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Preface

Black holes are one of the most celebrated predictions of general relativity.
Understanding the dynamics of black holes is a problem of paramount importance
in mathematical physics. A positive resolution of the black hole stability conjecture
would establish the relevance of black holes from a theoretical point of view. For
this reason, black hole dynamics have been intensively studied from a rigorous
mathematical point of view during the past 15 years and significant progress has
been made toward the full resolution.

The present Brief focuses on the dynamics of a special class of black holes,
namely, extremal black holes. These are, roughly speaking, either maximally
rotating or maximally charged. Astronomical observations suggest that nearly 70%
of all stellar black holes are near extremal. Hence, even though extremal black holes
are inherently nongeneric, a study of their dynamics is of great importance in
advancing our knowledge of the structure of the universe.

The ultimate aim of this Brief is to introduce the reader to the fascinating world
of extremal black holes. Specifically, the aim is to

1. present the main mathematical difficulties concerning the dynamics of extremal
black holes,

2. present in a unified, nontechnical, and illustrative fashion the main recent results
and techniques,

3. provide a discussion of the outstanding open problems and offer insights for
potential resolutions, and

4. provide common ground for communication between different scientific com-
munities including those of pure mathematicians, theoretical physicists, and
astrophysicists.

Before we further discuss the dynamics of extremal black holes, let us summarize
the reasons why extremal black holes are important in the following disciplines:
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• astronomy: according to an abundance of astronomical observations,
near-extremal black holes appear to be ubiquitous in the universe. Such
observations concern stellar black holes and supermassive black holes in the
center of galaxies;

• high energy physics: extremal black holes appear in the study of supersymmetric
theories of gravity, black hole thermodynamics, and of quantum descriptions of
gravity;

• classical general relativity: they saturate various geometric inequalities con-
cerning the mass, angular momentum, and charge. Furthermore, they have very
intriguing dynamical properties with no analog in sub-extremal black holes.

The latter intriguing dynamical properties of extremal black holes is the object of
study of this Brief. It has been shown that scalar perturbations of extremal black
holes decay slowly, whereas higher order derivatives grow in time. This scalar
instability was first discovered by the author in 2010 and has since been investi-
gated and extended by various research groups in recent years. We remark that this
result is in stark contrast with the case of sub-extremal black holes for which it has
been rigorously shown that scalar perturbations and their derivatives of all orders
decay in time.

A synopsis of the brief is the following: Chap. 1 provides a self-contained
introduction to Lorentzian geometry presenting topics such as the Einstein equa-
tions, trapped surfaces, and black holes. Chapters 2 and 3 present in a nontechnical
language the state of the art for the dynamics of extremal Reissner–Nordström and
extremal Kerr, respectively. Chapters 4 and 5 provide an overview of the main
techniques and ideas of the proofs. The aim here is to prepare the reader for
studying the papers where the complete proofs can be found. As we shall see, the
asymptotic behavior of perturbations is governed by conservation laws on the event
horizon and on null infinity. For this reason, the final chapter, Chap. 6, develops a
unifying theory of conservation laws along null hypersurfaces in general Lorentzian
manifolds.

Toronto, Canada Stefanos Aretakis
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Chapter 1
Introduction to General Relativity and
Black Hole Dynamics

In this chapter we provide the general framework for curved spaces and introduce
the notions of Lorentzian geometry which are necessary for understanding the math-
ematical aspects of general relativity and black hole dynamics. For exhaustive pre-
sentations we refer to [1–3].

1.1 Lorentzian Geometry and Causality

General relativity postulates that space and time are combined to form unified entities
known as Lorentzian manifolds.

• A Lorentzian manifold (M, g) is a differentiable manifold of dimension n + 1,
endowed with a Lorentzian metric g, namely a differentiable assignment of a
symmetric, non-degenerate bilinear form gx with signature (−,+, . . . ,+) in TxM
at each x ∈ M.

The theory of Lorentzian manifolds is known as Lorentzian geometry. The formu-
las in Riemannian geometry for geodesics, parallel transport, curvatures etc. carry
over to Lorentzian geometry. We will mostly consider the case of four dimensions
(that is, n = 3) and we will assume that (M, g) is orientable.

1.1.1 Causal Theory

Basic Notions and Trichotomy of Directions

The fundamental aspect of Lorentzian metrics g is that, for each x ∈ M, gx is not
positive-definite on TxM. In fact, for each x ∈ M, the linear space (TxM, g)1 is

1For simplicity, we will drop the index and thus by g we will also mean gx .

© The Author(s) 2018
S. Aretakis, Dynamics of Extremal Black Holes, SpringerBriefs
in Mathematical Physics, https://doi.org/10.1007/978-3-319-95183-6_1
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4 1 Introduction to General Relativity and Black Hole Dynamics

isometric to the Minkowski spacetime (R3+1, m) and therefore there exists a basis
(E0, E1, E2, E3) of TxM such that

g(Eα, Eβ) = mαβ,

where mαβ is the Minkowski diagonal matrix

m =

⎛
⎜⎜⎝

−1 0 0 0
0 +1 0 0
0 0 +1 0
0 0 0 +1

⎞
⎟⎟⎠ .

Then, for any vector X ∈ TxM we have X = ∑
α Xα Eα and thus

g(X, X) = −(X0)2 + (X1)2 + (X2)2 + (X3)2. (1.1.1)

Note that unless (M, g) is locally isometric to Minkowski space the frame (Eα,α =
0, 1, 2, 3) does not correspond to a coordinate frame. In view of (1.1.1), the
Lorentzian metric g imposes a trichotomy on TxM as follows (Table1.1):

Table 1.1 Trichotomy of
vectors in Lorentzian
manifolds

X ∈ TxM g(X, X)

spacelike >0

timelike <0

null =0

If X is either timelike or null, then it is called causal. By virtue of (1.1.1), all null
vectors span a double cone Cx in TxM (with vertex at x) the exact shape of which
depends on the basis Eα (Fig. 1.1).

Fig. 1.1 The double null
cone at each point in M
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The interior Ix of Cx consists of all timelike vectors at x and the exterior Sx of
Cx consists of all spacelike vectors at x (Fig. 1.2).

Fig. 1.2 Timelike, null and
spacelike vectors

Note that Sx is connected whereas Ix has two connected components which
we denote by I+

x and I−
x . Similarly, we can decompose Cx = C+

x ∪ C−
x , where

C+
x = ∂I+

x and C−
x = ∂I−

x (Fig. 1.3) .

Fig. 1.3 The future (blue)
and the past (red) light cone
at x

• A time-orientation of (M, g) is a continuous choice of a positive component I+
x

at each point inM (Fig. 1.4).
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Fig. 1.4 Time-orientation of
(M, g)

Fromnowon, wewill only consider time-orientable Lorentzianmanifolds.We define
I+

x (resp. I−
x ) to be the set of future-directed timelike (resp. past-directed) vectors

at x . Similarly, we define C+
x (resp. C−

x ) to be the set of future-directed (resp. past-
directed) null vectors at x .

Causal Curves, Observers and Photons, Proper Time

We have so far provided causal characterizations of directions at each point. We will
next provide causal characterizations of curves. We have the following definition

• A curve α : I → M is called future-directed (resp. past-directed) timelike (resp.
null) if the tangential vector

.
α(t) ∈ Tα(t)M is future-directed (resp. past-directed)

timelike (resp. null) at α(t) ∈ M for all t ∈ I (Fig. 1.5).

Fig. 1.5 A future-directed
timelike curve

The worldline of an observer (resp. a light particle) is represented by a time-
like (resp. null) curve. Freely falling observers (resp. photons) move on timelike
(resp. null) geodesics.
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The proper time τ of an observer is defined to be the parametrization of its world-
line α such that g(

.
α(τ ),

.
α(τ )) = −1. Null curves, on the other hand, by defini-

tion satisfy g(
.
α(τ ),

.
α(τ )) = 0 for all parametrizations. Nonetheless, we can still

obtain distinguished parametrizations for null geodesics; indeed, we define the affine
parametrization of a null geodesic α to be such ∇ .

α
.
α = 0.

Causal Future and Past of a Set

Let S ⊂ M be a region in spacetime. We have the following definitions:

• The causal future J +(S) (resp. causal past J −(S)) of S is defined to be the set of
all points inMwhich can be connected with a point of S through a future-directed
(resp. past-directed) causal curve.

• The chronological future I+(S) (resp. chronological past I−(S)) of S is defined
to be the set of all points which can be connected with a point of S through a
future-directed (resp. past-directed) timelike curve.2

Causal Boundaries

Recall that the (topological) boundary ∂S of S is defined as follows ∂S = S ∩ M/S.
We define the future boundary ∂+S (resp. past boundary ∂−S) of S to be the sub-
set of ∂S which has the property that for all x ∈ ∂+S we have I+(x) ∩ S = ∅
(resp. I−(x) ∩ S = ∅).

Note that ∂+ (J +(S)
) = ∅ and ∂− (J −(S)

) = ∅.

2Note that I+(x) ⊂ M denotes the chronological future of x whereas I+
x ⊂ TxM denotes the set

of all future-directed timelike vectors in TxM.
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Causality and Orthogonality

Let x ∈ M. Then we have the following orthogonality properties for causal vectors:

• If X ∈ TxM is timelike, then 〈X〉⊥ ⊂ TxM consists of spacelike vectors.

• If X ∈ TxM is null, then 〈X〉⊥ ⊂ TxM consists of spacelike vectors and the null
line 〈X〉.

Here 〈X〉 denotes the line spanned by the vector X and 〈X〉⊥ the orthogonal com-
plement of 〈X〉. Note that two causal vectors are never orthogonal unless they are
parallel and null.

Submanifolds

Let N be a submanifold of M. Then N is called:

• spacelike, if the induced metric g
∣∣
TxN is positive-definite for all x ∈ N .

• timelike, if the induced metric g
∣∣
TxN has signature (−,+,+) for all x ∈ N .

• null, if the induced metric g
∣∣
TxN is degenerate for all x ∈ N .

Recall that a symmetric bilinear form g on a linear space V is called degenerate if
there exists a vector X ∈ V such that g(X, Y ) = 0 for all Y ∈ V . By Sylvester’s law
of inertia, hypersurfaces (N , g|N ) of co-dimension 1 can be characterized in terms
of their normal (inM) vector field N . Indeed:

• A hypesurface N is called spacelike, if the normal Nx at each point x ∈ N is
timelike.

• A hypesurface N is called timelike, if the normal Nx at each point x ∈ N is
spacelike.

• A hypesurface N is called null, if the normal Nx at each point x ∈ N is null.

Note the normal Nx of null hypersurface, being orthogonal to itself, is also tangential
toN . This leads to very interesting properties of null hypersurfaces; see Sect. 1.1.3.

1.1.2 Global Hyperbolicity

The causal structure of Lorentzian manifolds might in some cases exhibit unphysical
behavior. For example, there are Lorentzian manifolds with closed timelike curves.
This kind of behavior is very pathological and sowewant to impose conditions on the
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spacetimes in order to preclude it. The main condition is that of global hyperbolicity.
First we need the following definition

• An spacelike hypersurface H is a Cauchy hypersurface if every intextendible
causal curve intersects � exactly once.

We next provide the definition of global hyperbolicity:

• A spacetime (M, g) which possesses a Cauchy hypersurface is called globally
hyperbolic.

The spacetime R1+1 minus a point is not globally hyperbolic (Fig. 1.6)

Fig. 1.6 The spacetime
R
1+1 minus a point is not

globally hyperbolic remove poin

The existence of a Cauchy hypersurface � is a global causal property. Any two
Cauchy hypersurfaces �1, �2 are homeomorphic.

• A globally hyperbolic spacetimeMwith Cauchy hypersurface � is homeomorphic
to � × R. In particular, there exists a global ‘time’ function t : M → R such that
the level sets �τ = {t = τ } are Cauchy hypersurfaces and the vector field ∇t is
everywhere timelike. Furthermore, the hypersurfaces �τ foliate M.

Global hyperbolicity plays a role similar to that of completeness of Riemannian
manifolds.

• Let (M, g) be a globally hyperbolic spacetime. Let also x, y ∈ Mwith y ∈ I+(x).
Then there exists a timelike geodesic γ which connects x, y and maximizes the
length function defined by the following formula

L(γ) =
∫ s

0

(
− g(

.
γ(t),

.
γ(t))

) 1
2
dt.

As we shall see, global hyperbolicity is a natural condition for studying hyperbolic
partial differential equations. A spacetime may not be globally hyperbolic; however
there may exist subsets of such spacetimes which are globally hyperbolic.
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• Let � be a spacelike hypersurface of a spacetime (M, g). Then the Cauchy devel-
opment D(�) of � is defined to be the biggest globally hyperbolic subset of M
which admits � as a Cauchy hypersurface.

The Cauchy development can be split as follows D(�) = D+(�) ∪ D−(�) into the
future Cauchy development D+(�) = J +(�) ∩ D(�) and the past Cauchy devel-
opment D−(�) = J −(�) ∩ D(�). A very important definition that concerns the
global problem is the following

• The boundary CH of the Cauchy development D(�) of an inextendible spacelike
hypersurface� in a LorentzianmanifoldM is called theCauchy horizon of D(�).

1.1.3 Null Geometry

Null geometry concerns the study of null hypersurfaces. Recall that a hypersurface
H of a Lorentzian manifold (M, g) is called null if at each point x ∈ H the normal
Lx to TxH is a null vector. This implies that the normal Lx is tangential toH. In fact,
for each x ∈ H, TxH contains a unique null line 〈Lx 〉 and every other direction in
TxH − 〈Lx 〉 is spacelike (and orthogonal to 〈Lx 〉).

Null Generators

We have established that null hypersurfaces admit a distinguished null line bundle
on H , namely the line bundle spanned by the normal lines 〈Lx 〉, x ∈ H. We have the
following

• The integral curves of the null line bundle of a null hypersurface H are null
geodesics and are called the null generators of H.

Indeed, it suffices to show that ∇L L is normal to H and hence parallel to L: If
X ∈ TH, then

g(∇L L , X) = −g(L ,∇L X) = −g(L ,∇X L) = −1

2
X

(
g(L , L)

)
= 0, (1.1.2)

since [L , X ] ∈ TH and hence g(L , [L , X ]) = 0. In other words, there is a function
f : H → R such that

∇L L = f · L on H. (1.1.3)
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Sections of Null Hypersurfaces

• A section S of a null hypersurfaceH is a two-dimensional submanifold ofHwhich
intersects each null generator ofH transversally.

In view of the properties ofHwe conclude that every section S is a two-dimensional
Riemannian manifold. Furthermore, all null generators intersect S orthogonally.

We will mainly be interested in the case where S is topologically homeomorphic
to the two-dimensional sphere S2.

Null Normal Geodesic Congruences

Let us now start with a surface S, namely a two-dimensional Riemannian manifold
(homeomorphic to S2). For every point x ∈ S we have that dim(Tx S) = 2 and g

∣∣
Tx S

is positive definite. Hence, by Sylvester’s law of inertia we have that the orthogonal
complement Px = (Tx S)⊥ of Tx S in TxM is a two-dimensional Lorentzian plane
and hence isometric to the two-dimensional Minkowski spacetime R1+1. The vector
bundle

P =
⋃
x∈S

Px

is called the normal bundle of S inM. Note that Px = 〈
Lx , Lx

〉
.

Hence, for each x ∈ S there are exactly two null lines orthogonal to S. Let Lx

and Lx be two future-directed null vectors in Px such that Lx projects to the exterior
of S and Lx projects to the interior of S. We will call Lx the outer null normal to S
at x and Lx the inner null normal to S at x . We will require that Lx and Lx depend
differentiably on x so the resulting vector fields L and L along S are differentiable.

For each x ∈ S there is a unique affinely parametrized null geodesic Gx with
initial conditions (x, Lx ), that is to say Gx (0) = x and

.

Gx (0) = Lx . Similarly, there
is a unique affinely parametrized null geodesic Gx with initial conditions (x, Lx ).
We consider the sets in M foliated by these geodesics:
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C =
⋃
x∈S

Gx , C =
⋃
x∈S

Gx . (1.1.4)

• The regular parts of C and C are null hypersurfaces known as the outgoing and
the incoming null normal geodesic congruences, respectively, emanating from S.

Affine Foliations

Let τ and τ be the affine parameters of the affinely parametrized null generators Gx

and Gx normalized such that S = {τ = 0} = {τ = 0}. Then, the level sets Sτ and Sτ

of τ and τ are sections of C and C , respectively. The following foliations

C =
⋃
τ≥0

Sτ , C =
⋃
τ≥0

Sτ

are called affine foliations of the null hypersurfaces C and C , respectively.

Null Normal Congruences and Causality Theory

The importance of the null normal geodesic congruences lies in the following prop-
erty:

• Let S be a two-dimensional surface in a globally hyperbolic spacetime (M, g).
Let C and C denote the (future) outgoing and incoming null geodesic congruences
normal to S, respectively. Then,

∂J +(S) ⊆ C
⋃

C .
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1.1.4 Optical Functions

Optical functions provide a level set approach to studying families of null hypersur-
faces. We have the following definition

• A differentiable function u : M → R is called optical if its level sets Hc =
{u = c} are null hypersurfaces.

Since the gradient vector field ∇u is normal to the level sets Hc of u we conclude
that u is optical if only if ∇u is null. In other words,

• A differentiable function u : M → R is called optical if it satisfies the eikonal
equation

g(∇u,∇u) = gμν(∂μu)(∂νu) = 0. (1.1.5)

Let us denote L = ∇u. Then for any vector field X ∈ M we have:

g(∇L L , X) = (∇L L
)
�
(X) = (∇L L�

)
(X) = ∇L(du)(X)

= ∇2u (L , X) = ∇2u (X, L) = ∇X (du)(L) = g(∇X L , L)

= 1

2
∇X

(
g(L , L)

)
,

where we used the symmetry of the Hessian ∇2u and the standard metric index-
lowering musical isomorphism � : TM → T ∗M. Note that the above equation
extends (1.1.2) since it holds for all vector field X (and not just the ones tangen-
tial toH). In other words, if L = ∇u then

∇L L = 1

2
∇

(
g(L , L)

)
. (1.1.6)

If u is an optical function, and L = ∇u, then g(L , L) = 0 everywhere which, in view
of (1.1.6), yields the following

• If u is an optical function then the gradient vector field L = ∇u is normal to the
null hypersurfaces Hc and is affinely parametrized, that is ∇L L = 0.

Let’s finally consider a vector field Y transversal to the null hypersurfaces Hc such
that

g
(
L , Y

) = 1. (1.1.7)
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Then, since L = ∇u, we have that

Y u = 1 (1.1.8)

and hence Y can be viewed as a “generator” of the optical function u.

1.2 The Einstein Field Equations

The Einstein field equations are the following

Rμν(g) − 1

2
R(g) gμν = 2Tμν (1.2.1)

where Rμν(g), R(g) denote the Ricci and scalar curvature, respectively, and Tμν

denotes the energy-momentum tensor of matter fields. Note that T is a (0, 2) sym-
metric divergence free tensor field.

Einstein-Vacuum Equations

If no matter field is present then T = 0 and the field equations (1.2.1) reduce to the
(still highly non-trivial) vacuum equations

Rμν(g) = 0. (1.2.2)

whichmodel the evolution of pure gravity.Minkowski spacetime is the trivial solution
of the vacuum equations.

Einstein–Maxwell Equations

The coupled Einstein–Maxwell equations consist of the system

Rμν (g) − 1

2
R (g) gμν =2TM

μν(F),

∇μFμν =0,

d F =0.

(1.2.3)

Here F is a electromagnetic 2-form onM and TM
μν(F) is the electromagnetic energy

momentum tensor of F

TM
μν(F) = Fρ

μ Fνρ − 1

4
gμν Fab Fab. (1.2.4)
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Einstein–Maxwell-Scalar Field Equations

The coupled Einstein–Maxwell-scalar field equations consist of the system

Rμν (g) − 1

2
R (g) gμν =2Tμν(F,ψ),

Tμν(F,ψ) =TM
μν(F) + Tsf

μν(ψ),

∇μFμν =0,

d F =0,

�gψ =0.

(1.2.5)

Here ψ is a massless scalar field on M and Tsf
μν(ψ) its energy-momentum tensor

Tsf
μν(ψ) = ∂μψ∂νψ − 1

2
gμν∂

ρψ∂ρψ. (1.2.6)

Maximal Globally Hyperbolic Developments

The local well-posedness of the Einstein-vacuum equations was established by
Choquet-Bruhat in 1952 in her seminal paper [4]. Subsequently, Choquet-Bruhat
and Geroch showed in [5] the following

• Given initial data for the Einstein-vacuum equation on a 3-dimensional Rieman-
nian manifold � there is a unique maximal globally hyperbolic spacetime which
solves the Einstein equations and admits � as a Cauchy hypersurface.

By maximal we mean that any other globally hyperbolic development of � can be
isometrically embedded in the (unique)maximal development (in fact, for this reason,
one should think of themaximal development as the “maximum” development). This
theorem, which can be extended to the Einstein field equations, provides the main
object of study in general relativity. For a detailed treatment see [6]. For recent
refinements we refer to the work of Sbierski [7].

1.3 Trapped Surfaces

Let S be a closed surface and C ∪ C the null geodesic congruences normal to S. We
have the following definition

• A trapped surface is a closed two-dimensional surface S in (M, g) for which
the area decreases under arbitrary (infinitesimal) displacements along the null
generators of both null geodesic congruences C ∪ C normal to S.

If (M, g) is globally hyperbolic, then since C ∪ C bounds the future of S, we obtain
that a trapped surface cannot expand towards the future (hence the term trapped).
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An alternative characterization is the following: A surface S is a trapped if the null
mean curvatures along C and C are everywhere negative on S.

1.4 Null Infinity

In order to study isolated systems in the universe we need to investigate the radi-
ation that is emitted from these systems and reaches far away observers (such as
ourselves). We therefore need a notion that models the region where radiation scat-
ters. This gives rise to a concept known as future null infinity, an ideal incoming null
hypersurface “at infinity”, traditionally denoted by I+. Even though there is not a
single universally adopted definition for I+, we will here present a useful way to
think of I+. Heuristically,

• future null infinity I+ consists of all limit points of future-directed null geodesics
which reach arbitrarily large spatial distances.

A similar construction can be considered for the past: Past null infinity I− consists
of all limit points of past-directed null geodesics which reach arbitrarily large spatial
distances. In the same spirit,we can thinkof future timelike infinity i+ as the limit point
of future-directed timelike geodesics and past timelike infinity i− as the limit point
of past-directed timelike geodesics. There are various ways to implement the above
naive definitions more precisely and concretely. One way is in terms of conformal
transformations (see [1]). Another way is in terms of null foliations and the range
of optical functions (see [8]). Later, in Chap.2, we will present a more concrete
realization of I+ for ERN spacetimes that uses the latter approach.

Asymptotical Flatness and Null Infinity

We are mostly interested in studying isolated systems (such as solar systems, black
holes and galaxies) in the universe. Hence, we can assume that far away from these
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systems the spacetime approaches the flat Minkowski spacetime. Such a condition
can a priori only be imposed on the initial Cauchy hypersurface �. Hence, let us
assume that the data on � are asymptotically flat, i.e. approach Minkowskean data
at infinity. We assume that � terminates at spacelike infinity i0, the limit point of
spacelike geodesics. Then, there exists a sphere S0 in � such that the data on the
exterior of S0 in� is a small perturbation of the flat Minkowski data. Then it follows
by the stability of Minkowski theorem, proved by Christodoulou–Klainerman [8]
and Klainerman–Nicolo [9], that one can attach a piece of future null infinity at the
Cauchy development D+(�) of �:

Completeness of Null Infinity

An important concept is that of future and past completeness of null infinity. Roughly
speaking, completeness of null infinity implies that observers on null infinity can
receive radiation (for example from isolated systems) for infinite proper time. Think-
ing of I+ as an null hypersurface, its completeness simply corresponds to future and
past completeness of its null generators. Another way to think of the completeness
of I+, in a limiting sense, without referring to I+ as a concrete entity, is due to
Christodoulou [10]. We briefly review Christodoulou’s approach below.

The past-completeness of future null infinity is defined in a limiting sense as
follows: Let C0 be the outgoing null geodesic congruence normal to S0. Let L be a
geodesic null vector field along C0 with affine parameter τ . We assume that we can
take τ → ∞ along C0. For each section Sτ , given by the level sets of τ on C0, we
consider the (conjugate) incoming null normal geodesic congruence C−(Sτ ). Let L
be the past-directed null geodesic vector field on C−(Sτ ) normalized at Sτ such that

g(L , L) = +1 at Sτ .

The past-directed null generators of C−(Sτ ) are generated by the vector field L .
Future null infinity is said to be past complete if the affine time it takes the null
generators of C−(Sτ ) to intersect �, starting from Sτ , tends to infinity as τ → ∞.

The works [8, 9] on the stability of Minkowski showed, in particular, that

• Future null infinity of asymptotically flat spacetimes is past complete.
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Future completeness of future null infinity is defined in a similar way: Consider the
null geodesic vector field L along Cτ as above. The future-directed null generators
of Cτ (spanning the red cone in the figure below) are generated by −L . Future null
infinity is said to be future complete if the affine time of the future-directed null
generators of Cτ starting from Sτ tends to infinity as τ → ∞ while remaining in the
Cauchy development of the interior of Sτ .

Weak Cosmic Censorship

Unlike past completeness, it is not known if “generic” asymptotically flat spacetimes
admit a future complete I+. In fact, this is one of themost outstanding open problems
in general relativity and is known as the weak cosmic censorship conjecture. A more
accurate formulation of the conjecture can be found in [10].

1.5 Black Holes

In this Brief we focus on two specific families of spacetimes, namely the extremal
Reissner–Nordström (ERN) family and the extremal Kerr (EK) family. These space-
times contain black hole regions. The concrete definition for the black hole region
in ERN and in EK is given in Chaps. 2 and 3, respectively. In this section, we will
attempt to provide an informal account of the notion of black hole in general.

1.5.1 Definitions, Diagrams and Examples

Black holes are one of the most celebrated predictions of general relativity. They are
regions which cannot communicate with far-away observers (to whom they appear
“black”). Since far-away observers are heuristically modeled by future null infinity
I+, we say that black holes cannot “communicate” with future null infinity I+.
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Extending causal relations to null infinity, and referring to the set of all points inM
from which null geodesics can “reach” (and hence can “communicate” with) I+ as
the past J −(I+) of I+, we arrive at the following somewhat informal definition

• The black hole region BH is the complement of the past J −(I+) of future null
infinity. Symbolically,

BH = M − J −(I+).

There is a close connection of black holes and the weak cosmic censorship. Indeed,
black hole spacetimes with a complete future null infinity I+ have the property that
even though observers on I+ live forever (in view of the future completeness of
I+) they never receive radiation from the black hole region. We have the following
important definitions

• The exterior of the black hole region is known as the domain of outer communi-
cations.

• The boundary of the black hole region (that is, the boundary of the past of I+) is
known as the future event horizon.

The future event horizon is an outgoing null hypersurface usually denoted by H+.
Observers in the domain of outer communication can cross the event horizon but
once they enter the black hole region they cannot escape it. We can also define the
dual (past) notion of a black hole, namely the white hole. This is the complement of
the future of past null infinity I− (that is, the set of all points inM from which past-
directed null geodesics cannot “reach” I−) and cannot be entered from the outside.
The boundary of the white hole is known as the past event horizon and denoted by
H−. Of course, there are spacetimes without any black hole or white hole regions,
for example Minkowski spacetime (and small perturbations of it).

Heuristic and Penrose Diagrams

We will make use of the following heuristic (informal) picture to represent the black
hole region, the domain of outer communications and future null infinity.

The heuristic picture depicting the black hole and the white hole regions is the
following:
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Another representation of (black hole) spacetimes is given by the so-called Penrose
diagrams. They represent the domain on R2 of a pair of conjugate optical functions
forming a double null coordinate system and are very useful because they provide
a means to read off the causal structure of spacetimes (see [3] for more details).
Informally, the Penrose diagram of the domain of outer communications can be
obtained by restricting to an angular slice of the above heuristic diagram as follows

In this Brief we will make use of both the heuristic pictures and Penrose diagrams.

The Kerr–Newman Family of Black Holes

Let us now consider explicit solutions to the Einstein field equations which contain
black hole regions. We will consider the Einstein–Maxwell system (1.2.5). There
is a (unique) family of analytic, stationary and asymptotically flat solutions to the
Einstein–Maxwell systemwith black hole regions. This family is known as theKerr–
Newmann family and is parametrized by three parameters, namely the mass M , the
charge e and the angular momentum a which satisfy M2 ≥ e2 + a2. Details about
this family can be found in any standard textbook. If a = 0 then the family reduces
to the Reissner–Nordström family and if e = 0 then it reduces to the Kerr family.
Furthermore, if a = e = 0 then the family reduces to the Schwarzschild 1-parameter
family of black hole spacetimes.
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1.5.2 The Surface Gravity of the Event Horizon

LetH be a null hypersurface which admits a Killing normal vector field V . Then, in
view of (1.1.3) there is a function κ : H → R such that

∇V V = κ · V . (1.5.1)

Since V is Killing we can easily see that κ has to be conserved along the null
generators ofH, that is V κ = 0. Indeed, we can see that κ = g(∇V V, Y ) where Y is
such that g(V, Y ) = 1 and [V, Y ] = 0. The relation V κ = 0 then follows from the
fact that since V is Killing we have [V,∇V V ] = 0. Note however that κ depends on
the normalization of the vector field V and hence κ is uniquely defined if and only
if there is a distinguished Killing normal to H. Such a distinguished normal exists
for stationary, asymptotically flat spacetimes (such as the Kerr–Newman family of
spacetimes). In this case, we require the normal V to be Killing and normalized at
infinity in sense that it projects on the stationary Killing field T for which g(T, T ) →
−1 at infinity. For the Schwarzschild, and more generally the Reissner–Norström,
family we simply take V = T on the event horizon.

• The surface gravity of the event horizonH is given by (1.5.1) where V is the null
normal toH Killing vector field normalized at infinity.

Physically, κmeasures the force needed to hold something on the event horizon from
infinity. For the Kerr–Newman family (and more general stationary solutions to the
Einstein equations) the surface gravity κ is constant on the event horizon (and not
just conserved along the null generators). The surface gravity is related to the entropy
of the black hole and hence is important in black hole thermodynamics.

1.5.3 Extremal Versus Sub-extremal Black Holes

Stationary black holes, such as the Kerr–Newman black holes, are partitioned in two
classes

• Sub-extremal black holes have strictly positive surface gravity on the event horizon.
• Extremal black holes have vanishing surface gravity on the event horizon.

The sub-extremal Kerr–Newman family corresponds to the values of the parame-
ters for which M2 > a2 + e2. The extremal Kerr–Newman corresponds to the case
where M2 = a2 + e2. The case M = e (and hence a = 0) corresponds to extremal
Reissner–Nordstöm (ERN) and the casewhere M = a (and hence e = 0) corresponds
to extremal Kerr (EK).

There are various definitions of extremality (and resp. of sub-extremality) for
dynamical black holes. These definitions involve bounds on the limiting area of the
event horizon relative to the limiting mass along the horizon or the non-existence of
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trapped surfaces. We will not pursue this here further (see, however, the discussion
for the dynamically extremal Murata–Reall–Tanahashi spacetimes in Sect. 2.5).

1.5.4 The Redshift Effect

The Global Redshift Effect

Let us consider two observers A,B in the domain of outer communications. Observer
A crosses the event horizon in finite proper time (and hence enters the black hole
region) whereas observer B lives forever in the domain of outer communications and
specifically on a timelike geodesic with infinite affine time terminating at the future
timelike infinity i+. Suppose that A emits a light signal that travels along outgoing
null geodesics and is intercepted by B. Then, the frequency of this signal as measured
by B will be “shifted to the red” when compared to the frequency measured by A.
Intuitively, this is related to the fact that the signal, which was emitted in a finite
proper time interval for A, is received by B for an infinite proper time. This means
that the peak of the signal must be intercepted by B less frequently as the proper time
of B progresses. Hence, the frequency as measured by B gets lower. This is precisely
the content of the global redshift effect (see Fig. 1.7).

Fig. 1.7 The global redshift
effect. A crosses the event
horizon. B remains in the
domain of outer
communications forever

The global redshift effect simply relies on the causal properties of the domain of
outer communications and as such it holds for both extremal and sub-extremal black
holes.

The Local Redshift Effect

There is nonetheless a local version of the redshift effect, which depends on the
geometric properties of the event horizon and can be illustrated as follows (see also
[3]): Consider two observers A and B entering the black hole region such that A
crosses the event horizonH+ first. Suppose A emits a light signal that travels along
the event horizon and is intercepted by B. Then, as long as the event horizon H+ is
sub-extremal, the frequency of this signal as measured by B will be “shifted to the
red” when compared to the frequency measured by A as in the Fig. 1.8.
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Fig. 1.8 The local redshift
effect for sub-extremal
horizons

The local redshift effect degenerates for extremal black holes (Fig. 1.9):

Fig. 1.9 The degenerate
local redshift effect for
extremal horizons

Capturing the Local Redshift Effect via the Surface Gravity

The local redshift effect can be quantitatively captured via the positivity of the surface
gravity on the event horizon. First note that the signal is emitted from the points of
the worldline of A and then propagated along future-directed null geodesics (which
emanate from those points). Then B receives the signal as long as B’s trajectory
intersects these null geodesic. A change in the frequency of the signal as received
by B would be due to an increase (or decrease) of the separation of nearby null
geodesics. Specifically, the received frequency would be lower if the null geodesics
are further apart when they reach B than when they started from the worldline of
A. Indeed, this would force B to see the wavefronts of the signal be further apart
resulting in measuring a lower frequency of the received signal.

Instead of studying the dynamic separation of null geodesics, we can study the
dynamic separation of null hypersurfaces (which are ruled by null geodesics) in a
neighborhood of the event horizon. This is slightly more convenient since it allows
us to work with optical functions. Consider an optical function u such that H+ =
{u = 0}. We would like to study the separation of the level sets of u along the event
horizon H+. Consider L = ∇u. Then L is normal to H+ and satisfies ∇L L = 0.
Moreover, if Y is a transversal toH+ vector field such that g(L , Y ) = 1 then Y u = 1
(see Sect. 1.1.4). Hence, the size of Y along H+ gives us the dynamic separation
of the null hypersurfaces (the level sets of u) along which the signal propagates. In
order to measure Y along H+ we need to compare it with vector fields defined in
terms of the symmetry generating Killing normal V . Specifically, we will compare
Y with the vector field Y V normalized such that g(V, Y V ) = 1. We should think that
Y V carries no weights in time and hence can be used to measure the size of Y . Let us
consider the advanced time v along the event horizon such that V v = 1. Then, since
V solves (1.5.1) we obtain L = e−κv · V . This immediately yields
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Y = eκv · Y V

which proves that Y increases exponentially in v. Hence

• outgoing null hypersurfaces in a neighborhood of H+ diverge with an exponen-
tially increasing factor that depends on the surface gravity κ (Fig. 1.10).

Fig. 1.10 Divergence of null
hypersurfaces on
sub-extremal black holes

The importance of the redshift effect for the dynamics of black hole spacetimes
was first demonstrated by Dafermos and Rodnianski in [11]. The above discussion
confirms our previous claim for extremal black holes:

• the local redshift effect degenerates for extremal black holes. Outgoing null hyper-
surface do not diverge (Fig. 1.11).

Fig. 1.11 Outgoing null
hypersurface on extremal
black holes

This property of extremal black holes will play a crucial role in this brief.

1.6 The Black Hole Stability Problem

A rigorous understanding of black hole dynamics is of fundamental importance for
addressing several conjectures in general relativity such as the weak and strong
cosmic censorship conjectures as well as for investigating the propagation of grav-
itational waves. We provide here a rough formulation of the stability problem from
the Kerr–Newman family. For details we refer to the lecture notes [3].

• The black hole stability conjecture: Consider initial data sufficiently close to
the initial data on a Cauchy hypersurface in the Kerr–Newman solution with
parameters (M0, a0, e0). Then, the maximal Cauchy development satisfying the
Einstein–Maxwell equations possesses a complete null infinity such that the metric
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restricted to the domain of outer communications approaches a Kerr–Newman
solution (Mε, aε, eε) in a uniform way, where (Mε, aε, eε) are close to (M0, a0, e0).

The special case for the vacuum equations, starting with e0 = 0, is known as the
stability conjecture of the Kerr family. Note that we can study the dynamics of
Schwarzschild by restricting further to initial data for which a0 = 0, but unless we
impose symmetry assumptions, the final aε will be non-zero.

Asweshallsee,theresultspresentedinthisbookstronglysuggestthatthisconjecture
is false of for a neighborhood of extremal black holes (with M2 = a2 + e2).

1.7 The Wave Equation on Black Hole Exteriors

Important aspects of the black hole dynamics are captured by the evolution of solu-
tions to the wave equation

�gψ = 0 (1.7.1)

on black hole backgrounds. Initial data are prescribed on a Cauchy hypersurface �0

which intersects the event horizon H+ and terminates at null infinity I+, as in the
figure below. A first step towards the non-linear stability of black hole backgrounds
is to establish quantitative dispersive estimates for (1.7.1) in the domain of outer
communications up to and including the event horizon.

The initial value problem for the wave equation on black hole backgrounds has
been extensively studied in both the mathematics and the physics communities. The
main difficulties include the trapping effect at the photon sphere, the redshift effect at
the horizon, dispersion at the near-infinity region and superradiance. We again refer
to [3] for details of these difficulties in general spacetimes.

Quantitative decay rates for scalar fields satisfying (1.7.1) and all their higher-
order derivatives have been obtained for the general sub-extremal Kerr family of
black hole spacetimes by Dafermos, Rodnianski and Shlapentokh-Rothman in [12].
Similar decay estimates hold for the general sub-extremal Reissner–Nordström fam-
ily (see, for example, [11]). We refer to [13–23] for additional results in the asymp-
totically flat setting and to [24–28] for results in the asymptotically de Sitter and anti
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de Sitter setting. See also [29–32] for recent breakthroughs in the understanding of
nonlinear stability problems in the context of the Einstein equations.

In this brief we will be largely occupied with presenting asymptotic results for
scalar perturbations on extremal black holes. For comparison and completeness, we
devote the rest of this section to a discussion on asymptotics of scalar perturbations
on sub-extremal black holes, andmainly for Schwarzschild and Reissner–Nordström
spacetimes.

1.8 Price’s Asymptotics for Sub-extremal Black Holes

A definitive proof of the precise late-time asymptotics of solutions to the wave
equation on the general sub-extremal Reissner–Nordström backgrounds, including
the Schwarzschild family of black holes, was obtained in the recent series of papers
[33–35] confirming, in particular, Price’s heuristics. Let’s first present a discussion
of Price’s asymptotics.

1.8.1 Price’s Heuristics

The following late-time polynomial tail for solutions to the wave equation with
smooth, compactly supported initial data on Schwarzschild spacetimes was heuris-
tically obtained by Price [36] in 1972 along hypersurfaces with constant radius
r = r0 > 2M away from the event horizon H+ = {r = 2M}:

ψ|r=r0(τ , r = r0,�) ∼ 1

τ 3
. (1.8.1)

Subsequent heuristic and numerical works [37–39] suggested the following asymp-
totics on the event horizon H+:

ψ|H+(τ , r = 2M,�) ∼ 1

τ 3
, (1.8.2)

and along the null infinity I+:

rψ|I+(τ , r = ∞,�) ∼ 1

τ 2
. (1.8.3)

Here � = (θ,ϕ) ∈ S
2. Moreover, τ denotes a global time parameter such that its

level sets are the hypersurfaces�τ = F T
τ (�0), where F T

τ is the flow of the stationary
vector field T = ∂t of Schwarzschild.
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1.8.2 The Newman–Penrose Constants I0 and I (1)0

The heuristic work of Leaver [37] related the late-time power law to the branch
cut at temporal frequency ω = 0 in the Laplace transform of Green’s function for
each fixed angular frequency. On the other hand, the approach of [34, 35] relied
on purely physical space techniques and in particular related the late-time power
law to an obstruction to the invertibility of the time operator T = ∂t in a suitable
functional space (and hence is related to the ω = 0 frequency in the Fourier space).
Restricting (strictly) to the future of the bifurcation sphere where T �= 0, we have
that an obstruction to the invertibility of the operator T is the existence of a
conservation law along the null infinity I+: For solutions ψ to the wave equation
(1.7.1) on R–N spacetimes, the limits

I0[ψ](u) := 1

4π
lim

r→∞

∫
S2

r2∂r (rψ)(u, r,�) d�

are independent of the retarded time u. Here, we consider the standard outgoing
Eddington–Finkelstein coordinates (u, r,�) where u is an optical function whose
level sets are the standard spherically symmetric outgoing null hypersurfaces, r is
the area-radius of the spheres of symmetry, � = (θ,ϕ) ∈ S

2 and d� = sin θdθdϕ.
See Fig. 1.12 and also Sect. 2.1.1. The associated constant

I0[ψ] := I0[ψ](u) (1.8.4)

is called the Newman–Penrose constant of ψ (see [40, 41]).

Fig. 1.12 The
Newman–Penrose constant
on I+

The existence of this asymptotic conservation law is an obstruction to inverting
the time operator T if the domain of T is taken to be the set of all smooth solutions
ψ to the wave equation which satisfy the condition |r2∂r (rψ)| ∈ O1(1) on the initial
hypersurface �0. Indeed, if there is a regular solution ψ(1) to (1.7.1) in the domain
of T such that
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T ψ(1) = ψ

then we must necessarily have that

I0[ψ] = I0[T ψ(1)] = 0.

On the other hand, if we consider smooth initial data on a Cauchy hypersurface �0

which crosses the event horizon to the future of the bifurcation sphere (see Fig. 1.13)
such that I0[ψ] = 0 and

lim
r→∞

∫
S2

r3∂r (rψ)|�0 d� < ∞ (1.8.5)

then, by the results in [34], there is a unique smooth spherically symmetric solution
ψ(1) to (1.7.1) in the domain of T such that

T ψ(1) = 1

4π

∫
S2

ψ d� (1.8.6)

in J +(�0).

Fig. 1.13 Time inversion for
the spherical mean ψ0 of ψ

Hence, I0[ψ] appears as the unique obstruction to inverting the time operator
T on the projection to the spherical mean ofψ. If (1.8.5) holds (and hence I0[ψ] =
0), then, as we just mentioned, T can be inverted to produce the time integral ψ(1). In
this case, the Newman–Penrose constant I0[ψ(1)] of ψ(1) is an obstruction to acting
with T −1 on ψ(1), or equivalently, an obstruction to acting with T −2 on 1

4π

∫
S2

ψ d�.
We call I0[ψ(1)] the time-inverted Newman–Penrose constant of ψ and we use the
notation

I (1)
0 [ψ] = I0[ψ(1)].

Note that I (1)
0 [ψ] is given in terms of the initial data of ψ by
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I (1)
0 [ψ] = M3

4π

∫
�0∩H+

ψ d�

+ lim
r0→∞

(
M

4π

∫
�0∩{r≤r0}

n�0(ψ) dμ�0 + M

4π

∫
�0∩{r=r0}

(
ψ − 2

M
r L(rψ)

)
r20d�

)
,

(1.8.7)
where L = ∂v is the outgoingnull derivativewith respect to the double null coordinate
system (u, v), n�0 is the normal of �0 and dμ�0 is the induced volume form on �0.
For compactly supported initial data on the maximal hypersurface {t = 0}, the above
expression for the coefficient I (1)

0 [ψ] reduces to

I (1)
0 [ψ] = M

4π

∫
SBF

ψ r2d� + M

4π

∫
{t=0}

1

1 − 2M
r

∂tψ r2drd�,

where SBF denotes the bifurcation sphere, that is the intersection of the future event
horizon H+ with the past event horizon H−.

1.8.3 The Precise Late-Time Asymptotics

The following global quantitative estimates were obtained for general sub-extremal
Reissner–Nordström spacetimes in [34, 35]: If the Newman–Penrose constant
I0[ψ] �= 0 then

∣∣∣∣
1

4π

∫
S2

ψ(τ , r0,�) − 4I0[ψ] · 1

τ 2

∣∣∣∣ ≤ Cr0 · √
E�0 [ψ] · 1

τ 2+ε
, (1.8.8)

up to and including the event horizon (Fig. 1.14). On the other hand, if I0[ψ] = 0 (as
in the case of compactly supported initial data) then we have the following estimates

∣∣∣∣ψ(τ , r0,�) + 8I (1)
0 [ψ] · 1

τ 3

∣∣∣∣ ≤ Cr0 · √
E�0 [ψ] · 1

τ 3+ε
, (1.8.9)

∣∣∣∣rψ|I+(τ ,�) + 2I (1)
0 [ψ] · 1

τ 2

∣∣∣∣ ≤ C · √
E�0 [ψ] · 1

τ 2+ε
, (1.8.10)

where � = (θ,ϕ),
√

E�0 [ψ] are weighted norms of the initial data and the constant

I (1)
0 is given explicitly in terms of the initial data of ψ by (1.8.7). We emphasize that
(1.8.9) holds up to and including the event horizon (Fig. 1.14).
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Fig. 1.14 Price’s
asymptotics for sub-extremal
RN backgrounds

Generic compactly supported initial data satisfy I (1)
0 [ψ] �= 0 and hence give rise

to solutions to the wave equation which decay exactly like 1
τ 3 . This result yielded

the first pointwise lower bounds for solutions to the wave equation on Schwarzschild
backgrounds.3 In other words, (1.8.9), (1.8.10) and (1.8.7) provide a complete char-
acterization of all solutions to (1.7.1) which satisfy Price’s law as a lower bound. We
remark that the study of lower bounds and late-time asymptotics is very important in
issues related to the black hole interior regions and, in particular, in addressing the
strong cosmic censorship conjecture [42–51].

Summarizing, we have:

asymptotics for ψ origin of the coefficient
−4I0[ψ] · 1

τ2
I0[ψ] �= 0 unique obstruction to inverting T

8I (1)
0 [ψ] · 1

τ3
I (1)
0 [ψ] �= 0 unique obstruction to inverting T 2

In the case of ERN there are additional obstructions to inverting the time
operator T which cause many subtle difficulties in obtaining the precise late-
time asymptotics (see Chaps. 2 and 3).

1.9 Physical Importance of Extremal Black Holes

Extremal black holes are of fundamental importance in general relativity. In this
section we provide a list of references which underpin the intimate connection of
extremal black holes with astronomy/astrophysics, high energy physics and classical
general relativity. Results regarding specifically the dynamics of ERN are omitted
from this section since they are discussed in detail in the next two chapters.

Observations of (near) Extremal Black Holes

Astronomical evidence suggests that near-extremal black holes are ubiquitous in the
universe. Various techniques have been developed to analyze the mechanisms for
the formation and distribution of near-extremal black holes [52, 53]. It has been
suggested that 70% of the stellar black holes, which are formed from the collapse of
massive stars, are near-extremal [54].

3The sharpness of the decay rate of the time derivative of ψ along the event horizon was first
established by Luk and Oh [42].
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Using techniques from X -ray reflection spectroscopy, it has been argued that
many supermassive black holes (whose mass is at least 1 billion times the mass of
the sun) are near-extremal [55, 56]. Such black holes are important for the large
scale structure of galaxies and galaxy clusters. Specific near-extremal supermassive
black holes are expected to exist in the center of the MCG–06-30-15 galaxy [57] and
the NGC 3783 galaxy [58]. Moreover, the stellar black hole Cygnus X-1 (part of a
black hole binary system in the Galaxy) has been shown to have an almost extreme
value for the spin parameter [59]. Another example is the stellar black hole GRS
1915+105 [60].

Observational Signatures of Extremal Black Holes

Many astronomical conclusions are based on calculations for exactly Kerr space-
times. However, time variability might introduce additional observational signatures
of extremal black holes, that is features in the observations that are characteristic to
the dynamics of extremal black holes. The near-horizon geometry provides a great
background for probing such signatures. Such signatures can be divided in two main
categories: gravitational signatures [61–63] and electromagnetic signatures [64–66].
See also Sect. 2.4.1 for another kind of signature due to scalar perturbations.

Uniqueness and Classification of Extremal Black Holes

Extremal event horizons enjoy various rigidity properties [67–70].Global uniqueness
results for extremal black holes in various settings have been obtained in [71–75].We
also refer to interesting examples of higher dimensional extremal black holes [76].

Extremal Black Holes as Mass Minimizers

Extremal black holes saturate geometric inequalities for the total mass, angular
momentum and charge [77–79], even at higher dimensions [80–82]. They also satu-
rate quasi-local versions of these inequalities for the mass, angular momentum and
charge contained in the black hole region [83–87].

Supersymmetry, Holography and Quantum Gravity

Extremal black holes are often supersymmetric as a consequence of the BPS bound.
They have zero Hawking temperature and hence play an important role in under-
standing black hole thermodynamics and the Hawking radiation [88]. Quantum con-
siderations of black hole entropy in five-dimensional extremal black holes and appli-
cations in string theory can be found in [89, 90]. One can define a near-horizon
limit [91–93] which yields new solutions to the Einstein equations with conformally
invariant properties. These limiting geometries have been classified in [94–98]. On
the other hand, the conformal properties of near-horizon geometries allow for a
description of quantum gravity via a holographic duality [99–101] and the study of
bodies orbiting near-extremal black holes [102–105]. The near-horizon of a binary
system of extremal black holes was found in [106].

Quasi-Normal Modes of Extremal Black Holes

Starobinski [107] first investigated the effects of superradiance and extremality.
Extensions for quasi-normal modes of extremal Kerr were obtained in [108] where a
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sequence of zero damped modes was computed. Subsequent analysis was presented
in [109, 110]. The most precise analysis of quasi-normal modes in extremal Kerr has
been presented in [111]. As far as other settings are concerned, rapid modes for near
extremal Reissner–Nordström–de Sitter spacetimes were discovered in [112] and
slowmodes on near-extremal (in fact all sub-extremal) Kerr de Sitter were computed
in [113]. Gravitational modes of the near extremal Kerr geometry were studied in
[114].

Extremality and Non-linear Effects

An intriguing aspect of near-extremal black holes is that they exhibit turbulent grav-
itational behavior [115], that is energy is transferred from high frequencies to low
frequencies. Non-linear simulations of formation of binary systems of near-extremal
black holes were presented in [116]. Furthermore, numerical simulations of the evo-
lution of the Einstein–Maxwell-scalar field system in a neighborhood of extremal
R–N was studied in [117]. A general theory of evolution of extremal black holes
was developed here [118]. For other non-linear works pertaining to the dynamics of
extremal black holes we refer to [119, 120].
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Chapter 2
Extremal Reissner–Nordström Black
Holes

In this Chapter we thoroughly review the geometry of extremal Reissner–Nordström
black holes. We also present the main results on the asymptotics of linear perturba-
tions on such backgrounds.

2.1 The Geometry of ERN

2.1.1 The ERN Metric

TheReissner–Nordström family
(MM,e, gM,e

)
forms the unique family of spherically

symmetric asymptotically flat four-dimensional solutions to the Einstein–Maxwell
equations. These spacetimes, discovered in 1916 [1] and 1918 [2], have two param-
eters the mass M and the (electromagnetic) charge e. Extremal Reissner–Nordström
(ERN) corresponds to M = |e|.

We will first present the ERN metric in local Boyer–Lindquist coordinates
(t, r, θ,φ). In these coordinates, one metric component blows up for various val-
ues of r and it is not a priori obvious what is the appropriate underlying manifold to
study the geometry of this solution. As we shall see, the maximally extended solu-
tions will be patched by various coordinate charts. The ERN metric g = gM in the
coordinates (t, r, θ,ϕ) is given by

g = −Ddt2 + 1

D
dr2 + r2d�, (2.1.1)

where

D = D (r) =
(
1 − M

r

)2

(2.1.2)

and d� = sin θdθdϕ is the standard metric on S
2. Note that the Maxwell potential

A in these coordinates is given by
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A = − Q

r
dt − B cos θdφ

where M = |e| = √
Q2 + B2, (θ,φ) ∈ S

2 and Q, B are the electric and magnetic
charge, respectively.

Clearly, SO(3) acts by isometry on these spacetimes. We will refer to the SO(3)-
orbits as (symmetry) spheres. The coordinate r is defined intrinsically such that
the area of the spheres of symmetry is 4πr2 (and thus should be thought of as a
purely geometric function of the spacetime). From now on, we will omit writing the
coordinates (θ,ϕ) unless otherwise stated.

One could now pose the following question: On what manifold is the metric
(2.1.1) most naturally defined? In the above coordinates, it is clear that the metric
component grr is singular at r = 0 and r = M (the latter is double root of D). The
computation of the curvature shows that as r → 0 the curvature blows up and so
the singularity of r = 0 in (2.1.1) is essential (for a very detailed description of
these phenomena in Schwarzschild case see [3]). However, the points where r = M
form coordinate singularities1 which can be eliminated by introducing the so-called
tortoise coordinate r∗

∂r∗ (r)

∂r
= 1

D
.

We can easily see that

r∗(r) = r + 2M ln |r − M | − M2

r − M
− 2M ln M − M. (2.1.3)

The fact that in extreme case r∗ is inverse linear (instead of logarithmic in the non-
extreme case) is crucial. Note that r∗ is normalized such that r∗(r = 2M) = 0 and
that

for r < M : r∗(r = 0) = 0, lim
r→M−

r∗ = +∞, (2.1.4)

for r > M : lim
r→M+

r∗ = −∞, r∗(r = ∞) = ∞. (2.1.5)

By introducing the coordinate system (t, r∗) the metric becomes

g = −Ddt2 + D
(
dr∗)2 + r2d�. (2.1.6)

This metric breaks down at r = M . A coordinate system that allows us to extend
the metric beyond r = M is the ingoing Eddington–Finkelstein coordinates (v, r)

where
v = t + r∗. (2.1.7)

In these coordinates the metric is given by

g = −Ddv2 + 2dvdr + r2d�. (2.1.8)

1It is the function t that is singular at these points.
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The coordinate vector field ∂v is Killing and is everywhere timelike except on the
hypersurface {r = M} where it is null. In view of (2.1.8) and the fact that ∂v is
tangent and null on H+ we have that the vector ∂v is normal to H+. Recall that if
the normal of a null hypersurface is Killing then the hypersurface is called a Killing
horizon. We will use the notation

T = ∂v (2.1.9)

and call T the stationary vector field. Note that T is normalized at infinity such that
g(T, T ) → −1 are r → ∞. We define the time-orientability of ERN to be so that
the causal vector field T is future-directed. A future-directed timelike vector field is
T − ∂r .

The level sets {v = c} are null hypersurfaces and hence v is an optical function.
This means that the coordinate vector field −∂r is future-directed null, normal on
{v = c} and differentiates with respect to r on these null hypersurfaces. In fact it is
geodesic. Indeed, a computation gives the following Christoffel symbols

∇v∂v =
(

D′

2

)
∂v +

(
D · D′

2

)
∂r , ∇v∂r =

(
− D′

2

)
∂r , ∇r∂r = 0. (2.1.10)

We see that the coordinates (v, r) extend the domain that the coordinates (t, r) cover.
Therefore, using the coordinates (v, r), let us define

M = {(v, r,�) ∈ (−∞,+∞) × (0,+∞) × S
2}. (2.1.11)

We introduce yet one more optical function given by

u = t − r∗ (2.1.12)

and define the outgoing Eddington–Finkelstein coordinates (u, r). The metric in
these coordinates takes the form

g = −Ddu2 − 2dudr + r2d�. (2.1.13)

In these coordinates, ∂u = T and ∂r is future-directed null. Another coordinate sys-
tem that covers M ∩ {r > M} is the double null coordinate system (u, v), where v

and u are given by (2.1.7) and (2.1.12), respectively, which satisfies

u − v = −2r∗ (2.1.14)

and with respect to which the ERN metric is

g = −Ddudv + r2d�. (2.1.15)

In this system, ∂v and ∂u are both future-directed null vector fields.
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2.1.2 Penrose Diagrams

The Penrose diagram is a planar depiction of the domain of two optical functions
forming a double null coordinate system.Let’s consider the system (u, v)with respect
to which the ERN metric takes the form (2.1.15). We will crucially use (2.1.14)
throughout this section since it relates the range of u, v with the values of r . The
Penrose diagram will be represented in terms of the domain a coordinate system
(U, V ) of R

2 as in the figure below

Let’s first consider the case where r > M . Then, in view of (2.1.5), r∗ ∈ R and hence
u ∈ R and v ∈ R. In this case, the coordinatesU, V will be taken to be smooth strictly
increasing functions U = U (u) and V = V (v) such that

U (u) = −1 − 1

u
for u ≤ −4, U (u) = −1

u
for u ≥ 4,

V (v) = −1

v
for v ≤ −4, V (v) = 1 − 1

v
for v ≥ 4,

(2.1.16)

as shown below

The interior of the square above represents the domain R × R × S
2 in terms of

the double null coordinates (u, v,�). For reasons that will be apparent below, this
region is called the domain of outer communications. Recall again that this region
corresponds to r > M . The event horizon andnull infinity are definedby the boundary
of this square, as follows:
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It can be easily shown that the limit points of future-directed null geodesics along
which r → ∞ lie on I+ as defined above. Hence, our definition of future null infinity
for ERN agrees with that in Sect. 1.4. Furthermore, it can be checked that I+ is
past and future complete, in the sense of Sect. 1.4. On the other hand, the future
event horizon H+ and the past event horizon H− as defined above, are actual null
hypersurfaces of the ERN spacetime where, in view of (2.1.16), the metric (2.1.15)
extends smoothly. Indeed, in view of (2.1.14), that the future and past event horizon
both have r = M . Hence, the future event horizonH+ is covered by the ingoing EF
system (v, r) and the past event horizon H− is covered by the outgoing EF system
(u, r). The optical function v “parametrizes” H+ and I− and for this reason it is
known as the advanced time. The optical function u “parametrizes”H− and I+ and
for this reason it is known as the retarded time. Summarizing,

H+ = {r = M} ∩ {v ∈ R}, H− = {r = M} ∩ {u ∈ R}.

Having obtained a complete picture of the r ≥ M region, let’s move to the r < M .
The extension of ERN covering r < M can be represented by the domain of the
extended (smooth and increasing) functions U = U (u′) and V = V (v′) such that

U (u′) = − 1

u′ for u′ ≤ −4, U (u′) = 1 − 1

u
for u′ ≥ 4,

V (v′) = −1 − 1

v′ for v′ ≤ −4, V (v′) = −1

v
for v′ ≥ 4,

(2.1.17)

as is shown below
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The two shaded regions in the U − −V plane are covered by two new sets of double
null coordinates, namely (u′, v) and (v′, u) as is shown above. The reason we need
the new optical functions u′, v′ in each of the two regions is because in r < M
the function r∗ behaves differently compared to the region r > M (see (2.1.4)).
Let’s use the (blue) notation r∗ for the function r∗ defined for r < M given by
(2.1.3) and (2.1.4). For any given value of the advanced time v we can pass to
r < M by considering the optical function u′ which, in view of (2.1.14), solves
u′ − v = −2r∗. Similarly, for any given value of the retarded time u we can pass
to r < M by considering the optical function v′ which, in view of (2.1.14), solves
u − v′ = −2r∗. The metric with respect to the systems (u′, v) and (v′, u) is given
by (2.1.15). The restriction U < V accounts for the conditions u < v′ and u′ < v

which are due to the fact that r∗ > 0. Summarizing, we obtained a representation
of ERN in the domain {−1 < U < 1} ∩ {−1 < V < 1} ∩ {U < V } of the U − V
plane. Suppressing U, V the relevant diagram is as follows

The above representation of ERN allows us to immediately single out the black hole
region and the white hole region as the complement of the past (resp. future) of future
(resp. past) null infinity:
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The black hole region and the domain of outer communications are covered by the
ingoing EF system (v, r). The white hole region and the domain of outer communi-
cations are covered by the outgoing EF system (u, r). The extended ERN spacetime
remains time-oriented by defining the causal vector fields ∂v (with respect to (v, r))
and ∂u (with respect to (u, r))–the red vector fields in the figure below–to be future-
directed in their respective coordinate charts.

The metric remains analytic in the black hole interior region away from r = 0 and it
can be smoothly (non-uniquely) extended. The unique analytic extension is illustrated
in the diagram below. Note that the systems (u′, v) and (v, u′) are defined on the
same open set of R

2.
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The hypersurface {r = M} in the black hole interior is the Cauchy horizon CH+
for the domain of outer communications I. In view of (2.1.17), the metric extends
smooth on CH+. By repeating the above process indefinitely we arrive at the Penrose
diagram of the maximally extended (analytic) ERN spacetime in the U − V plane
as shown below. A fundamental domain is shaded.
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2.1.3 Global Properties of ERN

The stationaryKilling field T is normal to the event horizon and, by virtue of (2.1.10),
satisfies ∇T T = 0. Hence, the event horizon in ERN has vanishing surface gravity.
See also Sect. 1.5.2.

Another important property of ERN is that the timelike hypersurface {r = 2M}
is spanned by null geodesics. These null geodesics orbit the black hole region (that
is, neither cross the event horizon nor escape at null infinity) and for this reason they
are called trapped null geodesics. One of them is depicted by the red curve (Fig. 2.1)

Fig. 2.1 The photon sphere

We conclude with yet another aspect of ERN: Late time (v → ∞) ingoing null
geodesics, emanating from an outgoing null curve (see Fig. 2.2) and normalized
such that their T -energy is one, experience larger and larger local energies after
crossing the event horizon. Their T -energy remains one. However, the vector field T
tends to the null normal on the Cauchy horizon so the T -energy does not accurately
represent the local energy of the geodesics in the region near the Cauchy horizon.
Furthermore, the affine time it takes the geodesics to cross the shaded regions below
tends to zero as the advanced time v → ∞.

Fig. 2.2 Null geodesics
experience large gradients
after crossing H+
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For more details and applications of this property of ERN see [4–6].

2.1.4 The Couch–Torrence Conformal Inversion

ERN has a discrete conformal symmetry � discovered by Couch and Torrence [7].
It is easiest to understand its action in terms of the (t, r∗) coordinates:

�(t, r∗, θ,ϕ) = (t,−r∗, θ,ϕ).

Recall that r∗ = 0 precisely on the photon sphere. Note also that

�−1 = �.

This conformal symmetry “inverses” the domain of outer communications while
fixing the photon sphere r = 2M . It sends the future (resp. past) event horizon to
future (resp. past) null infinity and vice versa. It maps the green region below to the
yellow region by reversing the spherically symmetric null hypersurfaces emanating
from the photon sphere (Fig. 2.3):

Fig. 2.3 The
Couch–Torrence conformal
symmetry

It is easy to see that for any point p in the domain of outer communications we
have

�∗(gp) = �2 · g�(p) with conformal factor � = r

r − M
.

In Boyer–Lindquist coordinates (t, r) the Couch–Torrence inversion takes the form
(suppressing the angular coordinates)

�(t, r) = (
t, r ′)
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where

r ′(r) = M + M2

r − M
. (2.1.18)

In double null coordinates we have

�(u, v) = (v, u).

Finally, if (u, v)in and (u, v)out denote the ingoing and outgoing EF coordinates,
respectively, then

�(u = c, r)out = (v = c, r ′)in.

The Couch–Torrence inversion demonstrates that null infinity is in fact a rescaled
version of extremal horizons; in fact the near-infinity region is a rescaled version of
the near-horizon region. We will call this relation “the extremal horizon–null infinity
correspondence”. For applications of this correspondence see [8].

It is convenient to work with hypesurfaces which are invariant under the action
of the Couch–Torrence inversion. An example of such a hypersurface is {t = 0}.
This hypersurface, however, does not cross the event horizon and does not terminate
at null infinity. Instead, we consider another spacelike-null hypersurface, which we
call �0. The null pieces are given by v = v0 = r∗(rH) for r ≤ rH with rH close to
M and by u = u0 = −r∗(rI) for rI ≤ r with rI sufficiently large. We assume also
that r∗(rH) = −r∗(rI). The spacelike part rH ≤ r ≤ rI is given by t = 0 (Fig. 2.4).

Fig. 2.4 The spacelike-null
hypersurface �0

A heuristic representation of �0 is as follows (Fig. 2.5)
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Fig. 2.5 The spacelike-null
hypersurface �0 with the
blue and red pieces

2.2 The Horizon Instability of ERN

Our goal is to investigate the late-time behavior of solutions to the wave equation

�gψ = 0

on ERN. We consider initial data on the Cauchy hypersurface �0 (as in the previous
section) and we study the behavior of ψ|�τ

and derivatives ∂kψ|�τ
, k ≥ 1, for τ > 0,

where �τ = F T
τ (�0) and where F T

τ denotes the flow of the stationary Killing vector
field T (Fig. 2.6).

Fig. 2.6 The spacelike-null
foliation �τ

The wave equation on ERN in ingoing Eddington–Finkelstein (v, r, θ,ϕ) coordi-
nates takes the form

�gψ = D∂r∂rψ + 2∂v∂rψ + 2

r
∂vψ + R∂rψ + �/ψ = 0 (2.2.1)

where D(r) = (
1 − M

r

)2
and R(r) = d D

dr + 2D
r . Here we denote
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�/ = 1

r2
�/ S2 ,

where �/ S2 is the standard Laplacian on the unit round sphere S
2.

We next review the “horizon instability of extremal black holes” established in
[9–12].

2.2.1 Conservation Laws Along the Event Horizon

Define the spherical sections Sτ = �τ ∩ H+ of the event horizon. Considering the
spherical mean of the wave equation (2.2.1) on the event horizon and using that
D(M) = d D

dr (M) = 0 yields

∂v

(∫

Sτ

(
2∂rψ + 2M−1ψ

)
M2d�

)
= 0.

Since ∂v is null and normal to the event horizonH+, it immediately follows that the
surface integrals

H0[ψ] := − 1

4π

∫

Sτ

∂r (rψ) M2 d� (2.2.2)

are independent of τ . Here � = (θ,ϕ) ∈ S
2 and d� = sin θdθdϕ. Recall that the

vector field ∂r is transversal to the event horizon (Fig. 2.7):

Fig. 2.7 The sections Sτ of
H+ and the transversal to
H+ vector field ∂r

This gives rise to a conservation law along the event horizon. Note that the relation
d D
dr (M) = 0 follows from the fact that the surface gravity of the event horizon of
ERN vanishes. An analogous conservation law holds for each projection on the
eigenspace of the angular Laplacian. Indeed, it can be similarly shown that if ψ�

denotes the projection of ψ on the eigenspace E� of �/ with eigenvalue − �(�+1)
r2 , then

the following higher order derivative transversal toH+

∂�
r

(
r∂r (rψ�)

)
,

is constant along the null generators of the event horizon. Concluding, we have



50 2 Extremal Reissner–Nordström Black Holes

• Hierarchy of conservation laws on ERN: for every fixed angular frequency �

we have a conservation law along the event horizon involving exactly the first
� + 1 translation-invariant, transversal derivatives of the scalar field on the event
horizon.

2.2.2 Non-decay and Blow-up for Transversal Derivatives

The previous conservation laws on the event horizon provide non-trivial obstruc-
tions to decay, since the derivative ∂r is translation-invariant (since [∂r , ∂v] =
0) and hence carries not growing v weights. Recall that the surface integrals
− 1

4π

∫
Sτ

(
∂rψ + M−1ψ

)
d� are conserved. Furthermore, for generic initial data on

�0 we have − 1
4π

∫
S0

(
∂rψ + M−1ψ

)
d� = 1

M3 H0[ψ] �= 0. Assuming for now that
|ψ| → 0 as τ → 0 (this is true; we will in fact present the precise asymptotics in the
next section), we conclude the following

• Non-decay: the spherical mean of the transversal derivative generically does not
decay along the event horizon of ERN. In fact,

− 1

4π

∫

Sτ

∂rψ d� → 1

M3
H0[ψ], as τ → ∞.

It was observed in [13] that the above non-decay result implies that the component
Trr [ψ] of the energy-momentum tensor of the scalar field ψ does not decay along
H+. In fact, we have

1

4π

∫

Sτ

Trr [ψ] d� → 1

M6
(H0[ψ])2 .

Since, Trr [ψ] is related to the energy density measured by an observer crossingH+,
the authors of [13] concluded that the conserved charge H0[ψ] might be thought of
as “hair” of the extremal event horizon since it does not disappear in the evolution
along the horizon.

On the other hand, as we shall see in Chap.4, ψ and all higher order derivatives
∂k

r ψ, k ≥ 1decay along the hypersurfaces {r = r0 > M} away from the event horizon
H+. The non-decaying transversal derivative along the event horizon suggests that
the decay rate of ψ along the event horizon is slower than the decay rate of ψ away
from the horizon. We will see in the next section that this is indeed correct. In view of
the decay of ψ and all its derivatives away from the horizon, it makes sense to refer
to H0 as the “horizon hair” of ψ. It is important to remark that the results outlined
in this brief yield a way in potentially measuring this hair from observations along
null infinity. See Sect. 2.4.1.

By commuting the wave equation (2.2.1) with ∂r , restricting on the event horizon
and using the previous results we conclude the following
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• Blow-up: the spherical mean of higher-order transversal derivatives generically
blows up along the event horizon of ERN. In fact,

1

4π

∫

Sτ

|∂k
r ψ| d� ≥ ck · H0[ψ] · τ k−1, as τ → ∞.

Furthermore, for any ε > 0, the following higher-order energy blow-up result
generically holds: ∫

�τ ∩{r≤M+ε}
(∂k

r ψ)2dμ�τ
→ ∞

for all k ≥ 2 as τ → ∞.

The growth along the horizon and decay away from it for higher derivatives is illus-
trated in the figure belowwhere the blue color represents themagnitude of the second
order radial derivatives of ψ.

As we shall see, the horizon instability holds even for initial data which are
supported away from the horizon (and hence satisfy H0 = 0). An extension of the
above instabilities to linearized electromagnetic and gravitational perturbations of
ERN was presented by Lucietti, Murata, Reall and Tanahashi [13] and by Sela [14].
Nonlinear extensions have been presented in [5, 15–19]. For higher-dimensional
extensions we refer to [20, 21]. For a more detailed discussion of works in the
physics literature see the next section.

2.3 The Precise Late-Time Asymptotics

The above results do not provide an insight into the precise asymptotic behavior for
ψ. There is extensive work in the physics literature regarding late-time asymptotics
for scalar fields on extremal Reissner–Nordström via heuristic or numerical methods,
see [13, 14, 22–27] and the subsequent sections for more details. A derivation and
rigorous proof of the late-time asymptotics was obtained in [28]. In this section we
will review the main results of [28]. As we shall see, the exact coefficients of the
leading-order terms in the asymptotic estimates are obtained in terms of explicit
expressions of the initial data. An overview of the proofs is given in Chap.4.
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2.3.1 Scalar Perturbations of Type A, B, C, and D

We introduce four types of perturbations. Aswe shall see, each of these types requires
a separate treatment and exhibits different asymptotic behavior. Recall that ERN
admits two independent conserved charges: (1) the horizon charge H0[ψ] given by
(2.2.2), and (2) the Newman–Penrose constant I0[ψ] at null infinity given by (1.8.4).
It is important to emphasize that the values of H0[ψ] and I0[ψ] depend only on
the initial data of ψ. Compactly supported initial data satisfy I0[ψ] = 0 and data
supported away from the horizon satisfy H0[ψ] = 0.

• Initial data on a Cauchy hypersurface �0 are called horizon-penetrating if the
horizon charge H0[ψ] �= 0.

• Initial data on a Cauchy hypersurface �0 are called null-infinity-extending if the
Newman–Penrose constant I0[ψ] �= 0.

In the physics literature, the latter data are said to have an “initial static moment”.
We will consider the following four types of initial data.

Type A: Compactly supported data but horizon-penetrating.
These data should be thought of as local data in the sense that they reflect perturbations
in a neighborhood of the event horizon.

Type B: Compactly supported data and supported away from the event horizon.
These data correspond to compact perturbations from afar, that is away from the
event horizon.

Type C: Null-infinity-extending and horizon-penetrating data.
These data correspond to global perturbations with non-trivial support across the
whole initial hypersurface �0.

Type D: Null-infinity-extending but supported away from the horizon data.
These data correspond to perturbations fromafar extending all theway to null infinity.
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2.3.2 Review of Physics Literature

The Blaksley–Burko Asymptotic Analysis

The first work on asymptotics of scalar fields on ERN goes back to 1972 when Bičák
suggested in [29] that scalar fields ψ� on ERNwith non-vanishing Newman–Penrose
constant and with angular frequency � decay with the rate 1

t�+2 . However, this result
was shown to be false in 2007 when Blaksley and Burko [24] performed a more
accurate heuristic and numerical analysis. Their work considered data of Type B and
C. Define μ ∈ {0, 1} such that μ = 0 for data of Type B and μ = 1 for data of Type
C. The authors argued that the sharp decay rates for the scalar field are the following:

• Away H+ and I+: |ψ�|r=r0>M decays like 1
τ 2�+2+μ ,

• On H+: |ψ�|H+ decays like 1
τ �+1+μ ,

• On I+: |rψ�|I+ decays like 1
τ �+1+μ .

Reference [24] did not obtain the precise late-time asymptotics in the above two
cases. Moreover, [24] did not study other types of initial data, and in particular, did
not study horizon penetratring compactly supported initial data.

The Lucietti–Murata–Reall–Tanahashi Numerical Analysis

The asymptotic analysis of Lucietti–Murata–Reall–Tanahashi [13] was the first work
to numerically investigate the precise late-time asymptotics for scalar fields on ERN.
Their first major result is the following precise late-time asymptotics for Type A
perturbations

M · ψ|H+ ∼ 2H0[ψ] · 1
τ

+ 4M H0[ψ] · log τ

τ 2
, as τ → ∞. (2.3.1)

Furthermore, the authors suggested, using a near-horizon calculation, that the follow-
ing precise late-time asymptotic behavior off the horizon along r = r0 > M holds:

ψ|{r=r0} ∼ 4M

r0 − M
H0[ψ] · 1

τ 2
, as τ → ∞. (2.3.2)

Moreover, the authors, extrapolating from numerical simulations for the � = 1, 2
angular frequencies, found the following sharp rate off the horizon along r = r0 > M

|ψ�|{r=r0} decays like
1

τ 2�+2
. (2.3.3)



54 2 Extremal Reissner–Nordström Black Holes

For Type B perturbations, the authors obtained the following asymptotic statement

ψ|H+ ∼ C0

τ 2
, as τ → ∞. (2.3.4)

However, the constant C0 was not explicitly computed in terms of the initial data.
Another important question that was first raised and investigated in [13] is whether
one can trigger the horizon instability using ingoing radiation; that is, using perturba-
tionswhich are initially supported away from the event horizon and hence necessarily
satisfy H0[ψ] = 0. The authors found the following stability results

|ψ|H+ → 0, |∂rψ|H+ → 0 : along H+,

and uncovered the following (generic) instability behavior

|∂2
r ψ|H+ � 0 |∂3

r ψ|H+ → ∞ : along H+.

This instability behavior, which has also been discussed in [30], was subsequently
rigorously proved in [31].

Reference [13] also investigated the late-time behavior of massive scalar fields
which solve �gψ = m2ψ. For such massive fields it is widely believed that the late-
time behavior is dominated by the ω = m frequency (instead of the ω = 0 frequency
for massless fields on sub-extremal black holes) which leads to damped oscillations.
In particular, massive fields and all their derivatives are expected to decay like τ− 5

6

in the domain of outer communications (up to and including the event horizon)
of a sub-extremal black hole. Reference [13] found that this remains true on ERN
backgrounds off the horizon (a result that had also been seen in [32]). On the other
hand, [13] found that the horizon instability persists for a discrete set of masses m2.
Specifically, if (m M)2 = n(n + 1) then the authors argued that

|∂n+1
r ψ|H+ � 0 |∂n+2

r ψ|H+ → ∞ : along H+.

More generally, the numerical analysis of [5] suggests the following asymptotic
behavior for general masses m2:

∂k
r ψ behaves like τ k− 1

2 −
√

(mM)2+ 1
4 ,

for all k ≥ 0. A rigorous proof of the above statements for massive fields is an open
problem.

The Ori–Sela Asymptotic Analysis

Ori [25] and Sela [26] used the conservation laws that hold for each fixed angular
frequency � (see Sect. 2.2.1) to heuristically obtain the precise late-time asymptotics
ofψ� for TypeA perturbations. Specifically, Ori and Sela found the following asymp-
totics along r = r0 > M off the horizon:
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ψ�|{r=r0} ∼ (−4)�+1eM3�+2 r

(r − M)�+1
· 1

τ 2�+2
, as τ → ∞,

where e is an explicit expression of the conserved charge H�[ψ�] for ψ�. Hence, the
above result improves the statement (2.3.3) of [13].

Furthermore, Ori and Sela derived the precise late-time asymptotics of ψ� along
the horizon

ψ�|H+ ∼ e(−M)�+1 · 1

τ �+1
, as τ → ∞,

where e is as above. Sela [14] subsequently used the decay rates obtained in [25,
26] in order to obtain decay rates for the coupled electromagnetic and gravitational
system for ERN.Recently, [33] supported the validity of the above rates using Fourier
based arguments.

2.3.3 The New Horizon Charge H (1)
0 [ψ]

We introduce the dual scalar field ψ̃ of ψ given by

ψ̃ = M

r − M
ψ ◦ �, (2.3.5)

where� denotes the Couch–Torrence conformal inversion (see Sect. 2.1.4). Observe
that ˜̃ψ = ψ and that ψ satisfies the wave equation on ERN if and only if its dual ψ̃
satisfies the wave equation on ERN. References [30, 34] showed that this duality can
be used to relate the horizon charge with the Newman–Penrose constant as follows:

H0[ψ] = I0[ψ̃].

Recall that if the Newman–Penrose constant vanishes I0[ψ] = 0 then one can define
the time-inverted Newman–Penrose constant I (1)

0 [ψ], given by (1.8.7), which is finite
and conserved (see Sect. 1.8.2). Note that I (1)

0 [ψ] is only defined for initial data of
Type A and B.

Note next that the dual of perturbations of Type B and D is of Type B and A,
respectively. Hence, if H0[ψ] = 0 (which holds for Type B and D perturbations)
then we can introduce the following

H (1)
0 [ψ] := I (1)

0 [ψ̃]. (2.3.6)

Wewill refer to H (1)
0 [ψ] as the time-inverted horizon charge. Clearly, H (1)

0 [ψ] is only
defined for initial data of type B and D.

As we shall see, H (1)
0 [ψ] plays a fundamental role in understanding the asymp-

totics for Type B and D perturbations.
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We will next outline the asymptotics derived in [28].

2.3.4 Asymptotics for Type C Perturbations

Wefirst consider global perturbations of TypeC. These perturbations satisfy H0 �= 0
and I0 �= 0. The non-vanishing of the conserved constants H0 and I0 allows for the
possibility that they appear in a potentially complicated way in the asymptotics for
ψ. In fact, [13] conjectured that both H0 and I0 appear in the asymptotics of ψ along
the event horizonH+. This conjecture was falsified in [28] where it was shown that
the asymptotics along the event horizon are independent of the Newman–Penrose
constant I0:

rψ|H+ ∼ 2H0[ψ] · 1
τ

+ 4M H0[ψ] · log τ

τ 2
as τ → ∞. (2.3.7)

On the other hand, it was shown that both constants H0 and I0 appear in the leading-
order terms for the late-time asymptotics of ψ|{r=r0} along r = r0 hypersurfaces
away from the event horizon (r0 > M):

ψ|{r=r0} ∼
(
4I0[ψ] + 4M

r − M
H0[ψ]

)
· 1

τ 2
as τ → ∞. (2.3.8)

The proof of (2.3.8) is particularly subtle since both the horizon region and the null
infinity region contribute to the asympotics of ψ|{r=r0} via the constants H0 and I0,
respectively. This is in stark contrast with the sub-extremal case (see Sect. 1.8.3)
where the dominant terms originate only from the null infinity region. Note that the
coefficient 4M

r−M of H0 is itself a static solution on ERN. We remark that to show the
asymptotics (2.3.8), we need to derive first the asymptotics for the radial derivative2

∂ρψ of ψ along �0:

∂ρψ|{r=r0} ∼ − 4M

(r − M)2
H0[ψ] · 1

τ 2
as τ → ∞. (2.3.9)

The crucial insight of (2.3.9) is that the leading-order asymptotics of ∂ρψ|{r=r0} are
independent of I0 for all values of r0 > M! This is somewhat surprising; it shows
that only the near-horizon region contributes to the asymptotics of ∂ρψ and not, in
particular, the near-infinity region. Furthermore, note that the decay rate of ∂ρψ|{r=r0}
is only τ−2 which is equal to the decay rate of ψ. This is again in stark contrast with
the sub-extremal case where ∂ρψ|{r=r0} decays like τ−3.

The following asymptotics have been derived along null infinity I+:

2With respect to the coordinate system (ρ = r, θ,ϕ) on �0.
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rψ|I+ ∼ 2I0[ψ] · 1
τ

+ 4M I0[ψ] · log τ

τ 2
as τ → ∞. (2.3.10)

Note that these asymptotics are independent of the horizon charge H0.

2.3.5 Asymptotics for Type A Perturbations

We next consider horizon-penetrating perturbations of Type A. These perturbations,
which satisfy H0 �= 0 and I0 = 0, are the most physically relevant since they repre-
sent local perturbations of ERN. In the physics literature, they represent outgoing
radiation.

The asymptotics (2.3.7) alongH+, and (2.3.8) and (2.3.9) along {r = r0} hold in
this case as well, where in (2.3.8) we have to use that I0 = 0. On the other hand, the
asymptotics along null infinity for the radiation field rψI+ cannot be read off from
(2.3.10). Instead, the following asymptotics were derived in [28]

rψ|I+ ∼
(
4M H0[ψ] − 2I (1)

0 [ψ]
)

· 1

τ 2
as τ → ∞. (2.3.11)

Here I (1)
0 is the time-invertedNewman–Penrose constant givenby (1.8.7).Weobserve

that for Type A perturbations the dominant term in the asymptotics of the radia-
tion field rψ|I+ contains the horizon charge H0. Therefore, the precise asymptotics
(2.3.11) yield a way to potentially measure the horizon charge H0 and hence detect
the horizon instability of extremal black holes from observations in the far away
radiation region. For more on this see Sect. 2.4.1.

2.3.6 Asymptotics for Type B Perturbations

Perturbations of Type B satisfy H0 = 0 and I0 = 0 and hence represent local per-
turbations from afar. In the physics literature, such perturbations represent ingoing
radiation.

Recall that Lucietti–Murata–Reall–Tanahashi [13] numerically demonstrated that
such perturbations exhibit aweaker version of the horizon instability (see Sect. 2.3.2),
namely

|ψ|H+ → 0, |∂rψ|H+ → 0, |∂2
r ψ|H+ � 0 |∂3

r ψ|H+ → ∞ : along H+.

(2.3.12)
Perturbations of Type B which exhibit the above behavior where rigorously con-
structed in [31]. However, [31] did not provide a necessary and sufficient condition
for perturbations of Type B so that (2.3.12) holds. Such a condition and moreover
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the precise late-time asymptotics for all perturbations of Type B were obtained in
[28].

Recall that the horizon charge H (1)
0 [ψ] given by (2.3.6) is well-defined for all

Type B perturbations. It turns out that the weak horizon instability (2.3.12) holds if
and only if H (1)

0 [ψ] �= 0. Specifically,

∂2
r ψ ∼ 1

M5
H (1)

0 [ψ], ∂3
r ψ ∼ − 3

M7
H (1)

0 [ψ] · τ as τ → ∞. (2.3.13)

In fact, H (1)
0 [ψ] determines the leading-order asymptotics along the event horizon

rψ|H+ ∼ −2H (1)
0 [ψ] · 1

τ 2
as τ → ∞. (2.3.14)

On the other hand, the asymptotics of the radiation field depend only on the value
of the time-inverted Newman–Penrose constant I (1)

0 :

rψ|I+ ∼ −2I (1)
0 [ψ] · 1

τ 2
as τ → ∞. (2.3.15)

Finally, the asymptotics along {r = r0} depend on the value of both constants H (1)
0 [ψ]

and I (1)
0 [ψ]:

ψ|{r=r0} ∼ −8

(
I (1)
0 [ψ] + M

r − M
H (1)

0 [ψ]
)

· 1

τ 3
as τ → ∞. (2.3.16)

Note the decay rate of (2.3.16) agreeswith the decay rate of (1.8.9) for Schwarzschild
spacetimes. However, in contrast to Schwarzschild, the coefficient of the asymptotic
term in (2.3.16) depends additionally on the new horizon charge H (1)

0 [ψ].

2.3.7 Asymptotics for Type D Perturbations

Type D perturbations satisfy H0 = 0 and I0 �= 0 and admit a well-defined H (1)
0 . The

first result for this case shows that the radiation field rψ|I+ and the scalar fieldψ|{r=r0}
“see” to leading order only I0:

rψ|I+ ∼ 2I0[ψ] · 1
τ

, ψ|{r=r0} ∼ 4I0[ψ] · 1

τ 2
as τ → ∞.

On the other hand, the asymptotics alongH+ to leading order to depend on both I0
and the horizon charge H (1)

0 :
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rψ|H+ ∼
(
4M I0 − 2H (1)

0 [ψ]
)

· 1

τ 2
as τ → ∞.

Type D perturbations exhibit the weak version of the horizon instability. Indeed, the
exact non-decay and blow-up along the event horizon results given by (2.3.13) hold
for Type D perturbations as well. In contrast to Type A perturbations, the derivative
∂rψ decays faster than ψ away from the horizon:

∂rψ|{r=r0} ∼
(

8M

(r − M)2
· H (1)

0 + 8(r2 − M2)

(r − M)2
· I0

)
· τ−3.

2.3.8 Asymptotics for Higher Order Derivatives

In this section will will present the asymptotics for the higher order derivatives
∂k

r T mψ. We will consider Type A data and hence that H0[ψ] �= 0. For simplicity, we
will present the asymptotics only along the event horizon. Define

ak+1 = −k(k + 1)

2M2
, for k ≥ 1 and a1 = 1

M2
, (2.3.17)

and

ck = (−1)k−1 k!
(2M2)k−1

· c1 = (−1)k 1

M3

k!
(2M2)k−1

, for k ≥ 1. (2.3.18)

The asymptotics of the higher-order derivatives along H are as follows

∂k
r ψ ∼ ck · H0 · τ k−1, k ≥ 1,

∂m+ j
r T mψ ∼

j+m∏

j+1

ai · cm · H0 · τm−1, j ≥ 1,

T mψ ∼ (−1)m · 2

M
· m! · H0 · 1

τm+1
, m ≥ 0,

∂m
r T m+ jψ ∼ (−1) j

m∏

i=1

ai · ( j + 1)! · H0 · 1

τ 2+ j
, m ≥ 1, j ≥ 0.

(2.3.19)

The black terms decay in time, the blue terms converge to non-zero constants and
the red terms grow unboundedly. It might be easier to illustrate this using the table
below
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A horizontal, resp. vertical, step in the above table results in a multiplication by τ ,
resp. 1

τ
of the respective sharp rates as is shown below

The bold black terms decay one power faster than what results from the above rule
and hence form a skip. This skip was also previously observed in [27]. The decay
rates can be summarized as follows

∂k
r T mψ ∼ τ k−m−1−ε(k,m), ε(k, m) =

{
0, if k = 0 or k ≥ m + 1,

1, if 1 ≤ k ≤ m.
(2.3.20)

For overview of the proof of this skip, see Sect. 4.8.7. Hadar and Reall [19] showed
that (2.3.20) implies that the scalar invariants |∇kψ|2 decay in time. Similar decay
results were presented in [35, 36]. Let’s briefly recall the argument of [19]. First
of all note that the Christoffel symbols vanish on the event horizon �a

bc = 0, with
a, b, c ∈ {v, r}, and hence, if ∂i1 , . . . , ∂i k ∈ {v, r} then ∇kψi1···ik = ∂i1 · · · ∂i k ψ on
the event horizon. Then,

|∇kψ|2 ∼
∑

k1+k2=k

∂k1
r T k2ψ · ∂k2

r T k1ψ ∼
∑

k1+k2=k

τ k1−k2−1−ε(k1,k2) · τ k2−k1−1−ε(k2,k1)

∼
∑

k1+k2=k

τ−2−ε(k1,k2)−ε(k2,k1) ∼ τ−2

for all k ≥ 1, since ε(k1, k2), ε(k2, k1) ≥ 0 and ε(k, 0) = ε(0, k) = 0. Note that the
decay rate for |∇kψ|2 is independent of k.

2.3.9 Summary of the Precise Asymptotics

In this section we summarize the asymptotics for scalar perturbations ψ on ERN.
The global asymptotics are given in the table below
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Data Asymptotics of ψ

Type A 4I (1)
0 [ψ] · T

( 1
u·v

) + 4M
r−M H0[ψ] · T

(
1

u(v+4M−2r)

)

Type B 4
(

I (1)
0 [ψ] + M

r−M H (1)
0 [ψ]

)
· T

( 1
v·u

)

Type C
(
4I0[ψ] + 4M

r−M H0[ψ]
)

· 1
u·v

Type D 4r
r−M H (1)

0 [ψ] · T
( 1

u·v
) + 4I0[ψ] · 1

v(u+2M−2M2(r−M)−1)

The asymptotics onH+, r = r0 and I+, as special cases of the above table, are given
in Table2.1.

Table 2.1 Asymptotics for ψ

Data Asymptotics

rψ|H+ ψ|{r=r0} rψ|I+

Type A 2H0 · τ−1 4M
r−M H0 · τ−2

(
4M H0 − 2I (1)

0

)
· τ−2

Type B −2H (1)
0 · τ−2 −8

(
I (1)
0 + M

r−M H (1)
0

)
·

τ−3

−2I (1)
0 · τ−2

Type C 2H0 · τ−1 4
(

I0 + M
r−M H0

)
· τ−2 2I0 · τ−1

Type D
(
4M I0 − 2H (1)

0

)
· τ−2 4I0 · τ−2 2I0 · τ−1

The asymptotic expressions for T kψ for all k ≥ 0 can be (informally) computed
by taking the ∂k

∂τ k derivative of the expressions in Table2.1. At the horizon, we have
the following asymptotics for the higher order transversal derivatives ∂k

r ψ revealing
the strong horizon instability for Type A and C and the weak horizon instability for
Type B and D (Table2.2).

Table 2.2 Strong (blue) and weak (red) horizon instability

Data Asymptotics

∂r ψ|H+ ∂2
r ψ|H+ ∂3

r ψ|H+ ∂k
r ψ|H+ , k ≥ 2

Type A − 1
M3 · H0

1
M5 · H0 · τ − 3

2M7 · H0 · τ2 ck · H0 · τ k−1

Type B 2
M2 · H (1)

0 · τ−2 1
M5 · H (1)

0 − 3
M7 · H (1)

0 · τ ak · ck−1 · H (1)
0 ·

τ k−2

Type C − 1
M3 · H0

1
M5 · H0 · τ − 3

2M7 · H0 · τ2 ck · H0 · τ k−1

Type D 2
M2 · H (1)

0 · τ−2 1
M5 · H (1)

0 − 3
M7 · H (1)

0 · τ ak · ck−1 · H (1)
0 ·

τ k−2

Where ak and ck are defined by (2.3.17) and (2.3.18), respectively. The following
asymptotics for the transveral derivative ∂rψ on and away from H+ reveal that ∂rψ
always decays away fromH+ (Table2.3):
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Table 2.3 Asymptotics for ∂r ψ

Data Asymptotics

∂r ψ|H+ ∂r ψ|{r=r0}
Type A − 1

M3 · H0 − 4M
(r−M)2

· H0[ψ] · τ−2

Type B 2
M2 · H (1)

0 · τ−2 8M
(r−M)2

· H (1)
0 [ψ] · τ−3

Type C − 1
M3 · H0 − 4M

(r−M)2
· H0[ψ] · τ−2

Type D 2
M2 · H (1)

0 · τ−2
(

8M
(r−M)2

· H (1)
0 + 8(r2−M2)

(r−M)2
· I0

)
· τ−3

2.4 Applications and Additional Remarks

In this section we present a few applications and remarks about late-time asymptotics
on ERN.

2.4.1 Measuring the Horizon Hair from Null Infinity

It is not yet clear how to put the horizon instability for extremal black holes in the
context of the (X-ray based) astronomical observations which suggest that many
stellar and supermassive black holes are near extremal. One idea would be that
the horizon instability does not mean that extremal (or near extremal) black holes
are unlikely to occur in nature but rather that these black holes have characteristic
signatureswhich can potentially be used to detect them.This leads us to the following:

• Is the horizon instability observable far away from the event horizon?

As a toy model, let’s consider outgoing radiation represented by Type A (scalar)
perturbations. Recall that for this type of perturbations the strong horizon instability
holds

∂rψ|H+ ∼ − 1

M3
H0[ψ], ∂2

r ψ|H+ ∼ 1

M5
H0[ψ] · τ : along H+. (2.4.1)

The source of this instability is the conserved charge H0[ψ]. The effects of this
instability can be observed by incoming observers in view of the non-decay of the
component Trr [ψ] of the energy-momentum tensor. This means that H0 is a horizon
“hair”. It is a horizon hair, because away from the horizon all the geometric quantities
do decay. A crucial question arises: Could we, in principle, measure the horizon hair
H0 from observations away from the event horizon, that is, from observations on the
hypersurfaces {r = r0} or, ideally, on null infinity?

The answer for both cases is yes [37]! The leading late-time behavior for ψ along
{r = r0} is given by 4M

r0−M H0τ
−2 which means that, for fixed M , late-time observa-

tions along {r = r0} can be used to determine the value of H0. Similarly, we saw that
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the leading late-time behavior for the radiation field along null infinity is given by
(4M H0 − 2I (1)

0 )τ−2. We see that in this case the asymptotics do not depend purely
on H0. However, one can show that for Type A perturbations on ERN we have

I (1)
0 [ψ] = M

4π

∫

I+∩{τ≥0}
rψ d� dτ .

The above identity implies that I (1)
0 can, in principle, be read from observations

along null infinity only!Moreover, from late-time observationswe can independently
measure (4M H0 − 2I (1)

0 )which finally yields the value for H0. The fact that one can
read the value of the horizon hair from null infinity might also be thought of as a
“leakage” of horizon information to null infinity.

2.4.2 Singular Time Inversion and the New Horizon Charge

Recall from Sect. 1.8.2 that the constants I0 and I (1)
0 are obstructions to inverting

the time operators T and T 2, respectively. Specifically, I0 and I (1)
0 are obstructions

to defining the operators T −1 and T −2, respectively, on solutions the wave equation
(1.7.1) such that their target functional space consists of solutions the wave equation
which decay appropriately in r towards null or spacelike infinity. In sub-extremal
black holes, I0 and I (1)

0 are the only such obstructions. However, for ERN we have
an additional obstruction that originates from the geometry of the horizon, namely
the conserved charge H0. Indeed, for any smooth solution ψ to the wave equation
(1.7.1) on ERN we have

H0[T ψ] = 0. (2.4.2)

Hence, H0 is an obstruction to defining the inverse operator T −1 from smooth solu-
tions of (1.7.1) to smooth solutions of (1.7.1). On the other hand, if ψ is a smooth
solution of (1.7.1) with H0 = 0 then the horizon charge H (1)

0 is well-defined and
satisfies

H (1)
0 [T 2ψ] = 0.

Hence, H (1)
0 is an obstruction to defining the inverse operator T −2 from smooth

solutions of (1.7.1) with H0 = 0 to smooth solutions of (1.7.1). The above imply
that the horizon charges H0 and H (1)

0 are related to singularities at time frequencies
ω ∼ 0. We thus conclude that the leading order terms in the late-time asymptotic
expansion are dominated by the ω ∼ 0 frequencies.

An important aspect of the proofs of the asymptotics is that we invert the operators
T and T 2 even if the images of T −1 and T −2 do not contain smooth function. This is
accomplished by developing a singular time inversion theory. This theory is needed
for Type A and Type D perturbations. Let’s first consider Type A perturbations.
Since such perturbations satisfy H0 �= 0 and I0 = 0, I (1)

0 is well-defined whereas
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H (1)
0 is undefined. Clearly, there is no smooth solution T −1ψ to (1.7.1). Indeed, if a

smooth solution T −1ψ to (1.7.1) existed then by replacing ψ with T −1ψ in (2.4.2)
we would obtain H0[ψ] = H0[T (T −1ψ)] = 0, contradiction. It turns out that we can
still canonically define a singular time inversion T −1ψ such that

• T −1ψ → 0 as r → ∞,
• I0[T −1ψ] < ∞,
• ∂r (T −1ψ) ∼ −2H0[ψ] · 1

r−M in the region r ∼ M .

Similar results hold for Type D perturbations. In fact, for perturbations of Type A
and D, a low regularity theory allows us to obtain the precise late-time asymptotics
for the singular scalar fields T −1ψ. We remark that for Type B perturbations we
need a regular time inversion theory, whereas no time inversion is needed for Type
C perturbations. Summarizing, we obtain the (Table2.4) below:

Table 2.4 The time inversion and its singular support

Data Time inversion theory

H0[ψ] H (1)
0 [ψ] I0[ψ] I (1)

0 [ψ] T −1ψ

Type A �= 0 = ∞ = 0 < ∞ Singular at
H+

Type D = 0 < ∞ �= 0 = ∞ Singular at I+

Type B = 0 < ∞ = 0 < ∞ Regular

2.5 The Murata–Reall–Tanahashi Spacetimes

In a very beautiful work [5], Murata, Reall and Tanahashi studied numerically the
fully non-linear evolution of the horizon instability of ERN. Specifically, the authors
of [5] investigated perturbations of ERN in the context of the Cauchy problem for the
spherically symmetric Einstein–Maxwell-(massless) scalar field system. The authors
studied various types of perturbations and obtained a great number of results, all of
which are consistent with the linear theory described in the previous sections. We
will next provide a more detailed summary of their results. It is important to remark
that a rigorous treatment of this system remains a (very interesting) open problem.

The initial data on a Cauchy hypersurface �0 for the spherically symmetric
Einstein–Maxwell-scalar field system are completely determined (modulo gauge
fixing) by the value of the initial Bondi mass M , the conserved charge e > 0 and
the profile of the scalar field ψ on �0. Note that ERN corresponds to data for which
M = e and ψ is trivial on �0. The authors of [5] considered compactly supported
scalar fields ψ of size ε > 0

max
�0

|ψ| = ε.

The authors considered the following three types of perturbations of ERN:
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Type I: First-order mass perturbation M = e + O(ε).

This is the “largest” of three types of perturbations. An open neighborhood Otrap

of the initial hypersurface �0 contains trapped surfaces. The Cauchy development
contains a complete null infinity and a well-defined black hole region bounded by a
smooth event horizonH+. In fact, the spacetime converges asymptotically in time to a
sub-extremal RN background with surface gravity κ = O(

√
ε), which, in particular,

implies that ψ and all higher-order tranvsersal derivatives ∂k
r ψ decay alongH+. On

the other hand, the proximity to ERN on the initial hypersurface creates non-trivial

effects at initial times, andmore specifically at the time scale τ ∈
[
0, 1√

ε

]
. During this

time scale, the third-order transversal derivative ∂3
r ψ grows along the event horizon

H+, reaches a maximum value and then starts decaying. The crucial observation of
Murata, Reall and Tanahashi is that

max
H+

∂3
r ψ ∼ H0[ψ0]

κ1
,

where ψ0 is the linearization (in ε) of the scalar field ψ, H0 is the conserved charged
on exactly ERN and κ1 is the linearization (in ε) of the square of the surface gravity
κ2. The above clearly implies that for this kind of perturbations

max
H+

∂3
r ψ � 0 as ε → 0.

In other words, even though the size of the perturbation goes to zero (as ε → 0)
initially, the maximum size of higher-order derivatives of the scalar fields does not
go to zero. This implies that the horizon instability persists in the non-linear theory
as well. We will see below that the situation gets more dramatic when we consider
“smaller” perturbations of ERN.

Type II: Second-order mass perturbation M = e + O
(
ε2

)
.

In view of the fact that ERN does not contain trapped surfaces, one would like to
consider perturbations which do not contain trapped surfaces on the initial hypersur-
face. In order to achieve this, one needs to reduce the size of the initial Bondi mass
M so that the region Otrap of trapped surfaces on �0 reduces to a single surface,
namely a marginally trapped surfaces. This leads to a second-order mass perturba-
tion for which M = e + O

(
ε2

)
. According to [5], the Cauchy development con-

verges asymptotically in time to a sub-extremal RN background with surface gravity
κ = O(ε), which again implies that ψ and all higher-order tranvsersal derivatives
∂k

r ψ decay alongH+. In this case, the proximity to ERN on the initial hypersurface
creates non-trivial effects at the time scale τ ∈ [

0, 1
ε

]
during which the second-order

transversal derivative ∂2
r ψ grows along the event horizon H+ reaching a maximum

value and then decaying to zero. In fact, the authors calculated

max
H+

∂2
r ψ ∼ H0[ψ0]

κ0
,
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where ψ0 is the linearization (in ε) of the scalar field ψ, H0 is the conserved charged
on exactly ERN and κ0 is the linearization (in ε) of the surface gravity κ. The above
clearly implies that for this kind of perturbations

max
H+

∂2
r ψ � 0 as ε → 0.

Once again, we see that the horizon instability is present in the non-linear theory.
Type III: Fine-tuned perturbations M = M∗(e, ε).

In the above two cases, the evolved spacetimes converged to sub-extremal RN. In
particular, they contained trapped surfaces. The third type of perturbations that were
studied by Murata, Reall and Tanahashi treats the case where the evolved spacetime
has a regular black hole region but does not have any trapped surfaces and hence
has properties which are reminiscent of ERN. For this reason, in fact, the authors
called these spacetimes dynamically extremal.3 In order to numerically construct
such spacetimes, the authors considered even smaller fine-tuned values M∗(e, ε) of
M compared to the case above.We remark that it is conjectured that for initial masses
which are less than M∗(e, ε) the evolved spacetimes contain naked singularities.
Returning the case where the initial mass is exactly equal to M∗(e, ε), the evolved
spacetime converges has a black hole region and converges to ERN outside the event
horizon. However, on the event horizon, the instability kicks in:

|∂rψ| � 0 |∂r∂rψ| → ∞ : along H+

for each of these critical perturbations of ERN. This suggests that dynamically
extremal black holes exhibit a non-linear version of the horizon instability.

2.6 The Interior of ERN and Strong Cosmic Censorship

An important problem is the study of the dynamics of the interior of black holes.
One can consider initial data on a hypersurface � that extends into the black hole
and study the solution to the wave equation in the domain of dependence as in the
figure below

3See also Sect. 2.6 for a discussion on the interior of dynamical extremal black holes.
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An analysis of the behavior of solutions to (1.7.1) in the black hole interior of
extremal Reissner–Nordström was carried out by Gajic in [38]. The results of [38]
illustrate a remarkably delicate dependence of the qualitative behaviour at the inner
horizon in the black hole interior on the precise late-time behaviour of the solution to
(1.7.1) along the event horizon of extremal Reissner–Nordström. Specifically, Gajic
showed the following

• Solutions ψ to (1.7.1) on extremal Reissner–Nordström with Type A initial data
(which enter the black hole interior) are extendible across the Cauchy hori-
zon as functions in C0,α ∩ H 1

loc, with α < 1. Furthermore, the spherical mean
1
4π

∫
S2 ψ d� can in fact be extended as a C2 function.

Gajic made use of the precise late-time asymptotics including the logarithmic correc-
tions as in (2.3.7). For spherically symmetric data one can construct C2 extensions
of ψ across the Cauchy horizon that are moreover classical solutions to (1.7.1) with
respect to a smooth extension of the extremal Reissner–Nordström metric across the
inner horizon. These extensions of ψ, much like the smooth extensions of the metric,
are non-unique! We remark that the precise second-order asymptotics (2.3.7) are
important for deriving this extendibility result. See also [39] for extendibility results
in the context of (1.7.1) in the interior of extremal Kerr–Newman spacetimes.

The interior dynamics of ERN differ drastically from the interior dynamics of
sub-extremal Reissner–Nordström black holes, for which it is known that solutions
to the wave equation are extendible in C0 across the inner (Cauchy) horizon, but
inextendible in H 1

loc, see [40, 41]. See also [42–45] for extendibility results in sub-
extremal Kerr.

The study of the wave equation in black hole interiors serves as a linear “toy
model” for the analysis of dynamical black hole interiors, which is closely related to
the Strong Cosmic Censorship Conjecture (SCC). As formulated in [46], SCC states
that

• Stong cosmic censorship conjecture: “Generic” asymptotically flat initial data
for the Einstein vacuum equations have maximal globally hyperbolic developments
that are intextendible as Lorentzian manifolds with continuous metrics with locally
square integrable Christoffel symbols.

Hence, a non-linear theory studying dynamical extremal black holes is needed. This
is precisely what was numerically accomplished in [5]. As we discussed in the pre-
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vious section, [5] predicted that there is special family of nonlinear perturbations of
ERN which evolve into dynamical extremal black holes. Furthermore, the authors
predicted that these spacetimes admit a C1 extension across the Cauchy horizon.
Rigorous results were presented in [47] where it was shown that dynamical extremal
black holes are extendible across the Cauchy horizon as weak solutions to the spher-
ically symmetric Einstein–Maxwell–(charged) scalar field system of equations (in
particular, with Christoffel symbols in L2

loc). Hence, in contrast to the sub-extremal
case, dynamical extremal black holes do not conform to the inextendibility properties
stated in SCC. For results for the interior region of sub-extremal black holes we refer
to [48] and references there-in.
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Chapter 3
Extremal Kerr Black Holes

In this chapter we present results for the dynamics of extremal Kerr (EK). This family
of black holes model maximally rotating black holes and hence are more physically
relevant that ERN. On the other hand, they are more complicated. They are stationary
and axisymmetric. As we shall see, axisymmetric perturbations behave very much
like the perturbations on ERN (hence the relevance of ERN perturbations). However,
non-axisymmetric perturbations introducemajor new difficulties, and despite intense
recent progress, many fundamental questions still remain open.

3.1 The Geometry of EK

The extremal Kerr metric with respect to the Boyer–Lindquist coordinates (t, r, θ,ϕ)

is given by

g = gt t dt2 + grr dr2 + gϕϕdϕ2 + gθθdθ2 + 2gtϕdtdϕ,

where

gt t = −� − M2 sin2 θ

ρ2
, grr = ρ2

�
, gtϕ = −2M2r sin2 θ

ρ2
,

gϕϕ = (r2 + M2)2 − M2� sin2 θ

ρ2
sin2 θ, gθθ = ρ2

with
� = (r − M)2, ρ2 = r2 + M2 cos2 θ. (3.1.1)

In these coordinates, the metric component grr is singular precisely at the points
where � = 0, that is at r = M . This singularity is merely a coordinate singularity
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and can be overcome by introducing the following functions r∗(r),ϕ∗(ϕ, r) and
v(t, r∗) such that

r∗ =
∫

r2 + M2

�
, ϕ∗ = ϕ +

∫
M

�
, v = t + r∗ (3.1.2)

Note that

r∗(r) = (r − M) + 2M log(r − M) − 2M2

r − M
− 2M log(

√
2M).

In the ingoing Eddington–Finkelstein coordinates (v, r, θ,ϕ∗) the metric takes the
form

g = gvvdv2 + grr dr2 + gϕ∗ϕ∗ (dϕ∗)2 + gθθdθ2 + 2gvr dvdr + 2gvϕ∗dvdϕ∗ + 2grϕ∗ drdϕ∗,

where

gvv = −
(
1 − 2Mr

ρ2

)
, grr = 0, gϕ∗ϕ∗ = gϕϕ, gθθ = ρ2

gvr = 1, gvϕ∗ = −2M2r sin2 θ

ρ2
, grϕ∗ = −M sin2 θ.

(3.1.3)

Clearly, the metric (3.1.3) does not break down anymore at the points where � = 0.
We can therefore consider the following manifold

M =
{(

v, r, θ,ϕ∗) ∈
{
R × [M,∞) × S

2
}}

equipped with the metric (3.1.3). Note that ∂v and ∂ϕ∗ are Killing fields.Wewill refer
to ∂v as the stationary vector field and to ∂ϕ∗ as the axisymmetric vector field. Note
that ∂v fails to be causal everywhere. In particular, the region where ∂v is spacelike is
known as the ergoregion and its boundary is called the ergosphere. The ergoregion is
well-known for enabling the extraction of energy out of a black hole. This “process”
was discovered first by Penrose [1] and remains the subject of intense research in the
high energy physics community.

One obtain a global causal Penrose diagram for an appropriate quotient ofM (see
[2]).
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Extremal Kerr admits a complete future null infinity I+ and a complete past null
infinity I−. The domain of outer communications corresponds to {r > M}. It also
admits a future event horizonH+ located precisely at {r = M}. The event horizon is
a Killing hypersurface, its normal being the vector field V = ∂v + 1

2M ∂ϕ∗ . It is easy
to see that ∇V V = 0 and hence the surface gravity of H+ vanishes.

The past event horizon is not part of the spacetime covered by the (v, r, θ,ϕ∗)
coordinate system. On the other hand, the interior of the black hole region can be
covered by (v, r, θ,ϕ∗). How far inside the black hole can we go? The curvature
would blow-up at ρ2 = 0, i.e. the equatorial points θ = π/2 of r = 0. On the other
hand, it turns out (see [2]) that the metric (3.1.3) is regular even for negative values
r < 0. This motivates the following definition of the underlying differential structure
of the Kerr spacetime:

Mext =
{(

v, r, θ,ϕ∗) ∈
{{

R × R × S
2
}

\
{
R × {0} × Seq

}}}
.

The Penrose representation of this manifold is
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3.2 Stability and Instability of EK for Scalar Perturbations

First of all, we write the wave equation in (v, r, θ,ϕ∗) coordinates:

�gψ = M2

ρ2
sin2 θ (∂v∂vψ) + 2(r2 + M2)

ρ2
(∂v∂rψ) + �

ρ2
(∂r∂rψ)

+ 2M2

ρ2
(∂v∂ϕ∗ψ) + 2M

ρ2
(∂r∂ϕ∗ψ) + 2r

ρ2
(∂vψ) + �′

ρ2
(∂rψ) + 1

ρ2
�/ (θ,ϕ∗)ψ,

(3.2.1)
where �/ (θ,ϕ∗)ψ denotes the standard Laplacian on S

2 with respect to (θ,ϕ∗).
As in the ERN case, we consider an axisymmetric initial hypersurface �0 which

crosses the event horizon and terminate at null infinity. We assume that �0 ∩ H+ =
{v = 0} ∩ H+. We also define �τ = F T

τ (�0) be the foliation generated by �0 under
the flow of the stationary field ∂v . In this section, we will present stability and
instability results for axisymmetric solutions to the wave equation (3.2.1). Let’s first
start with the stability results (see [3]:

Stability results forEK: Consider axisymmetric smooth compactly supported initial
data for thewave equation onEK.Then the followingdecay estimateswere rigorously
proved in [3] for the (axisymmetric) solution ψ:

1. Pointwise decay for ψ:

‖ψ‖L∞(�τ )
+ ‖∂vψ‖L∞(�τ )

≤ C · E0[ψ] · 1√
τ

.

Here E0[ψ] is an appropriate weighted norm of the initial data of ψ.
2. Decay of degenerate (at H+) energy of ψ: The degenerate energy flux decays

likes τ−2. The (local observer’s) non-degenerate energy is uniformly bounded.

The decay rates are far from sharp, however they are sufficient to yield instability
results. Before we present the precise instability results, we review the instability
mechanism, namely the conservation laws along the event horizon. If we denote the
section of the event horizon by

Sτ = �τ ∩ H+,

then we immediately arrive by restricting ρ2 · �gψ = 0 on r = M , where� = �′ =
0, at the following

• Conservation law along H+: For all solutions ψ, the surface integrals

HKerr
0 [ψ](τ ) =

∫
Sτ

(
M2 sin2 θ (∂vψ) + 4M2 (∂rψ) + 2Mψ

)
d� (3.2.2)

are independent of τ and hence are conserved along H+.
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In fact, we can also obtain a hierarchy of conservation laws analogous to that of
ERN. We next demonstrate how to derive this hierarchy. Let Y�m = Y�m(θ,ϕ∗) be
the standard spherical harmonic with angular number � and azimuthal frequency m.
By restricting ∂r (ρ

2�gψ) = 0 onH+ and projecting on Y�0 with m = 0 (in order to
remove the ∂ϕ∗ derivatives) we obtain

∫
Sτ

[
M2 sin2 θ (∂v∂v∂r ψ) + 4M2 (∂v∂r ∂r ψ) + 2M(∂v∂r ψ) + 2(∂r ψ) + �/ ∂r ψ

]
·Y�0 d� =0.

Taking � = 1 and m = 0, in which case the corresponding eigenvalue is −2, and
using Stokes’ theorem for the last term yields that the quantity

HKerr
1 [ψ](τ ) =

∫
Sτ

([
4M2 (∂r∂rψ) + M2 sin2 θ (∂v∂rψ) + 2M(∂rψ)

]
· Y1 0

)
d�

is conserved along H+. Similarly, we obtain the following

• Hierarchy of conservation laws for all solutions to the wave equation on EK:
For each � ≥ 1 there is a conservation law involving the projection of the derivative
∂�

r ψ on the spherical harmonic Y� 0.

See also the next section for amore general approach to conservation laws onEK. The
above stability results in conjunction with the conservation laws yield the following
(see [4]):
Instability results for EK: Generic solutions to the wave equation on EK satisfy

1. Non-decay:
sup

Sτ

∣∣∂rψ
∣∣ � 0,

along H+.
2. Pointwise blow-up:

sup
Sτ

∣∣∂k
r ψ

∣∣ → ∞

asymptotically along H+ for all k ≥ 2.
3. Energy blow-up: for any ε > 0 we have

∫
�τ ∩{r≤M+ε}

|∂k
r ψ|2 −→ +∞,

for all k ≥ 2, as τ → +∞.

Clearly, the genericity assumption corresponds to the condition HKerr
0 [ψ] �= 0. Let’s

comment more on how we arrive to these results. Recall the wave equation:

ρ2�gψ =M2 sin2 θ (∂v∂vψ) + 2(r2 + M2) (∂v∂rψ) + �(∂r∂rψ)

+ 2M2(∂v∂ϕ∗ψ) + 2M(∂r∂ϕ∗ψ) + 2r(∂vψ) + �′(∂rψ) + �/ (θ,ϕ∗)ψ,

(3.2.3)
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The non-decay result for ∂rψ is obtained by integrating in v along the horizon the red
term in (3.2.3) (whose coefficient is constant onH+) and using that the coefficient of
the blue term vanishes (and that all the other terms actually decay). Having obtained
non-decay for (the spherical mean of) ∂rψ, we can then obtain blow-up for ∂r∂rψ
along the horizon. We differentiate (3.2.3) in r . Again it is the (differentiated) red
and the blue terms that play the crucial role. The blue term now appears since its
differentiated coefficient is �′′ = 2. The red term, after integrating in v along the
horizon, gives us the derivative ∂r∂rψ. It is very important to remark that the coef-
ficient of the red term and the differentiated coefficient �′′ = 2 of the blue term are
non-zero constants! This is precisely what allows us to derive the blow-up results
from the conservation laws. This property has been shown to hold for a general
class of extremal black holes by Lucietti and Reall [5]. See also the discussion about
general extremal black holes in Chap.6.

3.3 The Lucietti–Reall Gravitational Instability of EK

Lucietti and Reall [5] examined the effects of the horizon instability for scalar pertur-
bations to (linearized) electromagnetic and gravitational perturbations. We will next
provide a summary of their results. Let’s recall a few standard things first. The Weyl
tensor can be decomposed in 5 complex valued components�i with i = 0, 1, 2, 3, 4.
The linearized gravity is expressed by five linearized Weyl components �̇i with
i = 0, 1, 2, 3, 4. The extreme components �̇0 and �̇4 are gauge-invariant with spin
weights s = 2 and s = −2, respectively. Each of them satisfies a second order wave
equation knows as the s spin-weighted Teukolsky equation (s ∈ Z) which schemat-
ically reads

∂v

(
2(r2 + M2)∂rψ + · · ·

)
= s�/ψ − 2(r − M)(1 − s)∂rψ + · · · (3.3.1)

Here s�/ denotes the standard s spin-weighted spherical Laplacian (for s = 0 it
reduces to−�/ ). This operator is self-adjoint. The (complex) eigenfunctions of s�/ are
the standard spin-weighted spherical harmonics sY�m. These are defined for � ≥ |s|
and −� ≤ m ≤ � and the corresponding eigenvalues are

sλ�m = (� + s)(� + 1 − s). (3.3.2)

Note that this eigenvalue is zero only for � = −s ≤ 0.Then let’s first consider that s ≤
0. By restricting (3.3.1) on the horizon r = M and by projecting on the kernel sY−s0,
with � = −s and m = 0 (the restriction m = 0 allows us to remove ∂ϕ∗ derivatives
which are hidden from our schematic notation) we conclude that the quantity

s I0[ψ] =
∫

Sτ

(
4M2∂rψ + · · ·

)
· sY−s0 d�
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is independent of τ . Note that the angular term on the right hand side of (3.3.2)
disappears precisely because we projected on the kernel of the (self-adjoint) angu-
lar operator. Assuming that the terms hidden above decay, we conclude that ∂rψ
generically does not decay and in fact the weighted mean

∫
Sτ

4M2∂rψ · sY−s0 d�

generically converges to a non-zero constant. We can derive blow-up results for the
same “angular frequencies” � = −s, m = 0 as follows: Differentiate (3.3.1) with
respect to ∂r , restrict to r = M and again project on sY−s0 to obtain that:

∂v

∫
Sτ

(
4M2∂r∂rψ + · · ·

)
· sY−s0 d� =

∫
Sτ

(
− 2(1 − s)∂rψ + · · ·

)
· sY−s0 d�

We can now integrate the above identity in v and use the fact that the non-decaying
weighted mean appears above (note the role of the constant coefficients of the blue
and the red terms!) to conclude that the weighted mean of ∂r∂rψ grows linearly
(and hence asymptotically blows up). In this way, Lucietti and Reall derived similar
results for spins s ≤ 0, as for the wave equation (s = 0). What about s > 0? In this
case, Lucietti and Reall observed that one needs to first commute (3.3.1) with ∂k

r , for
some appropriate k, in order to derive a conservation law. We need to include one
more term that we hid before (the purple term below):

∂v

(
2(r2 + M2)∂r ψ + · · ·

)
= s�/ ψ−(r − M)2∂r ∂r ψ − 2(r − M)(1 − s)∂r ψ + · · ·

Note that the purple term played no role for the analysis above. However now it will
play a crucial role. Differentiating with respect to ∂k

r and restricting on r = M yields

∂v

(
2(r2 + M2)∂k+1

r ψ + · · ·
)

= s�/ ∂k
r ψ−k(k − 1)∂k

r ψ − 2k(1 − s)∂k
r ψ + · · ·

Projecting on sY�0 for some � ≥ s yields

∂v

∫
Sτ

(
2(r2 + M2)∂k+1

r ψ + · · ·
)

· sY�0 d�

=
∫

Sτ

(
s�/ ∂k

r ψ−k(k − 1)∂k
r ψ − 2k(1 − s)∂k

r ψ + · · ·
)

· sY�0 d�

=
∫

Sτ

(
(� + s)(� + 1 − s) − k(k − 1) − 2k(1 − s)

)
· ∂k

r ψ · sY�0 d�

=
∫

Sτ

(� + s − k)(� − s + k + 1) · ∂k
r ψ · sY�0 d�

(3.3.3)
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and hence the right hand side vanishes for k = � + s ≥ 2s. In other words, in order to
obtain a conservation law when s > 0 we must first consider at least 2s derivatives.
So, for any � ≥ s we have a conservation law for a weighted spherical mean of ∂k+1

r ψ
if we take k = � + s. We can use this conservation law to derive blow up for ∂k+2

r ψ.
Indeed, all we have to do is to use (3.3.3) with � = k + 2 but where k is replaced
by k + 1 and use the conservation for the weighted spherical mean for ∂k+1

r ψ which
now appears in right hand side. Integrating in v gives the desired result assuming that
all the remaining terms decay or are bounded. Decay results for linearized curvature
components were numerically derived by Burko and Khanna [6].

Using the above theory for the components �̇0 (with s = 2) and �̇4 (with s = −2)
Lucietti and Reall concluded the following: The second-order derivative ∂2

r �̇4 and
the sixth-order derivative ∂5

r �̇0 blow up alongH+. This yields a genuine linearized
gravitational instability for EK. We remark that the above analysis applies only to
axisymmetric perturbations (in view of the fact we projected on m = 0 eigenspaces).
A more general and systematic approach to deriving the asymptotic behavior for
perturbations of EK was presented in [7] where the authors exploit the asymptotic
self-similarity of the perturbations under the near-horizon, late-time scaling symme-
try of the background metric. The critical (self-similar) exponent corresponds to the
decay rate of the associated perturbation.

3.4 The Casals–Gralla–Zimmerman Work on EK

The problem of understanding the evolution of non-axisymmetric solutions to the
wave equation on EK has recently attracted a lot of interest in the mathematics
and physics communities. Heuristic and numerical work strongly suggests that
non-axisymmetric solutions exhibit stronger instability properties compared to the
axisymmetric solutions. Andersson and Glampedakis [8], following earlier work of
Detweiler [9], argued that the dominant temporal frequencies ω for scalar fields ψm

with fixed azimuthal frequencies m occur for ω ∼ 1
2M m, instead of ω ∼ 0 in other

settings. Specifically, [8] suggested that away from horizon on r = r0 > M the fol-
lowing sharp rate holds:

|ψm |{r=r0} decays like
1

τ
. (3.4.1)

Important subsequent studies of the distribution of quasi-normal modes on EK were
presented in [10, 11] and their findings are consistentwith (3.4.1). For amore detailed
discussion on quasi-normal modes see Sect. 1.9.

Casals, Gralla and Zimmerman [12] were the first to derive the late-time asymp-
totics along the event horizon for ψm . Their semi-analytic work, which is based on
the mode decomposition method of Leaver [13], yielded the following asymptotic
behavior along the horizon
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|ψm |H+ decays like
1√
τ

. (3.4.2)

Reference [12] considered initial data which are compactly supported and supported
away from the event horizon (and hence they are not horizon-penetrating). Clearly,
the rate of (3.4.2) ismuch slower than the sharp decay rates in all other previously dis-
cussed settings. Moreover, Casals, Gralla and Zimmerman argued that the instability
is further amplified for the first-order transversal to H+ derivative

|∂rψm |H+ decays like
√

τ . (3.4.3)

In other words, reference [12] suggested that for data supported away from the hori-
zon the first-order derivative grows along the horizon. One would naturally expect
that the growth is even more severe in the case where the initial data are horizon-
penetrating. Hadar and Reall [14] performed a near-horizon analysis which indi-
cates that (3.4.2) and (3.4.3) (surprisingly!) also hold for scalar fields with horizon-
penetrating Type A data. Zimmerman [15] obtained the same rates as (3.4.2) and
(3.4.3) for charged perturbations on ERN. This agreement is due to common near-
horizon symmetries in the two cases. Further extensions have been provided in [7,
16, 17]. A numerical confirmation of (3.4.2) and (3.4.3), as well as stability results
for curvature scalars, was presented by Burko and Khanna [6]. Further extensions to
supersymmetric quantum mechanics were presented in [18].

3.5 Open Problems

We next state several open problems on the dynamics of EK.

1. Scalar Perturbations

There are many aspects of the linear wave equation on EK that have not been under-
stood. Let m be the azimuthal frequency and let ψm denote a solution to the wave
equation on EK supported on this frequency, as before.

A. Axisymmetric Solutions

Axisymmetric solutions ψ0 are expected to satisfy similar asymptotic behavior as
in the Table2.1 for general solutions on ERN. A rigorous proof of this is an open
problem.

B. Fixed m �= 0 Solutions

Another very interesting open problem would be to obtain a rigorous proof of the
asymptotic statements (3.4.1), (3.4.2) and (3.4.3). In particular, it would be very nice
to find a physical space mechanism that gives rise to these asymptotics. We remark
that precise late-time asymptotics for ψm on EK are not known. A relevant problem
is to describe the distribution of quasinormal modes for exactly extremal Kerr.
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C. General Solutions

The most challenging problem is of course to derive the generic asymptotic behavior
for general (summed!) solutions to the wave equation on EK

ψtotal =
∞∑

m=0

ψm .

No (rigorous, numerical or heuristic) results are known for ψtotal. In particular, it is
not even known if ψtotal is uniformly bounded on or away from the event horizon.
The main difficulty of this problem stems from the coupling of superradiance and
trapping.

2. Gravitational and Electromagnetic Perturbations

It would be very interesting to obtain a rigorous proof of the Lucietti–Reall linearized
gravitational instability of extremal Kerr. In fact, it would be very interesting to
obtain the late-time asymptotics for general (axisymmetric or non-axisymmetric)
gravitational and electromagnetic perturbations of EK in the spirit of [19].

3. Non-linear Wave Equations

No results are known for non-linear wave equations on EK. As a first step towards the
fully non-linear EK instability problem (see below) one would like to study the long
time existence of semi-linear and quasi-linear wave equations satisfying appropriate
versions of the null condition. This problem is very hard even for the much simpler
ERN metric.

4. Fully Non-linear Instability of EK

The ultimate goal is to investigate the Cauchy developments in the context of the
Cauchy problem for the Einstein equations, without symmetry assumptions, of ini-
tial data nearby the initial data of exactly EK. What is the impact of the linear
instabilities in the non-linear theory? Do perturbations diverge from EK and asymp-
totically converge to a sub-extremal Kerr? Do perturbations grow indefinitely leading
to asymptotic singularities? Do perturbations form singularities in finite time?
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Part II
An Overview of the Proofs



Chapter 4
Asymptotics for Extremal
Reissner–Nordström

In this Chapter we present the main estimates for scalar perturbations on extremal
Reissner–Nordström backgrounds and provide an overviewof the proof of the precise
asymptotics.

4.1 Introduction to the Vector Field Method

The vector field method is a robust geometric approach to study solutions to, in
particular, hyperbolic PDEs on Lorentzian manifolds (M, g). Recall the energy-
momentum tensor T[ψ], given by (1.2.6), for scalar perturbations ψ. Its divergence
satisfies divT[ψ] = �gψ · dψ. Let V be a general vector field. The energy V -current
is given by the 1-form

J V
μ [ψ] = Tμν[ψ] · V ν .

Two fundamentally important properties of the energy currents are:

1. If V,W are future-directed timelike then J V
μ [ψ] · W μ ∼ ∑

α |∂αψ|2,
2. The divergence of the energy current satisfies

divJ V [ψ] = KV [ψ] + �gψ · V (ψ)

for all functions ψ. Here KV [ψ] = Tμν[ψ] · πμν(V ), where πμν(V ) = 1
2

(LV g)μν is the deformation tensor of V .

The main idea to derive estimates is to use the divergence identity for the current
J V [ψ] for appropriate vector fields V which we will call themultiplier vector fields.
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Convention:When the volume form is omitted then the induced volume form is being
used. In order to obtain higher order estimates, we will apply the above identity for
Xψ in place of ψ. In this case X will be called the commutator vector field.

4.2 Conservation of the JT -Flux

The vector field T = ∂v is Killing and hence its deformation tensor vanishes. There-
fore, by applying the divergence theorem for the T -current J T in the shaded region
below (between the hypersurfaces �0 and �τ which are defined in Sect. 2.1.4), we
obtain a conservation law.

Since T is globally causal, the boundary terms at H+ and I+ are non-negative
definite. Hence, if we denote

J T
�τ

[ψ] =
∫

�τ

J T
μ [ψ]nμ

�τ
, (4.2.1)

then we obtain
J T
�τ

[ψ] ≤ J T
�0

[ψ].

Since T is null at the horizon, the T -flux J T
�τ

[ψ] along�τ degenerates at the horizon.
This degeneracy schematically looks like

J T
μ [ψ]nμ

�τ
∼

(

1 − M

r

)2

· |∂rψ|2 + |∇/ψ|2

close to the horizon. Here ∂r is taken with respect to the coordinate system (v, r) and
∇/ is the induced gradient on the spheres of symmetry. The above estimate was also
used in [1, 2] where various boundedness results were shown for the wave equation
on ERN away from the event horizon. Removing the degeneracy is non-trivial in
view of the degeneracy of the redshift effect. See Sect. 4.4.
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4.3 The Morawetz Estimate

The energy current of an appropriate modification of the vector field ∂r∗ (with respect
to the (t, r∗) system) has non-negative definite divergence, and boundary termswhich
are bounded by the T -flux. This construction in particular yields the following degen-
erate Morawetz estimate (see [1] for the details)

∫

B
ψ2 +

∫

B

(

1 − 2M

r

)2 ∑

α

|∂αψ|2 ≤ C JT
�0

[ψ]. (4.3.1)

The region B = {rH ≤ r ≤ rI} is depicted below

The degeneracy at the photon sphere r = 2M is due to the presence of trapped
null geodesics on that radius (see Sect. 2.1.3) and can be removed by commuting
with T : ∫

B
ψ2 +

∫

B

∑

α

|∂αψ|2 ≤ C JT
�0

[ψ] + C JT
�0

[Tψ]. (4.3.2)

4.4 The T , P , N Hierarchical Vector Fields

We define
AH = {r ≤ rH}, NH

τ = �τ ∩ AH.

In this section we will present the obstructions to proving non-degenerate esti-
mates in the regionAH. Startingwith the general ansatz N = fv (r) ∂v + fr (r) ∂r we
have that N is future-directed timelike at the horizon if fv(M) > 0 and fr (M) < 0.
Moreover, introducing the energy current J N

μ [ψ] we obtain
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K N [ψ] =Fvv (∂vψ)2 + Frr (∂rψ)2 + Fvr (∂vψ) (∂rψ) + F∇/ |∇/ψ|2 ,

where the coefficients are given by

Frr = D
[

(∂r fr)
2

− fr
r

]
− fr D′

2
,

Fvv = (∂r fv), F∇/ = −1

2
(∂r fr ) , Fvr = D (∂r fv) − 2 fr

r
.

(4.4.1)

Recall that D = (
1 − M

r

)2
. We see that the coefficient of (∂rψ)2 (in bold) vanishes

on the horizon H+. This is a manifestation of the degeneracy of the redshift effect
(see Sect. 1.5.4). On the other hand, the coefficient of ∂vψ∂rψ is equal to − 2 fr (M)

M
which is not zero. Therefore, K N [ψ] is not non-negative definite. To overcome this,
we introduce the following modified Lagrangian current

J̃ N
μ [ψ] = J N

μ [ψ] − 1

2
ψ∇μψ. (4.4.2)

Then, since ∇μψ · ∇μψ = D(∂rψ)2 + 2∂rψ∂vψ + |∇/ψ|2, we have

div J̃ N [ψ] =Fvv (∂vψ)2 +
[
Frr − D

2

]
(∂rψ)2 − ∂r fr + 1

2
|∇/ψ|2

+ [Fvr − 1] (∂vψ∂rψ) .

(4.4.3)

Choosing fv(r) = 16r, fr (r) = − 3
2r + M then N is timelike and hence

J N
μ [ψ]nμ

�τ
∼ |∂rψ|2 + |∇/ψ|2

close to the horizon. In view of the T -invariance of N , the constants in ∼ depend
only on M . Note that the coefficient of ∂rψ is non-degenerate. Most importantly, the
(modified) coefficient of the mixed term ∂vψ∂rψ vanishes on the horizon. In fact,
we can easily see that in {M ≤ r ≤ 9M

8 } we have

div J̃ N [ψ] ∼
(
(Tψ)2 + √

D (∂rψ)2 + |∇/ψ|2
)

. (4.4.4)

Hence we will take rH ≤ 9M
8 . We smoothly extend N in {r ≥ 9M

8 } so that N = T for
r ≥ 3M

2 and such that N is globally timelike and translation-invariant [T, N ] = 0.
The idea is of course to apply the divergence theorem for the modified current J̃ N

μ [ψ]
in the region R(0, τ ). The divergence has the good sign in region AH and can be
bounded by (4.3.1) in the region B. What about the boundary terms? Since N is
timelike the N -fluxes are positive-definite. However, here we consider the modified
N -currentwhich introduces additional boundary zeroth order terms. These additional
terms can be bounded using appropriate Hardy inequalities, such as
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∫

�τ ∩AH

1

r2
ψ2 ≤ C

∫

�τ

J T
μ [ψ]nμ

�τ
(4.4.5)

which allows us to bound the local L2 norm of ψ via the (conserved) T -flux. We
finally obtain the following flux estimates

∫

�τ

J N
μ [ψ]nμ ≤ 2

∫

�τ

J̃ N
μ [ψ]nμ + C

∫

�τ

J T
μ [ψ]nμ.

c
∫

H+
J N
μ [ψ]nμ

H+ ≤
∫

H+
J̃ N
μ [ψ]nμ

H+ + Cε

∫

�τ

J T
μ [ψ]nμ

�τ
+ ε

∫

�τ

J N
μ [ψ]nμ

�τ
,

which yield

∫

�τ

J N
μ [ψ]nμ

�τ
+

∫

H+
J N
μ [ψ]nμ

H+ +
∫

AH
div J̃ N [ψ] ≤ C

∫

�0

J N
μ [ψ]nμ

�0
. (4.4.6)

We next introduce yet another important vector field, which as we shall see, lies in
some sense “between” T and N . Consider the ansatz

P = Pv∂v − √
D∂r

close to the horizon. Then, by virtue of (4.4.1), we have

Frr = D

[

− D′

4
√
D

+
√
D

r

]

+
√
DD′

2
∼ D.

Furthermore,

Fvr = √
D

[√
D(∂r fv) + 2

r

]

≤ εD + 1

ε

[√
D(∂r fv) + 2

r

]2

.

Hence, choosing Pv > 0 such that

1

ε

[√
D(∂r Pv) + 2

r

]2

< ∂r Pv,

close to the horizon, gives rise to a causal vector field P (which is null on the horizon)
such that

K P [ψ] ∼ (
(∂vψ)2 + D(∂rψ)2 + |∇/ψ|2) ∼ J T

μ nμ
� (4.4.7)
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close to the horizon. Note that, unlike the N -current, no modification was needed for
J P . We conclude that the following T − P − N hierarchy holds

divJ T
μ [ψ] = 0, divJ P

μ [ψ] ∼ J T [ψ], divJ N
μ [ψ] ∼ J P [ψ] (4.4.8)

in the region AH.

4.5 The Trapping Effect on the Event Horizon

Note that the spacetime integral obtained by the N -current degenerates at the horizon
in view of (4.4.4). We will address this degeneracy in this section. The N -energy

Eγ(s) = g
( ·
γ(s), N

)

of affinely-parametrized null generators γ(s) of the event horizon of ERN is constant
for all s. This is of course related to the vanishing of the surface gravity on ERN and is
in stark contrast with sub-extremal horizons where the energy of the null generators
decays in s. Sbierski [3] used the Gaussian beam approximation to show that there
are solutions to thewave equation on ERN that are localized in a neighborhood ofH+
with almost constant N -energy on�τ for arbitrarily large τ . This result immediately
yields an obstruction to bounding the following integral

�1[ψ] =
∫ ∞

0

(∫

�τ ∩{r≤M+ε}
|∂ρψ|2

)

dτ

for (any) arbitrarily small ε > 0. Specifically, Sbierski’s result shows that the above
integral cannot be bounded purely in terms of the N -initial energy of ψ on �0. A
Morawetz estimate bounding �1[ψ] was established in [4] where it was shown that
such an estimate requires

1. the finiteness of a weighted higher-order norm of the initial data, and
2. the vanishing of the conserved charge H0[ψ].
Furthermore, it was shown that for smooth and compactly supported initial data,
�1[ψ] is infinite if and only if H0[ψ] �= 0.

The first requirement above is reminiscent to that of theMorawetz estimates on the
photon sphere. On the other hand, the second requirement is a global (low-frequency)
condition on all of the event horizon, that is on all the null generators of the event
horizon. This shows that the event horizon on ERN exhibits a global trapping effect.

Another characteristic feature of the event horizon on ERN is the following stable
higher-order trapping effect: For generic smooth and compactly supported initial
data with support away from the event horizon, the following higher-order integral
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�k[ψ] =
∫ ∞

0

(∫

�τ ∩{r≤M+ε}
|∂kψ|2

)

dτ

is infinite, for all k ≥ 2.

4.6 Horizon Localized and Infinity Localized Hierarchies

The following global Morawetz estimate extending (4.3.2) holds on ERN (see [5])

∫ τ2

τ1

(∫

�τ

(r − M)σ1 · 1

rσ2
· J T [ψ]

)

dτ �
∫

�τ1

J T [ψ] + J T [Tψ], (4.6.1)

with σ1,σ2 > 2 sufficient large constants. Here, J T [ψ] denotes the standard T -
energy flux through �τ . The higher-order terms on the right hand side account for
the high-frequency trapping effect on the photon sphere at {r = 2M}. The r−σ2 degen-
erate (at infinity) coefficient is related to the asymptotical flatness of the spacetime
and is present in the analogous estimate forMinkowski spacetime. On the other hand,
the degenerate factor (r − M)σ1 is related to the degeneracy of the redshift effect (see
also Sect. 4.5). In order to prove decay of the energy flux (4.2.1), we need to remove
the degenerate factors from (4.6.1). Dafermos and Rodnianski [6] and subsequently
Moschidis [7] showed that the weight at infinity r−σ2 can be removed for general
asymptotically flat spacetimes by introducing appropriate growing r weights on the
right hand side yielding a hierarchy of two r-weighted estimates.

The strategy of [8] for obtaining precise late-time asymptotics on ERN, which
we outline in the remaining of this chapter, is based on the integrated r p-weighted
energy decay approach of Dafermos–Rodnianski [6] and its extension presented
in [9].

4.6.1 The Conformal Fluxes CNH
τ

and CNI
τ

In view of the degenerate factors both at the horizon and at infinity in the Morawetz
estimate (4.6.1) onERN, on needs to obtain an analogue of theDafermos–Rodnianski
hierarchy at both the near-infinity regionAI = {r ≥ rI} and the near-horizon region
AH = {r ≤ rH}. We define

NH
τ = �τ ∩ AH, NI

τ = �τ ∩ AI .
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In the remaining of this chapter we will use the double null coordinate system
(u, v), unless otherwise stated. The T − P − N hierarchy (4.4.8) yields the fol-
lowing H+−localized hierarchy in AH for all τ2 ≥ τ1 ≥ 0

∫ τ2

τ1

[∫

NH
τ

J T [ψ]
]

dτ �
∫

NH
τ1

(r − M)−1 · (∂u(rψ))2 d�du + l.o.t.,

∫ τ2

τ1

[∫

NH
τ

(r − M)−1 · (∂u(rψ))2 d�du

]

dτ �
∫

NH
τ1

(r − M)−2 · (∂u(rψ))2 d�du + l.o.t..

(4.6.2)
Moreover, the following I+−localized hierarchy holds in AI (see [5])

∫ τ2

τ1

[∫

NI
τ

J T [ψ]
]

dτ �
∫

NI
τ1

r · (∂v(rψ))2 d�dv + l.o.t.,

∫ τ2

τ1

[∫

NI
τ

r · (∂v(rψ))2 d�dv

]

dτ �
∫

NI
τ1

r2 · (∂v(rψ))2 d�dv + l.o.t.

(4.6.3)

The integral on the right hand side of the second estimate of the I+−localized
hierarchy corresponds to the conformal energy near I+. Similarly, the integral on
the right hand side of the second estimate of theH+−localized hierarchy corresponds
to the conformal energy near H+. We denote

Conformal energy near I+ : CNI
τ
[ψ] =

∫

NI
τ

r2 · (∂v(rψ))2 d�dv (4.6.4)

and

Conformal energy near H+ : CNH
τ

[ψ] =
∫

NH
τ

(r − M)−2 · (∂u(rψ))2 d�du.

(4.6.5)
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Note that du = −2
(
1 − M

r

)−2
dr on �τ and ∂u = − 1

2

(
1 − M

r

)2
Y , where Y = ∂r

–with respect to the system (v, r)– is regular at the horizon. Hence, the conformal
flux near H+ CNH

τ
[ψ] ∼ ∫

NH
τ

(Yψ)2 is at the level of the non-degenerate energy.
If both of the energies (4.6.4) and (4.6.5) are initially finite, then by a standard

application of the mean value theorem on dyadic time intervals and the boundedness
of the T -energy flux, we obtain the decay rate τ−2 for the T -energy flux J T

�τ
[ψ].

This decay rate however is not sharp. Faster decay rates for the higher order flux
J T
�τ

[Tψ] were obtained for sub-extremal black holes by Schlue [10] and Moschidis
[7]. Their method used ∂v , r∂v as commutator vector fields in the near-infinity region.
Nonetheless, their approach does not yield faster decay for the T -flux J T

�τ
[ψ] itself.

4.6.2 Commuted Hierarchies in the RegionsAH andAI

The strategy for obtaining further decay for J T
�τ

[ψ] on ERN is to establish integrated
decay estimates for the conformal fluxes1 CNI

τ
[ψ] and CNH

τ
[ψ], extending thereby

the I+−localized and H+−localized hierarchies (4.6.3) and (4.6.2). However, it is
not possible to further extend of (4.6.3) and (4.6.2) by considering larger powers of
r and (r − M)−1, respectively. Instead, motivated by the following Hardy inequality
(see also Sect. 4.7.2)

∫ ∞

0
x2 · (∂x f )

2 �
∫ ∞

0

(
∂x

(
x2∂x f

) )2
(4.6.6)

applied to f = rψ with x = r in AI and x = (r − M)−1 in AH, we introduce the
following n-commuted quantities:

�(n) := (r2∂v)
n(rψ), �(n) := Y n(rψ) ∼

(
− (r − M)−2∂u

)n
(rψ),

where n ∈ N0. Note that the weights are of second-order in r and (r − M)−1. The
idea, therefore, is to derive I+−localized andH+−localized commuted hierarchies
which yield decay for weighted fluxes of the commuted functions �(n) and �(n). If
ψ solves the wave equation (1.7.1) on ERN then for all n ≥ 0 and for all p ∈ R the
commuted quantities �(n) and �(n) satisfy the following key identities in AI and
AH regions, respectively: Near-infinity identity:

∫

S2
∂u

(
r p(∂v�(n))

2
)

+ ∂v

(
r p−2| /∇S2�(n)|2 − n(n + 1)r p−2�2

(n)

)
d�

+
∫

S2
(p + 4n)r p−1(∂v�(n))

2 + (2 − p)r p−3
(
| /∇S2�|2 − n(n + 1)�2

(n)

)
d�

= n ·
max{0,n−1}∑

k=0

∫

S2
O(r p−2) · �(k) · ∂v�(n) d� + l.o.t.,

(4.6.7)

1Note that (non-degenerate) integrated decay estimates for the fluxesCNI
τ

[ψ] andCNH
τ

[ψ] on ERN
are closely related to the trapping effect at I+ and at H+.
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Near-horizon identity:

∫

S2
∂v

(
(r − M)−p(∂u�(n))

2) + ∂u

(
(r − M)−p+2| /∇S2�(n)|2 − n(n + 1)(r − M)−p+2�2

(n)

)
d�

+
∫

S2
(p + 4n)(r − M)−p+1(∂u�(n))

2 + (2 − p)(r − M)−p+3
(
| /∇S2�(n)|2 − n(n + 1)�2

(n)

)
d�

= n ·
max{0,n−1}∑

k=0

∫

S2
O((r − M)−p+2) · �(k) · ∂u�(n) d� + l.o.t.

(4.6.8)
Note that (4.6.8) is of the same form as (4.6.7), but with u and v reversed and r
replaced by (r − M)−1. This is of course related to the existence of the Couch–
Torrence conformal inversion of ERN. After integrating in u and v, the (red) “error”
terms in the derived spacetime identities can be controlled viaMorawetz and Hardy
inequalities for the following range of weights2:

− 4n < p ≤ 2. (4.6.9)

We arrive at the following inequalities
I+−localized n−commuted p−weighted inequalities for �(n):

∫

N I
τ2

r p
(
∂v�(n)

)2
d�dv

+
∫ τ2

τ1

∫

N I
τ

(p + 4n)r p−1
(
∂v�(n)

)2
d�dvdτ

+(2 − p)
∫ τ2

τ1

∫

N I
τ

r p−3(| /∇S2�(n)|2 − n(n + 1)�2
(n)

)
d�dvdτ

�p

∫

N I
τ1

r p
(
∂v�(n)

)2
d�dv + · · · ,

(4.6.10)

H+−localized n−commuted p−weighted inequalities for �(n):

∫

NH
τ2

(r − M)−p
(
∂u�(n)

)2
d�du

+
∫ τ2

τ1

∫

NH
τ

(p + 4n)(r − M)−p+1
(
∂u�(n)

)2
d�dudτ

+(2 − p)
∫ τ2

τ1

∫

NH
τ

(r − M)−p+3(| /∇S2�(n)|2 − n(n + 1)�2
(n)

)
d�dudτ

�p

∫

NH
τ1

(r − M)−p
(
∂u�(n)

)2
d�du + · · ·

(4.6.11)

2For spherically symmetric solutions (with harmonic mode number � = 0) we only take n = 0.
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These inequalities hold for all n, as long as p satisfies (4.6.9). In order to turn
these inequalities into actual estimates we need to guarantee the non-negativity of
the terms | /∇S2�(n)|2 − n(n + 1)�2

(n) and | /∇S2�(n)|2 − n(n + 1)�2
(n). In view of the

Poincaré inequality on S2, these terms are non-negative if ψ is supported on angular
frequencies � such that

� ≥ n. (4.6.12)

In other words, we can commute the wave equation n times and obtain two estimates
for �(n) and two estimates for �(n) as long as n is less or equal than the lowest
harmonicmode that is present in a harmonicmode expansion of ψ. The two estimates
correspond to the values p = 1 and p = 2.

It is worth mentioning that the estimates (4.6.11) can be thought of as degenerate
remnants of the red shift estimates. Note that the degeneracy of the red shift effect is
manifested in the additional factor of (r − M) that appears in the spacetime integral
of (∂u�(n))

2 on the left-hand side of (4.6.11).
The Table 4.1 summarizes the number of the H+−localized n−commuted esti-

mates and the I+−localized n−commuted estimates for each fixed n as well as the
total number of estimates available in the total hierarchy over all admissible values
of n.

Definition: We define the length of a hierarchy to be equal to the number of
available and useful integrated estimates in the hierarchy. Useful here means that
the exponents p of theweights increase by an integer number or by an almost (modulo
ε > 0) integer number.

Table 4.1 The length of the commuted hierarchies for � = 0, � = 1 and � ≥ 2

Harmonic mode Commuted hierarchies

Fixed n commuted Total hierarchy

n Length Length

� = 0 0 2 2

� = 1 0 2 4

1 2

� ≥ 2 0 2 6

1 2

2 2

4.6.3 Improved Hierarchies for � = 0, 1

The harmonic projections ψ�=0 and ψ�=1 of ψ satisfy only two and four estimates
in the total hierarchy, respectively, as in Table 4.1. When dealing with � = 0 (and
hence n = 0) separately, we can show that the range of p can actually be extended
to 0 < p < 3 for both the H+−localized and the I+−localized hierarchies. Note
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that even though we cannot take p = 3 exactly, we can (and will) take p = 3 − ε for
sufficiently small ε > 0. Additionally, we can show that

• if I0[ψ] = 0 then we can take 0 < p < 5 in the I+−localized hierarchy, and
• if H0[ψ] = 0 then we can take 0 < p < 5 in theH+−localized hierarchy.

Similarly as above, even thoughwe cannot take p = 5 exactly,wewill take p = 5 − ε
for ε > 0. In this sense, the lengths of the above hierarchies (under the vanishing
assumptions) is five.Moreover, these hierarchies are inextendible (consistent with the
horizon instability results of Sect. 2.2) and hence their length is sharp. It is important
to observe that, based on the above result, the lengths of the total hierarchies depend
on the type of data. These are summarized in the Table 4.2.

Convention: By R−global hierarchy we mean the hierarchy that arises from
weighted fluxed on �τ by adding the H+−localized hierarchy (in region AH), the
I+−localized hierarchy (in region AI) and the higher-order Morawetz estimates in
region B (that is, higher order analogues of (4.3.2)). Recall thatR = AH ∪ AI ∪ B.

Table 4.2 Lengths of improved hierarchies for � = 0

Data Improved hierarchies for � = 0 with n = 0

H+−localized I+−localized R−global

Type A 3 5 3

Type B 5 5 5

Type C 3 3 3

Type D 5 3 3

In order to extend the length of the hierarchies for � = 1we introduce the following
“modified” variants of �(1) and �(1) (with n = 1):

�̃ = �̃(1) := r(r − M)∂v(rψ�=1), �̃ = �̃(1) := r · Y (rψ�=1).

The following identities hold for ψ�=1:

∫

S2
∂u

(
r p(∂v�̃)2

)
d� +

∫

S2
(p + 4n)r p−1(∂v�̃)2 d�

=
∫

S2
O(r p−3) · rψ · ∂v�̃ d� + l.o.t

(4.6.13)

and
∫

S2
∂v

(
(r − M)−p(∂u�̃)2

) +
∫

S2
(p + 4n)(r − M)−p+1(∂u�̃)2 d�

=
∫

S2
O((r − M)− p+3) ·rψ · ∂u�̃ d� + l.o.t.

(4.6.14)



4.6 Horizon Localized and Infinity Localized Hierarchies 97

Note that the (red) error terms are now of lower order compared to the error terms
in (4.6.7) and (4.6.8). This allows us to obtain versions of (4.6.10) and (4.6.11)
with �(1) and �(1) replaced by �̃ and �̃, respectively, where the range of p can be
extended to 0 < p < 3. We further obtain that:

• the range of the I+−localized hierarchy can be further extended to 0 < p < 4 if
� decays sufficiently fast towards I+, and

• the range of theH+−localized hierarchy can be further extended to 0 < p < 4 if
� decays sufficiently fast towards H+.

Again, we cannot take p = 44, but we will take p = 4 − ε.
The results for � = 1 are summarized in the Tables 4.3 and 4.4.

Table 4.3 Lengths of improved hierarchies for � = 1

Data Improved hierarchies for � = 1

H+−localized I+−localized R−global

n−commuted Total
length

n−commuted Total
length

Total
length

n Length n Length

Type A 0 2 5 0 2 6 5

1 3 1 4

Type B 0 2 6 0 2 6 6

1 4 1 4

Type C 0 2 5 0 2 5 5

1 3 1 3

Type D 0 2 6 0 2 5 5

1 4 1 3

Table 4.4 Final table with improved hierarchies

Data Harmonic mode Length of total hierarchy

H+−localized I+−localized R−global

Type A � = 0 3 5 3

� = 1 5 6 5

� ≥ 2 6 6 6

Type B � = 0 5 5 5

� = 1 6 6 6

� ≥ 2 6 6 6

Type C � = 0 3 3 3

� = 1 5 5 5

� ≥ 2 6 6 6

Type D � = 0 5 3 3

� = 1 6 5 5

� ≥ 2 6 6 6
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Remark: additionally extended hierarchies for time-derivatives

Schlue [10] and Moschidis [7] obtained improved energy decay estimates for the
time derivative Tψ by considering r -weighted estimates for the quantities ∂v(rψ)

or r∂v(rψ). Their approach can be generalized by establishing estimates for ∂k
v�(n)

in the near-infinity region AI and for ∂k
u�(n) in the near-horizon region AH (with

n as above), where k ∈ N takes any positive value k ≥ 1. This yields the follow-
ing: for each time derivative that we take, we gain two more estimates in the
I+−localized hierarchy and two more estimates in the H+−localized hierarchy.
These improvements play an important role in the subsequent subsections.

4.7 Energy and Pointwise Decay

4.7.1 Decay for the Fluxes JT
�τ

, CNH
τ

and CNI
τ

The total I+−localized and H+−localized hierarchies (over all admissible n) give
quantitative decay rates for the conformal fluxes CNI

τ
[ψ], given by (4.6.4), and

CNH
τ

[ψ], given by (4.6.5). This is easily obtained via successive application of the
mean value theorem in dyadic intervals and of the Hardy inequality (4.6.6). The rule
is the following:

decay rate of the con f ormal f lux CNI
τ

[ψ] = length
(I+−loc. hierarchy

) − 2 − ε,

and

decay rate of the con f ormal f lux CNH
τ

[ψ] = length
(H+−loc. hierarchy

) − 2 − ε

for any sufficiently small ε > 0. The ε loss here has to do with the fact that the
maximum value of p in the extended improved hierarchies for � = 0 and � = 1 is
not an exact integer.

Having obtained the decay rate for the conformal fluxes we can proceed to
obtain the decay rate for the global T -flux J T

�τ
[ψ]. We revisit the H+−localized

and I+−localized hierarchies; we add theH+−localized hierarchy (in regionAH),
the I+−localized hierarchy (in regionAI) and the higher-order Morawetz estimates
(in region B). Using again successively the mean value theorem in dyadic intervals
and appropriate Hardy inequalities we obtain decay estimates for the T -energy flux.
The rule here is the following

decay rate T − f lux J T
�τ

[ψ] = decay rate of slowest conformal f lux + 2.

Unlike the sub-extremal case, there are two independent conformal fluxes that con-
tribute to the decay rate for the energy flux on ERN. This feature of ERN creates
further complications later in the derivation of the precise asymptotics.
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As an illustration of the method, let us consider initial data for ψ of Type A. As
we can see in Table 4.2, the length of the total I+−localized hierarchy and total
H+−localized hierarchy for � = 0 is 5 and 3, respectively. Hence, we obtain the
following schematic decay estimates for the conformal fluxes:

CNH
τ

[ψ�=0] � E�=0 · τ−1+ε,

CNI
τ
[ψ�=0] � E�=0 · τ−3+ε.

Furthermore, fromTables 4.1 and4.3wehave that the lengthof the totalI+−localized
hierarchy and totalH+−localized hierarchy for � ≥ 1 is 6 and 5, respectively. Hence,

CNH
τ

[ψ�≥1] � E�≥1 · τ−3+ε,

CNI
τ
[ψ�≥1] � E�≥1 · τ−4+ε.

We conclude the following decay estimate for the T−energy flux:

J T
�τ

[ψ�=0] � E�=0 · τ−3+ε,

J T
�τ

[ψ�≥1] � E�≥1 · τ−5+ε,

where E�=0 and E�≥1 denote (higher-order, weighted) initial data energy norms.
Furthermore,

J T
�τ

[T kψ�=0] � E�=0 · τ−3−2k+ε,

J T
�τ

[T kψ�≥1] � E�≥1 · τ−5−2k+ε,

for all k ≥ 1. See also Table 4.8.

4.7.2 Hardy Inequalities

We next proceed with deriving pointwise decay estimates. We will use the following
Hardy estimates

∫

S2
(rψ)2 d� �

√
CNH

τ
[ψ] ·

√
J T
�τ

[ψ] in AH,

∫

S2
(rψ)2 d� �

√
CNI

τ
[ψ] ·

√
J T
�τ

[ψ] in AI,

∫

S2
(r − M)·ψ2 d� �

√
J T
�τ

[ψ] on �τ .

(4.7.1)

For initial data of Type A, using the above decay estimates for the conformal energies
and the T -energy flux, we obtain
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∫

S2
(rψ�=0)

2 d� � E�=0 · τ−2+ε in AH,

∫

S2
(rψ�=0)

2 d� � E�=0 · τ−3+ε in AI,

∫

S2
(r − M) · (ψ�=0)

2 d� � E�=0 · τ−3+ε on �τ .

Using the standard Sobolev estimates on S2 we immediately obtain L∞ decay esti-
mates for rψ�=0 in AH , rψ�=0 in AI and

√
r − M · ψ�=0 on �τ , with the decaying

factors τ−1+ε, τ− 3
2 +ε and τ− 3

2 +ε, respectively. Similarly,

∫

S2
(rψ�≥1)

2 d� � E�=0 · τ−4+ε in AH,

∫

S2
(rψ�≥1)

2 d� � E�=0 · τ− 9
2 +ε in AI,

∫

S2
(r − M) · (ψ�≥1)

2 d� � E�=0 · τ−5+ε on �τ .

As above, L∞ decay estimates for rψ�≥1 inAH , rψ�≥1 inAI and
√
r − M · ψ�≥1 on

�τ , with the decaying factors τ−2+ε, τ− 9
4+ε and τ− 5

5+ε, respectively.
The above estimates illustrate another deviation from the sub-extremal analysis

in [9, 11]: for Type A initial data, the decay rate of rψ�=0 in AI is a power 1
2 + ε

away from the sharp decay rate, whereas in the sub-extremal case, the analogous
estimate results in a decay rate that is almost sharp, in other words only ε away from
the sharp decay rate. In the extremal case it is the non-vanishing of H0 and hence
the slow decay for the conformal energy in the near-horizon region that forms the
“bottleneck” for the maximal length of the global hierarchy of weighted estimates
for ψ�=0. Nonetheless, note that the improved decay for the conformal flux gives an
improvement for the decay rate of the radiation field for Type A data. The energy
and pointwise decay rates are summarized in the two Tables 4.5 and 4.6.

Table 4.5 Decay rates for � = 0. All are almost sharp except the bold rates

Data Decay rates for � = 0

Energy flux decay Pointwise decay

J T�τ
[ψ] CNH

τ
[ψ] CNI

τ
[ψ] rψ|H+ ψ|{r=r0} rψ|I+

Type A τ−3+ε τ−1+ε τ−3+ε τ−1+ε τ− 3
2 +ε τ− 3

2 +ε

Type B τ−5+ε τ−3+ε τ−3+ε τ−2+ε τ− 5
2 +ε τ−2+ε

Type C τ−3+ε τ−1+ε τ−1+ε τ−1+ε τ− 3
2 +ε τ−1+ε

Type D τ−3+ε τ−3+ε τ−1+ε τ− 3
2 +ε τ− 3

2 +ε τ−1+ε
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Table 4.6 Decay rates for � ≥ 1. All are sub-leading except the one in the shaded cell

Note that the decay rates for ψ{r=r0} apply for
√
r − Mψ for all r > M .

4.7.3 An Elliptic Estimate for � ≥ 1 and Improved Decay

The decay rate for ψ{r=r0}, in the � ≥ 1 case, as in Table 4.6, is slower than the
corresponding expected sharp rate for the � = 0 case. The latter ratemust be improved
before we obtain late-time asymptotics. We use the following degenerate elliptic
estimate for � ≥ 1 obtained in [8]:

∫

�τ

D2 · (
∂ρψ�≥1

)2 · r−2 dμ�τ
�

∫

�τ

D · (
∂ρTψ�≥1

)2
dμ�τ

, (4.7.2)

where ∂ρ denotes the radial vector field tangent to �τ such that ∂ρr = 1 and D =
(
1 − M

r

)2
. Note that we need a degenerate elliptic estimate in view of the fact that the

decaying global energy flux J T
�τ

is degenerate at the event horizon. Using a standard
Hardy inequality and the improved energy decay estimates for Tψ we obtain for
Type B data (see Table 4.8) we obtain:

∫

S2

(
ψ�≥1

)2
d� � 1

D

√∫

�τ

D2 · (
∂ρψ�≥1

)2 · r−2 dμ�τ
·
√∫

�τ

ψ2
�≥1 · r−2 dμ�τ

(4.7.2)
� 1

D

√∫

�τ

D · (
∂ρTψ�≥1

)2
dμ�τ

·
√∫

�τ

D · (
∂ρψ�≥1

)2
dμ�τ

= 1

D

√
J T
�τ

[Tψ�≥1] ·
√
J T
�τ

[ψ�≥1]

� 1

D

√
E�≥1;1 · √

E�≥1 · τ−7+ε.

This yields that
(
1 − M

r

) · ψ�≥1 decays with a rate τ− 7
2 + ε

2 . This rate is now sub-
leading. We summarize our findings in the Table 4.7:
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Table 4.7 Decay in shaded cell is sub-leading after applying elliptic estimate

4.7.4 Summary of Energy and Pointwise Decay Rates

We summarize the decay rates for T kψ in the Tables 4.8 and 4.9.

Table 4.8 Energy decay rates for T kψ

Data Energy decay rates for T kψ with k ≥ 0

J T�τ
[T kψ] CNH

τ
[T kψ] CNI

τ
[T kψ]

Type A τ−3−2k+ε τ−1−2k+ε τ−3−2k+ε

Type B τ−5−2k+ε τ−3−2k+ε τ−3−2k+ε

Type C τ−3−2k+ε τ−1−2k+ε τ−1−2k+ε

Type D τ−3−2k+ε τ−3−2k+ε τ−1−2k+ε

Table 4.9 Pointwise decay rates for T kψ

Data Pointwise decay rates for T kψ with k ≥ 0

rT kψ|H+ T kψ|{r=r0} rT kψ|I+

Type A τ−1−k+ε τ− 3
2 −k+ε τ− 3

2 −k+ε

Type B τ−2−k+ε τ− 5
2 −k+ε τ−2−k+ε

Type C τ−1−k+ε τ− 3
2 −k+ε τ−1−k+ε

Type D τ− 3
2 −k+ε τ− 3

2 −k+ε τ−1−k+ε

4.8 Late-Time Asymptotics

We have so far outlined how to obtain energy and pointwise decay estimates. In this
section, we will see how to obtain the late-time asymptotics. Let’s first make a few
a priori comments about the coefficients of the precise asymptotics.
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4.8.1 A Priori Remarks

In view of the vanishing of the scalar curvature of ERN, the wave equation (1.7.1)
on ERN is conformally invariant. Hence, we can use the Couch–Torrence conformal
symmetry � (see Sect. 2.1.4) to make various a priori remarks for the late-time
asymptotics. Recall from Sect. 2.3.3 that ψ solves the wave equation on ERN if and
only if its dual ψ̃ = M

r−M ψ ◦ � solves the wave the equation. As before, we denote
by ∂ρ the radial derivative tangential to �τ such that ∂ρr = 1. Note that �τ here is
the �-invariant hypersurface introduced in Sect. 2.1.4. Recall that �(τ , r) = (τ , r ′)
where r ′ is given by (2.1.18). First of all note that (see [12])

H0[ψ] = I0[ψ̃], I0[ψ] = H0[ψ̃].

Assume that ψ is a Type C perturbation. Then, ψ̃ is also of Type C. For simplicity,
we will here use the notation C∞[ψ] for the coefficient of the late-time asymptotics

ψ → C∞[ψ] · τ−2 + O
(
τ−2−η

)
.

Let’s impose the following ansatz for the asymptotic coefficient C∞[ψ] of ψ in the
region rH ≤ r ≤ rI :

C∞[ψ] = A(r) · H0[ψ] + B(r) · I0[ψ]

as τ → ∞. We will investigate any possible conditions that A(r) and B(r) have to
satisfy independently ofψ (as long asψ is of Type C). Let’s consider the asymptotics
of ψ̃ in two ways:

C∞[ψ̃] = A(r) · H0[ψ̃] + B(r) · I0[ψ̃] (4.8.1)

and

C∞[ψ̃] =C∞
[

M

r − M
· ψ ◦ �

]

= M

r − M
· C∞ [ψ ◦ �]

= M

r − M
·
(
A(r ′) · H0[ψ] + B(r ′) · I0[ψ]

)

= M

r − M
· B(r ′) · H0[ψ̃] + M

r − M
· A(r ′) · I0[ψ̃].

(4.8.2)

Combining (4.8.1) and (4.8.2) we conclude that A, B must satisfy

A(r) = M

r − M
· B(r ′), B(r) = M

r − M
· A(r ′)

It is very easy to see that these are equivalent. Two important corollaries of the above
are the following:

• the coefficient functions A(r) and B(r) are not both constants,
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• the derivative ∂ρψ does not decay faster than τ 2. Indeed, we would expect that
C∞[∂ρψ] = ∂r A(r) · H0[ψ] + ∂r B(r) · I0[ψ].

Given the above analysis, one would expect that both A(r) and B(r) are non-constant
functions of r . There is no reason a priori why exactly one of themwould be constant.
If that were the case then the asymptotics for ∂ρψ would depend only on either H0

or I0. However, we will show that

B(r) = 4, A(r) = 4M

r − M
.

See also Table 2.1. This implies that the asymptotics of ∂ρψ in region B depend only
on H0. In other words, we see that there is here a special feature of the horizon that
dominates over null infinity.

4.8.2 The Main Difficulties

We will next provide a summary of the mechanism that gives rise to the precise
leading-order asymptotics for ψ. The decay rates for ψ�≥1 as in Table 4.7 are faster
than the (expected) sharp decay rates forψ�=0. For this reason, wewill derive the pre-
cise late-time asymptotics (and hence the sharp rates) for ψ�=0. We will thus assume
in the rest of this section that ψ is a spherically symmetric (and hence supported only
on � = 0) solution to the wave equation (1.7.1) on ERN. We need to overcome the
following difficulties.

• Difficulty 1: Find spacetime regions in which asymptotics can be derived inde-
pendently of their complement. An obstruction here is that the decay rates that we
have already obtained (as summarized in the previous subsections) are a power
1
2 + ε from the sharp values in the region B = {rH ≤ r ≤ rI}. Compare the rates
in Tables 2.1 and 4.5.

• Difficulty 2: Propagate the above asymptotics globally in the regionR. The main
obstruction here is that for data of Type A, B and C the radial (tangential to �τ )
derivative ∂ρψ decays only as fast asψ itself. Hence, one needs to derive the precise
asymptotics for ∂ρψ before propagating asymptotics of ψ. Recall the discussion
in Sect. 4.8.1 Compare the rates in Tables 2.1 and 2.3. We remark that this is not
the case in sub-extremal black holes where radial derivatives decay faster than the
scalar field itself.

We consider the timelike hypersurfaces γI and γH such that (v − u)|γI ∼ uα and
(u − v)|γH ∼ vα where 0 < α < 1 is a constant, and we define the following subsets
of the near-infinity region AI and the near-horizon region AH: AI

γI := AI ∩ {r ≥
r |γI } andAH

γH = AH ∩ {r ≤ r |γH }. See Fig. 4.1.Note that (r − M)|γH ∼ r |γI ∼ τα.
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Fig. 4.1 The curves γH, γI
and the regions AH

γH ,AI
γI

We will below summarize the resolutions to the above difficulties for each of the
four types of initial data. For the complete details we refer to [8].

4.8.3 Asymptotics for Type C Perturbations

Resolution of Difficulty 1

For Type C data we derive the leading-order asymptotics of ψ in the near-horizon
region AH

γH and separately and independently in the near-infinity region AI
γI . This

derivation distinguishes the extremal case from the sub-extremal case treated in [11],
where the asymptotics at the near-infinity region can be propagated all the way to the
event horizon using that the radial derivative ∂ρψ decays faster thanψ. The reasonwe
can independently derive the asymptotics in the regionsAH

γH andAI
γI in the extremal

case has to do with the existence of the two (independent) conserved charges H0 and
I0; and for Type C data they are both non-zero: H0 �= 0 and I0 �= 0. To obtain the
precise asymptotics inAI

γI and AH
γH we propagate the following v-asymptotics and

u-asymptotics of the initial data on NI
0 and NH

0 , respectively,

∂v(rψ)|NI
0

∼ 2I0v
−2, ∂u(rψ)|NH

0
∼ 2H0u

−2 (4.8.3)

everywhere in AI
γI and AH

γH , respectively. This can be achieved for α < 1, but
sufficiently close to 1. We next integrate the resulting estimates for ∂v(rψ) and
∂u(rψ) starting from γI and γH, respectively, to obtain the asymptotics for rψ, and
consequently ψ, in appropriate sub-regionsAI

γ′
I
andAH

γ′
H
ofAI

γI andAH
γH obtained

by replacing α with appropriate α′ such that α < α′ < 1. A crucial observation is
that the previously derived decay rates for

√
r − M · ψγ′

I and
√
r − M · ψγ′

H are
almost sharp3 and hence strong enough to close this argument by showing that, as
long as a < 1, the terms rψ|γI and rψ|γH decay faster than, say rψ|γ′

I and rψ|γ′
H ,

and hence are lower order terms.

3Note that the relevant decay rates for ψ, without the
√
r − M weight, are not sharp, see Table 4.5.
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Resolution of Difficulty 2

Ideally, we would like to propagate the asymptotics for ψγ′
I to the left of γ′

I . In the
sub-extremal case this follows easily once decay rates for the radial derivative ∂ρψ
have been obtained that are faster than that of ψ. This however breaks down in the
extremal case in view of the fact that the expected sharp decay rate for ∂ρψ is now
the same as the expected sharp rate for ψ (see also the discussion in Sect. 4.8.1).

The way out is to obtain the precise asymptotic behavior of the radial derivative
∂ρψ. It turns out that this is possible without knowing the asymptotics for ψ. We
commute by T and reproduce the above argument to derive the precise late-time
asymptotics for T (rψ) in the near-horizon region AH

γH . The crucial observation
here is that the asymptotics for ∂ρψ in the region {rH ≤ r ≤ rI} depend only on
the asymptotics of Tψ along the event horizon, which in turn depend only on H0!
Furthermore, we derive sharp decay estimates (with growing r weights in the error
terms) for ∂ρψ up to the curve γ′

I , that is in the region {rI ≤ r ≤ rγ′
I }.

The wave equation schematically takes the form

∂ρ(Dr
2∂ρψ + 2r2Tψ) = O(r)Tψ + O(r1−η)T 2ψ.

Now, we integrate along �τ from the horizon r = M to some r > M to obtain:

Dr2∂ρψ(r, τ ) =2M2Tψ|H+(τ ) + r2Tψ(r, τ ) +
∫ r

M
O(r ′)Tψ + O(r ′)T 2ψ dr ′.

The blue horizon term is the leading one:

2M2Tψ|H+(τ ) = −4MH0 · τ−2 + O(τ−2−ε).

We will show that the red terms are of lower order (and that the bold red is the
dominant error term). We estimate by using Cauchy–Schwarz and Hardy

∫ r

M
O(r ′) · |Tψ| dr ′ ≤ C

√∫

�τ

J T [Tψ] · nτ dμτ · r 3
2 ≤ C · τ− 5

2 +ε · r 3
2 .
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Similarly, we can estimate

∫ r

M
O(r ′) · |T 2ψ| dr ′ ≤ C

√∫

�τ

J T [T 2ψ] · nτ dμτ · r 3
2 ≤ C · τ− 7

2 +ε · r 3
2

We can furthermore estimate:

|Tψ|(r, τ ) ≤ CD− 1
2 r− 1

2 ·
√∫

�τ

J T [Tψ] · nτ dμτ ≤ CD− 1
2 r− 1

2 τ− 5
2 +ε.

We conclude that for any r > M :

∣
∣∂ρψ(r, τ ) + 4MH0D

−1r−2τ−2
∣
∣ ≤ Cτ− 5

2 +ε · D− 3
2 r− 1

2 + CD−1r−2τ−2−ε.
(4.8.4)

This gives the asymptotics for ∂ρψ along any constant r hypersurfaces. For regions
where r ∼ τ it just gives an estimate, not asymptotics, in view of the dominant
bold red term. Nonetheless it is still good enough to derive the asymptotics for ψ in
{rγ′

H ≤ r ≤ rγ′
I } by integrating the estimate (4.8.4) for ∂ρψ in this region backwards

from γ′
I . Indeed, we obtain

ψ(r, τ ) = ψ|γ′
I (τ ) −

∫ rγ′I

r
∂ρψ dr ′

= 4

(

I0 + M

r − M
H0

)

τ−2 + D−1/2(r) · O(τ−2−ε),

where we used the following asymptotics along γI from the previous step:

ψ|γ′
I = 4I0τ

−2 + O(τ−2−ε). (4.8.5)

The integral of the red term in the asymptotics for ∂ρψ can be controlled only up
to a region with α′ < 1. This shows the importance of first closing estimates in the
region AI

γ′
I
.

Remark: We can use the (slow) estimate (4.8.4), which blows up at the horizon,
to propagate the asymptotics of ψ|rH ∼ τ−2 (fast) to get the asymptotics of ψ|γ′

H ∼
τ−2+α′

(slow) (in the red direction as in the figure below), butwe cannot use (4.8.4) to
propagate the asymptotics ofψ|γ′

H ∼ τ−2+α′
(slow) to get the asymptotics ofψ|rH ∼

τ−2 (fast). In the former case we get: slow=slow+fast (consistent with asymptotics),
and in the latter case we get fast=slow+slow (inconsistent with asymptotics). This
is the reason we need to go from γ′

H all the way to γ′
I where ψ|γ′

I ∼ τ−2 (fast) and
retrieve asymptotics coming back! See the figure below.
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Another way, which we simply mention for completeness, would be to follow the
dual argument (via the Couch–Torrence inversion) where this time we integrate
an appropriate rescaled tangential to �τ derivative of ψ from infinity and use the
asymptotics in AH

γ′
H
. See the figure above.

4.8.4 Asymptotics for Type A Perturbations

Resolution of Difficulty 1

For Type A data we can derive the leading-order asymptotics of ψ, and crucially of
Tψ, in the near-horizon region AH

γ′
H
as in Type C case, but in contrast to the Type

C case, we cannot obtain independently the asymptotics in the near-infinity region
AI

γ′
I
since the first equation of (4.8.3) does not provide exact asymptotics given

that I0 = 0. Estimate (4.8.5) still holds, but does not provide late-time asymptotics
anymore.

Resolution of Difficulty 2

The estimate (4.8.4) holds for Type A data and provides (partial) asymptotics for
∂ρψ in the region {rH ≤ r ≤ rI}. However, since, the estimate (4.8.4) blows up at
the horizon, it cannot be used to push the asymptotics of ψ away from AH

γ′
H
. The

crucial observation is that we can derive the precise asymptotics exactly on γ′
I (and

not to the right or to the left of γ′; asymptotics in these regions will only be derived
subsequently at a later step). In order to derive asymptotics ofψ|γ′

I weneed to analyze
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the contributions from the left side (horizon side) and the right side (infinity side) of
γ′
I . In order to capture the precise contributions from both sides wewill need tomake

crucial use of I0 = 0. It turns out that we can only capture the precise contributions
at one level of differentiability higher using the following splitting identity

rψ
∣
∣
∣
γ′
I

= r∂ρ(rψ)

∣
∣
∣
γ′
I︸ ︷︷ ︸

contribution from
the right side ofγ′

I

− r2∂ρψ
∣
∣
∣
γ′
I︸ ︷︷ ︸

contribution from
the left side ofγ′

I

(4.8.6)

Contribution from the right side of γ′
I : Recall that we want to show that rψ|γ′

I
decays like τ−2 (see Table 2.1) and hence all error terms must decay like τ−2−ε. Now
propagating in AI

γ′
I
the first of (4.8.3) only yields an ε improvement for ∂ρ(rψ)|γ′

I ,
that is (note that ∂v ∼ ∂ρ in this region)

r∂ρ(rψ)|γ′
I ∼ rτ−2−ε ∼ τ−2−ε+α′

, (4.8.7)

since r ∼ τα′
along γ′

I , which is not fast enough since α′ is close to 1 (the expected
decay rate for rψ|γ′

I is τ−2). To circumvent this difficulty and obtain faster decay for
r∂ρ(rψ)|γ′

I , a new technique was introduced in [8], which we call the singular time
inversion. We construct the time integral ψ(1) of ψ that solves the wave equation
�gψ

(1) = 0 and satisfies Tψ(1) = ψ. Note that if H0[ψ] �= 0 then ψ(1) is singular at
the horizon. In fact it can be taken so that it satisfies

(r − M) · ∂ρψ
(1) = − 2

M
· H0[ψ]

close to the event horizon. Away from the horizon ψ(1) is smooth and has a well-
defined Newman–Penrose constant I0[ψ(1)] < ∞. Using appropriate low regularity
energy estimates it can be shown that ψ(1) → 0 as τ → ∞ to the right of γ′

I . The
rates in Table 4.5 then yield in particular |rψ(1)| � τ−1/2+ε. This rate is good enough
to apply previous techniques and propagate (4.8.3) with ψ replaced by ψ(1), using
that generically I0[ψ(1)] �= 0, which yields ∂ρ(rψ(1))|γ′

I ∼ v−2 ∼ τ−2 since v ∼ τ

and r ∼ τα′
along γ′

I . Hence, by integrating in time, we obtain ∂ρ(rψ)|γ′
I ∼ τ−3 and

hence
r∂ρ(rψ)|γ′

I ∼ rτ−3 ∼ τ−3+α′
(4.8.8)

along γ′
I , which significantly improves (4.8.7). We conclude that this term does not

contribute to the asymptotics of rψ|γ′
I .

Contribution from the left side of γ′
I : This is the side that fully contributes to the

asymptotics of rψ|γ′
I via the term r2∂ρψ|γ′

I . We will derive the precise asymptotics
of r2∂ρψ|γ′

I . Expressing the wave equation as a transport equation

∂ρ(Dr
2∂ρψ) = 2r∂ρ

(
rTψ

)
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and integrating on NI
τ yields

∣
∣
∣Dr2∂ρψ

∣
∣
rI

− Dr2∂ρψ
∣
∣
γ′
I

∣
∣
∣ �

∫ rγ′I

rI
r |∂ρ

(
rTψ

)| dr. (4.8.9)

Using the improved conformal flux estimate CNI
τ
[Tψ] (see Table 4.8)

∫ rγ′I

rI
r |∂ρ

(
rTψ

)| dr �
√∫ rγ′I

rI
1 dr ·

√
CNI

τ
[Tψ] �

√
rγ′

I · τ−5+ε ∼τ− 5
2 + α′

2 + ε
2 .

which implies that the asymptotics for r2∂vψ|γ′
I can be derived from the asymptotics

of ∂ρψ|{r=rI}. We can then apply (4.8.4), which holds also for Type A data, at r = rI .
We see therefore that the asymptotics for r2∂vψ|γ′

I and rψ|γ′
I depend only on H0

and the respective rate is τ−2. Finally,

rψ
∣
∣
∣
γ′
I

∼ −r2∂ρψ
∣
∣
∣
γ′
I

∼ −Dr2∂ρψ
∣
∣
∣
γ′
I

∼ −Dr2∂ρψ
∣
∣
∣
rI

∼ 4MH0τ
−2

asymptotically as τ → ∞.Note that D ∼ 1alongγ′
I . Concluding, the precise asymp-

totics for rψ|γ′
I depend only on the horizon charge H0[ψ]. The decay rate is τ−2.

The estimate (4.8.9) for the conformal flux, as above, in fact yields partial asymp-
totics for ∂ρψ in {rγ′

H ≤ r ≤ rγ′
I } which we can now integrate backwards from γ′

I
(using the asymptotics for rψ|γ′

I !) up to rγ′
H to obtain the asymptotics for rψ in the

region {rγ′
H ≤ r ≤ rγ′

I }, that is in the complement of AI
γ′
I

∪ AH
γ′
H
. The asymptotics

in AH
γ′
H
have been obtained independently in previous steps. To find the asymptotics

of rψ to the right of γ′
I all the way up to null infinity we use the construction for

the singular time integral ψ(1) once again. Specifically, we derive the asymptotics
of T (rψ(1)) − T (rψ(1))|γ′

I = rψ − rψ|γ′
I in AI

γ′
I
in terms of I0[ψ(1)]:

∣
∣
∣rψ|I+(τ ) − rψ|γ′

rI
(τ ) + 2I (1)

0 τ−2
∣
∣
∣ � Cτ−2−ε.

Unlike for Type C data, the term rψ|γ′
I cannot be neglected above since it decays

too slowly (in view of the weak decay of ψ(1)). In fact, plugging in the asymptotics
of rψ|γ′

I we obtain the asymptotics of rψ in AI
γ′
I
:

rψ|I+(τ ) =
(
4MH0 − 2I (1)

0

)
· τ−2 + O(τ−2−ε).

Note that both the near-horizon region and the near-infinity region contribute to
the asymptotics for the radiation field rψ|I+ . This completes the derivation of the
asymptotics for ψ everywhere inR. See figure below for a summary of the steps for
Type A data.
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4.8.5 Asymptotics for Type B Perturbations

In the case of Type B initial data the time integral ψ(1) extends smoothly to the
horizon. Hence, so we can apply the same methods as for Type C data for ψ(1) and
derive the global late-time asymptotics of ψ(1) and, subsequently, of Tψ(1) = ψ.

4.8.6 Asymptotics for Type D Perturbations

A modified variant of the methods for Type A data can be applied for initial data of
Type D. In this case ∂ρψ decays faster thanψ itself. In order to obtain the asymptotics
for ∂ρψ we need to first obtain the asymptotics for the weighted derivative ∂ρ

(
(r −

M)ψ
)
, which in fact decays as fast asψ, by starting from null infinity and propagating

up to γH. Once we obtain the asymptotics for ψ and its time derivatives we then, a
posteriori, obtain the asymptotics for ∂ρψ.
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4.8.7 Asymptotics for Higher Order Derivatives

In this section we will show how to obtain asymptotics (2.3.19) for ∂k
r T

mψ for all
k,m ≥ 0 for TypeA initial data. The asymptotics for ∂k

r ψ can be obtained inductively
assuming that

∂k
r ψ ∼ ck · H0 · τ k−1

asymptotically on H for all k ≥ 1. Commuting the wave equation (2.2.1) on ERN
with ∂k

r with k ≥ 1 yields

∂k
r

(
�gψ

) =D
(
∂k+2
r ψ

)
+ 2∂k+1

r Tψ + 2

r
∂k
r Tψ + R∂k+1

r ψ + ∂k
r �/ψ+

+
k∑

i=1

(
k

i

)

∂i
r D · ∂k−i+2

r ψ +
k∑

i=1

(
k

i

)

∂i
r
2

r
· ∂k−i

r Tψ +
k∑

i=1

(
k

i

)

∂i
r R · ∂k−i+1

r ψ.

(4.8.10)
Restricting on r = M and using the asymptotics for Tmψ, form ≥ 0 and solving for
T∂k+

r ψ yields
T∂k+1

r ψ � ak+1 · ∂k
r ψ (4.8.11)

asymptotically on H since ∂k
r ψ is the only top order term. Here

ak+1 =
(
k

2

)

D′′ + kR′ = −k(k + 1)

2M2
, for k ≥ 1 and a1 = 1

M2
,

where D = (
1 − M

r

)2
and R = D′ + 2D

r . Integrating (4.8.11) we obtain

ck+1 = −ck · (k + 1)

2M2
.

We have already proved that c1 = − 1
M3 . Hence,

ck = (−1)k−1 k!
(2M2)k−1

· c1 = (−1)k
1

M3

k!
(2M2)k−1

.

We can also easily obtain the asymptotics for ∂
m+ j
r T mψ using (4.8.11):

∂m+ j
r T mψ ∼ am+ j · ∂m+ j−1

r T m−1ψ

∼ am+ j am+ j−1 · ∂m+ j−2
r T m−2ψ

· · ·
∼ am+ j am+ j−1 · · · a j+1 · ∂ j

r ψ.

In particular, the bounded non-decaying terms are the following
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∂m+1
r T mψ ∼

m+1∏

i=2

ai · ∂rψ ∼ − 1

M3

m+1∏

i=2

ai · H0.

It is very useful to analyze these terms further

∂m+1
r T mψ ∼ − 1

M

m+1∏

i=2

ai · ψ − 1

M3

m+1∏

i=2

ai · H0[ψ].

Recall that H0[Tψ] = 0. It follows

∂m+1
r T m+1ψ ∼ − 1

M

m+1∏

i=2

ai · Tψ ∼ 2

M2

m+1∏

i=2

ai · H0 · 1

τ 2

since it is easy to check that all the other terms in the precise equation for
∂m+1
r T m+1ψ decay strictly faster than Tψ and since Tψ ∼ − 2

M H0
1
τ 2 . The asymp-

totics for ∂m
r T

m+ jψ follow by differentiating the above with respect to τ and using
that ∂ j

τ τ−2 = (−1) j ( j + 1)!τ−2− j . This concludes of the proof of the asymptotics
(2.3.19).

References

1. S. Aretakis, Stability and instability of extreme Reissner–Nordström black hole spacetimes for
linear scalar perturbations I. Commun. Math. Phys. 307, 17–63 (2011)

2. S. Dain, G. Dotti, The wave equation on the extreme Reissner–Nordström black hole. Class.
Quantum Gravity 30, 055011 (2013)

3. J. Sbierski, Characterisation of the energy of Gaussian beams on Lorentzian manifolds with
applications to black hole spacetimes. Anal. Part. Diff. Eq. 8, 1379–1420 (2015)

4. Y. Angelopoulos, S. Aretakis, D. Gajic, The trapping effect on degenerate horizons. Annales
Henri Poincaré 18(5), 1593–1633 (2017)

5. S. Aretakis, Stability and instability of extreme Reissner–Nordström black hole spacetimes for
linear scalar perturbations II. Annales Henri Poincaré 12, 1491–1538 (2011)

6. M. Dafermos, I. Rodnianski, A new physical-space approach to decay for the wave equation
with applications to black hole spacetimes, in XVIth International Congress on Mathematical
Physics (2010), pp. 421–432

7. G.Moschidis, The r p-weighted energymethod of Dafermos and Rodnianski in general asymp-
totically flat spacetimes and applications. Ann. PDE 2, 6 (2016)

8. Y. Angelopoulos, S. Aretakis, D. Gajic, Late-time asymptotics for the wave equation on
extremal Reissner–Nordström backgrounds, preprint (2018)

9. Y. Angelopoulos, S. Aretakis, D. Gajic, A vector field approach to almost sharp decay for the
wave equation on spherically symmetric, stationary spacetimes (2016), arXiv:1612.01565

10. V. Schlue, Decay of linear waves on higher-dimensional Schwarzschild black holes. Anal. PDE
6(3), 515–600 (2013)

11. Y. Angelopoulos, S. Aretakis, D. Gajic, Late-time asymptotics for the wave equation on spheri-
cally symmetric, stationary backgrounds. Adv. Math. 323, 529–621 (2018), arXiv:1612.01566

12. J. Lucietti, K. Murata, H.S. Reall, N. Tanahashi, On the horizon instability of an extreme
Reissner–Nordström black hole. JHEP 1303, 035 (2013), arXiv:1212.2557

http://arxiv.org/abs/1612.01565
http://arxiv.org/abs/1612.01566
http://arxiv.org/abs/1212.2557


Chapter 5
Decay Estimates for Extremal Kerr

In this Chapter we review the proof of rigorous decay estimates for axisymmetric
solutions to the wave equation on EK.

5.1 Axisymmetry Versus Superradiance

Recall that T = ∂v is spacelike in the ergoregion, close to the event horizon. This
means that the energy flux J T

μ [ψ]nμ, where nμ is timelike, fails to be non-negative
definite. This implies that, in principle, the energy radiated away to null infinity may
be larger than the initial energy. This phenomenon is called superradiance and is the
main reason that obtaining any boundedness result for the wave equation on Kerr
(including EK) (even away fromH+) is very difficult. The first major simplification
about axisymmetric solutions has to do with the absence of superradiance in this
case. For convenience let’s denote � = ∂ϕ∗ . Let � be an axisymmetric spacelike
hypersurface and n� be its future directed timelike unit normal vector field. Then for
all axisymmetric solutions to the wave equation on EK we obtain

J�
μ [ψ]nμ

� = 0.

It follows that the T -flux along the event horizon is non-negative definite. Indeed,
we simply use the above and the expression for the horizon normal V = T + 1

2M �.
Hence, the degenerate T -fluxes J T

μ [ψ]nμ
� ≥ 0 across �τ and J T

μ [ψ]nμ
H+ ≥ 0 across

H+ are non-negative definite and uniformly bounded. It is in this sense that superra-
diance is absent for axisymmetric1 ψ. Boundedness of local non-degenerate energy

1Note that superradiance is in fact absent for all solutions to the wave equation on ERN. That is
why we expect axisymmetric solutions on EK to behave like the general solutions on ERN.
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can be proved using the techniques of Sect. 4.4. Themain difficulty for proving decay
is to derive a Morawetz estimate. In ERN such estimates where relatively easy to
obtain using purely physical space techniques. The situation is more complicated for
EK. We will need to make use of the frequency localization as explained in the next
section.

5.2 The Carter Separation and Frequency Localization

5.2.1 The Killing Tensor K and the Symmetry Operator Q

The Kerr metric has two Killing vector fields, the stationary T and the axially sym-
metric�. Furthermore, Kerr (including EK) admits an irreducible Killing 2-tensor. A
Killing 2-tensor is a symmetric 2-tensor K which satisfies ∇(α K βγ)= 0. For exam-
ple, the metric is always a Killing tensor. A Killing tensor is called irreducible if
it can not be constructed from the metric and other Killing vector fields. There are
several important consequences of the existence of Kαβ on Kerr:

1. The Killing tensor K yields the conserved quantity Kαβ
.
γ

α .
γ

β along geodesics γ.
This means that the geodesic flow admits three constants of motion (including
the constants associated to T and �). This further implies that the geodesic flow
on Kerr is completely integrable (see [1]).

2. The Killing tensor K gives rise to a symmetry operator Q = ∇α

(
K αβ∇β

)
given

by
Qψ = �/ S2ψ − �2ψ + (

a2 sin2 θ
)
T 2ψ (5.2.1)

satisfying
[
K ,�g

] = 0. The differential operator Q was first used in the con-
text of estimating solutions to the wave equation in [2] for slowly rotating Kerr
backgrounds. As we shall see, in view of the degeneracy of redshift on EK, com-
muting with Q turns out to be useful for deriving pointwise estimates on EK (see
Sect. 5.5).

3. The wave equation, as discovered by Carter [3], is separable. This makes possible
to decompose a solution to the wave equation into modes and perform a mode
analysis. The separability of the wave equation has been used by Dafermos et al.
(see for instance [4]) in their program for solving the Kerr stability conjecture.

5.2.2 Carter’s Separability for the Wave Equation

The separability of the wave equation on EK was used on [5] to derive decay results
for axisymmetric solutions. We next describe the method of [5]. We will use the
Boyer–Lindquist coordinates (t, r, θ,ϕ) and write solutions ψ as a superposition of
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mode solutions of the form

F(t) · F(r) · F(θ) · F(ϕ).

On Kerr, the wave equation in Boyer–Lindquist coordinates takes the form

[
∂r�∂r + 1

�

[
� · M2 − (r2 + M2)2

]
∂2
t − 1

�
4M2r∂t∂ϕ − 1

�
M2∂2

ϕ

]
ψ

+
[
�/ S2 − (M2 cos2 θ)∂2

t

]
ψ = 0

Let’s assume that we can (at least formally) take the Fourier transform of ψ in t and
ϕ (assuming for a moment that ψ is in L2(dt)):

ψ(t, r, θ,ϕ) = 1√
2π

∫

ω∈R

∑

m∈Z
ψ̂(ω, r,m, θ)eimϕe−iωt dω.

Since ∂t , ∂ϕ are Killing, then for each frequency pair (ω,m) ∈ R × Z the projection

ψω,m(t, r, θ,ϕ) = ψ̂(ω,m, r, θ)eimϕe−iωt

(which is manifestly separated in t,ϕ) satisfies the wave equation. Since

∂tψω,m = −iω · ψω,m, ∂ϕψω,m = im · ψω,m

the wave equation for each projection ψω,m reads

Rω,mψω,m + Aωψω,m = 0,

where the radial operator Rω,m is given by

Rω,m =
[
∂r�∂r − 1

�

[
�M2 − (r2 + M2)2

]
ω2 − 1

�
4M2rmω + 1

�
M2m2

]

and the angular (also known as spheroidal wave) operator Aω by

Aaω =
[
�/ S2 + (Mω)2 cos2 θ

]
.
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We can now further separate in the remaining two variables r and θ:

ψω,m(t, r, θ,ϕ) =ψ̂(ω,m, r, θ)eimϕe−iωt

=Rω,m(r) · (
�ω,m(θ) eimϕ

) · e−iωt

=Rω,m(r) · Sω,m(θ,ϕ) · e−iωt ,

where the angular part Sω,m(θ,ϕ) = �ω,m(θ) eimϕ is supported on thefixed azimuthal
frequency m. Then, �gψω,m = 0 becomes

Rω,m Rω,m(r)

Rω,m(r)
+ AωSω,m(θ,ϕ)

Sω,m(θ,ϕ)
= 0.

Hence, there is a separation constant λ such that

AωSω,m(θ,ϕ) = −λSω,m(θ,ϕ), Rω,m Rω,m(r) = λRω,m(r).

The angular functions �(θ) are required to be regular at the poles θ = 0 and θ = π.
These boundary conditions pick out a discrete set of eigenvalues λ(ω)

�m with � ∈ Z, � ≥
|m|. In view of standard elliptic theory, we can infer the existence of a complete
orthonormal system S(ω)

�m (θ,ϕ) with m, � ∈ Z, � ≥ |m| of L2(S2) of eigenfunctions
of Aω with real eigenvalues −λ(ω)

�m . The functions S(ω)
�m are known as the oblate

spheroidal harmonics. For ω = 0 these reduce to the standard spherical harmonics
Y�m and λ(0)

�m = �(� + 1). If we define �
(ω)
�m = λ(ω)

�m + (Mω)2 then it follows that
�

(ω)
�m ≥ |m|(|m| + 1

)
. Hence, for any fixed ω and fixed r we can decompose

ψ̂(ω,m, r, θ)eimϕ =
∑

�≥|m|
Rω,m,�(r) · S(aω)

m� (θ,ϕ)

where Rω,m,�(r) satisfies Carter’s 2nd-order radial equation

Rω,m Rω,m,�(r) = λ(ω)
�m Rω,m,�(r). (5.2.2)

As for the angular decomposition, we need to impose boundary conditions for
Rω,m,�(r). It turns out that the correct boundary conditions associated to the wave
equation correspond to those of outgoing waves at infinity r = +∞ and ingoing
waves at the event horizon r = M as measured by a co-moving observer:

Rω,m,�(r) ∼
{

1
r e

iωr∗
as r → +∞ (r∗ → +∞)

e−i(ω− m
2M )r∗

as r → rH+ (r∗ → −∞).
(5.2.3)

The oscillatory behavior of Rω,m,� towards H accounts for the regularity of ψ
expressed in terms of a regular local coordinate system such as (v, r, θ,ϕ∗).
Indeed, if ψ̂v,ϕ∗(ω,m, r, θ) denotes the (regular) Fourier transform of (the regu-
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lar) ψ(v, r, θ,ϕ∗) with respect to v and ϕ∗ and, as above, ψ̂(ω,m, r, θ) denotes the
Fourier transform of ψ(t, r, θ,ϕ) with respect to t and ϕ, then

ψ̂(ω,m, r, θ) = eiω(t−v) · e−im(ϕ−ϕ∗) · ψ̂v,ϕ∗ .

The horizon boundary condition follows from (3.1.2) and the relation (ϕ∗ − ϕ) ∼
1
2M r∗ close to the horizon. Finally, we conclude that solutionsψ of the wave equation
can be formally decomposed as follows

ψ(t, r, θ,ϕ) = 1√
2π

∫

ω∈R

Fourier Expansion
︷ ︸︸ ︷

∑

m,�

Oblate Spheroidal Expansion
︷ ︸︸ ︷
Rω,m,�(r)︸ ︷︷ ︸
radial wave

·S(ω)
�m (θ,ϕ) ·e−iωt dω.

5.2.3 The Cut-off ξτ and the Renormalized Carter Equation

Separating the wave equation involves taking the Fourier transform in time. Since, a
priori, we do not know that the solution is L2(dt) we must first cut off in time. Let
ξτ be a cut-off function such that ξτ (τ̃ ) = 0 for τ̃ ≤ 0 and τ̃ ≥ τ and ξτ (τ̃ ) = 1 for
1 ≤ τ̃ ≤ τ − 1. Then the support of ∇ξτ is the shaded region Sξ = {0 ≤ τ̃ ≤ 1} ∪
{τ − 1 ≤ τ̃ ≤ τ }:

Define ψQ = ξτψ3. Then,
�gψQ = F,

where
F = 2∇μξτ∇μψ + (�ξτ )ψ. (5.2.4)

We will use the separability theory developed in the previous section for ψQ. In
fact, instead of working with the radial functions RQ(ω)�m(r) we will work with the
renormalized radial functions

u(ω)
�m (r∗) =

√
(r2 + M2) · (RQ)

(ω)
�m (r)
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These satisfy

d2

(dr∗)2
u(ω)

�m +
(
ω2 − V (ω)

�m (r)
)
u(ω)

�m = H (ω)
�m (5.2.5)

where

V (ω)
�m (r) = 4M2rmω − M2m2 + � · �

(ω)
�m

(r2 + M2)2
+ �(3r2 − 4Mr + M2)

(r2 + M2)3
− 3�2r2

(r2 + M2)4
,

and

H (ω)
�m (r) = �F (ω)

�m (r)

(r2 + M2)1/2
.

Although u is a complex-valued function, the potential V is real. This would not be
true if we had separated with respect to (v, r, θ,ϕ∗).

5.2.4 Properties of the Potential V

Restricting to axisymmetric ψ (i.e. m = 0) and by dropping the indices we obtain

V = (r − M)2

(r2 + M2)2
· � + (r − M)3M

(r2 + M2)4

(
2r2 + 3rM − M2) .

For a detailed analysis of V we refer to [5]. We next give the graphs of V and dV
dr∗ .

Two remarks are in order.

1. The potential V exhibits a symmetric asymptotic behavior towards the event
horizon and towards infinity. Indeed, V ∼ 1

(r∗)2 � − 1
(r∗)3 , for all r ≤ rH and V ∼

1
r2 � + 1

r3 , for all r ≥ rI .
2. For all frequencies � (with m = 0), V ′ vanishes exactly at r = M and r =

(1 + √
2)M . This is related to the fact that axisymmetric frequencies effectively

see only the trapped null geodesics orthogonal to the axial vector field �. These
geodesics span the hypersurface {r = (1 + √

2)M}which is known as the “effec-
tive photon sphere”.
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5.3 Physical Space–Fourier Space Correspondence

Parseval identity immediately yields the following identities
∫ +∞

−∞

∑

m,l

|u|2 dω =
∫ +∞

−∞

∫

S2
(ψQ)2 · (r2 + M2) dt d�,

∫ +∞

−∞

∑

m,l

ω2 |u|2 dω =
∫ +∞

−∞

∫

S2
(TψQ)2 · (r2 + M2) dt d�,

∫ +∞

−∞

∑

m,l

� |u|2 dω =
∫ +∞

−∞

∫

S2

[∣∣∇/ S2ψQ
∣∣2 + M2 sin2 θ · (TψQ)2

]
· (r2 + M2) dt d�,

∫ +∞

−∞

∑

m,l

∣∣u′∣∣2 dω =
∫ +∞

−∞

∫

S2

(
∂r∗

(√
r2 + M2 · ψQ

))2
dt d�,

where ∇/ S2ψ denotes the gradient of ψ on the unit sphere with respect to the standard metric and
d� = sin θ dθ dϕ.

5.4 Frequency Localized Morawetz Estimates

The Fourier transform has the advantage that it allows for a clean way to deal with the geometric
features of all frequency ranges. Themain idea is tomodify the energymethod so that it is applicable
for the radial functions u. We introduce the microlocal currents (see also [4])

J y
1 [u] = y

[∣
∣u′∣∣2 + (ω2 − V ) |u|2

]
,

J h
2 [u] = hRe(u′u) − 1

2
h′ |u|2 ,

J f
3 [u] = f

[∣∣u′∣∣2 + (ω2 − V ) |u|2
]

+ f ′Re(u′u) − 1

2
f ′′ |u|2 .

(5.4.1)

We shall construct several combinations of these currents with appropriate multiplier
functions y, h, f such that the derivatives

(
J y
1 [u]

)′ = y′
[∣∣u′∣∣2 + (ω2 − V ) |u|2

]
− yV ′ |u|2 + 2yRe(u′H),

(
J h
2 [u]

)′ = h
[∣
∣u′∣∣2 + (V − ω2) |u|2

]
− 1

2
h′′ |u|2 + hRe(uH),

(
J f
3 [u]

)′ = 2 f ′ ∣∣u′∣∣2 − f V ′ |u|2 − 1

2
f ′′′ |u|2 + 2 f Re(u′H) + f ′Re(uH).

(5.4.2)
of the combined currents control

∫

r

[
|u′|2 + |u|2 +

(
r − (1 + √

2)M
)2 [

� + ω2
]
|u|2

]
dr∗.

The main constructions are depicted below
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Observe that all these currents take the same values for all frequencies at r = rH and
r = rI . The next figure summarizes the main steps in proving a Morawetz estimate
using the above microlocal currents.
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We finally arrive at the following Morawetz estimate: for all axisymmetric solu-
tions ψ of the wave equation on EK we have

∫

{rH≤r≤rI}

[
(∂r∗ψ)2 + ψ2 +

(
r − (1 + √

2)M
)2 [|∇/ψ|2 + (Tψ)2

]]

≤ C
∫

�0

J T
μ [ψ]nμ

�0
.

(5.4.3)

The degeneracy at r = (1 + √
2)M can be removedby commuting the above estimate

with T . It is important to note that the above method decouples completely the
Morawetz estimate from the redshift estimate (or the T − N − P hierarchy) near
the horizon. This was achieved by (1) having frequency-independent currents at the
(red) boundary hypersurfaces r = rH, r = rI , (2) summing the currents over all
frequencies and using Parseval’s identity, (3) using physical space currents which
are controlled purely by the T -flux.

5.5 Energy and Pointwise Decay in Time

The near-horizon T − P − N hierarchy and the r p-weighted hierarchy near infinity
can be derived for axisymmetric solutions on EK as in ERN. These hierarchies in

conjunction with the above Morawetz estimate yield τ−2 decay for the T -flux J
T [ψ]
�τ

and uniform boundedness for the conformal fluxes CNH
τ

[ψ] and CNI
τ
[ψ]. Then, the

Hardy inequalities (4.7.1) give us decay for the L2 norm on the spheres S2(θ,ϕ∗).
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To obtain pointwise bounds we need to commute and apply Sobolev inequalities on
the sphere.

In ERN we simply commuted with angular momentum operators. However, the
onlyvector fieldswecan commutewith areT and� and these are not enough tobound
an elliptic operator on the sphere. This difficulty can be overcome by commutingwith
the 2nd-order symmetry operator Q given by (5.2.1). Summarizing, the symmetry
operators of up to second order on EK are the following

S0 = {id} , S1 = {T,�} S2 = {
T 2,�2, T�, Q

}
.

The following estimate allows us to obtain pointwise boundedness and decay bounds
for ψ:

|ψ|2 ≤ C
∑

|k|≤2

∫

S2

∣∣Skψ
∣∣2,

where
∣
∣Skψ

∣
∣2 = ∑

S∈Sk |Sψ|2. This bound follows from the spherical Sobolev
inequality

|ψ|2 ≤ C
∫

S2

|ψ|2 + |�/ψ|2 .

and the bound on the Laplacian using the Carter symmetry:

|�/ψ|2 ≤ C
[
(Qψ)2 + (T Tψ)2 + (��ψ)2

]
.
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Chapter 6
A Theory of Conservation Laws on Null
Hypersurfaces

In this Chapter we present a theory of conservation laws on null hypersurfaces in
general Lorentzian manifolds. These conservation laws are a generalization of the
conservation laws on extremal event horizons. We also review their relevance to the
characteristic gluing problem and provide necessary and sufficient conditions for
their existence.

6.1 The Geometry of Null Foliations

Let H be a regular null hypersurface of a four-dimensional Lorentzian manifold
(M, g). A foliation S = (

Sv

)
v∈R with sections Sv of H can be determined by a

section S0, a function � ∈ C∞(H) on H and a null normal geodesic vector field
Lgeod satisfying ∇Lgeod Lgeod = 0. We denote

S =
〈
S0, Lgeod ,�

〉
. (6.1.1)

Indeed, if we define the vector field

L = �2 · Lgeod

on H and consider the affine parameter v of L such that

Lv = 1, with v = 0 on S0,

then the level sets Sv of v on H are precisely the leaves of the foliation S.
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We will assume that Sv are diffeomorphic to S
2. The flow of L on H provides

a diffeomorphism �v between the sections Sv and S0. In addition to the induced
metric on Sv , which we will denote by g/ , we can also equip all sections with the
standard metric on the unit sphere g/ S2 such that it is invariant under �v . The volume
form on Sv with respect to g/ S2 will be denoted by dμ

S2
. Given any section Sv , there

is a unique metric ĝ which is conformal to the induced metric g/ such that the volume
form dμ

ĝ
with respect to ĝ and the volume form dμ

S2
with respect to g/ S2 are equal:

dμ
ĝ
= dμ

S2
.

We denote by φ the conformal factor:

g/ = φ2 · ĝ. (6.1.2)

Furthermore, given a foliation S we denote by YS the unique null vector field which
is normal to the sections Sv , conjugate to H and normalized such that

g
(
Lgeod ,Y

S) = −1. (6.1.3)

In view of the theory in Sect. 1.1.4, the vector field YS can be seen as the generator of
an optical function u such thatH = {u = 0}. The optical function u satisfiesYSu = 1
onH. Let’s denote by Cu the level sets of u. We haveH = C0. We further denote by
Cv the conjugate null normal geodesic congruence emanating from the sections Sv

ofH. and define Su,v = Cu ∩ Cv . We denote by L the null normal to Cv normalized
such that Lu = 1. Clearly, L = YS on H. In order to define the conformal factor φ
of the sections Su,v , as above, we need first to equip Su,v with g/ S2 . This is done by
propagating g/ S2 on Sv along Cv via the flow of L .

Finally, if X,Y are tangential to the sections Sv on H then we define the tensors
χ,χ, ζ such that



6.1 The Geometry of Null Foliations 127

�χ(X, Y ) = g(∇X L , Y ), �χ(X, Y ) = g(∇X L, Y ), �ζ(x) = g
(
∇X

(
�−1L

)
, L

)
. (6.1.4)

Note that quantities induced on the sections Sv will be slashed. That is, g/ , /ε,∇/ ,�/
denote the induced metric, volume form, covariant derivative and Laplacian respec-
tively.

6.2 Conservation Laws for the Wave Equation

Consider the linear space VH consisting of all smooth functions on H which are
constant along the null generators of H:

VH =
{
f ∈ C∞(H) : L f = 0

}
. (6.2.1)

LetS = (
Sv

)
v∈R be a foliation ofH and letYS be the vector field andφ the conformal

factor defined above. We define the linear spaceWS to be the subspace of VH such
that: If�S ∈ WS then for all solutionsψ to the wave equation�gψ = 0 the integrals

∫

Sv

YS(
φ · ψ

) · �S dμ
S2

(6.2.2)

are conserved, i.e. independent of v. That is,

WS =
{
�S ∈ C∞(H) : L�S = 0, ∂v

(∫

Sv

YS(
φ · ψ

) · �S dμ
S2

)
= 0

}
⊂ VH.

(6.2.3)

Definition 6.2.1 (Conservation laws onH)We say that a null hypersurfaceH admits
(first order) conservation laws with respect to a foliation S of H if

dimWS ≥ 1. (6.2.4)

If (6.2.4) holds then we will refer to the space WS the kernel and the number
dimWS as the dimension of the conservation laws. As we shall see in Sect. 6.4, the
conservation laws in the sense of Definition6.2.1 are in fact the only type of “first
order” conservation laws that a null hypersurface might admit. Important examples
of hypersurfaces which admit conservation laws are (1) the standard hypersurfaces
in Minkowski spacetime, (2) null infinity with the associated Newman–Penrose con-
stants (see Sect. 1.8.2), (3) ERN and EK. See also Sect. 6.5 for a more general dis-
cussion about conservation laws on extremal black holes.
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6.3 The Characteristic Gluing Problem

The characteristic gluing problem, first introduced in [1], for the wave equation
provides a means to formally show that Definition6.2.1 is the right notion of con-
servation laws on null hypersurfaces. The problem of gluing of characteristic initial
data along a null hypersurface H is the following: Let S = (Sv)v∈R be foliation
and S0, S1 two sections. We define the (reduced) characteristic data on the sections
S0 and S1 as follows:

Data(S0) = {
YSψ |S0 , Lnψ |S0 , n ≥ 0

}
,

Data(S1) = {
YSψ |S1 , Lnψ |S1 , n ≥ 0

}
.

Recall that L is tangential to the null generator of H. Our problem is to smoothly
extend ψ on H between S0 and S1 such that

1. ψ solves the wave equation,
2. the transversal derivative Yψ is continuous on H ∩ {0 ≤ v ≤ 1}.

Clearly, if H admits non-trivial conservation laws with respect to the foliation S in
the sense of Definition6.2.1, then we cannot perform gluing of general data at S0
and S1 since the respective charges at S0 and S1 may not be equal. However, it is
not a priori clear if these conservation laws are the only obstruction to gluing of
characteristic data. The following was shown in [1]:

Conservation laws and gluing of characteristic data: One can perform first order
gluing constructions on H for general characteristic data if and only if there are
no first order conservation laws on H in the sense of Definition6.2.1. If H admits
conservation laws, then we can glue characteristic data if and only if their associated
charges are equal.

This result immediately yields the following

Classification of conservation laws on null hypersurfaces:No conserved (or, more
generally, monotonic in v) quantities involving the 1-jet of solutions to the wave
equation exist onH unless they have the form of the conservation laws given precisely
by Definition6.2.1.
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6.4 Necessary and Sufficient Conditions

The main result of [1] is the derivation of geometric necessary and sufficient con-
ditions for the existence of conservation laws in the sense of Definition6.2.1. Let’s
introduce the following 2nd order operator on H

OSψ =�2 · �/ψ + [∇/�2 + 2�2 · ζ�
] · ∇/ψ

+
[
2div/

(
�2 · ζ�

)
+ L(�trχ) + 1

2
(�trχ)(�trχ)

]
· ψ.

(6.4.1)

and the linear space

US =
{
�S ∈ C∞(H) : L�S = 0, OS

(
1

φ
· �S

)
= 0 on H

}
⊂ VH, (6.4.2)

where φ denotes the conformal factor of the sections of S. The following result was
proved in [1]:

Classification of null hypersurfaces admitting conservation laws: A null hyper-
surface H admits first order conservation laws for the wave equation with respect
to a foliation S in the sense of Definition6.2.1 if and only if US 
= {0}. Specifically,
the kernel of the conservation laws satisfies

WS = US .

Standard elliptic theory implies that H can only admit finitely many linearly inde-
pendent conservation laws, i.e. dimWS < ∞.

Conservation laws and change of foliation: If H admits a conservation law with
respect to the foliation S = 〈

S0, Lgeod ,�
〉
, then it also admits a conservation law

with respect to any other foliation S ′ = 〈
S′
0, L

′
geod ,�

′〉.

Specifically, the kernelsWS ,WS ′
satisfyWS ′ = {

f 2 · �S , �S ∈ WS}
, where f ∈

VH such that L ′
geod = f 2 · Lgeod , and so dimWS ′ = dimWS . See [2].
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6.5 Conservation Laws on Extremal Black Holes

Let’s consider the following geodesic foliation of a general Killing horizon with
Killing normal V and surface gravity κ ≥ 0:

S =
〈
S0, Lgeod

∣
∣
S0

= V |S0 , � = 1
〉
. (6.5.1)

Here S0 is a section for which trχ
∣∣
S0

< 0. Then, for this foliation, the operator OS

takes the form (see [1])

OSψ = �/ψ + div/
(
2ψ · ζ

) +
[
trχ

∣∣
∣
S0

· κ

]
· ψ.

Let � > 0 be the unique (up to rescaling) positive principal eigenfunction of OS

and let λ be its principal (maximum) eigenvalue. Then, we immediately obtain

∫

Sv

(
trχ

∣∣∣
S0

· κ

)
· � dμ

g/
= λ ·

∫

Sv

� dμ
g/

.

The left hand side is manifestly non-positive and forces the maximum eigenvalue
λ to be non-positive. This implies that non-extremal horizons (with κ > 0) do not
admit conservation laws whereas extremal horizons (with κ = 0) admit a unique
conservation law. This generalized conservation law was first discovered by Lucietti
and Reall [3]. It reduces to the conservation laws for ERN and EK discussed through-
out this Brief. Lucietti and Reall went one step further and investigated the impact of
the existence of this conservation law for general extremal black holes with the aim
to derive asymptotic blow up results for higher order derivatives along the extremal
horizon. They found that blow up results can be obtained if a certain function deter-
mined purely by the near-horizon geometry is constant. Lucietti and Reall showed
that this property holds for a large class of near-horizon geometries. It holds for the
near-horizon geometry of extremal Myers–Perry black holes and also for extremal
black hole solutions to theEinstein field equations coupled to arbitrarilymany abelian
vectors and uncharged scalars (see [3] for details and references). In summary, all
known extremal black holes satisfy this property. This suggests that general extremal
black holes exhibit some form of the horizon instability. Understanding this in the
context of the Cauchy problem for the Einstein equations remains an open problem.
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