective is substantial and greater
in relative terms than switching perspectives for technospheric emissions. The dotted gray
lines acknowledge this finding. They represent the paths to lowering the USA’s p/c emissions

Table 2 P/c GHG emissions (excluding CO2 emissions from land use and land-use change) globally and by
country in 1990 and for 2050 required to meet global cumulative emission constraints for 2000–2050 ranging
between 1500 and 2400 Pg CO2-eq. Percentage emission reductions refer to 1990–2050 (negative reduction =
increase)

Global / 1990 Emissions 2050 GEE target under a cumulative emissions constraint for 2000–2050 of

Country 1500 Pg CO2-eq 1800 Pg CO2-eq 2100 Pg CO2-eq 2400 Pg CO2-eq

t CO2-eq/cap t CO2-eq/cap t CO2-eq/cap t CO2-eq/cap t CO2-eq/cap

3.0 4.1 5.2 6.4

1990–2050 emission reduction

% / cap % / cap % / cap % / cap

Globala 5.9 50 30 11 −8
USAb 24.3 88 83 78 74

Chinac 3.3 11 −24 −59 −93
Austriab 10.2 71 60 48 37

a POLES
b UNFCCC
c CDIAC, EPA, and UN POP
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from land use and land-use change plus those embodied in eTradeLU to zero, assuming that the
terrestrial biosphere as of today (~2000) represents a sustainable state to be reached in 2050.

Figure 2b takes over some, but not all, technospheric emission entries of Fig. 2a. The figure
also shows three solid, dark-to-light, green lines. These reflect typical aggressive, long-term
emission reduction scenarios (excluding CO2 emissions from land use and land-use change; in
t CO2-eq/cap) as realized by GTEM, IMAGE, and POLES for the USA and explained in
Section 2.8 and SI (Note 4). Even these scenarios fail to meet the condition of equal emissions
above and below the gray reference pathway, which reflects the cumulative constraint of 1500
Gt CO2-eq for 2000–2050 and ensures the 2 °C target will be reached (Table 1a). However,
this looks different at the global scale. The additional thin solid light-green line belongs to
POLES. It shows how p/c emissions decrease globally. The global emission reduction
scenarios behind the other two USA scenarios are not shown. These are very similar to the
global POLES scenario shown in the figure. In 2050 the global POLES scenario considerably
undershoots the GEE target of 3.0 t CO2-eq/cap (belonging to the 1500 Gt CO2-eq constraint;
Table 2).

Emission intensity paths (in kg CO2-eq per 2005 US $) for the USA that correspond to the
p/c emission reduction paths (solid, dark-to-light, green lines) are entered with the help of an
additional vertical axis (to the right in Fig. 2b). The emission intensity paths correspond in
color but are indicated as broken lines. Switching between the two emission reduction scales is
straightforward.

3.2 China, a developing country with high total but lower p/c emissions

Figure 2c is similar to Fig. 2a but shows data for China, a country with high total emissions, no
KP commitments, and less abundant data on GHG emissions and sinks. We use emission data
of the Carbon Dioxide Information Analysis Center (CDIAC) (CO2) and Environmental
Protection Agency (EPA) (non-CO2) emission data to visualize China’s technospheric emis-
sions for 1990–2005 (SI: Tab. S1) because UNFCCC-reported emissions are for one year only
(1994). The difference between technospheric emissions in 1994 was about 0.5 CO2-eq/cap
(CDIAC-EPA: 3.9; UNFCCC: 3.4). The UNFCCC emissions value still falls below the highest
emission target path which the figure resolves and which reflects the cumulative emissions
constraint of 2400 Pg CO2-eq for 2000–2050 (target path in 1994: 3.5 CO2-eq/cap). For a
better overview we entered only this emission target path. It not only indicates that China’s p/c
emissions were allowed to increase by 93 % between 1990 and 2050 (Table 2), but shows too
that, from about 2000 onward, China’s emissions began to exceed this target path and its upper
“uncertainty wedge” (determined by the maximal uncertainty in the 2050 GEE value). To
recall, the cumulative emissions constraint of 2400 Pg CO2-eq should preferably be interpreted
with reference to 4 °C in 2050 and beyond. However, considering fossil-fuel emissions
embodied in trade—China is a net exporter resulting in a reduction of its territorial emis-
sions—brings its emissions back into the wedge-shaped uncertainty range.

GCP’s LU emissions for 1850–2005 classify China as a moderate source before 1999/2000
and moderate sink thereafter. However, considering biomass import and export and, thus,
embodied LU emissions—China was a net importer of biomass in 2000—appears to nullify
this sink and reclassify China as a moderate source.

Figure 2d is similar to Fig. 2b. Regarding the USA, the aggressive, long-term emission
reduction scenarios (in t CO2-eq/cap) of GTEM, IMAGE, and POLES9 fail to meet the

9 Respectively, Global Trade and Environment Model; Integrated Model to Assess the Greenhouse Effect;
Prospective Outlook on Long-term Energy Systems (model)
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condition of equal emissions above and below the gray reference pathway, which belongs to
the cumulative constraint of 1500 Gt CO2-eq for 2000–2050 and ensures the 2 °C target will
be reached (Table 1a). However, in contrast to the USA, two of the reduction scenarios (those
of IMAGE and Poles) show that, in the long-term, China’s p/c emissions closely follow the
global average (by POLES) or even fall below.

Another difference is the remarkable decrease of China’s emission intensities realized by all
three models. This, together with its low p/c emissions and the projected rapid growth of its
economy, explains why China’s national response strategy to climate change prioritizes
improvement of energy conservation, energy intensity reduction, and improved energy-use
efficiency (http://www.beconchina.org/energy_saving.htm).

4 Summary and conclusions

Our study focuses on uncertainty in anthropogenic GHG emissions including emissions from
land use and land-use change activities. Our aim was to understand the relevance of diagnostic
and prognostic uncertainty in an emissions-temperature setting that seeks to constrain global
warming and to link uncertainty consistently across temporal scales.

We discuss diagnostic and prognostic uncertainty in a systems setting that allows any
country to understand its national and near-term mitigation and adaptation efforts in a globally
consistent and long-term context. In this context cumulative emissions are constrained and
globally binding but exhibit quantitative uncertainty, and whether or not compliance with an
agreed temperature target will be achieved is also uncertain. To facilitate discussions, we focus
on two countries, the USA and China, while limiting global temperature rise to 2, 3, or 4 °C.
We show:

– That both diagnostic and prognostic uncertainty need to be considered to facilitate more
educated (precautionary) decisions on reducing emissions, given an agreed future tem-
perature target.

– How to combine the two uncertainties which we consider independent. We note that our
mode of bridging uncertainty across temporal scales still relies on discrete points in time
and is not yet continuous.

– How to perceive diagnostic and prognostic uncertainty–related risk in combination. Here,
diagnostic uncertainty refers to the uncertainty contained in inventoried emission esti-
mates and is related to the risk that true GHG emissions are greater than inventoried
emission estimates reported in a specified year. In contrast, prognostic uncertainty is
derived from a multitude of model-based, forward-looking emission-climate change
scenarios; it refers to cumulative emissions between a start year and a future target year,
and can be related to the risk that an agreed temperature target is exceeded. We find that,
to nullify the diagnostic uncertainty-related risk, the GEE intervals listed in the column
(e.g.) “1500 Pg CO2-eq” of Table 1a would need to be shifted downward by an additional
0.2 or 0.3 t CO2-eq/cap, while the prognostic uncertainty–related risk of exceeding the
2 °C is unimpaired.

– That, as a direct consequence of the not unequivocal relationship between cumulative
emissions and risk, a sharp cumulative emissions value translates into a risk interval for
exceeding the agreed temperature target and, vice versa, a sharp risk value translates into a
cumulative emissions interval. We interpret these intervals in terms of prognostic uncer-
tainty and make use of the two extreme alternatives – sharp cumulative emissions versus
uncertain risk (min/max) and uncertain cumulative emissions versus sharp risk (max/min).
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– That scientists face difficulties in adequately embedding cumulative emissions from land
use and land-use change in this emission-temperature setting because an achievable future
state of sustainability for the terrestrial biosphere in toto has not yet been defined.

– That treating diagnostic uncertainty reaches its limits in the case of sparse data as given, in
general, for reporting technospheric GHG emissions by non-Annex I countries and for
reporting emissions from land use and land-use change by all countries.

– That prognostic uncertainty becomes too large for cumulative emission constraints for
2000–2050 above ~2100 Gt CO2-eq. Above 2100 Gt CO2-eq, GEE values in 2050 can no
longer be properly distinguished. Uncertainty overshadows differences in the GEE values
which result from differences in both cumulative emissions and start year. Thus our
approach cannot be used for temperature targets in 2050 and beyond greater than 4 °C.
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Abstract This paper analyses factors that contributed to the evolution of SO2, NOx and CO2

emissions in Europe from 1960 to 2010. Historical energy balances, along with population
and economic growth data, are used to quantify the impacts of major determinants of
changing emission levels, including energy intensity, conversion efficiency, fuel mix, and
pollution control. Time series of emission levels are compared for countries in Western and
Eastern Europe, throwing light on differences in the importance of particular emission-
driving forces. Three quarters of the decline in SO2 emissions in Western Europe resulted
from a combination of reduced energy intensity and improved fuel mix, while dedicated end-
of-pipe abatement measures played a dominant role in the reduction of NOx emissions. The
increase in atmospheric emissions in Eastern Europe through the mid-1990s was associated
with the growth of energy-intensive industries, which off-setted the positive impact of better
fuel quality and changes in fuel mix. A continuous decrease in energy intensity and higher
conversion efficiencies have been the main factors responsible for the moderate rate of
growth of European CO2 emissions.
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Bln Billion
CAP Capita, person
CLRTAP Convention on Long-range Transboundary Air Pollution
CO Carbon monoxide
CO2 Carbon dioxide
EEU Eastern Europe
EKC Environmental Kuznets curve
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EMEP European Monitoring and Evaluation Programme
EU European Union
FGD Flue gas desulphurisation
GAINS Greenhouse gas and Air pollution Interactions And Synergies model
GDP Gross domestic product
GHG Greenhouse gas
Gt Giga tonnes
IEA International Energy Agency
J Joule (M Mega 106, G Giga 109, P Peta 1015)
Mt Mega tonnes
NOx Nitrogen oxides
PM Particulate matter
PPP Purchasing power parity
RAINS Regional Air pollution Information and Simulation model
SO2 Sulfur dioxide
UNFCCC United Nations Framework Convention on Climate Change
US-$ US dollar
VOCs Volatile organic compounds
WEU Western Europe

1 Introduction

Over the last century, Europe has experienced a long phase of dynamic growth in emissions
of air pollutants and greenhouse gases. However, the 1970’s saw a dramatic reduction in
Western European SO2 emissions, followed by a clear decline in emissions of NOx a decade
later. In contrast, the growth rate of CO2 emissions has not changed.

There are various hypotheses concerning the underlying factors and driving forces responsible
for these observed patterns in air pollutant emissions. For instance, economists have proposed the
existence of an environmental Kuznets curve (EKC), under which pollution increases at low
levels of income up to a turning point beyond which it decreases, in reference to the original
Kuznets curve for economic inequality (Kuznets 1955). Reasons for such an inverted U-shaped
relationship are hypothesized to include income-driven changes in: (1) the composition of
production and/or consumption; (2) consumer preference for environmental quality; (3) institu-
tions that are needed to internalize externalities; and/or (4) increasing returns to scale associated
with pollution abatement. Other voices point to the structural changes in energy and industrial
systems that resulted from the increase in global energy prices that followed the 1970’s oil crisis,
which also reduced the consumption of the most-polluting fuels. Environmentalists often em-
phasize the elaborate national and international frameworks of environmental legislation through
which European countries agreed to take dedicated measures to reduce their emissions, inter alia
by applying advanced end-of-pipe emission control technologies (Hordijk and Amann 2007).

We explore and quantify the impacts of such driving forces on changes in a set of selected
emission species (SO2, NOx and CO2) in Europe between 1960 and 2010, developing two
identities that explain observed emissions as the product of key factors. In keeping with the
hypothesized EKC, the first identity incorporates three terms: population, per capita income,
and per capita emissions. The second identity decomposes the latter into macroeconomic
changes, changes in the energy system, and dedicated environmental policy interventions.
We assess the evolution of these factors between 1960 and 2010 and attempt to associate
observed variations with important exogenous events.
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We then estimate the combined impacts of these factors on emission trajectories for
Western and Eastern Europe, respectively. While specific factors differ from country to
country, this analysis should improve understanding of the relative importance of driving
forces in European atmospheric pollution trends: economic welfare (as suggested by the
EKC), emerging technological and structural factors, and/or awareness of the harmful
environmental impacts of pollution, as reflected in pan-European environmental policies.

The following section briefly reviews the literature on the EKC, summarizing some of the
motivations for this study. Section 3 describes our methods and data. Section 4 discusses the
evolution of driving forces and resulting emissions of SO2, NOx and CO2 from 1960 to
2010; it provides a theoretical basis for the decomposition analysis and highlights the most
important empirical results, including detailed findings for selected countries. Section 5
places the quantitative assessment of the main determinants within a broader policy context.
The final section presents conclusions and discusses some policy implications of the main
findings.

2 The environmental Kuznets curve

The EKC hypothesis emerged from the debate over the fundamental determinants of long-
term improvements in the environment, and particularly from a growing literature on the
relationship between pollution and economic growth. It suggests that there is an inverted U-
shaped relationship between environmental quality and wealth, such that pollution first
increases with economic growth, but then decreases once a certain level of wealth has been
attained. Most empirical literature has focused on SO2 emissions, often making use of urban
air quality data, with few studies dedicated to other pollutant species. Existing analyses,
moreover, rarely account sufficiently for all relevant aspects of the environmental problems
under consideration, or address the underlying causes of the hypothesized relationships. A
refined examination of the determinants and effects of changes in air pollutant emissions
may help to explain to what extent and through what mechanism economic development
influences environmental quality, as well as the role of other factors. Thirty years of
international atmospheric protection efforts have generated sufficient data to re-examine
the EKC hypothesis and draw lessons for future policy (Vestreng et al. 2007). In particular,
publicly available databases contain information about both emission control measures
implemented in European countries and energy consumption, which can be linked to data
on environmental effects and economic development. Such analyses are especially important
in a context where it has been argued that economic growth, in and of itself, will eventually
reduce environmental degradation (Andreoni and Levinson 2001). Here, we briefly review
the theoretical basis and empirical evidence for the EKC.

2.1 Theoretical work

Gruver (1976) developed a neoclassical growth model with optimized investment into either
productive capital or pollution control capital. Whereas productive capital can be used for
several purposes (to increase consumption or produce more capital of either type), pollution
control capital only enters the utility function through environmental improvements. Given
this framework and the convex neoclassical utility function, it is optimal to focus on the
build-up of productive capital, neglecting the environment, during an initial phase of
development and then, with decreasing marginal utility of consumption, switch to invest-
ment aimed at reducing pollution. Selden and Song (1995) describe similar optimal growth,

Climatic Change (2014) 124:477–504 479

Reprinted from the journal29



but with only one investment category and with expenditure on pollution abatement
decreasing consumption directly. This provides the basis for the “J-curve for abatement,”
where at low consumption, abatement expenditure is also minimal or zero; it thus directly
explains the inverted U-curve for pollution on the basis of the assumed utility function.

Andreoni and Levinson (2001) briefly survey other theoretical efforts to explain the EKC
and develop their own simple microeconomic model. They show that the observed income-
pollution relationship can be explained by abatement technology with increasing returns to
scale, as is the case for technologies requiring large capital investments. In a critical review
of the EKC theory, Stern (2004) concludes that classic EKC results may not adequately
explain emission pathways, because the underlying statistical analysis is not robust and there
is only weak evidence for a coherent relationship between pollution and income. The study
suggests that structural factors contribute to declining pollution rates, but are less influential
than the time-related effects of targeted emission abatement measures.

2.2 Empirical studies

Early papers often cited in reference to the EKC include Shafik (1994), Selden and Song
(1994) and Grossman and Krueger (1995). These studies use panel data for several countries
and years in regression analyses; however, they do not explicitly consider the determinants
of the relationship between pollution and income. Shafik (1994) makes use of a broad range
of environmental data, including ambient PM, SO2 and CO2 levels, deforestation, clean
water supply, urban sanitation, O2 and fecal coliforms in rivers, and municipal waste. For
these quality indicators, relationships are derived with respect to per capita income; in some
cases these fit the EKC hypothesis, but in others, monotonically decreasing or increasing
pollution trends predominate. The study also notes a trend toward lower pollution maxima
over time (e.g., annual decreases in the maximum ambient values of 2 % for PM and 5 % for
SO2, respectively), which is attributed to technological improvement. The need for research
on both structural and policy determinants of changes in environmental quality is empha-
sized. Selden and Song (1994) study emissions of SO2, PM, NOx, and CO and observe a
similar pattern, although they find that pollution begins decreasing at higher levels of per
capita income. They attribute this to cheaper costs of abatement for urban air pollution, for
instance through the installation of high stacks—this is, at least for PM, a questionable
assumption, given its dispersion behaviour. They use their model, in conjunction with
country growth rates, to forecast global emission levels. Grossman and Krueger (1995)
examine urban concentrations of atmospheric SO2 and PM as well as water quality in river
basins, observing a relationship which supports the EKC hypothesis, though they consider
only two countries (Canada and the USA) in the high (i.e., > US-$16,000/year) income
range.

Kaufmann et al. (1998) find an inverted U-shaped relationship between the spatial
intensity of economic activity and atmospheric concentrations of SO2, whereas for per capita
GDP and SO2 concentrations the relationship appears U-shaped. They argue that per capita
GDP acts merely as a proxy for the spatial intensity of economic activity, which dominates
the true association, yet fail to provide any convincing argument for this assertion. For
instance, they ignore the acidifying properties of SO2, which were the main driving force for
its abatement in Europe after 1980. This factor may largely explain the observed phenom-
enon: deposition of sulphur compounds will tend to be more harmful (i.e., more likely to
exceed critical loads for acidification) if concentrated within a small area.

De Bruyn et al. (1998) criticize the econometrics of earlier studies and re-examine the
literature that associates the decline in the material-intensity of GDP with economic growth.
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As they lack the data to conduct a decomposition analysis, they estimate a reduced-form
regression model for time series of SO2, NOx, and CO2 emissions for Western Germany,
Netherlands, the UK and the USA between 1960 and 1993. In contrast with the expectations
of the EKC hypothesis, their model suggests that emissions tend to increase with economic
growth. Observed reductions result from the structural and technological factors that dom-
inated subsequent to the low growth rates of the early 1970s. To interpret the results in terms
of sustainability, they suggest linking the data to critical loads for acidification and eutro-
phication. Several other studies (e.g., Viguier 1999; Bruvoll and Medin 2003; Markandya et
al. 2006) support the hypothesis that the energy- and material-intensity of GDP behave as
inverted U-shaped functions of per capita income. Cole (2000) shows that the EKC can be
explained by the cleaner composition of manufacturing and falling share of manufacturing
output in GDP with income growth.

Stern and Common (2001) survey the empirical literature on the relationship of SO2 with
income. Making use of a longer (1850–1990) time series of global sulphur emissions, they
find that the EKC exists only when the sample is limited to high-income countries. For the
global sample, SO2 emissions per capita are a monotonic function of income, and reductions
in emissions are time-related rather than income-related. They identify events—such as the
adoption of the first sulphur Protocol to the Convention on Long-range Transboundary Air
Pollution (CLRTAP) (UN-ECE 1985)—as possible causes of this time-dependency. In more
recent work based on the current evolution of emissions in China and elsewhere, Stern
(2006) concludes that although air pollutants tend to increase with rising income, they
decrease over time as a result of rapid technological change, suggesting that low income
levels do not prevent the adoption of abatement technologies.

2.3 Motivation for this study

The picture that emerges from this brief literature survey is that, while there is some evidence
that supports the EKC, especially for air pollutants like SO2, the empirical and theoretical
basis for this relationship is rather weak. There is stronger evidence suggesting that some of
the underlying factors that determine emissions, energy consumption or structural change
follow a Kuznets-type curve, whereas the deployment of dedicated mitigation measures and
policies is likely independent of affluence. This study attempts to isolate these factors and
relate them to economic growth. The impacts of driving forces behind changes in emissions
are expected to be pollutant-specific, therefore we separately consider SO2 (emitted mainly
from large stationary sources), NOx (primarily from vehicle engines), and CO2 (the domi-
nant climate forcing agent, for which there were no end-of-pipe controls used in the past).
We examine the effects of determining factors on time series for two subregions in Europe
that experienced very different levels of wealth, technological advancement and environ-
mental awareness.

3 Methods

The literature describes many alternative methods for carrying out a decomposition analysis
of emission trends (Ang and Zhang 2000). Our model for the evaluation of determinants for
emission changes is based on a simplified additive form of the index decomposition
analysis. Detailed explanation of this method is provided by Hoekstra and van den Bergh
(2003). The following sections present our basic assumptions made for the decomposition,
and describe the datasets used in calculations.
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3.1 Two identities to explain observed emissions

We examine the evolution of European emissions of SO2, NOx and CO2 as the product of the
following three determinants:

Emissions ¼ Population⋅
GDP

Population

� �
⋅

Emissions

GDP

� �
;

where GDP is Gross Domestic Product, a standard measure for economic output.
Emissions of a given substance are thus a function of population, economic affluence
(GDP/Population) and the emission intensity of the economy (Emissions/GDP).
According to the EKC hypothesis, the third term should take the form of an inverse
U-shaped curve, emerging as a composite of autonomous technological progress,
structural changes in national economies, behavioural changes and dedicated environ-
mental policies.

To evaluate the importance of these individual components, we extend this identity, and
decompose the last term into three factors, as follows:

Emissions ¼ Population⋅
GDP

Population

� �
⋅

Energy

GDP

� �
⋅
X
i

Fueli
Energy

� �
⋅

Emissions

Fueli

� �
:

Resulting emissions are thus further dependent on the energy intensity of the economy
(Energy/GDP), i.e., the primary energy required per unit of GDP, on the fuel mix in each
sector (i) (Fueli/Energy), and on the emission intensities of different fuels (Emissions/Fueli).
The additive form decomposes the difference in emissions between time t and t-1 into three
determinant effects:

Emissionst−Emissionst−1 ¼ Factor 1ð Þeffect þ Factor 2ð Þeffect þ Factor 3ð Þeffect
These factors capture the key drivers that affect emissions, specifically:

1) overarching economic and/or energy intensity changes resulting from industrial sectoral
restructuring, technological progress, energy efficiency improvements and behavioural
changes;

2) alterations in the structure of the energy system, wherein emissions are critically
determined by fuel mix changes due to, e.g., fuel switching in response to variation
in relative fuel-prices;

3) dedicated application of end-of-pipe emission control measures in response to environ-
mental legislation.

Our formulation extends the ‘Kaya identity’ that expresses emissions of CO2 as the
product of four inputs: population, GDP per capita, energy use per unit of GDP and carbon
emissions per unit of energy consumed (Kaya and Yokobori 1997; Waggoner and Ausubel
2002). This extension is useful in isolating the impacts of dedicated environmental policy
interventions, of particular importance for emissions of the air pollutants SO2 and NOx, for
which highly effective end-of-pipe measures exist.

We analyse the development of these factors from 1960 to 2010, quantifying their
contribution to observed changes in SO2, NOx and CO2 emissions in Europe. These
emission species are selected, inter alia, for their environmental significance, extensive
documentation in the literature, and because of the availability of reliable data, needed for
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the decomposition analysis. We compute hypothetical emission scenarios or trajectories for
the study period in which we keep one or several of these factors at the level observed for a
selected base year (i.e., 1960) while varying others, as follows:

I. First, a hypothetical upper limit for emissions over time is calculated, assuming
that the emission intensities of GDP remain unchanged. Such an emission path
would follow from income (GDP) growth, given constant energy intensity of GDP,
unchanged fuel mix, and no emission control measures beyond those implemented
in the base year; thus:

Energy

GDP

� �t

¼ Energy

GDP

� �t¼0

;
X
i

Fueli
Energy

� �t

¼
X
i

Fueli
Energy

� �t¼0

;
Emissions

Fueli

� �t

¼ Emissions

Fueli

� �t¼0

This trajectory reflects only changes in real-term GDP using purchasing power
parity (PPP), thus constituting a reference against which the effects of other
factors can be quantified.

II. In the following step, an emission trajectory is estimated using data on the real
development of total energy consumption, but keeping fuel mix and emission
factors for each fuel type constant at the base year level. Comparing this to the
first trajectory reveals the impact on emissions of decoupling GDP from energy
consumption. Changes in the energy intensities of GDP result from shifts in the
sectoral composition of GDP as well as from efficiency improvements in energy
systems.

III. Third, a hypothetical emissions time trend is calculated that accounts for changes
in fuel mix, while keeping emission factors for each fuel type unchanged with
respect to the base year value. A corollary condition is that the shares of all
fuels must add up to one (i.e.,∑

i
Fueli=Energy ¼ 1 ). Comparison of this scenario

with the trajectory II above quantifies the impacts of fuel substitution (e.g., the
replacement of coal by natural gas) on emissions. In some cases, fuel substitu-
tion came about in response to environmental legislation, but other factors were
often involved, e.g., cost minimization, convenience, accessibility of energy grids
and infrastructure.

IV. Finally, the contribution of dedicated emission control measures to total emis-
sion changes is derived in a similar way from a fourth trajectory, which tracks
actual emissions by incorporating all driving factors, including the changes in
emission factors for each fuel type in each sector. Emission factors are deter-
mined by the removal efficiency (Eff) of an abatement measure adopted at a
specific rate (X):

Emission factor ¼ Emissions

Fueli

� �t

⋅ 1−Effð Þ⋅X t

A comparison of the differences among these trajectories reveals the impact on
emissions, respectively, of overall economic growth, the decoupling between GDP and
energy use, changes in the fuel mix of total energy consumption, and the application of
dedicated control measures. As reported by Rafaj et al. (2012), this methodology may be
applied to the decomposition of emission trends for a range of other air pollutants
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(ammonia, fine particles, VOCs)1 or short-lived greenhouse gases (methane, ozone), not
addressed in this study.

3.2 Data sources

This analysis examines emission changes within the 50-year period from 1960 to 2010 at
five-year intervals. It distinguishes between two regions: Western Europe (WEU), compris-
ing the 15 EU members prior to 2004, Switzerland and Norway; and Eastern Europe (EEU),
including the 12 EU members that joined after 2004, the Balkan countries, Turkey, Belarus,
Ukraine and Moldova (Fig. 1).2

As SO2, NOx and CO2 emissions originate almost entirely from the combustion of energy
carriers, emission estimates are primarily based on statistical energy data and fuel balances. For
most countries, energy statistics from the International Energy Agency (IEA 2009a, b, c, d)
have been used for 1960–2005. For some countries of the former Soviet Union, missing
statistical data for 1960–1990 have been extracted from the databases of two models: GAINS
and its predecessor, RAINS (Amann 1990). Energy consumption for 2010 is based on the
projections developed for the revision of the National Emission Ceiling Directive as
implemented within the GAINS model (Capros et al. 2008). These sources also provided data
on factors that contribute to autonomous emission reductions, such as GDP, energy intensity
and population growth. However, because data on the efficiency of end-use devices and
appliances is not provided, these factors are treated in aggregate. Emissions of SO2 and NOx

are calculated for nine fuel categories in five economic sectors, as summarized in Table 1.
Emission factors for 1960 and subsequent years are extracted from the databases of

the RAINS and GAINS models and, if necessary, adjusted such that resulting emis-
sions match the official national estimates reported to the European Monitoring and
Evaluation Programme (EMEP) under CLRTAP3 (EMEP 2009). Figures reported by
Mylona (1996) and Schöpp et al. (2003) are used to fill in missing data points.
Emissions for 2010 are abstracted from the GAINS baseline scenario reported by
Amann et al. (2008).

CO2 emissions are calculated on the basis of total primary energy supply according
to IEA energy balances (IEA 2009a, b). In contrast to SO2 and NOx, international
aviation is not included as a source in estimates of CO2 emissions, but emissions
from non-energy use of fossil fuels (e.g., asphalt production or chemical feedstock)
are taken into account. Resulting CO2 emissions have been adjusted to the estimates
reported by the IEA (2010).

1 Ammonia emissions originate mainly from agricultural activities, such that temporal changes are driven by
different forces than for more energy-related pollutants. Economic output of the agricultural sector, levels of
primary agricultural production (e.g., livestock numbers), and the structural composition of livestock are used
in the decomposition analysis.
2 WEU thus includes 17 countries: Austria, Belgium, Denmark, Finland, France, Germany, Greece, Ireland,
Italy, Luxembourg, Netherlands, Norway Portugal, Spain, Sweden, Switzerland and the United Kingdom;
EEU comprises 22 countries: Albania, Belarus, Bosnia and Herzegovina, Bulgaria, Croatia, Cyprus, Czech
Republic, Estonia, Hungary, Latvia, Lithuania, Macedonia, Malta, Moldova, Montenegro, Poland, Romania,
Serbia, Slovakia, Slovenia, Turkey and Ukraine.
3 SO2 and NOx emission data from EMEP comprise gap-filled and gridded data based, for reasons of
consistency, on official reported data supplemented by expert estimates for missing and/or low quality
measurements.
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The decomposition analysis of emission changes in this paper addresses only emissions
from fuel combustion, excluding fuels for international marine bunkers. Industrial process
emissions—the only category of anthropogenic emissions not directly linked to energy
consumption—are also not examined here because of a lack of consistent and reliable
historical statistics. Sources of such emissions include oil refineries, coke plants, sinter
plants, pig iron blast furnaces, non-ferrous metal smelters, sulphuric acid plants, nitric acid
plants, cement and lime plants and pulp mills; in 2005 they contributed about 7 % and 5 % to
total European SO2 and NOx emissions, respectively (EMEP 2009). The share of CO2

process emissions in Europe, including gas flaring, was about 5 % of total emissions in
2005 (UNFCCC 2009).

EEU

WEU

EEU

WEU

Fig. 1 Geographical coverage of emission calculations

Table 1 Sector/fuel combinations applied for emission calculations for SO2 and NOx

Sectors Fuels

Power and heat production Hard coal

Lignite

Industry Coke

Biomass and waste

Households and services Gasoline

Diesel

Transport and aviation Heavy fuel oil

Natural gas and derived gases

Energy conversion Others (renewables, nuclear, electricity, heat)
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4 Results

4.1 Emissions in Europe 1960–2010

In WEU, the volume of economic activity increased steadily by about 2.2 %/year between
1960 and 2010, resulting in a quadrupling of GDP (real-term, PPP-adjusted). In the early
years of this period, emissions of SO2, NOx and CO2 developed in parallel to the level of
economic activity (Fig. 2). However, SO2 and NOx emissions later exhibited a distinct
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Fig. 2 Evolution of GDP (PPP) and emissions of SO2, NOx, and CO2 by sector in Western Europe (WEU)
and Eastern Europe (EEU) between 1960 and 2010; adopted from databases of the RAINS and GAINS
models (Amann 1990; Amann et al. 2008; EMEP 2009; IEA 2010)
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decoupling from GDP, coinciding with a time when public concerns about their negative
environmental impacts (i.e., about ‘acid rain’ and ‘ground-level ozone’) emerged. After
peaking in the 1970s, SO2 emissions declined by 90 % through 2010; similarly, NOx

emissions declined by 50 % after a maximum in the 1980s (Schöpp et al. 2003). For CO2,
such a pronounced decoupling effect has not yet been observed.

In EEU, political changes in the 1990s were accompanied by drastic structural changes in
national economies. This led to temporary stagnation and a drop in GDP, and to significant
alterations in energy systems. From Fig. 2 it is clear that the contributions of individual
emission sources are comparable in the WEU and EEU regions; however, the decline in
emissions was delayed by about 10 years in EEU compared with WEU. In addition to
economic and structural transitions, the implementation of new environmental legislation in
EEU contributed substantially to the rapid decrease in emission burden.

Figure 3 shows the share contributed by solid, liquid and gaseous fuels to overall
emission levels. While the combustion of coal is the major source of sulphur emissions,
oil products used in the transport sector dominate NOx emission profiles in both the WEU
and EEU regions. The increasingly higher share of natural gas in the fuel mix is responsible
for its growing contribution to total CO2 emissions.

4.2 Key factors driving pollutant emissions

4.2.1 Population and income

During the period of interest, population grew at an annual rate of 0.4 % in WEU and 0.6 %
in EEU. Whereas a pattern of gradual continued growth was observed in the former,
population stabilised and even began to decline during the early 1990s in the latter
(Fig. 4). Over the same timeframe, average income more than tripled in WEU and more
than doubled in EEU. Even with all other factors held constant, pollutant emissions would be
expected to significantly increase as a consequence of observed increases in income.

The EKC hypothesis suggests that, on a per capita basis, emissions will display an inverse
U-shaped function with respect to income. Figure 5 shows the trajectories of emissions of
SO2, NOx and CO2 plotted against income levels for WEU and EEU countries, respectively.
In principle, the EKC hypothesis is consistent with SO2 emissions in WEU, which increase
up to ~13,000 US-$/yr, then decline monotonically with increasing income. For EEU, per
capita emissions peaked at an income of ~7,000 US-$/yr, and declined much more rapidly
than in WEU. For instance, per capita emissions of about 20 kg SO2/year were reached in
EEU at an income of about 12,000 US-$/yr, while in WEU the same emission level was
achieved at about 24,000 US-$/yr. Similar trends apply for NOx, where emissions in both
regions peaked at comparable intensities, but significantly different income levels. Further-
more, the peaks of SO2 and NOx emissions coincide for EEU with respect both to time and
per capita income, while they are rather different within WEU. For CO2 emissions, there is
no significant income dependency in WEU, while the post-1990 economic restructuring in
EEU appears to have set per capita emissions on a new growth path—although at a lower
absolute level. In general, all curves for EEU show a distinct break in 1990 at the onset of
economic restructuring.

From a broader perspective, data for EEU through 1990 combined with the full range of
data for WEU provide only limited support for the existence of universal U-shaped rela-
tionships between emissions and per capita income in the ranges considered here. Such
relationships are evidently region- and pollutant-specific, peaking at different income levels,
and do not indicate a significant decline in CO2 emissions with increasing prosperity.
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However, developments in Eastern Europe after 1990 clearly signal a departure from the
status quo, indicating the potential importance of structural changes in emission trends. In
sum, historic evidence for SO2, NOx and CO2 emissions in Western and Eastern Europe
suggests some income dependency that might be in line with the EKC hypothesis, but this is
hardly definitive; in the following sections, we explore alternative factors that could explain
the observed changes in pollutants over time.
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Fig. 3 Evolution of emissions for gas, oil and solid fuels in Western Europe (WEU) and Eastern Europe
(EEU) between 1960 and 2010; adopted from databases of the RAINS and GAINS models (Amann 1990;
Amann et al. 2008; EMEP 2009; IEA 2010)
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4.2.2 Energy intensity

Energy intensity, expressed as energy use per unit of GDP produced, has evolved quite
differently in WEU and EEU. In the former, after a period of growth, energy intensity
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gradually decreased, such that present levels are nearly 30 % lower than in 1970
(Fig. 6- Left panel, lower lines), while energy consumption per capita increased
steadily (Fig. 6 - Left panel, upper lines). In some WEU countries, oil price shocks
affected the level and structure of energy consumption in the mid-1970s and early
1980s. In many WEU countries, energy growth slowed around 1990. Some of these
economies managed to decouple energy growth from economic growth. In contrast,
energy intensity remained stable or even increased in the EEU region through the
1990s. The strong decline after 1990 is due to the recession in Central and Eastern
European countries that underwent a process of economic transition to a market
economy. In EEU, energy consumption per capita dropped sharply at the 1990
recession, but increased steadily both before and after.

As explained in Section 3.1, changes in overall energy intensity according to our
definition also encompass the contribution of improved conversion efficiency and energy
saving measures. Investments in energy conservation during the period of interest were
primarily motivated by the pressure of increasing energy prices, on both the supply and
demand sides of the energy system. The trajectories of real energy prices (adjusted for
inflation) since 1970 (Fig. 6 - Right panel) in WEU evidence very strong fluctuations,
however, an increasing trend is observed, especially for oil (gas and oil prices have usually
been linked in international markets). The price of coal also increased after the 1970s,
though changes have been not as dramatic as for oil and gas. The observed trends suggest a
significant correlation between growth in energy costs and reductions in energy intensity.
Moreover, the price of energy is one of the decisive components for fuel choice, as discussed
in the next paragraph.
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4.2.3 Fuel mix

An important factor driving changes in emissions is the fuel structure of the energy system.
Fuel switches have occurred on the supply side since the 1970s, e.g., in the power sector, in
the form of expanding nuclear generation capacity, growth in renewables and natural gas
use. On the demand side, there has been a shift toward more electricity and heat consump-
tion instead of direct fuel combustion. Figure 7 illustrates the evolution of the overall fuel
mix from 1960 to 2010. The share of non-fossil fuels in WEU approached 25 % by 2010,
increasing by a factor of six relative to the base year. Similar steep increases are reported for
natural gas, which experienced sevenfold growth. The relative importance of coal decreased,
while oil usage shifted from heat and power production toward transportation. The transition
toward natural gas, nuclear and renewable energies was substantially slower in EEU.
Moreover, consumption of coal and oil products increased until 1995 in EEU, making the
fuel substitution effect less pronounced in comparison to that in WEU.

4.2.4 Emission intensity

It is clear that ongoing economic and energy sector changes during the period examined had
an impact on emission intensity (i.e., the amount of air pollutants released per unit of energy
consumed). Of these, the structural changes initiated after the oil price shocks—especially
the second shock in 1979 (Kohl 1982)—and during the post-1990 transition period in
Central and Eastern Europe are most significant. In addition, changes in emission intensities
reflect transitions in the composition of particular economic sectors; for instance, shifts from
manufacturing to services, changes in the ratio between passenger and freight transport or
improvements in conversion efficiency.

Figure 8 shows trajectories of emission intensity in relation to change in the non-fossil
fraction of the overall fuel mix. For both WEU and EEU, emission intensity for SO2 and
NOx decreased with growing share of carbon-neutral fuels, though this trend for NOx is only
observed after 1980, due to changes in the transport fuel mix. The overall impacts of fuel
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mix changes on SO2 and NOx emission intensity reductions are complex, since, over the last
two decades, the continuous use of fossil fuels has been accompanied by the adoption of
targeted emission control measures and improved fuel quality. For CO2 emissions, however,
changes in fuel mix represent a major mitigation component in the absence of direct end-of-
pipe abatement measures. This explains the proportional reduction in aggregated CO2-
emission intensity following the growth in non-fossil fuels.

4.3 Summary of factors leading to emission changes over time

4.3.1 Sulfur dioxide

The decomposition approach discussed in Section 3.1 allows for quantification of emission
reductions attributable to particular technological, behavioural or policy-related elements. A
simple approach to interpreting these results it to examine how the three main drivers
described above (i.e., improved energy intensity, improved fuel mix and end-of-pipe mea-
sures) have factored into reductions in emissions over the study period. Figure 9 shows total
observed SO2 emissions in the WEU and EEU regions between 1960 and 2005, projected
through 2010. The dark area (“Actual emissions”) illustrates the empirical evolution of SO2

emissions. The red line at the upper margin shows the hypothetical emissions that would
have occurred in the absence of any mitigation component; i.e., it represents growth in
emissions with growing GDP. Intermediate between these boundaries, different colours
represent the contribution of the three drivers to emission reductions: changes in energy
intensity and efficiency (blue), changes in energy structure/fuel mix (green), and control
measures (yellow).

In WEU, SO2 emissions have declined monotonically since 1970. Changes in fuel mix
combined with reduced energy intensity have offset continued growth in energy consump-
tion, while control measures have further decreased emissions. As of 2010, the reductions in
SO2 emissions attributable to control measures and to energy intensity improvements are of
similar moderate magnitude, while fuel mix changes have become the most important
abatement element. In EEU, an increase in energy intensity (striped) outweighed the effects
of fuel switching and better fuel quality during the first half of the study period, resulting in
moderate emission growth through the mid-1980s. After 1990, a decline in total energy
consumption brought emissions down, and this process accelerated via efficiency
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improvements, coal substitution with natural gas and the adoption of pollution control
legislation in most EEU countries.

It is important to note that the systematic adoption of end-of-pipe measures to reduce
emissions (e.g., FGDs) did not take place before 1985. Nevertheless, modification of the
characteristics of fuels used in a range of combustion processes led to changes in the average
emission factor for several sectors. Some changes in fuel quality, e.g., sulphur content in
coal, were autonomous, while others were enforced by legislation—for example, the sulphur
content standards for transport or domestic liquid fuels (UN-ECE 1987). The evolution of
the aggregated sector-specific emission factors for SO2 in WEU and EEU is summarised in
Table 2. To understand the relative impact of the areas in Fig. 9, it is necessary to examine
the data at the country level, as in Section 4.4 below.

4.3.2 Nitrogen oxides

Growth in NOx emissions differed from growth in SO2 emissions for both regions. While
SO2 in WEU declined by some 40 % between 1970 and 1990, NOx increased by 27 %
during the same period (Fig. 10). In EEU, the corresponding increase in NOx was over 65 %.
This increase is largely a product of the growth in energy consumption, but, in contrast to
SO2, it is generated not only from stationary emission sources but also from transport. After
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1985, control measures were phased in, gradually reducing emissions (Table 2). Structural
change seems to have played only a minor role.

The analysis of changes in NOx emissions is more difficult than for SO2. Different factors
tend to overlap and the same factors change the way they impact emissions over time. Also,
the choice of reference year is very important. While structural change reduced emissions
growth up to 1990, it increased emissions—or more precisely, diminished the impact of
control measures—for the period after 1990. This trend was more pronounced in the EEU
region (striped area).

Development in the transport sector is key to understanding the causes of NOx

emission trends. Both petrol and diesel consumption in the transport sector grew
significantly over the period examined, however, the share of diesel in transportation
fuels increased at a similar rate (Table 2). Between 1970 and 1990, the structural shift
towards diesel was as important a factor in increasing NOx emissions as the growth in
transport, and from 1990 to 2000, when energy consumption declined, this factor
significantly counteracted the reduction in emissions. While structural changes in the
transport sector tend to increase emissions, structural changes for stationary sources tend to
reduce emissions, as for SO2. This also explains why the overall net effect of fuel mix change is
rather small. It is also noted that initial emission regulations for automobiles within the EUwere
already specified by 1970 (EC 1970). Thereafter, European emission standards (Euro) for light
and heavy duty vehicles were defined in a series of directives, whereas the first standards for
passenger vehicles came into force in 1992, and the most recent standards (Euro5/V) have been
required since 2009/2010 (EC 2007).

Table 2 Evolution of average emission factors by sector and the share of diesel in transport fuels in Western
Europe (WEU) and Eastern Europe (EEU), 1960-2010. Adopted from RAINS (Amann 1990), IEA (2009a)
and IEA (2009b)

Region Sector 1960 1970 1980 1990 2000 2010

Average emission factor for
sulfur dioxide (gSO2/MJ)

WEU Energy 0.94 1.07 0.78 0.43 0.14 0.04

Industry 0.55 0.63 0.40 0.28 0.10 0.03

Domestic 0.58 0.31 0.17 0.11 0.03 0.01

Transport 0.19 0.19 0.08 0.08 0.02 0.01

EEU Energy 1.73 1.47 1.18 0.74 0.56 0.25

Industry 0.46 0.36 0.36 0.38 0.31 0.16

Domestic 0.48 0.43 0.37 0.24 0.15 0.08

Transport 0.55 0.24 0.23 0.16 0.16 0.05

Average emission factor for
nitrogen oxides (gNOx/MJ)

WEU Energy 0.23 0.22 0.12 0.12 0.07 0.05

Industry 0.16 0.13 0.13 0.17 0.13 0.04

Domestic 0.07 0.06 0.05 0.04 0.04 0.03

Transport 0.49 0.63 1.06 0.73 0.48 0.27

EEU Energy 0.30 0.27 0.19 0.17 0.12 0.08

Industry 0.09 0.09 0.10 0.14 0.13 0.06

Domestic 0.04 0.05 0.05 0.07 0.05 0.04

Transport 0.43 0.67 0.98 0.92 0.88 0.55

Share of diesel fuel WEU Transport 23 % 29 % 32 % 37 % 44 % 55 %

EEU Transport 32 % 34 % 38 % 40 % 46 % 54 %
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Another important process that plays a role in NOx emissions is a transition across
modes and categories within the transport sector. Examples include: the shift from two
stroke to four stroke engines, the changing share of two-wheelers in passenger
transport, the replacement of heavy duty trucks by light duty vehicles, and the ratio
between fuel use in freight transport and in cars. These changes are not analyzed in
detail in this study, but are reflected in aggregate in the structural emission drivers.
Figure 10 also shows that control measures are the most important factor driving NOx

emission reductions— more than 75 % of effective measures through 2010 involved
the transport sector. In the 1990s, pollution control measures affecting petrol-fuelled
cars, e.g., catalytic converters, contributed most to reductions in WEU, but the
contribution from equivalent measures for diesel-powered vehicles is expected to
reach similar levels in 2010 and beyond (Amann et al. 2008; Borken-Kleefeld and
Ntziachristos 2012).

4.3.3 Carbon dioxide

CO2 emissions from fossil fuel combustion have rapidly increased in WEU, by 60 % from
1960 to 1970 (Fig. 11). The energy crisis in the 1970s followed by the oil glut resulted in
temporary demand reductions in the middle of the 1980s (Salameh 2004). Changes in
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economic structure, improved energy productivity, and energy-saving measures constitute the
main sources of reductions in CO2 emissions over the study period. High oil prices reinforced
the introduction of alternative and less carbon-intensive fuels into energy markets (Figs. 6 and
7); through the early 1990s, fuel switching had similar impact on reductions in CO2 emissions
as the drop in energy intensity. By 2010, changes in fuel mix contributed around 30% to overall
CO2 reductions, whereas improvements in energy intensity played a larger role.

In EEU, CO2 emissions grew by 2.1 % per year up through 1990, in tandem with the
growth of the economy (Fig. 11). Inefficient use of fossil fuels offset the CO2-reducing effect
of the growing nuclear and hydropower supply capacities experienced during this period
(Fig. 7). The transition of EEU countries toward market-oriented economies resulted in the
attenuated market distortion of fuel prices, and simultaneously in a rapid drop in energy use
consequent to the conversion of the industrial sector. The recent economic recovery is
associated with an increase in CO2 emissions over the last decade.

4.4 Country results

Decomposition analysis for individual countries is of great value for gaining detailed
insights about the performance and interplay of driving forces for pollution reductions. We
present results for the United Kingdom and Poland to highlight a few of the most significant
features. Additional components of emission reductions beyond those considered in Figs. 9,
10 and 11 are explicitly accounted for here. These components include growth in the power
generation sector, evolution of transport activities, and the contribution of diesel fuel to the
NOx emission profile. Impacts on emissions resulting from improvements in energy
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intensity and fuel mix are aggregated within one term (“Fuel mix and structural change”).
Driving factors are decomposed relative to the year 1970, since their impact is obvious only
after this point.

The United Kingdom reduced its emissions substantially during the 1990s through
restructuring of the energy system, in particular by decreasing coal combustion in the power
plant sector. A large fraction of coal power generation has been substituted by natural gas
power plants, but nuclear power, too, and more recently renewable energy, figure increas-
ingly in the fuel mix. Structural changes in the energy system thus played a dominant role in
reductions of SO2 and CO2 emissions. End-of-pipe measures became important in SO2
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emission reductions only toward the end of the study period, as the United Kingdom started
to install control equipment only after 1990 or even 1995 (UN-ECE 1995).

As was apparent at the regional level (see Section 4.3.2), the effect which overall
structural change in the UK has on NOx emissions changes with the relative importance
of two opposing forces: fuel switching for stationary sources tends to reduce emissions,
whereas relative growth of the transport sector increases emissions. The rising share of diesel
cars in the UK nearly offsets the reductions achieved through the modified fuel mix in non-
transport sectors. On the other hand, the analysis reveals a very high efficiency of control
measures dedicated to NOx abatement.

In Poland, as in most EEU countries, the tendency for emissions to grow dominated until
the 1990s, whereas in later decades emissions decreased as a result of drops in energy
demand and the adoption of emission control measures. In spite of growing shares of natural
gas, biomass and other renewables, the Polish energy system continues to rely on coal
combustion. Therefore, the effect of fuel mix changes towards SO2 and CO2 reductions is
much lower than in the UK (Fig. 12). However, in combination with efficiency gains, fuel
switching does help to moderate the growth in emissions that is the projected result of
economic recovery. Add-on desulphurization technologies, gradually implemented after
economic changes in the 1990s and due to EU-accession requirements in the 2000s, have
been the main driver for the remarkable SO2 reductions achieved. The decrease in average
SO2 emissions prior to the 1990s was linked with changing fuel quality and with a coal-to-
lignite substitution in the power generation sector (Cofala and Bojarski 1987).

Evolution of NOx emissions in Poland is again dominated by solid fuel combustion in
power plants. Only after 2000 did growth in transport demand and a greater share of diesel
vehicles outweigh the contribution from stationary sources. Similar to the UK, NOx-controls
enforced though environmental legislation have brought emissions below 1970 levels.

Individual country analyses indicate that differences among countries tend to diminish
with time. While in the first half of the study period many country-specific features were
evident, by 2010, the patterns have become rather similar. This may reflect the impact of
international legislation regarding air pollutants, including both the Gothenburg Protocol
(UN-ECE 1999) and EU legislation (EC 2001), as well as broad international climate
agreements including the Kyoto Protocol (UNFCCC 1997). Continuous enforcement of
environmental policies will eventually diminish the differences between countries with
respect to the relative importance of structural changes compared to targeted abatement
measures, as countries converge to the European average in the medium term. The overall
effectiveness of control measures may vary with local circumstances. One clearly important
factor is how early measures are introduced. The rate of implementation of controls may still
differ slightly from country to country in the coming years, yet emissions should converge
toward the European average and variability is expected to be much lower than before 2000.

5 Discussion

Our decomposition exercise proves that many emission reductions are not the result of
specific control measures. Rather than resulting from targeted abatement efforts, they are
shown to be the consequence of variation in energy structure, overall economic changes or
technological advances.4 These changes are autonomous of emission reduction objectives

4 For the further discussion on the role of technological progress behind emission reductions and the
effectiveness of international environmental treaties see, e.g., Barrett et al. (2006) and Dekker et al. (2012).
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and are mainly a consequence of economic developments. The analysis of the observed
emission reductions allows some conclusions about the substantial importance of dedicated
environmental legislation and international policy efforts, such as the protocols under
CLRTAP (UN-ECE 1985, 1999). Nevertheless, even countries that did not become party
to the protocols and thus were not ready to support their environmental objectives have
reduced emissions as a consequence of autonomous changes in the economy. Moreover,
some countries that became protocol parties have reduced emissions beyond the levels
required (CIAM 2007).

The analysis shows that changes in energy structure (including technological advances
and other changes within sectors) are likely more important in reducing emissions for SO2

than for NOx. Without such changes, overall European emissions would not decrease below
1960 levels, as is now expected. For NOx, structural change tends to act in the opposite
direction, and on the whole is much less important. This difference supports the conclusion
that for NOx, there is the potential for structural change to further reduce emissions,
potentially at lower cost, than is anticipated at present. It is possible, too, to imagine a
dramatic shift away from the emission-intensive vehicle technology presently used for
transport, similar to what has been observed in the power plant sector. Thus far, structural
change and, in particular, the growth of transport, have reduced the effectiveness of
measures to control NOx. The extent of this effect explains some of the differences in
overall emission reductions between countries. Also, the differences between countries with
respect to the impact of structural change on SO2 emissions were important during the
1990s, but, according to forecasts, such differences tend to diminish with time.

There is an obvious link between the adoption of the first sulphur Protocol in 1985 (UN-
ECE 1985) and the timing of the introduction of controls on sulphur emissions. Among
WEU countries, the United Kingdom neither joined the first sulphur Protocol nor introduced
abatement measures at that time. It did, however, phase in control measures upon the
adoption of the second sulphur Protocol in 1994 (UN-ECE 1994), to which it became a
Party. Such an obvious link cannot be made for Central and Eastern European countries.
Similarly, the adoption of the NOx Protocol in 1988 (UN-ECE 1988) can be linked to the
timing of the introduction of control measures. Finally, it is obvious that the adoption of the
1999 Gothenburg Protocol (UN-ECE 1999), which addresses not only SO2 and NOx, but
also VOCs and ammonia, was followed by a broader application of emission control
measures—in particular as it was signed by more countries than any previous Protocol
(CIAM 2007).

This analysis strongly indicates that international environmental cooperation, as
conducted within the framework of the CLRTAP, has had significant effects. Control
measures have made a substantial contribution to SO2 and NOx emission reductions in
Europe as a whole. For individual countries, too, the importance of control measures is
growing over time, or is expected to do so. Even if particular measures and standards are not
introduced in all countries on the basis of environmental or other concerns, we expect that
European countries will tend to become more similar in terms of controls applied in view of
European integration. This is obvious for, e.g., international vehicle regulations, but will also
apply to the design of modern power plants or industrial processes.

From the perspective of the recent climate change debate and the adoption of
Europe’s climate and energy package (EC 2008), it is essential to examine the factors
that drive changes in European greenhouse gas emissions and contribute to uncertainty
in emission projections (Lesiv et al. 2013, this issue). In addition, most air pollutants
also act as precursors for short-lived climate forcers, e.g., sulphur aerosols, tropo-
spheric ozone, black carbon. Therefore, addressing uncertainties associated with
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drivers of these emissions can enhance the understanding of potential near-term
climate benefits (Shindell et al. 2012). For long-lived greenhouse gases such as
CO2, the methodology presented in this paper provides a quantitative basis for the
investigation of uncertainties related to determinants of emission trends in both the
medium- and long-term. Similarly, the decomposition analysis can provide a set of
input parameters necessary for uncertainty assessment of GHG-emission inventories.

Another phenomenon recognised in studies on factors behind changes in GHG emissions
is that the ongoing relocation of manufacturing industries abroad contributed to slowing
down growth rates of CO2 emissions in WEU during the past decade. Carbon emissions
have in many cases leaked to countries with lower production costs, where some of the
industrial activities are intended entirely for exports. As a result, national emissions of the
importing country might be reduced without positive economic changes while being rather
recorded and shifted elsewhere. However, global emissions do not decline in this context
and the importation of goods manufactured overseas will eventually increase overall emis-
sions (Peters and Hertwich 2008).

6 Summary and conclusions

The main objective of this study was to identify the principal factors responsible for
reductions in air emissions. The work focuses on Europe, looking at 39 counties aggregated
into two sub-regions (WEU and EEU), and develops long-term time series of emission data
for sulphur dioxide (SO2), nitrogen oxides (NOx) and carbon dioxide (CO2). In five-year
intervals, it looks at emissions from 1960 through 2010. Using publicly available energy and
emission databases, emission trends and drivers behind their temporal evolution are quan-
tified and evaluated for Europe.

The results show that over this fifty-year period SO2 and NOx emissions rose to historical
peaks, but then declined below the 1960–70 baseline by 2010. Add-on control measures
started to be introduced in the late 1980s, when international policy efforts also first began to
take effect. For example, the first sulphur Protocol under the CLRTAP was adopted in 1985
(UN-ECE 1985), and a NOx Protocol followed in 1988 (UN-ECE 1988).

This study presents a methodology to isolate the main factors that influence air pollution
emissions. The three pollutants examined here are strongly related to energy combustion,
such that changes in energy use are key to understanding their evolution. The study
distinguishes among four main determinants:

1a. Reduction of energy intensity;
1b. Improved conversion efficiency (the first two terms are aggregated for analysis);
3. Structural change as a shift of relative fuel shares; and
4. Control measures, targeted at the abatement of harmful effects of pollution.

For SO2, structural change has been the dominant factor in emission reductions, although
the reduced energy intensity of some sectors has also played a role. By the end of the study
period in 2010, about 25 % of total reduction was attributed to targeted end-of-pipe
abatement measures. In coming decades, the share of emission reductions due to control
measures should rise as such measures penetrate the stock of existing capital and as more
countries apply more advanced control measures.

For NOx, structural change on the whole is less important. Emission-reducing structural
change in the manufacturing industry and the power plant sector is outweighed by emission-
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increasing structural change in the transport sector. The application of control measures is
the most important factor explaining emission reductions.

We identified reductions in energy intensity and fuel-saving measures as the decisive factor
for mitigation of CO2 emissions during this timeframe. Changes in fuel mix contribute about one
third of overall CO2 abatement. In the near future, the adoption of carbon capture might play a
role in carbon mitigation as a factor belonging to the group of end-of-pipe measures (Lemoine et
al. 2012). In many cases, global trade of goods also results in reductions of national carbon
emissions due to the relocation of energy-intensive industries to countries with less efficient
production. This in turn generates carbon leakage, wherein global CO2 emissions increase.

The relative importance of factors responsible for emission reductions differs between
countries. Large differences appear between countries in WEU and EEU regions, reflecting
different approaches in environmental and energy policies pursued. Over time, differences
tend to diminish, which seems to be a good indication of the effectiveness of international
environmental policies targeted at SO2 and NOx control in Europe.

One of the motivations for this study was to contribute to the understanding of the
relationship between emissions and economic growth. The EKC hypothesis suggests that
there is an inverted U-shaped relationship such that emissions first increase with economic
growth and subsequently decrease once a certain level of wealth has been passed. Much
debate remains about the reasons for such a relationship, if it exists. Two of the four factors
identified in this study are clearly determined by economic parameters. Energy demand and
efficiency gains (1a and 1b above), which are aggregated into one term in our analysis, are
related to economic growth and tend to exhibit a Kuznets-type dependency. Technological
progress, although not modelled explicitly in this study, is also driven by economic factors,
but it is less clear whether and how the pollution intensities of individual sectors are related
to economic growth (Dolgopolova et al. 2013, this issue). Change in the share of different
fuels (2 above) is also influenced by economic development; however, in many instances,
this has, rather, been determined by the evolution of energy prices and direct policy
interventions. That two of the main factors responsible for emission changes follow a
Kuznets curve may be sufficient for such a relationship to also be observed between
emission data (at least for some countries and some pollutants) and economic growth.

There is little evidence that the control measures (3 above) that played a substantial role in
reducing air pollutants over the last two decades are directly linked to economic growth.
Rather than being driven by an autonomous increase in prosperity, their implementation is
triggered by enforcement of deliberate mitigation policies. Formal analysis of other potential
relationships, or indeed the alternative hypothesis, that emission controls are related to some
environmental factor, such as, for instance, deposition in excess of critical loads, ecosystem
sensitivity or the transboundary nature of pollution, remains to be undertaken.

The results of this study may allow for different perspectives on future emission scenarios
and associated uncertainties, as, for example, in Jonas et al. (2013, this issue). Forecasted
emission reductions are mainly driven by control measures but there is substantial opportu-
nity for emission-reducing structural and technological change. This could imply that
emission reductions are more broadly and cheaply attainable than is presently expected.
One should, however, avoid over-optimism. As there seems no autonomous mechanism to
ensure that EKC-like patterns observed in the past will hold in the future, there is no
guarantee that determinants responsible for emission abatement will continue to play the
role they have in previous decades. Because structural change, energy consumption and
technology respond to many driving forces other than environmental pressures, the possi-
bility cannot be excluded that a period of emission-reducing pressures will be followed by a
period of emission increasing changes.
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Abstract Total uncertainty in greenhouse gas (GHG) emissions changes over time due to
“learning” and structural changes in GHG emissions. Understanding the uncertainty in
GHG emissions over time is very important to better communicate uncertainty and to
improve the setting of emission targets in the future. This is a diagnostic study divided into
two parts. The first part analyses the historical change in the total uncertainty of CO2

emissions from stationary sources that the member states estimate annually in their
national inventory reports. The second part presents examples of changes in total uncer-
tainty due to structural changes in GHG emissions considering the GAINS (Greenhouse
Gas and Air Pollution Interactions and Synergies) emissions scenarios that are consistent
with the EU’s “20-20-20” targets. The estimates of total uncertainty for the year 2020 are
made under assumptions that relative uncertainties of GHG emissions by sector do not
change in time, and with possible future uncertainty reductions for non-CO2 emissions,
which are characterized by high relative uncertainty. This diagnostic exercise shows that a
driving factor of change in total uncertainty is increased knowledge of inventory processes
in the past and prospective future. However, for individual countries and longer periods,
structural changes in emissions could significantly influence the total uncertainty in
relative terms.
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1 Introduction

The increase in GHG concentrations during the last decades is considered to be the main
reason for global warming. The Kyoto Protocol to the United Nations Framework Convention
on Climate Change (UNFCC), whose term ended in 2012, stipulated the reporting of GHG
emissions at national scale. The recent goal of the UNFCC is to establish post-Kyoto emission
reductions targets for the period from 2012. Meantime, the European Union (EU-27), as a
Party to the UNFCC, has set ambitious targets for the year 2020: the reduction of GHG
emissions by 20 % (or 30 %—see below) by 2020 compared with 1990 levels (EEA 2010b).

Overall, EU-27 GHG emissions are decreasing. According to the inventory report (EEA
2010a), the EU-27 is well on track to achieve its emission reduction target of 20 %. This
overall trend is projected to continue until 2020. However, the 20 % reduction target compared
to 1990 would therefore remain out of reach without the implementation of additional
measures, such as the EU’s energy and climate change package (EC 2008). This package
underlines the objectives of limiting the rise in global average temperature to no more than
2 °C above preindustrial levels (EC 2009). So, the Member States agreed to cut GHG
emissions by at least 20 % of 1990 levels (30 % if other developed countries commit to
comparable cuts), which equals a 14 % reduction compared with 2005 levels; to cut energy
consumption by 20 % of projected 2020 levels by improving energy efficiency; and to increase
the use of renewables (wind, solar, biomass, etc.) to 20 % of total final energy consumption.

Uncertainty in GHG emissions is a crucial component of inventories. It specifies the
absence of confidence in the inventory inputs as a result of casual factors, such as uncertainty
of emission sources and emission factors, absence of transparency in the inventory process
(IPCC 2006; API/CONCAWE/IPIECA 2009), and so on. In compliance with international
obligations, countries should have guarantees that reported GHG emissions are sufficiently
accurate. Up to now, GHG emissions and the corresponding uncertainties are still reported
separately and are not considered in carbon emission trading (Ermolieva et al. 2010).

The application of a number of existing techniques to analyze emissions and emission
changes against their uncertainty could provide useful knowledge that countries would like to
have available prior to agreeing to emission targets (Jonas et al. 2004, 2010a, b; Bun et al.
2010). At the same time, countries should strive to provide more accurate results regarding
GHG emissions. In order to decrease the level of uncertainty, the knowledge of inventory
processes has to be expanded and the key reasons and emission sources that determine the
level of uncertainty have to be identified.

Experience in assessing the uncertainty in GHG inventories and changes in uncertainty in
relative terms is still insufficient (Lieberman et al. 2007; Jonas et al. 2010a, b; NRC 2010). So
far, no studies have been done on the analysis of changes in uncertainties that countries
reported in their national inventory reports. For example, from year to year countries report
different values of relative uncertainties in total GHG emissions. What is the main reason for
changes in reported uncertainties: structural changes in emissions or increased knowledge
about inventory processes? How will uncertainties change in the future due to structural
changes in GHG emissions under new policy treaties (e.g., the EU’s 2020 targets)? Answers
to these questions will help to better communicate the uncertainty and can be used to improve
the setting of emission targets in the future.

Here, we conducted an analysis of the changes in uncertainty in relative terms in the past
and nearby future for European countries. The input data (uncertainties by source) were
derived from national inventory reports (NIR 2003–2008), and emissions scenarios were taken
from the Greenhouse Gas and Air Pollution Interactions and Synergies (GAINS) model
(IIASA 2010).
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Our study is divided into two parts: (1) diagnostic analysis of the historical change in
uncertainty, particularly the influence of structural changes in emissions; (2) a diagnostic
exercise with one step forward: we calculate the total uncertainty with which we will have
to cope at a specified point in time in the future using today’s diagnostic capabilities. The paper
presents an analysis of the historical change in uncertainty of CO2 emissions for the EU-15 as a
whole and for individual countries; and it also includes estimates of total uncertainty in GHG
emissions under scenarios of changes in emissions considering the EU’s “20-20-20” targets.

2 Methodological background

Parties to the UNFCCC publish their GHG inventory reports annually in consistency with
standardized guidelines for national agencies developed by the Intergovernmental Panel on
Climate Change (IPCC 1997, 2006). Parties are obliged to include in their reports direct or
alternative estimates of uncertainty in results of GHG inventories. The quality of reported
uncertainty varies significantly from country to country because countries do not use the same
method for their emission and uncertainty assessments. The estimates of CO2 emissions from
fossil fuels consumption are the most accurate for comparison with other source categories
(uncertainties are estimated in the range of ±5 %) (Marland et al. 2008).

The EU member states started to report their uncertainties in GHG emissions in different
years. The first estimates of relative uncertainty were added to GHG inventory reports in 2000
and they did not cover all source categories and gases. In contrast, GHG emissions were
calculated much earlier. The ranges of total uncertainty of GHG emissions for the EU-15 are
available from the year 2003; the uncertainty of CO2 emissions from fossil fuel combustion
(stationary) has been detailed by source only since 2005.

Total uncertainty changes over time due to increased knowledge of inventorying GHGs and
structural changes in emission sources (and sinks). The first estimates of changes in uncer-
tainties in the past were provided in the Interim Report (Hamal 2010). The reported uncer-
tainties in the national inventory reports reflect precision and do not consider accuracy.
Precision expresses the degree of reproducibility of repeated emissions (random errors).
Accuracy is the difference between the reported emissions estimate and the actual value
(systematic errors). Hamal (2010) calculated combined relative uncertainties (for the EU-
15), which consider accuracy and precision, using knowledge of emissions recalculations to
estimate biases (systematic errors). The results, fitted with a trend function that follows an
exponential curve with a decrease of approximately 4.24 % each year, are displayed in Fig. 1.

Fig. 1 Total uncertainty ranges fitted with exponential trend function (Source: Hamal 2010)
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This change in uncertainty is expected to be more significant for the LULUCF (Land Use,
Land-Use Change and Forestry) sector and for other GHGs that are less certain.

The decrease (Fig. 1) in the past is believed to be almost exclusively caused by “learning”
and only marginally by structural changes in fossil fuel consumption. “Learning” means the
process of increasing knowledge of emission factors, other parameters, and activity data and
improving the inventory methods and models. However, some structural changes in emissions
as the result of implementing new energy measures can cause more significant decreases or
even increases in uncertainty. This happens because the uncertainty of emissions from different
fuels is not the same (i.e., combustion of liquid and other fuels involves a bigger uncertainty
than that of solid and gaseous fuels).

Structural changes in emissions occur all the time; for example the structure of fossil fuels
consumption changes, and each fuel has a different emission factor. Replacing consumption of
one fuel by another could result in an increase or decrease in the total uncertainty.

In the next two chapters, we present the methodology used to analyse historical changes in
relative uncertainty and future estimates of uncertainty in GHG emissions from stationary
sources. Table 1 includes a description of data sources used in the study.

2.1 Historical change in uncertainty of CO2 emissions

We have analyzed the change in total uncertainty of CO2 emissions by the following steps:

1. Collecting data on GHG emissions and their uncertainties by source categories (Table 1).
2. Calculation of the contribution of uncertainties in total emissions (fraction, %) at the

beginning and end of the investigated period:

eUi ¼ xiXn

j¼1
x j

⋅Ui or eUi ¼ ri ⋅Ui; ð1Þ

where eUi is the combined uncertainty in category i as a proportion of total emissions (%);
Ui is the relative uncertainty of emissions in category i, i=1..n (see Table 1) (%); xi is the
uncertain quantity (emissions) of category i (see Table 1); ri=xi/∑j=1

n xj is the fraction of
source category i in total emissions.

Formula (1) follows from Approach 1 described in Chapter 3 of the IPCC Guidelines
(IPCC 2006).

Table 1 Data description

Data Source

1. Historical change in total uncertainty of CO2 emissions

CO2 emissions of fossil fuels consumption
by category (xi)

National Inventory Reports (2000–2010) for the
Member States (Germany, the United Kingdom,
Italy, France, Spain, the Netherlands, Belgium,
Greece, Austria, Portugal, Finland, Ireland,
Sweden, Denmark) (UNFCCC 2010);

Annual European Inventory Reports to the
UNFCC (EEA 2003–2010)

Relative uncertainty by gas and category (Ui)

2. Future change in total uncertainty

GHG emissions in CO2 equivalent by sectors Annual European Inventory Reports to the
UNFCC (2003-2010)Relative uncertainty by gas and sector
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3. Analysis of the change in uncertainty due to increased knowledge: We consider that if
uncertainty of elementary category (Ui) changes during the investigated period it changes
due to the learning process, for example increased knowledge on uncertainty of emission
factors or activity data, while the structural change (ri) always occurs; for shorter periods it
is negligible but for longer ones it could be very significant.

4. If the change in uncertainty occurs in category i due to increased knowledge, we use
elements from deterministic factor analysis theory to compare the influence of the
structural change in emissions and the “learning” on this change:

ΔeUi ¼ ΔeUi;r þΔeUi;U ; ð2Þ

ΔeUi;r ¼ ΔeUi ⋅ ln
r1i
r0i

� �.
ln

eU1

ieU0

i

0@ 1A; ΔeUi;U ¼ ΔeUi ⋅ ln
U1

i

U0
i

� �.
ln

eU1

ieU0

i

0@ 1A; ð3Þ

whereΔeUi;r is the absolute change in relative uncertainty due to the structural change in
emissions (%), ΔeUi;U is the absolute change in relative uncertainty due to “learning” in
source category i (%); super-indices 1 and 0 mean the end and the beginning of the
investigated period, respectively.

If the change in uncertainty occurs in category i only due to the structural change in
emissions, we go to the next step.

5. Analysis of change in relative uncertainty of CO2 emissions for every source category and
for the sector as whole.

A detailed example of uncertainty analysis of CO2 emissions (stationary sources) by the
steps described above is presented in Table 2, where the calculations are made for Finland,
as it is one of the first countries that started to report uncertainties in GHG emissions in 2000.
During the investigated period (2000–2008), knowledge of the inventory processes in some
categories increased, and structural changes in fossil fuel consumption also occurred.

2.2 Future changes in uncertainty

Using today’s diagnostic capabilities we are able to measure and distinguish between “learn-
ing” and structural change in the past and also in the future. We would call this “a diagnostic

Table 2 The analysis of the relative uncertainty of CO2 emissions (stationary sources) without LULUCF for
Finland (2000–2008)

Fossil fuel Fraction of CO2

emissions (stationary), ri
Reported relative
uncertainty, Ui

Uncertainty as a proportion of
total CO2 emissions (stationary),% ΔeUi;U ,%

2000 2008 2000 2008 2000 2008

Natural gas 0.14 0.15 1.41 1.41 0.20 0.22 0

Oil 0.43 0.45 2.83 2.83 1.22 1.28 0

Solid fuels 0.28 0.23 3.35 10.13 0.93 2.31 1.68

Other fuels 0.15 0.17 6.40 6.59 0.97 1.09 0.03

Total 1 1 1.83 2.86

Absolute change in relative uncertainty in 2000–2008: 1.03 %

The main reason for the increase in uncertainty is “learning” processes (inventory of emissions from solid fuels
combustion)
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exercise with one step forward”. We estimate the total uncertainty by combining uncertainties
in GHG emissions from different sectors. Our main assumption is that our future knowledge of
uncertainty in activity data and carbon content will be the same as today’s knowledge in
relative terms. So, relative uncertainty is kept constant in both activity data and carbon content
during the investigated period.

To combine uncertainties, the Tier 1 approach described in Chapter 3 of the IPCC
Guidelines (IPCC 2006) is used:

– Uncertainty in the results of multiplication of uncertain values is computed as:

Utotal ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2

1 þ U2
2 þ⋯þ U2

n

q
; ð4Þ

where Utotal is the combined uncertainty in relative terms; Ui is relative uncertainty in
value i.

– Uncertainty in the results of addition and subtraction:

U total ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U1 ⋅ x1ð Þ2 þ U2 ⋅ x2ð Þ2 þ…þ Un ⋅ xn

� �2q
x1 þ x2 þ…þ xnj j ; ð5Þ

where xi is uncertain quantity i.

While implementing Formulas (4) and (5), correlation between years is not considered, as
we estimate the total uncertainty at one point in time.

The GHG inventory is principally the sum of products of emission factors, activity data,
and other estimation parameters. Therefore, Approach 1 can be implemented repeatedly to
estimate the uncertainty of the total inventory. We use Formula (4) to combine uncertainties in
activity data and emission factor, and Formula (5) to combine uncertainties from fossil fuels
consumption.

3 Results and discussion

Fossil fuel consumption is the most precise and the main key source of GHG emissions. The
relative uncertainty of GHG emissions from fossil fuel burning is still considerable (up to 10%)
and influences the results of GHG inventories. The main causes of uncertainty are uncertainties
in emission factors, activity data, and methods used (so far, UNFCC methods are the most
reasonable). Other sectors’ emission sources, such as industrial processes, agriculture, forestry
and other land uses, and waste, cause lower emissions of certain kinds. For some countries, the
uncertainties in GHG emissions in these categories can be less than 25 % or more than 100 %
(NRC2010) due to the insufficient accuracy of input data andmodels. Sectors other than energy
are not key emission sources but might be key uncertainty sources of total uncertainty of GHG
inventories because of the large size of the uncertainties. Our analysis is focused mainly on the
uncertainty of fossil fuel CO2 emissions as it is the key source of GHG emissions in EU
countries and the main object of international climate agreements and emission trading.

3.1 Historical change in uncertainty of CO2 emissions

To date only a few studies have analysed the change in relative uncertainties in GHG emissions
due to structural changes in emissions and “learning” (Hamal 2010; Lesiv 2012). Here, the
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uncertainty analysis has been carried out for the EU-15 as a whole and for individual countries.
The reported uncertainty for the EU-15 covers a short period only, which is not sufficient to
carry out a proper analysis of the change in uncertainty and the factors influencing total
uncertainty in relative terms. During the period 2003–2008 the emission structure did not
change significantly, so the main reason for the change in uncertainty is the so-called “learning
process”. For such a short period it is impossible to find any tendency of the change in
uncertainty.

Further research focuses on the country level because data on uncertainties of CO2

emissions (stationary sources) are available for a longer period for individual countries. The
analysis was carried out for the 15 member states.

One of the biggest GHG emitters is Germany, whose share of total emissions of the EU-15
is about 30 %. The reported uncertainty of CO2 emissions decreased by 13 % during the period
2003–2008. During that period the structure of uncertainty estimates changed several times.
The results of uncertainty analysis are shown in Table 3. The decrease in uncertainty is caused
mainly by increased knowledge of the inventory processes in category “1.A.2. Manufacturing
Industries and Construction”.

Table 4 represents the results of analysis of the change in historical uncertainty of CO2
emissions (stationary sources) without LULUCF for Germany for the period 1990–2008 under
the assumption that the relative uncertainty by category in 1990 is equal to the first estimates of
uncertainty reported in 2003. During this period there were significant structural changes in
fossil fuel consumption: a decrease in use of solid fuels and an increase in use of gaseous fuels.
Mainly the decreasing solid fuels consumption in the category “1.A.2. Manufacturing indus-
tries and construction” reflected the decrease in total uncertainty. The ranges of total uncer-
tainty during 1990–2008 were reduced by approximately 16 % (considering only precision).

The results of the uncertainty analysis for the EU-15 Member States are summarized in
Table 5, except for Luxemburg, which first reported the uncertainty of GHG emissions in

Table 3 The analysis of relative uncertainty of CO2 emissions (stationary sources) without LULUCF for
Germany (2003–2008)

Category Fraction
of CO2

emissions
(stationary), ri

The square
of combined
uncertainty as
a percentage of
CO2 emissions
(stationary), eU 2

i %

Analysis

2003 2008 2003 2008

1.A.1.a Public electricity
and heat production

0.480 0.530 0.064 0.057 Change is caused by structural
change in emissions and “learning”

1.A.1.b Petroleum refining 0.029 0.036 0.000 0.000 Negligible change

1.A.1.c Manufacture of solid fuels 0.031 0.022 0.000 0.000 Negligible change

1.A.2. Manufacturing industries
and construction

0.192 0.158 0.020 0.002 Significant change caused by
“learning” and to a lesser
extent by structural change

1.A.4.a Commercial/institutional 0.073 0.067 0.003 0.003 Negligible change

1.A.4.b Residential 0.182 0.174 0.019 0.020 Negligible change

1.A.4.c Agriculture/forestry/fisheries 0.010 0.011 0.000 0.000 Negligible change

1.A.5. Others 0.003 0.002 0.000 0.000 Negligible change
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2007. Countries are sorted by emitters starting from the largest, that is, Germany, because of its
larger contribution to the total emissions and uncertainty of the EU-15. The last column of
Table 5, “Analysis of the influence of individual factors on the change in uncertainty” includes
the “decrease” or “increase” in uncertainty and the main cause of its change.

Structural change in emissions always occurs and over longer periods it could significantly
influence the total uncertainty in relative terms. The analysis of the historical change in total
uncertainty of CO2 emissions (stationary sources) shows that for individual countries the
structural change in emissions may be the main factor in the uncertainty change while for the
EU-15 total uncertainty varies mainly due to the increased knowledge on inventory processes
(“learning”). For example, for Italy, France, the Netherlands, Belgium, Greece, and Denmark,
changes in uncertainty of CO2 emissions are caused mainly by structural changes in emissions;
in contrast, for Germany, the UK, Austria, Portugal, Finland, and Sweden, they are caused
mainly by “learning” (the change in estimates of emission factors and activity data).

3.2 Future change in uncertainty of total GHG emissions

Based on the above past analysis and considering the EU’s ambitious targets under the
Integrated Energy and Climate Change package, more structural changes in fuel consumption
are expected in the future. The estimation of relative uncertainty in GHG emissions for a
certain point of time in the future would show whether uncertainty in total inventory results
will increase or decrease and would identify the main reason for changes in uncertainty.

Further, the results of uncertainty estimates for the year 2020 are described. As mentioned
in Section 2.2, we assume that our future knowledge of uncertainty in activity data and carbon
content will be the same as today’s knowledge in relative terms. In other words, relative
uncertainty is kept constant during the investigated period. For our calculations we took
emission scenarios developed at the International Institute for Applied Systems Analysis

Table 4 The analysis of relative uncertainty of CO2 emissions (stationary sources) without LULUCF for
Germany (2000–2008)

Category Fraction of
CO2 emissions
(stationary), ri

The square of combined
uncertainty as a part
of CO2 emissions
(stationary), eU2

i %

Analysis

1990 2008 1990 2008

1.A.1.a Public electricity
and heat production

0.405 0.530 0.047 0.057 Change is caused by structural
change in emissions
and “learning”

1.A.1.b Petroleum refining 0.023 0.036 0.000 0.000 Negligible change

1.A.1.c Manufacture of
solid fuels

0.072 0.022 0.002 0.000 Negligible change

1.A.2. Manufacturing industries
and construction

0.238 0.158 0.044 0.002 Significant change caused by
the structural change and
less by “learning”

1.A.4.a Commercial/institutional 0.075 0.067 0.003 0.003 Negligible change

1.A.4.b Residential 0.156 0.174 0.019 0.020 Negligible change

1.A.4.c Agriculture/forestry/
fisheries

0.016 0.011 0.000 0.000 Negligible change

1.A.5. Others 0.014 0.002 0.000 0.000 Negligible change
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(GAINS) because they are based on countries’ emission projections and reflect the results of
implementing new policies and measures and also a baseline scenario. More information on
the above scenarios is available on the GAINS website (IIASA 2010).

The calculations were based on the GAINS emission scenarios for the EU-15 for the year
2020 (see Box 1).

The results of calculation of the total uncertainty are shown in Fig. 2. “C&E package +
NitrDir; OPTV5” is the only scenario that results in a decrease in total uncertainty in relative
terms due to the structural change, because it assumes an appreciable emission reduction in the
agricultural sector, which is characterized by high uncertainties.

Assessments of total uncertainty in relative terms were also made while considering
possible reductions in uncertainties of GHG emissions in fugitive emissions and the agricul-
tural and waste sectors, which could be achieved in the future (2020). We assumed that the
uncertainty of fugitive emissions will decrease to 25 %, that of GHG emissions in agriculture
to 50 %, and that of GHG emissions from waste to 15 %. These assumptions were based on
given possible improvements in uncertainty assessment in a few years for developed countries
(NRC 2010). The results are illustrated in Fig. 3.

Figure 3 shows that reductions in uncertainties in fugitive emissions, agriculture, and waste
can cause a significant decrease in total uncertainty in relative terms. Even in the case of the
“worst” emission scenario, “C&E package; current legislation”, which does not consider
implementation of new policies legislatively, the total uncertainty decreases over time.
Comparison of the results achieved (Figs. 2 and 3) shows that “learning” is a driving factor
of decreases in total uncertainty in relative terms.

The conducted analysis is based on reported uncertainties in relative terms that consider only
precision. The recalculations of total uncertainty considering accuracy increase uncertainty ranges
and reinforce the influence of increased knowledge on inventory processes (Hamal 2010).
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5.64
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C&E package+NitrDir; OPTV5

NEC2007 baseline; current policy

C&E package; EP targets; OPTV5
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C&E package+IMO light; OPTV5

C&E package; least-cost of CLE

C&E package+NoRen; OPTV5

PRIMES_2009

C&E package;current policy

C&E package; current legislation

Fig. 2 Change (%) in total uncertainty of GHG emissions for EU-15 in 2020 under GAINS emissions scenarios
(without LULUCF)
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The estimates of uncertainty in CO2 emissions from stationary sources are the most certain
and can be improved more because not all countries use higher tier inventory methods and
emission factors or other estimation parameters and their associated uncertainties, which
should be estimated from original research including country-specific data.

In terms of global carbon accounting, the sizes of changes in uncertainties are not that large.
However, at country level these changes in uncertainties over time should be considered while
establishing new international agreements on GHG emission targets. Also, decreased uncer-
tainties in GHG emissions will make emissions trading between countries clearer.

Box 1. GAINS emission scenarios

C&E (Climate & Energy) package + NitrDir; OPTV51—an optimized emission scenario that assumes an energy
projection that is consistent with the EU’s “20-20-20” targets; and an agricultural projection that explores the
potential implications of a full implementation of the Nitrates Directive (EC 1991);

NEC2007 baseline; current policy—an emission scenario that employs the PRIMES baseline projection of
November 2007, which illustrates a business-as-usual case without further climate measures, and an agricul-
tural projection that reflects national perspectives on the development of the agricultural sector;

C&E package; EP targets; OPTV5—an optimized emission scenario that assumes an energy projection that is
consistent with the EU’s “20-20-20” targets, and an agricultural projection that reflects national perspectives
on the development of the agricultural sector; it meets more stringent environmental objectives in 2020, as
requested by the European Parliament;

C&E package; OPTV5—an optimized emission scenario that assumes an energy projection that is consistent
with the EU’s “20-20-20” targets, and an agricultural projection that reflects national perspectives on the
development of the agricultural sector;

Fig. 3 Reduction (%) in total uncertainty of GHG emissions for the EU-15 in 2020 under GAINS emissions
scenarios considering possible increases in knowledge in sectors with high uncertainty (without LULUCF)

1 OPTV5 – optimized emission scenario
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C&E package; MRRV52 is based on the activity projections of the EU’s “20-20-20” targets and estimates the
potential for further emission reductions that are achievable through a full application of the most advanced
technical (add-on) emission control measures that are on the market today;

C&E package + PrimPM2.5; OPTV5—an optimized emission scenario that assumes an energy projection that is
consistent with the EU’s “20-20-20” targets and an agricultural projection that reflects national perspectives on
the development of the agricultural sector and that health impacts of particulate matter are solely caused by
primary emissions of PM2.5; that is, that secondary aerosols would not cause negative health effects;

C&E package + IMO light; OPTV5—an optimized emission scenario that assumes an energy projection that is
consistent with the EU’s “20-20-20” targets and an agricultural projection that reflects national perspectives on
the development of the agricultural sector and the new limits for emissions that were agreed at a meeting of the
International Maritime Organisation (IMO)Marine Environment Protection Committee (MEPC) in April 2008;

C&E package; least-cost of CLE presents the least-cost implementation of the emission levels of the current
policy case of the EU’s “20-20-20” strategy;

C&E package + NoRen; OPTV5—an optimized emission scenario that assumes an energy projection that is
consistent with the EU’s “20-20-20” targets (the 20 % renewable target is met in this scenario within each
country without international trading) and an agricultural projection that reflects national perspectives on the
development of the agricultural sector;

PRIMES_2009—PRIMES baseline scenario of the year 2009;

C&E package; current policy assumes baseline for NECD plus the EU’s “20-20-20” strategy;

C&E package; current legislation2014the “current legislation” projection for the Climate and Energy Package.

4 Conclusions

Total uncertainty in relative terms changes over time due to structural changes in GHG
emissions and the increased knowledge of inventory processes or so-called “learning”.
Analysis of the historical change in uncertainty has been carried out for the EU-15 as well
as for individual countries. The achieved results confirm that the uncertainty of CO2 emissions
of the EU-15 has changed historically mainly due to increased knowledge of GHG inventory
processes. In contrast, for some individual countries (Italy, France, Netherlands, Belgium,
Greece, Denmark) total uncertainty of CO2 emissions (excluding LULUCF) changed in the
past only due to structural changes in emissions. Germany, as the biggest European GHG
emitter, reported a considerable decrease in uncertainty caused by “learning”. The
recalculations of total uncertainty considering accuracy lessen the influence of the structural
change in emissions.

The calculations of total uncertainty in relative terms considering today’s knowledge of
inventory processes have been based on the GAINS emission scenarios until 2020. The
estimates of total uncertainty that assume constant relative uncertainty during the investigated
period show the increase in uncertainty for most of the emission scenarios except the scenario
“C&E package + NitrDir; OPTV5”, which is consistent with the EU’s “20-20-20” targets and
an agricultural projection that explores the potential implications of a full implementation of
the Nitrates Directive. Such an increase in total uncertainty is caused by the increased
proportion of renewables, which have less certain emission factors and activity data, and
decreased proportion of emission categories (agriculture, waste, etc.) in energy consumption.
These changes in uncertainty due to structural change in emissions are negligible, though,
while the estimates of total uncertainty of GHG emissions that assume a possible decrease in
uncertainty in future due to the “learning” based on the GAINS emissions scenarios show a
considerable decrease in total uncertainty. Thus improving our knowledge of fugitive

2 MRRV5—maximum emissions reductions in the RAINS model
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emissions and the agricultural and waste sectors could cause significant reductions in total
GHG emissions uncertainties.

This study underlines that “learning” is the main reason for the change in uncertainty in the
last few decades and could be a very important factor in uncertainty reduction in the near
future. Scientists and experts should put more effort into increasing knowledge of the
inventory processes, especially in sectors (agriculture, waste, etc.) which are expected to be
the main drivers of uncertainties in GHG emissions.
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Abstract A direct comparison among highly uncertain inventories of emissions is inadequate
and may lead to paradoxes. This issue is of particular importance in the case of greenhouse
gases. This paper reviews the methods for the comparison of uncertain inventories in the
context of compliance checking. The problem is treated as a comparison of uncertain alterna-
tives. It provides a categorization and ranking of the inventories which can induce compliance
checking conditions. Two groups of techniques to compare uncertain estimates are considered
in the paper: probabilistic and fuzzy approaches. They show certain similarities which are
revealed and stressed throughout the paper. The group of methods most suitable for the
compliance purpose is distinguished. They introduce new conditions for fulfilling compliance,
depending on inventory uncertainty. These new conditions considerably change the present
approach, where only the reported values of inventories are accounted for.

1 Introduction

A handful of solutions have been proposed to cope with the problem of emission commitment
evaluation for uncertain inventories, see Jonas and Nilsson (2007). Numerous propositions
have pointed to methodological incompetence in using the reported (point) values in clearing
emission targets. For many environmental problems such as for greenhouse gases, only highly
imprecise values of emission are available, see e.g. Jonas and Nilsson (2007); Jonas et al.
(2010b); Lieberman et al. (2007); White et al. (2011). Apart from a high uncertainty level,
uncertainty distributions are often asymmetric, as they reflect non-negative measurements of
physical quantities. For an example, see the results in Ramirez et al. (2006) or Winiwarter and
Rypdal (2001).
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According to the IPCCGood Practice Guidelines (IPCC 1996), a report should be “consistent,
comparable and transparent”. Decisions on the fulfilment of obligations should be fair for all
parties, which means that it should be transparent why some inventories comply with commit-
ments while others do not. Since greenhouse gases inventories are highly uncertain, making
decisions on compliance or comparison of inventories based only on the reported values
(estimated size) may contradict any conclusions inferred from considering uncertainty distribu-
tions such as uncertainty range (e.g. standard deviation) and the shape of uncertainty distribution
(e.g. skewness). We argue that this knowledge should be fully utilized to make decisions on
compliance and to infer a comparison of emissions.

Let us consider two uncertain emission inventories, A and B of Fig. 1a–b, which
will help us to illustrate the techniques discussed. For the sake of simplicity, let us
assume that both involved parties have the same emission limits, also called a target,
for instance, an allocated number of emission permits. The dominant values of the
uncertainty distribution densities μ(x) reflect the reported inventories of both parties,
which are very close. If uncertainty is ignored, party A would be considered compli-
ant (fulfilling the limit), while party B would not. However, confidence in the inventory
value of party B is high, while that of A is low, raising the question which party is more
credible? Should party A be considered compliant, while party B should not? Certainly, to
compare parties with different scale of emissions, the inventories have to be normalized. For
example, the value d=(x−K) /x, with K denoting the party’s emission limit, may be a suitable
normalization; then the normalized limit is equal to zero. Henceforth, the term inventory will
always refer to a normalized inventory.

Fig. 1 Illustration for statistical approaches: a Comparison of means and variances; b Calculation of critical
values; c Illustration of compliance in the undershooting approach; d Stochastic dominance criterion for
comparison of inventories A and B; e The indecision interval
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In this paper we look at the problem of fulfillment as one of the comparison and ordering of
(normalized) inventories. When inventories can be ordered in a transparent way, then we can
point to the threshold value, below which the inventories are compliant, and above which they
are not. With the present method inventories care actually ordered according to the reported
values. Those which are below the limit are considered compliant, while those above are not.
As mentioned before, the ordering of uncertain inventories simply according to their reported
values is dubious, since their uncertainty should also be taken into account. The idea of this
paper is to review the methods for comparison of uncertain values, so that uncertain invento-
ries can be credibly ordered. This will introduce transparency into the compliance mechanism.
Henceforth, a higher ranked inventory A is considered better in respect to (i.r.t.) the target than
inventory B, and is denoted by B≺A.

Verification of emission reduction in a single country may also face the problem of
uncertainty. Let us consider the case of greenhouse gases, when a reduction of emissions at
the end of the commitment period is required. This is expressed as a specified rate ρ of the real
emissions in the previous (basic) year. Since the real emissions are not known, only an
uncertain inventory in the compliance year, xc, can be compared with a reduced uncertain
inventory in the basic year, ρxb. From this, it has to be decided whether the former emissions
are lower than the latter. In other words, these two inventories should be ranked in as
convincing a manner as possible. This also motivated our search for adequate methods to
compare uncertain values. But another view is also possible in this case. Consider a variable
defined as d ¼ xc

xb
− ρ or the so called trend uncertainty d ¼ xb−xc

xb
− 1−ρð Þ . These are

normalized variables, which can be used for comparison among countries with different scales
of emissions, and even with different reduction rates ρ. For them, the limit for comparison
equals zero. Consequently, countries can be ordered appropriately according to their values of
d and accounting for uncertainty. With this ordering, compliance conditions can be formulated.
Note that for the Monte Carlo simulation, which is presently the basic tool for assessment of
uncertainty distributions, there is no great difference as to whether a distribution of variable d
instead of variable x is to be generated.

Nevertheless, it should be stressed that ranking is only supplementary to the compliance
checking rule that is adopted. It can help to justify why some inventories are considered
compliant, while others are not. Ranking of inventories may facilitate avoiding paradoxical
situations, when decisions on compliance or noncompliance are at variance with common
sense.

Throughout the paper it is assumed that the distribution of inventory uncertainty is
available. This would be the ideal case. Unfortunately, for national GHG inventories it is
largely impossible to estimate distributions in the statistical sense, since inventories cannot
be repeated in great numbers with different values of unsure parameters. The distributions
can be, however, assessed by performing Monte Carlo calculations, which provide good
insight to the distribution of national inventories. Some countries (e.g. Austria, the
Netherlands) have undertaken this effort (Winiwarter and Rypdal 2001; Ramirez et al.
2006). Others report either uncertainty intervals or simply standard deviations. Although
the probability-rooted methods presented in Section 2 mostly require knowledge of probability
distribution, in the fuzzy-set-rooted methods, discussed in Section 3, the distribution of
uncertainty may be shaped more flexibly, including interval information or, for instance, the
use of expert knowledge. The assessment of uncertainty distribution and the accuracy of its
estimation is a problem in itself. It requires a separate discussion, which, however, is beyond the
scope of the present paper.
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2 Probabilistic approaches

2.1 Introductory remarks

Although the inventories do not fully comply with randomness assumptions, treating an
inventory as a random value with probabilistic distribution seems to be self-imposing.

The comparison of uncertain random values has been already considered in various
fields. The problem of selection from high-risk projects has had a long history in areas
such as finance, R&D projects, or IT projects (Graves and Ringuest 2009). Several
methods have been proposed to compare such projects. The methods can be further
divided into groups. All the methods presented below are adapted to the problem of
emission inventories. Most of them require knowledge of the inventory probability
distribution.

2.2 Statistical moments

Mean value and variance The most elementary technique is based on the mean value and
variance (MV). Obviously, the smaller the mean value and variance, the better the
inventory. This approach is illustrated in Fig. 1a. Although the reported value of inventory
A is smaller than that of B, its mean value is greater than the mean value of B. The
same is true for the standard deviations. Even this simple criterion shows that an
inventory of party B should be considered better i.r.t. the target than that of party A.
This is contradictory to the result based on reported values, which disregard uncertainty.
According to the latter approach, the compliance mechanism would be related to a
comparison of mean values, and not reported values. However, a single mean value is
not enough for ranking purposes.

Semivariance Comparison of inventories using two indices, mean value and standard devia-
tion, may lead to contradictory results. A notion of the semivariance (MSV) should rather be
applied, following the definition

s2S ¼
Z ∞

K

x−Kð Þ2μ xð Þdx ;

where K is a chosen value and μ(x) is the distribution density function of an inventory. The
smaller the value of sS

2, the higher the inventory is ranked. In our case, K can be conveniently
chosen as a given target, and this value is used in the example of Fig. 1a, as well as in the result
survey of Table S1 in the supplementary material. In the considered example it holds that sSA

2 >
sSB
2 , thus, inventory B is better i.r.t. the target than A. According to the criterion, an inventory
satisfies the target if the semivariance is smaller than a preselected value.

2.3 Critical values

Critical probability A large group of techniques use the term critical probability (CP), a notion
first introduced in 1952 (Roy 1952). It is defined as the probability of surpassing target K

crp ¼
Z

K

∞

μ xð Þdx :
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A smaller value of crp indicates a better inventory i.r.t. the target. As seen in Fig. 1b, again, an
inventory of party B is evaluated as being better. Determining compliance with a limit is based on
calculation of the critical probability, which should not be greater than any prescribed value.

Risk In other related methods, as the Baumol’s risk measure and the value at risk (VaR), a
critical value xcrit is calculated for a settled probability α, so that the probability that emission
value will be higher than xcrit is α. Without going into details, an inventory is better i.r.t. the
target whenever xcrit is smaller. In the example from Fig. 1b, with fixed probability α=0.1,
inventory B is indicated as the better one.

Undershooting A technique similar in spirit has been proposed to ensure reliable compliance.
It states that only a small enough α-th part of an inventory distribution may lie above target K.
This approach is called undershooting, see Gillenwater et al. 2007; Godal et al. 2003; Nahorski
and Horabik 2010; Nahorski et al. 2003, and it is illustrated in Fig. 1c. Note, that when used for
ordering inventories, the idea becomes equivalent to the CP technique.

2.4 Stochastic dominance

Stochastic dominance In the stochastic dominance technique inventory B is better i.r.t. the
target than A if their cumulative probability functions (cpf s) satisfy FA(x)≤FB(x) for all x,
and the condition is strict for at least one x. It is obvious that not all inventories can be
decisively compared this way, see cpf s of our exemplary inventories A and B depicted in
Fig. 1d. Although cpf of party B is greater for most values of x, it is lower than cpf of party A for
a small range of low values. This potential lack of an unequivocal answer is a serious drawback
of the method. However, some modifications have been proposed to extend its usability.

Almost stochastic dominance In the almost stochastic dominance (ASD)1 inventory B is better
i.r.t. the target than A, if the area between both cpf s for FB(x)<FA(x) is a small enough (ε times
smaller, usually with 0<ε<0.5) part of the whole area between pdf s, ∫x|FB(x)−FA(x)|dx. It can
be seen by inspection of Fig. 1d that this condition is satisfied in our example of Fig. 1a–b.
Thus, this technique also indicates inventory B better i.r.t. the target.

A simplified comparison of inventories would confine itself to checking the values of cpf s
at x=K. This would be equivalent to a variant of critical probability approach. Thus, the
analysis of fulfilment of the limit in the stochastic dominance techniques could be reduced to
checking if the value of the inventory cpf at the limit is sufficiently high.

2.5 Two-sided comparison of inventories

The approaches discussed guarantee a proper ordering when the reported value is smaller or
equal to the limit K (see supplementary material). To properly order the inventories for K < bx ,
it is useful to consider the probability

β ¼
Z K

−∞
μ xð Þdx:

1 This is the first order ASD. For the second order ASD see Graves and Ringuest (2009).
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The smaller the value of β is, the more certain the inventory is likely to be noncompliant. To
make significant decisions, we would like to have a small value of α to help decide that the
inventory is compliant, and a small value of β to help decide that it is noncompliant. Having
fixed α and β, we can calculate the corresponding critical values xcrit

u and xcrit
l , as illustrated in

Fig. 1e. Thus, there will be an indecision interval for K ∈ (xcrit
l ,xcrit

u ) where there is uncertainty
as to whether the inventory fulfils the limit or not. This can be considered as a generalization of
the undershooting method.

The question arises what can be done when the limit falls into the indecision interval. It is
actually fair to say that no decision can be taken confidently. One of the answers proposed in Jonas
et al. (1999) and Gusti and Jęda (2002) was to wait until the inventory subsequently crosses an
indecision boundary in the consequent years. A roughmethod to estimate when this may take place
was also designed, called the verification time. It is based on a linear or quadratic prognosis of
future emission trajectory combined for compliance with an obligatory undershooting of the
indecision boundary, so that the national emission reductions and limitations become detectable.

3 Fuzzy set approaches

3.1 Introduction

Fuzzy set and possibilistic models of uncertainty can be considered as a competitive approach
to the probabilistic one, described above. In the fuzzy set theory, comparison and ranking of
fuzzy (or inaccurate) values is a problem to which different solutions have been proposed.
Ignoring conceptual differences, there are sufficient similarities to warrant further investigation
into how the possibilistic ranking methods hold up against the other methods. In the following
subsections, we will list four conceptually different groups of methods that are used to
compare fuzzy numbers. Some of the methods resemble those from the probabilistic ap-
proaches; others use different paradigms. The methods illustrate the fact that various ap-
proaches can be used to tackle the comparison problem.

A short introduction to the fuzzy sets and discussion of conceptual differences between the
probabilistic and fuzzy set approaches can be found in the supplementary material.

3.2 On the underlying assumptions

Most of the fuzzy comparison and ranking methods have been developed for fuzzy sets over
the domain [0,1]. The main reason for this is that there are some specific advantages in
developing ranking methods (e.g. integrals over the domain cannot yield a result greater than
1). For the application of the methods in the comparison and ranking of different inventories,
the methods could be modified to suit a different domain. This is possible for all the methods,
but may complicate the formulas somewhat. To keep the formulas simple and to remain true to
the original definitions, this option was disregarded. An alternative option would be to rescale
the domain of the inventories to the interval [0,1] to allow for a direct application of the
methods. If the supports of the fuzzy number is finite, as we assume here, and in the original
support x∈[l,r], the new variable, spread in [0,1], is defined as z=(x−l)/(r−l).

The ranking methods below put forward a comparison of at least two fuzzy numbers. Some
authors have chosen to rank from lowest to highest; others rank from highest to lowest. The
aim of this article is to present different methods and show how difficult cases can be
distinguished differently. Although these are minor details that can easily be overcome this
should not detract anything from the message.
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Not all the techniques proposed for comparison of fuzzy sets are mentioned below. Some of
those not mentioned can be found in a review paper by Bortolan and Degani (1985). A more
recent technique can be found in Tran and Duckstein (2002).

3.3 An analogue to moments

Yager F1 In Yager (1981), three different ranking methods are presented. They are pure
ranking methods in the sense that a number is derived for every element. This number is
independent of the other elements in the set.

Aweight function g is introduced to add weights to the fuzzy set A. Basically, this allows us
to specify which values are more important, based on their possibility. Common weight
functions are either g(z)=1 (reflecting that all possible values are equally important) or g(z)=
z (indicating that the higher the possibility of a value, the more important it is and the more it
will contribute to determine the rank).

The first ranking function is defined as follows:

F1 Að Þ ¼

Z 1

0
g zð ÞμA zð ÞdzZ 1

0
μA zð Þdz

:

If the weight function g(z)=z is used, then F1 represents the mean value of the membership
function, called usually the center of gravity of the fuzzy set. This is illustrated in Fig. 2a. Note
that if the weight function g(z)=1 is used; no ranking conclusions can be drawn: F1 would
result in 1 for every fuzzy set.

When g(z)=z, this technique can be compared with the mean value technique in the
probabilistic approach. The ranking function may be defined in a more general way, and
one option could be to take g(z)=[z−F1(A)|g(z)=1]2, as analogous to the variance. An analogue
of semivariance could also be defined here, which shows the similarity of this fuzzy approach
technique with the probabilistic one.

3.4 Analogues to critical values

Nahorski et al A strict analogue to a critical value technique in the probabilistic approach has
been proposed in Nahorski et al. (2003); Nahorski et al. (2007); Nahorski and Horabik (2010).
To get an analogue to probability, which defines the critical value, the critical area is
normalized by dividing it by the area under the membership function, as in Fig. 1c.

Adamo On the other hand, Adamo (1980) proposed to consider points fulfilling μA(z)=α,
0≤α≤1 and choose the highest value of z as a ranking criterion. In other words, the criterion
value is the rightmost value of the α-cut of the fuzzy number A. The critical value now
depends on the choice of α, but in this case it has a clear fuzzy set interpretation connected
with the α-cut. This idea can be compared with the one by Nahorski et al., where the critical
area has a more probabilistic origin, while that of Adamo has more the flavour of a fuzzy set,
see Fig. 2d. Both techniques can be related by mathematical expressions for a fixed member-
ship function.

These techniques can be simply used for the derivation of criterions for checking the
fulfilment of the limit, analogously to those which stem from similar probabilistic approaches.
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Yager F2 The second ranking function introduced by Yager (1981) compares the given fuzzy
set A to the linear fuzzy set B, defined by μB(z)=z.

The second ranking function is then defined as follows:

F2 Að Þ ¼ maxz∈S min z;μA zð Þð Þ:
Here, S represents the support of the fuzzy set A; in our case assumed to be the interval

[0,1]. Graphically, this yields an intersection point between the linear fuzzy set (μB(z)=z) and
the given fuzzy set A. This is illustrated in Fig. 2b.

This ranking function has a simple interpretation. The fuzzy set with the membership
function μB(z)=z may be interpreted as representing a variable “high”. The membership
function min(z,μA(z)) represents a variable, which is a conjunction of A and B, i.e. the points
which belong both to the variable “high” and A. In other words, it represents a distribution of
the possibility that A is “high”. Its maximal point satisfies these two requirements in the “best”
way.

The membership function of the variable “high” may be shaped in a different way. Jain
(1976) proposed a more general set of functions μB(z)=(z/zmax)

k,k>0.2 In this case, the result
of a comparison of fuzzy numbers may largely depend on the choice of k, though no clear
criteria exist for which value of k should be chosen.

Apart from ranking the fuzzy numbers, the critical values could be used to check on the
fulfilment of obligations, analogously to the stochastic approach. The simplest approach would
be to directly compare F2 with K. However, the constructions proposed here are of a
subjective character and remain difficult to interpret physically, and therefore their use may
be limited.

2 However, in this section the assumption is that zmax=1.

Fig. 2 Illustration for fuzzy set approaches. Ranking functions proposed by Yager: a F1 function; b F2 function;
c F3 function; d Determination of the critical value zcrit in the Nahorski et al. (calculation of the η-th part of the
distribution area) and Adamo (calculation of the α-cut) techniques; e Calculation of the indices for the crisp limits
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Yager F3 The third ranking function defined by Yager (1981) is more complex to explain
through the use of formulae, although it is simple to interpret geometrically. It is defined as

F3 Að Þ ¼
Z αmax

0
m Aαð Þdα :

with Aα the α-cuts of A, αmax is the highest occurring possibility in the fuzzy set A,3 and m is
the middle point of the α-cut.

The formula is relatively easy to grasp graphically: the index is the surface area to the left of
the line that runs exactly along the middle of the fuzzy number. For triangular fuzzy numbers,
this connects the top of the fuzzy number (i.e. where the possibility is one) with the middle of
the support. This is represented by the shaded area in Fig. 2c.

This ranking index can be directly used for checking the satisfaction of the limit. For this
we ought to remain aware that F3(A) is the mean value of the functionm(Aα), in which α is the
argument. This is because 0≤α≤1, so for the triangular membership functions F3(A)=
∫01m(Aα)dα=m(A0.5). Thus, in this case F3(A) is equal to the middle value of the 0.5-cut of
the fuzzy number A, see Fig. 2c. For other membership functions the integral will be equal to
the middle value of some α-cut, possibly different from 0.5. Clearly, this index is closely
related with an α-cut, where the appropriate α is determined by the shape of the membership
function. It makes this approach slightly similar to the Adamo method, with the critical value
determined in the middle of the α-cut instead of at the right end. This interpretation encouraged
us to classify this technique within the critical values group.

Examples with a comparison of the Yager ranking methods can be found in the supplementary
material.

3.5 Fuzzy dominance

3.5.1 Possibility and necessity measures

In spite of its similar name, the fuzzy dominance techniques proposed to date in the literature,
differ completely in spirit from the stochastic dominance ones that are presented in subsection
2.4. It is important to remember here that we use the normalized fuzzy numbers on the domain
rescaled to the interval [0,1]. The results of this subsection may be not correct if the
normalization or rescaling is not conducted beforehand.

To compare fuzzy numbers using the fuzzy dominance approach, possibility and necessity
measures can be used, as introduced by Dubois and Prade (1983), see also Hryniewicz and
Nahorski (2008). A normalized fuzzy set with a membership function μ(z) induces a possibility
distribution π(z)=μ(z) on the interval [0,1]. For simplicity, we refer to possibility distribution as
μ(z). Given a possibility distribution, the possibility measure of a subset Z∈U=[0,1] is defined as

Poss Zð Þ ¼ supz∈Zμ zð Þ:
It can be interpreted as a degree of possibility that an element is located in set Z, see an

interpretation in Fig. 3a. Let us draw attention to the fact that using a characteristic function
χZ(z) of the set Z, the possibility measure can be equivalently defined as

Poss Zð Þ ¼ supz∈ 0;1½ �min μ zð Þ;χZ zð Þf g:

3 For the normalized sets, as assumed in this paper, αmax=1.
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Note that when Z=[r,1], then the above index can be interpreted as a measure that element x
is not smaller than r, i.e. r≤x.

Comparing these notions to the probabilistic ones, the possibility distribution corresponds
to the probabilistic distribution, and the possibility measure Poss(Z) corresponds to the
probability of the subset Z.

However, in the possibility theory an additional notion is introduced. Called the necessity
measure, it is defined as

Nec Zð Þ ¼ 1−Poss Z
� �

;

where Z is the complementary set of Z in [0,1], see Fig. 3b. It can be interpreted as the degree
that an element is necessarily located in set Z. Similarly as in the possibility case, an equivalent
definition may be

Nec Zð Þ ¼ 1−supz∈ 0;1½ �min μ zð Þ;χ
Z

	 

¼ inf z∈ 0;1½ �max 1−μ zð Þ;χZ zð Þf g:

It can be observed in Fig. 3a and b that a simple property holds

Nec Zð Þ≤Poss Zð Þ;

Fig. 3 Illustration for a crisp set Z: a possibility; b necessity measures; and for a fuzzy set Z: c possibility; d
necessity measures
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which may be interpreted that the measures give the lower and upper bounds on uncertainty
connected with the localization of an element in set Z. The lower one, (necessity), is the degree
in the range [0,1] of our conviction that the point is in set Z. The higher one, (possibility), is the
degree of our supposition.

Now, taking a fuzzy set Z instead of a crisp one, the characteristic function
χZ(z) is replaced by the membership function μZ(z), providing the following
definitions

Poss Zð Þ ¼ supz∈ 0;1½ �min μ zð Þ;μZ zð Þf g;
Nec Zð Þ ¼ 1− sup

z∈ 0;1½ �
min μ zð Þ;μZ

	 

¼ inf

z∈ 0;1½ �
max 1−μ zð Þ;μZ zð Þf g

see Fig. 3c and d. For further use, μZ zð Þ ¼ 1−μZ zð Þ is introduced as the member-

ship function of the complementary set of Z.

3.5.2 Possibility of dominance indices

Having introduced the above notions, we can pass to a definition of fuzzy dominance
indices. To calculate the possibility and necessity indices, the membership functions
are analyzed on a two-dimensional plane (z,y), and more specifically, either on the
upper right or the bottom left half of the square [0,1]×[0,1], compare with Fig. 4a.
This is analogous to consideration of two-dimensional probability density function for
independent variables. To compare two fuzzy numbers, one of them, say B, is treated
as a reference. Its membership function plays a role of a reference possibility
distribution.

Fig. 4 Calculation of: a the PD index on the (z,y) plane; b the PD index on a line; c the PSD index; d theNSD index
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Now we introduce the notion of the dominance of a fuzzy set A over B, denoted below as
A≽B, and the strict dominance, denoted as A≻B.

The possibility of dominance (PD) index of a fuzzy set A over a fuzzy set B is defined as

The index PD is a measure of possibility that the fuzzy numbers A is greater
than B, or that the set A dominates the set B. This index was first proposed by
Baas and Kwakernaak (1977). A probabilistic analogue of this index would be the
probability that A≥B. This index has to be analysed on the plane (z,y) in the upper
right half of the square [0,1]× [0,1], see Fig. 4a, where the projection of the
function min{μA(z),μB(y)} on the square is drawn with the membership functions
μA(z) and μB(y) drawn on the axes. The highest value of this function (equal to 1)
is located in the area y>z (at the point marked with ●), while the value PD<1 is
located on the boundary of the upper half of the square, at the point marked with
○. It is now easy to notice that the value PD can be calculated as presented in
Fig. 4b.

Analysing the way the value PD is calculated, with notation from Fig. 4b, it is
seen that

where plB is the left end of the support of B, and plA the right end of the support of A, see
Figure S2 in the supplementary material for illustration of pl and pr. The possibility of
dominance (PD) equals 0, if any point of the support of A is smaller than any point of the
support of B. When the supports overlap, PD>0. If the core of A is greater or equal to the core
of B, then PD=1.

The possibility of strict dominance (PSD) index for a fuzzy set A over a fuzzy set B is
defined as

PSD ¼ Poss A≻Bð Þ ¼ supzinf y;y≥ zmin μA zð Þ; 1−μB yð Þf g;

where μA(z) and μB(y) are the membership functions of A and B, respectively.
Analysis of the function on the two dimensional square results in the situation depicted in

Fig. 4c. Now we have

Poss A≻Bð Þ ¼ 1 if mA≥mB þ prB
Poss A≻Bð Þ ¼ 0 if mA þ prB≥mB

:

where prB is the right end of the support of B.
The possibility of strict dominance index is therefore equal to 0, when the support

of A is situated to the left of the core of B. It is positive in the opposite case. It
equals 1, if the support of B is situated to the left of the core of A. The membership
function of A has to be shifted further to the right to achieve the same value of the
index as in the possibility of dominance case.
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3.5.3 Necessity of dominance indices

The necessity of dominance (ND) index of a fuzzy set A over a fuzzy set B is defined as

As with previous analyses, calculation of this index reduces to analysis of the situation
presented in Fig. 4c. It yields

Thus, the necessity of dominance index equals 0 when the core of A is to the left of the
support of B. It is positive in the opposite case. It equals 1, if the support of A is situated to the
right of the core of B.

The necessity of strict dominance (NSD) index of a fuzzy set A over a fuzzy set B
is defined as

This index is the opposite of the measure of possibility that set B dominates set A. It was
first proposed by Watson et al. (1979). The analysis of the index reduces to analysis of the
situation presented in Fig. 4d. There is

Nec A≻Bð Þ ¼ 1 if mA−plA≥mB þ prB
Nec A≻Bð Þ ¼ 0 if mA≤mB:

An example, with a comparison of the above methods, can be found in the supplementary
material.

3.5.4 Checking fulfilment of a limit

Next, the question is asked as to whether the techniques described can be used for limit
verification. To this end, the limit can be interpreted as a point value, which is a fuzzy variable
with a membership function

μB zð Þ ¼ 1 if z ¼ L̃
0 if z ≠ L̃

;

	

where eL is the rescaled value of the limit L. In this situation PD=PSD and ND=NSD, so the
analysis can be confined only to the necessity N and possibility P indices.

In Fig. 2e two cases are depicted: the limit B1 higher than mA, and the limit B2 smaller than
mA. In the former case P>0 and N=0. In the latter P=1 and N>0. It becomes apparent that the
necessity index is equivalent to the Adamo method with N=1−α. The possibility index gives
information on the degree of a failure to achieve the limit (recall that here the limit is achieved
when A is greater than ), which could be used for determining noncompliant inventories.
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Thus, we can formulate the following rules. The inventory is considered compliant if the
necessity index is high enough. The inventory is considered noncompliant if the possibility
index is small enough. This leads to the situation, which is fully analogous to the indecision
interval in the probabilistic approach, as presented in Fig. 1e. Fixing the minimal necessity N
and maximal possibility P indices brings us to the notion of an indecision interval, where the
necessity index is too small and the possibility index is too high.

The application of the Dubois and Prade method provides useful information with respect
to the compliance evaluation. Nevertheless, analysis of membership functions in three dimen-
sions is rather cumbersome. Simple interpretations on the plane, as in Fig. 4, can help in the
analysis. Necessity indices give practically the same information as in the methods of Adamo
and Nahorski et al. The possibility indices can be useful for quantifying noncompliance.

4 Conclusions

The paper presents the methods for the comparison of uncertain emission inventories, and
discusses their usefulness for evaluation of emission reduction limits. The review shows a
variety of approaches and techniques. It clearly demonstrates that the comparison of the
reported inventories with no account of uncertainty distributions leads to paradoxes,
and it is not well scientifically grounded. Some of the approaches, like the under-
shooting method, have been proposed earlier (Godal et al. 2003; Nahorski et al. 2003;
Jonas et al. 2010a), and adapted for emission trading, see additionally Nahorski et al.
(2007); Nahorski and Horabik (2010, 2011). Any use of the techniques outlined in the paper
takes uncertainty into account, see Table 1, and thus inevitably necessitates changes to the
presently used rules of compliance checking. To date, the verification mechanisms depend only
on reported inventories. They give a decisive answer, which may, however, be difficult to
support when uncertainty of the inventories is considered, as shown in Fig. 1. In terms of
probability or other measures, like possibility, only weaker statements on compliance can be
formulated; for example, the probability of not fulfilling the limit. This means that either
conservative decisions have to be taken or indecision situations may occur. However, these
lack any controversy and are thus transparent, since the inventories can be compared and
ordered. Ignoring uncertainty is more hazardous for asymmetric distributions, which may occur
in many national inventories. It is also of great importance for comparisons of emission
uncertainty distributions representing sectors of different activities, such as energy and
agriculture.

Within the fuzzy approach, some problems arise with the representation of the incomplete
information on the inventories uncertainty in the form of membership functions. However, the
membership functions can be constructed and interpreted as approximations to the inventory
uncertainty, formulated on the basis of the best available knowledge. The present state of the
development in this area allows only weak statements on comparison to be formulated,
providing only some indices of possibility or necessity for instance. For decision making,
one can set critical values on these indices, however, it may be more difficult than for the
stochastic case due to smaller intuition on the indices interpretation.

In spite of basic conceptual differences between the probabilistic and fuzzy approaches, many
techniques are surprisingly similar. Among them, the critical values and fuzzy dominance
methods provide similar techniques for checking compliance, with small technical differences
in terminology and decision parameters. This paper has not been intended to elaborate legislation
propositions for compliance rules, due in part to restrictions on its length. Examples of analytical
conditions for checking compliance can be found in the literature mentioned.
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Possible approximations of the uncertainty distributions in the fuzzy approach give rise to
the question of the impact of approximations on the final compliance condition. This issue is
also valid in the stochastic approach, since the required probability characteristics are not easy
to be gathered by simple statistical treatment to get accurate estimates. It may be argued that
this second-order uncertainty impacts the results to a lesser extent than the first-order uncer-
tainty of the inventory itself. It seems that this question can be solved using the idea underlying
the methods described in the present paper: the worse the data are, the lower the reported
inventory should be to achieve a sufficient credibility. Thorough investigation of this problem
is left for further studies.
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Table 1 Comparison of methods discussed in the paper

Group of methods Required information Characteristics and usefulness of the methods

Based on distribution
moments

Means and variances The methods use simple information but their application
is rather inconvenient. Two indicators can contradict
each other. For asymmetric distributions, mean values
are different from the reported (dominant) values.
Application of semivariance requires information on
the uncertainty distribution.

Based on critical values Probability or possibility
mass of the inventory
uncertainty above a
specific value

This group of methods seems to be particularly convenient
for the compliance problem; some variants of these
methods have been already proposed independently in
several papers. The methods need more advanced
information on the uncertainty distribution, which
requires more sophisticated methods for its acquisition.
Moreover, a good understanding of the applied inference
techniques is required for decision making, as the values
used in the compliance rules differ from the reported
inventories. This may be questioned on the ground of
deterministic common-sense arguments.

Based on dominance Full distribution of
inventory uncertainty

Although the same notion of dominance is used in both
stochastic and fuzzy approaches, the methods are very
different. The stochastic methods are not always decisive
and rather difficult for practical applications. The fuzzy
methods use little known notions of possibility and
necessity indices, and require understanding of the
sophisticated underlying theory. The geometrical
calculation of the indices proposed in the present paper
may make the method easier to grasp. As shown,
comparison of an inventory against an exact (crisp) limit
allows for its reduction to a variant of methods from the
critical values group.
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Abstract The high quality inventory is an important step to greenhouse gas emission
mitigation. The inventory quality is estimated by means of the uncertainty analysis. The level
of uncertainty depends upon the reliability of activity data and the parameters used. An attempt
has been made to improve the accuracy of the estimates through a shift from production-based
method (IPCC Tier 1) (IPCC 2000) to enhanced combination of production-based and mass
balance methods (IPCC Tier 2) (IPCC 2006) in the estimation of emissions from operations
with oil that are key in the national greenhouse gas inventory of the Russian Federation. The
IPCC Tier 2 (IPCC 2006) was adapted for the national conditions. The greenhouse gas
emissions were calculated for 1990 to 2009 with the use of both methods. The quantitative
uncertainty assessment of the calculations was performed, and the outcomes were compared. The
comparison showed that the estimates made with the use of higher tier method resulted in higher
accuracy and lower uncertainties (26 % respectively compared to previously derived 54 %).

1 Introduction

According to the IPCC Fourth Assessment Report, the increased concentration of human-
induced greenhouse gases in the atmosphere caused dramatic temperature raise and the global
climate change (IPCC 2007). China, USA, European Union (the 27 countries altogether),
Russian Federation and India are the main contributors to the global greenhouse gas (GHG)
emissions (excluding LULUCF), which in 2005 correspondingly provided for 19.1 %, 18.3 %,
13.3 %, 5.2 % and 4.9 % of the emission profile (CAIT 2.0 Climate data explorer 2013). With
the entry into force of the Kyoto Protocol, the international community of 37 developed
countries is committed to undertake joined efforts to reduce anthropogenic emissions to the
atmosphere of the greenhouse gases. The efficiency of the implementation of the commitments
under the Kyoto Protocol is judged through the national inventory reports, which are annually
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submitted and subject to subsequent reviews by the designated groups of international experts.
As a Party to the United Nations Framework Convention on Climate Change (UNFCCC) and
its Kyoto Protocol, since 2006 the Russian Federation regularly prepares and submits its
national greenhouse gas inventories (NIR 2006, 2009). The greenhouse gases released from
the exploration, production, preliminary treatment, transport and storage of oil are addressed as
fugitive emissions and included in the annual emission estimates (IPCC 2000, 2006).
According to the National Inventory Report of the Russian Federation the contribution of
fugitive emissions from oil and gas industry to the national totals is shown on Fig. 1
(NIR 2009).

From 1990 to 2009, the fugitive GHG emissions from oil and gas industry made up almost
17 % of the national emissions. It should be noted that the scale of emissions has no inclination
to decrease, being stipulated by intensive the oil production (Fig. 1). The national statistical
data indicates that from 1990 to 2009, annual oil production in the Russian Federation
fluctuated between 0.3 and 0.5 Gt (Rosstat 2007, 2010). Given the significant amount of oil
production, the GHG emissions from the operations with oil in the country make an important
contribution to the global emissions.

As indicated in the National Inventory Report of the Russian Federation, the operations
with oil (fugitive emissions) are key because of their contribution to the entire emission profile
and according to the trend assessment (NIR 2009). The accuracy of the inventory is assessed
with the use of uncertainty analysis, which is especially important for key categories providing
for greatest contribution to the national emission totals. The improved estimates for the key
categories clarify their input to the national emission profile and promote for subsequent
prioritization of the reduction efforts.

As follows from the several studies, about 110 billion cubic meters of associated petroleum
gas (APG) are annually flared at oil production facilities worldwide, while 60 % of which are
provided by 8 oil producing countries (The World Bank 2004; Solovyanov et al. 2008). The
Russian Federation is responsible for about 11 % of global APG flaring. Consequently the first
phase of improving fugitive emission quality concentrated on the emission estimates from oil
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Fig. 1 Contribution of fugitive emission to the total GHG emission profile of the Russian Federation
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production. The aim of our work was to improve the greenhouse gas emission calculations for
operations with oil and to use the uncertainty analysis to evaluate the accuracy of the estimates
performed. The authors of the paper are the members of the national greenhouse gas inventory
team of the Russian Federation with the responsibility for oil and gas sector. This paper
represents the outcomes of the on-going work on the improvement of the national greenhouse
gas inventory of the Russian Federation.

2 The improvement of the greenhouse gas calculations for the operations with oil

In the national inventory of the Russian Federation, the greenhouse gas emissions from the
operations with oil are currently calculated with the use of production-based method, which
corresponds to the IPCC Tier 1 approach (IPCC 2000). In general, the estimates in accordance
with the production-based method perform a product of the activity data and the emission
factor that represents the portion of the substance concerned, which is released to the
atmosphere as the greenhouse gas. The activity data are taken from the national statistics,
whereas the emission factors are mainly the IPCC defaults. Thus, the СО2, CH4 and N2O
emissions from the exploration, production (fugitives), venting and APG flaring and transport
in the oil sector are calculated with the use of the Eqs. 1 and 2 which are based on IPCC Tier 1
approach (IPCC 2000):

ECO2;CH4;N2O ¼ N ⋅EFCO2;CH4;N2O; ð1Þ

ECO2CH4;N2O ¼ AD

ρ
⋅EFCO2;CH4;N2O; ð2Þ

where E CO2, CH4, N2O—the greenhouse gas emission estimate from oil operation in question,
Gg; N — the total amount of drilled/producing wells, units; AD—the activity data on
total oil produced otherwise transported, refined and stored, 103 t; ρ—the average
weighted oil density, t • m-3 EF CO2, CH4, N2O—the GHG emission factors for well
maintenance, Gg • well−1 EFCO2, CH4, N2O—the emission factor(s) for production, transport,
venting and flaring operations, Gg • m−3 • 10−3.

The total amount of drilled wells (N) is estimated as the sum of exploration and operation
wells. The amount of exploration, producing and idle well stock is obtained from the national
statistical data. The Eq. 2 contains oil density to harmonize national activity data of oil sector.
The weighted average density of oil produced in the Russian Federation is 857.8 kg • m−3

under T=20 °C (Grigoryev and Popov 2002). Figure 2 represents the activity data on the
operations with oil in the Russian Federation taken from the yearly national statistical reports
(Rosstat 2007, 2010).

As follows from Fig. 2, oil production and transport were lower by 5.5 % and 4.7 %
correspondingly, compared to 1990 levels. Oil refining was by 20.1 % lower in 2009
compared to 1990. The decreases are associated with oil production fall due to economic
reasons in the mid-90s.

The amount of the APG produced, which was subsequently either utilized and further
processed or flared, is also provided in the national statistical reports (Rosstat 2007, 2010).
They are shown on Fig. 3.

As follows from the Fig. 3, in 2009 production of the APG and its flaring subsequently
increased above the 1990 levels by 46.8 % and 19.8 % correspondingly. However, it should be
noted that the flaring is about 21 % of the total APG production (the average value from 1990
to 2009). The latter indicates that the major part of the produced APG is utilized rather than
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flared. Nevertheless, the amounts of APG flaring are still rather substantial, which indicates of
significant potential for greenhouse gas emission reduction for this emission category.

The emission factors for calculation the greenhouse gas emissions from oil operations are
provided in Good Practice Guidance and Uncertainty Management in National Greenhouse
Gas Inventories (hereinafter IPCC Good Practice Guidance) (IPCC 2000). Despite exploration,
APG flaring and oil transport, the emission factors commonly used are the average values from
the range recommended by the IPCC guidelines (IPCC 2000). The N2O emission factor for
APG flaring, 2.3 • 10−5 Gg • 10−6 m−3, is also given by the IPCC (IPCC 2000).
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With the aim at improving the accuracy of the estimates, a shift from production-based
method (IPCC Tier 1) to the enhanced combination of production-based and mass balance
methods (IPCC Tier 2) was made for the same source categories, namely exploration,
production (fugitives), venting and APG flaring, transport. Mass balance method was
employed for the major contributors to the emission profile—oil production, venting and
APG flaring. The IPCC Tier 2 method implies the following equations (IPCC 2006):

Eventing ¼ GOR ⋅ Qoil ⋅ 1−CEð Þ ⋅ 1−X flared

� �
⋅ Mgas ⋅ ygas ⋅ 42:3 ⋅ 10

−6; ð3Þ

ECH4 flaring ¼ GOR ⋅ Qoil ⋅ 1−CEð Þ ⋅ X flared ⋅ 1−FEð Þ ⋅ MCH4 ⋅ yCH4
⋅ 42:3 ⋅ 10−6; ð4Þ

ECO2 flaring ¼ GOR ⋅ Qoil ⋅ 1−CEð Þ ⋅ X flared ⋅ MCO2 ⋅
yCO2

þ
�
NсCH4 ⋅ yCH4

þ NcNMVOC ⋅ yNMVOC ⋅ 1−X sootð Þ
h i

⋅ 42:3 ⋅ 10−6; ð5Þ

EN2O flaring ¼ GOR ⋅ Qoil ⋅ 1−CEð Þ ⋅ X flared ⋅ EFN2O; ð6Þ

where Eventing—the direct amount (Gg y−1) of the GHG emitted due to venting at oil
production facilities; EСО2, СН4, N2Oflaring—the direct amount (Gg y−1) of the greenhouse gas
emitted due to flaring at oil production facilities; GOR is the average gas to oil ratio (m3 m−3)
referenced at 15 °C and 101.325 kPa; Qoil—the total annual oil production (103 m3 y−1);
Mgas—the molecular weight of the gas of the interest; NCi—the number of moles of carbon per
mole of compound i; yi—mol or volume fraction of the APG that is composed of substance i;
CE—the gas conservation efficiency factor; Xflared—the fraction of the waste gas that is
flared rather than vented; FE—flaring destruction efficiency; Xsoot—fraction of the non-
CO2 carbon in the input waste gas stream that is converted to soot or particulate matter
during flaring; EFN2O—the emission factor for N2O from flaring (Gg 10−3 m−3 of APG
flared); 42.3•10−6—the number of kmol per m3 referenced at 101.325 kPa and 15 °C
(i.e.42.3•10−6 kmol m−3) times a unit conversion factor of 10−3 Gg Mg−1, which brings
the results of each applicable equation to units of Gg y−1.

The Eqs. (3)–(5) correspond to the mass balance method, whereas the Eq. (6) is the
production-based method. The production-based method is also applied for N2O emission
estimates due to the complexity of its formation in the APG flaring (Hayhurst and Lawrence
1992). The Eqs. (3)–(6) merge specific oil operations inscribed in step-by-step Tier 1 calcu-

Russian Federation. The Tier 2 was applied to estimate emissions from sources with the
main contribution to the entire emission profile. The parameters in the Eqs. (3)–(6) were
recalculated to comply with specific conditions of the Russian Federation. The invariable
value of 42.3•10-6 −3, which is the number of kmol per m3 (i.e. 42.3•10−6) times
a unit conversion factor of 10−3 Gg Mg−1 (the inverse of the Molar volume, i.e. Vm−1),
was recalculated to standard conditions of the country (101.325 kPa and 20 °C) with the
use of molar volume and the Mendeleev-Clapeyron ideal gas equation. The recalculated
invariable is 41.6•10−6 kmol m−3. To accommodate the national data on the APG

operations, the parameter GOR•QOIL in the Eqs. (3) to (6) was replaced with QAPG USED
CE , which

is of the same meaning. The validity of the parameter was cross-checked by inverse calculation
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of the gas factor (IPCC 2006). The fraction of the waste gas that is flared rather than vented
(Xflared) was estimated based on the data for operations with APG as:

XFLARED ¼ QFLARED

QAPG USED

CE
• 1−CEð Þ

The fraction of non-CO2 carbon in the input waste gas stream converted to soot or
particulate matter during flaring (Xsoot) was assumed 0, i.e. an assumption was made that all
non-CO2 carbon in the input waste gas stream releases to the atmosphere without any soot
formation. It is a conservative approach enabling to avoid underestimation of greenhouse gas
emission.

The flaring destruction efficiency (FE) is based on underburning coefficient, which was
experimentally derived by Scientific Research Institute for Atmospheric Air Protection for
different types of flaring facilities. Underburning coefficient is equal about 0.0006 for non-soot
flaring facilities, whence it follows that flaring destruction efficiency is estimated to be equal
about 0.9994 (NII Atmosphera 1997).

The number of moles of carbon per mole of NMVOC (NcNMWOC) and mol or volume
fraction of the APG that is composed of substance i (yi) are directly dependent from APG
composition. The calculations were performed based on the chemical composition of theWest-
Siberian oils in a view that it is the largest oil producing region in Russia being up to 66 % of
the national oil production (Andreykina 2005). As provided by IPCC Guidelines, the number
of moles of carbon per mole of NMVOC for natural gas and crude oil vapors vary from 2.1–
2.7 to 4.6 respectively (IPCC 2006). So that country-specific value derived is within the
recommended scope.

All country-specific parameters used in Tier 2 method are summarized in the Table 1.
The greenhouse gas emissions from operations with oil were calculated for the time series

from 1990 to 2009 with the use of Tier 1 (Eqs. (1) to (2)) and Tier 2 (Eqs. (1) to (6)). All the
emission factors used were taken from IPCC Good Practice as the middle-value of the
recommended scope (IPCC 2000). The results of the estimates were further recalculated into
CO2 equivalent on the basis of the global warming potentials (Houghton et al. 1996). Figure 4

Table 1 The country-specific parameters for the estimation the greenhouse gas emissions from operations with
oil in the Russian Federation

Parameter in the
Eqs. (3)–(6)

Replaced with country-specific
parameter

Justification of the replacement

GOR•Qoil
QAPG USED

CE
Provided in the national statistics

42.3•10−6 41.6•10−6 Oil density is reported at the temperature 20 °C
and pressure 101,325 kPa

ygas yСН4=0.583
yco2=0.009
yNMVOC=0.373

Derived from the national data on composition of

NcNMVOC 2.9

Xflared XFLARED ¼ QFLARED
QAPG USED

CE • 1−CEð Þ
Recalculated based on the national statistics on the

APG operations

FE 0.9994 Based on underburning coefficient derived by
Scientific Research Institute for Atmospheric
Air Protection for non-soot flaring facilities
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shows the estimates of the greenhouse gas emissions from operations with oil performed with
the use of Tier 1 and Tier 2 methods.

The calculations performed with the use of Tier 1 show that oil production operations make
the highest contribution to the emission profile—99.7 % (fugitives and venting operations due
to oil production provide about 57.7 % followed by the flaring operations—42.1 %). The main
component of the emissions from oil production operations is methane (71.6 %). Exploration
and transport together are responsible for less than 0.5 % of the total greenhouse gas emissions
from the sector. Consequently, the oil production operations are the priority emission catego-
ries for oil sector in the Russian Federation. Similar results were obtained, when Tier 2 was
used: the oil production operations contributed to 99.7 %, which, however, consist of 11.3 %
fugitives and venting operations and 88.3 % for APG flaring. The APG flaring comprises for
about 98.9 % of the carbon dioxide due to significant volume of APG flared. The exploration
and transport taken together provided for less than 0.5 % to the emissions.

In general for the for Tier 1 estimates, the equivalent greenhouse gas emissions varied from
36 to 73 Tg CO2-equivalent with an average value of 50 Tg CO2-equivalent (from 1990 to
2009). For the same period, the equivalent greenhouse gas emissions derived with the use of
the Tier 2 method varied from 25 to 83 Tg CO2-equivalent with an average of 45 Tg CO2-
equivalent. The comparison of the estimates shows that the calculations with the use of the
enhanced combination of production-based and mass balance methods (IPCC Tier 2) are of the
same order of magnitude with those derived from the production-based method (IPCC Tier 1).
Evidently, the difference is because of the higher accuracy in the Tier 2 estimates performed
with the use of the country-specific parameters and more precise equation method.

3 Uncertainty analysis of the greenhouse gas emission estimates for the operations
with oil

The reliable national inventory is a core element for the efficient emission mitigation. The level
of uncertainty mainly depends upon the reliability of activity data and parameters in use. The
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Fig. 4 The estimates of the greenhouse gas emissions from operations with oil performed with the use of Tier 1
and Tier 2 methods
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quality of the estimates obtained with the use of Tier 1 and Tier 2 methods was judged by the
uncertainty analysis undertaken in line with the IPCC provisions.

To assess uncertainty level of both estimates Monte-Carlo analysis was applied, which
corresponds IPCC Tier 2 uncertainty assessment. In accordance to IPCC Good Practice
Guidance, Monte-Carlo analysis included the following steps (IPCC 2000; Barry 1996):

& Step 1 - Source category uncertainties were specified which included uncertainties of the
emission factors, activity data and parameters, the probability distribution functions, and
cross correlation between source categories. The uncertainty analysis for the Tier 2
calculation implied the assessment of the larger number of parameters. Gas compositions
are usually estimated accurately with errors being within ±2.5 % for the individual
components (Ministerstvo… 1991). Hence, the ±2.5 % value was used for the methane,
carbon dioxide, non-methane volatile organic compounds and the estimation of the
number of moles of carbon per mole of NMVOC in the relevant equations for each source
category. The flared fraction of non-CO2 carbon in the input waste gas stream converted to
soot or particulate matter (Xsoot) and emission factors were chosen in accordance with the
IPCC guidelines. Their errors were ±25 % and ±100 % respectively (IPCC 2000, 2006).
Summary of the parameters applied in the uncertainty assessment for the Tier 1 and Tier 2
calculations is provided in Table 2.

It was supposed that distribution function for all parameters in the emission estimates
was normal (Gaussian). The uncertainty analysis was performed under the 95 % confi-
dence interval.

& Step 2 - The emission inventory calculation, the probability density functions and the
correlation values were set up in the Monte Carlo software package.

& Step 3 - For each input data item, emission factor or activity data, a number was randomly
selected from the probability density function of that variable.

& Step 4 - The iterations number determination depends on the following equation (Hahn and
Shapiro 1967; Sobol 1973):

δ ¼ tβ •σffiffiffiffi
m

p ; ð7Þ

where δ—measurement error; m—the iterations number; σ—measurement dispersion;
tβ—Laplace coefficient, which is equal 1.96 for the 95 % confidence interval.

Table 2 The errors of parameters
for uncertainty assessment of the
greenhouse gas emission calcula-
tions with the use of the Tier 1 and
Tier 2 method

Parameter Uncertainty, % Source

Gas composition ±2.5 Ministerstvo… (1991)

Activity data ±5.0 Rosstat (2010)

Xsoot ±25.0 IPCC (2000)

EF ±100.0 IPCC (2000)

Table 3 The results of the uncer-
tainty analysis performed for the
Tier 1 and Tier 2 method estimates

Method of greenhouse gas
emission estimation

Total average emission,
Tg CO2-equivalent

Uncertainty, %

Tier 1 method 50 54

Combination of Tier 1 and
Tier 2 methods

45 26
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As follows from the Eq. (7) 106 iterations were determined to obtain the three-place
accuracy of the calculations. Due to uncertainty analysis 106 iterations were performed for
each source category for the time series from 1990 to 2009.

& Step 5 - Upon completing 106 iterations the outcomes were sorted by ascending taking into
account 95 % confidence interval, i.e. 2.5 - and 97.5-percentile were considered. All the
negative values derived were considered as logically impossible and 0-meaning was
assigned to each negative value.

The results derived for the time series from 1990 to 2009, are summarized in Table 3.

The results of the uncertainty assessment showed that the estimates performed by means of
the combination Tier 1 and Tier 2 methods associated with lower values of uncertainty
compared with the Tier 1 estimates. Representing the same levels of the total emissions for
both of the estimates, the uncertainties are equal about 54 % and 26 % for the Tier 1 and the
combination of Tier 1 and Tier 2 respectively (Table 3).

4 Conclusion

The uncertainties of the greenhouse gas emissions were calculated with the use of default
production-based (Tier 1) and enhanced combination of production based and mass-balance
(Tier 2) approaches in accordance with the IPCC Tier 2 (IPCC 2000, 2006). The uncertainty
value for 1990 and 2009 correspondingly was 26 %, when the Tier 2 estimation method was
used. It is lower than the 54 % uncertainty obtained, for the (Tier 1) method. Thus, the
improvement in the accuracy in the national greenhouse gas inventory results in the reduction
of the emission uncertainty. The lower values of uncertainty indicate of the higher quality of
the greenhouse gas estimates. Furthermore, the IPCC Tier 2 method allows not only obtaining
highly accurate assessments, but also streamlining calculation procedures, improving trans-
parency and adequacy of the estimates and their conformity to typical operations with oil in the
Russian Federation.

The use of default emission factors for Tier 1 emission estimates from oil production
operations decreases the accuracy estimates and hence leads to considerable value of uncer-
tainty. The further reduction of the greenhouse gas emission uncertainty for operations with oil
can be achieved by the enhancement of the APG utilization and the improvement of the
accuracy of the parameters included in the calculations and national emission factors derivation.
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Abstract As land use change (LUC), including deforestation, is a patchy process, estimating
the impact of LUC on carbon emissions requires spatially accurate underlying data on biomass
distribution and change. The methods currently adopted to estimate the spatial variation of
above- and below-ground biomass in tropical forests, in particular the Brazilian Amazon, are
usually based on remote sensing analyses coupled with field datasets, which tend to be
relatively scarce and often limited in their spatial distribution. There are notable differences
among the resulting biomass maps found in the literature. These differences subsequently
result in relatively high uncertainties in the carbon emissions calculated from land use change,
and have a larger impact when biomass maps are coded into biomass classes referring to
specific ranges of biomass values. In this paper we analyze the differences among recently-
published biomass maps of the Amazon region, including the official information used by the
Brazilian government for its communication to the United Nation Framework on Climate
Change Convention of the United Nations. The estimated average pre-deforestation biomass in
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the four maps, for the areas of the Amazon region that had been deforested during the 1990–
2009 period, varied from 205±32 Mg ha−1 during 1990–1999, to 216±31 Mg ha−1 during
2000–2009. The biomass values of the deforested areas in 2011 were between 7 and 24 %
higher than for the average deforested areas during 1990–1999, suggesting that although there
was variation in the mean value, deforestation was tending to occur in increasingly carbon-
dense areas, with consequences for carbon emissions. To summarize, our key findings were: (i)
the current maps of Amazonian biomass show substantial variation in both total biomass and
its spatial distribution; (ii) carbon emissions estimates from deforestation are highly dependent
on the spatial distribution of biomass as determined by any single biomass map, and on the
deforestation process itself; (iii) future deforestation in the Brazilian Amazon is likely to affect
forests with higher biomass than those deforested in the past, resulting in smaller reductions in
carbon dioxide emissions than expected purely from the recent reductions in deforestation
rates; and (iv) the current official estimate of carbon emissions from Amazonian deforestation
is probably overestimated, because the recent loss of higher-biomass forests has not been taken
into account.

1 Introduction

The increasing rate of global carbon dioxide (CO2) emissions to the atmosphere and, addi-
tionally, the increasing atmospheric CO2 concentration has no parallel in the preceding
hundred to millions years of Earth’s history (IPCC 2013). From 1958 to 2004 the mean global
CO2 emissions increased at approximately 1.3 % per year, whilst from 2004 to 2010 this rate
rose to approximately 3 % per year (Global Carbon Project (GCP) www.globalcarbonproject.
org). Most of this increase is associated with fossil fuel burning. According to the Global
Carbon Project CO2 budget, the estimated uncertainty of fossil fuel CO2 emissions at the
global scale is 6–10 % for the 2009–2010 analysis. The Fourth Assessment Report of the
Intergovernmental Panel for Climate Change (IPCC 2007) states that tropical deforestation
accounts for 10–20 % of anthropogenic CO2 emissions, with the uncertainty on this range
being mostly due to estimates of pre-deforestation biomass, and spatial heterogeneity in
biomass. Biomass burning-driven greenhouse gas emissions follow a different trajectory to
those from fossil fuel combustion. Recent reductions in deforestation rates in tropical regions
(e.g. in Brazil, Indonesia) mean that the fractional contribution of the land use CO2 source to total
anthropogenic emissions to the atmosphere has decreased in recent years (Le Quéré et al. 2009).

In spite of technological advances in mapping land use change and biomass, the most recent
emissions estimates for tropical forests contain even more variance than those from previous
decades (Houghton 2010), because of the large estimated spatial variability in biomass. Given the
widely-acknowledged importance of tropical forests for climate, carbon storage and sequestration,
biodiversity and for ecosystem services, improved biomass estimates remain an important scientific
and social priority (Nobre et al. 1991; Hoffmann et al. 2003; Malhi 2010).

Tropical forests, classified as humid forests by the Global Land Cover Classification
(2000), cover about 13.4 million km2 within the global tropical belt. In tropical America
humid broadleaf forest covers about 47 % of the region, mostly in South America, particularly
the Amazon region. In Brazil, the Amazon basin covers more than 5 million km2, of which
~80 % are still intact forest (Davidson et al. 2012; Ometto et al. 2011). Tropical forests are
highly diverse ecosystems, hosting a large fraction of the current known terrestrial biodiversity.
The Amazon forest alone is thought to house 25 % of the terrestrial global plant species
(Lambin et al. 2001; Strassburg et al. 2010). Tropical forests also regulate climate by
influencing the hydrological cycle at multiple scales, via differences in surface roughness,
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albedo and through the control of transpiration (e.g., Spracklen et al. 2012; Werth and Avissar
2002). Spatial variation in vegetation composition and biomass is partly determined by the
prevailing climate, but is also influenced by soil fertility and physical structure (Quesada et al.
2011). Together with constraints to seed dispersal, these factors strongly influence the distri-
butions in vegetation type and associated biomass observed in natural vegetation, and whose
patchy nature presents a challenge to mapping efforts.

Vegetation type varies from sparse open savanna to dense broadleaf evergreen forest, with
species composition, forest structure and ecological dynamics varying greatly throughout the region
(http://www.ibge.gov.br; Hoffmann et al. 2004; Malhi et al. 2004). Estimates of the total carbon
stock in Amazonia range widely, from 70 to 120 PgC (Malhi et al. 2009; Potter et al. 2009; Saatchi
et al. 2007) and this variation partly reflects uncertainty in the biomass content and areal extent of
different vegetation types.More than 10 years ago (Houghton et al. 2001) observed that estimates of
biomass for the Amazon forests in Brazil varied more than two-fold, with disagreement in the
distribution of maximum and minimum biomass content in the seven estimates analyzed. Surpris-
ingly, the most recent updates have not substantially changed this observation, noting wide variance
in the estimated spatial distribution of biomass classes as well as total biomass (Malhi et al. 2009;
Saatchi et al. 2007, 2011; Fearnside 1997; Malhi et al. 2006; Saatchi et al. 2007; Nogueira et al.
2008a; Saatchi et al. 2011; Baccini et al. 2012). Although there is uncertainty in emissions resulting
from the deforestation process itself, uncertainty in the underlying original biomass remains the
largest contributor to uncertainty in deforestation emissions (Aguiar et al. 2012).

In this paper we explore the available biomass classification maps for the Brazilian Amazon,
estimating the range in current estimates in the literature and then comparing with the Brazilian
Government-based map used for reporting carbon emissions to the United Nations Framework
Convention on Climate Change. Also we examine the influence of the use of different biomass
maps on uncertainty in carbon emission calculations due to land cover change in recent years, and
in future scenarios (unpublished data, Ana Paula Aguiar, Ima Vieria, Peter Toledo and Jena Pierre
Ometto, Earth System Science Centre, National Institute for Space Research Internal Report),
using the IPCC Tier 1 methodology (www.ipcc-nggip.iges.or.jp/public/2006gl/vol4.html).

Within the scope of the 3rd International Meeting on Uncertainty in Greenhouse Gas
Inventories, (held in Lviv, Ukraine from 22 to 24 September 2010), our analysis aims improve
the validation of land use and land use change (LULUC) emission models for the Brazilian
Amazon region. The issues discussed here have important implications for national green-
house gas emissions inventories, future emissions scenarios, forest management and the
possible implementation of REDD + initiatives, among others (REDD: ‘Reducing Emissions
from Deforestation and Forest Degradation in Developing Countries’).

2 Methods

2.1 Biomass data sources

The biomass maps used for this analysis were derived from recent publications in the scientific
literature and from the map used by the Brazilian Ministry of Science and Technology (MCT
2010) for reporting the national greenhouse gas emissions estimates to the United Nations
Framework Convention on Climate Change (The National GHGCommunication). The sources
and the structure of the data used in this analysis are described below and presented in Fig. 1.

& (Baccini et al. 2012), hereafter BB12. Pan-Tropics above-ground biomass map based on
satellite observation using LiDAR data (spatial resolution of 70 m) and multispectral
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surface reflectance imagery (at 500 m spatial resolution). The authors also collected field
data in the global tropics from 2008 to 2010 at sample points co-located with the LiDAR
‘footprints’. LiDAR data were obtained from the Geoscience Laser Altimeter System
(GLAS) database. Surface reflectance data were obtained from the Moderate Resolution
Imaging Spectro radiometer (MODIS). Digital elevation data were acquired as part of
NASA’s Shuttle Radar Topography Mission (SRTM) database.

Fig. 1 Biomass original data with PRODES deforestation mask. Data, starting from the upper left panel, are
from: a BS07 (Saatchi et al. 2007); b BS11 (Saatchi et al. 2011); c BN08 (Nogueira et al. 2008a, b); d BB12
(Baccini et al. 2012); e BM10 (MCT 2010)
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& (Saatchi et al. 2011), hereafter BS11, produced a global map of AGLB and BGLB (Above-
and Below-Ground Biomass) analyzing both ground and remotely sensed data for the
following types of vegetation: (i) old growth tropical forest; (ii) woodland savanna; (iii)
dry forest; (iv) and regrowth forests. BS11 uses radar remote sensing data derived from the
Geoscience Laser Altimeter System (GLAS) LiDAR. The analysis was performed across
the global tropics at 1 km spatial resolution. Ground observations and error propagation
were used to assess the uncertainty involved in translating remotely sensed data into
AGLB estimates. This error is reported to be, on average, >30 %. The BGLB is derived
as a proportion of AGLB (Saatchi et al. 2011).

& (Nogueira et al. 2008a, b) hereafter BN08, propose anAGLB for theAmazon region following
(Fearnside 1997; Fearnside and Laurance 2004), with a wood density re-analysis and new
allometric equations produced for relatively fertile soils in the southern Amazon. The BN08
map for the whole region was based on data from the RADAM-BRASIL (http://www.cprm.
gov.br/publique/cgi/cgilua.exe/sys/start.htm?UserActiveTemplate=cprm_layout_EN&tpl=
home), but it also incorporated corrections for wood density and wood volume, and
incorporated expansion factors used to include the bole volume of small trees, and the
biomass of large tree crowns. The variation in AGLB is smaller than in Saatchi et al. (2007),
but overall, the values are considerably higher (see increase in red color in Fig. 3c). This map
shows a strong data saturation, as some classes had null values. The authors report BGLB
spatially as percentage of AGLB, with a mean value for the region as 25.8 % of the AGLB.

& (Saatchi et al. 2007), hereafter BS07, used remote sensing, environmental variables and
ground measurements to estimate AGLB in the Amazon basin. The method used a decision
tree to spatially distribute seven distinct biomass classes for primary vegetation. BGLBwas
estimated as 21 % of the AGLB (according to published data at the time). The authors
reported 80 % accuracy in relation to their ground-truth data, which is similar in relative
terms if compared to the uncertainty of 30 % found in BS11,taking into account the
different types of remote sensing data used to create these two maps. A regression based
on satellite data was used to estimate biomass of herbaceous savannas and secondary forest.

& MCT (2010), hereafter BM10, produced biomass estimates based on 2702 plots inventoried
by the RADAMBRASIL project, which extensively mapped the Amazon region from 1971
to 1986 in a 1:1000.000 scale. The RADAM project was designed to inventory areas from
0.5 to 1.0 ha, randomly distributed across the region, with all trees over 38 cm of DBH
measured (diameter at breast height, 1.3 m). Biomass for trees smaller than 38 cm diameter
1.3 mwas estimated according to a distribution histogram produced from subsamples made
as part of the RADAM project. Allometric equations used to estimate AGLB and below-
ground living biomass (BGLB) from DBH were based on Higuchi et al. (1998). MCT
(2010) reports Below Ground Biomass (BGB) as 28 % of AGB.

For the two more recent remote sensing maps (BS11 and BB12), produced at global scale
using similar input data (as described above), there are some key differences: (i) for the
allometric equations, BB11 used tree height, diameter and wood density, but BB12 did not use
wood density; and (ii) the authors used a different interpolation method. An equivalent analysis
proposed in our work, but with fewer biomass maps and with different biomass classes, can be
found at: (www.geos.ed.ac.uk/~emitchar/carbonmapcomparison/Index.html)

2.2 Data preparation

In order to perform an appropriate comparison among different biomass maps and datasets the
BS07, BM10, BS11 and BB12 were resampled according to BN08, the biomass map with the
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coarsest resolution classes (Table 1). Then all maps were masked to only show their common
mapped areas and to remove the areas already deforested according to land use data from the
PRODES project (INPE 2011); Fig. 1 illustrates the resulting pre-processed maps.

2.3 Data analysis

In order to compare the core differences in the magnitude and spatial distribution of carbon in
live biomass we adopted four alternative and complementary approaches:

a) Visual comparison of classified maps: we used the 11 biomass classes used by
BS07 to classify BN08, BM10, BS11 and BB12 (Fig. 2). Then, difference maps
were calculated in relation to BS11 (BS11-BS07; BS11-BN08; BS11-BM10;

Table 1 Biomass data source and processing

BS07 Saatchi et al. (2007) Remote sensing and field
plots. MODIS images
from 2001 to 2004.

Spatial scale: resolution
1×1 km2; extent:
Amazon Basin.

Original biomass raster data is classified into
11 classes, representing a range of biomass
intervals. The middle value of each interval
was taken as the pixel value. The procedure
to fill the cells is the following. Each cell
initially receives the average of the pixels
inside that cell, excluding pixels below
100 Mgha−1 (classes 1–4). Then the
correction to eliminate the influence of
previously deforested areas on the biomass
was applied.

BN08 Nogueira et al. (2008a, b) Field plots and allometric
equations for forest.

Spatial scale: resolution
1×1 km2; extent:
Brazilian Amazon Basin.

Each cell initially receives the average of the
pixels inside that cell, excluding pixels
below 100 Mgha−1 (which are few for this
map). If a cell has no valid biomass values, a
simple correction attributes the average
values of neighborhood cells (using a Moore
neighborhood), or an overall average (in
case the neighbors cells are also empty).

BM10 MCT (2010) Field plots, vegetation and
soil maps, and allometric
equations for different
types of vegetation

Spatial scale: resolution
1×1 km2; extent:
Brazilian Amazon Basin.

Same process as B2.

BS11 Saatchi et al. (2011) Combines all biomass
measurements that were
made after 1995 and
before 2005. ICES at
GLAS Lidar data from
2003 to 2004. MODIS
from 2001 to 2003. Spatial
scaleresolution 1×1 km2;
extent: global coverage.

Each cell initially receives the average of the
pixels inside that cell, excluding pixels
below 100 Mgha−1. Then we apply the
correction to eliminate the influence of
previously deforested areas on the biomass.

BB12 Baccini et al. (2012) Combination of remote
sensing and field data
for period 2008/2010.
Spatial scale: resolution
500×500 m ; extent:
Pan-Tropics

Same process as B4.
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BS11-BS12). We chose BS11 as a reference because it has a global coverage and
1 km2 resolution. By using a simple difference between raster-based datasets we
obtained difference maps that attempt to capture where, and by how much, the
different biomass maps differ.

b) Quantitative analysis (region-based): a regional-scale analysis was performed in order to
analyze broader differences among the maps, their average values and standard deviations

Fig. 2 Amazon region biomass estimates classified as in BS07. Warmer colors are representing higher biomass
classes. a BS07 (Saatchi et al. 2007); b BS11 (Saatchi et al. 2011); c BN08 (Nogueira et al. 2008a, b); d BB12
(Baccini et al. 2012); e BM10 (MCT 2010)
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for the whole area, grouped by Federal State (Table 2) and river basins (Fig. 3). Estimates
of uncertainty for each map are reported in the “Biomass data sources” section.

c) Biomass in the deforested areas: as a final comparison, we show the results of the
average biomass values considering the newly deforested areas from 2002 to
2012, using PRODES data, and from 2012 to 2010, using a spatially-explicit
deforestation scenario (unpublished data: Ana Paula Aguiar, Ima Vieria, Peter
Toledo, Jean Pierre Ometto, Earth System Science Centre, National Institute for
Space Research Internal Report), in which the Brazilian voluntary commitment to
reduce deforestation in the Amazon region by 80 % until 2020 is assumed
(United Nations Framework Convention on Climate Change, Copenhagen, Den-
mark, 2009). In order to do this, we used a procedure developed by Aguiar et al.
(2012) to estimate the original vegetation prior to the deforestation process. This
correction is critical for the maps based on remote sensing (mainly BS11 and
BB12) that are influenced by the deforestation and secondary vegetation dynamics
that occurred prior to the image acquisition dates. For carbon emissions calcula-
tion purposes, we implemented the following procedure for processing biomass
maps: for any deforested cell (above 10 % of cell area), the prior biomass is the
average of the non-deforested (below 10 %) neighbor cells, assuming a 10×10 km
neighborhood.

Fig. 3 Estimated pre-deforestation biomass distributed in eco-regions. The legend refers to the following rivers
sub-basins: AMZ SB1 (Amazon river basin from Brazilian border to Javari river); AMZ SB2 (Amazon river
basin from Javari to Auati-Parana rivers); AMZ BS3 (Amazon river basin from Auati-Parana river to Coari);
AMZ BS4 (Amazon river basin from Coari to Purus river); Negro river basin; Madeira river basin; AMZ BS5
(Amazon river basin from Madeira to Trombetas rivers); Tapajós river basin; Xingú and Parú river basin; AMZ
BS6 (Amazon river basin from Xingu river to the Atlantic ocean)
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3 Results

The histograms in Fig. 4 demonstrate the differences in the biomass class and values occurrence
in each of the five maps. Large differences among the maps in terms of what is considered the
mean biomass and the statistical distribution of that biomass are shown in Table 2.

BM10 and BN08 show biomass density ranges of 150–250 and 250–350 Mg ha−1 respec-
tively, although their spatial distributions of biomass density classes are similar. Overall the
BN08 and BB12 maps suggest larger biomass density values throughout the region in
comparison to BS11, although the biomass class distributions differ, with BN08 similar to
BS07 and BB12 similar to BS11. Perhaps most notably, major differences between the maps
can be observed in the spatial distribution of total biomass, as Figs. 2, 3, and 5 illustrate.
Differences in biomass at the scale of eco-regions are shown in Fig. 5. Figure 6 presents time-
traces of mean biomass, per map, estimated to be associated with deforestation during the

Fig. 4 Histograms of biomass distribution for the BS07, BS11, BN08, BB12 and BM10: biomass classes and
frequency
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period 2002 to 2020; the substantial inter-map differences of up to 50 % underline how large
inter-map variability is, and its potential impact on emissions estimates. The location of new
deforestation frontiers coupled with intra-regional variation in biomass density will influence

Fig. 5 Class differences in relation to BS11: (BS11-BS07; BS11-BN08; BS11-BM10; BS11-BS12)

Fig. 6 Average mean forest biomass per map in the deforested areas from 2002 to 2012 and in areas of potential
deforestation evolution from 2013 to 2020
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estimates of any future emissions represented in this figure, including those affected by REDD
+ or similar activities.

Overall, the results show some similarities in biomass for non-deforested regions of the
State of Amazonas, but important differences in biomass among other regions, in particular in
the east and far north of the Amazon region, and at the Brazilian borders with Colombia and
Venezuela (Fig. 5). Despite the larger number of sample plots used to estimate biomass in
BS11, most were located in old growth forests, with only a small portion of them in secondary
forest and swamp areas, implying that estimates for these latter vegetation types may be less
well constrained. In BS07, the sample plots were better distributed among old growth forests,
secondary forests of different ages and areas of savanna. These differences in underlying
ground data might be responsible for the divergence between the two maps provided by
Saatchi and co-authors. More generally, the observed variance in recent biomass estimates
likely reflect: (i) differences in sample plot measurements adopted to calibrate each model; (ii)
differences in the remote sensing data product combinations used; and (iii) the exclusion for
some analyses of GLASS images from very steep terrain (>20 % slope ) to avoid large tree
height error estimates, to , with the latter potentially leading to an underestimation of above-
ground biomass, where very structured and old-growth forests can occur (Araújo et al. 2002).

Finally, the methodology used by BM10, based on the RADAM data (1:1,000,000),
resulted in large differences in biomass with respect to the other maps, and large changes in
biomass between adjacent surveyed areas and regions (corresponding to different RADAM
data sheets) within BM10. This made, spatial comparisons with BM10 less informative,
although the large apparent disparities in biomass calculated for the BM10 map were not
propagated into CO2 emissions as the deforestation front in the analysis had not advanced to
these areas (INPE 2012). However, as future deforestation approaches the northwestern edge
of the region, a large shift in calculated emissions rates is likely using BM10.

4 Discussion

In general, our analysis indicates substantial differences in the estimates of biomass density by
region, and provides details onwhere and by howmuch themaps differ. In this section, we discuss
the potential reasons for such differences and the alternatives for reducing such uncertainties.

4.1 Methods underlying the maps

Houghton et al. (2001) made a number of recommendations for reducing uncertainty in the
estimation of biomass across Amazonia. In the intervening period, there has been improvement
in some but not all of these areas. Major differences in biomass estimates are frequently related
to inconsistencies in field measurements: weak allometric relationships for some vegetation
types such as secondary forest, savanna and/or degraded forest areas; incomplete or insuffi-
cient field parameters used to construct or calibrate the relevant allometric equation (e.g. due to
under sampling of certain plant groups, or biogeographic areas; Feldpausch et al. 2011a, b); the
size of the sampling plot (Anderson et al. 2010); and the strategies used to extrapolate the data.
The maps that use remote sensing data to extrapolate biomass from a core ground-based
dataset may also be influenced by unaccounted-for variation in soil characteristics and the
preceding history of forest disturbance and deforestation (BS07, 11 and BB12), a source of
variability that may potentially lead to larger errors when aggregated at larger pixel scales. On
the other hand, maps based solely on field inventory depend on interpolation techniques and
may suffer from lack of detail in the quantification of spatial heterogeneity (Aguiar et al. 2012).
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The stratification of biomass into different classes is fundamental for the extrapolation of data
derived from field and remote sensing based measurements. Therefore, the scale of sampling is
also relevant, for example whether data collection was for traditional forest inventory or
specifically for biomass assessment. The development and use of a widely and densely
distributed network of permanent sample plots designed for biomass estimation would sub-
stantially improve point and interpolated biomass estimates, and further would advance the
refinement of allometric regression equations used to estimate biomass from simpler measure-
ments (e.g. Feldpausch et al. 2011a, b). With this in mind, Brazil is currently developing an
extensive forest plot network in a 20×20 km grid in some parts of the country, with finer-scale
grids in vegetation transition areas and highly heterogeneous landscapes (http://ifn.florestal.
gov.br/); this will become a very important data base in the near future.

4.2 Changes in biomass due to growth/decline/degradation

The biomass maps used in the current analysis do not consider changes over time. However
annual changes in forest growth and biomass accumulation have been reported to be in the
range of 0.5 to 1.0 t C/ha/y (Vieira et al. 2005). Ultimately variation in old-growth forest
dynamics, rates of regrowth in secondary forests and rates of forest degradation must be
adequately quantified to fully inform carbon stock and emissions analyses over time. For
example, even in undisturbed old-growth forest, there is evidence for differences in the
mortality, growth and recruitment processes determining forest dynamics (Phillips et al.
2004). These differences are evident in the spatial variation in biomass and above-ground
carbon residence times from east to west across the Amazon basin (Malhi et al. 2006; BN08,
BS07 and BM10), and over time in repeatedly measured forest plots across the region (Phillips
et al. 2004). The reported increasing dynamism in Amazonian forests may also result in
changes in functional composition and in increased vulnerability to drought, potentially
leading to reductions over time in standing biomass (Phillips et al. 2002; Potter et al. 2011),
and this may also be accompanied further by alterations to the residence time in different
decomposing carbon pools, especially under contrasting climate regimes of, for example,
drought or flood.

In addition to changes over time in old growth forest carbon stocks, the dynamics of
degraded primary forest, or of previously-cleared secondary forest represent further important
contributions to overall uncertainty in land-use related carbon emissions. The former (degra-
dation of primary forest) has often been considered a relatively small component, although
recent remote sensing assessments of primary forest degradation through selective logging and
fire estimated substantial annual changes in the affected areas: 15,987 km2 in 2007;
27,417 km2 in 2008; and 13,301 km2 in 2009 (INPE 2011). Thus, even in the absence of
deforestation, degradation alone can alter biomass over substantial areas of natural forest, with
downstream effects on carbon stock dynamics, for example following increased vulnerability
to climate extremes. The need to understand the secondary forest recovery cycle following
disturbance has been recognized for some time, even though quantification studies covering
the full cycle from clearance through regrowth to re-clearance still remain sparce. Recently,
Brazil’s National Institute for Space Research (INPE) developed a method to classify land use
in deforested areas previously mapped by the project PRODES, thus identifying not only
classes of land use, but also mapping regrowth of secondary vegetation (TerraClass-INPE).
According to this monitoring and classification system the amount of secondary forest in the
Brazilian Amazon up 2010 was 21 % of the mapped clear-cut deforestation (close to
740,000 km2). The regrowth rate for secondary vegetation, and consequent rate of carbon
accumulation, depends partly on the previous history of the abandoned land. (Feldpausch et al.
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2005) reported post-pasture biomass accumulation for two secondary forests in Central
Amazonia of 120 to 135 Mg/ha after 14 years of abandonment and found that biomass
accumulation rates were similar to those obtained from lightly-used pastures in eastern and
central Amazônia. More generally, Houghton (2010) and Ramankutty et al. (2007) have
suggested that Amazon forests recover 70 % of their original biomass in the first 25 years
following clear-cutting, and the remaining 30 % over the following 50 years. These and similar
data serve as a starting point to inform dynamic modelling of forest recovery post-disturbance,
but much more empirical data are needed to improve the spatial resolution and ecological
interpretation of forest regrowth across the Basin.

5 Conclusions

The biomass density maps analyzed in this study use different approaches to estimate and
interpolate ground-based and remotely-sensed data sources, and produced markedly different
distributions of estimated biomass density classes. Reducing uncertainty in estimating biomass
in the Amazon region is centrally important for estimating carbon emissions from land cover
change and deforestation, as well as for underpinning the development of policy mechanisms
aimed at reducing total land-use related emissions, such as the UN-REDD + framework. Land
use planning in the Brazilian Amazon has the potential to achieve substantial emissions
reductions over the coming decade, especially in the context of the national commitment from
Brazil to reduce deforestation by 80%. Tomake themost of this opportunity, improved biomass
estimation should be considered a high priority. Our results underline the need for higher
resolution biomass maps based on a combination of remote sensing data and an intensified field
network of permanent forest plots. Whilst an improved ground-truth database is essential,
improvements in post-processing of remotely sensed data (e.g. to account for variation in soil
and topography) are also necessary, as are advances in the estimation of the effects of
previously-ignored forest degradation processes, and the dynamic modelling of forest regrowth
trajectories. The goal of better management of greenhouse gas emissions from deforestation in
the Brazilian Amazon offers great opportunities for the development of mechanisms and
programs focusing on changing deforestation patterns in the region. Brazil potentially has a
globally important role to play in forest-related carbon dioxide emissions reductions, and the
national commitment to an 80 % reduction in the deforestation rate in the Amazon region may
alone lead to substantial reductions in emissions from land use in tropical forests.
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Abstract An improvement of methods for the inventory of greenhouse gas (GHG) emissions is
necessary to ensure effective control of commitments to emission reduction. The national
inventory reports play an important role, but do not reflect specifics of regional processes of
GHG emission and absorption for large-area countries. In this article, a GIS approach for the
spatial inventory of GHG emissions in the energy sector, based on IPCC guidelines, official
statistics on fuel consumption, and digital maps of the region under investigation, is presented.
We include mathematical background for the spatial emission inventory of point, line and area
sources, caused by fossil-fuel use for power and heat production, the residential sector, industrial
and agricultural sectors, and transport. Methods for the spatial estimation of emissions from
stationary and mobile sources, taking into account the specifics of fuel used and technological
processes, are described. Using the developed GIS technology, the territorial distribution of GHG
emissions, at the level of elementary grid cells 2 km×2 km for the territory ofWestern Ukraine, is
obtained. Results of the spatial analysis are presented in the form of a geo-referenced database of
emissions, and visualized as layers of digital maps. Uncertainty of inventory results is calculated
using the Monte Carlo approach, and the sensitivity analysis results are described. The results
achieved demonstrated that the relative uncertainties of emission estimates, for CO2 and for total
emissions (in CO2 equivalent), depend largely on uncertainty in the statistical data and on
uncertainty in fuels’ calorific values. The uncertainty of total emissions stays almost constant
with the change of uncertainty of N2O emission coefficients, and correlates strongly with an
improvement in knowledge about CH4 emission processes. The presented approach provides an
opportunity to create a spatial cadastre of emissions, and to use this additional knowledge for the
analysis and reduction of uncertainty. It enables us to identify territories with the highest
emissions, and estimate an influence of uncertainty of the large emission sources on the
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uncertainty of total emissions. Ascribing emissions to the places where they actually occur helps
to improve the inventory process and to reduce the overall uncertainty.

1 Introduction

Uncertainty estimation is an integral part of a multifaceted process of greenhouse gas (GHG)
inventory. A high quality of uncertainty estimates for a GHG inventory is crucial for the
implementation of mechanisms under the Kyoto Protocol (such as Emissions Trading, the
Clean Development Mechanism and Joint Implementation), as well as for establishing new
treaties of environmental protection (Jonas et al. 2014). The importance of this problem is
increasing because scientists have outlined a target so that the average global temperature
should not increase by more than 2oC from its pre-industrial level. Therefore, the uncertainty
of the GHG inventory is an important part of the general problem of uncertainty underlying
climate change (Yohe and Oppenheimer 2011).

International agreements regarding the reduction of GHG emissions operate with estimates of
emission and absorption on a country scale, and therefore uncertainty estimates of total emissions
at country level are of great interest (Winiwarter 2007). However, these uncertainties are not
constant, and change constantly (Lesiv et al. 2014). The main two factors of uncertainty changes
in relative terms are ‘knowledge increase’ and structural changes in GHG emissions. Therefore,
increasing knowledge on uncertainty and on reasons for its change is very important for reducing
uncertainties in GHG inventories, and setting realistic emissions targets (Lesiv 2011).

Moreover, for governmental bodies it is desirable to possess an effective tool, enabling the
analysis of the separate constituents of complex processes of GHG emissions and absorptions,
both at regional (Feliciano et al. 2013), as well as at spatial levels (Hamal 2009; Mendoza et al.
2013). Such a tool would give the possibility of obtaining integrated information on the actual
spatial distribution of GHG sources and sinks, and thus of finding optimum ways of solving a
number of economic or environment protection problems (Bucki 2010; Bun et al. 2010). Spatial
analysis of GHG emissions provides very important information about actual location of
anthropogenic sources of emissions at the regional level. Corresponding regions, or large-scale
point emission sources with the greatest influence on overall emissions, can be identified, and
investments decreasing the uncertainty in input data should increase mainly in these sources.
Therefore, referring emissions to the places where they actually occur provides the opportunity to
greatly improve the inventory process, and reduce the uncertainty of the overall inventory. This
provides very useful opportunities for analysing the separate constituents of inventory results’
uncertainty (Uvarova et al. 2014), using specialised techniques for uncertainty estimations (Joerss
2014) or spatial resolution improvement (Horabik and Nahorski 2014; 2010), and helps to find
the most efficient ways for reducing uncertainty (Jonas et al. 2010; Nahorski et al. 2007).

This article discusses the bottom-up inventory of GHG emissions in the energy sector. The
approaches to achieving geo-referenced cadastres of emissions are described, and methods of
uncertainty reduction are presented. The main idea of the approach is to carry out a spatial
cadastre of emissions, and to use the additional information on spatial distribution of emissions
for uncertainty abatement.

2 GHG spatial inventory

In principle, the approach and methods for the spatial analysis of greenhouse gas emissions
presented in this article can be applied to any region. As an example, techniques to analyse and
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create spatial emission inventories for the region of Western Ukraine are used in this article.
The study area is described in the supplementary material in (see Online Resource 1).

The results of the spatial inventory of GHG emissions contain the emission data for a
certain time period, and additional information on geographical coordinates. For climatic
models, and for the analysis of the territorial distribution of total emissions, it is desirable to
operate with emission estimates at the level of elementary plots of equal, possibly small, areas.
The size of a grid cell depends on the purpose of the inventory and on the total size of the
territory under investigation. For example, dividing the territory into 30 km×30 km cells is
reasonable for a large country, but such cells wouldn’t properly reflect the emission distribu-
tion in the case of an inventory for a single city or administrative region.

The spatial inventory of GHG emission consists of the following steps: (i) carrying out an
inventory for each grid cell, and for each category of activity using the ‘bottom-up’ approach;
and (ii) summing up the inventory results for all activity subsectors. The GHG emissions of a
certain economic activity in a single grid cell are, in turn, a sum of emissions from all the
emission sources, which are fully or partially located within borders of this grid cell. In order to
build a spatial cadastre of a particular gas emission, one calculates the specific emissions
(emission per unit area) of this gas on each grid cell. Such specific emission values are
calculated using the parameters and data which define the emission process for selected
activity, also taking into account the geographical location of the emission sources; that is,
for each category of anthropogenic activity characterised by relevant emission coefficients, the
specific emission of GHG can be presented as a function of activity intensity in a certain
territory (geographical coordinates) and time period.

2.1 Point, line and area emission sources

According to the internationally approved methodology of GHG emission inventory, the
energy sector, or any other sector, consists of a number of subsectors, which in turn may be
divided further into separate emission source groups (IPCC 2006). Within a separate grid cell,
the dissimilar emission sources are located: large and small in size; mobile and stationary etc.
(see Fig. 1).

To carry out a spatial analysis, it is reasonable to categorise all emission sources into three
groups: line, area, and large-scale point sources. Approaches to modelling GHG emissions
differ significantly among these.

Large emission sources with significant emissions and relatively small area are treated as
large-scale point sources. For example, power stations, large industrial installations, as well as
refineries, belong to this group. In the case of an inventory carried out for administrative
regions, units or a country as a whole, these emission sources are introduced as large-scale
point sources.

Large-scale point sources need to be localised precisely in the territory. Their corresponding
emissions need to be positioned directly to the point in space, using geographical coordinates.
The approach requires the following information to be available for each plant: activity data
(e.g. amount of fuel used in technological process; amount of industrial production sold etc.),
and additional parameters influencing emission coefficients (e.g. age and productivity of
equipment on a plant; chemical characteristics of fuel used; detailed information on techno-
logical processes; efficiency of emission control equipment etc.).

The line emission sources include the sources which are represented in the form of lines.
Roads, railways, oil and gas pipelines are treated as line emission sources. These emission
sources are divided into sections, using the grid cells that overlap the road or pipeline network.
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Furthermore, for each fragment of line, the corresponding emissions are calculated taking into
account a number of parameters. These parameters include: road category; daily or annual
traffic capacity; distance from settlements for road segments; presence of railway stations or
other objects for railways etc.

The area sources encompass the sources where emissions occur from a surface occupying a
certain area. Agricultural fields, forests, oceans, seas etc. are examples of area emission/
absorption sources. It is reasonable to also include in this group the territories where a large
number of small point or line emission sources are concentrated. For instance, in this paper, the
area sources also encompass the urban road network, because of the high density of roads and
streets. Other examples include households, territories where agricultural and building work is
conducted, small enterprises and plants, small boiler plants, as well as territories where coal, oil
or gas are extracted etc.

The spatial approach for GHG inventory takes into account a number of specific features,
such as: economic activity for rather small territories; methods and technologies of fossil-fuel
combustion in different economic sectors; technological specificity of extraction and refine-
ment of primary fuels; availability and efficiency of cleaning installations etc. Therefore, in
comparison to a ‘traditional’ GHG inventory, based on aggregated emission data for the whole
country, the spatially referenced inventory may have a significant impact on the accuracy of
the total emission estimates (Bun et al. 2010).

2.2 Main objects of geo-referenced inventory

The presented approach requires the possibility to operate with administrative units and
separate sources of emissions, such as geographical objects, which have their own set of
properties, including geographical characteristics.

Fig. 1 Example of classification of GHG emission sources in separate grid cells, divided into three types of
sources: large-scale point sources, line and area sources
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Let us define a set of geographic objects and some special operations, which will be used in
this paper:

eO ¼ O1;O2; ::;Onf g is a set of all administrative regions (such as a province)eR ¼ R1;R2;…f g is a set of all small administrative regions (such as a
district)eN ¼ N 1;N2;…f g is a set of geographical objects, such as cities of direct
regional subordinationeS ¼ S1; S2;…f g ¼ eSUrb; eSRurn o
is a set of settlements of all typeseSUrb ¼ SUrb1 ; SUrb2 ;…

� �
is a set of cities and townseSRur ¼ SRur1 ; SRur2 ;…

� �
is a set of villageseD ¼ D1;D2;…f g is a set of geographical features, such as roads

Δ={δ1,δ2,…} is a set of geographical objects, such as elementary square
areas dividing territory into cells — for example 2 km×
2 km — but are also limited by the regional border.

For the GHG spatial inventory, we should also identify some ratios over the geographical
features. They will not be used further in the set-theoretic sense, but for a definition of
territorial belonging and mutual placement of such objects.

For geographical objects A and B, let’s define the following operations:

1) A∈⌢B – geographically, object A is located entirely within object B;
2) A∩⌢B ¼ C – object С is the common territory of objects A and B; and C≠Ο , if the objects

A and B have at least one common point on the boundary;
3) A∪⌢B ¼ C – object C is the territory that is formed by combining the territories of

geographical objects A and B;
4) A−⌢B ¼ C – object C is a territory that was formed after cutting-off the object B territory

from the object A territory.

The following properties of geographic objects are also used: area(A) is the area of the
object A; len(A) is the length of linear object A; wid(A) is the width of object A; and dist(A,B) is
the distance between objects A and B.

2.3 Spatial inventory of GHG emissions from stationary sources

Emissions from stationary sources in the energy sector contain emissions from processes of heat
and power production, oil refineries, heating of residential buildings and industry, as well as
fugitive emissions from oil, gas and coal extraction processes (IPCC 2006). A common feature
for all these sources is that emissions should be located directly in the place where they occur.

In the sectors of heat and power production, as well as in oil refinery processes, all the
emission sources should be classified into two types: large-scale point sources; or small
territorially dispersed sources (Hamal 2009). For each selected large point source, information
has to be collected on fuel consumption, technology of fuel treatment, implemented emission
control systems, age of equipment, chemical characteristics of fuel used etc. Based on this,
GHG emissions are estimated and geocoded to the elementary cell, using the address of a plant
(power stations, big boiler plants, refineries etc.). The total amounts of fuel, combusted in
small dispersed sources (small power stations, boiler plants), are ascribed to settlement areas
(area emission sources), where these sources are located, proportionally to consumers’ pres-
ence or heat production.
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The mathematical model of the G-th gas emission (carbon dioxide, methane,
nitrous oxide etc.) for category ‘Power and Heat Production’ at the δ-th elementary
cell is defined as the amount of emissions from corresponding point and area
sources:
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f¼1
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Mi; f *EF
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;

where R is the administrative region/district, where the δ-th elementary cell is
located; Iδ is the number of point emission sources in the elementary cell belonging
to the category ‘Power and Heat Production’; F is the number of fossil fuel types;
Mi,f and MR,f

En are consumption of the f-th type of fuel, respectively by the i-th point

source, and at the region in total; eSE∈eSUrb is a set of urban settlements, where big
power or heat plants are located; Q(x) is the number of residents in the geographical
object x; EFi,tech

G (f) and EFEn
G (f) are the emission factors of the G-th gas from

combustion of the f-th type fuel, respectively, on the i-th power plant, taking into
account technological process specifics, and the average rate for all small heat and
power plants; and index En reflects belonging to the sector ‘Power and Heat
Production’.

As an example, the total specific emissions of carbon dioxide from burning coal,
natural gas and other fossil fuels for electricity and heat production, in the Lviv
region of Ukraine, are presented in a form of 3D thematic map in Fig. 2 (21.8
ths.km2 area, 20 administrative districts). For better visual representation, the highest
column, corresponding to the Dobrotvirska power station has been cut out from the map. Its
emission is so high that makes it impossible to display differences in emissions from other
sources.

In the residential sector, households constitute small and territorially dispersed emission
sources. In the models for this sector, the sources are represented by territories of settlements,
and are classified as area sources. For most cities, accurate statistics on fuel usage in the
residential sector are available, and the data can be directly related to the city territory. The
remaining fuel is distributed among settlements, based on fuel type, settlement type, popula-
tion density, parameters of average fuel usage for certain types of settlement in rural and urban
territories etc.

Mathematical models and spatial inventory results for residential and other sectors are
available as supplementary material (see Online Resource 1).

2.4 Spatial inventory of GHG emission from mobile sources

Emissions from all types of transport refer to GHG emissions from mobile sources. During
fuel combustion in transport, the direct-acting GHG emissions occur; that is carbon dioxide,
methane, nitrous oxide etc.

In the sector of road transportation, automobiles are the source of emissions. Since the
investigation of emissions from each vehicle is not feasible in practice, it is reasonable to treat
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roads and highways as GHG emission sources. According to the classification presented in
Section 2.1, roads and highways belong to line emission sources. However, the urban road
network is treated as an area source because of very high density, and only main urban roads
are treated separately as line sources.

Statistical information on fossil-fuel usage in the road transport sector is available
for the level of administrative units and cities from the yearbooks of fuel statistics
(TSLR 2009). Other parameters, which will be used in the present model are available
from statistical publications containing transport statistics, and from summarising
yearbooks. In Ukraine, the input data for the GHG inventory are available either at
the level of administrative regions and cities, or at the level of the province as a
whole, depending on the administrative province.

In general, the level of GHG emissions in a certain grid cell depends on the amount of fuel
consumed by transport within the cell borders. That is, prior to the spatial GHG
emission inventory from the road transport, it is necessary to disaggregate the amount
of fossil fuel used by transport to concrete emission sources, and to multiply the fuel
quantity with the corresponding emission factors, in order to obtain emission estimates
for a certain GHG. All the fuel used within an urban road network in a region is
disaggregated directly to the territories of cities and suburban areas around cities.
Therefore, the suburban territories of three levels are built around administrative
borders of each city: Z0(i) is a territory of the i-th city; the first suburban territory
Z1(i) (the first buffer zone) has a width of half the radius of the city area; the second
zone Z2(i) has one radius; and the third zone Z3(i) has a radius of one and a half parts

of the city radius. Then eZ ¼ Z1 ið Þ; i∈eSZn o
∪ Z2 ið Þ; i∈eSZn o

∪ Z3 ið Þ; i∈eSZn o
is a set of analysed

buffer zones around the cities, with more intensive automobile traffic. Here, Zn(i) is the n-th

level zone for the і-th city, and eSZ⊂eS is a set of cities, the buffer zones for which have been built.
For big cities, the corresponding fuel consumption in the transport sector is gathered, and

the data is located directly in the territory of the city and surrounding suburban areas. For small
cities, the disaggregation of fuel used in transport is made proportional to population density.

Fig. 2 Total specific emissions of carbon dioxide from burning all types fossil fuels in sector ‘Power and Heat
Production’, at the level of elementary cells 2 km×2 km, Lviv region, 2008
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The rest of fuel used in the transport sector in a region is divided among the automobile roads
of a region (including main roads within settlements), according to the developed algorithms.
The algorithms take into account the length and width of each road segment, its capacity and
current state. In accordance with the above approach, the part of fuel (60 %), which was
bought in a region, is used (burnt) within settlements borders, for the needs of internal
transport. Moreover, it is assumed that, for cities, this part of fuel is divided additionally on
automobile roads in suburban territories, located within a certain distance from the
administrative borders of the settlement (zones Z0,Z1,Z2,Z3 in proportion 40 %, 10 %,
6 %, 4 %, accordingly). The rest of the fuel (40 %) is assumed to be used outside the
settlements, and is appointed to the road segments according to the road maps. The
values of these coefficients are based on specific statistical data of automobile traffic
(TSLR 2009), and on expert opinion.

Emissions for each source type (area and line sources) are calculated using the bottom-up
approach. The quantity of a certain fuel type (diesel, gasoline etc.) is multiplied by the
corresponding emission factor. Using the above assumptions, the emissions of carbon dioxide

per year in the city S (or in a suburban zone built around it for S∈eSZ ), which belong to the
administrative district R, are modelled with the formula:

ECO2
Tr Zn Sð Þ½ � ¼

X
b¼1

B X
t¼1

T X
f¼1

F MO
b f ; tð Þ⋅PR f ; t; bð Þ
PO f ; t; bð Þ ⋅EFCO2

Tr fð Þ
 �

⋅
Q Sð ÞX
s∈eS RQ sð Þ Cn;
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0; 3; O ¼ O ∈ eO∧S _∈ O

n o
; R ¼ R∈ eR ∧ S _∈ R

n o
; eS R ¼ eS _

∩ R
n o

;

where ECO2
Tr Zn Sð Þ½ � is the emission of carbon dioxide in the settlement S (if n=0) or in one of

the conventionally constructed buffer zones around S (n=1,2,3);Mb(f,t) is the amount of the f-
th type fuel used for vehicles of the t-th type, owned by b; P(f,t,b) is the indicator used for the
disaggregation of the total regional (like province) fuel consumption of the f-th type for the t-th
type of vehicle, owned by b, at the level of administrative regions/district (such as mileage of
cars using gasoline; diesel fuel sales through service stations; distribution of the number of cars
in administrative units; the number of gas filling stations etc.); Q(s) is the number of habitants

in settlement s; EFCO2
Tr (f) is the emission factor for carbon dioxide, which depends on the type

of fuel burnt; Cn is the coefficient, which reflects the proportion of fuel sold in the city for
transport activity, in the n-th zone of this city;О and R are, respectively, provinces and regions/
districts, where the city is located; В is the number of vehicle ownership types; F is the number
of fossil fuel types (gasoline, diesel, etc.); Т is the number of vehicle types (motor cars, buses,
etc.); index Tr indicates that the corresponding parameters belong to the road transport sector.

For cities of province/regional subordination, the relevant statistical data about the con-
sumption of fuel for transport activity are reflected separately in statistical reports. Hence for
the needs of the spatial inventory, they can be ascribed directly to the territory of city
and its suburban zones, in accordance with accepted ratios. For n-th suburban zone Zn

of the city N with regional subordination, the carbon dioxide emissions can be
calculated by the formula:

ECO2
Tr Zn Nð Þ½ � ¼

X
b∈B

X
t∈T

X
f ∈F

MN
b f ; tð Þ⋅EFCO2

Tr fð Þ� �
⋅Cn; n ¼ 0; 3

where Mb
N(F,T) is an amount of the f-th type fuel used in the N-th city of regional

subordination, for transport activity of the t-th type vehicles, owned by b.
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For any section of the road d, the coefficient Ctotal(d) is determined, which describes the
status and parameters of this road section, and has the following form:

len dð Þ C k dð Þ;wid dð Þ½ � Cond dð Þ;
where len(d) is the total length of the road d, C[k(d),wid(d)] is the coefficient of the road d
capacity, that depends on the road width wid(d) and category (or type) k(d); Cond(d) is the
coefficient of a road current state (road is used, Cond(d)=1; at the stage of repair or
construction, or is unusable for any other reasons, Cond(d)=0).

For the purpose of emission analysis, the road network is divided into sections within the

borders of administrative districts and suburban zones eSz , located around the cities. The set of

zones that includes a corresponding section of the road, can be marked as eZd ¼ z∈eZd∈Zn o
. It

should be noted that the zones of zero order— i.e. territories of the cites— do not belong to this set.
Modelling of carbon dioxide emissions on the road section D∈eD located within the region

R is performed with the formula:

ECO2
Tr Dð Þ ¼

X
b¼1

B X
t¼1

T X
f¼1

F MO
b f ; tð Þ⋅PR f ; t; bð Þ

PO f ; t; bð Þ ⋅ EFCO2 fð Þ
 �

⋅
Ctotal Dð ÞX
d∈De Ctotal dð Þ þ

O ¼ O ∈ eO ∧ D∈⌢ O
n o

; R ¼ R ∈ eR∧D ∈⌢ R
n o

;
∼
DR ¼D

∼ ∩⌢ R;

where ECO2
Tr Dð Þ are the carbon dioxide emissions on the road D section; Mb(f,t) is the amount

of the f-th type fuel, used by the t-th type vehicles, owned by b; P(f,t,b) is the indicator used for
the disaggregation of the total regional (like province) consumption of fuel of the f-th type for
the t-th type vehicle, owned by b, at the level of administrative regions/district; Ctotal(D) is the

parameter of a road D, that determines its capacity; EFCO2
Tr fð Þ is the emission factor for

carbon dioxide, that depends on the type of fuel burnt; О and R are provinces/regions and
districts, respectively, in which a corresponding segment of the road D is located.

At the level of the elementary plot (i.e. grid cells level), all the emission sources of the
transport sector are analysed (the territories of settlements and roads), which are partially or
completely located within the corresponding grid cell. Therefore, the total emissions for the
line and area sources can be found:

ECO2
Tr δð Þ ¼ 1

2

X
s∈eS

ECO2
Tr sð Þ⋅area s

T⌢
δ

� �
area sð Þ þ

X
d∈eD

ECO2
Tr dð Þ⋅len d

T⌢
δ

� �
len dð Þ

264
375;

where ECO2 xð Þ is the carbon dioxide emission, caused by a corresponding geographical object
x; area(x) is the object x area; len(x) is the length of a linear object x; and δ is the elementary
plot (grid cell).

Spatial inventory of gases other than the carbon dioxide, as well as emissions from off-road
and railway transport, is described in the supplementary material (see Online Resource 1). As
an example of spatial analysis results, the specific emissions of СО2 from gasoline combustion
by road vehicles of firms (not private cars) for the western regions of Ukraine, are presented in
a form of 3D thematic map, in Fig. 3.

Based on the approaches presented in (Hamal 2008), the geo-information system is
developed for a practical implementation of algorithms for the geo-spatial inventory of
GHG emissions, automatic creation of digital maps, visual analysis of obtained results, and
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for uncertainty analysis. This geo-information system is described in the supplementary
material (see Online Resource 1). The results may be visualised as digital maps with various
thematic layers (see Fig. 4 as an example).

Fig. 3 Specific emissions of СО2 from gasoline combustion by road vehicles of firms in Western Ukraine
regions (kg/km2, 2 km×2 km grid cells, 2009)

Fig. 4 Prism map of specific direct-acting GHG emissions, summarised by all subsectors of the energy sector for
Western Ukraine regions (2009, 4 km×4 km; СО2-eqv., kg/km2; owing to incompatibly high emission rates at
Burshtyn and Dobrotvir power plants the scale of power 0.4 is used for visualisation)
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3 Uncertainty evaluation and sensitivity analysis

Uncertainty of GHG emissions represents a lack of knowledge about the true value of
emissions for a certain area. Uncertainties resulting from the assessment of GHG emissions
depend largely on the method used, the quality of input data, uncertainties from expert
judgements etc. (IPCC 2006).

Increasing knowledge about the investigated process can help to decrease uncertainties
(Marland et al. 2009). Therefore, compared to a traditional inventory on the scale of
the whole country, spatially referenced emissions have additional parameters: geo-
graphical coordinates. This provides new possibilities of analysis and uncertainty
reduction. The introduction of new independent information about GHG emission
processes, for separate emission sources or groups of sources, leads to a decrease in
uncertainty of the total results (Winiwarter 2007).

The verification of spatial emissions disaggregation is described in supplementary material
(see Online Resource 1), but uncertainty evaluation and sensitivity analysis is presented
below.

Total uncertainty of emission modelling depends on uncertainties of all the input parame-
ters. These uncertainties may be combined into a total uncertainty estimate of inventory results
using the statistical tools specified in (IPCC 2006). For such an analysis it is important to have
independent uncertainty ranges for emission coefficients, statistical data and other parameters
of inventory process (Bun 2009).

In calculations, ‘national’ uncertainty ranges were used mainly for statistical data,
emission coefficients and net calorific values. When the ‘national’ data were missing,
the default IPCC uncertainty ranges were implemented. In the first step, the spatial
results of emissions in each category, at the scale of 2 km×2 km, were summarised to
a subregional level. Then the uncertainty ranges were estimated for all subsectors and
greenhouse gases at the subregional level, using the Monte Carlo procedure. In the
next step, these results were used as input data for uncertainty range estimates for the main
subsectors in the Western Ukraine, also using the Monte Carlo method. Table 1 contains
modelling results of emissions and uncertainty ranges by GHGs, and by economic sectors for
Western Ukraine, in 2008.

Table 1 Uncertainty estimates of GHG emissions by economic subsectors (Western Ukraine, 2008)

Sector Emissions
Uncertainty

СО2 СН4 N2O Total emissions,
СО2 eqv.

Heat & power
production, refinery

E (Gg) 20027,0 0,287 0,286 20122,1

U(%) −8.99..+9.45 −31,7.+0.46,74 −68,37..+160.3 −9,02..+9,48
Industry E (Gg) 1731,5 0,067 0,011 1736,2

U(%) −6,61..+6.85 −42,33.+0.66,34 −58,97..+123.3 −6,62..+6,85
Road transport E (Gg) 5191,5 1,867 0,332 5332,8

U(%) −5,65..+5.71 −38,33.+0.61,64 −42,97..+69.3 −5,72..+5,81
Railway and

off-road transport
E (Gг) 730,5 0,123 0,315 830,5

U(%) −12,35..+12.36 −34,72..+51,64 −58,87..+112.9 −14,53..+17,91
Residential E (Gg) 8135,1 2,281 0,039 8195,0

U(%) −11,44..+11.92 −48,92..+81,64 −62,87..+128.9 −11,47..+11,94
Oil, gas, coal extraction E (Gg) 34,02 43,431 0,0012 946,43

U(%) −78,94..+81.72 −45,82..+48,54 −92,87..+328.9 −44,47..+46,94
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Uncertainty ranges of total GHG emissions from the energy sector in the territory of
Western Ukraine are as follows:

& for СО2: – 5.76 %..+6.02 %;
& for СН4: – 41.45 %..+44.28 %;
& for N2O: – 36,93 %..+60.12 %;
& for total emissions taking into account Global Warming Potential factor: −5.74 %..+

5.97 %.

The highest uncertainty of total emissions is noted for the processes of coal, gas and oil
extraction, for transport (with the exception of road transport), and for the residential sector
(Table 1). Relatively high uncertainties refer to emissions in the sector of heat and power
production, mainly as a result of the domination of solid fuel.

Furthermore, the sensitivity of uncertainty in total emissions to the change of uncertainties
in input parameters is investigated. The considered input parameters include: statistical data on
economic activity; calorific values; and emission coefficients. Fig. 5 shows the results of
analysis and sensitivity graphics of uncertainties of emission estimates for the improvement of
accuracy of input parameters as a percentage P.

The results show that the relative uncertainty in emission estimates for both CO2 and total
emissions in CO2 equivalent depends largely on uncertainty in the statistical data, and on
uncertainty for calorific values of fuel. Uncertainty for total emissions stays almost the same
with the change of uncertainty in N2O emission coefficients, and it is hardly correlated with an

Fig. 5 Dependence of total uncertainty of emission estimates on the changes of uncertainty (on P %) of input
parameters of inventory (Monte Carlo approach): а СО2; b СН4; c N2O; d total emissions
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improvement in knowledge about CH4 emission processes. For example, with the reduction by
half of uncertainty in CH4 emission coefficients, the uncertainty of total inventory results stays
almost unchanged. On the other hand, the uncertainty in overall CH4 emissions changes from
44 % to 24 %. A similar situation is revealed in the case of the reduction by half of uncertainty
in N2O emission coefficients. The overall uncertainty of inventory results for all the direct-
acting GHGs doesn’t change, but there is a considerable reduction of N2O emission uncer-
tainty, from 60 % to 35 % (the upper bounds of 95 % confidence intervals).

To summarise, despite large uncertainties in CH4 and N2O emission coefficients, the
improvement in their accuracy has no significant impact on the uncertainty reduction of total
emissions in CO2 equivalent. The most efficient way of reducing uncertainty is by improving
the accuracy of statistical data on fuel statistics and calorific values.

In the energy sector, a reduction by half of uncertainty in the statistical data leads to a
reduction of uncertainty in total emissions from 5.84 % to 4.87 %. An equivalent reduction of
calorific value uncertainty leads to a reduction of overall uncertainty, to 4.75 %. Moreover,
improvement only in the accuracy of physical and chemical characteristics of coal used in the
power plants of Western Ukraine has a significant impact on a reduction of uncertainty in the
overall GHG emission cadastre.

4 Conclusions

The spatial analysis of GHG emissions provides important information about the actual
location of the main anthropogenic emissions at the regional level. This approach provides
an opportunity to carry out a spatial cadastre of emissions, and to use this additional
knowledge for the analysis and reduction of uncertainty. Therefore, it enables us to analyse
separate constituents of the complex processes of GHG emission and absorption, and also to
obtain integrated information on the spatial distribution of the GHG sources. It also provides
very useful opportunities for analyzing the distinct components of inventory uncertainty, using
specialised techniques for uncertainty estimations, or the improvement of spatial resolution.
Hence, in general, it helps to find the most efficient ways for uncertainty reduction.

A spatial integration of the geo-referenced inventory results for all the elementary plots
(grid cells) yields a generalised result of the traditional inventory. The approach enables the
identification of territories with the highest emissions, and estimates the influence of uncer-
tainty from the large emission sources on the uncertainty of total emissions. Investments for
the decrease of uncertainty in input data should be placed mainly in these sources. Therefore,
ascribing emissions to the places where they actually occur helps to improve the inventory
process and to reduce the overall uncertainty.

The results achieved for the western region of Ukraine demonstrated that the relative
uncertainty of emission estimates for CO2 and for total emissions (in CO2 equivalent) depends
largely on uncertainty in the statistical data, and on uncertainty in fuels’ calorific values. The
uncertainty of total emissions stays almost constant with the change of uncertainty of N2O
emission coefficients, and is hardly correlated with an improvement in knowledge about CH4

emissions processes. Despite great uncertainties regarding CH4 and N2O emission coefficients,
the improvement in their accuracy has no significant impact on the uncertainty reduction of
total emissions in CO2 equivalent. The most efficient way of reducing uncertainty is the
improvement in the accuracy of data on fuel statistics and calorific values.

In conclusion, the geo-information technology of GHG spatial inventory at the regional
level seems to be an effective tool to support decision-making regarding the considered
problems of environmental protection.

Climatic Change (2014) 124:561–574 573

Reprinted from the journal123



Acknowledgments The study was conducted within the 7FP Marie Curie Actions IRSES project No. 247645,
and was partially supported by Ministry of Education and Science of Ukraine.

References

Bucki R (2010) Modelling synthetic environment control. Artificial Intelligence 4:315–321
Bun A (2009) Methods and tools for analysis of greenhouse gas emission processes in consideration of input data

uncertainty. Dissertation, Lviv Polytechnic National University
Bun R, Hamal KH, Gusti M, Bun A (2010) Spatial GHG inventory on regional level: Accounting for uncertainty.

Climatic Change 103:227–244
Feliciano D, Slee B, Hunter C, Smith P (2013) Estimating the contribution of rural land uses to greenhouse gas

emissions: A case study of North East Scotland. Environmental Science & Policy 25:36–49
Hamal K (2008) Carbon dioxide emissions inventory with GIS. Artificial Intelligence 3:55–62
Hamal Kh (2009) Geoinformation technology for spatial analysis of greenhouse gas emissions in Energy sector.

Dissertation, Lviv Polytechnic National University
Horabik J, Nahorski Z (2010) A statistical model for spatial inventory data: a case study of N2O emissions in

municipalities of southern Norway. Climatic Change 103:263–276
Horabik J, Nahorski Z (2014) Improving resolution of spatial inventory with a statistical inference approach. This

issue.
IPCC (2006) IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse

Gas Inventories Programme, Eggleston HS, Buendia L, Miwa K, Ngara T, Tanabe K (eds).
Joerss W (2014) Determination of the uncertainties of the German emission inventories for particulate matter and

aerosol precursors using Monte-Carlo analysis. This issue.
Jonas M, White T, Marland G, Lieberman D, Nahorski Z, Nilsson S (2010) Dealing with uncertainty in GHG

inventories: How to go about it? Lecture Notes in Economics and Mathematical Systems 633:229–245
Jonas M, Krey V, Wagner F, Marland G, Nahorski Z (2014) Uncertainty in an emissions constrained world. This

issue.
Lesiv M (2011) Mathematical modeling and spatial analysis of greenhouse gas emissions in regions bordering

Ukraine. Dissertation, Lviv Polytechnic National University
Lesiv M, Bun A, Jonas M (2014) Analysis of change in total uncertainty in GHG emissions for the EU-15

countries. This issue.
Marland G, Hamal K, Jonas M (2009) How uncertain are estimates of CO2 emissions? Journal of Industrial

Ecology 13:4–7
Mendoza D, Gurney K, Geethakumar S, Chandrasekaran V, Zhou Y, Razlivanov I (2013) Implications of

uncertainty on regional CO2 mitigation policies for the U.S. onroad sector based on a high-resolution
emissions estimate. Energy Policy 55:386–395

Nahorski Z, Horabik J, Jonas M (2007) Compliance and emissions trading under the Kyoto protocol: Rules for
uncertain inventories. Water, Air, and Soil Pollution: Focus 7(4–5):539–558

TSLR (2009) Transport Statistics of Lviv Region: Statistical Yearbook. Main Statistical Agency of Lviv Region,
Lviv

Uvarova N, Paramonov S, Gytarsky M (2014) The improvement of greenhouse gas inventory as a tool for
reduction emission uncertainties for operations with oil in the Russian Federation. This issue.

Winiwarter W (2007) National greenhouse gas inventories: understanding uncertainties versus potential for
improving reliability. Water Air Soil Pollution: Focus 7:443–450

Yohe G, Oppenheimer M (2011) Evaluation, characterization, and communication of uncertainty by the
intergovernmental panel on climate change – an introductory essay. Climatic Change 108:629–639

574 Climatic Change (2014) 124:561–574

Reprinted from the journal 124



Improving resolution of a spatial air pollution inventory
with a statistical inference approach

Joanna Horabik & Zbigniew Nahorski

Received: 2 January 2013 /Accepted: 1 December 2013 /Published online: 28 January 2014
# The Author(s) 2014. This article is published with open access at Springerlink.com

Abstract This paper presents a novel approach to allocation of spatially correlated data, such
as emission inventories, to finer spatial scales, conditional on covariate information observable
in a fine grid. Spatial dependence is modelled with the conditional autoregressive structure
introduced into a linear model as a random effect. The maximum likelihood approach to
inference is employed, and the optimal predictors are developed to assess missing values in a
fine grid. An example of ammonia emission inventory is used to illustrate the potential
usefulness of the proposed technique. The results indicate that inclusion of a spatial depen-
dence structure can compensate for less adequate covariate information. For the considered
ammonia inventory, the fourfold allocation benefited greatly from incorporation of the spatial
component, while for the ninefold allocation this advantage was limited, but still evident. In
addition, the proposed method allows correction of the prediction bias encountered for the
upper range emissions in the linear regression models.

1 Introduction

The development of high-resolution emission inventories is essential for designing suitable
abatement measures. Spatial distributions of emissions can serve as an input for atmospheric
dispersion models, which in turn may produce concentration maps of pollutants contributing to
the adverse health effects, like ammonia emissions. For other air pollutants, such as green-
house gasses (GHG), spatial patterns become helpful in improving identification of distributed
emission sources.

Numerous issues underlying preparation of spatially resolved GHG inventory were
discussed e.g. in Boychuk and Bun (this issue), Bun et al. 2010 or Thiruchittampalam et al.
2010. In general, the task crucially depends on availability of spatially distributed activity data.
For instance, at present in Poland the activity data relevant to GHG emissions can be obtained
at a level of country regions (voivodships). Information of higher spatial resolution can be
often obtained only for some proxy data related to GHG emissions, such as land use and linear
emission sources. Recently, also nighttime lights observed by a satellite have been used for
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more accurate estimation of spatial distribution of CO2 emissions (Ghosh et al. 2010; Oda and
Maksyutov 2011).

Typically, the regression models have been applied for spatial allocation of emission data
(Dragosits et al. 1998; Oda and Maksyutov 2011). However, emissions in general tend to be
spatially correlated, which provides opportunity for potential improvements. This idea moti-
vated us to develop a more advanced approach for accurate disaggregation of air pollution data.

Making inference on variables at points or grid cells different from those of the
data is referred to as the change of support problem (Gelfand 2010). Several
approaches have been proposed to address this issue. The geostatistical solution for
realignment from point to a real data is provided by block kriging (Gotway and
Young 2002). Areal weighting offers a straightforward approach if the data are
observed at a real units, and the inference is sought at a new level of spatial
aggregation. Some improved approaches with better covariate modeling were also
proposed e.g. in Mugglin and Carlin 1998 and Mugglin et al. 2000.

In this study we propose to apply methods of spatial statistics to produce higher resolution
emission inventory data, taking advantage of more detailed land use information. The ap-
proach resembles to some extent the method of Chow and Lin (1971), originally proposed for
disaggregation of time series based on related, higher frequency series. Here, a similar
methodology is employed to disaggregate spatially correlated data.

Regarding an assumption on residual covariance, we apply the structure suitable for areal
data, i.e. the conditional autoregressive (CAR) model. Although the CAR specification is
typically used in epidemiology (Banerjee et al. 2004), it was also successfully applied for
modelling air pollution over space (Kaiser et al. 2002; McMillan et al. 2010). Compare also
Horabik and Nahorski (2010) for another application of the CAR structure to model spatial
inventory of GHG emissions. The maximum likelihood approach to inference is employed,
and the optimal predictors are developed to assess missing concentrations in a fine grid.

The application part of the study concerns an ammonia (NH3) emission inventory in a region
of Poland. Ammonia is emitted mainly by agricultural sources such as livestock production and
fertilized fields. Its high concentrations can lead to acidification of soils, forest decline, and
eutrophication of waterways. Ammonia emissions are also recognized for their importance in
contributing to fine particulate matter; hence its spatial distribution is of great importance.
However, agricultural emission sources cannot be measured directly, and spatial emission
patterns need to be assessed otherwise. This issue was addressed, among others, by Dragosits
et al. 1998, where agricultural and land cover data were used to disaggregate the national NH3

emission totals across Great Britain. We demonstrate that the straightforward approaches based
on linear dependences might be improved by introducing a spatial random effect.

Nevertheless, the proposed approach is of wider applicability, and can be used in numerous
situations where higher resolution of spatial data is needed. In the context of the greenhouse
gasses, the method might be particularly adequate to improve resolution of these activity data
which tend to be spatially correlated. The plausible sectors include agriculture, transportation
and forestry. Improved resolution may in turn contribute to reduction in uncertainties under-
lying GHG inventories.

2 Disaggregation framework

This section presents the statistical approach to the issue of spatial disaggregation. We have
available data on a spatially distributed variable (inventory of emissions) integrated in a coarse
grid. The aim is to estimate the distribution of this variable in a fine grid, conditional on some

576 Climatic Change (2014) 124:575–589

Reprinted from the journal 126



explanatory variables observable in this grid. It is assumed that the variable of interest is
spatially correlated. Its residual covariance structure is set and the conditional autoregressive
model is applied. An additional important assumption of the method is that the covariance
structure of the variable in a coarse grid is the same as that in a fine grid.

Below we specify the model and provide details on its estimation in the coarse grid as well
as on prediction in the fine grid.

2.1 Model

Fine grid We begin with the model specification in a fine grid. Let Yi denote a random
variable associated with a missing value of interest yi defined at each cell i for i=
1,…,n of a fine grid (n denotes the overall number of cells in a fine grid). Assume
that each random variable Yi follows the Gaussian distribution with the mean μi and
variance σY

2

Y i μij eGau μi;σ
2
Y

� �
: ð1Þ

Given the values μi and σY
2, the random variables Yi are assumed independent, thus the joint

distribution of Y=(Y1,…, Yn)
T conditional on the mean process μ=(μ1,…,μn)

T is the Gaussian

Y jμ eGaun μ;σ2
Y In

� �
; ð2Þ

where In is the n×n identity matrix; the superscript T stands for the transpose.
The mean μ represents the true process underlying emissions, and the (missing)

observations are related to this process through a measurement error with the variance
σY
2. The model for the mean process is formulated as a sum of the regression

component with available covariates, and a spatially varying random effect. For this,
the conditional autoregressive model is used. The CAR model is given through the
specification of the full conditional distribution functions of μi for i=1,…,n (Cressie
1993; Banerjee et al. 2004)

μijμ−i eGau xTi βþ ρ
X
j ¼1
j≠i

n wij

wiþ
μ j−x

T
j β

� �
;
τ2

wiþ

0BBBB@
1CCCCA; ð3Þ

where μ− i denotes all elements in μ but μi, wij are the adjacency weights (wij=1 if j
is a neighbour of i and 0 otherwise, also wii=0); wi+=∑ jwij is the number of
neighbours of an area i; xi is a vector containing 1 as its first element (for the
intercept β0) and k explanatory covariates of an area i as the next elements; β=(β0,β1,
…,βk)

T is a vector of regression coefficients. For calculation of the adjacency weights
we use the Queen Method, i.e. two cells are considered neighbours if they share a
side or a vertex. The CAR structure follows an assumption of similar random effects
in adjacent cells; this is reflected in the second summand of the conditional expected
value of μi, which is proportional to the average values of remainders μj−xjTβ for
neighbouring sites (i.e. when wij=1). This proportion is calibrated with the parameter
ρ. Thus ρ reflects the strength of spatial association. The variance of the full
conditional distribution of μi is inversely proportional to the number of neighbours
wi+, and τ2 is a variance parameter.
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Given (3), the joint probability distribution of the process μ is as follows, see e.g. Banerjee
et al. (2004)

μ∼Gaun Xβ; τ2 D−ρWð Þ−1
� �

; ð4Þ

where X is the matrix whose rows are the vectors xi
T

X ¼
1 x11 ⋯ x1k
⋮ ⋮ ⋱ ⋮
1 xn1 ⋯ xnk

24 35;
D is an n×n diagonal matrix with wi+ on the diagonal; and W is an n×n matrix with

adjacency weights wij. Equivalently we can write (4) as

μ ¼ Xβþ ε; ε eGaun 0;Ωð Þ; ð5Þ
where Ω=τ2(D−ρW)−1.

Coarse grid The model for a coarse grid (aggregated) observed data is obtained by multipli-
cation of (5) with the N×n aggregation matrix C consisting of 0’s and 1’s, indicating which
cells have to be aggregated together

Cμ ¼ CXβþ Cε Cε eGauN 0;CΩCT
� � ð6Þ

where N is the number of observations in a coarse grid. Now, suppose that the random variable
λ=Cμ is the mean process for random variables Z=(Z1,…,ZN)

T associated with observations
z=(z1,…,zN)

T of the aggregated model

Z jλ eGauN λ;σ2
ZIN

� �
: ð7Þ

Thus, random variables Zi, i=1,…,N are conditionally independent

Zijλi eGau λi;σ
2
Z

� � ð8Þ
where λi is the i-th element of the vector λ.

2.2 Estimation and prediction

Having available observations of Zi in the coarse grid, we can estimate parameters β,σZ
2,τ2 and

ρ with the maximum likelihood (ML) method. First, from (6) and (7) the joint unconditional
distribution of Z is derived

Z eGauN CXβ;M þ CΩCT
� �

; ð9Þ

where M=σZ
2IN, IN is the N×N identity matrix; see e.g. Lindley and Smith (1972). Next, the

log likelihood function associated with (9) is formulated

L β;σ2
Z ; τ

2; ρ
� � ¼ −

1

2
log M þ CΩCT

�� ��− N

2
log 2πð Þ

−
1

2
z−CXβð ÞT M þ CΩCT

� �−1
z−CXβð Þ;
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where | ⋅ | denotes the determinant. With fixed σZ
2, τ2 and ρ, the above log likelihood is

maximised for

β σ2Z ; τ
2; ρ

� � ¼ CXð ÞT M þ CΩCT
� �−1

CX
h i−1

CXð ÞT M þ CΩCT
� �−1

z;

which substituted back into the function L(β,σZ
2,τ2,ρ) provides the profile log likelihood

L σ2
Z ; τ

2; ρ
� � ¼ −

1

2
log M þ CΩCT

�� ��− N

2
log 2πð Þ

−
1

2
z−CX CXð ÞT M þ CΩCT

� �−1
CX

h i−1
CXð ÞT M þ CΩCT

� �−1
z

 �T
� M þ CΩCT
� �−1 � z−CX CXð ÞT M þ CΩCT

� �−1
CX

h i−1
CXð ÞT M þ CΩCT

� �−1
z

 �
:

Further maximisation of L(σZ
2,τ2,ρ) is performed numerically, including checks on ρ to

ensure that the matrix D−ρW is non-singular, see Banerjee et al. (2004).
To obtain the standard errors of the estimated parameters, one needs to derive the Fisher

information matrix. The asymptotic variance-covariance matrix of the ML estimators is ob-
tained by inverting the expectation of the negative of the second derivatives (the Hessian) of the
log likelihood function, and the expectation is evaluated at theML estimates. In other words, the
expected Fisher information matrix is used to obtain the standard errors of parameters.
Calculation of the Hessian with respect to the regression coefficients is relatively straightfor-
ward, but it becomes more burdensome for the covariance parameters. A detailed derivation of
the explicit formulas for the expected Fisher information matrix will be provided elsewhere;
here we report the standard errors of the parameter estimators obtained in the case study.

To estimate the required values in a fine grid, the following prediction procedure is applied.
Note that our primary interest is the underlying emission inventory process μ. The predictors
optimal in the minimummean squared error sense are given by E(μ|z). The joint distribution of
(μ,Z) is given by

μ
Z

 �eGauNþn
Xβ
CXβ

 �
;

Ω Ω CT

CΩ M þ CΩCT

 �� �
: ð10Þ

The distribution (10) allows for full inference, yielding both the predictor bμ ¼ bE μjzð Þ and

its error bσ2
μ ¼ Vbar μjzð Þ

bμ ¼ Xbβþ bΩCT bM þ CbΩCT
� �−1

z−CXbβh i
ð11Þ

bσ2

μ ¼ bΩ−bΩCT bM þ CbΩCT
� �−1

CbΩ; ð12Þ

whereb⋅ denotes the estimated values.

3 Case study

3.1 Data

The proposed procedure is illustrated using a real dataset of gridded inventory of NH3

(ammonia) emissions from fertilization (in tonnes per year) reported in the northern region
of Poland (the Pomorskie voivodship). The inventory grid cells are of a regular size 5 km×
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5 km, and the whole of cadastral survey compiles n=800 cells, denoted y=(y1,…,yn)
T, see

Fig. 1. For explanatory information we use the CORINE Land Cover Map for this region,
available at the European Environment (2010). Specifically, for each grid cell we calculate the
area of these land use classes, which are related to ammonia emissions. The following
CORINE classes were considered (the CORINE class numbers are given in brackets):

Non-irrigated arable land (211), denoted x1=(x1,1,…,xn,1)
T;

Fruit tree and berry plantations (222), denoted x2=(x1,2,…,xn,2)
T;

Pastures (231), denoted x3=(x1,3,…,xn,3)
T;

Complex cultivation patterns (242), denoted x4=(x1,4,…,xn,4)
T;

Principally agriculture, with natural vegetation (243), denoted x5=(x1,5,…,xn,5)
T.

Performance of the proposed disaggregation framework depends on a few factors. Perhaps
the most crucial ones are the following two: (i) explanatory power of covariates available in the
fine grid, and (ii) an extent of disaggregation, which is connected with preservation of the
spatial correlation. The impact of both these features will be evaluated in our case study.

Regarding the first factor, we will examine models with all the above land use classes (set
1), and compare the results with models including only two of them: non-irrigated arable land
and complex cultivation patterns (set 2). This subset of land use classes was chosen on the
basis of its explanatory power. When limiting the number of explanatory variables, these two
covariates provided the best results. Secondly, we compare linear regression with independent
(iid) errors versus spatially correlated errors modelled by the CAR process. We consider the
following models:

Model CAR1: - CAR errors, set 1 of covariates;
Model LM1: - iid errors, set 1 of covariates;
Model CAR2: - CAR errors, set 2 of covariates;
Model LM2: - iid errors, set 2 of covariates.

This setting of four models is intended to enable the analysis of extent to which a limited
number of explanatory information can be compensated by spatial modelling.

Regarding the second factor, we test the disaggregation from 10×10 km to 15×15 km
(coarse) grids into a 5 km×5 km (fine) grid. To examine performance of the disaggregation
procedure, first the original fine grid emissions are aggregated into respective coarse grid cells.
Next, the proposed model is fitted and ammonia emissions are predicted for a 5 km×5 km
(fine) grid. Finally, the obtained results are checked with the original inventory emissions of a
5 km×5 km (fine) grid. Thus, our simulation study tests the cases of a fourfold and ninefold

under 0.3
0.3 − 0.7
0.7 − 1
1 − 1.3
1.3 − 1.7
1.7 − 2
2 − 2.3
2.3 − 2.7
over 2.7

DATA − 5km
under 1.3
1.3 − 2.6
2.6 − 4
4 − 5.3
5.3 − 6.6
6.6 − 7.9
7.9 − 9.2
9.2 − 10.6
over 10.6

10km
under 3
3 − 5.9
5.9 − 8.8
8.8 − 11.8
11.8 − 14.7
14.7 − 17.6
17.6 − 20.6
20.6 − 23.5
over 23.5

15km

Fig. 1 Ammonia emissions: inventory data in 5 km grid, and aggregated values in 10 km and 15 km grids
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disaggregation. The aggregated values of the two coarse grids as well as the actual inventory
data in the fine grid are shown in Fig. 1.

3.2 Results of disaggregation from the 10 km grid

This subsection presents the model testing results for disaggregation from the 10 km grid.
Table 1 (the upper part) displays the maximum likelihood estimates (denoted by Est.) and
standard errors (denoted by Std.Err.) of the parameter estimators for each model. Note that
in the models with set 1 of covariates (CAR1, LM1) the regression coefficient β0 was
dropped as it was statistically insignificant. In the table, we can observe that the ML
estimates of the regression coefficients are similar for all the models. From the ratio of
regression coefficients and its respective standard errors (i.e. the t-test statistic), we can
roughly conclude that all the considered land use classes are statistically significant; in
fact, in each case respective p-values proved to be less than 0.05 (not shown). Next, let us
turn our attention to the error part of the models. Significantly lower values of σZ

2 estimates
under both the CAR models, as compared with their linear regression counterparts,
indicate that greater variability is explained by the models with spatially correlated errors
than by the corresponding models with independent errors. As expected, among the
spatially correlated models, both variance parameters σZ

2 and τ2 are higher for CAR2 than
for CAR1 model with five land use classes as explanatory variables. Furthermore, the
parameter ρ reflects strength of the spatial correlation. Note that ρ=0 corresponds to a
model with independent errors, see also Banerjee et al. (2004) for more details. A value of
parameter ρ is higher for CAR2 model, which illustrates that in the models of limited
explanatory power, the importance of spatial correlation becomes more pronounced.

The results of the four models are also summarized using the Akaike criterion (AIC). The
idea of AIC is to favour a model with a good fit and to penalize it for a number of parameters;
models with smaller AIC are preferred to models with larger AIC. Table 2 (the upper part)
displays AIC for each model, and additionally it reports the negative log likelihood (-L).
Naturally, the models with set 1 of covariates provide much better results than the models with
another set. Among these respective sets, the models with the spatial structure considerably
improve results obtained with the models of independent errors. Note, that this improvement is
higher for the models with set 2 of covariates (797.6–742.8=54.8) than for the models with set
1 of covariates (685.1–640.7=44.4).

The values of ammonia emissions predicted in a 5 km×5 km grid (yi
*) are featured in Fig. 2.

Differences between the four models are negligible, although a visual comparison with the
original emissions in Fig. 1 (the left-hand-side plot) suggests that the both models based on set
1 of covariates (CAR1, LM1) provide slightly better results. Since the mapped emission values
are classified into just 9 bins, therefore some features might not be easily distinguishable on the
maps in Fig. 2. To remedy this, Fig. 3 presents the model residuals (di=yi−yi*). Now the
difference in prediction results among the models is evident—the best results are obtained for
CAR1 model and the worst for LM2 model.

At this point it must be stressed that the values predicted in a fine grid (yi
*) are calculated

with the formula (11) based on the aggregated values of 10 km grid; the calculations are made
as if the true emissions were unknown. On the other hand, recall that these true emissions in
the fine grid (yi) are available; see the left-hand-side map in Fig. 1. From now on, our analysis
is based on a comparison between the prediction results obtained with the proposed technique
and the original fine grid ammonia emissions (observations).

Figure 4 presents, for each model, a scatterplot of predicted values yi
* versus observations yi.

The straight line has slope 1, thus if the predicted values are close to the original data, points
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are close to the straight line. This setting, once again, illustrates much better explanatory power
of models based on all the land use classes (set 1 of covariates). It also illustrates the
importance of the spatial structure component. In the case of models CAR2 and LM2, the
introduction of spatial dependence has evidently improved the accuracy of prediction.
Whereas in the case of models CAR1 and LM1, the applied spatial structure considerably
limited a number of highly overestimated predictions (points below the straight line).

Table 1 Maximum likelihood estimates

CAR1 LM1 CAR2 LM2

Est. Std.Err. Est. Std.Err. Est. Std.Err. Est. Std.Err.

10 km grid

β0 – – – – 0.386 9.29e-02 0.452 5.45e-02

β1 1.13e-07 3.26e-09 1.09e-07 2.46e-09 1.06e-07 5.03e-09 9.58e-08 4.43e-09

β2 2.56e-07 1.94e-07 4.48e-07 1.97e-07 – – – –

β3 9.77e-08 1.19e-08 1.08e-07 1.08e-08 – – – –

β4 1.18e-07 2.13e-08 1.21e-07 1.76e-08 1.27e-07 2.72e-08 1.60e-07 2.22e-08

β5 1.27e-07 1.32e-08 1.35e-07 1.11e-08 – – – –

σZ
2 0.334 0.073 1.165 0.109 0.522 0.111 1.95 0.184

τ2 0.536 0.082 – – 0.807 0.124 – –

ρ 0.948 9.98e-04 – – 0.972 9.98e-04 – –

15 km grid

β0 – – – – 0.424 1.04e-01 0.476 6.82e-02

β1 1.12e-07 3.95e-09 1.09e-07 3.42e-09 1.00e-07 7.01e-09 9.35e-08 5.79e-09

β2 – – – – – – – –

β3 1.07e-07 1.84e-08 1.16e-07 1.55e-08 – – – –

β4 1.24e-07 2.77e-08 1.29e-07 2.34e-08 1.56e-07 3.65e-08 1.75e-07 2.79e-08

β5 1.27e-07 1.65e-08 1.33e-07 1.49e-08 – – – –

σZ
2 2.339 0.424 3.50 0.474 2.681 0.548 5.55 0.753

τ2 0.214 0.088 – – 0.414 0.088 – –

ρ 0.966 4.91e-04 – – 0.982 5.55e-05 – –

Table 2 Model comparison and analysis of residuals (di=yi−yi*)

Model -L AIC MSE min(di) max(di) r

10 km grid

CAR1 312.3 640.7 0.064 −1.717 1.104 0.961

LM1 336.5 685.1 0.186 −2.544 0.268 0.882

CAR2 365.4 742.8 0.158 −1.917 1.362 0.901

LM2 394.8 797.6 0.291 −2.498 1.765 0.808

15 km grid

CAR1 220.6 455.3 0.136 −2.428 0.646 0.915

LM1 222.9 455.9 0.189 −2.600 0.516 0.880

CAR2 240.4 492.8 0.190 −2.132 1.446 0.880

LM2 248.1 504.4 0.295 −2.511 1.746 0.807
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Furthermore, we note that for a prevailing number of cases in the high emission range
(emissions over 1.5 tonnes) the linear regression LM1 provides biased (underestimated)
predictions, while CAR1 model allows overcoming this deficiency. This is due to the fact
that the analysed emissions are spatially correlated, that is, cells located nearby tend to have

under 0.3
0.3 − 0.7
0.7 − 1
1 − 1.3
1.3 − 1.7
1.7 − 2
2 − 2.3
2.3 − 2.7
over 2.7

CAR1 LM1

CAR2 LM2

Fig. 2 Ammonia emissions predicted in a fine grid—disaggregation from 10 km grid

under −1.4
−1.4 − −1.1
−1.1 − −0.8
−0.8 − −0.5
−0.5 − −0.2
−0.2 − 0.2
0.2 − 0.5
0.5 − 0.8
over 0.8

CAR1 LM1

CAR2 LM2

Fig. 3 Residuals from predicted values—disaggregation from 10 km grid
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similar values. In particular, the majority of high emission values are located in the eastern part
of the voivodeship as well as in the north-west stripe along the coastline (compare Fig. 1). The
covariates applied in the linear regression LM1 explain emission variability only to some
extent, and the point is that the unexplained variability remains spatially correlated. This can be
noticed on the map in Fig. 3 for LM1 model, where clusters of residual values (0.2–0.5) in the
mentioned areas indicate underestimated predictions. The autocorrelation term in the model
CAR1 allows for this feature. In Fig. 4 it can be seen as a slope of a dotted line, which is
visibly higher than 1 for LM1 model, while for CAR1 it lines up with the one of slope 1.

The residuals di are further analysed in Table 2 (the upper part). Namely, the mean squared
error (MSE) is calculated

MSE ¼ 1

n

X
i
yi−y

�
i

� �2
;

and it should be as low as possible. The mean squared error reflects how well a model predicts
data. In Table 2 we report also the minimum and maximum values of di, and the sample
correlation cofficient r between the predicted yi

* and observed yi values. In terms of both the
mean squared error and the coefficient r, the best model is CAR1 and the poorest one is LM2,
following the previous assessments. Interestingly, the remaining two models changed their
ranks compared with the AIC criterion. That is, CAR2 model has lower MSE=0.158 and
higher coefficient r=0.901 than the linear model based on set 1 of covariates (LM1 model with
MSE=0.186 and r=0.882). This proves that the model with a limited number of covariates but
having a spatial component (CAR2) can provide better disaggregation results than the model
based solely on linear regression, even though its covariate information is richer (LM1). Note
that the analysis based on residuals is more robust than the AIC rating, which basically tests a
model fit to the aggregated data.

Following the formula (12), we also calculate the prediction error. Since in the present case
study the correct values of predicted emissions are known, we are in a position to compare the
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Fig. 4 Predicted (y*) versus observed (y) values—disaggregation from 10 km grid
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prediction error with the actual residuals (more precisely, with its absolute values). In Fig. 5
these values are presented for CAR2 model. It is noticeable that the prediction error is
significantly underestimated, and moreover, it does not reflect the diversification of the actual
residuals properly. Note that in the both maps the highest errors are reported on the border of
the domain; this fact is known in spatial modelling as the edge effect.

3.3 Results of disaggregation from the 15 km grid

Next, we present the results of disaggregation from the 15 km grid. The conducted analysis is
similar to the one of the 10 km grid and, where appropriate, both settings are compared.

The lower part of Table 1 contains the maximum likelihood estimates for the 15 km grid
data. In the models with set 1 of covariates, the regression coefficient β0 was again dropped.
Moreover, in all the models at this level of aggregation the land use class “Fruit tree and berry
plantations” (β2) was statistically insignificant, and thus it was also dropped. The remaining
land use classes were informative, with respective p-values lower than 0.05.

As regards the error part, all the comments reported for 10 km disaggregation remain valid
also here, although their degree is significantly lower. Both CAR models provide lower values
of σZ

2 than their linear regression counterparts. However, the reduction of unexplained variabil-
ity between the models, for instance, LM1 and CAR1 is only 1.5 (3.5/2.339), while it was over
3 (1.165/0.334) for respective models of 10 km disaggregation. This suggests that the spatial
correlation strength of the 15 km grid model is smaller than the 10 km grid one. Thus, here the
CAR models are less competitive than the LM models, as compared to the former grid.

The values of AIC criterion and of the negative log likelihood (-L) are reported in the lower
part of Table 2. Similarly as for the disaggregation from a 10 km grid, also in this case the
models based on set 1 of covariates provide better results. The CAR structure improves
obtained linear regression results of both respective covariate sets. Note, however, that in the
setting of 15 km disaggregation, the impact of the spatial component is not that substantial
anymore as it was previously. Again, a bigger improvement is noted for the models with a
limited number of covariates (504.4–492.8=11.6 in terms of the AIC criterion), and the gain
from incorporation of the spatial component is only marginal for the models with set 1 of
covariates (455.9–455.3=0.6).

For the four considered models, the maps of ammonia emissions disaggregated from the
15 km grid and predicted in the fine grid provided visually similar results (not shown). The
residual maps proved to be more informative, see Fig. 6. While for the 10 km disaggregation
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Fig. 5 Prediction error and absolute values of residuals for CAR2 model. Note that the maps are drawn in
different scales
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the residual maps clearly indicated discrepancies among the models, here it is not easily
visible. The models based on set 1 of covariates (CAR1, LM1) provide smaller residuals.
However, the differences between the spatial models and their linear regression counterparts
seem to be negligible.

Again, Table 2 (the lower part) provides further analysis of residuals. The mean squared
error MSE and the correlation coefficient r yield a consistent ranking of the models. Obviously
the best model is CAR1 with r=0.915 and MSE=0.136, while the poorest one is LM2 with r=
0.807 and MSE=0.295. When it comes to the remaining two models, LM1 slightly outper-
forms CAR2 (in terms of the mean squared error). Note that this order is reversed when
compared with the results of the 10 km grid disaggregation (the upper part of the table).
Therefore, when disaggregating from the 10 km grid, the spatial structure is more informative
than some of the covariates, but this is not true anymore when disaggregating from the 15 km
grid. From this we conclude that in this particular case study, the proposed framework offers an
efficient tool for a quadruple and nine-times disaggregation, but it may become less adequate
for higher order allocations.

The actual interplay among the four models is illustrated on the scatterplots in Fig. 7. In
general, the 15 km disaggregation preserves the features reported previously—the performance
of respective models is analogous as for the 10 km disaggregation. It means that for the models
based on set 2 of covariates, the spatial correlation significantly improves prediction quality.
Also for the other two models, the introduction of spatial structure is still beneficial as it allows
correction of the prediction bias and a slight reduction in the number of overestimates. We
highlight the difference between the models CAR2 and LM1 that yield almost the same MSE
and coefficient r, but provide completely distinct plots, see Fig. 7. The residuals of CAR2
model are more dispersed owing to a limited set of explanatory covariates. On the other hand,
improved covariate modelling of LM1 leads to the residuals gathered close to the diagonal, but
a lack of spatial averaging results in larger amount of overestimated values. Altogether, the
assessment of residuals for both models becomes the same.
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Fig. 6 Residuals from predicted values—disaggregation from 15 km grid
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4 Discussion and conclusions

The major objective of this study was to demonstrate how a variable of interest (here,
emissions) available in a coarse grid plus information on covariates available in a finer grid
can be combined together to provide the variable of interest in a finer grid, and therefore to
improve its spatial resolution. We proposed a relevant disaggregation model and illustrated the
approach using a real dataset of ammonia emission inventory. The idea is conceptually similar
to the method of Chow and Lin (1971), originally designed for time series data; see also
Polasek et al. (2010). It was applied to the spatially correlated data, and spatial dependence was
modelled with the conditional autoregressive structure introduced into a linear model as a
random effect.

The model allows for this part of a spatial variation which has not been explained by available
covariates. Thus, if the covariate information does not correctly reflect a spatial distribution of a
variable of interest, there is potential for improving the approach with a relevant model of a spatial
correlation. The underlying assumption of the method is that the covariance structures of the
variable in a coarse grid and in a fine grid are the same. In the present study of ammonia emissions
examined in 5 km, 10 km, and 15 km grids, this assumption proved to be reasonable.

Performance of the proposed framework was evaluated with respect to the following two
factors: explanatory power of covariates available in a fine grid, and the extent of disaggregation.
The results indicate that inclusion of a spatial dependence structure can compensate for less
adequate covariate information. For the considered ammonia inventory, the fourfold allocation
benefited greatly from the incorporation of the spatial component, while for the ninefold allocation
this advantage was limited, but still evident. In addition, the proposed method allowed to correct
the prediction bias encountered for upper range emissions in the linear regression models.

We note that in this case study we used the original data in a fine grid to assess the quality of
resulting predictions. For the purpose of potential applications, we developed also a relevant
measure of prediction error (the formula 12). Although not entirely faultless, it is the first attempt
to quantify the prediction error in situations, where original emissions in a fine grid are not known.
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Fig. 7 Predicted (y*) versus observed (y) values—disaggregation from 15 km grid
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Other approaches, such as a geostatistical model, might be potentially used in the case of spatial
allocation. Application of the geostatistical approach brings us to the concept of block kriging
(Gelfand 2010). However, it should be stressed that geostatistics is more appropriate for point
referenced data, while our proposition is dedicated to the case of emission inventories which involve
a real data. Thus, the choice between these two options should be considered on a case by case basis.

Another possibility to deal with the issue of spatial disaggregation could be to use some
expert knowledge and logical inference; compare Verstraete (this issue) for a fuzzy inference
system to the map overlay problem.

The described method opens the way to uncertainty reduction of spatially explicit emission
inventories, hence the future work will also include testing the proposed disaggregation
framework for inventories of greenhouse gasses.
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Abstract The map overlay problem occurs when mismatched gridded data need to be
combined, the problem consists of determining which portion of grid cells in one grid relates
to the partly overlapping cells of the target grid. This problem contains inherent uncertainty,
but it is an important and necessary first step in analysing and combining data; any improve-
ment in achieving a more accurate relation between the grids will positively impact the
subsequent analysis and conclusions. Here, a novel approach using techniques from fuzzy
control and artificial intelligence is presented to provide a new methodology. The method uses
a fuzzy inference system to decide how data represented in one grid can be distributed over
another grid using any additionally available knowledge, thus mimicking the higher reasoning
that we as humans would use to consider the problem.

1 Introduction

In order to compare different countries, the FCCC requires a single national value per country
for e.g. CO2 emissions that stem from fossil-fuel burning. The authors in Boychuk and Bun
(2014); Jonas and Nilsson (2007) explain that for countries with good emission statistics, the
national fossil-fuel CO2 emissions are believed to exhibit a relative uncertainty of about ±5 %
(95 % CI), but that a sub-national approach can differ considerably (i.e., the ±5 % for the 95 %
CI does not hold any more). This is due to uncertainty at various levels, both uncertainty
inherently present in the data, but also uncertainty introduced by processing and pre-
processing the data. The International Workshop Series on Uncertainty in GHG Emission
Inventories focuses on both the presence and on techniques on understanding, modelling and
decreasing these uncertainties (Bun et al. 2007, 2010; Jonas et al. 2010). The sub-national data
are usually obtained through the analysis of data coming from various sources, processed and
combined into a national value, but the way the data are processed has a big impact on the
introduced uncertainty and, consequently, on the results. To eliminate any inter-country
uncertainty, a uniform and well-tested methodology should be used when building on sub-
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national emission approaches. However, even when using the same methodology, the uncer-
tainty introduced by the processing of data is dependent on the source formats of the data, and
how it behaves under subsequent processing. The solution to this is found by either obtaining
data in a more similar way, to make all data compatible. But with most infrastructures in place,
changes to this are unlikely to happen. The alternative is to pre-process the data so that the data
exhibit a similar behaviour under the subsequent processing. The data are often represented in
a gridded format, yet often different grids (e.g. CO2 emissions and land use) are incompatible.
By transforming them to compatible, matching grids, the processing should yield more
consistent results.

This article presents a novel approach to pre-process data, to transform the data (e.g.
emission data) so that it is better suited to be combined with other data (e.g. land use) while
at the same time ensuring that the uncertainty and errors introduced by this transformation are
kept to a minimum. As such, this methodology is at a very low level in the processing chain,
but any decrease in uncertainty at such a low level should provide far more reliable results at
the end of the processing and thus allow for more accurate analysis and comparison.

Commonly, data relating to different topics come from different sources: land use data can
be provided by one source, emission data may come from another source, population data is
again obtained elsewhere. Usually, the data are provided in a gridded format (Rigaux et al.
2002; Shekhar and Chawla 2003), which means that the map (or the region of interest) is
overlayed with a grid dividing the map in different cells. In the case of a rectangular grid, each
grid cell will be a rectangle or a square. With each cell, there is an association with a numerical
value; which is deemed to be representative for the cell. The cell is however the smallest item
for which there is data: the value associated with the cell can be the accumulation of data of
100 different points in the cell, can stem from one single point in the cell, can stem from
several line sources, etc. There is no difference in appearance between these cells and no way
of knowing this once the data is presented in the grid format. This is illustrated on Fig. 1a.
There are, however, several problems with the data, particularly when the data need to be
combined. As the data are obtained from different sources, the format in which they are
provided can differ: the grids may not line up properly, the size of the grid cells may be
different, or the grids might be rotated when compared to one another, etc.; as illustrated on
Fig. 1b–e. This makes it difficult to relate data that is on different grids to one other and thus
introduces uncertainty or errors. Additionally, not all data is complete, and cells of the grid
may be without data.

This article does not contain any specific data analysis, nor are there any conclusions that
directly relate to climate change, but it does introduce a novel solution method to transform a
grid in order to match it to a different grid, a process that is used in many climate related
studies. The proposed methodology makes use of data analysis, geometric matching and
mathematical connections to solve format mismatches, it does not consider the higher concepts
that relate to the meaning of the data (e.g. using ontologies to match differently labelled data,
as in (Duckham and Worboys 2005)). The proposed methodology is still in a very early stage
of development. As such, the examples shown are quite simple, but the prototype implemen-
tation and experiments on artificial datasets show promising results. The methodology is
expected to be able to cope with any uncertainties and missing information, but the main
focus for the time being is on developing the basic workings of the method. In Section 2, the
map overlay problem along with current solution methods will be described. Reasoning about
the problem and the possible use of any additional knowledge is also covered here. Section 3
considers how the intuitive approach can be simulated using techniques from artificial
intelligence; it briefly introduces the necessary concepts (fuzzy set theory, fuzzy inference
system) that will be used further along with giving a description of the new methodology. In
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Section 4, the methodology is applied to some examples and suggestions for future research
are listed. Section 5 summarizes the article and contains conclusions.

2 The map overlay problem

2.1 Problem description

Spatially correlated numerical data are often represented bymeans of a data grid. This grid basically
divides the map (or the region of interest) into a number of cells. For most grids, these cells are
equal in size and shape (regular grid) and most commonly take the form of rectangles or squares.
Each cell is considered to be atomic in the sense that it is not divided into smaller parts, and contains
aggregated information for the area covered by the cell. With each cell, a numeric value is
associated that is deemed representative for the cell. If we consider the example of the presence
of a greenhouse gas, then the value associated with the cell indicates the amount of this particular
gas in that particular cell. In reality, this amount may be evenly spread over the entire cell or it may
be concentrated in a very small part of the cell; but as the cells are the smallest object considered,
there is no way to confirm whether it is one or the other. This is illustrated in Fig. 1a.

Commonly, data from different sources need to be combined to draw conclusions: for instance,
relating the measured concentrations of a particular gas in the atmosphere to the land use would

Fig. 1 Different data distributions within a grid cell that result in the same value for the grid cell are shown in
(a). The examples are: a single point source of value 100, two point sources of value 50, a line source of value
100 and an area source of value 100. Each of these are such that they are in one grid cell, which then has the value
100. When viewing the grid cell, it is not known what the underlying distribution is. Different incompatible grids
are shown in b–e: a relative shift (b), a different grid size (c), a different orientation (d) and a combination (e)
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require data from both concentrations and land use. While both data can be represented as
gridded data, the grids used often don’t match: not only can there be a difference in cell
sizes and shapes, but one grid can also be rotated when compared to another grid,
translated, or a combination of these. This is a common problem with many data in
literature, called the map overlay problem; the data are then said to be incompatible; some
examples are shown on Fig. 1b–e.

To make these different datasets compatible, it is necessary to transform one of the grids to
match the layout of the other grid: it needs to have the same number of grid cells, oriented in
the same way, so that there is a 1:1 mapping of each cell in one grid to a cell in this other grid.
The map overlay problem concerns the finding of such a mapping: it considers an input grid
which contains data and a target grid that provides the new grid structure on which the input
grid needs to be mapped. As mentioned before, nothing is known at a scale smaller than the
cells; which makes the mapping of one grid to another extremely challenging. Consider the
simple example on Fig. 2a.

Remapping the values of the grid cells of the input grid A to the output grid B is done by
determining the values of xi

j in these formulas:

f B1ð Þ ¼ x11 f A1ð Þ
f B2ð Þ ¼ x12 f A1ð Þ
f B3ð Þ ¼ x13 f A1ð Þ þ x23 f A2ð Þ

¼ 1−x11−x
1
2

� �
f A1ð Þ þ 1−x24−x

2
5

� �
f A2ð Þ

f B4ð Þ ¼ x24 f A2ð Þ
f B5ð Þ ¼ x25 f A2ð Þ
⋯

Where in xi
j, the index i refers to the cell number in the output grid, and j refers to the cell

number in the input grid. This can be generalized as:

f Bið Þ ¼
X
j

x j
i f A j

� � ¼ X
jjA j

T
Bi≠∅

x j
i f A j

� �
with constraints that

∀ j;
X
i

x j
i ¼ 1

While this looks straight forward, the problem is in finding the values of xi
j. In more

complicated examples, it is obvious that more than two grid cells can make a contribution to
the value of a new grid cell. From the example on Fig. 2a, it can also be seen that there is no
single solution: there are different possible values for B1 andB2, providing their sum is constant.

The key to resampling the original grid to the new grid, is the ability to determine the true
distribution of the data; thus going into further detail than that which the grid cells offer.Most current
solution methods either assume a distribution of the data or aim to estimate the distribution of the
data, and resample it in order to match the new grid. The output grid is specified by the user; the
initial map overlay problem concerns transforming the input grid to this grid. The proposed method
uses an additional grid, also specified by the user, to help transform the input grid, but the grid
specification (cell size, orientation) does not have tomatch either the input or the output and does not
change the output format. The additional grid should contain data that has a known and established
correlation to the input data. The grid on which the data is provided does not have to match either
input or output grids; however, the finer the grid, the better the results for transforming the input grid.
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2.2 Current solution methods

Transforming one grid to another grid is comparable to determining what the first grid would
be if it were represented by using the same grid cells as in the second grid. In literature, a
number of solution methods exist. The grid cells as shown in Fig. 2a will be used to explain the
most common method; for a more detailed overview we refer to (Gotway and Young 2002). In
the example used, the input grid A contains three cells, the output grid B contains eight cells.

2.2.1 Areal weighting

The simplest and most commonly used method is areal weighting. It uses the portion of
overlap of the grid cell to determine what portion of its associated numerical value will be
considered in the new grid. This approach is considered to be relatively easy and straightfor-
ward. The result of areal weighting is illustrated on Fig. 2b. It will clear that the values of xi

j are
determined by the surface area S:

f B1ð Þ ¼ S B1ð Þ f A1ð Þ
f B2ð Þ ¼ S B2ð Þ f A1ð Þ
f B3ð Þ ¼ S B3∩A1ð Þ f A1ð Þ þ S B3∩A2ð Þ f A2ð Þ
f B4ð Þ ¼ S B4ð Þ f A2ð Þ
⋯

Basically, in this approach, it is assumed that the data in the cell are evenly distributed
throughout the cell and that all cells are considered to be completely independent of one

Fig. 2 Examples to explain the problem: a Problem illustration: remapping grid A onto grid B, b Areal weighting:
the value of each output cell is determined by the amount of overlap, cAreal smoothing: the value of each output cell
is determined resampling a smooth surface that is fitted over the input data, d Intelligent reasoning using additional
data: grid C supplies information on the distribution, which can be used to determine values in the output grid
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another. Resampling can be done over any grid without any difficulty. In some situations, the
assumption combined with the simplicity may indeed be justification for its employment. The
spread of a gas in the atmosphere in the absence of extreme sources is an example where use of
the method is legitimate. However, when the associated numeric data is the result of a small
number of extreme sources in the grid cell (e.g. a factory), then this approach may lead to
either an over- or an underestimate in the new grid cell, depending on whether or not the
factory is in the overlapping area.

2.2.2 Spatial smoothing

Spatial smoothing is a more complicated approach than areal weighting. Rather than assume
that the data is evenly spread out over a cell, the distribution of the data within a cell is
dependent on the neighbouring cells.

This is achieved by considering the grid in three dimensions, with the third dimension
representing the associated data. In spatial smoothing methods, a smooth three-dimensional
surface is fitted over the grid, as illustrated in Fig. 2c, after which the smooth surfaced is
sampled using the target grid. Consequently, this method does not assume that the data
modelled by the grid is evenly distributed over each cell, but rather assumes a smooth
distribution over the region of interest: if the value of a cell is high, one expects higher values
closer to it in the surrounding cells. In many situations, this method is more accurate than the
previous method, but is still unable to cope with data that in reality is concentrated in a small
area of the cell. This is, for instance, the case when modelling air pollution when a single
factory is responsible for the value that will be associated with the grid cell in which it is
contained (a point source): the presence of a point source in one cell does not imply sources
close to it in neighbouring cells (in some urban planning schemes, it might even be the
opposite, to avoid the placing of too many point sources in close proximity to one another).

2.2.3 Regression methods

In regression methods, the relation between both grids is examined, and patterns of overlap are
established. Different methods exists, based on the way the patterns are established.
(Flowerdew and Green 1994) determine zones, which are then used to establish the relation.
This is then combined with an assumption of the distribution of the data (e.g. Poisson) in order
to determine the values for the incompatible zones. Several underlying theoretical models can
be used, but all the regression methods require key assumptions that normally are not part of
the data and cannot be verified using the data. These assumptions mainly concern the
distribution of the data, e.g. if the data is distributed in a Poisson or binomial distribution.

2.3 Using additional knowledge

2.3.1 Data fusion

The problem under consideration resembles to some extent the problem described in
(Duckham and Worboys 2005). Both the problem and solution are, however, completely
different: the authors in (Duckham and Worboys 2005) combine different datasets that relate
to the same area of interest in order to create a new dataset that has the combined information
of both source data sets. This combined information can be richer or have a higher accuracy.
Their approach, however, is not intended for numerical data, but for labelled information. The
different datasets can use a different schema (set of labels) to describe regions in the region of
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interest (the example uses land coverage and land use terms). As the labels are not always fully
compatible, the authors propose a method of linking both schemas with a common ontology,
and obtaining geometric intersections if the labelled regions do not match. The authors in (Fritz
and See 2005) tackle the data fusion problem using a different approach. An expert supplies
input regarding the assigned labels in different datasets; this knowledge is then modelled and
matched using a fuzzy agreement. This allows the labels in different sets to be compared and
combined correctly.

While both these approach are also using multiple datasets, the type of data processed and
the goal of the processing is quite different from that which is presented in this article. In the
aforementioned data fusion approaches, the goal is the combine annotations and labels added
in different datasets by different people. This is not numerical information, but e.g. true land
use information. The datasets are also not represented by grids but by vectorial maps.

2.3.2 Intuitive approach to grid remapping

The methods mentioned in Section 2.2 work on gridded data and transform the grid without
any possibility to use additional data that might be available. Some key assumptions regarding
data distribution are implied within the methods. While at first it seems that the only
knowledge available is the input grid, it is very likely that there is additional knowledge
available. Consider, for instance, an input grid that represents CO2 concentrations on a course
grid. From other research, the correlation between CO2 levels and traffic is known. This means
that we can use this known correlation to improve the CO2 data set we have by using traffic
information that is also available for the same region. Of course, the correlation between the
input and additional datasets should be known beforehand, as this is a key assumption of the
method. When this correlation is known, this information can be used to transform the grid that
represents CO2 emissions to a grid with a different cell size or with a different orientation.

The method that is presented allows for additional data to be taken into account when
resampling the data to a new grid. Suppose additional data, which relates to the data in the
input grid, is available in a grid containing five cells as shown on Fig. 2d.

Based on the values in the additional grid C, it is possible to guide the distribution of the
values modelled on grid A to the new grid B. A low value in a cell of grid C suggests that the
values in the overlapping cells of the output grid should also be lower.

By adopting a strict approach in the interpretation of this additional grid, it is possible to
intuitively derive a simple distribution: proportional values for f(B1), f(B2), f(B4), f(B5). This
interpretation means that the cells in the output grid B should have a value that is proportional
to both the input grid A and the auxiliary grid C. In many situations, however, this cannot be
achieved, as data in the grids can be slightly contradictory, a consequence of the fact that grids
are approximations of the real situation. It is often not possible to derive a distribution when
interpreting the related data grid with too strict an approach; but it is possible to derive a
distribution that is still consistent with the input grid, and to some extent follows the related
grid C. The related grid is thus only used to help determine the original, unknown distribution.
Obviously, the grid used to help in transforming the data should contain a well established
known relation to the input data. If the relationship between input grid and auxiliary grid are
under investigation, any usage of the auxiliary grid in transforming the input grid may distort
conclusions on the relationship between both grids.

To come to an intuitive solution consider cell B3. To derive the f(B3), it is necessary to look
at the grids A and C in the area around B3. The cells that are of interest are A1 and A2. Both
have the same value, so they will not provide much information. On the other hand, the cell C2

that overlaps B3 has a very low value ( f(C2)=0), whereas its neighbouring cells have high
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values ( f(C1)=f(C3)=100). As the data in grid C are known to be related to the data in A, we
can conclude that the data of grid A for this region should be spread more towards the
neighbouring cells of B3, so the value f(B3) should be low.

Consider B4. Again, the values of the overlapping cells in A are the same, so this will not
influence the result. But the overlapping cell of grid C, C3 has a high value. The neighbouring
cells of C3 have a low value. This basically implies that the distribution of A over the cells in B
should also be lower in the proximity of cell C3.

Finally, consider B5. Here, the values of the overlapping cells in A are different: f(A2)=100,
f(A3)=0. The distribution of the data in grid C tell us that in B5, the value should be lower: no
contribution from A3, and C3 has a much higher value than C4.

The use of additional information, in this example a single grid, can doubtless contribute to
securing a distribution that is still consistent with the input grid, but at the same time it takes
into account the added available knowledge. From the examples though, it can be seen that it is
not always possible to find a unique solution, implying there is still some uncertainty on the
accuracy of the newly obtained grid.

The above example only uses a proportional or inverse proportional relationship between
cells. This relationship is, however, only considered at a local scale, meaning that high and low
for both input grid and additional grid are defined for the location under consideration,
independent of the definition of other locations. As such, the connection between the input grid
and the additional grid is not quantitatively verified, but only relative values are considered,
which makes the approach not dependent on linearity or non-linearity. By considering different
rules, it is even possible to model different connections, e.g. : if a value is high or a value is low,
then the output value should be high. The ultimate goal is to allowmultiple additional data layers,
and make allowance for different possible combinations (e.g. a high value in one and a low value
in another can yield a result that might well be the same as a low value in one and a high value in
the other). On the other hand, consideration of the more quantitative connection between the
layers can also provide better results. Both of these aspects are an area of future research.

3 Using intelligent techniques

3.1 Introduction to fuzzy sets and fuzzy inference

3.1.1 Fuzzy sets

Fuzzy set theory was introduced by Zadeh in (Zadeh 1965) as an extension of classical set
theory. In a classical set theory, an object either belongs or does not belong to a set. In fuzzy set
theory, the objects are assigned a membership grade in the range [0,1] to express the relation of
the object to the set. These membership grades can have different interpretations (Dubois and
Prade 1999): a veristic interpretation means that all the objects belong to some extent to the set,
with the membership grade indicating the extent; whereas a possibilistic interpretation means
that doubt is expressed as to which elements belong; now the membership grade is expressing
the possibility that an element belongs to the set. Lastly, it is also possible for the membership
grades to represent degrees of truth. In (Dubois and Prade 1999) it was shown that all other

interpretations can be traced back to one of these three. The formal definition of a fuzzy set eA
in a universe U is given below

eA ¼ x;μAe xð Þ��x∈U� �� �
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Its membership function μeA xð Þ is

μ
Ae : U

x
→
↦

0; 1½ �
μ
Ae xð Þ

Various operations on fuzzy sets are possible: intersection and union are defined by means
of functions that work on the membership grades, called respectively t-norms and t-co-norms.
Any function that satisfies the specific criteria is a t-norm, respectively t-conorm and can be
used to calculate intersection or union (Klir and Yuan 1995; Zimmerman 1999). Commonly
used t-norms and t-conorms are the Zadeh-min-max norms, which use the minimum as the
intersection and the maximum as the union (other examples are limited sum and product,
Lukasiewicz norm, …).

Fuzzy sets can be defined over any domain, but of particular interest here are fuzzy sets
over the numerical domain, called fuzzy numbers: the membership function represents
uncertainty about a numerical value. The fuzzy set must be convex and normalized (some
authors also claim the support must be bounded, but this property is not strictly necessary)
(Klir and Yuan 1995). Using Zadeh’s extension principle (Zadeh 1965), it is possible to define
mathematical operators on such fuzzy numbers (addition, multiplication, etc.). Fuzzy sets can
also be used to represent linguistic terms, such as “high” and “low”; this allows one to
determine which numbers are considered high in a given context. Linguistic modifiers also
exist and are usually a function that alters the membership function for the term it is associated
with, allowing for an interpretation of the words like “very” and “somewhat”.

Finally, it is necessary to make a distinction between an inclusive and an exclusive
interpretation: are values that match “very high” still considered to be “high”? In the real
world, people could say about a person: “he is not tall, but he is very tall”, which is an
exclusive interpretation: “very tall” does not imply “tall”. The main difficulty when using
fuzzy sets is the definition of the membership functions: why are the fuzzy sets and member-
ship grades chosen as they are, and on what information is this choice based?

3.1.2 Fuzzy inference system

A fuzzy inference system is a system that uses a rulebase and fuzzy set theory to arrive at
solutions for given (numerical) problems (Mendel 2001; Klir and Yuan 1995). The rulebase
consists of fuzzy premises and conclusions; it is comprised a set of rules that are of the form

if x isA|ffl{zffl}
premise

; then y is B|fflffl{zfflffl}
conclusion

Here “x is A” is the premise and “y is B” is the conclusion; x and y are values, with x the
input value and y the output value. Both are commonly represented by fuzzy sets, even though
x is usually a crisp value (crisp means not fuzzy). In the rule, A and B are labels, such as “high”
or “low”, also represented by fuzzy sets as described above.

The “is” in the premise of the rules is a fuzzy match: this will return a value indicating how
well the value xmatches with label A. As all the rules are evaluated and the values are fuzzy, it
is typical that more than one rule can match: a value x can be classified as “high” to some
extent and at the same time as “low” to a much lesser extent. All the rules that match will play
a part in determining the outcome, but of course the lower the extent to which a rule matches,
the less important its contribution will be. It is possible to combine premises using logical
operators (and, or, xor) to yield more complex rules. As multiple rules match, y should be
assigned multiple values by different rules: all these values are aggregated using a fuzzy
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aggregator to yield one single fuzzy value. For each rule, the extent to which the premise
matches impacts the value that is assigned to y.

The “is” in the conclusion is a basic assignment and will assign y with a fuzzy set that
matches the label B. It is important to note that x and y can be from totally different domains, a
classic example from fuzzy control is “if temperature is high, then the cooling fan speed is
high”.

While the output of the inference system is a fuzzy set, in practise the output will be used to
make a decision and as such it needs to be a crisp value. To derive a crisp value
(defuzzification), different operators exist. The centroid calculation is the most commonly
used; it is defined as the centre of the area under the membership function.

3.2 Defining the inference system

The parameters for the inference system used are derived from generated sample cases, for
which an optimal solution is known. The relations between the parameters that are found and
the optimal solution are then reflected in the rules. Due to the more technical nature of this
explanation, and the strict page limitation, a detailed explanation of the procedure is available
as supplementary material in (Online Resource 1).

4 Experiments

4.1 Description of the results

In this section, results of the methodology applied on the example in Fig. 2d for several inputs
will be shown and discussed. The input grid A has three grid cells, the output grid B contains
eight grid cells, but does not exactly overlap with A and the auxiliary grid C has five grid cells
and overlaps fully with grid A. It is obvious that the grids are not aligned properly.

Table 1 holds the data for the input grid, the auxiliary grid; and the computed output grid.
The first three cases have a distribution of the input data such that f(A1)=f(A2)=100 and f(A3)=
0; the last three cases have the input distribution such that f(A1)=f(A3)=100 and f(A2)=0. In
each of the cases, a different distribution of the auxiliary grid was considered, as shown in
Table 1. Figure 3 offers a graphic view of each of the cases. For each case, the grid cells are
shown; the surface area of the circles is representative of the values associated with the grid
cells. Consequently, the sum of the areas of the circles in grid B equals the sum of the areas in

Table 1 Overview of the cases used in the simulations

Input grid A Auxiliary grid C Output grid B

Case 1 100 100 0 100 100 100 0 0 25 50 52 27 46 0 0 0

Case 2 100 100 0 100 100 0 0 0 25 50 57 23 46 0 0 0

Case 3 100 100 0 100 0 0 100 0 29 50 44 23 54 0 0 0

Case 4 100 0 100 100 0 0 0 100 29 50 21 0 0 26 37 37

Case 5 100 0 100 100 100 0 0 100 25 50 25 0 0 26 37 37

Case 6 100 0 100 0 100 0 0 100 21 50 29 0 0 26 37 37

The grid layout is illustrated on Fig. 2d, these results are graphically illustrated in Fig. 3
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grid A. There is no quantitative relation assumed between the auxiliary grid B and the grid A, it
is just assumed that high values in B are an indication for high values in A.

The behaviour of the methodology in different cases is clearly illustrated in Fig. 3.
Consider output cell B2. From (Online Resource 1), the considered cells that play a part are:

A1 (proportionally), C1 and C2 (proportionally), A2 (inverse proportionally). In all six cases, the
value assigned to B2 is the same. The reason is that, while the values of the involved cells differ
(C2 changes value), the locally computed definition for the fuzzy sets that defines low and high
for the auxiliary grid is also changes. This is done in such a way, that the differing input is
cancelled out. In the system, there is no difference between a value of, for example, 100 when
low is defined as 0 and high is defined as 100, and a value of, for example, 200 when low is
defined as 0 and high is defined as 200.

Cell B3 shows a much bigger variation. The cells involved in determining the output value
are A1 and A2 (proportionally), C2 (proportionally), C1 and C3 (inverse proportionally). In case

Fig. 3 Illustrations for the different cases from Table 1: A is the input grid, B is the output grid and C the
auxiliary grid. The grid cells are drawn above each other for ease of visibility, but should cover each other as
shown on Fig. 2d. The size of the circles reflects the relative value of the associated cell (a small circle is shown
for 0 values, for purposes of illustration)
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1, the proportional and inverse proportional data is almost cancelled out, resulting in a value
close to 50. In case 2, the value for C3 is much smaller than in case 1, which results in a larger
value of 57 for B3. In case 3, the value of C2 is decreased, and, as it is has a proportional
relation to B3, the value for B3 is again decreased. It is smaller than in case 1, as the higher
value of C3 results in a higher value in B5, which therefore compensates. The difference in
cases 4 to 6 are explained by the change in the proportional and inverse proportional data from
the auxiliary grid: in case 4 there is more inverse proportional than proportional (the value of
C1 is greater than the value of C2), in case 5 they are equal, and in case 6 the proportional value
is greater than the inverse proportional.

Cell B4 is influenced by A2 (proportional), C3 (proportional), C2 and C4 (inverse propor-
tional). The first case has a greater value than cases 2 and 3, as C3 has a much higher value.
The second and third cases result in the same value, as the change in the auxiliary grid also
changes the definition for high, causing the change in values to be nullified. The value of 0 in
the last three cases is due to the overlapping input field having 0 as an associated value.

Cell B5 is determined by A2 (proportional), C3 and C4 (proportional), A3 (inverse propor-
tional) and C2. The first two cases are the same, as the definitions for high for the auxiliary grid
is also changed. Case 3 shows a higher value, as there is a greater proportional contribution
from C4.

The cells B6, B7 and B8 can be considered together. They all are 0 in the first three cases, as
the overlapping input field has a value of 0. In cases 4, 5 and 6, the latter two have higher
values, which is the expected behaviour due to the values of C4 and C5.

4.2 Observations of the methodology

From the cases in Fig. 3, it can be seen that the goal of using an auxiliary grid to guide the new
distribution yields some interesting results. In general, the methodology does not yield
contradictory effects: the output grid fully complies with the input grid. Compared to the
traditional approaches (e.g. areal weighting, which would provide the same result for the first
three cases), and the same result for the last three cases, it is clear that the additional data has an
effect on the result.

The distribution in the output grid to some extent follows the auxiliary grid, but there are
some exceptions. In the last three cases, the results appear to be consistent and as expected:
larger values where the auxiliary grid overlaps, smaller values elsewhere. In the first two cases,
the larger value of cell B5 stands out. This is mainly explained by the fact that B5 fully overlaps
with A2, and by the fact that the values of cells considered in the auxiliary grid cancel each
other out, or the definition of high for the auxiliary values changes to yield this effect.
Similarly, the value of B3 in case 3 stands out as counter intuitive, but with a value of 44 it
is still considerably smaller than in cases 1 (52) and 2 (57), which is consistent with the desired
result. A similar observation can be made for cell B6 in the last three cases: its value is perhaps
higher than would be desired based on the auxiliary grid, but still the values for the cells that
overlap with the cells of the auxiliary grid that have higher values also have higher
values than B6.

The results appear to achieve the desired goals, but still further testing and development of
the methodology is required.

4.3 Future developments

The approach presented is a new concept and the first prototype implementation of a
methodology that shows promising results, and as such justifies further research. The
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prototype allows us to experiment in order to see how the system behaves and derive reasons
for its behaviour. The outcome of the fuzzy inference system is dependent on a large number of
parameters.

Firstly, there are the parameters that concern the geometrical aspects of the problems, the
definition of the cells that are considered to have an influence on a given output cell. This not
only concerns choosing which cells will take part in determining the value for the output cell,
but also determining the behaviour (proportional or inverse proportional) and adding weights
to the cells to decrease their influence (e.g. if the distance becomes too great to be relevant). In
the current implementation, no quantitative relationship between auxiliary and input grid is
assumed, meaning that the quantitative relation between input grid and additional grid is only
considered for the vicinity of a cell. A quantitative relation on a bigger scale can, however, be
used to derive how big the impact of the auxiliary cell should be, and as such should provide
better results. This is, however, not a trivial step, as too tight a relationship may cause overly
narrow constraints and consequently prevent the system from reaching a satisfactory solution
when data is contradictory or missing.

Secondly, there are the parameters that define the rule base: this is not only the number of
rules, but also the definition of the rules themselves and the weights assigned to the rules. At
present, the number of rules is derived from all the possible combinations of the values of the
cells that play a part. It is, however, possible to limit the rules and, for instance, consider a
fixed number of rules that are determined automatically by means of training data. The full
impact of this is quite difficult to estimate for the time being, however. Each of the rules can
also be assigned a weight, and at present, lower weights are assigned to contradicting rules. In
the examples in this article, this yielded little impact, as the data used in the input was not
really contradictory. This parameter may become more important when confronting the system
with real world data or missing data.

Lastly, there are the parameters that relate to the fuzzy sets used and their definitions. This
includes the definitions of the fuzzy sets that represent high and low; the definitions of minimal
and maximal values that are used in these fuzzy sets and the number of sets that are considered
for both input and output. Also, the definitions of minimum and maximum of the domain
(explained in (Online Resource 1)) can be improved: the current definitions may impose to big
limitations upon possible input sets.

5 Conclusion

In this article, a completely novel approach to the map overlay problem was presented. The
described methodology is in a very early stage, but already shows interesting results. Rather
than assuming a distribution of the data, knowledge from external data that are known to relate
to the input data are used to find a more optimal distribution of the data after transformation to
a new grid. The methodology uses concepts from fuzzy set theory and algorithms from
artificial intelligence in order to mimic reasoning about the input data. A prototype imple-
mentation is under construction and can already process artificially generated data. The results
show that in simple cases, the methodology achieves the pre-set goal, but additional testing
and fine tuning is necessary in order to find the best possible solution for a given input. The
current prototype already makes allowance for the processing of larger datasets. The next step
is to generate artificial but large scale data, in order to fine tune the workings of the
methodology using a fully controlled environment and to assess the performance; both in
accuracy and processing speed. Experiments on real world data are expected to follow, in order
to fully study the potential and outcome of the proposed methodology.
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Abstract This paper presents the application of a Monte-Carlo simulation for assessing the
uncertainties of German 2005 emissions of particulate matter (PM10 & PM2.5) and aerosol
precursors (SO2, NOx, NH3 and NMVOC) carried out in the PAREST (PArticle REduction
STrategies) research project. For the uncertainty analysis the German Federal Environment
Agency’s emission inventory was amended and integrated with a model on the disaggregation
of energy balance data. A series of algorithms was developed in order to make efficient and
pragmatic use of available literature and expert judgement data for uncertainties of
emission model input data. The inventories for PM10 (95 %-confidence interval: −16 %/+
23 %), PM2.5 (−15 %/+19 %) and NOx (−10 %/+23 %) appear most uncertain, while the
inventories for SO2 (−9 %/+9 %), NMVOC (−10 %/+12 %) and NH3 (−13 %/+13 %) show a
higher accuracy. The source categories adding the most relevant contributions to overall
uncertainty vary across the pollutants and comprise agriculture, mobile machinery in agriculture
and forestry, construction sites, small businesses/carpentries, cigarette smoke and fireworks,
road traffic, solvent use and stationary combustion. The PAREST results on relative uncer-
tainties have been quoted in the German Informative Inventory Reports since 2012. A com-
parison shows that the PAREST results for Germany are within the range of (for NH3: close
below) other European countries’ results on air pollutant inventory uncertainties as reported in
the 2013 Informative Inventory Reports.

1 Introduction

The assessment of the uncertainties of air pollutant and greenhouse gas emission inventories is
important both for the management of inventory improvement and for the choice of mitigation
measures. It is good practice according to the respective international reporting guidelines
(EMEP/EEA 2009; IPCC 2001; Eggleston et al. 2006). In these guidelines, two basic
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approaches for key category analysis are proposed: Approach1/Tier1 is based on error
propagation while Approach2/Tier2, makes use of Monte Carlo analysis.

The importance of statistical dependence in input data (which is better captured by
Monte Carlo analysis) for the overall inventory uncertainty was explored e.g. by
Winiwarter and Muik (2010) for the example of the Austrian national greenhouse gas
inventory. Monte-Carlo analysis so far has rarely been used for air pollutant emission
inventories (e.g. Passant 2002; van Gijlswijk et al. 2004; SYKE 2005). For greenhouse
gas emission inventories, however, a wider range of Monte Carlo based uncertainty
studies is available. An overview is contained e.g. in Fauser et al. 2011.

In the PAREST research project, (PArticle REduction STrategies, cf. Builtjes et al.
2010), funded by the German Federal Environment Agency (UBA), emission scenar-
ios until 2020 were constructed for particulate matter (PM10 und PM2.5) as well as
aerosol precursors SO2, NOx, NH3 and NMVOC, both for Germany and Europe.
Reduction measures were assessed and finally air quality in Germany was modelled.
In this framework, also the uncertainties of the nationally aggregated German 2005
emission estimates for all covered pollutants were assessed.

The objective of the exercise was on one hand to assess the accuracy of the emission
estimates and to identify those source categories which add most to the inventories’ total
uncertainties, which is the topic of this paper, as well. On the other hand, the results on
uncertainties were used within the PAREST project to construct sensitivity runs for air quality
modelling (cf. results in Stern 2010).

In the operationalisation of uncertainties we concentrate on the aspect of accuracy in
contrast to completeness (for a discussion of different aspects of uncertainty in emission
inventories cf. Aardenne 2002). For the uncertainty analysis, a Monte-Carlo analysis was
deemed to be preferable to a “simple” calculation of error propagation, as the uncertainties met
for the input data to the considered inventories are often rather high (up to an order of
magnitude) and correlated.

The results of the exercise presented here have been quoted in the German Informative
Inventory Reports beginning with the 2012 report (cf. UBA 2012 and UBA 2013).

2 The emission model

The emission inventories used and enhanced in PAREST build upon the German
Federal Environment Agency’s emission data base ZSE (Central System Emissions,
copy of 08 June 2007), including a wide range of sectoral emission estimation models
which are used to feed the database with activity rates (AR), emission factors (EF),
emissions (EM) and/or other relevant variables for the calculation of emissions, e.g.
split factors (SF). For the inventories relevant for PAREST, the ZSE data base features
approx. 900 time series of activity rates and approx. 450 to 700 time series of
emission factors for each of the pollutants respectively.

Notably, energy related data for stationary use are processed in the separate model BEU
(“Balance of Emission Causes”, described in Joerss and Kamburow 2006), which is used to
disaggregate the official German energy balance into more than 400 segments of fuel use in
order to meet a highly differentiated set of emission factor structure distinguishing a variety of
fuels, economic sectors, combustion technologies, installation sizes and applicable environ-
mental legislation. Other sophisticated external models are used to generate ZSE input data e.g.
for traffic and mobile machinery, agriculture and solvent use. The full data set is characterised
in Joerss et al. 2010.
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3 Operationalising uncertainties

The mathematical operations in the assessed deterministic emission model (consisting mainly
of the ZSE and BEU models/data bases) can be roughly reduced to three types of equations:

ARi*EFi; x ¼ EMi; x; ð1Þ
where ARi is the activity rate for source category i, EFi,x is the emission factor for pollutant x in
source category i, EMi,x is the emission of pollutant x from source category i,

EMi; x þ EM j; x ¼ EMx; ð2Þ
where EMi,x is the emission of pollutant x from source category i, EMi,x is the emission of
pollutant x from source category j, EMx is the total emission of pollutant x from source
categories i and j, and

ARm ¼ ARP
� f in conjunction with ARn ¼ ARP

� 1− fð Þ; ð3Þ
where ARm is the activity rate for source categorym, ARn is the activity rate for source category
n, ARP is the primary activity rate (sum of source categories m and n), f is the split factor.

Thus, in the uncertainty assessment of the emission model, we need to attribute an
uncertainty to all input variables, .i e. in the example of Eqs. (1) to (3) above to the variables
ARi, EFi,x, ARP and f (the factor f is subject to uncertainty as well!). Based on that, we can
compute uncertainties of the model results, in the example above that is for EMx, ARm and ARn,
and as well for EMi,x and EMj,x.

In line with the 2006 IPCC guidelines (Eggleston et al. 2006), we use a relative uncertainty,
expressed in percent of the mean (or reference) value which are used in the deterministic
model: Mathematically/stochastically, these uncertainties are defined through the 95 % confi-
dence interval of an assumed probability distribution. In the interpretation of the application to
an emission inventory, however, we switch from a statistical concept of probability to a
Bayesian concept which defines probability as the subjective degree of belief (cf. Morgan
and Henrion 1990). With this presumption, we interpret expert judgement and literature
sources on uncertainties of input data as explained below.

For the aggregation of uncertainties in an emission model/inventory along Eqs (1) to (3)
above, the 2006 IPCC guidelines offer two basic approaches, i.e. error propagation rules and
Monte-Carlo simulation. Error propagation is easier to perform. However, it does not produce
reliable results for comparably high uncertainties: Eggleston et al. (2006) set a variation
coefficient of 0.3 as a limit which corresponds to ±58 % for a normal distribution.
Furthermore it is restricted to symmetric probability density functions and cannot account
for correlations. As all the restrictions are not met in our application, a Monte-Carlo simulation
approach was chosen.

In a Monte-Carlo simulation, each input variable of the emission model is represented by a
full probability density function, defined by a shape (e.g. normal, lognormal etc.) a mean (the
reference of the deterministic model) and 2.5 % and/or 97.5 % percentiles (as the borders of
the 95 % confidence interval). The Monte-Carlo analysis simulates a large number of random
experiments. In each run, for every input variable a random value is taken which then feeds the
calculation of the model results. For the whole set of model runs (we generally used 10,000
runs, using @Risk 5.5 software package) the predefined probability distribution for each input
variable is maintained. Consequently, the model outputs, i.e. usually aggregated emissions or
any intermediate calculation step, are distribution functions as well and can be characterised
e.g. by mean value and the 95 % confidence interval.
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For the characterisation of the input variable we have used a set of mathematically well-
defined distributions, i.e. normal, triangle, uniform, lognormal and inverse lognormal (Fig. 1):

While normal, triangle and uniform distributions have symmetric probability density
functions, the lognormal distributions are asymmetric and feature different percentage values
for the upper and lower border of the confidence interval. These upper and lower values cannot
be chosen freely, though: A lognormal distribution is characterised by the parameters μ and σ,
and each specific lognormal distribution is well defined through its mean value plus only one
percentile (cf. Müller 1991):

E Xð Þ ¼ eμ þ σ 2
2 ð4Þ

where E(Xn is the mean of the lognormal distribution, μ and σ are location parameters of the
lognormal distribution and

x pð Þ ¼ eμ þ u pð Þ˙σ ; ð5Þ
where x(p) is p-quantile of the lognormal distribution, u(p) is the p-quantile of the standardised
normal distribution (for p=2.5 %, u(p) equals −1.96; for p=97.5 %, u(p) equals 1.96), μ and σ
are location parameters of the lognormal distribution.

With a known (or pre-defined) mean value (i.e. the reference value of the deterministic
model) and a guess for just one of the borders of the 95 % confidence interval, the other border
can be computed. Furthermore, it can be deducted from Eqs. (4) to (5) that for a lognormal
distribution the 97.5 % quantile’s maximum deviation from the mean is approx. 583 %.
Accordingly, the minimum 2.5 % quantile is at approx. −99.7 %

This has important implications for the use of expert judgement or literature for feeding the
model with uncertainties of input variables, as a quote of e.g. “mean value X, +200 %/−70 %,
lognormal” does not meet both Eqs. (4) and (5) and thus cannot be translated into the Monte
Carlo analysis without further processing. In parallel, an expert estimation like “factor 10”
(i.e. +900 %) cannot directly be used as a 97.5 % quantile of a lognormal distribution.

In order to pragmatically make use of existing data sources for uncertainties, we developed
an algorithm to generate a mathematically well-defined lognormal distribution:

1. The distribution type “lognormal” and the mean (reference) value are kept unchanged.
2. The expert guess of the lower deviation is interpreted as a 2.5 % quantile. A fitting 97.5 %

quantile is calculated through Eqs. (4) and (5)
3. We compare the thus calculated value with the original expert guess for the upper

deviation and take the arithmetic mean (as a maximum, however the above mentioned
583 % limit) as the 97.5 % quantile for the Monte-Carlo simulation.

4. The 2.5 % quantile of the distribution used for the simulation can again be calculated
using Eqs. (4) and (5).

This algorithm was chosen in order to maintain the mean (reference) value for emission
calculation unchanged, which was a prerequisite in the PAREST context. In a project

normal Triangle uniform lognormal
inverse 

lognormal

Fig. 1 Distribution types used for input variables
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framework which allows for a change or improvement of a “best guess” reference, other
choices might deem appropriate.

As mentioned above, correlations between input variables have to be regarded in the
uncertainty assessment. To account for that, the emission model was cleared from all redun-
dancies to make sure that each piece of information on the physical world which is used in
several parts of the model is transferred into a probability function exactly once during each
model run. This applies both to correlation within a given pollutant inventory as well as across
pollutants, if e.g. the same activity rates are used for emission calculation of several pollutants.
Additionally, PM2.5 emissions and emission factors are calculated using (uncertain) split
factors based on PM10 emissions/emission factors.

4 Data sources and choice of distributions types for input parameters

In order to carry out a Monte-Carlo simulation it was then necessary to determine the
shapes and quantiles of the probability functions that replace the deterministic input
variables. This means in particular the respective types of distribution and 2.5 %/97.5 %
quantiles (the means were fixed anyway through the deterministic model). The sources for
these parameters were taken over from primary and secondary literature or estimated
through expert judgement and varied with the source categories, pollutants and type of
values (i.e. emission factors (EF), emissions (EM), activity rates (AR) or split factors (SF).
For a full and detailed documentation of all data sources for uncertainty parameters,
assumptions made and sectoral allocations we refer the reader to Joerss and Handke
2010. Table 1 gives a rough overview, though:

Comparable effort was put into split factors, concerning whose uncertainties hardly
any literature source was available. In our emission model, split factors (determining
one entity to represent x% (x in the range of 0 %–100 %) of logically larger entity
already calculated in the model) are in particular important on one hand for the
disaggregation of energy balance activity data (technology splits, fuel splits, full load
hours etc. in the BEU model) and on the other hand for the calculation of PM2.5

emissions based on PM10 emissions. While split factors bearing the values of straight
100 % or 0 % in the deterministic model were kept unchanged as constant factors in the
probabilistic model (otherwise, the mean of the probability distribution could not have
met the reference value), for all “real” split factors with the value x with 0 %<x<100 %
algorithms were defined for the conversion into a probability function: First, the distribution
type was defined (lognormal if close to 0 % or 100 %, normal if rather medium. Second, the
2.5 %/97.5 % quantiles were defined depending on both the chosen distribution and on relative
position of the reference/mean value. The details of the algorithms uses are documented in
Joerss and Handke 2010 (p.30f).

Generally, for the implementation of Monte-Carlo analysis to the emission model, logical
correlations within the respective sets of EF, AR and SF were considered, based on a thorough
understanding of the modelled emission sources. For example, the German emission model
separates fuel use in cogeneration plants into fuel use for power generation and fuel use for
heat generation. Both amounts of fuel are multiplied with the same emission factors for
emissions calculation. In the Monte Carlo calculation, a single emission factor (per pollutant)
was used in order to make sure that high and low variations of the emission factors of these
cogeneration plants would not outweigh each other.

A detailed description of the analysis performed and a full documentation of assumptions
made is given in Joerss and Handke 2010.
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5 Results for germany

The aggregated results of the uncertainty assessment are summarised in Table 2:
A more specific view on the sectoral contributions to the overall uncertainties shows Fig. 2

below, using an adapted version of the SNAP emission reporting format.
Looking at the aggregated results (Table 2 above), the inventories for PM10

(95 %-confidence interval: −16 %/+23 %), PM2.5 (−15 %/+19 %) and NOx (−10 %/+23 %)
appear most uncertain, while the inventories for SO2 (−9 %/+9 %), NMVOC (−10 %/+12 %)
and NH3 (−13 %/+13 %) show a higher accuracy.

The uncertainty of PM10 emissions is spread over a wide range of source categories the
most important being (in decreasing order) construction sites, small businesses/carpentries and
resuspension of road dust by road traffic. For PM2.5, a wide spread is observed as well. Top
contributions are calculated for small businesses/carpentries, Fireworks & cigarette smoke,
mobile machinery in agriculture & construction and resuspension of road dust. SO2 emission
uncertainties are mostly allocated to fuel combustion (coal-fired power plants & light fuel oil
boilers), with further relevant contributions by industrial processes and refineries. NOx emis-
sion uncertainties, however, are dominated by the emission of fertilizer application in agricul-
ture. Other relevant contributions to overall uncertainties are calculated for road transport and
mobile machinery. NH3 uncertainties are strongly dominated by agricultural emissions
(−13 %/+14 % corresponding to −77/+79 Gg). These uncertainties split into CRF/NFR 4B
emissions from manure management (−14 %/+14 % corresponding to −65/+66 Gg) and
CRF/NFR 4D emissions from soils (−44 %/+43 % corresponding to −42/+42 Gg). The two
major sources for NMVOC emission uncertainties are solvent use and agriculture (manure
management). Furthermore, wood combustion and road traffic (petrol engines).

Looking across the analysed pollutants (Fig. 2 above), the source categories adding the
most relevant contributions to overall uncertainty vary across the pollutants and comprise

& agriculture (NOx from fertiliser application, NMVOC from manure management, NH3

from animal husbandry and cultivation of land, PM10 from pig fattening),
& mobile machinery in agriculture and forestry (PM10, PM2.5 and NOx),
& construction sites (PM10),
& small businesses/carpentries (PM10 and PM2.5),
& cigarette smoke and fireworks (PM2.5),

Table 2 Aggregated uncertainties
in the German emission
inventory 2005

Uncertainties in the German emission inventory 2005

PAREST reference scenario, emission calculation according to inland
principle

Pollutant 2005 emission level 95 %-confidence interval

[Gg] 2.5 %-quantile 97.5 %-quantile

PM10 262 −16 % 23 %

PM2.5 136 −15 % 19 %

SO2 562 −9 % 9 %

NOx 1 544 −10 % 23 %

NH3 607 −13 % 13 %

NMVOC 1 438 −10 % 12 %
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& road traffic (PM10 and PM2.5 from resuspension of road dust, NOx from heavy duty
vehicles and passenger cars, NMVOC and NH3 from petrol engines),

& solvent use (NMVOC) and
& stationary combustion (SO2 from coal-fired power plants and oil-fired domestic furnaces,

PM10 and NMVOC from wood firing).

No other comprehensive estimation of recent German emissions of particulate matter is
available which might be used to compare the outcomes for PM2.5 and PM10. The same
situation holds for NMVOC.

For SO2, NOX and NH3, Suutari et al. (2001) have complied uncertainties of
emission inventories for 1990 and 2010 projections for individual countries in Europe
based on IIASA’s RAINS model. In that study, German 1990 SO2 emissions were
assessed with an uncertainty of ±6 % for the Old German Länder (former West
Germany) and ±16 % for the New German Länder (former GDR). 1990 NOX uncer-
tainties are estimated as ±15 % for New Länder and ±11 % for Old Länder and 1990
NH3 uncertainties are estimated as ±16 % for New Länder and ±11 % for Old Länder.
An aggregation of those figures to the level of Germany as a whole using error propagation

Fig. 2 German 2005 Emissions and Uncertainties (SNAP format)
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results in 5 280 Gg SO2 ±13 %, 2 662 Gg NOX ±9 % and 757 Gg NH3 ± 9 %. However, given
the very high difference in emission levels between 1990 (Suutari et al. 2001) and 2005
(this paper) the uncertainty percentages can hardly be compared.

6 Comparison with other countries

Next to Suutari et al. (2001), few estimates of single national emission inventories of aerosol
precursors were made in the past decade, e.g. Rypdal (2002), van Gijlswijk et al. (2004) or the
annual series of Dutch “environmental balances”, the latest including uncertainty data being
PBL (2009). However in recent Informative Inventory Reports to the UNECE Convention on
Long-range Transboundary Air Pollution a growing number of parties reports on quantified
uncertainty assessments:

Figure 3 below shows an overview of relative uncertainties as reported in 2013 Informative
Inventory Reports to the UNECE Convention on Long-range Transboundary Air Pollution as
documented in CEIP 2013 (Norwegian data not included as they are methodologically not
comparable).

For NH3, the German PAREST results (±13 %) show the lowest uncertainties of all
countries contained in Fig. 3, however, in the same range as the Netherlands (±17 %) and
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Fig. 3 Comparison of relative uncertainties as reported in 2013 Informative Inventory Reports
(collected in CEIP 2013)
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the United Kingdom (±20 %). For all other pollutants, the German results on relative
uncertainties as developed in the PAREST project are within the range of other countries’
uncertainty data.

Next to the German data, the uncertainty results for Finland, the Netherlands and the United
Kingdom were calculated using a Monte Carlo approach. All other countries’ data are based on
Tier1 error propagation methodologies. Underlying studies considerably differ in reference
years, aggregation levels of assessed sectoral emissions and methodologies applied. However,
an in-depth analysis of differences of the relative uncertainties is beyond the scope of this paper.

7 Conclusions and look ahead

Within the PAREST project, the German Federal Environment Agency’s (UBA’s) 2005
emission inventories for particulate matter (PM10 & PM2.5) and aerosol precursors
(SO2, NOx, NH3, NMVOC) was amended and for the first time successfully fed into a
Monte-Carlo analysis for uncertainty assessment. Progress was made in particular by fully
integrating into the uncertainty analysis the UBA’s “BEU” model for processing energy
balance data into the inventory. Overall uncertainties of the covered pollutants were deter-
mined, and rough sectoral analyses were made. The uncertainty results calculated for Germany
are in the range of other recent uncertainty assessment of European countries.

Looking ahead, however, there appear a couple of issues worthwhile to be treated in future
work:

& A full key source analysis according to IPCC standards for each of single pollutant
inventories.

& A cross-pollutant key source analysis taking into account ambient air PM generation
potentials which can be deducted from the air quality modelling performed in PAREST.

& A further validation of the developed probabilistic emission inventory model by
performing sensitivity runs on parameter settings and reviewing of key parameters.

& An application of the methodological advance in particular of energy related uncertainties
on the German greenhouse gas inventories.
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Abstract The development of coal mine methane (CMM) projects is subject to various kinds
of risk, one of these being their highly variable methane content. In this study, a new
methodology is proposed to reflect the impact of this uncertainty on a negotiated Certified
Emission Reduction (CER) price, which is based on the available information. To simulate a
process of price negotiation the Rubinstein-Ståhl bargaining game is utilized, where a buyer’s
discount factor is unknown. It is assumed that a buyer’s willingness to accomplish price
negotiations depends on the CER uncertainty. The bargaining model has been extended by
introducing dependence of its three parameters on the probability of a failure to fulfil the
contracted CER amount. To quantify this probability, we develop a conditional distribution
given information on the point estimate of methane amount for the project under consideration,
and on the distribution of available estimates from coal mines having similar characteristics.
The proposed approach is applied to a particular CMM capture and utilization project in Anhui
province, China. The results indicate that the uncertainty influence is significant, particularly
when the credibility of a seller increases, i.e. the probability of a failure to fulfil the project
decreases. The analysis can be of use to both negotiating parties at an early stage of a
comprehensive CMM project planning.

1 Introduction

The Clean Development Mechanism (CDM) has been introduced as one of the three flexible
mitigation mechanisms in the Kyoto Protocol. The CDM allows developed countries listed in
Annex 1 of the UN Framework Convention on Climate Change (UNFCCC) to invest in
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greenhouse gas (GHG) emission reduction projects in non-Annex 1 developing countries. It
enables Annex 1 countries to offset this part of their emissions reduction commitments, and the
host developing countries gain in return from the technology and financing necessary for GHG
prevention.

The CDM market is dominated by China. By the 1st of March 2011, over 1,200 Chinese
CDM projects had been registered, accounting for 43.25 % of the total number globally. The
estimated annual Certified Emission Reductions (CERs) from these projects account for
62.63 % of the total CERs from all remaining CDM projects (UNFCCC 2011).

Among the above-mentioned Chinese CDM projects, there are 42 coal bed methane (CBM)
and coal mine methane (CMM) projects. In CBM, methane is drawn to the surface, and the
exploitation process is similar to that of natural gas. In CMM, methane is extracted during
underground coal mining operations. The introduction of advanced technologies enables it to
be used as a fuel, see e.g. Utaki (2010), which may be approved as a GHG Certified Emission
Reduction. Otherwise, the methane discharged from coal seams is usually emitted into the
atmosphere. The reported annual CERs from the mentioned Chinese methane CDM projects
amount to over 16 million tCO2eq, as of the 1st March 2011 (UNFCCC 2011). Recovery and
usage of CMM resources is enthusiastically promoted by the Chinese government for CDM
projects.

The methane global warming potential (GWP) is 211 times higher than that of carbon
dioxide (IPCC 2007). Effective methods to restrict methane emissions from a variety of
sources are investigated in e.g. Brown et al. (2010); Magalhães et al. (2010); Oh et al.
(2010). CMM projects provide one more opportunity to reduce methane emissions.

Compared with other CDM mechanisms, the number of registered CMM projects is
relatively low. Among others, one of the recognized reasons for this is the fact that the
methane content of CMM differs substantially among projects; this may even be the case
for one particular project. The quantification of the CER amount from a CMM project is based
upon estimates of carbon emissions from coal resources. Numerous factors underlie these
estimations. Firstly, the geological conditions of a coal mine: the methane content in coal
resources, methane quality and stability, which is of great importance for the final-users, as
well as coal methane reserves. The coal methane reserve factor includes the thickness of a coal
seam, the depth of the deposit, permeability (Zhang et al. 2004) as well as the reserve pressure
(Shimada et al. 2005). Secondly, the technology employed in mining coal methane resources
matters (Zhang et al. 2005; Xu 2007a). An estimation of the amount of CER is conducted as a
result of expert knowledge of the geological conditions and technology available. However,
this is a challenging task. For the vast majority of inaccurate estimations, CER amounts tend to
be overestimated.

In this paper, we analyse the influence of an uncertainty of CER amount on its price.
Specifically, we focus on the uncertainty that is related to an imprecise knowledge of the
methane content in a coal bed. Thus far, this kind of uncertainty has not been formally taken
into account in price negotiations, nor in the Kyoto Protocol compliance condition of buyers. It
is, however, reasonable to assume that an uncertain amount of CER has an influence on the
buyer’s decision. While an inclusion of this uncertainty in the buyer’s compliance can be
solved by adaptation of the methodology proposed in Nahorski et al. (2007), and by that
shortly to be presented in Nahorski et al. (2014), the influence of uncertainty on the price
negotiation process has not been previously analysed.

1 According to the IPCC 2nd assessment report, relevant for emissions reporting under Kyoto Protocol. The 4th
assessment report (IPCC 2007) gives a GWP of 25 and is likely to be taken on board in future.
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To start a CDM project, a buyer and a seller have to sign the Emission Reduction Purchase
Agreement (ERPA), which is the contract underlying the trading of CERs. For this, a unit price
of CERs is of great importance. In Chinese CDM projects, the CER price usually has to be
bargained at the initial point of negotiations. In this study, to simulate a price negotiation
process, we utilize the two-player Rubinstein-Ståhl bargaining game of alternating offers.

The Rubinstein-Ståhl game has been applied to model practical bargaining settings, such as
labor negotiation (Vannetelbosch 1997) or conflict resolution in the conjunctive use of surface
and groundwater resources (Kerachian et al. 2010). It provides a suitable tool to model CER
pricing, since impatient bargaining plays an important role in this kind of negotiations. Buyers,
being usually international or governmental agencies, are not willing to put much effort into
negotiating a single project. Typically, if after one or two rounds the parties cannot reach an
agreement, the buyer gives up since they has many other opportunities for investment. For
instance, Hovi (2001) considered the Rubinstein-Ståhl bargaining scheme while modelling the
issue of international bargaining and enforcement, and for this the CDMwas used as an example.

The main idea of our proposition is that for highly uncertain CERs, buyers tend to offer
lower unit prices. Starting from this assumption, we propose to reflect this uncertainty in the
parameters of the incomplete information case of the Rubinstein-Ståhl bargaining game
(Rubinstein 1985), hereafter called the extended Rubinstein-Ståhl bargaining game. The
functional dependence of the parameters upon the uncertainty is proposed. To quantify the
uncertainty of the amount of CER, two technical indices of methane content are used indepen-
dently. Each of them provides information on a point estimate of the amount of methane and on
the distribution of its uncertainty. These two types of information are combined by means of the
probability theory. The results of the bargaining process are compared for the two methane
content indices, for the modified bargaining parameters, and with respect to the introduced
probability parameter α of being unable to fulfil the contracted amount of CER.

The methodology is exemplified by a particular CMM capture and utilization project in
Anhui province, China. Nevertheless, the proposed approach is general in nature, and it can be
applied for modelling the influence of the uncertainty of other estimated variables, subject to
relevant modifications.

2 Methodology

The proposed approach for the pricing of uncertain CERs with the Rubinstein-Ståhl includes
several stages. We propose to express the uncertainty underlying the estimation of the amount
of CER as a conditional distribution given information on a point estimate of the amount of
methane in the project under consideration and on a distribution of available estimates from
similar coal mines. Furthermore, the layout of the bargaining game is extended by introducing
the uncertainty in two parameters: (i) discount factor reflecting buyer’s patience and (ii) the
probability that the buyer is weak. The following sections describe the main components of the
methodology.

2.1 The Rubinstein-Ståhl bargaining model

The Rubinstein- Ståhl game simulates a negotiation process where two players: a buyer and a
seller, denoted with the superscripts B and S, respectively, bargain to share a surplus of size k.
Starting at an initial period t=0, each player makes a proposal in turn as to how to divide the
surplus, and the other player may agree to the offer or reject it. The acceptance of the offer
terminates the bargaining process. On the other hand, a rejection means that the players enter
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the next negotiation period t+1, in which the roles of the two players are reversed and the side
who had rejected the first offer makes a counter offer, as illustrated in Fig. 1.

Both players discount the future at a constant rate. The discount factors δi,i=B,S reflect the
players’ impatience—the closer they approach 1, the greater the players’ patience.

Rubinstein (1982) used the concept of the subgame perfect equilibrium strategy to solve the
negotiating problem for an infinite horizon in the case of complete information. Complete
information means that the preference relations of both players are common knowledge. For
the fixed discounting factors Rubinstein (1982) showed that a unique pair of bargaining
strategies exist, specifying the best response to each player’s offer at every point in time. In
the equilibrium, the surplus k is divided between the player making the initial offer, I, and the

one following, F, as 1 − δI

1 − δI δ F and
δI 1 − δ Fð Þ
1 − δI δ F , respectively.

Unlike the original exposition of the Rubinstein (1982) game, with the commonly known
discount factors of both players, in this paper we consider a somewhat more realistic version of
the scheme with incomplete information. Assume that both players know the seller’s discount
factor δS, but the buyer’s discount factor δB remains undisclosed. A buyer can be one of two
types: weak (i.e. impatient), with a lower discount factor δl or strong (i.e. patient), with a higher
discount factor δh, and it holds 0<δl<δh<1. To simplify the notation we drop the superscript B

denoting the buyer’s discount factor, both above and in the following. A seller needs to assess
the probability p that the buyer is weak. It may be concluded from the buyer’s behavior;
although a buyer may try to pretend that they are stronger than they actually are.

Bargaining with one-sided uncertainty has been studied by Rubinstein (1985) and re-
examined by Bikhchandani (1992), see also Srivastava (2001) for an experimental testing.
Rubinstein (1985) showed that a unique bargaining sequential equilibrium exists and takes the
form of the following theorem. For a game starting with the seller’s offer:

(i) If p is high enough so that y p>δSVh, then a seller offers xp. The weak buyer accepts this
offer, while the strong buyer rejects it and offers y p≤x p, which is accepted. Both x p and
y p denote the seller’s share.

(ii) If p is low enough so that y p<δSVh, then a seller offers Vh and both the weak and strong
buyer accepts it.

Here,

Vh ¼ 1−δh
1−δSδh

;

xp ¼
1−δlð Þ 1− δS

� �2
1−pð Þ

� �
1− δS

� �2 þ δS δS−δl
� �

p

ð1Þ

and

yp ¼ δS 1−δlð Þp
1− δS

� �2 þ δS δS−δl
� �

p
: ð2Þ

The theorem states that the equilibrium is reached not later than the second period.
The value Vh is equal to the seller’s share in the complete-information-game equilibrium
where the seller starts bargaining and the buyer is a strong one. Thus, for low p, the weak
buyer is better off than in the complete-information case. For high p, both x p and y p

increase in p. This is intuitive, because the more likely the buyer is weak, the more
favourable the situation is for the seller.
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For the convenience of calculation, we can determine the boundary point p* as that at
which y p=δSVh

p� ¼ δS þ 1

δS þ 1−δl
1−δh

: ð3Þ

If p>p* case (i) holds.

2.2 Modelling uncertainty of the methane content distribution

Various kinds of risk influence the CER price negotiations. For the methane CDM projects
these include: selection of a project site, supply and demand constraints on the electricity
market in neighboring regions, potential difficulties with CER approval, validation, registra-
tion, monitoring or certification.

Among other risks, the uncertainty of estimating the amount of CER is of special impor-
tance for the methane related CDM projects. Usually only a point estimate of the methane
amount is provided, denoted as bx . However, this amount is uncertain and the real value may
differ. The uncertainty will be expressed by a conditional probability distribution f(x|I), where I
stands for our prior knowledge. In this study, it is assumed that a priori we know the
probability distribution function g(x) of the uncertain amount of CER with its variance σ2,
and the estimate bx . The lognormal distribution is adopted, in accordance with the statistical
inference described in Subsection 3.3, i.e.

g xð Þ ¼ 1ffiffiffiffiffiffi
2π

p
σx

exp −
lnx − μð Þ2
2σ2

" #
; x > 0: ð4Þ

Its mean is E Xð Þ ¼ exp 1
2σ

2 þ μ
� �

, median m=exp(μ), and the variance is Var(X)=
exp(σ2+2μ)(expσ2−1). We use this distribution to infer on the uncertainty of the observationbx . In the situation under consideration, the valuebx actually adds information to our knowledge
of the prior distribution g(x). We make the assumption about the parameter μ, that it belongs to
a given set M, i.e. μ∈M. Now, using the law of total probability we have

f x
���g;bx� �

¼
Z
M
g xjμð Þπ μjbx� �

dμ ð5Þ

Fig. 1 Scheme of bargaining game with alternating offers
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where π μjbxð Þ is the conditional probability density function of μ when bx is known. However,
we know that, when bx has been observed, both bx and μ are deterministic values. Thus, π μjbxð Þ
is simply a deterministic function μ bxð Þ . Formally, we insert π μjbxð Þ ¼ δ μ−μ bxð Þð Þ into (5),
where δ is the Dirac delta function and μ bxð Þ is a deterministic value. This gives
f xjg;bxð Þ ¼ g xjμ bxð Þð Þ .
To find the function μ bxð Þ we estimate μ in (4) using the maximum likelihood method with

one observation bx . Consequently, we have
ln g xjμð Þ ¼ −ln

ffiffiffiffiffiffi
2π

p
σ − ln x −

1

2σ2
ln x − μð Þ2:

The maximum of this function with respect to μ is for

μ bx� �
¼ lnbx;

Inserting this value into (4) we finally get

f x
���g;bx� �

¼ 1ffiffiffiffiffiffi
2π

p
σx

exp −
ln xbx� �2

2σ2

264
375; x > 0: ð6Þ

As bx ¼ eμ , then bx is the median of the above distribution.
Although bx seems to be a natural value to be taken as the amount of CER, the question

arises as to whether another value might be more profitable from the seller’s point of view. Let
us introduce the probability α∈[0,1] and denote by xα the quantile of order α of the
distribution, compare also Fig. 2. The true value of the amount of methane is lower than xα
with probability α. In other words, α expresses the probability that the terms of the CMM
project, with the amount of CER equal to xα, may not be fulfilled due to an insufficient amount
of methane. To avoid reference to specific values, in the following we use the ratio r αð Þ ¼ xαbx ,
which is a non-dimensional value.

Fig. 2 A distribution of uncertainty underlying methane calculations f(x), a calculated methane amount bx , and
an amount of methane xα corresponding to the probability α

Climatic Change (2014) 124:617–632622

Reprinted from the journal 172



Since the function f xjg;bxð Þ follows the lognormal distribution, its cumulative distribution
function (cdf) is

F xαð Þ ¼ ϕ
ln xα−μ

σ

� �
¼ α;

where ϕ is cdf of the standard normal distribution. We obtain

xα ¼ exp μþ σϕ−1 αð Þ� �
:

In our case μ ¼ lnbx , therefore it follows
r αð Þ ¼ xαbx ¼ exp μþ σϕ−1 αð Þ½ �bx ¼ exp σϕ−1 αð Þ� �

; ð7Þ

and r(α) does not depend on bx .
2.3 Modelling beliefs on parameters of bargaining model

Any change of the amount of CER is to the detriment of both parties. Due to the highly
attractive commercial benefits of CDM projects, a project buyer is in pursuit of high volumes
of CERs. Obviously, the higher the CER amount is, the more valuable a project becomes.
However, if the amount of methane actually generated is lower than the amount considered in
a negotiation period, it affects the buyer’s benefit, due to the favourable conditions a buyer
might have given to a seller during the negotiations.

In this subsection, we aim to incorporate the risk into the extended Rubinstein-Ståhl
negotiation model, so that the seller’s belief on a buyer’s negotiation position reflects the
uncertainty of calculating the amount of methane. It is assumed that the uncertainty of
assessing the amount of CER is known to the buyer. So, both the estimates of the buyer’s
discount rates (δl,δh) and the probability p are affected by this risk, which we express with
respective functional dependences. For this, a set of common sense assumptions are taken and
possibly the simplest relationships that satisfy them are constructed.

Discount factors δl,δh. Let us denote the lower and upper estimates of a low discount factor δl
by δll and δlh, respectively. Similarly, let δhl and δhh stand for the lower and upper estimates of a
high discount factor δh. Assuming a linear positive relationship between the uncertainty α and
buyer’s unknown discount factors δl and δh

δl αð Þ ¼ δll − α δll − δlhð Þ ð8Þ

δh αð Þ ¼ δhl − α δhl − δhhð Þ: ð9Þ

The above expressions approximate the main relations in the simplest way. Greater
uncertainty α of the CER amount estimation strengthens the buyer’s position, and this is
reflected in their higher discount factors.

Probability p. We model the probability p that the buyer is weak as a third order polynomial of
α. It is the simplest polynomial satisfying the following conditions

p 0ð Þ ¼ 1 p 1ð Þ ¼ 0;
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which are assumed to be approached slowly

p 0 0ð Þ ¼ p 0 1ð Þ ¼ 0;

where p ′(⋅) denotes the first derivative. The conditions provide the following function p(α)

p αð Þ ¼ 2α3−3α2 þ 1; α∈ 0; 1½ �: ð10Þ
The function is monotonically decreasing, expressing the intuition that the higher the

uncertainty of methane calculations is, the stronger is the buyer’s position, and thus the lower
is the probability that they are weak.

3 Case study

3.1 Introductory information on the Huainan project

The considered CMM capture and utilization project is located in Huainan, Anhui Province of
East China. The coal mine belongs to Huainan Coal Mining Group Co., Ltd., situated in the
north central part of Anhui Province. Although coal resources of the Huainan mining area are
very rich, the geological conditions are complex. Many of the mines experience a high content
of explosive mine gas, largely composed of methane and, thus, extremely hazardous to miners.

Within the initiated project, installed technologies capture the CMM and enable its use as a
fuel source. This prevents methane from being released into the atmosphere, and increases the
safety of coal extraction at the same time. As a result, emission reductions were achieved
through combustion of the extracted CMM, which replaced conventional coal usage in more
than 15,000 households and was also used in the generation of electricity in the industry sector
(Project Document Description 2006).

As mentioned before, division of the margin between the buyer’s highest CER unit price
and the seller’s (Huainan Coal Mining Group Co., Ltd.) lowest price is negotiated at the ERPA
stage. In the following we assume that a broker function is incorporated into either the buyer’s
or seller’s side.

3.2 Negotiating CER price: no uncertainty case

In this subsection we consider the negotiation of the CER price, taking no account of the
uncertainty of the methane content. To apply the bargaining theory, proper discount factors
should be selected for both parties. In practice, this becomes a challenging task. This is
particularly true for a buyer’s discount rate, which remains basically unknown.

In this case study, to set the values of discount factors (or, in the following, their upper and
lower limits) expert assessments were used that were based on the project’s documentation.
Below we list the most important factors influencing the negotiation positions of the CMM
project parties. First of all, there is the costs of communication between parties. Usually
English is the working language, so a seller (the Chinese side) needs to hire some interpreters.
On the other hand, a buyer also needs to hire some local experts or establish an agency in
China to facilitate negotiations. Secondly, collating information comes at a cost for both buyer
and seller and acts as a further drain on their discount rates. Before a buyer gives an initial
price, they must verify the information on the project from various channels; not only those
limited to formal documents and local information, but also from the authorized third parties.
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In the current conditions of the Chinese CDMmarket, the sellers are more concerned to sell
the CERs than the buyers are to buy them. This is due to the numerous other opportunities
available to the buyers to find a more profitable option. Big international buyers usually
possess extensive knowledge of the international CDM market, which besides China, also
includes India, South America and others.

Obviously, both sides hope to reach an agreement (i.e. sign ERPA) as soon as possible. The
buyer’s patience is closely related to the international carbon market price and its domestic
environmental policy. That is, when the international carbon market price is decreasing, a
buyer will have a lower discount factor. On the other hand, the Chinese side is usually
unfamiliar with the international carbon market along with environmental policy of a buyer’s
country. Therefore, from the seller’s point of view, the buyer’s discount rate is assumed to be
unknown. The seller’s discount factor is mainly decided upon by the project’s risk factor.

Here, the seller estimates that the buyer is either a weak player with a discount rate
δl=0.91, or that they are a strong player with a discount rate δh=0.975. Furthermore,
the seller assumes that these two situations have equal probabilities, i.e. p=0.5. The
seller’s discount factor δS=0.94 remains common knowledge.

For a case with no account of uncertainty, we analyse a real bargaining situation from the
past, and therefore use the costs and prices from that period of time. The aim is to check
whether the prices calculated from the model are comparable with the actual negotiated ones.
When the Huainan project was negotiated, the floor CER price demanded by the Chinese
authorities for CMM projects was set at 8 Euro (approximately 70 Yuan/ton); we treat this
value as the seller’s conservative price. The buyer set his conservative price at 170 Yuan/ton,
which yielded a surplus k=100 Yuan/ton to be divided among the players.

Negotiations started with the seller’s offer. From (3) we calculate p*=0.45, and since p>p*,
we follow case (i) of the Theorem. The seller proposed that their benefit is

k � xp ¼ k
1−δlð Þ 1− δS

� �2
1−pð Þ

� �
1− δS

� �2 þ δS δS−δl
� �

p
¼ 38:49 Yuan=tonð Þ

from where the CER price is 108.49 (Yuan/ton). The weak buyer accepted this offer, whereas
the strong one rejected it. Then, in the next step, the strong buyer offered to the seller a benefit
of

k � yp ¼ k
δS 1−δlð Þp

1− δS
� �2 þ δS δS−δl

� �
p
¼ 32:41 Yuan=tonð Þ;

yielding the CER price of 102.41 (Yuan/ton). Comparing these results to the CER price
negotiated for the Huainan project, the actual buyer was a weak one.

3.3 Estimating uncertainty of methane content assessment

High risk of CER estimation in CMM projects is related to the selection of the project site. It
determines such factors as methane reserves, geological mining conditions, gas quality, local
demand, gas prices on the local market or currency exchange rate, etc. (Xu 2007b). These
uncertainties and risks, although important for both the seller and buyer, are not considered in
the study. Here we assume that the project site is known and we focus on an uncertainty of
CER originating from inaccuracies in the assessment of the amount of methane for an already
selected project site.
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For CER assessment, typically the ACM0008 methodology is applied, see ACM (2010)
and UNECE (2010). According to this methodology, the annual (Certified) Emission
Reductions ER of a CDM project are calculated as

ER ¼ BE − PE − LE

where BE are the baseline emissions, saved due to the implementation of the project;
PE are the project emissions; and LE are the leakage emissions. In the CMM case
study under consideration, the baseline emissions are represented by the mined meth-
ane, which replaces the use of other fuels. Uncertainty of emission reduction is mainly
due to baseline emissions BE, since project emissions PE can be estimated with much
better accuracy and leakage emissions LE are minor. Therefore, the two latter sources
of uncertainties are neglected, and it is assumed that uncertainty of the overall emission
reduction is caused by the baseline emissions, which is strictly related to the methane
content in the coal bed.

For the Huainan project, uncertainty of methane emission estimation is characterized with
two indices: the highest methane content in the coal bed seam and relative methane emission,
both measured in m3/t. The former index is typically used in China to estimate future CER
production, while the latter accounts for the technology that has been adopted and provides a
more accurate estimation.

Figure 3 shows the positively skewed distributions of these two indices, based on data from
25 coal mines, which extract coal from beds of a similar nature in the region. Thus, the
histograms show distributions of the indices in Chinese coal mines of the type similar to the
one considered in the case study. We fit the lognormal distributions to the data for both indices,
and test the results with the Kolmogorov-Smirnov test, see Table 1A of the supplementary
material. Apart from the lognormal distributions, other density functions have also been
considered (see the supplementary material). The lognormal distribution provided the best
results out of the considered functions.

For the considered indices of the highest and relative methane content, the ratio r(α),
calculated with Eq. (7), will be considered in the following. This is shown in Fig. 4b. We
determine rmin=r(α=0)=0, and due to the fact that the support of lognormal distribution is
unbounded from above, we set rmax=r(α=0.995), which provides rmax=2.79 for the highest
methane content and rmax=6.27 for the relative methane content. Note that r(α=0.5)=1, i.e.
when xα ¼ bx . This is a consequence of the fact that bx is the median of the distribution
f xjg;bxð Þ . The scale parameters have been estimated as σ=0.399 for the highest methane
content and σ=0.713 for the relative methane content.

4 Simulating negotiation outcome under uncertainty

In this section, the influence of the uncertainty of methane calculations on the negotiated CER
price is analyzed. The resulting CER prices are presented in terms of the seller’s share of the
surplus. To calculate a final CER unit price, a seller’s share has to be multiplied by k and added
to their conservative price.

We begin with modelling the unknown buyer’s discount factors δl and δh, as well as the
probability that a buyer is weak, see Fig. 4. The following lower and upper limits of discount
factors were assigned: δll=0.88, δlh=0.94, δhl=0.96, δhh=0.99. Note that the previously
assigned values δl and δh were fixed as the middles of the discount rates δll,δlh and δhl,δhh,
respectively. As before, the seller’s discount factor δS=0.94 is adopted.
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Figure 4a depicts the boundary point p*=p distinguishing between the cases (i) and (ii) of
the theorem (here, for α=0.56), and Fig. 4c presents the optimal share of a surplus for a range
of α values. The difference between the shares accepted by a strong and a weak buyer is about
5 % of the surplus, and note that it is practically independent of α (as long as α<0.56).
Naturally, the higher the uncertainty α is, the lower share of a surplus the seller gets, and this
value is decreasing from 0.69 down to 0.14.

Figure 4c also provides comparison with the previously considered no-uncertainty case,
depicted with red lines. For the values of discount factors under consideration, these two
instances provide the same results for α=0.5, as indicated with a dotted vertical line. Recall
that α=0.5 may be interpreted that the uncertainty is neglected, upon which the estimated
value xα ¼ bx is taken. There r=1, compare Fig. 4b.

Fig. 3 Distributions of a highest methane content and b relative methane content with fitted lognormal density
functions
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Figure 4d depicts the negotiated share of a surplus as a function of the ratio r, illustrating the
difference between two methane content indices. Figure 4e provides a more detailed version of
the same graph, although for a limited range of r. As shown in this figure, as long as r<1, the
seller is better off when the highest methane content index is considered, regardless of a
buyer’s type (weak or strong). This fact is in accordance with our intuition, because the

Fig. 4 Negotiation outcome: both p and δl, δh modelled
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uncertainty distribution of the highest methane content has a lower dispersion. It should be also
noted that the highest methane content index is more often used in China. The situation
changes when r>1. Then the reduction is less credible and it is better for the seller to consider
the relative methane emission index. Technically, this is the effect of its higher dispersion. For
a given value of r>1, the probability of not fulfilling the project is smaller for the relative
methane emission index than for the highest methane content one. Overall, the consideration
of the CER price in the function of r expresses a seller’s trade-off between gaining a better unit
price which, however, requires assuring more credible emission reductions.

The proposed approaches for modelling discount factors δh and δl, as well as for modelling
probability p, do not need to be applied jointly. Each of these can be used as a separate part of an
analysis. Figure 5 presents the negotiation outcome for the case of a constant p=0.5 (Fig. 5a), and
for the case of a constant buyer’s discount factors δl=0.91, δh=0.975 (Fig. 5b). In general, when
either the discount factors or probability p are modelled, the situation for a seller is less restrictive
as compared with the previous results. In particular, for α close to 1, i.e. when almost the whole of
the uncertainty distribution is accounted for, their share of a surplus does not drop below 0.24,
while it was 0.14 in the previous setting. Note that in the case of a constant p=0.5 (Fig. 5a), for the
whole range of uncertainty parameter α the case (i) of the theorem applies, and the seller receives a
different share depending on the type of the buyer.

Fig. 5 Negotiation outcome for a constant p=0.5 and b constant δl=0.91, δh=0.975

Climatic Change (2014) 124:617–632 629

a

b

Reprinted from the journal179



The applied Rubinstein-Ståhl bargaining game hinges upon assigned values of the discount
factors. While the above analysis assumed a constant value of the seller’s δS=0.94, Fig. 6
presents the optimal seller’s share for different values of discount factors for both negotiating
parties. To this end, a simplified assumption was made δh=δl+0.1, and, furthermore, constant
p=0.5 was assigned. The difference in results between the case of a weak and strong buyer was
negligible, and therefore is not presented. The figure illustrates that for a high range of discount
factors, e.g. higher than 0.7, a negotiation outcome is highly sensitive to small changes in these
values. This is not the case for a low range of discount factors.

5 Summary and conclusions

This paper addresses the problem of uncertainty in methane content for CMM projects, and its
impact on a negotiated CER price. The Rubinstein-Ståhl bargaining model—in the case of
incomplete information—is used to simulate negotiations concerning CER price. The
bargaining model has been extended by introducing dependence of its three parameters on a
distribution of methane content uncertainty, and more precisely on its quantile of order α,
where α is the probability of failure to fulfil the contract due to insufficient methane content in
the coal bed. The lower and upper discount factors of a buyer have been chosen as simple
linear functions in a predefined range of values. The probability that a buyer is a weak
negotiator was designed as a third order polynomial, satisfying a few intuitive conditions.

The proposed methodology was applied for a CMM project implemented in the Huainan
coal mine, the Anhui Province in Eastern China. Uncertainty distribution of the methane
content was estimated using data on two types of indices, which were gathered from 25
Chinese coal mines with similar geological conditions.

The investigations revealed a few interesting results, fully compatible with those that were
predicted as well as fitting in with current negotiation practise.

The uncertainty highly impacts the negotiation results and the parties’ shares of the surplus. The
dependence of the seller’s share on the amount of methane adopted for the project is quite high,
particularly for the values of α<0.5 or r<1, that is for more credible methane contents. There, along

Fig. 6 Optimal seller’s share for different discount factors; p=0.5, δh=δl+0.1
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with the decreasing probability of noncompliance the seller’s share rises fairly rapidly. The gain of
the seller’s share, when negotiated with a weak buyer instead of a strong one is about 5 % of the
surplus, almost independent of the uncertainty parameterα. This result indicates that a seller can earn
a considerable amount of money by being presentedwith the chance to negotiate with a weak buyer.

Although the analysis covers the full range of the probability 0≤α≤1, it is rather unreasonable for
the seller to consider either very small or very high values ofα. Still, the analysis of this paper presents
only a partial answer to the choice of α. Other aspects should also be taken into account, such as the
gains achieved when the declared CER amount is satisfied as well as the costs of failing it. To solve
these questions theCERprice has to be known. In this respect, an analysis of the price bargaining, like
that which is presented here, must be an essential part of a comprehensive project planning.

Acquisition of the discount factor values is a difficult part of the analysis. Intuition and
experience as well as some intelligence methods may help to assign them. For instance, in their
case study Kerachian et al. 2010 utilize the fuzzy set theory to better define uncertainty in
utility functions, which, together with discount factors, define the preferences of parties.
Another approach would be to introduce the learning stimuli in the bargaining strategies based
on the information gathered, but this requires longer sequences of negotiation periods.

In this study simple models of the buyer’s reaction to uncertainty have been assumed. More
advanced modelling requires wider analysis of the buyer’s incentives in the project, accounting
also for other factors, such as the project’s size.
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Abstract Carbon markets, like other commodity markets, are volatile. They react to stochastic
“disequilibrium” spot prices, which may be affected by inadequate policies, speculations and
bubbles. The market-based emission trading, therefore, does not necessarily minimize abate-
ment costs and achieve emission reduction goals. We introduce a basic stochastic model
integrating emissions reduction, monitoring and trading costs allowing us to analyze the
robustness of emission and uncertainty reduction policies under environmental safety con-
straints asymmetric information and other multiple anthropogenic and natural uncertainties.
Explicit treatment of uncertainties provides incentives for reducing them before trading. We
illustrate functioning of the robust market with numerical results involving such countries as the
US, Australia, Canada, Japan, EU27, Russia, Ukraine. In particular, we analyze if the knowl-
edge about uncertainties may affect portfolios of technological and trade policies or structure of
the market and how uncertainty characteristics may affect market prices and change the market
structure.

1 Introduction

The paper aims to analyze cost-effective and environmentally safe carbon trading systems
operating under uncertainty about emissions and their abatement and monitoring cost
functions, asymmetric information, and irreversibility. For analyzing robust emission trading
schemes, we introduce an integrated multiagent emission reduction model under multiple
natural and human-related uncertainties. The model pursues the goal that all trading parties
jointly achieve individual emissions targets at minimum costs by investing in emissions
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abatement, uncertainty reduction and by redistributing the emissions permits through trad-
ing. Safety constraints imposed on the trades require that the reported emissions plus
uncertainty are below the targeted level (cap) with a given probability, therefore this creates
incentives for parties to invest into uncertainty reduction prior to compliance. Proposed
mutually beneficial bilateral trading scheme corresponds to a special distributed optimiza-
tion method. The implementation of this trading scheme is discussed in section 4 using a
computerized multiagent trading system avoiding irreversibility of real trades and asymmet-
ric information of partners.

Different uncertainties affect emission trading in different ways, which may cause market
crashes and instabilities similar to financial markets. To limit the role of uncertainties, advocates
of regulated trades argue in favor of uncertainty indicators distinguishing sources by their
uncertainty levels (Kerr 2000; Godal et al. 2003), which is usually their private information.
Therefore, the use of these indicators is similar to the ideas of “signaling”well known in treating
the asymmetric information (see e.g. Milgrom and Roberts 1986). Market regulators may set
restrictions on source category to be included in trading, and trading scheme may demand a
party to set source-specific targets depending on the level of uncertainty.

Emissions cap and trade programs (de Jong and Walet 2004; Kerr 2000) are economic
instruments for environmental regulations which become popular both among policy-makers
and scientific communities (Stavins 2010). These programs are now a key element in climate
change policy negotiations establishing carbon prices as a “new currency” and emission
permits as a new asset type (Kerr 2000).

In theory, the market price of tradable emissions permits (allowances) should set up the
marginal cost of emissions reductions to meet the cap. In reality, the market prices exhibit
periods of high volatility which may be a result of political decisions, information disclosure,
speculations. The short-term information about spot prices in different periods may be contra-
dictory and cause parties to revise their “myopic” decisions which, however, may not be
reversible. As studied by Potsdam Institute for Climate Impact Research (Roos 2011), imma-
turity of the existing market policies triggered a major “dash for coal setting out on the
construction of dozens of new coal plants. …”. Also, in the Netherlands, “… CO2 emissions
trading is a marginal consideration in the choice of fuel. Evidently, electricity producers are not
too bothered about the price they pay for carbon emissions. The vast majority still favors coal,
the worst carbon polluter. The reason is simple: the expected costs of emission rights are
negligible compared to other investment outlays.” The building of coal-fired plants now will
lock-in energy decisions for about 40 years (Stikkelman et al. 2010).

Lessons learned from the existing emission trading (Betz and Sato 2006) point out the
need for market safety regulations to smoothen its performance.

In this paper, we propose a computerized multiagent trading system (COMATS) which may
function as a prototype of a real decentralized emission trading market under uncertainty without
revealing the private information of parties about costs and emissions. The system may enhance
real markets by analyzing conditions for strategic robust trades and stable market’s performance
avoiding potential irreversibility and “lock-in” equilibriums. COMATS is designed as a
multicomputer network of traders and can be viewed as a device for decentralized collective
regulation of trades towards their cost-effectiveness under safety constraints.

The paper is organized as follows. Section 2 reviews the classical approach to emission
trading and discusses its shortcomings in situations with uncertainty. In section 3 the integrated
stochastic multiagent model is introduced and analyzed. Section 4 outlines the structure of the
COMATS and summarizes numerical results on trading involving such countries as US,
Australia, Canada, Japan, EU27, Russia, Ukraine, etc. In this section we show how the
knowledge about uncertainties may affect structure of the market, e.g., turn buyer into seller,
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and how new participants may improve or destabilize market’s performance. Conclusions are
presented in section 5.

2 Emission trading under uncertainties

Emission trading as an economic instrument for environmental regulations has been ana-
lyzed e.g. by Dales (1968). The author assumed that environmental agency requires each
regulated source to submit permits (also known as quotas, credits, or allowances), which are
transferable. Each source reduces its emissions until the cost for one more unit of emissions
reduction is higher than to buy a permit. If the permit market is perfectly competitive, then
marginal abatement costs will be equal to the permit price and therefore equal across all
regulated sources.

The equality of marginal abatement costs is a necessary condition for any given level of
environmental quality to be achieved at the lowest overall cost, a condition known as cost-
effectiveness. Putting a price on carbon was a crucial step towards market-based regulations of
climate policies. Montgomery (1972) showed that market instruments may achieve their
environmental objectives at lower information requirements than conventional command-
and-control systems. Therefore, encouraged by economists (Stavins 2010; Kerr 2000;
Baumol and Oates 1975; Dales 1968), the idea of carbon trading markets becomes increasingly
popular for global climate change control. The theoretical conclusion of the cost effectiveness is
based upon assumption that emissions can be measured objectively and that noncompliance to
environmental goals may be verified and penalized (de Jong and Walet 2004).

Unfortunately, the existence of various exogenous and endogenous inherent uncertainties
violates traditional pricing concepts and raises serious concerns regarding the ability of
existing carbon trading markets to fulfill their main purpose–to control climate change–
without creating world-wide irreversible socio-economic and environmental disruptions.

Emissions uncertainties vary in shape and duration depending on their origin (see de Jong and
Walet 2004 and discussion in Ermolieva et al. 2010b). Large variability of emissions may easily
cause their underreporting requiring regulations as in the following section. A comprehensive
discussion of uncertainties and their implications can be found in the volume by Lieberman et al.
(eds.) (2007) and in Gillenwater et al. 2007. Some characteristics of uncertainties can be derived
after revisions of the historical emissions time series following “The Good Practice Guidance”
report of the IPCC (2000). In particular, Winiwarter and Muik (2010) explore uncertainties for
total emissions in Austria 2005. Figure 1 shows probability density distribution which is most
strongly influenced by the lognormal distribution of the uncertainty in N2O (in CO2 equivalent)
emissions. Non-normal character of this distribution illustrates the need for new regulations
avoiding standard mean-variance analysis suitable only for normal distributions.

Although data improve and the requirements for measuring emissions are being clarified,
some source characteristics are inherently uncertain to be measured with accuracy. There
will always be different levels and shapes of uncertainties in their estimates. This raises a
fundamentally important issue about developing proper approaches to emission trading
under uncertainty providing endogenous forces for uncertainty reduction.

3 Stochastic model for robust emission trading

In the following section, we introduce a distributed optimization model incorporating
uncertainty and risk-based regulations into emission trading system. The model imposes
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stability requirement by using appropriate safety constraints to control the level of admis-
sible uncertainty which would guarantee with desirable probability the necessary emissions
reduction targets (e.g., post-Kyoto pledge targets).

This type of safety constraints is used in pollution control, financial applications, stability
regulations in the insurance industry, reliability theory, and catastrophic risks management
(see, e.g. discussion in Ermolieva and Ermoliev 2005; Ermolieva et al. 2010a). In a sense,
they reduce the reported emissions reductions to a verifiable level with a given probability.

The model is decomposed into interdependent submodels: individual parties’ models and a
social planner model. First, for a fixed amount of permits, each party solves its individual problem
by defining how much resources to spend on abating emissions and uncertainty reduction to
satisfy safety constraints on emissions targets with desirable probability. This problem does not
require information on other parties. Second, the social planner decides on the redistribution of
permits minimizing the total (social) cost, which involves the knowledge of costs functions of all
parties. This information is private and therefore the specific methodology of decentralized
(distributed) optimization is applied. The model can be viewed as a prototype to simulate an
emission trading market that is regulated in a decentralized way (Ermoliev et al. 2000).

3.1 Party’s model

Let us denote the uncertainty of reported emissions xi as random variable ξi(xi, ωi), where ωi is a
vector of all uncertainties (scenarios) affecting emissions of party i. The uncertainty ξi(xi, ωi) can
be reduced by investments in new production technologies and monitoring mechanisms under
additional safety constraints, which can be written as

P xi þ ξi xi;ωið Þ≤Ki þ yi½ �≥Qi; ð1Þ
for all parties i. Here Qi denotes a required safety level ensuring the probability of emissions xi
and uncertainties ξi(xi, ωi) do not exceed emission target Ki adjusted by tradable (positive or
negative) permits yi, ∑ i=1

n yi=0. Safety level Qi is imposed by regulatory agency to ensure
robust performance of the market. In this paper we don’t consider verification mechanisms. We
assume thatQi corresponds to varifiable level of ξi(xi, ωi) ≤Ki + yi−xi. Quantile-based constraint

mean=93.257

X <=90.038
2.5%

X <=98.968
97.5%

0

0.5

1

1.5

2

2.5

85 90 95 100 105

Tg CO2-equivalent

in
 1

0^
-4

Fig. 1 Probability density distribution of total emissions in Austria, 2005. (Source:Winiwarter and Muik 2010)
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(1) is typicaly used for regulating varifiable standards, when it is impossible to evaluate
monetary losses from their violations that would allow to use penalty functions. Convex
CvaR riskmeasures implicitly induce these constraints. The discussion of these issues is beyond
the scope of the paper, Yet, necessary detailes can be found in (Ermoliev and von Winterfeldt
2012; Rockafellar and Uryasev 2000).

Safety constraints (1) can be also written in the form of equivalent deterministic nonlinear
constraints. Let us define quantile zi(xi) as the minimal z such that

P ξi xi;ωið Þ≤z½ �≥Qi:

Then the following equivalent constraints can be substituted for the safety constraint (1):

xi þ ui≤Ki þ yi; ui≤zi xið Þ; ð2Þ
where variable ui is associated with the level of uncertainty remaining after investing in
monitoring and other technologies that may reduce the uncertainty ξi(xi, ωi) of emissions. Let
us note that indicator ui corresponds to probabilistic versions of “signaling” used for coping
with asymetric information (see e.g. Milgrom and Roberts 1986). Equation (2) show that
safety constraints induce risk-related upper bounds zi(x) on uncertainty dependent on
reported emissions level xi and characteristics of uncertainty ωi.

For the individual optimization problem, we define the least costs function fi(yi) for party
i, i = 1, ……, ni, (to comply with imposed safety requirements (2) with fixed permits yi and
the target Ki) as the minimum of expected total emission reduction costs ci(xi, ωi) and
uncertainty reduction costs di(ui, ωi) for a given permit yi:

min
xiui

E ci xi;ωð Þ þ di ui;ωð Þ½ � :¼ f i yið Þ: ð3Þ

Let us note that in general costs of emissions reductions and monitoring costs are not
separable, i.e., instead of ci(xi, ω) + di(ui, ω) we have to consider a total cost function of the form
Ci(xi, ui, ω) that does not affect the following analysis. In fact, similar functions are used in
section 4. Cost functions Ci(⋅,⋅,⋅) have a complex structure usually defined implicitly by solving
specific nested optimization models (similar to the definition of function fi(yi)). In section 4 we
use for this purpose the GAINS model (Amann 2009; Wagner and Amann 2009; Wagner et al.
2012).

The main issue now concerns cost-effective allocation of permits yi under asymmetric
information about cost functions fi(yi), i.e. solution of the following problem.

3.2 Social planner model

The social planner (environmental agency) needs to find the permit vector y = (y1, …, yn) or
distribution of permits among parties minimizing the total (social) cost

F yð Þ ¼
Xn

i¼1
f i yið Þ ð4Þ

subject to Xn

i¼1
yi ¼ 0: ð5Þ

This means that the total allocation of permits remains the same as at the initial state, i.e.,
∑ i=1

n (Ki+yi)=∑ i=1
n Ki.

The optimization model (4)–(5) could be easily solved by the social planner if private
information on cost functions and uncertainties is available. The absence of information on
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total cost function F(y) requires developing specific decentralized optimization procedures
which can be viewed as sequential bilateral emission trading processes.

The convergence study of these processes is based on the following market equilibrium
conditions. Assume that fi(yi), i=1, …, n, is continuously differentiable and strongly convex
function. Then, from the Lagrangian minimization L(y,λ) =∑ i=1

n fi(yi) −λ∑ i=1
n yi, a trade

equilibrium is defined as the vector y = (y1, …, yn)satisfying the following equations:

f
0
i yið Þ ¼ λ; i ¼ 1;…; n;λ

Xn

i¼1
yi ¼ 0: ð6Þ

From condition (6) it follows that the marginal value of a permit in equilibrium is equal to
a λ same for all parties. Unlike the standard optimization models, the optimality conditions
(6) cannot be directly used because parties don’t reveal private information about functions
fi, i.e. function F(y) is not known.

3.3 Bilateral negotiations

Our procedure resembles bilateral trades negotiation process when any two parties exchange
emissions permits in a mutually beneficial way. Before presenting a step-by-step algorithm
let us briefly outline theoretical background of this procedure, more details can be found in
Ermolieva et al. 2010a. The convergence of this procedure requires fi(yi) to be strongly
convex continiously differentiable functions which can be often achieved by slight, practi-
cally equivalent, modifications of fi(yi). Let y

k=( y 1
k,…,yn

k ) be the vector of emission permits
after k=1, 2, … steps (trades). Pick up (say, at random) two parties i and j with permits yi

k

and yj
k. According to (6), if parties i and j have different marginal costs f

0
i y

k
i

� �
≠ f

0
j
ykj

� �
, then

the permit vector yk=( y 1
k,…,yn

k ) is not cost-effective. Assume that f
0
i
yki
� �

− f
0
j
ykj

� �
< 0.

Constraint (5) requires that the feasible exchange of permits does not change the total allocation of
permits, i.e. it has to be such that yi

k+1+yj
k+1= yi

k+yj
k. If we take yi

k+1=yi
k+Δ and yj

k+1=yj
k−Δ,

Δ > 0, then the new feasible vector of permits y k+1 for properΔ reduces the total costs of parties
fi(yi

k )+fj(yj
k) and hence the total cost F(yk) because:

F ykþ1
� �

−F yk
� � ¼ f i y

kþ1
i

� �þ f j ykþ1
j

� �
− f i y

k
i

� �
− f j ykj

� �
¼ Δk f

0
i
yki
� �

− f
0
j
ykj

� �� �
þ o Δð Þ < 0; ð7Þ

for smallΔ. This equation demonstrates that bilateral trade reduces the aggregate costs for sources
i and j. From (7) for smallΔ we also have important inference:

f i y
kþ1
i

� �
− f i y

k
i

� �
< f j ykj

� �
− f j ykþ1

j

� �
ð8Þ

i.e., the new distribution of permits reduces costs of j more than increases the cost of i.
Hence j is able to compensate i for the increased costs in a mutually beneficial way, what is
discussed in the next section.

For the convergence of the outlined procedure the value Δ at each step k, Δ = Δk, must

Let us summarize the corresponding procedure more precisely in a step-by-step way:

Step 0: Let y0=(y1
0,…,yn

0) be any initial vector of permits, ∑l =1
nyl

0=0.
Step k: Let yk=(y1

k,…,yn
k ) be the vector of permits y k at step k. Pick up two parties i and

j (at random) with different marginal costs, e.g., f
0
i
yki
� �

< f
0
j
ykj

� �
. Party i sequentially
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increases amount εν of buying permits from party j for a small δ and ν=1, 2, …, νk, for

some νk such that f
0
i
yki þ δνk
� �

is practically equal f
0
j
ykj−δνk

� �
, i.e.

f
0
i
yki þΔk

� �
≈ f

0
j
ykj−Δk

� �
:¼ λk ; δνk ¼ Δk : ð9Þ

Step k+1: Calculate yk+1=(y1
k+1,…,yn

k+1), i.e., yl
k+1=yl

k, l ≠ i, j, yi
k+1=yi

k +Δk, yj
k+1=yj

k−Δk ,
and so on, until marginal costs of all parties become practically equal each other, i.e. the
equilibrium price λ* as in (9).

This algorithm operates by using marginal values of publically unknown at each iteration
function F(y) and values yl=yl

k. Essential assumption is the reversibility of trades that is
addressed in section 4.

The value λk can be viewed as an equilibrium price at step k. Let us note that price
process λk is driven endogenously by total (emissions and uncertainty reduction, and
trading) cost-minimizing decisions of meeting parties, what is fundamentally different from
standard models of financial markets with instanteniously observable prices.

During the process, marginal costs and prices will differ between the sequential trades,
but finally the trading system converges to an equilibrium y*=(y 1

*,…,yn
*), λ* with marginal

costs of all parties equal to equilibrium price as in (6). The proof of the convergence is for
example in (Ermolieva et al. 2010a).

Formally, the algorithm converges in the following sense. Assume that fi(⋅), i=1, 2, …, n,
are strongly convex functions. Then for any ε>0, there is a δε>0 such that the distance
‖(λk,y

k)−(λ*,y*)‖ between (λk, y
k) and the equilibrium (λ*, y*) is less than ε for large k.

3.4 Redistribution schemes

From (8) it follows that at each step k trading parties i, j can redistribute joint cost by using
some variables φi

k+1 and φj
k+1 reducing initial costs of these parties in mutually beneficial

manner:

f i y
kþ1
i

� �þ f j ykþ1
j

� �
¼ φkþ1

i þ φkþ1
j ;φkþ1

i < f i y
k
i

� �
;φkþ

j < f j ykj

� �
:

Therefore at the equilibrium y*=( y 1
*,…,yn

* ) parties will deal actually with payments
φ *<fi(yi

0) such that the following equation is satisfied:X
i¼1

n
φ�
i ¼

X
i¼1

n
f i y

�
i

� �
:¼ FI ;

where I = {1,…, n}. From this equation follows the Pareto efficiency of φ*=(φi
*)i=1,…,n, i.e.,

a value φi
* cannot be decreased without increasing some other value φj

*, i ≠ j, to satisfy this
equation. An important question is whether the grand coalition I of parties is stable, i.e., the
following equation is also satisfied: X

i∈C
φ�
i ≤ Fc

for any other coalition C ⊆ I. Accordingly, a distribution of payments φ* is a core solution if
it satisfies these two equations.

This is a well-known game-theoretic concept (see e.g., McCain 2010), where Fc corre-
sponds to a coalition function. In the case of bilateral trades the core solution reflects the
following intuitively evident fact: if new parties join a coalition C creating a larger coalition
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I, parties from C would be able to proceed with the trading process and reduce their costs
further. Formally speaking, the bilateral trading procedure for coalition I allows to find the
equilibrium price λ* and a vector y*=( y 1

*,…,yn
* ) minimizing the Lagrangian L(y, λ*) with

L(y*,λ*)=∑ i=1
n (fi(yi

*)−λ*yi*)=F(y*). Therefore, if function F(y) is convex, then it is evident
that the payment redistribution scheme

φ�
i ¼ f i y

�
i

� �
−λ�y�i ; i ¼ 1;…; n; ð10Þ

is a core solution, i.e. it minimizes any partial sum of L(y*, λ*). In nonconvex cases, if the
function F(y) is globally Lipschitz continuous, then the core solution remains the same (see
discussion in Evstigneev and Flam 2001). Unfortunately, the bilateral trading procedure of
section 3.3 will not, in general, converge to a global solution. For this, we need to use an
appropriate global distributed optimization approach.

3.5 Price-based scheme

Let us compare the proposed bilateral trading scheme with a market price-based scheme.
This section discusses high sensitivity of price-driven markets to uncertainties restricting to
achieve cost-effective and environmentally safe solutions even in convex cases and revers-
ible trades.

A cost-effective and environmentally safe price is a solution of the model which is dual to
the primal model (4)–(5). The dual model derives the equilibrium price λ* maximizing the
following concave and, in general, non-differentiable (continiously) function

g λð Þ ¼ min
y

Xn

i¼1
f i yið Þ−λyið Þ ð11Þ

A given market price signal λ decentralizes the solution of internal minimization problem
into individual subproblems of parties: find solutions yi(λ) minimizing functions fi(yi)−λyi
for each i. In general, solutions yi(λ) don’t satisfy the balance Eq. (5), i.e. ∑ i=1

n yi(λ)≠0,
therefore the price λ has to be adjusted towards the desirable balance.

To ensure the balances, current λk at time k=0, 1, … is adjusted proportionally to the
imbalance, ∑ i=1

n yi(λ), that is a kind of gradient (subgradient) g’(λ) for continuously non-
differentiable g(λ):

λkþ1 ¼ λk−ρk
Xn

i¼1
yi λkð Þ ð12Þ

with a step-size ρk. From the convergence results of quasi-gradient methods (see, e.g.,
discussion in Ermoliev and Wets 1988) it follows that with ρk = const/k+1, the sequence
λk converges to the equilibrium price maximizing g(λ). Unfortunately, this type of pro-
cedures requires the private information of parties for tracking imbalances ∑ i=1

n yi(λk).
Uncertainties of markets make problematic achieving cost-effective and environmentally
safe allocations of permits by using price-based process (12) even under unrealistic assump-
tion that values ∑ i=1

n yi(λk) can be exactly calculated. The convergence of this process to
equilibrium price requires rather sophisticated mechanisms for smoothing observable ran-
dom prices consistently with step-size ρk (see e.g. Ermolieva et al. 2010a). In addition to
these shortcomings, the main issue for emission trading schemes is the irreversibility of
trades restricting to achieve global cost-effective and environmentally safe solutions. For
bilateral trades, this is discussed in the following section.
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4 Computerise multi-agent trading system: numerical experiments

The available computing technology allows us to organize a Decentralized COMATS based
on model (1)–(5) and bilateral trading procedure of subsection 3.3. A distributed computers
network connects computers of parties with the computer of a central agency. Using a
graphical user interface, parties store private information on cost functions and other
characteristics of the model defined by Eqs. (1)–(5) including specific probability distribu-
tions and scenario generators characterizing uncertainties of emissions and other parameters.

The central agency imposes market regulations in the form of safety constraints on envi-
ronmental targets. Following the procedure in section 3.3, the computer of the central agency
“picks up” at random, a pair of parties i, j and in anonymous manner, as it is discussed in
subsection 3.4, “negotiates” with computers of parties Δk and vector yk solving (9). Then,
another pair of parties is picked up and the negotiations are repeated. These calculations can be
easily organized without revealing private information of parties, in particular, due to distrib-
uted among different computers data of parties. The process goes on until equilibrium (λ*, y*) is
reached. The equilibrium solution can then be analyzed and implemented in reality using
redistribution schemes discussed in subsection 3.4. Therefore at the first stage COMATS
evaluates equilibrium prices and permits, whereas at the second stage the equilibrium tradable
permits y* are implemented. The information about the equilibrium price λ* identifies also the
core solution (section 3.4.) defining stable coalition of parties. It means that no party has the
incentive to leave the coalition or terminate participation at any intermediate step. COMATS is
of benefit both for parties and for the market. For parties, the prototype emission trading enables
the analysis of the balance between robust cost-efficient and environmentally safe trades and
emissions abatements. For the market, it allows to impose safety regulations ensuring stability
and fair functioning without shocks.

In what follows, we discuss the implications of uncertainties on market structure by using
COMATS. To analyze performance of COMATS numerically, we use relevant to (1)–(5)
data on the costs of emissions reduction from the GAINS model (Amann 2009; Wagner and
Amann 2009; Wagner et al. 2012) for the following countries and groups of countries
Australia, Canada, EU27, Japan, Norway, Russia, Ukraine, USA. The marginal cost curves
(of emissions reduction as a percent of pledge targets) are displayed in Fig. 2.

Table 1 shows reported emissions levels in 1990 and 2009. Projected (baseline) country-
specific emissions levels in 2020 are derived from the GAINS model, and the pledge emissions
reduction targets in 2020 are set according to (Wagner andAmann 2009). The data on emissions
uncertainties and costs of reducing uncertainties are compiled from IPCC, Nahorski et al. 2007,
2010; Obersteiner et al. 2000; Godal et al. 2003; Winiwarter and Rypdal 2001; Winiwarter
2007; Wagner and Amann 2009; Wagner et al. 2012. We employ uncertain emissions level in
the year 2020 as percentage of the reported business as usual emissions level in 2020.

Table 2 illustrates the results of emission permit trades among seven countries ignoring
uncertainties. In equilibrium, the cost of reducing reported emissions (also optimal price of
emissions permit) is about €13 per tC, which is consistent with existing market trends
(www.pointcarbon.com). Total costs of emissions reduction to targeted levels without trades
are defined by “Costs for mitigation without trades”, while “Costs after trades” stands for
optimal costs for emissions abatements and trades. Financial advantages of trading are estimat-
ed by comparing the two alternatives. Optimal total (“core”) costs of parties are calculated
according to formula (10). In these experiments, no emission uncertainties are included,
therefore no costs are spent on uncertainties reduction, i.e. “unc. reduction” equals 0. Russia
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and Ukraine are major permits’ sellers (negative values of trades), and it is explained by their
emissions levels in 2020, which are lower than pledge targets.

Results of a scenario involving uncertainties are presented in Table 3. Optimal marginal cost
of reducing unit reported emissions equals the cost of reducing unit uncertain emissions and is
about € 25 per tC, which is almost twice higher than in the case when uncertainties are not
included in calculations. The higher costs are due to more abatements as the uncertainties are
now accounted for in the verification of targets compliance according to (2). Optimal marginal
costs also increase because in this case Russia and Ukraine invest in uncertainties reduction and
therefore can offer less traded permits at zero price than in the scenario without uncertainties.

In the scenario when uncertainties are explicitly included in the trading, the US turns to a
permit supplier. This is due to two reasons. First, the US marginal cost curve is a flatter slope
than other countries. Second, because the assumed uncertainties in the US are relatively low.
In this scenario, as Table 3 also shows, Russia and Ukraine invest in monitoring to reduce
the uncertainties around targets and, therefore, supply less permits than in the case without
uncertainties. Although the results have illustrative purpose, the conclusion is that the
equilibrium price of emissions permits highly depend on uncertainties.
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Fig. 2 Marginal cost of emissions reduction as percent of pledge targets, € per tC

Table 1 Baseline and pledge targets

Emissions 1990 Emissions 2009 Baseline 2020 Pledge target 2020 Unc. (% baseline)

USA 5069 6006 6641 4815 15

Australia 278 391 418 264 10

Canada 456 558 693 433 15

EU27 4399 4241 4677 4321 15

Japan 1143 1270 1316 1086 15

Russia 2499 1583 1945 2374 25

Ukraine 716 339 374 680 25

(Wagner and Amann 2009)
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In both scenarios, with and without uncertainties treatment, the “core” solution derived at
equilibrium makes all parties better off. Total profits from trades equal about 71.3 and 213
Billion €, in case without and with uncertainty, respectively, which is 19 % and 23 % higher,
for without and with uncertainties, than in the situation without trading.

Distortions to the emissions trading system may be caused by individual characteristics of
market players. For example, as Table 4 indicates, participation of the US in EUETS is of major

Table 2 Trades ignoring uncertainty

USA Austr Can EU27 Japan Rus Ukr

Em opt (MtC) 5017 397 643 4401 1274 1900 340

Unc opt 0 0 0 0 0 0 0

Trades opt 202 133 210 80 188 −474 −340
Marginal cost (€ per tC) 13 13 13 13 13 13 13

Costs after trades (million €)

Em reduction 11091 261 650 2969 392 1270 200

Unc reduction 0 0 0 0 0 0 0

Trades 2596 1637 2540 958 2231 −5739 −4046
Total (core) 13687 1898 3190 3927 2622 −4469 −3845
Costs for mitigation without trades (million €)

Em reduction 13839 16992 29341 4221 23959 0 0

Unc reduction 0 0 0 0 0 0 0

Total 13839 16992 29341 4221 23959 0 0

Financial advantages of trading 152 15095 26152 294 21336 4469 3845

Total profits 71342

Table 3 Trades with uncertainty

USA Austr Can EU27 Japan Rus Ukr

Em opt (MtC) 3519 385 606 4138 1229 1803 327

Unc opt 249 37 59 988 150 331 153

Trades opt −1047 157 232 805 293 −240 −200
Marginal cost (€ per tC) 25 25 25 25 25 25 25

Costs after trades (million €)

Em reduction 38735 666 1733 9157 1259 3686 500

Unc reduction 5031 344 626 2704 558 207 142

Trades −25181 3782 5579 19360 6645 −5772 −4219
Total (core) 18586 4792 7939 31221 8462 −2293 −3577
Costs for mitigation without trades (million €)

Em reduction 21712 30087 59560 37598 90418 0 0

Unc reduction 2925 4756 8204 8587 13354 71 0

Total 24637 34843 67764 46185 103772 0 0

Profits/financial advantages of trading 6051 30051 59825 14965 95310 2325 3577

Total profits 212104
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benefit. The market without the US has much higher marginal cost (if compared to Table 3) due
to rather steep cost curves and high demands in permits (except for Russian and Ukraine) of the
other traders.

5 Concluding remarks

In theory, the emission price of tradable permits should establish the marginal cost of emissions
reductions to meet the cap. In reality, the existence of various exogenous and endogenous
inherent uncertainties violates this traditional deterministic pricing concept. Lessons learned
from the existing emission trading schemes point out the need for the market’s safety regula-
tions smoothing its performance.

Proposed in this paper multi-agent approach integrating regulations of carbon emissions and
uncertainties with redistribution of emissions through emission trading under safety constraints
allows us to design a computerized multiagent trading system that may function as a prototype
of a robust emission trading market. The model explores conditions of market’s stability with
respect to uncertainty by using appropriate safety constraints controlling verifiable uncertainty
reductions which would guarantee cost efficiency of trades and safety levels of emission
reduction targets (e.g., post-Kyoto pledge targets). We illustrate functioning of the robust
market with numerical results involving such countries as the US, Australia, Canada, Japan,
EU27, Russia, Ukraine, etc. Explicit treatment of uncertainties may significantly affect portfo-
lios of technological and trade policies, market prices and change the market structure. We
conclude also that exclusion or inclusion of additional players may have dramatic effects on the
market.

Acknowledgments The authors are grateful to the anonymous reviewers for valuable comments that helped
us to improve the manuscript. We also thank Guest Editor Dr. Jean P. Ometto for his suggestions.

Table 4 Trades with uncertainty, US excluded

USA (excluded) Austr Can EU27 Japan Rus Ukr

Em opt 3519 336 518 3589 1165 1577 293

Unc opt 249 35 58 989 154 295 149

Trades opt −1047 107 142 257 233 −502 −237
Marginal cost 25 75 75 75 75 75 75

Costs after trades (million €)

Em reduction 38735 3860 8702 49011 6587 19884 3040

Unc reduction 5031 1148 2003 8359 1680 690 356

Trades −25181 7974 10665 19233 17556 −37469 −17901
Total (core) 18586 12983 21370 76603 25823 −16895 −14505
Costs for mitigation without trades (million €)

Em reduction 21712 30087 59560 37598 90418 71 0

Unc reduction 2925 4756 8204 8587 13354 −38 0

Total 24637 34843 67764 46185 103772 33 0

Profits/financial advantages
of trading

6051 21860 46394 −30417 77949 16928 16996

Total profits 153270
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Abstract The paper presents the problem of a simulation of the greenhouse gases emission
permits market where only low accuracy emission amounts are known. An organization of the
market with uncertain emissions is proposed and trading rules for individual market partici-
pants are discussed. Simulation of the market is based on a multi-agent system. Negotiation of
purchase/sale prices between the parties are introduced, where the trading parties adopt one of
two options: (i) bilateral negotiations, and (ii) sealed bid reverse auctions. Results of simulation
runs show trajectories of transaction prices, as well as probability distributions of learning
agents’ bidding prices.

1 Introduction

Markets for emisions of greenhouse gases (GHG) were designed to lower the costs of GHG
emission abatement. In GHG markets every party is allocated an emission quota, otherwise
known as permits (usually smaller than the actual emissions). At the end of the trading period,
a party has either to keep its emissions within the allowed quota, or buy permits for
superfluous emissions. In this context, we either use the term on trading emisions or trading
emission permits.

Some existing markets, such as the EU ETS (IETA 2005), trade only these gases, whose
amount can be adequately defined. However, a market covering all anthropogenic emissions,
like that covered by the Kyoto Protocol, must also include very poorly assessed emission
amounts, such as those connected with agriculture or land-use change. Then the question
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arises, does trading such emissions actually ensure their reduction as hoped and planned for?
And, should a tonne of poorly estimated and well defined emissions be priced equally?

Markets are often analyzed by either using a static or dynamic optimization or a game-
theoretic approach. With full information on the parties, these approaches allow for analytical
analysis of markets. Recently, agent-based models have been used to investigate market
behavior dynamics using a simulation approach. Parties are represented by intelligent pro-
gramming agents which negotiate and trade goods according to given market rules and the
partial information they possess. This approach is much more flexible as to any
assumptions made on the market information and tries to better mimic real market
behaviours, including also their transients. It is applied in this paper to simulate a
GHG emission permits market.

The method proposed does not assume an ideal market. Neither the equilibrium prices are
assumed to be known in the trading, nor is an approach made without trading prices, Ermoliev
et al. (1996) or Ermolieva et al. (2010), considered. A more sophisticated market model is
introduced, with price negotiations and price influenced agent behavior, similar to that in
Bonatti et al. (1998). Each successive transaction moves the market toward an equilibrium.

In simulations, a multi-agent platform for multicommodity exchange (Kaleta et al. 2009)
has been used. Each agent minimizes its own objective function, which is the cost of emission
reduction plus any expenditure for the permits. The permit purchase/sale prices have an
influence upon the profitability of transactions and the decision to buy/sell permits, i.e. whether
it is better to reduce emissions or to buy permits. Two trading mechanisms are considered: a
bilateral trade and a sealed-bid reverse auction (a tender).

Trade negotiations are the way to solve uncertainty in selling/buying prices, whichever
trading mechanism is used. However, as mentioned earlier, uncertainties in emission amounts
also characterize GHG markets, as well as some other markets designed for trading environ-
mental quantities. These uncertainties have not influenced the prices in any of the previous and
existent markets. In the solution that is presented in this paper emission uncertainties are taken
into account in the simulation by using effective permits, as proposed in Nahorski et al. (2007).
This brings the problem of trading uncertain emissions to that of usual trade with a perfectly
known amount of the good being traded. The goal of this paper is to simulate a market using
the rules proposed in earlier papers, and particularly in Nahorski et al. (2007) and Nahorski and
Horabik (2012).

Only a few methods have been proposed to solve the trade in uncertain environmental
goods, and in particular goods with very differentiated uncertainties, say 2–5 % as against 80–
100 % uncertainty. Apart from that which is described in Nahorski et al. (2007), the present
authors are only aware of that described by Ermolieva et al. (2013). Our method is simple in
implementation and does not demand far reaching changes in the trading rules. Knowledge of
the uncertainty parameters is necessary, but it is also needed in other methods.

2 Market with known emissions

Before presenting the method, we should like to start with a short presentation of an analytical
solution of the market with fully known variables. Let us consider a market with N parties Pn,
n=1,…N, trading the emission permits. Each party has been allocated KPn permits. KPn are
called the targets. Their distribution, in the form of emision permits, is supported by computer
simulations and is conducted during political negotiations to reduce the harmful enviromental
effect of total emissions. At the compliance time a party must not emit more than the number
of permits they possess. However, it may freely sell or buy permits to achieve the target. We
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denote by xPn the emission of the n-th party and by EPn the traded permits. Emission must be
nonnegative, xPn ≥0 . In this section, the number of traded permits EPn may be positive, when
bought, or negative, when sold.1 At the starting time, the total emission is greater than the
number of permits XN

n¼1
xPn >

XN

n¼1
KPn ; ð1Þ

which necessitates its reduction. It is quite common to refer to percent emission reduction, i.e.

to express the targets as KPn ¼ 1−δPn
� �

xPn
0 , where 100δPn is the percent of reduced

emissions. In this paper we shall deal with absolute reductions, but any recalculations in both
ways are obvious.

If the abatement cost functions cPn xPnð Þ of market participants are known to the central
planner, the total cost optimization can be calculated and marginal cost λ at the equilibrium
that are equal for all participants, can be found, see supplementary material. However, the cost
functions are known only to the respective parties, so, consequently, prices of permits are set at
the market. During trading, the n-th party is looking to minimize its cost of reducing the
emission and buying/selling the permits EPn , i.e. to minimize the function

f Pn xPn ;EPn
� � ¼ cPn xPn

� �þ λtE
Pn ; ð2Þ

subject to

xPn ≤KPn þ EPn ; ð3Þ
with known targets KPn. Above, λt≥0 is the price of one unit of permits in the transaction t.
Typically, λt is different from the unknown optimal equilibrium price λ, as trade is continuing
in time. The parties simply have to live with the uncertainty in earning/loosing money during
trading.

In the market considered in this paper, emission amounts are also not precisely known. The
market for uncertain inventories has been already discussed in Nahorski et al. (2007), Nahorski
and Horabik (2008), Bartoszczuk and Horabik (2007), Ermolieva et al. (2010, 2013). It was
formulated as an optimization problem (the central planner’s view), with a minimization of the
total cost to achieve the common limit on emissions, subject to compliance with a fixed risk α.
It focused on the equilibrium solution, and the time evolution of the prices on the market was
not considered. In the real market, the parties make decisions on trading prices in a process of
price negotiation. Some negotiations in simulating GHG trading were considered in Nahorski
et al. (2012), but emission uncertainty were not dealt with. The organization of the market
presented here follows the ideas presented in Nahorski and Horabik (2010, 2012).

In Ermoliev et al. (2000), an approach to simulating a bilateral exchange of permits was
proposed. The idea is that two parties meet randomly and exchange their permits if the
transaction is feasible for both parties, i.e. the marginal costs of the parties differ. Each such
transaction makes the social cost function smaller, see Ermolieva et al. (2010). As the cost
function is constrained from below by 0, and the sequence of cost function values is decreasing
with each transaction, then it will eventually converge to a minimum. In the original paper by
Ermoliev et al. (1996) it is assumed that the number of exchanged permits reaches zero (albeit
not hastily) and then it is proved that the sequence converges to the global minimum with a
probability of 1, as in the stochastic approximation method. The prices of the permits are not
taken into account.

1 In further sections EPn will be always nonnegative; the minus sign is used for negative values.
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Prices were included in simulation by Stańczak and Bartoszczuk (2010). As before, only
feasible transactions are considered. The price p of the transaction is drawn at random from the
interval constrained by the marginal costs of the trading parties. The number of trading permits
is also drawn randomly.

In the present paper the transaction price is set through bilateral negotiations or through auctions
(tenders). No central institution is needed, except for the purpose of designing the market rules.
This differs from the solution proposed in Ermolieva et al. (2013), where a central institution helps
to set prices of bilateral contracts at the point of equal marginal costs for both trading parties.

3 A market with uncertain emissions

3.1 Basic notions

We assume here that any lack of exact knowledge is expressed by the uncertainty interval

bx−dl ≤x≤bxþ du; ð4Þ
where bx is the reported emission (inventory) and dl and du are the lower and upper spreads of
the uncertainty interval of a party. For the sake of simplification, the indices Pn which identify
parties have been omitted. The graphical interpretation of the derivations below can be found
in Figure S1 in the supplementary material. To be absolutely certain that a party fulfills the
limit K, the full uncertainty interval should be below the limit (Figure S1(a)). However, a
weaker condition will be used in this paper. Following Nahorski et al. (2007) we will state that
a party is compliant with the risk α, if its emission inventory satisfies the condition

bxþ du≤K þ α dl þ du
� �

: ð5Þ
This condition means that the α-th part of the uncertainty interval of the party’s emission
volume estimate (inventory) is allowed to lie above the limit K (Figure S1(b)). The condition
(5) can be also written as

bxþ 1− 1þ dl

du

� �
α

 �
du≤K: ð6Þ

Thus, a part of the upper spread of the uncertainty interval is added to the emission estimate
before compliance is checked. This can be also interpreted in such a way that an unaccounted
emission, due to uncertainty, is included in the condition to reduce the risk of non-compliance. Let
us introduce the relative upper and lower spreads of the uncertainty intervals and denote them as

Rl ¼ dlbx and Ru ¼ dubx ; ð7Þ

respectively. Denoting the fraction of the unaccounted emission in the emission estimate as

u αð Þ ¼ 1− 1þ dl

du

� �
α

 �
Ru; ð8Þ

the compliance with the risk α of equation (6) can be also written as

bx 1þ u αð Þ½ �≤K: ð9Þ
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The value on the left hand side is called the expanded emission, and this value

eK ¼ K

1þ u αð Þ ð10Þ

is called the corrected limit.

3.2 Effective emissions

The above compliance-proving policy can be used to modify the rules of emission trading. The
main idea, as presented in the earlier papers by Nahorski et al. (2007); Nahorski and Horabik
(2008; 2010), involves transferring the uncertainty of the seller’s emission volume to the
buyer’s emission volume together with the volume of traded emissions, and then including it in
the buyer’s emission balance. We use superscript S and B to distinguish between the seller and
the buyer respectively in such a transaction.

Let us denote by bES the amount of estimated seller emission allocated for trade, in tonnes.

This emission is associated with the lower and upper spreads of the uncertainty intervals bESRlS

and bESRuS , respectively. The value

Eeff ¼ bES 1−uS αð Þ� � ð11Þ
is called the effective emission (Nahorski et al. 2007). To interpret this notion, let us be aware
that the buyer subtracts the purchased emission permits from their initial number of permits.

Thus, to check the buyer’s condition of compliance with the risk α, after having purchased bES

units of emissions, the following expression has to be considered

bxB−bES þ bxBuB αð Þ þ bESuS αð Þ ¼ bxB−Eeff þbxBuB αð Þ≤KB: ð12Þ

It can also be written as

bxB þbxBuB αð Þ≤KB þ Eeff : ð13Þ
Put simply, buying effective emissions is equivalent to directly increasing with their added
value the buyer’s compliance limit with the risk α. Consequently, the transaction helps the
buyer to achieve their limit.

3.3 Basic relations in trading

The observation (13) is used below to organize a market with uncertain emissions, with the
effective emissions as the trading good. The rules of trading are given for the individual
participant of the market. The initial values before starting the trade are denoted by the
subscript 0, and those after the transaction number t≥1 by the subscript t.

Let us assume that the amount of bES

t ≥0 is sold by the seller S to the buyer B. The lower et
lS

and the upper et
uS uncertainty spreads related to this amount are

elSt ¼ RlS
0
bE S

t
¼

bES
tbxS0 dlS0 and euSt ¼ RuS

0
bES

t ¼
bES

tbxS0 duS0 ; ð14Þ

where d0
lS=dlS, d0

uS=duS, R0
lS=RlS, and bxS0 ¼ bxS . Thus, after the transaction we have
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bx S
t ¼ bxSt−1 þ bES

t and bxBt ¼ bxBt−1−bES
t ; ð15Þ

with bxB0 ¼ bxB . According to the rules of interval algebra we have for the uncertainty spreads

dlSt ¼ dlSt−1 þ elSt duSt ¼ duSt−1 þ euSt ð16Þ

dlBt ¼ dlBt−1 þ elSt duBt ¼ duBt−1 þ euSt : ð17Þ

Estimated emissions of parties not involved in the transaction do not change, and bES
t ¼ 0 is

taken to stand for them.
Let us notice that the effective emissions in the transaction can be expressed as

ES
eff ;t ¼ bES

t 1− 1− 1þ elSt
euSt

� �
α

 �
euStbES

t

8<:
9=; ¼ bES

t 1−uS αð Þ� �
; ð18Þ

where the last equality stems from (14). The quantity of effective emissions is smaller than
those that are estimated, unless precise knowledge of the inventory is known or α zeros uS(α).
The more uncertain the inventory is, and the smaller α, the less effective are emissions
allocated to the party.

3.4 Organization of the market

Now, we shall outline a market in effective emissions, acting according to the following principles.

& When trading, the effective emissions (11) and corrected limits (10) are used.
& After the t-th transaction, the seller adjusts their accumulated estimated emission according

to the rule

bxSt ¼ bxSt−1 þ ES
eff ;t

1−uS αð Þ : ð19Þ

& After the t-th transaction, the buyer adjusts their accumulated estimated emission accord-
ing to the rule

bxBt ¼ bxBt−1− ES
eff ;t

1þ uS αð Þ : ð20Þ

By adopting the above rules, a party is compliant with the risk α after transaction t if its
accumulated estimated emission is not greater than its corrected limit

bxt ≤ eK: ð21Þ

Evidence to substantiate this assertion is given in the supplementary material.
The bounds below show a reasonable amount of effective emissions to be traded in a

transaction and reflect the requirement for lacking permits by the buyer and the possibility to
spend exceeding permits by the seller, respectively. They are
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ES
eff ;t ≤min 1þ uB αð Þ� � bxBt−1−eKB

� �
; 1−uS αð Þ� � eKS−bxSt−1� �n o

: ð22Þ

A derivation of this formula can be found in Nahorski and Horabik (2012). In the
simulations, the parties generally conform to this condition, but a party may find it profitable
to abate emissions and in this way increase its bounds (a seller) or decrease them (a buyer). The
decision on abatement may be taken at each stage of the negotiations. The seller abates if it is
profitable for them to sell any additional permits. The buyer purchases permits, if it is
unprofitable for them to abate.

In conclusion, the organization of the market is as follows.

1. Before starting, all the limits are recalculated to the corrected limits eK , according to (10).
2. The parties negotiate the trading condition, taking into account the effective emissions Eeff,

which are used in the negotiation of the selling/purchasing price. The maximum amount

of effective emissions for selling is 1−uS αð Þ½ � eKS−bxSt−1� �
. The maximum amount of

effective emissions required by the buyer is 1þ uB αð Þ½ � bxBt−1−eKB
� �

.

3. Having terminated the transactions, the seller and the buyer adjust their accumulated
estimated emissions according to (19) and (20), respectively.

4. To check the compliance, the current accumulated estimated emissions are compared with
the corrected limits.

The trade above is in effective emissions, which is the common exchanged “good”.
However, to compare the prices of the effective emissions with the marginal costs of reducing
the emissions, it is necessary to recalculate the prices for effective emissions to those of
estimated emissions. As for the seller it holds that Eeff ¼ 1−uS αð Þ½ �bxS, one unit of the
estimated emissions bxSt is equivalent to 1−uS(α) units of the effective emissions Eeff,t.
Similarly, for the buyer, one unit of the estimated emissions is equivalent to 1+uB(α) units
of the efficient emissions. Therefore, the following holds.

5. The price of one unit of efficient emissions peff,t and one unit of estimated emissions pt
S for

the seller are related as follows

peff ;t 1−u
S αð Þ� � ¼ pSt : ð23Þ

6. The price of one unit of efficient emissions peff,t and one unit of estimated emissions pt
B for

the buyer are related as follows

peff ;t 1þ uB αð Þ� � ¼ pBt : ð24Þ

In any successive transaction it holds that

pSt
1−uS αð Þ ¼

pBt
1þ uB αð Þ :

So, the smaller the uncertainty of a party inventory is, the higher is its estimated emission price
when it is a seller, and the smaller is the price when it is a buyer.
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4 Simulation system

4.1 Trading mechanisms

Two trading mechanisms are considered: the bilateral trade and the sealed bid reverse auction.
In the bilateral trading, agents split randomly into pairs. Once this is done the paired agents
negotiate independently of on another. If an offer is received that lowers an agent’s cost, it is
accepted; if not, it is not accepted. The next splitting occurs after this running negotiation has
been terminated. This is repeated iteratively. Each negotiation may terminate in an agreement
or not, depending on the negotiator’s expected profits. The transaction costs are neglected.

In the sealed bid reverse auction one participant takes on the role of an auction operator,
while the others assume the role of bidder. The operator is chosen randomly using the bully
election algorithm (Mamun et al. 2004). To ensure equal opportunities for each participant to
become the operator, a priority is chosen randomly at the beginning of each auction. All other
participants may submit a bid for trading a number of permits with a specified price. The
operator chooses the most profitable bid, taking into account its preference. Afterwards, a new
operator is chosen and the process is repeated iteratively. The operator calls either for selling or
buying emissions, depending on their requirements.

4.2 Multi-agent system

To retain asymmetric information of the trading parties an agent-oriented paradigm (Shoham
1993. Shoham and Leyton-Brown 2009; Woolridge 2009) is applied. Individual parties
interact there by interchanging messages, which ensures separation of their data. Each entity
(or group of entities) in such a multi-agent system is represented by a piece of software, called
an agent. Agents are embedded in an environment that allows them to communicate by using a
protocol, in which some of the frequent communication patterns are designed.

A multi-agent system is a system composed of two or more autonomous software agents
communicating with each other and working towards their own individual ends. Such a system
is designed to achieve some overarching objectives and to operate in accordance with the
intentions of the system designer. These goals are not implemented directly, but rather through
the individual objectives of each of the agents and their interactions. Each agent represents a
single party, which is guided by its own interests. In our case, an individual agent is motivated
by the desire to achieve certain gains from the exchange of permits, i.e. to reduce its costs. The
overarching goal of the system is that of the central planner, i.e. to minimize the total cost of
fulfilling the emission limits. To achieve their goals, agents cooperate and compete (so called
coopetition, Bengtsson and Kock (2000)). The coopetition is modeled by the strategic behavior
of the agents. For a general discussion of the negotiations between programmable agents see
Lopes et al. (2008).

A widely used standard for the description of multi-agent systems is the ODD-protocol,
Grimm et al. (2010). A detailed description of the system prepared that uses the ideas of the
ODD-protocol can be found in the supplementary material.

4.3 Non-learning agents

To prepare an offer the agents use knowledge stored in their state. Two kinds of agents are
considered, learning and non-learning ones. A non-learning agent state consists of its emission,
its emission reduction cost, the bought/sold permits and their costs. Using this knowledge, an
agent is able to assess whether the coming offer is profitable or not.
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Negotiation in the bilateral trading arena commences with establishment of the number of
permits offered for negotiation by a trading agent. A prototype number is drawn randomly
according to a uniform distribution on an interval extending from zero to a determined
empirically upper value in order to ensure the stable behavior of the market. Once this is done
the minimum of the number of permits lacking to achieve the limit given by (22) and the
prototype number, is computed. Finally, the minimum from the numbers submitted by both
parties is taken. The number of permits is not changed during any bargaining over the price.
An offer price of an agent is computed randomly using a given (see Section 5.3 for details)
probability distribution defined by the agent’s price interval, which extends from the agent’s
marginal cost to the last most favorable price of an accepted offer. In this way, starting prices
for negotiations are formed. Then the parties try to reach the final price, step by step, by
successive incrementation (by a buyer) or decrementation (by a seller) of any previous offers
with a constant predetermined step value. The negotiations succeed when both parties agree
upon a price. If one side has reached its limit of profitability and the other refuses to accept the
actual price, the negotiation fails and no transaction is performed. An exchange of offers takes
place until the end of negotiations. Only then may the agents become engaged in any
successive negotiations.

A similar random mechanism is used to form an offer price in the tender. Having gathered
the offers, the auction operator chooses the most favorable one, and the transaction is
concluded. The parties taking part in the tender are not engaged in any other negotiations
during this period.

4.4 Learning agents

Agents’ actions modify the agents’ state. This is used by learning agents to improve the
selection of transactions and any subsequent bidding and/or negotiating, through setting and
modifying the probabilities of their execution. For example, if a bid price in an auction is too
low when buying, it is very likely that some other party overbids it. If it is unnecessarily high,
the gain will be small. Agents use a variant of the reinforcement learning method, see Brenner
(2006). More precisely, a learning agent state is augmented with additional variables, which
store information on transactions concluded by the agent, separately for selling and buying.
This is used to form and adapt probability distributions of succeeding in a transaction. The
interval of possible offers is divided into ten subintervals. Having concluded a transaction, the
value in an appropriate subinterval is increased. The initial distribution is uniform. Any
predicted gain is calculated by multiplying the experimental probability of profiting from the
potential gain in the middle of the corresponding subinterval. These expected gain distributions
are used for generating successive bids, which are selected using a roulette wheel method. This
way better bids are employed more frequently.

5 Simulation results

5.1 Case considered

The simulation was carried out using the case study described in Horabik (2007) and Nahorski
et al. (2007). Five trading parties: the USA, the EU, Japan, CANZ (Canada, Australia, New
Zealand) and the EEFSU (East European and Former Soviet Union), indexed n=1,…,5,
respectively, are assumed to take part in the Kyoto Protocol trade agreement. We assume that
all these parties conform to the Kyoto Protocol regulations to reduce CO2 equivalent
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emissions. The parties have been specified emission limits KPn , BAU (business as usual)

emissions bxPn
0 , and the cost reduction functions cPn . As set forth in Horabik (2007), the cost of

reduction can be well approximated by a square function of the size of the reduced emissions

cPn bxPn
0 −bxn� �

¼ aPn bxPn
0 −bxPn

� �2
for bxPn < bxPn

0

0 for bxPn ≥bxPn
0

(
: ð25Þ

The variable bxPn stands for the current accumulated emission permits. The marginal cost of
the emission permit λPn is the derivative of the function cPn. Symmetric uncertainty
distributions are considered, for which better estimates of uncertainty can be given. The data
for the problem are given in the Table S1 in the supplementary material.

5.2 Learning agents

Results obtained in all simulations are quite similar. The values of final emissions, numbers of
traded permits, final marginal costs and the reduction cost are almost identical. The equilibrium
results obtained are also similar to the results for the centrally planned market (Horabik 2007;
Nahorski et al. 2007; Bartoszczuk and Horabik 2007). Bigger differences can be noticed in the
values of permit costs, caused by the different ways of reaching contracts in the methods under
consideration.

In Fig. 1a and b a few exemplary trajectories of transaction prices are depicted, while in
Fig. 1c and d examples of trajectories of consecutive prices in a trade between only two
individual parties are shown. In both cases, the tender trade (operated only by sellers in this
case) gives smoother trajectories, because selection of the best price filters out the outlying
higher ones.

In the sealed bid reverse auction trade, final marginal costs do not converge precisely to the
same value. This is caused by the competition among parties. Less profitable transactions are
rejected and some parties are unable to win transactions that would lead them to the
equilibrium point. This fact is more visible for smaller α. When ignoring uncertainty, for
α = 0.5, the final marginal costs are almost equal. In the bilateral case marginal costs tend to
the equilibrium because the contracting parties are selected randomly, and if the transaction is
profitable for both parties, it is concluded, even if more profitable transactions could be made,
Fig. 1a. In the tender case more profitable transactions are prefered by seller or buyer operators
and some parties actually finish the simulation with worse results.2

The curves depicted in Fig. 2 present the experimental probability densities of bids,
dependent on either call prices or final transaction prices, and expressed as a percentage of
its actual marginal costs (100 % corresponds to the marginal cost and 900 % corresponds to 9
times the marginal cost when selling,3 while 0 % corresponds to the marginal cost, and 100 %
corresponds to the lowest price when buying). The data are recorded from 1,000 simulations.
Generally, market participants buy permits at prices close to their marginal costs, with
distributions similar to exponential ones. Selling is more complicated, because the EEFSU
sells permits with almost equal probability for all possible bid prices. But for the final
transaction prices the distribution is much closer to an exponential one. This effect is caused
by the fact that high bid prices in bilateral trade are negotiated to much lower prices in any

2 Only selected examples of extended simulations are included.
3 EEFSU has most time the marginal cost 0 due to excessive permits (“hot air”). But in this case a small value
min was introduced to keep more realistic conditions in the price calculation.

656 Climatic Change (2014) 124:647–662

Reprinted from the journal 206



concluded transactions. Still, the EEFSU was able to sell a big share of permits at much higher
prices.

5.3 Non-learning agents

Non-learning agents have a fixed probability distribution of bidding. After experiments with
cut-normal and cut-lognormal distributions, the empirical distributions which have been
gathered in learning-agent simulations, have finally been used to generate prices offered by
non-learning agents. In Fig. 3 the trajectories of consecutive transaction and marginal costs
during single simulations are depicted, with α=0.3. Figure 3a presents the results for the
bilateral negotiations, and Fig. 3b for the sealed bid reverse auction. In both cases, the marginal
costs of the parties converge to the final equal marginal cost. The transaction prices are located
inside the marginal costs, so they converge as well. They gather mostly in the upper part, close
to the upper marginal costs. This is particularly visible for the bilateral negotiations (Fig. 3a),
and in the later part of the sealed bid reverse auctions (Fig. 3b). The auctions are mostly won
by the EEFSU, due to its possession of the most competetive selling prices.

Analyzing the parties’ behaviours, let us first consider Japan for the sealed bid reverse
auction model (see Fig. 3b). To begin with, Japan is prompt in its purchase of permits; it lowers

Fig. 1 Trajectory of prices in consecutive contracts, in USD/MtC/y, in a single simulation, with α=0.3, for: a, c
bilateral negotiations, and b, d sealed bid reverse auctions (operated only by sellers), a, b for all market
participants, c only transactions between the USA and the EEFSU are shown, d only transactions between the
EU and the EEFSU are shown
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its marginal cost equally quickly. When the marginal cost reaches the level of the prices of
other countries, Japan begins selling the permits. The same process, on a smaller scale, can be
observed for the EU and CANZ. The USA, in turn, is mostly buying the permits while
conditions are favorable, and EEFSU is generally selling permits: initially its “hot air” permits,
and then from reducing its emissions.

In the bilateral trade (see Fig. 3a) CANZ, the EU and Japan are energetic in their purchase
or sale of permits. As in the previous case, the USA is mostly buying and the EEFSU is mostly
selling. The transaction prices, agreed randomly, are much higher than in the sealed bid reverse
autions. Nevertheless, they tend to decrease in time. Hence, the overall profit for the seller (the
EEFSU) is greater, and for the buyer (the USA) it is smaller than in the sealed bid reverse
auction trade. Japan profits more in the tender trade.

Equilibrium results, averaged after 5 simulations, are presented in Table S2 in the supple-
mentary material. In all cases the market converges to a point of (almost) equal marginal costs,
which is a necessary condition of optimality. The marginal costs and traded permits are close to
those obtained by central optimization of the market. There are differences between emission
reduction and permit cost distributions among parties for the bilateral and tender trade, as a
result of different ways of reaching the equilibrium.

The emission reduction costs are almost equal for both trade mechanisms. They rise when
the uncertainty parameter α decreases. The same is for the overall costs for each party. Thus,
for a smaller α, it may be profitable to invest in a decreasing uncertainty of the inventory. For a
smaller α, more parties reduce their emissions and sell their permits. For α=0.1, every party
globally sells more emissions than buys. This is due to the specific features presented by the
trading of uncertain emissions, which balances the traded effective emissions but imbalances
the estimated ones.

5.4 Comparison and discussion of results

Equilibrium results of all methods are similar, see Figure S2 in the supplementary material. For
a parameter α larger than 0.2, values of final marginal costs are almost identical for all cases.
For one that is smaller than 0.2, the results slightly differ. Larger marginal costs are for the
learning and the smaller are for the non-learning agents. The results obtained indicate that the
marginal cost λ(α) in the equilibrium and the total final emission x(α), for a given α, can be
well approximated by the following linear function

Fig. 2 Probabilities of concluded transactions for selected market participants as a function of a bid or final price
expressed as a marginal cost percentage: a bilateral and tender the USA, b bilateral trade the EEFSU

658 Climatic Change (2014) 124:647–662

Reprinted from the journal 208



λ ¼ −3:6502xþ 4418:7:

This suggests the possibility of anticipating the final marginal cost for a given final emission.
Also, knowing the marginal cost functions and the equilibrium price, the total final emissions
can be determined. These dependencies may be helpful for the market designer.

Fig. 3 Trajectory of unit prices in consecutive contracts, in USD/MtC/y, in a single simulation, for α=0.3; awith
bilateral negotiations, b with sealed bid reverse auction
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During trading, the prices tend to keep close to the buyers’ marginal costs. This is partly
due to the rapidly converging marginal costs of most parties, except for the EEFSU and the
fact that transaction prices between the parties fall between their marginal costs. Parties are
aware of this tendency as is shown in the distribution for the USA in Fig. 2a. In bilateral
negotiations the transactions are concluded far more often when they start with offers close to
the buyer’s marginal costs. The distribution for the final prices are close to the buyer’s
marginal costs both in bilateral negotiations and auctions. But the EEFSU often successfully
finalizes its bilateral negotiations for different initial prices, Fig. 2b, and gets prices accepted
that are often much higher then its marginal costs. This is an effect of the monopoly of the
EEFSU, which is the main seller, while other participants have to compete to buy permits.
The effect of transaction prices gathering close to the buyer’s marginal costs is also evident in
Fig. 3.

As the buyer’s marginal costs decrease in time, the prevailing prices on the market also
decrease. It is particularly visible for the bilateral negotiations, Fig. 3a, but also in the final
stage of the auctions, Fig. 3b. This effect has been also observed in the real markets. The
decrease is rather slow, which is in part due to the severe limitation of the traded volumes in
our simulation. Greater volumes cause, however, bigger difficulty in their precise convergence
to the equilibrium.

6 Conclusions

This paper concentrates on presenting the possibility of using agent-based computation tools to
simulate trading of goods, which can not be quantified with satisfactory accuracy. A conser-
vative compliance rule approach is considered, dependent on an accepted risk (probability) of
not fulfilling an emission limit. The smaller the risk is, the more emissions have to be reduced.
The market is designed to guarantee that the reductions are introduced, but a distinct feature is
that the uncertainty of emissions influences their market prices. Those that are more uncertain
are cheaper than those that are more certain. A specially designed muli-agent system was
constructed to simulate trading with the two market mechanisms mentioned above. Multi-
agent methods are used for market simulations, mainly because they are able to deal with
complicated multi-interaction systems. The applied multi-agent approach seems to be a
suitable tool for analyzing the economic phenomena of a market with uncertainties in prices,
which appears in the GHG emissions market that is considered in this paper. Consequently, it
was possible to observe the behavior of the market and its participants alongside a growing
number of concluded transactions. The approach is also suitable for investigating the strategies
of participants in the market as well as other market mechanisms than those considered in the
paper, bilateral negotiations or tenders.

The results obtained are recognised as being preliminary ones, as rather simple assumptions
have been taken in the simulations. Firstly, a simple negotiation of prices is assumed, in which
the agents do not apply sophisticated strategies, and do not take into account any contract
prices in other transactions. This is connected with the market mechanisms considered in the
paper. In both the final transaction prices can remain secret.

The simulations provided phenomena which resembled real trade. A particularly interesting
fact is that of grouping the transaction prices nearer the buyer’s marginal costs, which has the
effect of decreasing the prevailing transaction prices in time, with a corresponding rise in the
number of concluded transactions. This result has been obtained for five parties (groups of
states) active on the market. Five participants form a very small market in comparison with the
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real market’s dimensions. However, any simulation of bigger markets presents a difficulty in
the acquisition of the participants’ emission abatement cost curves.
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Abstract System dynamics models are employed for analyzing the impact of different
uncertainties on carbon emission trading–both on national and business levels. Economic,
institutional and technological uncertainties significantly influence any country's benefits from
emission permit trading. If a country participates in trading on the international market then the
possible price range becomes the source of additional uncertainty. In the case of business
investment decisions for implementing resource‐saving technology, our system dynamics
model shows that the first‐mover investor will get significantly fewer advantages than his
followers, which leads to delay in primary investment to the sector.

1 Introduction

Reducing greenhouse gas (GHG) emissions is one of the global challenges of environmental
protection which belongs to the unanimous aims of the international community next to others
like overcoming poverty and promoting development (see, e.g., United Nations Web Services
Section, Department of Public Information 2008). “[International] emissions trading, as set out
in Article 17 of the Kyoto Protocol, allows countries that have emission units to spare–
emissions permitted them but not ‘used’–to sell this excess capacity to countries that are over
their targets. Thus, a new commodity was created in the form of emission reductions or
removals” (UNFCCC 2009, Mechanisms | Emissions Trading). This concept is considered to
be one of the most effective ways to harness the power of market to mitigate income losses
caused by the reduction of GHG emissions, and thus to push the efforts addressing the global
climate challenge.

However, there are substantial economic, technological and even institutional uncertainties
each of which may influence the development of the emissions trading market. In this paper
we attempt to use system dynamics models to estimate these uncertainties. Our considerations
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show that an uncertain emissions trading market may jeopardize the international GHG
reduction commitment.

In the following section 2 we will provide an overview of recent developments. In a former
approach (Pickl et al. 2010) a so-called TEM (Technology-Emission-Means) model was used
to simulate the behavior of several agents intending to reduce their CO2 emission within an
international market situation. Therefore, the time-discrete TEM model provides scenarios
which are the basis for a decision support process which will be extended in the present article
via comfortable system dynamic techniques.

Section 3 introduces a system dynamics model to estimate the marginal economic utility of
CO2 emissions for a national economy and thus the possible permits price for an international
emissions trading. Based on model simulations we then discuss how economic, technological
and institutional uncertainties may result in uncertainty of permits price in an international
emissions trading.

In section 4 we present a further system dynamics model describing two compet-
itors trying to find their optimal point of time to adopt certain resource-saving
technology for their production process. Such an approach is related to the game-
theoretic approach in (Deissenberg and Pickl 2004; Pickl 2008) where a so-called
Kyoto game is used to characterize several allocation principles. Here, we integrate
the uncertainty aspect within such an allocation process. Since this optimum depends
strongly on the increasing price of the resource to be saved our model simulations
show that an uncertainty of price may make decision-makers postpone their resource-
saving projects for years for the sake of a higher financial performance.

We conclude that system dynamics can be seen as a useful approach to simulate and to handle
different aspects of uncertainty of emissions trading, economic and technological development.
At the end an outlook for further extensions of system dynamics techniques is described.

2 Recent developments

Two basic approaches for reducing CO2 emissions–carbon tax and cap-and-trade–were
debated among scientists over the years before and after the commencement of the
Kyoto protocol. Despite all the advantages of carbon tax (see, e.g., Avi-Yonah and
Uhlmann 2009; Wittneben 2009; CPA Australia 2009) emissions trading scheme is
considered to be the most effective way to provide economic incentives for companies
to invest in resource-saving technologies.

However, cap-and-trade systems appear to have major disadvantages–a significant number
of exogenous and endogenous uncertainties that overlap existing benefits.

Uncertainties like volatile market prices of electricity and fuels influencing the carbon
emissions market have been indicated in the work of (Laurikka and Koljonen 2006). Addi-
tionally, the auxiliary uncertainty originates from the behavior of emission permits market.

It has also been stated that uncertainty in climate protection policies introduces additional
risks to the investment decisions “…through its effects on inducing greater optionality
considerations in the behavior of investors” (Yang et al. 2008, p.1934). Furthermore the
macroeconomic impact of government policies is presented by their influence on domestic
production and exports and imports of clean and conventional energy (Alexeeva-Talebi and
Anger 2009).

Very few publications have been made recently on the subject of the role of uncertainties
that arise from emissions trading. In most of them this question is also seen in a long-term
investment perspective. Generally speaking, policy uncertainties and price volatility are major
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concerns for the firms investing in energy related projects. Due to the long-term and irrevers-
ible character of investment projects, investors prefer to postpone their decisions until they
have additional information about the ongoing project performance. The analysis with the help
of stochastic dynamic computable general equilibrium model with an extended energy sector
employing Chinese data shows that uncertainties are beneficial for the environment while still
unfavorable for the welfare (Schenker 2011).

In the work of (Blyth and Bunn 2011) the three-dimensional perspective of policy, market
and technological risks is presented, indicating that actually all the commitments and goals set
by European Union (EU) are sources of uncertainty. Policy risks are provided by the level of
the cap, the level of technology support, and the energy efficiency target. More specifically
market risks are: uncertainty in the level of demand for electricity and fuel prices. Technology
based risks incorporate the price and the quantity of the abatement available. These risks exist
and co-evolve in a complex way which requires detailed modeling to identify their importance
in various scenarios.

Furthermore investment decisions for long-term projects significantly depend on the level
of risk. Although built to provide the most cost-effective approach to reducing CO2 emissions,
emissions trading may create uncertainties that limit different kinds of investment opportuni-
ties and distract most investors from entering projects related to renewable energy. This is
crucial since existing technological uncertainties by themselves are enough for switching “the
timing competition […] in a fundamental way from a preemption game to a waiting game”
(Hoppe 2000, p.331).

The models described in this paper are aimed to present the economical, technological and
institutional uncertainties at different levels of decision-making. They are based on the TEM
model (Pickl 1998) which can be seen as a first approach to simulate the relationship between
technologies, emissions and (financial) means. Key element of the TEMmodel is the matrix of
effectiveness which characterizes the effect of financial investments on reductions of CO2. As
mentioned above the TEM model provides first scenarios which can be the basis for further
optimization approaches. In (Pickl 2001) several scenarios are introduced. As the matrix of
effectiveness consists on empirical parameters its estimation is crucial. These parameters are
analyzed under uncertainties in (Pickl et al. 2010).

Here, we employ system dynamics models to demonstrate the range of possible outcomes
at supra-national and national level. At the end of the paper we combine the system dynamics
approach with the so-called Kyoto game which was invented to characterize certain allocation
procedures (Pickl 1998; Deissenberg and Pickl 2004).

3 Economy, energy consumption and emissions trading

3.1 System dynamics model for dependency between economy, energy consumption
and emissions

From a very general perspective, the correlation between energy supply and national economy
can be depicted in a Causal Loop Diagram shown in Fig. 1, left. Beginning on the right side of
the model, economic strength and energy demand are directly correlated through the energy
efficiency factor (see Chontanawat et al. 2006). Furthermore, energy shortage, in the centre of
the model, inhibits the development of the economy as observed in numerous developing
nations as well as in developed countries during energy crises.

Each energy supply is in fact a combination of both clean energy and conventional
energy which both react to energy shortages. While a market driven growth in the
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provision of clean energy can be evaluated positively from the point of view of
economic development and of emission reduction, the target of emission reduction can
be acquired when the market authority controls the feedback loop for conventional
energy by the way of limiting emission permits. The assignment of the total amount
of emission permits confines the total amount of conventional energy on the market
and thus inhibits its growth respectively enforces a reduction of conventional energy
by constantly diminishing the amount of emission permits. For more details of the
model see (Hu and Pickl 2010).

On the basis of the Causal Loop Diagram shown above we create a new Stock and
Flow model (Fig. 1, right) which allows to understand the development of a country
regarding its economic strength and its energy supply within a given period of time
using numerical simulations. This means in detail, that this system dynamics model
shows the interconnectivities between essential stocks and different real parameters
and additionally visualizes three main negative feed-back loops within the model.
Generally speaking, the results of the simulation concerning the growth of economy,
energy consumption and quantity of emission may be compared to published statis-
tical data.

Therefore it has to be said at this point that in the following two subchapters, this system
dynamics model will be used for calculating different aspects of uncertainty of economic and
technological development. Finally this system dynamics model about dependency between
economy, energy consumption and emissions tries to support the understanding for the
uncertainty caused by international emissions trading.

In Table 1, the most important variables used in Fig. 1 are listed. The starting and fitting
parameters are used to describe the reality as closely as possible, while different scenarios in
the future can be simulated using the scenario parameters. Notice that in the sense of CO2

emissions nuclear energy is roughly seen as a part clean energy supply.
Real economic and CO2 emissions data (see Gapminder Foundation 2008) are used to

calibrate the model presented above. In Fig. 2, the real economic (red squares) and emissions
(black squares) data of China, meanwhile the largest CO2 emitter of the World, between 1990
and 2005 are depicted. Based on our calibrated model, the CO2 emissions are also calculated
and shown as the grey line. The correlation between the economic and emissions data can
nicely be described by the model.

Using the same model and calibrated parameters both a so-called business as usual
(BAU) scenario and a scenario of certain reduced CO2 emissions can be simulated.
The area between the BAU (black line) and the reduced CO2 emissions (light blue
line) represents the CO2 abatement per capita within 15 years (2005–2020), while the

Fig. 1 Left: causal loop diagram, right: stock and flow diagram (Hu and Pickl 2010)

666 Climatic Change (2014) 124:663–676

Reprinted from the journal 216



area between the BAU (red) and reduced (blue) economic development shows the
total per capita income loss during the same period of time. In this way the marginal
utility of CO2 emissions can be estimated for each country as a function of targeted
CO2 reduction based on BAU. In addition, “Other Factors” can be changed to model
different economic growth rates in the future while “PPP$ per Oil Slope” and “Factor

Table 1 Variables used in the system dynamics model shown above

Type Variable Explanation Unit of measure

Starting parameters
using real data

PPP$ start Purchasing Power Parity (PPP) at
the beginning of a given
period of time

PPP$/capita·year

KgCO2 start CO2 emission at the beginning
of a given period of time

kg/capita·year

PPP$ per oil start PPP$ per consumed energy in
kg oil equivalent (energy efficiency)
at the beginning of a given period of time

PPP$/kg

PPP$ per oil slope Annual growth rate
of energy efficiency

PPP$/kg·year

Fitting parameters Factor clean;
factor conventional

Speed of reaction of energy suppliers
egarding a given shortage
of clean energy or conventional energy

1/year

Other factors External, not ascertained factors,
which promote economic development

1/year

Scenario parameters Permits change Change of national
emission permits

kg/capita·year

Import Imported emission permits kg/capita·year

Important indicators Economic strength Purchasing Power Parity
in a given year

PPP$/capita·year

Emission CO2 emission in a given year kg/capita·year

Fig. 2 The development of GDP per capita and CO2 emission for China under different emission schemes
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Clean” are used in different scenarios to reflect different speeds to achieve higher
energy efficiency and higher capacity of CO2 neutral energy supply.

3.2 Uncertainty of economic and technological development

Using the system dynamics model described in section 3.1 we are able to estimate the
influence of economical and institutional uncertainties on a country’s benefits from
emission permits, for example, for USA, the largest CO2 emitter of the World not
long ago. In details the following Fig. 3 shows the marginal utility as a function of
economic growth and targeted emissions reduction. Economic uncertainties are pre-
sented as changes in the rate of economic growth. Institutional uncertainties–are
various targets for emissions reduction. Given different levels of economic perfor-
mance, and diverse institutional constraints, the U.S. economy becomes open to a
significant number of possible scenarios (marginal utility curves) or price uncertainties
that influence investments in emissions reduction.

Technological uncertainty mostly arises from unclear perspectives about the implementa-
tion and future performance of new sustainable technologies. We include technological
uncertainties, such as speed in building clean energy capacities and energy efficiency into
the list of different scenarios. According to Fig. 4 technological factors are sources of
additional uncertainty that can make the marginal utility of CO2 emissions and thus the
permits price in a possible trading in the future even less predictable.

3.3 Uncertainty caused by international emissions trading

If we look at the uncertainties in emissions permits price in the context of interna-
tional trading scheme, then the pricing mechanism becomes even more complicated.
Figure 5 shows the case of trading between USA and China under economical and
institutional uncertainties. If economic growth in the USA during the period of 2005–
2020 will be at the same rate as in 1990–2005, then different conditions of total
permits increase in China will result in a difference in permits price from 84 $ (Price 1) to 209 $
(Price 2).

Fig. 3 Marginal utility as a function of economic growth and targeted emissions reduction per capita in USA
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4 Implementation of resource-saving technology under the conditions of increasing
resource price and uncertainty

4.1 Timing competition in adopting resource-saving technology

Closely connected to Section 3, we develop in this section a new system dynamics model to
explain the situation of the implementation of resource-saving technology under the conditions
of increasing resource price and uncertainty. This system dynamics model describes two
competing participants (a first mover and a follower) with different strategies regarding new
resource-saving technology.

0

50

100

150

200

250

300

350

400

450

-2.50 -2.00 -1.50 -1.00 -0.50 0.00 0.50 1.00

M
ar

g
in

al
 U

ti
lit

y 
in

 P
P

P
$

Target emissions reduction per capita per year

Basic scenario for clean energy
implementation (Cinf=3.0)

10% addition speed in
implementation of clean energy
technologies (Cinf=3.3)

Average annual groeth of US
economy +0.5%

US increase energy efficiency as
fast as Germany (SL=0.115)

Fig. 4 Marginal utility as a function of energy efficiency and speed of implementation of CO2 neutral energy
supply

0

50

100

150

200

250

300

350

400

-800 -700 -600 -500 -400 -300 -200 -100 0 100 200 300

U
S

$

Emissions reduction by US in 2020 (MtCO2)

Average annual growth of US economy 0.5%

Average annual growth of US economy 0.3%

The rate of growth similar to 1990-2005

0.1% higher growth than 1990-2005

0.3% higher growth than 1990-2005

0.5% higher growth than 1990-2005

Total emission permits in China compared to
2005: 4700 MtCO2

Total emission permits in China compared to
2005: 4200 MtCO2

No increase of emission permits

Fig. 5 Uncertainty caused by emissions trading between USA and China

Climatic Change (2014) 124:663–676 669

Reprinted from the journal219



As already mentioned in the beginning, the Kyoto protocol and the international
emissions trading should encourage each company to invest in resource-saving tech-
nologies to reduce its GHG emissions. From a business point of view, the decision is
made on the basis of an expected positive profit from such an investment. In our
model, the price for resources to be saved is rising and therefore the average costs for
resources for production are also increasing. To stay profitable, the companies need to
reduce the amount of non-regenerative energy needed for the production by
implementing resource-saving technology. The following iterative method of the
system dynamics model is aimed to explain the complexity finding the right moment
in time for adopting and furthermore investing in resource-saving technology.

As defined in our system dynamics model shown in Fig. 6 the revenue of a company
achieved through a resource-saving project is given by the sum of investment and production
incomes, while the spending consists of costs for installation and maintenance. The model
takes into account that the development of “Unit Cost” obeys an internal learning curve. The
decision problem is to find the optimal timing to start the installation of resource-saving
capacity to maximize the stock “Money” within in a longer period of time, say 20 years.

To install resource-saving capacity one does not only need internal but also external
services and purchased parts. This leads us to the model depicted in Fig. 7. We assume that
purchased parts (and services) consist of business sector specific ones on the one hand and
commodities on the other hand. The costs of the business sector specific parts (and services)
obey a business sector specific learning curve. We assume that the price of the resource to be
saved and the prices of commodities are independent from the behavior of the actor under
consideration.

A deciding input parameter of this model is the price development of the resource to be
saved. While uncertainty of price development remains, in contrast to the conventional concept
of the time-based competition (Stalk 1988) in which a moment of time as early as possible is
desired, this model shows that, under certain conditions, there exists an optimal timing to start
the installation of the resource-saving capacity (Fig. 8).

Fig. 6 Profit calculation for investment in resource-saving capacity
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The last extension to the model is to take a follower (“Money F”) in the same business
sector into account. After the first-mover company started its resource-saving project, there
always exists an optimal moment of time, when a follower company producing same products
can start its project in the same way. Because the first-mover and the follower share the same
learning curve of business sector the supply market for the purchased parts and services will
become cheaper for the follower than for the first-mover (Fig. 9). This system dynamics model
will be used in the following chapter for further explanations of the existence of different kinds
of uncertainty, which arise not only on a macro-economic but especially on a micro-economic
level.

Fig. 7 Commodities and business sector specific parts and services

Fig. 8 Price development of the resource to be saved
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4.2 Uncertainty and follower advantage

According to the model presented in section 4.1 time is the crucial point when investing in
resource-saving capacities under the condition of the existing uncertainty and increasing
resource price. In a former approach certain allocation principles were characterized from a
more static point of view (Pickl 2001, 2008). Here, we extend this characterization in a
dynamic way.

Our model simulations show that there exists an optimal point of time for the start of
resource-saving capacity project by the first-mover since the resource price increases while the
costs for resource-saving capacities decrease. However, it is possible for a follower to start later
to have a higher financial performance and lower investment volume. Uncertainty of price
development can make the position of the follower even more comfortable. This in turn causes
that a potential first-mover will postpone his resource-saving project for years to evade
competitive disadvantages. The final result is a significant delay in implementation of
resource-saving capacity in the whole business sector.

Figure 10 shows a possible scenario using model simulation: both the annual increase rate
of the price of the resource to be saved and the annual interest rate are assumed to be 5 %. The
decrease rate of the price of purchased parts increases as the first-mover and the follower start
their resource-saving implementations respectively in the 3rd and 6th year. Notice that the first-
mover has to make a much higher financial effort than the follower but at the end of the time
period under consideration only a slightly higher financial performance. Under certain condi-
tions the follower can even have a higher financial performance than the first-mover.

The next two figures show how price uncertainty can further influence first-mover and
follower investment outcomes. In Fig. 11 the increasing rate of resource price is slowing down.
In this case, first-mover and follower have equal financial performance, but first-mover
investment project requires higher investments.

Fig. 9 Two competitors in a business sector
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If the follower follows the first-mover with optimized timing the first-mover does not only
have a slightly lower financial performance but also a much higher risk of bankruptcy than the
follower (Fig. 12).

Figure 13 shows the financial advantage of such a follower as a function of time delay
before the follower starts his resource-saving project. In our model simulation we assume that
interest and the annual increase rate of the resource to be saved are both 5 %. The follower has
an advantage of 1.2 % in financial performance even if there is no uncertainty of resource price
development. In the case when −1 % slowdown in resource price increase occurs after the first-
mover starts investment (from 5 % to 4 %), the follower may achieve about almost 6 % higher

Fig. 10 Simulated development

Fig. 11 Price development slows down

Climatic Change (2014) 124:663–676 673

Reprinted from the journal223



financial outcome if he starts his investment about 1.5 years later then the first-mover.
Consequently, the advantages of the follower under multiple uncertainties interfere with the
first-mover investments in resource-saving technologies. As mentioned above, these follower
advantages may make a potential first-mover and thereby the whole business sector postpones
its resource-saving investments significantly.

5 Conclusions

We introduce two system dynamics models to estimate economical, institutional and techno-
logical uncertainties of emissions trading and their consequences for the effectiveness of
emissions trading as a climate protection instrument.

The interdependence between economy, energy consumption and emissions is shown
by using the first model which gives the opportunity to work with real economic data.
We use this model to calculate income loss that occurs due to CO2 reduction and thereby
the possible price of emission permits for different countries. Sensitivity analyses

Fig. 12 The development of the prices and financial performance
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indicate that all three types of uncertainties–institutional (targeted emissions reduction),
economical (the rate of economic growth) and technological (speed of energy efficiency
improvement and clean energy implementation)–influence the price of emission permits
significantly. The range of possible price options is very broad and leaves possible
investors with very risky investment projects. To demonstrate uncertainties in emissions
trading between two countries we use an example of USA and China, the both largest
CO2 emitters of the world. Different levels of economic development and different
policies towards emissions reduction result in a significant difference in permits price
between these two participants. Consequently, international interactions add even more
uncertainty to pricing mechanism of emission permits.

The second model in this paper describes the behavior of specific decision-makers who are
interested in investing in resource-saving technologies. Our system dynamics model indicates
that there exists an optimal point of time for a potential first-mover to start a resource-saving
capacity project under the condition of increasing price of the resource to be saved. However,
our scenario simulations also show that a competitor in the same business sector can start his
resource-saving project at a later moment of time to achieve higher financial outcome with
lower investments, especially when uncertainties exist. This follower advantage is a substantial
obstacle for a potential first-mover and thereby for a whole business sector to start investments
in resource-saving projects.

Using system dynamics model simulations we find evidences that emissions trading
appears to be able to provide invalid signals for decision-makers. Investors are facing wide
range of permits price simultaneously being open to numerous economic, technological and
institutional uncertainties. The authors state that system dynamics is a useful modeling tool to
deal with uncertainty. Finally, the financial performance index can be seen as an important
orientation measure which should be extended in further approaches.
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Abstract The paper discusses the development of economic techniques for dealing with
uncertainties in economic analysis of planting trees to mitigate climatic change. In consider-
ation of uncertainty, time preference and intergenerational equity, the traditional cost-benefit
analysis framework is challenged with regard to the discounting/non-discounting of carbon
uptake benefits, and because it usually uses a constant and positive discount rate. We
investigate the influence of various discounting protocols on the outputs of economic analysis.
The idea of using the declining discount rate is also considered. Several numerical examples
dealing with the analysis of afforestation for carbon sequestration in Scotland and Ukraine are
provided. We show that the choice of discounting protocols have a considerable influence on
the results of economic analysis, and therefore, on the decision-making processes related to
climate change mitigation strategies. The paper concludes with some innovative insights on
accounting for uncertainties and time preference in tackling climate change through forestry,
several climate policy implications of dealing with uncertainties, and a brief discussion of what
the use of different discounting protocols might imply for decision making.

1 Introduction

An important social function of forests is their role in climate change mitigation (CCM).
Numerous recent studies have addressed the cost-effectiveness of terrestrial carbon sink (Newell
and Stavins 2000; van Kooten 2004; Stavins and Richards 2005; Nijnik and Bizikova 2008;
Moran et al. 2008; Brainard et al. 2009; Nijnik et al. 2013). These studies suggest that the extent to
which the mitigative role of forests can be enhanced is mediated by externalities, uncertainties,
and complexities. These are shaped by a range of environmental, economic and policy drivers;
market signals; institutional arrangements; and by public attitudes and behavioural patterns.
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Forestry can contribute to CCM in many ways, including the establishment of tree
plantations; increasing (i) carbon density (e.g. low thinning or long rotations), (ii) carbon
storage in soils and (iii) wood products; and implementing renewable energy projects. Some of
these measures are contested in the literature, e.g. long rotations (enhancing carbon storage in
trees) on the one hand, and short rotation forestry, combined with the use of bio-energy, on the
other (when, in addition to terrestrial carbon sequestration, the substitution of wood for fossil
fuel is considered as a CCM measure); however, support for afforestation1 is widespread.

Carbon sequestration through afforestation is usually considered to be a cost-efficient and
synergistic option: when incorporated in multi-functional forestry (Nijnik and Miller 2013) it
can co-deliver a variety of ecosystem services (Nijnik et al. 2012), at the same time as
providing economic incentives for sustainable forest management. Afforestation is technically
feasible; and many countries have a legacy of tree-growing (Nijnik and Bizikova 2008). It has
been proved as effective for carbon sequestration, and effects are almost immediately apparent
when trees are planted. Afforestation is also considered to be a low resource- and energy-
consuming climate policy measure (Binkley et al. 2002).

Despite this, when van Kooten et al. (2004) carried out a meta-analysis of 68 studies,
including a total of 1,047 observations worldwide, they identified huge variability across
estimates of carbon sequestration costs. Baseline estimates of costs through forest conservation
(based on analysis of 981 observations from 55 studies) ranged from US$46.62–US$260.29
per tonne C.2 Although such variation across marginal cost estimates of carbon sequestration is
partly due to the different methods and assumptions used, it also indicates that terrestrial
carbon sequestration involves a great deal of uncertainty.

How to account for uncertainties in the economic analysis of natural resource use
has long been debated. The uncertainties are largely associated with scenarios, data, and
modelling. Scenario uncertainties primarily concern the assumptions made (e.g. on time
preference). Data uncertainties are concerned with the reliability of information. Model-
related uncertainties (i.e. a combination of the uncertainty in the parameter estimates
and in the model structure itself) also need to be identified, quantified and accounted
for. The IPCC (2007) provides recommendations for uncertainty assessment, including
the notion that tackling climate change through forestry should involve consideration of
the discounting to be applied.

In this paper, accounting for uncertainties and time preference is limited to discounting. We
investigate the influence of discount settings on the economics of carbon sequestration through
forestry in Scotland and Ukraine and the consequent policy implications.3 The countries are
selected to illustrate how the economics of tackling climate change is sensitive to discount
settings, regardless of the context of such investigation. The countries provide different
contexts of policies, institutional capacities and forest management practices. According to
FAO (2010), Scotland (in the North-West of Europe) and Ukraine (in the South-East of
Europe) are both sparsely wooded, each with approximately 16 % of total area invested in
forestry. However, Scotland’s forests are primarily managed for timber production; this is not
the case in Ukraine where nearly 50 % of forests are natural vegetation. In Scotland, publicly
owned forests account for approximately 50 % of the total wooded area. In Ukraine, public
forestry prevails.

1 In this paper, the terms afforestation and reforestation are considered to be synonymous.
2 The conversion factor from CO2e to C is 3.67 (i.e. 44/12).
3 Because of the social science focus and the national level of this research, trade-offs between the accuracy and
scale of the analysis were unavoidable. Therefore, a number of generalised assumptions and simplifications had
to be made. These should not undermine the purpose and main results of this paper.
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We analyse the economics of establishing forest plantations, investigating carbon storage in
trees biomass4 (for Scotland and Ukraine); and also the energy and wood product policy
options (for Ukraine).5 Selected cost-effectiveness estimates (under various discounting pro-
tocols) are provided. We discuss the implications of the findings, showing that the discounting
protocol selected exerts considerable influence on carbon sequestration decision making
processes. The main conclusion is that choice of discounting protocol has a dramatic impact
on the economic acceptability of an afforestation project; and accounting for uncertainties in
tackling climate change through forestry merits further investigation by applied interdisciplin-
ary scientists.

2 Theoretical overview

Ecosystem services (ES) provided by forests (Nijnik and Miller 2013) are often long-lived,
with some benefits being felt far into the future. This means that uncertainties faced by
decision makers relate to both current and future demand and supply of ES, i.e. to their stock
and flow. Difficulties in estimating the future benefits of carbon sinks are also due to
uncertainties about the dynamics of carbon. Added to these are uncertainties linked to a
number of factors: ecological (i.e. ecosystems’ related), and technological (i.e. developments
in science, technique and innovation); economic (i.e. related to development trajectories);
environmental (e.g. connected to land quality and the state of environment); and social (i.e.
concerned with tenure rights; changes in policies, markets and social norms). In Ukraine, a
great deal of uncertainty is associated with property rights (particularly, with land markets),
institutional settings and managerial aspects of forestry. Cost-benefit (CBA) and cost-
effectiveness analyses (CEA) of planting trees for CCM, therefore, run into a wide range of
uncertainties, and the extent to which mitigation strategies can be justified on efficiency
grounds largely depends on the discount rate (DR) employed.

From a social science perspective, discounting has two basic sources. The first represents
social time preference: we have to discount benefits arising in the future because of
diminishing marginal utility of consumption. The second source is the productivity of capital
or its social opportunity cost; if resources are invested instead of being consumed now, they
could provide a higher level of consumption in the future (Pearce and Turner 1990). Given
perfectly functioning markets, the social rate of time preference would equal the social
opportunity cost of capital: there is no logic in investing unless future benefits offset the social
rate of time preference.

In the actual world, the situation is different (particularly, in emerging market economies,
such as Ukraine); and in the absence of perfect information, a choice has to be made. There are
many justifications for using one or another discount setting. In addition to time preference, or
as a measure of alternative investments, a positive inflation rate and uncertainty over future
earnings could be used to justify selection of a DR.

4 The storage option (van Kooten 2004) presumes planting and growing of trees without considering future use
of wood and land. Such a simplified assumption can only be made together with the assumption that by
harvesting the trees, using the revenues to cover future costs of establishing new forests and storing carbon,
both the gains and losses in physical and monetary values are well balanced.
5 Woody biomass is being recognised as a renewable energy source with low GHG emissions (Matthews and
Robertson 2003; Galbraith et al. 2006). Also, the building of more timber-rich houses and increasing the service
life of wood products are considered to be valuable contributions to reducing carbon impacts (Read et al. 2009).
However, the wood products sink may not be strong and/or last long, while energy substitution effects are
debatable in the literature. These policy options, therefore, require further exploration (Bottcher et al. 2012).
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In forest economics, justification of one as opposed to another discount setting relies above
all on the uncertainty of upcoming events and their outcomes. Because economies are affected
by random shocks, uncertainty about income growth induces people to invest more for the
future. This precautionary effect underpins the argument for reducing DRs (Gollier 2001). The
concept of intergenerational equity, Clark’s (1973) consideration of risk related to depletion of
natural resources, and Ramsey’s (1928) idea of ethical indefensibility underpin arguments for
non-discounting (or using low discount settings) in forestry.

However, financial returns in forestry are commonly low, and investment risks are high due
to both the long rotation periods of timber, and the risk of losses, through forest fires, pest
invasions or storm damages. Disturbance dynamics are complex, varying with disturbance
type, intensity, frequency, extent, and scale.6 In private forestry, therefore, because of long-
term investments under risks and uncertainties, and to secure income generation sooner rather
than later, support is usually given to positive (and even rather high) discount rates (Samuelson
1961).

Particular difficulties arise in the choice of DRs for climate related economic analysis.
Firstly, this is because marginal damages from atmospheric carbon are not certain over time.
Secondly, there is uncertainty about the benefits of carbon control strategies for future
generations. Ecological economists argue that even if the preferences of upcoming generations
for CCM measures were to be taken into account, it would be impossible to accurately reflect
these, because future preferences are unknown. Uncertainty in climate change economics is
exceptionally high (Shvidenko et al. 2010); and there is no agreed method for adjusting the DR
for risk in the present valuing of uncertain future benefits and losses (Hanley and Spash 1993).

Nordhaus (1991) argues that the efficient degree of control of carbon concentrations should
be minimal where there are high costs, low damages and high discounting, and maximal where
there are low costs, high damages and low discounting. The current costs of mitigation
strategies are often high, and if we believe that future technology will enable carbon emission
reductions at almost no cost, an infinite DR could be applied. The opposite assumption results
in the reverse conclusions. Overall, largely because of uncertainties, discounting (including of
carbon uptake benefits) becomes an important question when using CEA of CCM.

On the one hand, it is probable that marginal damages caused by climate change will not
worsen in the long run. Such probability might increase over time, provided there is ongoing
technological progress. We may also rely on the increasing stock of knowledge; the develop-
ment of human and social capital, and of innovation that will enable future generations to solve
problems which cannot be solved today. On the other hand, even if the most extensive
damages and losses occur in the far future, their discounting at a positive rate assigns them
insignificant present values (PV), ultimately advocating little immediate action to alleviate
climate change. Therefore, for decision making to favour the resilience-to-climatic-changes
scenario, the more rapidly CO2 concentrations in the atmosphere are projected to increase over
time (increasing the risk of future damages and losses), the less future carbon benefits should
be discounted.

Ecological economists, in particular, have acknowledged this complexity and questioned
the traditional notion of using constant and positive DRs (Cyriacy-Wantrup 1942; Harrod
1948). Increasing attention is being given to ethical considerations about the welfare of future
generations and safeguarding good environment status (Brainard et al. 2009; Hepburn and
Koundouri 2007). The traditional framework of CBA and CEA has been challenged because
the use of a constant and positive DR reduces the weight of future benefits and costs

6 Carbon leakages (Dyer and Nijnik 2013) could be accounted for through risk analysis, insurance policies,
deductions, and buffer pools, where discounting for risk has an important role (Chomitz 2002).

680 Climatic Change (2014) 124:677–690

Reprinted from the journal 230



(Chichilnsky 1997; Price 2005). We acknowledge these concerns, and in the following section,
along with the traditional framework, use a declining discount setting.

3 Effects of using different discount settings on the decision-making processes of tackling
climate change through afforestation in Scotland

The methodology-in-use is of Stavins and Richards (2005) which is adapted by Nijnik et al.
(2013). We assess the benefits of forestry over one rotation, i.e. the ‘Fisher rotation’7, and
assume that forestry generates timber sales income through thinning and clear fell harvesting.
A simplified form of the net present value (NPVForestry) is:

8

NPVForestry ¼ −cþ pve−rT ð1Þ
where:

p is the timber price
c is the plantation cost
v is the timber volume
T is a temporal variable
r is the discount rate.

We calculated the cost per tonne of carbon sequestration, as an expression of cost
effectiveness (CE), by dividing an estimate of the opportunity costs of land conversion to
forests by the number of tonnes of carbon sequestered:

CE ¼ NPVForestry−NPVFarmimg

ΔC
ð2Þ

where:

NPVForestry is the NPVof forestry
NPVFarming is the NPVof farming
ΔC is the carbon stock gain over one rotation (i.e. ‘benefits’ of the project).9

Carbon sequestration rates were derived from Bateman and Lovett (2000). Yield tables
from the Forestry Commission (FC) (2010) were used to analyze timber volumes and estimate
the costs and benefits of forestry operations in Scotland. Timber prices were taken from the
FC’s website. Land market values (Savills Research 2010) were used to account for the
opportunity cost of land. We analysed the costs of carbon sequestration for converting low,
medium and good quality land to forests, assuming that woodlands would initially displace
land with a low agricultural potential.

7 For the most important species in Scotland (Sitka spruce YC14), the maximized NPVForestry is equivalent to
£732.75 per ha in 49 years, i.e. the nominal length of a commercial rotation.
8 Although thinnings are not included in the simplified Eq. 1, they were considered in calculations.
9 Several assumptions were made on our computation of NPV farming. Land price represents a capitalization of
future net benefits. However, using of gross margins from farming activities as the measure probably overesti-
mates the costs of carbon sequestration, since it only deducts variable costs from gross farm earnings. We
therefore used an approach (Nijnik et al. 2013) based on land market values. We presumed a one-time tree
planting (see endnote 4), considering that the carbon stock of the initial land use is small, and that the carbon
stock in forestry is the ‘benefit’ used to calculate the cost-effectiveness.
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Firstly, only financial variables were discounted. We paid particular attention to planting
Sitka spruce (relatively fast growing and the most common tree species in Scotland), and in
line with Moran et al. (2008) assumed a private DR of 7 %, and a social DR of 3.5 %. Then,
we followed the HM Treasury (2003) guidelines for declining discount rate (DDR) protocol,
so that incomes occurring in the years beyond 30 were discounted at a lower rate.

It is possible to simulate what the carbon sequestration rate of a plantation could be.
However, fires, storms, pests and diseases can threaten a forest’s potential to sequester carbon.
Also, different forests exhibit different sequestration patterns: slow growing species provide
distant benefits; and fast growing species generate almost immediate carbon sequestration
benefits (e.g. hybrid poplar, as shown in Section 4). A tree plantation would offset the effect of
carbon emission activities while new technologies with low carbon intensity are developed. In
a ‘buying time’ option, it would be appropriate to encourage high sequestration rates planta-
tions (consisting of fast growing species).

To take the temporal dimension into account, it also seems sensible to discount carbon
uptake benefits, making it possible to compare CCM projects that exhibit different sequestra-
tion patterns (e.g. fast growing versus slow growing plantations). In that case, the comparison
is made on the basis of carbon sequestration in trees. However, the wood product stocks are
also going to be a function of the type of trees planted; slow growing species will provide
sawtimber used in construction and in the supply of long lived products, whereas fast growing
species will be allocated to bio-energy or to short lived products, such as paper.

These differences (occurring post-harvest) could also be taken into account through
discounting. Other comparisons could be made: projects aiming at sequestering carbon in
the biomass versus projects aiming at sequestering carbon in soils, or projects reducing
emissions versus carbon sequestration projects. Also, with discounting of carbon removals
(when costs are compared to benefits on an identical basis, van Kooten and Sohngen 2007) the
methodology (Richards and Stokes 2004; Nijnik 2005) becomes suitable for considering the
use of wood in products, or as a substitute for fossil fuel (shown in the following section):

B ¼ ∫
T1

0
S0 tð Þe−rtdt − ∫

T2

0
S0 tð Þe−rtdt ð3Þ

where:

B describes the benefits of the project;
S ′ describes annual carbon flow (change in carbon)
T1 is the rotation length implemented in the first project, and
T2 is the rotation length implemented in the second project.

Results showing the influence of various discounting protocols for Sitka spruce plantations
in Scotland are given in Fig. 1.

As seen in Fig. 1, costs per tonne of carbon sequestration are higher with a constant 7 % DR
(for economic variables) as compared to using the DR of 3.5 %. The DDR protocol favours
long term projects because incomes occurring in the far future are discounted at a lower rate.
Therefore, DDR reduces the costs of carbon sequestration in forestry (giving more weight to
future financial flows of income compared to current ones). Further, discounting carbon fluxes
(at the same rate of 3.5 % as the economic variables) has severe impacts on costs: they are
almost doubled.

The results provide evidence that afforestation with Sitka spruce on low grade agricultural
land (currently used for low density sheep grazing) may be a cost effective option of CCM,

682 Climatic Change (2014) 124:677–690

Reprinted from the journal 232



ranking the costs in some regions of Scotland below the shadow price of carbon estimated by
DEFRA (2008). The results also show that the choice of discounting protocol in CEA has a
significant effect on the economic acceptability of an afforestation project. Clear cutting is
distant in time, and is more affected by a high DR than agricultural annual income flows.

4 Influence of different discount settings on the results of economic analysis of carbon
sequestration: policy implications for Ukraine

In the analysis of afforestation for carbon uptake in Ukraine (i.e. the storage option) the
methodology allowing for the discounting of carbon removals (see Section 3) was used; with
its milestones (by Nijnik 2005) presented in Table 1.10

Three discount settings for carbon removal are used. The first presumes no discounting of
carbon, assuming that the value of marginal carbon damages in the future will increase at the
real rate of discount. This assumption implies that the carbon sequestered is valued equally, no
matter when it is captured. However, because non-discounting is a very specific assumption,
particularly in long-term projections, and to make an initial appraisal of sensitivity of the
results to discounting, positive settings of 2 % and 4 % for carbon removal have also been
used.

Discounting of carbon benefits at a social rate (4 %) presumes that marginal damages from
emissions are constant over time. This is a reasonable assumption since we have no evidence
to predict any other scenario. As a 4 % discount rate was applied to the discounting of financial
variables in our analysis for Ukraine, it was logical to use the same rate for the discounting of
carbon uptake benefits. The discounted carbon per ha across forestry zones, for the storage
option under different discount rates assigned for carbon benefits is shown in Table 2.

The highest estimates of carbon uptake over 40 years are for hybrid poplar in the Wooded
Steppe. The estimates for Ukraine are comparable with corresponding estimates for the UK
(Read et al. 2009), the Netherlands (Slangen et al. 1997; Nabuurs et al. 1999), Finland
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Fig. 1 Estimates for the costs per tonne of carbon sequestration: an example for creation of Sitka spruce
plantations in Scotland under different discount rate (DR) settings, including declining discount rates (DDR)

10 Due to the variety of conditions, there would be a decrease of soil carbon in some areas, and an increase in
some others. It was assumed, therefore, that on average soil carbon would remain unchanged. The litter pool,
which in Ukraine accounts for a small proportion of the total pool, was not reflected in this research.
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(Pussinen et al. 1997) and other countries. However, while carbon estimates are comparable
with those elsewhere in Europe the costs per tonne of carbon removed in Ukraine are relatively
lower (Table 3).

As seen in Table 3, the estimates depend significantly on the DR applied; at discount rates
lower than 2 %, the costs are covered by the returns in the majority of Ukraine’s regions.
However, the results also indicate that in the Polissja zone and particularly in the Steppe,
afforestation for carbon sequestration alone11 is cost-inefficient at 2 % and higher DRs.

We also considered the option of harvesting trees when their growth decelerates, so that
carbon is stored in wood products or is burned instead of fossil fuel. In the wood products
option, carbon sink duration is equivalent to the life of the products. An assumption was that
wood products release carbon back into the atmosphere after 40 years’ storage.12 In both the
wood-for-coal-substitution and in bio-energy scenarios13, the rotation ages of poplar and

11 Multi-functional afforestation in Ukraine is analysed in (Nijnik et al. 2012).
12 This is a simplified assumption. In reality, much of carbon returns to the atmosphere almost immediately after
timber harvesting; and the rest of the carbon release follows a negative exponential curve, with cumulative loss
over time. Carbon release paths largely depend on tree species; with oxidation rates for wood products being
roughly 0.02 per year (van Kooten and Bulte 2000).
13 Energy required for harvesting and processing of wood, costs of converting power plants to wood, production
costs of coal, and changes in transportation costs were ignored. Also, given the purpose of this paper, the
technological aspects of wood vs. coal, e.g. combustion techniques, efficiency of burners, or emissions from non-
CO2 gases etc., were beyond the scope. The costs considered included: opportunity cost of land; tree planting,
care, protection and replanting costs and those of timber harvesting.

Table 1 Milestones of the methodology for the estimation of the above and below ground biomass in forest and
of the stored carbon

Ukraine

Selection of lands suitable for afforestation The Ukraine’s Forestry Spatial Classification by Gensiruk and
Nizhnik (1995) was used as the framework for assessing the
possibilities to enlarge forest cover (by 2289.3×103 ha, in
total)

Baseline land-use in the selected areas Marginal agricultural land, and bare land (belonging to forestry)

Units for which the above-ground biomass
was analyzed

Across 5 forestry zones: the Polissja, the Wooded Steppe, the
Steppe, the Carpathian Mountains and the Crimea

Given the tree-growing conditions, the fol-
lowing tree species were selected

Hybrid poplar Populus robusta—in the Wooded Steppe; 30 %
hybrid poplar, 20 % alder, Alnus glutinosa, etc. hardwoods and
20 % pine, Pinus sylvestris, etc. softwoods—in the Polissja;
pine—in the Steppe and the Crimea, and spruce Picea
sitchensis—in the Carpathians

Estimation of biomass Growth functions were estimated by Nijnik (2004). The best fit
e.g. was achieved using the functional form for stand growth of
spruce (V) related to (t) the age of trees (first site classes): V(t)=
0.159 t 2.240 e−0.018t (parameter estimates statistically
significant at P=0.05).

Translation of the stem biomass to total
above ground biomass

Stem wood was multiplied by 1.51 for coniferous and by 1.69 for
softwood species (following Lakida et al. 1995)

Carbon content in the above-ground biomass Multiplying by the coefficient of 0.2tC/m3 (Jessome 1977)

Carbon sequestered in roots 0,2317 relates R to G for spruce; for pine: R(V)=0.146 (V)−0.519,
where V=growing stock (Lakida et al. 1995); for all other
species: R(G)=1.43319G0.639 (van Kooten and Bulte 2000)
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mixed species were assumed to be of 20 years. Coniferous trees were considered ready for
harvesting when they reach 40 years of age.

In calculating estimates for a fossil fuel substitution, i.e. a bio-energy policy scenario, we
considered that the wood (above ground biomass) is burned to generate energy, replacing an
energy equivalent of fossil fuel. When wood is used, carbon stored in wood biomass is released
as CO2 upon burning. Using timber for energy production is therefore in itself largely a carbon
neutral process (so long as the energy required for harvesting and processing wood is not taken
into account, van Kooten 2004). The net gain here is the amount of CO2 that would have been
released by burning fossil fuel if this had not been replaced by the burning of woody biomass.

The estimates shown in Table 4 (which do not reflect changing prices over time) provide
evidence that under the wood-for-fuel substitution and wood products sink policy options, the
DRs used in the analysis are again important factors influencing the results.

The time horizon considered is also very important (as shown by van Kooten 2004): the
longer the period investigated, the more useful the results, because the effects (e.g. through the
replacement of non-timber materials) are repeatable, and social benefits are expected to be
higher in the long run of multiple rotations.

5 Discussion

The immediate consequence of positive discounting is that future benefits (costs) are worth
less than present benefits (costs). This notion (or concern) was recognised long before climate
change was considered as a problem. Ramsey (1928) argued that discounting is an ethically
indefensible practice. Cyriacy-Wantrup (1942) recommended the use of zero or negative DRs,
when valuing health, education or defence services. Heal (1981) admitted that the DR is
something we choose, and that this choice is largely a political issue. Harrod (1948) defined

Table 2 Cumulative carbon sequestered per ha, under the storage scenario

Carbon (t C ha−1) Polissja Wooded Steppe Steppe Carpathians Crimea

0 % 203.2 236.3 37.3 178.6 99.6

2 % 91.29 106.19 16.76 80.26 44.75

4 % 41.0 47.7 7.5 36.0 20.1

Including in the root pool

Table 3 Present value of carbon sequestration costs, € per tonne C

Forestry zones € per tonne at the discount rates of

0 % 2 % 4 %

Polissja 5.8 7.1 8.7

Wooded Steppe 4.6 5.9 7.2

Steppe 78.5 120.0 173.3

Carpathians 8.7 12.7 17.9

Crimea 16.2 15.6 32.0

The Ukraine 9.5 18.1

C is in permanent tonnes for the above-ground biomass
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discounting as a polite expression for rapacity. His argument was based on ethical and
environmental grounds; it appears that the consequences of discounting are significant when
the economic valuation process deals with environmental issues occurring in the distant future.

By contrast, some authors (Price 2005) consider that high DRs reduce the number of viable
investment projects. Given that some projects (particularly under uncertainties) might be a
threat to good environmental status, the use of high DRs can be seen as positive. Another
positive effect of high DRs is that investments are directed towards the most efficient projects,
so that revenues earned will provide future generations with the economic means to adapt.
Acknowledging the will to give more weight to future costs and benefits, some scientists have
advocated the use of declining discount rates (Groom et al. 2005). Hepburn and Koundouri
(2007) provide the following justifications for using DDRs in economic analyses:

& Time preference: experiments show that people tend to use higher DRs in their everyday
lives for present trade-offs rather than for more distant ones;

& Pessimism about the future: hyperbolic discounting, with the DR being formally a function
of consumption growth; if consumption is expected to fall, or if this is probable, then we
should use DDRs;

& Uncertainty: in the face of uncertain futures with several likely discount rates, taking an
average of discount factors corresponding to likely DRs is called the certainty equivalent
discount factor. It is possible, working backwards, to find the certainty equivalent DR; this
rate appears to be a declining one.

Some other theoretical developments (Chichilnsky 1997; Li and Lofgren 2000) show that
DDRs are necessary to achieve intergenerational equity. Also, policy makers, such as the UK
and French governments, recognise these justifications, and recommend the use of DDRs for
economic appraisal (HM Treasury 2003; Lebegue 2005).

As shown in the case of tree-planting in Scotland, the use of DDRs (for economic variables)
tends to favour long term projects. The DDRs applied to both forestry and agriculture work in
favour of forestry. We show that DDRs considerably improve the projected profitability of
forestry, and reduce the cost estimates of carbon sequestration (Fig. 1). Nevertheless, there are
situations when short term benefits are preferred. Climate change is characterized by thresh-
olds beyond which irreversible effects may appear. If a threshold is close, we might prefer a
short term strategy of sequestering carbon quickly, or drastically reducing carbon emissions.

Thus, the choice of discounting protocol, with justifications for the settings (including a
zero and/or a DDR considered) has a significant impact on the economic acceptability of an
afforestation project. Among the consequences of using a DDR in economic analysis is that
more projects would pass the CBA test. Environmental strategies generating long term benefits
would also be favoured, which would be particularly relevant in the case of CCM (under
uncertainties) because costs would be spread over centuries.

Table 4 Costs of carbon sequestration over 80 years per forestry zone, alternative scenarios

Scenario Discount rate
for carbon

Polissja Wooded Steppe Steppe

Energy 0 % 16.5 16.2 153.4

4 % 405.3 397.1 3764.4

Product 0 % 33.0 32.4 215.8

4 % 69.1 67.7 1035.9

Only for the above-ground biomass
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We have explained the accounting for uncertainties and time preference in economic
analysis of tackling climate change through forestry showing a high sensitivity of cost-
effectiveness of afforestation to the discount settings applied (including the discounting of
carbon uptake benefits, specifically shown in Ukraine). Results also add to the evidence
suggesting that an important factor influencing the costs of carbon sequestration through
forestry is the opportunity cost of land, which in Scotland (and some regions in Ukraine) is
relatively high. It suggests that tree-planting for carbon sequestration should be focused on the
less productive land rather than considering larger scale afforestation.

In Scotland, the decline of hill farming (because of CAP reforms and other drivers) may
create space for new economic activity on abandoned farmland, among which it could be
forestry.14 In Ukraine, large-scale agriculture under the previous regime supported the con-
version of forest or grassland to agricultural land. Currently, the decreasing agriculture will
likely cause the increase of abandoned land; a rising role of forestry could then be predicted
(Nijnik et al. 2012).

This paper considers carbon forestry alone. However, terrestrial carbon sequestration
projects are likely to be implemented if they are consistent with the wider programmes of
sustainable development (especially in remote rural areas). A multi-purpose afforestation is
often seen as a sustainable way of land reclamation and increasing productivity of abandoned
land, whilst utilization of biomass from plantations can provide employment opportunities and
create new options for land development, being also a sustainable energy alternative (Nijnik
et al. 2012).

Policy measures supporting these activities in Scotland aim for “win-win” situations to
benefit rural development, people, the economy and environment (Read et al. 2009). In
Ukraine (facing institutional challenges and affected by regional socioeconomic disparities)
afforestation is seen as a means to increase economic gains to forestry through an enlarged
wood production, and to the agricultural sector by using soil protection and hydrological forest
functions. It also deemed to be beneficial through the mitigation of climate change; and to
Ukraine, specifically and possibly, in view of accumulating financial assets through carbon
trading (Nijnik et al. 2011), and providing opportunities for deliberative processes and pro-
market reforms.

6 Conclusions

The traditional practice of using a positive and constant discount rate in CBA and CEA has
been challenged; and our findings contribute to suggesting that a positive and constant
discount setting is not the only solution. Declining discount rates have been proposed as a
way to deal with uncertainty, and also to enhance intergenerational equity.

The estimation protocol also includes provision for discounting carbon removals. However,
the benefits of carbon sequestration are highly uncertain; and also because of time preference,
future carbon reductions may decrease in value rapidly (at DRs of 5 % and higher, the PVof
any amount of carbon sequestered some 50 years from now rapidly approaches zero).

In this paper, the consequences of using various discounting protocols on the costs of
carbon sequestration in forestry are revealed and explained. Despite that the conditions (e.g.

14 Institutional changes and future cash flows for and responses of farming enterprises merit attention but are
beyond the scope of this paper. Also, shifting to forestry would depend on whether agricultural subsidies continue
to hold up land prices and whether cultural values would affect the propensity to develop forest-based activities
on private land, including those of tree-planting (Nijnik et al. 2013).
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natural, social, and economic) in Ukraine are very different from those in Scotland, the
research has provided quite similar results for the uncertainty issues, which are important in
decision making on tackling climate change through afforestation.

The general conclusion is that choice of discounting protocol has a dramatic impact on the
economic acceptability of an afforestation project; and innovative insights into the accounting
for uncertainties in tackling climate change through forestry (including the consideration of
uncertainty on carbon sequestration and carbon stocks changes) merit further investigation
through applied interdisciplinary research. In particular, elaboration of the theoretical and
ethical rationales for various carbon forestry discounting protocols, and their links to the real
world situations and decision making processes, are needed (and these are complex, case
specific, context sensitive and scale dependent).

There is also an understanding that using the most appropriate discount setting is only one
way to account for uncertainties in tackling climate change through forestry. Many other
options (going beyond the scope of this paper) exist. Such options include building on bottom-
up (local scale) and top-down (wider scale) actions, therefore, connecting science, policy and
participation, and moving beyond narrowly-focused technical approaches towards more ho-
listic innovative strategies of strengthening resilience to climate change.

To conclude, accounting for risks and uncertainties in tackling climate change through
forestry could be enhanced by developing skills and mutual learning across relevant stake-
holder groups, and through interactive capacity-building on an ongoing basis.
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