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Preface

Accurate description of itinerant electron magnetism at finite temperatures remains an important and to a large extent an
unresolved problem. This book presents recent theoretical developments and their applications to ferromagnetic metals.

The objective is twofold: firstly, we introduce the dynamic spin fluctuation theory that takes into account both local and
long-wave spin fluctuations. We explain the fundamental role of quantum spin fluctuations in the mechanism of metallic
magnetism and illustrate the theory by applying it to real metals and alloys.

Secondly, we provide an accurate and self-contained presentation of the many-body techniques such as Green functions
and functional integral method by giving a number of worked-out examples. Most of the many-body textbooks view
superconductivity as a key application domain and do not consider magnetism in detail. Our book fills this gap in the literature
and could be useful to a wide range of physicists working in solid-state physics, both theoreticians and experimentalists. The
introductory chapters are accessible to graduate students.

Our purpose is not only to present the results but also to explain how to obtain them. “Brevity is a sister of talent” but a
stepmother of an ordinary man. Therefore, we derive most of the formulae in such a detail that the reader could reproduce
them. On the other hand, we limit theoretical methods to those that are essential for developing and explaining our approach.

The discussion in the book always refers to single-crystal one-domain samples. We are interested in bulk magnetic
properties of metals; therefore translational invariance is always assumed. We consider an ideal crystal without impurities
and neglect the anisotropy effects, i.e. consider cubic ferromagnets. Where possible, we follow the notation of Purcell, Kittel,
Raimes, White and Kim.1 In the introductory chapters we retain h̄, g, μB, etc., to give the correct dimensions.

One of us (B.R.) started doing physics as a graduate student of S.V. Vonsovskii and is grateful to him for the interest in the
metallic magnetism. We are grateful to V.I. Grebennikov for a long-term, friendly and fruitful cooperation. It is a pleasure to
thank N.M. Plakida, M. Probert and L.M. Sandratskii for useful discussions. We would like to thank the editor S.K. Heukerott
for her kind support and assistance during the writing process. Last but not least, we thank G.V. Paradezhenko, who read
the manuscript thoroughly and spotted some inaccuracies and typos. However, the final responsibility for the content of this
book and all remaining typos lies solely with us.

Corrections and suggestions will be gratefully received and may be addressed by email to melnikov@cs.msu.ru.

Moscow, Russia Nikolai B. Melnikov
Ekaterinburg, Russia Boris I. Reser
March 2018

1E.M. Purcell, Electricity and Magnetism, 2nd edn. (McGraw-Hill, New York, 1985); C. Kittel, Introduction to Solid State Physics, 8th edn. (Wiley,
New York, 2005); S. Raimes, The Wave Mechanics of Electrons in Metals (North-Holland, Amsterdam, 1970); R.M. White, Quantum Theory of
Magnetism, 3rd edn. (Springer, Berlin, 2007); D.J. Kim, New Perspectives in Magnetism of Metals (Kluwer/Plenum, New York, 1999).
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ω0 Nuclear magnetic resonance frequency Section 13.4.2

ωn Even “frequency” ωn = (2n + 1)πT /h̄ Section 6.1.2

ωm Odd “frequency” ωm = 2πmT/h̄ Section 6.2.2

ωm(T ) Magnetic volume change Section 11.2.3

ωs Vibration frequency of the sth normal mode Section 14.3

ωD Debye frequency Section 14.3



1Introduction

Here we give a historical overview of major theoretical developments in metallic magnetism, comment on selected
bibliography on magnetism [1–7] and describe the organization of the book.

The first theory of ferromagnetism in metals was developed by Slater [8] and Stoner [9].1 This theory is now called the
Stoner model. The model replaces the pair interaction of electrons by an interaction of each electron with a spin-dependent
mean field that is calculated self-consistently at each temperature. The input data of the model are the electron density of
states (DOS) and the so-called Stoner parameter of a particular metal. The mean-field theory of itinerant magnets gives
correct qualitative temperature dependence of magnetization, but has its shortcomings: the calculated Curie temperature TC

is too high, the uniform static susceptibility does not follow the Curie-Weiss law, etc. This is not surprising since the theory
does not take correlation effects into account.

Description of exchange and correlation effects was improved by the density-functional theory [11–14]. The local spin-
density approximation (LSDA) of the density-functional theory gives good quantitative agreement for magnetic properties at
zero temperature [15–20]. However, attempts to describe temperature dependence of magnetic properties within the LSDA
do not lead to satisfactory results.

The Stoner theory considers only the spin-flip excitations and thus the temperature dependence of magnetization is only
due to the thermal smearing of the Fermi level. The spin-wave excitations were taken into account within the random-phase
approximation (RPA) in the single-band Hubbard model by Izuyama, Kim and Kubo [21]. Band calculations for real metals
were carried out by several authors [22, 23] and results were found in good agreement with neutron scattering experiments
at low temperatures (T 	 TC). At finite temperatures, results of the RPA do not agree with experiment, because the RPA
neglects the feedback of spin waves on the thermal equilibrium state.

Considerable progress in explaining temperature dependence of magnetic characteristics was made with the advent of spin
fluctuation theory (SFT). The physical picture is as follows. The itinerant electron system is treated as a system of single-site
spins, where each spin is the integral of the spin density over the Wigner-Seitz cell centred at the lattice site. At T = 0
all spins are aligned along the spontaneous magnetization. At T > 0 the spins start fluctuating in direction and modulus.
These spin fluctuations are not entirely chaotic because of the exchange interaction. Therefore, the mean spin is nonzero but
decreases as the amplitude of the spin fluctuations increase with temperature. At the Curie temperature TC, the mean spin
vanishes but the local spin moment does not. Moreover, the spin directions at neighbouring sites are correlated even above
TC. Information about the local spin moment, spin relaxation time and short-range order can be obtained from temporal
and spatial correlation functions. The correlation functions cannot be observed explicitly, but their Fourier transforms can
be probed with various nuclear magnetic resonance and neutron scattering techniques. Comparison of experiments and SFT
helps to determine the relevance of the above picture.

The development of SFT followed two different directions. The first one is the phenomenological SFT, which is based on
expansions of the Ginzburg-Landau type of the free energy (for a review see, e.g. [5, 6, 24]). This approach can be justified
in the weak ferromagnets and, to some extent, in paramagnetic metals, where long-wave fluctuations of small frequencies
dominate. However, it is not a priori clear how well the long-wave approximation is justified in ferromagnetic metals for
temperatures that are not close to TC.

1For discussion of earlier works, see [10].
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The second approach to SFT is the microscopic treatment of the spin fluctuations, based on the functional integral
method [25, 26]. The static single-site SFT [27–33] uses the coherent-potential approximation (CPA). Originally the CPA
was applied for averaging the Green function2 in binary alloys (see, e.g. [35]). In the SFT the averaging is carried out over
an infinite set of fluctuating field configurations. Moreover, the probability density of the fluctuating field is calculated self-
consistently. The static single-site approximation of SFT allowed to explain the Curie-Weiss susceptibility and to obtain a
reasonable estimate of the Curie temperature, but it gives a small effective moment in the Curie-Weiss law, too rapid decrease
(∝ T ) of magnetization at low temperatures, etc. The main reason of these shortcomings is that the static approximation
neglects the quantum nature of the thermal spin fluctuations.

In the series of papers [36–38], the disordered local moment approach [27, 28] was used to generalize the realistic
band structure calculations to finite temperatures. The directional fluctuations of the local magnetic moments were taken
into account in the CPA of the Korringa-Kohn-Rostoker (KKR) method, which allowed to calculate various magnetic
characteristics of iron and nickel in the paramagnetic state (a relativistic extension of this method was introduced by Deák
et al. [39]). Another single-site approach [40] is based on the dynamical CPA in the functional integral method. As it was
shown in [7], the dynamical CPA is equivalent to the dynamical mean-field theory [41].

To go beyond the single-site approximation in SFT a self-consistent Gaussian approximation was suggested in [42, 43].
Practical use of this method required further development. The long-wave approximation, used by Hertz and Klenin [42,43],
was extended in [44] by taking spatial correlations into account. However, both [42,43] and [44] described paramagnets and
thus the feedback of spin fluctuations on magnetization was missing. The nonlocal approximation applicable in the whole
temperatures range was developed in [45, 46].

The dynamic SFT [45,46] takes into account both single-site and nonlocal interactions. The spin fluctuations are treated by
the functional integral method without mapping of the itinerant electron system onto an effective Hamiltonian with classical
spins (see, e.g. [47–50]). Application of the dynamic SFT to transition metals [51–54] and Fe-Ni Invar alloys [55,56] showed
good quantitative agreement over a wide range of temperatures (for a review, see [57]).

In the last two decades, the magnetism of metals has been discussed in a number of monographs; we would like to
comment on seven of them [1–7].

The book by White [1] is a unique textbook on magnetism that covers a wide range of topics and uses linear response
theory as a basis for understanding a variety of magnetic phenomena. Though the author describes his book as a “poor
man’s theory of magnetic phenomena”, it has been and still remains one of the most influential textbooks in the field. White
confines the scope of the book in such a way that he does not use many-body techniques. Needless to say that books including
many-body techniques become more specific.

Yosida [2] covers a range of topics, including the magnetic properties of itinerant electron systems. In particular, the
problem of strong electron correlation is discussed in relation to 3d electrons in iron group metals.

The book by Kim [3] is an excellent introduction to the magnetism of metals in the broad sense. This book provides an
accessible and self-contained presentation and served a specimen for us in the way the material should be explained. The
emphasis of Kim’s book is on the role of phonons and electron–phonon interaction. The electrons are considered as the
electron gas with the interaction treated mainly within the RPA.

In the books by Mohn [4] and Kübler [5] thermal spin fluctuations are treated by means of phenomenological models of
the Ginzburg–Landau type. As we have already mentioned, this approach applies to the weak ferromagnets and paramagnetic
metals rather than to the ferromagnetic metals. The phenomenological spin fluctuation theory (SFT) of Takahashi [6] is based
on the assumption that the local moment is nearly constant with temperature. This assumption can be justified only for the
weak ferromagnets as well.

Kakehashi [7] presented a microscopic treatment of magnetism that is based on the coherent-potential approximation
to the functional integral method. This approach uses local approximation, just as the dynamical mean-field theory. The
dynamics is taken into account through a limited number of frequencies used on top of the static approximation. As a result
the theory has difficulties in describing nonlocal spin excitations such as spin waves and in predicting the magnetic short-
range order. As the author admits: “Non-local theory of dynamical spin fluctuations which goes beyond the dynamical CPA
is left as a problem of future concern”.

Our book presents a dynamic spin fluctuation theory (DSFT) that takes into account both local and long-wave spin
fluctuations with all frequencies. This way we are able to describe magnetic properties of metals and alloys in a wide
temperature interval including room temperatures. We also show that our theory produces correct low- and high-temperature

2The name Green’s function is perhaps more common, but the omission of the possessive is consistent with the use of the names Schrödinger
equation, Fermi surface, Stoner theory, etc. (see, e.g. [34]).
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asymptotic behaviour. The use of electronic density of states of the real metal as an input data, allows us to reduce the
gap between the spin fluctuation theory and the band theoretical approach and thus to investigate the relationship between
metallic magnetism and electronic structure.

The main text can be divided into two parts. Chapters 2–6 are introductory; they explain the mechanism of metallic
magnetism and present necessary many-body techniques. Chapters 7–15 form the core of the book; they present the DSFT
and its applications. In the Appendices, we give proofs of some relations used in the main text and collect supplementary
material that can be of interest on its own. The book is organized as follows.

In the introductory part, Chap. 2 gives a clear and readable presentation of basic theoretical concepts, which makes the
prerequisites minimal. We introduce magnetic susceptibility and derive its general properties. The microscopic treatment is
based on the quantum-statistical theory of linear response. Chapter 3 summarizes necessary facts from quantum mechanics
and statistical mechanics of electrons in a periodic crystal lattice, including the second-quantization. In Chap. 4 we derive the
Stoner mean-field theory from the Hartree-Fock approximation and discuss results of the band calculations for real metals.
In Chap. 5 we calculate magnetic susceptibility in the RPA and discuss the magnetic excitations in metals. For simplicity, we
confine the presentation in Chaps. 4 and 5 to the single-band Hubbard model.

Stoner theory and RPA employ only elementary methods. To proceed further, we discuss the Green functions at finite
temperatures (Chap. 6). First, we consider the fermion-type Green functions that describe energy spectrum and electron
correlations. We introduce both the real-time and thermodynamic Green functions and establish the relation between them.
Next, we consider the boson-type Green functions, i.e. the real-time and thermodynamic susceptibilities. We obtain the
RPA result one more time to show the direct method of calculating the real-time susceptibility from the equation of
motion. To go beyond the RPA, either through diagram technique or functional integral method, one should consider the
thermodynamic susceptibility. The relation between the dynamic and thermodynamic susceptibilities is derived in a general
case and explicitly illustrated in the example of noninteracting electrons.

The main part of the book is devoted to the DSFT. In Chap. 7 we illustrate the key idea of replacing the pair interaction
by the interaction with a fluctuating field in the example of the Ising model, the simplest model that exhibits magnetic phase
transition. We discuss different effects of spin fluctuations on temperature dependence of magnetization and phase transition.

Chapter 8 gives an introduction to the functional integral method in SFT. We begin by constructing a multiband Hubbard
Hamiltonian and deriving Hund’s rule for metals (the well-known Hund’s rule refers to a single atom). The development of
the functional integral method itself requires a special form of the model Hamiltonian. We express the multiband Hubbard
Hamiltonian in terms of the atomic charge and spin. In the functional integral formalism, we derive expression for the free
energy, mean and local spin and spin correlator.

Chapter 9 describes the Gaussian approximation of the fluctuating field in the functional integral method. First,
we describe the simplest saddle-point approximation that leads to the Stoner mean-field equations and RPA dynamic
susceptibility. The optimal Gaussian approximation in the DSFT utilizes a quadratic approximation of the free energy based
on a variational principle, which we describe in a rather general form here. The optimal Gaussian approximation allows to
take both quantum nature (dynamics) and spatial correlation (nonlocality) of thermal fluctuations of the electron spin density.

The next three chapters present the DSFT and its possible modifications at low and high temperatures. In Chap. 10
we describe the DSFT, show the calculation results for basic magnetic characteristics in different approximations of the
theory and compare them with experiment. In Chap. 11 we consider problems of the temperature dependence that appear
in the DSFT if the spin fluctuations become large. The temperature dependence in the DSFT can become unstable at high
temperatures, well below the Curie temperature TC.3 We explain a possible solution to this problem and present the results of
the extended DSFT in metals and alloys. In Chap. 12 we consider low-temperature versions of the theory, compare its results
with the RPA and discuss the temperature region where one should go beyond the spin-wave approximation in describing
magnetic and neutron-scattering measurements.

Chapter 13 is devoted to studying the spin-correlation effects in metals. We begin with qualitative estimates of the
correlation effects on the magnitude and relaxation time of a single-site spin. Then we apply the DSFT to calculate
temperature dependency of the local susceptibility, dynamic spin correlation function, local magnetic moment and nuclear
spin-relaxation rates.

3In ferromagnetic metals, this first-order-like behaviour happens too far from TC to be interpreted in the framework of the critical phenomena,
which is not considered in the book (for a discussion of the critical region see, e.g. [1] and refs. therein).
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One of the main experimental methods in studying magnetic properties of metals and alloys is the neutron scattering.
Chapter 14 introduces to neutron scattering theory for itinerant electron magnets. We obtain an expression for the neutron
scattering cross-section and estimate the effect of lattice vibrations. Chapter 15 studies the spatial spin correlator in the DSFT
and compares its Fourier transform (effective moment) with the polarized neutron scattering experiment.

Appendices are structured as follows. Appendix A gives a quick introduction to various mathematical methods. Most of
them are used in many-body systems far beyond spin fluctuation theory. In explaining mathematical methods we tried to
be as much down to earth as possible and always illustrate general concepts with concrete examples from the main text.
Appendix B introduces some less familiar mathematical tools: the ordered exponential, functional derivative, Stratonovich-
Hubbard transformation and optimal Gaussian approximation. In Appendix C we derive and summarize necessary formulae
related to the Fourier transformations. Appendices D and E give detailed proofs of specific results in RPA and DSFT. In
Appendices F and G we collected necessary material on the scattering theory and phonons. Appendix H presents calculation
methods for various integrals such as the Fermi integrals over energies and integrals over the Brillouin zone. Finally, in
Appendix I we give a short overview of the Fortran code we developed and used for the DSFT calculations.
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2Basics of Metallic Magnetism

In nearly every theory there exist steps that are omitted in the theoretical papers and not treated in the textbooks. These steps are obviously
designed to keep the experimental physicists in their place. (H. Frauenfelder, The Mössbauer Effect, Benjamin, New York, 1962)

This chapter gives a brief introduction to magnetism of metals and is designed in such a way as to make the book self-
contained. We begin with basic topics and elements of the phenomenological theory. We introduce the notion of magnetic
susceptibility, which is central in metallic magnetism, and derive some of its most general properties that will be used
in the following chapters. Next, we describe the magnetization that originates from the spin of the electrons and their
correlated motion. We present the quantum-statistical theory of linear response and some of its applications. Our discussion of
microscopic properties is limited to those that do not rely on a specific model Hamiltonian. For a more extensive introduction
to magnetism, see, for instance, Refs. [1–7].

2.1 Magnetic Susceptibility: Macroscopic Approach

2.1.1 Generalized Magnetic Susceptibility

Any system in an applied field may be characterized by a response function. If the magnetic field H acts as an “input” and
the magnetization M is the “output”, the response function χ is the magnetic susceptibility: M = χH. In general, the applied
field may depend on space and time. The resulting magnetization will also vary in space and time.

Let us consider the magnetization M(r, t) associated with a particular magnetic field H(r, t). These quantities are related
to their Fourier components by

H(r, t) = 1

V

∑

q

1

2π

∫
H(q, ω) ei(qr−ωt) dω, (2.1)

M(r, t) = 1

V

∑

q

1

2π

∫
M(q, ω) ei(qr−ωt) dω, (2.2)

where q is the wavevector and ω is the frequency (V is the volume of the magnet). The generalized wavevector- and
frequency-dependent susceptibility is defined by

Mα(q, ω) =
∑

q′

∫ ∑

β

χαβ(q, q′, ω, ω′)Hβ(q′, ω′) dω′,

where α, β are Cartesian coordinates x, y, z, or shortly,

M(q, ω) =
∑

q′

∫
χ(q, q′, ω, ω′)H(q′, ω′) dω′, (2.3)
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where χ(q, q′, ω, ω′) is the susceptibility tensor. Substitution of (2.3) in (2.2) gives

M(r, t) = 1

V

∑

qq′

1

2π

∫∫
χ(q, q′, ω, ω′)ei(qr−ωt)H(q′, ω′) dω dω′.

Using the Fourier transform

H(q′, ω′) =
∫∫

H(r′, t ′) e−i(q′r′−ω′t ′) dr′dt ′,

we obtain

M(r, t) =
∫∫

χ(r, r′, t, t ′) H(r′, t ′) dr′dt ′, (2.4)

where

χ(r, r′, t, t ′) = 1

V

∑

qq′

1

2π

∫∫
χ(q, q′, ω, ω′) ei(qr−ωt)e−i(q′r′−ω′t ′) dω dω′.

We consider bulk magnetism in an ideal crystal with cyclic boundary conditions. Due to translational invariance, the
susceptibility must be a function only of the relative coordinate r − r′. This implies that in the wavevector-dependent
susceptibility q = q′. Furthermore, if the medium is stationary, the temporal dependence is t − t ′, which implies a response
at the same frequency ω = ω′. Therefore, the susceptibility takes the form

χ(q, q′, ω, ω′) = χ(q, ω)δqq′δωω′

and relation (2.3) can be written as

M(q, ω) = χ(q, ω)H(q, ω). (2.5)

Relation between original quantities (2.4) takes the form

M(r, t) =
∫∫

χ(r − r′, t − t ′) H(r′, t ′) dr′dt ′,

where

χ(r, t) = 1

V

∑

q

1

2π

∫
χ(q, ω) ei(qr−ωt) dω

and its Fourier transform is

χ(q, ω) =
∫∫

χ(r, t) e−i(qr−ωt) dr dt. (2.6)

Since χ(r, t) is real, its Fourier transform satisfies the following relation:

(
χαβ(q, ω)

)∗ = χαβ(−q,−ω), (2.7)

where the asterisk stands for the complex conjugate.
If the crystal has the inversion symmetry, which is the case for the majority of transition metals and alloys, we have

χαβ(q, ω) = χαβ(−q, ω). (2.8)
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From (2.7) we obtain
χαβ(q, ω) = (χαβ(q,−ω)

)∗
.

Therefore, the real part is an even function and the imaginary part is an odd function of ω:

Reχαβ(q, ω) = Reχαβ(q,−ω), (2.9)

Imχαβ(q, ω) = −Imχαβ(q,−ω). (2.10)

In general χ(r, t) depends on H(r, t). We consider the case of small magnetic fields, so that the dependence between
M(r, t) and H(r, t) is linear.

2.1.2 Symmetry Relations

In the most general case the susceptibility tensor χ(r, t) has the form

χ =

⎡

⎢⎢⎣

χxx χxy χxz

χyx χyy χyz

χzx χzy χzz

⎤

⎥⎥⎦

(for brevity, we temporarily omit the r and t dependence).
In the ferromagnetic state, the crystal has a preferential direction of the spontaneous magnetization M, which we chose

to align the z-axis. Then all components of the tensor χ must be invariant under any rotation about the z-axis. Under an
arbitrary rotation, the tensor components change as (see, e.g. [8])

χ ′
α′β ′ =

∑

αβ

aαα′aββ ′χαβ, (2.11)

where aαα′ and aββ ′ are the cosines between the old axis α, β and the new ones α′, β ′. For the rotation by the angle ϕ about
the z-axis, we have

axx′ = ayy′ = cos ϕ, azz′ = 1,

ayx′ = −axy′ = sin ϕ, (2.12)

azx′ = azy′ = axz′ = ayz′ = 0.

It suffices to take into account the invariance of three components, for instance χxx , χxz and χzx . Substituting the coefficients
(2.12) to the formula (2.11) and using χ ′

α′β ′ = χαβ , we obtain

sin2ϕ (χyy − χxx) + sin ϕ cos ϕ (χxy + χyx) = 0,

(cos ϕ − 1)χxz + sin ϕ χyz = 0,

(cos ϕ − 1)χzx − sin ϕ χzy = 0.

Since the angle ϕ is arbitrary, we have

χxx = χyy, χxy = −χyx, χxz = χyz = χzx = χzy = 0.
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Thus, the susceptibility tensor of a system with the axial symmetry is written in the form

χ =
⎡

⎣
χxx χxy 0

−χxy χxx 0
0 0 χzz

⎤

⎦ . (2.13)

Note that in the paramagnetic state, the susceptibility tensor is diagonal, with equal components, so that any direction can
be taken as the symmetry axis. Thus,

χ =
⎡

⎣
χxx 0 0
0 χxx 0
0 0 χxx

⎤

⎦ .

In a system with axial symmetry it is useful to introduce the circular components of the magnetic field and magnetization,

H± = Hx ± iHy, M± = Mx ± iMy. (2.14)

If the field H has only H+ component it corresponds to a transverse vector that is circularly polarized with right-hand
rotation (for details, see, e.g. [9, 10]). Similarly, the field H with only H− component corresponds to a transverse vector
that is circularly polarized with left-hand rotation. Using (2.13) and (2.14), it is easy to verify that H+ produces only M+
component and H− produces only M− component,1

M± = 1

2
χ±H±, (2.15)

where
1

2
χ+ = χxx − iχxy,

1

2
χ− = χxx + iχxy. (2.16)

From (2.13) we also have
Mz = χzzHz.

The components χ± are called transverse susceptibilities and χzz is called longitudinal susceptibility.

2.1.3 Dispersion Relations

Here we establish a general relation between the real and imaginary parts of the susceptibility

χαβ(q, ω) = Reχαβ(q, ω) + iImχαβ(q, ω).

If the system obeys the principle of causality, then χ(r − r′, t − t ′) = 0 for t < t ′. Hence the time integral in (2.6) runs
only from 0 to ∞; that is,

χ(q, ω) =
∫ ∞

0
χ(q, t) eiωt dt. (2.17)

Then χ(q, ω) can be analytically continued into the upper half of the complex plane z = ω + iη,

χ(q, z) =
∫ ∞

0
χ(q, t) eiωte−ηt dt. (2.18)

1The factor 1/2 in the definition of χ± is introduced for consistency with further notation.
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Indeed, if the integral in (2.17) is bounded, then so is the integral in (2.18), since the factor e−ηt with η > 0 can only improve
the convergence of the integral.

From the physical argument, it follows that Imχαβ(q, ω) must vanish as ω → ∞, but Reχαβ(q, ω), in general, tends to a
nonzero value (for details, see, e.g. [7, 9]). If we define

lim
ω→∞ Reχαβ(q, ω) = χαβ(q,∞),

then χαβ(q, z)−χαβ(q,∞) is an analytic function in the upper half-plane which vanishes as |z| → ∞. We consider a closed
contour C that runs from −∞ to ∞ along the real axis and closes in the upper half plane. The residue theorem then says

∮

C

χαβ(q, z) − χαβ(q,∞)

z − ω + i0+ dz = 0,

because the pole of the integrand at z = ω − i0+ lies in the lower half plane, outside the contour. The integral over the arc in
the upper half-plane is equal to zero. By applying the Sokhotsky formula (A.44), we write the integral over the real axis as

P
∫

χαβ(q, ω′) − χαβ(q,∞)

ω′ − ω
dω′ − iπ

(
χαβ(q, ω) − χαβ(q,∞)

) = 0,

where P denotes the Cauchy principle value of the integral following it. Taking the real and imaginary parts, we obtain
the result

Re
[
χαβ(q, ω) − χαβ(q,∞)

] = 1

π
P
∫

Imχαβ(q, ω′)
ω′ − ω

dω′, (2.19)

Imχαβ(q, ω) = − 1

π
P
∫

Re
[
χαβ(q, ω′) − χαβ(q,∞)

]

ω′ − ω
dω′, (2.20)

where ω′ stands for ω′ + i0+. Relations of this type are frequently termed the Kramers-Kronig relations (see, e.g. [5–7, 9]).
They show that the real and imaginary parts of the susceptibility are not independent but related to each other (for numerical
calculation of the integral (2.19), see Appendix H.1).

2.2 Magnetic Susceptibility: Microscopic Approach

2.2.1 Magnetization and Spin

Since the spin of electrons is principally responsible for magnetism in a metal, we consider the system of interacting electrons.
Quantum mechanically, this system is described by a Hamiltonian operator H. To find the magnetization, we must take the
expectation value of the magnetic moment operator M = (Mx,My,Mz),

(Ψ,MαΨ ) =
∫

Ψ ∗MαΨ dr1 . . . drNe ,

where Ne is the total number of electrons. The wave function Ψ (r1, . . . , rNe) can be represented as a superposition of the
eigenfunctions Ψk(r1, . . . , rNe) of the Hamiltonian H,

Ψ (r1, . . . , rNe) =
∑

k′
ck′Ψk′(r1, . . . , rNe).

The expectation value then becomes
(Ψ,MαΨ ) =

∑

kk′
c∗
kck′Mα

kk′ ,
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where Mα
kk′ = (Ψk,MαΨk′) is the matrix element. The fact that we are describing the system at a temperature T implies

that the system is in equilibrium with some heat bath, i.e. it cannot be described by a unique wave function Ψ (for details
see, e.g. [11, 12]). Taking the statistical average over different states Ψ (the ensemble average), we come to

〈Mα〉 =
∑

kk′
〈c∗

kck′ 〉Mα
kk′ . (2.21)

Introducing the density matrix ρ with the elements

ρkk′ = 〈c∗
k′ck〉,

we rewrite the quantum-statistical average (2.21) in the form

〈Mα〉 =
∑

kk′
ρk′kMα

kk′ = Tr(ρMα).

Notice that we derived the average of the magnetic moment over the entire system. If we are interested in the magnetization
at the point r, this behaviour can be obtained by

M(r) =
Ne∑

i=1

miδ(r − ri ). (2.22)

Since the delta function δ(r − ri ) has dimensions of a reciprocal volume, M(r) is the magnetic moment operator per unit
volume. Here mi is the magnetic moment operator associated with the spin of ith electron. Therefore, the magnetization
M(r) = 〈M(r)〉 becomes

M(r) = Tr(ρM(r)). (2.23)

We recall that when the system is in equilibrium through energy exchange with a heat bath (canonical ensemble), the
density matrix ρ is determined by

ρ = 1

Z
e−H/T , Z = Tre−H/T , (2.24)

where Z is the partition function and T is temperature (in energy units). In studying a many-body system such as interacting
electrons, it is convenient to assume that the system is in equilibrium with a large bath not only through energy exchange but
through particle exchange as well (the grand canonical ensemble). In this case, the density matrix is given by

ρ′ = 1

Ξ
e−H′/T , Ξ = Tre−H′/T . (2.25)

Here Ξ is the grand canonical partition function and H′ = H−μNe, where Ne is the total number of electrons operator and
μ is the chemical potential.

The thermodynamic potential Ω and the (Helmholtz) free energy F are related to the partition functions Ξ and Z as

Ω = −T ln Ξ, F = −T ln Z.

The functions Ω(V, T , μ) and F(V, T ,Ne), where V is the volume of the crystal and Ne = 〈Ne〉 is the average number of
electrons in the system, satisfy the relation

F = Ω + μNe. (2.26)

To calculate F , it is convenient first to obtain Ω , then use (2.26).



2.2 Magnetic Susceptibility: Microscopic Approach 13

2.2.2 Linear Response Theory

If the system is under a time-dependent external perturbation, such as magnetic field, we have to solve the time-dependent
Schrödinger equation

ih̄
∂

∂t
Ψ (r1, . . . , rNe , t) = Htot(t)Ψ (r1, . . . , rNe , t), (2.27)

where the total Hamiltonian contains the interaction with the external perturbation:

Htot(t) = H + Hext(t). (2.28)

To describe the dynamics of the corresponding density matrix

ρtot(t) = ρ + ρext(t),

we expand the wave function Ψ in the eigenfunctions Ψk of the unperturbed Hamiltonian H,

Ψ (r1, . . . , rNe , t) =
∑

k′
ck′(t)Ψk′(r1, . . . , rNe),

substitute in the Schrödinger equation (2.27), multiply both sides by Ψ ∗
k on the left and integrate over r1,. . . ,rNe . Then,

taking into account the orthogonality of the eigenfunctions, we obtain

ih̄
∂ck(t)

∂t
=
∑

k′
H tot

kk′(t) ck′(t), (2.29)

where H tot
kk′(t) = (Ψk,Htot(t)Ψk′). From Eq. (2.29) and its complex conjugate, for ρtot

kk′(t) = 〈c∗
k′(t)ck(t)〉 we derive

ih̄
∂ρtot

kk′(t)

∂t
=
∑

k′′

(
H tot

kk′′(t)ρtot
k′′k′(t) − ρtot

kk′′(t)H tot
k′′k′(t)
) = [Htot(t), ρtot(t)]kk′ .

Thus, the equation of motion for the density matrix is2

ih̄
∂ρtot(t)

∂t
= [Htot(t), ρtot(t)]. (2.30)

It is now convenient to introduce the interaction representation of the density matrix,

ρI
tot(t) = eiHt/h̄ρtot(t) e−iHt/h̄. (2.31)

Differentiating (2.31) and using (2.30) and (2.28), we obtain

dρI
tot(t)

dt
= i

h̄
eiHt/h̄ [H, ρtot(t)] e−iHt/h̄ + eiHt/h̄ ∂ρtot(t)

∂t
e−iHt/h̄

= − i

h̄
eiHt/h̄ [Hext(t), ρtot(t)] e−iHt/h̄.

2This equation is sometimes called the Liouville, or von Neumann equation (see, e.g. [5]).
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Direct integration gives

ρI
tot(t) = ρI

tot(−∞) + i

h̄

∫ t

−∞
eiHt ′/h̄ [ρtot(t

′),Hext(t
′)] e−iHt ′/h̄ dt ′. (2.32)

If the perturbation Hext(t) is turned on adiabatically, then ρtot(−∞) = ρ. In the expression [ρtot(t),Hext(t)] = [ρ +
ρext(t),Hext(t)], we neglect the second-order perturbation term [ρext(t),Hext(t)]. Thus, substituting (2.31) in (2.32), we
arrive at

ρtot(t) = ρ + i

h̄

∫ t

−∞
eiH(t ′−t)/h̄ [ρ,Hext(t

′)] e−iH(t ′−t)/h̄ dt ′.

The magnetization is given by
M(r, t) = Tr(ρtot(t)M(r)). (2.33)

If the system is ordered in the absence of the applied field, then M(r,−∞) = Tr(ρM(r)) is nonzero. The response of such
a system is defined by the difference M(r, t) − M(r,−∞) resulting from the applied field. However, in the following, for
simplicity, we shall understand M(r, t) to be the response to the applied field. Then, commuting the integral with the trace,
we have

M(r, t) = i

h̄

∫ t

−∞
Tr
(
M(r) eiH(t ′−t)/h̄ [ρ,Hext(t

′)] e−iH(t ′−t)/h̄
)

dt ′.

Using the cyclic property of trace, we write

Tr
(
M(r) eiH(t ′−t)/h̄ [ρ,Hext(t

′)] e−iH(t ′−t)/h̄
) = Tr

(
M(r, t − t ′)[ρ,Hext(t

′)]),

where
M(r, t) = eiHt/h̄M(r) e−iHt/h̄.

Therefore,

M(r, t) = i

h̄

∫ t

−∞
Tr
(
M(r, t − t ′) [ρ,Hext(t

′)] ) dt ′. (2.34)

By applying the cyclic property of trace once again, we have

Tr
(
M(r, t − t ′)[ρ,Hext(t

′)] ) = −Tr
(
ρ[M(r, t − t ′),Hext(t

′)] ).

Making use of the unperturbed average (2.23), we write (2.34) in the form

M(r, t) = − i

h̄

∫ t

−∞
〈[
M(r, t − t ′),Hext(t

′)
]〉

dt ′. (2.35)

If the perturbation Hext(t) is generated by the space- and time-dependent magnetic field H(r, t), we have

Hext(t) = −
∫ ∑

β

Mβ(r)Hβ(r, t) dr. (2.36)

We assume that the magnetic field H(r, t) changes slowly, so that the perturbed system moves from one equilibrium to
another. Then, using (2.35), we write the response as

Mα(r, t) = i

h̄

∫∫ t

−∞

∑

β

〈[
Mα(r, t − t ′),Mβ(r′)

]〉
Hβ(r′, t ′) dr′ dt ′. (2.37)
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Comparing (2.37) with (2.4), we obtain the following expression for the susceptibility:

χαβ(r, r′, t − t ′) = i

h̄

〈[
Mα(r, t − t ′),Mβ(r′)

]〉
θ(t − t ′),

where θ(t) = 0 for t < 0 and θ(t) = 1 for t > 0. Passing to the spatial Fourier transforms and taking into account the
translational invariance, we come to

χαβ(q, t) = i

h̄

〈[
Mα(q, t),Mβ(−q)

]〉
θ(t).

Making the time Fourier transformation, we obtain3

χαβ(q, ω) = i

h̄

∫ ∞

0

〈[
Mα(q, t),Mβ(−q)

]〉
eiωt dt, (2.38)

where ω stands for ω + i0+ (for details, see Appendix C.5).
Of particular interest is the longitudinal susceptibility χzz(0, 0). At the point where the longitudinal susceptibility diverges,

χzz(0, 0) = ∞, even an infinitesimal magnetic field produces a finite magnetization. The pole of χzz(0, 0) therefore describes
the phase transition from para- to ferromagnetism.

In Sect. 2.1.2, for a system with axial symmetry, we defined the transverse susceptibility as the response to the circular
magnetic field. Using the circular components (2.14), we can write the magnetic energy (2.36) as

Hext(t) = −
∫ [

1

2

(
M+(r)H−(r, t) + M−(r)H+(r, t)

)
+ Mz(r)Hz(r, t)

]
dr. (2.39)

As we discussed, H+ produces only M+ and H− produces only M−. Keeping only the first term in Hext(t), from (2.35) we
obtain

M−(r, t) = 1

2

i

h̄

∫∫ t

−∞
〈[
M−(r, t − t ′),M+(r′)

]〉
H−(r′, t ′) dr′ dt ′.

Making the Fourier transform, we come to

M−(q, ω) = 1

2
χ−+(q, ω)H−(q, ω) (2.40)

(compare this with expression (2.15) for χ−), where the transverse susceptibility is given by

χ−+(q, ω) = i

h̄

∫ ∞

0

〈[
M−(q, t),M+(−q)

]〉
eiωt dt. (2.41)

This formula explains the notation χ−+(q, ω) for the transverse component in the linear response theory, which is standard
within the metallic magnetism literature (see, e.g. [5, 7]) and will be used from now on. Similarly, we define the other
transverse susceptibility,

χ+−(q, ω) = i

h̄

∫ ∞

0

〈[
M+(q, t),M−(−q)

]〉
eiωt dt. (2.42)

3 This is also called Kubo formula for the magnetic susceptibility (see, e.g. [5]).
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The two transverse susceptibilities are related by

(
χ−+(q, ω)

)∗ = χ+−(−q,−ω)

or, equivalently,

Reχ−+(q, ω) = Reχ+−(−q,−ω), (2.43)

Imχ−+(q, ω) = −Imχ+−(−q,−ω). (2.44)

Transverse susceptibility has two types of singularities that determine different magnetic excitations: isolated poles
determine low-energy spectrum of spin waves and branch cuts determine higher energy spin-flip excitations (for details,
see Sect. 5.2).

2.2.3 Fluctuation-Dissipation Theorem

The linear response theory allows to establish a relation between the susceptibility and ordinary correlator. Let us consider
the function

fαβ(q, ω) = i

h̄

∫ ∞

−∞

〈[
ΔMα(q, t),ΔMβ(−q)

]〉
eiωt dt

= i

h̄

∫ 0

−∞

〈[
ΔMα(q, t),ΔMβ(−q)

]〉
eiωt dt

+ i

h̄

∫ ∞

0

〈[
ΔMα(q, t),ΔMβ(−q)

]〉
eiωt dt, (2.45)

where ΔM = M − 〈M〉. First, we relate this function to the susceptibility (2.38). Using the commutator property (see
Appendix A.1.2) 〈[

Mα(q, t),Mβ(−q)
]〉 =
〈[

ΔMα(q, t),ΔMβ(−q)
]〉

,

we write

χαβ(q, ω) = i

h̄

∫ ∞

0

〈[ΔMα(q, t),ΔMβ(−q)]〉 eiωt dt. (2.46)

In the first integral on the right-hand side of (2.45), by applying the cyclic property of trace we move the operators e±iHt/h̄

that enclose ΔMα(q) so that they enclose ΔMβ(−q) instead. Then making the change of variable t → −t in the integral,
we have

i

h̄

∫ 0

−∞

〈[
ΔMα(q, t),ΔMβ(−q)

]〉
eiωt dt

= i

h̄

∫ ∞

0

〈[
ΔMα(q),ΔMβ(−q, t)

]〉
e−iωt dt.

Substituting this in (2.45) and recalling (2.46), we obtain

fαβ(q, ω) = χαβ(q, ω) − χβα(−q,−ω).

Using relation (2.7), we have
fαβ(q, ω) = χαβ(q, ω) − (χβα(q, ω)

)∗
. (2.47)
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Now we relate the function fαβ(q, ω) to the correlator. Using the cyclic property of trace, we obtain

∫ ∞

−∞
〈
ΔMα(q, t)ΔMβ(−q)

〉
eiωt dt =

∫ ∞

−∞
〈
ΔMβ(−q)ΔMα(q, t + ih̄/T )

〉
eiωt dt.

Making the transformation t → t − ih̄/T in the integral on the right-hand side, we rewrite this relation in the form

∫ ∞

−∞
〈
ΔMα(q, t)ΔMβ(−q)

〉
eiωt dt = eh̄ω/T

∫ ∞

−∞
〈
ΔMβ(−q)ΔMα(q, t)

〉
eiωt dt. (2.48)

Using (2.48), we write the first line of (2.45) as

fαβ(q, ω) = (1 − e−h̄ω/T
) i

h̄

∫ ∞

−∞
〈
ΔMα(q, t)ΔMβ(−q)

〉
eiωt dt. (2.49)

From (2.47) and (2.49), we finally obtain

∫ ∞

−∞
〈
ΔMα(q, t)ΔMβ(−q)

〉
eiωt dt

= ih̄

e−h̄ω/T − 1

[
χαβ(q, ω) − (χβα(q, ω)

)∗]
. (2.50)

By taking the inverse Fourier transform this can be written as

〈
ΔMα(q, t)ΔMβ(−q)

〉

= 1

2π

∫
ih̄

e−h̄ω/T − 1

[
χαβ(q, ω) − (χβα(q, ω)

)∗] e−iωt dω. (2.51)

Relation (2.51) is called the fluctuation-dissipation theorem (see, e.g. [5,7]). In particular, for α = β, we can rewrite (2.50) as

∫ ∞

−∞
〈
ΔMα(q, t)ΔMα(−q)

〉
eiωt dt = −h̄

e−h̄ω/T − 1
2Imχαα(q, ω)

and rewrite (2.51) as

〈ΔMα(q, t)ΔMα(−q)〉 = − 1

π

∫
h̄

e−h̄ω/T − 1
Imχαα(q, ω) e−iωtdω. (2.52)

Components of the magnetic moment operator do not commute with each other. Therefore, it is sometimes convenient to
define the correlator as the average of the symmetrized product

1

2

〈{
ΔMα(q, t),ΔMβ(−q)

}〉
,

where {
ΔMα(q, t),ΔMβ(−q)

} = ΔMα(q, t)ΔMβ(−q) + ΔMβ(−q)ΔMα(q, t)

is the anticommutator. To relate this correlator to the imaginary part of the susceptibility, similar to (2.45) we introduce the
function

gαβ(q, ω) = i

h̄

∫ ∞

−∞

〈{
ΔMα(q, t),ΔMβ(−q)

}〉
eiωt dt.



18 2 Basics of Metallic Magnetism

Using (2.48), we have

gαβ(q, ω) = (1 + e−h̄ω/T
) i

h̄

∫ ∞

−∞

〈
ΔMα(q, t),ΔMβ(−q)

〉
eiωt dt.

Then from (2.49) we obtain

gαβ(q, ω) = coth

(
h̄ω

2T

)
fαβ(q, ω)

or, equivalently,

∫ ∞

−∞
〈{

ΔMα(q, t),ΔMβ(−q)
}〉

eiωt dt

= −ih̄ coth

(
h̄ω

2T

) [
χαβ(q, ω) − (χβα(q, ω)

)∗]
. (2.53)

The inverse Fourier transform is written as

〈{
ΔMα(q, t),ΔMβ(−q)

}〉

= − ih̄

2π

∫
coth

(
h̄ω

2T

) [
χαβ(q, ω) − (χβα(q, ω)

)∗] e−iωt dt. (2.54)

In particular, for α = β, we rewrite (2.53) as

∫ ∞

−∞
〈{ΔMα(q, t),ΔMα(−q)}〉 eiωt dt = 2h̄ coth

(
h̄ω

2T

)
Imχαα(q, ω) (2.55)

and (2.54) takes the form

〈{ΔMα(q, t),ΔMα(−q)}〉 = h̄

π

∫
coth

(
h̄ω

2T

)
Imχαα(q, ω) e−iωtdω. (2.56)

At high temperatures T � TC, both formulae (2.52) and (2.56) give the same result for t = 0. Indeed, using eh̄ω/T ≈
1 + h̄ω/T , we write (2.52) as

〈Mα(q)Mα(−q)〉 = T

π

∫
Imχαα(q, ω)

ω
dω.

Taking into account the Kramers-Kronig relation

Reχαα(q, 0) = 1

π

∫
Imχαα(q, ω)

ω
dω

and the fact that Imχαα(q, ω) is an odd function of ω, we come to

〈Mα(q)Mα(−q)〉 = T χαα(q, 0), (2.57)

where χαα(q, 0) is the static susceptibility. Similarly, using

coth

(
h̄ω

2T

)
≈ 2T

h̄ω
,

we write (2.56) as
1

2
〈{Mα(q),Mα(−q)}〉 = T

π

∫
Imχαα(q, ω)

ω
dω
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and thus,

1

2
〈{Mα(q),Mα(−q)}〉 = T χαα(q, 0). (2.58)

This is the high-temperature form of the fluctuation-dissipation theorem. Note that the right-hand sides of (2.57) and (2.58)
are the same. Equating the left-hand sides of (2.57) and (2.58), we obtain

〈Mα(q)Mα(−q)〉 = 〈Mα(−q)Mα(q)〉.

i.e. on the average Mα(q) and Mα(−q) commute. Therefore, we can also interpret (2.57) or (2.58) as the classical form of
the fluctuation-dissipation theorem.

In the paramagnetic state, the uniform static susceptibility χαα(0, 0) in metals follows the Curie-Weiss law (see, e.g. [4])

χα
CW = m2

eff

3(T − ΘC)
, T > ΘC , (2.59)

where meff is the effective magnetic moment and ΘC is the paramagnetic Curie temperature. The high-temperature version
of the fluctuation-dissipation theorem (2.57) yields

1

N
χαα(0, 0) = M2(0)

3T
, (2.60)

where

M2(q) = 1

N
〈M(q)M(−q)〉 (2.61)

is the square of the q-dependent effective moment. Comparing formulae (2.59) and (2.60), for T � ΘC we obtain

χα
CW = N−1χαα(0, 0), M(0) = meff. (2.62)
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...we can make the one possible combination which is antisymmetric, and it will both satisfy the exclusion principle, and will be an approximate
solution of Schrodinger’s equation. This combination is conveniently written as a determinant... (J.C. Slater, Phys. Rev. 34, 1293 (1929))

In this chapter we summarize the essentials of quantum mechanics and statistical mechanics that are used later in the book.
First, we recall the necessary facts about one-electron problem in a periodic crystal lattice (for details see, e.g. [1–3]). Then
the second quantization method is described and illustrated by concrete examples (see also [4–7]). In particular, we calculate
the paramagnetic susceptibility of noninteracting electrons in the field of the crystal lattice. As an immediate application of
this result we briefly discuss the RKKY oscillation.

3.1 One-Electron States

An electron in a crystal can be described by the wave function ϕ(r), which satisfies the following Schrödinger equation:

(
− h̄2

2me
∇2 + V (r)

)
ϕ(r) = εϕ(r). (3.1)

Here ∇2 is the Laplace operator, ε is the energy and me is the mass of an electron. The potential energy V (r) is periodic with
the period of the lattice:

V (r + Rj ) = V (r), Rj = j1a1 + j2a2 + j3a3, (3.2)

where a1, a2, a3 are the primitive vectors of the lattice and j1, j2, j3 are integers. We assume the cyclic boundary conditions

ϕ(r + La1) = ϕ(r + La2) = ϕ(r + La3) = ϕ(r),

where L is a large integer. Then, according to Bloch’s theorem, a solution to (3.1) is given by

ϕk(r) = eikruk(r), (3.3)

where k is the wavevector and uk(r) is a periodic function:

uk(r + R) = uk(r)

(R is a lattice vector).
It is easily seen that k in Bloch’s theorem is determined up to a reciprocal lattice vector K:

ϕk(r) = ϕk+K(r).
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Indeed,
ϕk(r) = ei(k+K)r[e−iKruk(r)],

where e−iKruk(r) is a periodic function, because eiKR = 1. Thus, the energies are also periodic

εk = εk+K.

In order to determine the wavevectors k uniquely, we restrict it to a primitive cell of the reciprocal lattice. Then solutions to
the Schrödinger equation form an infinite number of states for each k in the primitive cell and we label them by the band
index n. The wave function

ϕnk(r) = eikrunk(r) (3.4)

corresponding to the energy εnk is called the Bloch function. Throughout the book we assume that k belongs to the reciprocal-
lattice primitive cell centred at the origin, which is called the Brillouin zone.

The spin of an electron is given by the operator s = (sx, sy, sz). The components sα act in a two-dimensional complex
space and satisfy the same commutation relations as the ones of the angular momentum operator:

[sx, sy] ≡ sxsy − sysx = isz, etc.

Denoting the eigenvectors of the operator sz by χ↑ and χ↓, we have

szχ↑ = 1

2
χ↑ , szχ↓ = −1

2
χ↓ .

The spin-flip operators s± = sx ± isy satisfy the relations

s−χ↑ = χ↓ , s−χ↓ = 0,

s+χ↑ = 0, s+χ↓ = χ↑ .

Since sα do not commute, they cannot be diagonalized simultaneously. We choose a coordinate system such that sz is
diagonal with the eigenvalues ±1/2 (in units of h̄). Then the spin operator can be represented as s = 1

2σ , where σ =
(σx, σy, σz) is the vector of Pauli matrices

σx =
[

0 1
1 0

]
, σy =

[
0 −i
i 0

]
, σz =

[
1 0
0 −1

]
. (3.5)

A state of an electron can now be characterized by the product of the orbital wave function and the spin eigenfunction:

ϕσ (r) = ϕ(r) χσ ,

where σ =↑↓ is the spin index. Thus, the Bloch function (3.4) transforms to ϕnkσ (r) = ϕnk(r)χσ .
For our purposes it is more convenient to use the Wannier functions wnjσ (r) = wnj (r)χσ , which are related to the Bloch

functions by the following relations:

wnj (r) = 1√
N

BZ∑

k

e−ikRj ϕnk(r). ϕnk(r) = 1√
N

N∑

j=1

eikRj wnj (r). (3.6)

Here j represents the lattice site Rj (N is the number of unit cells in the crystal) and k takes N discrete values in the Brillouin
zone (BZ). The orthonormality relation for the Wannier functions

(wnjσ , wn′j ′σ ′) =
∫

w∗
nj (r)wn′j ′(r) dr (χσ , χσ ′) = δnn′δjj ′δσσ ′

can be easily confirmed by using that of the Bloch functions. The Wannier functions form a complete set, as do the Bloch
functions.
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Note that the Wannier functions are not eigenstates of the Hamiltonian, because each wnj (r) is a linear combination of
ϕnk(r) corresponding to different eigenvalues εnk. In particular, for the free electron gas (in the empty lattice), the Bloch
functions are just the plane waves ϕnk(r) = V −1/2eikr, and Wannier functions are the delta functions centred at the lattice
sites wnj (r) = δ(r−Rj ). When the crystal lattice potential (3.2) is present, as is the case of the DSFT, each Wannier function
is still localized at a lattice site and we sometimes write wnj (r) = wn(r − Rj ). Thus, the Wannier state wnjσ (r) describes a
spin σ electron at the j th site in the nth energy band.

3.2 Many-Electron States

In discussing magnetism of a metal, we neglect the effect of the motion of its ionic lattice.1 We thus consider only electronic
subsystem in the electrostatic field produced by the periodic lattice. The Hamiltonian H = H0 + HI of this system consists
of the sum of kinetic and potential energy of the noninteracting electrons H0 and the Coulomb interaction HI:

H0 =
Ne∑

i=1

(
− h̄2

2me
∇2

i + V (ri )

)
, HI = 1

2

Ne∑

i �=j

e2

|ri − rj | , (3.7)

where −e is the charge of an electron and Ne is the number of electrons.
According to quantum mechanics, the wave function Ψ (r1, . . . , rNe) of a many-electron system must change sign when

two electrons are interchanged:

Ψ (r1, . . . , ri , . . . , rj , . . . , rNe) = −Ψ (r1, . . . , rj , . . . , ri , . . . , rNe).

Therefore, a product ϕk1(r1) . . . ϕkNe
(rNe) of one-electron states ϕk(r) (k = 1, 2, . . . ) does not correctly represent a state of

the many-electron system. Instead of a single product, we must take a determinantal function,2

Φk1,...,kNe
(r1, . . . , rNe) = 1√

Ne!

∣∣∣∣∣∣∣

ϕk1(r1) · · · ϕk1(rNe)
...

. . .
...

ϕkNe
(r1) · · · ϕkNe

(rNe)

∣∣∣∣∣∣∣
. (3.8)

If we have a complete orthonormal system of one-electron functions,

∑

k

ϕk(r)ϕk(r′) = δ(r − r′), (3.9)

such as Bloch ϕnkσ (r) or Wannier wnjσ (r) functions, then the determinantal functions (3.8) form a complete and orthonormal
system of Ne-electron states (for a proof, see, e.g. [4]). The states containing different number of electrons are defined to be
orthogonal.

A determinantal function is specified by the one-electron functions which it contains. The only ambiguity is that of sign,
and this can be removed by ordering the functions ϕk . However, instead of specifying the subscripts in the determinantal
function, it can be more convenient to write (3.8) in the occupation number representation3

Φ(n1, n2, . . . ),

where the occupation number nk is equal to unity if this state appears in the determinant and zero otherwise.

1The lattice vibrations are taken into account in Chaps. 14 and 15.
2In the literature, this is also referred to as Slater determinant (see, e.g. [5, 7]).
3This is often written in the Dirac notation as |n1, n2, . . . 〉 but we will stick to the wave-mechanical notation.



24 3 Many-Electron Problem

3.3 Second Quantization

Dealing with the quantum-statistical average such as (2.23), one needs to calculate the matrix elements with respect to
Ne × Ne determinantal functions. This calculation becomes practically impossible in metals because of the large number of
electrons, Ne ∼ 1023. The method of second quantization allows to overcome this difficulty by introducing operators that are
independent of the number of electrons in the system under study (the second quantization for phonons is briefly illustrated
in Appendix G).

3.3.1 General Theory

We now introduce the creation operator a
†
k that adds the state ϕk to each determinantal function not containing this state. In

other words, it converts a determinant of order Ne to a determinant of order Ne + 1 with the appropriate normalization factor
and sign. In the occupation number representation this can be written as

a
†
kΦ(. . . , 0k, . . . ) = θkΦ(. . . , 1k, . . . ),

a
†
kΦ(. . . , 1k, . . . ) = 0.

Here

θk = (−1)

∑
j<k

nj

,

where
∑

j<k nj is the number of occupied states that precede ϕk . Similarly, the annihilation operator ak is defined by

akΦ(. . . , 0k, . . . ) = 0,

akΦ(. . . , 1k, . . . ) = θkΦ(. . . , 0k, . . . ).

The two definitions are written in a compact form as

a
†
kΦ(. . . , nk, . . . ) = θk(1 − nk)Φ(. . . , 1k, . . . ), (3.10)

akΦ(. . . , nk, . . . ) = θknkΦ(. . . , 0k, . . . ). (3.11)

If the annihilation operator acts on a one-electron state, i.e. the first-order determinant, the results will be a “zero-order”
determinant with no electron state occupied, Φ(0, 0, . . . ). This state is called “vacuum” and denoted by Φ0. Any Ne-electron
state can be constructed by acting on the vacuum state with appropriate creation operators:

Φk1...kNe
= a

†
k1

. . . a
†
kNe

Φ0, k1 < · · · < kNe .

The most important fact about the operators ak and a
†
k is the anticommutation relations

{ak, ak′ } = 0,
{
a

†
k , a

†
k′
} = 0,

{
ak, a

†
k′
} = δkk′ . (3.12)

These relations are derived directly from the definitions (3.10) and (3.11) of ak and a
†
k′ (for details, see, e.g. [4]). It is also easy

to check that the creation operator a
†
k is the Hermite conjugate to the annihilation operator ak , which justifies the notation of

the former.
We now proceed to representing physical quantities in a way that is independent of the number of electrons in the many-

electron system. To write the expressions in the most compact form, we introduce the field operator ψ(r) and its Hermite
conjugate ψ†(r):

ψ(r) =
∑

k

akϕk(r), ψ†(r) =
∑

k

a
†
kϕ

∗
k (r). (3.13)
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Using (3.12) and (3.9), one can verify the following anticommutation relations for ψ(r) and ψ†(r):

{ψ(r), ψ(r′)} = 0,

{ψ†(r), ψ†(r′)} = 0,

{ψ(r), ψ†(r′)} = δ(r − r′).

Almost all physical quantities of the many-electron system are represented as either sums of one-electron quantities

Ã(1) =
Ne∑

i=1

A(1)(ri )

(e.g. kinetic and potential energy; atomic spin and charge) or sums of two-electron quantities

Ã(2) =
Ne∑

i �=j

A(2)(ri , rj )

(e.g. Coulomb interaction). In the second-quantized form these quantities are written as follows (for a proof, see, e.g. [4]):

Ã(1) =
∫

ψ†(r)A(1)(r)ψ(r) dr, (3.14)

Ã(2) =
∫∫

ψ†(r)ψ†(r′)A(2)(r, r′)ψ(r′)ψ(r) dr dr′. (3.15)

For a one-electron quantity that itself depends on r:

Ã(1)(r) =
Ne∑

i=1

A(1)(ri , r)

(e.g. charge or spin density), we can rewrite (3.14) as

Ã(1)(r) =
∫

ψ†(r′)A(1)(r′, r)ψ(r′) dr′. (3.16)

3.3.2 Specific Operators

Charge Density
As the first example, we consider the charge density operator (in units of −e)

n(r) =
Ne∑

i=1

δ(r − ri ).

Substituting δ(r − r′) for A(1)(r′, r) in formula (3.16) and using δ(r) = δ(−r), we obtain

n(r) =
∫

ψ†(r′)δ(r′ − r)ψ(r′) dr′ = ψ†(r)ψ(r).

Thus, the square of the amplitude of the field operator |ψ(r)|2 = ψ†(r)ψ(r) represents the spatial electron (charge) density.4

4In quantum mechanics, quantization means that one replaces physical quantities by operators that act on the wave function. The square of the
wave function modulus gives the probability density. Here, in turn, the wave function is replaced by the field operator. Therefore, the term second
quantization was created (for details, see [4, 5] and references therein).
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The total number of electrons operator is given by

Ne =
∫

ψ†(r)ψ(r) dr. (3.17)

In the Wannier representation, the field operators of type (3.13) are written as

ψ(r) =
∑

νjσ

aνjσ wνj (r)χσ , ψ†(r) =
∑

νjσ

a
†
νjσ w∗

νj (r)χ
†
σ , (3.18)

where ν is the band index. Substituting (3.18) in (3.17), we obtain

Ne =
∑

νν′jj ′σσ ′
a

†
νjσ aν′j ′σ ′

∫
w∗

νj (r)wν′j ′(r) dr (χσ , χσ ′).

Using the orthonormality of the Wannier functions and spin states, we have

Ne =
∑

νjσ

a
†
νjσ aνjσ =

∑

νjσ

nνjσ ,

where nνjσ = a
†
νjσ aνjσ is the number of particles operator in the state (ν, j, σ ).

Spin Density: Wannier Representation
Similarly, the spin density operator

s(r) = s
Ne∑

i=1

δ(r − ri ) (3.19)

in the second-quantized form is written as
s(r) = ψ†(r) s ψ(r). (3.20)

Integrating s(r) over the whole volume of the crystal and substituting (3.18), we obtain the total spin

Sα =
∫

ψ†(r) sα ψ(r) dr =
∑

νj

sα
νj . (3.21)

Here
sα
νj =
∑

σσ ′
sα
σσ ′a

†
νjσ aνjσ ′ ,

where sα
σσ ′ = (χσ , sαχσ ′) is the matrix element of sα = 1

2σα in the two-dimensional spin space. Using the explicit form
(3.5) of the Pauli matrices σα , we obtain

sx
νj = 1

2

(
a

†
νj↑aνj↓ + a

†
νj↓aνj↑

)
, (3.22)

s
y
νj = 1

2i

(
a

†
νj↑aνj↓ − a

†
νj↓aνj↑

)
, (3.23)

sz
νj = 1

2

(
a

†
νj↑aνj↑ − a

†
νj↓aνj↓

)
(3.24)

or, equivalently,

sx
νj = 1

2
(s+

νj + s−
νj ),
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s
y
νj = 1

2i
(s+

νj − s−
νj ),

sz
νj = 1

2
(nνj↑ − nνj↓),

where s+
νj = a

†
νj↑aνj↓ and s−

νj = a
†
νj↓aνj↑ are the spin-flip operators.

Spin Density: Bloch Representation
Throughout the book we will often operate with the spin density in the momentum representation,

sα(q) =
∫

sα(r) e−iqr dr. (3.25)

To obtain an expression for sα(q) in the second-quantized form, we use the Bloch representation of the field operators:

ψ(r) =
∑

kσ

akσ ϕk(r)χσ , ψ†(r) =
∑

kσ

a
†
kσ

ϕ∗
k(r)χ†

σ (3.26)

(for brevity we omit the band index here). Substituting (3.26) in (3.20), we write (3.25) as

sα(q) =
∑

kk′σσ ′
sα
σσ ′a

†
kσ

ak′σ ′
∫

ϕ∗
k(r)ϕk′(r) e−iqr dr.

According to Bloch’s theorem (3.3), we have ϕk(r + Rj ) = eikRj ϕk(r). Therefore, changing the dummy variable r in the
integral to r′ + Rj , we obtain

∫
ϕ∗

k(r′ + Rj )ϕk′(r′ + Rj ) e−iq(r′+Rj ) dr′ = e−i(k−k′+q)Rj

∫
ϕ∗

k(r′)ϕk′(r′) e−iqr′
dr′.

Averaging over all Rj in the crystal lattice and using the identity
∑

j eikRj = Nδk0, we have

sα(q) =
∑

kσσ ′
F(q, k)sα

σσ ′a
†
kσ

ak+q,σ ′ , (3.27)

where

F(q, k) =
∫

ϕ∗
k(r)ϕk+q(r) e−iqr dr (3.28)

is the magnetic form-factor. In the Wannier representation (3.6), letting wj(r) = w(r − Rj ), we come to

F(q, k) =
∑

j

e−ikRj

∫
w∗(r)w(r + Rj )e

−iqrdr.

Neglecting the overlap of the Wannier functions at different sites, we obtain

F(q, k) ≈ F(q) =
∫

|w(r)|2e−iqr dr.

Introducing the operator of the approximate spin density s′(q) such that s(q) = F(q) s′(q), we write the spin correlator as

〈Δsα(q)Δsα(−q)〉 = |F(q)|2 〈Δs′
α(q)Δs′

α(−q)〉.

Further on we will always work with the approximate spin density (omitting the prime), if the opposite is not explicitly
stated. In the absence of the form-factor, formula (3.27) reduces to
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sα(q) =
∑

kσσ ′
sα
σσ ′a

†
kσ

ak+q,σ ′ . (3.29)

Single-Site Spin
Dealing with metals, it is useful to define the single-site spin

sα
j =
∫

Ωj

sα(r) dr, (3.30)

where the integration is carried out over the Wigner-Seitz cell centred at the j th lattice site. Clearly, the total spin is the sum
of all single-site spins: Sα =∑j sα

j . Comparing with (3.21), we see that

sα
j =
∑

ν

sα
νj =
∑

νσσ ′
sα
σσ ′a

†
νjσ aνjσ ′ . (3.31)

The Fourier transform (3.25) can be written as the series. Indeed, if we approximate the exponential e−iqr inside the
Wigner-Seitz cell Ωj by the value e−iqRj , we obtain

sα(q) =
∑

j

sα
j e−iqRj . (3.32)

Taking (3.31) into account, we have
sα(q) =

∑

νjσσ ′
sα
σσ ′a

†
νjσ aνjσ ′ e−iqRj . (3.33)

Next, we want to express sα(q) in terms of the Bloch functions. For this we derive the relations between the creation-
annihilation operators in the Wannier and Bloch bases. Using (3.6), we obtain

a
†
νjσ Φ0 = wνjσ = 1√

N

BZ∑

k

e−ikRj ϕnkσ = 1√
N

BZ∑

k

e−ikRj a
†
nkσ

Φ0,

where Φ0 is the “vacuum” state. Therefore,

a
†
νjσ = 1√

N

BZ∑

k

e−ikRj a
†
nkσ

, aνjσ = 1√
N

BZ∑

k

eikRj ankσ . (3.34)

Substituting these relations in (3.33) and making use of
∑

j eiqRj = Nδq0, we come to Eq. (3.29). That means the

approximation e−iqr ≈ e−iqRj inside Ωj , which leads to the Fourier series (3.32), is equivalent to setting the form-factor
F(q) to unity. Therefore, the use of the Fourier series (3.32) in the DSFT is consistent with the fact that we ignore the
form-factor.

Hamiltonian
Next, we write the Hamiltonian H = H0 + HI in the second-quantized form. Applying formulae (3.14) and (3.15) to (3.7),
we come to
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H =
∑

νν′ii′σ
tνν′
ii′ a

†
νiσ aν′i′σ + 1

2

∑

μ ν i j σ

μ′ν′i′j ′σ ′

U
μνμ′ν′
ij i′j ′ a

†
μiσ a

†
νjσ ′aν′j ′σ ′aμ′i′σ , (3.35)

where the transfer energy tνν′
i i′ and interaction coefficient U

μνμ′ν′
i j i′j ′ are given by the integrals

tνν′
ii′ =

∫
w∗

νi(r)

[
− h̄2

2m
∇2 + V (r)

]
wν′i′(r) dr, (3.36)

U
μνμ′ν′
ij i′j ′ =

∫∫
w∗

μi(r)w
∗
νj (r

′) e2

|r − r′|wν′j ′(r′)wμ′i′(r) dr dr′. (3.37)

Since H is spin independent, expression (3.35) is symmetrical with respect to the spin indices σ and σ ′.
Finally, we write the Hamiltonian H in the momentum representation. The creation-annihilation operators in the Bloch

and Wannier bases are related by the formulae (3.34). Due to homogeneity, the transfer energy (3.36) is translationally
invariant, tii′ = ti−i′ (for simplicity of notation, in the rest of the chapter we consider the single-band case). Hence we write
the electrons energy H0 as

H0 =
∑

kσ

εka
†
kσ

akσ =
∑

kσ

εknkσ , (3.38)

where
εk =
∑

j

tij e−ik(Ri−Rj )

is the nonmagnetic energy spectrum. The interaction term HI in the momentum representation is written as

HI = 1

2

∑

klk′ l′
σσ ′

Uklk′l′a
†
kσ

a
†
lσ ′al′σ ′ak′σ , (3.39)

where

Uklk′l′ =
∫∫

ϕ∗
k(r) ϕ∗

l (r′) e2

|r − r′|ϕl′(r
′) ϕk′(r) dr dr′. (3.40)

3.4 Noninteracting Electrons

As another illustration of the second-quantization technique, we calculate the magnetic susceptibility of noninteracting
electrons in the field of the crystal lattice.

We calculate the (paramagnetic) susceptibility χ0
zz(q, ω). Recall that we consider only the magnetic moment associated

with the spin of an electron: m = −gμBs, where g ≈ 2 is the electron g-factor and

μB = eh̄

2mec
= 0.927 × 10−20 erg/G (3.41)

is the Bohr magneton (c is the velocity of light). Then comparing formulae (2.22) and (3.19), we see that the magnetic
moment at the point r is given by

M(r) = −gμBs(r),

and formula (2.38) can be written as

χ0
zz(q, ω) = g2μ2

B
i

h̄

∫ ∞

0

〈[
sz(q, t), sz(−q)

]〉
eiωt dt. (3.42)
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Here 〈. . . 〉 is the grand canonical average with the Hamiltonian H′
0 = H0 −μNe and time dependence means the Heisenberg

representation,
sα(q, t) = eiH′

0t/h̄sα(q)e−iH′
0t/h̄.

For noninteracting electrons the time dependence of the creation-annihilation operators can be obtained explicitly. Indeed,
differentiating the expression akσ (t) = eiH′

0t/h̄akσ e−iH′
0t/h̄, we obtain

ih̄
d

dt
akσ (t) = [akσ ,H′

0](t). (3.43)

To calculate the commutator, we write H0 in the momentum representation (3.38). Then Eq. (3.43) becomes

ih̄
d

dt
akσ (t) = (εk − μ)akσ (t).

Integrating the latter, we obtain

akσ (t) = akσ e−i(εk−μ)t/h̄, a
†
kσ

(t) = a
†
kσ

ei(εk−μ)t/h̄. (3.44)

Using formula (3.29), we write

sz(q) = 1

2

∑

k

(
a

†
k↑ak+q,↑ − a

†
k↓ak+q,↓

)
(3.45)

and

sz(q, t) = 1

2

∑

k

(
a

†
k↑ak+q,↑ − a

†
k↓ak+q,↓

)
ei(εk−εk+q)t/h̄.

Hence the commutator in formula (3.42) becomes

[sz(q, t), sz(−q)] = 1

4

∑

kk′σσ ′
σσ ′[a†

kσ
ak+q,σ , a

†
k′σ ′ak′−q,σ ′

]
ei(εk−εk+q)t/h̄,

where σ is equal to ↑,↓ or ±1. Using the anticommutation relations (3.12), it is easy to verify the general commutation rule

[
a†
νaμ, a

†
ν′aμ′
] = a†

νaμ′δμν′ − a
†
ν′aμδμ′ν . (3.46)

From the latter we have

[sz(q, t), sz(−q)] = 1

4

∑

kσ

(
a

†
kσ

akσ − a
†
k+q,σ

ak+q,σ

)
ei(εk−εk+q)t/h̄. (3.47)

Recalling that ω = ω + i0+, we write (3.42) as

χ0
zz(q, ω) = g2μ2

B lim
η→0+

i

h̄

∫ ∞

0

〈[
sz(q, t), sz(−q)

]〉
eiωte−ηt dt.

Substituting (3.47) and integrating, we obtain

χ0
zz(q, ω) = 1

2
g2μ2

B

∑

k

〈nkσ 〉 − 〈nk+q,σ 〉
εk+q − εk − h̄ω − i0+ . (3.48)

Here we used that 〈nkσ 〉 = 〈a†
kσ

akσ 〉 is spin-independent, and summation over σ gives the multiplier two.
For noninteracting electrons, the average number of electrons 〈nkσ 〉 is calculated explicitly. To do this it is convenient to

use the thermodynamic potential
Ω = −T ln Ξ, Ξ = Tr e−H′

0/T . (3.49)
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The energy of noninteracting electrons is given by

H′
0 =
∑

q

(εq − μ)n̂q, (3.50)

where n̂q is the number of electrons operator in the state q = (q, σ ). From (3.50) and (3.49) it is easy to see that

∂Ω

∂εk

= Tr(n̂k e−H′
0/T )

Tre−H′
0/T

= 〈n̂k〉. (3.51)

To calculate the grand partition function Ξ , we recall that the trace Tr is the sum of the matrix elements (ΦNe , e−H′
0/T ΦNe)

over all determinantal states ΦNe :

Ξ =
∞∑

Ne=0

∑

ΦNe

(ΦNe , e−H′
0/T ΦNe).

The exponential on the right-hand side can be written as the product

e−H′
0/T =

∏

q

e−(εq−μ)n̂q/T ,

because the operators n̂q commute. Each ΦNe is an eigenstate of the number of electrons operator: n̂qΦNe = nqΦNe .
Therefore, taking the orthonormality of ΦNe into account, we have

Ξ =
∑

nq=0,1

∏

q

e−(εq−μ)nq/T .

The latter can be written as the product

Ξ =
∏

q

[
1 + e−(εq−μ)/T

]
.

Substituting this in the thermodynamic potential (3.49) and using (3.51), we obtain

〈nk〉 = 1

e(εk−μ)/T + 1
≡ f (εk), (3.52)

where f (ε) is the Fermi function (Fig. 3.1).
At T = 0 the Fermi function is given by the step function (dashed line at Fig. 3.1), where μ = εF is the Fermi energy, and

the negative of its derivative is the delta function δ(ε − εF). For T > 0, the Fermi function deviate from the step function in
a neighbourhood of the order T around the chemical potential μ. However, the step function is a good approximation for the
Fermi function in the temperature region T 	 εF (for details, see [5]). In the ferromagnetic metals the Fermi energy εF is
about 10 eV.

Fig. 3.1 Sketch of the Fermi
function f (ε) (solid line) and the
negative of its derivative (dotted
line) for T > 0. Dashed line
shows the limit of the Fermi
function at T = 0

0

1

 0 μ
0

(4T)−1
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) /
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Applying the above result (3.52), we write the magnetic susceptibility (3.48) as

χ0
zz(q, ω) = 1

2
g2μ2

B F(q, ω), (3.53)

where

F(q, ω) =
∑

k

f (εk) − f (εk+q)

εk+q − εk − h̄ω

is called the Lindhard function. At q = 0 and ω = 0, we have

F(0, 0) = − lim
q→0

∑

k

f (εk) − f (εk+q)

εk − εk+q
= −
∑

k

∂f (εk)

∂ε
.

Then the uniform static susceptibility is

χ0
zz(0, 0) = −1

2
g2μ2

B

∑

k

∂f (εk)

∂ε
. (3.54)

To convert the sum over the Brillouin zone into the integral over energies, we make use of the sum rule

∑

k

. . . = N

∫
. . . ν(ε) dε, (3.55)

where

ν(ε) ≡ 1

N

∑

k

δ(ε − εk) (3.56)

is the nonmagnetic density of states per site and spin. Formula (3.54) becomes

χ0
zz(0, 0) = −1

2
g2μ2

B N

∫
ν(ε)

∂f (ε)

∂ε
dε. (3.57)

At low temperatures, replacing the derivative of the Fermi function −∂f (ε)/∂ε by the delta function localized at the Fermi
level εF (see Fig. 3.1), we finally obtain

χP = 1

2
g2μ2

B ν(εF). (3.58)

where χP ≡ N−1χ0
zz(0, 0) is called the Pauli susceptibility.

As an application of the above result, we calculate the magnetization induced in an electron gas by a static magnetic field
of the delta function type applied at the origin of the coordinates:

Hz(r) = V

N
Hδ(r).

Then

〈Mz(r)〉 = 1

V

∑

q

〈Mz(q)〉 eiqr = 1

V

∑

q

χ0
zz(q, 0)Hz(q)eiqr.
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Using (3.53) and

Hz(r) =
∑

q

Hz(q)eiqr =
∑

q

H

N
eiqr,

we have

〈Mz(r)〉 = 1

2
g2μ2

B
H

NV

∑

q

F(q, 0)eiqr ≡ 1

2
g2μ2

B
H

N
F(r).

For a free electron gas, the static Lindhard function at T = 0 has the well-known form (see, e.g. [5])

F(q, 0) = ν(εF)

(
1

2
+ 1 − x2

4x
ln

∣∣∣∣
1 + x

1 − x

∣∣∣∣

)

with x = q/(2kF). The inverse Fourier transform is given by

F(r) = 6πneν(εF)
sin(2kFr) − kF cos(2kFr)

(2kFr)4 ,

where ne = Ne/N is the number of electrons per unit cell and h̄2k2
F/(2m) = εF (for details of the calculation, see, e.g. [8,

Appendix H]). Thus, a localized magnetic field produces oscillating magnetization within metallic electrons, which is called
the Ruderman–Kittel–Kasuya–Yosida (RKKI) oscillation.5
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4Mean-Field Theory

Exact agreement with experiment... is, indeed, not attained; nor should it be, for it is known that the premises are an oversimplification. The
character of the agreement or disagreement may, however, give a valuable guide... Without such guidance, in view of the complexity of the total
problem, the most intensive theoretical efforts and computational labour may well be largely in vain. (E.C. Stoner, J. Phys. Radium 12, 372
(1951))

This chapter is devoted to applications of the mean-field approximation in metals. We confine the presentation to the Hubbard
model, which is relevant to the narrow-band metals. This way we avoid unnecessary technicalities and make a link with
further chapters. We start with explaining the idea of the Hatree-Fock method in the single-band case, which is used to obtain
the equations of the Stoner theory. Then we derive the uniform susceptibility and discuss implications of the Stoner theory
for metals. For a more extensive introduction to the mean-field approach and its applications to magnetism, see, for instance,
Refs. [1–6].

4.1 The Hubbard Model

The Hubbard model [7] is relevant if we consider narrow d bands of transition metals. The charge density of d electrons is
localized around the nuclei of the solid, making it possible to speak about electrons on a particular lattice site. For the sake
of simplicity, we consider the single-band case first. In this case the second-quantized Hamiltonian (3.35) reduces to

H =
∑

ii′σ
tii′a

†
iσ ai′σ + 1

2

∑

ii′ jj ′ σσ ′
Uiji′j ′a†

iσ a
†
jσ ′aj ′σ ′ai′σ .

Following [7], we assume that electrons interact only at the same site:

Uiji′j ′ = Uδij δii′δjj ′ . (4.1)

Then the model is described by the Hamiltonian H = H0 + HI, where the electrons energy H0 is

H0 =
∑

ii′σ
tii′a

†
iσ ai′σ

and HI is the single-site Coulomb interaction,

HI = 1

2
U
∑

i σσ ′
a

†
iσ a

†
iσ ′aiσ ′aiσ .

Using the anticommutation relations (3.12), we have

a
†
iσ a

†
iσ ′aiσ ′aiσ = a

†
iσ aiσ a

†
iσ ′aiσ ′ − a

†
iσ aiσ ′δσσ ′ = niσ niσ ′ − niσ ′δσσ ′ .
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Then

HI = 1

2
U
∑

i σσ ′
niσ niσ ′ − 1

2
U
∑

i σ

niσ . (4.2)

Since n2
iσ = niσ and ni↑ and ni↓ commute, we write (4.2) as

HI = 1

2
U
∑

iσ

niσ niσ̄ = U
∑

i

ni↑ni↓,

where σ̄ is the opposite spin to σ .
There are several ways of expressing the local interaction by the atomic charge nj = nj↑+nj↓ and spin sz

j = 1
2 (nj↑−nj↓).

Using the simple identity

nj↑nj↓ = 1

4
(nj↑ + nj↓)2 − 1

4
(nj↑ − nj↓)2,

we write

HI = U
∑

j

(
1

4
n2

j − (sz
j )

2
)

. (4.3)

Taking into account (sz
j )

2 = 1
3 s2

j , we obtain the spin-rotational form

HI = U
∑

j

(
1

4
n2

j − 1

3
s2
j

)
. (4.4)

Similarly, using the relation (sz
j )

2 = (sj ej )
2, where ej is an arbitrary unit vector, we come to

HI = U
∑

j

(
1

4
n2

j − (sj ej )
2
)

. (4.5)

In the momentum representation the interaction term HI is given by (3.39). Substituting the expression for the Bloch
function (3.6) in formula (3.40) and taking the local interaction (4.1) into account, we have

Uklk′l′ = U

N2

∑

j

e−i(k+l−k′−l′)Rj .

From the relation
∑

j eikRj = Nδk0, it follows that Uklk′l′ is nonzero iff the momentum is conserved: k + l = k′ + l′. Thus,
we finally obtain

HI = 1

2
Ũ
∑

klqσσ ′
a

†
kσ

a
†
lσ ′al+q,σ ′ak−q,σ , (4.6)

where Ũ = U/N . Recalling the expression for H0 in the momentum representation (3.38), we write the Hubbard
Hamiltonian in the momentum representation as

H =
∑

kσ

εka
†
kσ

akσ + 1

2
Ũ
∑

klqσσ ′
a

†
kσ

a
†
lσ ′al+q,σ ′ak−q,σ .
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Even in the simple Hubbard model, the magnetic susceptibility cannot be calculated explicitly without further
approximations. For the sake of further comparison with SFT results, we start with investigating the Hartree-Fock theory
of metallic ferromagnets [8, 9], often called the Stoner theory of ferromagnetism.

4.2 Stoner Mean-Field Theory

4.2.1 Hartree-Fock Approximation

The general idea of the underlying mean-field approximation is to simplify the Hamiltonian H = AB given by the product
of two operators A and B using partial averaging:

HMF = A〈B〉 + 〈A〉B − 〈A〉〈B〉. (4.7)

Here we write the last term to ensure the correct average: 〈HMF〉 = 〈A〉〈B〉. The average is calculated self-consistently in
such a way that it minimizes the free energy

FMF = −T ln ZMF, ZMF = Tre−HMF/T

(for details, see, e.g. [4]). To find the minimum, we consider the free energy as a function of the parameters Ā ≡ 〈A〉 and
B̄ ≡ 〈B〉. Then the minimum satisfies the conditions

∂FMF

∂Ā
= 0,

∂FMF

∂B̄
= 0.

Differentiating FMF, we have

∂FMF

∂Ā
= 1

ZMF
Tr

(
e−HMF/T ∂

∂Ā
HMF

)
= 1

ZMF
Tr
(

e−HMF/T (B − B̄)
)

,

Thus, the mean-field average of B is defined as the canonical average with the mean-field Hamiltonian:

〈B〉 = 1

ZMF
Tr
(
Be−HMF/T

)
, (4.8)

and the same holds for A.1

We apply the above technique to the interaction term (4.6) by partially averaging different pairs of creation-annihilation
operators a

†
kσ

ak′σ ′ . The interaction part in the Hartree-Fock approximation consists of two parts:

HMF
I = HHartree

I + HFock
I .

The Hartree approximation gives the terms with the same spin (Coulomb interaction). Commuting the creation and
annihilation operators in HI, we have

HI = 1

2
Ũ
∑

klqσσ ′
a

†
kσ

ak−q,σ a
†
lσ ′al+q,σ ′ − 1

2
ŨN
∑

kσ

a
†
kσ

akσ . (4.9)

1Strictly speaking, use of the second-quantized representation implies that the grand canonical ensemble is employed. This requires changing
the free energy F by the thermodynamic potential Ω in the above procedure and yields essentially the same result as in (4.8) but with
H′

MF = HMF − μNe instead of HMF and the grand canonical partition function Ξ = Tre−H′
MF/T instead of the canonical one Z = Tre−HMF/T .

In this and the next chapters, we often omit the prime in the Hamiltonians where it does not lead to confusion.
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The last term on the right-hand side leads to a shift of the energy spectrum and can be ignored. Applying (4.7) to the first
term of (4.9), we obtain

HHartree
I = 1

2
Ũ
∑

klqσσ ′

〈
a

†
kσ

ak−q,σ

〉
a

†
lσ ′al+q,σ ′ + 1

2
Ũ
∑

klqσσ ′

〈
a

†
lσ ′al+q,σ ′

〉
a

†
kσ

ak−q,σ .

The terms on the right-hand side are equal, and hence

HHartree
I = Ũ

∑

klqσσ ′

〈
a

†
lσ ′al+q,σ ′

〉
a

†
kσ

ak−q,σ . (4.10)

Here and hereafter we omit the scalar term in (4.7), because we already know the expression for the average (4.8).
The Fock approximation gives the terms with different spins (exchange interaction). Similar to the Hartree term, we obtain

HFock
I = −1

2
Ũ
∑

klqσσ ′

〈
a

†
kσ

al+q,σ ′
〉
a

†
lσ ′ak−q,σ − 1

2
Ũ
∑

klqσσ ′

〈
a

†
lσ ′ak−q,σ

〉
a

†
kσ

al+q,σ ′ ,

where the negative sign results from commuting a
†
lσ ′ and al+q,σ ′ . Since the terms on the right-hand side are again equal,

we write

HFock
I = −Ũ

∑

klqσσ ′

〈
a

†
kσ

al+q,σ ′
〉
a

†
lσ ′ak−q,σ . (4.11)

As we show below, the exchange interaction implies that the energy of a pair of electrons with parallel spins is lower than
the energy of a pair of electrons with antiparallel spins. Since the exchange energy is of the same order as the transfer energy,
exchange interaction plays a dominant role in establishing the ferromagnetic ordering in metals, just as in the ferromagnetic
insulators.

In the spatially uniform situation, we have

〈
a

†
kσ

ak′σ ′
〉 = 〈a†

kσ
akσ

〉
δkk′δσσ ′ . (4.12)

Then
HHartree

I = Ũ
∑

kσ

(N↑ + N↓)a
†
kσ

akσ (4.13)

and
HFock

I = −Ũ
∑

kσ

Nσ a
†
kσ

akσ , (4.14)

where
Nσ =

∑

k

〈
a

†
kσ

akσ

〉
(4.15)

is the total number of electrons with the spin σ . The interaction term finally becomes

HMF
I = Ũ

∑

kσ

(N↑ + N↓ − Nσ )a
†
kσ

akσ = Ũ
∑

kσ

(1

2
Ne − σ S̄z

)
a

†
kσ

akσ .
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Here

Ne = N↑ + N↓, S̄z = 1

2
(N↑ − N↓) (4.16)

are the total charge and spin.
Note that the Coulomb interaction leads to a uniform shift of the energy spectrum 1

2 ŨNe. Therefore, the Coulomb
interaction does not have an impact on the uniform static susceptibility and can be ignored. It is the exchange interaction
contribution −σŨ S̄z that is responsible for the magnetism in metals, as we will see below. Thus, the mean-field Hamiltonian
is

HMF = H0 + HMF
I =
∑

kσ

εkσ a
†
kσ

akσ , (4.17)

where
εkσ = εk − σŨ S̄z (4.18)

is the spin-polarized energy spectrum.
The Hamiltonian HMF describes the system of noninteracting electrons, where each electron interacts with a static

exchange field created by all the other electrons. This exchange field acts on top of the Coulomb field of the crystal lattice.
Recall that our Bloch states are not just plane waves, as is the case in most of the textbooks (see, e.g. [3–5]).

4.2.2 Magnetization: The T 2 Law

If we apply a uniform static magnetic field H in the z-direction, the electrons acquire an additional energy

HM = −MzHz,

where Mz = −gμBSz is the magnetic moment operator. By formula (3.20), we have

Sz =
∫

sz(r) dr =
∫

ψ†(r) sz ψ(r) dr.

Then, writing the field operators ψ†(r) and ψ(r) in the Bloch basis (3.26), we obtain

Sz = 1

2

∑

k

(
a

†
k↑ak↑ − a

†
k↓ak↓
)
. (4.19)

Combining the magnetic energy

HM = −gμB

2
Hz

∑

kσ

σa
†
kσ

akσ

with the energy of electrons (4.17), we have

HMF = H0 + HM + HMF
I =
∑

kσ

εkσ a
†
kσ

akσ , (4.20)

where the spin-polarized spectrum now is

εkσ = εk + σ
gμB

2
Hz − σŨ S̄z (4.21)

(we omit the constant term 1
2 ŨNe just as before).

We now want to calculate the total mean spin S̄z given by (4.16). As soon as we know the energy spectrum εkσ the average
number of the spin-up and spin-down electrons (4.15) is calculated by formula (4.8):

Nσ =
∑

k

〈nkσ 〉 =
∑

k

f (εkσ ). (4.22)
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Converting the sum over the Brillouin zone into the integral over energies according to (3.55), at Hz = 0 we obtain

n̄σ =
∫

ν(ε)f (ε − σUs̄z) dε =
∫

νσ (ε, T )f (ε) dε, (4.23)

where n̄σ = Nσ /N is the number of electrons with the spin σ per site and s̄z = S̄z/N is the single-site spin. Here ν(ε) is the
nonmagnetic DOS of d electrons (3.56) that corresponds to the Hamiltonian H0, and

νσ (ε, T ) = ν(ε + σUs̄z) = 1

N

∑

k

δ(ε − εkσ ) (4.24)

is the spin-polarized DOS of electrons that is determined by the mean-field Hamiltonian H0+HMF
I . As temperature increases,

the mean spin s̄z(T ) decreases, thus shifting the spin-polarized DOSs νσ (ε, T ) towards each other. But the shape of the DOSs
is not changed. In the paramagnetic region, the spin-up and spin-down DOSs coincide: ν↑(ε, T ) = ν↓(ε, T ) for T ≥ TC.

So far we have obtained the system of two equations (4.23) with respect to the unknowns n̄↑ and n̄↓ or, equivalently, with
respect to

ne = n̄↑ + n̄↓, s̄z = 1

2
(n̄↑ − n̄↓), (4.25)

where ne = Ne/N is the (mean) number of electrons per site. In calculations it is more convenient to use canonical average
instead of the grand canonical average. That means, we consider the system with a fixed number of electrons Ne and make
the chemical potential μ an unknown. Thus, we solve (4.25), where

n̄σ =
∫

ν(ε + σUs̄z)f (ε) dε,

with respect to the chemical potential μ and mean spin s̄z at each temperature T . The input data are the nonpolarized DOS
at T = 0, ν(ε), and interaction constant U . This is usually called the Stoner model.

In the electron gas model, one can obtain a low-temperature expansion of magnetization as follows. Integrating by parts
the integral of an arbitrary function g(ε) with the Fermi function, we write

∫ ∞

−∞
g(ε)f (ε) dε = [G(ε)f (ε)

]∞
−∞ −

∫ ∞

−∞
G(ε)

∂f (ε)

∂ε
dε, (4.26)

where

G(ε) ≡
∫ ε

−∞
g(ε′) dε′.

Since G(−∞) = 0 and f (∞) = 0, the integrated terms on the right-hand side of (4.26) vanish. At temperatures much lower
than the Fermi level T 	 εF, the integral on the right-hand side of (4.26) can be expanded as

−
∫ ∞

−∞
G(ε)

∂f (ε)

∂ε
dε = G(μ) + π2

6
G′′(μ)T 2 + · · · , (4.27)

where the prime stands for the derivative. For the chemical potential we have (see, e.g. [3])

μ(T ) = εF + π2

6

ν′(εF)

ν(εF)
T 2 + · · ·

Then (4.27) becomes

−
∫ ∞

−∞
G(ε)

∂f (ε)

∂ε
dε = G(εF) + π2

6

(
G′′(εF) − G′(εF)

ν′(εF)

ν(εF)

)
T 2 + · · · (4.28)
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If we take g(ε) = νσ (ε), where νσ (ε) is the DOS at T = 0, then G(ε) = Nσ (ε) is the number of states with the spin σ

and energy less or equal to ε. Using (4.26) and (4.28), we write (4.23) as

n̄σ =
∫ ∞

−∞
νσ (ε)f (ε) dε = Nσ (εF) + π2

6

(
ν′
σ (εF) − νσ (εF)

ν′(εF)

ν(εF)

)
T 2 + · · ·

Hence from (4.25) we obtain

s̄z(T ) = s̄z(0) − αT 2 + · · ·

where α > 0 is a constant. The expansion is valid at low temperatures, T 	 εF.

4.2.3 Uniform Static Susceptibility

Next, we calculate the uniform static susceptibility

χ = ∂〈Mz〉
∂H

∣∣∣∣
H=0

= −gμB
∂〈Sz〉
∂H

∣∣∣∣
H=0

in the mean-field approximation. Using (4.21) and (4.22), we write the mean spin as

S̄z = 1

2

∑

k

[
f
(
εk + gμB

2
H − Ũ S̄z

)
− f
(
εk − gμB

2
H + Ũ S̄z

)]
.

Differentiating this equation with respect to H , at H = 0 we obtain

∂S̄z

∂H
= 1

2

∑

kσ

∂f (εk − σŨ S̄z)

∂ε

(
gμB

2
− Ũ

∂S̄z

∂H

)
.

Thus,

χ = χ0

1 − 2Ũ

g2μ2
B

χ0

, (4.29)

where

χ0 = −g2μ2
B

2

1

2

∑

kσ

∂f (εkσ )

∂ε

is the susceptibility of noninteracting electrons (3.57). Using the sum rule (3.55), we obtain

χ0 = −g2μ2
B

2

1

2

∑

σ

∫
ν(ε)

∂f (ε − σUs̄z)

∂ε
dε. (4.30)

The latter can be written as

χ0 = −g2μ2
B

2

1

2

∑

σ

∫
νσ (ε, T )

∂f (ε)

∂ε
dε ≡ −g2μ2

B

2

∫
ν(ε, T )

∂f (ε)

∂ε
dε,
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where

ν(ε, T ) = 1

2

∑

σ

ν(ε + σUs̄z) = 1

2

∑

σ

1

N

∑

k

δ(ε − εkσ ) (4.31)

is the total DOS at temperature T (per site and spin).
In the paramagnetic state, formula (4.30) for χ0 reduces to (3.57). Formula (4.29) for χ becomes

χS = χP

1 − 2U

g2μ2
B

χP

, (4.32)

where χP = N−1χ0 is the Pauli susceptibility (3.54) and χS ≡ N−1χ is the Stoner susceptibility. In formula (4.32) the Pauli
susceptibility itself is much smaller than the Stoner susceptibility but is enhanced by the effect of the exchange interaction
(for an estimate in the free electron gas, see, e.g. [3]). The multiplier (1−2U/(g2μ2

B)χP)−1 is called the Stoner enhancement
factor.

At T = 0, using the expression for the Pauli susceptibility (3.58), we write the enhanced susceptibility (4.32) as

χS = ν(εF)

1 − Uν(εF)

g2μ2
B

2
. (4.33)

If Uν(εF) > 1, then χS < 0, which implies that the paramagnetic state is unstable. Thus,

Uν(εF) > 1

gives the Stoner condition for ferromagnetism in metals. The Stoner condition is not a condition for ferromagnetism in a
rigorous sense because it is derived within the mean-field approximation, i.e. does not take correlations into account.2

4.3 Band Calculations in Metals

Description of exchange and correlation effects was improved by the density-functional theory (DFT) [10–13]. A review of
calculations using the Stoner model together with a realistic band structure of ferromagnetic metals is given in [14, 15].

The Stoner susceptibility (4.33) at T = 0 can be written as

χS = n(εF)

1 − In(εF)

g2μ2
B

2
, (4.34)

where n(ε) is the DOS per atom and spin and I is the Stoner parameter. Formula (4.34) can be obtained in the Hartree-Fock
approximation of the multiband Hubbard Hamiltonian that we derive in Chap. 8 (see also [6]). The corresponding Stoner
parameter is only weakly dependent on the wavevector thus giving a justification for the Hubbard model. However, the
Stoner parameter calculated in the DFT differs from the Hubbard constant, because some of the correlation has already been
taken into account in n(ε). The Stoner condition In(εF) > 1 serves as a useful qualitative measure of the magnetic tendency
of a metal (see Table 4.1).

Table 4.1 Stoner parameter and
Stoner condition in transition
metals calculated in the density
functional theory (from [16, 17])

Metal V Fe Co Ni Pd Pt

I (eV) 0.80 0.92 0.99 1.01 0.70 0.63

In(εF) 0.9 1.6 1.7 2.1 0.8 0.5

2Historically, by correlations one means the part of the electron-electron interaction that is not described by the Hartree-Fock approximation.
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Table 4.2 Curie temperature of
Fe, Co and Ni calculated in the
density functional theory [16]
and observed in experiment [18]

Metal Fe Co Ni

T cal
C (K) 4400–6200 3300–4800 2900

T
exp
C (K) 1044 1390 631

Attempts to describe temperature dependence of magnetic properties within the DFT do not lead to satisfactory results.
The Curie temperature T cal

C , obtained from the condition that the Stoner susceptibility (4.34) diverges:

0 = 1 − In(εF, TC) = 1 + I

∫
n(ε)

∂f (ε, TC)

∂ε
dε,

is several times higher than the experimental one T
exp
C (Table 4.2), and the Curie-Weiss law (2.59) is violated [16,17]. These

facts are not surprising, because even with the realistic density of states the Fermi function is the only source of temperature
dependence in the Stoner model.

Above the Curie temperature, the Stoner model cannot explain the existence of the local moments in ferromagnetic metals,
which follows from the neutron scattering experiments (see, e.g. [19–22]).

At low temperatures the Stoner theory has a difficulty in describing magnetization. As it was shown in the previous
section, in the electron gas, the Stoner model predicts

M(T )/M(0) − 1 ∝ T 2.

Calculations for real metals also confirm these results (for details, see Chap. 10). Experimentally, however, the change in
magnetization is proportional to T 3/2 (for a review, see [14, 15]), which implies the existence of spin waves in a metallic
ferromagnet. The presence of spin waves in metals has been firmly demonstrated by inelastic neutron scattering (see, e.g.
[22]). Spin waves do not appear within the Stoner theory, but they can be obtained in the random-phase approximation (RPA),
which we describe next.
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5Random-Phase Approximation

The next approximation... goes under a wide variety of names (random phase approximation, independent-pair approximation, self-consistent
field approximation, time-dependent Hartree–Fock approximation, etc.); in fact, there are almost as many names as there are ways of deriving
the answer. We shall arbitrarily refer to it as the random phase approximation, or RPA. (D. Pines, Elementary Excitations in Solids, Benjamin,
New York, 1964)

The random-phase approximation (RPA) has been widely used for studying linear responses to external perturbations and
describing elementary excitations (see, e.g. [1–5]). In magnetic systems, the static susceptibility of the electron gas in the
paramagnetic state was obtained by Wollf [6]. Dynamic longitudinal and transverse susceptibilities of the electron gas in the
ferromagnetic states were obtained by Izuyama et al. [7]. Both [6] and [7] used the Hubbard model. In the electron gas model
with the real Coulomb interaction, various linear responses to electric and magnetic fields in the ferromagnetic state were
obtained by Kim et al. [8]. The band structure of real metals in the RPA was taken into account by a number of authors (see,
e.g. [9, 10]).

In this chapter we calculate linear response to the space- and time-dependent magnetic field using the RPA. We obtain the
longitudinal and transverse susceptibilities. These results lead to a discussion of the spin-flip excitations and spin waves and
their effects on magnetization (see also [11–13]).

5.1 Magnetic Susceptibilities

Here we derive magnetic susceptibilities using the method suggested in [8] and simplified in [3]. This method can be thought
of as a generalization of the mean-field approximation. It allows to obtain the response to a space- and time-dependent
magnetic field. Instead of using formula (2.38) for the linear response susceptibility, we rather repeat some of the steps made
in its derivation. First, we use an equation of motion for the magnetization in presence of an external magnetic field. The
susceptibility is obtained by differentiating the magnetization and letting the magnetic field tend to zero.

5.1.1 Longitudinal Susceptibility

As usual we assume that the unperturbed state is ferromagnetic and the z-axis is aligned along the magnetization. To calculate
the longitudinal susceptibility, we consider the linearly polarized magnetic field applied along the z-axis with the wavevector
q and frequency ω,

H(r, t) = ẑHz(q) ei(qr−ωt),

where ẑ is the unit vector along the z-axis and Hz(q) > 0 is the amplitude.1 Then the external perturbation (2.36) is written as

Hext(t) = −
∫

H(r, t)M(r) dr = −Hz(q)Mz(−q)e−iωt , (5.1)

where

Mz(q) =
∫

Mz(r) e−iqr dr

1Use of the complex field rather than real one H(r, t) = ẑHz(q) cos(qr) cos ωt (see, e.g. [5]) largely simplifies the derivation.
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is the spatial Fourier transform. According to (2.33) magnetization is given by

〈Mz(q)〉 = Tr(ρtot(t)Mz(q)),

where ρtot(t) is determined by Htot(t) = H + Hext(t). Using the equation of motion (2.30), we obtain

ih̄
d

dt
〈Mz(q)〉 = Tr

(
ih̄

d

dt
ρtot(t)Mz(q)

)
= Tr([Htot(t), ρtot(t)]Mz(q)).

Taking the cyclic property of trace into account, we write

ih̄
d

dt
〈Mz(q)〉 = Tr(ρtot[Mz(q),Htot]) = 〈[Mz(q),Htot]〉.

The linear response occurs at the same frequency as the magnetic field, 〈Mz(q)〉 = 〈Mz(q, ω)〉 e−iωt (see Sect. 2.1.1).
Therefore,

h̄ω〈Mz(q)〉 = 〈[Mz(q),H]〉 + 〈[Mz(q),Hext]〉.
Since the second quantization representation of Mz(q) is given by

Mz(q) = −gμB
1

2

∑

kσ

σa
†
kσ

ak+q,σ , (5.2)

we consider the equation
h̄ω
〈
a

†
kσ

ak+q,σ

〉 = 〈[a†
kσ

ak+q,σ ,H
]〉+ 〈[a†

kσ
ak+q,σ ,Hext

]〉
. (5.3)

The latter can be solved if we replace the Hamiltonian H by its mean-field approximation (4.10) and (4.11), which reads

HMF
I = Ũ

∑

klq′σσ ′

〈
a

†
lσ ′al+q′,σ ′

〉
a

†
kσ

ak−q′,σ − Ũ
∑

klq′σσ ′

〈
a

†
kσ

al+q′,σ ′
〉
a

†
lσ ′ak−q′,σ . (5.4)

In the presence of the external field the system is not spatially homogeneous and requirement (4.12) is no longer adequate.
In the spin-polarized case, we assume that there are two kinds of nonzero averages:

〈
a

†
kσ

akσ

〉 �= 0 and
〈
a

†
kσ

ak+q,σ

〉 �= 0.

Then, keeping only the terms with q′ = 0 and q′ = q and the same spins in (5.4), we obtain

HMF
I = Ũ

∑

kσ

(Ne − Nσ )a
†
kσ

akσ + Ũ
∑

kσ

(Nq − Nqσ )a
†
kσ

ak−q,σ , (5.5)

where
Nq =

∑

kσ

〈
a

†
kσ

ak+q,σ

〉
, Nqσ =

∑

k

〈
a

†
kσ

ak+q,σ

〉
.

Now calculating the commutators, we have

[
a

†
kσ

ak+q,σ ,H0
] =
[
a

†
kσ

ak+q,σ ,
∑

k′σ ′
εk′a†

k′σ ′ak′σ ′

]
= (εk+q − εk)a

†
kσ

ak+q,σ (5.6)

and

[
a

†
kσ

ak+q,σ ,HMF
I

] =
[
a

†
kσ

ak+q,σ , Ũ
∑

k′σ ′
(Nq − Nqσ ′)a†

k′σ ′ak′−q,σ ′

]

= Ũ (Nq − Nqσ )
(
a

†
kσ

akσ − a
†
k+q,σ

ak+q,σ

)
. (5.7)
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Here we used the fact that a
†
kσ

ak+q,σ commutes with the first term on the right-hand of (5.5). Similarly, taking (5.1) and
(5.2) into account, we obtain

[
a

†
kσ

ak+q,σ ,Hext
] = Hz(q)e−iωt gμB

2

[
a

†
kσ

ak+q,σ ,
∑

k′σ ′
σ ′a†

k′σ ′ak′−q,σ ′

]

= σHz(q)e−iωt gμB

2

(
a

†
kσ

akσ − a
†
k+q,σ

ak+q,σ

)
. (5.8)

Substitution of the commutators (5.6)–(5.8) back into Eq. (5.3) gives

h̄ω
〈
a

†
kσ

ak+q,σ

〉 = (εk+q − εk)
〈
a

†
kσ

ak+q,σ

〉

+
(
Ũ (Nq − Nqσ ) + σHz(q)e−iωt gμB

2

) (〈
a

†
kσ

akσ

〉− 〈a†
k+q,σ

ak+q,σ

〉)
.

Rearranging and summing over k, we come to

Nqσ = −Fσ (q, ω)
(
ŨNqσ̄ + σHz(q)e−iωt gμB

2

)
, (5.9)

where

Fσ (q, ω) =
∑

k

〈nkσ 〉 − 〈nk+q,σ 〉
εk+q − εk − h̄ω

.

Solving the system of two linear equations (5.9) with respect to Nq↑ and Nq↓, we obtain

Nqσ = −σFσ (q, ω)Hz(q)e−iωt 1 + ŨFσ̄ (q, ω)

1 − Ũ2F+(q, ω)F−(q, ω)

gμB

2
.

Finally, using the relation

〈Mz(q)〉 = −gμB
1

2
(Nq↑ − Nq↓) = χzz(q, ω)Hz(q)e−iωt (5.10)

(compare with (2.5)), we come to

χzz(q, ω) = F+(q, ω) + F−(q, ω) + 2ŨF+(q, ω)F−(q, ω)

1 − Ũ2F+(q, ω)F−(q, ω)

(
gμB

2

)2

. (5.11)

In the vanishing magnetic field we have 〈a†
kσ

akσ 〉 = f (εkσ ), where εkσ = εk −σŨ S̄z (we omit the constant shift 1
2 ŨNe just

as before). Hence

Fσ (q, ω) =
∑

k

f (εkσ ) − f (εk+q,σ )

εk+q − εk − h̄ω
, (5.12)

where σ = ± or ↑,↓.
In the paramagnetic state, we have F+(q, ω) = F−(q, ω) = F(q, ω), and (5.11) becomes

χzz(q, ω) = F(q, ω)

1 − ŨF (q, ω)

g2μ2
B

2
. (5.13)

The value N−1χzz(0, 0) reduces to the Stoner susceptibility (4.32), and for noninteracting electrons (Ũ = 0) it reduces to
the Pauli susceptibility (3.58).
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Expression (5.11) coincides with the one of [7] in units of g2μ2
B (it was obtained there by a different method, which we

discuss in the next chapter). To recover the result of [3, 8], we introduce the notation

F̃σ (q, ω) = Fσ (q, ω)

1 − ŨFσ (q, ω)
.

Then formula (5.11) can be written as

χzz(q, ω) = F̃+(q, ω) + F̃−(q, ω) + 4Ũ F̃+(q, ω)F̃−(q, ω)

1 + Ũ [F̃+(q, ω) + F̃−(q, ω)]
(

gμB

2

)2

.

In the paramagnetic state, we have F̃+(q, ω) = F̃−(q, ω) = F̃ (q, ω), and (5.13) becomes

χzz(q, ω) = F̃ (q, ω)
g2μ2

B

2
.

5.1.2 Transverse Susceptibility

In the previous section we dealt with a linearly polarized magnetic field. To create a spin wave precessing (anticlockwise) in
the xy-plane, we consider the circularly polarized magnetic field with the wavevector q and frequency ω:

H(r, t) = −H(x̂ cos(qr − ωt) − ŷ sin(qr − ωt)), (5.14)

where x̂ and ŷ are the unit vectors along the x- and y-axes, respectively, and H > 0. Using the circular components (2.14),
we write the external perturbation (2.39) as

Hext(t) = −
∫

H(r, t)M(r) dr = −1

2

∫ (
H−(r, t)M+(r) + H+(r, t)M−(r)

)
dr.

From (5.14) we obtain
H±(r, t) = Hx(r, t) ± iHy(r, t) = −He∓i(qr−ωt).

Then in the momentum-frequency representation, we have

Hext(t) = −1

2
(H−(q)M+(−q)e−iωt + H+(−q)M−(q)eiωt ), (5.15)

where H−(q) = H+(−q) = −H . Since the two terms on the right-hand side of (5.15) are Hermite conjugate to each other,
it suffices to consider only one of them; we keep the first one,

Hext(t) = −1

2
H−(q)M+(−q)e−iωt . (5.16)

Analogously to the longitudinal susceptibility, we write the equation of motion

ih̄
d

dt
〈M−(q)〉 = 〈[M−(q),Htot]〉.

Since 〈M−(q)〉 = 〈M−(q, ω)〉 e−iωt , we have

h̄ω〈M−(q)〉 = 〈[M−(q),H]〉 + 〈[M−(q),Hext]〉,
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where M−(q) = −gμBs−(q) and M+(−q) = −gμBs+(−q). Using (3.29), we write

s+(−q) =
∑

k

a
†
k↑ak−q,↓, s−(q) =

∑

k

a
†
k↓ak+q,↑.

Therefore, we consider the equation

h̄ω
〈
a

†
k↓ak+q,↑

〉 = 〈[a†
k↓ak+q,↑,H0

]〉+ 〈[a†
k↓ak+q,↑,HMF

I

]〉+ 〈[a†
k↓ak+q,↑,Hext

]〉
. (5.17)

In the presence of the external perturbation (5.16), we assume that

〈
a

†
kσ

akσ

〉 �= 0,
〈
a

†
k↓ak+q,↑

〉 �= 0.

Then, using (4.10) and (4.11), we write the interaction term in the mean-field approximation as

HMF
I = Ũ

∑

k′σ ′
(Ne − Nσ ′)a†

k′σ ′ak′σ ′ − Ũ 〈s−(q)〉s+(−q). (5.18)

By adding the first term on the right-hand side of (5.18) to H0, we replace the spectrum εk by the spin-polarized spectrum
εkσ . Therefore, substituting (5.16) and (5.18) in (5.17), we obtain

h̄ω
〈
a

†
k↓ak+q,↑

〉 = [a†
k↓ak+q,↑,

∑

k′σ ′
εk′σ ′a†

k′σ ′ak′σ ′
]

+
(gμB

2
H−(q)e−iωt − Ũ〈s−(q)〉

) [
a

†
k↓ak+q,↑, s+(−q)

]
. (5.19)

Taking (3.46) into account, we calculate the first commutator

[
a

†
k↓ak+q,↑,

∑

k′σ ′
εk′σ ′a†

k′σ ′ak′σ ′

]
= (εk+q,↑ − εk↓)a

†
k↓ak+q,↑.

Similarly calculating the second commutator

[
a

†
k↓ak+q,↑, s+(−q)

] = a
†
k↓ak↓ − a

†
k+q,↑ak+q,↑,

we write Eq. (5.19) as

(εk+q,↑ − εk↓ − h̄ω)
〈
a

†
k↓ak+q,↑

〉

=
(
−gμB

2
H−(q)e−iωt + Ũ 〈s−(q)〉

) (〈
a

†
k↓ak↓
〉− 〈a†

k+q,↑ak+q,↑
〉)
.

Rearranging, we obtain

〈s−(q)〉 = − F−+(q, ω)

1 − ŨF−+(q, ω)

gμB

2
H−(q)e−iωt ,

where

F−+(q, ω) =
∑

k

〈nk↓〉 − 〈nk+q,↑〉
εk+q,↑ − εk↓ − h̄ω

.

Using the relation (2.40), we have

〈M−(q)〉 = −gμB〈s−(q)〉 = 1

2
χ−+(q, ω)H−(q)e−iωt .
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From this we come to

χ−+(q, ω) = F−+(q, ω)

1 − ŨF−+(q, ω)
g2μ2

B, (5.20)

where
F−+(q, ω) =

∑

k

f (εk↓) − f (εk+q,↑)

εk+q,↑ − εk↓ − h̄ω
(5.21)

is the transverse Lindhard function.
The other transverse susceptibility χ+−(q, ω) is obtained simply by swapping the spin subscripts in (5.20) and (5.21):

χ+−(q, ω) = F+−(q, ω)

1 − ŨF+−(q, ω)
g2μ2

B, (5.22)

where

F+−(q, ω) =
∑

k

f (εk↑) − f (εk+q,↓)

εk+q,↓ − εk↑ − h̄ω
. (5.23)

In the paramagnetic state, we have F+−(q, ω) = F−+(q, ω) = F(q, ω) and

1

2
χ−+(q, ω) = 1

2
χ+−(q, ω) = χzz(q, ω).

5.2 Magnetic Excitations

Singularities of the transverse susceptibility determine magnetic excitations of two types: spin-density waves and spin-flip
excitations (see, e.g. [3]).

5.2.1 Spin-Density Waves

According to the classical spin-wave theory [14, 15], at low temperatures the magnetization of ferromagnets with localized
spins follows the T 3/2 law:

M(T ) = M(0)(1 − a3/2T
3/2).

In itinerant ferromagnets, the T 3/2 law was obtained for the electron gas model [16]. Here, following [3, 17], we give a
detailed derivation of the spin-wave spectrum and T 3/2 law in itinerant ferromagnets without any assumptions about the
electron spectrum.

The divergence of the transverse susceptibility (5.22) implies that spin-density wave with a frequency ω and wavevector
q can persist without a magnetic field. This is an excitation mode of the spin system with an energy ε = h̄ω and wavevector
q. We obtain the spin-wave spectrum in a metal from the poles of the transverse susceptibility χ+−(q, ω).2

By formula (5.22) the condition
χ+−(q, ω) = ∞

is satisfied if
1 − ŨF+−(q, ω) = 0. (5.24)

Using formulae (4.18) and (5.23), we obtain

F+−(q, ω) =
∑

k

f (εk↑) − f (εk+q,↓)

εk+q − εk + 2Ũ S̄z − h̄ω
. (5.25)

2Poles of χ−+(q, ω) give an equation that corresponds to the spin waves precessing in the opposite direction.
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Our goal is to find the relation between ω and q such that (5.24) is satisfied. At q = 0 formula (5.24) becomes

1 + Ũ

2Ũ S̄z − h̄ω

∑

k

[
f (εk↑) − f (εk↓)

] = 0 . (5.26)

Using (4.16) and (4.18), we have

S̄z = 1

2

∑

k

[
f (εk↑) − f (εk↓)

]
.

Substituting the latter in (5.26), we see that ω = 0 for q = 0. The unenhanced susceptibility F+−(q, ω) is invariant with
respect to the inversion q → −q, just as the enhanced one (2.8). Therefore, for small q the spin-wave spectrum equation
(5.24) has the form

h̄ω = (q, Aq), (5.27)

where (q, Aq) is a quadratic form with the matrix A.
To derive an explicit expression for the right-hand of (5.27), we expand (5.24) keeping only linear term in ω and quadratic

terms in q. Other terms: qω, ω2, etc., have higher order in q when h̄ω = (q, Aq), and can be ignored. We begin by writing
the unenhanced susceptibility (5.25) as

F+−(q, ω) = 1

2Ũ S̄z

∑

k

[(
1 − h̄ω

2Ũ S̄z

+ εk+q − εk

2Ũ S̄z

)−1(
f (εk↑) − f (εk+q,↓)

)]
. (5.28)

For small q such that
h̄ω = (q, Aq) 	 2Ũ S̄z , |εk+q − εk| 	 2Ũ S̄z ,

we expand the fraction in (5.28) as a geometric series: (1 − x)−1 = 1 + x + x2 + · · · , |x| < 1. Retaining the second partial
sum of the series, we obtain

F+−(q, ω) = 1

2Ũ S̄z

{(
1 + h̄ω

2Ũ S̄z

)∑

k

[
f (εk↑) − f (εk+q,↓)

]

− 1

2Ũ S̄z

∑

k

(εk+q − εk)
[
f (εk↑) − f (εk+q,↓)

]
(5.29)

+ 1

(2Ũ S̄z)2

∑

k

(
h̄ω − (εk+q − εk)

)2[
f (εk↑) − f (εk+q,↓)

]}
.

In the first term of the expansion (5.29), we have

∑

k

[
f (εk↑) − f (εk+q,↓)

] =
∑

k

[
f (εk↑) − f (εk↓)

] = 2S̄z. (5.30)

In the second term of expression (5.29), we rearrange the sum as

∑

k

(εk+q − εk)
[
f (εk↑) − f (εk+q,↓)

] =
∑

k

(εk+q − εk)f (εk↑) +
∑

k

(εk−q − εk)f (εk↓).

Using the Taylor expansion of the energy spectrum εk+q up to quadratic terms in q:

εk+q = εk + q∇εk + 1

2
(q∇)2εk + · · · , (5.31)

where ∇ = (∂/∂k1, ∂/∂k2, ∂/∂k3), we have
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∑

k

(εk+q − εk)
[
f (εk↑) − f (εk+q,↓)

]

=
∑

k

(q∇εk)
[
f (εk↑) − f (εk↓)

]+
∑

k

1

2
((q∇)2εk)

[
f (εk↑) + f (εk↓)

]
. (5.32)

From the inversion symmetry of the energy spectrum εk = ε−k it follows that ∇ε−k = −∇εk. Then the first sum on the
right-hand side of (5.32) vanishes, and we obtain

∑

k

(εk+q − εk)
[
f (εk↑) − f (εk+q,↓)

] =
∑

k

1

2
((q∇)2εk)

[
f (εk↑) + f (εk↓)

]
. (5.33)

Finally, we transform the sum in the third term of expression (5.29). Using the expansion (5.31) up to quadratic terms in q
and taking h̄ω = (q, Aq) into account, we have

∑

k

(
h̄ω − (εk−q − εk)

)2[
f (εk↑) − f (εk−q,↓)

] =
∑

k

(q∇εk)2[f (εk↑) − f (εk↓)
]
. (5.34)

Substitution of (5.30), (5.33) and (5.34) in (5.29) yields

F+−(q, ω) = 1

Ũ

(
1 + h̄ω

2Ũ S̄z

)
− 1

(2Ũ S̄z)2

∑

k

1

2

(
(q∇)2εk

)[
f (εk↑) + f (εk↓)

]

+ 1

(2Ũ S̄z)3

∑

k

(q∇εk)2[f (εk↑) − f (εk↓)
]
. (5.35)

Substituting the latter in (5.24), we write the spin-wave spectrum equation (5.27) as

h̄ω = 1

2S̄z

∑

k

1

2

(
(q∇)2εk

)[
f (εk↑) + f (εk↓)

]

− 1

Ũ (2S̄z)2

∑

k

(q∇εk)2[f (εk↑) − f (εk↓)
]
. (5.36)

Usually the quadratic form in the spin-wave spectrum equation (5.36) is replaced by a spherically symmetric one3:

h̄ω = Dq2, (5.37)

where the coefficient D is called the spin-wave stiffness constant. Then, the spin-wave limit of the unenhanced susceptibility
(5.35) is

F+−(q, ω) = 1

Ũ

(
1 + h̄ω − Dq2

2Ũ S̄z

)
, (5.38)

and the enhanced susceptibility (5.22) takes the form

χ+−(q, ω) = 1

Ũ

(
1

1 − ŨF+−(q, ω)
− 1

)
g2μ2

B

= 1

Ũ

(
2Ũ S̄z

Dq2 − h̄ω
− 1

)
g2μ2

B, (5.39)

3This simple form of the spin-wave spectrum is in good agreement with neutron scattering experiments (see, e.g. [18]).
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where ω stands for ω + i0+. Using the Sokhotsky formula (A.44) and delta function property δ(ax) = δ(x)/|a| (see
Appendix A.2.1), we have

Imχ+−(q, ω) = 2S̄zπδ(h̄ω − Dq2)g2μ2
B. (5.40)

Energy dissipation is proportional to Imχ+−(q, ω) (see, e.g. [19]). Therefore, dissipation takes nonzero values for q and ω

such that h̄ω = Dq2. Vice versa, the excitation energy h̄ω = Dq2 creates a spin wave with a wavevector modulus q.

5.2.2 Magnetization: The T 3/2 Law

The magnetization is related to the local moment and local fluctuation. Indeed,

〈M(r)M(r′)〉 = 〈M(r)〉〈M(r′)〉 + 〈ΔM(r)ΔM(r′)〉,
where ΔM(r) = M(r) − 〈M(r)〉. Integrating r and r′ over a Wigner-Seitz cell, we obtain

m2
L = m2

z + Δm2.

At low temperatures, we use the standard assumption that the magnetic field changes the orientation of spins but does not
change their magnitude. Then, discarding the longitudinal fluctuation, we write the local magnetic moment as

m2
L = m2

z + Δm2⊥. (5.41)

Here

Δm2⊥ ≡
∫∫

WS

(〈ΔMx(r)ΔMx(r′)〉 + 〈ΔMy(r)ΔMy(r′)〉) dr dr′ (5.42)

is the local transverse fluctuation, where both integrals are taken over the same Wigner-Seitz cell.
In the momentum representation, the square of the transverse spin fluctuation (5.42) is given by

Δm2⊥ = 1

N2

∑

q

(〈ΔMx(q)ΔMx(−q)〉 + 〈ΔMy(q)ΔMy(−q)〉).

Using the fluctuation-dissipation theorem (2.52), we come to

Δm2⊥ = − 1

N2

∑

q

1

π

∫
h̄

e−h̄ω/T − 1
Im (χxx(q, ω) + χyy(q, ω)) dω. (5.43)

Recalling relations (2.38), (2.41) and (2.42), we have

χxx(q, ω) + χyy(q, ω) = 1

2
[χ−+(q, ω) + χ+−(q, ω)]. (5.44)

Therefore,

Δm2⊥ = − 1

2N2

∑

q

1

π

∫
h̄

e−h̄ω/T − 1
Im (χ−+(q, ω) + χ+−(q, ω)) dω. (5.45)

Next, we use the long-wave approximation, i.e. assume that the main contribution to the sum over the Brillouin zone
comes from the terms with small q. Hence we can replace the transverse susceptibilities by the spin-wave expression (5.40).
Using formula (5.40), we write

Imχ+−(q, ω) = 2S̄z

π

h̄
δ

(
ω − Dq2

h̄

)
g2μ2

B. (5.46)

By the property (2.44), we obtain

Imχ−+(q, ω) = −2S̄z

π

h̄
δ

(
ω + Dq2

h̄

)
g2μ2

B. (5.47)
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Substituting (5.46) and (5.47) in (5.45), and using the property of the delta-function (A.36), we have

Δm2⊥ = s̄zg
2μ2

B
1

N

∑

q

[B(Dq2) − B(−Dq2)], (5.48)

where B(ε) = (eε/T − 1)−1 is the Bose function. Using the identity B(ε) − B(−ε) = 2B(ε) + 1, we obtain

Δm2⊥ = mz(0)gμB

(
1 + 2

N

∑

q

B(Dq2)

)
,

where mz(0) = gμBs̄z.
Finally, we replace the sum over the wavevector by the integral over the Brillouin zone, which is approximated for

simplicity by the sphere of the same volume. Hence the fluctuation takes the form

Δm2⊥ = mz(0)gμB

(
1 + 2

4π

ΩBZ

∫ qB

0

1

exp(Dq2/T ) − 1
q2 dq

)
,

where ΩBZ is the volume of the Brillouin zone and qB is radius of the equal-volume sphere. Changing the variable to

x = (D/T )
1
2 q and setting the upper limit of the integral equal to infinity (at low temperatures), we come to

Δm2⊥ = mz(0)gμB

(
1 + 2

ΩBZ
ζ(3/2)

( π

D

) 3
2
T 3/2
)

, (5.49)

where ζ(3/2) ≈ 2.612 is the value of the Riemann zeta function. Using ΩBZ = (2π)3/ΩWS, where ΩWS is the volume of
the Wigner-Seitz cell, we obtain

Δm2⊥ = mz(0)gμB + 2m2
z(0)a3/2T

3/2 . (5.50)

Here the coefficient a3/2 is given by

a3/2 = gμBΩWS

mz(0)
ζ(3/2)(4πD)−

3
2 . (5.51)

Since the square of the local magnetic moment (5.41) remains constant with temperature:

m2
z(0) + Δm2⊥(0) = m2

z(T ) + Δm2⊥(T ),

from (5.50) we obtain
m2

z(T ) = m2
z(0)(1 − 2a3/2T

3/2).

At low temperatures, we come to the T 3/2 law

mz(T )

mz(0)
= 1 − a3/2T

3/2. (5.52)

Note that at T = 0 the square of the transverse spin fluctuation (5.50) is given by

Δs2⊥ = s̄z.

Taking formula (5.41) into account, we have s2
L = s̄2

z +Δs2⊥. Hence, the square of the local spin in itinerant-electron magnets
at T = 0 is written as

s2
L = s̄z(s̄z + 1), (5.53)

just as for ferromagnets with localized spins. But here the value of the mean spin s̄z can be noninteger.
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In localized spin magnets, the quant of spin waves is a spin one quasi-particle, called magnon (see, e.g. [3, 5, 20]). Then,
at low temperature, magnetization is written as

Mz(T ) = Mz(0) − gμB

∑

q

〈ñq〉,

where 〈ñq〉 is thermal expectation of the number of excited magnons. The same result holds for itinerant electron magnets
(see, e.g. [3, 21]). In the case of noninteracting magnons, the average is described by the Bose statistics, and one obtains the
T 3/2 law. When interaction is present the situation becomes different. In particular, when electron–phonon interaction plays
an important role, the T 3/2 law can fail [3].

5.2.3 Stoner Spin-Flip Excitations

The spin waves are not the only magnetic excitations that are described by the transverse susceptibility. The Stoner excitations
are determined by singularities4 of the numerator of the enhanced susceptibility (5.20):

F+−(q, ω) = ∞.

Indeed, applying the Sokhotsky formula (A.44) to (5.23), we have

ImF+−(q, ω) = π
∑

k

(f (εk↑) − f (εk+q,↓)) δ(h̄ω − εk+q,↓ + εk↑).

The right-hand side is nonzero at energies such that

h̄ω = εk+q,↓ − εk↑. (5.54)

By its definition, an excitation is the addition of a discrete amount of energy to a system that results in its transition from a
state of lower energy to one of higher energy (excited state). Since the Fermi function is monotone decreasing (Fig. 3.1), the
energy (5.54) is positive if and only if

f (εk↑) − f (εk+q,↓) > 0.

At low temperatures the Fermi function is close to the step function, and the latter inequality reduces to

εk↑ < μ, εk+q,↓ = εk↑ + h̄ω > μ,

where μ is the chemical potential (see Fig. 3.1). In other words, the excitation removes a spin-up electron from the inside of
the Fermi surface and puts it outside of the Fermi surface with the spin reversal. This single-electron spin-flip excitation has
the same effect on the magnetization as the spin wave, i.e. magnetization is decreased by gμB.

The Stoner excitations have energies in a large range of values for each q, unlike the spin waves that have only one
energy corresponding to each q. We briefly illustrate the picture in the electron gas, where εk = (h̄2k2)/2m. Recalling that
εkσ = εk − σŨ S̄z, we write relation (5.54) as

h̄ω = h̄2

2m
(2kq + q2) + 2Ũ S̄z. (5.55)

If, for simplicity, we replace the Brillouin zone by an equal-volume sphere of radius qB, then k lies in the range 0 to qB, and
the scalar product kq satisfies the inequality

−qBq ≤ kq ≤ qBq.

4These singularities are called the branch cuts (for details, see Appendix A.2.4).
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Fig. 5.1 Sketch of the spin-wave
spectrum (dashed line) and
Stoner continuum (grey area) at
temperatures close to T = 0 (left)
and higher temperatures (right)
for the parabolic energy spectrum

0
0

2Ũ S̄z

0
0

2Ũ S̄z

q

h̄ω

q

h̄ω

The domain bounded by two parabolas (5.55) with kq = ±qBq is called the Stoner continuum (Fig. 5.1). There is an energy
gap for Stoner excitations at q = 0, which is equal to 2Ũ S̄z. For small temperatures and small wavevectors, spin waves
require less energy (Fig. 5.1, left), and hence we observe the T 3/2 law for magnetization. As temperature increases, the mean
spin S̄z decreases. Therefore, the Stoner continuum absorbs larger part of the spin-waves dispersion curve h̄ω = Dq2, and
the T 2 contribution becomes dominant (Fig. 5.1, right). As we show in Chap. 12, the switching temperature in metals is rather
difficult to locate.

At the q-point where the spin-wave spectrum curve merges with the Stoner continuum the spin waves attenuate. This
process, referred to as Landau damping, remains an open problem both from the experimental and the theoretical point of
view (see, e.g. [3, 13, 18, 22, 23]).

Above the Curie temperature, the peak of the imaginary part of the transverse susceptibility in iron [24] and nickel [25]
was attributed to the damped spin waves (paramagnons). But this interpretation has been criticized, because the height of the
peak and its width are about equal [26, 27]. The RPA cannot be applied here because it was derived at low temperatures. In
SFT [22] it was shown that well-defined “sloppy” spin waves can arise in itinerant ferromagnets above the Curie point in a
limited range of wavevectors. We will come back to this question later in Chap. 15.

The Curie temperature calculated from the poles of the RPA longitudinal susceptibility is lower than the one in the Stoner
theory, because the spin-wave excitations require less energy than the spin flips in the Stoner theory (for details, see Chap. 12).
But the Curie temperature in the RPA is still too high compared with the experimental one. All this indicates that one should
consider spin fluctuations beyond the Stoner theory and RPA.
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6Green Functions at Finite Temperatures

What I cannot create, I do not understand. (R. Feynman)

The Green functions is an indispensable tool for studying interacting particles. The usefulness of the Green functions will
be shown in the succeeding chapters. Here we give a brief self-contained introduction to the Green functions, their basic
properties and applications. A comprehensive treatment is given in a number of well-known textbooks such as [1–7]. A
readable introduction to the subject from a somewhat different perspective than ours can be found in [8, Chap. 10 and 11],
[9, Chap. 8] and [10, Chap. 8 and 11]. We consider two types of Green functions: the fermion-type Green functions that
describe propagation of electrons and boson-type Green functions that describe correlations of the spin density.

6.1 Fermion-Type Green Functions

We use fermion-type Green functions to obtain the density of states, mean charge and mean spin of interacting electrons
at finite temperatures. There are two different kinds of the Green functions: the real-time and temperature Green functions.
The former are related to observed characteristics and the latter can be calculated either by the diagram technique or by the
functional integral method. We present both real-time and temperature Green functions and explain how they are linked to
one another.

6.1.1 Real-Time Green Function

General Properties
First we introduce the retarded real-time Green function

Gr
jj ′σσ ′(t, t ′) = − i

h̄

〈{
ajσ (t), a

†
j ′σ ′(t ′)

}〉
θ(t − t ′), (6.1)

where θ(t) is zero for t < 0 and is unity for t > 0. Here

〈. . . 〉 = Ξ−1Tr(. . . e−H′/T ), H′ = H − μNe,

is the grand canonical ensemble average and

a
†
jσ (t) = eiH′t/h̄a†

jσ e−iH′t/h̄, ajσ (t) = eiH′t/h̄ajσ e−iH′t/h̄

are the Wannier creation-annihilation operators in the Heisenberg representation (for simplicity of notation we omit the
energy band index). The Green function (6.1) is called retarded, because it represents the response at the time t of a system
to a perturbation applied at the time t ′ < t .
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For a time-stationary system, it is easy to show using the cyclic property of trace that Gr
jj ′σσ ′(t, t ′) is a function of t − t ′:

Gr
jj ′σσ ′(t − t ′) = − i

h̄

〈{
ajσ (t − t ′), a†

j ′σ ′
}〉

θ(t − t ′).

Therefore, it is convenient to consider the Fourier transform with respect to time,

Gr
jj ′σσ ′(ω) =

∫ ∞

−∞
Gr

jj ′σσ ′(t)eiωt dt = − i

h̄

∫ ∞

0

〈{
ajσ (t), a

†
j ′σ ′
}〉

eiωt dt.

The inverse transformation is given by

Gr
jj ′σσ ′(t) = 1

2π

∫
Gjj ′σσ ′(ω)e−iωt dω.

To ensure that Gr
jj ′σσ ′(t) = 0 for t < 0, the function Gr

jj ′σσ ′(ω) must be analytic in the upper half-plane of the complex
ω-plane (see Appendix A.2.4).

If the system is translationally invariant, the Green function depends only on the distance between the electrons j − j ′.
Then, using the spatial Fourier transformation, we have

Gr
kσσ ′(t) = − i

h̄

〈{
akσ (t), a

†
kσ ′
}〉

θ(t).

If the Hamiltonian is spin-independent, then the Green function is spin diagonal and its diagonal element is

Gr
kσ (t) = − i

h̄

〈{
akσ (t), a

†
kσ

}〉
θ(t). (6.2)

Equation of Motion
A direct method of calculating the Green function is to solve the equation of motion. For a single annihilation operator,
we have

ih̄
d

dt
akσ (t) = [akσ ,H′](t). (6.3)

Differentiating both sides of (6.2) with respect to t and using Eq. (6.3) and property dθ(t)/dt = δ(t), we have

ih̄
d

dt
Gr

kσ (t) = − i

h̄

〈{[
akσ ,H′](t), a†

kσ

}〉
θ(t) + 〈{akσ (t), a

†
kσ

}〉
δ(t). (6.4)

Taking into account the property f (t)δ(t) = f (0)δ(t) and anticommutation relation {akσ , a
†
kσ

} = 1, we obtain

ih̄
d

dt
Gr

kσ (t) = − i

h̄

〈{[
akσ ,H′](t), a†

kσ

}〉
θ(t) + δ(t). (6.5)

In the general case, the first term on the right-hand side will give us a more complicated Green function, which is an average
of four creation-annihilation operators. The time derivative of this new Green function will give averages of more creation-
annihilation operators, etc. An approximate solution can be obtained by truncating this chain of equations of motion (for the
boson-type Green functions, this will be shown in Sect. 6.2 when calculating the RPA susceptibility).

In the case of noninteracting electrons with the Hamiltonian H0, the equation of motion (6.5) can be solved explicitly.
Indeed, using the anticommutation relations for the creation-annihilation operators just as in Sect. 3.4, we write the right-hand
side of (6.3) as

[akσ ,H′
0](t) = (εk − μ)akσ (t). (6.6)

Substituting the latter in (6.5), we have

ih̄
d

dt
Gr0

k (t) = (εk − μ)Gr0
k (t) + δ(t). (6.7)



6.1 Fermion-Type Green Functions 61

Applying the Fourier transformation, we obtain

Gr0
k (ω) = 1

h̄ω + μ − εk + i0+ (6.8)

(the appearance of the term i0+ is explained in Appendix A.2.5). Thus, poles of the Fourier transform of the Green function
determine the energy spectrum. Taking the inverse Fourier transformation, we get the Green function itself:

Gr0
k (t) = −ie−i(εk−μ)t θ(t). (6.9)

For interpretation of the Green function Gr0
k (t) as the probability amplitude of the electron propagation, see, e.g. [3, 6].

Spectral Function
Following the same argument as in Sect. 2.1.3, we obtain the relation between the real and imaginary parts of the Green
function:

ReGr
kσ (ω) = 1

π
P
∫

ImGr
kσ (ω′)

ω′ − ω
dω′, (6.10)

ImGr
kσ (ω) = − 1

π
P
∫

ReGr
kσ (ω′)

ω′ − ω
dω′, (6.11)

where P means the Cauchy principle value. Using (6.10), we can write Gr
kσ

(ω) = ReGr
kσ

(ω) + iImGr
kσ

(ω) as

Gr
kσ (ω) = 1

π
P
∫

ImGr
kσ (ω′)

ω′ − ω
dω′ + iImGr

kσ (ω).

Taking into account the Sokhotsky formula (A.44):

∫
f (x′)

x′ − x ± i0+ dx′ = P
∫

f (x′)
x′ − x

dx′ ∓ iπf (x),

we have

Gr
kσ (ω) = 1

π

∫
ImGr

kσ
(ω′)

ω′ − ω − i0+ dω′ ≡
∫

Ar
kσ (ω′)

ω − ω′ + i0+ dω′, (6.12)

where

Ar
kσ (ω) = − 1

π
ImGr

kσ (ω)

is called the (retarded) spectral function. In particular, for noninteracting electrons, writing the Green function (6.8) as

Gr0
k (ω) =

∫
δ(ε′ + μ − εk)

h̄ω − ε′ + i0+ dε′

and using (6.12), we obtain
Ar0

k (ω) = δ(h̄ω + μ − εk). (6.13)

Similar to the retarded Green function we introduce the advanced Green function

Ga
jj ′σσ ′(t) = i

h̄

〈{
ajσ (t), a

†
j ′σ ′
}〉

θ(−t). (6.14)

Doing as above, we prove that its Fourier transform

Ga
kσ (ω) =

∫ 0

−∞
Ga

kσ (t)eiωt dt
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satisfies the following relations:

ReGa
kσ (ω) = − 1

π
P
∫

ImGa
kσ (ω′)

ω′ − ω
dω′, (6.15)

ImGa
kσ (ω) = 1

π
P
∫

ReGa
kσ (ω′)

ω′ − ω
dω′. (6.16)

Hence

Ga
kσ (ω) =

∫
Aa

kσ (ω′)
ω − ω′ − i0+ dω′, (6.17)

where

Aa
kσ (ω) = 1

π
ImGa

kσ (ω). (6.18)

Comparing the results for the retarded (6.12) and advanced (6.17) Green functions, we see that

Ga
kσ (ω) = Gkσ (ω − i0+), Gr

kσ (ω) = Gkσ (ω + i0+),

where

Gkσ (z) =
∫

Akσ (ω′)
z − ω′ dω′ (6.19)

is an analytic function except on the real axis. Thus, the Fourier transforms of the advanced and retarded Green functions are
just complex conjugate of each other:

Ga
kσ (ω) = (Gr

kσ (ω))∗. (6.20)

The Green function of the interacting electrons in a crystal can be written as

Gkσ (z) = 1

h̄z + μ − εk − Σkσ (z)
, (6.21)

where Σkσ (z) is called the self-energy. The meaning of the self-energy becomes clear if we look at formulae (6.17) and
(6.18). Indeed, for noninteracting electrons, similar to (6.8) we have

Ga0
k (ω) = 1

h̄ω + μ − εk − i0+ , (6.22)

and the spectral function is given by a single delta function peaked at εk − μ, just as in formula (6.13). Comparing with
(6.21), we readily see that

ReΣ0
kσ (ω) = 0, ImΣ0

kσ (ω) = 0+,

where Σ0(ω) = Σ0(ω − i0+). For interacting electrons, Σkσ (ω) is a nonzero complex quantity, and the spectral function is
given by

Aa
kσ (ω) = 1

π
ImGa

kσ (ω) = 1

π

ImΣkσ (ω)

(h̄ω + μ − εk − ReΣkσ (ω))2 + (ImΣkσ (ω))2 .

Thus, the delta function peak of a one-electron excitation becomes spread out over an energy interval. The location of the
peak is shifted by ReΣ and (ImΣ)−1 determines the finite life-time of the electron’s state (see, e.g. [9, 10]).
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6.1.2 Temperature Green Function

Relation with Charge and Spin Density
The temperature Green function1 for fermions is defined by

Gjj ′σσ ′(τ, τ ′) = −〈Tτ ajσ (τ )a
†
j ′σ ′(τ ′)

〉 ≡
{

−〈ajσ (τ )a
†
j ′σ ′(τ ′)

〉
, τ > τ ′,〈

a
†
j ′σ ′(τ ′)ajσ (τ )

〉
, τ < τ ′.

(6.23)

Here 〈. . . 〉 is the average in the grand canonical ensemble, ajσ and a
†
j ′σ ′ are the creation-annihilation operators of the Wannier

states and the τ -dependence means the “Heisenberg” representation ajσ (τ ) = eH
′τ/h̄ajσ e−H′τ/h̄ with respect to the “time”

τ ∈ [0, h̄/T ]. If we take τ = it , we come to the usual Heisenberg representation. Therefore, τ is often called the imaginary
time. This link between τ and t is not quite incidental. As we show later in this section, the temperature and real-time Green
functions are related to each other in a very similar way.

The Green function (6.23) allows to obtain local characteristics such as the mean values of charge and spin at a site. To
show this, it is convenient to introduce the local density matrix ρj with the elements

ρjσσ ′ = a
†
jσ ′ajσ . (6.24)

As a Hermitian 2 × 2 matrix, ρj can be expressed in the form (for details, see Appendix A.1.4)

ρj = ρ0
j σ 0 + ρjσ , ρ

μ
j = 1

2
Sp (σμρj ), μ = 0, x, y, z, (6.25)

where σ 0 is the unity 2 × 2 matrix, σα (α = x, y, z) are the Pauli matrices, and Sp denotes the sum of diagonal elements
over the spin indices.2 From formulae (6.25) it immediately follows that the scalar component in the expansion ρ0

j is equal
to one half of the local charge operator:

1

2
nj = 1

2
(nj↑ + nj↓) = 1

2

(
a

†
j↑aj↑ + a

†
j↓aj↓
) = ρ0

j , (6.26)

and the vector component ρj is equal to the local spin operator: ρj = sj . Indeed, if we use the second-quantized

representation (3.20) of the α = x, y, z component of the spin operator sj = 1
2σ , then taking (6.25) into account, we

write
sα
j =
∑

σσ ′
sα
jσσ ′a

†
jσ ajσ ′ =

∑

σσ ′
sα
jσσ ′ρjσ ′σ = Sp

(
sα
j ρj

) = ρα
j . (6.27)

The Green function Gjjσσ ′(τ, τ +0+) is equal to the average local density matrix 〈ρjσσ ′ 〉. Indeed, by the definition (6.23),
for τ < τ ′ we have

Gjj ′σσ ′(τ, τ ′) = 〈a†
j ′σ ′(τ ′) ajσ (τ )

〉
, (6.28)

so that
Gjjσσ ′(τ, τ + 0+) = 〈a†

jσ ′ ajσ

〉 = 〈ρjσσ ′
〉
. (6.29)

Introducing the Hermitian 2 × 2-matrix Gjj with the elements Gjjσσ ′(τ, τ + 0+), we can write

Gjj =
∑

μ

G
μ
jj σμ, G

μ
jj = 1

2
Sp(Gjjσ

μ), μ = 0, x, y, z. (6.30)

1Also called Matsubara Green function since they appeared in the seminal paper [11].
2Here by ρ

μ
j σμ we mean the operator tensor product ρ

μ
j ⊗ σμ (for details, see Appendix A.1.5). For brevity, we omit the tensor product notation

throughout the book.
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From relations (6.26) and (6.27) we have

G
μ=0
jj = 1

2
〈nj 〉, G

μ=α
jj = 〈sα

j 〉, α = x, y, z. (6.31)

Summing (6.30) over spins and taking into account Spσμ = 2δμ0, we obtain

SpGjj = Sp

(∑

μ

G
μ
jj σμ

)
=
∑

μ

G
μ
jj Spσμ = 2G

μ=0
jj . (6.32)

Then, taking relations (6.31) and (6.32) into account, we can express the average of the total number of electrons operator
Ne =∑jσ njσ and average of the total spin operator S =∑jσ sjσ as follows:

Ne = T

h̄
TrG, S̄α = T

h̄
TrGα, (6.33)

where

TrGμ ≡
∑

j

∫ h̄/T

0
G

μ
jj (τ, τ + 0+) dτ, (6.34)

TrG ≡
∑

j

∫ h̄/T

0
SpGjj (τ, τ + 0+) dτ.

From Eq. (6.29) we see that G
μ
jj (τ, τ + 0+) is independent of j and τ .

Relation with the Real-Time Green Function
Due to translational invariance of the system in space and “time”:

Gjj ′(τ, τ ′) = Gj−j ′(τ − τ ′),

the spatial Fourier transform of the Green function is k-diagonal:

Gkk′(τ ) = Gk(τ )δkk′ ,

where

Gj(τ) = 1

N

∑

k

Gk(τ )eikRj , Gk(τ ) =
∑

j

Gj (τ )e−ikRj .

The Green function Gk(τ ) satisfies the following relation

Gk(τ − h̄/T ) = −Gk(τ ), τ > 0 (6.35)

(for the proof, see Appendix C.2, where Ḡk(τ ) is the same Green function of interacting electrons; the use of the bar in
this context is explained in Chap. 8). Hence the function Gk(τ ) can be expanded in the odd thermodynamic “frequencies”3

ωn = (2n + 1)πT /h̄, n = 0,±1,±2, . . . :

Gk(τ ) = T

h̄

∑

n

Gk(iωn)e
−iωnτ ,

where the Fourier coefficient is calculated as

Gk(iωn) =
∫ h̄/T

0
Gk(τ )eiωnτ dτ

3The thermodynamic “frequencies” are also called Matsubara frequencies.
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(for details, see Appendix C.2). Therefore, in the momentum-“frequency” representation we write (6.34) as

TrGμ = lim
τ→0+

∑

kn

G
μ

k (iωn) eiωnτ . (6.36)

For brevity, we will often write
TrGμ =

∑

kn

G
μ

k (iωn).

The temperature Green function Gk(iωn) can be analytically continued from the points z = iωn to the whole complex
z-plane except for the real axis. At z = ω ± i0+ the result coincides with the real-time Green function Gk(ω) (see, e.g. [9]).
Shortly,

Gk(iωn)

∣∣∣
iωn→ω+i0+ = Gr

k(ω), Gk(iωn)

∣∣∣
iωn→ω−i0+ = Ga

k(ω).

In particular, using (6.22), for noninteracting electrons we have

G0
k(iωn) = 1

ih̄ωn + μ − εk
. (6.37)

Introducing the operator G0(z) with the matrix elements G0
k(z), we can write

G0(z) = (h̄z + μ − H0)
−1. (6.38)

If we apply a time independent external field, the Hamiltonian becomes H0 + V̂ , where in the second-quantized form

V̂ =
∑

kk′σ
Vkk′σ a

†
kσ ak′σ .

Then the (operator) Green function is written as

G(z) = (h̄z + μ − H0 − V̂ )−1.

Note that a scalar relation like (6.37) is not valid anymore, because the matrix Vkk′σ is generally nondiagonal in k, and so is
Gkk′σ . However, if the external field is spatially uniform, we have

Gkσ (z) = 1

h̄z + μ − εk − Vσ

. (6.39)

6.2 Boson-Type Green Functions

In the linear response theory the dynamic susceptibility χαβ(q, ω) is given by the Fourier transform (2.46) of the function

χαβ(q, t) = i

h̄

〈[ΔMα(q, t),ΔMβ(−q)]〉 θ(t). (6.40)
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The latter is called the boson-type retarded Green function, because each spin operator consists of two creation-annihilation
operators. The boson-type Green function is defined by the commutator instead of the anticommutator in the fermion-type
Green function (6.1).4

As we have already shown in the previous chapters, dynamic susceptibility (6.40) has a multitude of applications. In
particular, it describes the spin-density correlations in metals (see Chap. 2). The spectrum of the longitudinal susceptibility
determines the magnetic phase transition and spectrum of the transverse susceptibility determines magnetic excitations such
as spin flip and spin waves (see Sect. 5.2).

In Sect. 3.4 we showed how to calculate the dynamic susceptibility for noninteracting electrons directly from expression
(2.38) in the linear response theory. Here we obtain the dynamic susceptibility from the same expression (2.38) but for
interacting electrons using the equation of motion method, just as in [12]. By applying the Hartree-Fock approximation to
the right-hand side of the equation of motion, we obtain the same RPA solution that was calculated in Sect. 5.1.

6.2.1 Dynamic Susceptibility

Longitudinal Susceptibility
We need to obtain the Green function

χzz(q, t) = i

h̄

〈[ΔMz(q, t),ΔMz(−q)]〉 θ(t).

The latter reduces to (for details, see Appendix A.1.2)

χzz(q, t) = i

h̄

〈[Mz(q, t),Mz(−q)]〉 θ(t). (6.41)

Here the magnetic moment operator Mz(q) can be written in the second-quantized form as

Mz(q) = −gμB
1

2

∑

k

(
a

†
k↑ak+q,↑ − a

†
k↓ak+q,↓

)
.

We calculate (6.41) by writing the equation of motion for the Green function

χzz(kσ, q, t) = −gμB
i

h̄

〈[(
a

†
kσ

ak+q,σ )(t),Mz(−q
)]〉

θ(t). (6.42)

Differentiating (6.42) and taking dθ(t)/dt = δ(t) into account (see Appendix A.2.1), we obtain

ih̄
d

dt
χzz(kσ, q, t) = gμB

〈[(
a

†
kσ

ak+q,σ

)
(t),Mz(−q)

]〉
δ(t)

− gμB
i

h̄

〈[
ih̄

d

dt

(
a

†
kσ

ak+q,σ

)
(t),Mz(−q)

]〉
θ(t).

Recall that the Heisenberg representation A(t) = eiHt/h̄A e−iHt/h̄ of an operator A satisfies

ih̄
d

dt
A(t) = [A,H](t). (6.43)

Taking the property f (t)δ(t) = f (0)δ(t) into account, we obtain

ih̄
d

dt
χzz(kσ, q, t) = gμB

〈[
a

†
kσ

ak+q,σ ,Mz(−q)
]〉
δ(t)

− gμB
i

h̄

〈[
[a†

kσ ak+q,σ ,H](t),Mz(−q)
]〉

θ(t). (6.44)

4We use the opposite signs for the fermion- and boson-type Green functions, just as in [9].
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Using the general commutation rule (3.46), we calculate the first commutator

[
a

†
kσ

ak+q,σ ,Mz(−q)
] = −gμB

[
a

†
kσ

ak+q,σ ,
1

2

∑

k′σ ′
σ ′a†

k′σ ′ak′−q,σ ′

]

= −gμBσ
1

2

(
a

†
kσ

akσ − a
†
k+q,σ

ak+q,σ

)
. (6.45)

In the second term on the right-hand side of (6.44), we have H = H0 + HI. Similar to (6.45) we obtain

[
a

†
kσ

ak+q,σ ,H0
] =
[
a

†
kσ

ak+q,σ ,
∑

k′σ ′
εk′a†

k′σ ′ak′σ ′

]
= (εk+q − εk)a

†
kσ

ak+q,σ . (6.46)

If we discard the interaction term HI altogether, then equation of motion (6.44) reduces to

ih̄
d

dt
χ0

zz(kσ, q, t) = −g2μ2
Bσ

1

2
(f (εk) − f (εk+q))δ(t) + (εk+q − εk)χ0

zz(kσ, q, t). (6.47)

Carrying out the Fourier transform with respect to t , we write

(h̄ω − εk+q + εk)χ0
zz(kσ, q, ω) = −g2μ2

B
1

2
σ(f (εk) − f (εk+q)).

Summing over k and taking into account

χ0
zz(q, ω) = 1

2

∑

k

(χ0
zz(k ↑, q, ω) − χ0

zz(k ↓, q, ω)),

we come to expression (3.53):

χ0
zz(q, ω) = 1

2

∑

k

f (εk) − f (εk+q)

εk+q − εk − h̄ω
g2μ2

B .

For interacting electrons, we obtain (for details, see Appendix D.1)

[
a

†
kσ

ak+q,σ ,HI
] = 1

2
Ũ

( ∑

k′′pσ ′′
a

†
kσ

a
†
k′′σ ′′ak′′+p,σ ′′ak+q−p,σ

−
∑

k′pσ ′
a

†
kσ

a
†
k′σ ′ak+q+p,σ ak′−p,σ ′ +

∑

k′pσ ′
a

†
k′σ ′a

†
k−p,σ

ak′−p,σ ′ak+q,σ

−
∑

k′′pσ ′′
a

†
k+p,σ

a
†
k′′σ ′′ak′′+p,σ ′′ak+q,σ

)
. (6.48)

Clearly, substitution of this expression in the equation of motion would lead to averages of six creation-annihilation operators.
Their time derivatives would give averages of more creation-annihilation operators, etc.

To split up the chain of differential equations we apply the mean-field approximation to the right-hand side of (6.48).
Calculations lead to [

a
†
kσ

ak+q,σ ,HI
] = Ũ (n̄kσ − n̄k+q,σ )

∑

k′
a

†
k′σ̄ ak′+q,σ̄ . (6.49)

Substituting (6.45), (6.46) and (6.49) in (6.44), we come to

ih̄
d

dt
χzz(kσ, q, t) = −g2μ2

Bσ
1

2
(n̄kσ − n̄k+q,σ )δ(t)
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− gμB(εk+q − εk)
i

h̄

〈[(
a

†
kσ

ak+q,σ

)
(t),Mz(−q)

]〉
θ(t)

− gμBŨ (n̄kσ − n̄k+q,σ )
i

h̄

〈[
∑

k′

(
a

†
k′σ̄ ak′+q,σ̄

)
(t),Mz(−q)

]〉
θ(t),

or briefly,

ih̄
d

dt
χzz(kσ, q, t) = −g2μ2

Bσ
1

2
(n̄kσ − n̄k+q,σ )δ(t)

+ (εk+q − εk)χzz(kσ, q, t) + Ũ (n̄kσ − n̄k+q,σ )
∑

k′
χzz(k′σ̄ , q, t). (6.50)

Making the Fourier transform with respect to t , we write (6.50) as

(h̄ω − εk+q + εk)χzz(kσ, q, ω)

= (n̄kσ − n̄k+q,σ )

(
−σ

1

2
g2μ2

B + Ũ
∑

k′
χzz(k′σ̄ , q, ω)

)
.

Summing over k, we obtain

χzz(σ, q, ω) = Fσ (q, ω)

(
σ

1

2
g2μ2

B − Ũχzz(σ̄ , q, ω)

)
, (6.51)

where

Fσ (q, ω) =
∑

k

f (εkσ ) − f (εk+q,σ )

εk+q − εk − h̄ω
. (6.52)

Here we used n̄kσ = f (εkσ ), where εkσ = εk − σŨ S̄z. Solving the system of two linear equations (6.51), we have

χzz(σ, q, ω) = 1

2
σ

Fσ (q, ω)(1 + ŨFσ̄ (q, ω))

1 − Ũ2Fσ (q, ω)Fσ̄ (q, ω)
g2μ2

B.

Using

χzz(q, ω) = 1

2
(χzz(↑, q, ω) − χzz(↓, q, ω)),

we obtain the RPA expression (5.11):

χzz(q, ω) = 1

4

F+(q, ω) + F−(q, ω) + 2ŨF+(q, ω)F−(q, ω)

1 − Ũ2F+(q, ω)F−(q, ω)
g2μ2

B.

In the paramagnetic state F+(q, ω) = F−(q, ω) = F(q, ω), the latter reduces to

χzz(q, ω) = 1

2

F(q, ω)

1 − ŨF (q, ω)
g2μ2

B.

Transverse Susceptibility
We now apply the above method to calculate the transverse susceptibility (2.41). Consider the corresponding Green function

χ−+(q, t) = i

h̄
〈[M−(q, t),M+(−q)]〉θ(t),

where by formulae (3.29) we have

M+(q) = −gμB

∑

k

a
†
k↑ak+q,↓, M−(q) = −gμB

∑

k

a
†
k↓ak+q,↑.
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Differentiating the function

χ−+(k, q, t) = −gμB
i

h̄

〈[(
a

†
k↓ak+q,↑

)
(t),M+(−q)

]〉
θ(t),

we obtain the equation of motion

ih̄
d

dt
χ−+(k, q, t) = gμB

〈[(
a

†
k↓ak+q,↑

)
(t),M+(−q)

]〉
δ(t)

− gμB
i

h̄

〈[
ih̄

d

dt

(
a

†
k↓ak+q,↑

)
(t),M+(−q)

]〉
θ(t).

Taking the property f (t)δ(t) = f (0)δ(t) into account and using Eq. (6.43), we have

ih̄
d

dt
χ−+(k, q, t) = gμB

〈[
a

†
k↓ak+q,↑,M+(−q)

]〉
δ(t)

− gμB
i

h̄

〈[[
a

†
k↓ak+q,↑,H

]
(t),M+(−q)

]〉
θ(t). (6.53)

The first commutator is

[
a

†
k↓ak+q,↑, s+(−q)

] =
[
a

†
k↓ak+q,↑,

∑

k′
a

†
k′↑ak′−q,↓

]
= a

†
k↓ak↓ − a

†
k+q,↑ak+q,↑. (6.54)

In the second term, the commutator with H0 is given by

[
a

†
k↓ak+q,↑,H0

] =
[
a

†
k↓ak+q,↑,

∑

k′σ ′
εk′a†

k′σ ′ak′σ ′

]
= (εk+q − εk)a

†
k↓ak+q,↑. (6.55)

The commutator with HI is written as (for details, see Appendix D.2)

[
a

†
k↓ak+q,↑,HI

] = 1

2
Ũ

( ∑

k′′pσ ′′
a

†
k↓a

†
k′′σ ′′ak′′+p,σ ′′ak+q−p,↑

−
∑

k′pσ ′
a

†
k↓a

†
k′σ ′ak+q+p,↑ak′−p,σ ′ +

∑

k′pσ ′
a

†
k′σ ′a

†
k−p,↓ak′−p,σ ′ak+q,↑

−
∑

k′′pσ ′′
a

†
k+p,↓a

†
k′′σ ′′ak′′+p,σ ′′ak+q,↑

)
. (6.56)

To split up this chain of differential equations we apply the mean-field approximation to the right-hand side of (6.56).
Calculations lead to

[
a

†
k↓ak+q,↑,HI

] = −Ũ (n̄k↓ − n̄k+q,↑)
∑

k′
a

†
k′↓ak′+q,↑ + Ũ (N↓ − N↑)a

†
k↓ak+q,↑. (6.57)

Substituting (6.54), (6.55) and (6.57) in (6.53), we finally obtain

ih̄
d

dt
χ−+(k, q, t) = −g2μ2

B(n̄k↓ − n̄k+q,↑)δ(t)

+ (εk+q,↑ − εk↓)χ−+(k, q, t) − Ũ (n̄k↓ − n̄k+q,↑)
∑

k′
χ−+(k′, q, t), (6.58)

where εk↓ = εk + ŨN↑ and εk+q,↑ = εk+q + ŨN↓. Using (4.16), we write

εkσ = εk + 1

2
ŨNe − σŨ S̄z.
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Omitting the spin-independent term 1
2 ŨNe, we have εkσ = εk − σŨ S̄z. The Fourier transform of Eq. (6.58) is

(h̄ω − εk+q,↑ + εk↓)χ−+(k, q, ω) = −(n̄k↓ − n̄k+q,↑)

(
g2μ2

B + Ũ
∑

k′
χ−+(k′, q, ω)

)
.

Summing over k and using n̄kσ = f (εkσ ), we obtain the equation

χ−+(q, ω) = F−+(q, ω)
(
g2μ2

B + Ũχ−+(q, ω)
)

,

where

F−+(q, ω) =
∑

k

f (εk↓) − f (εk+q,↑)

εk+q,↑ − εk↓ − h̄ω
.

Hence

χ−+(q, ω) = F−+(q, ω)

1 − ŨF−+(q, ω)
g2μ2

B.

For noninteracting electrons (Ũ = 0), we obtain

χ0−+(q, ω) = F(q, ω) g2μ2
B. (6.59)

6.2.2 Thermodynamic Susceptibility

In the previous subsection we used the equation of motion method to calculate the RPA susceptibilities in dealing with the
interaction effects. To go beyond the RPA in the following chapters, we use the notion of the boson-type temperature Green
function. This leads to an auxiliary function of the imaginary time called the thermodynamic susceptibility. In this subsection,
first we relate the thermodynamic susceptibility to the thermodynamic spin correlator. Then we show how the thermodynamic
susceptibility is related to the real-time susceptibility. The relation between the two susceptibilities is illustrated by explicit
calculation of the thermodynamic susceptibility for noninteracting electrons.

Relation with the Spin Correlator
As we will see in the next chapters, in calculations it is more convenient to use the boson-type temperature Green function

χαβ(q, τ, τ ′) = 〈Tτ ΔMα(q, τ )ΔMβ(−q, τ ′)〉

≡
{ 〈ΔMα(q, τ )ΔMβ(−q, τ ′)〉, τ > τ ′,

〈ΔMβ(−q, τ ′)ΔMα(q, τ )〉, τ ′ > τ,
(6.60)

where 〈. . . 〉 is the canonical average, ΔMα(q, τ ) = eHτ/h̄ΔMα(q) e−Hτ/h̄ is the “Heisenberg” representation with respect
to the “time” τ ∈ [0, h̄/T ] and Tτ is the “time”-ordering operator.5 Due to the cyclic property of trace in formula (6.60), the
temperature Green function depends only on the “time” difference,

χαβ(q, τ, τ ′) = χαβ(q, τ − τ ′). (6.61)

Moreover, the following relation holds:
χαβ(q, τ − h̄/T ) = χαβ(q, τ )

for τ ∈ [0, h̄/T ]. Therefore, the Fourier coefficients are nonzero only for even thermodynamic “frequencies” ωm = 2πmT/h̄

and are given by

χαβ(q, iωm) =
∫ h̄/T

0
χαβ(q, τ ) eiωmτ dτ (6.62)

5In the fermion-type temperature Green function (6.23) the “time”-ordering operator had the minus sign. Here the “time”-ordering operator gets
the plus sign because each ΔMα(q, τ ) consist of two creation-annihilation operators.
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(the proof is similar to the one for the fermion-type temperature Green function, see Appendix C.2). Recalling Mα(q) =
−gμBsα(q), we write (6.60) as

χαβ(q, iωm) = g2μ2
B

∫ h̄/T

0
〈Δsα(q, τ )Δsβ(−q)〉 eiωmτ dτ. (6.63)

Calculating the spin correlator in the momentum-“frequency” representation, we obtain

〈Δsα(q, iωm)Δsβ(−q,−iωm)〉 = T

h̄

∫ h̄/T

0
〈Δsα(q, τ )Δsβ(−q)〉 eiωmτ dτ, (6.64)

where the Fourier transform is defined as

Δsα(q, iωm) = T

h̄

∫ h̄/T

0
Δsα(q, τ ) eiωmτ dτ.

Using (6.64), we write the thermodynamic susceptibility (6.63) in the form [13]

χαβ(q, iωm) = h̄

T
〈Δsα(q, iωm)Δsβ(−q,−iωm)〉 g2μ2

B. (6.65)

Relation with the Dynamic Susceptibility
Now we establish the relation between the functions χαβ(q, ω) and χαβ(q, iωm) using the analytic continuation method (see,
e.g. [1, 10]). First, we derive an expression for χαβ(q, ω) in the energy representation. Using (6.40), we have

χαβ(q, t) = g2μ2
B

i

h̄Z

(∑

kk′
eiEkt/h̄

(
Δsα(q)

)
kk′ e−iEk′ t/h̄(Δsβ(−q)

)
k′k e−Ek/T

−
∑

kk′

(
Δsβ(−q)

)
kk′ eiEk′ t/h̄(Δsα(q)

)
k′k e−iEkt/h̄e−Ek/T

)
θ(t),

where Ek is an eigenvalue of H and
(
. . .
)
kk′ denotes the matrix element. Interchanging the indices k and k′ in the second

sum, we come to

χαβ(q, t) = g2μ2
B

i

h̄Z

(∑

kk′

(
Δsα(q)

)
kk′
(
Δsβ(−q)

)
k′k
(
e−Ek/T − e−Ek′/T

)
ei(Ek−Ek′ )t/h̄

)
θ(t).

Calculating the Fourier transform (2.46), we finally obtain

χαβ(q, ω) = g2μ2
B

i

h̄Z

∑

kk′

(
Δsα(q)

)
kk′
(
Δsβ(−q)

)
k′k
(
e−Ek/T − e−Ek′/T

)

× lim
η→0+

∫ ∞

0
ei((Ek−Ek′ )/h̄+ω+iη)t dt

= −g2μ2
B

h̄

Z

∑

kk′

(
Δsα(q)

)
kk′
(
Δsβ(−q)

)
k′k

e−Ek/T − e−Ek′/T

Ek − Ek′ + h̄ω + i0+ . (6.66)
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Similarly, we write the temperature Green function (6.61) in the eigenbasis of the Hamiltonian H:

χαβ(q, τ ) = g2μ2
B

1

Z

∑

kk′

(
Δsα(q)

)
kk′
(
Δsβ(−q)

)
k′k e−Ek/T e(Ek−Ek′ )τ/h̄.

Calculating the Fourier transform (6.62), we have

χαβ(q, iωm) = −g2μ2
B

h̄

Z

∑

kk′

(
Δsα(q)

)
kk′
(
Δsβ(−q)

)
k′k

e−Ek/T − e−Ek′/T

Ek − Ek′ + ih̄ωm

. (6.67)

Expressions (6.66) and (6.67) are special cases of the function χαβ(q, z), which is analytic in the upper half-plane Imz > 0.
Thus, (6.66) is obtained from (6.67) by the analytic continuation

χαβ(q, iωm)

∣∣∣
iωm→ω+i0+ = χαβ(q, ω). (6.68)

Noninteracting Electrons
We illustrate the analytic continuation formula (6.68) by considering noninteracting electrons. The real-time susceptibility of
noninteracting electrons χ0

zz(q, ω) was calculated in Chap. 3. Let us calculate the thermodynamic susceptibility χ0
zz(q, iωm).

Using (6.65), we write the inverse Fourier transform of χ0
zz(q, iωm) as

χ0
zz(q, τ ) = g2μ2

B〈Tτ Δsz(q, τ )Δsz(−q)〉
= g2μ2

B (〈Tτ sz(q, τ ) sz(−q)〉 − 〈sz(q, τ )〉〈sz(−q)〉) ,

where 〈. . . 〉 is the canonical average with the Hamiltonian H0. Averaging formula (3.32), we obtain 〈sz(q, τ )〉 = Ns̄zδq0.
Now, using the expression for the spin operator (3.45), we have

χ0
zz(q, τ ) = g2μ2

B

⎛

⎝1

4

∑

kk′σσ ′
σσ ′〈Tτ a

†
kσ

(τ )ak+q,σ (τ ) a
†
k′σ ′ak′−q,σ ′

〉− N2s̄2
z δq0

⎞

⎠ . (6.69)

The problem now is to evaluate the thermal average of four creation and annihilation operators 〈Tτ a
†
kσ

(τ )al,σ (τ ) a
†
k′σ ′al′σ ′ 〉

appearing in the integrand. Wick’s theorem tells us how to reduce this average to a sum of products of pair averages
〈Tτ a

†
kσ

(τ )al,σ 〉 (see, e.g. [9]). Using Wick’s theorem, we obtain

〈
Tτ a

†
kσ

(τ )ak+q,σ (τ ) a
†
k′σ ′ak′−q,σ ′

〉 = 〈a†
kσ

(τ )ak+q,σ (τ )
〉〈
a

†
k′σ ′ak′−q,σ ′

〉

− 〈Tτ a
†
kσ

(τ )ak′−q,σ ′
〉〈
Tτ a

†
k′σ ′ak+q,σ (τ )

〉
. (6.70)

In the second term we had to swap the creation-annihilation operators three times, which gives us the minus sign; in the first
term no swaps were needed. Substituting (6.70) in (6.69) and taking the translational invariance (4.12) into account, we have

χ0
zz(q, τ ) = g2μ2

B

(
1

4
δq0

∑

kσ

σ
〈
a

†
kσ

akσ

〉∑

k′σ ′
σ ′〈a†

k′σ ′ak′σ ′
〉

− 1

4

∑

kσ

〈
Tτ a

†
kσ

(τ )akσ

〉〈
Tτ a

†
k+q,σ

(−τ)ak+q,σ

〉− N2s̄2
z δq0

)
.
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The first and last terms on the right-hand side cancel. In the second term, the operators can be treated as commuting, because
they are acted upon by the operator Tτ . Hence, using the cyclic property of trace, we write

χ0
zz(q, τ ) = −g2μ2

B
1

4

∑

kσ

〈
Tτ akσ (−τ)a

†
kσ

〉〈
Tτ ak+q,σ (τ )a

†
k+q,σ

〉
.

Since for noninteracting electrons the averages are spin-independent, by the definition of the Green function (6.23), we have

χ0
zz(q, τ ) = −g2μ2

B
1

2

∑

k

G0
k(−τ)G0

k+q(τ ).

Performing the inverse Fourier transform of the Green functions by the formula (C.31), we obtain

χ0
zz(q, iωm) = −g2μ2

B
1

2

T

h̄

∑

kn

G0
k(iωn)G

0
k+q(iωn + iωm). (6.71)

Summation over the odd “frequencies” ωn in expression (6.71) leads to (for details, see Appendix A.2.5)

χ0
zz(q, iωm) = −g2μ2

B
1

2

∑

k

(
f (εk)

εk − εk+q + ih̄ωm

+ f (εk+q − ih̄ωm)

εk+q − ih̄ωm − εk

)
.

Taking into account the Fermi function property f (ε − ih̄ωm) = f (ε), we obtain

χ0
zz(q, iωm) = 1

2
g2μ2

B

∑

k

f (εk) − f (εk+q)

εk+q − εk − ih̄ωm

= 1

2
g2μ2

BF(q, iωm). (6.72)

Replacing iωm by ω + i0+ in the expression (6.72), we come to the real-time unenhanced susceptibility (3.53). Here the
analytic continuation consisted in just replacing iωm by ω+ i0+, because the right-hand side is a rational function (a fraction
of analytic functions). If the function is not rational, one has to approximate it by a rational function (e.g. by the Padé
approximation).

Summation Rule
In the DSFT we deal with local characteristics, such as magnetization or local moment, and it suffices to use a particular form
of the analytic continuation known as the summation rules. Here we derive the summation rule for the boson-type Green
function (magnetic susceptibility). Summing (6.64) over the “frequencies” and taking into account (T /h̄)

∑
m eiωmτ = δ(τ ),

we have

∑

m

〈Δsα(q, iωm)Δsβ(−q,−iωm)〉 =
∫ h̄/T

0
〈Δsα((q), τ )Δsβ(−q)〉δ(τ ) dτ

= 〈Δsα(q)Δsβ(−q)〉.

Using (6.65), we come to

g2μ2
B〈Δsα(q)Δsβ(−q)〉 = T

h̄

∑

m

χαβ(q, iωm). (6.73)

In particular, the local spin fluctuation is given by

〈(Δsα
j )2〉 = 1

N2

∑

q

〈Δsα(q)Δsα(−q)〉 = 1

g2μ2
B

1

N2

T

h̄

∑

qm

χαα(q, iωm).

On the other hand, taking t = 0 in the fluctuation-dissipation theorem (2.51), we have

g2μ2
B

〈
Δsα(q)Δsβ(q)

〉 = 1

2π

∫
ih̄

e−h̄ω/T − 1

[
χαβ(q, ω) − (χβα(q, ω)

)∗] dω. (6.74)
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Fig. 6.1 Magnetic susceptibility
χαβ(q, ω) measurement and
calculation methods

Comparing (6.73) and (6.74), we write

T

h̄

∑

m

χαβ(q, iωm) = 1

2π

∫
ih̄

e−h̄ω/T − 1

[
χαβ(q, ω) − (χβα(q, ω)

)∗] dω.

In particular, for α = β, we have

T

h̄

∑

m

χαα(q, iωm) = − 1

π

∫
h̄

e−h̄ω/T − 1
Imχαα(q, ω) dω. (6.75)

As we have shown, imaginary part of the susceptibility is an odd function of frequency (2.10). Therefore, changing variables
ω → −ω in the integral (6.75) and using (2.10), we obtain the sum rule over the even “frequencies”:

T

h̄

∑

m

χαα(q, iωm) = 1

π

∫
h̄

eh̄ω/T − 1
Imχαα(q, ω) dω.

Measurement and Calculation Methods
Closing this chapter, we briefly discuss methods for measuring and calculating the magnetic susceptibility (Fig. 6.1).
Experimentally the magnetic susceptibility χαβ(q, ω) can be obtained from the neutron scattering measurements, which
we discuss in Chaps. 14 and 15. One method for calculating χαβ(q, ω) is the equation of motion method. In practice the
equation of motion method is rarely used beyond the RPA (for ferromagnets with localized spins, see, e.g. [14, 15]). Instead
of the dynamic susceptibility χαβ(q, ω), we can calculate the thermodynamic susceptibility χαβ(q, iωm) and use the analytic
continuation (6.68). There are two general methods of calculating the thermodynamic susceptibility χαβ(q, iωm). The first
method is the diagram technique and the second one is the functional integral method.

The diagram technique is a perturbation method based on Wick’s theorem (see, e.g. [3, 8–10]). It has been used for weak
ferromagnets, which have small Curie temperature compared with the Fermi energy (TC 	 εF). In weak ferromagnets one
can go beyond the RPA by applying the Fermi liquid theory [16] or self-consistent renormalization (SCR) theory [17] and
their generalizations (for a review, see, e.g. [18–20]); both approaches are phenomenological. In magnetism of metals at
finite temperature these theories are insufficient.

To obtain a quantum-statistical description of metallic magnetism at finite temperatures the functional integral method is
applied. The method is based on the Stratonovich-Hubbard transformation (see Chap. 8), and diagrams are used solely for
pictorial purposes.
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7Spin Fluctuation Theory in the Ising Model

Theories come and go, but examples stay forever. (I.M. Gelfand)

Here we illustrate spin fluctuation theory in the example of the Ising model (see, e.g. [1,2]), where spins are treated classically
and the free energy has a simple analytic form. In spin fluctuation theory, we replace the pair interaction by the interaction of
spins with a fluctuating exchange field. The calculation of magnetic characteristics, such as magnetization or local moment,
is carried out in two steps. Firstly, we calculate the magnetic characteristic in the system of noninteracting spins with a
fixed exchange field configuration. Secondly, we average over all possible field configurations with the probability density
given by the free energy. Calculating the averages over field configurations requires an approximation of the free energy. The
simplest one leads to the mean-field theory, which neglects the feedback of the spin fluctuations on the mean field. The effect
of spin fluctuations on the mean field leads to a reduction of the Curie temperature. When the fluctuations become strong,
a discontinuous first-order phase transition can appear in the Gaussian approximation. By taking into account higher-order
terms of the free energy, we obtain the second-order phase transition, which is experimentally observed in metals (for details,
see [3, 4]).

7.1 Spins in the Fluctuating Field

The Hamiltonian of the Ising model is

H = −1

2

∑

jj ′
Jjj ′SjSj ′ , (7.1)

where Sj = ±1/2 is the spin at the site Rj of a three-dimensional crystal lattice and Jjj ′ = Jj−j ′ is the interaction coefficient
(Fig. 7.1). Using the cyclic boundary conditions, we write Hamiltonian (7.1) in the Fourier representation:

H = − 1

2N

∑

q

Jq|Sq|2, (7.2)

where q is the wavevector taking values in the Brillouin zone, N is the number of lattice sites, and the discrete Fourier
transform of an arbitrary function fj is defined by the formulae

fq =
∑

j

fj e−iqRj , fj = 1

N

∑

q

fqeiqRj . (7.3)

The partition function is given by
Z =
∑

S

e−H/T ≡ Tre−H/T ,
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Fig. 7.1 Sketch of a unit cell in
a three-dimensional crystal lattice
for the Ising model

where S = (S1, . . . , SN) is the spin configuration and Tr denotes the sum over 2N possible spin configurations of the system.
Using representation (7.2) of the Hamiltonian H as a sum of squares, we write the partition function as1

Z = Tr
∏

q

exp
( Jq

2NT
|Sq|2
)
. (7.4)

To calculate the partition function (7.4) we use the Stratonovich-Hubbard transformation [6,7], which consists in replacing
the pair interaction of spins with the interaction of spins with a fluctuating field V = (Vq1, . . . , VqN

). The key element of the
Stratonovich-Hubbard transformation is the identity

exp

(
A2

a

)
=
√

a

π

∫
exp
(−ax2 + 2Ax

)
dx, (7.5)

which is valid for any real A and a > 0. Applying identity (7.5) with a = 1/2 and A = 1
2Sq
√

Jq/(NT ), we obtain2

Z =
[∫

exp

(
−
∑

q

|zq|2
2

)
dz
]−1

Tr

[∫
exp

(
−
∑

q

|zq|2
2

+
√

Jq

NT

∑

q

Sqz−q

)
dz
]

(7.6)

(for details, see Appendix B.3.1). Introducing the new variable Vq = zq
√

NT Jq, which has dimensions of energy, we finally
come to

Z =
(∫

e−F0(V)/T dV
)−1 ∫

e−(F0(V)+F1(V))/T dV. (7.7)

Here,

F0(V) = 1

2N

∑

q

|Vq|2
Jq

(7.8)

is the energy of the field and
F1(V) = −T ln Tre−H(V)/T (7.9)

is the free energy of the system of the noninteracting spins in the field V, where

H(V) = − 1

N

∑

q

SqV−q (7.10)

is the Hamiltonian of this system. Since the spins are now independent, the free energy F1(V) can be calculated explicitly.
Rewriting Hamiltonian (7.10) in the site representation

H(V) = −
∑

j

SjVj , (7.11)

1Similar results in the Heisenberg model require additional approximations in the functional integral method [5].
2Here, the Fourier coefficients Jq are real. They can all be made positive by shifting energy of the system (7.2) by a constant amount, which is
proportional to

∑
q |Sq|2.
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we calculate the trace on the right-hand side of (7.9):

Tre−H(V)/T =
∑

S

exp

(∑

j

SjVj

T

)
=
∏

j

∑

Sj =±1/2

exp

(
SjVj

T

)
.

Thus, free energy (7.9) is given by

F1(V) = −T
∑

j

ln

(
2 cosh

(
Vj

2T

))
. (7.12)

In spin fluctuation theory, an observable 〈A〉 ≡ Tr(A e−H/T )/Tre−H/T is calculated by

〈A〉 =
∫

A(V) p(V) dV, (7.13)

where the quantum-mechanical average A(V) in the system of independent spins in the presence of the field V is defined as

A(V) = Tr(A e−H(V)/T )
/

Tre−H(V)/T ,

and the probability density p(V) is given by

p(V) ∝ exp(−F(V)/T ), F (V) = F0(V) + F1(V). (7.14)

One of the main advantages of spin fluctuation theory is the possibility to express the mean spin and spin correlators in
terms of the mean field and field correlators. The mean spin

S̄ = Z−1Tr(Sj e−H/T )

and mean field

V̄ =
(∫

e−F(V)/T dV
)−1
∫

Vj e−F(V)/T dV

are related by the formula V̄ = J0S̄, where J0 is the zeroth Fourier coefficient, and the spin and field correlators are related
by the formula

〈|ΔSq|2〉 = 1

J 2
q

〈|ΔVq|2〉 − NT

Jq
,

where ΔSq = Sq − 〈Sq〉 and ΔVq = Vq − 〈Vq〉 (for details, see [8, Appendix A]). Calculating partition function (7.7) and
mean values (7.13) in practice requires the Gaussian approximation.

7.2 Approximations of the Free Energy

7.2.1 Quadratic Part of the Free Energy

The Gaussian approximation of the fluctuating field V with probability density (7.14) is defined as follows. The function
F(V) is replaced with the translation-invariant quadratic form

F (2)(V) =
∑

jj ′
ΔVjAj−j ′ΔVj ′ =

∑

q

ΔVqAqΔV−q,

which determines the Gaussian fluctuating field with the probability density

p(2)(V) = 1

Z(2)
e−F (2)(V)/T , Z(2) =

∫
e−F (2)(V)/T dV.
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The simplest Gaussian approximation is given by the saddle-point method (see, e.g. [9]). The mean field V̄ is obtained
from the local minimum condition, and the value of Aq is determined by the second derivative of the function F(V) at the
mean field:

∂F (V̄)

∂Vj

= 0, Aq = 1

2

∂2F(V̄)

∂Vq∂V−q
. (7.15)

Using formula (7.12) in the first relation of (7.15), we obtain the mean-field equation

V̄ = J0

2
tanh

(
V̄

2T

)
. (7.16)

At small T this equation has a stable nonzero solution V̄ > 0, which corresponds to the ferromagnetic state. Paramagnetic
solution V̄ = 0 always exists, and it is stable at high T . At the phase transition from the ferro- to paramagnetic state,
the two solutions merge. That means that the functions on the left- and right-hand sides of Eq. (7.16) are tangent to each
other at V̄ = 0. From the tangency condition, the phase transition temperature in the mean-field theory is T MF

C = J0/4.
For fluctuating field integral (7.13), the saddle-point method gives 〈A〉 = A(V̄), where V̄ = (V̄ , . . . , V̄ ) is the mean-field
configuration. The mean-field value is the leading term in the asymptotic expansion of the integral (7.13) as T → 0.

The optimal Gaussian approximation [10–12] of the fluctuating field is applicable in a wider range of temperatures. The
parameters V̄ and Aq of the optimal Gaussian approximation are obtained from the system of nonlinear equations (see
Appendix B.4.2) 〈

∂F (V)

∂Vq

〉

(2)

= 0, Aq = 1

2

〈
∂2F(V)

∂Vq∂V−q

〉

(2)

, (7.17)

where the mean values are calculated by the formula

〈. . .〉(2) =
∫

(. . .)p(2)(V) dV.

In the Ising model, system of nonlinear equations (7.17) can be written as

V̄ = −J0

〈
∂F1(V)

∂Vj

〉

(2)

, Aq = 1

2N

(
1

Jq
+
〈
∂2F1(V)

∂V 2
j

〉

(2)

)
, (7.18)

where the mean values are independent of the index j .

7.2.2 Higher-Order Terms of the Free Energy

At a high temperature, it is necessary to consider the fourth-order terms in the expansion of the function F(V), as is done in
the Landau phase transition theory (see, e.g. [13, 14]):

F(V) ≈ F(Ṽ) +
∑

q

∂F (Ṽ)

∂Vq
ΔVq + 1

2!
∑

qq′

∂2F(Ṽ)

∂Vq∂Vq′
ΔVqΔVq′

+ 1

4!
∑

pp′qq′

∂4F(Ṽ)

∂Vp∂Vp′∂Vq∂Vq′
ΔVpΔVp′ΔVqΔVq′ , (7.19)

where ΔVq = Vq−Ṽq. Since the Gaussian integral are the only ones that can be calculated in practice, we need to incorporate
the fourth-order terms into the quadratic approximation.

We use the Gaussian decoupling, which is based on Wick’s theorem (for details, see [3]). As a result, expansion (7.19) is
written as
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F(V) ≈
∑

q

∂F (Ṽ)

∂Vq
ΔVq

+ 1

2

∑

qq′

(
∂2F(Ṽ)

∂Vq∂Vq′
+ 1

4

∑

p

∂4F1(Ṽ)

∂Vp∂V−p∂Vq∂Vq′
〈ΔVpΔV−p〉(2)

)
ΔVqΔVq′ . (7.20)

To obtain the parameters of the renormalized Gaussian approximation, V̄ and Aq, we use Eq. (7.17). The first equation in
system (7.17) gives the same first equation as in the optimal Gaussian approximation (7.18). In second equation in (7.17),
we obtain an additional term that depends on the 4th derivative

∂4F1(V)

∂Vp∂V−p∂Vq∂V−q
= 1

N4

∑

j

∂4F1(V)

∂V 4
j

.

Substituting the latter in (7.20), from Eq. (7.17) we finally obtain

V̄ = −J0

〈
∂F1(V)

∂Vj

〉

(2)

, Aq = 1

2N

(
1

Jq
+
〈
∂2F1(V)

∂V 2
j

〉

(2)

+ D

4

〈
∂4F1(V)

∂V 4
j

〉

(2)

)
, (7.21)

where the mean values are independent of the index j , and the local (single-site) fluctuation D = 〈ΔV 2
j 〉(2) is given by the

formula

D = 1

N2

∑

q

〈|ΔVq|2〉(2). (7.22)

7.3 Local Fluctuating Field

The Gaussian field V is completely determined by the mean field V̄ and coefficients Aq, or alternatively by V̄ and mean-
square fluctuations 〈|ΔVq|2〉(2) = T/(2Aq). But calculating those N +1 quantities for each T is an unnecessary complicated
procedure for calculating the average magnetic characteristics such as the magnetization and local magnetic moment.
Because these characteristics depend only on the mean field and the local fluctuation, the average 〈. . . 〉(2) in the equations
of the optimal Gaussian approximation (7.18) is replaced with the average with the probability density function

p(Vj ) = 1√
2πD

exp

(
− (Vj − V̄ )2

2D

)
. (7.23)

As a result, the fluctuating fields at different sites become independent and identically distributed, but their parameters V̄ and
D are functions of all mean-field fluctuations 〈|ΔVq|2〉(2). Taking (7.18) and (7.22) into account, we have

D = T

N

∑

q

Jq

(
1 + Jq

〈
∂2F1(V)

∂V 2
j

〉)−1

. (7.24)

Because we are interested in the qualitative character of the temperature dependence, a reasonable simplification is achieved
if we replace the interaction coefficients Jq in (7.24) with a mean value J (we thus avoid the summation over the Brillouin
zone). The values of V̄ and D are then determined by the system of equations

V̄ = −J0

〈
∂F1(V)

∂Vj

〉
, D = JT

(
1 + J

〈
∂2F1(V)

∂V 2
j

〉)−1

, (7.25)

where the average 〈. . . 〉 is calculated with probability density (7.23). Similarly, we find the second equation in system (7.21)
for the renormalized Gaussian approximation:
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D = JT

[
1 + J

(〈
∂2F1(V)

∂V 2
j

〉
+ D

4

〈
∂4F1(V)

∂V 4
j

〉) ]−1

. (7.26)

7.4 Magnetic Phase Diagrams

We write the equations of the optimal and renormalized Gaussian approximations in an explicit form, using free energy
formula (7.12). System of equations (7.25) is written as

V̄ = J0

2

〈
tanh

(
V

2T

)〉
, D = JT

(
1 − J

4T

〈
cosh−2

(
V

2T

)〉)−1

, (7.27)

and for Eq. (7.26) we have

D = JT

{
1 − J

4T

[ 〈
cosh−2

(
V

2T

)〉

− D

8T 2

(
1 − 4

〈
tanh2
(

V

2T

)〉
+ 3

〈
tanh4
(

V

2T

)〉)]}−1

.

(For brevity, we omit the index j here and hereafter.)
The ratio 0 ≤ J/J0 ≤ 1 determines the character of the fluctuations. When the interaction is independent of the distance

between spins (Jj−j ′ = J0/N), using formula (7.3), we obtain Jq = J0δq0 and J = J0/N (weak fluctuations). When
N → ∞, we have J/J0 → 0, and the limit case J = 0 corresponds to the mean-field theory. In contrast, when only
nearest-neighbouring spins interact, we have Jj−j ′ ≈ J0δj,j ′ . Hence, using formula (7.3), we find that Jq ≈ J and therefore
J/J0 ≈ 1 (strong fluctuations).

As can be seen in Fig. 7.2, by taking fluctuations into account in the optimal Gaussian approximation, we decrease the
phase transition temperature compared with the mean-field theory. But in the case of weak fluctuations J/J0 = 0.4, the
qualitative behaviour of the temperature dependence V̄ (T ) still has the second-order phase transition.

In the case of strong fluctuations J/J0 = 0.8, the solution of the system of the optimal Gaussian approximation becomes
nonunique (Fig. 7.3a): in addition to the ferromagnetic and paramagnetic solutions, an intermediate solution appears at
high temperatures. Hence, as the temperature increases from zero, a discontinuous first-order phase transition from the
ferromagnetic to the paramagnetic state occurs. With the reverse change of temperature, a jump from the paramagnetic up to
the ferromagnetic state occurs at a smaller temperature value, and hence we have a temperature hysteresis. In this temperature
interval the mean field V̄ is used as a parameter, and the system of nonlinear equations (7.27) is solved with respect to the

a) b)

Fig. 7.2 The mean field V̄ and local fluctuation D as functions of the reduced temperature T/T MF
C in (a) the mean-field theory and (b) the optimal

Gaussian approximation in the case of weak fluctuations, J/J0 = 0.4
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a) b)

Fig. 7.3 The mean field V̄ and local fluctuation D as functions of the reduced temperature T/T MF
C (a) in the optimal and (b) in the renormalized

Gaussian approximations in the case of strong fluctuations, J/J0 = 0.8

local fluctuation D and temperature T . There is only one solution (D, T ) of the system at each V̄ (for details of the numerical
methods see [8]).

Finally, the fourth-order terms in the renormalized Gaussian approximation eliminate the hysteresis in the case of strong
fluctuations J/J0 = 0.8 and give the second-order phase transition (Fig. 7.3b).

Analyzing Eqs. (7.25) and (7.26), we can explain the appearance of the first-order phase transition in the optimal Gaussian
approximation and its disappearance in the renormalized Gaussian approximation.3 Indeed, in the presence of a homogeneous
magnetic field h (in energy units) the mean-field V̄ = J0S̄ is oriented in the opposite direction to h. Hence, S̄ depends on
h − V̄ (h), and the mean-field equation becomes

V̄ (h) = J0S̄(h − V̄ (h)).

Differentiating both sides with respect to h, we obtain the enhanced magnetic susceptibility:

− dS̄

dh

∣∣∣∣
h=0

= χ0

1 − J0χ0
, (7.28)

where

χ0 = −∂S̄

∂h

∣∣∣∣
h=0

= −
〈

∂2F1(V)

∂V 2
j

〉
(7.29)

is the unenhanced magnetic susceptibility (with constant V̄ ) of noninteracting spins. At the Curie temperature TC, the
enhanced susceptibility (7.28) tends to infinity, and the condition for the phase transition from the ferromagnetic to the
paramagnetic state becomes

1 − J0χ0 = 0. (7.30)

To find the order of the phase transition, we investigate the derivative dV̄ /dD as T approaches TC from the left.
Differentiating mean-field equation (7.25) with respect to D and taking (7.23) and (7.29) into account, we obtain

dV̄

dD
= − J0

2 (1 − J0χ0)

〈
∂3F1(V)

∂V 3
j

〉
. (7.31)

To find the average of the third derivative of the free energy, we write fluctuation (7.26) in the form

D = JT

1 − J (1 + η)χ0
,

3For magnets with itinerant electrons, see [11].
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where η is the higher-order correction coefficient. Differentiating this expression with respect to V̄ and taking (7.23) and
(7.29) into account, we obtain

dD

dV̄
= − J 2(1 + η)T

(1 − J (1 + η)χ0)2

〈
∂3F1(V)

∂V 3
j

〉
. (7.32)

Equating (7.31) and reciprocal of (7.32), we finally obtain

dV̄

dD
= −
√

J0

2(1 − J0χ0)

(1 − J (1 + η)χ0)

J
√

(1 + η)T
. (7.33)

In the case of weak fluctuations J 	 J0, at phase transition point (7.30), we have

dV̄

dD
= − c√

1 − J0χ0
= −∞, c > 0. (7.34)

Therefore, V̄ continuously decreases to zero as T approaches TC from the left, and a second-order phase transition occurs.
In the case of strong fluctuations, J ≈ J0, the situations in the optimal Gaussian approximation and renormalized Gaussian

approximation differ.
Consider the Gaussian approximation (η = 0) first. At the phase transition point, expression (7.33) becomes

dV̄

dD
= −
√

1 − J0χ0

2J0TC
= 0.

As a result, the mean field remains at a nonzero level as T approaches TC from the left. At the point T = TC itself the
mean-field jumps to V̄ = 0, and we have the first-order phase transition.

In the renormalized Gaussian approximation (η < 0), the fluctuations are weakened by the fourth-order terms, i.e. 1 −
J (1 + η)χ0 is nonzero in formula (7.33), and we come to expression (7.34). This leads to the second-order phase transition,
which is experimentally observed in metals.
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8Functional Integral Method

The functional integral method has won us some ground in the long struggle to understand the magnetism of iron and nickel... Present theories
could be improved by a proper treatment of the multi-orbital aspect of the d band. (J. Hubbard, in Electron Correlation and Magnetism in
Narrow-Band Systems, Springer, Berlin, 1981)

To go beyond the RPA in spin fluctuation theory we use the functional integral method. The method is based on the
Stratonovich-Hubbard transformation, which requires a special form of the model Hamiltonian. In Sect. 8.1, we introduce
a multiband Hubbard Hamiltonian and express it in terms of the atomic charge and spin [1]. In Sect. 8.2 we explain
the functional integral method itself. In Sect. 8.3 we obtain expressions for the free energy, mean spin and spin-density
correlator.

8.1 Multiband Hubbard Hamiltonian

The main assumption about the model Hamiltonian is that d electrons interact only at the same site. The first model of
this kind was the tight-binding model with intraatomic exchange interaction, known as the Stoner model [2, 3]. A single-
band version of this model, called the Hubbard model [4], was described in Chap. 4. In the static single-site spin fluctuation
theory [5–9], the tight-binding approximation of the one-electron part was replaced by a model density of states but still the
single-band Hubbard Hamiltonian was used (for an overview, see, e.g. [10]). In the DSFT we use the real density of states to
describe the one-electron part and multiband Hubbard Hamiltonian to describe the interaction part.

8.1.1 Intraatomic Interaction and Hund’s Rule

In the interaction part of the Hamiltonian HI, we keep only the intraatomic Coulomb U and exchange J interactions (the
same for all degenerate d bands).1 Our goal is to express HI in terms of the atomic charge and spin operators:

nj =
∑

νσ

a
†
νjσ aνjσ =

∑

νσ

nνjσ , sj =
∑

νσσ ′

(1

2
σ
)

σσ ′a
†
νjσ aνjσ ′ . (8.1)

We consider the second-quantized form of the interacting electrons Hamiltonian (3.35). As the first step, we neglect all
the interaction coefficients (3.37) but the Coulomb interaction

U = Uνν′νν′
iiii =

∫∫
|wν′i (r)|2|w∗

νi(r
′)|2 e2

|r − r′| dr dr′ (8.2)

1Although the interatomic terms are not necessarily negligible, this simplification should make subsequent theoretical treatment exceedingly simple
without losing the most essential parts of the physics (see the discussion in [10]).
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and exchange interaction

J = Uνν′ν′ν
iiii =

∫∫
w∗

ν′i (r)w
∗
νi(r

′) e2

|r − r′|wν′i (r
′)wνi(r) dr dr′. (8.3)

Then the second term on the right-hand side of (3.35) becomes

HI = 1

2
U
∑

νiσσ ′
a

†
νiσ a

†
νiσ ′aνiσ ′aνiσ + 1

2
U
∑

ν �=ν′
iσσ ′

a
†
νiσ a

†
ν′iσ ′aν′iσ ′aνiσ

+1

2
J
∑

ν �=ν′
iσσ ′

a
†
νiσ a

†
ν′iσ ′aνiσ ′aν′iσ . (8.4)

Using anticommutation relations (3.12) as in the single-band case (4.2), we write the first term on the right-hand side of (8.4)
as

1

2
U
∑

νiσσ ′
a

†
νiσ a

†
νiσ ′aνiσ ′aνiσ = 1

2
U
∑

νiσ

nνiσ nνiσ̄ , (8.5)

where σ̄ means the opposite spin to σ . Similarly, the second term on the right-hand side of (8.4) becomes

1

2
U
∑

ν �=ν′
iσσ ′

a
†
νiσ a

†
ν′iσ ′aν′iσ ′aνiσ = 1

2
U
∑

ν �=ν′
iσσ ′

nνiσ nν′iσ ′ . (8.6)

The third term of (8.4) is transformed as follows:

1

2
J
∑

ν �=ν′
iσσ ′

a
†
νiσ a

†
ν′iσ ′aνiσ ′aν′iσ = −1

2
J
∑

ν �=ν′
iσσ ′

a
†
νiσ aνiσ ′a†

ν′iσ ′aν′iσ

= −1

2
J
∑

ν �=ν′,iσ

(
a

†
νiσ aνiσ a

†
ν′iσ aν′iσ + a

†
νiσ aνiσ̄ a

†
ν′iσ̄ aν′iσ

)
. (8.7)

Using the spin-flip operators
s+
νi = a

†
νi↑aνi↓, s−

νi = a
†
νi↓aνi↑,

we have ∑

σ

a
†
νiσ aνiσ̄ a

†
ν′iσ̄ aν′iσ = s+

νis
−
ν′i + s−

νis
+
ν′i .

Since s+
νi and s−

ν′i for ν �= ν′ commute, we write (8.7) as

1

2
J
∑

ν �=ν′
iσσ ′

a
†
νiσ a

†
ν′iσ ′aνiσ ′aν′iσ = −1

2
J
∑

ν �=ν′,iσ
nνiσ nν′iσ − J

∑

ν �=ν′,i
s+
νis

−
ν′i . (8.8)

Substituting formulae (8.5), (8.6) and (8.8) in the right-hand side of (8.4), we obtain

HI = 1

2
U
∑

νν′iσ
nνiσ nν′iσ̄ + 1

2
(U − J )

∑

ν �=ν′,iσ
nνiσ nν′iσ − J

∑

ν �=ν′,i
s+
νis

−
ν′i . (8.9)

The operator s+
νj s

−
ν′j , ν �= ν′, flips spins of two electrons in different bands, keeping the total spin of the atom sj unchanged.

Since the charge nj and spin sj of an atom are the only variables we are going to consider, the simultaneous spin flip is
neglected. Then
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HI = 1

2
U
∑

νν′jσ

nνjσ nν′j σ̄ + 1

2
(U − J )

∑

ν �=ν′,jσ

nνjσ nν′jσ . (8.10)

Formula (8.10) can be interpreted as follows. If on the average there are two electrons at the site j in the bands ν and ν′
with the opposite spins σ and σ̄ , then the average of their interaction energy

1

2
Unνjσ nν′j σ̄ + 1

2
Unν′j σ̄ nνjσ

is equal to U . Similarly, if on the average two electrons at the site j in the bands ν and ν′ have the same spin σ , they
contribute to the average of the interaction energy (8.10) only if the bands are different: ν �= ν′ (in full agreement with the
Pauli exclusion principle). In this case, the average of their interaction energy

1

2
(U − J )nνjσ nν′jσ + 1

2
(U − J )nν′jσ nνjσ

is equal to U − J . This leads to a Hund’s rule of coupling the spins at the same site: parallel spin configu-
rations have lower energy than antiparallel. Thus, the intraatomic exchange correlation favours large local spin
in metals.

In ferromagnetic metals and alloys, the 3d shell holds 10 electrons as a maximum. According to Hund’s rule, the first 5
electrons with the same spin tend to populate all 5 different d bands. The rest of the 3d electrons must have the opposite
spin. Therefore, the magnetization (per site) is equal to 10 minus the average number of 3d electrons. For iron this is about
10 − 7.3 = 2.7. A similar calculation gives 1.3 for cobalt and 0.6 for nickel. These numbers are in reasonable agreement
with the experiment (see Table 10.2). The above rule regarding magnetization holds remarkably well for the whole series of
ferromagnetic binary alloys of iron, cobalt and nickel, and some neighbouring elements [11, 12].

8.1.2 Atomic Charge and Spin Density

The first term on the right-hand side of (8.10) appears already in single-band SFT models [5–9]. Indeed, using the notation
njσ =∑ν nνjσ , we come to

1

2
U
∑

νν′jσ

nνjσ nν′j σ̄ = 1

2
U
∑

jσ

njσ njσ̄ = U
∑

j

nj↑nj↓.

The second term in expression (8.10) can be written as

1

2
(U − J )

∑

ν �=ν′,jσ

nνjσ nν′jσ = 1

2
(U − J )

∑

jσ

(
njσ njσ −

∑

ν

nνjσ nνjσ

)
,

Approximating
∑

ν

nνjσ nνjσ ≈ 1

Nd

∑

νν′
nνjσ nν′jσ = 1

Nd
njσ njσ ,

where Nd = 5 is the number of degenerate d band in the ferromagnetic metals, we obtain

1

2
(U − J )

∑

ν �=ν′,jσ

nνjσ nν′jσ = 1

2
(U − J )

Nd − 1

Nd

∑

jσ

njσ njσ .

Hence the interaction term (8.10) becomes
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HI = U
∑

j

nj↑nj↓ + 1

2
(U − J )

Nd − 1

Nd

∑

jσ

n2
jσ . (8.11)

There are several alternative forms of expressing HI as a sum of squares of the charge and spin operators. The first form
is obtained using the equalities

nj↑nj↓ = 1

4
n2

j − (sz
j )

2,
∑

σ

n2
jσ = 1

2
n2

j + 2(sz
j )

2, (8.12)

which follow from the expressions

1

4
n2

j = 1

4
(n2

j↑ + n2
j↓) + 1

2
nj↑nj↓,

(sz
j )

2 = 1

4
(n2

j↑ + n2
j↓) − 1

2
nj↑nj↓. (8.13)

Substituting equalities (8.12) into formula (8.11), we come to

HI =
∑

j

(
u0

4
n2

j − uz(s
z
j )

2
)

, (8.14)

where

u0 = (2Nd − 1)U − (Nd − 1)J

Nd
, uz = U + (Nd − 1)J

Nd
. (8.15)

In the ferromagnetic metals we have Nd = 5, and the value of the interaction constant

uz = U + 4J

5
(8.16)

turns out to be about 1 eV (see Table 8.1).
To obtain a spin-rotationally invariant representation of HI, we need an expression for the square of the spin density

operator s2
j . Calculating (sx

j )2 and (s
y
j )2 similar to (8.13), we obtain

s2
j = 3(sz

j )
2 +
∑

ν �=ν′
s+
νj s

−
ν′j .

Discarding the last term just as in formula (8.9), we come to the approximate relation (sz
j )

2 ≈ 1
3 s2

j . From (8.14) we
immediately obtain

Table 8.1 The Coulomb interaction U and exchange inter-
action J constants used by Kakehashi and Patoary [13] and
interaction constant uz calculated by formula (8.16) in the
ferromagnetic metals

Metal U (eV) J (eV) uz (eV)

Fe 2.30 0.90 1.18

Co 3.33 0.94 1.42

Ni 3.01 0.90 1.32
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HI =
∑

j

(
u0

4
n2

j − uz

3
s2
j

)
. (8.17)

Similarly, using the approximate relation (sz
j )

2 ≈ (sj ej )
2, where ej is an arbitrary unit vector, we come to

HI =
∑

j

(
u0

4
n2

j − uz(sj ej )
2
)

. (8.18)

In the single-band model, approximate formulae (8.14), (8.17) and (8.18) reduce to (4.3), (4.4) and (4.5), respectively.
An exact evaluation of the partition function must always give the same result, no matter which particular form of the

interaction part we choose. But the exact solution is neither possible nor desired, because we start with an approximate
Hamiltonian and seek for a generalization of the Stoner theory (see, e.g. [14, 15]).

Due to approximations in the SFT, formulae (8.14), (8.17) and (8.18) lead to different results. Expressions (8.14) and
(8.18) are not spin-rotationally invariant. In the latter, the rotational invariance can be restored by integrating the partition
function over all directions of each ej (see, e.g. [5, 6, 14]). However, even after that, the form (8.18) does not allow one to
perform Gaussian integrals in the DSFT.2 We use the rotationally spin-invariant form of the multiband Hubbard Hamiltonian
(8.17). At T = 0 this form leads to the Stoner equation with u = uz/3 instead of uz, just as in the single-band case [5, 14].
Therefore, in SFT the value of u is often obtained from the Stoner equation with the known magnetic moment mz(0) at
T = 0.

8.2 Functional Integral over Fluctuating Fields

8.2.1 Thermodynamic “Time” Dependence

Recall that the thermodynamics of the system is determined by the grand partition function (2.25):

Ξ = Tre−H′/T , H′ = H′
0 + HI. (8.19)

In classical statistical mechanics, H′
0 and HI are ordinary functions and hence e−H′/T = e−H′

0/T e−HI/T . Then we could
apply the Stratonovich-Hubbard transformation to e−HI/T just as we did in the Ising model.

In quantum statistical mechanics, the operators H′
0 = H0−μNe and HI do not commute, therefore the exponential e−H′/T

in expression (8.19) cannot be transformed to the product of the exponentials e−H′
0/T and e−HI/T . One can overcome this

difficulty by making use of the “time”-ordering trick (for details, see Appendix B.1):

Ξ = Tr

[
e−H′

0/T Tτ exp

(
−
∫ 1/T

0
HI(τ ) dτ

)]
, (8.20)

where
HI(τ ) = eH

′
0τ HI e−H′

0τ (8.21)

is the “interaction” representation with respect to the “time” τ ∈ [0, 1/T ] (from now on we set h̄ = 1 unless the contrary is
explicitly stated). The “time”-ordering operator Tτ rearranges operators in the product in such a way that the “times” of the
operators decrease from left to right. Then the “time”-ordered exponential can be understood as the limit [16]

Tτ exp

(
−
∫ 1/T

0
HI(τ ) dτ

)
= lim

N→∞ exp
(−HI(τN)Δτ

)
. . . exp

(−HI(τ1)Δτ
)
,

2Instead of
∏

j DVj in the functional integral (8.25), which we obtain using (8.17), the form (8.18) leads to
∏

j (1/V 2
j )DVj . This form is tractable

only in the single-site static approximation that does not require the Gaussian approximation.
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where τn = n/(NT ) and Δτ = 1/(NT ). Thus, it is the quantum nature of the system that brings in the dynamics. The
classical approach in the functional integral method leads to the static approximation.

8.2.2 Electrons in the Fluctuating Field

In the Stoner mean-field theory the interaction between electrons is understood as the interaction with a spin-dependent
exchange field. This leads to a rigid shift of spin-up and spin-down electron DOSs. The nature of the exchange field postulated
by the Stoner model is illustrated schematically in Fig. 8.1, left. The exchange field is the same at all sites,3 has its maximum
value at T = 0, decreases as T increases and finally becomes zero at and above the Curie temperature TC.

The SFT recognizes that the exchange field at a site depends upon the spin at that site, which is a vector quantity. Therefore,
the exchange field can vary both in direction and absolute value from site to site [5, 6, 14]. This opens up the possibility that
above TC the exchange fields may not vanish but produce a zero magnetization (Fig. 8.1, right).

The picture presented at Fig. 8.1 corresponds to a classical treatment of spins as vectors in the three-dimensional space.
Due to the quantum nature of spin, the exchange field depends on an additional “dynamic” variable. As a result, in the DSFT
the exchange field fluctuates both in space and in “time”. This leads to important differences with the static (classical) SFT,
as we show in the following chapters.

We introduce the fluctuating exchange field by using the Stratonovich-Hubbard transformation [17,18]. The latter is based
on the following identity for an arbitrary operator A:

exp

(A2

a

)
=
√

a

π

∫
exp
(−ax2 + 2Ax

)
dx, a > 0. (8.22)

We expressed the interaction term HI as a sum of squares of the local charge and spin. If the exponential of a sum of operators
could be represented as a product of exponentials, we would apply the above identity to each exponential in the product. As
we showed in the previous section this is generally not the case, because the operators in the sum usually do not commute
with each other. Therefore, we apply the Stratonovich-Hubbard transformation to the “time”-ordered exponential.

Similar to the single-band case (6.24), we introduce the local density matrix ρj with the elements

ρjσσ ′ =
∑

ν

a
†
νjσ ′aνjσ .

From formulae (8.1) it immediately follows that the scalar component ρ0
j in the expansion (6.25) is equal to one half of the

local charge operator, and the vector component ρj is equal to the local spin operator:

ρ0
j = 1

2
nj , ρj = sj , (8.23)

Fig. 8.1 Sketch of the exchange
field configurations in the Stoner
model and in SFT at different
temperatures

T = 0

T < TC

T > TC

Stoner theory SFT

3By saying the “exchange field at a site” in the itinerant electron model, we mean the integral value of the exchange field over the Wigner-Seitz
cell centered at this lattice site.
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just as in formulae (6.26) and (6.27).
The interaction term HI is expressed as a sum of squares of the operators ρ

μ
j . Using the relations for the local density

matrix (8.23), we write expression (8.17) as

HI =
∑

j

(
u0
(
ρ0

j

)2 − uρ2
j

)
,

where u = uz/3. Substituting the latter in the grand partition function (8.20), we obtain4

Ξ = Tr

⎡

⎣e−H′
0/T Tτ exp

⎛

⎝−
∫ 1/T

0

∑

j

(
u0
(
ρ0

j (τ )
)2 − uρ2

j (τ )

)
dτ

⎞

⎠

⎤

⎦

= Tr

⎡

⎣e−H′
0/T Tτ exp

⎛

⎝
∑

j

∫ 1/T

0

(
u0
(
iρ0

j (τ )
)2 + uρ2

j (τ )

)
dτ

⎞

⎠

⎤

⎦ (8.24)

= Tr

⎡

⎣e−H′
0/T Tτ

∏

j

exp

(
u0

∫ 1/T

0

(
iρ0

j (τ )
)2 dτ

)
exp

(
u

∫ 1/T

0
ρ2

j (τ ) dτ

)⎤

⎦ ,

where the “time”-dependence means the “interaction” representation (8.21). Applying the Stratonovich-Hubbard transfor-
mation to the squares of the operators iρ0

j (τ ) and ρj (τ ) in the Hamiltonian (8.24), we obtain [5, 6, 19]

Ξ =
(∫

Tτ exp

(
−
∑

j

∫ 1/T

0

(
1

u
V2

j (τ ) + 1

u0
Φ2

j (τ )

)
dτ

) ∏

j

[
DVj (τ )DΦj(τ)

])−1

×
∫

exp

(
−
∑

j

∫ 1/T

0

(
1

u
V2

j (τ ) + 1

u0
Φ2

j (τ )

)
dτ

)
Tr

[
exp
(−H′

0/T
)

(8.25)

×Tτ exp

(
−
∫ 1/T

0

∑

j

2
(
Vj (τ )ρj (τ ) + iΦj(τ)ρ0

j (τ )
)

dτ

)]∏

j

[
DVj (τ )DΦj(τ)

]

(for details, see Appendix B.3.2). The integration variables Vj (τ ) and Φj(τ) are called the exchange and charge fields,
respectively.

Next, introducing the notation V 0
j (τ ) = iΦj(τ), we join the charge and exchange components into one 2 × 2 matrix

Vj (τ) = V 0
j (τ )σ 0 + Vj (τ )σ . Then the grand partition function (8.25) can be rewritten as the functional integral

Ξ =
(∫

e−F0(V )/T DV

)−1 ∫
e−(F0(V )+Ω1(V ))/T DV. (8.26)

Here DV ≡∏j [DVj (τ )DV 0
j (τ )] indicates the functional integration over Vj (τ ) and V 0

j (τ ) on the “time” interval [0, 1/T ],

F0(V ) = T

∫ 1/T

0

∑

j

(
1

u
V2

j (τ ) − 1

u0
(V 0

j (τ ))2
)

dτ (8.27)

is the energy of the fluctuating field V ≡ (V1(τ ), V2(τ ), . . . ) and

4The operators ρ
μ
j (τ ) can be treated as commuting as long as they are under the Tτ sign.
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Ω1(V ) = −T ln Tr

[
Tτ exp

(
−
∫ 1/T

0
H′(V ) dτ

)]
(8.28)

is the thermodynamic potential of electrons in the field, where

H′(V ) = H′
0 + 2
∑

j

(
Vj (τ )ρj (τ ) + V 0

j (τ )ρ0
j (τ )
)
. (8.29)

Rewriting the latter as
H′(V ) = H′

0 +
∑

j

Sp
(
Vj (τ)ρj (τ )

)

and substituting a+
jσ ajσ ′ for ρjσ ′σ , we see that H′(V ) = H′

0 + V̂ is the Hamiltonian of noninteracting electrons in the
“time”-dependent external field

V̂ =
∑

νjσσ ′
Vjσσ ′(τ )a

†
νjσ (τ )aνjσ ′(τ ). (8.30)

8.2.3 Charge Fluctuations

Charge fluctuations possess high energy and hence have a small probability. Therefore, the integrals over the charge field in
formula (8.26) can be evaluated by the saddle-point method (see, e.g. [20,21]). Namely, taking the functional derivative with
respect to V 0

j (τ ) of the integrand in (8.26), we obtain (for details, see Appendix B.2)

δ

δV 0
j (τ )

e−(F0(V )+Ω1(V ))/T =
(

2V 0
j (τ )

u0
− 2ρ0

j (V )

)
e−(F0(V )+Ω1(V ))/T , (8.31)

where

ρ0
j (V ) ≡ Tr

[
Tτ ρ0

j (τ ) exp
∫ 1/T

0

(
Ω1(V ) − H′(V )

)
dτ ′
]
.

Equating the functional derivative to zero, we come to the equation

V 0
j (τ ) = u0ρ

0
j (V ). (8.32)

(Note that both sides depend on V 0
j (τ ) here.) To calculate the grand partition function (8.26), one needs to solve equation

(8.32) with respect to the charge field V 0
j (τ ) and then substitute the result, as a function of the exchange field Vj (τ ), in

integral (8.26). Thus, our formulation of the theory takes into account both charge and spin fluctuations. However, the
characteristic time of the charge fluctuations is substantially smaller than that of the spin fluctuations and, upon averaging,
their contribution to magnetic characteristics is not significant. Moreover, the interatomic interaction, which is neglected in
the Hubbard model, leads to a considerable effective screening of the charge fluctuations. Therefore, here we take the charge
field V 0

j (τ ) to be equal to its average value

V̄ 0 = u0〈ρ0
j (V )〉.

Recalling that ρ0
j (V ) = nj (V )/2 and 〈nj (V )〉 = 〈nj 〉, we obtain

V̄ 0 = u0

2N

〈∑

j

nj (V )

〉
= u0

2
ne,
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where ne is the number of d electrons per atom.5 Substituting the mean value V̄ 0 for V 0
j (τ ) in (8.25), we have

Ξ =
(∫

Tτ exp

(
−
∫ 1/T

0

∑

j

(
1

u
V2

j (τ ) − 1

u0
(V̄ 0)2
)

dτ

)
DV

)−1

∫
Tτ exp

(
−
∫ 1/T

0

∑

j

(
1

u
V2

j (τ ) − 1

u0
(V̄ 0)2
)

dτ

)
(8.33)

×Tr

[
Tτ exp

(
−
∫ 1/T

0

(
H′

0 + 2
∑

j

[
Vj (τ )ρj (τ ) + V̄ 0ρ0

j (τ )
])

dτ

)]
DV.

It is easy to see that
2
∑

j

V̄ 0ρ0
j (τ ) = V̄ 0

∑

j

nj (τ ) = V̄ 0Ne(τ ).

Moreover, the operators
Ne =

∑

νkσ

nνkσ , H′
0 =
∑

νkσ

(εk − μ)nνkσ

commute, so that Ne(τ ) = eH
′
0τ Ne e−H′

0τ = Ne. Therefore,

2
∑

j

V̄ 0ρ0
j (τ ) = V̄ 0Ne,

and we can write the partition function (8.33) as

Ξ =
(∫

exp

(
− 1

u

∫ 1/T

0

∑

j

V2
j (τ ) dτ

)
DV

)−1 ∫
exp

(
− 1

u

∫ 1/T

0

∑

j

V2
j (τ ) dτ

)

× Tr

[
Tτ exp

(
−
∫ 1/T

0

(
H′

0 + V̄ 0Ne + 2
∑

j

Vj (τ )ρj (τ )
)

dτ

)]
DV.

The term V̄ 0Ne shifts the chemical potential in the original Hamiltonian H′
0:

H′
0 + V̄ 0Ne =

∑

νkσ

(εk − μ + V̄0)a
†
νkσ

aνkσ .

So, redefining the Hamiltonian H′
0, we can assume V 0

j (τ ) ≡ 0. In the absence of the charge component, the energy of the
fluctuating field (8.27) becomes

F0(V ) = T

u

∫ 1/T

0

∑

j

V2
j (τ ) dτ

= 1

2uNd
T

∫ 1/T

0

∑

νj

Sp(V 2
j (τ )) dτ ≡ 1

2uNd
Tr(V 2), (8.34)

and Hamiltonian (8.29) of the noninteracting electrons in the field V is given by

5In [5, 6] the charge and spin fluctuations were separated for the first time, and the dominant role of the spin fluctuations was emphasized. The
charge field V 0

j was determined from the charge neutrality condition ρ0
j (V ) = 〈ρ0

j (V )〉, as a function of the exchange field Vj .
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H′(V ) = H′
0 + 2
∑

j

Vj (τ )ρj (τ ). (8.35)

It is now easy to verify that the grand canonical average

〈A〉 = 1

Ξ
Tr
[
A e−H′/T

]

of a physical quantity described by the operator A can be calculated in two steps. First, we calculate the quantum-statistical
average A(V ) in the system of noninteracting electrons in the field:

A(V ) =
Tr

[
A Tτ exp

(
−
∫ 1/T

0
H′(V ) dτ

)]

TrTτ exp

(
−
∫ 1/T

0
H′(V ) dτ

)

= Tr

[
ATτ exp

∫ 1/T

0

(
Ω1(V ) − H′(V )

)
dτ

]
. (8.36)

Then we average over the fluctuating field configurations

〈A〉 =
∫

A(V )p(V )DV ≡ 〈A(V )〉, (8.37)

with the probability density

p(V ) =
(∫

e−(F0(V )+Ω1(V ))/T DV

)−1

e−(F0(V )+Ω1(V ))/T .

8.3 Exact Relations

8.3.1 Field-Dependent Thermodynamic Potential

In order to determine the thermodynamic potential Ω1(V ), we need to consider the fermion-type temperature Green function

Ḡνjj ′σσ ′(τ, τ ′) = −〈Tτ aνjσ (τ )a
†
νj ′σ ′(τ ′)

〉 ≡
{

−〈aνjσ (τ )a
†
νj ′σ ′(τ ′)

〉
, τ > τ ′,〈

a
†
νj ′σ ′(τ ′)aνjσ (τ )

〉
, τ < τ ′.

Here 〈. . .〉 is the grand canonical average of interacting electrons, a
†
νjσ (τ ) and aνjσ (τ ) are the Wannier creation-annihilation

operators in the “Heisenberg” representation and τ ∈ [0, 1/T ]. Note that this is the same Green function of interacting
electrons as (6.23) but with the additional band index. The reason why we use bar in the DSFT is the following.

According to formula (8.37) the Green function Ḡ can be expressed as the average of the Green function of noninteracting
electrons in the field G(V ) over the fluctuating field configurations [22, 23]:

Ḡνjj ′σσ ′(τ, τ ′) =
∫

Gνjj ′σσ ′(τ, τ ′, V ) p(V ) DV ≡ 〈〈Gνjj ′σσ ′(τ, τ ′)〉V 〉,

or briefly Ḡ = 〈G(V )〉, where
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Gνjj ′σσ ′(τ, τ ′, V ) = −
Tr

[
Tτ aνjσ (τ )a

†
νj ′σ ′(τ ′)Tτ exp

(
− ∫ 1/T

0 H′(V ) dτ ′′
)]

TrTτ exp
(
− ∫ 1/T

0 H′(V ) dτ ′′
)

≡ −〈Tτ aνjσ (τ )a
†
νj ′σ ′(τ ′)

〉
V
. (8.38)

In particular, the Green function in the absence of the fluctuating field (zeroth Green function) is

G0
νjj ′σ (τ, τ ′) = −

Tr
[
Tτ aνjσ (τ )a

†
νj ′σ (τ ′) e−H′

0/T
]

Tre−H′
0/T

≡ −〈Tτ aνjσ (τ )a
†
νj ′σ (τ ′)

〉
0. (8.39)

The Green function G(V ) satisfies the integral equation [22]

Gνjj ′σσ ′(τ, τ ′, V ) = G0
νjj ′σ (τ, τ ′)δσσ ′

+
∫ ∑

j ′′σ ′′
G0

νjj ′′σ (τ, τ ′′)Vj ′′σσ ′′(τ ′′)Gνj ′′j ′σ ′′σ ′(τ ′′, τ ′, V ) dτ ′′,

or in a compact operator form
G = G0 + G0V G, (8.40)

where G ≡ G(V ) and V is the diagonal matrix with the elements

Vjj ′σσ ′(τ, τ ′) = Vjσσ ′(τ )δjj ′δ(τ − τ ′).

Equation (8.40) is sometimes called the Dyson equation. (A simple derivation of the Dyson equation for a static field V is
given in Appendix A.1.1.)

A method to relate Ω1(V ) to the Green function G(V ) is to vary the strength of the field V (see [24] and references
therein). We consider the Hamiltonian

H′(λ) = H′
0 + λV̂ , (8.41)

where the interaction V̂ is given by (8.30) and parameter λ increases adiabatically from 0 to 1. Then H′(0) = H′
0 and

H′(1) = H′(V ). The thermodynamic potential corresponding to H′(λ) is given by

Ω1(λ) = −T ln Tr

[
Tτ exp

(
−
∫ 1/T

0
H′(λ) dτ

)]
.

The derivative of the potential with respect to λ is

∂Ω1(λ)

∂λ
=
〈
T

∫ 1/T

0
V dτ

〉

λ

, (8.42)

where the average 〈. . . 〉λ of an arbitrary operator O is defined as

〈
O
〉
λ

≡
Tr
(
O Tτ exp

(− ∫ 1/T

0 H′(λ) dτ
))

Tr
(
Tτ exp

(− ∫ 1/T

0 H′(λ) dτ
)) . (8.43)

Substituting (8.30) in (8.42), we have
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∂Ω1(λ)

∂λ
=
〈
T

∫ 1/T

0

(∑

νjσσ ′
Vjσσ ′(τ )a

†
νjσ (τ )aνjσ ′(τ )

)
dτ

〉

λ

= T

∫ 1/T

0

∑

νjσσ ′

(
Vjσσ ′(τ )

〈
a

†
νjσ (τ )aνjσ ′(τ )

〉
λ

)
dτ. (8.44)

Introducing the Green function
Gλ

νjjσσ ′(τ, τ ) = −〈Tτ aνjσ (τ ) a+
νjσ ′(τ + 0+)

〉
λ
,

we write (8.44) as
∂Ω1(λ)

∂λ
= T Tr(V Gλ).

Integrating over λ between 0 and 1, we obtain

Ω1(1) − Ω1(0) =
∫ 1

0
T Tr(V Gλ) dλ, (8.45)

where Ω1(1) = Ω1(V ) and Ω1(0) = −T ln Tr exp(−H′
0/T ).

The Green function Gλ satisfies the equation similar to (8.40):

Gλ = G0 + λG0V Gλ.

Solving this equation for Gλ yields
Gλ = (1 − λG0V )−1G0. (8.46)

Substituting in (8.45), we obtain

Ω1(1) − Ω1(0) = T Tr
∫ 1

0
(1 − λG0V )−1G0V dλ

= −T Tr
∫ 1

0

d

dλ
ln(1 − λG0V ) dλ = −T Tr ln(1 − G0V ). (8.47)

From (8.46) at λ = 1 we have 1 − G0V = G0(G(V ))−1. Substituting and using formula (A.20):

Tr ln(AB) = Tr ln A + Tr ln B,

which is valid for any Hermitian matrices A and B, we finally obtain [24]

Ω1(V ) = −T ln Tr e−H′
0/T − T Tr ln G0 + T Tr ln G(V ). (8.48)

Now, we proceed to the canonical ensemble, replacing the grand partition function (8.26) by the canonical partition
function

Z =
(∫

e−F0(V )/T DV

)−1 ∫
e−F(V )/T DV, (8.49)

where F(V ) = F0(V )+F1(V ). Using formula (2.26) that relates the thermodynamic potential with the free energy, in place
of (8.48) we have

F1(V ) = −T ln Tr e−H0/T − T Tr ln G0 + T Tr ln G(V ). (8.50)

The canonical ensemble average can be calculated by the same formula (8.37):
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〈A〉 =
∫

A(V )p(V )DV ≡ 〈A(V )〉. (8.51)

Here

A(V ) =
Tr

[
A Tτ exp

(
− ∫ 1/T

0 H(V ) dτ
)]

TrTτ exp
(
− ∫ 1/T

0 H(V ) dτ
) = Tr

[
A Tτ exp

∫ 1/T

0

(
F1(V ) − H(V )

)
dτ

]
(8.52)

and the probability density of the fluctuating field V is given by

p(V ) = Q−1 e−F(V )/T , (8.53)

where

Q =
∫

e−F(V )/T DV

is the normalizing factor.

8.3.2 Mean Spin and Spin-Density Correlator

The functional integral formalism allows to relate the mean and correlators of the spin density with the mean and correlators
of the fluctuating field, respectively [1]. We start with the mean-field equation

s̄z = − 1

u
V̄z, (8.54)

which relates the mean spin s̄z = 〈sz
j 〉 with the mean field

V̄z = Q−1
∫

V z
j (τ )e−F(V )/T DV. (8.55)

Due to translational invariance both s̄z and V̄z are independent of the site j , and the right-hand side of (8.55) is also
independent of the “time” τ .

We carry out the derivation of (8.54) in the momentum-“frequency” representation. Consider the average

〈
∂F1(V )

∂V α
qm

〉
= Q−1

∫
∂F1(V )

∂V α
qm

e−(F0(V )+F1(V ))/T DV.

Rewriting the latter as 〈
∂F1(V )

∂V α
qm

〉
= −T Q−1

∫
e−F0(V )/T ∂

∂V α
qm

(
e−F1(V )/T

)
DV

and integrating by parts, we obtain

〈
∂F1(V )

∂V α
qm

〉
= −Q−1

∫
∂F0(V )

∂V α
qm

e−(F0(V )+F1(V ))/T DV = −
〈
∂F0(V )

∂V α
qm

〉
.

That means 〈
∂F (V )

∂V α
qm

〉
=
〈
∂F0(V )

∂V α
qm

〉
+
〈
∂F1(V )

∂V α
qm

〉
= 0. (8.56)

Note that relation (8.56) is independent of a particular form of the functions F0(V ) and F1(V ).
To obtain the explicit form (8.54), we start with the first term in (8.56). Using the Fourier transformations (C.19) and

(C.29), we write the energy of the field as
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F0(V ) = T

u

∫ 1/T

0

∑

j

V2
j (τ ) dτ = N

u

∑

qmα

|V α
qm|2. (8.57)

Differentiating and averaging, in the ferromagnetic state we obtain

〈
∂F0(V )

∂V α
qm

〉
= 2N

u
V̄zδq0δm0δαz. (8.58)

Next, we transform the second term in equation (8.56). According to (8.28) and (8.29) the free energy in the field V is
given by the expression

F1(V ) = −T ln Tr Tτ exp

(
−
∫ 1/T

0
H(V ) dτ

)
, (8.59)

where the Hamiltonian is
H(V ) = H0 + 2

∑

jα

V α
j (τ )sα

j (τ ).

Using the Fourier transformations (C.16) and (C.18), we come to

F1(V ) = −T ln Tr exp

(
− 1

T

(
H0 + 2

∑

qmα

V α
qmsα−q−m

))
. (8.60)

Differentiating and averaging, we obtain

〈
∂F1(V )

∂V α
qm

〉
= 2s̄zNδq0δm0δαz. (8.61)

Substitution of (8.58) and (8.61) in (8.56) gives the mean-field equation (8.54).
Similarly, for the spin-density correlator we prove the relation

〈
Δsα

j (τ )Δs
β

j ′(τ ′)
〉 = 1

u2

〈
ΔV α

j (τ )ΔV
β

j ′ (τ ′)
〉− 1

2u
δjj ′δ(τ − τ ′)δαβ, (8.62)

where Δsα
j (τ ) = sα

j (τ ) − s̄α and ΔV α
j (τ ) = V α

j (τ ) − V̄α (for details, see Appendix C.4). Integration of relation (8.62) with

respect to “time” yields the equation for the single-site spin fluctuation 〈(Δsα
j )2〉 ≡ 〈Δs2

α

〉
,

〈
Δs2

α

〉 = 1

u2

〈
ΔV 2

α

〉− T

2u
, (8.63)

where 〈
ΔV 2

α

〉 = Q−1
∫

(ΔV α
j (τ ))2e−F(V )/T DV

is the mean-square fluctuation of the field.
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9Gaussian Approximation

The only form of functional integrals we can evaluate is the Gaussian quadrature... (N.N. Bogoliubov and D.V. Shirkov, Introduction to the
Theory of Quantized Fields, 3rd edn., Wiley, New York, 1980)

In this chapter we describe the Gaussian approximation of the fluctuating field in the functional integral method. First, we
present the simplest Gaussian approximation based on the saddle-point method. This approximation leads to the Stoner
mean-field equations and RPA dynamic susceptibility. The optimal Gaussian approximation in the DSFT utilizes a quadratic
approximation of the free energy based on a variational principle, which we describe in a rather general form here. The
optimal Gaussian approximation allows to take both quantum nature (dynamics) and spatial correlation (nonlocality) of
thermal fluctuations of the electron spin density.

9.1 Motivation

The task of SFT is to evaluate the partition function (8.49) and averages of the form (8.51). The integrals in (8.49) and
(8.51) depend on the sum F(V ) = F0(V ) + F1(V ) of the energy of the field F0(V ) and free energy of noninteracting
electrons in the field F1(V ). Using formulae (8.34) and (8.50) and omitting the V -independent term, which is unimportant, we
can write

F(V ) = (2uNd)
−1TrV 2 + T Tr ln G(V ). (9.1)

Formally, the Green function G(V ) can be expressed in terms of G0 and V by means of Eq. (8.40):

G(V ) = G0(1 − V G0)−1. (9.2)

However, the matrices G0 and V cannot be diagonalized simultaneously in either the site-“time” or momentum-“frequency”
representations. Indeed, in the site-“time” representation, the exchange field is diagonal and the zeroth Green function is
translationally invariant,1

Vjj ′(τ, τ ′) = Vj (τ)δjj ′δ(τ − τ ′), G0
jj ′(τ, τ ′) = G0

j−j ′(τ − τ ′). (9.3)

In the momentum-“frequency” representation it is the opposite,

Vkk′nn′ = Vk−k′,n−n′, G0
kk′nn′ = G0

knδkk′δnn′, (9.4)

i.e. the exchange field is translationally invariant and the zeroth Green function is diagonal (for details, see Appendix C.2).
Thus, practical use of the functional integral method requires a suitable approximation of the exact expression (9.1).

1In the DSFT we omit the band index ν in the Green functions, because we consider Nd degenerate d bands.
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If the fluctuations ΔV = V − V̄ around the mean field V̄ are not too large, we can utilize a quadratic approximation
F (2)(V ) of the function F(V ). This implies that the probability density function p(V ) ∝ e−F(V )/T of the fluctuating field V

is reduced to the Gaussian probability density

p(2)(V ) ∝ e−F (2)(V )/T . (9.5)

Due to the space and “time” translational invariance, the quadratic form F (2)(V ) can be written in the momentum-
“frequency” representation as

F (2)(V ) =
∑

qmαβ

ΔV α
qmA

αβ
qmΔV

β
−q−m, (9.6)

where A is the Hermitian matrix of the quadratic form. By the translational invariance, the matrix A is diagonal in momenta
q and “frequencies” m but is not diagonal with respect to α, β = x, y, z (for details, see Appendix A.3.3).

9.2 Saddle-Point Approximation

By formula (8.51), an observable 〈A〉 is determined by the functional integral

∫
A(V )p(V ) DV ∝

∫
A(V )e−F(V )/T DV, (9.7)

where the function A(V ) is given by formula (8.52). As we already mentioned in Chap. 7, the simplest approximation of
the integral is obtained by the saddle-point method. The underlying idea of the method is as follows. At low temperatures,
the main contribution to the integral (9.7) comes from the neighbourhood of V̄ that minimizes F(V ) (see, e.g. [1]). The
minimum is obtained from the condition that the linear part vanishes:

∂F (V̄ )

∂V
ΔV = 0. (9.8)

Near V̄ the function F(V ) is replaced by the quadratic part of its Taylor series,

F (2)(V̄ ) = 1

2

∂2F(V̄ )

∂V 2 ΔV 2 (9.9)

(we omit the unimportant field-independent term). If T is small, the probability density (9.5) is close to the delta function
(A.36), and the functional integral is approximated as

∫
A(V )p(2)(V ) DV ≈ A(V̄ ).

To write Eq. (9.8) explicitly, we linearize expression (9.1). Using the expansion (A.14), we write (9.8) as

T Tr

(
V̄ ΔV

uNdT
+ G(V̄ )ΔV

)
= 0. (9.10)

The Green function G(V̄ ) = (z + μ − H0 − V̄ )−1 is diagonal in the momentum-“frequency” representation. Choosing the
z-axis along the direction of the mean field: V̄ = V̄ zσ z, we have

Gknσ (V̄ ) = 1

iωn + μ − εk − σ V̄z

, (9.11)

where σ = ±1. Using Gx(V̄ ) = 0 and Gy(V̄ ) = 0, we rewrite (9.10) as
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(uNd)
−1Tr(V̄ zΔV z) + T Tr(Gz(V̄ )ΔV z) = 0. (9.12)

Since the mean field has only one nonzero Fourier coefficient V̄ z
qm = V̄zδq0δm0, the first term on the left-hand side of (9.12)

reduces to
(uNd)

−1Tr
(
V̄ zΔV z

) = ũ−1V̄zΔV z
00. (9.13)

Using relations (9.4), we can write the second term of (9.12) as

Tr
(
Gz(V̄ )ΔV z

) = Nd

∑

kn

Gz
kn

(V̄ )ΔV z
kk,nn

= (TrGz(V̄ )
)
ΔV z

00. (9.14)

Substituting (9.13) and (9.14) in (9.12), we come to

V̄z = −us̄z, (9.15)

where the mean spin s̄z is given by
s̄z = N−1NdT

∑

qn

Gz
qn(V̄ ) (9.16)

(cf. with the single-band case (6.33) and (6.36)). The condition that the total number of electrons is conserved leads to the
chemical potential equation

Ne = T Tr G(V̄ ). (9.17)

Calculating sums over the thermodynamic “frequencies”, we obtain the Stoner mean-field equations

s̄z = Nd

N

1

2

∑

k

(f (εk↑) − f (εk↓)), (9.18)

Ne = Nd

∑

k

(f (εk↑) − f (εk↓)), (9.19)

where εkσ = εk − σus̄z (for details, see Appendix A.2.5). In the single-band case, Eqs. (9.18) and (9.19) reduce to (4.16).
Now, we write explicitly the quadratic form (9.9) that approximates the function F(V ) = F0(V ) + F1(V ). Using (8.57),

we write the first term as

F0(V ) = 1

ũ

∑

qmα

|V α
qm|2 = 1

ũ

∑

qmα

V α
qmV α−q−m,

where ũ = u/N is the Fourier transform of the effective interaction constant u. Taking the second derivative of F(V ), we
obtain

F (2)(V ) =
∑

qmαβ

ΔV α
qm

(
δαβ

ũ
− χ

0αβ
qm

)
ΔV

β
−q−m, (9.20)

where

χ
0αβ
qm = −1

2

∂2F1(V̄ )

∂V α
qm∂V

β
−q−m

(9.21)

is the unenhanced (zeroth) susceptibility in units of g2μ2
B/2. Expanding the free energy F1(V ) = T Tr ln G(V ) up to the

second order (see Appendix A.1.2):

F1(V ) = T Tr(G(V̄ )ΔV ) + 1

2
T Tr(G(V̄ )ΔV G(V̄ )ΔV ) + · · · ,

we write formula (9.21) in the form

χ
0αβ
qm = −T

4

∂2Tr(G(V̄ )ΔV G(V̄ )ΔV )

∂V α
qm∂V

β
−q−m

. (9.22)

Since the Green function G(V̄ ) is diagonal in the momentum-“frequency” representation (9.11), we have (see Appendix C.2)
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Tr
(
G(V̄ )ΔV G(V̄ )ΔV

) = Nd

∑

qkmn

Sp
(
Gkn(V̄ )ΔVqmGk−q, n−m(V̄ )ΔV−q−m

)
.

Using the expansion of the 2 × 2 matrices Gkn(V̄ ) and Vqm in terms of the Pauli matrices and taking into account the axial
symmetry (Gx(V̄ ) = 0 and Gy(V̄ ) = 0), we calculate (9.22):

χ
0αβ
qm = −Nd

2
T
∑

knγ1γ2

G
γ1
kn

(V̄ )G
γ2
k−q,n−m

(V̄ )Sp
(
σγ1σασγ2σβ

)
, (9.23)

where γ = 0, z. Using formulae (A.22) for trace of the Pauli matrices, we obtain

χ0
qm =
⎛

⎜⎝
χ0xx

qm χ
0xy
qm 0

−χ
0xy
qm χ0xx

qm 0
0 0 χ0zz

qm

⎞

⎟⎠ , (9.24)

in full agreement with the general form of the susceptibility tensor (2.13) in a system with axial symmetry. In Sect. 10.4, we
show that the enhanced susceptibility in the saddle-point approximation has an RPA form.

9.3 Free Energy Minimum Principle

The approximation of the functional integral in the DSFT is based on a variational principle, which we describe in a rather
general form here. Let Fmod(V ) be the “modelling” free energy, which approximates the free energy F(V ). Then the identity

∫
e−F(V )/T DV =

∫
e−(F (V )−Fmod(V ))/T e−Fmod(V )/T DV

can be rewritten as

(∫
e−Fmod(V )/T DV

)−1∫
e−F(V )/T DV =

〈
e−(F (V )−Fmod(V ))/T

〉

mod
,

where the average is defined by

〈. . . 〉mod ≡
(∫

e−Fmod(V )/T DV

)−1 ∫
. . . e−Fmod(V )/T DV.

Applying the inequality 〈exp f 〉 ≥ exp〈f 〉 with f being a real function and taking the logarithm, we come to the upper
bound for the total free energy:

F ≤ Fmod + 〈F(V ) − Fmod(V )
〉
mod, (9.25)

where2

F = −T ln
∫

e−F(V )/T DV, Fmod = −T ln
∫

e−Fmod(V )/T DV. (9.26)

2By formula (8.49) the free energy F = −T ln Z should be written as

F = T ln
∫

e−F0(V )/T DV − T ln
∫

e−F(V )/T DV,

and the same first term should appear in Fmod. Since the extra terms cancel in (9.25), we omit them for brevity.
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Formula (9.25) was obtained by Feynman [2] and is sometimes called the Feynman inequality (see also [3]). An operator
formulation of the free energy minimum principle and a proof, based on the Peierls variational principle [4], are given by
Tyablikov [5].

By the optimal approximation we call the one that minimizes the right-hand side of inequality (9.25) in a certain class
of functions Fmod(V ). Using the “modelling” function of the form Fmod(V ) = ∑j fj (Vj ), where fj (Vj ) is an arbitrary
function of a single variable Vj , and applying the free energy minimum principle, one obtains the local approximation of
SFT [6, 7].

Dynamic nonlocal approximation of SFT is based on the optimal Gaussian approximation of the fluctuating field, i.e.
the “modelling” function Fmod(V ) is chosen from the class of quadratic functions. In the paramagnetic region the optimal
Gaussian approximation was obtained in [8,9] and applied to iron with a model density of states in [10]. In the ferromagnetic
region, the optimal Gaussian approximation was applied in [11,12]. For an arbitrary magnetic ordering, the optimal Gaussian
approximation was obtained in [13].

9.4 Optimal Gaussian Approximation

9.4.1 General Formulation

In the optimal Gaussian approximation the parameters V̄ and A
αβ
qm of the quadratic form (9.6) are evaluated from the system

of nonlinear equations

〈
∂F (V )

∂V α
qm

〉
= 0, A

αβ
qm = 1

2

〈
∂2F(V )

∂V α
qm∂V

β
−q−m

〉
, (9.27)

where the average 〈. . . 〉 is calculated self-consistently with the Gaussian probability density (9.5) (Eq. (9.27) are derived in
Appendix B.4.2). The optimal Gaussian approximation is quite general and can be used to describe not only ferromagnets
but also antiferromagnets or ferrimagnets (see, e.g. [14, 15]).

In the ferromagnetic state, the mean field V̄ is independent of site and hence its Fourier transform has only one nonzero
coefficient: V̄ z

qm = V̄zδq0δm0. Therefore, we need to consider the first equation in (9.27) only at q = 0 and m = 0. In the

paramagnetic state the first equation in (9.27) is redundant, because the mean field vanishes, but the coefficients A
αβ
qm remain

and the second equation in (9.27) must be written for all q and m, just as in the ferromagnetic state.
Note that the first equation has the same form as (8.56). The only difference is the form of average. The second equation

in (9.27) is specific to the Gaussian approximation. The optimal Gaussian approximation (9.27) should be contrasted to the
saddle-point approximation:

∂F (V̄ )

∂V α
qm

= 0, A
αβ
qm = 1

2

∂2F(V̄ )

∂V α
qm∂V

β
−q−m

, (9.28)

where both derivatives are taken at the mean field and there is no feedback from the field fluctuations.

9.4.2 Ferromagnetic State

We now develop the equations of the optimal Gaussian approximation (9.27). Similar to the saddle-point approximation, we
write the first equation in (9.27) as

V̄z = −us̄z. (9.29)

Here the mean spin is given by
s̄z = N−1NdT

∑

qn

Ḡz
qn, (9.30)

where the mean Green function Ḡ is calculated using the optimal Gaussian average. The quadratic form (9.6) of the optimal
Gaussian approximation (9.27) is given by
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F (2)(V ) =
∑

qmαβ

ΔV α
qm

(
δαβ

ũ
− χ

0αβ
qm

)
ΔV

β
−q−m, (9.31)

where the unenhanced (zeroth) susceptibility is

χ
0αβ
qm = −1

2

〈
∂2F1(V )

∂V α
qm∂V

β
−q−m

〉
. (9.32)

Expanding the free energy F1(V ) = T Tr ln G(V ) up to the second order,

F1(V ) = T Tr(G(Ṽ )ΔV ) + 1

2
T Tr(G(Ṽ )ΔV G(Ṽ )ΔV ) + · · · ,

and replacing the mean of a product of the Green functions G(V ) by the product of the mean Green functions 〈G(Ṽ )〉 ≡ Ḡ,
we write formula (9.32) in the form

χ
0αβ
qm = −T

4

∂2Tr(ḠΔV ḠΔV )

∂V α
qm∂V

β
−q−m

. (9.33)

Similar to the saddle-point approximation, we obtain

χ
0αβ
qm = −Nd

2
T
∑

knγ1γ2

Ḡ
γ1
kn

Ḡ
γ2
k−q,n−m

Sp
(
σγ1σασγ2σβ

)
, (9.34)

where γ = 0, z. Using formulae (A.22) for trace of products of the Pauli matrices, it is easy to check that the unenhanced
susceptibility tensor χ0

qm has the form (9.24), as it should be in a system with axial symmetry.

In the diagonal approximation [11, 12, 16] of the unenhanced susceptibility: χ
0αβ
qm = χ0α

qmδαβ , the quadratic form (9.31)
becomes

F (2)(V ) =
∑

qmα

ΔV α
qm

(
ũ−1 − χ0α

qm

)
ΔV α−q−m.

Then the mean-square fluctuation 〈ΔV α
qmΔV α−q−m〉 = 〈|ΔV α

qm|2〉 of the Gaussian distribution (9.5) can be written down
explicitly (see Appendix A.3.3):

〈|ΔV α
qm|2〉 = T

2(ũ−1 − χ0α
qm)

. (9.35)

The condition that the total number of electrons is conserved (6.33) leads to the equation

Ne = T Tr Ḡ. (9.36)

9.4.3 Self-Energy Equation

As we showed in Chap. 6, it is convenient to consider the Green function of interacting electrons Ḡ = 〈G(V )
〉

as a function
of a certain “effective medium” so that the following relation holds (see, e.g. [17, 18])

Ḡ(z) = (z + μ − H0 − Σ(z))−1, (9.37)

where Σ(z) is the self-energy. Due to translational invariance, the matrices of H0, Ḡ and Σ depend on the difference of the
site indices j − j ′. Hence in the momentum representation all of them become q-diagonal, and the diagonal element of the
Green function (9.37) is

Ḡq(z) = (z + μ − εq − Σq(z))−1.

To calculate the self-energy Σ , we apply the quasistatic approximation. This means we deal with G(V ) as if the fluctuating
field V was static but the average

〈
G(V )
〉
is calculated with the probability density that takes into account contributions from
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different momenta (nonlocality) and “frequencies” (dynamics). In this approximation it is easy to see the physical meaning
of the self-energy Σ .

In the presence of the static exchange field V , the Green function of noninteracting electrons (8.38) reduces to

G(V ) = (z + μ − H0 − V )−1, (9.38)

where V is independent of z. Using (AB)−1 = B−1A−1, we can write (9.38) in the form

G(V ) = [1 − (z + μ − H0 − Σ)−1(V − Σ)]−1(z + μ − H0 − Σ)−1,

or shortly,
G = (1 − Ḡ(V − Σ))−1Ḡ. (9.39)

Multiplying both sides by (1 − Ḡ(V − Σ)) from the left and rearranging, we come to

G = Ḡ + Ḡ(V − Σ)G. (9.40)

Substituting (9.39) in the right-hand side of (9.40), we obtain the equation

G = Ḡ + ḠT Ḡ, (9.41)

where the scattering T -matrix is defined by

T = (V − Σ)(1 − Ḡ(V − Σ))−1.

Averaging both sides over V and assuming that the average of the T -matrix is zero (see, e.g. [19]), we come to the equation

T̄ = 〈(V − Σ)(1 − Ḡ(V − Σ))−1〉 = 0. (9.42)

Similarly, averaging both sides of (9.39), we see that

〈
(1 − Ḡ(V − Σ))−1〉 = 1. (9.43)

Next, we develop the second-order perturbation theory. Introducing ΔV = V − V̄ and ΔΣ = Σ − V̄ , we write Eq. (9.42)
as 〈

(ΔV − ΔΣ)(1 − Ḡ(ΔV − ΔΣ))−1〉 = 0.

Taking (9.43) into account, we obtain
ΔΣ = 〈ΔV (1 − Ḡ(ΔV − ΔΣ))−1〉. (9.44)

Expanding (1 − Ḡ(ΔV − ΔΣ))−1 in the geometric series (see Appendix A.1.1), we come to

ΔΣ = 〈ΔV (1 + Ḡ(ΔV − ΔΣ) + · · · )〉. (9.45)

The term linear in ΔV vanishes because 〈ΔV 〉 = 0. Thus, in the second-order perturbation theory with respect to ΔV , we
have

ΔΣ = 〈ΔV ḠΔV 〉. (9.46)

In the momentum-“frequency” representation, taking into account

Ḡkk′nn′σσ ′ = Ḡknσ δkk′δnn′δσσ ′ ,

Vkk′nn′σσ ′ = Vk−k′,n−n′,σ δσσ ′ ,

we obtain
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ΔΣkn =
∑

k′n′
〈ΔVk−k′,n−n′Ḡk′n′ΔVk′−k,n′−n〉.

The latter is finally written as
ΔΣkn =

∑

qm

〈ΔVqmḠk−q,n−mΔV−q−m〉, (9.47)

where
Ḡkn = (iωn + μ − εk − σ V̄z − ΔΣkn)

−1. (9.48)

Thus, the optimal Gaussian approximation yields the system of nonlinear equations (9.29), (9.35), (9.36), (9.47) and (9.48)
with respect to μ, V̄ and 〈|ΔV α

qm|2〉. However, calculation of all the fluctuations 〈|ΔV α
qm|2〉 is an excessively complicated

procedure since magnetic characteristics, like the magnetization and local magnetic moment, use only their sums over q
and m.
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10Single-Site Gaussian Approximation

Anything that begins well, ends badly. Anything that begins badly, ends worse. (Murphy’s Law)

The starting point of SFT is the Hubbard Hamiltonian, which relies on the assumption that the electron–electron interaction is
local. Therefore, it seemed quite logical at the beginning to assume that the local spin fluctuations dominate [1–5]. However,
the static single-site SFT has a number of problems, which we mentioned in the Introduction. We can do better than treating
the fluctuations as purely local. The idea is to consider the local fluctuating field whose mean value and mean-square
fluctuations are calculated self-consistently and depend on all momenta and “frequencies” [6, 7]. Application of this idea
to real metals requires elaborate approximations. In Sects. 10.1–10.3 we develop the DSFT in detail. In Sect. 10.4 we show
how to calculate various magnetic characteristics in the functional integral method. In Sect. 10.5, we calculate temperature
dependency of magnetic characteristics in the ferromagnetic metals and compare results of different approximations in the
DSFT.

10.1 Coherent Potential Equation

Electron–electron interaction generates fluctuations of the charge and spin density both at T = 0 and at finite temperatures.
The DSFT separates the zero-point fluctuations (ground-state fluctuations) and thermal fluctuations. We assume that
correlation effects caused by zero-point fluctuations are already taken into account in some way in the calculation of the
electron DOS at T = 0 and in the renormalization of the interaction constant u. It remains for us to consider only the
temperature-dependent part of the correlation effects, in other words the thermal fluctuations (for details, see [8–11]). The
thermal fluctuations possess low energies h̄ωm [6, 12]. Therefore, we can write Ḡk−q,n−m ≈ Ḡk−q,n in Eq. (9.47). Then

ΔΣk(z) =
∑

qm

〈ΔVqmḠk−q(z)ΔV−q−m〉. (10.1)

Two extreme estimates are usually used to calculate the sum over the Brillouin zone in Eq. (10.1). The first type of
estimate: Ḡk−q(z) ≈ Ḡk(z) implies that the main contribution comes from the quasihomogeneous fluctuations with q ≈ 0.
This is the so-called long-wavelength limit (see, e.g. [6, 7]). The second type of estimate assumes that the Green function
Ḡk−q(z) is replaced by the single-site Green function

g(z) = 1

N

∑

k

Ḡk(z). (10.2)

Then (10.1) becomes
ΔΣ(z) =

∑

qm

〈ΔVqm g(z)ΔV−q−m〉, (10.3)

where

Σ(z) = 1

N

∑

k

Σk(z). (10.4)
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The approximation (10.2) assumes that excitations with any q are roughly the same and is called the disordered local moment
approach [1, 2]. The self-energy Σk(z) reduces to the coherent potential Σ(z), which is uniform in space. The single-site
Green function g(ε) and coherent potential Σ(ε) in Eq. (10.3) are spin-diagonal matrices,

g(ε) =
(

g↑(ε) 0
0 g↓(ε)

)
, Σ(ε) =

(
Σ↑(ε) 0

0 Σ↓(ε)

)
. (10.5)

The single-site Green function can be expressed in terms of the electron DOS. Indeed, substituting (6.17) in (10.2), we
obtain1

gσ (ε) =
∫

νσ (ε′)
ε − ε′ dε′, (10.6)

where ε = ε − i0+ and

νσ (ε) = 1

N

∑

k

Akσ (ε)

is the spin-polarized DOS (per band, site and spin). Taking (6.18) into account, we write

νσ (ε) = 1

π
Imgσ (ε). (10.7)

In particular, for noninteracting electrons in the presence of the exchange field σ V̄z, the Green function Ḡk(ε) is given by
(6.39). Therefore, (10.2) yields

g0
σ (ε) = 1

N

∑

k

1

ε − ξk − σ V̄z

, (10.8)

where ξk = εk − μ, and (10.7) is written as

ν0
σ (ε) = 1

π
Im

(
1

N

∑

k

1

ε − ξk − σ V̄z

)
.

Using the Sokhotsky formula (A.43), we have

ν0
σ (ε) = 1

N

∑

k

1

π
Im

1

ε − ξkσ

= 1

N

∑

k

δ(ε − ξkσ ), (10.9)

where ξkσ = ξk + σ V̄z. This is the Hartree-Fock DOS (4.24) but written in the grand canonical ensemble.
For interacting electrons, replacing the self-energy Σkσ (z) by the coherent potential (10.4) in formula (6.21), we obtain

νσ (ε) = 1

π
Im

(
1

N

∑

k

1

ε − ξk − Σσ (ε)

)
.

As we explained in Chap. 6, the self-energy smears the delta-peaks of the DOS (10.9). Using (6.21), (10.2) and the definition
of the delta function, we have (see, e.g. [13])

gσ (ε) = 1

N

∑

k

1

ε − ξk − Σσ (ε)
= 1

N

∑

k

∫
δ(ε′ − ξk)

ε − ε′ − Σσ (ε)
dε′.

Finally, we write

1Henceforth we deal with the advanced Green function and omit the superscript.
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gσ (ε) =
∫

ν(ε′)
ε − ε′ − Σσ (ε)

dε′, (10.10)

where

ν(ε) = 1

π
Im

(
1

N

∑

k

1

ε − ξk

)
= 1

N

∑

k

δ(ε − ξk) (10.11)

is the nonmagnetic DOS at T = 0 (per unit cell, band and spin) in the grand canonical ensemble.

10.2 Single-Site Gaussian Fluctuating Field

As we see from formula (10.10), the primary task is the calculation of the coherent potential Σσ (ε). Taking the matrix
expressions (10.5) into account, we write the coherent potential equation (10.3) as

ΔΣσ (ε) = gσ (ε)〈ΔV 2
z 〉 + gσ̄ (ε)〈ΔV 2⊥〉, (10.12)

where ΔV 2⊥ = ΔV 2
x + ΔV 2

y . Here

〈ΔV 2
α 〉 =
∑

qm

〈|ΔV α
qm|2〉, α = x, y, z, (10.13)

is the mean-square fluctuation of the fluctuating field

Vα =
∑

qm

V α
qm. (10.14)

Using the Fourier transformation (see Appendix C.3), we can verify that

Vα = V α
j=0(τ = 0)

is the single-site Gaussian fluctuating field independent of site and “time”.
Instead of the fluctuation (10.13), we consider

〈ΔV 2
α 〉′ =

∑

qm

〈|ΔV α
qm|2〉′, (10.15)

where 〈|ΔV α
qm|2〉′ ≡ 〈|ΔV α

qm|2〉 − 〈|ΔV α
qm|2〉0 is the mean-square fluctuation (9.35) minus the intrinsic mean-square

fluctuation of the field

〈|ΔV α
qm|2〉0 ≡

∫ |ΔV α
qm|2e−F0(V )/T DV
∫

e−F0(V )/T DV
= ũT

2
.

The latter is independent of q and m, and gives no contribution to observable characteristics (see [11,12]). Then, using (9.35),
we write (10.15) as

〈ΔV 2
α 〉′ =

∑

qm

ũT

2

ũχ0α
qm

1 − ũχ0α
qm

. (10.16)

Obtaining computational formulae for the single-site fluctuation (10.16) is not an easy task. First, the calculation was
carried out in the static (ωm = 0) long-wave (q = 0) approximation for paramagnets [6, 7] and ferromagnets [14, 15]. The
dynamic nonlocal approximation (DNA) was developed and applied for paramagnets in [12] and for ferromagnets in [8–10].

The sum over the even “frequencies” ωm = 2πmT is replaced by the integral over the energy variable using analytic
continuation (6.75) (for details, see Appendix A.2.5):
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∑

m

〈|ΔV α
qm|2〉′ = ũ

π

∫ ∞

0

(
B(ε) + 1

2

)
Im

1

1 − ũχ0α
q (ε)

dε, (10.17)

where B(ε) = (exp(ε/T ) − 1)−1 is the Bose function. The second term in the integral describes the contribution of the
zero-point fluctuations that should be discarded. Using the Tailor expansion χ0α

q (ε) ≈ χ0α
q (0) + iϕα

q ε and approximation

1

eε/T − 1
≈
{

T/ε, ε < ε0 = (π2/6)T ,

0, ε > ε0,
(10.18)

for the Bose function, we come to
∑

m

〈|ΔV α
qm|2〉′ = ũT

2λα
q

2

π
arctan

ũϕα
q π2T

6λα
q

, (10.19)

where

λα
q = 1 − ũχ0α

q (0), ϕα
q = dImχ0α

q (ε)

dε

∣∣∣∣
ε=0

. (10.20)

The approximation (10.18) not only reproduces the behaviour of the Bose function B(ε) with respect to thermal energies,
but also has the same first moment

∫∞
0 εB(ε) dε = (πT )2/6, which essentially defines the upper bound ε0. Thus, the

approximation (10.18) is well justified. Its another advantage is the possibility of the straight-forward proceeding to the
static limit at high temperatures, when the argument of the arctangent in (10.19) is much larger than unity.

The function λα
q is calculated by the formula [9]

λα
q = λα

0 + (λα
L − λα

0 )q2/q2. (10.21)

Here
λα

L = 1 − uχ0α
L (0), (10.22)

where the local unenhanced susceptibility χ0α
L (0) is defined as

χ0α
L (0) = 1

N

∑

j

χ0α
j (0) = 1

N2

∑

q

χ0α
q (0), (10.23)

and q2 = N−1∑
q q2 is the average of q2 over the Brillouin zone. For simplicity the function ϕα

q is approximated by its

mean value Nϕα
L, where ϕα

L = N−2∑
q ϕα

q .
The summation over q is carried out by the integration over the Brillouin zone, approximated for simplicity by the equal-

volume sphere of the radius qB. Using (10.19), (10.21) and q2 = 0.6q2
B, for the single-site fluctuation (10.16) in the DNA

we finally obtain [9]

〈ΔV 2
α 〉′ = uT

2λα
L

∫ 1

0

1

a2
α + b2

αk2

2

π
arctan

cα

a2
α + b2

αk2
3k2 dk, (10.24)

where k = q/qB, qB = (3/(4π)ΩBZ)1/3, and

a2
α = λα

0 /λα
L, b2

α = (1 − a2
α)/0.6, cα = uϕα

Lπ2T/(6λα
L). (10.25)

An approximate formula for evaluating the integral (10.24) is given in Appendix H.4.
The quantities λα

0 in formula (10.21) are calculated as follows. In the absence of magnetic anisotropy, any small external
magnetic field causes rotation of the large spontaneous magnetization of the ferromagnet, i.e. the enhanced susceptibility
χα

0 (0) = χ0α
0 (0)/λα

0 diverges. Therefore, we assume that λα
0 (0) are infinitesimal at T < TC. In the paramagnetic region

(T > TC) the quantities λx
0 and λz

0 are equal to each other, and the static uniform susceptibility χ0z
0 (0) is obtained by the

numerical differentiation of the spin s̄z with respect to the magnetic field h (in energy units):
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χ0z
0 (0) = −∂s̄z

∂h
� − s̄z(Δh/2) − s̄z(−Δh/2)

Δh
. (10.26)

10.3 Mean Single-Site Green Function

To calculate the local susceptibility χ0α
L (ε) = χ0α

L (0) + iϕα
Lε, we replace the mean Green function Ḡk(z) in (9.34) by the

mean single-site Green function g(z), just as we did in the coherent potential equation (10.3). Using (10.2) and (10.23), we
rewrite (9.34) as

χ0α
L (iωm) = −Nd

2
T
∑

n

∑

γ1γ2

gγ1(iωn)g
γ2(iωn − iωm)Sp

(
σγ1σασγ2σα

)
. (10.27)

Replacing the sum over the “frequencies” ωn = (2n + 1)πT by the integral over the energy variable (see Appendix A.2.5),
we obtain

χ0α
L (z) = −Nd

2π

∑

γ1γ2

∫
Im
(
gγ1(ε)

(
gγ2(ε − z) + gγ2(ε + z)

)

× Sp
(
σγ1σασγ2σα

))
f (ε) dε, (10.28)

where f (ε) = [exp((ε − μ)/T ) + 1]−1 is the Fermi function, g(ε) is the mean single-site Green function in the canonical
ensemble and ε = ε − i0+. By formulae (10.5) the 2 × 2 matrix g(ε) is spin-diagonal. Hence gx(ε) = 0 and gy(ε) = 0. The
two nonzero components are given by

g0(ε) = 1

2
(g↑(ε) + g↓(ε)), gz(ε) = 1

2
(g↑(ε) − g↓(ε)).

Calculating the trace of products of the Pauli matrices by formula (A.22), we obtain

χ0x
L (0) = −Nd

π

∫
Im(g↑g↓) f dε, (10.29)

ϕx
L = Nd

π

∫
Img↑ Img↓

(
−∂f

∂ε

)
dε, (10.30)

χ0z
L (0) = −Nd

2π

∫ (
Img2↑ + Img2↓

)
f dε, (10.31)

ϕz
L = Nd

2π

∫ [(
Img↑
)2 + (Img↓

)2]
(

−∂f

∂ε

)
dε. (10.32)

A general numerical method for calculating integrals with the Fermi function was developed in [16] and a simple method for
calculating integrals with the derivative of the Fermi function was given in [10] (see Appendices H.2 and H.3).

Similarly, replacing the summation over the “frequencies” ωn = (2n + 1)πT by integration over the energy variable, we
rewrite the mean field (9.29) as

V̄z = −u
Nd

2π

∫
Im
(
g↑ − g↓

)
f dε (10.33)

and the electrons number conservation equation (9.36) as

ne = Nd

π

∫
Im
(
g↑ + g↓

)
f dε. (10.34)

In the canonical ensemble the single-site Green function gσ (ε) is given by the same formula (10.10):

gσ (ε) =
∫

ν(ε′)
ε − ε′ − Σσ (ε)

dε′,
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where the electron DOS ν(ε) and coherent potential Σσ (ε) are in the canonical ensemble (for details, see Appendix E.1).
Representing the self-energy as Σσ (ε) = σ V̄z + ΔΣσ (ε), we finally have

gσ (ε) =
∫

ν(ε′)
ε − σ V̄z − ΔΣσ (ε) − ε′ dε′ (10.35)

(for numerical calculation of the integral (10.35), see Appendix H.1). The fluctuational contribution to the self-energy
ΔΣσ (ε) is obtained from Eq. (9.44) using the single-site approximation:

ΔΣ = 〈[1 − (ΔV − ΔΣ)g]−1ΔV
〉
. (10.36)

In the second order with respect to ΔV and infinite order with respect to V̄z, we have (for derivation, see Appendix E.2)

ΔΣσ (ε) = gσ (ε)〈ΔV 2
z 〉′

1 + 2σ V̄zgσ (ε)
+ 2gσ̄ (ε)〈ΔV 2

x 〉′, (10.37)

where σ̄ ≡ −σ . This result is slightly more general than the second-order approximation (10.12) of Eq. (10.3).2

To calculate χ0z
0 (0) by formula (10.26), we use the same expression for s̄z as the one on the right-hand side of Eq. (10.33):

s̄z(Δh/2) = Nd

2π

∫
Im
(
g↑ − g↓

)
f dε, (10.38)

but the exchange field σ V̄z in formula (10.35) is replaced by a small magnetic field Δh/2 (in energy units).
Thus, we obtain a closed system of equations in four unknowns: the mean field V̄z, mean-square transverse 〈ΔV 2

x 〉′ =
〈ΔV 2

y 〉′ and longitudinal 〈ΔV 2
z 〉′ fluctuations, and chemical potential μ. In particular, when 〈ΔV 2

α 〉′ = 0, Eqs. (10.33) and
(10.34) turn into the Stoner mean-field theory equations. This gives an opportunity to obtain the effective constant u by
solving the system of Eqs. (10.33) and (10.34) at T = 0 given the magnetic moment m0.

In other approximations of SFT, only Eq. (10.24) for the spin fluctuations is modified [10]. In the static local approximation
(SLA) we have

〈ΔV 2
α 〉SLA = uT

2λα
L
, (10.39)

in the static nonlocal approximation (SNA) we have

〈ΔV 2
α 〉SNA = uT

2λα
L

∫ 1

0

1

a2
α + b2

αk2 3k2 dk

= uT

2λα
L

3

b3
α

(
bα − aα arctan

bα

aα

)
, (10.40)

and in the dynamic local approximation (DLA) we have

〈ΔV 2
α 〉′DLA = uT

2λα
L

2

π
arctan cα. (10.41)

10.4 Basic Magnetic Characteristics

As we showed in Chap. 8, the functional integral formalism reduces the canonical average to the average over configurations
of a fluctuating field (8.37). In particular, the mean spin s̄z = 〈sz

j 〉 is related to the mean field by (8.54) and the single-site

2In practice, sufficient accuracy is achieved if one uses formulae (10.12) or (10.37) for ΔΣσ (ε) with the single-site Green function gS
σ calculated

by (10.35) without ΔΣσ (ε).
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spin fluctuation
〈
Δs2

α

〉 = 〈(Δsα
j )2〉 is related to the mean-square fluctuation of the field by (8.63). For magnetization we

immediately obtain m = gμBV̄z/u.
The local magnetic moment is defined as mL = gμBsL, where s2

L ≡ 〈s2
j

〉
. Rewriting relation (8.63) as

〈
Δs2

α

〉 = 1

u2

〈
ΔV 2

α

〉′
. (10.42)

and using
〈
s2
j

〉 = s̄ 2
z + 〈Δs2

j 〉, we have

s2
L = u−2(V̄ 2

z + 〈ΔV 2〉′), (10.43)

where 〈ΔV 2〉′ =∑α〈ΔV 2
α 〉′ is the total mean-square fluctuation given by (10.15). Then the final computational formula is

sL = u−1(V̄ 2
z + 〈ΔV 2

x 〉′ + 〈ΔV 2
y 〉′ + 〈ΔV 2

z 〉′)1/2
. (10.44)

In the static approximation, we come to [9]

sL = u−1
(

V̄ 2
z + 〈ΔV 2

x 〉 + 〈ΔV 2
y 〉 + 〈ΔV 2

z 〉 − 3uT

2

)1/2

.

In the presence of a static magnetic field Hj , magnetic susceptibility is easily obtained as follows. The original
Hamiltonian H gets the additional magnetic term HM = −∑j Mj Hj = 2

∑
j sj hj , where Mj = −gμBsj is the

magnetic moment operator, and hj = 1
2gμBHj is the magnetic field in energy units. If we now carry out the Stratonovich-

Hubbard transformation in the static approximation, the magnetic field hj adds up to the exchange field Vj , and we write the
Hamiltonian of the noninteracting electrons in the field V as

H(V ) = H0 + 2
∑

j

(Vj + hj ) sj . (10.45)

The mean magnetic moment can be obtained by differentiating the total free energy (9.26) at the vanishing field h = 0:

〈Mj 〉 = − ∂F
∂hj

= −
〈
∂F1(V )

∂Vj

〉
= −2〈sj 〉,

in units of μB. Similarly, the enhanced susceptibility χαα′
jj ′ = ∂〈Mα

j 〉/∂Hα′
j ′ can be written as

χαα′
jj ′ = −1

2

∂2F
∂hα

j ∂hα′
j ′

= −1

2

〈
∂2F1(V )

∂V α
j ∂V α′

j ′

〉
= 2

T

〈
Δsα

j Δsα′
j ′
〉
, (10.46)

in units of 1
2g2μ2

B. This choice of units allows to treat the exchange field V and magnetic field h on the equal footing in
formulae (10.45) and (10.46).

In the presence of a dynamic magnetic field, the susceptibility χα
qm is given by formula (2.38). Transforming the relation

between the spin and field fluctuations (8.63), in the momentum-“frequency” representation we have

〈|Δsα
qm|2〉 = 1

ũ2
〈|ΔV α

qm|2〉 − T

2ũ

(for details, see Appendix C.4). Using relations (6.65) and (9.35), in units of 1
2g2μ2

B we obtain

χα
qm = χ0α

qm

1 − ũχ0α
qm

, (10.47)
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with the same enhancement factor as in the RPA. The critical difference between DSFT and RPA lies in the way the
unenhanced susceptibility χ0α

qm is calculated. In terms of the functional integral method, the unenhanced susceptibility in

the RPA (9.21) is completely determined by the mean field V̄ :

χ0α
qm

∣∣∣
RPA

= −1

2

∂2F1(V̄ )

∂V α
qm∂V α−q−m

.

In the optimal Gaussian approximation of the DSFT, the right-hand side is averaged over all field configurations:

χ0α
qm = −1

2

〈
∂2F1(V )

∂V α
qm∂V α−q−m

〉
.

In the paramagnetic state, linear interpolation of the uniform static susceptibility χα
0 (0) yields the effective magnetic

moment meff and paramagnetic Curie temperature ΘC in the Curie-Weiss law (2.59). In the DSFT the static uniform
susceptibility χα

0 (0) is measured in units of 1
2g2μ2

B, therefore its relation to the Curie-Weiss susceptibility (2.62) becomes
χα

CW = N−1χα
0 (0) 1

2g2μ2
B.

10.5 Application to Ferromagnetic Metals

10.5.1 Iron

As the initial DOS, we take the one of nonmagnetic iron, calculated in the local-density approximation (LDA) by the
Korringa-Kohn-Rostoker (KKR) method with a self-consistent potential [17]. The extended “tails” and the constant sp
background were eliminated from this DOS, so that the area under the curve was equal to 2Nd = 10 (the number of d
states per atom). This yields the d bandwidth W = 7.42 eV. The DOS is slightly smoothed out by convolution with the
Lorentzian function of halfwidth Γ = 0.01 W to remove nonphysical sharp peaks (for details, see Appendix A.2.3). The
peaks always appear in energy-band calculation, because it entirely ignores single-particle state damping due to electron–
electron scattering. The smoothed DOS is then normalized to one state (per atom, band and spin), see Fig. 10.1. The number
of d electrons per atom is ne = 7.43. The effective interaction constant u determined from an experimental value of the
magnetic moment m0 = 2.217 μB [18] is equal to 1.08 eV.

The results of the calculation [10] of the basic magnetic characteristics of iron in the Stoner mean-field theory and
in various approximations of the SFT are represented in Table 10.1 and Figs. 10.2, 10.3 and 10.4. All characteristics are
expressed in units of their experimental values given in Table 10.2.

Fig. 10.1 The DOS of the d
band of nonmagnetic iron,
calculated by the KKR method
with a self-consistent potential
(solid line) and that smoothed out
by convolution with Lorentzian
function of halfwidth Γ = 0.01
(dashed line). The energy ε and
halfwidth Γ are in units of the
bandwidth W = 7.42 eV. The
vertical line indicates the position
of the Fermi level εF
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Table 10.1 The ferromagnetic
TC and paramagnetic ΘC Curie
temperatures, and the effective
magnetic moment meff in the
mean-field theory and in various
approximations of the spin
fluctuation theory

Metal Magnetic Stoner Spin fluctuation theory

characteristic theory SLA SNA DLA DNA

TC/T
exp

C 5.84 1.28 0.76 2.45 1.49

Fe ΘC/T
exp

C 5.82 1.24 0.77 2.29 1.45

meff/m
exp
eff 0.86 0.66 0.98 0.80 1.30

TC/T
exp

C 3.61 0.55 0.32 1.23 0.63

Co ΘC/T
exp

C 3.60 0.54 0.34 1.22 0.68

meff/m
exp
eff 0.84 0.41 0.56 0.58 0.92

TC/T
exp

C 4.04 1.35 0.86 2.80 1.54

Ni ΘC/T
exp

C 4.03 1.34 0.90 2.78 1.60

meff/m
exp
eff 0.85 0.64 0.86 0.81 1.51

Fig. 10.2 Magnetization m/m0
(solid line: calculation, circled
line: experiment [18]), the
mean-square fluctuations 〈ΔV 2

x 〉
(dash dot dot dashed line) and
〈ΔV 2

z 〉 (dashed line) in units of
the square of the mean field V̄ 2

z at
T = 0, the reciprocal
paramagnetic susceptibility χ−1

(dash dot dashed line) in units of
kBT

exp
C /μ2

B, and the local
magnetic moment mL/m0 (dotted
line) of iron, calculated in the
SLA as functions of the reduced
temperature T/T

exp
C
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Fig. 10.3 As Fig. 10.2, but
calculated in the DNA
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As can be seen from Table 10.1, in the Stoner mean-field theory the temperature dependence of the magnetization is very
weak and the calculated Curie temperature is almost six times greater than the observed one.

When the spin fluctuations are taken into account, the situation is substantially different. Let us start from the static
local approximation (SLA), in which the fluctuations are calculated from formula (10.39). In the SLA, as can be seen from
Fig. 10.2, the Curie temperature is close to the experimentally observed one, TC = 1.28T

exp
C . However, a noticeable decrease

of the magnetization, ∼ T , is seen over a wide temperature interval, because the spin fluctuations increase linearly with
temperature. In general, the paramagnetic susceptibility follows the Curie-Weiss law, but the effective magnetic moment



118 10 Single-Site Gaussian Approximation

Fig. 10.4 Spin-polarized DOSs
of iron in the ferromagnetic
(T = 0, solid curves) and
paramagnetic (T = 1.5T

exp
C ,

dotted curves) states calculated in
the DNA. The vertical line
indicates the position of the
chemical potential μ
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Table 10.2 Experimental values
of fundamental magnetic
characteristics of iron, cobalt and
nickel

m
exp
0 (μB) [18] T

exp
C (K) [18] m

exp
eff (μB) [19]

Fe 2.217 1044.0 3.13

Co 1.753 1390.0 3.13

Ni 0.616 631.0 1.616

meff is only 0.66 of its experimental value. The paramagnetic Curie point ΘC, obtained by the linear extrapolation of χ−1(T )

to zero, is nearly coincident with the ferromagnetic one.
In the static nonlocal approximation (SNA) the magnetization should decrease faster than in the SLA. The reason is that

the fluctuations 〈ΔV 2
α 〉SNA ≡ ζ α

SNA are greater than the fluctuations ζ α
SLA at any temperature. Indeed, taking into account that

0 < a2 < 1, b2 = (1 − a2)/0.6 and 0 ≤ arctan(b/a), from formula (10.40) we have

ζSNA/ζSLA = 3

b3

(
b − a arctan

b

a

)
≥ 3

b2 = 3 × 0.6

1 − a2 ≥ 1.8 .

The calculations show that indeed in the SNA the decrease of the magnetization m(T ) is too fast.
In the dynamic local approximation (DLA) the situation is the opposite. The fluctuations ζ α

DLA calculated by formula
(10.41) are smaller than the fluctuations ζ α

SLA at any temperature (ζDLA/ζSLA = (2/π) arctan c ≤ 1). The calculations
confirm that in the DLA the magnetization m(T ) decreases too slowly with temperature.

Only in the dynamic nonlocal approximation (DNA), as the temperature increases, the fluctuations ζα
DNA first increase

slowly (∼ T 2), just as in DLA, and then increase quickly, as in the SNA. As a result, at low temperatures, the magnetization
is proportional to T 2 in good agreement with the experimental curve (Fig. 10.3). At the same time, the calculated Curie
temperature TC is equal to 1.49T

exp
C . The paramagnetic susceptibility follows the Curie-Weiss law, but the effective

magnetic moment is a little greater than the experimental one: meff = 1.3m
exp
eff . Figure 10.4 shows the mean DOSs

νσ (ε) = π−1Imgσ (ε) in the ferromagnetic (T = 0) and paramagnetic (T = 1.5T
exp

C ) states. In contrast to the results of
the Stoner mean-field theory, as the temperature increases, the functions ν↑(ε, T ) and ν↓(ε, T ) become noticeably smoothed
when they shift towards each other.

10.5.2 Cobalt

As the initial DOS, we take the one of nonmagnetic fcc cobalt from [17]. The constant sp background is eliminated from it,
just as in iron. After convolution with the Lorentzian function of halfwidth Γ = 0.01 W and normalization to one d band
of unit width, we obtain the DOS represented in Fig. 10.5 by a solid curve. The bandwidth is W = 7.50 eV. The number of
d electrons per atom is equal to 8.47. The electron–electron interaction constant u = 1.25 eV is determined at T = 0 from
the magnetic moment m0 = 1.45μB. We are not able to find the constant u from the experimental value m

exp
0 = 1.753μB

because for cobalt the magnetic moment m
exp
0 is comparatively large and the Fermi energy is close to the band edge. To
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Fig. 10.5 Spin-polarized DOSs
of cobalt in the ferromagnetic
(T = 0) and paramagnetic
(T = 0.64T

exp
C ) states, calculated

in the DNA (the notation is as for
Fig. 10.4)
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Fig. 10.6 Magnetization m/m0,
the mean-square fluctuations
〈ΔV 2

x 〉 and 〈ΔV 2
z 〉, the reciprocal

paramagnetic susceptibility χ−1

and the local magnetic moment
mL/m0 of cobalt, calculated in
the DNA (the notation and units
are as for Fig. 10.2)
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obtain m
exp
0 it is necessary to move the DOSs ν↑(ε) and ν↓(ε) so far apart that the sum n↑ + n↓ becomes less than ne. In

our opinion, the discrepancy between ν(ε) and m
exp
0 for cobalt is connected not with the fact that at T = 0 cobalt has an hcp

structure, because the DOS curves of hcp and fcc cobalt are very similar (see Fig. 5 in [19]), but rather with the fact that,
in addition to the spin magnetic moment of the d electrons, m

exp
0 includes the spin magnetic moment of the s electrons and

the orbital magnetic moment, which, generally speaking, do not compensate each other (see, e.g. [19–21]). The results of
ab initio spin-polarized calculations of Fe, Co and Ni presented in [17, 22] also give evidence in favour of the chosen value
m0 = 1.45μB. For iron and nickel the calculated spin magnetic moments mcal

0 are close to the experimental ones. If this is
also the case in fcc cobalt, then we should have m0 = 1.54÷1.56μB. The value mcal

0 = 1.56μB for fcc Co was also obtained
in [23].

The results of the calculations of the basic magnetic characteristics of cobalt within different approximations are listed in
Table 10.1. Just as in iron, the best one is the DNA. As we see from Fig. 10.6, at low temperatures the calculated magnetization
m(T ) is in good agreement with the experimental one. However, at high temperatures, m(T ) decreases too quickly and, as a
consequence, we have TC = 0.63T

exp
C . The paramagnetic susceptibility satisfies the Curie-Weiss law with meff = 0.92m

exp
eff .

Thus, in spite of some disagreement with experiment, the theoretical description of the magnetic properties of cobalt may be
considered quite satisfactory.

The mean DOSs νσ (ε, T ) in the ferromagnetic (T = 0) and paramagnetic (T = 0.64T
exp

C ) states are shown in Fig. 10.5.
As the temperature increases, the curves νσ (ε, T ) behave just as for iron, but are smoothed more noticeably.
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Fig. 10.7 Spin-polarized DOSs
of nickel in the ferromagnetic
(T = 0) and paramagnetic
(T = 1.55T

exp
C ) states, calculated

in the DNA (the notation is as for
Fig. 10.4)
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Fig. 10.8 Magnetization m/m0,
the mean-square fluctuations
〈ΔV 2

x 〉 and 〈ΔV 2
z 〉, the reciprocal

paramagnetic susceptibility χ−1

and the local magnetic moment
mL/m0 of nickel, calculated in
the DNA (the notation and units
are as for Fig. 10.2)
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10.5.3 Nickel

Just as for cobalt, the initial nonmagnetic DOS was taken from [17]. After elimination of the sp background, convolution
with the Lorentzian function of halfwidth Γ = 0.01W and normalization to one d band of unit width, we obtain the DOS
represented in Fig. 10.7 by a solid curve. The bandwidth is W = 6.13 eV, and the number of d electrons per atom is ne = 9.35.
The electron–electron interaction constant u = 1.16 eV is determined from the experimental value of the magnetic moment
of nickel m

exp
0 = 0.616 μB [18].

The results of the calculations of the magnetic properties of nickel in various approaches are listed in Table 10.1. The
quantitative characteristics are similar to those for iron. On the whole, the best results are obtained in the DNA. As can
be seen from Fig. 10.8, in the DNA the spin fluctuations have the proper temperature behaviour and, as a consequence, the
shape of the magnetization curve is in agreement with the experimental one. Note that in the ferromagnetic region, in iron
the transverse fluctuations dominate, while in nickel the longitudinal fluctuations dominate and in cobalt the intermediate
situation is realized: the transverse and longitudinal fluctuations are close in magnitude (see Figs. 10.3, 10.6 and 10.8).

10.5.4 Comparison with Other Studies

Now let us compare our results with the results of other calculations of the magnetic properties in Fe, Co and Ni [24–27] that
also use the real (not model) band structure. Some results of these works are in better agreement with experiment than our
results. However, good agreement, as a rule, is achieved only for several magnetic characteristics. For instance, in the paper
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[24], for all three metals good agreement with experiment for the Curie temperature TC is obtained. In the paper [25], for
Fe good agreement with experiment is obtained for the Curie temperature: TC = 1015 K, but not for the effective magnetic
moment: meff = 1.96 μB; for Ni, in contrast, the Curie temperature is almost one third smaller than the experimental one:
TC = 450 K, but the effective moment is fairly close to the experimental one: meff = 1.21μB. A similar situation is observed
in the paper [26]: the Curie temperature for Fe is in good agreement with experiment, whereas for Co and Ni there is a
discrepancy of about 30%. Moreover, for all three metals the slope of the reciprocal paramagnetic susceptibility is almost
twice as large as the experimental one. Finally, in the paper [27] a reasonable value of the Curie temperature for Ni has
been obtained in the Stoner approximation but with the use of an additional experimental information. At the same time, the
temperature behaviour of the calculated magnetization curve remained static-like. As for our results for the local magnetic
moment in the paramagnetic region, they agree with the results of all above-mentioned spin fluctuation calculations, except
for those of [25], where the local moment of Ni above TC appeared to be zero. Naturally, the same value of the local moment
is obtained in the Stoner-like calculation in [27]. However, this result is so far debatable.
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11High-Temperature Theory

Here must all distrust be left behind; all cowardice must be ended. (Dante Alighieri, The Divine Comedy, Inferno, Canto III; transl.
by J.D. Sinclair)

As we showed in the previous chapter, the DSFT gives good agreement with experiment over a wide temperature range,
which includes room temperatures. In this chapter, we demonstrate that at high temperatures, the temperature dependence
of magnetic characteristics in the DSFT can become unstable and even discontinuous (first-order-like). We show that this
type of behaviour is not an artefact of a numerical method. Same as in the simple Ising model (Chap. 7), the discontinuous
jump and hysteresis behaviour in temperature dependency appear as a result of the Gaussian approximation when spin
fluctuations become large. We show that proper temperature dependence of magnetization and second-order phase transition
can be restored if we take into account higher-order terms of the free energy of electrons in the fluctuating exchange
field.

11.1 Problem of Temperature Dependence

11.1.1 Discontinuous Jump of Magnetization

Calculations [1–4] showed that temperature behaviour of the DSFT solution can be unstable at high temperatures, well below
the Curie temperature TC. It is especially pronounced in Fe and Fe-Ni Invar, where spin fluctuations increase sharply in this
region. Most often the instability takes the form of a discontinuous change of magnetic characteristics with temperature (the
first-order-like transition). However, the discontinuous jump is usually too far from TC to be interpreted in the framework of
the critical phenomena.1

First-order magnetic phase transition in the critical region was observed in various versions [7–10] of the self-consistent
renormalization (SCR) theory developed for weak ferromagnetic metals. In the SCR calculations, the jump in magnetization
was usually explained by the character of the approximations. In the phenomenological theory [7] it was related to not taking
into account the critical fluctuations, in [8] to the approximative character of the theory [7] itself, even after its improvement
by going from a scalar field for the spin density to a vector field, which is more realistic. In the theory [9] the first-order
transition at TC appeared in a simplified model for the longitudinal susceptibility χ‖. When the χ‖ was treated properly,
this discontinuity was eliminated. Finally, in [10, 11] the problem of the fictitious first-order phase transition at TC has been
solved by taking into account the zero-point spin fluctuations in the SCR theory.

In the DSFT the origin of the instability was discussed in [12–14]. Unlike the SCR theory, the DSFT is developed for the
strong ferromagnets and uses the functional integral method [15, 16]. What is more important, the DSFT and SCR theory
consider instability in different temperature ranges: over a wide range below TC and in a narrow range near TC, respectively.
As is known [9], in the phase transition region the long-wave fluctuations play a dominant role. The nonlocal approximation
[1] takes this fact into account, but insufficiently. Therefore, here we do not discuss the temperature dependence in the close
neighbourhood of TC.

1For the theory of the critical region, see, e.g. [5, 6].
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In this section, we study the discontinuous jump in the temperature dependence of magnetic characteristics in the DSFT
by the example of Fe and Invar alloy Fe0.65Ni0.35 (for more details, see [12]). First, we demonstrate that the instability is not
an artefact of the calculation method. To this end, we show that the coordinate bisection method used in [1–4, 17–21] gives
good agreement with the multidimensional minimization over a wide range of temperatures. Second, through the calculation
with the forward and backward changes of temperature, we demonstrate the hysteresis behaviour of magnetic characteristics.
Using methods of the catastrophe theory [22], we examine the effect of parameter changes on the temperature dependence.
We show that the discontinuous temperature dependence can be smoothed out by small changes of the input data. Possible
improvements of the DSFT approximations [1] are discussed in the next sections.

Finally, the choice of the disordered Invar alloy Fe0.65Ni0.35 is not accidental. First, this alloy has a large content of Fe,
and thus exhibits all the problems connected to a sharp increase of the fluctuations at high temperatures. Second, and most
important, Fe0.65Ni0.35 is the alloy that, in our opinion, can explain the Invar problem per se (for a review see [23–26]).

11.1.2 Instability Through Multiple Solutions

As we explained in the previous chapter, the DSFT calculation of magnetic properties in metals at finite temperatures is
reduced to solution of the system of four nonlinear equations with respect to four unknowns: the chemical potential μ, mean
single-site spin s̄z, and mean-square fluctuations ζ x ≡ 〈ΔV 2

x 〉′ and ζ z ≡ 〈ΔV 2
z 〉′:

ϕ1(μ, s̄z, ζ x, ζ z) ≡ n↑ + n↓ − ne = 0, (11.1)

ϕ2(μ, s̄z, ζ x, ζ z) ≡ (n↑ − n↓)/2 − s̄z = 0, (11.2)

ϕ3(μ, s̄z, ζ x, ζ z) ≡ uT/(2λx
L)I x − ζ x = 0, (11.3)

ϕ4(μ, s̄z, ζ x, ζ z) ≡ uT/(2λz
L)I z − ζ z = 0. (11.4)

Here

nσ = Nd

π

∫
Imgσ (ε)f (ε) dε (11.5)

is the number of electrons with the spin projection σ =↑,↓ or ±1, and the function Iα is calculated by the formula

Iα =
∫ 1

0

1

a2
α + b2

αk2

2

π
arctan

cα

a2
α + b2

αk2 3k2 dk, (11.6)

where aα , bα and cα are given by (10.25).
Temperature dependence of a solution to the system of equations (11.1)–(11.4) is usually obtained by increasing

temperature from T = 0, where the fluctuations vanish and solution is the easiest to calculate. Changing temperature in
small steps one finds the solution at each T by a numerical method taking the solution from the previous step as the initial
guess. Following this algorithm, one assumes that the solution changes continuously with temperature. Close to the point,
where the derivative with respect to T becomes infinite, the solution can become unstable, i.e. the method convergence can
slow down and the result can differ considerably from the initial guess.

Instability of the solution method appears at the point where the determinant of the Jacobi matrix vanishes:

det

∥∥∥∥
∂(ϕ1, ϕ2, ϕ3, ϕ4)

∂(μ, s̄z, ζ x, ζ z)

∥∥∥∥ = 0. (11.7)

An explicit check of condition (11.7) in the DSFT is difficult, because finite-difference approximation of the gradients leads
to considerable loss of precision. An alternative approach is to demonstrate that the solution to the system of equations
(11.1)–(11.4) is nonunique (for details, see [12]).

We can show that the system of equations (11.1)–(11.4) has multiple solutions by obtaining a temperature hysteresis loop.
The hysteresis in one of the variables, say s̄z, manifests itself in a jump down at a certain T2 as T increases, and a jump back
up at a smaller value T1 as T is changed in the reverse direction (Fig. 11.1). Hence the curves s̄z(T ), obtained through the
forward and backward change of temperature over T1 < T < T2, form a closed contour. In this case, we have three solutions
at the interval T1 < T < T2: two stable and one unstable in between of them. At T = T1 and T = T2, two adjacent solutions
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Fig. 11.1 Sketch of the
instability through the multiple
solution. The projection of the set
of all degenerate solutions (red
dotted line) separates the domains
with three solutions and one
solution on the parameter plane

⎯

T1  T2

Tu

S z

merge into a degenerate one, i.e. condition (11.7) is satisfied. For T < T1 and T > T2, the system has only one solution,
which is stable. At T = T1 and T = T2 we have first-order-like transition points, i.e. discontinuous jumps between two
branches of solutions.

Consider now the effective interaction constant u as an additional parameter to the temperature T (Fig. 11.1). Changing
u over an interval of its admissible values, we can make the hysteresis loop smaller. If, at a particular u value, the hysteresis
loop eventually collapses to a point, we obtain the temperature dependence with the second-order-like transition. Decreasing
u yet further, we obtain a temperature dependence without degenerate solutions. The projection of the set of all degenerate
solutions (11.7) separates the domains with three solutions and one solution on the parameter plane (for more on bifurcations,
see, e.g. [22]).

11.1.3 Temperature Hysteresis

Temperature dependence of the solution to the DSFT system of nonlinear equations is investigated first by the example of the
Invar alloy Fe0.65Ni0.35. The initial nonmagnetic DOS ν(ε) (Fig. 11.2) is formed from the two spin-polarized DOSs obtained
from the self-consistent calculation for the disordered Fe0.65Ni0.35 [27]. A detailed description of ν(ε) formation is given
in [4]. The experimental value of the spin magnetic moment per atom m

exp
0 = 2s̄z(0)μB = 1.75μB, used to determine the

effective interaction constant u, is taken from [28].2

The results of the calculations of the basic magnetic characteristics of the Fe0.65Ni0.35 Invar obtained by the coordinate
bisection method are represented in Fig. 11.3. Since the most important physical parameter in the Invar problem is not the
magnetization m(T ) = 2μBs̄z(T ), but the local magnetic moment mL(T ), calculated in the DNA by the formula (10.44):

mL(T )/m(0) = [((us̄z(T ))2 + 2ζ x + ζ z)/(us̄z(0))2]1/2,

it is also shown in the figure.
The investigation was carried out with the temperature TW ranging from 0 to 0.01 (TW is the temperature in units of the

bandwidth W = 9.70 eV ≈ 1.1 × 105 K). First the temperature step is selected to be relatively large (ΔTW = 0.001), but as
the values of s̄z, ζ z and ζ x start changing considerably, the program switches to a smaller step size (ΔTW/20 = 0.00005).
Calculation accuracies in the variables μ, s̄z, ζ x and ζ z for one-dimensional bisections are selected so that the relative errors
are approximately of the same order, 10−4.

As can be seen from Fig. 11.3, at T ≤ 0.68 T
exp

C a gradual increase of fluctuations and a smooth decrease of the magnetic
moment are observed: during one small step in temperature the reduced fluctuations ζ x(T )/〈Vz(0)〉2 and ζ z(T )/〈Vz(0)〉2

increase by 0.001–0.01, and the reduced magnetic moment s̄z(T )/s̄z(0) decreases by 0.002–0.02. The picture changes at

2 Note that the experimental value m
exp
0 cited in [28] is equal to 1.77μB, but it includes a small (<0.1μB) positive contribution of the orbital

magnetic moment [29].
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Fig. 11.2 The DOS of the d
band of nonmagnetic
Fe0.65Ni0.35, obtained from [27]
(solid line), and the one
smoothed out by convolution
with the Lorentzian function of
the halfwidth Γ = 0.001 (dashed
line). The energy ε and halfwidth
Γ are in units of the bandwidth
W = 9.70 eV. The vertical line
indicates the position of the
Fermi level εF
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Fig. 11.3 The magnetization
m(T )/m(0) (solid line:
calculation, circled line:
experiment [28]), the mean
square of spin fluctuations ζ x

(dashed line) and ζ z (long dashed
line) in units of the square of the
mean exchange field at T = 0,
the reciprocal paramagnetic
susceptibility χ−1(T ) (dash dot
dashed line) in units of
kBT

exp
C /μ2

B, and the local
magnetic moment mL(T )/m(0)

(dotted line) of the Fe0.65Ni0.35
Invar calculated in the DSFT with
m

exp
0 = 1.75μB through forward

and backward changes of
temperature
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temperatures T ≥ 0.69 T
exp

C . First an abrupt change in fluctuations and a jump down in the magnetic moment are observed,
then the change in this quantities fails to be smooth. However, the preset accuracy of the solution to the system of equations
(11.1)–(11.4) is retained at all temperatures.

It was the problem of instability of the solution to the system of equations (a jump down in the magnetic moment and
abrupt change in fluctuations) that urged us to use the multidimensional minimization (coordinate descent method) as a test
for the results of the coordinate bisection method (for details, see Appendix I).

The calculation in the coordinate descent method was performed with the same initial data and at the same temperatures
as in the coordinate bisection method. In the coordinate descent method the accuracy was chosen such that it guarantees the
relative errors in s̄z, ζ x and ζ z to be nearly the same as calculated by the coordinate bisection method, i.e. within 10−3−10−4.
At temperatures T ≤ 0.68 T

exp
C , the results obtained by the coordinate descent are in close agreement with those obtained

by coordinate bisection (to the prescribed precision of 3–4 significant digits). However, starting from T = 0.69 T
exp

C , the
desired accuracy of the minimized function cannot be reached, although a monotonic decrease of the magnetic moment and
a monotonic increase of the fluctuations still persist.

It is important to note that the values of s̄z, ζ x and ζ z obtained by the coordinate descent practically coincide with those
obtained by coordinate bisection over a wide temperature range (see Table 1 in [12]). This is a strong indication that the
instability at high temperatures is related to the system itself rather than the solution method.

To demonstrate that the numerical instability at T ≈ 0.69T
exp

C is caused by the degeneracy of the system of equations
(11.1)–(11.4), we investigate a possibility of the hysteresis behaviour of the solution. The calculation with the forward and
backward changes of temperature shows that, contrary to the experiment, the curves s̄z, ζ x and ζ z have a small hysteresis loop
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Fig. 11.4 As Fig. 11.3, but
calculated with m

exp
0 = 1.70μB
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(Fig. 11.3). However, with the admissible initial magnetic moment m
exp
0 = 1.70μB (see footnote 2), the effective interaction

constant u is equal to 1.10 eV (instead of u = 1.13 eV for m
exp
0 = 1.75μB), and the hysteresis loop disappears (Fig. 11.4).

The curves s̄z, ζ x and ζ z obtained with the backward change of temperature almost replicate those obtained with the forward
change of temperature, except for the instability region, where we have small deviations but without strictly vertical sections.

In order to reduce the fluctuations ζ α one should take into account the higher-order terms in the expansion of the free
energy F1(V ). Instead, we can reduce the fluctuations ζ α implicitly by decreasing the effective interaction constant u in
formula (10.22) to u2 = cu, where c is a parameter (slightly less than one) estimated from experience. With c = 0.985 it
is possible to obtain full agreement with experiment for the Curie temperature: TC = 1.01T

exp
C , for the paramagnetic Curie

point: ΘC = 1.06T
exp

C and for the effective magnetic moment: meff = 0.97m
exp
eff . But overall the curve for the magnetization

does not fit the experiment well enough. Qualitatively the calculated curve m(T ) stays similar to the one obtained with c = 1
(Fig. 11.4), i.e. it still has a snake-like form. The reason is that the above change of the constant u yields a uniform change
of the fluctuations, while to remove the “snake” one has to account for the interaction between the fluctuations that becomes
more intense with an increase of temperature.3

In the SCR-calculations [9], the first-order transition at TC was eliminated entirely when the χ−1
‖ was approximated by

χ−1
⊥ (the case η = 0 in (3.18) in [9]). However, in our calculation with ζ z = ζ x , the temperature behaviour represented

in Fig. 11.4 remains. In [10, 11], to avoid the fictitious first-order transition in the SCR theory, a single equation for the
longitudinal χ‖ and transverse χ⊥ susceptibilities was suggested. The relation that couples χ‖ and χ⊥ is based on the
assumption that the total local spin fluctuation, i.e. the sum of the zero-point and thermal spin fluctuations, is conserved.
This is the case in the Heisenberg local moment theory, and may be somehow justified for weak ferromagnets. In our case,
the two equations for the fluctuations ζ x and ζ z are coupled to each other, as well as to the other two equations of system
(11.1)–(11.4). However, system (11.1)–(11.4) is obtained using the quadratic approximation of the free energy, which does
not account for the higher order interactions (the anharmonicity of the fluctuations). Apparently, the coupling of the ζ x and
ζ z in the system (11.1)–(11.4) is insufficient.

Note that the temperature hysteresis is observed not only in the Fe-Ni Invar, but also in the elemental Fe, i.e. it is a
general problem for strong ferromagnets with sharply increasing spin fluctuations. In Fe, as the initial DOS we use the same
nonmagnetic DOS as in Sect. 10.5, which is calculated in the LDA by the KKR method with a self-consistent potential [30].
Then the DOS is smoothed out by convolution with the Lorentzian function of the halfwidth Γ = 0.001W (W = 7.16 eV is
the bandwidth) and normalized to one d band of unit width. The smoothed DOS of the d band ν(ε) used for calculation is
represented in Fig. 11.5. The number of d electrons per atom is ne = 7.43, just as before. The effective interaction constant
u determined from m

exp
0 = 2.217μB [31] is 1.06 eV.

As can be seen from Fig. 11.6, which shows the results of our calculation for the magnetic characteristics with the
forward and backward changes of temperature, in Fe the hysteresis loop is even larger than in the Fe-Ni Invar. However, the

3The reduction of the fluctuations with the help of u2 is formally equivalent to replacing the λ(q, ω) in the expression for the dynamic susceptibility
(4.19) in [8] by a constant.
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Fig. 11.5 The DOS of the d
band of nonmagnetic Fe,
calculated by the KKR method
with a self-consistent potential
(solid line), and the one
smoothed out by convolution
with the Lorentzian function of
halfwidth Γ = 0.001 (dashed
line). The energy ε and halfwidth
Γ are in units of the bandwidth
W = 7.16 eV. The vertical line
indicates the position of the
Fermi level εF
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Fig. 11.6 The magnetization
m(T )/m(0) (solid line:
calculation, diamond: experiment
[31]), the mean square of spin
fluctuations ζ x (dashed line) and
ζ z (long dashed line) in units of
the square of the mean exchange
field at T = 0, the reciprocal
paramagnetic susceptibility
χ−1(T ) (dash dot dashed line) in
units of kBT

exp
C /μ2

B, and the local
magnetic moment mL(T )/m(0)

(dotted line) of Fe calculated in
the DSFT with m

exp
0 = 2.217μB

through forward and backward
changes of temperature
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temperature behaviour of magnetization near the jump in the Fe-Ni Invar and Fe is qualitatively different (compare Figs. 11.3
and 11.6). In the former, the magnetization does not jump down to zero, i.e. the switching-over to the paramagnetic state does
not occur. Therefore, in Fe-Ni Invar, a small change of the initial data only smears the discontinuous jump into a smooth curve
with an inflexion. In contrast, in the case of Fe, the smoothing could transform the first-order transition to the second-order
one.

Finally, as an alternative attempt to eliminate the discontinuous jump, we carried out calculations for Fe and Fe-Ni Invar
with only the longitudinal or only transverse fluctuations. As should be expected, the switching-off of the transverse or
longitudinal fluctuations leads to a Curie temperature almost twice as large as the experimental one. Worse agreement with
experiment is achieved in this case for other magnetic characteristics as well. Most importantly, the use of models with a
one-dimensional fluctuating field does not solve the problem of temperature dependence for Fe and Fe-Ni Invar. In particular,
in the model that takes only longitudinal fluctuations into account, the magnetization decreases too slowly with the increase
in temperature, and the discontinuous jump (first-order transition) turns out to be too sharp. In the model that takes only
transverse fluctuations into account, the magnetization decreases faster and agreement with experiment at low temperatures
is achieved, but singularities of the magnetization curve remain.

Thus, calculations of the magnetic properties of Fe and Fe-Ni Invar in the DSFT showed that the coordinate bisection
method is quite applicable to practical calculations at finite temperatures. The instability at high temperatures is connected
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not with the solution method—two different numerical methods gave well-agreed results—but with the system of nonlinear
equations itself.

The problem is that in Fe and in alloys with a considerable content of Fe, like Fe-Ni Invar, the spin fluctuations at high
temperatures increase sharply, which means that λα

L = 1 − uχα
L (0) tends to zero. Consequently, there is a strong dependence

of the solution to the system of nonlinear equations (11.1)–(11.4) on the accuracy of the effective constant u and the static
local susceptibility χα

L (0).4

Note that the problem of temperature dependence is connected not only with the system of equations, but also with the
initial parameters of the real ferromagnet (the DOS ν(ε), the number of d electrons ne, the effective interaction constant u,
etc.). Each particular set of data yields its own solution to the system of nonlinear equations (11.1)–(11.4). For example, in
Co and Ni no instabilities were found at all (see, e.g. [2]). Even in the case of Fe and Fe-Ni Invar, reasonable changes of
the initial data and/or the system of equations can either remove or at least reduce considerably the effect of the instability.
Finally, as our calculations show, if only longitudinal fluctuations are taken into account the discontinuous jump near TC

only increases, i.e. taking into account both transverse and longitudinal fluctuations does not worsen the situation, as stated
in [33], but improves it.

Apparently, for transition metals and alloys with strong spin fluctuations and large magnetization, the approximations [1]
of the DSFT should be improved to be equally applicable at high temperatures. It is necessary to go beyond the quadratic
approximations for the fluctuation contribution to the self-energy ΔΣ and for the free energy of electrons in the fluctuating
exchange field F1(V ). Quite possible, a more consistent account—not only in the derivation of formula (11.6)—of the short-
range magnetic order is necessary. As we will show in the next section, damping of the sharp increase in the fluctuations
allows not only to eliminate the instability of the solution but also, what is more important, to improve the agreement with
experiment at high temperatures.

11.2 Beyond the Gaussian Approximation

As we have shown, for spin fluctuations with large amplitudes, the Gaussian approximation (GA) of the DSFT becomes
insufficient to properly take the interactions into account and yields a jump phase transition to the paramagnetic state
[1, 34]. In papers [35–37] the jump in temperature dependencies was eliminated and a proper second-order phase transition
was obtained in the DSFT by taking into account higher-order terms of the free energy of electrons in the fluctuating
exchange field. In the final computational formulae, the third-order term renormalizes the mean field, and fourth-order
term renormalizes the susceptibility. The main novelty in the treatment of the higher-order terms by Reser et al. [35] and
Melnikov et al. [36] is that the ferromagnetic state is changed self-consistently and an interpolation between local and long-
wave limits is used (for treatments of the fourth-order term in the paramagnetic state, see [8, 38–40] and references therein).
The renormalized Gaussian approximation (RGA) was enhanced further by taking into account uniform fluctuations (UF) in
the single-site Green function [37].

11.2.1 Renormalized Gaussian Approximation

We briefly recall the main steps of the renormalization, suggested in [35] and developed in [36,37]. We start with the fourth-
order series expansion of the free energy (9.1) in powers of ΔV = V − Ṽ (for details, see Appendix A.1.2):

F(V ) = T Tr

(
Ṽ ΔV

uNdT
+ G(Ṽ )ΔV

)
+ 1

2
T Tr

(
ΔV 2

uNdT
+ (G(Ṽ )ΔV

)2
)

+ 1

3
T Tr
(
G(Ṽ )ΔV

)3 + 1

4
T Tr
(
G(Ṽ )ΔV

)4
, (11.8)

where Ṽ is an arbitrary value of the exchange field. First, we carry out the partial averaging of the cubic and quartic terms:

ΔV 3 ≈ 3ΔV ΔV ΔV, ΔV 4 ≈ 6ΔV ΔV ΔV ΔV, (11.9)

4High sensitivity of the local magnetic characteristics of iron to the value of u at high temperatures is well illustrated in [32].
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where the prefactor is the number of all possible pair combinations, and the underbrace denotes the averaging with a Gaussian
probability density p(2)(V ), which we have to construct. Applying (11.9) to the right-hand side of (11.8), we obtain

F(V ) = T Tr

(
Ṽ ΔV

uNdT
+ G(Ṽ )ΔV + G(Ṽ )ΔV G(Ṽ )ΔV G(Ṽ )ΔV

)

+ 1

2
T Tr

(
ΔV 2

uNdT
+ G(Ṽ )ΔV G(Ṽ )ΔV + 3G(Ṽ )ΔV G(Ṽ )ΔV G(Ṽ )ΔV G(Ṽ )ΔV

)
. (11.10)

Next, we apply the Gaussian approximation (9.27) to the modified free energy (11.10). Henceforth we use the average
〈· · · 〉(2) and omit the subscript. Replacing averages of products of the Green functions G(Ṽ ) by the products of the averages
Ḡ ≡ 〈G(Ṽ )〉, we come to

F (2)(V ) = 1

2
T Tr

(
ΔV 2

uNdT
+ ḠΔV ḠΔV + 3ḠΔV ḠΔV ḠΔV ḠΔV

)
. (11.11)

Here ΔV = V − V̄ , and the mean field V̄ ≡ 〈Ṽ 〉 is derived from the condition that the linear term annihilates:

T Tr

(
V̄ ΔV

uNdT
+ ḠΔV + ḠΔV ḠΔV ḠΔV

)
= 0. (11.12)

Further simplification of (11.11) and (11.12) is carried out through the splitting formula

Tr(ḠΔV ḠΔV ḠΔV ) ≈ πT

2NdNW
Tr(ḠΔV ḠΔV )Tr(ḠΔV ) ≡ ηTr(ḠΔV ), (11.13)

where the factors N−1
d , N−1, πT/W and 1/2 appear due to partial averaging in band, site, “time” and spin, respectively (for

details, see Appendix E.3). Applying (11.13) to the linear term (11.12), we have

T Tr

(
V̄ ΔV

uNdT
+ (1 + η)ḠΔV

)
= 0.

Splitting the correction due to the quartic term of the free energy in a similar fashion, we rewrite (11.11) as

F (2)(V ) = 1

2
T Tr

(
ΔV 2

uNdT
+ (1 + 3η)ḠΔV ḠΔV

)
.

In the momentum-“frequency” representation, we obtain the same mean-field equation (9.29) as in the GA but s̄z is now
given by

s̄z = (1 + η)N−1NdT
∑

qn

Ḡz
qn. (11.14)

Similarly, the fluctuation 〈|ΔV α
qm|2〉 is calculated by the same formula (9.35) as in the GA but the unenhanced dynamic

susceptibility χ0α
qm becomes

χ0α
qm ≡ −1

2

〈
∂2F

(2)
1 (V )

∂V α
qm∂V α−q−m

〉
(11.15)

= −1

2
(1 + 3η)NdT

∑

kn

∑

γ1γ2

Ḡ
γ1
kn

Ḡ
γ2
k−q, n−m

Sp
(
σγ1σασγ2σα

)
.

The condition that the total number of electrons is conserved leads to the same equation on the chemical potential (9.36) as
before.
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Thus, the RGA yields the same system of nonlinear equations (9.29), (9.35) and (9.36) as in the GA but with mean spin
(11.14) and susceptibility (11.15) renormalized self-consistently.

11.2.2 Local and Uniform Fluctuations

Just as in the GA, we introduce the single-site fluctuation 〈ΔV 2
α 〉′ using formula (10.15). Calculations of the sum over q and

m follow closely those in the GA and give essentially the same result (10.24) but with the renormalization prefactor 1 + 3η

in the local susceptibility.
The higher-order correction coefficient η, which appears in (11.14) and (11.15), is calculated as

η = − π

WNd

∑

α

χ̀0α
L (0)〈ΔV 2

α 〉′, (11.16)

where χ̀0α
L (0) is the static local susceptibility in the GA (η = 0). At low temperatures, the effect of the higher-order

renormalization is small. At high temperatures, we have χ̀0α
L (0) ≈ u−1, and hence (11.16) is proportional to the sum of

the mean-square fluctuations: η ≈ −π(uNdW)−1∑
α〈ΔV 2

α 〉′.
Note that the mean-square fluctuations (10.15) take into account both spatial correlations and interaction of different q-

harmonics due to the interpolation of the susceptibility χq(ε) between the local χL(ε) and uniform χ0(ε) susceptibilities.
However, the local susceptibility χL(ε) is determined only by the site-diagonal part of the mean Green function: Ḡjj ′n =
g(iωn)δjj ′ .

We improve the effect of nonlocality by taking into account uniform fluctuations (UF) of the mean field in (10.35) as
follows:

g̃(ε) ≡ 〈 g0(ε − Ṽ − ΔΣ(ε, Ṽ ))
〉
, (11.17)

where the average is taken over the single-site Gaussian field Ṽ . Here

g0(ε) =
∫

ν(ε′)
ε − ε′ dε′,

where ν(ε) is the nonmagnetic DOS at T = 0. To simplify the calculations, we approximate the fluctuating field Ṽ by a field
that takes only two values ±V̄z, so that (11.17) is reduced to [37, 41]

g̃σ (ε) =
∑

σ ′
Pσσ ′g0(ε − σ ′v − ΔΣσ (ε, σ ′v)), (11.18)

Pσσ ′ = 1

2

(
1 + σ V̄z

σ ′v

)
,

where v = (V̄ 2
z + 〈ΔV 2

x 〉′ + 〈ΔV 2
y 〉′ + 〈ΔV 2

z 〉′)1/2 (for details, see Appendix E.4).

In the RGA+UF, we still solve a system of four equations in four unknowns: the mean field V̄z, mean-square fluctuations
〈ΔV 2

x 〉′ = 〈ΔV 2
y 〉′ and 〈ΔV 2

z 〉′, and chemical potential μ, with temperature as a parameter. But the difference of the
RGA+UF system of equation from the one in the GA is that the mean field (11.14) and unenhanced susceptibility (11.15) are
renormalized self-consistently, and the uniform fluctuations are explicitly taken into account in the single-site mean Green
function (11.18).

Similarly, the final expressions for most of the magnetic characteristics, such as magnetization mz = gμBs̄z and enhanced
susceptibility (10.47), stay the same but the way they are calculated in the RGA or RGA+UF is different from the one in
the GA. In particular, the local magnetic moment mL = gμBsL is calculated in the RGA+UF as follows. We improve the
effect of the uniform fluctuations on the square of the local spin moment (10.43) by averaging over the single-site field
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Ṽ : s̃2
L = u−2

〈
Ṽ 2 + 〈ΔV 2〉′〉, just as we did for the single-site mean Green function g(ε) in formula (11.17). Using the

approximate fluctuating field Ṽ that takes two values ±V̄z, we come to the final expression

s̃L = u−1(V̄ 2
z + 2(〈ΔV 2

x 〉′ + 〈ΔV 2
y 〉′ + 〈ΔV 2

z 〉′))1/2
. (11.19)

Thus, in the RGA+UF formula (11.19) the total mean-square fluctuation is multiplied by the factor two as compared to the
DSFT expression (10.44).

11.2.3 Application to Fe and Fe–Ni Invar

Iron
The extended DSFT allows to eliminate the first-order phase transition, which is observed in the GA of the DSFT. To
demonstrate that, we consider bcc iron and take the same initial data as in Sect. 11.1.3 (the DOS is shown in Fig. 11.5). The
number of d electrons per atom ne is equal to 7.43. The effective interaction constant u, determined from m

exp
0 = 2.217 μB

[31], is 1.06 eV.
The RGA calculation gives good agreement with experiment for the effective magnetic moment meff = 1.08m

exp
eff (mexp

eff =
3.13 μB [42]) and for temperature dependence of the local magnetic moment mL(T ). However, for the Curie temperature,
the RGA yields TC = 2.23T

exp
C (T exp

C = 1044 K [31]).
In the RGA+UF the fluctuations increase and this yields TC = 1.56T

exp
C . A sharp increase of the fluctuations and

sharp decrease in magnetization at high temperatures, which occurred in the GA of the DSFT (Fig. 11.7), disappear in
the RGA+UF (Fig. 11.8). The temperature dependence of magnetization calculated in the RGA+UF gives a fairly good fit to
the experimental one. The local magnetic moment calculated in the RGA+UF by formula (11.19) does not strongly depend
on temperature as it must be (for details, see [43]).

Calculations in the GA+UF for Fe, Co and Ni were carried out and discussed in [34]. They give a smaller Curie
temperature than the GA calculations but have the same first-order-like phase transition in Fe as the GA calculations [1, 2].

Fe-Ni Invar
Now the extended DSFT is applied to the calculation of the magnetic properties of the Fe0.65Ni0.35 Invar alloy at finite
temperatures [37, 44]. The choice of the Fe-Ni Invar for demonstrating the possibilities of the extended DSFT is motivated
by the problems of temperature dependence that were found within the quantum-statistical treatment of this Invar [3,4,12,45].

It is known that the Fe-Ni Invar is a complex disordered system (see, e.g. [46, 47] and references therein). However,
comparison of the calculation results for the disordered alloy Fe0.65Ni0.35 [4, 12] and the ordered compound Fe3Ni [3, 45]
showed that the effect of disorder in the filling of sites with Fe and Ni atoms on the magnetic properties of the Fe-Ni
Invar is not critical. This conclusion agrees with earlier results for the ordered and disordered Fe0.72Pt0.28 Invar (see, e.g.

Fig. 11.7 The magnetization
m(T )/m(0) (solid line:
calculation, circled line:
experiment [31]), the
mean-square fluctuations
〈ΔV 2

x 〉′(T ) (dash dot dot dashed
line) and 〈ΔV 2

z 〉′(T ) (dashed
line) in units of the square of the
mean exchange field V̄ 2

z (0), the
reciprocal paramagnetic
susceptibility χ−1(T ) (dash dot
dashed line) in units of
kBT

exp
C /μ2

B, and the local
magnetic moment mL(T )/m(0)

(dotted line) of the bcc iron
calculated in the GA of the DSFT
as functions of the reduced
temperature T/T

exp
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Fig. 11.8 As Fig. 11.7, but
calculated in the RGA+UF of the
DSFT
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Table 11.1 The ferromagnetic (TC) and paramagnetic (ΘC) Curie temperatures,
effective (meff) and local (mL(TC)) magnetic moments of Fe0.65Ni0.35 Invar,
calculated in three approximations of the DSFT

DSFT TC/T
exp

C ΘC/T
exp

C meff/m
exp
eff mL(TC)/mL(0)

GA 0.83 0.90 0.89 0.94

RGA 1.47 1.48 1.18 0.85

RGA+UF 1.07 1.15 1.01 0.65

[25, table 10-1]). The weak influence of the atomic disorder on the magnetic properties of the Fe-Ni Invar at finite
temperatures is explained by the integral dependence of the SFT equations on the electronic energy structure. The details of
the initial DOS do not exert the decisive effect on the results of the calculations.

We use the same initial nonmagnetic DOS ν(ε) as before (see Fig. 11.2). The number of d electrons per atom ne =
2Nd
∫ εF

0 ν(ε) dε (εF is the Fermi energy) is equal to 7.66. The effective interaction constant u = 1.1 eV is determined from
(10.33) to (10.35) at T = 0 with the experimental value of the spin magnetic moment per atom m

exp
0 = 1.7 μB [28].

Note that here we neglect the fine effects of the atomic and/or magnetic short-range order (see, e.g. [46,47] and references
therein). Moreover, the magnetic moment m

exp
0 and the DOS ν(ε) represent the values per averaged atom. However, as we

have mentioned, even with these initial data one can calculate the temperature dependence of the magnetic properties of an
alloy in the DSFT.

Figure 11.4 and Table 11.1 present basic magnetic characteristics for the Fe0.65Ni0.35 Invar calculated within the GA of the
DSFT. All the characteristics are represented in units of their experimental values T

exp
C = 520 K [28] and m

exp
eff = 3.3 μB [48].

Clearly, at high temperatures, the calculated magnetization curve m(T ) = gμBs̄z(T ) does not fit the experimental one well
enough. For the Curie temperature, we obtain TC = 0.83 T

exp
C . But most importantly, the calculated curve m(T ) has an

inflection (see the discussion in [12]).
The situation improves when we take into account higher-order terms in the expansion of the free energy F(V ) using

expression (11.16) for the correction coefficient η. The calculation results are represented in Fig. 11.9 and Table 11.1. As
can be seen from Fig. 11.9, a sharp increase of the fluctuations and sharp decrease in magnetization at high temperatures,
which occurred in the GA of the DSFT (Fig. 11.4), disappear in the RGA of the DSFT. On the whole, the curve for the
magnetization fits the experimental one. However, there is no full quantitative agreement.

Finally, the RGA of the DSFT with g̃σ (ε) calculated by (11.18) gives good agreement with experiment at all temperatures
(Fig. 11.10). In particular, the RGA+UF gives nearly full agreement for the Curie temperature: TC = 1.07 T

exp
C ; for the

paramagnetic Curie point: ΘC = 1.15 T
exp
C ; and for the effective magnetic moment: meff = 1.01m

exp
eff (Table 11.1).

As can be seen from Fig. 11.10, the local magnetic moment mL(T )/mL(0) calculated by formula (10.44) strongly depends
on temperature: with temperature increasing from zero to T

exp
C , the local moment decreases by 35% (Table 11.1). This

change is considerable and quite sufficient for an explanation of the Invar effect. The assumption that the volume change
of the Fe-Ni Invars is connected with the temperature variation of the local moment but not the magnetization was first
made in [49] from an analysis of the experimental data. The subsequent SFT calculations [50,51] confirmed this assumption.
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Fig. 11.9 As Fig. 11.3, but
calculated in the RGA of the
DSFT
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Fig. 11.10 As Fig. 11.3, but
calculated in the RGA+UF of the
DSFT
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We use our calculated value mL(TC)/mL(0) = 0.65 and experimentally estimated value D0/B � 10−6(emu/g)−2 in the
approximate formula (5) of [52] for the magnetic volume change: ωm(T ) = (D0/B)M2

0 [(mL(T )/mL(0))2 − 1], where D0

is the magneto-volume coupling constant for q = 0, B is the bulk modulus and M0 is the uniform magnetization at T = 0 K.
For Fe0.65Ni0.35, which has M0 � 170 emu/g [25], we obtain ωm(TC) = −0.017, in good agreement with the experimentally
estimated value −0.019 [53, 54].
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12Low-Temperature Theory

Everything should be made as simple as possible, but not simpler. (A. Einstein)

At low temperatures (T 	 TC), magnetization in metals follows the T 3/2 law. In Chap. 5 this was shown theoretically using
the RPA. At finite temperature, the RPA does not give good agreement with experiment, because it neglects the feedback of
the spin waves on the thermal equilibrium state. The spin fluctuation theory [1–6] allows to calculate the magnetization of
the transition metals and alloys at all temperatures. However, at low temperatures, none of the approximations to the SFT fits
well the experimental data. The static approximation [1–5] gives a too rapid decrease of the magnetization, m(T ) ∝ T , and
the dynamic approximation [6] gives a too slow decrease, m(T ) ∝ T 2. The reasons for the disagreement with experiment
are different [7]. The static SFT does not take into account the quantum nature of the spin fluctuations. In the DSFT the T 2

law results from the diagonal approximation of the dynamic susceptibility tensor [6].
In Sect. 12.1, we show that the transverse susceptibility reduces to the RPA form and magnetization follows the T 3/2

law if we use the DSFT without the diagonal approximation for the dynamic susceptibility tensor [8, 9]. Then we study the
temperature interval where the T 3/2 law agrees with experiment. In Sect. 12.2 we present a simple low-temperature version
of the DSFT that has only local transverse fluctuation (for details, see [10]), and compare its results with the ones of the
RPA. The results are demonstrated by the example of the elemental Fe and disordered Fe0.65Ni0.35 Invar, where a proper
explanation of the low-temperature excitations is still missing [11, 12].

12.1 Low-Temperature Region

12.1.1 Transverse Dynamic Susceptibility

In the linear response theory, the transverse dynamic susceptibility (2.41), expressed in units of 1
2g2μ2

B, is given by the
formula

χ−+
q (ω) = 2i

∫ ∞

0

〈[s−
q (t), s+−q]〉 eiωt dt,

where s± = sx ± isy . By means of the analytic continuation ω + i0+ → iωm the dynamic susceptibility is related to the
thermodynamic susceptibility (6.65). For the transverse thermodynamic susceptibility, we write

χ−+
q (iωm) = 2

T
〈s−

qms+−q−m〉 (12.1)

(also in units of 1
2g2μ2

B), where the spin correlator is given by (6.64). Comparing formulae (12.1) and (6.65), it is easy to
check that

χ−+
qm = 2(χxx

qm + iχxy
qm), χ+−

qm = 2(χxx
qm − iχxy

qm), (12.2)

in full agreement with relations (2.16).
In the functional integral formalism, the spin correlator 〈sα

qms
β
−q−m〉 is related to the field correlator 〈V α

qmV
β
−q−m〉 by

formula (C.44). For the circular components we obtain
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〈s−
qms+−q−m〉 = 1

ũ2 〈V −
qmV +−q−m〉 − T

ũ
,

where V ±
qm = V x

qm ± iV y
qm. As a result, the susceptibility (12.1) becomes

χ−+
qm = 2

(
1

ũ2T
〈V −

qmV +−q−m〉 − 1

ũ

)
. (12.3)

Further calculation of the transverse susceptibility (12.3) is carried out in the optimal Gaussian approximation (see
Sect. 9.4.2) but now without the diagonal approximation. Namely, the function F(V ) = F0(V ) + F1(V ) is replaced by
the quadratic form (9.31):

F (2)(V ) =
∑

qmαβ

ΔV α
qmA

αβ
qmΔV

β
−q−m, (12.4)

where ΔV α
qm = V α

qm − V̄zδq0δm0δαz is the deviation from the mean field V̄z, and

A
αβ
qm = 1

2

〈
∂2F(V )

∂V α
qm∂V

β
−q−m

〉
.

Since F0(V ) is the quadratic form

F0(V ) = 1

ũ

∑

qmα

|V α
qm|2,

we obtain

A
αβ
qm = δαβ

ũ
− χ

0αβ
qm ,

where

χ
0αβ
qm = −1

2

〈
∂2F1(V )

∂V α
qm∂V

β
−q−m

〉

is the unenhanced susceptibility. Taking axial symmetry (9.24) into account:

χ0
qm =
⎛

⎜⎝
χ0xx

qm χ
0xy
qm 0

−χ
0xy
qm χ0xx

qm 0
0 0 χ0zz

qm

⎞

⎟⎠ ,

we have

Aqm =
⎛

⎝
Axx

qm A
xy
qm Axz

qm

A
yx
qm A

yy
qm A

yz
qm

Azx
qm A

zy
qm Azz

qm

⎞

⎠ =

⎛

⎜⎜⎜⎜⎝

1

ũ
− χ0xx

qm −χ
0xy
qm 0

χ
0xy
qm

1

ũ
− χ0xx

qm 0

0 0
1

ũ
− χ0zz

qm

⎞

⎟⎟⎟⎟⎠
.

Then the quadratic form (12.4) is written as

F (2)(V ) =
∑

qm

[
ΔV x

qm

(
1

ũ
− χ0xx

qm

)
ΔV x−q−m − ΔV x

qmχ
0xy
qm ΔV

y
−q−m

+ ΔV
y
qmχ

0xy
qm ΔV x−q−m + ΔV

y
qm

(
1

ũ
− χ0xx

qm

)
ΔV

y
−q−m

+ ΔV z
qm

(1

ũ
− χ0zz

qm

)
ΔV z−q−m

]
.
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Changing the variables by the formulae

V x
qm = 1

2
(V +

qm + V −
qm), V

y
qm = − i

2
(V +

qm − V −
qm),

we obtain

F (2)(V ) =
∑

qm

[
1

2
V −

qm

(1

ũ
− 1

2
χ0−+

qm

)
V +−q−m + 1

2
V +

qm

(1

ũ
− 1

2
χ0+−

qm

)
V −−q−m

+ ΔV z
qm

(1

ũ
− χ0zz

qm

)
ΔV z−q−m

]
, (12.5)

where
χ0−+

qm = 2(χ0xx
qm − iχ0xy

qm ), χ0+−
qm = 2(χ0xx

qm + iχ0xy
qm ) (12.6)

are the transverse unenhanced susceptibilities.1

To obtain a formula for the enhanced susceptibility, we need to calculate the field correlator on the right-hand side of
(12.3). The quadratic form of the optimal Gaussian approximation (12.5) can be written as

F (2)(V ) =
∑

qm

ΔVqmAqmΔV−q−m,

where ΔVqm = (V −
qm, V +

qm,ΔV z
qm) and

Aqm =
⎛

⎝
A−−

qm A−+
qm A−z

qm

A+−
qm A++

qm A+z
qm

Az−
qm Az+

qm Azz
qm

⎞

⎠ =

⎛

⎜⎜⎜⎜⎝

0
1

2

(1

ũ
− 1

2
χ0−+

qm

)
0

1

2

(1

ũ
− 1

2
χ0+−

qm

)
0 0

0 0
1

ũ
− χ0zz

qm

⎞

⎟⎟⎟⎟⎠
.

The correlator of the Gaussian field is given by the formula (see Appendix A.3.3)

〈ΔV α
qmΔV

β
−q−m〉 = T

2

(
A−1

qm

)βα

, (12.7)

where α, β = −,+, z. Calculating the inverse matrix

A−1
qm =
⎛

⎝
(A−1

qm)−− (A−1
qm)−+ (A−1

qm)−z

(A−1
qm)+− (A−1

qm)++ (A−1
qm)+z

(A−1
qm)z− (A−1

qm)z+ (A−1
qm)zz

⎞

⎠ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

0
2

1
ũ

− 1
2χ0+−

qm

0

2
1
ũ

− 1
2χ0−+

qm

0 0

0 0
1

1
ũ

− χ0zz
qm

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

,

by formula (12.7) we obtain

1One could notice that the sign in the formulae for the unenhanced susceptibility (12.6) differs from the one in the formulae for the enhanced
susceptibility (12.2). This fact is merely a matter of defining Aqm and χ0

qm in the DSFT. They are defined in such a way that the second equation
of the optimal Gaussian approximation looks as in (9.27) and unenhanced susceptibility is given by (9.32).
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〈V −
qmV +−q−m〉 = T

2

(
A−1

qm

)+− = T

1

ũ
− 1

2
χ0−+

qm

= ũT

1 − ũ

2
χ0−+

qm

.

Then the enhanced susceptibility (12.3) becomes

χ−+
qm = χ0−+

qm

1 − 1
2 ũχ0−+

qm

. (12.8)

12.1.2 Spin Waves and T 3/2 Law

To study the spin waves in the DSFT, we need explicit formulae for the transverse susceptibilities (12.6). From expression
(9.34), using formulae (A.22) for trace of the product of the Pauli matrices, we obtain

χ0xx
qm = −Nd

2
T
∑

knγ1γ2

Ḡ
γ1
kn

Ḡ
γ2
k−q,n−m

Sp
(
σγ1σxσγ2σx

)

= −Nd

2
T
∑

kn

(
Ḡ0

knḠ
0
k−q,n−mSp(σ xσ x) − Ḡz

kn
Ḡz

k−q,n−m
Sp(σ xσ zσ xσ z)

)

= −NdT
∑

kn

(
Ḡ0

knḠ
0
k−q,n−m − Ḡz

kn
Ḡz

k−q,n−m

)
, (12.9)

χ
0xy
qm = −Nd

2
T
∑

knγ1γ2

Ḡ
γ1
kn

Ḡ
γ2
k−q,n−m

Sp
(
σγ1σxσγ2σy

)

= −Nd

2
T
∑

kn

(
Ḡ0

knḠ
z
k−q,n−m

Sp
(
σxσ zσ y

)− Ḡz
kn

Ḡ0
k−q,n−mSp

(
σzσ xσ y

))

= iNdT
∑

kn

(
Ḡ0

knḠ
z
k−q,n−m

− Ḡz
kn

Ḡ0
k−q,n−m

)
. (12.10)

Hence by (12.6) the transverse susceptibility is equal to

χ0−+
qm = 2(χ0xx

qm − iχ0xy
qm )

= −2NdT
∑

kn

(
Ḡ0

kn + Ḡz
kn

)(
Ḡ0

k−q,n−m − Ḡz
k−q,n−m

)

= −2NdT
∑

kn

Ḡk↑(iωn)Ḡk−q,↓(iωn − iωm), (12.11)

where Ḡ↑ = Ḡ0 + Ḡz and Ḡ↓ = Ḡ0 − Ḡz. Here the mean Green function is given by

Ḡ(z) = (z + μ − H0 − Σ(z))−1,

where Σ(z) is the self-energy and μ is the chemical potential. The mean Green function Ḡ is calculated self-consistently and
takes into account thermal excitations with arbitrary wavevectors and “frequencies”. At low temperatures, the fluctuational
contribution ΔΣ = Σ − V̄ becomes small and can be neglected. Then

Ḡkσ (z) = 1

z + μ − εk − σ V̄z

= 1

z + μ − εkσ
.
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Replacing the sum over the odd “frequencies” ωn in formula (12.11) analogously to (A.63), we obtain

χ0−+
q (iωm) = −2Nd

∑

k

f (εk↑) − f (εk−q,↓)

εk↑ − εk−q,↓ − iωm

. (12.12)

Switching to k′ = k − q and making the analytic continuation iωm → ω + i0+, we have

χ0−+
q (ω) = 2Nd

∑

k′

f (εk′↓) − f (εk′+q,↑)

εk′+q,↑ − εk′↓ − ω
= 2NdF−+(q, ω), (12.13)

where F−+(q, ω) is the transverse Lindhard function (5.21). Using formula (12.8), we write the enhanced susceptibility in
the form

χ−+
q (ω) = 2NdF−+(q, ω)

1 − ũNdF−+(q, ω)
. (12.14)

Recalling that DSFT susceptibilities are expressed in units of g2μ2
B/2, we see that the low-temperature susceptibility (12.14)

is equal to the single-band RPA susceptibility (5.20) times the number of bands.
Now we introduce the spin-wave dispersion relation by (5.37). Deriving the low-temperature asymptotic expressions,

similar to (5.38), we have

χ0−+
q (ε) = 2N

u

(
1 − ε + Dq2

2us̄z

)
, (12.15)

where D is the stiffness constant. Hence the low-temperature expression for the enhanced susceptibility (12.8) is given by

χ−+
q (ε) = 2N

u

( 2us̄z

ε + Dq2 − 1
)
, (12.16)

where ε = ε + i0+. Using the Sokhotsky formula (A.44), we obtain

Imχ−+
q (ε) = −4Ns̄zπδ(h̄ω + Dq2). (12.17)

Following the argument of Sect. 5.2.2, we obtain the local transverse fluctuation (5.49) and the T 3/2 law for magnetization
in metals:

mz(T )

mz(0)
= 1 − a3/2T

3/2, T 	 TC,

where a3/2 is given by (5.51).
First, the above low-temperature limit of the DSFT is illustrated by the example of iron. The lattice constant a of the bcc

Fe is equal to 2.866 A [13], the magnetization at T = 0 is m(0) = 2.217 μB [14], and the spin-wave stiffness constant is

D0 = 311 meV A2 [15]. Substituting these values to expression (5.51), we obtain a3/2 = 2.87 × 10−6 K− 3
2 . The numerical

results for the spin-wave approximation (SWA) of the magnetization (5.52) are presented in Fig. 12.1. The temperature in
Fig. 12.1 is given in units of the Curie temperature T

exp
C = 1044 K [14].

For comparison, Fig. 12.1 shows the low-temperature magnetization m(T ) calculated in the Stoner approximation (STA)
and two approximations of the SFT: SLA and DNA. (Recall that the approximations SLA and DNA differ in the DSFT only
by expressions (10.39) and (10.24) for the fluctuations 〈ΔV 2

α 〉′, α = x, z.) The initial data of the calculation, the value of the
magnetic moment m(0) and the first-principles DOS ν(ε) at T = 0, are the same as in Sect. 11.1.3.

As can be seen from Fig. 12.1, the decrease of m(T ) in the STA is negligible. In the SLA the magnetization decreases
too fast (∝ T ). Only in the DNA good agreement with the experimental data is obtained. As for the SWA, it gives a better
agreement with experiment, as compared to the DNA, in the interval from zero to 0.2T

exp
C ≈ 200 K. However, the SWA is

not sufficient with increasing temperature. Indeed, the DNA gives a better agreement at finite temperatures, including room
temperatures. This is quite reasonable since in the DNA both transverse and longitudinal fluctuations are taken into account
but not only transverse ones, as in the SWA. At low temperatures, the DNA fluctuation (10.24) has the asymptotic behaviour
∼ T 2, while in the SLA the fluctuation (10.39) increases only linearly. Note that, near T = 0, the DNA curve m(T ) should
go higher than the SWA curve, which has the asymptotic behaviour ∼ T 3/2. In Fig. 12.1 this temperature interval is too small
so that the DNA and SWA curves merge there.
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Fig. 12.1 Magnetization of Fe
calculated in the SWA (red), STA
(blue), SLA (green) and DNA
(black). Filled squares are the
experimental data of Crangle and
Goodman [14]. The inset shows
the initial DOS at T=0; the
energy is in units of the
bandwidth W = 7.16 eV, and the
vertical line indicates the position
of the Fermi level
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Fig. 12.2 The experimental
data [14] for 1 − m(T )/m(0) of
Fe in the logarithmic scale, at the
interval 0 < T < T
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squares) interpolated by the line
with the slope 2 (blue) and 3/2
(red). The insets show the
experimental data [14] for
magnetization m(T )/m(0) vs. T 2

(blue) and T 3/2 (red) at the
interval 0 < T < 0.45T

exp
C

-6

-4

-2

-3 -2 -1  0

ln
 (1

- m
(T

) /
 m

(0
))

 

expln (T / TC )

 0.96

 0.97

 0.98

 0.99

 1

 0  0.1  0.2

 0.96

 0.97

 0.98

 0.99

 1

 0  0.1  0.2

 0.96
 0.97
 0.98
 0.99

 1

 0  0.1  0.2  0.3

 0.96
 0.97
 0.98
 0.99

 1

 0  0.1  0.2  0.3

In Fig. 12.2, we plot the relative change of magnetization 1−m(T )/m(0) versus temperature T in the logarithmic scale. As
can be seen, at low temperatures, the (red) line with the slope 3/2 gives the best agreement with experiment. This conclusion
is confirmed by a number of measurements [14,16,17]. Figure 12.2 also shows that, in a large range of higher temperatures,
the (blue) line with the slope 2 gives a better fit to the data. The crossover point from the T 3/2 to T 2 law is ambiguous (see,
e.g. [18]). As can be seen from the insets of Fig. 12.2, both T 3/2 and T 2 dependencies of the experimental magnetization
m(T )/m(0) produce almost a straight line over the temperature interval 0 < T < 0.45T

exp
C . The T 3/2 law has an asymptotic

character and holds at least up to the temperature 32 K [16], which is equivalent to 0.03 in the reduced temperatures T/T
exp
C .

Next, we apply the low-temperature limit of the DSFT to the disordered Fe-Ni Invar, which has been studied in detail
experimentally [19–22]. The lattice constant of the fcc Fe0.65Ni0.35 Invar is a = 3.59 A, the magnetization at T = 0 is
m(0) = 1.7 μB, and the spin-wave stiffness constant is D0 = 140.0 meV A2 [20]. Substituting these values to expression

(5.51), we obtain a3/2 = 12.18 × 10−6 K− 3
2 . The results for the magnetization in the spin-wave approximation (SWA)

are presented in Fig. 12.3. As in iron, the results of the SWA are compared with those of the STA, SLA and DNA. The
temperature is given in units of the Curie temperature T

exp
C = 520 K [23]. As the initial DOS for the SFT calculations, we

use the DOS of the d band of nonmagnetic Fe0.65Ni0.35, which is obtained from two spin-polarized DOSs calculated in [24].
As can be seen from Fig. 12.3, the decrease of m(T ) in the STA is negligible and in the SLA it is too fast (∝ T ), just as

in pure iron. The SWA gives good agreement with experiment over the temperature interval from zero to 0.1 T
exp

C ≈ 50 K,
which is approximately four times smaller than in iron. This fact agrees with experiment and is usually attributed to the Invar
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Fig. 12.3 Magnetization of
Fe0.65Ni0.35 calculated in the
SWA (red), STA (blue), SLA
(green) and DNA (black). Filled
squares are the experimental data
of Crangle and Hallam [23] and
open squares are the experimental
data of Ishikawa et al. [25] The
inset shows the initial DOS at
T = 0 [24]; the energy is in units
of the bandwidth W = 9.70 eV,
and the vertical line indicates the
position of the Fermi level
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anomaly [19, 22]. Note that, in alloys with atoms that are different by their chemical nature (and local magnetic moment),
our DSFT should be modified. Namely, atoms of each sort s should be characterized by their own intraatomic interaction
constant us , which is determined by m

exp
s (0), and their own initial DOS νs(ε). In other words, atoms in the alloy should not

be averaged, as they are now.
The calculated value of the coefficient a3/2 in the Fe0.65Ni0.35 Invar is approximately four times larger than in iron. The

resulting decrease of magnetization in the Fe0.65Ni0.35 Invar is substantial and is in good agreement with the Invar effect.
However, the magnetization in the SWA decreases slower than in experiment. The DNA results are in better agreement with
experiment since the DNA takes into account longitudinal fluctuations, which are neglected in the SWA. Just as in iron, the
DNA curve (∝ T 2) merges with the SWA curve (∝ T 3/2) near zero.

The DNA calculations at the interval from zero to 0.3 T
exp

C show that in Fe the longitudinal fluctuations are about ten times
smaller than the transverse fluctuations, and in the Fe0.65Ni0.35 Invar the longitudinal fluctuations are about five times smaller
than the transverse ones. However, this is not always the case in metals at finite temperatures. For instance, the longitudinal
fluctuations are comparable with the transverse ones in Co and are larger than the transverse ones in Ni (see Sect. 10.5).

12.2 Beyond the Spin Waves

12.2.1 Low-Temperature DSFT

The simplest low-temperature version of the DSFT is the one with only transverse spin fluctuations (TDSFT), 〈ΔV 2
z 〉′ = 0.

An important difference of this theory from the spin-wave approximation and some versions of the SCR theory for weakly
ferromagnetic metals [26] is that conservation of the local spin is not assumed. For better comparison with previous results,
the transverse fluctuation is calculated in the diagonal approximation: 〈ΔV 2⊥〉′ = 2〈ΔV 2

x 〉′. Thus, in the TDSFT, the problem
is reduced to solving the system of three equations (10.24), (10.33) and (10.34) with respect to three variables 〈ΔV 2

x 〉′, V̄z

and μ, for each temperature T .
Calculation of the local fluctuation 〈ΔV 2⊥〉′ by formula (10.24) even in the TDSFT is based on a fairly complicated chain of

approximations. We obtain a simplified formula for the fluctuation 〈ΔV 2⊥〉′ from expression (5.49), which was derived from
the low-temperature approximation of the transverse susceptibility (12.15) in the previous subsection. Namely, discarding
the zero-point fluctuations in formula (5.49) and using 〈ΔV 2⊥〉′ = u2〈Δs2⊥〉, we have

〈ΔV 2⊥〉′ = 2u2s̄z

ΩBZ
ζ(3/2)

( π

D

) 3
2
T 3/2. (12.18)
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In this analytic expression, we calculate the mean spin s̄z and spin-wave stiffness D self-consistently.2 Averaging expression
(12.15) over the Brillouin zone, we obtain

D = 2us̄z

q2

(
1 − u

2
χ0−+

L (0)
)

,

where χ0−+
L (ε) = N−2∑

q χ0−+
q (ε) is the local susceptibility and q2 = N−1∑

q q2. Approximating the Brillouin zone by

the equal-volume sphere, we have q2 = 0.6q2
B, just as before. The local susceptibility χ0−+

L (0) is expressed in terms of the
single-site mean Green function g(ε). Using formula (12.11), we obtain

χ0−+
L (0) = −2Nd

π

∫
Im
(
g↓(ε)g↑(ε)

)
f (ε) dε,

where gσ (ε) is given by relations (10.35) and (10.37). The mean spin s̄z is calculated by the formula s̄z = −V̄z/u, where V̄z

is given by Eq. (10.33).
Thus, in the low-temperature DSFT (LDSFT), we solve the system of three equations (10.33), (10.34) and (12.18) with

respect to three variables V̄z, μ and 〈ΔV 2⊥〉′, for each temperature T . Both in LDSFT and TDSFT, the initial data of the
calculation are the first-principles DOS ν(ε) at T = 0 and the value of the magnetic moment m(0) = gμBs̄z(0), which is
used to obtain the interaction constant u.

12.2.2 Application to Fe and Fe-Ni Invar

We apply the above theory to calculate the temperature dependence of magnetization, Curie temperature and spin-wave
stiffness. First we test the theory on a clean system such as elemental Fe, and then we consider the disordered Fe0.65Ni0.35

Invar.
In Fe the magnetization at T = 0 is m(0) = 2.217 μB [14] and nonmagnetic DOS of Fe is presented in Fig. 11.5. The

lattice constant a of the bcc Fe is equal to 2.866 A [13] and hence the volume of the Wigner-Seitz cell is ΩWS = a3/2 =
11.78 A3.

The numerical results for magnetization calculated in the LDSFT are presented in Fig. 12.4. The temperature is given in
units of the Curie temperature T

exp
C = 1044 K [14]. For comparison, we present the temperature dependence of magnetization

m(T ) calculated in Stoner approximation (STA), two approximations of the DSFT: static local (SLA) and dynamic nonlocal
(DNA), and TDSFT.

As we have already mentioned, the decrease of m(T ) in the STA is negligible, and in the SLA magnetization decreases too
fast (∝ T ). The DNA gives excellent agreement with experiment at the interval from zero to about 0.45T

exp
C ≈ 450 K. The

calculation without the longitudinal fluctuation (TDSFT) changes the results of the DNA very little. This is quite reasonable
since the transversal fluctuations in Fe are almost 10 times larger than the longitudinal fluctuations at this interval. The
LDSFT results are different from those of DNA but are still within a 1.5% error, compared to experiment, over the interval
from zero to 0.6T

exp
C ≈ 600 K. Note that, this interval is almost 20 times larger than the interval 32 K [16], where the

experimental curve for the magnetization m(T ) follows the T 3/2 law.
Numerical results for magnetization of the Fe0.65Ni0.35 Invar calculated in the LDSFT are presented in Fig. 12.5. The

temperature is given in units of the Curie temperature T
exp
C = 520 K [23]. The magnetization at T = 0 is m(0) = 1.7 μB [7,

23]. As the initial DOS for the DSFT calculations, we use the DOS of the d band of nonmagnetic Fe0.65Ni0.35, which
is obtained from two spin-polarized DOSs calculated in [24]. The lattice constant of the fcc Fe0.65Ni0.35 Invar is a =
3.59 A [20], so that the volume of the Wigner-Seitz unit cell is ΩWS = a3/4 = 11.56 A3. The results of the LDSFT are
compared with those of the STA, SLA, DNA and TDSFT. Magnetization in the DNA is in good agreement with experiment
over the interval from zero to 0.6T

exp
C ≈ 300 K (which includes the room temperatures). The neglect of the longitudinal

fluctuation (TDSFT) has a larger effect on the results, as compared to Fe, since in the Fe0.65Ni0.35 Invar the longitudinal
fluctuations are only five times smaller than the transverse ones. The results of the LDSFT are close to those of the DNA at

2This method is similar to the use of a simple analytic expression for the Hartree-Fock exchange potential in the band calculations [27, 28].
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Fig. 12.4 Magnetization m(T )

of Fe calculated in the STA, SLA,
DNA, TDSFT and LDSFT. Filled
squares are the experimental data
of Crangle and Goodman [14]
and open squares are the
experimental data of
Pauthenet [17]. The inset shows
the initial DOS at T = 0; the
energy is in units of the
bandwidth W = 7.16 eV, and the
vertical line indicates the position
of the Fermi level
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Fig. 12.5 Magnetization m(T )

of the Fe0.65Ni0.35 Invar
calculated as in Fig. 12.4. Filled
squares are the experimental data
of Crangle and Hallam [23] and
open squares are the experimental
data of Ishikawa et al. [25]. The
inset shows the initial DOS at
T = 0 [24]; the energy is in units
of the bandwidth W = 9.70 eV
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the interval from zero to 0.4T
exp

C ≈ 200 K. At this interval both LDSFT and DNA agree with experiment within a 5% error.
This difference in the Fe0.65Ni0.35 Invar should be attributed to the “hidden excitations”, whose nature is still unknown.3

For the spin-wave stiffness at T = 0, our calculation in Fe yields Dcal
m0 = 200 meV A2, which is in reasonable agreement

with the experimental values D
exp
m0 = 270 and D

exp
n0 = 280 obtained from magnetic [17] and neutron-scattering [30]

measurements, respectively. The calculations in the adiabatic approximation of the LDA+DMFT [31, 32] give the value
Dcal

n0 = 250 meV A2. In the Fe0.65Ni0.35 Invar, our calculated value Dcal
m0 = 110 meV A2 is in good agreement with the

experimental values D
exp
m0 = 110 and D

exp
n0 = 140 obtained from magnetic [33] and neutron-scattering [25] measurements,

respectively. (As is known, the experimental values D
exp
m0 and D

exp
n0 , which coincide for most of ferromagnetic materials, are

different for Invar alloys [22].)
Note that estimation of the spin-wave stiffness constant D0 is a complex problem both experimentally and theo-

retically [34, 35]. The experimental values D
exp
m0 obtained from the magnetization measurements [17, 33] depend on

the temperature interval where one fits the data on magnetization with the T 3/2 law. Since the T 3/2 law has only an
asymptotic character, the exact temperature interval is unknown. The neutron-scattering measurements [25,30] and numerical
calculations [31, 32] have a similar problem of choosing the energy interval to fit the spin-wave spectrum ε = Dq2. The

3For an explanation based on phonons, see [29, p. 218].
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Table 12.1 Spin-wave stiffness
D0 and Curie temperature TC of
Fe and Fe0.65Ni0.35 Invar

Dcal
0 D

exp
0 T cal

C T
exp

C

(meV Å2) (meV Å2) (K) (K)

Fe 200 270a, 280b 1654 1044c

Fe0.65Ni0.35 110 110d, 140e 546 520f

aMagnetization measurements of Pauthenet [17]
bNeutron-scattering measurements of Mook and
Nicklow [30]
cCrangle and Goodman [14]
dMagnetization measurements of Nakai [33]
eNeutron-scattering measurements of Ishikawa et
al. [25]
fCrangle and Hallam [23]

results of the numerical calculations [31, 32] of Dcal
n0 also depend on the estimation procedure for the exchange parameters

Jij in the Heisenberg Hamiltonian.
Finally, the LDSFT calculations give reasonable values for the Curie temperatures: T cal

C = 1.58 T
exp

C for Fe and T cal
C =

1.05 T
exp

C for Fe0.65Ni0.35 Invar. The calculated and experimental values of the spin-wave stiffness D0 and Curie temperature
TC are summarized in Table 12.1.

Thus, we have shown analytically that the LDSFT becomes accurate in the low-temperature limit, exactly reproducing the
T 3/2 law for the magnetization. At the same time, the calculated magnetization in Fe is in good agreement with experiment
over the interval from zero to 0.6T

exp
C ≈ 600 K. This interval is about 20 times larger than the interval where the T 3/2

law is valid. The calculated spin-wave stiffness D0 and Curie temperature TC for Fe are found in reasonable agreement
with experimental data and results of previous calculations. For the Fe0.65Ni0.35 Invar, we obtained D0 = 110 meV A2

and TC = 546 K, which are in excellent agreement with experiment. Reliable calculations of these characteristics for the
Fe0.65Ni0.35 Invar are not available. We argue that the present theory can be successfully applied to other ferromagnetic
metals and alloys, where the longitudinal fluctuations are small compared to the transverse ones.
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13Temperature Dependence of Magnetic
Characteristics

Don’t look for the meaning; look for the use. (Ludwig Wittgenstein)

In this chapter we study spin-correlation effects in metals at finite temperatures. We start with qualitative estimates of the
correlation effects on the magnitude and relaxation time of a single-site spin [1]. Then we apply the DSFT to calculate local
magnetic characteristics such as the transverse and longitudinal susceptibilities, dynamic spin correlation function and local
magnetic moment [2]. Finally, we calculate temperature dependencies of nuclear spin-relaxation rates [3].

13.1 Temporal Correlation Function

In Chap. 3 we introduced the single-site spin sj in an itinerant electron ferromagnet as the integral of the spin-density over
the Wigner-Seitz cell (3.30). The dynamics of the single-site spin is described by the Heisenberg representation

sα
j (t) = eiHt/h̄sα

j e−iHt/h̄,

where α = x, y, z. To quantify the coherence of spins at different sites and time moments, we introduce the spin correlation
function

F
αβ

jj ′ (t) = 1

2
〈{sα

j (t), s
β

j ′(0)}〉,
where the braces denote the anticommutator of operators and angle brackets denote the canonical average. Using the relation

〈sα
j (t)s

β

j ′(0)〉 = 〈sα
j (t)〉〈sβ

j ′(0)〉 + 〈Δsα
j (t)Δs

β

j ′(0)〉,

we write
F

αβ

jj ′ (t) = 〈sα
j (t)〉〈sβ

j ′(0)〉 + A
αβ

jj ′(t), (13.1)

where the first term is time-independent and is equal to 〈sα
j 〉〈sβ

j 〉, and

A
αβ

jj ′(t) = 1

2
〈{Δsα

j (t),Δs
β

j ′(0)}〉

is the oscillating part. Since at large times the spin fluctuations Δsj (t) and Δsj ′(0) become uncorrelated, A
αβ

jj ′(t) tends to
zero as time goes to infinity. The frequency spin correlation function is given by the Fourier transformation,

F
αβ

jj ′ (ω) =
∫

F
αβ

jj ′ (t)eiωt dt. (13.2)
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By formula (13.1) we have
F

αβ

jj ′ (ω) = 2π〈sα
j 〉〈sβ

j ′ 〉δ(ω) + A
αβ

jj ′(ω), (13.3)

where δ(ω) is the delta function and A
αβ

jj ′(ω) is the Fourier transform of A
αβ

jj ′(t).
We define the susceptibility in the site representation by

χ
αβ

jj ′ (ω) = 1

N

∑

q

χ
αβ
q (ω) eiq(Rj −Rj ′ ).

Then using (2.38) and (3.32), we obtain

χ
αβ

jj ′ (ω) = i

h̄

∫ ∞

0

〈[sα
j (t), s

β

j ′ ]
〉
eiωt dt.

The fluctuation-dissipation theorem relates the function A
αβ

jj ′(ω) to the susceptibility. Namely, the Fourier transformation of
(2.53) gives

A
αβ

jj ′(ω) = − ih̄

2
coth

(
h̄ω

2T

)[
χ

αβ

jj ′ (ω) −
(
χ

βα

jj ′ (ω)
)∗]

.

In particular,

Aαα
jj ′(ω) = h̄ coth

(
h̄ω

2T

)
Imχαα

jj ′ (ω).

The spatial correlations will be considered in Chap. 15. In this chapter, we consider the local spin moment and temporal
correlations of the single-site spin.

We define the single-site temporal correlation function as

F(t) =
∑

α

Fαα
jj (t) = 1

2
〈{sj (t), sj (0)}〉. (13.4)

Then from (13.1) it follows that
F(t) = 〈sj 〉2 + A(t),

where

A(t) =
∑

α

Aαα
jj (t) = 1

2
〈{Δsj (t),Δsj (0)}〉.

Since A(t) tends to zero at large t , we have
F(t = ∞) = 〈sj 〉2 = s̄2

z ,

and the function A(t) describes the characteristic time of the spin fluctuations.
The Fourier transform of the temporal correlation function is obtained by formula (13.3). Recalling that sz

j = 1
2 (nj↑−nj↓),

we come to

F(ω) = 2π

(
n↑ − n↓

2

)2

δ(ω) + A(ω), (13.5)

where nσ is the average number of electrons with spin σ and

A(ω) = h̄ coth

(
h̄ω

2T

)∑

α

Imχαα
jj (ω). (13.6)

Since Imχαα
jj (ω) is an odd function of ω, it follows that A(ω) is an even function. Recalling the relations (3.22) and (3.23),

we have

χxx
jj (ω) + χ

yy
jj (ω) = 1

2
[χ+−

jj (ω) + χ−+
jj (ω)].

Using χ−+
jj (ω) = (χ+−

jj (−ω))∗, we write formula (13.6) as
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A(ω) = h̄ coth

(
h̄ω

2T

)
Im

[
1

2

(
χ+−

jj (ω) + (χ+−
jj (−ω))∗

)
+ χzz

jj (ω)

]
. (13.7)

Taking the inverse Fourier transform of (13.5), we obtain the temporal correlation function

F(t) =
(

n↑ − n↓
2

)2

+ 1

π

∫ ∞

0
A(ω) cos(ωt) dω. (13.8)

To compare the calculation results with the ones of the polarized neutron scattering experiment, we introduce the effective
local spin in a frequency interval [−ω,ω] by the formula

sL(ω) =
(

1

π

∫ ω

0
F(ω′) dω′

)1/2

=
[(

n↑ − n↓
2

)2

+ 1

π

∫ ω

0
A(ω′) dω′

]1/2

. (13.9)

Clearly, the effective local spin in the infinite frequency interval is equal to the square root of the temporal correlation function
(13.8) at zero:

sL(ω = ∞) = (F (t = 0))1/2 .

By the definition of the temporal correlation function (13.4), the value (F (t = 0))1/2 coincides with a root mean square of
the spin operator, i.e. the local spin:

sL(ω = ∞) = 〈s2
j 〉1/2 = sL.

Note that the second term on the right-hand side in formula (13.9) does not vanish at T = 0 due to zero-point spin
fluctuations.

13.2 Qualitative Analysis of Spin Correlations

Spin-density correlation in metals at finite temperatures can be described by SFT but the results in different modifications of
SFT can differ quite substantially (for a review, see, e.g. [4,5]). The question naturally arises: when does the correlation make
a major contribution and when does it merely lead to more or less important corrections to the band calculations? Indeed, the
self-consistent potential, used in the band calculation, already takes some of the “Hund interaction” into account, and so the
question is to what extent the remaining part is important in a particular case.

For the mean square spin at the j th site 〈s2
j 〉, we can take results of the one-electron calculations in the paramagnetic

state as a lower bound of any SFT result. This estimate implies that the correlation leads to a Hund’s rule, which leads to an
increase of the local moment, because each site tends to collect electrons with the same spin (see the discussion at the end of
Sect. 8.1.1). On the other hand, if we consider only correlations at nonzero temperatures, and the Stoner ground state is a good
approximation for the true ground state of a metal, then the one-electron calculation of local moment in the ferromagnetic
state at T = 0 gives an upper bound for a SFT calculation of 〈s2〉 (here and hereafter, the site index j is omitted for brevity).

Notice that the value of 〈s2〉 is not necessarily small even in the absence of correlations. In fact, even in the simplest
case of one nondegenerate band with the mean number of electrons per site equal to n, the value of 〈s2〉 will be equal to the
product of the square of the electron spin by the probability that there is one and only one electron at a site (for details, see
Appendix A.3):

〈s2〉 = 3

4
2
n

2

(
1 − n

2

)
= 3

8
n(2 − n). (13.10)

So at the half-filling (n = 1) the mean square spin in a metal will be only half the one in a dielectric with one electron at a
site. In the case of several independent bands, it is easy to show that, instead of (13.10), we have the expression

〈s2〉 = 3

8

Nb∑

ν=1

nν(2 − nν), (13.11)
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where Nb is the number of bands; nν is the number of electrons per site in the ν-th band;
∑

ν nν = n. If all the bands are
identically occupied, i.e. nν = n/Nb, the mean square spin reaches its maximum value

〈s2〉 = 3

8

n(2Nb − n)

Nb
. (13.12)

Let us examine another limiting case—a dielectric with n electrons (holes) per site, which occupy with equal probability
any of the Nb (Nb ≥ n) orbital states that are doubly degenerate with respect to the spin projection. This case is obtained
from the previous one by totally suppressing charge fluctuations, i.e. if there is no intersite electron hopping. It is easy to
show that if the n electrons occupy n different orbital states and both of their spin states are equally probable, then the mean
square spin of the system will be equal to 3

4n.1 Now taking into account the possibility that an orbital state is occupied by
a pair of electrons (total spin is zero), for n electrons in Nb orbital states, it is easy to show that the mean square spin is
2Nb/(2Nb − 1) times larger than the value (13.12). Thus, it is only in the s band that the suppression of charge fluctuations
alters the mean square spin substantially (by the factor of two). Already in the d band this effect is no more than ∼10%
and falls as the orbital moment increases.2 Finally, recalling that the maximum possible value of the square of the spin in a
system of n electrons is equal to n

2 ( n
2 + 1), we conclude that, with a small number of electrons (holes) per site, the mean

square of its spin can easily reach values close to half the maximum, even in the absence of correlations. Thus, inclusion
of the electron–electron interactions should mainly result in slowing down of the spin “rotation” at each site, rather than in
growth of its mean magnitude.

Next we analyse the single-site spin relaxation time t0, i.e. the time that is necessary for a spin at a site to “forget” its
initial magnitude and direction. In the absence of the electron correlation, the spin relaxation time is about the electron
lifetime t0 � tW � h̄/W s (W is the bandwidth). Indeed, the spin direction of an electron arriving at a site is not correlated
in any way with that of the electrons that were already present at this site. As a result, in the absence of correlation, the
characteristic spin relaxation time of a 3d transition metals with d bandwidth W � 5 eV would be t0 � 10−16 s (for details,
see [6]).

The above estimate of the spin relaxation time in the absence of the electron correlation is a qualitative one. The result
could be affected by large groups of electrons with energies close to the Fermi level εF. The existence of such groups is
associated with flattening of ε(k) in certain regions of k-space (small ∇kε), which produces sharp singularities of the density
of states. The characteristic energy width of such singularities is one order less than the width of the d band, and that could
have a strong effect on the estimate of [6] and similar ones.

The electron correlation leads to a Hund’s rule. On the one hand, this leads to growth in the magnitude of the spin
at a site, and on the other hand, the arrival of electrons with a spin direction different from the spin of the site becomes
energetically unfavourable and, therefore, less likely. So the spin relaxation time t0 grows. The single-site spin relaxation
time is determined by the intersite exchange energy. If the correlations are very strong, the situation becomes similar to
Heisenberg magnets with localized spins, where the characteristic energy of the exchange interaction is about the Curie
temperature: t0 � h̄/(kBTC). For 3d metals with TC � 1000 K this leads to the estimate, t0 � 10−14 s. The difference
between the latter and band calculation estimate can be attributed to correlation effects.

13.3 Spin Correlations in the One-Electron Approximation

13.3.1 Unenhanced Susceptibilities

To calculate the temporal correlation function (13.8) and its Fourier transform (13.5), we calculate the transverse and
longitudinal susceptibilities of the noninteracting electrons:

χ0+−
jj (ω) = i

h̄

∫ ∞

0
〈[s+

j (t), s−
j (0)]〉 eiωt dt, (13.13)

1This is simply the sum of squares of electronic spins in different orbital states, since in these conditions the mean value of the scalar product of
spins of different electrons is zero. The same argument applies in the derivation of (13.11).
2These results are valid only in the case of non-interacting electrons.
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χ0zz
jj (ω) = i

h̄

∫ ∞

0
〈[sz

j (t), s
z
j (0)]〉 eiωt dt, (13.14)

expressed in units of g2μ2
B. Similar to (3.31) the single-site spin-flip operators are defined by

s+
j =
∫

Ωj

ψ
†
↑(r) ψ↓(r) dr, s−

j =
∫

Ωj

ψ
†
↓(r) ψ↑(r) dr,

where Ωj is the Wigner-Seitz unit cell centred at the j th site, and ψ†
σ (r) and ψσ (r) are the field operators. Using formulae

(3.26), we write

s+
j = 1

N

∑

νν′kk′
M

ν′k′↑
νk↓ a

†
ν′k′↑ aνk↓, s−

j = 1

N

∑

νν′kk′
M

ν′k′↓
νk↑ a

†
ν′k′↓ aνk↑. (13.15)

Here

Mν′k′σ ′
νkσ =

∫

Ωj

ϕ∗
ν′k′σ ′(r) ϕνkσ (r) dr, (13.16)

and the eigenfunctions ϕνkσ (r) of the Hamiltonian

H0 =
∑

νkσ

ενkσ a
†
νkσ

aνkσ (13.17)

are assumed to be normalized per unit cell. Clearly the absolute value of the matrix element (13.16) is site-independent.
Using expressions (13.15) and calculating the commutator in (13.13), we obtain

χ0+−
jj (ω) = 1

N2

∑

νν′kk′

∣∣Mν′k′↑
νk↓
∣∣2(f (ενk↓) − f (εν′k′↑))

εν′k′↑ − ενk↓ + h̄ω
, (13.18)

where f (ε) = [exp((ε − μ)/T ) + 1]−1 is the Fermi function.
Similarly, we introduce

sσ
j =
∫

Ωj

ψ†
σ (r) ψσ (r) dr,

so that sz
j = 1

2 (s
↑
j − s

↓
j ). Then we write the longitudinal susceptibility (13.14) as

χ0zz
jj (ω) = 1

4

[
χ

↑↑
jj (ω) − χ

↓↑
jj (ω) − χ

↑↓
jj (ω) + χ

↓↓
jj (ω)
]
, (13.19)

where

χ0σσ ′
jj (ω) = i

h̄

∫ ∞

0
〈[sσ

j (t), sσ ′
j (0)]〉 eiωt dt.

Calculation yields

χ0σσ ′
jj (ω) = 1

N2

∑

νν′kk′

∣∣Mν′k′σ ′
νkσ

∣∣2(f (ενkσ ) − f (εν′k′σ ′))

εν′k′σ ′ − ενkσ + h̄ω
δσσ ′ . (13.20)

Thus, χ
0↑↓
jj (ω) = χ

0↓↑
jj (ω) = 0, and

χ0zz
jj (ω) = 1

4

[
χ

0↑↑
jj (ω) + χ

0↓↓
jj (ω)

]
.
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13.3.2 Computational Formulae

We start with the Fourier transform of the temporal correlation function (13.5). We substitute the unenhanced susceptibilities
(13.18)–(13.20) in formula (13.7). Then taking into account that coth(h̄ω/(2T )) = 1 at T = 0 and applying the Sokhotsky
formula (A.44), we obtain3

F(ω) = 2π

(
n↑ − n↓

2

)2

δ(ω) + 2π

8N2

∑

νkσ
ν′k′σ ′

2|σ−σ ′|/2
∣∣∣Mν′k′σ ′

νkσ

∣∣∣
2

(13.21)

× [f (ενkσ ) (1 − f (εν′k′σ ′)) − f (εν′k′σ ′) (1 − f (ενkσ ))] δ

(
ω − εν′k′σ ′ − ενkσ

h̄

)
.

There are two special cases when (13.21) can be largely simplified. Firstly, when the overlap of Wannier functions of

neighbouring sites can be neglected (“tight binding”), we have the already mentioned case of independent bands:
∣∣∣Mν′k′σ ′

νkσ

∣∣∣ =
δνν′ . In that case, using (3.55) and (4.24), we have

F(ω) = 2π

(
n↑ − n↓

2

)2

δ(ω) + 2πh̄

8

∑

νσσ ′
2|σ−σ ′|/2

∫
nνσ (ε) nνσ ′(ε + h̄ω)

× [f (ε) (1 − f (ε + h̄ω)) − f (ε + h̄ω) (1 − f (ε))] dε, (13.22)

where nνσ (ε) is the density of states in the ν-th subband with spin projection σ . Then, the mean square single-site spin

〈s2〉 = F(t = 0) = 1

2π

∫ ∞

−∞
F(ω) dω

is written as

〈s2〉 =
(

n↑ − n↓
2

)2

+ 3

4
n − 3

8

∑

ν

n2
ν + 1

8

∑

ν

(nν↑ − nν↓)2. (13.23)

Here nνσ is the mean number of electrons with the spin σ in the ν-th band (pet site) and n = ∑νσ nνσ = n↑ + n↓. In the
nonmagnetic case (nν↑ = nν↓) expression (13.23) naturally coincides with (13.11).

The second case is the constant matrix element approximation: |Mν′k′σ ′
νkσ

|2 = C. It is clear that the latter can hold
approximately only when a limited number of bands Nb, genetically related to the site states of the same type (such as five d
bands, for example), is used in the calculation. Then the value of C can be determined from the completeness condition:

∑

νk

ϕ∗
νkσ (r) ϕνkσ (r′) = N δ(r − r′). (13.24)

Calculating
∑

νk |Mν′k′σ ′
νkσ

|2 with the help of that condition, we obtain C = 1/Nb. So in this case (13.21) can be written in
the form

F(ω) = 2π

(
n↑ − n↓

2

)2

δ(ω) + 2πh̄

8Nb

∑

σσ ′
2|σ−σ ′|/2

∫
nσ (ε) nσ ′(ε + h̄ω)

× [f (ε) (1 − f (ε + h̄ω)) − f (ε + h̄ω) (1 − f (ε))] dε, (13.25)

3If detailed calculations of the generalized susceptibility χ(q, ω) were available, the Fourier-transform of correlator (13.21) could be obtained by
only triple (rather than sixfold) integration over the Brillouin zone. Indeed, by the fluctuation-dissipation theorem (2.56), we have

F(ω) ∝ coth(βh̄ω/2)

∫
Imχ(q, ω) dq.

However, calculations of χ(q, ω) are usually given only in a few symmetrical directions of q (see, e.g. [7]), and so this formula cannot be used.
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where nσ (ε) is the total density of states for electrons with the spin σ . For 〈s2〉 from (13.25) we find

〈s2〉 =
(

1 + 1

2Nb

)(
n↑ − n↓

2

)2

+ 3

8

n(2Nb − n)

Nb
. (13.26)

Clearly, (13.26) coincides with (13.12) in the paramagnetic state and is temperature independent. Moreover, if all the bands
are identically occupied at any temperature, so that nν = n/Nb, (13.26) will also coincide with (13.23).

In numerical calculations with a specific spectrum and wave functions, we ignore the thermal broadening of the Fermi
function, using the approximation

f (ε) = θ(εF − ε), (13.27)

where θ(x) is the step-function, equal to zero for x < 0 and unity for x > 0. Then, for ω > 0,4 formula (13.21) is easily
transformed to

F(ω) = 2π

(
n↑ − n↓

2

)2

δ(ω) + 2πh̄

8

∑

νσ
ν′σ ′

2|σ−σ ′|/2 I ν′σ ′
νσ (ω), (13.28)

I ν′σ ′
νσ (ω) = 1

Ω2
BZ

d

d(h̄ω)

∫∫

ενkσ ≤εF
εν′k′σ ′>εF

εν′k′σ ′−ενkσ ≤h̄ω

∣∣∣Mν′k′σ ′
νkσ

∣∣∣
2

dk′ dk, (13.29)

where the integration with respect to k and k′ is performed in the Brillouin zone of the volume ΩBZ.
The calculation of spin correlators by formulae (13.28), (13.29) and

F(t) = 1

π

∫ ∞

0
F(ω) cos(ωt) dω (13.30)

involves four computational problems. The first one consists in calculating one-electron states and is not considered here.
We only mention that the energy spectrum ενkσ and wave functions ϕνkσ (r) are calculated by the KKR method [8].

The second problem consists in calculating the matrix elements Mν′k′σ ′
νkσ

. We represent (13.16) as the sum of two integrals:
over the Slater sphere [9] and over the remaining part of the Wigner-Seitz cell. Since the contribution from the second integral
is small for d wave functions, it can be neglected, thereby the wave functions is normalized in the Slater sphere. Putting the
expression for the wave function in the KKR method [10] into the first integral and integrating in spherical coordinates, we
have

Mν′k′σ ′
νkσ =

∑

l

∫ rS

0
Rσ ′

l (r, εν′k′σ ′)Rσ
l (r, ενkσ ) r2 dr

∑

m

(cν′k′σ ′
lm )∗cνkσ

lm , (13.31)

where cνkσ
lm are the coefficients of the expansion, Rσ

l are the bounded at zero solutions of the radial Schrödinger equation; rS

is the radius of the Slater sphere.
The third problem is to calculate the integrals (13.29). The difficulty of numerical integration over the Wigner-Seitz cell

is that it is necessary to calculate many sixfold integrals with a complex domain of integration, while the number of points k
and k′ at which the integrand is known is relatively small. We represent the sixfold integral (13.29) in the form of two triple
integrals (in k and k′) and apply the tetrahedral method [11] to each of them.

Finally, the last computational problem involves the approximate Fourier transformation [12]. Without going into detail,
we note that the computational formula for the numerical cosine Fourier transform of the function F(ω) is obtained as
follows. Using the uniform grid with the step h, we interpolate the function F(ω) by a second-order polynomial at each
segment of the length 2h, then analytically integrate by parts (see also Appendix H.5).

In the approximation of a constant matrix element, we calculate F(ω) by the formula

F(ω) = 2π

(
n↑ − n↓

2

)2

δ(ω) + 2πh̄

8Nb

∑

σσ ′
2|σ−σ ′|/2

∫ εF

εF−h̄ω

nσ (ε) nσ ′(ε + h̄ω) dε, (13.32)

4The function F(ω) is even.
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which can be obtained from (13.25) using (13.27). In this case the calculation of the spin correlators simplifies substantially,
because the calculation of the wave functions, matrix elements and sixfold integrals is no longer necessary.

13.3.3 Band and Model Calculations

The energy spectrum ενkσ and wave functions ϕνkσ (r) of ferromagnetic (F) and nonmagnetic (N) bcc iron are calculated by
the KKR method with the self-consistent potentials given by Moruzzi et al. [13]. The number of states Nσ (ε) and density of
states nσ (ε) were calculated by the hybrid tetrahedron method examined in detail in [14]. The results for Nσ (ε) and nσ (ε)

are in good agreement with [13]. The values nσ are obtained as values of Nσ (ε) at ε = εF.
The Fourier transform A(ω) of the oscillating part A(t) is calculated for the F- and N-iron in two modifications: (1) with

a νkσ -dependent matrix element and (2) in the approximation of constant matrix element with Nb = 6. The results for A(ω)

and its integral over the interval [0, ω]:
Φ(ω) = 1

π

∫ ω

0
A(ω′) dω′, (13.33)

are shown in Fig. 13.1. The character of A(ω) is mainly governed by the form of the density of states n(ε) (see, e.g. [15]).
So in the ferromagnetic case the curve AF(ω) is formed of three substantial contributions at h̄ω � 2.4, 4.6 and 5.5 eV due to
transitions from the three occupied peaks nF(ε) to the fourth one situated above εF. In the nonmagnetic case the curve nN(ε)

contains three peaks, one of which is close to εF, and so there are three sharp peaks of AN(ω), at h̄ω � 0.6, 3.2 and 4.6 eV.
On the whole, the A(ω) curve shifts towards lower energies and slightly contracts when iron changes from the ferromagnetic
to nonmagnetic state.

Fig. 13.1 The Fourier transform
A(ω) and integral Fourier
transform Φ(ω) of the spin
correlator of ferromagnetic (a)
and nonmagnetic (b) bcc iron:
with νkσ -dependent matrix
element (solid line) and with
constant matrix element (dashed
line)
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Fig. 13.2 Spin correlator F(t)

of ferromagnetic (a) and
nonmagnetic (b) bcc iron: with
νkσ -dependent matrix element
(solid line) and with constant
matrix element (dashed line)
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As for the spin correlator F(t) presented in Fig. 13.2, its constant part is equal to 1.18 in the ferromagnetic case and is
equal to zero in the nonmagnetic case. The oscillating part behaves similarly in both cases: it is equal to 1.75 and 1.55 at
t = 0 and declines to zero during t0 � 2.7×10−16 and 3.3×10−16 s for F and N-iron, respectively.5 The difference between
the t0 values for F and N-iron is due to the difference in the behaviour of their densities of states near εF: when the peak of
nN(ε) gets close to εF the number of transitions with small h̄ω increases. It is clear from Figs. 13.1 and 13.2 that calculation
with νkσ -dependent matrix element results in the growth of A(ω) for small values of ω and to its decline for large ω values.
As a consequence, the decay of F(t) is delayed, i.e. the relaxation time of spin fluctuations increases. However, this effect is
not large enough in iron, because the electronic states at all the peaks of the density of states are genetically related mainly
with the atomic 3d states, and hence the matrix elements decrease slowly as h̄ω = εν′k′σ ′ − ενkσ increase.

Results of a band calculation of the mean square single-site spin for F and N-iron are given in Table 13.1. For comparison,
we also present the values of 〈s2〉 obtained in the model with independent equally occupied bands and in the localized-states
model.

Experimental estimates of the mean square single-site spin are obtained as follows. In the ferromagnetic state, by applying
formula (5.53), we have 〈s2〉 = sz(sz + 1) at T = 0. Using the experimental value m

exp
0 = 2.2μB, we obtain sz = 1.1 and

〈s2〉 = 2.3. In the paramagnetic state, if we consider iron as a purely localized-spin magnet with a completely frozen orbital

5Since the calculations with νkσ -dependent matrix element and with constant matrix element yield similar results, for brevity, we give numerical
results only for the former case.
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Table 13.1 Mean square
single-site spin 〈s2〉 in the band
and model calculations of
ferromagnetic (F) and
nonmagnetic (N) iron

Calculation method Approximation F-Fe N-Fe

Band calculation
νkσ -dependent matrix element 2.93 1.55

Constant matrix element 3.18 1.79

Independent bands
model

d bands n = 3, Nb = 5 2.91 1.58

d and s bands n = 4, Nb = 6 3.31 2.00

Localized states
model

d states n = 3, Nb = 5 2.55∗ 1.75

d and s states n = 4, Nb = 6 2.40∗ 2.18
∗It is assumed that the values s = smax and s = smax − 1 have
different probabilities a and b that correspond to the experimental value
m0 = 2.2μB, i.e. they are obtained from the system of equations
asmax + b(smax − 1) = 1.1 and a + b = 1

moment, we have meff = 2μB

√〈s2〉 (see, e.g. [16]). Using the value m
exp
eff = 3.12μB, obtained from the experimental

susceptibility, we find 〈s2〉 = 2.4. This is, of course, a rough estimate, but a better one is probably unavailable.
The calculation for the F and N-iron gives 〈s2〉 � 2.93 and 1.55, respectively. As we explained in the previous section,

these values are the upper and lower bounds of 〈s2〉. The calculated values differ from the experimental estimates by about
30%. The values calculated by Hasegawa [17] using the two-field method 〈s2〉 � 3.6 and four-field method 〈s2〉 � 1.12
are too high and too low, respectively. The underestimated second value can be associated with the use of the approximate
formula (4.20) in [17],6 which underestimates the contribution to 〈s2〉 at high energies. The overestimated first value of [17]
is due to other approximations.

As for the lifetime t0 of the spin fluctuations, the value obtained in the band calculation is somewhat larger than the lower
estimate h̄/W � 10−16 s but considerably smaller than the upper estimate of h̄/(kBTC) � 10−14 s. In order that t0 may
increase without any substantial loss in 〈s2〉, the A(ω) curve must increase for low ω and decrease for large ω, but in such
a way that the area under the curve remains roughly the same. In the one-electron approximation, this can only happen if
the wave functions of states close to the Fermi surface—or, equivalently, corresponding matrix elements (13.16)—differ
substantially from those of other states.

The correlation effects on the function A(ω) can be estimated from the neutron scattering experiment [18]. Comparing
(13.9) and (13.33), in the paramagnetic state, we have Φ(ω) = s2

L(ω). In the experiment with the energy window up to
� 0.1 eV, the atomic magnetic moment mL = 2μBsL is about 1.3 μB. Therefore,

Φ(h̄ω = 0.1) = s2
L(h̄ω = 0.1) = 0.4.

It is clear from Fig. 13.1b that, in the absence of correlation, this value can be achieved in the N-iron only when integration
is performed over an energy range � 2 eV. This value is one order greater than the value 0.1 eV used in the experiment.

13.3.4 Interim Conclusions

The values of mean square single-site spin 〈s2〉 obtained in the band calculations and model calculations differ from the
experimental value 〈s2〉exp � 2.3–2.4 by not more than 30%; the calculated results are lower than the experimental one in
N-Fe and higher in F-Fe (Table 13.1).

Calculation of the spin correlator with constant matrix element gives a quite satisfactory agreement with the results of the
calculation with νkσ -dependent matrix element (see Figs. 13.1 and 13.2). During the transition from F to N-iron, the change
of 〈s2〉 is mainly due to disappearance of the long-range order term (s̄z)2δ(ω) in (13.21). If that term is excluded the values
〈s2〉 in F and N-Fe are almost equal, being � 1.7 and � 1.6, respectively.

As long as the correlation is taken into account only at T �= 0 and the ground state is well approximated by the Stoner
state, the value 〈s2〉F � 2.9 is the upper bound and 〈s2〉N � 1.6 is the lower bound for 〈s2〉 in iron at all temperatures
(Table 13.1).

6A similar expression can be obtained from the formula given in the footnote 3 using the Kramers-Kronig relation for h̄ω 	 kBT .
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In the paramagnetic state, correlation should lead to a very sharp and narrow peak of A(ω) near ω = 0 (of width � 0.1 eV
and with area under the peak close to 0.4). Explanation of that peak in the Hubbard [19, 20] or Hasegawa [17] models is
unclear. We will demonstrate the appearance of such a peak in the following sections using the DSFT.

13.4 Magnetic Properties in the DSFT

13.4.1 Local Magnetic Characteristics

As we discussed in Chap. 4, magnetic properties of ferromagnetic metals at zero temperature are fairly successfully described
[13, 21–25] in the framework of the local spin-density approximation (LSDA) to the density functional theory [26–29].
However, attempts to describe temperature dependence of magnetic properties within the LSDA do not lead to satisfactory
results. Here we apply the DSFT to calculations of the local magnetic characteristics such as the transverse and longitudinal
susceptibilities, dynamic spin correlation function and local magnetic moment of Fe, Co and Ni (for details, see [2, 30]).

In Sect. 13.3 we showed that calculations with constant matrix element (13.16) give a good approximation to the ones
with νkσ -dependent matrix element. Substituting |Mν′k′σ ′

νkσ
|2 = 1/Nd in (13.18), where Nd is the number of (degenerate) d

bands, we see that χ0+−
jj (ω) is equal to the unenhanced local susceptibility

χ0+−
L (ω) = 1

N2

∑

q

χ0+−
q (ω),

where χ0+−
q (ω) is the transverse Lindhard function (5.23) times Nd.7 Analogously, χ0σ

jj (ω) is equal to the unenhanced local
susceptibility

χ0σ
L (ω) = 1

N2

∑

q

χ0σ
q (ω),

where χ0σ
q (ω) is the function (5.12) times Nd. In this case, the imaginary parts of the unenhanced local susceptibilities can

be written as

Imχ0+−
L (ω) = Ndπ

∫
f (ε)[ν↑(ε)ν↓(ε + h̄ω) − ν↓(ε)ν↑(ε − h̄ω)] dε, (13.34)

Imχ0σ
L (ω) = Ndπ

∫
f (ε)νσ (ε)[νσ (ε + h̄ω) − νσ (ε − h̄ω)] dε. (13.35)

Here

νσ (ε) = 1

π
Imgσ (ε)

is the spin-polarized DOS (per band, site and spin), where gσ (ε) is the mean single-site Green function (10.35). The latter is
calculated self-consistently in the DSFT.

We obtain the enhanced susceptibilities at low energies h̄ω using the RPA. Replacing the susceptibilities χ
0αβ
q (ω) by

χ
0αβ
L (ω) in the RPA formulae (5.11) and (5.20), we come to

χ+−
L (ω) = χ0+−

L (ω)

1 − uχ0+−
L (ω)

, (13.36)

χz
L(ω) = 1

4

χ
0↑
L (ω) + χ

0↓
L (ω) + 2uχ

0↑
L (ω)χ

0↓
L (ω)

1 − u2χ
0↑
L (ω)χ

0↓
L (ω)

. (13.37)

In calculations, we take the same initial DOSs for Fe, Co and Ni as described in Sect. 10.5. The results of the calculation
of the effective constant u for Fe, Co and Ni are given in Table 13.2. In the same table, for comparison, we present the values

7Use of the constant matrix element approximation is the same as setting the form-factor (3.28) to unity.
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Table 13.2 Results for the
effective interaction constant u of
Fe, Co and Ni, compared to the
corresponding results for the
exchange-correlation (effective
Stoner) parameter I obtained in
LSDA (all values are in units of
eV)

Fe Co Ni

Reser [2] 1.08 1.25 1.16

Gunnarsson [21, 22] 0.92 0.99 1.01

Andersen et al. [24] 0.91 – 0.99

Janak [25] 0.92 0.98 1.01

Ma and Dudarev [31] 1.0 – –

Fig. 13.3 The imaginary part of
the zeroth longitudinal local
susceptibility of iron at
T/TC = 0.0 (dotted line), 0.93
(dashed line), and 1.0 (solid line)
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of the effective Stoner parameter I , obtained in the LSDA calculations [21, 22, 24, 25, 31]. The deviations of our values of u

from the corresponding ones of I are not considerable.8

Let us illustrate the behaviour of the imaginary part of the local susceptibilities by the example of the zeroth and enhanced
longitudinal susceptibilities of iron represented in Figs. 13.3 and 13.4. As can be seen from Fig. 13.3, the temperature
dependence of Imχ0z

L (ω) = 1
4

∑
σ Imχ0σ

L (ω) is weak. (Since Imχ0σ
L (ω) is an odd function, the calculations of Imχ0z

L (ω)

and Imχz
L(ω) are performed only for ω ≥ 0.) According to the formula

Imχ0σ
L (ω) ≈ πNdν

2
σ (μ)h̄ω

resulting from (13.35) at low h̄ω with neglect of the temperature broadening of the Fermi function, the linear dependence
of Imχ0z

L (ω) is retained in a sufficiently large energy interval and, in full accord with the behaviour of the DOS at the
chemical-potential level (see Fig. 10.4), Imχ0z

L (ω) increases with increasing temperature. From comparison of Fig. 13.4 with
Fig. 13.3, it is seen that the enhancement of the susceptibility due to electron–electron correlations occurs mainly in the
region h̄ω < 2 eV. As for the temperature variations, they are qualitatively similar to those of the zeroth susceptibility, but
quantitatively they are considerable. Besides, with the increase of temperature the enhancement increases. This is due to the
fact that, with the increase of temperature, the real part of the zeroth susceptibility in the energy region h̄ω < 2 eV increases
considerably. Due to the formula

Imχz
L(ω) = πNdh̄ω

1

4

∑

σ

(
1 + uReχ0σ̄

L (0)

1 − u2Reχ0σ
L (0)Reχ0σ̄

L (0)

)2

ν2
σ (μ),

which comes from (13.37) at small h̄ω, the growth of Reχ0σ̄
L (0) leads to the sharp increase of the enhancement factor.

8In the DSFT we use g2μ2
B/2 units. If we come back to g2μ2

B units, one can see that

χ = χ0

1 − 2uχ0 ,

and the Stoner constant I must be compared with u (see (4.32)).
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Fig. 13.4 The imaginary part of
the enhanced longitudinal local
susceptibility of iron (the
notation is as for Fig. 13.3)
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Fig. 13.5 The effective local
spin sL(ω) in a frequency interval
[−ω,ω] for iron (the notation is
as for Fig. 13.3)
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Fig. 13.6 The effective local
spin sL(ω) in a frequency interval
[−ω,ω] for cobalt at
T/TC = 0.0 (dotted line), 0.78
(dashed line) and 1.0 (solid line)
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The results of the calculation of the effective local spin sL(ω) are represented in Figs. 13.5, 13.6 and 13.7. As can be
seen from the figures, the local spin in a wide energy interval varies only slightly with the increase of temperature. This
is due to the fact that a decrease in the first term in (13.9) is compensated by an increase in the second one. However,
in a small energy interval such a compensation does not occur. Here the local spin depends on the temperature strongly,
and the smaller the interval, the sharper the dependence. For Fe at T = TC = 1.49T

exp
C , the computed values 1.0 μB and

1.3 μB of the local magnetic moment mL = gμBsL in the energy intervals h̄ω = 0.12 and 0.2 eV are fairly well agree
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Fig. 13.7 The effective local
spin sL(ω) in a frequency interval
[−ω,ω] for nickel at T/TC = 0.0
(dotted line), 0.88 (dashed line)
and 1.0 (solid line)
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Table 13.3 The local magnetic
moment mL for Fe, Co and Ni at
zero, near critical and at the Curie
temperatures (TC is the Curie
temperature calculated in the
DNA and given in the last
column of Table 10.1)

Fe Co Ni

T

TC

mL(T )

mL(0)

T

TC

mL(T )

mL(0)

T

TC

mL(T )

mL(0)

0.00 1.00 0.00 1.00 0.00 1.00

0.93 0.98 0.78 1.06 0.88 1.06

1.00 0.99 1.00 1.14 1.00 1.12

with the experimental values 1.3 μB and 1.55 μB, obtained at T = 1.25T
exp

C in [18, 32]. Note that the value of the local
magnetic moment in the energy window 0.1 eV in the one-electron calculations [33] was only 0.36 μB, which is much less
than the experimental value. Good agreement with the experimental data on the polarized neutron scattering is also obtained
for nickel (the experimental data for Co are absent from the literature): the values of mL(h̄ω = 0.12eV) = 0.55 μB and
mL(h̄ω = 0.2eV) = 0.7 μB, computed at T = TC = 1.54T

exp
C , are in good agreement with the values 0.6 μB and 0.9 μB,

respectively, measured at T = 2T
exp

C [5].
The results of the calculation of the local magnetic moment in the infinite energy interval, mL(T )/mL(0), of Fe, Co and

Ni by formula (13.9) are given in Table 13.3. As can be seen from Table 13.3, the local moment in the infinite energy interval
depends on temperature only slightly, being almost constant for Fe, and slightly increasing for Co and Ni. The fact that
〈m2

L〉1/2 only slightly changes with temperature is supported by experiments on magnetovolume effect (see, e.g. [34–37]
and references therein). Note that for Fe the weak change of the local magnetic moment with increasing temperature was
obtained in other theoretical calculations as well. However, for the values of mL(TC)/mL(0) in Ni, none of the calculation
results cited in [37] are close to unity.

The results of the calculation of the temporal correlation function F(t) for Fe, Co and Ni are represented in Figs. 13.8,
13.9 and 13.10. As can be seen from Fig. 13.8, the square of the local spin s2

L = F(t = 0) for iron at T = 0 equals 3.22,
which almost coincides with the value 3.18, obtained in the one-electron calculation [1] using the constant-matrix-element
approximation. At T = TC, the square of the local spin of iron varies insignificantly and reaches the value 3.16, which
is close to the value s2

L � 3.6, obtained by Hasegawa [17] in the two-field method at T = 1.1T
exp

C . For Co and Ni, the
computed values of s2

L(TC) are equal to 2.20 and 0.81, respectively. The latter substantially differs from the value s2
L � 0.2,

obtained by Hasegawa [38] for Ni at T = 1.1T
exp

C . However, as can be seen from Table 13.4, our values for s2
L(TC) are in

better agreement with the experimental values, obtained from the relation meff = gμB
√

s(s + 1) for the effective magnetic
moment than those of Hasegawa [17, 38]. Clearly, estimating the square of the local spin in the paramagnetic region by the
formula s2

L = s(s + 1) = m2
eff/(gμB)2 for ferromagnetic metals is fairly rough, but a better estimate is unavailable.

As for the temporal correlation function F(t) at t �= 0, its oscillating part A(t) is large enough also beyond the main
maximum, determined by the bandwidth. For example, in iron at T = 0, A(t) calculated in the one-electron approximation
vanishes during t0 � 0.3 fs, but A(t) calculated with the account of spin fluctuations vanishes during 4 fs. With an increase of
the temperature, the damping time of the local spin increases. This is due to the increase of the Fourier transform A(ω) in the
low-frequency region. According to (13.6), the temperature dependence of the function A(ω) is determined by two factors:
the hyperbolic cotangent and the sum of the imaginary parts of the susceptibilities. At the temperatures under consideration,
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Fig. 13.8 Time-dependent spin
correlation function F(t) for iron.
The horizontal line indicates the
asymptotic value of
[(n↑ − n↓)/2]2 (the notation is as
for Fig. 13.3)
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Fig. 13.9 Time-dependent spin
correlation function F(t) for
cobalt. The horizontal line
indicates the asymptotic value
[(n↑ − n↓)/2]2 (the notation is as
for Fig. 13.6)
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Fig. 13.10 Time-dependent spin
correlation function F(t) for
nickel. The horizontal line
indicates the asymptotic value
[(n↑ − n↓)/2]2 (the notation is as
for Fig. 13.7)
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Table 13.4 Calculated and
experimental values of the square
of the local spin for Fe, Co and
Ni at the Curie temperature

Fe Co Ni

Hasegawa [17, 38] 3.6 – 0.2

Reser [2] 3.16 2.20 0.81

Experiment [39] 2.45 2.45 0.65

the hyperbolic cotangent differs from unity only in the low-energy region: h̄ω < 2T ∼ 0.1 eV. Outside of this energy region,
the temperature dependence of A(ω) is determined by the sum of the imaginary parts of the susceptibilities, whose behaviour
is similar to Imχz

L(ω) represented in Fig. 13.4.
To conclude, the numerical investigation of local magnetic characteristics of Fe, Co and Ni at finite temperatures using

the DSFT has shown that the correlation effects significantly change the local characteristics, especially at low energies. The
values 1.0 and 1.3 μB of the local magnetic moment mL in Fe at T = TC obtained in the energy windows 0.12 and 0.2 eV,
respectively, are in good agreement with values 1.3 and 1.55 μB, obtained in polarized neutron scattering experiments at
T = 1.25TC [18, 32]. Thus, the results of the calculations have predictive character for future experiments on neutron
scattering for Fe, Co and Ni in a sufficiently large energy window.

The value of mL(TC)/mL(0) for Ni (as for Fe and Co) is near unity in full agreement with experimental data on the
magnetovolume effect, whereas in previous treatments it was substantially smaller (see Table 1 of [37]).

The calculated damping time for the spin correlation function is one order greater than the one-electron hopping time, but
is still less than the characteristic value, determined by the Curie temperature: t ∼ h̄/TC ∼ 10−14 s.

The papers [40–42] present calculations of temperature dependence of the local magnetic moment in Fe-Ni Invar alloys,
which are of great interest (for discussion see, e.g. [43–48] and references therein).

13.4.2 Nuclear Spin Relaxation Rates

It is well known that in the ferromagnetic metals the contact hyperfine interaction gives the main contribution to the nuclear
spin relaxation (see, e.g. [49, 50]). While a theoretical explanation of the temperature dependence of the relaxation rates
for simple and nonmagnetic transition metals is available [51–53], for ferromagnetic ones it is absent even at a qualitative
level. For example, according to Moriya’s estimates [54] (see also [55–57]), the largest contribution to T −1

1 for Fe, Co and
Ni comes from the orbital (not contact) interaction. In our opinion, this result is a consequence of the fact that the spin
fluctuations increasing sharply with increasing temperature were not taken into account in [54]. We believe that only correct
account of the spin fluctuations permits one to explain the temperature behaviour of the relaxation rates in ferromagnetic
metals properly. We emphasize that by ferromagnetic metals we always mean the strongly ferromagnetic metals Fe, Co and
Ni. As for the weakly ferromagnetic metals, a quite satisfactory treatment of the temperature dependence of the relaxation
rates based on the SFT is available (see [5] and references therein).

Note that an attempt to take into account the effect of the electron–electron interaction on the nuclear spin relaxation
in metals was undertaken in [58], but within a very simplified model: the wavelength- and frequency-dependent magnetic
susceptibilities were calculated within a model of a free-electron gas with interaction of a delta function type. As follows
from the arguments in [58], the relaxation rate T −1

1 is enhanced by the electron–electron interaction. However, detailed
comparison between the theory and the experimental data is absent from [58]. Moreover, at that time, experimental data
were available only for multidomain Fe, Co and Ni [59, 60], since they were obtained in zero applied field. (The high-
field rates which are two-to-three times less than the low-field ones [61] are intrinsic relaxation rates for ferromagnetic
metals.)

Finally, calculations of the relaxation rates T −1
1 for most elements as impurities in ferromagnetic iron using the

KKR-Green’s function method [62] revealed that almost all of the calculated rates are smaller than the experimental
ones. Observing a systematic tendency for theory to underestimate the experimental rates, including those of FeFe, the
authors of [63–65] suggested that an important relaxation mechanism was missing in the one-electron theory [62]. The
contribution of spin fluctuations is a reasonable candidate for providing the missing rate as we demonstrate below (for details,
see [3, 66]).

The usual quantum-mechanical consideration of the contact hyperfine interaction (see, e.g. [49]) gives the following
expressions for the longitudinal (T −1

1 ) and transverse (T −1
2 ) nuclear spin relaxation rates:
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1

T1
= B

2

∫ ∞

−∞
〈{Δs+

j (t),Δs−
j (0)}〉 eiω0t dt, (13.38)

1

T2
= 1

2T1
+ B

2

∫ ∞

−∞
〈{Δsz

j (t),Δsz
j (0)}〉 eiω0t dt, (13.39)

where 〈{Δsα
j (t),Δs

β
j (0)}〉 is a single-site electron spin correlator and ω0 is the nuclear magnetic resonance frequency. The

expressions (13.38) and (13.39) are derived under the assumption that the hyperfine magnetic field at a nucleus is proportional
to the total spin at a site, and that the constant B effectively depends on the magnitude of the nuclear spin (not necessarily
equal to 1/2). Applying the fluctuation-dissipation theorem (2.55), we obtain [67, 68]

1

T1
= Bh̄ coth

h̄ω0

2T
Imχ+−

L (ω0, T ),

1

T2
= 1

2T1
+ Bh̄ coth

h̄ω0

2T
Imχzz

L (ω0, T ),

where χ+−
L and χzz

L are the transverse and longitudinal local susceptibilities expressed in units of g2μ2
B , and T is the

temperature in energy units. Since the energy h̄ω0 is close to zero (h̄ω0 ∼ 10−4–10−5 eV), we use coth(h̄ω/2T ) � 2T/h̄ω.
Then

1

T1T
= 2Bh̄

Imχ+−
L (ω0, T )

h̄ω0
, (13.40)

1

T2T
= 1

2

1

T1T
+ 2Bh̄

Imχzz
L (ω0, T )

h̄ω0
. (13.41)

As we see, at a fixed temperature, the relaxation rates are defined by the slopes of the imaginary parts of the local
susceptibilities near zero energy.

At small energies, taking into account the expansion χ0α
L (ε) = χ0α

L (0) + iϕα
Lε and keeping only linear terms in ε = h̄ω,

from (13.36) and (13.37) we obtain [3]

Imχ+−
L (ε) = 2ϕx

L

(1 − 2uχ0x
L (0))2

ε, (13.42)

Imχzz
L (ε) = ε

1

4

∑

σ

(
1 + uχ0σ̄

L (0)

1 − u2χ0σ
L (0)χ0σ̄

L (0)

)2

ϕσ
L (13.43)

(σ =↑,↓ or ±1, and σ̄ denotes −σ ). Substituting (13.42) and (13.43) in (13.40) and (13.41), respectively, and expressing
all susceptibilities in units of 1

2g2μ2
B , we finally obtain

1

T1T
= c

2ϕx
L

(1 − uχ0x
L (0))2

, c ≡ Bh̄, (13.44)

1

T2T
= 1

2

1

T1T
+ c

1

4

∑

σ

(
1 + uχ0σ̄

L (0)/2

1 − u2χ0σ
L (0)χ0σ̄

L (0)/4

)2

ϕσ
L . (13.45)

In particular, for u → 0, i.e. without the enhancement, we have

1

T1T
= c2ϕx

L,
1

T2T
= 1

2

1

T1T
+ cϕz

L, (13.46)

where ϕz
L = 1

4 (ϕ
↑
L + ϕ

↓
L).

At first sight, the final expressions for relaxation rates (13.44) and (13.45) appear to have an approximate character,
because they are based on the linear approximation of the local susceptibilities. However, in numerical calculations the
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formulae (13.44) and (13.45) are preferable to the initial formulae (13.40) and (13.41), because the calculation by the
formulae (13.40) and (13.41) reduces, in fact, to numerical differentiation, which is known to be an ill-posed problem.
In addition, it is very difficult to carry out the self-consistent calculation of local susceptibilities with a small ε-step.

Here we study the temperature dependence (not numerical values) of the relaxation rates. Therefore, for simplicity, the
constant c in the formulae (13.44)–(13.46) is set to unity.

We calculate the relaxation rates of Fe, Co and Ni with the zeroth and enhanced susceptibilities in the SLA and DNA of
the DSFT. The calculation results are presented in Figs. 13.11, 13.12, 13.13, 13.14, 13.15 and 13.16. As can be seen from
the figures, the relaxation rates have qualitatively similar behaviour for all three metals. The quantities (T1T )−1 and (T2T )−1

calculated without the enhancement of the susceptibility depend only slightly on temperature, which is consistent with the
well-known Korringa formula [51] for the nuclear spin-relaxation rate for simple metals. If the enhancement is taken into
account, the quantities (T1T )−1 and (T2T )−1 increase considerably and manifest significant temperature dependence in the
ferromagnetic region. The increase near TC is monotone and similar for both rates, just as in the experiment [69]. For Fe and
Ni near TC, the longitudinal and transverse relaxation rates completely coincide: T −1

1 = T −1
2 ; for Co they are close.

As can be seen from Figs. 13.11, 13.13 and 13.15, in the SLA the quantities (T1T )−1 and (T2T )−1 depend on temperature
too strongly. This is explained by the fact that the spin fluctuations in the SLA increase linearly with temperature (see (10.39))
and hence the magnetization decreases too rapidly over a wide temperature interval.

Let us now analyse the results obtained in the DNA (Figs. 13.12, 13.14 and 13.16) in more detail. We begin with the
ferromagnetic region. In agreement with experiment [69], at low temperatures the temperature dependence of the quantities
(T1T )−1 and (T2T )−1 is weak, it is more pronounced at room and higher temperatures and sharply increases in the critical
region. On the whole, the temperature dependence of the quantities (T1T )−1 and (T2T )−1 is similar for all three metals.
However, for Fe the curve (T1T )−1 is well above the (T2T )−1 curve; for Co these curves get close, and for Ni they change

Fig. 13.11 The temperature
dependence of the longitudinal
(T −1

1 ) and transverse (T −1
2 )

nuclear spin relaxation rates
(divided by T ) of Fe, calculated
in the SLA with the zero (solid
line and dashed line) and
enhanced (dotted line and dash
dot dashed line) susceptibilities
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Fig. 13.12 The temperature
dependence of the longitudinal
(T −1

1 ) and transverse (T −1
2 )

nuclear spin relaxation rates
(divided by T ) of Fe, calculated
in the DNA with the zero (solid
line and dashed line) and
enhanced (dotted line and dash
dot dashed line) susceptibilities
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Fig. 13.13 The temperature
dependence of the longitudinal
(T −1

1 ) and transverse (T −1
2 )

nuclear spin relaxation rates
(divided by T ) of Co, calculated
in the SLA with the zero (solid
line and dashed line) and
enhanced (dotted line and dash
dot dashed line) susceptibilities
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Fig. 13.14 The temperature
dependence of the longitudinal
(T −1

1 ) and transverse (T −1
2 )

nuclear spin relaxation rates
(divided by T ) of Co, calculated
in the DNA with the zero (solid
line and dashed line) and
enhanced (dotted line and dash
dot dashed line) susceptibilities
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Fig. 13.15 The temperature
dependence of the longitudinal
(T −1

1 ) and transverse (T −1
2 )

nuclear spin relaxation rates
(divided by T ) of Ni, calculated
in the SLA with the zero (solid
line and dashed line) and
enhanced (dotted line and dash
dot dashed line) susceptibilities
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places. This is connected with the fact that in Fe the transverse fluctuations dominate, while in Ni the longitudinal fluctuations
dominate, and in Co the intermediate situation takes place: the transverse and longitudinal fluctuations are close.

The strong temperature dependence of the relaxation rates is principally due to resonance behaviour of the imaginary
parts of the enhanced susceptibilities (13.42) and (13.43) at low energies. This behaviour was analysed in detail in [68] by
the example of iron.
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Fig. 13.16 The temperature
dependence of the longitudinal
(T −1

1 ) and transverse (T −1
2 )

nuclear spin relaxation rates
(divided by T ) of Ni, calculated
in the DNA with the zero (solid
line and dashed line) and
enhanced (dotted line and dash
dot dashed line) susceptibilities
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It should be noted that near TC the calculated relaxation rates, particularly for Co, do not increase as sharply as those in
[69]. This is possibly due to the single-site approximation, which insufficiently takes into account the spatial spin-density
correlations.9

In the paramagnetic region, the computed quantities (T1T )−1 and (T2T )−1 are equal to each other. They slowly decrease
with the temperature increasing. The experimental data for Co and Ni [69, 70] confirm this temperature behaviour. (The
data for paramagnetic iron are absent from the literature.) However, the fact that over a wide range of temperatures the
computed quantities (T1T )−1 and (T2T )−1 remain on a level with the critical ones attracts our attention. This is connected
with the fact that in the paramagnetic region the imaginary part of the local susceptibility ImχL(ω, T ) decreases too slowly
with temperature increasing. Such behaviour of ImχL(ω, T ) is observed in all local models of the SFT (see, e.g. [5] and
references therein).

Thus, the principal results here are as follows. The temperature behaviour of the nuclear spin relaxation rates in
ferromagnetic metals is determined by the electron–electron correlations and these correlations can be adequately described
within DSFT. The DNA gives a qualitative agreement with experimental data [69, 70], over a wide range of temperatures.

Note that, in addition to relaxation due to the electron spin fluctuations, there are important nuclear relaxation mechanisms
due to the crystal imperfections, e.g. the relaxation due to the magnetic impurities [71]. Moreover, the experimental data
themselves differ in the ferromagnetic metals (see, e.g. the data for Ni in Fig. 5 of [70] and Fig. 8 of [69]).
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On the pragmatic view the only thing that matters is that the theory is efficacious, that it “works” and that the necessary preliminaries and
side issues do not cost too much in time and effort. (B.N. Brockhouse, Nobel Lecture, 1994)

Neutron scattering is one of the main methods to study magnetic properties of metals and alloys. Firstly, neutron is an
uncharged particle with spin and, secondly, slow neutrons have energies (<1 eV) of the same order as most of magnetic
excitations. So, inelastic neutron scattering allows to analyse fluctuations of the spin-density.

Results of neutron scattering experiments are expressed in terms of cross-sections (Sect. 14.1). The basic problem, with
which this chapter is concerned, is to derive expressions for these quantities. An authoritative and comprehensive treatment
of neutron scattering can be found in [1–5]; for a readable introduction, see [6].

In magnets with localized spins, an expression for the nuclear scattering cross-section was obtained in [7] and expression
for the nonpolarized magnetic scattering cross-section was obtained in [8]. In the papers [7,8] the magnetic scattering cross-
section was related to the spin correlator. Calculating the spin correlator for the electron gas in the RPA, the paper [9]
explained the possibility of magnetic neutron scattering in metals above the Curie temperature.

In this chapter we consider neutron scattering in magnets with itinerant electrons [10,11] (see also [12]). In Sect. 14.2, we
obtain an expression for the cross-section of neutron scattering by an arbitrary potential, which can describe the interaction
with nuclei, orbital currents and spins. In Sect. 14.3, we study the correction factor in the scattering cross-section formula due
to the lattice vibrations. The coefficient that corresponds to the elastic phonon scattering is called the Debye-Waller factor
(DWF). We present a concise and simple method for calculating the DWF in the harmonic approximation and estimate the
effect of lattice vibrations in ferromagnetic metals above the Curie temperature.

14.1 Scattering Cross-Section

A neutron scattering experiment is set up as follows. A collimated beam of monochromatic neutrons is incident on a scattering
system (in our case, a crystal). As a result of the interaction, the neutrons are scattered with a certain probability in each
direction. A quantitative characteristic that describes this process is the scattering cross-section (see, e.g. [6, 13–16]).

We assume that the incident neutrons are all in the same state with the wavevector k. Then the (doubly) differential
scattering cross-section is defined as

d2σ

dΩ ′dEk′
= 1

Φ dΩ ′dEk′

⎛

⎝
number of neutrons scattered per unit time
into a solid angle dΩ ′ with the final energy

between Ek′ and Ek′ + dEk′

⎞

⎠ , (14.1)

where Φ is the flux density of the incident neutrons defined as the number of neutrons through unit area per unit time, the
area being perpendicular to the direction of the neutron beam (here and hereafter the prime denotes a scattered quantity).

Let wk→k′ be the transition probability per unit time from the state k to the state k′ and N(Ek′) is the number of states
k′ scattered into the solid angle dΩ ′ with the energy less or equal to Ek′ . Then wk→k′dN(Ek′) is the numerator on the
right-hand side of (14.1). Defining the neutron density of states as

n(Ek′) = dN(Ek′)

dEk′
, (14.2)
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we write the scattering cross-section (14.1) in the form

d2σ

dΩ ′dEk′
= n(Ek′)

Φ dΩ ′ wk→k′ . (14.3)

To include the magnetic interaction it is necessary to specify not only the wavevector k of the neutron but also its spin
state σ . First, we consider the cross-section for a process in which the crystal changes from the state λ to λ′ and the neutron
changes from the state (k, σ ) to (k′, σ ′),

(
d2σ

dΩ ′dEk′

)

σλ→σ ′λ′
= n(Ek′)

Φ dΩ ′ wkσλ→k′σ ′λ′ . (14.4)

In the first-order perturbation theory, the quantity wkσλ→k′σ ′λ′ is given by Fermi’s golden rule (see Appendix F.1)

wkσλ→k′σ ′λ′ = 2π

h̄
| 〈k′σ ′λ′| V |kσλ〉 |2δ(Eλ − Eλ′ + Ek − Ek′), (14.5)

where V is the scattering potential, and Eλ and Ek are the energies of the crystal and neutron, respectively. Then (14.4)
becomes (

d2σ

dΩ ′dEk′

)

σλ→σ ′λ′
= 2π

h̄

n(Ek′)

Φ dΩ ′ | 〈k′σ ′λ′| V |kσλ〉 |2δ(Eλ − Eλ′ + Ek − Ek′). (14.6)

The next step is to calculate the matrix element 〈k′| V |k〉, neutron density of states n(Ek′) and flux density Φ in formula
(14.6). To do this we need to determine the neutron wave functions. In the Born approximation it is sufficient to use plane
waves |k〉 = V−1/2eikr (see Appendix F.2), where V denotes the volume of the crystal to distinguish from the scattering
potential V . Then the matrix element 〈k′| V |k〉 is given by

〈k′| V |k〉 = 1

V

∫
e−ik′r V (r) eikr dr = 1

V V−κ , (14.7)

where

Vκ =
∫

V (r) e−iκr dr (14.8)

is the Fourier transform of the potential and κ = k − k′ is the scattering vector.
For the neutron density of states (14.2) we have

n(Ek′) = dN(Ek′)

dEk′
= dN(k′)

dk′
dk′

dEk′
. (14.9)

Here dN(k′) is the number of the wavevectors in dΩ ′ with the magnitude between k′ and k′ + dk′, which is the number of
wavevector points in the element of volume k′2 dk′dΩ ′,

dN(k′) = Vk′2 dk′dΩ ′

(2π)3 . (14.10)

Differentiating the final energy Ek′ = h̄2k′2/(2m), where m is the mass of a neutron, we have

dEk′

dk′ = h̄2k′

m
. (14.11)

Substituting (14.10) and (14.11) in (14.9), we come to

n(Ek′) = Vk′mdΩ ′

h̄2(2π)3
. (14.12)
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Finally, we obtain the flux density of the incident neutrons:

Φ = ih̄

2m

(
ψk∇ψ∗

k − ψ∗
k∇ψk
) = h̄k

Vm
, (14.13)

where ψk is the wave function of a neutron (plane wave). Substituting (14.7), (14.12) and (14.13) into (14.6), we obtain the
scattering cross-section in the Born approximation:

d2σ

dΩ ′dEk′

∣∣∣∣
σλ→σ ′λ′

= k′

k

(
m

2πh̄2

)2

| 〈σ ′λ′| V−κ |σλ〉 |2δ(Eλ − Eλ′ + Ek − Ek′). (14.14)

14.2 Scattering Potential Correlator

The cross-section (14.14) corresponds to the scattering from one specific state (k, σ, λ) to another one (k′, σ ′, λ′). Next we
obtain the cross-section d2σ/dΩ ′dEk′ defined in (14.1). By the law of total probability (for details, see Appendix A.3.2), we
have

Pk→k′σ ′λ′ =
∑

σλ

Pkσλ→k′σ ′λ′Pσλ, (14.15)

where Pσλ is the probability of the initial state (σ, λ). Summing (14.15) over the final states (σ ′, λ′), we obtain the transition
probability from k to k′:

Pk→k′ =
∑

σ ′λ′
Pk→k′σ ′λ′ =

∑

σ ′λ′

∑

σλ

Pkσλ→k′σ ′λ′Pσλ.

Differentiation with respect to time leads to

wk→k′ =
∑

σ ′λ′

∑

σλ

wkσλ→k′σ ′λ′Pσλ. (14.16)

Substituting (14.16) in (14.3), we have

d2σ

dΩ ′dEk′
=
∑

σλ

Pσλ

∑

σ ′λ′

d2σ

dΩ ′dEk′

∣∣∣∣
σλ→σ ′λ′

. (14.17)

Finally, substituting (14.14) into (14.17), we obtain the general expression for the differential cross-section:

d2σ

dΩ ′dEk′
= k′

k

(
m

2πh̄2

)2∑

σλ

Pσλ

∑

σ ′λ′
| 〈σ ′λ′| V−κ |σλ〉 |2δ(Eλ − Eλ′ + Ek − Ek′). (14.18)

We now calculate the average over initial states σ, λ and sum over the final states σ ′, λ′ in formula (14.18) and thus relate
the nonpolarized scattering cross-section to the scattering potential correlator. We assume that the potential V (r) can be
expressed as

V (r) = W(r) U, (14.19)

where W(r) is an operator acting on the neutron k states and crystal λ states, and U is an operator acting on the neutron spin
states σ . Using the expression for the Hermitian 2 × 2 matrix U (see Appendix A.1.4)

U =
∑

μ

Uμσμ, Uμ = 1

2
Sp(Uσμ), μ = 0, x, y, z,
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where σ 0 is the identity 2 × 2 matrix and σx, σ y, σ z are the Pauli matrices, we write (14.19) as

V (r) =
∑

μ

V μ(r) σμ, (14.20)

where V μ(r) = Uμ W(r). A potential of this form describes an arbitrary neutron-crystal interaction including the interaction
of the neutron with nucleus and interactions of the neutron spin with electron spin and orbital current.

Independence of the σ and λ states leads to the following simplifications. First, the matrix element of the potential (14.20)
is factored as

〈σ ′λ′| V−κ |σλ〉 =
∑

μ

〈σ ′λ′| V μ
−κ σμ |σλ〉 =

∑

μ

〈λ′| V μ
−κ |λ〉 〈σ ′| σμ |σ 〉 .

Second, for the probability, we have Pσλ = Pσ Pλ. As a result, formula (14.18) becomes

d2σ

dΩ ′dEk′
= k′

k

(
m

2πh̄2

)2∑

μν

∑

λ

Pλ

∑

λ′
〈λ| V μ

κ |λ′〉 〈λ′| V ν−κ |λ〉

×δ(Eλ − Eλ′ + Ek − Ek′)
∑

σ

Pσ

∑

σ ′
〈σ | σμ |σ ′〉 〈σ ′| σν |σ 〉 . (14.21)

Next we calculate the average over the spin states σ and sum over the spin states σ ′ in expression (14.21). Using the
formula for a matrix product element, we obtain

∑

σ

Pσ

∑

σ ′
〈σ | σμ |σ ′〉 〈σ ′| σν |σ 〉 =

∑

σ

Pσ 〈σ | σμσν |σ 〉 .

For the nonpolarized neutron beam, from P↑ = P↓ = 1/2 we have

∑

σ

Pσ 〈σ | σμσν |σ 〉 = δμν, μ, ν = 0, x, y, z.

Thus, (14.21) becomes

d2σ

dΩ ′dEk′
= k′

k

(
m

2πh̄2

)2∑

μ

∑

λ

Pλ

∑

λ′
〈λ| V μ

κ |λ′〉 〈λ′| V μ
−κ |λ〉 δ(Eλ − Eλ′ + Ek − Ek′). (14.22)

Finally, we calculate the sum over λ′ and average over λ. Using the inverse Fourier transform of the delta-function (A.41),
we write

δ(Eλ − Eλ′ + h̄ω) = 1

2πh̄

∫
ei(Eλ−Eλ′ )t/h̄eiωt dt,

where h̄ω = Ek − Ek′ is the energy transfer. Substituting the latter in (14.22), we have

d2σ

dΩ ′dEk′
= k′

k

(
m

2πh̄2

)2∑

μ

1

2πh̄

∫ ∑

λλ′
Pλ 〈λ| V μ

κ e−iEλ′ t/h̄ |λ′〉 〈λ′| V μ
−κ eiEλt/h̄ |λ〉 eiωt dt.

Choosing λ to be eigenstates of the crystal Hamiltonian,

H |λ〉 = Eλ |λ〉 , e−iHt/h̄ |λ〉 = e−iEλt/h̄ |λ〉 , (14.23)
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we obtain
d2σ

dΩ ′dEk′
= k′

k

(
m

2πh̄2

)2∑

μ

1

2πh̄

∫ ∑

λ

Pλ 〈λ| eiHt/h̄ V μ
κ e−iHt/h̄ V

μ
−κ |λ〉 eiωt dt. (14.24)

Since Pλ = Z−1e−Eλ/T , the sum over λ is nothing but the canonical average in the interacting electrons system:

∑

λ

Pλ 〈λ| . . . |λ〉 = Z−1Tr(. . . e−H/T ) ≡ 〈. . . 〉.

Using the Heisenberg representation V
μ
κ (t) = eiHt/h̄ V

μ
κ e−iHt/h̄, we write the scattering cross-section (14.24) as

d2σ

dΩ ′dEk′
= k′

k

(
m

2πh̄2

)2∑

μ

1

2πh̄

∫
〈V μ

κ (t) V
μ
−κ 〉 eiωt dt, (14.25)

where μ = 0, x, y, z.

14.3 Neutron Scattering and Phonons

When we derived the scattering cross-section formula (14.25), we ignored the lattice vibrations (phonons). Taking lattice
vibrations into account leads to a correction factor in the scattering cross-section formula. The correction factor that
corresponds to the elastic phonon scattering is called the Debye-Waller factor (DWF).

In the harmonic approximation, an expression for the DWF was obtained separately for the nuclear scattering (see, e.g.
[4, 6]) and magnetic scattering [10]. We present a concise, simple calculation of the DWF in the harmonic approximation
for an arbitrary scattering process in an itinerant electron ferromagnet. The canonical average of exponentials of operators
linear in the atomic displacements is calculated by the formula obtained in the paper [17]. This method allows avoiding the
cumbersome calculation of the mean-square atomic displacement (see, e.g. [6, 10]). Using the Debye model, we then derive
a computational formula that allows evaluating the Debye-Waller factor in real metals.

14.3.1 Lattice Vibrations

We now assume that each lattice site can be displaced by uj from the equilibrium position Rj . Replacing Rj by Rj + uj ,
we write the Fourier transform of the potential as

V μ
κ =
∑

j

V
μ
j e−iκ(Rj +uj ), V

μ
j =
∫

Ωj

V μ(r) dr, (14.26)

where Ωj is the Wigner-Seitz cell centred at Rj . With (14.26) taken into account, the correlator of the potential becomes

〈V μ
κ (t) V

μ
−κ 〉 =

∑

jj ′
e−iκ(Rj −Rj ′ )

〈
V

μ
j (t) e−iκuj (t) V

μ

j ′ eiκuj ′
〉
. (14.27)

Assuming that the lattice vibrations and interaction between the neutron and electron subsystem are independent, we factor
the average as 〈

V
μ
j (t) e−iκuj (t) V

μ

j ′ eiκuj ′
〉
= 〈V μ

j (t)V
μ

j ′ 〉
〈
e−iκuj (t) eiκuj ′

〉
. (14.28)

For brevity, we introduce the notations A = −iκ · uj (t) and B = iκ · uj ′ . Substituting (14.27) to formula (14.25) and taking
(14.28) into account, we have
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d2σ

dΩ ′dEk′
= k′

k

(
m

2πh̄2

)2∑

jj ′
e−iκ(Rj −Rj ′ )∑

μ

1

2πh̄

∫
〈V μ

j (t)V
μ

j ′ 〉
〈
eA eB
〉

eiωt dt. (14.29)

Let us transform the expression 〈eA eB〉. The displacement operator at the lattice site ûj (t) is given by formula (G.18):

ûj (t) =
(

h̄

2MN

)1/2∑

s

es√
ωs

(
bs ei(qRj −ωst) + b†

s e−i(qRj −ωst)
)

, (14.30)

where M is the atomic mass, N is the number of crystal lattice sites, b
†
s and bs are the phonon creation and annihilation

operators, ωs is the vibration frequency and es is the polarization vector of the normal mode s = (q, i) corresponding to the
wavevector q and polarization i = 1, 2, 3. Taking (14.30) into account, we write the operators A and B as

A = −i
∑

s

(αsbs + α∗
s b†

s ), B = i
∑

s

(βsbs + β∗
s b†

s ), (14.31)

where

αs =
(

h̄

2MN

)1/2 κ · es√
ωs

ei(qRj −ωst), βs =
(

h̄

2MN

)1/2 κ · es√
ωs

eiqRj ′ . (14.32)

Since the commutator [A,B] =∑s

(
αsβ

∗
s − α∗

s βs

)
is proportional to the identity operator, the following relation holds (see,

e.g. [6])

eA eB = eA+Be
1
2 [A,B]. (14.33)

The displacement uj has a Gaussian distribution (see Appendix G.2). Therefore, the quantities A, B and A + B also have

a Gaussian distribution. A Gaussian random variable Q satisfies the relation 〈eQ〉 = e
1
2 〈Q2〉. Then the canonical average of

expression (14.33) takes the form

〈
eA eB
〉
= e

1
2 〈(A+B)2〉e

1
2 〈[A,B]〉 = e

1
2 〈A2〉e

1
2 〈B2〉e〈AB〉 =

〈
eA
〉 〈

eB
〉

e〈AB〉. (14.34)

Considering the contribution only from the elastic phonon scattering: e〈AB〉 = 1 (for details, see [6]), we come to the relation

〈
eA eB
〉
=
〈
eA
〉 〈

eB
〉
. (14.35)

In the harmonic approximation, the canonical average
〈
eQ
〉
with an arbitrary operator linear in bs and b

†
s : Q =∑s(csbs +

dsb
†
s ), is given by the formula [17]

〈
eQ
〉
= exp

[
1

2

∑

s

csds coth

(
h̄ωs

2T

)]
. (14.36)

We apply the latter to calculate the averages
〈
eA
〉

and
〈
eB
〉

in expression (14.35). Taking (14.31) into account, we come to

〈
eA eB
〉
= exp

[
−1

2

∑

s

(
|αs |2 + |βs |2

)
coth

(
h̄ωs

2T

)]
.

Substituting (14.32) for αs and βs , we have 〈
eA eB
〉
= e−2W(κ), (14.37)

where

2W(κ) = h̄

2MN

∑

s

(κ · es)
2

ωs

coth

(
h̄ωs

2T

)
. (14.38)

Finally, substituting (14.37) in (14.29) and going back to Fourier transform of the potential (14.26), we obtain the expression
for the differential scattering cross-section
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d2σ

dΩ ′dEk′
= k′

k

(
m

2πh̄2

)2

e−2W(κ)
∑

μ

1

2πh̄

∫
〈V μ

κ (t)V
μ
−κ 〉eiωt dt. (14.39)

The exponential e−2W(κ) is called the Debye-Waller factor (DWF). As can be seen from (14.38), the DWF depends on the
scattering vector and temperature.

14.3.2 Debye-Waller Factor

To evaluate (14.38) we relate it to the phonon density of states and make use of a simple assumption about the phonon
spectrum. First, we replace the multiplier (κ · es)

2 by the average over the Brillouin zone (s = (q, i), i = 1, 2, 3).
Transforming the sum over q into an integral over the Brillouin zone,

1

V
∑

q

= 1

(2π)3

∫
dq,

we obtain
1

3N

∑

qi

(κ · eqi )
2 = 1

3

ΩWS

(2π)3

∑

i

∫
(κ · eqi )

2 dq.

Replacing the Brillouin zone by the equal-volume sphere, we have

1

3N

∑

qi

(κ · eqi )
2 = 1

3
κ2. (14.40)

Substituting the average κ2/3 for (κ · es)
2 in (14.38), we obtain

2W(κ) = h̄κ2

6MN

∑

s

1

ωs

coth

(
h̄ωs

2T

)
. (14.41)

This result may be written in a compact way as (for details, see Appendix G.3)

2W(κ) = 1

3
κ2〈u2〉.

Since the DWF in the cubic ferromagnets depends only on the frequencies of the normal modes and not on the polarization
vectors, it can be expressed in terms of the phonon density of states n(ω). Transforming the sum over frequencies into the
integral, we write (14.41) as

2W(κ) = h̄κ2

6MN

∫
1

ω
coth

(
h̄ω

2T

)
n(ω) dω, (14.42)

where
∫

n(ω) dω = 3N is the number of the normal modes in the Brillouin zone. In the Debye model, the phonon density
of states is given by n(ω) = 9Nω2/ω3

D for 0 ≤ ω ≤ ωD, where h̄ωD = ΘD is the Debye temperature in energy units. Using
coth x ≈ 1/x for x 	 1, we have

2W(κ) = 3h̄2κ2

M

T

Θ2
D

, T � ΘD. (14.43)
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Table 14.1 Experimental Curie
temperature T

exp
C , Debye

temperature ΘD and atomic mass
M for ferromagnetic metals

Fe Co Ni

T
exp

C , K [24] 1044 1390 631

ΘD, K [23] 418 385 375

M , a.m.u. [25] 55.85 58.93 58.69

Table 14.2 The DWF e−2W(κ)

for ferromagnetic metals
calculated using formula (14.43)
in the paramagnetic state at
κ = 3 Å−1

T/T
exp

C Fe T/T
exp

C Co T/T
exp

C Ni

1.2 0.845 1.05 0.803 1.25 0.882

1.3 0.833 1.1 0.795 1.5 0.860

1.4 0.822 1.15 0.787 2.0 0.818

In experiments studying magnetic properties of metals, the characteristic range of the scattering vector modulus is from
0.1 to 10 Å−1 [18]. In this range, the DWF in metals gives a correction of up to 10% at T = 0 [19], and this correction
substantially increases at finite temperatures. For instance, in Bragg neutron scattering, the DWF correction for Cu is about
2% at T = 10 K and is about 18% at T = 1000 K (see [6]). But theoretical estimates in most cases are available for only
specific values of the scattering vector, and experimental measurements of the DWF are absent from the literature.

We calculate the DWF e−2W(κ) for ferromagnetic metals as a function of the scattering vector modulus and temperature
[11]. The values of the Debye temperature ΘD are determined as follows.1 The lattice heat capacity is calculated as a function
of temperature T , using the phonon density of states obtained from experimental data, and is fitted to the heat capacity in
the Debye model (see, e.g. [21, 22]). Then, assuming ΘD an unknown parameter, one calculates the “experimental” Debye
temperature Θ

exp
D (T ) for each T . In solids the variation of Θ

exp
D (T ) with temperature is up to about 10% [21]. In our

calculations, ΘD is the high temperatures value of Θ
exp
D (T ) taken from [23]. The initial data are given in Table 14.1.

Table 14.2 shows the calculated values of the DWF in ferromagnetic metals above the Curie temperature. The DWF
is calculated using formula (14.43) at κ = 3 Å−1, which corresponds to the maximal value of the scattering vector in the
polarized magnetic scattering experiment [26,27]. The temperature values for Fe and Ni in the paramagnetic state correspond
to the experimental ones in [26, 27]. As can be seen from Table 14.2, taking lattice vibrations into account by means of the
DWF, we obtain a correction of about 20% for all ferromagnetic metals. Our results are in good agreement with the correction
of 18% for copper [6] obtained at the same value of the scattering vector at T = 1000 K.

In Fig. 14.1, we present the calculation results for the DWF (14.43) in ferromagnetic metals above TC for a wider range
of κ from zero to 4 Å−1. This range corresponds to the polarized neutron scattering experiment described in the paper [28].
As can be seen from Fig. 14.1, the correction is up to 25–30% for all ferromagnetic metals.2 At larger κ , it is necessary to
take phonons into account in a more consistent way (see, e.g. [29]).

In the paper [11] we showed that the anharmonic contribution to the DWF can be appreciable above the Curie temperature
at large values of the scattering vector, but the anharmonic contribution requires cumbersome calculations, and the results
largely depend on the approximations used. The harmonic approximation gives satisfactory values of the DWF even outside
of the Brillouin zone [11]. These results can be used for estimating the DWF in various neutron scattering experiments (e.g.
Bragg scattering and magnetic form-factor measurements), and also in the X-ray and Mössbauer spectroscopy.

As can be seen from Fig. 14.1, the DWF gives an insignificant correction within the Brillouin zone. For example, for bcc
Fe the correction is not more than 4%.3 Therefore, the DWF can be ignored in calculation of the local magnetic moment
using results of the neutron scattering experiment (see, e.g. [26]). For the same reason, the correction from lattice vibrations
does not play an important role when calculating other magnetic characteristics that are determined by an integral over the
Brillouin zone, such as magnetization, local susceptibility, single-site spin correlator and nuclear spin-relaxation rates. It is
the thermal spin fluctuations that play a dominant role in describing magnetic characteristics in metals at finite temperatures.

1In the book [20] the calculation formula for W(κ) is obtained from the Lindemann melting formula. This result can be used to estimate the DWF
using the melting temperature instead of the Debye temperature. However, the Lindemann formula can only give a qualitative estimate (see [21]).
2Strictly speaking, calculating the DWF for Co is applicable only up to the melting temperature T/T

exp
C ≈ 1.27.

3Indeed, substituting the atomic mass M = 55.85 a.m.u. and Debye temperature ΘD = 464 K of Fe, and qB = 1.71 Å−1 into formula (14.43), at
κ = qB and T = T

exp
C , we obtain 2W ≈ 0.037 and e−2W ≈ 0.96.
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Fig. 14.1 The DWF e−2W(κ) for
ferromagnetic metals calculated
using formula (14.43)
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A mathematician may say anything he pleases, but a physicist must be at least partially sane. (J.W. Gibbs)

Inelastic neutron scattering measurements give the most direct experimental information on spin fluctuations (see, e.g. [1–4]).
In particular, the polarized neutron scattering analysis is one of the most important methods of investigating the spin-density
correlations and short-range order (SRO). Large SRO of about 20 Å was obtained in metals above the Curie temperature
based on the spin-wave interpretation of the polarized neutron scattering experiments [5]. But this interpretation of the
experiment is controversial [6, 7]. Static spin fluctuation theories all support the existence of SRO, but there is no agreement
about the size of the SRO domain (see, e.g. [1]). The dynamic theories [8–10] are based on the local approximation and do
not allow to estimate the SRO quantitatively. The dynamic spin fluctuation theory (DSFT) [11–13] takes into account both
quantum nature and nonlocal character of the spin fluctuations. We use the DSFT to calculate the spin correlator and compare
the results with experiment [14–17].

15.1 Magnetic Neutron Scattering

In magnets with itinerant electrons, magnetic neutron scattering has been considered in less detail than in magnets with
localized spins.1 We begin by deriving the formula for the nonpolarized magnetic scattering cross-section in the itinerant
electron magnets following our papers [16, 19].

The scattering of polarized neutrons allows to separate the magnetic contribution from both instrumental background and
nuclear scattering contributions. The integral of the magnetic scattering contribution over energies is explicitly measured in
the experiment [20]. We derive the expression for the magnetic contribution to the neutron scattering cross-section following
[16, 21] and relate it to the squared effective moment (the Fourier-transform of the spin-density correlator).

15.1.1 Magnetic Interaction Potential

We are interested in the magnetic scattering arising from the interaction between the magnetic moment of a neutron
and magnetic moments of electrons in the crystal. In the ferromagnetic metals, the interaction between a neutron and
orbital current gives a small contribution to the scattering cross-section (see, e.g. [22]). The interaction potential between
an electron’s spin magnetic moment μi = −gμBsi at a point ri and neutron’s magnetic moment μ at a point r
is given by

Vi(xi ) = − eh̄

mec
si · ∇xi

× A(xi ). (15.1)

Here me and −e are the mass and charge of an electron, c is the velocity of light and A = μ×xi/|xi |3 is the vector potential,
where xi = ri − r.

1For a brief introduction to neutron scattering in itinerant electron magnets, see [18].
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We first calculate the Fourier transform of the potential Vi(xi ) by formula (14.8). The integration variable may be changed
from r to xi , because ri is constant. Taking (15.1) into account, we obtain

V i
κ = − eh̄

mec
e−iκri si ·

∫
∇xi

× A(xi ) eiκxi dxi .

The interaction potential V (x) is the sum of potentials (15.1) over all electrons in the crystal: V (x) =∑i Vi(xi ). Using the
relation (see, e.g. [23, Appendix B])

∫
∇x × A(x) eiκx dx = 4π

κ2 (κ × (μ × κ)) = 4π
(
μ − (κ̂ · μ) κ̂

)
,

where κ̂ = κ/κ is the unit vector, we have

Vκ =
∑

i

V i
κ = −4πeh̄

mec

∑

i

si · (μ − (κ̂ · μ) κ̂
)

e−iκri .

The multiplier
∑

i sie−iκri in the scalar product is equal to the Fourier transform sκ of the spin density s(r) =∑i siδ(r−ri ).
Therefore,

Vκ = −4πeh̄

mec
sκ · (μ − (κ̂ · μ) κ̂

)
.

Rearranging, we obtain

Vκ = −4πeh̄

mec
μ · s̃κ , (15.2)

where
s̃κ = sκ − (κ̂ · sκ )κ̂

is the component of the vector sκ perpendicular to the direction of κ . The neutron’s magnetic moment μ is related to its spin
S by the formula μ = −γ eh̄/(mc)S, where γ ≈ 1.913. Taking S = σ/2 into account, we have

V α
κ = 2πγ e2h̄2

mem c2 s̃α
κ . (15.3)

15.1.2 Nonpolarized Magnetic Scattering

To obtain the scattering cross-section, we substitute (15.3) in (14.25) and recall that the term with V 0
κ corresponds to the

nuclear interaction, which we do not consider here. Then

d2σ

dΩ ′dE′ =
(

γ e2

mec2

)2
k′

k

∑

α

1

2πh̄

∫
〈s̃α

κ (t)s̃α−κ 〉 eiωt dt,

where α = x, y, z. Passing from s̃κ to sκ by the formula

s̃κ · s̃−κ =
∑

αβ

(δαβ − κ̂ακ̂β)sα
κ s

β
−κ ,

we obtain
d2σ

dΩ ′dE′ =
(

γ e2

mec2

)2
k′

k

∑

αβ

(δαβ − κ̂ακ̂β)
1

2πh̄

∫
〈sα

κ (t)s
β
−κ 〉 eiωt dt. (15.4)
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Introducing the scattering function

Sαβ(κ, ω) = 1

2πh̄N

∫
〈sα

κ (t)s
β
−κ 〉 eiωt dt, (15.5)

we write formula (15.4) as
d2σ

dΩ ′dE′ = N

(
γ e2

mec2

)2
k′

k

∑

αβ

(δαβ − κ̂ακ̂β)Sαβ(κ, ω).

In the paramagnetic case, Sαβ(κ, ω) = Sz(κ, ω)δαβ , denoting S(κ, ω) = 3Sz(κ, ω) and taking N = V/ΩWS into account (V
denotes the volume of the crystal), we finally obtain

d2σ

dΩ ′dE′ = 2

(
γ e2

mec2

)2
1

3

V
ΩWS

k′

k
S(κ, ω). (15.6)

In the experiment, a direct application of formula (15.6) is difficult, because it is necessary to separate the magnetic scattering
from the nuclear scattering background.

15.1.3 Polarized Magnetic Scattering

In polarized neutron scattering, we consider the cross-section

d2σ

dΩ ′dEk′

∣∣∣∣
σ→σ ′

=
∑

λ

Pλ

∑

λ′

d2σ

dΩ ′dEk′

∣∣∣∣
σλ→σ ′λ′

,

where the state of the neutron beam changes from σ to σ ′. Taking (14.14) into account, we obtain

d2σ

dΩ ′dEk′

∣∣∣∣
σ→σ ′

= k′

k

(
m

2πh̄2

)2∑

λ

Pλ

∑

λ′
| 〈σ ′λ′| V−κ |σλ〉 |2δ(Eλ − Eλ′ + Ek − Ek′).

Substituting expression (15.2) for the magnetic scattering potential V−κ , we have

d2σ

dΩ ′dEk′

∣∣∣∣
σ→σ ′

= 4

(
γ e2

mec2

)2
k′

k

∑

λλ′
Pλ| 〈σ ′λ′| S · s̃−κ |σλ〉 |2δ(Eλ − Eλ′ + Ek − Ek′). (15.7)

We consider the uniaxial polarization analysis experiment, in which the spin of the incident neutron beam changes to the
opposite one in the scattering process (see, e.g. [24]). The polarized neutron scattering experiment allows to eliminate both
background and nuclear scattering contributions. To do this, one uses two polarization directions: along the scattering vector
κ and perpendicular to it.

We choose the coordinate system such that the x-axis is oriented along the scattering vector κ , i.e. κ̂ = κ/κ = (1, 0, 0).
First, we consider the beam that is polarized along the vector κ (P ‖ κ). Then all the incident neutrons are spin-up and
scattered neutrons are spin-down with respect to the x-axis. The corresponding spin states have the form (see, e.g. [25, 26])

|σ 〉 = |↑x〉 = 1√
2

(
1
1

)
, |σ ′〉 = |↓x〉 = 1√

2

(
1

−1

)
. (15.8)
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Making use of

S · s̃−κ = 1

2

∑

α

σαs̃α−κ ,

where σα is the Pauli matrix, we obtain

〈↓x | S · s̃−κ |↑x〉 = 1

2

∑

α

〈↓x | σα |↑x〉 s̃α−κ = 1

2

(
s̃z−κ − is̃y

−κ

)
.

Hence formula (15.7) becomes

(
d2σ↑↓

dΩ ′dEk′

)

‖

=
(

γ e2

mec2

)2
k′

k

∑

λλ′
Pλ 〈λ| s̃z

κ + is̃y
κ |λ′〉 〈λ′| s̃z−κ − is̃y

−κ |λ〉 δ(Eλ − Eλ′ + E − E′).

Calculating the average over λ and sum over λ′ as in Sect. 14.2, we have

(
d2σ↑↓

dΩ ′dEk′

)

‖
=
(

γ e2

mec2

)2
k′

k

1

2πh̄

∫ [〈s̃z
κ (t)s̃z−κ 〉 + 〈s̃y

κ (t)s̃
y
−κ 〉

−i(〈s̃z
κ (t)s̃

y
−κ 〉 − 〈s̃y

κ (t)s̃z−κ 〉)] eiωt dt. (15.9)

Now we consider the beam that is polarized along the z-axis, i.e. perpendicular to κ (P ⊥ κ). In this case the incident and
scattered spin states are

|σ 〉 = |↑z〉 =
(

1
0

)
, |σ ′〉 = |↓z〉 =

(
0
1

)
. (15.10)

Hence,

〈↓z| S · s̃−κ |↑z〉 = 1

2

∑

α

〈↓z| σα |↑z〉 s̃α−κ = 1

2
(s̃x−κ + is̃y

−κ ).

Calculating the average over λ and sum over λ′, we have

(
d2σ↑↓

dΩ ′dEk′

)

⊥
=
(

γ e2

mec2

)2
k′

k

1

2πh̄

∫ [〈s̃x
κ (t)s̃x−κ 〉 + 〈s̃y

κ (t)s̃
y
−κ 〉

+i(〈s̃x
κ (t)s̃

y
−κ 〉 − 〈s̃y

κ (t)s̃x−κ 〉)] eiωt dt. (15.11)

In the chosen coordinate system, where κ̂ = (1, 0, 0), we have s̃κ = (0, s
y
κ , sz

κ ). Then the cross-section (15.9) takes the
form

(
d2σ↑↓

dΩ ′dEk′

)

‖
=
(

γ e2

mec2

)2
k′

k

1

2πh̄

∫ [〈sz
κ (t)sz−κ 〉 + 〈sy

κ (t)s
y
−κ 〉

−i(〈sz
κ (t)s

y
−κ 〉 − 〈sy

κ (t)sz−κ 〉)] eiωt dt (15.12)

and the cross-section (15.11) takes the form

(
d2σ↑↓

dΩ ′dEk′

)

⊥
=
(

γ e2

mec2

)2
k′

k

1

2πh̄

∫
〈sy

κ (t)s
y
−κ 〉eiωt dt. (15.13)

In the paramagnetic region, for the isotropic crystal we have 〈sα
κ (t)s

β
−κ 〉 = 0, where α �= β (see Sect. 2.1.2). As a result, the

cross-section (15.12) is written as
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(
d2σ↑↓

dΩ ′dEk′

)

‖
=
(

γ e2

mec2

)2
k′

k

1

2πh̄

∫ [〈sy
κ (t)s

y
−κ 〉 + 〈sz

κ (t)sz−κ 〉] eiωt dt, (15.14)

in full accord with the fact that the third term in expression (15.12) is responsible for the chiral magnetic scattering (see, e.g.
[2]), which is absent in the isotropic crystal.

We now consider the difference between the scattering cross-sections P ‖ κ and P ⊥ κ . Since nuclear scattering does not
depend on polarization, we are left only with magnetic contributions (15.14) and (15.13):

(
d2σ↑↓

dΩ ′dEk′

)

‖
−
(

d2σ↑↓

dΩ ′dEk′

)

⊥
=
(

γ e2

mec2

)2
k′

k

1

2πh̄

∫
〈sz

κ (t)sz−κ 〉 eiωt dt.

Transforming to the scattering function (15.5), and taking S(κ, ω) = 3Sz(κ, ω) and N = V/ΩWS into account, we obtain

(
d2σ↑↓

dΩ ′dEk′

)

‖
−
(

d2σ↑↓

dΩ ′dEk′

)

⊥
=
(

γ e2

mec2

)2
1

3

V
ΩWS

k′

k
S(κ, ω). (15.15)

In the neutron scattering experiment [5,27–29] the measured quantity is the paramagnetic spin-flip scattering cross-section
integrated over energies. Integration of (15.15) over energies Ek′ = Ek − h̄ω gives

(
dσ↑↓

dΩ ′

)

‖
−
(

dσ↑↓

dΩ ′

)

⊥
=
(

γ e2

mec2

)2
h̄

3

V
ΩWS

k′

k

∫
S(κ, ω) dω. (15.16)

Inverting the Fourier transform (15.5), we have

1

h̄N
〈sα

κ (t)sα−κ 〉 =
∫

Sα(κ, ω) e−iωt dω.

Using this expression at t = 0 and taking the Debye-Waller factor into account, we write formula (15.16) as

(
dσ↑↓

dΩ ′

)

‖
−
(

dσ↑↓

dΩ ′

)

⊥
=
(

γ e2

mec2

)2
1

3g2μ2
B

V
ΩWS

k′

k
e−2W(κ) M2(κ), (15.17)

where

M2(κ) =
(

h̄

∫
S(κ, ω) dω

)
g2μ2

B = 1

N
〈sκs−κ 〉 g2μ2

B (15.18)

is the square of the effective moment.

15.2 Spin-Density Correlations

The magnetic neutron scattering experiments in ferromagnetic metals above the Curie temperature have been mainly
interpreted using the spin-wave theory [5,27–33]. Analysing the peak of the scattering function, the short-range order (SRO)
of about 15–20 Å was obtained. This interpretation was criticized, because the peak height and width are about equal [6, 7].

Spin fluctuation theories of metallic magnetism all support the existence of SRO above the Curie temperature in the
ferromagnetic metals but there is no agreement about the extent of the SRO (see, e.g. [1]). The fluctuating-local-band theory
[34–38] is based upon the existence of very strong SRO well above TC but it is unlikely to apply to any real material [39]. The
static spin fluctuation theories [40–45] describe the paramagnetic phase as having no appreciable SRO outside the critical
region. The situation is similar in the dynamic theories [8, 10, 46–48], all based on the local approximation.

In this section, we present theoretical results on the spin-density correlations in the DSFT and compare our calculations
with polarized neutron scattering experiments, which play a major role in testing the theory. Our theoretical results are
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demonstrated by the example of bcc Fe. We calculate the spin-density correlator as a function of distance and temperature
and calculate its Fourier transform (squared effective moment) as a function of wavevector and temperature in a systematic
way.2 A number of magnetic characteristics, such as effective moment and local moment, are compared with experiment
over a large temperature range (for details see, e.g. [14–16, 51]).

15.2.1 Spatial Spin Correlator

We begin with the spin-density correlator 〈s(r, t) s(r′, t ′)〉, where 〈. . . 〉 is the canonical average and time dependence means
the Heisenberg representation. For a system with a time-independent Hamiltonian, the spin correlator is a function of the
time difference t − t ′. If the system is translationally invariant, the spin correlator is a function of r − r′.

The equal-time correlation function or spatial spin correlator

〈s(r)s(0)〉 = 〈Δs(r)Δs(0)〉 + 〈s(r)〉〈s(0)〉

contains information about how much the spin densities at different positions are related (see, e.g. [52]). At small distances
spins have the strongest influence on each other. Therefore, the fluctuation term 〈Δs(r)Δs(0)〉 is the largest at r = 0 and
decays to zero as the distance increases to infinity. In the ferromagnetic metals, the decay with distance is usually monotone.
The second term 〈s(r)〉〈s(0)〉 is constant; it is equal to s̄ 2

z /Ω2
WS below TC state and zero above TC.

To analyse the short-range order it is convenient to define the normalized correlation function

C(r) = 〈s(r) s(0)〉
〈s(0) s(0)〉 , (15.19)

which varies between zero and unity.3 Figure 15.1 sketches C(r) as a function of distance r/a between the lattice sites (a
is the lattice constant). Most important are the values of C(r) at the nearest neighbours, next nearest neighbours, etc., of the
lattice site at the origin (see arrows in Fig. 15.1).

We first consider the spin correlator 〈sα(r)sα(0)〉, where α = x, y, z. The spatial Fourier transformation of the spin-
density operator (3.19) is defined by

sα
q =
∫

sα(r) e−iqr dr, sα(r) = 1

V
∑

q

sα
q eiqr,

where V = NΩWS is the volume of the crystal. Translational invariance of the system leads to

Fig. 15.1 Sketch of the
normalized correlation function
C(r), where thin horizontal line
shows the long-distance value of
C(r) below TC and arrows point
to the nearest neighbours, next
nearest neighbours, etc., for the
bcc lattice

0

1

0 1 2 3 4

C
(r

)

r / a

below TC

above TC

2For selected temperatures, calculations of the spin-density correlator and its Fourier transform in static and dynamic approximations of spin
fluctuation theory were carried out by Hasegawa [49] and Grebennikov [11, 50], respectively.
3In the Heisenberg model, this reduces to Cj = 〈Sj S0〉/〈S0S0〉, where the j th spin Sj is a vector of the modulus S0. Therefore, in the paramagnetic
region, Cj is the mean cosine of the angle between the spins.
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〈sα(r)sα(0)〉 = 1

V2

∑

q

〈sα
q sα−q〉 eiqr (15.20)

(for details, see Appendix C.4). Transforming the sum into an integral over the Brillouin zone and replacing the latter by the
equal-volume sphere with radius qB, we have

〈sα(r)sα(0)〉 = 1

2π2NΩWS

∫ qB

0
〈sα

q sα−q〉q sin(qr)

r
dq. (15.21)

The local spin sL is defined by the formula

s2
L =
∫∫

WS
〈s(r)s(r′)〉 dr dr′, (15.22)

where both integrals are taken over the same Wigner-Seitz cell. Replacing the integral by the value of the integrand at the
site multiplied by the cell volume, we write formula (15.22) as

s2
L = Ω2

WS〈s(Rj )s(Rj )〉 = Ω2
WS〈s(0)s(0)〉. (15.23)

Passing to the limit in (15.21) as r → 0 and using sin(rq) ≈ rq, we have

〈sα(0)sα(0)〉 = 1

2π2NΩWS

∫ qB

0
〈sα

q sα−q〉 q2 dq. (15.24)

Substituting the latter into formula for the local moment (15.23) and taking into account ΩWS = (2π)3/ΩBZ, we obtain

s2
L = 4π

NΩBZ

∫ qB

0
〈sqs−q〉 q2 dq. (15.25)

In order to calculate the spatial correlator (15.21) and local moment (15.25), it is necessary to find the spin-density
correlator in the momentum representation 〈sα

q sα−q〉. By the fluctuation-dissipation theorem (2.51), the spin correlator
〈Δsα

q Δsα−q〉 is related to the imaginary part of the susceptibility. In the paramagnetic state, we have

〈sα
q sα−q〉 = 1

2π

∫
B(ε) Imχα

q (ε) dε, (15.26)

where χα
q (ε) is the enhanced susceptibility in units of 1

2g2μ2
B and B(ε) is the Bose function.

15.2.2 Spin Correlator in the DSFT

In the DSFT, the enhanced susceptibility χα
q (ε) is expressed in terms of the unenhanced susceptibility χ0α

q (ε) using formula
(10.47):

χα
q (ε) = χ0α

q (ε)

1 − ũχ0α
q (ε)

, (15.27)

where ũ = u/N is the Fourier transform of the effective interaction constant u. Due to strong localization of the Bose
function at zero energy, we replace B(ε) and susceptibility χ0α

q (ε) by their Taylor series in ε (for details, see Sect. 10.2). As
a result, formula (15.26) becomes

〈sα
q sα−q〉 = T

2ũλα
q

2

π
arctan

ũϕα
q π2T

6λα
q

,

where λα
q = 1 − ũχ0α

q (0) and ϕα
q = dχ0α

q (0)/dε. The interaction of the modes is taken into account by interpolating the

static susceptibility χ0α
q between the uniform susceptibility χ0α

0 and local susceptibility (10.23). Thus, λα
q is calculated by
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formula (10.21). The function ϕα
q is replaced, for simplicity, by its mean value Nϕα

L, where ϕα
L = N−2∑

q ϕα
q (0). The final

expression for spin-density correlator (15.26) takes the form (for details, see [16])

〈sα
q sα−q〉 = NT

2uλα
L

1

a2
α + b2

α(q/qB)2

2

π
arctan

cα

a2
α + b2

α(q/qB)2 , (15.28)

where aα , bα and cα are given by (10.25).

15.2.3 High-Temperature Approximation

At T � TC, we can use the high-temperature version of the fluctuation-dissipation theorem (2.57):

〈sα
q sα−q〉 = T

2
χα

q (0), (15.29)

where χα
q is the enhanced susceptibility in units of 1

2g2μ2
B. Expressing the enhanced susceptibility in terms of the unenhanced

one according to (15.27), we have

〈sα
q sα−q〉 = T

2

χ0α
q (0)

1 − ũχ0α
q (0)

= T

2ũ

1

1 − ũχ0α
q (0)

− T

2ũ
.

Neglecting the second term, which is responsible for the intrinsic fluctuations of the field (for details, see [13]), and using
formula (10.21), we obtain the Lorentzian function

〈sα
q sα−q〉 = NT

2uλα
L

1

a2
α + b2

α(q/qB)2 . (15.30)

At distances r > π/qB, spatial correlator (15.21) is determined by small wavevectors q, thus the upper integration limit in
expression (15.21) can be extended to infinity [14]. Substituting (15.30) in (15.21) and integrating over positive q, we obtain
the Ornstein-Zernike correlator

〈sα(r)sα(0)〉 = Bα

qBr
e−r/rα

c , (15.31)

which appears in magnets with localized spins.4 Here Bα = 3πT/(4uΩ2
WSλα

Lb2
α) and

rα
c = |bα|/(|aα|qB) (15.32)

is the correlation radius. In the DSFT, we have shown that rc increases to infinity as T goes to TC and decreases as rc ∼ 1/T

at high temperatures T � TC [14].

15.3 Application to Iron

15.3.1 Comparison of DSFT and Experiment

We demonstrate our theoretical results by the example of bcc Fe following [15,21]. The initial data of the DSFT calculations
are the magnetic moment per atom m(0) = 2.217 μB [53] and the first-principles density of states at T = 0 K. Here we
use the DOS from Fig. 11.5. The number of d electrons per atom is equal to 7.43. The effective interaction constant u,
determined from the DSFT equations at T = 0, is equal to 1.06 eV. The Brillouin zone is approximated by an equal-volume

4For discussion of the Ornstein-Zernike correlator in the Ising model see, e.g. [18].
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Fig. 15.2 Square of the effective moment M2(q) for bcc Fe calculated in the GA with the use of (a) exact formula (15.28) and (b) approximate
high-temperature formula (15.30)

sphere of radius qB = (3ΩBZ/(4π))1/3 = 1.71 Å−1. All calculations are carried out in the Gaussian approximation (GA) of
the DSFT [13].5

Figure 15.2 shows the square of the effective moment (15.18). The temperature is given in units of the calculated Curie
temperature T cal

C = 1.65 T
exp

C . The experimental Curie temperature for Fe is T
exp
C = 1044 K [53]. As can be seen from

Fig. 15.2, 〈sα
q sα−q〉 calculated by approximate high-temperature formula (15.30) (Fig. 15.2b) is in good agreement with

〈sα
q sα−q〉 calculated by exact formula (15.28) (Fig. 15.2a) in a wide range of temperatures for all q from the Brillouin zone.
Comparing the effective moment M(q) calculated in the DSFT with the experiment [5,27–29], it is necessary to take into

account three circumstances. First, in the DSFT we consider the reduced spin density, which differs from the total one by the
magnetic form-factor F(q) (for details, see [16]). In papers [5, 27, 28] values of the total effective moment M2(q)|F(q)|2
are presented, where the value |F(q)|2 ≈ 0.81 is used for Fe (see [29]). The second circumstance is that taking into account
the atom vibrations we have the Debye-Waller factor e−2W in the formula for the magnetic scattering cross-section. But in
papers [5, 27–29], just as in the DSFT, the Debye-Waller factor is ignored, so we set it to unity.6 Third, in experiment the
transferred energy ε is finite and belongs to a certain interval [0, εmax]. Therefore, in formula (15.26) we should also restrict
the integration to the same energy interval. As a result, we obtain

〈sα
q sα−q〉 = 1

2π

∫ εmax

0
B(ε) Imχα

q (ε) dε (15.33)

= NT

2uλα
L

1

a2
α + b2

α(q/qB)2

2

π
arctan

εmaxc̃α

a2
α + b2

α(q/qB)2 ,

where c̃α = uϕα
L/λα

L.
In Fig. 15.3, we compare M2(q) calculated at T/T cal

C with experimental M2(q) [5, 27, 28] obtained at the same values
of T/T

exp
C .7 As can be seen from Fig. 15.3, the calculation of the effective moment with the use of formula (15.33) with

the energy cutoff εmax = 50 meV gives a good quantitative agreement with the experiment (for details, see [21]). The curve
M2(q) calculated with the use of exact formula (15.28) goes higher than the experimental values, because the energy interval

5Calculations in the renormalized Gaussian approximation with uniform fluctuations (RGA+UF) of the DSFT give close results [14, 16].
6We consider only the spin contribution from the electron subsystem. The magnetic force arising from the orbital motion of electrons gives only a
small cross-section for the neutron scattering and may be ignored [22]. As for the phonon contribution, it is not the main one in the ferromagnetic
metals (see, e.g. [16, 19]). In detail the phonon mechanism is discussed in [54].
7Experimental measurements up to the Brillouin zone boundary [29] confirm the results of [5, 27, 28].
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Fig. 15.3 Square of the effective moment M2(q) for bcc Fe calculated in the GA with the use of exact formula (15.28), approximate high-
temperature formula (15.30) and formula (15.33) with the energy cutoff εmax = 50 meV compared with the experimental values [5, 27, 28] at
different temperatures. The insets show regions with the experimental points at a larger scale



15.3 Application to Iron 191

Table 15.1 Local magnetic moment mL for bcc Fe calculated
in the GA with the use of exact formula (15.28), approximate
high-temperature formula (15.30) and formula (15.33) with the
energy cutoff εmax = 50 meV

T/T cal
C Dynamic, μB High-temp., μB 50 meV, μB

1.226 2.214 3.060 1.120

1.322 2.218 3.080 1.116

1.418 2.222 3.097 1.047

1.514 2.228 3.114 0.993

is wider than in the experiment. The approximate high-temperature formula gives good agreement with the exact formula
uniformly at all temperatures in the paramagnetic state. From Fig. 15.3 we see that the value of M(0) calculated with the use
of exact formula (15.28) decreases and tends to the value of the effective moment in the Curie-Weiss law m

exp
eff = 3.13 μB [55]

as temperature increases, in agreement with the theoretical result (2.62). Indeed, we have M(0) = 5.7 μB at T = 1.51 T cal
C

and M(0) = 4.0 μB at T = 1.92 T cal
C . But the convergence is fairly slow, so one should be careful using m

exp
eff instead of

M(0).
Table 15.1 shows the local magnetic moment mL = gμBsL at the same temperatures as in [5, 27, 28]. Calculated values

with the use of the exact formula are approximately equal to the experimental value of the magnetic moment m0 = 2.217 μB

at T = 0 [53] and do not change much with temperature (second column). Calculations with classical Hamiltonians [56,57]
give comparable results. In [56] mL decreases from 1.95 to 1.85 μB over the interval 1.1–1.5T

exp
C and in [57] mL is about

2.2 μB and is almost constant over the same temperature interval. Approximate high-temperature formula (15.30) gives
somewhat higher values of mL (third column).

In order to compare the calculated local moment with the experimental one, we note that mL is proportional to the area
under the curve q2M2(q). Indeed, substituting (15.18) in (15.25), we obtain

m2
L = 4π

ΩBZ

∫ qB

0
q2M2(q) dq. (15.34)

50 meV is in good agreement with the experimental points. Therefore, the numerical values of mL, presented in the fourth
column of Table 15.1, should also give a good approximation to the experimental ones.8 Comparing the second and third
columns in Table 15.1, we see that, despite qualitative similarities, the exact and high-temperature formulae give different
quantitative results.

15.3.2 Short-Range Order Analysis

Next we calculate the correlation function (15.19). From formulae (15.20) and (15.18) we see that 〈s(r) s(0)〉 is obtained by
the inverse Fourier transform of M2(κ). Taking (15.21), (15.24) and (15.18) into account, we write the normalized correlation
function as

C(r, T ) =
(∫ qB

0
q2M2(q) dq

)−1 ∫ qB

0
q2M2(q)

sin(qr)

qr
dq. (15.35)

Note that the reconstruction of the spin correlator based on the experimental data alone can lead to ambiguous results
(see, e.g. [58]). Indeed, M2(κ) cannot be measured at small κ (see, e.g. [5]), where it has a strong peak. The inverse Fourier
transform of M2(κ), i.e. the spin correlator 〈s(r) s(0)〉, is unstable with respect to extrapolation of M2(κ) at small κ .9 One
way to overcome this difficulty is to obtain M2(0) from the static susceptibility by formula (15.29) and fit the experimental
data using the Lorentzian function (see, e.g. [29]). But, as we showed, the result of the high-temperature approximation
(15.29) for M2(0) can differ substantially from the experimental one because of the energy window used in the experiment.

8A slightly larger experimental value of mL = 1.3 μB is obtained in [5, 27, 28] with the use of another measurement, and the value mL = 1.55 μB
presented in [1] corresponds to the energy cutoff 200 meV.
9Roughly speaking, the higher the peak of M2(κ), the wider the correlator, and hence the larger is the SRO domain (for details, see [21]).

As can be seen from Fig. 15.4, the calculated curve q2M2(q) with the use of formula (15.33) with the energy cutoff εmax =



192 15 Short-Range Order Above TC

 0

 4

 8

 12

 16

0 0.4 0.8 1.2 1.6

q2
M

2 (q
) [

Å
−

2
μ B2

]

q2
M

2 (q
) [

Å
−

2
μ B2

]

q [Å−1]

T / TC = 1.21

dynamic
high−temp.
50 meV
experiment

 0

 4

 8

 12

 16

 0  0.4  0.8  1.2  1.6

q [Å−1]

T / TC = 1.41

dynamic
high−temp.
50 meV
experiment

Fig. 15.4 Values of q2M2(q) for bcc Fe calculated in the GA with the use of exact formula (15.28), approximate high-temperature formula
(15.30) and formula (15.33) with the energy cutoff εmax = 50 meV compared with the experimental values [5, 27, 28] at different temperatures

The spin-wave interpretation of the experimental results can be explained as follows. Assuming that q2M2(q) ∝ δ(q−q0)

in formula (15.35), we obtain

C(r, T ) =
∫ qB

0
δ(q − q0)

sin(qr)

qr
dq = sin(q0r)

q0r
.

This expression is associated with a (damped) spin wave of the wavelength λ0 = 2π/q0. From Fig. 15.4, at T = 1.21T
exp

C
we have λ0 ≈ 18 Å. Arguments of this kind were used in [5, 27, 28] and other experimental papers to obtain an estimate for
the SRO domain of about 15–20 Å. But the hypothesis that the spin waves persist above TC is controversial. Indeed, as one
can see from Fig. 15.4, the peak of the function q2M2(q) is strongly spread out, its height and width being about equal at
T = 1.21T

exp
C , and the width being larger than the height at T = 1.41T

exp
C .

In the DSFT we are able to calculate the correlation function explicitly in a wide range of temperatures above TC.
Good agreement of the DSFT calculation results for the effective moment with the experiment validates our results for
the correlation function.

Figure 15.5 shows correlator (15.35) as a function of distance r and temperature T . As we see from Fig. 15.5, the
approximate high-temperature formula gives good agreement with the exact one at temperatures T/T cal

C = 1.5 and above.
The calculation results with the use of Ornstein-Zernike formula (15.31) do not differ much from the results with the use
of high-temperature formula (15.30) starting already from distances of 1–2 Å, and are not presented here. Moreover, the
correlation radius in the Ornstein-Zernike formula (15.31) describes only the correlations at large distances. To describe the
SRO of a specific metal it is necessary to use other characteristics. In the paper [14], we introduced the halfwidth at half
maximum (HWHM) of the normalized spatial correlator C(r, T ), correlation halfwidth for short, as a measure of the SRO.

Figure 15.6 shows the halfwidth r1/2(T ) of the correlation function (15.35) calculated in different approximations. As
can be seen from Fig. 15.6, the SRO domain is small, even if we take into account only energies up to εmax = 50 meV. The
halfwidth of the correlation function is 2.0–3.5 Å at T/T cal

C = 1.05 and about 1.8–2.0 Å at T/T cal
C = 1.6. As we showed

in paper [14], inverse correlation radius (15.32) varies linearly with temperature. From the inset in Fig. 15.6 we see that the
temperature dependence of the inverse halfwidth is also close to linear.

At temperatures 1.1T cal
C –1.2T cal

C , the correlation radius rc is substantially larger than the halfwidth r1/2 and cannot be
used as a measure of the SRO [14]. For instance, at T = 1.1T cal

C we have rc ≈ 8 Å . But as T increases the values of the
correlation radius and halfwidth approach each other, and starting from 1.6T cal

C they are almost equal.
Thus, the calculated correlation halfwidth in bcc Fe is within 5 Å.10 The results suggest that the SRO in the ferromagnetic

metals above the Curie temperature is small and slowly decreases with temperature.

10Correlation length of approximately 2a (a is the lattice constant) was reported by Tao et al. [59].
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Fig. 15.5 Spatial correlation
function C(r, T ) for bcc Fe
calculated in the GA with the use
of exact formula (15.28),
approximate high-temperature
formula (15.30) and formula
(15.33) with the energy cutoff
εmax = 50 meV
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16Conclusion

We have given a detailed introduction to the quantum theory of metallic magnetism. Magnetism is a cooperative phenomenon,
and its study requires various many-body techniques such as linear response theory, fluctuation-dissipation theorem and
Green functions. Application of these techniques to magnetic susceptibility is given in the introductory chapters and
appendices. As a reference point, we presented two important early models: the Stoner mean-field theory and RPA. The
rest of the book is devoted to the dynamic spin fluctuation theory (DSFT).

The DSFT describes thermal spin fluctuations taking their quantum nature and nonlocal character into account. The spin
fluctuations are treated microscopically using the functional integral method. The essence of the method is to replace the
electron–electron interaction by the interaction with a fluctuating exchange field. Magnetic characteristics in the functional
integral method are obtained as averages over the fluctuating field configurations. Since the exchange interaction has a
purely quantum character, the fluctuating field is both space- and “time”-dependent. When the fluctuations are not too
large, calculation of the functional integral can be carried out using the Gaussian approximation. The simplest Gaussian
approximation is obtained by the saddle-point method and leads to the RPA magnetic susceptibility. But the RPA gives
reasonable results only at low temperatures, because it neglects the feedback of the spin fluctuations on the mean field.

The basis of the DSFT is the optimal Gaussian approximation of the fluctuating field. We have derived the formulae of
the optimal Gaussian approximation for any magnetic ground state. In ferromagnets we use these formulae to calculate the
mean field and mean-square fluctuations self-consistently. Application of the optimal Gaussian approximation to real metals
requires further approximations. The DSFT employs a single-site Gaussian fluctuating field, which is completely described
by the chemical potential, mean field and two fluctuations: longitudinal and transverse. Each fluctuation is a sum over the
wavevectors and “frequencies”.

For spin fluctuations with large amplitudes, the Gaussian approximation can be insufficient. The DSFT can lead to a first-
order phase transition to the paramagnetic state, contrary to experiment in metals. To obtain a proper second-order phase
transition in this case, we take into account higher-order terms of the free energy of electrons in the fluctuating exchange
field. In the computational formulae of the extended DSFT, the third-order term renormalizes the mean field, and fourth-order
term renormalizes the susceptibility.

In its final form the DSFT is not much more complicated than the Stoner mean-field theory. In the Stoner theory one has
to solve two equations with two unknowns—the mean field and chemical potential—for each temperature. In the DSFT we
have two extra equations and two extra variables: longitudinal and transverse fluctuations. In particular temperature regions,
we can predict which of the two fluctuations dominate. Based on these predictions one can further simplify the theory.

Results of the DSFT for metals are a clear improvement of the ones of the Stoner model and static single-site SFT. The
DSFT calculations are in good agreement with the neutron scattering, nuclear magnetic resonance and magneto-volume
experiments. The main conclusion that can be drawn from our numerical calculations is as follows. In ferromagnetic metals
the temperature behaviour of major magnetic characteristics, such as magnetization, local and effective magnetic moments
and nuclear spin-relaxation rates, is determined mainly by the electron–electron correlations. These correlations can be
adequately described within the DSFT over a wide temperature range including the intermediate temperature range. By
estimating the Debye-Waller factor within the Brillouin zone as a function of temperature, we show that the effect of phonons
on local magnetic characteristics is small.
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Clearly the DSFT has its limitations. The most important one, in our opinion, is the use of the Hubbard-type Hamiltonian,
which takes into account only local interaction of d electrons. Another serious simplification is the use of the nonpolarized
DOS of d electrons and interaction constant as the input data. These and other approximations seem to be justified when we
study local characteristics such as magnetization and local moment, but could become critical if we consider fine effects of
electronic structure on magnetic properties. In our defence we can say that all modern theories that try to describe metallic
magnetism based on detailed electronic structure have a largely simplified treatment of thermal spin fluctuations. A lot should
be done to reconcile the two approaches.

There is a long-lasting controversy about whether the localized or itinerant models should be used to describe magnetism
of metals. In this discussion the Heisenberg and Hubbard models are often contrasted to each other. The most important
advantage of the Hubbard Hamiltonian and its generalizations is that they allow to explain noninteger single-site spin in
metals. However, our results show that the assumption about the single-site interaction makes the results of the Hubbard
model in many respects similar to the ones of the Heisenberg model. Indeed, in the DSFT we obtain the low-temperature
T 3/2 law, Ornstein-Zernike form for the spin correlator at high temperatures and Curie-Weiss law for the paramagnetic
susceptibility using the multiband Hubbard Hamiltonian.

The choice of the Hubbard-type Hamiltonian is decisive in SFT, e.g. it leads to small SRO and weak change of the local
moment with temperature. Various approximations in SFT have a secondary effect on the results. Therefore, it seems that
the progress in metallic magnetism requires two things. The first is reconciling the input data based on band calculations
of the ground state with the model Hamiltonian. Indeed, the DFT already takes into account some of the electron–electron
correlations which then appear in the interaction part of the Hamiltonian (the infamous “double counting” problem). The
second, and most important, is improving the approximation of the electron–electron Hamiltonian beyond the localized
interaction (such as the Hubbard or Heisenberg Hamiltonians) in a microscopic model.

One last remark. After carefully reading the text, we saw that some parts of the book could have been written more
concisely and clearly. But the timeline is strict, and one can only exclaim as Cinderella:

Goodness me, the clock has struck—
Alackday, and fuck my luck.

(Kurt Vonnegut, Slaughterhouse-Five, 1969)
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ABasic Mathematical Results

A mathematician proves, and a physicist convinces. (Author unknown)

A.1 Linear Operators and Matrices

Most of the texts on quantum mechanics, such as [1, 2], limit themselves to the basics of the operator theory (eigenvalues
and eigenvectors, Hermitian and unitary operators, etc.), leaving aside important topics like functions of an operator and
operator power series, which are necessary in quantum statistical physics. In this section, we collect some results about
linear operators that are used in the main text. For a more systematic overview of matrix analysis, we refer to [3–5].

A.1.1 Inverse Operator

The operator A−1 is called the inverse of an operator A if

AA−1 = A−1A = 1,

where 1 is the unity operator. The inverse of the product of operators A and B satisfies the equality

(AB)−1 = B−1A−1. (A.1)

For an operator A we have a series expansion analogous to the geometric series1:

(1 − A)−1 = 1 + A + A2 + · · · (A.2)

This can be verified as follows. Multiplying
S ≡ 1 + A + A2 + · · ·

on the left by A, we obtain
AS = A + A2 + A3 + · · · = S − 1.

Hence
(1 − A)S = 1.

This proves formula (A.2). An immediate corollary is

A(1 − BA)−1 = (1 − AB)−1A (A.3)

= A + ABA + ABABA + · · ·

1Here and hereafter, we consciously adhere to the physical level of rigour. In particular, we consider formal series and do not discuss their
convergence, as is typical of quantum mechanics.
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In particular,

A−1(1 − BA−1)−1 = (1 − A−1B)−1A−1

= A−1 + A−1BA−1 + A−1BA−1BA−1 + · · ·

As an example, we consider the zeroth Green function

G0(z) = (z + μ − H0)
−1

and the Green function in the presence of a static field V :

G(z) = (z + μ − H0 − V )−1.

Then clearly

G = [(z + μ − H0)(1 − (z + μ − H0)
−1V )]−1

= (1 − (z + μ − H0)
−1V )−1(z + μ − H0)

−1

= (1 − G0V )−1G0. (A.4)

Using formula (A.3), we obtain
G = G0 + G0V G0 + G0V G0V G0 + · · ·

From this we come to the Dyson equation

G = G0(1 + V G) or G = (1 + GV )G0.

A.1.2 Functions of an Operator

Note that the operator expansion (A.2) can be obtained by substituting the operator A to the Taylor series 1/(1 − x) =
1 + x + x2 + · · · . Similarly, we can define f (A) for any function f (x) represented by its Taylor series

f (x) = f (x̃) + df (x̃) + 1

2!d2f (x̃) + · · · + 1

n!dnf (x̃) + · · · (A.5)

Here dnf (x̃) = f (n)(x̃)(dx)n is the nth differential at the point x̃ = x + Δx, where dx is just Δx = x − x̃. We need an
analogue of the nth differential dnf (x̃) for an operator.

The (first) differential df (A) is the linear part of f (A + ΔA) − f (A) with respect to ΔA. For example, the differential
of the inverse operator is the linear part of (A + ΔA)−1 − A−1. The latter can be written as

(A + ΔA)−1 − A−1 = A−1(A(A + ΔA)−1 − 1).

Using property (A.1), we have
(A + ΔA)−1 − A−1 = A−1((1 + ΔAA−1)−1 − 1).

Expanding (1 + ΔAA−1)−1 into the power series by formula (A.2) and leaving only the first-order term in ΔA, we obtain

(A + ΔA)−1 − A−1 = A−1ΔAA−1 + · · · .

Thus,
d(A−1) = −A−1ΔAA−1. (A.6)
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The nth differential dnf (A) is the nth-order term of f (A + ΔA) − f (A) with respect to ΔA. Analogously to the
Taylor series for ordinary functions (A.5), for the function of an operator f (A) we can write the Taylor series expansion
around Ã as

f (A) = f (Ã) + df (Ã) + 1

2!d2f (Ã) + · · · + 1

n!dnf (Ã) + · · · ,

where A = Ã + dA and dA = ΔA.
As an application of the above formulae, let us calculate the expansion of the logarithm the Green function G = G(V ) in

the field V . By formula (A.4) the Green function is given by

G(V ) = (1 − G0V )−1G0. (A.7)

Then the differential is
dG(V ) = d((1 − G0V )−1)G0. (A.8)

Using formula (A.6), we obtain

d((1 − G0V )−1) = −(1 − G0V )−1(−G0dV )(1 − G0V )−1

= (1 − G0V )−1G0dV (1 − G0V )−1.

Substituting this result in (A.8) and taking (A.7) into account, we have

dG(V ) = G(V )dV G(V ). (A.9)

Similar to the well-known formula from calculus:

d

dx
ln f (x) = 1

f (x)

d

dx
f (x),

we write the differential of the operator ln G(V ) as

d ln G(V ) = G−1(V )dG(V ).

Taking (A.9) into account, we obtain
d ln G(V ) = dV G(V ). (A.10)

Next, we calculate the second differential

d2 ln G(V ) = d(d ln G(V )) = d(dV G(V )). (A.11)

The differential of the product of operators A and B is calculated as

d(AB) = (dA)B + AdB.

Applying this formula to (A.11) and taking d2V = 0 into account, we have

d2 ln G(V ) = dV dG(V ).

Using (A.9) again, we obtain
d2 ln G(V ) = dV G(V )dV G(V ) = (dV G(V ))2. (A.12)

Repeating this procedure, for the higher-order differential we have

dn ln G(V ) = (n − 1)!(dV G(V ))n. (A.13)
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The expansion of the operator ln G(V ) is written as

ln G(V ) = ln G(Ṽ ) + d ln G(Ṽ ) + 1

2!d2 ln G(Ṽ ) + · · · + 1

n!dn ln G(Ṽ ) + · · ·

Using formula (A.13), we obtain

ln G(V ) = ln G(Ṽ ) + dV G(Ṽ ) + 1

2

(
dV G(Ṽ )

)2 + · · · + 1

n

(
dV G(Ṽ )

)n + · · · ,

Now we recall that for the independent variable dV is equal to ΔV = V − Ṽ . Therefore, the expansion is finally written as

ln G(V ) = ln G(Ṽ ) + ΔV G(Ṽ ) + 1

2

(
ΔV G(Ṽ )

)2 + · · ·

+1

n

(
ΔV G(Ṽ )

)n + · · · (A.14)

In statistical physics the increment ΔA of an operator A is often taken with respect to its mean value 〈A〉:
ΔA = A − 〈A〉. (A.15)

In this case the mean of the commutator [A,B] = AB − BA satisfies the relation

〈[ΔA,ΔB]〉 = 〈[A,B]〉. (A.16)

Indeed, using (A.15), we write the left-hand side of (A.16) as

〈[A − 〈A〉, B − 〈B〉]〉 = 〈[A,B]〉 + 〈[〈A〉, 〈B〉]〉 − 〈[A, 〈B〉]〉 − 〈[〈A〉, B]〉.

The second term is equal to zero, because 〈A〉 and 〈B〉 are just numbers multiplied by the unity operator. Calculating the
third terms, we obtain

〈[A, 〈B〉]〉 = 〈A〈B〉 − 〈B〉A〉 = 〈A〉〈B〉 − 〈B〉〈A〉 = 0.

Similarly, the fourth term is also zero. Thus, we have proved (A.16).

A.1.3 Trace of an Operator

The trace of an operator A is defined as

trA =
∑

i

Aii , Aii = (ψi, Aψi),

and does not depend on the basis ψi . The trace satisfies the following properties:

tr(αA) = αtrA, tr(A + B) = trA + trB, tr(BA) = tr(AB).

The latter immediately follows if we write the trace of the product:

tr(AB) =
∑

ik

AikBki =
∑

ik

BkiAik = tr(BA).

As a corollary, we obtain the cyclic property of trace

tr(ABC...DF) = tr(BC...DFA)

(one needs to swap A with the rest of the product and use the previous formula).
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For a Hermitian matrix A the trace of f (A) is calculated by the formula

trf (A) =
∑

i

f (λi), (A.17)

where λi are the eigenvalues of A. Indeed, for a Hermitian matrix A we have

A = UDU†,

where D is diagonal and U is a unitary transformation: UU† = 1. Then by the cyclic property of trace we obtain

trA = tr(UDU†) = trD.

Since
Am = UDU†UDU† . . .︸ ︷︷ ︸

m

= UDmU†,

we have
trAm = tr(UDmU†) = trDm.

For any analytic function

f (x) =
∞∑

n=0

anx
n,

we obtain

f (A) =
∞∑

n=0

anA
n =

∞∑

n=0

anUDnU† = Uf (D)U†,

and hence
trf (A) = tr(Uf (D)U†) = trf (D).

The latter gives us formula (A.17). For example, if f (x) = ln x, we come to

tr ln A =
∑

i

ln λi = ln
(∏

i

λi

)
= ln det A. (A.18)

For noncommuting operators A and B, we have

eAeB �= eA+B. (A.19)

This can be seen directly (see [6]). Using the expansion of ex , we have

eAeB =
(

1 + A + 1

2!A
2 + · · ·

)(
1 + B + 1

2!B
2 + · · ·

)

= 1 + (A + B) + 1

2! (A
2 + 2AB + B2) + · · ·

On the other hand,

eA+B = 1 + (A + B) + 1

2! (A + B)2 + · · ·

= 1 + (A + B) + 1

2! (A
2 + AB + BA + B2) + · · · .
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The operators eAeB and eA+B are different, because AB �= BA. A more specific result is as follows. If the commutator is
proportional to the unity matrix: [A,B] = c (here c is a number), then

eAeB = eA+Be
1
2 [A,B]

(for a proof, see, e.g. [7, Appendix I]).
Analogously to relation (A.19), for noncommuting operators A and B, we have ln(AB) �= ln A+ ln B. However, for trace

of the logarithm of Hermitian operators we obtain

tr ln(AB) = tr ln A + tr ln B. (A.20)

Indeed, equality (A.18) leads to

tr ln(AB) = ln det(AB) = ln(det A · det B)

= ln det A + ln det B = tr ln A + tr ln B.

A.1.4 Pauli Spin Matrices

The Pauli spin matrices are given by

σx =
(

0 1
1 0

)
, σ y =

(
0 −i
i 0

)
, σ z =

(
1 0
0 −1

)
. (A.21)

Explicit calculation shows that

tr(σ iσ k) = 2δik,

tr(σ iσ kσ l) = i2εikl, (A.22)

tr(σ iσ kσ lσ j ) = 2(δikδlj − δilδkj + δij δkl).

Here i, k, l, j = x, y, z and
εikl = [ei × ek]el

is the Levi-Civita symbol, where ex, ey, ez are the orthonormal basis vectors in the three-dimensional Euclidean space and
times stands for the vector product (see, e.g. [4, 8]).

Any Hermitian 2 × 2 matrix

A =
(

A11 A12

A21 A22

)

can be represented as a linear combination of the 2 × 2 unity matrix σ 0 and Pauli matrices:

A =
∑

μ

Aμσμ, μ = 0, x, y, z. (A.23)

Using the explicit form of the Pauli matrices (A.21), this can be written as

A =
(

A0 + Az Ax − iAy

Ax + iAy A0 − Az

)
. (A.24)

The scalar coefficients Aμ are obtained as follows. Multiplying (A.23) on the right by σμ′
and taking the trace, we come to

tr(Aσμ′
) = tr

(
∑

μ

Aμσμσμ′
)

=
∑

μ

Aμtr(σμσμ′
).
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Calculating the trace by formula (A.22), we have

tr(Aσμ′
) =
∑

μ

Aμ2δμμ′ = 2Aμ′
.

Hence, dropping the prime, we finally write

Aμ = 1

2
tr(Aσμ). (A.25)

A.1.5 Operator Tensor Product

The tensor product A ⊗ B of a m × n-matrix A ≡ [aik] and m′ × n′-matrix B ≡ [bi′k′ ] is the mm′ × nn′-matrix

A ⊗ B ≡ [cjh] (cjh = aikbi′k′), (A.26)

where the index j denotes the running number of the pair (i, i′) in the sequence (1, 1), (1, 2), . . . , (1,m′), (2, 1), (2, 2), . . . ,

(2,m′), . . ., (m,m′), and the index h is the running number of the pair (k, k′) in the analogous sequence (see, e.g. [4]). Note
that

(A ⊗ B)(C ⊗ D) = AC ⊗ BD, (A.27)

tr(A ⊗ B) = tr(A)tr(B). (A.28)

In (A.27) it is assumed that the number of rows in the matrix C is equal to the number of columns of A and number of row
in the matrix D is equal to the number of columns of B; and in (A.28) it is assumed that A and B are square matrices.

One-electron operators, such as the exchange field V , can be expressed as

V = W ⊗ U, (A.29)

where W is an operator acting on the space states (the Bloch functions ψνk(r) or Wannier functions wνj (r)) and U is an
operator acting on the spin states χσ . Using the expression for the Hermitian 2 × 2 matrix (A.23):

U =
∑

μ

Uμσμ, Uμ = 1

2
tr(Uσμ), μ = 0, x, y, z,

we write (A.29) as
V =
∑

μ

V μ ⊗ σμ, (A.30)

where V μ = UμW is an operator acting on the space states. Similarly, the Green function is written as

G =
∑

μ

Gμ ⊗ σμ, (A.31)

where Gμ is an operator acting on the space states. Then, using formula (A.27), we can write

tr(V G) =
∑

μμ′
tr
(
(V μ ⊗ σμ)(Gμ′ ⊗ σμ′

)
) =
∑

μμ′
tr
(
(V μGμ′

) ⊗ (σμσμ′
)
)

and using formula (A.28) we come to
tr(V G) =

∑

μμ′
tr(V μGμ′

)tr(σμσμ′
).
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Finally, calculating the trace of the product of the Pauli matrices by formula (A.22), we have

tr(V G) = 2
∑

μ

tr(V μGμ). (A.32)

For brevity, we omit the tensor multiplication sign ⊗ throughout the book as is typical of the solid-state literature.

A.2 Functions of Real and Complex Variable

In this section, we collect some formulae from calculus and complex analysis that are used in the main text (for a more
systematic overview, see, e.g. [4, 7, 9]).

A.2.1 Dirac Delta Function

The function δ(x) can be thought of as the density function of the probability distribution localized at the origin (for details
on random variables, see Appendix A.3). That means the average of a function of the random variable f (x) is equal to its
value at x = 0: ∫ ∞

−∞
f (x)δ(x) dx = f (0), (A.33)

and, in particular, ∫ ∞

−∞
δ(x) dx = 1. (A.34)

These relations imply that

δ(x) =
{

0, x �= 0,

∞, x = 0,
(A.35)

so that δ(x) cannot be a proper function. Nevertheless, the δ-function is a useful instrument when one deals with integrals.
From formula (A.33), we obtain the δ-function properties

∫ ∞

−∞
f (x)δ(x − x0) dx = f (x0), (A.36)

and

δ(ax) = 1

|a|δ(x), a �= 0. (A.37)

In particular, from (A.37) it follows that δ(x) is an even function: δ(−x) = δ(x). From (A.36) it is easy to see that

f (x)δ(x − x0) = f (x0)δ(x − x0).

Another way of representing the δ-function is the following. If θ(x) is the step function, which is equal to zero for x < 0
and unity for x > 0, then

δ(x) = d

dx
θ(x). (A.38)

Indeed, if we substitute the latter in the integral on the left-hand side of (A.33), then, integrating by parts and assuming that
f (x) vanishes at infinity, we obtain f (0).

The δ-function can be obtained as a limit of the proper functions. This can be done in different ways. Let us consider
several examples. First, we consider the Gaussian distribution with the probability density function

ρG(x) = 1√
2π σ

exp

(
− x2

2σ 2

)
. (A.39)
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Fig. A.1 Sketch of the
Lorenzian function ρL(x) of the
halfwidth 2γ

−γ 0 γ x

ρL(x)

1/(πγ)

1/(2πγ)

The width of the peak at x = 0 is characterized by the root-mean-square deviation σ . As σ → 0, we have

∫ ∞

−∞
f (x)ρG(x − x0) dx → f (x0).

Our second example is the density function of the Cauchy-Lorentz distribution (see, e.g. [10]), often called the Lorentzian
function:

ρL(x) = 1

πγ

1

1 + (x/γ )2
= 1

π

γ

x2 + γ 2
. (A.40)

Here the value γ is the halfwidth at half maximum (HWHM). Indeed, the maximum of the Lorentzian function is attained at
x = 0 and is equal to 1/(πγ ). The value 1/(2πγ ) is taken by the Lorentzian function at x = ±γ (Fig. A.1). If γ tends to
zero, then ∫ ∞

−∞
f (x)ρL(x − x0) dx → f (x0).

Yet another example of a delta sequence is given by the integral (see also Appendix F.1)

1

2π

∫ k0

−k0

eikx dk = 1

πx

eik0x − e−ik0x

2i
= 1

πx
sin(k0x).

At large k0 the right-hand side sharply peaks around x = 0, but the integral over x is equal to unity for all k0. Therefore, in
the limit k0 → ∞, we come to the well-known integral representation:

δ(x) = 1

2π

∫ ∞

−∞
eikx dk, (A.41)

which means that unity is the Fourier transform of the δ-function.
In the three-dimensional Euclidean space, we define the δ-function as

δ(r) = δ(x)δ(y)δ(z),

so that (A.33) and (A.34) become ∫
f (r)δ(r) dr = f (0)

and ∫
δ(r) dr = 1,

where dr = dx dy dz is the volume element and the integration is carried out over the whole three-dimensional space. The
inverse Fourier transform of the three-dimensional δ-function is given by

δ(r) = 1

(2π)3

∫
eikr dk. (A.42)
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A.2.2 Sokhotsky Integral Formula

It is often necessary, particularly dealing with the Green functions, to calculate an expression of the form

lim
η→0+

∫ ∞

−∞
f (x)

x ± iη
dx ≡
∫ ∞

−∞
f (x)

x ± i0+ dx .

For a well-behaved function f (x) (in particular, continuous at x = 0) the Sokhotsky formula holds:

lim
η→0+

∫ ∞

−∞
f (x)

x ± iη
dx = P

∫ ∞

−∞
f (x)

x
dx ∓ iπf (0), (A.43)

where P denotes the principal value of the integral (for proof see, e.g. [11, Appendix III]). Clearly, for any fixed x0, we have

lim
η→0+

∫ ∞

−∞
f (x)

x − x0 ± iη
dx = P

∫ ∞

−∞
f (x)

x − x0
dx ∓ iπf (x0). (A.44)

The latter is often expressed in the compact form

1

x − x0 ± i0+ = P 1

x − x0
∓ iπδ(x − x0).

A.2.3 Smoothing by Convolution

Consider the convolution of the functions f (x) and g(x) (see, e.g. [4]):

h(y) =
∫ ∞

−∞
f (x)g(y − x) dx.

If g(x) is a smooth function, then so is h(y), even if f (x) is not. Indeed,

h(n)(y) =
∫ ∞

−∞
f (x)g(n)(y − x) dx.

We take a smooth function ρ(x) that approximates the δ-function such as the Gaussian density function (A.39) with a
small σ or Lorentzian function (A.40) with a small γ . Then the convolution of a function f (x) with the function ρ(x) is a
smooth function. Moreover, if ρ(x) is even, then, recalling formula (A.36), we have

∫ ∞

−∞
f (x)ρ(y − x) dx ≈ f (y).

That means the convolution with the function ρ(x) close to the δ-function gives a smooth approximation of the original
function f (x).

Let us consider the following example. Nonphysical sharp peaks of the electrons density of states (DOS) ν(ε), which
appear in energy-band calculations (see Sect. 10.5), can be smoothed by the formula [12]

νs(ε) = 1

π
Im
∫

ν(ε′)
ε − ε′ − iΓ

dε′. (A.45)
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Indeed, from the Sokhotsky formula (A.44), we have

ν(ε) = lim
Γ →0+

1

π
Im
∫

ν(ε′)
ε − ε′ − iΓ

dε′.

Hence at small Γ > 0 the smoothed DOS νs(ε) is close to the original one ν(ε).
The right-hand side of (A.45) can be written as the convolution. To see that we calculate the imaginary part of the integrand

and recall that ν(ε) is a real function. Then

νs(ε) =
∫

ν(ε′)ρ(ε − ε′) dε′,

where

ρ(ε) = 1

π
Im

1

ε − iΓ
= 1

π

Γ

ε2 + Γ 2

is the Lorentzian function (A.40) of the halfwidth Γ .

A.2.4 Singularities and Contour Integrals

Integrals of functions of a real variable appearing in the Green function theory can be evaluated conveniently by regarding
them as part of a contour integral in the complex z-plane (see, e.g. [11], Appendix VI; [9], Chaps. V and VI).

Recall that a function f (z) is called analytic in a circle centred at z = a if it can be expanded in the series of the form

f (z) = A0 + A1(z − a) + A2(z − a)2 + · · · , (A.46)

where Ai are constants. This is just the Taylor series for the function near z = a. A point at which a function fails to be
analytic is called a singular point or singularity for short.

An important tool for investigating a function f (z) near a singularity z = a is the Laurent series

f (z) = A0 + A1(z − a) + A2(z − a)2 + · · ·

+ B1

z − a
+ B2

(z − a)2 + · · · ,

where Ai and Bi are constants. If the series of reciprocal powers is infinite, the point z = a is called an essential singularity.
If the series takes the form

f (z) = A0 + A1(z − a) + A2(z − a)2 + · · ·

+ B1

z − a
+ B2

(z − a)2
+ · · · + Bn

(z − a)n
, (A.47)

where the number n is finite but nonzero, f (z) is said to have a pole of order n at z = a. If n = 1, the singular point is called
a simple pole. For example, a rational function

f (z) = p(z)

q(z)
,

where the polynomials p(z) and q(z) have no common factor, has poles at each zero of the polynomial q(z) = Q(z −
z1)

n1 . . . (z − zk)
nk (Q �= 0 is a scalar), and the order of the pole zi is equal to ni .

Whatever the value n ≥ 1 is, the coefficient B1 of (z − a)−1 is called the residue at z = a and is denoted resz=af (z).
This applies to both poles and essential singularities. If z = a is a simple pole of f (z), the residue can be calculated by the
formula

B1 = lim
z→a

(z − a)f (z), (A.48)

which immediately follows from Eq. (A.47) with n = 1.
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Fig. A.2 The integration contour
and pole of the integrand on the
left-hand side of (A.52)

Re z

Im z

CR

z = ξk − iη

The most important fact about contour integrals, the residue theorem, is now formulated as follows. Let C be a closed
contour without intersections, and f (z) be analytic inside and on C except for a finite number of singularities zi inside the
contour, then

1

2π i

∮

C

f (z) dz =
∑

i

resz=zi
f (z), (A.49)

where the contour integral is anticlockwise. If f (z) has no singularities inside or on C, the right-hand side of (A.49) reduces
to zero. In other words, if the function f (z) is analytic everywhere inside and on C, the contour integral is zero. This fact is
known as Cauchy’s theorem.

As an example, we apply the residue theorem to obtain expression (6.9) for the retarded real-time Green function of
noninteracting electrons. Taking the inverse Fourier transformation of expression (6.8):

Gr0
k (ω) = lim

η→0+
1

ω − ξk + iη
, (A.50)

we have

Gr0
k (t) = lim

η→0+
1

2π

∫
e−iωt

ω − ξk + iη
dω, (A.51)

where ξk = εk − μ (for brevity, we put h̄ = 1). The integrand of (A.51) is analytic everywhere except for the isolated
singularity z = ξk − iη, where it has a simple pole. Using the residue theorem (A.49), we obtain

1

2π i
lim

R→∞

∮

CR

e−izt

z − ξk + iη
dz = resz=ξk−iη

(
e−izt

z − ξk + iη

)
, (A.52)

where the contour CR is shown in Fig. A.2. As R → ∞ the integral over the arc of the circle tends to zero, because the
integrand

e−izt

z − ξk + iη
= e−itRez etImz

z − ξk + iη
, Imz < 0,

vanishes exponentially for t > 0. Therefore,

lim
R→∞

∮

CR

e−izt

z − ξk + iη
dz = −

∫ ∞

−∞
e−iωt

ω − ξk + iη
dω, (A.53)

when t > 0. Here the negative sign results from the counterclockwise integration. Calculating the residual by formula (A.48),
we have

resz=ξk−iη

(
e−izt

z − ξk + iη

)
= e−i(ξk−iη)t .
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Fig. A.3 Graph of the
multivalued function
ln z = ln |z| + iθ of the complex
variable z = |z| eiθ for
−3π < θ < 3π . The
single-valued branch of ln z

corresponding to −π < θ < π is
shown by colour

Re z

Im z

ln(z)

Substituting this in (A.52) and taking (A.53) into account, we obtain

∫ ∞

−∞
e−iωt

ω − ξk + iη
dω = −2π i e−i(ξk−iη)t , t > 0.

When t < 0, we need to consider the contour integral over the semicircle in the upper half-plane. Since this contour does not
contain any singularities, using the same argument, we obtain

∫ ∞

−∞
e−iωt

ω − ξk + iη
dω = 0, t < 0.

Thus, the Green function (A.51) is given by

Gr0
k (t) = −ie−iξkt θ(t).

Note that trigonometric, hyperbolic, integer power and exponential functions are all single-valued. However, their inverses
are multi-valued. For example, if we express z in polar form z = |z| eiθ , then ln z = ln |z| + iθ . The polar angle θ is defined
up to 2πn. Different n give the same z but different values of ln z. So, at any point z, we have different branches of the
logarithm (Fig. A.3). To define single-valued branches of ln z we make a branch cut from zero out to infinity, e.g. along
the negative real axis. If we choose −π < θ < π , then clearly the one-sided limits at the points of the branch cut will be
different: ln z → ln |z| ± iπ as θ → ±π (see Fig. A.3). A similar situation happens when we consider the integral

F(z) =
∫ ∞

−∞
f (x)

x − z
dx.

The function F(z) is analytic outside the real axis and has different one-sided limits at a point z = x0 on the real axis where
f (x0) is nonzero. Indeed, the Sokhotsky formula (A.44) gives

F(x0 ± i0+) = P
∫ ∞

−∞
f (x)

x − x0
dx ∓ iπf (x0).
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A.2.5 “Frequency” Summation

In Chap. 2 we used Cauchy’s theorem to derive the Kramers-Kronig relations (2.19)–(2.20). Here we apply the residue
theorem to carry out summation over the thermodynamic “frequencies”. We start with sums of a function with only simple
poles, which can be evaluated explicitly (see also [13–15]). Then we derive summation rules for a function with branch cuts
(see also [13, 14, 16]). Finally, we apply these summation rules to the DSFT.

Summation for a Function with Simple Poles
First, we apply the residue theorem to show that, in the case of noninteracting electrons, formula (6.33) for the total number
of electrons in terms of the Green functions reduces to a familiar expression, which follows from the Fermi statistics (3.52).

For noninteracting electrons, we must replace the Green function G by the zeroth Green function G0 and write formula
(6.33) as

Ne = T TrG0. (A.54)

Here the trace is given by
TrG0 = lim

τ→0+

∑

kn

G0
k(iωn) eiωnτ , (A.55)

where ωn = (2n + 1)πT are the odd “frequencies” and

G0
k(z) = 1

z − ξk
(A.56)

is the zeroth thermodynamic Green function.
The sum over the “frequencies” ∑

n

G0
k(iωn) eiωnτ ≡

∑

n

h(iωn) (A.57)

is calculated using the Fermi function as follows. The function h(z) = G0
k(z) ezτ is analytic everywhere except for the

isolated singularity z = ξk, where it has a simple pole. The Fermi function f (z) = (exp(z/T ) + 1)−1 has simple poles at
iωn.2 Indeed, using formula (A.48) and L’Hopital’s rule, we have

resz=iωnf (z) = lim
z→iωn

z − iωn

ez/T + 1
= lim

z→iωn

1

(1/T )ez/T
= −T . (A.58)

Therefore, using the residue theorem, we can write

lim
R→∞

1

2π i

∮

CR

f (z)h(z) dz = resz=ξk

(
f (z)h(z)

))+
∑

n

resz=iωn

(
f (z)h(z)

)
, (A.59)

where the contour CR is the circle of radius R centred at the origin. Since

f (z) ezτ = ezτ

ez/T + 1
∝
{

eτRez , Rez < 0,

e(τ−1/T )Rez, Rez > 0,

and 0 < τ < 1/T , the function f (z) ezτ vanishes exponentially as |z| → ∞. Therefore, the left-hand side of (A.59) tends to
zero as R → ∞. Similar to (A.58) we calculate

resz=ξk

(
f (z)h(z)

) = f (ξk)eξkτ , resz=iωn

(
f (z)h(z)

) = −T h(iωn).

Then Eq. (A.59) reduces to
f (ξk)eξkτ − T

∑

n

h(iωn) = 0.

2Note the difference in the definition of the Fermi function f (z) in this subsection from the one in the main text (3.52). This definition of the Fermi
function simplifies intermediate steps.
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Thus, we obtain the sum over the “frequencies” (A.57):

T
∑

n

G0
k(iωn) eiωnτ = f (ξk)eξkτ .

Finally, taking the limit τ → 0+ and summing over the wavevectors k, we write formula (A.55) as

T TrG0 =
∑

k

f (ξk).

The latter is the total number of noninteracting electrons.
As the next application of the residue theorem, we calculate the thermodynamic susceptibility of noninteracting electrons.

By formula (6.71), we have

χ0
zz(q, iωm) = −g2μ2

B
1

2
T
∑

kn

G0
k(iωn)G

0
k+q(iωn + iωm), (A.60)

where G0
k(z) is given by formula (A.56) and ωm = 2πmT are the even “frequencies”. We need to calculate the sum over the

odd “frequencies” ∑

n

G0
k(iωn)G

0
k+q(iωn + iωm) ≡

∑

n

h(iωn). (A.61)

The function
h(z) = G0

k(z)G0
k+q(z + iωm)

is analytic everywhere but at two isolated singularities z1 = ξk and z2 = ξk+q − iωm, where it has simple poles. Using the
residue theorem as above, we have

lim
R→∞

1

2π i

∮

CR

f (z)h(z) dz

= resz=z1

(
f (z)h(z)

)+ resz=z2

(
f (z)h(z)

)+
∑

n

resz=iωn

(
f (z)h(z)

)
, (A.62)

where the contour CR is the circle of radius R centred at the origin. Since h(z) is proportional to 1/z2 as |z| → ∞, the
left-hand side tends to zero as R → ∞. By formula (A.48) we calculate

resz=z1

(
f (z)h(z)

) = f (ξk)

ξk − ξk+q + iωm

, resz=z2

(
f (z)h(z)

) = f (ξk+q − iωm)

ξk+q − iωm − ξk
.

Using f (ξk+q − iωm) = f (ξk+q), we write (A.62) as

−f (ξk) − f (ξk+q)

ξk+q − ξk − iωm

− T
∑

n

h(iωn) = 0.

Taking (A.61) into account, we finally write the susceptibility (A.60) as

χ0
zz(q, iωm) = g2μ2

B
1

2

∑

k

f (ξk) − f (ξk+q)

ξk+q − ξk − iωm

. (A.63)

If we recall the difference in definition of the Fermi function here and in Chaps. 2–6 (shift of energies by μ), we see that
formulae (A.63) and (6.72) coincide.
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Summation for a Function with Branch Cuts
For the interacting electrons system, the zeroth Green function G0

k(z) in formula for the thermodynamic susceptibility (A.60)
must be replaced by the interacting electrons Green function Ḡk(z) (see formula (9.34)). Since the spectrum of Ḡ(z) cannot
be written down explicitly, another summation method should be used, which we describe below.

We begin with the summation rule over the even “frequencies” ωm = 2πmT . The Bose function B(z) = (exp(z/T )−1)−1

has simple poles at iωm. Using formula (A.48) and L’Hopital’s rule, we obtain

resz=iωmB(z) = lim
z→iωm

z − iωm

ez/T − 1
= lim

z→iωm

1

(1/T )ez/T
= T . (A.64)

Let h(z) be analytic at the origin, analytic outside the real axis and have the one-sided limits at the real axis h(ω ± i0+).
Then, applying the residue theorem, we have

lim
R→∞

1

2π i

∮

CR

B(z)h(z) dz =
∑

m

resz=iωm

(
B(z)h(z)

)
, (A.65)

where CR is the contour in the complex plane that consists of the circle centred at zero of radius R with cuts along the real
axis (Fig. A.4). Since function h(z) is analytic at points iωm, similar to (A.64), we obtain

resz=iωm

(
B(z)h(z)

) = T h(iωm). (A.66)

If the contributions from the contour integrals over arcs can be neglected, we come to

T
∑

m

h(iωm) = 1

2π i

∫
B(ω)
(
h(ω + i0+) − h(ω − i0+)

)
dω. (A.67)

If, additionally, h(z) is such that h∗(z) = h(z∗), we have

T
∑

m

h(iωm) = 1

π

∫
B(ω)Imh(ω + i0+) dω. (A.68)

Similarly, we consider sums over the odd “frequencies” ωn = (2n + 1)πT . Let h(z) be as above. Then, using the residue
theorem, we have

lim
R→∞

1

2π i

∮

CR

f (z)h(z) dz =
∑

n

resz=iωn

(
f (z)h(z)

)
, (A.69)

where CR is the same contour in the complex plane (Fig. A.4). If the contributions from the contour integrals over arcs can
be neglected, we come to

Fig. A.4 The integration contour
and poles of the Bose function

CR

Re z

Im z
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−T
∑

n

h(iωn) = 1

2π i

∫
f (ω)
(
h(ω + i0+) − h(ω − i0+)

)
dω.

If additionally h∗(z) = h(z∗), then the following formula holds

T
∑

n

h(iωn) = 1

π

∫
f (ω)Imh(ω − i0+) dω. (A.70)

“Frequency” Summation in the DSFT
First, we use the summation rule (A.68) in expression (10.16):

〈ΔV 2
α 〉′ =

∑

qm

ũT

2

ũχ0α
qm

1 − ũχ0α
qm

, (A.71)

to convert the sum with the thermodynamic susceptibility χ0α
q (iωm) ≡ χ0α

qm over ωm to an integral with the dynamic

susceptibility χ0α
q (ω) over ω. Similar to relation (A.55) we should treat the sum over ωm as

∑

m

. . . = lim
τ→0+

∑

m

. . . eiωmτ .

Then by the same argument as in Appendix A.2.5, we show that the contour integrals over the arcs in formula (A.65) vanish
as R → ∞. Using formula (A.68) to sum over ωm in expression (A.71), we obtain

〈ΔV 2
α 〉′ =

∑

q

ũ

2

1

π

∫
B(ε) Im

ũχ0α
q (ε)

1 − ũχ0α
q (ε)

dε, (A.72)

where ε = ε+ i0+. Taking Re χ0α
q (−ε) = Re χ0α

q (ε) and Im χ0α
q (−ε) = −Im χ0α

q (ε) into account, we see that the integrand
of (A.72) is an odd function:

Im
ũχ0α

q (ε)

1 − ũχ0α
q (ε)

= Im
1

1 − ũχ0α
q (ε)

= ũIm χ0α
q (ε)

(1 − ũRe χ0α
q (ε))2 + (ũIm χ0α

q (ε))2 .

Using the relation B(ε) − B(−ε) = 2B(ε) + 1, we write (A.72) in the form

〈ΔV 2
α 〉′ =

∑

q

ũ

π

∫ ∞

0

(
B(ε) + 1

2

)
Im

1

1 − ũχ0α
q (ε)

dε.

This proves formula (10.17).
Next, we use a summation rule over the odd “frequencies” slightly more complicated than (A.70) to obtain an expression

for the local susceptibility:

χ0α
L (z) = −Nd

2π

∑

γ1γ2

∫
Im
(
gγ1(ε)

(
gγ2(ε − z) + gγ2(ε + z)

)

× Sp
(
σγ1σασγ2σα

))
f (ε) dε, (A.73)

where g(ε) is the mean single-site Green function (in the grand canonical ensemble) and f (ε) = (exp(ε/T ) + 1)−1 is the
Fermi function. The result is derived as follows. In expression (10.27):
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Fig. A.5 The integration contour
and poles of the Fermi function

CR

Re z

Im z

χ0α
L (iωm) = −Nd

2
T
∑

n

∑

γ1γ2

gγ1(iωn)g
γ2(iωn − iωm)Sp

(
σγ1σασγ2σα

)
,

we need to calculate the sum

T
∑

n

∑

γ1γ2

gγ1(iωn)g
γ2(iωn − iωm)Sp

(
σγ1σασγ2σα

) ≡ T
∑

n

h(iωn). (A.74)

Here gγ (z), γ = 0, z, are the components of the single-site Green function

gσ (z) =
∫

νσ (ε)

z − ε
dε, σ =↑, ↓, (A.75)

where νσ (ε) is the polarized electron DOS. As we explained in the last section of Appendix A.2.4, the Cauchy integral (A.75)
has a branch cut along the real axis. Therefore, the function

h(z) =
∑

γ1γ2

gγ1(z)gγ2(z − iωm)Sp
(
σγ1σασγ2σα

)
(A.76)

is analytic outside the horizontal lines Imz = 0 and Im(z − iωm) = 0, where it has one-sided limits. Therefore, applying the
residue theorem, we have

lim
R→∞

1

2π i

∮

CR

f (z)h(z) dz =
∑

n

resz=iωn

(
f (z)h(z)

)
, (A.77)

where CR is the contour in the complex plane that consists of the circle centred at zero of radius R with cuts along Imz = 0
and Im(z − iωm) = 0 (Fig. A.5). Calculating the residues, we obtain

∑

n

resz=iωn

(
f (z)h(z)

) = −T
∑

n

h(iωn). (A.78)

The functions g0(z) and gz(z) are given by

g0(z) = 1

2
(g↑(z) + g↓(z)), gz(z) = 1

2
(g↑(z) − g↓(z)).

From expression (A.75) we see that gσ (z) is proportional to 1/z as |z| → ∞. Therefore, the product gγ1(z)gγ2(z − iωm) is
proportional to 1/z2 as |z| → ∞, and the contour integral over the arcs in formula (A.69) can be discarded. Therefore, the
left-hand side of relation (A.77) reduces to integrals over the branch cuts. Taking (A.78) into account, we obtain
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1

2π i

(∫
f (ω)
(
h(ω + i0+) − h(ω − i0+)

)
dω

+
∫

f (ω + iωm)
(
h(ω + iωm + i0+) − h(ω + iωm − i0+)

)
dω

)
= −T

∑

n

h(iωn). (A.79)

Taking f (ω + iωm) = f (ω) into account, we have

1

2π i

∫
f (ω)
[
h(ω + i0+) − h(ω − i0+)

+ h(ω + iωm + i0+) − h(ω + iωm − i0+)
]

dω = −T
∑

n

h(iωn). (A.80)

Changing the order of functions and using the cyclic property of trace in (A.76), we obtain

h(ω + i0+) =
∑

γ1γ2

gγ2(ω − iωm + i0+)gγ1(ω + i0+)Sp
(
σγ2σασγ1σα

)
.

Swapping the indices γ1 and γ2, we have

h(ω + i0+) =
∑

γ1γ2

gγ1(ω − iωm + i0+)gγ2(ω + i0+)Sp
(
σγ1σασγ2σα

)
.

= (h(ω + iωm − i0+))∗.

Similarly, we prove
h(ω + iωm + i0+) = (h(ω − i0+))∗.

Therefore, we can write (A.80) as

− 1

π

∫
f (ω)Im

[
h(ω − i0+) + h(ω + iωm − i0+)

]
dω = −T

∑

n

h(iωn). (A.81)

Using the cyclic property of trace once again, we have

Im
[
h(ω − i0+) + h(ω + iωm − i0+)

]

=
∑

γ1γ2

Im
[
gγ1(ω − i0+)

(
gγ2(ω + iωm − i0+) + gγ2(ω − iωm − i0+)

)]

× Sp
(
σγ1σασγ2σα

)
. (A.82)

Substitution of (A.82) in (A.81) yields (A.73). Shifting the integration variable by μ in (A.73), we obtain formula (10.28).

A.3 Random Variables and Fluctuating Fields

Here we summarize necessary facts about random variables and fluctuating fields (for a more detailed discussion see, e.g.
[10]) and consider a number of examples.

A.3.1 Continuous Random Variables

Let x be a random variable with the probability density function p(x). The mean of the random variable is given by the
integral
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〈x〉 =
∫ ∞

−∞
xp(x) dx. (A.83)

For brevity, this number is often denoted by x̄. Similarly, for any function f (x), we have

〈f (x)〉 =
∫ ∞

−∞
f (x)p(x) dx, (A.84)

or briefly, f̄ (x). In particular,
〈(Δx)2〉 = 〈(x − 〈x〉)2〉 = 〈x2〉 − 〈x〉2

is the variance, or the mean-square deviation.
The generalization of formulae (A.83) and (A.84) to the multidimensional case is straightforward. The random vector

x = (x1, . . . , xn) is determined by the probability density function p(x). The mean 〈x〉 is a vector, where 〈xi〉 is given by the
multiple integral

〈xi〉 =
∫

xip(x) dx. (A.85)

The random variables xi are called independent if p(x) = p1(x1) . . . pn(xn). The covariance is by definition the number

Cij = 〈Δxi Δxj 〉 = 〈xi xj 〉 − 〈xi〉〈xj 〉,

where Δxi = xi − 〈xi〉, and C is called the covariance matrix. For the complex random vector z = (z1, . . . , zn), the
covariance is defined as

Cij = 〈Δzi Δz∗
j 〉,

where Δzi = zi − 〈zi〉.
The most important example for us is the Gaussian random variable. In one dimension the Gaussian probability density

function is given by

p(x) = 1

σ
√

2π
e
− (x − μ)2

2σ 2 , (A.86)

where the real numbers μ and σ > 0 are the parameters of the Gaussian distribution. It is easy to check that μ is the mean:
〈x〉 = μ, and σ 2 is the variance: 〈(Δx)2〉 = σ 2.

In the multidimensional case, the Gaussian probability density function can be written as

p(x) = 1√
det Σ(2π)n/2

exp

⎛

⎝−1

2

∑

ij

(xi − μi)Σ
−1
ij (xj − μj )

⎞

⎠ , (A.87)

where μ = (μ1, . . . , μn) is a vector, Σ = (Σij ) is an n × n symmetric positive definite matrix and Σ−1 its inverse. Then
〈xi〉 = μi is the mean and covariance is given by

〈Δxi Δxj 〉 = Σij , (A.88)

where Δxi = xi −μi . In the following paragraph we give an intuitive proof of this result (for alternative proofs, see [10,17]).
To derive formula (A.88), we make a linear transform that yields n independent Gaussian random variables, calculate the

covariance matrix (a trivial task in this case) and transform back to the original variables. The sum in the exponent of (A.87)
can be written as the inner product:

∑

ij

(xi − μi)Σ
−1
ij (xj − μj ) ≡ ((x − μ),Λ(x − μ)

)
,

where Λ = Σ−1. For the symmetric matrix Λ there exists an orthogonal matrix O (OOT = 1) such that
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Λ = ODOT or D = OTΛO, (A.89)

where D is a diagonal matrix (see, e.g. [3]). Then, applying the orthogonal transformation x = Ox̃, we have

(Δx,ΛΔx) = (Δx̃,OTΛOΔx̃) = (Δx̃,DΔx̃).

The matrix D has the eigenvalues of the matrix Λ = Σ−1 at the main diagonal; we denote them by 1/σ 2
i . Therefore, in the

new variables x̃, the density function (A.87) becomes

p(x̃) = 1

σ1 . . . σn(2π)n/2 exp

(
−
∑

i

(x̃i − μ̃i)
2

2σ 2
i

)

=
n∏

i=1

1

σi

√
2π

exp

(
− (x̃i − μ̃i)

2

2σ 2
i

)
.

So the random variables x̃i are independent, and each x̃i is a Gaussian random variable with the density function

pi(x̃i) = 1

σi

√
2π

exp

(
− (x̃i − μ̃i)

2

2σ 2
i

)
.

The covariance is given by
C̃ij = 〈Δx̃i Δx̃j 〉 = σ 2

i δij ,

or, in the matrix form,
C̃ = D−1. (A.90)

Transforming back to the original variable x = Ox̃, we have

Cij = 〈ΔxiΔxj 〉 =
∑

i′j ′
Oii′Ojj ′ 〈Δx̃i′Δx̃j ′ 〉 =

∑

i′j ′
Oii′C̃i′j ′OT

j ′j ,

or, in the matrix form,
C = OC̃OT.

Substituting (A.90), we have
C = OD−1OT.

Inverting the relation Λ = ODOT and taking O−1 = OT into account, we obtain

C = Λ−1 = Σ,

which is the matrix form of the necessary relation (A.88).
In the multidimensional complex case, the Gaussian probability density function can be written as

p(z) = 1

det Γ πn
exp

⎛

⎝−
∑

ij

(zi − μi)
∗Γ −1

ij (zj − μj )

⎞

⎠ , (A.91)

where μ = (μ1, . . . , μn) is a complex vector and Γ = (Γij ) is an n × n Hermitian positive definite matrix. Then 〈zi〉 = μi

is the mean and the covariance is given by
〈Δzi Δz∗

j 〉 = Γij , (A.92)

where Δzi = zi − μi .
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The proof of formula (A.92) is similar to the one for the real multidimensional Gaussian distribution. In the complex case,
the sum in the exponent of (A.91) can be written as the inner product:

∑

ij

(zi − μi)
∗Γ −1

ij (zj − μj ) ≡ ((z − μ),Λ(z − μ)
)
,

where Λ = Γ −1. For the Hermitian matrix Λ there exists a unitary matrix U (UU† = 1) such that

Λ = UDU† or D = U†ΛU, (A.93)

where D is the diagonal matrix (see, e.g. [3]). Then, applying the unitary transformation z = U z̃, we have

(Δz,ΛΔz) = (Δz̃, U†ΛUΔz̃) = (Δz̃,DΔz̃).

The matrix D has the eigenvalues 1/σ 2
i of the matrix Λ = Γ −1 at the main diagonal. Therefore, in the new variables z̃, the

density function (A.91) becomes

p(z̃) = 1

σ 2
1 . . . σ 2

nπn
exp

(
−
∑

i

|z̃i − μ̃i |2
σ 2

i

)

=
n∏

i=1

1

σ 2
i π

exp

(
−|z̃i − μ̃i |2

σ 2
i

)
.

So random variables z̃i are independent, and each z̃i is a complex random variable with the Gaussian density function3

pi(z̃i) = 1

σ 2
i π

exp

(
−|z̃i − μ̃i |2

σ 2
i

)
.

The covariance is given by C̃ij = 〈Δz̃i Δz̃ ∗
j 〉 = σ 2

i δij , or, in the matrix form, C̃ = D−1. Transforming back to the original
variable z = U z̃, we have

Cij = 〈ΔziΔz ∗
j 〉 =
∑

i′j ′
Uii′U

∗
jj ′ 〈Δz̃i′Δz̃ ∗

j ′ 〉 =
∑

i′j ′
Uii′C̃i′j ′U†

j ′j ,

or, in the matrix form,
C = UC̃U† = UD−1U†.

Inverting Λ = UDU† and taking U−1 = U† into account, we obtain

C = Λ−1 = Γ,

which is the matrix form of the necessary relation (A.92).

3Note the normalizing coefficient appearing from the complex Gaussian integral
∫

e−|z|2 dz =
∫∫

e−(x2+y2) dx dy = 2π

∫
e−r2

r dr = π.
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A.3.2 Discrete Random Variables

For a discrete random variable, the integral in (A.83) can be written as a sum. Indeed, suppose that x takes the value ξi with
the probability pi . In this case,

p(x) =
∑

i

piδ(x − ξi).

Inserting into (A.83) and using the identity (A.36), we obtain

〈x〉 =
∑

i

piξi .

Similarly, formula (A.84) becomes
〈f (x)〉 =

∑

i

pif (ξi).

As an example of the use of a discrete random variable, we consider a simple case of one nondegenerate band with the
mean number of electrons per site equal to n. In the paramagnetic state, the probabilities of a spin-up or spin-down electron
occupying a site are equal, p↑ = p↓ = p. Then the mean number of electrons per site is given by

n = p1 + 2p2,

where
p1 = 2p(1 − p) (A.94)

is the probability that there is only one electron at a site and

p2 = p2

is the probability that there are exactly two electrons at a site (other possibilities are prohibited by the Pauli exclusion
principle). From this we readily obtain p = n/2. Then, for the square of the local spin we have

〈s2〉 = 1

2

(
1

2
+ 1

)
p1

(if the site is occupied by two electrons with the opposite spins, 〈s2〉 is zero). Taking (A.94) into account, we obtain the final
result (13.10):

〈s2〉 = 3

4
2
n

2

(
1 − n

2

)
= 3

8
n(2 − n).

Analogously, in the ferromagnetic state with the magnetic moment s = 1
2 (p↑ − p↓), we obtain that the square of the local

spin becomes larger by 3
2 s2.

Let us consider a complete set of outcomes A for a discrete random variable. Let A′ be an outcome of another discrete
random variable. Then the law of total probability says that

P(A′) =
∑

A

P (A′|A)P (A), (A.95)

where P(A′|A) is the conditional probability of A′ given the outcome A.
As an example, we apply the law of total probability to the scattering process. Let A label the states before the scattering

and A′ the states after. Then the conditional probability P(A′|A) is just the transition probability PA→A′ , and (A.95) becomes

PA′ =
∑

A

PAPA→A′ .
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A.3.3 Fluctuating Fields

By a fluctuating exchange field V we mean a family of random variables Vj (τ) depending on the parameters j and τ . Here
Vj (τ) = ∑α σαV α

j (τ ), where σα are the Pauli matrices (α = x, y, z) and (V x
j (τ ), V

y
j (τ ), V z

j (τ )) is a random vector for
each j and τ . The covariance is defined by

〈ΔV α
j (τ )ΔV α′

j ′ (τ ′)〉, (A.96)

where ΔV α
j (τ ) = V α

j (τ ) − 〈V α
j (τ )〉. Here the average is given by the functional integral:

〈. . . 〉 =
∫

. . . p(V )DV,

where p(V ) is the probability density function. The Fourier transform V α
qm is a complex random variable. In this case, the

covariance is defined by
〈ΔV α

qm(ΔV α′
q′m′)∗〉, (A.97)

where ΔV α
qm = V α

qm − 〈V α
qm〉. In the main text, we refer to (A.96) and (A.97) as the field correlator and to

〈ΔV α
qm(ΔV α

qm)∗〉 = 〈|ΔV α
qm|2〉

as the fluctuation.
In this section, we calculate the correlator of the Gaussian fluctuating field V with the probability density p(2)(V ) ∝

e−F (2)(V )/T given by the quadratic form

F (2)(V ) =
∫ 1/T

0

∫ 1/T

0

∑

jj ′αβ

ΔV α
j (τ )A

αβ

jj ′(τ, τ ′)ΔV
β

j ′ (τ ′) dτ dτ ′. (A.98)

Due to the “time” and space translational invariance, we have

A
αβ

jj ′(τ, τ ′) = A
αβ

j−j ′(τ − τ ′).

Using the formulae for the inverse Fourier transformation (C.19) and (C.29), in the momentum-“frequency” representation
we have

F (2)(V ) =
∑

qmαβ

ΔV α
qmA

αβ
qmΔV

β
−q−m, (A.99)

where

A
αβ
qm = N

T

∫ 1/T

0

∑

j

A
αβ
j (τ ) ei(qRj −ωmτ) dτ

(a detailed calculation similar to this one is given in Appendix C.4).
We now calculate the correlator (A.97). First, we write the quadratic form (A.99) as the inner product. Changing the signs

of the summation indices q and m in (A.99), we have

F (2)(V ) =
∑

qmαβ

ΔV α−q−mA
αβ
−q−mΔV

β
qm.

Since V α
j (τ ) is a real function, its Fourier transform satisfies ΔV α−q−m = (ΔV α

qm)∗. Similarly, A
αβ
−q−m = (A

αβ
qm)∗. Hence

F (2)(V ) =
∑

qmαβ

(ΔV α
qm)∗(Aαβ

qm)∗ΔV
β
qm ≡ (ΔV,A∗ΔV ), (A.100)

where the elements of the matrix A∗ are the complex conjugates of the ones of A. The matrix A is block-diagonal with
respect to momenta and “frequency”, but the 3 × 3 blocks Aqm are not diagonal. Applying formula (A.92), we calculate the
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covariance of the three-dimensional random vectors Vqm:

〈ΔV α
qm(ΔV

β
qm)∗〉 = T

2

(
(A∗

qm)−1
)αβ

, (A.101)

where (A∗
qm)−1 is the inverse of the 3 × 3 matrix A∗

qm. Recalling ΔV α−q−m = (ΔV α
qm)∗ and A

αβ
−q−m = (A

αβ
qm)∗, we write

formula (A.101) as

〈ΔV α
qmΔV

β
−q−m〉 = T

2

(
A−1−q−m

)αβ

.

Changing the signs of q and m and swapping the indices α and β, we finally obtain

〈ΔV α
qmΔV

β
−q−m〉 = T

2

(
A−1

qm

)βα

. (A.102)
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BConcepts Related to Functional Integral

B.1 “Time”-Ordered Exponential

In the interacting electrons Hamiltonian H = H′
0 + HI the operators H′

0 and HI do not commute

[H′
0,HI] �= 0,

therefore
e−(H′

0+HI)/T �= e−H′
0/T e−HI/T

(see Appendix A.1.3). The correct formula using the “time”-ordered exponential is as follows

e−(H′
0+HI)/T = e−H′

0/T Tτ exp

(
−
∫ 1/T

0
HI(τ ) dτ

)
, (B.1)

where
HI(τ ) = eH

′
0τ HI e−H′

0τ

is the “interaction” representation of the operator HI. For the sake of completeness, we give a simple derivation of this
well-known formula (see, e.g. [1, 2]).

It is convenient to introduce the new variable β = 1/T . From the operator function exp
(−β(H′

0 + HI)
)

we extract the
multiplier exp

(−βH′
0

)
, and denote the rest by S(β):

e−β(H′
0+HI) = e−βH′

0 S(β). (B.2)

Let us obtain an expression for S(β). Differentiating (B.2) with respect to β, we have

− (H′
0 + HI) e−β(H′

0+HI) = −H′
0 e−βH′

0 S(β) + e−βH′
0

dS(β)

dβ
. (B.3)

Substituting (B.2) in the left-hand side of (B.3), we obtain

−(H′
0 + HI) e−βH′

0 S(β) = −H′
0 e−βH′

0 S(β) + e−βH′
0

dS(β)

dβ
.

Hence

− HI e−βH′
0 S(β) = e−βH′

0
dS(β)

dβ
. (B.4)
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Multiplying (B.4) from the left by exp(βH′
0), we come to

dS(β)

dβ
= −eβH′

0 HI e−βH′
0 S(β) ≡ −HI(β)S(β). (B.5)

Integrating both sides of (B.5) we have

S(β) = S(0) −
∫ β

0
HI(τ1) S(τ1) dτ1 .

From (B.2) it follows that S(0) = 1. Therefore,

S(β) = 1 −
∫ β

0
HI(τ1) S(τ1) dτ1 . (B.6)

One can solve this equation by iterations. In the first step, substituting

S(τ1) = 1 −
∫ τ1

0
HI(τ2) S(τ2) dτ2 ,

we obtain

S(β) = 1 −
∫ β

0
HI(τ1) dτ1 +

∫ β

0
HI(τ1) dτ1

∫ τ1

0
HI(τ2) S(τ2) dτ2 .

Continuing the process, we come to

S(β) =
∞∑

k=0

(−1)k
∫ β

0
HI(τ1) dτ1

∫ τ1

0
HI(τ2) dτ2 . . .

∫ τk−1

0
HI(τk) dτk . (B.7)

Here it is convenient to introduce the “time”-ordering operator Tτ , so that we do not have to take care about the order of the
operators HI(τi) at different “times”. It is easy to convert expression (B.7) to the form1

S(β) = Tτ

∞∑

k=0

(−1)k

k!
∫ β

0
HI(τ1) dτ1

∫ β

0
HI(τ2) dτ2 . . .

∫ β

0
HI(τk) dτk . (B.8)

The right-hand side of (B.8) is called the “time”-ordered exponential, and is denoted as

S(β) = Tτ exp

(
−
∫ β

0
HI(τ ) dτ

)
. (B.9)

Substitution of (B.9) in (B.2) gives formula (B.1).

B.2 Functional Derivative

The concept of functional derivative, which is familiar not to everybody, can be explained in a simple way (see [3]). The
value of the functional F [x(t)] is defined for any function x(t). One can ask the question: how does this value change if
we change the argument function x(t)? In other words, how large will be the difference F [x(t) + η(t)] − F [x(t)] if η(t)

is small? In the first approximation in η this difference is linear in η expression of the kind
∫

K(s) η(s) ds. Thus defined

1The number of permutations of k operators is equal to k! Therefore, if we replace the integration limits 0 to τk by 0 to β, the integral will increase
by k! times. Hence we need to divide by k! to get the correct result.
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function K(s) is called the functional derivative of the functional F with respect to the function x(t) at the point s and is
denoted by δF/δx(s). Therefore, up to linear terms, one can write

F [x(t) + η(t)] = F [x(t)] +
∫

δF

δx(s)
η(s) ds + · · ·

Clearly, the derivative δF/δx(s) depends on the function x(t) as well as on the value s, i.e. it is a functional of x(t) and a
function of s. For practical purposes, it is convenient to use the following equivalent definition (see [4, p. 173]):

δF

δx(s)
= lim

ε→0

F [x(t) + εδ(t − s)] − F [x(t)]
ε

, (B.10)

where δ(t) is the Dirac delta function.
As an illustration, we calculate the functional derivative of the integrand in (8.26) with respect to the charge field V 0

j (τ ):

δ

δV 0
j (τ )

e−(F0(V )+Ω1(V ))/T = − 1

T

(
δF0(V )

δV 0
j (τ )

+ δΩ1(V )

δV 0
j (τ )

)
e−(F0(V )+Ω1(V ))/T . (B.11)

Using formula (8.27):

F0(V ) = T

∫ 1/T

0

∑

j ′

(
1

u
V2

j ′(τ ′) − 1

u0
(V 0

j ′(τ ′))2
)

dτ ′,

by the definition (B.10) we have
δF0(V )

δV 0
j (τ )

= −2T

u0
V 0

j (τ ). (B.12)

Similarly, using formula (8.28):

Ω1(V ) = −T ln Tr

[
Tτ exp

(
−
∫ 1/T

0
H′(V ) dτ ′

)]
,

we calculate

δΩ1(V )

δV 0
j (τ )

= −T

Tr

[
Tτ

δ

δV 0
j (τ )

(
−
∫ 1/T

0
H′(V ) dτ ′

)
exp

(
−
∫ 1/T

0
H′(V ) dτ ′

)]

Tr

[
Tτ exp

(
−
∫ 1/T

0
H′(V ) dτ ′

)] . (B.13)

By formula (8.29):

H′(V ) = H′
0 + 2
∑

j ′

(
Vj ′(τ ′)ρj ′(τ ′) + V 0

j ′(τ ′)ρ0
j ′(τ ′)
)
,

we obtain
δ

δV 0
j (τ )

(
−
∫ 1/T

0
H′(V ) dτ ′

)
= −2ρ0

j (τ ).

Substituting this to expression (B.13), we have

δΩ1(V )

δV 0
j (τ )

= 2Tρ0
j (V ), (B.14)
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where

ρ0
j (V ) =

Tr

[
Tτ ρ0

j (τ ) exp

(
−
∫ 1/T

0
H′(V ) dτ ′

)]

Tr

[
Tτ exp

(
−
∫ 1/T

0
H′(V ) dτ ′

)] . (B.15)

Substitution of (B.12) and (B.14) in (B.11) gives the result (8.31):

δ

δV 0
j (τ )

e−(F0(V )+Ω1(V ))/T =
(

2V 0
j (τ )

u0
− 2ρ0

j (V )

)
e−(F0(V )+Ω1(V ))/T .

Expression (B.15) can be written in the compact form

ρ0
j (V ) = Tr

[
Tτ ρ0

j (τ ) exp
∫ 1/T

0

(
Ω1(V ) − H′(V )

)
dτ ′
]
.

B.3 Stratonovich-Hubbard Transformation

B.3.1 Ising Model

To calculate the partition function of the interacting spins system, we use the Stratonovich-Hubbard transformation [5, 6].
This method consists in replacing the pair interaction of spins with the interaction of spins with a fluctuating field. Here we
give the necessary mathematical details.

The key element of the Stratonovich-Hubbard transformation is the identity

exp

(
A2

a

)
=
√

a

π

∫
exp
(−ax2 + 2Ax

)
dx, (B.16)

which is valid for any real A and a > 0. This identity is obtained by shifting the dummy variable in the improper integral
over the real line: ∫

e−ax2
dx =
∫

exp

(
−a

(
x − A

a

)2)
dx.

Replacing the integral on the left-hand side by its value
√

π/a and rearranging, we come to

√
π

a
=
∫

exp
(−ax2 + 2Ax − A2/a

)
dx.

From this we immediately obtain identity (B.16). The main feature of formula (B.16) is that the exponent on the left-hand
side is the square of A and the one on the right-hand side is linear in A.

Similarly, in the complex case, we use the integral
∫

e−a(x2+y2) dx dy = ∫ e−a|z|2 dz, where z = x + iy and dz = dx dy.
Rearranging the equality

π

a
=
∫

e−a|z|2 dz =
∫

exp

(
−a

∣∣∣∣z − A

a

∣∣∣∣
2)

dz,

we obtain the complex analogue of relation (B.16):

e|A|2/a = a

π

∫
exp(−a|z|2 + z∗A + zA∗) dz, a > 0. (B.17)

In the momentum representation the Hamiltonian of the Ising model H is given by a sum of squares (7.2):

H = − 1

2N

∑

q

Jq|Sq|2.
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Therefore, the partition function Z = Tre−H/T can be written as

Z = Tr
∏

q

exp

(
Jq

2NT
|Sq|2
)

.

Using the real identity (B.16) for q = 0 with a = 1/2 and A = √
J0/NT S0/2 and complex identity (B.17) for q �= 0 with

a = 1/2 and A = √Jq/NT Sq/2, we obtain

Z =
(∫

exp

(
−x2

0

2

)
dx0

)−1(∏

q �=0

∫
exp

(
−|zq|2

2

)
dxqdyq

)−1

× Tr

(∫
exp

(
−x2

0

2
+
√

J0

NT
S0x0

)
dx0

×
∏

q �=0

∫
exp

(
−|zq|2

2
+
√

Jq

NT
Sqz−q

)
dxqdyq

)
.

Simplifying, we come to formula (7.6):

Z =
[∫

exp

(
−
∑

q

|zq|2
2

)
dz
]−1

Tr

[∫
exp

(
−
∑

q

|zq|2
2

+
√

Jq

NT

∑

q

Sqz−q

)
dz
]
,

where dz = dx0
∏

q �=0 dxqdyq (for details, see [7]).

B.3.2 Functional Integrals

In the itinerant electron system, the Stratonovich-Hubbard transformation [5, 6] is based on the following identity:

exp

(A2

a

)
=
√

a

π

∫
exp
(−ax2 + 2Ax

)
dx, a > 0,

where A is an operator. Applying this identity to the “time”-ordered exponential of the operator A2,

Tτ exp

(∫ 1/T

0
A2(τ ) dτ

)
= lim

N→∞ exp
(
A2(τN)Δτ

)
. . . exp

(
A2(τ1)Δτ

)
,

we have

Tτ exp

(∫ 1/T

0
A2(τ ) dτ

)
= lim

N→∞ Tτ

N∏

n=1

exp
(
A2(τn)Δτ

)

= lim
N→∞ Tτ

N∏

n=1

{
1√

πΔτ

∫
exp

(
−x2(τn)

Δτ
+ 2A(τn)x(τn)

)
dx(τn)

}

= lim
N→∞ Tτ

∫
· · ·
∫

exp

(
N∑

n=1

(
−x2(τn)

Δτ
+ 2A(τn)x(τn)

))( N∏

n=1

dx(τn)√
πΔτ

)
.

Replacing the dimensionless variable x(τn) by the new variable v(τn) = −x(τn)/Δτ , which has dimensions of energy, we
come to
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Tτ exp

(∫ 1/T

0
A2(τ ) dτ

)
(B.18)

= lim
N→∞ Tτ

∫
· · ·
∫

exp

(
−

N∑

n=1

(
v2(τn) + 2A(τn)v(τn)

)
Δτ

)(
(−1)N

N∏

n=1

√
Δτ

π
dv(τn)

)
.

In particular, for A = 0 we have

1 = lim
N→∞ Tτ

∫
· · ·
∫

exp

(
−

N∑

n=1

v2(τn)Δτ

)(
(−1)N

N∏

n=1

√
Δτ

π
dv(τn)

)
. (B.19)

Dividing the right-hand side of (B.18) by the one of (B.19), we obtain

Tτ exp

(∫ 1/T

0
A2(τ ) dτ

)
=

Tτ

∫
exp

(
−
∫ 1/T

0

(
v2(τ ) + 2A(τ )v(τ )

)
dτ

)
Dv(τ)

Tτ

∫
exp

(
−
∫ 1/T

0
v2(τ ) dτ

)
Dv(τ)

, (B.20)

where the notation

Dv(τ) = lim
N→∞

(
N∏

n=1

dv(τn)

)

indicates the functional integration over v(τ) on the “time” interval [0, 1/T ].2 Since the multiband Hubbard Hamiltonian
is transformed to a sum of squares in the site representation, in the DSFT we need to carry out the Stratonovich-Hubbard
transformation only in the real space.

B.4 Optimal Gaussian Approximation

B.4.1 Ising Model

First, we consider the Ising model, where the functional integral reduces to a multidimensional integral in the Euclidean
space.

We obtain the parameters of the optimal Gaussian approximation using the free energy minimum principle (9.25). In the
class of quadratic “modelling” functions F (2)(V), inequality (9.25) is written as

F ≤ F (2) + 〈F(V) − F (2)(V)
〉
(2)

. (B.21)

The minimum of the right-hand side is determined by the system of equations

∂

∂V̄q

[
F (2) + 〈F(V) − F (2)(V)

〉
(2)

]
= 0, (B.22)

∂

∂Aq

[
F (2) + 〈F(V) − F (2)(V)

〉
(2)

]
= 0. (B.23)

Here

F (2) = −T ln Z(2) = −T ln
∫

e−F (2)(V)/T dV (B.24)

2Functional integrals are also known under the name path integrals (see, e.g. [3, 8]).
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is the total free energy and the Gaussian average is determined by

〈. . . 〉(2) = 1

Z(2)

∫
. . . e−F (2)(V)/T dV.

The translational invariance of the crystal allows to consider quadratic functions of the form

F (2)(V) =
∑

q

Aq|ΔVq|2 =
∑

q

ΔVqAqΔV−q, (B.25)

where ΔVq = Vq − V̄q and Aq > 0. Then

p(2)(V) =
(∫

e−F (2)(V)/T dV
)−1

e−F (2)(V)/T (B.26)

is the probability density of the Gaussian fluctuating field. The mean values 〈Vq〉 = V̄q and correlators

〈ΔVqΔV−q′ 〉 = T

2Aq
δq,q′

completely describe the Gaussian fluctuating field (for details, see Appendix A.3.3).
We start with calculating the left-hand side of Eq. (B.22). Using formula (B.25), we evaluate the Gaussian partition

function

Z(2) =
∫

exp
(
− 1

T

∑

q

Aq|ΔVq|2
)

dV

=
∫

exp
(
− 1

T
A0ΔV 2

0

)
dV0

∏

q �=0

∫
exp
(
− 1

T
Aq|ΔVq|2

)
dVq

=
√

πT

A0

∏

q �=0

πT

Aq
(B.27)

Since Z(2) and hence F (2) are independent of V̄q, we obtain

∂

∂V̄q

[
F (2) + 〈F(V) − F (2)(V)

〉
(2)

]
= ∂

∂V̄q
〈F(V) − F (2)(V)〉(2)

= 1

Z(2)

∂

∂V̄q

∫ (
F(V) − F (2)(V)

)
exp
(
− 1

T
F (2)(V)

)
dV.

Changing the dummy variable to X = V − V̄, we have

∂

∂V̄q

〈
F(V) − F (2)(V)

〉
(2)

= 1

Z(2)

∂

∂V̄q

∫ (
F(X + V̄) −

∑

q′
Aq′ |Xq′ |2

)
exp
(
− 1

T

∑

q′
Aq′ |Xq′ |2

)
dX

= 1

Z(2)

∫
∂F (X + V̄)

∂V̄q
exp
(
− 1

T

∑

q′
Aq′ |Xq′ |2

)
dX.
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Reverting to the original variable V, we obtain

∂

∂V̄q

〈
F(V) − F (2)(V)

〉
(2)

= 1

Z(2)

∫
∂F (V)

∂Vq
exp
(
− 1

T
F (2)(V)

)
dV =

〈
∂F (V)

∂Vq

〉

(2)

. (B.28)

Thus, Eq. (B.22) is written as

〈
∂F (V)

∂Vq

〉

(2)

= 0. (B.29)

To calculate the left-hand side of Eq. (B.23), we transform the expression

〈
F(V) − F (2)(V)

〉
(2)

= 1

Z(2)

∫ [
F(V) − F (2)(V)

]
exp
(
− 1

T
F (2)(V)

)
dV.

Making the change of variables Vq = Yq/
√

Aq + V̄q such that |Yq|2 = Aq|ΔVq|2, we have

〈
F(V) − F (2)(V)

〉
(2)

=
∫ [

F

(
Y√
A

+ V̄
)

−
∑

q′
|Yq′ |2
]

exp

(
− 1

T

∑

q′
|Yq′ |2
)

dY .

Here we used the brief notation V = Y/
√

A + V̄ and

dY =
(

dY0√
πT

) ∏

q′ �=0

(
dYq′

πT

)
.

Differentiating, for q �= 0 we obtain

∂

∂Aq

〈
F(V) − F (2)(V)

〉
(2)

= − 1

2A
3/2
q

∫
∂F

∂(Yq/
√

Aq)

(
Y√
A

+ V̄
)

Yq exp

(
− 1

T

∑

q′
|Yq′ |2
)

dY.

Integrating by parts and reverting to the original variable V, we have

∂

∂Aq

〈
F(V) − F (2)(V)

〉
(2)

= − T

2A2
q

1

Z(2)

∫
∂2F(V)

∂Vq ∂V−q
exp
(
− 1

T
F (2)(V)

)
dV.

Taking (B.27) into account, for q �= 0 we write the right-hand side of (B.23) as

∂

∂Aq

[
F (2) + 〈F(V) − F (2)(V)

〉
(2)

]
= T

Aq
− T

2A2
q

〈
∂2F(V)

∂Vq ∂V−q

〉

(2)

.

Similarly, for q = 0 we obtain one half of this expression. Hence Eq. (B.23) becomes

Aq = 1

2

〈
∂2F(V)

∂Vq ∂V−q

〉

(2)

. (B.30)



B.4 Optimal Gaussian Approximation 233

B.4.2 Functional Integrals

In the itinerant-electrons system, it is necessary to consider a more general class of quadratic “modelling” functions in
the inequality (B.21). As we showed, the quadratic approximation of the free energy in the DSFT is given by (A.99). The
difference from the previous subsection is that the matrix of the quadratic form is nondiagonal.

To obtain the parameters of the optimal Gaussian approximation, we first write the quadratic form as the inner product
(similar to Appendix A.3.3):

F (2)(V ) = (ΔV,A∗ΔV ),

where the elements of the matrix A∗ are the complex conjugates of the ones of A. Next, we carry out the unitary
transformation V = UṼ (UU† = 1) that diagonalizes the Hermitian matrix A∗, i.e.

A∗ = UDU†, (B.31)

where D is a real diagonal matrix. Then

(ΔV,A∗ΔV ) = (ΔṼ , U†A∗UΔṼ ) = (ΔṼ ,DΔṼ ),

and the quadratic form in the new coordinates F̃ (2)(Ṽ ) ≡ F (2)(UṼ ) is written as

F̃ (2)(Ṽ ) =
∑

i

ΔṼiDiΔṼ ∗
i ,

where i is a multi-index (not a lattice site). Now, following the same line as in the previous subsection, we obtain the
equations for the parameters of the optimal Gaussian approximation in the new variables:

〈
∂F̃ (Ṽ )

∂Ṽi

〉

(2)

= 0, Di = 1

2

〈
∂2F̃ (Ṽ )

∂Ṽi ∂Ṽ ∗
i

〉

(2)

, (B.32)

where F̃ (Ṽ ) ≡ F(UṼ ) = F(V ). Reverting to the original variables by the formula

Ṽj =
∑

j ′
U

†
jj ′Vj ′ ,

we have 〈
∂F (V )

∂Vi

〉

(2)

=
〈
∑

j

∂F̃ (Ṽ )

∂Ṽj

∂Ṽj

∂Vi

〉

(2)

=
∑

j

〈
∂F̃ (Ṽ )

∂Ṽj

〉

(2)

U
†
j i .

Taking into account the first equation in (B.32), we obtain

〈
∂F (V )

∂Vi

〉

(2)

= 0.

Similarly, we carry out the coordinate transformation V = UṼ of the second derivative

Di = 1

2

〈
∂2F̃ (Ṽ )

∂Ṽi ∂Ṽ ∗
i

〉

(2)

= 1

2

〈
∑

jj ′

∂Vj

∂Ṽi

∂2F(V )

∂Vj ∂V ∗
j ′

∂V ∗
j ′

∂Ṽ ∗
i

〉

(2)

.

Using the relation
Vj =
∑

j ′
Ujj ′ Ṽj ′ ,
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we obtain

Di = 1

2

∑

jj ′
Uji

〈
∂2F(V )

∂Vj ∂V ∗
j ′

〉

(2)

(Uj ′i )
∗ = 1

2

∑

jj ′
Uji

〈
∂2F(V )

∂Vj ∂V ∗
j ′

〉

(2)

U
†
ij ′ .

Swapping the indices j and j ′, we have

Di = 1

2

∑

jj ′
U

†
ij

〈
∂2F(V )

∂Vj ′ ∂V ∗
j

〉

(2)

Uj ′i .

On the other hand, from relation (B.31), we obtain D = U†A∗U , or in coordinates

Di =
∑

jj ′
U

†
ijA

∗
jj ′Uj ′i .

Comparing the last two equations, we finally obtain

Ajj ′ = 1

2

〈
∂2F(V )

∂Vj ∂V ∗
j ′

〉

(2)

.

Specifically, in the momentum-“frequency” representation, we get the result [9]

〈
∂F (V )

∂V α
qm

〉

(2)

= 0, A
αβ
qm = 1

2

〈
∂2F(V )

∂V α
qm ∂V

β
−q−m

〉

(2)

. (B.33)
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CFourier Transformations

C.1 Translationally Invariant Systems

Translational invariance of a homogeneous media favours use of the Fourier transformation. This fact is quite general and
has been exploited many times in this book. Here we illustrate the idea in the example of the Ising model (see Chap. 7).

Since we are interested in bulk properties of the crystal rather than surface effects, we can use the boundary conditions
that are mathematically most convenient. As is customary in solid state physics, we apply the cyclic boundary conditions.
That means the spin S(R) as a function of the lattice site R is assumed to be periodic with the period Niai in the direction of
the ith primitive vector ai :

S(R) = S(R + Niai ), i = 1, 2, 3.

The periodicity allows us to introduce the Fourier transformation of spins in the usual way:

Sq =
∑

j

Sj e−iqRj , Sj = 1

N

∑

q

SqeiqRj , (C.1)

where N = N1N2N3 is the number of sites, q is a vector of the reciprocal lattice and the sum is carried out over N sites
of the Brillouin zone (see, e.g. [1]). Similarly, we define the Fourier transform and its inverse for the interaction coefficients
Jjj ′ by the formulae

Jqq′ = 1

N

∑

jj ′
Jjj ′e−iqRj eiq′Rj ′ , Jjj ′ = 1

N

∑

qq′
Jqq′eiqRj e−iq′Rj ′ . (C.2)

The interaction coefficients Jjj ′ = Jj−j ′ in the Hamiltonian (7.1) depend only on the distance between the sites but not
on their position in the crystal. Then the Fourier coefficients Jqq′ will not change if we shift the crystal as a whole by a lattice
vector Rl :

Jqq′ = 1

N

∑

jj ′
Jj−j ′e−iq(Rj +Rl )eiq′(Rj ′+Rl )

= 1

N

∑

jj ′
Jj−j ′e−iqRj eiq′Rj ′ e−i(q−q′)Rl .

Averaging over all lattice sites Rl , we come to

Jqq′ = 1

N

∑

jj ′
Jj−j ′e−iqRj eiq′Rj ′ 1

N

∑

l

e−i(q−q′)Rl .

It is easy to verify the formula ∑

l

eikRl = Nδk0 (C.3)
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(calculate the geometric series over each coordinate). Using the latter, we obtain

Jqq′ = 1

N

∑

jj ′
Jj−j ′e−iqRj−j ′ δqq′ .

Thus, the Fourier coefficients form a diagonal matrix: Jqq′ = Jqδqq′ , where

Jq =
∑

j

Jj e−iqRj .

As we already mentioned the matrix Jjj ′ = Jj−j ′ possesses the circulant property: Jjj ′ = Jj+l,j ′+l , i.e. the matrix has
the same elements at each diagonal parallel to the principal one. Moreover, using the cyclic boundary conditions, we see that
there are only N different elements (e.g. J−1 = JN−1). The Fourier coefficients Jq of those N elements Jj form the principal
diagonal of the matrix Jqq′ :

⎡

⎢⎢⎢⎢⎢⎣

J0 J1 J2 · · · JN−1

JN−1 J0 J1 · · · JN−2

JN−2 JN−1 J0 · · · JN−3
...

...
. . .

...

J1 J2 J3 · · · J0

⎤

⎥⎥⎥⎥⎥⎦
←→

⎡

⎢⎢⎢⎢⎢⎣

Jq1 0 0 · · · 0
0 Jq2 0 · · · 0
0 0 Jq3 · · · 0
...

...
. . .

...

0 0 0 · · · JqN

⎤

⎥⎥⎥⎥⎥⎦

Thus, the Fourier transformation diagonalizes a circulant matrix, and the inverse Fourier transformation converts a diagonal
matrix into a circulant matrix.1 The formalism is similar in the continuous case, which we consider in the next section.

C.2 Exchange Field and Green Functions

As we explained in the previous section, working with translationally invariant systems, it is often useful to switch between
the real space and momentum space using the Fourier transformation and its inverse. To do this in a quantum-mechanical
system we need to make basis changes in the second quantization, which is demonstrated below.

The external field operator was defined in the Wannier representation as

V̂ =
∑

jj ′
Vjj ′(τ, τ ′)a†

j (τ )aj ′(τ ′), (C.4)

where we introduced the matrix
Vjj ′(τ, τ ′) = Vj (τ)δjj ′δ(τ − τ ′) (C.5)

(for brevity we omit the spin indices here) and aj (τ ) = eH
′τ aj e−H′τ is the “Heisenberg” representation.

We begin with the spatial Fourier transform. The creation-annihilation operators in the Bloch and Wannier representations
(3.6) are related by the formulae

a
†
j = 1√

N

∑

k

e−ikRj a
†
k, aj = 1√

N

∑

k

eikRj ak. (C.6)

Substituting (C.6) in (C.4), we obtain
V̂ =
∑

kk′
Vkk′(τ, τ ′)a†

k(τ )ak′(τ ),

where

1For more on circulant matrices and their use in physics see, e.g. [2].
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Vkk′(τ, τ ′) = 1

N

∑

jj ′
Vjj ′(τ, τ ′)e−ikRj eik′Rj ′ (C.7)

is the spatial Fourier transform of (C.5). Since the initial matrix (C.5) is site-diagonal, its Fourier transform (C.7) is
translationally invariant in the momentum space:

Vkk′(τ, τ ′) = Vk−k′(τ )δ(τ − τ ′), Vk(τ ) = 1

N

∑

j

Vj (τ )e−ikRj .

On the opposite, the mean Green function

Ḡjj ′(τ, τ ′) = −〈Tτ aj (τ )a
†
j ′(τ ′)〉

(for details, see Sect. 8.3.1) is translationally invariant in space and “time”:

Ḡjj ′(τ, τ ′) = Ḡj−j ′(τ − τ ′),

because the system is homogeneous and the Hamiltonian is “time” independent. Hence the spatial Fourier transform of Ḡ is
a k-diagonal matrix:

Ḡkk′(τ − τ ′) = Ḡk(τ − τ ′)δkk′ , Ḡk(τ − τ ′) =
∑

j

Ḡj (τ − τ ′)e−ikRj .

We now proceed to the Fourier transforms in “frequencies” corresponding to the “time” variable. As a function of
the “time” difference Ḡ(τ − τ ′) is defined on the interval [−1/T , 1/T ]. For the function Ḡ(τ ) the following relation
holds

Ḡj−j ′(τ − 1/T ) = −Ḡj−j ′(τ ), τ > 0. (C.8)

Indeed, using the definition of the mean Green function and cyclic property of trace, we have

Ḡj−j ′(τ − 1/T ) = 〈a†
j ′aj (τ − 1/T )〉

= 1

Ξ
Tr
[
a

†
j ′eH

′(τ−1/T )aj e−H′(τ−1/T ) e−H′/T
]

= 1

Ξ
Tr
[
a

†
j ′eH

′τ e−H′/T aj e−H′τ
]

= 1

Ξ
Tr
[
aj e−H′τ a†

j ′eH
′τ e−H′/T

]

= 1

Ξ
Tr
[
eH

′τ aj e−H′τ a†
j ′ e−H′/T

]

= 〈aj (τ )a
†
j ′ 〉 = −Ḡj−j ′(τ ),

where Ξ = Tre−H′/T is the grand canonical partition function. Similarly, we verify that

Ḡj−j ′(τ + 1/T ) = −Ḡj−j ′(τ ), τ < 0. (C.9)

We introduce the Fourier series by the formula

Ḡj−j ′(τ − τ ′) = T

∞∑

s=−∞
Ḡj−j ′(ωs)e

−iωs(τ−τ ′),

where
Ḡj−j ′(ωs) = 1

2

∫ 1/T

−1/T

Ḡj−j ′(τ )eiωsτ dτ

is the Fourier coefficient and ωs = sπT is the “frequency”. By splitting the integral into two
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Ḡj−j ′(ωs) = 1

2

∫ 0

−1/T

Ḡj−j ′(τ )eiωsτ dτ + 1

2

∫ 1/T

0
Ḡj−j ′(τ )eiωsτ dτ

and making use of (C.9), we obtain

Ḡj−j ′(ωs) = −1

2

∫ 0

−1/T

Ḡj−j ′(τ + 1/T )eiωsτ dτ + 1

2

∫ 1/T

0
Ḡj−j ′(τ )eiωsτ dτ

= 1

2
(1 − e−iωs/T )

∫ 1/T

0
Ḡj−j ′(τ )eiωsτ dτ.

The latter is zero for even s. Hence the mean Green function is expanded in odd “frequencies” ωn = (2n + 1)πT , n =
0,±1,±2, . . . :

Ḡj−j ′(τ − τ ′) = T
∑

n

Ḡj−j ′(ωn)e
−iωn(τ−τ ′),

where the Fourier coefficient is calculated as

Ḡj−j ′(ωn) =
∫ 1/T

0
Ḡj−j ′(τ )eiωnτ dτ.

To define the “temporal” Fourier transform of the fluctuating field, we extend the function Vj (τ) to the whole interval
[−1/T , 1/T ] in such a way that the equality

Vj (τ − 1/T ) = −Vj (τ)

holds for τ > 0, just as (C.8) for the Green function Ḡ. Then the function

Vjj ′(τ, τ ′) = Vj (τ)δjj ′δ(τ − τ ′)

is expanded in the Fourier series in the odd “frequencies”:

Vjj ′(τ, τ ′) = T
∑

nn′
Vjj ′(ωn, ωn′)e−iωnτ+iωn′ τ ′

. (C.10)

Since Vjj ′(τ, τ ′) is “diagonal” with respect to “time”, the Fourier coefficient is a function of the “frequency” difference:

Vjj ′(ωn, ωn′) = Vj (ωn − ωn′)δjj ′ ≡ Vj (ωn−n′)δjj ′ .

Thus, we come to the Fourier expansion

Vj (τ) =
∑

m

Vj (ωm)e−iωmτ , Vj (ωm) = T

∫ 1/T

0
Vj (τ)eiωmτ dτ, (C.11)

in the even “frequencies” ωm = 2mπT , m = 0,±1,±2, . . .

To sum up, in the site-“time” representation, the matrices of the mean Green function Ḡ and external field V have the
form

Ḡjj ′(τ, τ ′) = Ḡj−j ′(τ − τ ′), Vjj ′(τ, τ ′) = Vj (τ)δjj ′δ(τ − τ ′),

and, in the momentum-“frequency” (Fourier) representation, they have the form

Ḡkk′nn′ = Ḡknδkk′δnn′, Vkk′nn′ = Vk−k′,n−n′, (C.12)

where we used the shorthand notation
Ḡkn ≡ Ḡk(ωn), Vkm ≡ Vk(ωm),
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and ωn = (2n + 1)πT are odd and ωm = 2mπT are even “frequencies”.
Note that the zeroth Green function G0 is also translationally invariant in the site space and depends on the “time”

difference. Hence
G0

jj ′(τ, τ ′) = G0
j−j ′(τ − τ ′), G0

kk′nn′ = G0
knδkk′δnn′ .

As an example, we calculate the RPA susceptibility by the functional integral method. The second-order expansion of the
free energy F1(V ) = T Tr ln G(V ) around the mean field V̄ is given by (see Appendix A.1.2)

F1(V ) = T Tr(G(V̄ )ΔV ) + 1

2
T Tr(G(V̄ )ΔV G(V̄ )ΔV ) + · · · (C.13)

By the choice of the mean field V̄ , the linear term in the expansion vanishes (see Sect. 9.2). To calculate the susceptibility,
we write the quadratic term in the momentum-“frequency” representation. Using formulae (C.12), we have

Tr
(
G(V̄ )ΔV G(V̄ )ΔV

) = Nd

∑

kk′nn′
Sp
(
Gkn(V̄ )ΔVk−k′,n−n′Gk′n′(V )ΔVk′−k,n′−n

)
.

Introducing the new summation indices q = k − k′ and m = n − n′, we write

Tr
(
G(V̄ )ΔV G(V̄ )ΔV

) = Nd

∑

qkmn

Sp
(
Gkn(V̄ )ΔVqmGk−q, n−m(V̄ )ΔV−q−m

)
. (C.14)

The unenhanced susceptibility (in units of g2μ2
B/2) is given by formula (9.21):

χ
0αβ
qm = −1

2

∂2F1(V̄ )

∂V α
qm∂V

β
−q−m

. (C.15)

Substituting (C.13) and (C.14) in (C.15) and using the cyclic property of trace, we obtain

χ
0αβ
qm = −Nd

2
T
∑

kn

Sp
(
Gkn(V̄ )σαGk−q,n−m(V̄ )σβ

)
.

C.3 Summary of the Fourier Transformations

In this section we summarize the formulae for the Fourier transformation of different physical quantities that are used in
the book.

C.3.1 Site and Momentum Representations

In the DSFT, the choice of the normalization factor in the spatial Fourier transformation depends on the type of physical
quantity. We adopt the following convention (see also [3], pp. 21 and 47). The Fourier transformations of quantities that do
not depend on the number of sites N (such as the magnetic hj and exchange Vj fields) are defined with the factor 1/N ,
whereas the transformations of quantities depending on N (such as the Green functions G0

j and Ḡj or single-site spin sj and
charge nj operators) are defined without it. This way we obtain convenient expressions (without powers of 1/N) in formulae
that contain products of V and G such as (C.14).

The Fourier transformation and its inverse of the single-site spin operator sj (similarly, charge operator nj ) are given by

sα
q =
∑

j

sα
j e−iqRj , (C.16)

sα
j = 1

N

∑

q

sα
q eiqRj , (C.17)

where α = x, y, z. For the exchange field Vj (similarly, for magnetic field hj ) we have
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V α
q = 1

N

∑

j

V α
j e−iqRj , (C.18)

V α
j =
∑

q

V α
q eiqRj (C.19)

(in this subsection the time argument is omitted for brevity). The mean Green function Ḡj−j ′ (similarly, zeroth Green
function G0

j−j ′) is Fourier transformed as

Ḡ
γ

k =
∑

j

Ḡ
γ

j e−ikRj , (C.20)

Ḡ
γ

j = 1

N

∑

k

Ḡ
γ

k eikRj , (C.21)

where γ = 0, z. The unity function in the site space is Fourier transformed by the formulae

δq0 = 1

N

∑

j

e−iqRj , (C.22)

1 =
∑

q

δq0 eiqRj . (C.23)

whereas, the Kronecker delta δj0 in the site space is Fourier transformed by the formulae

1 =
∑

j

δj0 e−iqRj , (C.24)

δj0 = 1

N

∑

q

eiqRj . (C.25)

C.3.2 “Time” and “Frequency” Representations

The normalization factor in the Fourier transformation with respect to “time” depends on the quantity’s dimensions. The
Fourier transform of the spin sj (τ ) and charge nj (τ ) operators in the “Heisenberg” representation, just as the exchange field
Vj (τ), are defined with the factor T so that their Fourier transforms have the same dimension, whereas the Fourier transform
of the Green functions G0

j (τ ) and Ḡj (τ ) are defined without the factor T . As a result, we obtain expressions without powers
of T in formulae that contain products of V and G such as (C.14).

The spin density in the “Heisenberg” representation sα
q (τ ) = eHτ sα

q e−Hτ is Fourier transformed as

sα
qm = T

∫ 1/T

0
sα

q (τ ) eiωmτ dτ, (C.26)

sα
q (τ ) =

∑

m

sα
qm e−iωmτ , (C.27)

where ωm = 2mπT are even thermodynamic “frequencies”. Both sα
qm and sα

q (τ ) are dimensionless.
The exchange field Vq(τ ) is transformed as

V α
qm = T

∫ 1/T

0
V α

q (τ ) eiωmτ dτ, (C.28)

V α
q (τ ) =

∑

m

V α
qm e−iωmτ , (C.29)

so that V α
q (τ ) and V α

qm have dimensions of energy.

The mean Green function Ḡk(τ ) (similarly, zeroth Green function G0
k(τ )) is transformed as
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Ḡ
γ

kn
=
∫ 1/T

0
Ḡ

γ

k (τ ) eiωnτ dτ, (C.30)

Ḡ
γ

k (τ ) = T
∑

n

Ḡ
γ

kn
e−iωnτ , (C.31)

where ωn = (2n + 1)πT are odd thermodynamic “frequencies”. The Green function Ḡ
γ

k (τ ) is dimensionless, while its
Fourier transform Ḡ

γ

kn
has dimensions of inverse energy. As a result, the product of the Fourier transforms such as V α

qmḠ
γ

kn

is dimensionless.
The “time” unity function is transformed by the formulae

δm0 = T

∫ 1/T

0
eiωmτ dτ, (C.32)

1 =
∑

m

δm0 e−iωmτ , (C.33)

where both functions are dimensionless. The “time” delta function is transformed by the formulae

1 =
∫ 1/T

0
δ(τ ) eiωmτ dτ, (C.34)

δ(τ ) = T
∑

m

e−iωmτ . (C.35)

The delta function δ(τ ) has dimensions of energy.

C.4 Relation Between Spin and Field Correlators

Here we prove the relation

〈
Δsα

j (τ )Δs
β

j ′(τ ′)
〉 = 1

u2

〈
ΔV α

j (τ )ΔV
β

j ′ (τ ′)
〉− 1

2u
δjj ′δ(τ − τ ′)δαβ. (C.36)

First, we carry out the Fourier transformation of this formula, then derive the expression in the momentum-“frequency”
representation.

We start with the Fourier transformation of relation (C.36) in sites, temporarily omitting the argument τ . From the
translational invariance it follows that the spin correlator does not change if we shift both spins by a lattice vector Rl :
〈Δsα

j Δs
β

j ′ 〉 = 〈Δsα
j+lΔs

β

j ′+l
〉. Averaging the latter over all Rl , we obtain

〈Δsα
j Δs

β

j ′ 〉 = 1

N

∑

l

〈Δsα
j+lΔs

β

j ′+l
〉. (C.37)

Using relation (C.17), we can write

〈Δsα
j+lΔs

β

j ′+l
〉 = 1

N2

∑

qq′
〈Δsα

q Δs
β

q′ 〉 ei(q+q′)Rl eiqRj eiq′Rj ′ . (C.38)

Substitution of (C.38) in (C.37) leads to

〈Δsα
j Δs

β

j ′ 〉 = 1

N2

∑

qq′
〈Δsα

q Δs
β

q′ 〉 eiqRj eiq′Rj ′ 1

N

∑

l

ei(q+q′)Rl .
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Taking the identity (C.22) into account, we obtain

〈Δsα
j Δs

β

j ′ 〉 = 1

N2

∑

q

〈Δsα
q Δs

β
−q〉 eiq(Rj −Rj ′ ). (C.39)

Similarly, using the inverse Fourier transformation (C.19) of the fluctuating field V , we have

〈ΔV α
j ΔV

β

j ′ 〉 =
∑

q

〈ΔV α
q ΔV

β
−q〉 eiq(Rj −Rj ′ ). (C.40)

Substituting (C.39) and (C.40) in (C.36) and taking (C.25) into account, we come to

1

N2

∑

q

〈Δsα
q Δs

β
−q〉 eiq(Rj −Rj ′ ) = 1

u2

∑

q

〈ΔV α
q ΔV

β
−q〉 eiq(Rj −Rj ′ )

− 1

2u
δαβ

1

N

∑

q

eiq(Rj −Rj ′ ).

Equating the Fourier coefficients, we have

〈Δsα
q (τ )Δs

β
−q(τ ′)〉 = 1

u2 N2〈ΔV α
q (τ )ΔV

β
−q(τ ′)〉 − 1

2u
Nδ(τ − τ ′)δαβ. (C.41)

Next, we carry out the Fourier transformation of relation (C.36) with respect to the “time” τ , temporarily omitting the
argument q. Using formula (C.27), we write the spin correlator as

〈Δsα(τ)Δsβ(τ ′)〉 =
∑

mm′
〈Δsα

mΔs
β

m′ 〉 e−iωmτ e−iωm′ τ ′
.

Shifting τ and τ ′ by s and integrating over the interval [0, 1/T ], we obtain

〈Δsα(τ)Δsβ(τ ′)〉 =
∑

mm′
〈Δsα

mΔs
β

m′ 〉 e−iωmτ e−iωm′ τ ′
T

∫ 1/T

0
e−i(ωm+ωm′ )s ds.

By (C.32) the latter reduces to

〈Δsα(τ)Δsβ(τ ′)〉 =
∑

m

〈Δsα
mΔs

β
−m〉 e−iωm(τ−τ ′). (C.42)

Similarly, for the fluctuating field correlator we have

〈ΔV α(τ)ΔV β(τ ′)〉 =
∑

m

〈ΔV α
mΔV

β
−m〉 e−iωm(τ−τ ′). (C.43)

Substituting (C.42) and (C.43) in (C.41) and taking (C.35) into account, we obtain

∑

m

〈Δsα
qmΔs

β
−q−m〉 e−iωm(τ−τ ′)

= N2

u2

∑

m

〈ΔV α
qmΔV

β
−q−m〉 e−iωm(τ−τ ′) − N

2u
δαβT
∑

m

e−iωm(τ−τ ′).
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Equating the Fourier coefficients, we finally rewrite relation (C.36) as

〈Δsα
qmΔs

β
−q−m〉 = 1

ũ2
〈ΔV α

qmΔV
β
−q−m〉 − T

2ũ
δαβ, (C.44)

where ũ = u/N is the Fourier transform of the effective interaction constant u.
To show that Eq. (C.44) holds, first we prove the identity

〈
∂2F0(V )

∂V α
qm∂V

β
−q−m

〉
− 1

T

〈
∂F0(V )

∂V α
qm

∂F0(V )

∂V
β
−q−m

〉

=
〈

∂2F1(V )

∂V α
qm∂V

β
−q−m

〉
− 1

T

〈
∂F1(V )

∂V α
qm

∂F1(V )

∂V
β
−q−m

〉
, (C.45)

which is independent of a particular form of the functions F0(V ) and F1(V ) defining the partition function (8.49). We start
off with the average 〈

∂2F1(V )

∂V α
qm∂V

β
−q−m

〉
= Q−1

∫
∂2F1(V )

∂V α
qm∂V

β
−q−m

e−(F0(V )+F1(V ))/T DV,

where
Q =
∫

e−(F0(V )+F1(V ))/T DV

is the normalizing factor. Integrating by parts, we come to

〈
∂2F1(V )

∂V α
qm∂V

β
−q−m

〉
= (T Q)−1

∫
∂F1(V )

∂V
β
−q−m

e−(F0(V )+F1(V ))/T ∂F0(V )

∂V α
qm

DV

+(T Q)−1
∫

∂F1(V )

∂V
β
−q−m

e−(F0(V )+F1(V ))/T ∂F1(V )

∂V α
qm

DV. (C.46)

The first term on the right-hand side can be rewritten as

I1 = −Q−1
∫

∂

∂V
β
−q−m

(
e−F1(V )/T

)
e−F0(V )/T ∂F0(V )

∂V α
qm

DV.

Integrating by parts, we have

I1 = −(T Q)−1
∫

e−(F0(V )+F1(V ))/T ∂F0(V )

∂V α
qm

∂F0(V )

∂V
β
−q−m

DV

+Q−1
∫

e−(F0(V )+F1(V ))/T ∂2F0(V )

∂V α
qm∂V

β
−q−m

DV

or, equivalently,

I1 = − 1

T

〈
∂F0(V )

∂V α
qm

∂F0(V )

V
β
−q−m

〉
+
〈

∂2F0(V )

∂V α
qm∂V

β
−q−m

〉
. (C.47)

The second term on the right-hand side of (C.46) can be written as

I2 = 1

T

〈
∂F1(V )

∂V α
qm

∂F1(V )

∂V
β
−q−m

〉
. (C.48)

Substituting (C.47) and (C.48) in (C.46), we come to the identity (C.45).
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Next, we obtain explicit expressions for the derivatives in the identity (C.45). The free energy is given by (8.60):

F1(V ) = −T ln Tre−H(V )/T ,

where
H(V ) = H0 + 2

∑

qmα

V α
qmsα−q−m.

Differentiating, we have
∂F1(V )

∂V α
qm

= 2
Tr(sα−q−m e−H(V )/T )

Tre−H(V )/T
= 2sα−q−m(V ) (C.49)

and

∂2F1(V )

∂V α
qm∂V

β
−q−m

= − 4

T

Tr(sβ
qmsα−q−m e−H(V )/T )

Tre−H(V )/T

+ 4

T

Tr(sβ
qm e−H(V )/T )Tr(sα−q−m e−H(V )/T )

(Tre−H(V )/T )2

= − 4

T

((
s
β
qmsα−q−m

)
(V ) − s

β
qm(V )sα−q−m(V )

)
.

Averaging the latter over V and recalling (8.51), we come to

〈
∂2F1(V )

∂V α
qm∂V

β
−q−m

〉
= − 4

T

(〈sβ
qmsα−q−m〉 − 〈sβ

qm(V )sα−q−m(V )〉). (C.50)

Using (C.49) and (C.50), we write the right-hand side of (C.45) as

〈
∂2F1(V )

∂V α
qm∂V

β
−q−m

〉
− 1

T

〈
∂F1(V )

∂V α
qm

∂F1(V )

∂V
β
−q−m

〉
= − 4

T
〈sβ

qmsα−q−m〉. (C.51)

The energy of the field is given by (8.57):

F0(V ) = 1

ũ

∑

qmα

|V α
qm|2 = 1

ũ

∑

qmα

V α
qmV α−q−m.

Differentiating, we have
∂F0(V )

∂V α
qm

= 2V α−q−m

ũ
,

∂2F0(V )

∂V α
qm∂V

β
−q−m

= 2

ũ
δαβ . (C.52)

Substituting (C.51) and (C.52) in (C.45), we come to the relation

〈sα
qms

β
−q−m〉 = 1

ũ2 〈V α
qmV

β
−q−m〉 − T

2ũ
δαβ. (C.53)

Finally, we pass to the spin fluctuation using the well-known formula 〈ΔaΔb〉 = 〈ab〉 − 〈a〉〈b〉, where Δa = a − 〈a〉.
Writing the mean-field equation (8.54) in the Fourier representation

〈sα
qm〉 = − 1

ũ
〈V α

qm〉,

we obtain the relation between the spin and field correlators (C.44).
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C.5 Fourier Transformation of the Susceptibility

The Fourier transformation of the dynamic susceptibility is given by

χ(q, ω) =
∫∫

χ(r, t) e−i(qr−ωt) dr dt

and its inverse is given by

χ(r, t) = 1

V

∑

q

1

2π

∫
χ(q, ω) ei(qr−ωt) dω.

Here ω = ω + i0+, which ensures the convergence of the integral. Let us explain the origin of this infinitesimal shift.
An explicit expression for the dynamic susceptibility is obtained in the linear response theory in Sect. 2.2.2. Since the

field is turned on adiabatically, we have to multiply the left-hand side of (2.37) by eηt and the right-hand side by eηt ′ , both of
them vanish at −∞ for η > 0. Then, repeating the derivation, we obtain the magnetization

Mα(r, t) = i
∫∫ t

−∞

∑

β

〈[Mα(r, t − t ′),Mβ(r′)]〉Hβ(r′, t ′) e−η(t−t ′)dr′ dt ′.

Hence the linear response is
χαβ(q, t) = i

〈[Mα(q, t),Mβ(−q)]〉θ(t) e−ηt .

Making the Fourier transform, we obtain

χαβ(q, ω) = i
∫ ∞

0

〈[Mα(q, t),Mβ(−q)]〉 eiωt−ηt dt.

The magnetic field is turned on slowly, so η is a small positive number. Taking the limit, we have

χαβ(q, ω) = lim
η→0+ i

∫ ∞

0

〈[Mα(q, t),Mβ(−q)]〉 eiωt−ηt dt

≡ i
∫ ∞

0

〈[Mα(q, t),Mβ(−q)]〉 eiωt dt,

where ω = ω + i0+.
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DDynamic Susceptibility in the RPA

Here we derive two commutators that appear in the random phase approximation (RPA) expressions for the dynamic
susceptibility.

D.1 Longitudinal Susceptibility

Equation of motion (6.44) was used to calculate the longitudinal susceptibility. We consider the commutator [a†
kσ

ak+q,σ ,HI]
on the right-hand side of (6.44) and calculate it in the RPA. Here

HI = 1

2
Ũ
∑

klqσσ ′
a

†
kσ

a
†
lσ ′al+q,σ ′ak−q,σ

is the interaction part of the Hubbard Hamiltonian (4.6), where Ũ = U/N is the Fourier transform of the interaction constant.
The commutator and anticommutator

[A,B] = AB − BA, {A,B} = AB + BA,

satisfy the following relations:

[AB,C] = [A,C]B + A[B,C], [B,CD] = {B,C}D − C{B,D}. (D.1)

Introducing the notation

[
a

†
kσ

ak+q,σ ,HI
] = 1

2
Ũ
∑

k′k′′pσ ′σ ′′

[
a

†
kσ

ak+q,σ , a
†
k′σ ′a

†
k′′σ ′′ak′′+p,σ ′′ak′−p,σ ′

]

≡ 1

2
Ũ
∑

[AB,CDEF ],

and using relations (D.1), we evaluate the sum on the right-hand side as

∑
[AB,CDEF ]
=
∑

(A[B,CDEF ] + [A,CDEF ]B)

=
∑(

ACD[B,EF ]︸ ︷︷ ︸
=0

+A[B,CD]EF + CD[A,EF ]B + [A,CD]EFB︸ ︷︷ ︸
=0

)

=
∑(

A{B,C}DEF − AC{B,D}EF + CD{A,E}FB − CDE{A,F }B).

(D.2)
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In the second to the last line we used the anticommutation relations for the creation-annihilation operators (3.12). Further
use of the anticommutation relations (3.12), leads to expression (6.48):

[
a

†
kσ

ak+q,σ ,HI
] = 1

2
Ũ

( ∑

k′′pσ ′′
a

†
kσ

a
†
k′′σ ′′ak′′+p,σ ′′ak+q−p,σ

−
∑

k′pσ ′
a

†
kσ

a
†
k′σ ′ak+q+p,σ ak′−p,σ ′ +

∑

k′pσ ′
a

†
k′σ ′a

†
k−p,σ

ak′−p,σ ′ak+q,σ

−
∑

k′′pσ ′′
a

†
k+p,σ

a
†
k′′σ ′′ak′′+p,σ ′′ak+q,σ

)
. (D.3)

Next we apply the mean-field approximation to the right-hand side of (D.3). In the 1st term, we average the 1st operator
with 4th one, then 1st operator with 3rd one, then 2nd operator with 3rd one and finally 2nd operator with 4th one to obtain

∑

k′′pσ ′′
a

†
kσ

a
†
k′′σ ′′ak′′+p,σ ′′ak+q−p,σ

= n̄kσ

∑

k′′σ ′′
a

†
k′′σ ′′ak′′+q,σ ′′

������������������

− n̄kσ

∑

p

a
†
k−p,σ

ak+q−p,σ

+ a
†
kσ

ak+q,σ

∑

k′′σ ′′
n̄k′′σ ′′

. . . . . . . . . . . . . . . . . . . . .

− a
†
kσ

ak+q,σ

∑

k′′
n̄k′′σ , (D.4)

where we used 〈
a

†
kσ

ak′σ ′
〉 = n̄kσ δkk′δσσ ′ .

Applying the mean-field approximation to the 2nd term, we have

−
∑

k′pσ ′
a

†
kσ

a
†
k′σ ′ak+q+p,σ ak′−p,σ ′

= −n̄kσ

∑

p

a
†
k+p,σ

ak+q+p,σ + n̄kσ

∑

k′σ ′
a

†
k′σ ′ak′+q,σ ′

����������������

− a
†
kσ

ak+q,σ

∑

k′
n̄k′σ + a

†
kσ

ak+q,σ

∑

k′σ ′
n̄k′σ ′

. . . . . . . . . . . . . . . . . . . .

. (D.5)

We see that (D.4) and (D.5) coincide (equal terms are marked with lines of the same type). Similarly, applying the mean-field
approximation to the 3rd term, we obtain

∑

k′pσ ′
a

†
k′σ ′a

†
k−p,σ

ak′−p,σ ′ak+q,σ

= n̄k+q,σ

∑

p

a
†
k−p,σ

ak+q−p,σ − a
†
k,σ

ak+q,σ

∑

k′σ ′
n̄k′σ ′

. . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . .

+ a
†
kσ

ak+q,σ

∑

p

n̄k−p,σ − n̄k+q,σ

∑

k′σ ′
a

†
k′σ ′ak′+q,σ ′

�������������������

�������������������

. (D.6)
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Applying the mean-field approximation to the 4th term, we have

−
∑

k′′pσ ′′
a

†
k+p,σ

a
†
k′′σ ′′ak′′+p,σ ′′ak+q,σ

= −n̄k+q,σ

∑

k′′σ ′′
a

†
k′′σ ′′ak′′+q,σ ′′

���������������������

���������������������

+ a
†
kσ

ak+q,σ

∑

p

n̄k+p,σ

− a
†
k,σ

ak+q,σ

∑

k′′σ ′′
n̄k′′σ ′′

. . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . .

+ n̄k+q,σ

∑

p

a
†
k+p,σ

ak+q+p,σ . (D.7)

Expressions (D.6) and (D.7) coincide (equal terms are marked with lines of the same type). Making use of

∑

p

a
†
k+p,σ

ak+p+q,σ ′ =
∑

k

a
†
kσ

ak+q,σ ′ , (D.8)

we see that (D.4) and (D.5) can be written as

∑

k′′pσ ′′
a

†
kσ

a
†
k′′σ ′′ak′′+p,σ ′′ak+q−p,σ = n̄kσ

∑

k′
a

†
k′σ̄ ak′+q,σ̄ + Nσ̄ a

†
kσ

ak+q,σ .

Similarly, (D.6) and (D.7) can be written as

∑

k′pσ ′
a

†
k′σ ′a

†
k−p,σ

ak′−p,σ ′ak+q,σ = −Nσ̄ a
†
kσ

ak+q,σ − n̄k+q,σ

∑

k′
a

†
k′σ̄ ak′+q,σ̄ .

Thus, we are left with only two terms in the commutator (D.3) and come to expression (6.49):

[
a

†
kσ

ak+q,σ ,HI
] = Ũ (n̄kσ − n̄k+q,σ )

∑

k′
a

†
k′σ̄ ak′+q,σ̄ .

D.2 Transverse Susceptibility

The equation of motion (6.53) was used to calculate the transverse susceptibility. We consider the commutator
[a†

k↓ak+q,↑,HI] on the right-hand side of (6.53) and calculate it in the RPA. Using (D.1) just as in (D.2), we obtain

[
a

†
k↓ak+q,↑,HI

] = 1

2
Ũ

( ∑

k′′pσ ′′
a

†
k↓a

†
k′′σ ′′ak′′+p,σ ′′ak+q−p,↑

−
∑

k′pσ ′
a

†
k↓a

†
k′σ ′ak+q+p,↑ak′−p,σ ′ +

∑

k′pσ ′
a

†
k′σ ′a

†
k−p,↓ak′−p,σ ′ak+q,↑

−
∑

k′′pσ ′′
a

†
k+p,↓a

†
k′′σ ′′ak′′+p,σ ′′ak+q,↑

)
. (D.9)

Next we apply the mean-field approximation to the right-hand side of (D.9). In the 1st term, we average the 1st operator
with 4th one, then 1st operator with 3rd one, then 2nd operator with 3rd one and then 2nd operator with 4th one to obtain
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∑

k′′pσ ′′
a

†
k↓a

†
k′′σ ′′ak′′+p,σ ′′ak+q−p,↑

= −n̄k↓
∑

p

a
†
k−p,↓ak+q−p,↑ + a

†
k↓ak+q,↑

∑

k′′σ ′′
n̄k′′σ ′′

����������������

− a
†
k↓ak+q,↑

∑

k′′
n̄k′′↑. (D.10)

Applying the mean-field approximation to the 2nd term, we have

−
∑

k′pσ ′
a

†
k↓a

†
k′σ ′ak+q+p,↑ak′−p,σ ′

= −n̄k↓
∑

p

a
†
k+p,↓ak+q+p,↑ − a

†
k↓ak+q,↑

∑

k′
n̄k′↑ + a

†
k↓ak+q,↑

∑

k′σ ′
n̄k′σ ′

���������������

. (D.11)

Applying the mean-field approximation to the 3rd term, we have

∑

k′pσ ′
a

†
k′σ ′a

†
k−p,↓ak′−p,σ ′ak+q,↑

= n̄k+q,↑
∑

p

a
†
k−p,↓ak+q−p,↑ − a

†
k↓ak+q,↑

∑

k′σ ′
n̄k′σ ′

���������������

���������������

+ a
†
k↓ak+q,↑

∑

p

n̄k−p,↓. (D.12)

Applying the mean-field approximation to the 4th term, we have

−
∑

k′′pσ ′′
a

†
k+p,↓a

†
k′′σ ′′ak′′+p,σ ′′ak+q,↑

= a
†
k↓ak+q,↑

∑

p

n̄k+p,↓ − a
†
k↓ak+q,↑

∑

k′′σ ′′
n̄k′′σ ′′

����������������

����������������

+ n̄k+q,↑
∑

p

a
†
k+p,↓ak+q+p,↑. (D.13)

Using relation (D.8), we see that both (D.10) and (D.11) are equal to

∑

k′′pσ ′′
a

†
k↓a

†
k′′σ ′′ak′′+p,σ ′′ak+q−p,↑ = −n̄k↓

∑

k′
a

†
k′↓ak′+q,↑ + N↓a

†
k↓ak+q,↑.

Similarly, (D.12) and (D.13) are equal to

∑

k′pσ ′
a

†
k′σ ′a

†
k−p,↓ak′−p,σ ′ak+q,↑ = n̄k+q,↑

∑

k′
a

†
k′↓ak′+q,↑ − N↑a

†
k↓ak+q,↑.

Thus, we write (D.9) in the form

[
a

†
k↓ak+q,↑,HI

] = −Ũ (n̄k↓ − n̄k+q,↑)
∑

k′
a

†
k′↓ak′+q,↑ + Ũ (N↓ − N↑)a

†
k↓ak+q,↑,

which coincides with expression (6.57).



EProofs of Four Results in the DSFT

E.1 From Grand Canonical to Canonical Ensemble

We typically use the grand canonical ensemble to derive formulae in the many-body theory, and then switch to canonical
ensemble in calculations for real metals. In the grand canonical ensemble all the characteristics are determined by the
Hamiltonian H′ = H − μN , where H is the Hamiltonian in the canonical ensemble, μ is the chemical potential and N
is the number of electrons operator. In particular, the one-electron part of the Hamiltonian H′

0 = H0 − μN can be written as

H′
0 =
∑

νkσ

(εk − μ)nνkσ ≡
∑

νkσ

ξknνkσ .

Clearly, the energy spectrum ξk of H′
0 is obtained by shifting the spectrum εk of H0 to the left by the chemical potential μ.

Therefore, to obtain the electron density of states in the canonical ensemble ν(ε) from the electron density of states in the
grand canonical ensemble ν′(ε), we need to shift the energy scale by μ to the right: νσ (ε) = ν′

σ (ε−μ). The same rule works
for the mean single-site Green function and coherent potential: gσ (ε) = g′

σ (ε − μ) and Σσ (ε) = Σ ′
σ (ε − μ).

The mean single-site Green function in the grand canonical ensemble is given by formula (10.10):

g′
σ (ε) =

∫
ν′(ε′)

ε − ε′ − Σ ′
σ (ε)

dε′. (E.1)

Shifting the energy variable ε by μ, we have

g′
σ (ε − μ) =

∫
ν′(ε′)

ε − μ − ε′ − Σ ′
σ (ε − μ)

dε′.

Changing the dummy variable to ε̃ = ε′ + μ, we obtain

g′
σ (ε − μ) =

∫
ν′(ε̃ − μ)

ε − ε̃ − Σ ′
σ (ε − μ)

dε̃.

Recalling that gσ (ε) = g′
σ (ε − μ), νσ (ε) = ν′

σ (ε − μ) and Σσ (ε) = Σ ′
σ (ε − μ), we come to the expression in the canonical

ensemble

gσ (ε) =
∫

ν(ε̃)

ε − ε̃ − Σσ (ε)
dε̃.

Thus, the relation between the mean single-site Green function, the electron density of states and coherent potential in the
canonical ensemble is the same as the one in the grand canonical ensemble.
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E.2 Single-Site Coherent Potential

In Chap. 10 we presented a method of calculating the Green function based on the single-site quasistatic approximation. Here
we derive an expression for the corresponding coherent potential following the paper [1].

The single-site approximation of Eq. (9.44) gives the coherent-potential equation (10.36):

ΔΣ(ε) = 〈[1 + (Σ(ε) − V )g(ε)]−1ΔV 〉, (E.2)

where ΔΣ(ε) = Σ(ε) − V̄ . Calculating the inverse 2 × 2-matrix, we write (E.2) as

ΔΣ =
〈

1

det D + det N
(D̃ − N)(ΔV D + ΔV N)

〉
, (E.3)

where

D =
(

1 + (Σ1 − V1)g1 0
0 1 + (Σ2 − V2)g2

)
, N =

(
0 −V−g2

−V+g1 0

)
,

ΔV D =
(

ΔV1 0
0 ΔV2

)
, ΔV N =

(
0 V−

V+ 0

)
,

(E.4)

matrix D̃ is obtained from the matrix D by swapping its diagonal elements, V1 = Vz, V2 = −Vz and V± = Vx ± iVy . In the
second-order perturbation theory with respect to ΔV , we can neglect the term det N = −V+V−g1g2 in the denominator of
(E.3). Then

ΔΣ =
〈

1

det D
D̃ΔV D

〉
−
〈

1

det D

〉
〈NΔV N〉. (E.5)

Consider the first term, i.e. the contribution from the fluctuation of Vz. Taking (E.4) into account, we have

ΔΣz =
〈

1

det D
D̃ΔV D

〉
= 〈D−1ΔV D〉

=
〈([1 + (Σ1 − V1)g1]−1ΔV1 0

0 [1 + (Σ2 − V2)g2]−1ΔV2

)〉

or, equivalently,

ΔΣz
i =
〈

ΔVi

1 + (Σi − Vi)gi

〉

=
〈 [1 + (Σi + Vi)gi]ΔVi

[1 + (Σi − Vi)gi][1 + (Σi + Vi)gi]
〉

, i = 1, 2. (E.6)

Since the denominator is an even function of Vi , we split (E.6) by the formula [2]

〈V 2n+1
z 〉 � 〈V 2n

z 〉〈Vz〉 � 〈V 2
z 〉n〈Vz〉, n = 0, 1, 2, . . . (E.7)

and keep the terms up to the second order with respect to ΔVi . Then, taking 〈ΔVi〉 = 0 into account, we obtain

ΔΣz
i = 〈[1 + (2〈Vi〉 + ΔΣi + ΔVi)gi]ΔVi〉

〈[1 + (ΔΣi − ΔVi)gi][1 + (2〈Vi〉 + ΔΣi + ΔVi)gi]〉

= 〈ΔVigiΔVi〉
1 + 2〈Vi〉gi

+ o(〈ΔV 2
z 〉)
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or

ΔΣz
σ (ε) = gσ (ε)〈ΔV 2

z 〉
1 + 2σ 〈Vz〉gσ (ε)

, σ = ±1. (E.8)

Now we consider the second term in (E.5), i.e. the transverse fluctuation ΔV 2⊥ = ΔV 2
x + ΔV 2

y contribution. Taking (E.4)
into account, we have

ΔΣ⊥
σ (ε) =

〈
1

det D

〉
〈V+V−gσ̄ 〉 =

〈
1

det D

〉
gσ̄ (ε)〈ΔV 2⊥〉, σ̄ ≡ −σ . (E.9)

In 〈1/ det D〉 we separate the zero-order term with respect to ΔV . To do that, we transform it so that the denominator
becomes an even function of Vz, just as we did with ΔΣz

i :

〈
1

det D

〉
=
〈
∏

i

1

1 + (Σi − Vi)gi

〉

=
〈
∏

i

1 + (Σi + Vi)gi

[1 + (Σi − Vi)gi][1 + (Σi + Vi)gi]

〉
,

and apply the splitting (E.7) to obtain

〈
1

det D

〉
=

〈∏
i

[1 + (2〈Vi〉 + ΔΣi + ΔVi)gi]
〉

〈∏
i

[1 + (ΔΣi − ΔVi)gi][1 + (2〈Vi〉 + ΔΣi + ΔVi)gi]
〉

=
∏
i

(1 + 2〈Vi〉gi)

∏
i

(1 + 2〈Vi〉gi)
+ o(〈ΔV 2

z 〉) = 1 + o(〈ΔV 2
z 〉).

Using the latter, we write (E.9) as
ΔΣ⊥

σ (ε) = gσ̄ (ε)〈ΔV 2⊥〉. (E.10)

Substituting (E.8) and (E.10) in (E.5), we finally obtain

ΔΣσ (ε) = gσ (ε)〈ΔV 2
z 〉

1 + 2σ 〈Vz〉gσ (ε)
+ gσ̄ (ε)〈ΔV 2⊥〉.

E.3 Higher-Order Correction Coefficient

We consider the third-order term Tr
(
GΔV GΔV GΔV

)
in the renormalized Gaussian approximation of the DSFT. Here the

underbrace means the Gaussian average

(· · ·ΔV · · · ΔV · · · ) =
∫ (· · · ΔV · · · ΔV · · · )p(2)(V ) DV, (E.11)

where p(2)(V ) ∝ exp(−F (2)(V )/T ) the probability density. Our goal is to derive the splitting formula1

1A simpler, and probably sufficient, splitting formula is

Tr
(
ḠΔV ḠΔV ḠΔV

)
= (Tr1)−1Tr

(
ḠΔV ḠΔV

)
Tr
(
ḠΔV
)
,
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Tr
(
ḠΔV ḠΔV ḠΔV

)
≈ πT

W

1

2NdN
Tr
(
ḠΔV ḠΔV

)
Tr(ḠΔV ) ≡ ηTr(ḠΔV ).

First, we separate the spin-dependent part. Using

Ḡ =
∑

γ=0,z

Ḡγ σ γ , V =
∑

α=x,y,z

V ασα,

we write

Tr
(
ḠΔV ḠΔV ḠΔV

)
=
∑

γ1γ2γ3
α1α2α3

Tr
(
Ḡγ1ΔV α1Ḡγ2ΔV α2Ḡγ3ΔV α3

)

× Sp
(
σγ1σα1σγ2σα2σγ3σα3

)
. (E.12)

Now we transform the first product term in (E.12). In the momentum-“frequency” representation, we have

Ḡ
γ

kk′nn′ = Ḡ
γ

kn
δkk′δnn′, V α

kk′nn′ = V α
k−k′, n−n′ .

Hence

Tr
(
Ḡγ1ΔV α1Ḡγ2ΔV α2Ḡγ3ΔV α3

)

= Nd

∑

kk1k2
nn1n2

Ḡ
γ1
kn

ΔV
α1
k−k1
n−n1

Ḡ
γ2
k1n1

ΔV
α2
k1−k2
n1−n2

Ḡ
γ3
k2n2

ΔV
α3
k2−k
n2−n

. (E.13)

Introducing the new summation indices

q1 = k − k1, q2 = k1 − k2, q3 = k2 − k,

m1 = n − n1, m2 = n1 − n2, m3 = n2 − n,

we write

Tr
(
Ḡγ1ΔV α1Ḡγ2ΔV α2Ḡγ3ΔV α3

)

= Nd

∑

kq1q2q3
nm1m2m3

Ḡ
γ1
kn

ΔV α1
q1m1

Ḡ
γ2
k−q1
n−m1

ΔV α2
q2m2

Ḡ
γ3
k−q1−q2
n−m1−m2

ΔV α3
q3m3

= Nd

∑

kq1q2q3
nm1m2m3

Ḡ
γ1
knḠ

γ2
k−q1
n−m1

〈ΔV α1
q1m1

ΔV α2
q2m2

〉Ḡγ3
k−q1−q2
n−m1−m2

ΔV α3
q3m3

, (E.14)

where q1 + q2 + q3 = 0 and m1 + m2 + m3 = 0. Making use of

〈ΔV α1
q1m1

ΔV α2
q2m2

〉 = 〈|ΔV α1
q1m1

|2〉δq1,−q2δm1,−m2δα1α2 ,

where

Tr1 = Nd

∫ 1/T

0

∑

j

Spσ 0dτ = 2NdN/T .
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we write (E.14) as

Tr
(
Ḡγ1ΔV α1Ḡγ2ΔV α2Ḡγ3ΔV α3

) = Nd

∑

kqnm

Ḡ
γ1
kn

Ḡ
γ2
k−q
n−m

〈|ΔV α1
qm|2〉Ḡγ3

kn
ΔV

α3
00 . (E.15)

Replacing the mean Green functions by their single-site approximation,

Ḡ
γ1
kn ≈ gγ1(ωn), Ḡ

γ2
k−q,n−m ≈ gγ2(ωn − ωm),

we obtain
Tr
(
Ḡγ1ΔV α1Ḡγ2ΔV α2Ḡγ3ΔV α3

) = NdN
∑

qnm

g
γ1
n g

γ2
n−m〈|ΔV α1

qm|2〉gγ3
n ΔV

α3
00 (E.16)

This completes the splitting in the momenta.
To split (E.16) in “frequencies”, first we replace the summation in n by the integration over the energy variable with the

Fermi function f (ε):

∑

n

g
γ1
n g

γ2
n−mg

γ3
n = 1

πT

∫
f (ε)Im(gγ1(ε)gγ2(ε − iωm)gγ3(ε)) dε

= 1

πT

∫ W

0
f (ε)Im(gγ1(ε)gγ2(ε − iωm)gγ3(ε)) dε, (E.17)

where W is the band-width. Replacing the first two product terms in the integrand gγ1(ε)gγ2(ε − iωm) by the average

{gγ1(ε)gγ2(ε − iωm)} ≡ 1

W

∫ W

0
f (ε)Im(gγ1(ε)gγ2(ε − iωm)) dε,

we write (E.17) as

∑

n

g
γ1
n g

γ2
n−mg

γ3
n = 1

πT

∫ W

0
f (ε){gγ1(ε)gγ2(ε − iωm)}Imgγ3(ε) dε

=
(

1

W

∫ W

0
f (ε)Im(gγ1(ε)gγ2(ε − iωm)) dε

)
1

πT

∫ W

0
f (ε)Imgγ3(ε) dε.

Returning to the sum over “frequencies”, we obtain

∑

n

g
γ1
n g

γ2
n−mg

γ3
n = πT

W

∑

n

g
γ1
n g

γ2
n−m

∑

n′
g

γ3
n′ . (E.18)

Finally, substituting the latter in (E.16), we have

Tr
(
Ḡγ1ΔV α1Ḡγ2ΔV α2Ḡγ3ΔV α3

)

= πT

W

∑

qnm

g
γ1
n g

γ2
n−m〈|ΔV α1

qm|2〉δα1α2

(
NdN
∑

n′
g

γ3
n′ ΔV

α3
00

)

= πT

W

1

NdN
Tr
(
Ḡγ1ΔV α1Ḡγ2ΔV α2

)
Tr
(
Ḡγ3ΔV α3

)
. (E.19)

Now we carry out the splitting over spin in (E.12), using the approximation

Sp
(
σγ1σα1σγ2σα2σγ3σα3

) ≈ 1

2
Sp
(
σγ1σα1σγ2σα2

)
Sp
(
σγ3σα3

)
, (E.20)
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which correlates with the approximations made above. Then (E.12) becomes

Tr
(
ḠΔV ḠΔV ḠΔV

)

= πT

W

1

2NdN

∑

γ1γ2
α1α2

Tr
(
Ḡγ1ΔV α1Ḡγ2ΔV α2

)
Sp
(
σγ1σα1σγ2σα2

)

×
∑

γ3α3

Tr
(
Ḡγ3ΔV α3

)
Sp
(
σγ3σα3

)

= πT

W

1

2NdN
Tr
(
ḠΔV ḠΔV

)
Tr
(
ḠΔV
)
. (E.21)

The correction coefficient

η ≡ πT

W

1

2NdN
Tr
(
ḠΔV ḠΔV

)

is calculated by the formula [3]

η = − π

WNd

∑

α

χ̀α
L (0)〈|ΔVα|2〉′,

where

χ̀α
L (0) = −Nd

π

∑

γ1γ2

∫
Im
(
gγ1(ε)gγ2(ε)

)
Sp
(
σγ1σασγ2σα

)
f (ε) dε

is the static local susceptibility in the Gaussian approximation.

E.4 Uniform Spin Fluctuations

In Sect. 11.2.2 we improved the effect of nonlocality in the site-diagonal mean Green function by taking into account uniform
fluctuations. Following [3,4], here we derive the approximation of the field Ṽ by a field that takes just two values ±V̄z, which
is used to obtain formula (11.18).

To explain the main idea of the interpolation, let first V be a scalar fluctuating field with the probability density p(V ),
so that the average of a function f (V ) is 〈f (V )〉 = ∫ f (V )p(V ) dV . Our goal is to approximate the initial continuous
distribution by a discrete one that takes two symmetric values ±v with the probabilities P(±v), so that the integral could be
performed as 〈f (V )〉 ≈ P(−v)f (−v) + P(v)f (v).

We use the splitting 〈V 2n〉 ≈ 〈V 2〉n and 〈V 2n+1〉 ≈ 〈V 2〉n〈V 〉 [2], so that the power series expansion of the function
f (V ) about the origin can be written as

〈f (V )〉 ≈ f (0) + f ′(0)〈V 〉 + 1

2!f
′′(0)〈V 2〉 + 1

3!f
′′′(0)〈V 2〉〈V 〉 + 1

4!f
(4)(0)〈V 2〉2 + · · · (E.22)

Hence, expressing f (V ) as the sum of its even and odd parts, we have

〈f (V )〉 =
〈
f (V ) + f (−V )

2

〉
+
〈
f (V ) − f (−V )

2V
V

〉

≈ f (v) + f (−v)

2
+ f (v) − f (−v)

2v
〈V 〉,

where v = √〈V 2〉. Rearranging the expression on the right-hand side, we come to

〈f (V )〉 ≈
∑

σ ′

1

2

(
1 + 〈V 〉

σ ′v

)
f (σ ′v). (E.23)
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From (E.22) we see that the splitting affects only higher-order terms of the function f (V ) keeping the first moment 〈V 〉 and
second moment v2 = 〈V 2〉 of the initial field unchanged. Since v2 = 〈V 〉2 +〈ΔV 2〉, the approximation (E.23) is completely
described by the mean 〈V 〉 and variance 〈ΔV 2〉 of the initial field.

Similar to (E.23), we approximate the average

g̃(ε) ≡ 〈 g0(ε − Ṽ − ΔΣ(ε, Ṽ ))
〉
,

where g0(ε) is the single-site zeroth Green function, Ṽ = ∑α Ṽασα is the uniform fluctuating field and ΔΣ(ε, Ṽ ) is the
fluctuational contribution to the self-energy. Recalling that V̄σ = σ V̄z, we write

g̃σ (ε) ≈
∑

σ ′
Pσσ ′g0(ε − σ ′v − ΔΣσ (ε, σ ′v)), (E.24)

where Pσσ ′ = 1
2 (1 + (σ V̄z)/(σ

′v)) and v = (V̄ 2
z + 〈ΔV 2

x 〉 + 〈ΔV 2
y 〉 + 〈ΔV 2

z 〉)1/2.
Note that, for large V , the exact distribution p(V ) ∝ exp(−F(V )/T ) is spherically symmetric and does not depend on the

electronic structure. The RGA distribution p(2)(V ) is shifted by V̄ (in the ferromagnetic case). The discrete approximation
(E.24) of the field V is constructed so that it restores the symmetry with respect to the origin.
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FBasic Approximations in Scattering Theory

In this chapter we present two important applications of the first-order perturbation theory to neutron scattering in a crystal.
For a more general treatment of the perturbation theory and scattering theory, see, e.g. [1–6].

F.1 Fermi’s Golden Rule

The scattering process is described by the time-dependent Hamiltonian

H(t) = H0 + V (t),

where H0 is the Hamiltonian of the neutron and crystal without interaction between them, and V (t) is the interaction
potential. The potential V (t) = ηW(t) is considered as a perturbation, where η 	 1 is a small parameter. For t < 0
we have V (t) ≡ 0 and at t = 0 the potential begins to act on the system.

We assume that, for t < 0, the system is in one of the stationary states ψm of the unperturbed Hamiltonian:

H0ψm = Emψm,

where m stands for (k, σ, λ). When t > 0 the system evolves according to the time-dependent Shrödinger equation

ih̄
∂ψ(t)

∂t
= (H0 + V (t))ψ(t) (F.1)

with the initial condition ψ(0) = ψm. The wave function ψ(t) can be represented as a superposition

ψ(t) =
∑

n

cn(t)ψn, (F.2)

where the initial values of coefficients cn(0) are all zero except for cm(0) = 1. The probability Pm→m′(t) of finding the
system in a stationary state ψm′ at a time t > 0 is equal to |cm′(t)|2. Then the transition probability per unit time is given by

wm→m′ = d

dt
Pm→m′ = d

dt
|cm′(t)|2. (F.3)

First we make use of the nonstationary perturbation theory to calculate the coefficient cm′(t) to the first order in V (t), and
then we obtain an asymptotic expression for wm→m′ at large t that corresponds to the stationary scattering process.

We substitute expansion (F.2) to Eq. (F.1) and take the inner product of both sides with ψm′ . Making use of orthogonality,
we come to

ih̄
d

dt
cm′(t) = Em′cm′(t) +

∑

n

Vm′n(t)cn(t), (F.4)
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where Vm′n(t) = (ψm′ , V (t)ψn) is the matrix element. We seek the solution of equation (F.4) as a series in the small
parameter η:

cm′(t) = c
(0)

m′ (t) + ηc
(1)

m′ (t) + · · · (F.5)

Substituting the latter in (F.4) and collecting the terms of the same order in η, we obtain

ih̄
d

dt
c
(0)

m′ (t) = Em′c(0)

m′ (t) (F.6)

and

ih̄
d

dt
c
(s)

m′ (t) = Em′c(s)

m′ (t) +
∑

n

Wm′n(t)c
(s−1)
n (t) (F.7)

for s = 1, 2, . . . Integrating equation (F.6) and taking the initial condition ψ(0) = ψm into account, we have

c
(0)

m′ (t) = δm′m e−iEm′ t/h̄. (F.8)

Substitution of (F.8) in (F.7) at s = 1 leads to

ih̄
d

dt
c
(1)

m′ (t) = Em′c(1)

m′ (t) + Wm′m(t) e−iEmt/h̄. (F.9)

Integrating this equation, we obtain

c
(1)

m′ (t) =
(

− i

h̄

∫ t

0
Wm′m(τ) eiωm′mτ dτ

)
e−iEm′ t/h̄, (F.10)

where h̄ωm′m = Em′ − Em. Substituting (F.8) and (F.10) in (F.5) and keeping only the terms up to the first order in V (t) =
ηW(t), we write

cm′(t) =
(

δm′m − i

h̄

∫ t

0
Vm′m(τ) eiωm′mτ dτ

)
e−iEm′ t/h̄. (F.11)

It is often convenient to consider scattering as a stationary process, i.e. as a continuous flux of incoming particles that
is transformed into a flux of scattered particles. The density of the particles in the flux must be sufficiently low for the
interaction between the incident particles to be negligibly small. In the stationary treatment, the scattering problem consists
in calculation of the flux of scattered particles at an infinitely great distance from the scattering system. In this case, we can
assume that the scattering potential is time-independent, V (t) ≡ V , which considerably simplifies calculating the transition
probability Pm→m′(t) = |cm′(t)|2. Using expression (F.11), for m′ �= m we obtain

Pm→m′(t) = 1

h̄2
|Vm′m|2

∣∣∣∣
∫ t

0
eiωm′mτ dτ

∣∣∣∣
2

= 2πt

h̄2
|Vm′m|2 f (ωm′m, t), (F.12)

where

f (ω, t) = 1

2πt

(
sin(ωt/2)

ω/2

)2

. (F.13)

Figure F.1 shows the variation of the function f (ω, t) with respect to ω, when t is fixed. Using sin x ≈ x for small
x = ωt/2, at ω = 0 we have

f (0, t) = t

2π
→ ∞, t → ∞,

and at ω �= 0 we have
f (ω, t) → 0, t → ∞.

Calculating the integral of f (ω, t), we obtain

∫
f (ω, t) dω = 1

2πt

∫ (
sin(ωt/2)

ω/2

)2

dω = 1

π

∫
sin2 x

x2 dx = 1.



F.2 The Born Approximation 261

Fig. F.1 The graph of the
function (F.13) for a fixed t

−4π/t 2π/t 4π/t−2π/t 0 ω

f(ω,t)

Thus, for large t the function f (ω, t) can be approximated by the δ-function. Using formula (F.12), we come to the asymptotic
formula for large t :

Pm→m′(t) = 2πt

h̄2
|Vm′m|2 δ(ωm′m) = 2πt

h̄
|Vm′m|2 δ(Em′ − Em).

Taking formula (F.3) into account, we write the transition probability per unit time as

wm→m′ = 2π

h̄
|Vm′m|2δ(Em′ − Em). (F.14)

This relation is known as Fermi’s golden rule (see, e.g. [3, 5, 6]).

F.2 The Born Approximation

Calculation of the matrix element Vm′m in Fermi’s golden rule requires further approximations. In this section we show that,
in the first-order perturbation theory, it is sufficient to use plane waves as the neutron wave functions.

The neutron wave function ψk(r) satisfies the stationary Schrödinger equation

(∇2 + k2)ψk(r) = 2m

h̄2 V (r)ψk(r), k2 = 2mE

h̄2 , E > 0, (F.15)

where m is the mass of a neutron. Assuming that the interaction range of the potential V (r) is bounded (r ≤ d), we wish to
obtain the asymptotic form of the solution of equation (F.15) at large distances (r � d).

First, we convert the Schödinger equation (F.15) to an integral equation. Introducing the Green function G(r, r′) as the
solution to

(∇2 + k2)G(r, r′) = δ(r − r′), (F.16)

we write Eq. (F.15) as1

ψk(r) = ψ
(0)
k (r) + 2m

h̄2

∫
G(r, r′)V (r′)ψk(r′) dr′, (F.17)

1Applying the operator ∇2 + k2 to both sides of the integral equation (F.17) and taking relation (F.16) into account, we come to the original
equation (F.15).
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where ψ
(0)
k (r) = eikr is the wave function of the free neutron. Treating the potential V (r) as a small perturbation, we can

write
ψk(r) = ψ

(0)
k (r) + ψ

(1)
k (r) + · · · , (F.18)

where ψ
(1)
k (r) is the first-order term in V (r). Substituting this in (F.17) and omitting the second-order terms, we obtain

ψ
(1)
k (r) = 2m

h̄2

∫
G(r, r′)V (r′)ψ(0)

k (r′) dr′. (F.19)

For the elastic scattering (momenta of the incident and scattered neutron have equal modulus: k = k′), asymptotic
expression for the wave function ψk(r) is obtained as follows. The Green function is given by (see, e.g. [4, Appendix VI])

G(r, r′) = − 1

4π |r − r′|eik|r−r′|. (F.20)

At large distances (r � d), we can write k|r − r′| ≈ kr
√

1 − 2rr′/r2 ≈ kr − k′r′, where k′ = kr′/r ′. In the denominator
of (F.20) we assume |r − r′| ≈ r . Then the function (F.19) becomes

ψ
(1)
k (r) = −2m

h̄2

eikr

r

∫
e−ik′r′

V (r′) eikr′
dr′

= −2m

h̄2

eikr

r
Vκ ,

where

Vκ =
∫

V (r) e−iκr dr

is the Fourier transform of the potential and κ = k − k′ is the scattering vector. The first-order approximation of the wave
function (F.18) is finally given by

ψk(r) = eikr + A(Ω ′) eikr

r
, (F.21)

where
A(Ω ′) = − m

2πh̄2 V−κ (F.22)

is the scattering amplitude and Ω ′ is the scattering angle. The first term in (F.21) describes the neutron before the scattering
and the second term describes the scattered neutron at large distances. Expression (F.22) is called the Born approximation
for the scattering amplitude.

Finally, we calculate the first-order approximation, or the Born approximation, of the matrix element over neutron states
in formula (F.14):

〈k′| V |k〉 =
∫

ψ∗
k′(r)V (r)ψk(r) dr.

Since the second term in (F.18) is of first order in V , it is sufficient to keep only the first term, i.e. the plain wave (normalized
to the volume of the crystal V). Then

〈k′| V |k〉 = 1

V

∫
e−ik′r V (r) eikr dr = 1

V V−κ . (F.23)

In other words, the first-order approximation of the matrix element 〈k′| V |k〉 is proportional to the Fourier transform of the
potential V−κ .
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GLattice Vibrations in the Harmonic
Approximation

Here we present necessary facts about the quantum lattice vibrations (phonons) in the harmonic approximation [1]. A more
detailed presentation of phonons and their applications can be found in [2–6]. First, we obtain an expression for displacement
of an atom in a crystal lattice from its equilibrium position. We start with the classical mechanics treatment of the normal
modes and then show how they are quantized. Next, we prove that normal modes have the Gaussian probability distribution.
Finally, we present the Debye model and apply it to calculate sums over the normal modes. As an illustration, we calculate
the Debye-Waller factor (DWF) in the Debye model.

G.1 Normal Modes and Their Quantization

In the harmonic approximation, the classical Hamiltonian of a three-dimensional crystal lattice is (see, e.g. [6])

H =
∑

j

p2
j

2M
+ 1

2

∑

jj ′
uj · Djj ′uj ′, (G.1)

where M is the mass of an atom, pj is the momentum of the j th atom, uj is the displacement of the j th atom from its
equilibrium position and Djj ′ is the 3 × 3-matrix of the form

Djj ′ = ∂2U

∂uj ∂uj ′

∣∣∣∣
u=0

. (G.2)

Here U = U(u1, . . . , uN) is the potential energy, which attains its minimum at the equilibrium u = 0. From the Hamiltonian
system,

dpj

dt
= − ∂H

∂uj

,
duj

dt
= ∂H

∂pj

,

we obtain the equation of motion

M
d2uj

dt2 = −
∑

j ′
Djj ′uj ′ . (G.3)

We seek a particular solution in the form
ujq(t) = QqeqeiqRj −iωqt , (G.4)

where eq is the polarization vector, Qq is the (complex) amplitude and ωq is the frequency of the oscillation. The wave
determined by (G.4) is called the normal mode. Substituting expression (G.4) in (G.3), we obtain

Mω2
qeq =

∑

j ′
Djj ′eqe−iqRj−j ′ . (G.5)
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Due to homogeneity of the crystal, the matrix Djj ′ depends only on the distance between the sites: Djj ′ = Dj−j ′ . Hence its
Fourier transform is a diagonal matrix with the elements (for details, see Appendix C.1)

Dq =
∑

j ′
Djj ′e−iqRj−j ′ =

∑

j ′
Dj−j ′e−iqRj−j ′ (G.6)

at the diagonal. Substituting (G.6) in (G.5), we see that eq is an eigenvector of Dq:

Dqeq = Mω2
qeq.

Since the matrix (G.2) is symmetric, its eigenvalues are real and its eigenvectors eqi , i = 1, 2, 3, can be chosen such that
they form an orthonormal basis in the three-dimensional space,

Dqeqi = Mω2
qieqi , i = 1, 2, 3. (G.7)

We can also choose eqi such that e−qi = eqi . Each of the vectors eqi determines the direction of the normal mode oscillation
with the frequency ωqi . The general solution to Eq. (G.3) is given by the superposition

uj (t) = N−1/2
∑

qi

Qqieqie
iqRj −iωqi t , (G.8)

where the summation over q is carried out over the Brillouin zone. Then the momentum is written as

pj (t) = N−1/2
∑

qi

Pqieqie
iqRj −iωqi t . (G.9)

Since the displacement (G.8) and momentum (G.9) are real quantities, the Fourier coefficients Pqi and Qqi satisfy P−qi =
P ∗

qi and Q−qi = Q∗
qi .

We use Pqi and Qqi as new coordinates, in which the system becomes an ensemble of independent oscillators. Substituting
expressions (G.8) and (G.9) at t = 0 in the Hamiltonian (G.1) and using the identity

∑

j

ei(q+q′)Rj = Nδq′,−q, (G.10)

we write the first term of (G.1) as

H0 = 1

2M

∑

qii′
PqiP−qi′eqi · e−qi′ . (G.11)

Similarly, using (G.6) and (G.10), we develop the second term of (G.1) to

HI = 1

2

∑

qii′
QqiQ−qi′ eqi · Dqe−qi′ .

Recalling that eqi is an eigenvector of the matrix Dq and applying Eq. (G.7), we obtain

HI = 1

2

∑

qii′
Mω2

qiQqiQ−qi′ eqi · e−qi′ . (G.12)

Finally, applying eqi · e−qi′ = eqi · eqi′ = δii′ to (G.11) and (G.12), we write the Hamiltonian (G.1) as

H = H0 + HI =
∑

qi

(
1

2M
|Pqi |2 + 1

2
Mω2

qi |Qqi |2
)

. (G.13)
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We now replace the classical variables Pqi and Qqi by the operators P̂qi and Q̂qi to obtain the quantum-mechanical form
of the classical Hamiltonian (G.13):

H =
∑

qi

(
1

2M
|P̂qi |2 + 1

2
Mω2

qi |Q̂qi |2
)

, (G.14)

where |P̂qi |2 ≡ P̂qi P̂
†
qi = P̂qi P̂−qi and |Q̂qi |2 ≡ Q̂qiQ̂

†
qi = Q̂qiQ̂−qi . The creation and annihilation operators for the qi-th

mode are defined by

b
†
qi = (2Mh̄ωqi )

−1/2
(
MωqiQ̂−qi − iP̂qi

)
,

bqi = (2Mh̄ωqi )
−1/2
(
MωqiQ̂qi + iP̂−qi

)
.

(G.15)

These quantized normal modes represent the quasi-particles called phonons. Taking into account the commutation relations

[Q̂qi , Q̂q′i′ ] = [P̂qi , P̂q′i′ ] = 0, [P̂qi , Q̂q′i′ ] = δq,q′δii′ ,

we write the Hamiltonian (G.14) in the second-quantized form:

H =
∑

qi

h̄ωqi

(
b

†
qibqi + 1

2

)
. (G.16)

Next, we obtain the operator form of the displacement ûj . Expressing Q̂qi from relations (G.15),

Q̂qi =
(

h̄

2Mωqi

)1/2 (
bqi + b

†
−qi

)
,

and substituting the latter in the quantized form of (G.8), we obtain

ûj =
(

h̄

2MN

)1/2∑

qi

ω
−1/2
qi eqi

(
bqi + b

†
−qi

)
eiqRj .

Making use of ∑

qi

ω
−1/2
qi eqib

†
−qie

iqRj =
∑

qi

ω
−1/2
qi eqib

†
qie

−iqRj ,

we write the displacement operator in the second-quantized form:

ûj =
(

h̄

2MN

)1/2∑

s

ω
−1/2
s es

(
bseiqRj + b†

s e−iqRj

)
, (G.17)

where s = (q, i). Since we consider noninteracting phonons, the creation and annihilation operators in the Heisenberg
representation satisfy

b†
s (t) = b†

s eiωst , bs(t) = bs e−iωs t

(the proof is similar to the corresponding result (3.44) for noninteracting electrons). Then the Heisenberg representation of
the displacement operator (G.17) is given by

ûj (t) =
(

h̄

2MN

)1/2∑

s

ω
−1/2
s es

(
bsei(qRj −ωst) + b†

s e−i(qRj −ωst)
)

. (G.18)
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G.2 Gaussian Distribution of the Normal Modes

First of all we define the probability density function. We start with the canonical average

〈f (ûα
j )〉 = 1

Z
Tr
(
f (ûα

j ) e−H/T
)

, (G.19)

where f (ûα
j ) is a function of the displacement ûα

j (hereafter the indices are omitted for brevity), Z = Tre−H/T is the partition
function and H is the Hamiltonian of the crystal lattice. Assuming Eλ and ψλ to be the eigenvalues and eigenfunctions of
the Hamiltonian:

Hψλ = Eλψλ, e−H/T ψλ = e−Eλ/T ψλ,

we transform the trace in (G.19) as

〈f (û)〉 = 1

Z

∑

λ

e−Eλ/T

∫
f (u)|ψλ(u)|2 du.

Introducing the probability density function

p(u) = 1

Z

∑

λ

|ψλ(u)|2 e−Eλ/T ,

we obtain the integral representation for the canonical average (G.19):

〈f (û)〉 =
∫

f (u)p(u) du. (G.20)

We show that, for noninteracting phonons, p(u) is the Gaussian probability density. This result was first derived by Bloch
[7]. We prove it by calculating the characteristic function1:

ϕ(x) =
∫

p(u)eixu du, (G.21)

which is the Fourier transform of p(u). Hence the probability density function p(u) is obtained by the inverse Fourier
transform of the characteristic function:

p(u) = 1

2π

∫
ϕ(x)e−ixu dx. (G.22)

We calculate the characteristic function as follows. Since the integral representation (G.20) is equivalent to the canonical
average (G.19), we rewrite (G.21) as

ϕ(x) = 1

Z
Tr
(

eixû e−H/T
)

= 〈eixû〉. (G.23)

Taking expression (G.17) into account, we write the displacement operator û as

û =
∑

s

(γsbs + γ ∗
s b†

s ), (G.24)

where we introduced the shorthand notation

γs =
(

h̄

2MN

)1/2 es√
ωs

eiqRj . (G.25)

1In [2] the calculation of the characteristic function is rather tedious. The formula proved by Mermin [8] allows to derive the characteristic function
almost in one line [1].
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Using expression (G.24) and formula for the canonical average of exponentials of operators linear in bs and b
†
s (14.36), we

write the characteristic function (G.23) in the form

ϕ(x) = e− 1
2 x2σ 2

, (G.26)

where

σ 2 =
∑

s

|γs |2 coth

(
h̄ωs

2T

)
. (G.27)

Substituting (G.26) in (G.22), we obtain

p(u) = 1

2π

∫
e−ixue− 1

2 x2σ 2
dx.

After completing the square, we have

p(u) = 1

2π
e− 1

2 u2/σ 2
∫

e− 1
2 (xσ−iu/σ)2

dx = 1

σ
√

2π
e− 1

2 u2/σ 2
.

The latter is the Gaussian probability density function with the zero mean and mean-square displacement 〈u2〉 = σ 2 (see
Appendix A.3).

Now we can apply the above result to the DWF e−2W(κ). Substituting (G.25) in (G.27), we have

σ 2 = h̄

2MN

∑

s

1

ωs

coth

(
h̄ωs

2T

)
. (G.28)

Comparing the latter with the expression (14.41) for the DWF exponent:

2W(κ) = h̄κ2

6MN

∑

s

1

ωs

coth

(
h̄ωs

2T

)
, (G.29)

and taking 〈u2〉 = σ 2 into account, we obtain

2W(κ) = 1

3
κ2〈u2〉.

G.3 The Debye Model

The DWF can be expressed in terms of the phonon density of states n(ω). By definition, the phonon density of states is
given by

n(ω) = dN(ω)

dω
, (G.30)

where N(ω) is the number of normal modes with phonon frequencies less than or equal to ω. First, we calculate the number
of normal modes N(q) with magnitude of the phonon wavevectors less than or equal to q. Since the wavevector q takes
N discrete values in the Brillouin zone, we have one q value per (2π)3/V volume. Then N(q) is obtained by dividing the
volume of the sphere of radius q by the volume (2π)3/V and multiplying by three (the number of polarization modes i):

N(q) = 4πq3V
(2π)3

. (G.31)

In the Debye model it is assumed that ω = vq, where v is the velocity of sound. Substituting q = ω/v in (G.31), we have

N(ω) = ω3V
2π2v3 .
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Differentiating the latter, we write (G.30) as

n(ω) = 3ω2V
2π2v3 . (G.32)

Replacing the Brillouin zone by the equal-volume sphere of the Debye radius qD, we have N(qD) = 3N . Hence from (G.31)
we obtain q3

D = 6π2N/V . Substitution of the latter in v3 = q3
D/ω3

D gives

v3 = Vω3
D

6π2N
, (G.33)

where the Debye frequency ωD is the maximum frequency of the normal modes. Substituting (G.33) in (G.32), we obtain
the final expression for the phonon density of states in the Debye model:

n(ω) = 9Nω2

ω3
D

, 0 ≤ ω ≤ ωD. (G.34)

Summation over frequencies of the normal modes ωs is converted to the integration over the frequencies with the phonon
density of states n(ω) by the formula

∑

s

f (ωs) =
∫

f (ω)n(ω) dω, (G.35)

where f (ω) is an arbitrary function. Using formula (G.35), we write the exponent of the Debye-Waller factor (G.29) in the
form

2W(κ) = h̄κ2

6MN

∫
1

ω
coth

(
h̄ω

2T

)
n(ω) dω. (G.36)

Substituting the Debye density of states (G.34) in (G.36), we have

2W(κ) = 3h̄κ2

2Mω3
D

∫ ωD

0
coth

(
h̄ω

2T

)
ω dω. (G.37)

At high temperatures, using coth x ≈ 1/x for x 	 1, we finally obtain

2W(κ) = 3h̄2κ2

M

T

Θ2
D

, T � ΘD, (G.38)

where ΘD = h̄ωD is the Debye temperature.
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HNumerical Integral Transformations

H.1 Hilbert Transformation

As we showed in Chap. 2, the susceptibility is fully reconstructed from its imaginary part by applying the Hilbert
transformation (see, e.g. [1, 2])

χ(z) = − 1

π

∫
Imχ(ω′)
z − ω′ dω′, (H.1)

where z is a complex number from the upper half-plane and ω′ = ω′ − i0+. Indeed, the right-hand side of (H.1) can be
written as

− 1

π

∫
Imχ(ω′)

z − ω′ + i0+ dω′ = 1

π

∫
Imχ(ω′)

ω′ − z − i0+ dω′.

Using the Sokhotsky formula (A.44), we have

1

π

∫
Imχ(ω′)

ω′ − z − i0+ dω′ = 1

π
P
∫

Imχ(ω′)
ω′ − z

dω′ + iImχ(z).

From the Kramers-Kronig relation (2.19), we finally obtain

1

π

∫
Imχ(ω′)

ω′ − z − i0+ dω′ = Reχ(z) + iImχ(z) = χ(z).

Direct calculation by formula (H.1) is problematic. Following [3], we obtain a formula that is applicable for numerical
calculations.

First we convert the tabular function Imχ(ω′) into a piecewise-linear function:

Imχ(ω′) =
{

ai(ω
′ − ωi) + bi, ωi ≤ ω′ ≤ ωi+1,

0, ω′ < ω1 and ω′ > ωn+1,
(H.2)

where ai = (bi+1 − bi)/(ωi+1 − ωi), bi = −π−1Imχ(ωi), i = 1, . . . , n + 1, and n is the number of intervals. Substitution
of (H.2) into (H.1) gives

χ(z) =
n∑

i=1

∫ ωi+1

ωi

ai(ω
′ − ωi) + bi

z − ω′ dω′.

After simple calculations with b1 = bn+1 = 0 we obtain

χ(z) =
n+1∑

i=1

Ai(z − ωi) ln(z − ωi) ≡
n+1∑

i=1

AiBi(z), (H.3)

where A1 = a1, Ai = ai − ai−1, i = 2, . . . , n and An+1 = −an.
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For complex numbers zj = ωj + iδ, δ > 0, j = 1, . . . , n, given with a uniform step in ω, the calculation is significantly
simplified. First, we store all the values Ai , which are independent of z. Then we compute and store Bi(z1), i = 1, . . . , n+1.
Since zj − ωi = zj−1 − ωi−1, we have

Bi(zj ) = Bi−1(zj−1),

where Bi(zj ) = (zj −ωi) ln(zj −ωi). Therefore, for each zj = ωj + iδ in the loop over j = 2, . . . , n+ 1, we already know
all Bi(zj ), i = 2, . . . , n+ 1 from the previous step, and so we need to calculate just one missing value B1(zj ). Thus, explicit
calculation of all Bi(z), i = 1, . . . , n + 1, is carried out only for z = z1.

Similarly, we obtain a formula for numerical calculations of the single-site Green function g(z). Just as the susceptibility,
g(z) is given by the Hilbert transform (10.6):

g(z) =
∫

ν(ε′)
z − ε′ dε′, (H.4)

where ν(ε′) = π−1Img(ε′) is the DOS and ε′ = ε′ − i0+ (the sign is different from the one in (H.1), because we use
the advanced Green function). Using linear interpolation, we transform the tabular function ν(ε′) into a piecewise-linear
function

ν(ε′) =
{

ai(ε
′ − εi) + bi, εi ≤ ε′ ≤ εi+1,

0, ε′ < ε1 and ε′ > εn+1,
(H.5)

where ai = (bi+1 − bi)/(εi+1 − εi), bi = ν(εi), i = 1, . . . , n + 1 and n is the number of intervals. Then g(z) is given by [3]

g(z) =
n+1∑

i=1

Ai(z − εi) ln(z − εi), (H.6)

where A1 = a1, Ai = ai − ai−1, i = 2, . . . , n, An+1 = −an, just as in (H.3).

H.2 Integrals with the Fermi Function

Calculation of many quantities in solid state physics, such as the electron DOS and total energy, local magnetic moments
and susceptibilities, reduces to the computation of the so-called Fermi integrals

I =
∫ ∞

−∞
g(ε)f (ε) dε, (H.7)

where g(ε) is an arbitrary function vanishing fast enough as ε → ±∞, and f (ε) = [exp((ε − μ)/T ) + 1]−1 is the Fermi
function. In practice it is necessary to compute repeatedly various Fermi integrals for tabular functions g(ε). We present a
general numerical method for calculation of this kind of integrals developed by Reser [4].

The method works as follows. The tabular function g(ε) is linearly interpolated by the formula

g(ε) =
N∑

i=1

Δg′
i (ε − εi)θ(ε − εi), (H.8)

where

Δg′
1 = g′

1, Δg′
i = g′

i − g′
i−1, i = 2, 3, . . . , N − 1, Δg′

N = −g′
N−1;

g′
i = (gi+1 − gi)/(εi+1 − εi), gi ≡ g(εi), i = 1, 2, . . . , N − 1, (H.9)

N is the number of interpolation points, and θ(x) is the step function equal to zero for x < 0 and unity for x ≥ 0. Substitution
of (H.8) into (H.7) gives
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I =
N∑

i=1

Δg′
i

∫ ∞

0
f (ε, ξi, T )ε dε = −1

2

N∑

i=1

Δg′
i

∫ ∞

0
ε2 ∂f (ε, ξi, T )

∂ε
dε, (H.10)

where ξi = μ − εi . The integral

J1(ξ, T ) ≡
∫ ∞

0
ε2 ∂f (ε, ξ, T )

∂ε
dε (H.11)

is represented as
J1(ξ, T ) = −2T 2F1(−ξ/T ), (H.12)

where

F1(x) =
∫ ∞

x

ln(1 + e−x1) dx1. (H.13)

Taking (H.11) and (H.12) into account, we can write the integral (H.10) in the form

I (T ) = T 2
N∑

i=1

Δg′
iF1(−ξi/T ).

Dividing the sum over i into two sums over xi ≡ −ξi/T = −(μ − εi)/T < 0 and xi ≥ 0, and taking into account that [4]

F1(−|x|) = x2

2
+ ζ(2) − F1(|x|), x < 0, (H.14)

we have

I (T ) = T 2

⎧
⎨

⎩
∑

xi<0

Δg′
i

[
x2
i

2
+ ζ(2) − F1(|xi |)

]
+
∑

xi≥0

Δg′
iF1(xi)

⎫
⎬

⎭ , (H.15)

where ζ(2) = π2/6 is the Riemann zeta function. From formula (H.13) we see that F1(xi) → 0 as xi → 0+. Since
xi = −(μ − εi)/T , the second term in (H.15) vanishes as T → 0. The first term in (H.15) reduces to

I (0) = 1

2

∑

ξi>0

Δg′
iξ

2
i .

From expression (H.15) we see that calculation of the Fermi integrals (H.7) by using the linear interpolation (H.8) is
reduced to calculation of the integral F1(x) only for x ≥ 0. The integral (H.13) cannot be calculated analytically. Substituting
the power series of ln(1 + e−x1) into (H.13) and integrating term by term, which is valid because of uniform convergence of
the series at x ≥ 0, we obtain

F1(x) =
∞∑

k=1

(−1)k+1 exp(−kx)

k2 . (H.16)

Hence, at x → ∞ the function F1(x) decreases as exp(−x). Taking into account the asymptotic value at infinity, we have
the following simple approximate formula for calculating F1(x):

F1(x) � F R
1 (x) = [exp(x) + q1

]−1
, (H.17)

where the parameter q1 is chosen so that F1(x) and F R
1 (x) coincide at x = 0. Using (H.14), we obtain

q1 = [F1(0)]−1 − 1 = 2

ζ(2)
− 1. (H.18)

Numerical calculations show that the error ΔF R
1 (x) = |F1(x) − F R

1 (x)| in calculation of F1(x) by (H.17) over the whole
interval [0,∞) does not exceed 3.1 × 10−3. For many problems using the Fermi integrals, this accuracy of the F1(x)

calculation is quite sufficient. For exact values of F1(x) we used partial sums of the expansion (H.16) by which F1(x) can be
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computed to any required accuracy. Since the series (H.16) is alternating and its elements monotonically decrease in absolute
value, the absolute value of the remainder is less than its first term. Clearly, for practical calculation of F1(x) at small x the
series (H.16) is unsuitable; for calculation of F1(x), say with the accuracy 10−8, it is necessary to add 104 terms together.

The following method is suitable for effective and practical exact calculation of the integrals F1(x). By substituting
t = exp(−x1) the integral F1(x) is reduced to a dilogarithm:

F1(x) = L[exp(−x)], x ≥ 0,

L(y) =
∫ y

0

ln(1 + t)

t
dt, 0 ≤ y ≤ 1.

Using the expansion of a dilogarithm in the series of Chebyshev polynomials

L(y) =
∞∑

k=1

akT
∗
k (y), 0 ≤ y ≤ 1,

where ak are the Chebyshev coefficients, and

T ∗
k (y) =

k∑

j=0

bkj y
k−j

are shifted Chebyshev polynomials of the first kind, we obtain

F1(x) =
∞∑

k=0

akT
∗
k [exp(−x)] =

∞∑

k=0

ak

k∑

j=0

bkj exp[−(k − j)x], x ≥ 0. (H.19)

Since these series converge very rapidly and the coefficients ak and bkj are known up to large k-values (see, e.g. [5, pp.
74 and 494]), the integral F1(x) can be calculated with a high accuracy from (H.19). The mth partial sum of Chebyshev
polynomials series

F C
1m(x) =

m∑

k=0

ak

k∑

j=0

bkj exp[−(k − j)x], x ≥ 0, (H.20)

gives an approximation of the integral F1(x) with the maximum error decreasing very quickly with increase in m; already at
m = 7 the error becomes equal to 4.5 × 10−8, i.e. five orders smaller than in approximation by (H.17) (see Table 1 in [4]).
However, unlike ΔF R

1 (x) that vanishes with increase in x, the error ΔF C
1m(x) for large values of x remains small but finite:

F C
1m(∞) = lim

x→∞ F C
1m(x) =

m∑

k=0

akbkk.

Therefore, in the calculation of the integral F1(x) the function F C
1m(x) is substituted by the function

F̃ C
1m(x) ≡ F C

1m(x) − F C
1m(∞) =

m∑

k=1

ak

k−1∑

j=0

bkj exp[−(k − j)x], (H.21)

which has correct asymptotic behaviour at infinity.
The subroutine for calculation of the Fermi integrals I (T ), named FINT and based on the method outlined above, was

presented in [6]. The subroutine allows us to calculate I (T ) using both the simple approximate formula (H.17) and the
Chebyshev approximation (H.21). By FINT the Fermi integral can be calculated, if necessary, to any required accuracy. The
subroutine FINT is written in FORTRAN and is included in the illustrating program that runs a test. As the test, the program
calculates the Fermi integral of the model electron DOS for iron at the Curie temperature (for details, see [4, 6]).
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H.3 Integrals with the Derivative of the Fermi Function

Here we present a simple method [7] for calculation of the integrals with the derivative of the Fermi function

I =
∫ ∞

−∞
g(ε)

(
−∂f (ε)

∂ε

)
dε (H.22)

under the same assumptions as in the previous section. Let us represent the function f (ε) as a sum of the step function

f1(ε − μ) =
{

1, when ε ≤ μ,

0, when ε > μ,

(it would be the Fermi function at T = 0 if we put εF instead of μ) and the remainder

f2(ε) = sgn(ε − μ)
[
e|ε−μ|/T + 1

]−1 = −T
∂

∂ε
ln
(

1 + e−|ε−μ|/T
)

. (H.23)

Substituting f (ε) = f1(ε − μ) + f2(ε) into (H.22), we split the integral I into two integrals:

I =
∫

g(ε)

(
−∂f1(ε − μ)

∂ε

)
dε +
∫

g(ε)

(
−∂f2(ε)

∂ε

)
dε ≡ I1 + I2.

For the first integral, using the properties of the delta-function (A.36) and (A.38), we immediately obtain

I1 =
∫

g(ε) δ(ε − μ) dε = g(μ). (H.24)

For the second one we first use integration by parts:

I2 =
∫

∂g(ε)

∂ε
f2(ε) dε. (H.25)

Using the linear interpolation (H.5) with bi = g(εi), we transform the tabular function g(ε) into a piecewise-linear function.
Then substitution of this piecewise-linear function g(ε) and (H.23) into (H.25) yields

I2 =
n∑

i=1

ai

∫ εi+1

εi

f2(ε) dε = T

n∑

i=1

ai

[
ln
(

1 + e−|εi−μ|/T
)

− ln
(

1 + e−|εi+1−μ|/T
)]

. (H.26)

Taking into account (H.24) and (H.26), for the initial integral (H.22) we obtain

I = g(μ) + T
∑′

i

ai

[
ln
(

1 + e−|εi−μ|/T
)

− ln
(

1 + e−|εi+1−μ|/T
)]

. (H.27)

The prime indicates that the sum includes only the terms for which |εi − μ| ≤ t ln βT , where β is the base and t precision
of the floating-point system in a specific computer (see, e.g. [8]).

H.4 Integrals over the Brillouin Zone

Calculation of the mean-square fluctuations in the DSFT requires evaluation of the integral over the wavevector modulus
(11.6):

I =
∫ 1

0

1

a2 + b2k2

2

π
arctan

c

a2 + b2k2 3k2 dk, 0 < a2 < 1, (H.28)
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where a, b and c are given by (10.25) (we omit the index α). To obtain an approximate analytic formula for the integral
(H.28), we replace the integration variable k by x = bk and approximate the function (2/π) arctan(c/(a2 + x2)) by two
asymptotic expansions matched (together with their derivatives) at the point c/(a2 + x2) = 1. This leads to

I = 3

b3

∫ b

0
dx

x2

a2 + x2

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1

2

c

a2 + x2 ,
c

a2 + x2 ≤ 1,

1 − 1

2

a2 + x2

c
,

c

a2 + x2
> 1.

Then, introducing the notation

F1(x) = c

2

∫
x2

(a2 + x2)2 dx = c

2

(
− x

2(a2 + x2)
+ 1

2a
arctan

x

a

)
,

F2(x) =
∫

x2

a2 + x2
dx − 1

2c

∫
x2 dx = x − a arctan

x

a
− x3

6c
,

(H.29)

we finally obtain

I = 3

b3

⎧
⎪⎪⎨

⎪⎪⎩

F1(b), x2
0 ≤ 0,

F2(x0) + F1(b) − F1(x0), 0 < x0 < b,

F2(b), x0 ≥ b,

(H.30)

where x2
0 = c − a2.

H.5 Inverse Cosine Transformation

For calculating the oscillating part A(t) of the temporal correlation function F(t) (see relation (13.8)), we need an
approximate formula for the Fourier cosine transformation (for details see, e.g. [9])

A(t) = 1

π

∫ ∞

0
A(ω) cos(ωt) dω. (H.31)

In the DFT calculations [10], the inverse Fourier cosine transform of the function A(ω) given at a uniform grid with the step h

was computed by interpolating A(ω) in each segment of the length 2h with a second-degree polynomial and then integrating
it analytically by parts (see Sect. 13.3.2). In the DSFT, the function A(ω) is specified at a fairly fine mesh; therefore linear
interpolation of the form (H.2) with bi = A(ωi) proves to be sufficient. Substituting the linear interpolation in (H.31), after
simple calculations with ω1 = 0, similar to (H.3) we obtain [3]

A(t) = 1

πt

[
bn+1 sin(ωn+1t) − 2

t
sin

(
h

2
t

) n∑

i=1

ai sin

(
ωi+1 + ωi

2
t

)]
. (H.32)
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IDSFT Solution Methods and Software

We obtain the temperature dependence of magnetic characteristics using the parameter continuation (Chap. 10). As we
discussed in Chap. 11, it can become unstable at high temperatures. In this case, solution of the DSFT system of nonlinear
equations becomes extremely sensitive to the choice of the initial condition, and a smaller step size in temperature is required.
For the same reason, we avoid numerical methods that use derivatives, because their difference approximations can destroy
the stability. Instead, we use the coordinate bisection method and coordinate descent methods. Here we describe these
solution methods [1, 2] and give a brief overview of the MAGPROP software suite [3]1.

I.1 Solution Methods

We consider a system of nonlinear equations in the n-dimensional Euclidian space:

ϕ1(x1, x2, . . . , xn) = 0,

ϕ2(x1, x2, . . . , xn) = 0,

· · · · · · · · · · · · · · ·
ϕn(x1, x2, . . . , xn) = 0.

(I.1)

Let the system (I.1) have at least one solution such that its ith component belongs to the interval [ai, bi], i = 1, . . . , n.

I.1.1 Coordinate Bisection Method

One-dimensional bisection method is well known, but we have not come across any generalizations of the bisection method
to systems of equations. The coordinate bisection method was developed and used for calculations of magnetic properties in
the paper [4]. To a general system of equations of the form (I.1) the method is applied as follows [1]. We fix all variables but
the first one: x2 = a2, . . ., xn = an. Then ϕ1(x1, a2, . . . , an) is a function of one variable x1. In the interval [a1, b1], we find
the root x

(1)
1 (a2, a3, . . . , an) of the first equation of system (I.1) by the (one-dimensional) bisection method. The value of the

function ϕ2 at the left endpoint of the interval for x2 will be ϕ2(x
(1)
1 , a2, . . . , an). Next, we set x2 = b2 and find the root of

the first equation of the system x
(2)
1 (b2, a3, . . . , an) by the bisection method. With the new x1, the value of the function ϕ2

at the right endpoint of the interval for x2 will be ϕ2(x
(2)
1 , b2, a3, . . . , an). Continuing the bisection of the second equation,

we find the root x
(1)
2 (a3, a4, . . . , an), with the root x1 being updated to a certain x

(k1)
1 (x

(1)
2 , a3, . . . , an). Now the value of

the third function at the left endpoint x3 = a3 is equal to ϕ3(x
(k1)
1 , x

(1)
2 , a3, a4, . . . , an). Similarly, at x3 = b3 we find the

root of the second equation x
(2)
2 (b3, a4, . . . , an) by the bisection method, with the root of the first equation updated to a

certain x
(k1+k2)
1 . Then the value of the third function at the right endpoint for x3 will be ϕ3(x

(k1+k2)
1 , x

(2)
2 , b3, a4, . . . , an).

1Upgraded version of the program is B.I. Reser, G.V. Paradezhenko, N.B. Melnikov, Program suite MAGPROP 2.0. Federal Service for Intellectual
Property (ROSPATENT), RU 2018617208, 2018.
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Continuing the bisection of the third equation, we obtain the root of the third equation x
(1)
3 (a4, . . . , an), with x2 and x1

updated to x
(l1)
2 (x

(1)
3 , a4, . . . , an) and x

(k1+k2+···+kl1 )

1 (x
(l1)
2 , x

(1)
3 , a4, . . . , an), respectively. Analogous calculations for the

equations ϕ4, . . . , ϕn give the roots x4, . . . , xn. Thus, the solution of the system of nonlinear equations (I.1) reduces to a
multiple solution of one-dimensional problems by the bisection method.

An advantage of the coordinate bisection method is that it does not use either derivatives or their approximations as
opposed to quasi-Newton methods (see the next subsection). A large number of steps in the coordinate bisection method is
not a serious weakness for the solution of the DSFT system (11.1)–(11.4):

ϕ1(μ, s̄z, ζ x, ζ z) ≡ n↑ + n↓ − ne = 0, (I.2)

ϕ2(μ, s̄z, ζ x, ζ z) ≡ (n↑ − n↓)/2 − s̄z = 0, (I.3)

ϕ3(μ, s̄z, ζ x, ζ z) ≡ uT/(2λx
L)I x − ζ x = 0, (I.4)

ϕ4(μ, s̄z, ζ x, ζ z) ≡ uT/(2λz
L)I z − ζ z = 0, (I.5)

because its dimension is not high and the computation time for the functions ϕi is small. To secure convergence of the
method it is necessary to specify the search domain with precision (for details, see [2]). Indeed, if the intervals [ai, bi] are
too large, the solution cannot be found (in contrast to the one-dimensional bisection, where a root is always found once there
is a sign change of the function). The specific character of the problem under consideration allows us to choose the initial
approximation at zero temperature with great precision, and the small step size over the temperature ensures the proximity
of the initial approximation in the successive calculations.

Since the spin fluctuations ζ x and ζ z at each temperature are of the same order, one can use the mean fluctuation in the
numerical calculations. This idea was successfully used in the coordinate bisection method. The modification of the method
is as follows. Instead of the spin fluctuations ζ x and ζ z, we introduce the mean value ζ̄ = (2ζ x + ζ z)/3 and the difference
Δζ = ζ x − ζ z (recall that ζ y = ζ x). Substituting

ζ x = ζ̄ + Δζ/3, ζ z = ζ̄ − 2Δζ/3, (I.6)

we transform the initial system (I.2)–(I.5) to an equivalent one

ϕ̃1(μ, s̄z, ζ̄ , Δζ ) = 0, (I.7)

ϕ̃2(μ, s̄z, ζ̄ , Δζ ) = 0, (I.8)

ϕ̃3(μ, s̄z, ζ̄ , Δζ ) ≡ (2g̃3(μ, s̄z, ζ̄ , Δζ ) + g̃4(μ, s̄z, ζ̄ , Δζ ))/3 − ζ̄ = 0, (I.9)

ϕ̃4(μ, s̄z, ζ̄ , Δζ ) ≡ g̃3(μ, s̄z, ζ̄ , Δζ ) − g̃4(μ, s̄z, ζ̄ , Δζ ) − Δζ = 0, (I.10)

where
g3(μ, s̄z, ζ x, ζ z) = uT/(2λx

L)Ix, g4(μ, s̄z, ζ x, ζ z) = uT/(2λz
L)I z,

and tilde stands for the result of the substitution (I.6). Now, instead of system (I.7)–(I.10), we solve the system of the first
three equations (I.7)–(I.9), as if Δζ were fixed, while at each step Δζ is refined using the fixed-point iterations of the last
equation:

Δζk+1 = g̃3(μk, s̄
z
k , ζ̄k,Δζk) − g̃4(μk, s̄

z
k , ζ̄k,Δζk),

where k = 0, 1, 2, . . . is the step number of the solution algorithm for the system (I.7)–(I.9), and ζ̄0 and Δζ0 are taken
from the calculation with the preceding value of the temperature. At each step, the values of μk , s̄z

k and ζ̄k are determined
by the coordinate bisection method with a small step size in ζ̄ . That means the search interval for ζ̄ is additionally divided
into N subinterval of equal length. If a sign change of ϕ̃3 occurs at the first subinterval, it is further used for more accurate
calculation of ζ̄ . Otherwise, we check for a sign change at the second subinterval, etc.

To control the accuracy of the numerical solution at a fixed temperature, we explicitly calculate the residual by substituting
the coordinate bisection results μ, s̄z, ζ x and ζ z into the initial system of equations (I.2)–(I.5).
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I.1.2 Multidimensional Minimization

Solution of the system of nonlinear equations (I.1) can be reduced to minimization of the function

Φ(x1, x2, . . . , xn) =
n∑

i=1

ϕ2
i (x1, x2, . . . , xn). (I.11)

The function (I.11) is nonnegative and vanishes if and only if all the equations ϕi(x) = 0 are satisfied. Often ϕi have different
orders of magnitude. Therefore, the function that has the smallest order of magnitude might be practically ignored in the
minimization process. This is usually prevented by introducing new functions that are properly scaled: fi = ciϕi , where ci

are the scale factor coefficients chosen according to a specific character of the problem. Then the system of equations (I.1) is
reduced to the minimization problem

F(x1, x2, . . . , xn) =
n∑

i=1

f 2
i (x1, x2, . . . , xn). (I.12)

To solve this problem one can use an iterative method (see, e.g. [5, 6]). In the case of the fixed-point iteration, from the
explicit form of the functions ϕ2, ϕ3 and ϕ4 in (I.2)–(I.5) we see that their values are exactly equal to the differences of the
respective variables from the current and preceding steps:

ϕ2(μk, s̄
z
k , ζ

x
k , ζ z

k ) = s̄z
k − s̄z

k−1, (I.13)

ϕ3(μk, s̄
z
k , ζ

x
k , ζ z

k ) = ζ x
k − ζ x

k−1, (I.14)

ϕ4(μk, s̄
z
k , ζ

x
k , ζ z

k ) = ζ z
k − ζ z

k−1. (I.15)

If another iterative method is used, it is natural to assume that these relations are satisfied approximately for the iterations
close enough to the minimum point. Therefore, the scale factor coefficients c2, c3 and c4 are chosen in such a way that the
magnitudes of f2, f3 and f4 are approximately equal to the relative errors:

c1 = 1, c2 = 1/s̄z(0), c3 = c4 = 1/(V̄z(0))2 = 1/(us̄z(0))2.

Quasi-Newton Minimization Methods
The classical Newton’s method for a function minimization operates as follows (see, e.g. [7, 8]). At the kth step, to refine
the approximation x(k) of the local minimum x∗ of the multivariable function F(x) one constructs its quadratic Taylor
approximation

F(x) ≈ F(x(k)) + (x − x(k))T∇F(x(k)) + 1

2
(x − x(k))T∇2F(x(k))(x − x(k)), (I.16)

where (x − x(k))T is the row vector, ∇F(x) is the gradient of the function F at the point x and ∇2F(x) is the Hessian matrix
of the second partial derivatives of the function F at the point x. The minimum of the function (I.16) is attained at the point

x(k+1) = x(k) − [∇2F(x(k))]−1∇F(x(k)), (I.17)

which is taken as the next approximation. Then

F(x(k+1)) ≈ F(x(k)) − 1

2
(x(k+1) − x(k))T∇2F(x(k))(x(k+1) − x(k)).

Hence the value of the function at the kth step decreases if the matrix ∇2F(x(k)) is positively defined. It is not difficult
to show that Newton’s method converges in a sufficiently small neighbourhood of a local minimum if the function has
continuous first and second derivatives. Moreover, the rate of convergence is quadratic near the solution.
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Newton’s method is mostly used as a part of a more general algorithm. The reason is that far from the minimum point the
matrix ∇2F(x(k)) may be not positively defined, and thus the shift by the vector

p = −[∇2F(x(k))]−1∇F(x(k))

in formula (I.17) may not lead to decrease of the function. In this case the matrix ∇2F(x(k)) is replaced by a close symmetric
positively defined matrix B(k). Positive definiteness of the matrix B(k) ensures that the function decreases: F(x(k+1)) <

F(x(k)). The step direction p is now obtained as the solution of the system B(k)p = −∇F(x(k)) and the next iteration is
chosen along this direction, but not necessarily all the way: x(k+1) = x(k) +αp. The length of the step α > 0 in the direction
p can be obtained by one-dimensional optimization method.

The methods of this kind are called quasi-Newton methods. In practice, the vector ∇F(x(k)) is usually replaced by a
finite-difference approximation. The matrix B(k) is typically updated by a simple low-rank matrix.

To apply quasi-Newton method, we used the unconstrained minimization double precision (UNCMND) Fortran routine
[6], which seeks a minimum of a function with line search. Results of the calculations did not give satisfactory agreement
with the ones of the coordinate bisection method even in the temperature interval T ≤ 0.68 T

exp
C . Instead of the solution

to the absolute minimum of the function (I.12), which is the solution of the system of nonlinear equations (I.1), the routine
converges to a local minimum far off the absolute one. It is necessary to note that the routine UNCMND does not give a user
full control over the low level parameters (such as maximal step size). The routine also assumes that the function values are
obtained accurately (to an accuracy comparable to the precision of the computer arithmetic). Since we aimed at implementing
a reliable method that would work in a wide range of temperatures, we rejected the idea of tuning the quasi-Newton method.
Instead, we implemented coordinate descent method, which is more slow but easier to control.

Coordinate Descent Method
Multidimensional minimization of the function F(x1, x2, . . . , xn) can be performed by the slower but more reliable
coordinate descent method. The gist of the method is as follows. As an initial approximation, we choose a point M0 with
coordinates (x(0)

1 , x
(0)
2 , . . . , x

(0)
n ). We fix all coordinates but the first one. Then F(x1, x

(0)
2 , . . . , x

(0)
n ) is a function of one

variable, x1. Solving the one-dimensional optimization problem for this function, we replace the point M0 by the point
M1 = (x

(1)
1 , x

(0)
2 , . . ., x

(0)
n ), where the function F takes on the minimal value with respect to x1 with other coordinates being

fixed. Now we fix all coordinates except for x2, and consider F(x
(1)
1 , x2, x

(0)
3 , . . . , x

(0)
n ) as a function of this coordinate.

Once again solving the one-dimensional optimization problem, we find its minimum point x2 = x
(1)
2 , which gives us the next

point M2 = (x
(1)
1 , x

(1)
2 , x

(0)
3 , . . . , x

(0)
n ). Similarly, we perform the descent over the coordinates x3, x4, . . . , xn, then start a

new cycle from x1 to xn and so on. Finally, there is a sequence of the points M0, M1, . . . such that the values of the function
F at these points form a nonincreasing sequence F(M0) ≥ F(M1) ≥ . . . . The process stops when we reach either accuracy
of the function, or tolerance of the arguments, or the maximum number of iterations (cycles).

For smooth functions, given a good initial approximation, coordinate descent converges to the minimum. Among the
advantages of the coordinate descent is the possibility to use simple algorithms of one-dimensional optimization. For
one-dimensional minimization, we use the method that combines the golden-section search with successive parabolic
interpolation [5,6]. The method is characterized by the quadratic rate of convergence in a neighbourhood of the minimum of
a smooth function and guaranteed linear rate of convergence in the case of nonsmooth functions.

I.2 MAGPROP Software Suite

We calculate the temperature dependence of magnetic characteristics in transition metals and alloys in the DSFT using the
software suite MAGPROP [3], which is written in Fortran.

The program MAGPROP allows the user to solve the DSFT system of nonlinear equations using one of the two numerical
methods: coordinate bisection method (subroutine TMAGB) or coordinate descent method (subroutine TMAGD). The initial
physical parameters of the calculation are the nonmagnetic DOS of a particular metal and its value of the mean magnetic
moment at absolute zero. All quantities that have dimensions of energy and temperature (in energy units) are used in units of
the energy bandwidth W .
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MAGPROP has three possible models for the spin fluctuations:

• only transverse fluctuations in the plane perpendicular to the magnetization;
• only longitudinal fluctuations along the magnetization axis;
• all fluctuations in the three-dimensional space.

One can also run the program with the mean fluctuation and without fluctuations (Stoner mean-field theory). Moreover, the
program allows to use four different approximations in the SFT: static local, static nonlocal, dynamic local and dynamic
nonlocal.

In the dynamic nonlocal approximation of the SFT there is an option to reduce the spin fluctuations by

• changing the effective interaction constant in the expression for the mean-square fluctuation;
• adding a correction term to the denominator of the enhanced susceptibility;
• explicitly taking higher-order terms of the free energy into account.

In the last case it is possible to use either a simplified formula with free parameters or the expression obtained by the partial
Gaussian averaging. The latter is the most consistent variant from the theoretical point of view.

The user interface allows to assign the temperature interval [T1, T2], where the temperature dependence is investigated,
and the step size in temperature ΔT . There is a possibility to go in the positive temperature direction (from T1 to T2) as well
as in the negative direction (from T2 to T1) with a temperature step ΔT . When ΔT > 0, there are two possible modes: with
automatic transition from ferro- to paramagnetic region (once the mean field vanishes, it is set to zero for larger temperatures)
and without it (MAGPROP solves all four DSFT equations at all temperatures). When ΔT < 0, there is only one variant: with
no automatic transition from para- to ferromagnetic region (MAGPROP solves all four DSFT equations at all temperatures).

Besides the mean spin moment and mean-square fluctuations, one can obtain temperature dependencies for other magnetic
characteristics: local and effective magnetic moments, ferro- and paramagnetic Curie temperatures, inverse paramagnetic
susceptibility, nuclear spin relaxation rates, etc.
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adiabatic perturbation, 14, 245
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charge fluctuation, 92
chemical potential, 12, 40
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coherent potential, 110
coherent potential
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coherent-potential approximation (CPA), 2
correlation function, 149, 191
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creation operator

for electrons , 24
for phonons , 176

critical region, 3, 123
crystal lattice potential, 21
Curie temperature, 43, 117, 146
Curie temperature

paramagnetic, 19, 116, 117

Curie-Weiss law, 19, 116
cyclic boundary conditions, 21

D
Debye model, 177, 269
Debye temperature, 178
Debye-Waller factor, 175
delta function, 206
density functional theory (DFT), 42, 151, 196
density matrix, 12
density of states (DOS)

for electrons, 40, 118, 154
for neutrons, 171
for phonons, 177, 269

determinantal function, 23
diagram technique, 74
dynamic spin fluctuation theory (DSFT)

dynamic local approximation (DLA), 114, 117
dynamic nonlocal approximation (DNA), 111, 117, 141, 144, 166
low-temperature DSFT (LDSFT), 144
static local approximation (SLA), 114, 117, 141, 144, 166
static nonlocal approximation (SNA), 114, 117
Stoner approximation (STA), 114, 117, 141, 144
transverse DSFT (TDSFT), 143

Dyson equation, 95, 200

E
effective moment, 19, 116, 117, 185, 191
energy of the field, 78, 91
equation of motion, 13, 46, 60, 66, 74
exchange interaction, 38, 86, 88, 152

F
Fermi energy, 31
Fermi function, 31, 55, 73, 113, 141, 155, 212, 255, 272
Fermi integral, 272
Fermi liquid theory, 74
Fermi surface, 55
Fermi’s golden rule, 172, 261
ferrimagnets, 105
ferromagnetism, 42
Feynman inequality, 105
field operators, 24, 39, 153, 236
fluctuating field

in functional integral, 91
in the Ising model, 78

fluctuation-dissipation theorem
classical, 19, 188
quantum, 17, 53, 73, 150, 165, 187
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free electron gas, 23
free energy, 12, 37, 78, 96
free energy minimum principle, 105
functional derivative, 92, 226
functional integral, 91, 230

G
Gaussian approximation (GA)
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in functional integral, 105, 233
in the Ising model, 80, 230
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in functional integral, 129
in the Ising model, 81
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of noninteracting electrons, 60, 65
real-time, 59, 66
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temperature, 63, 70

H
Hartee-Fock approximation, 37
Heisenberg Hamiltonian, 146, 196
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hidden excitations, 145
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Hubbard Hamiltonian
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Landau damping, 56
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linear response theory, 15
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local density matrix, 63, 90
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local-density approximation (LDA), 116, 127, 145
long-wave approximation, 1, 53, 109, 111
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magnetic moment
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magnetic susceptibility
at low temperatures, 141
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of noninteracting electrons, 32, 67, 70, 73
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neutron scattering potential, 173
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saddle-point approximation
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in functional integral, 102
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spin fluctuation theory (SFT), 1
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static approximation, 90
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Stoner excitations, 56
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