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Preface

The tenth International Conference on Vibration Problems (ICOVP 2011) in Prague
represents a continuation of a tradition which started at the A. C. College, Jalpaiguri,
India in 1990. We well remember the further fruitful meetings in Jalpaiguri (1993),
then at the University of North Bengal (1996) and at Jadavpur University in West
Bengal (1999). This successful series continued in Moscow (2001), then at the
Technical University of Liberec, Czech Republic (2003) and in Istanbul (2005).
The last two assemblies of experts in dynamics took place at Bengal Engineering
and Science University, Shibpur (2007) and at the Indian Institute of Technology,
Kharagpur (2009). The ICOVP Conferences have a long tradition, and attract a
large number of highly qualified participants. This, together with the top-quality
papers presented and excellent organization, have established them as a high-
level forum where engineers, researchers, university teachers, students and other
professionals can present recent developments and discuss the scientific, technical
and experimental results and ideas in various areas of rational, experimental and
applied Dynamics.

Dynamics as a scientific discipline draws inspiration from a large variety of
engineering areas, such as Mechanical and Civil Engineering, Aero and Space
Technology, Wind and Earthquake Engineering and Transport and Building Ma-
chinery. Moreover, the basic research in Dynamics nowadays includes many fields
of theoretical physics and various interdisciplinary subject areas. It is encouraging
that the ICOVP Conferences have matured into a reference platform reflecting the
state of the art of Dynamics in the broadest sense of the term. Indeed, the most recent
ICOVP Conference, held in Prague this year, covered all branches of Dynamics and
offered the most up-to-date results of development to participants from 40 countries.

The ICOVP 2011 concentrated numerous papers of a very high scientific and
technical level. It has shown that the ICOVP Conferences have become increasingly
attractive for participants from the global scientific community. The International
Scientific Committee has had an extremely difficult task choosing the best contribu-
tions from the 280 submitted abstracts for oral presentation and for publication in the
Proceedings. Almost 200 papers were tentatively selected and their full text version
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viii Preface

submitted. Afterwards, two or more reviewers carefully assessed these individual
papers and decided on their final acceptance and inclusion in the Conference
Proceedings.

As the second step, the International Scientific Committee was approached to
select the best papers. After very strict evaluation, the respective authors were
invited to prepare revised versions for submission to the special volume Springer
Proceedings in Physics – Vibration Problems ICOVP 2011. Following the next
review process, 110 manuscripts were included in the final set of papers and sorted
into nine chapters. We would like to express our deep gratitude to all authors and
reviewers for their enormous effort and patience related to the preparation of this
volume.

Looking through the volume, highly promising trends are noticeable. Clearly
many challenging topics are being investigated using extremely sophisticated com-
binations of analytic and numeric procedures. Many qualitatively new phenomena
have been identified theoretically and verified experimentally. Non-conventional
methods based on various aspects of topology are being developed and applied
directly in relevant exploration. Research in Dynamics is adopting more and more
discrete models inspired by principles of digital technology itself. Uncertainty
modeling is making good progress, offering various new approaches in the realm
of Dynamics and Vibration Control. The formulation of problems of Stochastic
Dynamics reflects better natural conditions and provides realistic results which
have broad applications. Progress is being made in optimal random filtering, which
provides realistic models of various physical phenomena on the basis of large data
processing or data mining. Non-linear problems of every type related to flow-
induced vibrations are widely discussed, providing applicable results not only in
basic but also in applied research and industry.

Taking these aspects into account, we are firmly convinced that this volume,
published by the highly reputed publishing house Springer ScienceCBusiness Me-
dia, represents a well-balanced overview of theoretical, numerical and experimental
work on fundamental and applied studies performed in Dynamics and related
branches during recent years. It is a great privilege to show recognition to all
the authors for their invaluable contributions and their willingness to share their
knowledge with other readers. Their contribution has become the backbone of the
scientific success of the Conference and ensures the high quality of this special
volume.

Concluding the introductory remarks, our warmest gratitude should be expressed
primarily to the founders of the excellent ICOVP tradition, namely Professor
M. M. Banerjee and Professor P. Biswas. At the same time, we cannot complete
the preface to this special volume without expressing our sincerest thanks to a
number of individuals whose invaluable help made possible the organization of the
ICOVP 2011 Conference in Prague. These are the members of the International
Scientific Committee and the highly efficient Local Organizing Committee under
the chairmanship of Professor B. Marvalová. Her far-sighted management and
enormous effort were essential for the success of the Conference. Our genuine
thanks should be addressed to our other colleagues at the Technical University of
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Liberec, who supported us during the entire period of the Conference and during
the preparation of this volume.

The edition of the Proceedings was supported by the International Federation for
the Promotion of Mechanism and Machine Science IFToMM.

Jiřı́ Náprstek
On behalf of the editors
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José Luis Zapico-Valle, M. Garcı́a-Diéguez,
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J. Tůma, J. Šimek, J. Škuta, J. Los, and J. Zavadil



xvi Contents

Vibrations Reduction of Industrial Sewing Machines . . . . . . . . . . . . . . . . . . . . . . . 433
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Jaroslav Zapoměl and Petr Ferfecki

Rotor-Model-Based Identification of Foundations in Rotating
Machinery Using Modal Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 529
N. Feng and E. Hahn



Contents xvii

Magnetic Actuator Modelling for Rotating Machinery Analysis . . . . . . . . . . . 537
Ricardo Ugliara Mendes, Hélio Fiori de Castro,
Kátia Lucchesi Cavalca, and Luiz Otávio Saraiva Ferreira

Quenching Damping-Induced Instability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 543
Ferdinand Verhulst

An Equivalent Blisk Model Considering the Influence of the
Air Flow on Blade Vibrations of a Mistuned Compressor Blisk . . . . . . . . . . . . 549
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xx Contents

Optimal Design of a Torsional Tuned Damper for Marine
Diesel Engines Using Fluid-Structure Interaction Analysis . . . . . . . . . . . . . . . . . 815
Young-Cheol Kim, D.H. Lee, T.Y. Chung, D.Y. Ham,
and Y.B. Kim

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 823



Part I
Keynote Lectures



Bifurcation and Chaos of Multi-body Dynamical
Systems

Jan Awrejcewicz and G. Kudra

Abstract Triple physical pendulum in a form of three connected rods with the
first link subjected to an action of constant torque and with a horizontal barrier
is used as an example of plane mechanical system with rigid limiters of motion.
Special transition rules for solutions of linearized equations at impact instances
(Aizerman-Gantmakher theory) are used in order to apply classical tools for
Lyapunov exponents computation as well as for stability analysis of periodic orbits
(used in seeking for stable and unstable periodic orbits and bifurcations of periodic
solutions analysis). Few examples of extremely rich bifurcational dynamics of triple
pendulum are presented.

Keywords Pendulum • Impact • Bifurcation • Periodic orbit • Quasi-periodic
orbit • Chaotic attractor • Lyapunov exponents • Non-smooth dynamics

1 Introduction

A single or a multiple pendulum (in their different forms) are very often studied
theoretically or experimentally [1–3]. A single pendulum plays an important role in
mechanics since many interesting non-linear dynamical behavior can be illustrated
and analyzed using this simple system. But a single degree-of-freedom models are
only the first step to understand a real behavior of either natural or engineering
systems. Many physical objects are modeled by a few degrees of freedom and an
attempt to investigate coupled pendulums is recently observed.
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On the other hand, it is well known that impact and friction accompanies almost
all real behavior, leading to non-smooth dynamics. The example of modeling of the
piston – connecting rod – crankshaft system by the use of triple physical pendulum
with rigid limiters of motion is presented in the work [4].

The non-smooth dynamical systems can be modeled as the so-called piece-wise
smooth systems (PWS) and they are also interesting from a point of view of their
bifurcational behavior, since they can exhibit certain non-classical phenomena of
non-linear dynamics [5, 6]. One of the important tools of non-linear dynamics is the
linear stability theory, useful among others in the analysis of bifurcations of periodic
solutions and in the identification of attractors through Lyapunov exponents. These
tools are well-developed and known in the case of smooth systems. However the
same tools with small modifications [6, 7] can be also used for the PWS systems.
The modifications consist in the suitable transformation of the perturbation in
the point of discontinuity, accordingly to the so called Aizerman-Gantmakher
theory [8, 9].

In the present paper some examples of identification of attractors in the system
of triple physical pendulum with the horizontal barrier are given. The system used
is a special case of the more general model of triple pendulum investigated in earlier
works of the authors.

2 Event Driven Model of Mechanical System with Limiters
of Motion

Let us assume firstly more general case of mechanical system of n-degrees-
of-freedom with vector of generalized coordinates q.t/ D Œq1.t/; : : : ; qn.t/�

T ,
symmetric n�nmass matrix M .q; t / and n�1 force vector f .q; Pq; t/. The system is
subjected to m rigid unilateral constraints h .q; t / D Œh1 .q; t / ; : : : ; hm .q; t /�

T � 0.
We define a set I D f1; 2; : : : ; mg of indices of all defined unilateral constraints
hi and the set Iact D fi1; i2; : : : ; isg of indices of s constraints permanently active
on a certain time interval Œti ; tiC1�. Physically it means that the system slides along
obstacles with indices from the set Iact .

In the case of frictionless constraints, the system on time interval Œti ; tiC1� is
governed by the following set of differential and algebraic equations (DAEs)

M .q; t / Rq D fq .q; Pq; t/C
�
@hact .q; t /
@qT

�T
œact ;

0 D hact .q; t/; 0 D Phact .q; t / D @hact .q; t/
@qT

Pq C @hact .q; t /
@t

(1)

with the following event functions determining the time instances tiC1

œact D Œœi1 ; œi2 ; : : : ; œis �
T > 0;
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:actIimpact execution

iiii t,,: qqgq

i:=i+1

integration on [ ti,ti+1]
with event location at ti+1

with initial time step

0,1 ii th q

0, ''1 ii th q

01 it

0, ''1 ii th q

impact execution

iiii t,,: )0( qqgq

1:actI

initial cond.

0tq 0tq actI

one stepof integrationon [ ti,ti+

ii qq ,

'' , ii qq

Fig. 1 Scheme for the numerical simulation of the system

hinact .q; t / D �
hj1 .q; t/ ; hj2 .q; t/ ; : : : ; hjm�s .q; t/

�T
> 0; (2)

where hact .q; t/ D Œhi1 .q; t / ; hi2 .q; t/ ; : : : ; his .q; t /�
T is the vector of s con-

straints permanently active on Œti ; tiC1�, œact is the vector of non-negative Lagrange
multipliers and hinact is the vector ofm�s inactive constraints, i.e. constraints which
indices belong to the set InIact D fj1; j2; : : : ; jm�sg. The event tiC1 is determined
by the use detection of zero-crossing of any component of œact or hinact. At time
instance tiC1 the suitable changes in initial conditions (due to the impact) and in
the set Iact take place and the next piece of solution ŒtiC1; tiC2� is governed by the
new DAEs. In this way the system has been modeled as a piece-wise smooth (PWS)
DAEs.
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The algorithm for the execution of changes in the system state and changes in
the set Iact at each event time tj , used in our numerical simulation, is presented
in Fig. 1. Because of the limited space, we restrict this scheme to the simplified
case, where only one constraint h1 .q; t / is defined (I D f 1g). In the Fig. 1 the
following notations are used: qj D q

�
tj
�
, Pqj D Pq �tj �, tj 0 D tj C �t0 and the

function g .q; Pq; t / represents the impact law with the restitution coefficient e while
the function g.0/ .q; Pq; t/ represents impact with the restitution coefficient equal to
zero independently from the system parameters.

The applied impact model is the generalized Newton’s (restitution coefficient)
impact law based on the reference [5], and has the following final form for the
impact with the obstacle defined by hi .q; t/ D 0:

g .q; Pq; t/ D

2
6664

�rqhi .q; t /
�T

2
4 tT1
: : :

tTn�1

3
5 � M .q; t /

3
7775

�1

�

0
BBB@

2
6664

�e �rqhi .q; t/
�T

2
4 tT1
: : :

tTn�1

3
5 � M .q; t /

3
7775 Pq

C

8̂̂
ˆ̂<
ˆ̂̂̂
:

� .e C 1/
@hi .q; t /
@t

0

: : :

0

9>>>>=
>>>>;

1
CCCCA ; (3)

where tj are the base vectors of the subspace of the configuration space q, tangent
to the impact surface hi .q; t / at the impact point. For more details on the impact
model see works [3, 4, 7].

3 Linear Stability Model

For the dynamical system in the form

Px D f .x; t/; (4)

where x D ŒqT ; PqT �T , the small perturbation of the solution is governed by the
following linear equations

• Px D @f .x; t/
@xT

•x.t/; (5)

where we have assumed •t D 0 since the perturbation in time is independent from
the perturbation •x (•Pt D 0). The Eq. 5 are useful among others in the stability
and bifurcation analysis of periodic solutions, as well as in the Lyapunov exponents
calculation.
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In the case of non-smooth dynamical system we cannot apply directly the linear
stability theory since the Jacobian in (5) is not determined. But in the case of
the PWS system the function f .x/ D fi .x/ is sufficiently smooth on each time
interval Œti ; tiC1� between two successive discontinuity points and the linear stability
can applied using variational Eq. 5 on intervals Œti ; tiC1�, and applying at each
discontinuity point ti special transformation rules accordingly to the Aizerman-
Gantmakher theory (for •t D 0):

•xC
i D@gi

�
x�
i ; ti

�
@xT

•x�
i C

"
@gi

�
x�
i ; ti

�
@xT

fi
�
x�
i ; ti

�C @gi
�
x�
i ; ti

�
@t

� fiC1
�
xC
i ; ti

�#
•te

(6)
where

•te D �
@eventi

�
x�
i ; ti

�
@xT

•x�
i

@eventi
�
x�
i ; ti

�
@xT

fi
�
x�
i ; ti

�C @eventi
�
x�
i ; ti

�
@t

;

and where x�
i D limt!ti� x.t/, xC

i D lim
t!t

C

i
x.t/, •xC

i D limt!tiC
•x.t/, •x�

i D
limt!ti�•x.t/, gi .x/ is the function representing jump in the system state xC

i D
gi
�
x�
i

�
in the discontinuity point and eventi .x; t/ is the scalar function used for

detection of the discontinuity instance at ti (eventi
�
x�
i ; ti

� D 0).
The linearized differential-algebraic equations of the system (1) are

M .q; t / • Rq D @f .q; Pq; t /
@qT

•q C @f .q; Pq; t /
@ PqT • Pq C @

@qT

 �
@hact .q/
@qT

�T
œact

!
•q

C
�
@hact .q/
@qT

�T
•œact �

�
@M .q; t/
@qT

•q

�
Rq; 0 D @hact .q; t /

@qT
•q

0 D PqT @
2hact .q; t /
@q@qT

•q C @hact .q; t/
@qT

• Pq; (7)

where

Rq D M.q; t/�1
 

f .q; Pq; t/C
�
@hact .q; t /
@qT

�T
œact

!

and where we have also assumed •t D 0.
We have applied Eq. 7 together with the transformation rules (6) in the Lyapunov

exponents calculation for the mechanical system presented in the Sect. 2. Note that
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Eq. 6 with the impact law gi .x; t/ D g.0/
i
.x; t/ with the restitution coefficient

equal to zero applied in the case where the sliding motions starts (see Fig. 1),
gives the perturbation .•q; • Pq/ consistent with the algebraic equations in (7) and
the perturbation vector •xC lies in the (2n-2)-dimensional subspace (in the case of
only one constraint permanently active).

In the well-known algorithm of Lyapunov exponents computation the Gram-
Schmidt reorthonormalization procedure is applied after some time of integration
of variational equations. After use of this procedure to the vector of perturbations
•x fulfilling 2s algebraic equations in (7) (in the case of s constraints permanently
active), we obtain the new set of perturbation vectors, from which 2n-2s satisfy the
algebraic equations and 2s of them do not. Then in our procedure we simply set
that 2s vectors to zero vectors, obtaining the new “degenerated” set of orthonormal
vectors, satisfying algebraic equations.

4 Triple Pendulum Model

Three joined stiff links coupled with viscous damping and moving on the plane are
presented in Fig. 2. The system position is defined by three angles  i (i D 1,2,3),
and each of the first body is under action of constant torque q1. The set of possible

Fig. 2 Mechanical system
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configurations of the system is bounded by the horizontally situated rigid and
frictionless barrier.A vector of generalized coordinates is the vector of three angles
q D § D Œ§1; §2; §3�

T . The mass matrix, force vector and the set of algebraic
equations defining rigid obstacle are as follows

M .q; t / D M .§/ D
2
4 1 �12 cos .§1 � §2/ �13 cos .§1 � §3/
�12 cos .§1 � §2/ “2 �23 cos .§2 � §3/
�13 cos .§1 � §3/ �23 cos .§2 � §3/ “3

3
5;

f .q; Pq; t/ D f
�
§; P§; t� D �N .§/ P§2 � C P§ � p .§/C fe

�
§; P§ ; t� ; (8)

h1 .§/ D ˜ � l1 cos§1; h2 .§/ D ˜ �
2X
iD1

li cos§i ; h3 .§/ D ˜ �
3X
iD1

li cos§i

where

N .§/ D
2
4 0 �12 sin . 1 �  2/ �13 sin . 1 �  3/

��12 sin . 1 �  2/ 0 �23 sin . 2 �  3/
��13 sin . 1 �  3/ ��23 sin . 2 �  3/ 0

3
5

C D
2
4 c1 C c2 �c2 0

�c2 c2 C c3 �c3
0 �c3 c3

3
5 ; p .§/ D

8<
:

sin 1
�2 sin 2
�3 sin 3

9=
; ; fe D

8<
:
q1
0

0

9=
; ;

and where P§2 D � P 21 ; P 22 ; P 23
�T
; where li is non-dimensional length of i-th link, ci

is non-dimensional damping coefficient in the i-th joint while � ij and �i are other
non-dimensional parameters of the system.

The system response is obtained numerically by the use of the Runge-Kutta
integration method of the differential equations between each two successive
discontinuity points (where the activity of the obstacles changes: the impact takes
place or the time interval of sliding begins or ends). These points are detected by
halving integration step until obtaining assumed precision. After the simulation
of the system, the next step was the stability analysis of the solution in the
investigated model, which in fact is piece-wise smooth (PWS) one. The classical
methods and algorithms basing on the linear perturbation equations are used with
the modifications taking into account the perturbations jump in the discontinuity
points [9]. The numerical software for Lyapunov exponents calculation and periodic
orbit stability analysis (seeking for periodic orbits and their bifurcations analysis)
was developed.

For more details on modeling, relations between real and non-dimensional
parameters, numerical algorithms, etc., see works [3, 4, 7].
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Fig. 3 Bifurcational diagrams

Fig. 4 Projections of periodic (a, q1 D 1.063; b, q1 D 1.59), quasi-periodic (c, q1 D 1.63) and
chaotic (d, q1 D 2) attractors

5 Numerical Examples

The examples of extremely rich bifurcational dynamics of the modeled system
is presented for the following non-dimensional parameters: l1 D O1 O2 D 0.05,
l2 D O2 O3 D 0.02, l3 D O3 O4 D 1, �D 1.2 and c1 D c2 D c3 D 0.8. The restitution
coefficient is e D 0.8 and contact between links and obstacles is assumed to be
frictionless. The externally applied torque q1 is used as bifurcational parameter.

In Fig. 3 one can find two bifurcational diagrams where the parameter q1 is
increasing quasi-statically. In Fig. 3a the relative change of the torque is very small
(about 2%) but the richness and number of bifurcational phenomena observed is
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Fig. 5 Projections of Poincaré sections of quasi-periodic (a, q1 D 1.063) and chaotic (b, q1 D 2)
attractors

Table 1 Lyapunov exponents

Figure œ1 œ2 œ3 œ4 œ5 œ6 Attractor

3a 0.00 �0.02 �0.03 �0.24 �0.35 �5.98 Periodic
3b 0.00 �0.02 �0.02 �0.22 �0.47 �8.44 Periodic
3c and 4a 0.00 0.00 �0.01 �0.08 �0.54 �10.28 Quasi-periodic
3d and 4b 0.05 0.00 �0.03 �0.19 �0.52 �10.03 Chaotic

extremely large. Both bifurcational diagrams start just after disappearing of stable
equilibrium position for q1 equal about 1.01. The next Figures exhibit exemplary
periodic, quasiperiodic and chaotic attractors observed on bifurcational diagrams.
Fig. 4 presents trajectory projections while Fig. 5 shows corresponding Poincaré
sections (performed by the use of plane  1 D 0). The verification of a kind of each
the attractor is performed by the use of Lyapunov exponents presented in Table 1.

6 Conclusions

This paper briefly reports the larger project of investigations of the flat triple physical
pendulum with arbitrary situated barriers imposed on the position of the system.
The Aizerman-Gantmakher theory, handling with perturbed solution in points of
discontinuity, is used to extend classical method for computing Lyapunov exponents
for the multi-degree of freedom mechanical system with rigid barriers imposed on
its position. Some examples of identification of attractors in the system of triple
pendulum with horizontal barrier are presented, including periodic, quasi-periodic
and chaotic attractors. We have focused on the calculation of Lyapunov exponents,
however the same methods can be used in the stability and bifurcation analysis
of periodic solutions. Let us also note, that the mentioned above methods are
suitable for analysis of classical bifurcations occurring in non-smooth systems. For
non-classical bifurcations (like grazing bifurcation as an example) the developed
methods may not be sufficient.
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Stochastic Model Updating: Perturbation,
Interval Method and Bayesian Inference

John E. Mottershead, H. Haddad Khodaparast, R.P. Dwight,
and K.J. Badcock

Abstract Stochastic model updating methods are described, including probabilistic
perturbation methods, interval techniques and Bayesian inference. Particular atten-
tion is paid to aleatory uncertainty such as variability in nominally identical test
structures due to manufacturing tolerances. In such cases the updating parameter
distributions are meaningful physically either as PDFs or as intervals. Stochastic
model updating is an inverse problem, generally requiring multiple forward so-
lutions. The use of meta models (response-surface mapping techniques and the
Kriging predictor) as surrogates for the full FE model are explained. The procedure
is illustrated in each case by experimental examples, including model updating of a
structure with uncertain locations of two internal beams.

Keywords Model updating • Aleatory and epistemic uncertainty • Perturbation
method • Interval model updating • Kriging predictor • Bayesian inference

1 Introduction

Deterministic model updating of finite element models [1, 2] has become a mature
technology. It is a classical inverse problem in the sense that a measurable output
is used to correct a set of analytical parameters that are themselves inaccessible to
measurement. As with most inverse problems the resulting system of equations are
ill-posed and require regulatisation, discussed in full Ahmadian et al. [3].
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Variability in performance has become one of the major challenges facing
researchers and engineering scientists concerned with the robust reliability of
engineering products, such as aeroplanes, helicopters and cars. This has resulted in
the emergence of powerful probabilistic and non-probabilistic (interval, fuzzy etc.)
methods combined with modern computer systems and codes. Research has mostly
concentrated on the forward propagation of parameter uncertainty to determine
output distributions of measurable quantities, such as natural frequencies, mode
shapes and damping values [4–6]. An aspect of uncertainty of particular interest
is the inherent variability that arises from the effect of accumulated manufacturing
tolerances or from wear so that nominally identical engineering systems behave
differently. This type of uncertainty is said to be irreducible, or aleatory, whereas
epistemic uncertainty is due to lack of knowledge and is reducible by the processing
of information or data.

The purpose of the present article is to summarise very recent results [7–9] on
stochastic model updating. In this type of problem variability on a measurement is
used to evaluate uncertainty (pdfs, intervals, fuzzy membership functions etc.) on in-
accessible parameters. There are a variety of approaches, including the probabilistic,
interval and Bayesian methods described in this article. The conventional approach
requires multiple forward solutions by Monte-Carlo simulation; a process that
becomes prohibitively expensive when the analysis calls for large-scale solutions by
finite element code. The perturbation method often provides a low-cost solution to
many engineering problems when the uncertainty is bounded within an acceptably
small and well-understood region. The interval and Bayesian methods are not
restricted to small uncertainty as is the perturbation method. There are numerous
examples in engineering of uncertainty defined only by estimates of extreme values;
the interval model updating method is entirely appropriate in such cases. Bayesian
inference is the most sophisticated of the three methods considered and is capable
of providing an estimate not only of the bounds of uncertainty but also of its
distribution.

2 Model Updating by Perturbation

The stochastic model updating problem may be cast as,

N™jC1 C �™jC1 D N™j C �™j C � NTj C �Tj
� �Nzm C �zm � Nzj � �zj

�
(1)

where Nzj C �zj 2 <n�1 is the vector of estimated outputs (e.g. eigenvalues and
eigenvectors), NzmC�zm 2 <n�1 is the vector of measured data, N™j C�™j 2 <m�1

is the vector of system parameters and NTj C �Tj I �Tj D Pn
kD1

@ NTj
@zmk

�zmk is
a transformation matrix. Each term in (1) consists of a mean part and a random-
variable part (denoted by the overbar and the � respectively).
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Application of the perturbation method [7], by separating the zeroth order and
first order terms from Eq. 1, leads to,

O.�0/ W N™jC1 D N™j C NTj
�Nzm � Nzj

�
(2)

O.�1/ W

8̂<
:̂

cov
�
�™jC1;�™jC1

� D cov
�
�™j ;�™j

�
�cov

�
�™j ;�zj

� NTTj C NTj cov .�zm;�zm/ NTTj
� NTj cov

�
�zj ;�™j

�C NTj cov
�
�zj ;�zj

� NTTj
(3)

where the measurements and parameters are assumed to be uncorrelated. This
assumption is strictly not justifiable though in practice the difference obtained when
the correlation is included has been found to be negligible. The computational
advantage is considerable since Eqs. 2 and 3 require only the first order sensitivities
(gradients) of the outputs with respect to the parameters, whereas the second-order
sensitivities (Hessians) are needed when the correlation is included.

The following terms in Eq. 3 may be expressed as,

cov
�
�zj ;�zj

� D NScov
�
�™j ;�™j

� NST (4)
cov

�
�™j ;�zj

� D cov
�
�™j ;�™j

� NST (5)
cov

�
�zj ;�™j

� D NScov
�
�™j ;�™j

�
(6)

when the uncertainties are small and parameter distribution is Gaussian ( NS denotes
the matrix of mean sensitivities). If that is not the case, then forward propagation
using the asymptotic integral is recommended.

3 Interval Model Updating

Interval model updating [8] is concerned with a mapping from the parameter space
to the space of the outputs. The vertices of the parameter hypercube map onto
vertices of the output space in a limited number of special cases, such as when
the parameters are mass of stiffness sub-structure coefficients, typically mj ; kj
where, M D M0 CPp

jD1 mjMj , K D K0 CPp
jD1 mjKj and the output consists

only of the system natural frequencies. In that case interval model updating is
straightforward and may be achieved by deterministic model updating from the
output-space vertices.

In most practical applications vertex-to-vertex mapping does not occur and it is
then necessary to take a large number of output samples for mapping in the reverse
direction to define the vertices of the parameter hypercube. This type of inverse
problem is generally solved by many forward solutions for each output data sample.
Fortunately the mapping may be achieved by the use of a low-cost meta-model (or
emulator), which avoids the multiple running of large-scale finite element codes.
The Kriging predictor is one such meta-model. It is trained using deterministic finite
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element results: the rth ‘true’ data sample, z.r/ 2 <n�1, is determined from the rth

set of parameters, ™.r/ 2 <p�1, in a finite element run. The mean Kriging model for
one output term may then be written, for any set of parameters ™, as

Ozi D ˇi C bTi ™ C 1

2
™T Bi™ C "i .™/ (7)

where the terms ˇi bi and Bi consist entirely of regression coefficients fitted to the
FE results. Any error, "i .™/, in (7) is a random function of the parameters since any
lack of fit is due only to an incomplete set of regression terms. Consequently the
errors at different data samples are correlated. The random function "i .™/ has zero
mean so that the training points are predicted exactly. Its covariance takes the form,

"i .™/ D cov
�
"i

�
™.r/

	
; "i .™/

	
D �2i

pY
jD1

Cji

�
™
.r/
j ; ™j

	
(8)

when the parameters are uncorrelated, �2i is the variance of the ith output and

Cji.™
.r/
j ; ™j / denotes the correlation of the jth parameter. Practical application

requires the mean Kriging predictor, which may be shown to be,

Ozi D ˇi C bTi ™ C 1

2
™T Bi™ C �T

i ri .™/ (9)

where ri .™/ is a vector with terms
Qp
jD1 Cj i.™

.r/
j ; ™j / and the terms of �i are

weighted functions of the differences zi � .ˇi C bTi ™.r/C 1
2
™.r/TBi™.r//; r D 1W ns .

The interval model updating method is explained in Fig. 1. Firstly, deterministic
model updating is carried out using a single data point close to the mean measure-
ment. This results in a point in the parameter space. An initial hypercube is then
constructed around this point and a Kriging meta-model is created using parameters
selected from the hypercube. Deterministic model updating at all measured outputs
is carried out using the meta-model. If all the sets of updating parameters are located
within the initial hypercube, then the bounds of the parameters are defined on
the hypercube and interval model updating is complete. If some of the updating
parameters lie outside the initial hypercube then the Kriging model is possibly
inaccurate for those data. The parameter hypercube must be revised and a new
Kriging model created. The process of deterministic model updating is repeated
with adjustment to the parameter hypercube as necessary until all parameters are
within the last-created hypercube.

A very significant advantage of the Kriging approach is that it provides a mapping
from any system of parameters to any form of output. The parameters chosen can
be very general, including parameters not readily available for conventional model
updating, as in the second experimental example in Sect.5.
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Fig. 1 Interval model updatingprocess (Reprinted from [8]. With permission from Elsevier)

4 Bayesian Inference

As a formal theorem, Bayes’ rule (named after the Reverend Thomas Bayes, 1702–
1761) is valid in terms of probabilities or probability densities. Its proof is given
most readily in terms of the former. From the definition of joint probability,

P .AjB/ P.B/ D P .A;B/ (10)

and by symmetry,

P .BjA/ P.A/ D P .A;B/ (11)

so that,

P .AjB/ D P .BjA/ P.A/

P.B/
(12)

It is common to think of Bayes’ rule in terms of updating a hypothesis A in
the light of new data B. Specifically, the posterior probability is calculated by
multiplying the prior probability by the likelihood that B will occur given A. The
denominator is a normalising constant computed as,

P.B/ D
X
i

P .B;Ai / D
X
i

P .BjAi/P .Ai / (13)

where i is the index on hypotheses considered. The summation is an approximation
to an integral over an unbounded domain, generally a very expensive computation
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usually carried out by Markov-Chain Monte-Carlo (MCMC) simulation. Sampling
is performed efficiently by techniques based on the Metropolis–Hastings algorithm
or the Gibbs sampler, which concentrate on sampling those regions of the model
space with significant probability.

In a simple model updating experiment, B might be a collection of natural
frequencies and A a set of spring stiffnesses drawn from a distribution. Subscript i
denotes the sample number, so that Ai is the ith set of stiffnesses. P(B) is determined
entirely from the FE model. The likelihood function P(BjA) ensures that the estimate
is determined so that the FE natural frequencies converge upon their measured
counterparts.

MCMC simulation is a stochastic process such that f .™kC1j™k; : : : ; ™1/ D
f .™kC1j™k/. The parameter distribution, ™kC1, at the k C 1th iteration, given all
the preceding distributions, depends only on ™kand f .™kC1j™k/ is independent of
k. It can be shown that under certain conditions the distribution ™k tends to an
equilibrium independent of the initial estimate ™0.

5 Experimental Studies

Two experimental studies are described. In the first study a distribution of plate
thicknesses (mean and standard deviation) is determined from measured variation
in natural frequencies by the perturbation approach. In the second study a frame
structure with two randomly located internal beams is considered. The distributions
of beam locations are determined by interval model updating and also by Bayesian
inference.

5.1 Plate Thickness Distribution by Perturbation

Ten aluminium plates were prepared so that a distribution of thicknesses, close to
Gaussian, was obtained by machining: mean value 3.975 mm and standard deviation
0.163 mm. All ten plates had the same overall dimensions, length 0.4 m and width
0.1 m. A hammer test was carried out to determine the natural frequencies of the
plates using four uniaxial fixed accelerometers and free-free boundary conditions.
Variability was found in the thicknesses of the individual plates when measured with
a micrometer, and the plates were parameterised in four 0.1 � 0.1 m2 square regions

so that ™ D �
t1 t2 t3 t4

�T
. For each of the four parameters the initial means and

standard deviations were assumed to be 4 mm and 0.8 mm respectively. The first six
measured natural frequencies were used in the analysis and the updated parameter
standard deviations, determined after 50 iterations of Eq. 3 are given in Table 1. It is
seen that the standard deviations are significantly improved by updating – the initial,
values of the means were close to the measured mean thicknesses.
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Table 1 Updated standard
deviations of the aluminium
plates

Measured SD Initial SD Updated SD

SD(t1) mm 0.159 0.8 0.129
SD(t2) mm 0.161 0.8 0.204
SD(t3) mm 0.164 0.8 0.166
SD(t4) mm 0.167 0.8 0.206

Fig. 2 Structure with internal beams: (a) physical structure; (b) FE model (c) beam locations
(Reprinted from [8]. With permission from Elsevier)

5.2 Frame Structure with Randomly Located Internal Beams

The frame structure shown in Fig. 2 has two internal beams parameterised by
™ D .™1; ™2/

T and independently located on the interval .0; 4/ ˝ .0; 4/. In the
experiment the beams were each fixed at one of the three locations ™ D .1; 2; 3/

giving nine different combinations of beam locations.
The Kriging model was obtained using the first six natural frequencies from the

FE model, sampled by central composite design (CCD), a Design of Experiments
technique with the central point as the median value. In addition to the nine physi-
cally sampled parameter locations, a further 16 numerical samples were included at
™ D .0:5; 1:5; 2:5; 3:5/- details can be found in [8, 9]. Interval model updating [8]
was carried out by completing 9 deterministic model updates for each of the nine
beam configurations and the results are summarised in Table 2. An example of how
the output space converges upon the measurements is shown in Fig. 3.

A two-level approach to uncertainty modelling of the beam locations was adopted
by the Bayesian method [9]. We begin with the distribution of ™ and choose
independent uniform distributions for each parameter, which corresponds closely
to the interval representation of uncertainty described above,

™1W U
�
ˆ�
1 ; ˆ

C
1

�
(14)



20 J.E. Mottershead et al.

Table 2 Updated parameters- interval method

True parameters Initial parameters Updated parameters

™1 ™2 ™1 ™2 ™1 ™2

1.0 1.0 1.6 1.6 1.04 1.02
1.0 2.0 1.6 2.4 1.0 2.15
1.0 3.0 1.6 2.4 1.0 3.08
2.0 1.0 1.6 1.6 2.04 0.90
2.0 2.0 2.4 2.4 2.13 2.0
2.0 3.0 2.4 2.4 1.95 3.09
3.0 1.0 2.4 1.6 2.98 0.89
3.0 2.0 2.4 1.6 2.99 1.83
3.0 3.0 2.4 2.4 2.93 2.98
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Fig. 3 Example of output bounds – interval method (Reprinted from [8]. With permission from
Elsevier)

™2W U
�
ˆ�
2 ; ˆ

C
2

�
(15)

where the hyperparameters ˆ D �
ˆ�
1 ; ˆ

C
1 ; ˆ

�
2 ; ˆ

C
2

�
define the lower and upper

bounds of the distributions. The hyperparameters ˆ represent epistemic uncertainty
whereas the aleatory uncertainty, which represents the real variability with the
population, is represented by ‚ D .™1; ™2/.

The goal of the analysis can be formulated as identifying values for the
hyperparameters. These are unknown, so under the Bayesian framework prior
distributions are specified that capture any a priori knowledge about the structural
variability,

ˆ�
1;2W T (16)

ˆC
1;2W U

�
ˆ�
1;2; 4

�
(17)
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Fig. 4 Convergence of MCMC iteration (final 20,000 samples) and histogram

where U is a uniform distribution on the interval given by the arguments and T is a
triangular distribution with the pdf,

fT .	/ D
8<
:
0 if 	 < 0 or 	 > 4
4 � 	

8
otherwise

(18)

where 	 is a deterministic sample from ˆ. Finally the observed frequencies are
assumed to follow a multivariate normal distribution with covariance matrix †2

x ,

X D N
�
�x; †2

x

�
(19)

In order to determine the likelihoodf .xj	/- equivalently P .BjA/ in Eq. 12 –
it is necessary to calculate �' and †2

	 , which are defined by integrals evaluated
by probabilistic collocation [?].The posterior f .	jx/ – equivalently P .AjB/in
Eq. 12 – is sampled using Metropolis-Hastings MCMC, with 105 samples
(plus an initial throw-away ‘burn-in’ of 104 samples). This process, carried out
efficiently using the Kriging predictor, results in histograms, as shown in Fig. 4.
The peaks indicate the most likely values of 	. The estimate from the Nelder-
Mead simplex method, with starting points obtained from all the histograms, is
	MAP D .0:9221; 3:0778; 0:8561; 3:1439/. A full description of the method is
given by Dwight et al. [9]. An example showing the output bounds with this
definition of the hyperparameters is shown in Fig. 5. The ellipses denote integer
numbers of standard deviations.
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Fig. 5 Example of output bounds – Bayesian inference

It is seen that the estimate 	MAP is very similar to the results obtained by interval
updating in Table 2. Also the output-space results, in Figs. 3 and 5 are almost
identical. Figure 3 shows some data points just outside the predicted bounds on
the natural frequencies, probably due to other uncertainties not accounted for, such
as joint stiffness which differ as a result of repeated assembly and disassembly of
the structure when the beams were moved to different positions.

6 Conclusions

The theory of stochastic model updating was described briefly and three methods
were demonstrated using measured natural frequencies from (a) a collection of
plates with varying thickness and (b) a frame structure with randomly located
internal beams. In both cases the three methods were shown to result in meaningful
improvements to initial finite element models. Separating different sources of
uncertainty, typically aleatory uncertainty in test samples, epistemic uncertainty
in measurements and in mathematical (FE) models (parametric uncertainty and
uncertainty in constitutive equations), is an open problem. Further research is
needed on the choice of stochastic model updating method for different classes
of problem. The application of these techniques to industrial-scale engineering
problems remains as a significant challenge to researchers and industrial engineers.
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Impact Induced Stress Wave Energy
Flux – Validation of Numerical
and Experimental Approaches

M. Okrouhlı́k

Abstract The presented contribution is devoted to analysis of accuracy and validity
of both experimental and numerical approaches employed when evaluating the
stress wave energy. In the studied case it is shown how much of the impact wave
energy, which is predominantly of axial (longitudinal) nature, is transferred into
torsional (shear) energy mode as well as into other energy modes not seen by
experiment.

Keywords Energy flux • Finite element method • High-speed strain gauge
measurement • Validation of results

1 Introduction

Always, one has to ponder about what is a ‘true’ approach to the modeling of nature.
Thomas Aquinas (1225–1274) claimed that the truth is an agreement of reality
with perception. Today, however, the perceived reality depends on observation tools
being used.

When trying to reveal the ‘true’ behavior of a mechanical system we are using
the experiment.

When trying to predict the ‘true’ behavior of a mechanical system we are accept-
ing a certain theoretical model and then solve it analytically and/or numerically.

Physical laws, however, cannot (in mathematical sense) be proved. It is often
claimed that it is the experiment that is the only and ultimate judgment of the validity
of the theory, model or a hypothesis being used.
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A few contradicting quotations might nicely obscure our reasoning.
Experimental science does not receive truth from superior science. She is the

mistress and the other sciences are her servants. Roger Bacon: On Experimental
Science (1268).

Experiment, indeed, is a necessary adjunct to a physical theory; but it is
an adjunct, not the master. Truesdel, C. and Toupin. R.: The classical and field
theories. In Encyclopedia of Physics, Volume III/1, p. 227, Springer, Berlin, 1960.

Many, otherwise elegant and beautiful theories were rejected because they had
not agreed with experimental observation – I do not know, however, any big theory
having been created as a direct generalization of an experiment. Hawkins, S.:
Black Holes and Baby Universes and other Essays.

Being armed with these inspiring doubts, let’s try to solve a particular stress flow
problem numerically and experimentally.

2 Stress Wave Energy Flux Through Spiral Slot of a Tube
Induced by Axial Impact – Preliminaries

We study the energy flux in a thin walled tube depicted in Fig. 1. The energy flux
is the time rate of energy. If only mechanical energy is considered, then the energy
flux is simply the sum of strain and kinetic energy rates carried by stress waves.
The mechanical energy contained in a body depends on the spatial and temporal
distribution of strains and velocities associated with all the body particles.

The experiment can observe and register the time distributions of surface strains
at a certain location only, so the subsequent energy assessment has to be based on
approximate approaches assuming that the internal strain quantities are the same as
those measured at the surface and, furthermore, are uniformly distributed across the
considered cross sectional area.

The transient finite element (FE) 3D analysis commonly provides for a detailed
description of displacement and velocity fields within the considered body allowing
thus to assess the energy flux from the transient spatial and temporal distributions of

Fig. 1 Tube with a spiral slot – its dimensions in [mm] and three surface locations of interest
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energy in individual parts of the body. Of course, the FE method also has a limited
range of validity. Its detailed study, with the emphasis on FE technology employed
in this particular case, is presented in [1, 2] and [8].

The 1D experimental approach, based on measuring and registering surface
strains supply valid results provided that the stress wave pattern is of 1D or of
axisymmetric nature – i.e. for long thin bodies loaded by relatively long pulses. In
a case where a geometrical irregularity in the path of propagating waves is present,
the level of induced stress wave ‘three-dimensionality’ as well as the consequent
experiment reliability is difficult to predict.

That’s why the stress wave energy results in the whole body obtained by the
transient 3D finite element analysis are compared with those of the experiment based
on evaluation of the recorded history of surface strains, measured at specified surface
locations.

Elastic waves propagating through an axially impacted cylindrical tube carry
mechanical energy. When the incident wave reaches the slot area a part of incoming
energy is reflected, a part of it is transmitted. From that moment both reflected
and transmitted waves are propagating, evoking torsional phenomena. The initial
idea, based on 1D stress wave reasoning, was to study the task experimentally
(by registering time history of surface strains at certain locations in front of
and behind the slot area) and by subsequent data analysis to determine how the
incident longitudinal (IL) energy is decomposed into transmitted longitudinal (TL),
transmitted torsional (TT), reflected longitudinal (RL) and reflected torsional (RT)
energy modes. However the subsequent FE analysis showed that studied stress
waves in the impacted tube with spiral slots exhibit to a certain extent the 3D wave
pattern and beside the energy modes ‘visible’ by experiment, there are additional
energy modes to be taken into account.

In a purely mechanical process, when the heat flux, heat sources and the energy
dissipation are not considered, the principle of conservation energy requires that the
total mechanical power (the rate of change of total mechanical energy) equals the
sum of stress power and the time rate of kinetic energyW D Wint CWkin.

Using standard notation of continuum mechanics textbooks and considering the
Cauchy’s equations of motion and constitutive equations in the form of the Hooke’s
law one can express the internal stress power and the time rate of kinetic energy, see
[3, 4] and [5] as follows

Wint D PEs D d

dt

Z
V

1

2
Cijkl "kl "ij dV ; Wkin D PEk D d

dt

Z
V

1

2

 Pui Pui dV;

Wkin D PEk D d

dt

Z
V

1

2

 Pui Pui dV; W D PEs C PEk D PT

where PEs and PEk are the time rates of strain (potential) and kinetic energies
respectively while PT is the time rate of total mechanical energy in the body.
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Fig. 2 Three parts of a body – notice three parts of the body indicated in Fig. 1

Similarly, the energy flux through a cross sectional area A of a body is

W.t/ D
Z
A

si .t/ vi .t/ dA;

where si .t/ and vi .t/ are components of stress s.t/ and velocity v.t/ vectors
respectively. Furthermore, the stress vector is related to stress components by
si D �ji ni , where ni are components of the normal vector to the surface dA and
�ij are engineering stress components.

The energy flow through a cross sectional area A is W D R
A
ni �ij vj dA.

2.1 Finite Element Analysis

The FE computation was carried out in the Institute of Thermomechanics. In FE
analysis the energy flux computation can be assessed by analyzing the time history
of energy in the whole body and in its parts.

For a body dissected by two cross sections, say A1 and A2, into three parts,
p D 1; 2; 3 – as shown in Fig. 2, the total mechanical energy in one of its parts,
consisting of strain Es and kinetic Ek energies, can be expressed by

T .p/ D E.p/
s C E

.p/

k D 1

2

�
q.p/

�T
K.p/q.p/ C 1

2

� Pq.p/�T
M.p/ Pq.p/; p D 1; 2; 3; : : :

where K;M are global stiffness and mass matrices and q; Pq are global displace-
ments and velocities respectively. For more details see [1, 2] and [6].
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Assuming that the input energy enters the body in part 1 only, then the energy
flow through a cross sectional area A1 can be expressed by the time rates of energies
in corresponding parts of the body as follows

W .A1/ D PT .2/ C PT .3/ D PT � PT .1/:

Similarly, for the energy flow through the cross section A2 we get

W .A2/ D PT .3/ D PT � PT .1/ � PT .2/:

2.2 Experimental Analysis

Experiment was conceived and carried out at Uppsala University, Sweden. The
experimental data were kindly provided by Prof. B. Lundberg and his team.
In experimental analysis it is convenient to evaluate the amount of energy in the
body as the cumulative energy flux through a cross sectional area, observed within
a specified time interval �t D t2 � t1. It is assumed that the energy enters the
considered part of the body through the mentioned cross sectional area only.

So, within the specified time interval, the integral of the energy flux through
the cross-sectional area A2, i.e. W .A2/, can be expressed as the mechanical energy
in part 3 (see Fig. 1) at two distinct time instants, say t1 and t2 respectively, asR t2
t1
W .A2/.t/ dt D R t2

t1
PT .3/.t/ dt D T .3/.t2/� T .3/.t1/.

In the experiment the evaluation of mechanical energy is based on 1D stress wave
reasoning, assuming that the longitudinal and torsional waves are independently
propagating (with velocities c0 D p

E=
 and cT D p
G=
 respectively) through

the circular tube with inner and outer radii r1 and r2 respectively. The material
properties are defined by Young modulus E , Poisson ratio � and density 
.

Under these assumptions, see [7], the energies associated with longitudinal
TL and torsional TT waves are obtained as integrals of energy flows through the
cross sectional area within the specified time interval ht1; t2i.
TL D AEc0

R t2
t1
"2L dt , TT D 4GkcT=b

2
R t2
t1
"2T dt , where the constants appearing

in above formulas are AD.r22 � r21 /;, c0 D p
E=
;,G D 1

2
E=.1 C �/;, k D

.r42 � r41 /=32, cT D p
G=
.

To evaluate the amount of ‘longitudinal’ and ‘torsional’ energy modes, using
above formulas, one has to register time distributions of axial and shear strains
measured at a specified location. Using the above formulas we tacitly assume that
the measured surface quantities are attributed to strains across the cross sectional
area and are uniformly distributed there. The value of each energy mode is obtained
as the cumulative energy flux within the specified time interval. The evaluated
energy values are constant – they do not depend on time. To extrapolate the validity
of obtained results would require that outside the considered time interval the energy
flux is of steady-state nature.
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2.3 Energy Modes Associated with Displacement
and Velocity Components

The total mechanical energy can be expressed as the sum of the individual strain
and kinetic energy contributions associated with particular vector components of
displacements and velocities appearing in expressions .Es/ij D 1

2
qT
i Kqj and

.Ek/ij D 1
2

PqT
i K Pqj , where the indices i; j D 1; 2; 3 correspond to directions of axes

of a coordinate system being employed. The body part index ‘.p/’ is intentionally
omitted here. The individual energy contributions are called energy modes in
the text.

The particular energy modes, defined in the Cartesian coordinate system, being
used for FE processing, have to be expressed in the cylindrical coordinate system,
in which the experimental data are available.

Using standard coordinate transformation [3], the Cartesian components of
nodal displacements and velocities at each element node are recalculated into the
cylindrical ones.

The total mechanical energy of a body composed of three parts – written in full
by means of energy modes expressed in a cylindrical coordinate system – is

T .p/ D T
.p/

tt C T .p/rr C T .p/aa C T
.p/

ta C T .p/ra C T
.p/

tr ; p D 1; 2; 3; : : :

Formally, there are two types of energy modes, those formed by quadratic terms,
which are positive definite (i.e. T .p/tt C T

.p/
rr C T

.p/
aa ), and those formed by bilinear

terms (i.e. T .p/ta C T
.p/

ra C T
.p/

tr ) that, however, are not.
The former modes – called quadratic in the text – represent the energy contribu-

tions predominantly associated with tangential (circumferential), radial and axial
wave motions, while the latter – called mixed modes in the text – represent the
rest, i.e. the modes of the tangential-axial, radial-axial and tangential-radial wave
motions.

It should be reminded that in 1D simplification (the ‘thin’ bar theory) of
wave motions we could independently think of (i) axial (longitudinal) energy
mode associated with axial displacements and velocities and of (ii) tangential
(torsional or shear) energy mode associated with angular motions and velocities.
The experiment, based on registering axial and shears strains on the surface, ‘sees’
neither radial nor the mixed modes. Under accepted 1D assumptions the mentioned
axial (longitudinal) and tangential (shear) waves, as well as their modes, propagate
by different velocities and are independent of each other.

In contradistinction to the 1D concept of mutually independent axial (longitu-
dinal) and tangential (shear or torsional’) wave patterns, the energy modes, in a
3D formulation cannot be associated with tangential (torsional), radial and axial
(longitudinal) displacements and velocities only. Always, there are the mixed modes
complementing the energy balance.
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3 Studied Case

The object being studied has the form of a cylindrical tube. In its the middle part
there are four spiral slots going through the wall thickness as depicted in Fig. 3.

The strain gauge rosettes were located at locations 1, 2 and 3. Experimental
setup is fully described in [2]. After the striker hits the tube the time distribution
of axial and shear strains is registered. The registered signals have characteristic
peaks, which should be properly associated with events corresponding to arrivals
of incident, transmitted and reflected waves. Analyzing the experimental strain
distributions in front of (at LOC2) and behind (at LOC3) the slot one can identify
three types of axial strain signals associated with longitudinal energy modes, i.e.
those coming to, reflected from and transmitted through the spiral slot area. In the
text the following identifiers are used (i) IL : : : incident longitudinal, (ii) RL : : :

reflected longitudinal and (iii) TL : : : transmitted longitudinal. For two shear
signals associated with torsional reflected and transmitted modes we use (i) RT : : :

reflected torsional and (ii) TT : : : transmitted torsional. It should be noted, that in
the experiment the energy carried by incident longitudinal (IL) pulse is taken as the
input energy in contradistinction to the FE approach where the input energy equals
to the kinetic energy of the striker just before the impact.

As an example the experimentally registered signal at location LOC2 (shown in
Fig. 4) is attributed to two distinct parts, namely to the incident longitudinal pulse
(IL) and the reflected longitudinal pulse (RL). Comparison with FE strains is shown.
Differences are discussed and explained in [1].

Fig. 3 The spiral slot and its FE representations in detail
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Fig. 4 Surface axial strains at LOC 2 – FE vs. experiment

4 Comparison of Experimental and FE Results
and Conclusions

The FE normalized energy modes in individual parts of the tube are shown in
Fig. 5. Notice the negative components of energy corresponding to bilinear modes.
Physically, these mixed strain modes correspond to the strain work needed hold the
body in its current deformed shape. They largely disappear when the pulse leaves
the slotted area. Not ‘aa’ nor ‘ar’ components are registered by experiment.

The detailed comparison of values of four experimental energy modes (‘RTexp’,
‘TTexp’, ‘RLexp’ and ‘TLexp’ – they correspond to time tmax but for clarity are
depicted as horizontal dashed lines) with those obtained numerically (denoted ‘tt1’,
‘tt3’, ‘aa1’ and ‘aa3’ – they are functions of time) is presented in Fig. 6. For more
details see [6].

The comparison of results showed that beside the tangential and axial energy
modes, seen by the experiment, there are radial and mixed energy modes comple-
menting the energy balance.

The finite element transient analysis allowed explaining the differences between
the experimental and numerical assessments of contributions of individual energy
modes. The differences are due to the fact that the experiment, based on measuring
surface strains and on 1D stress wave reasoning, can not ‘notice’ the radial and
mixed energy modes typical for a 3D wave pattern. Furthermore, measuring the
time distribution of surface strains in front of and behind the spiral slot does not
allow to see the energy residing in remaining parts of the body.
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Of course, the notion of ‘three-dimensionality’ is not a question of geometry
only – it also depends on the frequency spectrum of the input pulse and its relation
to maximum eigenfrequencies of the considered FE model. This subject is fully
treated in [1].
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Nevertheless, the studied case is mainly of 1D nature with experimental energy
modes (i.e. RT, RL, TT and TL) being predominant. The modes non-visible
by experiment are interesting from the theoretical point but due to their small
magnitude they do not compromise the results obtained experimentally.
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and S. Mousavi.
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Nonlinear Dynamics of Pendulums System
for Energy Harvesting

M. Wiercigroch, A. Najdecka, and V. Vaziri

Abstract In this paper dynamics of a parametric pendulums system operating in
rotational regime has been investigated with a view of energy harvesting. The
main idea is based on the conversion of the oscillatory motion of the oscillatory
motion into rotation of pendulums [1]. Numerical, analytical and experimental
studies have been undertaken on a parametric pendulum and a pendulum excited
by a planar motion. They suggest the rotational motion is persisting and occurs
for a large range of frequencies and excitation amplitudes, which are the main
control parameters. These investigations reinforce the viability of this new concept
of the energy conversion. A system of two pendulums has been modelled and
analysed. Specifically, the dynamics of the parametric pendulums systems has been
investigated numerically and experimentally focusing on synchronized rotational
solutions. The target state is a synchronized counter rotation of both pendulums. A
control strategy aiming to initiate and maintain the desired rotational responses, has
been developed and verified numerically and experimentally.

Keywords Parametric pendulum • Coupled pendulums • Synchronization
• Delayed-feedback control • Wave energy extraction

1 Introduction

The concept of using mechanical pendula systems for wave energy extraction has
been given a considerable attention in recent years [1]. A parametric pendulum is
a useful model of the heave excitation at the base of a suitably constrained floating
structure. Most of the work in this area has been conducted in the Centre for Applied
Dynamics Research at the University of Aberdeen.
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J. Náprstek et al. (eds.), Vibration Problems ICOVP 2011: The 10th International
Conference on Vibration Problems, Springer Proceedings in Physics 139,
DOI 10.1007/978-94-007-2069-5 4, © Springer ScienceCBusiness Media B.V. 2011

35

m.wiercigroch@abdn.ac.uk


36 M. Wiercigroch et al.

Xu [2] has carried out a numerical and experimental study of a such system
with energy extraction. Xu and Wiercigroch [3] investigated the existence of the
rotational attractors through the parameter space and Horton et al. [4] proposed
a method for parameter identification of a pendulum experimental pendulum rig
for rotational motion and recorded experimental tumbling chaos. Xu et al. [5]
studied the effect the interactions between the excited pendulum and electro-
dynamic shaker had on pendulum dynamics. In addition, Xu and Wiercigroch [6]
obtained closed form analytical expressions by first order perturbation method for
the rotary solutions, which has been recently expanded to the higher order terms and
extensively studies by Lenci et al. [7]. A classification of the complex responses of
the parametric pendulum by the recurrence plots was proposed by Litak et al. [8].

In this paper the dynamics of a parametric pendulums system operating in rotary
motion is studied with a view of energy harvesting. First we briefly review the
main finding on the global dynamics of the parametric pendulum focusing on
its rotary solution. In section “Pendulums System”, a system of two parametric
pendulum is introduced and equations of motions discussed. The focus lies here on
the synchronized rotational responses. The target state is to achieve a synchronized
counter rotation of both pendulums. Next, the control strategy, with the aim of
initiating and maintaining the desired response, has been developed and verified
numerically and experimentally.

2 Dynamics of Parametric Pendulum

The working principle of the parametric pendulum is illustrated in Fig. 1, where
the pivot point is subjected to harmonic excitation in vertical direction as shown
in Fig. 1. A pendulum can experiences different types of motion, which can be
conveniently represented on the phase plane as depicted Fig. 1. The region of
oscillatory solutions (closed loops denoted by (1)) is bounded by a critical motion
described by the separatrices (2). The response outside this region is denoted by (3)
and corresponds to the rotation, which is of main interest for the energy extraction
purposes. For stable rotations the solution on the phase plane needs to lie sufficiently
far from the separatrix to ensure that the energy dissipation will not cause the
pendulum to go back to the potential well inside the region bounded by separatrices.
Once the pendulum rotates its energy can be extracted directly from the rotating
shaft at the pivot point, which will be the scope of the following studies.

A schematic of the parametric pendulum system is provided in Fig. 1a and the
well known model for the parametrically excited pendulum is given below:

� 00 C �� 0 C �
1C y00� sin� D 0; (1)

where � is the coefficient of linear viscous damping, prime is the differentiation with
respect to the non-dimensionalised time, � D!0t, !0 is the linear natural frequency.

Understanding of the global dynamics is the key in utilizing the potentials of
rotary motion of a parametric pendulum and extensive numerical studies have
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Fig. 1 Working principle of parametrically-excited pendulum. (a) Physical model of a parametric
pendulum and (b) phase portraits showing different responses of the parametric pendulum

Fig. 2 Figure illustrating the parameter space for the main bifurcations of periodic motions for the
parametrically excited pendulum

been undertaken in [9]. Figure 2 provides the parameter space showing the main
bifurcations associated with periodic motions around the primary and secondary
resonances. The main bifurcations associated with the primary resonance for oscil-
lations are as follows: curve D1 denotes a subcritical period doubling bifurcation
to period-2 oscillations, E denotes a fold bifurcation to stable period-2 oscillations,
and F is a co-dimension 2 bifurcation. Similarly for rotations: A1,2 denote fold
bifurcations to period-1 rotations and B denotes a period doubling flip bifurcations
to period-2 rotations. It is not within the scope of this paper to describe a full
description of the bifurcation scenarios throughout the illustrated parameter space,
but it is sufficed to say, the motions, which co-exist at different regions are annotated
for reference purposes. A1,2 and B are the important bifurcations associated with
rotations.
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3 Pendulums System

The first step towards understanding the dynamics of the two pendulums system
includes building physical and mathematical model. The schematic representation
of the system considered and its experimental rig is shown in Fig. 3. It consists of
two pendulums mounted on the commonly excited flexible supporting structure.
In the first stage of the study the system has been treated on the plane. It has
been modelled as a four degrees-of-freedom system, where x and y denote the
displacement of the structure in horizontal and vertical direction, �1 and �2 describe
the angular displacement form the downward zero position. A synchronized state
can be achieved due to coupling effect of the elastic base, capable of transmitting
vibrations between the pendulums. The mass of the pendulums is concentrated
mainly on the bob and therefore treated as a point mass. The damping effect of the
base and on the shaft of the pendulum has been modelled as a viscous damping. The
harmonic excitation on the base has been assumed, giving a good approximation of
the wave’s motion.

The non-dimensional equations of motion for the two rotational degrees of
freedom are given by:

�
00

1 C x
00

cos�1 C
�
1C y

00

	
sin�1 C ���

0

1 � u1 C e1 D 0;

�
00

2 C x
00

cos�2 C
�
1C y

00

	
sin�2 C ���

0

2 � u2 C e2 D 0; (2)

where ui and ei (i D 1,2) represent control and resistive torque terms respectively.
The parametric excitation terms x”, y” included in the above equations are described
by the equation of motion of the flexible supporting structure:

x
00 C �xx

0 C ˛xx C a
�
�

00

1 cos�1 � � 02
1 sin�1 C �

00

2 cos�2 � � 02
2 sin�2

	
D 0;

pycos(ωτ)
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a b

Fig. 3 (colour online) (a) Physical model of the two parametric pendulums system and (b) the
corresponding experimental set-up
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y
00 C �y

�
y

0 C py! sin .!�/
	

C ˛y
�
y � py cos .!�/

�

C a
�
�

00

1 sin�1 C �
02
1 cos�1 C �

00

2 sin�2 C �
02
2 cos�2

	
D 0; (3)

where all of the system parameters are non-dimensional. �x and �y are the damping
coefficients of the base in horizontal and vertical direction respectively, ˛x and ˛y

are the stiffness coefficients, py is the forcing amplitude, ! is the forcing frequency,
� is the time, a is a mass ratio. All of the system parameters and variables have
been rescaled with respect to the natural frequency of the pendulums. The non-
dimensional form of the system equations allows comparison between different
models. The result form the small scale experiment can easily be transferred on
the real size installation. By changing the length of the pendulum and its natural
frequency in this way, the dynamic response of the system can be adjusted to the
different forcing conditions (different wavelengths). The height or frequency of
the sea waves cannot be adjusted. However, once the optimal forcing parameters
range for the non-dimensional system is determined, the system parameters can
be adjusted to preserve the desired dynamical properties for the given sea waves
conditions.

4 Dynamics and Control of Pendulums System

The dynamics of the coupled pendulums system under harmonic excitation has
been studied numerically and experimentally for different levels of forcing. First the
system without any control algorithm has been examined. Secondly the controlling
algorithm for maintaining synchronized rotation has been applied. The experimental
studies have been carried out in the Dynamics Laboratory at the University of
Aberdeen. The harmonic excitation of the system has been provided by the electro-
magnetic shaker. In the first stage of the study excitation acting only in the vertical
direction has been considered as shown Fig. 3. The two pendulums have been fixed
on the shaker as shown in the Fig. 3b and the response of the system has been
observed for different initial conditions and varying frequency and amplitude.

Without control the pendulums can experience several types of dynamic
behaviour. For constant amplitude and frequency of forcing different synchronized
solutions have been found including equilibrium points, oscillations, rotations, and
rotations of one pendulum synchronized in phase with the oscillations of the second
one as shown in Fig. 4. Similar results have been obtained in the experimental
studies as can be seen in Fig. 5.

After investigating several control techniques for parametric pendulum the
delayed- feedback method has proved to be most efficient and robust. In this
method the system can be stabilized by a feedback perturbation proportional to
the difference between the present and a delayed state of the system [10], like
the difference between velocities or angular displacements. During this study it
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Fig. 4 (colour online) Numerical results showing (a) rotational and oscillatory orbit for pendulum
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Fig. 5 Experimentally observed synchronized counter rotation of the pendulums for !D 2,
p D 0.07. (a) Phase plane showing the velocity of the pendulum against its displacement for each
revolution and (b) displacement of the pendulum 2 as a function of pendulum 1 displacement.
A perfect correlation indicates complete synchronization

has been observed that when applying two independent rotation controllers to two
pendulums, their responses would naturally synchronize. Therefore the separate
controlling signals supplied to pendulum one and two are given by:

ui D ksgn
� P�i .t/

	
.�i .t � �/ � �i .t/C 2/ (4)

where k is the proportionality constant, P�i (t), � i (t) and P�i .t � �/ are the current
velocity, current and delayed angular position of the i-th pendulum. The delay time
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(a) displacements with no control, (b) displacements with control, (c) forcing frequency, (d) control
signals

.�/ is equal to the period of the desired periodic orbit, which for the period one
rotations, being the dominant rotational response for the system considered, it can
be determined from the period of the excitation. This can be extracted from the
readings of the accelerometer measuring the oscillations of the pendulum base. If the
pendulum rotates exactly with the period of excitation the angular displacement
will increase 2 for each revolution and at the same time the control variable ui

will go to zero. The experimental and numerical result of applying two separate
control signals, given by Eq. (4) to initiate and maintain rotational motion are shown
in Figs. 6 and 7. Figure 6 depicts the experimental results of applying a control
algorithm to maintain the synchronized rotation, while the excitation frequency
is being varied. The synchronized rotation has been successfully maintained. The
numerical times histories shown in Fig. 7 correlate well with the experimental
results. Specifically, panels 6(b) and 7(a) depicting the controlled rotational angles,
�1 and �2.
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Fig. 7 (colour online) Numerical time histories showing the displacements, resistive torques
corresponding to the energy extraction and controlling terms versus time, while initiating and
maintaining synchronized rotational motion of two pendulums with two identical controllers
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Combination Resonance Characteristics
of a Composite Plate Having Damage Subjected
to in-Plane Pulsating Load

P.K. Datta and Sauvik Biswas

Abstract The current work predicts the occurrence of combination resonance in
parametrically excited, simply supported composite plates with damage throughout
the thickness. The damage is anisotropic in nature and parametrically incorporated
into the composite using the concept of reduction in stiffness. Finite element
is used to obtain the governing differential equation of the plate to which a
modal transformation is applied in order to obtain the Matthew–Hill equation. The
boundaries of instability due to combination resonance is obtained using a second-
order Method of Multiple Scales (MMS) on the Matthew–Hill equation. The present
work explores the effect of damage intensity and damage location on the regions of
dynamic instability due to combination resonance when a narrow pulsating load
having a static and a time-variant sinusoidal component is applied at the edge.
Changes in the onset of instability and width of the instability region is observed
due to increase in damage intensity and variation in the damage location. Further, the
instability regions due to combination resonance effects are comparable to those of
simple parametric regions which are usually observed in the literature. This shows
that combination resonance effects are important to study the dynamic instability
behavior of plate elements.

Keywords Anisotropic damage • Combination resonance • Dynamic instability

1 Introduction

Structural elements are often subjected to in-plane periodic forces during their
operational lifetime. Under certain loading conditions, the structure may experience
instability due to parametric resonance when the excitation frequency of the load
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becomes a function of the natural frequencies of the structure. When the excitation
frequency is related to two or more natural frequencies of the structure, combination
resonance phenomenon is observed. This phenomenon has been studied by many
researchers [1, 2, 7] and its importance in the field of structural dynamics has been
well asserted.

Damages or flaws in structures are often caused by growth of micro-cracks,
accidents, projectile impacts, chemical corrosion, fatigue or due to faulty manufac-
turing process. While specific problems can be solved by ‘hard-wiring’ the damage
into the model [3], a parametric model is more versatile. In situations where the
exact nature of damage is unknown, yet it is necessary to identify the extent of
damage, the response behavior of the structure may be monitored to do the same.
However, it must be noted that the choice of a damage model depends entirely
on the problem itself and parametric modeling of damage will be inadequate for
large, visible discontinuities. Various researchers [4, 6, 8] have modeled damages
for anisotropic materials using different internal variables.

The present work investigates the combination resonance characteristics of an
anisotropically damaged composite plate when subjected to an in-plane pulsating
load.

2 Mathematical Formulation

2.1 Anisotropic Damage

Anisotropic damage can be parametrically incorporated into the formulation by

considering the parameter �i D Ai�A�

i

Ai
, a representation of reduction in effective

area, A�
i [8]. Using this, the relationship between a damaged stress tensor and an

undamaged stress tensor can be obtained as

8̂̂
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The above equation can be abbreviated as f� � g D [� ]f�g, where [� ] is a
transformation matrix and can be used to relate a damaged stress-strain matrix with
an undamaged one, ŒD� ��1 D Œ� �T ŒD��1Œ� �. The damaged stress-strain matrix for
a two-dimensional laminate can be written as

ŒD� � D

2
64

f1E1 f12E2�12 0

f21E1�21 f2E2 0

0 0 2
f1f2
f1Cf2 G

3
75 (2)
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where the factors, f1 D .1��1/2
1��12�21 , f2 D .1��2/2

1��12�21 and f12 D .1��1/.1��2/
1��12�21 are defined

as stiffness reduction factors.
For a damaged region, the stress-strain relation can be written as f��g D ŒD��f–g

This relation can then be transformed into the general coordinate system as used in
general undamaged cases.

2.2 Method of Multiple Scales

When a pulsating, harmonic load, P.t/ D ˛Pcr C ˇPcr cos.˝t/, expressed in
terms of the buckling load, Pcr, is applied to an undamped system and a modal
transformation is performed on the system, the transformed governing differential
equation, can be written as

f R�g C Œ��f�g C 2– cos.˝t/Œ NKG�f�g D 0 (3)

where Œ�� D Œ˚�T ŒŒK� � ˛Pcr ŒKG��Œ˚�, – D ˇ

2
and Œ NKG� D �Pcr Œ˚�T ŒKG�Œ˚�.

[KG] is the geometric stiffness matrix, [˚] is the modal matrix containing the first
M normal modes of vibration under the static component of the load, Ps D˛Pcr . f�g
is the vector containing the orthogonal modal coordinates. [�] is the diagonal matrix
containing the squares of first M frequencies of vibration under the static component
of loading as the diagonal elements. Equation 3 is a form of the Matthew–Hill
equation, whose component form can be written as

R�m C !2�m C 2– cos.˝t/
MX
nD1

NKGmn�n D 0 (4)

where m, n D 1, 2, 3, . . . , M. The term containing " and˝ couples the dynamic load
to the normal modes of the system, due to which a perturbation based method
called Method of Multiple Scales [5] is used to solve the system of equations.
The ‘nearness’ of ˝ to the sum of !m and !n for sum type of combination
resonance can be represented by introducing a small detuning parameter, � , such
that˝ D !m C!n C –� . For a second order expansion, the values of � are obtained
from the roots of a second order polynomial [1, 7] and are given by

˝ D !m C !n ˙ ˇ

2

p
�mn � ˇ2
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where�mn D P2cr NKGmn NKG nm
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and O�i D P2cr
2!i

hP
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NKG ik NKG ki
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i
:

When m D n, the Eq. 5 predicts simple resonance zones, while for m¤n, combi-
nation resonance zones are obtained.
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2.3 Problem Definition

For the present problem a (0/90/90/0) and a (45/ � 45/45/ � 45) simply-supported
square plate having thickness ratio, b=h D 100 is considered under an uniaxial,
partial edge loading of width c=b D 0:2. The static load factor, ˛D 0. 2, while the
dynamic load factor, ˇ, is varied from 0. 0 to 1. 0. The width of the instability region
at ˇD 0. 8 is taken to be a representation of the width of the instability region itself.
The damage parameter representing the direction of fiber, � 1 is parametrically
varied between 0. 1 to 0. 9 while � 2 has been set at 0. 1. The implementation of the
damage itself is done element-wise. A square damage patch spanning 4% of the total
area is considered for all cases whose center is given by the coordinates (a � , b � ).

3 Results and Discussion

Figure 1 validates the current formulation with Udar and Datta [7] and establishes
that under a narrow edge load, regions of dynamic instability due to combination
resonance is comparable to those due to simple resonance.

The change in the intensity of damage can sometimes cause a certain combi-
nation resonance to exist which may not have existed under a different damage
intensity. It can be observed from Fig. 2 that when the damage ratio � 1 /� 2 becomes
greater than three, the instability zones due to combination resonance of !1 C!4

and !3 C!4 becomes significant while that due to combination resonance of
!2 C!4 ceases to exist. Such phenomenon is not observed in the case of symmetric
cross-ply.

Fig. 1 Simple and
combination resonance
instability regions of an
undamaged, edge loaded
angle-ply. c=b D 0:2
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Fig. 2 Variation of (a) onset and (b) width at ˇD 0. 8 of instability region of combination
resonance with damage intensity of an edge loaded angle-ply. c=b D 0:2. Damage patch is located
at the center of the panel
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ratio, �1=�2 D 9

Figure 3a plots the variation of the onset of instability regions (ˇD 0. 0) due
to damage location for a heavily damaged (�1=�2 D 9:0) angle-ply. It can be
observed that for this particular combination resonance, ˝�!1 C!3, the onset is
advanced on the frequency ratio axis when the the damage patch is located midway
near either of the simply supported sides and is delayed when the patch is located
at the center of the plate. An inward shift of the onset indicates that the structure
is more susceptible to instability. The width of the dynamic instability region is
also dependent on the location of the damage patch. Figure 3b shows that the
combination resonance due to ˝�!1 C!3 ceases to exist as the damage location
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is moved midway between the loaded edges .a � =a � 0:5/ However, the instability
width remains almost invariant for all damage locations midway between the two
unloaded edges .b � =b � 0:5/:

4 Conclusion

The characteristics of dynamic instability regions due to combination resonance of
anisotropically damaged composite plates under in-plane harmonic loading can be
summarized as follows:

1. Under a narrow, edge loading, the width of the instability regions of combination
resonance are comparable to those of simple resonance

2. In case of anti-symmetric angle ply, the variation in damage intensity can cause
regions of dynamic instability due to combination resonance to ‘open up’ or
‘close down’

3. The onset and width of instability regions is dependent on damage location.
Anti-symmetric, angle-ply plates are more susceptible to instability due to
combination resonance of first and third natural frequencies when damage is
located midway near either of the simply-supported sides.
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On Nonlinear Vibration Analysis of Shallow
Shells – A New Approach

M.M. Banerjee and J. Mazumdar

Abstract A new method for the analysis of nonlinear, large amplitude vibration
of shallow shells of arbitrary shape is presented. The basic equations are derived
using the concept of iso-amplitude contour lines approach. The coupled system of
governing equations thus obtained, is solved using the Galerkin approach. As an
illustration of the procedure, the case for a shallow dome upon an elliptical base
is discussed. Some comparison is also made with previously obtained results, as
available in the literature. The paper deals with first fundamental mode of vibrations
only. The other mode of vibrations are not interested here as it requires to obtain the
equations of iso-amplitude contour lines.

Keywords Iso-amplitude contour lines • Constant deflection contours • Shallow
Shells • Nonlinear shell vibrations • CDC-Method

1 Introduction

It is well-known that the nonlinear dynamic behavior of thin shallow shell structures
is of much technical importance to designers due to its wide range of applications
in many fields of engineering. Containers, tanks, domes etc. are common examples
of practical importance of such structures.

The problems of nonlinear vibration of shallow shells have attracted the attention
of relatively few investigators in the past. Due to the very complicated nature of the
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basic equations governing the motion of a structure exhibiting large deflection, it has
always been a difficult task for investigators to obtain even an approximate solution.
Mazumdar in 1970 proposed a new approach which appeared to be quite suitable
for bending analysis of elastic plates of arbitrary shapes based on the concept of
iso-deflection contour lines on the bent surface of the plate [1]. This simple but
efficient method is best known as Constant Deflection Contour Method or CDC-
Method. Subsequently, the same method has been extended to the vibration analysis
of plates and shallow shells [2, 3].

The CDC method has so far been restricted to linear analysis until an attempt has
been made recently to extend it to nonlinear analysis of plates [4, 5]. In the present
paper a similar approach as in [5] is undertaken for extension of the study to shallow
shell analysis.

2 Derivation of Basic Equations

Consider an elastic, isotropic shallow shell of uniform thickness h subject to a
continuously distributed normal load q. Let the equation of the middle surface of
the shell referred to a system of orthogonal coordinates xyz, be given by [3]

z D x2

2Rx
C xy

Rxy
C y2

2Ry
(1)

where r D p
x2 C y2 is small compared to the least of the radii of curvature,Rx;Ry

and Rxy (supposed to be constants). If the shell is assumed to be comparatively thin
and the displacements (u, v, w) are predominantly flexural, the strain components
can be written as
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Formulating the Lagrangian with the expressions for strain energy, kinetic energy
and the work done and then applying Hamilton’s principle, a straightforward
application of the variational calculus will yield the following equations of motion

Dr4w D hS.F;w/ � h

�
F; yy

Rx
C F; xx

Ry
� 2

F; xy

Rxy

�
C q � 
 hw; tt (3)
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and

Dr4F D �E
2
hS .w;w/C E

�
w;yy

Rx
C w;xx

Ry
� 2

w;xy

Rxy

�
(4)

where the operator S(w, F) stands for S.w; F / � @2w
@x2

@2F
@y2

� 2 @2w
@x@y

@2F
@x@y

C @2w
@y2

@2F
@x2
:

Here ‘F’ denotes the well-known Airy-Stress function.

3 A New Approach

Mazumdar in [1] put forward a simple method, the so-called CDC-Method to solve
the static and dynamic problems of elastic plates of arbitrary shapes. Mazumdar
et al. [2, 3] applied this method for solving various problems of elastic plates and
shells of arbitrary shapes, restricted to linear cases only. Following Mazumdar [1],
a new idea has been put forward by Banerjee [4] to study the dynamic response of
structures of arbitrary shapes based on the CDC method. While Mazumdar utilized
the concept of Deflection Contour method to deduce the basic dynamical equations
using elementary theory of plates and shells [1], the authors in [5] found it easy
to arrive at the final equations by straightforward utilization of von Kármán field
equations and then utilizing the required transformations to u-variables. In most
practical cases, it is found that von Kármán field equations in conjunction with the
CDC-Method make it easy to apply for nonlinear analyses of plates and shells.

4 Application of the CDC-Method

When the plate or the shallow shell vibrates in a normal mode, then at any instant
t� , the intersections between the deflected surface and the parallels z D constant
yield contours which after projection onto the base plane z D 0 are a set of level
curves, u(x, y) D constant, called the “Lines of Equal Deflections” [3], which are,
in fact, iso-amplitude contour lines (Fig. 1). The boundary of the plate or the shell
irrespective of any combination of support, is also a simple curve belonging to the
family of lines of equal deflections. As defined by Mazumdar [1] this family of
nonintersecting curves may be denoted by Cu, where 0 	 u 	 u�, so that C0 (u D 0)
is the boundary and C �

u coincides with the point(s) at which the maximum u D u�
is attained.

Let u D u(x, y) D constant be a member of the family of iso-deflection or iso-
amplitude contour lines. Using the following transformations

@w

@x
D wx D dw

du
ux;

@w

@y
D wy D dw

du
uy;

@2w

@x@y
D wxy D d2w

du2
uxuy C dw

du
uxy; etc:

(5)
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Fig. 1 Iso-deflection curves

Equations 6 and 7 can be written as
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where �i s are known functions of ux; uy; uxy; uxx; : : : ; etc:
Since Eqs. 6 and 7 are valid for all points on the surface of the shell,

“
�

(
D

4X
iD1

�i
d 5�iw
du5�i

� h



�5
d

du

�
dw

du

dF

du

�
C �6

dw

du

dF

du

�

C h



�7
d2F

du2
C �8

dF

du

�
� q C 
 h w;tt

)
d� D 0 (8)

and

“
�

(
4X
iD1

�i
d 5�iF
du5�i

C E

2

 "
�9
d

du

�
dw

du

�2
C �10



dw

du

�2!
C

�E


�11

d2w

du2
C �12

dw

du

� )
d� D 0 (9)

where the integration is over the region bounded by any contour Cu.
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5 Method of Solution

It should be noted here that the above analysis is valid for any shallow shell structure.
Evaluation of the integrals (8) and (9) with known values of the u-variables, will
yield two ordinary differential equations; the basic fourth order partial differential
equations reduce to two ordinary differential equations which make it rather easy
for further study. From the resulting equation from (9), we first solve for the stress
function with assumed expression of the deflected function compatible with the
required boundary conditions and satisfying Galerkin’s orthogonality condition.
With this value of the stress function we solve the equation analogous to Eq. 8
applying Galerkin Method again, when the following “Time Differential Equation”
with known constants will be obtained in the form.

RF .t/C ˛1F.t/C ˛2F
2.t/C ˛3f

3.t/ D q�; (10)

the solution of which can be obtained and from which the subsequent analysis can
be performed.

6 Specific Illustration

A specific illustration has been cited below.

6.1 Large Vibration of a Shallow Dome upon an Elliptical Base

Consider the vibration of a shallow dome of nonzero Gaussian curvature upon an
elliptic base. Figure 2 depicts the geometry of the shell. The edges are clamped and
immovable. When the shell vibrates in a normal mode, the lines of equal deflections,
as described in Sect. 5, may reasonably be taken as

u.x; y/ D 1 � x2

a2
� y2

b2
(11)

Clearly, in this case u D 0 on the boundary and u D u� D 1 at the centre of the
shell. In order to obtain an approximate solutions, let us assume [5]

w.u; t/ D W.u/ f .t/ D
/X
jD2

Auj f .t/ � Au2 f .t/ (12)
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Fig. 2 Shallow dome on an elliptical dome

where f (t) is an unknown function of time to be determined. Equation 10 for the
present case reduces to the following equation with known coefficients


 h2 Rf C ˛1f C ˛2f
2˛3f

3 D Q� D 5q=3 (13)

An indirect verification of the correctness of the time differential equation may
be made by considering the case for a flat plate problem. When Rx; Ry ! / ’2 D 0,
and further if a D b the problem reduces to that of a circular plate for which Eq. 13
takes the form (for �D 0.3)


 h2 Rf C Eh4

a4

�
9:756 f C 4:762 f 3

� D 5

3
q; .present study/


 h2 Rf C Eh4

a4

�
9:768 f C 4:602 f 3

� D 5

3
q .Ref: Œ7�/ (14)

which are in excellent agreement, considering the fact that only a single term
approximation for the deflection function has been made for the present study.

6.2 Free Linear Vibration

Set, ˛2; ˛3 and Q� each equals to zero in Eq. 13, when the linear frequency is
given by

!2L D Eh2P

8 


"
.320=3/

12.1� �2/ C 4

�
2”1

h

�2#
; P D 3a4 C 2a2b2 C 3b4

a4b4
(15)
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where ”1 D �=P and 2”1
h

D ”� represents the measure of shallowness of the shell.
Equation 15, on simplification and with a little rearrangement of the parameters, is
in excellent agreement with those cited in Refs. [3, 6].

If the second term in the expression for !L dominates the first then !L2 D�
2E
P

�2
	1=2

, which is exactly the same as that of Ref. [3]. It may also be noted here

following Reissner [6], that the first term is predominant when ”� or H/h< or D 25,
and the second term is predominant when H/h � 25 in order that the theory of
shallow shells is applicable.

6.3 Nonlinear Free Vibration

Substituting Q� D 0 in Eq. 13, one obtains


 h2 Rf C ˛1f C ˛2f
2˛3f

3 D 0 (16)

This is a familiar form of time differential equation and from which the frequency
ratio (Nonlinear to Linear) can be analyzed [5].

7 Results and Discussions

Frequency Analysis: Table 1 shows the values of linear frequency for a circular
plates obtained using different approaches. It justifies the present approach (CDC
method). Further discussion on the linear frequency is considered to be irrelevant
as Eq. 15 is exactly the same as those obtained in Refs. [3, 6] and the authors have
already made detailed discussion on it. Numerical results reveal that the dependence
of nonlinear to linear frequency ratio on ”� (where ”� D 2”=h represents the
measure of shallowness of the shell) and aspect ratio a/b, is significant. From the
results for a spherical shell (”� D 0), it has been observed that the dependence
on the Poisson’s ratio is not so much significant though the nonlinear effect is
comparatively a little lower for higher values of �. The nonlinear effect is significant
when value of a/b decreases. For a comparative study of dependence of the relative
frequency ratio ”� on the aspect ratio (a/b) of the axes of the elliptic base of the
dome it confirms that the nonlinear effect is not so much dependent on aspect ratio
for ”� � 1.5 – 2. Considering all aspects as relevant from results, it appears that the
values of ”� in the range of 1–2 affect the nonlinear behavior of the vibrating shell.

Table 1 Values of h
a2

q
E



in

the expression for !L for a
circular plate

� Ref. [6] Present study Ref. [7]

0 2.948 2.948 –
0.3 3.091 3.125 3.125
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8 Conclusions

The application of polynomial expressions for the deflection and the stress functions
in conjunction with the Galerkin procedure appears to produce highly accurate
results. The comparison of results shows that using a moderately approximated
expression for the deflection function yields results which are comparable to
the previously obtained results using other approximate methods. It can therefore
be concluded that the CDC method appears to be a simple tool to deal with the
problems of nonlinear vibration of plates and shallow shells of arbitrary shapes.

In a nut shell the analysis and the results are presented here. The authors wish to
publish the complete work in near future.
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Study on the Characteristics of Noise Reduction
Effects of a Sound Reduction Structure

Mitsuru Endo and Yong Su Kim

Abstract The concept of a sound reduction structure is proposed as a new method
for reducing noises generated by vibrating solids. The proposed concept involves
directly attaching hard sound absorbing materials to the vibrating surfaces of noise
sources so as to provide a back air space. The effectiveness of the proposed concept
is verified theoretically and experimentally using a one-dimensional acoustic field
model. Then, the sound reduction characteristics in the three-dimensional acoustic
field are clarified in detail through experiments using vibrating piston plates and a
flexible flat plate with vibration modes.

Keywords Soundproofing • Characteristics of sound reduction structure • 1D and
3D acoustic fields • Hard sound absorbing material • Back air space

1 Introduction

Although there exist many developments of the sound absorbing materials or
structures [1, 2], conventional noise-proofing countermeasures, which involve the
installation of large amounts of sound absorbing materials on the walls surrounding
noise sources, are disadvantageous with respect to cost and adversely affecting the
surrounding scenery. The present paper proposes the concept of a sound reduction
structure, which is directly attached to the vibrating surfaces of noise sources and
involves a small amount of hard sound absorbing materials and a moderate amount
of back air space. A schematic diagram of the proposed concept is shown in
Fig. 1. It should be noted that there have been no works of such direct type for
soundproofing until now.
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Fig. 1 Concept of proposed sound reduction structure

First, the validity of the proposed concept, i.e., whether the sound reduction
effects are actually achieved for both stationary and non-stationary sounds, is
verified experimentally using a one-dimensional (1D) acoustic tube. In addition,
subsequent 1D theoretical analysis reveals a fairly good agreement with the exper-
imental results. Then, experimental investigations of the noise reduction effects of
the proposed sound reduction structure in a three-dimensional (3D) acoustic field
are carried out using vibrating circular piston plates and a flexible flat plate with
vibration modes surrounded by baffles.

In the present paper, the sound reduction effect is defined as the ratio of sound
pressure generation for the case in which the specimen structure is installed on the
vibrating solid surfaces to that for the case of a bare vibrating plate when the ratio
is less than unity. The sound reduction effect is referred to as the normalized sound
pressure in the figures.

2 Examinations by the 1D Acoustic Field Model

In this section, the effectiveness of the concept of the sound reduction structure is
verified experimentally and theoretically.

2.1 Experimental Verification

Figure 2 shows the experimental apparatus for the case of stationary excitation.
One end of the tube is excited sinusoidally by an aluminum piston plate with or

without the attached specimen and the other end is filled with appropriate soft sound
absorbing materials so as to realize a condition that is approximately equivalent to a
half-infinite length acoustic tube. For the non-stationary case, the axis of the piston
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Fig. 2 Experimental setup of the 1D acoustic tube

plate is impacted by a steel ball and the generated impulsive sound is measured. The
sound decreasing effects are evaluated in the frequency spectrum domain by taking
the discrete Fourier Transform of the sound pressure waves.

As a result, the experimental results revealed that a maximum sound pressure
reduction of approximately 70% is observed in the frequency range of 0.8 
 3 kHz
if we use the specimen structure constructed from the porous aluminum sound
absorbing materials of thickness h D 5, 7, and 9 mm and a back air space of
thickness l D 20 mm made of honeycomb plates. These results are presented in the
following section.

2.2 Theoretical Examination

For a 1D acoustic field, X, the equation of motion of the enclosed air in the porous
material with rigid frame is

@P

@X
D �
0 S

H

@V

@t
� �V (1)

and the equation of continuity is

@P

@t
D �K0

H

@V

@X
(2)

where P, V, 
0; K0, S, H, and � are the sound pressure, the particle velocity, the air
density, the bulk modulus, the structure constant, the porosity, and the resistance
constant, respectively [3]. By setting S and H to be unity and � to be zero in Eqs. 1
and 2, the governing equations for the acoustic field of air are obtained.
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Next, we consider the case in which the material frame vibrates sinusoidally
with velocity U D U0 ej!t ( j D p�1), where X and x are the absolute and relative
coordinates, respectively, i.e., X D x C z , Pz D U, and V D U C u. Therefore, Eqs. 1
and 2 are expressed as follows:

S

H

0
@u

@x
C �u D �@P

@x
� 
0

S

H
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@t
(3)
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D �K0

H

@u
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(4)

The following equation is obtained from Eqs. 3 and 4:
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0
@2u

@t2
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H

@2u

@x2
� S

H

0
@2U

@t2
(5)

Based on Eq. 5 by introducing the appropriate boundary conditions [4], we can
evaluate the sound reduction rates for each frequency after some calculations. Then,
we need the values of the parameters of the porous aluminum sound absorbing
materials, i.e., H, S, and �(D � r C j� i). These values were obtained from the
propagation constant � and the specific acoustic impedance W, which are measured
using a two-microphone acoustic impedance measuring instrument (Brüel & Kjær
Type 4206). The identified parameters are as follows:

H D 0.8, S D 9.282, � r D �13.923!C 29,665 [kg/m3s], � i D 29,665 [kg/m3s]

Figure 3 shows comparisons of the theoretical and experimental results, where
h and l are the material and air space thicknesses, respectively. Both sets of results
exhibit similar tendencies, whereas the deviations of the experimental results from
the theoretical results are assumed to be caused by the fact that, in the experiment,
a semi-infinite length acoustic tube was not realized completely.

Figure 4 shows the change in the inclinations corresponding to the thickness of
the back air space. Based on Fig. 4, the sound reduction rates are observed to have
a quasi-periodic inclination with respect to the sound frequency.

3 Experimental Investigation in the 3D Acoustic Field

Figure 5 shows the experimental apparatus for the measurement of the character-
istics in the 3D acoustic field of the sounds generated by the specimens made of
aluminum piston plates with a diameter of 50 mm and a thickness of 25 mm as base
vibrating solids.

Figure 6 shows the influence of the thickness of the back air space, which
was measured at a location of 90ı as measured from the horizontal direction and
50 cm from the plate. These sound pressures in 3D field are supposed to show
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Fig. 3 Comparisons of experimental and theoretical results (a) h D 7 mm, without back air space,
(b) h D 9 mm, without back air space, (c) h D 7 mm with a back air space of l D 20 mm,
(d) h D 9 mm, with a back air space of l D 20 mm

Fig. 4 Theory: sound reduction rates for h D 9 mm, (a) l D 20 mm, (b) l D 40 mm

the similar inclinations as in 1D field excluding the distance decay effects. Thus,
as shown in Fig. 4b for 1D case, a quasi-periodic inclination with respect to the
sound frequency is observed for l D 40 mm in Fig. 6. Further, for other observation
points, i.e., � D 30ı, 45ı, 60ı (See Fig. 5), almost the same reduction tendencies
were obtained. By considering those characteristics of the sound reduction rate in
connection with the thickness of the back air spaces and the sound frequency, one
can design, so-called, the nearly optimum sound reduction structure if the target
frequency is assigned.



64 M. Endo and Y.S. Kim

Fig. 5 Experimental apparatus for 3D measurement in a simple anechoic room

Fig. 6 Influence of thickness of back air space; l

Finally, an experiment was conducted in which a flexible rectangular aluminum
plate having dimensions of 400 mm � 350 mm and a thickness of 5 mm, to which a
specimen of h D 5 mm and l D 20 mm is attached, is excited at one point using five
microphones arrayed at a height of 30 cm above the surface of the plate. The noise
reduction effects evaluated in terms of the O.A. noise level are (i) 86.4 ! 83.3 dB
(Mic. 1), (ii) 88.7 ! 86.3 dB (Mic. 2), (iii) 91.5 ! 88.2 dB (Mic. 3), (iv)
91.2 ! 89.3 dB (Mic. 4), (v) 86.4 ! 83.7 dB (Mic. 5). Thus, a decrease in sound
pressure level of approximately 3 dB O.A. was obtained at all observation points.
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4 Conclusions

The conclusions of the present study are summarized as follows:

1. The effectiveness of the proposed concept of the sound reduction structure was
verified experimentally and theoretically.

2. The sound reduction rate has a quasi-periodic inclination in connection with the
thickness of the back air spaces and the sound frequency, which is one of the
indexes for designing the sound reduction structure.

3. From a practical viewpoint, the proposed structures are expected to be applicable,
for example, to flange surfaces of railway rails that generate rolling noise and to
vibrating cylindrical blocks or the head surfaces of automobile engines.
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Delamination Detections of Laminated,
Nonlinear Vibrating and Thermally
Loaded Beams

Emil Manoach, Sylwester Samborski, and Jerzy Warminski

Abstract In this work, the geometrically nonlinear vibrations of fully clamped
composite beams subjected to thermal changes are used to study the sensitivity of
selected vibration response parameters to the presence of delamination (damage)
and elevated temperature. The damage detection criterion formulated earlier for
non-heated plates, based on analyzing the points in the Poincaré sections of the
damaged and healthy plate, is modified and tested for the case of beams additionally
subjected to elevated temperatures. The importance of the actual temperature in the
process of damage detection is shown.

Keywords Beams • Nonlinear vibrations • Delamination detections • Numerical
simulations • Poincaré maps

1 Introduction

The problem with the delamination in laminated structures and its early detection
is very important from practical point of view. Vibration based structural health
monitoring (VSHM) methods are widely used for a delamination detection. They
are based on the fact that the delamination will alter the stiffness, mass or energy
dissipation properties of a structure which in turn will alter its measured vibration
response. The most used VSHM methods are the modal based methods [1].
According to many authors, however, there are many limitations of this group of
methods (see for example [1–3]). Another problem concerning a number of VSHM
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methods is that they rely on a linear model of the structure. As the linear model
itself can only approximate the actual behaviour of the vibrating structure, it will
introduce computational errors [2]. These errors will be greater if the non-linearities
of the system are substantial.

Temperature changes can and do affect substantially the vibration response of
a structure. Thermal loads introduce stresses due to thermal expansion, which lead
to changes in the modal properties. Thus, on a lot of occasions the presence of a
temperature field can either mask the effect of damage or increase it, which will
render a VSHM method ineffective – it might give no alarm when a fault is present
or give a false alarm. This is why it is vital to be able to take into account the
temperature changes when developing VSHM procedures.

The main objectives of this study are twofold: (i) to study the influence of defects,
elevated temperatures and their combination on the dynamic characteristics of the
laminated beams and on their geometrically nonlinear dynamic response; (ii) to test
the criteria for identification of delamination in beams proposed in [3, 4] with taking
into account the elevated temperature by analyzing the Poincaré map of the vibration
response.

The application of the proposed approach is demonstrated on composite beams
with delamination at elevated temperatures.

2 Theoretical Model

The object of investigation is a laminated beam with length l, width b having Nl

number of layers, symmetrically disposed around a mid-axis (Fig. 1).
The beam is subjected to transverse load p(x, t) leading to a large amplitude

vibration and to temperature variation �T (in general it can be assumed as non-
uniform along the beam thickness) with respect to a reference temperature. The
geometrically nonlinear version of the Timoshenko beam theory which allow to
consider the transverse shear and rotary inertia is used to describe the beam motion.
The equations of motions used are written by using the effective properties of the
composite beam. The analytical expressions of the studied model can be found, for
example in [5, 6].

Fig. 1 Geometry of the
beam. By x1 and x2 are
denoted the beginning and the
end of the delaminated area
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The delamination is considered to be also symmetric with regard x axis. It results
in reduction of the effective properties of the beam at the part of the cross-section of
the beam having delamination. The idea how the delamination could be taken into
account in the determining of the effective properties of the beam could be found
for example in [7, 8]. In the theoretical model here, the variable rigidity of the beam
due to the delamination is considered.

The beam is considered to be clamped, in-axis fixed and the initial conditions for
all variables are set to zero. The solution of the problem is based on the numerical
approach which is very similar to the one developed in [3, 9].

In most cases small damage in structures doesn’t influence essentially the static
response or eigen frequency of the structure. However, its influence can be observed
when the structure is subjected to large dynamic loads, leading to large amplitude
vibrations [4]. The identification of damage in this work is based on the criterion
suggested in [3, 4].

Based on these works the following damage index is suggested:
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In the above equations i D 1, 2 : : :N, where N is the number of nodes, Np is
the number of points in the Poincaré map for each node and .wu

ij; Pwu
ij/ and .wdij ; Pwdij /

denote the jth point on the Poincaré maps of the undamaged and the damaged states,
respectively. It is easy to notice that Su i and Sd represent the lengths of the lines
formed by connecting the dots on the Poincaré maps for the damaged and the non-
damaged beam for ith node. Therefore, the damage index is defined as the relative
difference between these two lengths (see [3] for details). Parameter " denotes a
nonnegative number which depends on the geometry of the problem and on the
loading. Its purpose is to avoid dividing of the denominator by very small numbers
(for example at the areas close to the boundary or in a case of a curve formed from
the dots in the Poincaré map with a measure close to zero). In the most cases it could
be zero.

The above damage index depends on the location of the point on the beam axis,
and consequently it is a function of the beam coordinate x. One can expect that
the maxima of the curve I d .x/ will represent the locations of the damage, i.e.
I dmax.xd / D max

i

˚
I di
�
. The damage criterion based on this index presumes setting a

threshold value T d for the damage index. Thus, if the criterion I d .x;�T / > T d is
fulfilled one can conclude that the beam is damaged. Moreover the areas of points
(x) for which the criterion is fulfilled, form the damaged area (areas). It is important
to note that the temperature changes should be taken into account. This suggestion
presumes that the damage index defined by the above formulas is calculated for
equal values of �T for the healthy and damaged beam.
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3 Results and Discussions

The study focuses on delamination of a symmetric cross-ply laminated beam
composed of 10 orthotropic layers, each 0.25 mm thick. The two layers located
above and under the beam’s neutral layer have 0ı orientation with respect to x axis.
The whole beam sequence of layers (plies) is [(90/0)2 0]s. The length of the beam
is l D 80 mm and the width b D 5 mm. The material characteristics of the laminates
are E1 D 56 GPa, E2 D 16 GPa, �12 D 0.269, ˛T D 13.2 � 10�6 K�1 and the material
density 
D 2,052 kg/m3. These coefficients concerning rigidity properties of the
beam correspond to a homogenous beam with effective properties Eef D 41.92 GPa,
�ef D 0.32991. The delamination was modelled by prescribing to a small part of the
beam located at x 2 .56mm; 64mm/ (10% of the beam length, see Fig. 1) reduced
rigidity Ed

ef D 0:5Eef D 20.96 GPa. The beam was discretized by 40 linear beam

finite elements. The damping coefficient was chosen c1 D 5.10�5 Nsm�3
The aim of the following example is to test the procedure for damage detection

(DD) at the presence of temperature changes, to detect and localize damage
(delamination) and to estimate the temperature influence on the process of DD.

First of all, the sensitivity of the first seven natural frequencies of the beams are
calculated by FE method. The results show that the defects introduced due to the
delamination cause very small changes in the natural frequencies (0.45% decreasing
of the first natural frequency). Obviously such small changes cannot be used as an
indicator for damage.

Then the forced response of the beam subjected to a harmonic loading is tested.
The beam is subjected to two kind of loadings: (a) excitation with frequency
of excitation equal (or very close) to the first natural frequency of the beams
!e D!1 and (b) excitation equal to the half of the first natural frequency, i.e.
!e D!1/2. Beams are subjected additionally to temperature changes�T D 5ıK and
�T D 10ıK.

Let us first have a look at the time histories of beam responses. In the cases when
the excitation frequency is close to the first natural frequency of the beam a beating
phenomenon occurs (see [3, 9]). The elevated temperature leads to an increasing the
amplitude of vibrations and changes the period of beating. From the time-history
diagrams (Figs. 2 and 3) it can be observed that the considered damage leads to some
changes in the period of beating and small changes in the amplitude of responses
(see the small figures inserted in the main figures where the time history is shown
for a very short period of time).

The Poincaré maps shown in Figs. 4 and 5 confirm these observations. Neverthe-
less, in both cases the damage presence and its location is very well predicted by
damage criterion based on the damage index as can be seen from Fig. 6. However,
if one try to construct a damage index by using data for the unheated healthy beam
and for the heated damaged beam the damage location cannot be predicted as can
be seen from Fig. 7.
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Fig. 2 Time-history diagram
of the response of the beam
centre of unheated healthy
(black line) and damaged
(grey dashed line) beam.
!e D 5,665 rad/s

Fig. 3 Time-history diagram
of the response of the beam
centre of heated at
�T D 10 K healthy (black
line) and damaged (grey
dashed line) beam.
!e D 5,665 rad/s

Fig. 4 Poincaré map of the
response of unheated healthy
(black dots) and damaged
(grey dots) beam at the beam
centre. !e D 5,665 rad/s
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Fig. 5 Poincaré map of the
response of heated at
�T D 10 K healthy (black
dots) and damaged (grey
dots) beam at the beam
centre. !e D 5,665 rad/s
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Fig. 6 Damage index for the
heated and unheated beam
subjected to harmonic
mechanical loading with an
amplitude p D 50 N,
excitation frequency
!e D 5,665 rad/s.
Solid line – �T D 0. Dashed
line – �T D 10 K
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Fig. 7 Damage index
computed when the healthy
beam is at �T D 0 and the
damaged beam is at
�T D 10 K. p D 50 N,
excitation frequency
!e D 5,665 rad/s
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4 Conclusions

A numerical approach is applied to study the geometrically nonlinear vibration
of thermally loaded composite beams with and without damage. Computed time
domain responses are used to analyse either intact or damaged beams. Based
on these analyses the damage index developed previously has been adapted and
applied for a damage detection and damage location. It was demonstrated that
the damage can influence substantially the time domain response of the beam
despite its very small influence on the beam natural frequencies. The influence of
the temperature changes is essential and it can change substantially the nonlinear
dynamic response of the beam, especially for the case of fully clamped beams.
Therefore temperature changes should be taken into account when developing
damage assessment procedures. The potential, the sensitivity and the applicability of
the developed method is to be tested for real measurements and for different defects,
loading and temperature conditions.
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Nonlinear Lateral Oscillations of Flexible
Elements in Machines: Characteristic Features
and Practical Applications

Vitaly Beresnevich, S. Tsyfansky, and A. Klokov

Abstract Lateral oscillations of flexible elements (belts, cables, strings, etc.) in
machines under simultaneous action of kinematical and parametric excitations are
studied. Mathematically the problem is presented as a partial differential equation
describing interaction of forced and parametric oscillations of flexible element with
due account of its geometrical, static and physical nonlinearities. By the mathe-
matical simulation the influence of additional pulsation of axial tension force of
flexible element on parameters of its forced resonant oscillations has been analyzed.
New approach to the suppression of unfavorable nonlinear resonant oscillations
of flexible element based on application to the system of additional parametric
excitation is proposed. This method makes it possible to prevent nonlinear pulling
of resonant oscillations and thanks to this extends the allowable operating frequency
range of machine. The results of theoretical study are confirmed by experiments.

Keywords Flexible element • Nonlinear oscillations • Parametric excitation
• Kinematical excitation • Resonant regime

1 Introduction

Flexible elements (belts, cables, guy ropes, strings, etc.) are widely used in machines
and devices for various practical purposes (belt and chain transmissions, vibrating
belts of vibromixers, guy ropes for stabilization of motion of machine tool, etc.) [1].
Lateral vibrations of flexible elements, which can occur during the operation of
machine, are extremely detrimental. They give rise to additional dynamic loading,
which encourages wearing and failure of flexible elements.
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Most of known works in the field of nonlinear dynamics of flexible elements
are devoted to the analysis of free vibrations (e.g., [2, 3]). Characteristic properties
of nonlinear parametric oscillations of flexible elements are analyzed in [4].
But cases of interaction between forced and parametric oscillations are usually
considered only in application to the simple mechanical systems with one degree of
freedom [5]. Problem of self-excited vibration suppression by parametric excitation
in application to systems with finite numbers degrees of freedom is solved by
A. Tondl [6]. This paper deals with the analysis of lateral oscillations of flexible
elements under simultaneous action of kinematical and parametric excitations.
On the base of this study new approach to the suppression of unfavorable nonlinear
resonant oscillations by the additional vibration loading of the system is proposed.

2 Dynamic Model

Transverse oscillations of taut flexible element (thread) under kinematical and
parametric excitations are considered (Fig. 1). Kinematical excitation is caused by
forced transverse displacement of one end of the flexible element, but parametric
excitation is due to additional periodic variation in time of axial tension force.

In forming of differential equation of oscillations it is supposed, that stiffness in
bending of flexible element is negligible in comparison with its stiffness in tension.
Weight of flexible element is ignorable in comparison with axial prestressing
force T0. Besides, it is considered that oscillations are performed in one plane, which
runs along the centre line of a non-deformed flexible element. Taking the direction
of the co-ordinate axis z along this centre line, the differential equation for transverse
vibrations of flexible element can be stated as follows [1, 3]:

T0.1C� sin�t/Œ1C f .©/�

�
1Cb1 @

@t

�
@2y

@z2
� b2

@y

@t
� 


"
1C1

2

�
@y

@z

�2#
@2y

@t2
D 0;

(1)

Fig. 1 Model considered in dynamic analysis
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where T0 is the prestressing force; � and � are the non-dimensional amplitude and
the frequency of parametric excitation; b1 and b2 are the coefficients of internal and
external friction; y is the lateral displacement of the flexible element.

The functional f (©) in Eq. 1 takes into account additional tension caused by elastic
deformation of flexible element during its oscillations (physical non-linearity). The

elongation © of flexible element can be determined by formula © D 1
2l

R l
0
.
@y

@z /
2
dz

[3], where l is the length of flexible element.
The relationship between axial stress � in flexible element and its elongation ©

can be approximately described by the expression � D E© � “©3, where E is the
elasticity modulus of material; “ is the coefficient of non-linearity. In this case the
functional f (©) can be expressed in the following form

f .©/ D EA

2T0l

lZ
0

�
@y

@z

�2
dz � ˇA

8T0l3

" lZ
0

�
@y

@z

�2
dz

#3
; (2)

where A is the cross-section area of flexible element.
Therefore an increment in tension is caused by integral elongation of flexible

element and is independent of co-ordinate z. Non-linear term Œ1C 1
2
.
@y

@z /
2� of Eq. 1

takes into account geometrical non-linearity of flexible element [3]. In the case
of forced transverse displacement of the right end of the flexible element the end
boundary conditions are as follows:

y.z D 0; t/ D 0I y.z D l; t/ D h sin¨t; (3)

where h and ¨ are the amplitude and frequency of external kinematical excitation.
Equation 1, subject to the conditions (2) and (3), was solved in MATLAB

environment using pdepe solver [7]. For this purpose initial differential Eq. 1
was transformed into equivalent set of first-order partial differential equations,
and special-purpose MATLAB functions describing nonlinear characteristics have
been created. Dynamics of the system also has been simulated on the specialized
analogue-digital computer system developed in Riga Technical University [1, 8].

3 Characteristic Features of Oscillations and Their Application

A body of research is limited with resonance regime corresponding to the first nat-
ural frequency ¨1 of lateral oscillations of flexible element. Influence of additional
pulsation of axial tension force T(t) of flexible element on characteristic features
of forced oscillations caused by kinematical excitation h(t) have been investigated.
Figure 2 shows a typical amplitude-frequency characteristic (AFC) for lateral os-
cillations of flexible element, which have been plotted assuming T0/EA D 3.5�10�4,
b1¨1 D 0.002, “/E D0.36, ¡lg/EA D 5.7�10�6 and h/l D 0.005. Dimensionless
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Fig. 2 Amplitude-frequency
characteristics: full
lines – purely forced
oscillations (�D 0); dotted
lines – regime resulted from
interaction of forced and
parametric oscillations
(˜D 2; �D 0.2)

displacement u0/l (in antinodal point of the first resonant mode) is projected as
amplitude on this AFC. Frequency of kinematical excitation is also laid off in
dimensionless form � D ¨=¨1 .

In the case of purely forced oscillations (�D 0, full lines on the AFC) the most
intensive resonant regimes are realized within zone bc (zone of nonlinear pulling
of vibrations). These resonant oscillations cause the appearance of high dynamic
stresses in flexible element, and therefore they can be extremely detrimental for
normal operation of machine. But, from the other hand, oscillations in zone bc have
a limited reserve of stability [1]. This can result in non-stationary transfer of the
system from the resonant curve bc to the non-resonant curve de. For example, such
non-stationary transfer may be the result of some random perturbations, which can
occur in operation regime of machine.

In accordance with the mathematical simulation, additional pulsation of axial
tension force T(t) of flexible element in some conditions may be used as an instru-
ment for special-purpose control of bifurcation frequencies �1 and �2. Depending
on parameters of additional parametric excitation (�, ˜D�/¨1), frequency range
of dangerous resonant oscillations may be contracted or extended.

Dangerous variant of dynamic loading of flexible element is realized under the
additional pulsation of axial tension force T(t) with frequency � D .2� 2:08/¨1,
which is near to the top limit of the main zone of parametric resonance [4]. In
such conditions a frequency range of stable forced resonant oscillations becomes
sufficiently wider. As an example, Fig. 2 shows dotted resonant lines a1b1c1 and
d1e1 which correspond to the case of additional pulsation of tension force T(t) with
frequency ˜D 2 and amplitude �D 0.2. This periodic pulsation of force T(t) favors
a shift of the opposite jump frequency �1 into the high-frequency range (shift of
point d into the position d1). But value of quench frequency �2 practically remains
unaffected (compare the position of points c and c1 on the AFC). Therefore resonant
oscillations with high amplitudes become the only possible in the frequency range
d–d1. The revealed property of extension of frequency range of stable resonant
forced oscillations has a negative influence on machine operation, facilitating an
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Fig. 3 Amplitude-frequency
characteristics: full lines –
purely forced oscillations
(�D 0); dotted lines – regime
resulted from interaction of
forced and parametric
oscillations (˜D 3; �D 0.25)

increased dynamic loading of flexible elements. Therefore in designing stage of
machine it is necessary to exclude the possibility of pulsation of axial tension force
T(t) with frequency� D .2� 2:08/¨1.

Variant of suppression of dangerous resonant oscillations is realized in the high
frequency range (˜D�/¨1 D 2.8 � 3) of additional parametric excitation �sin�t.
In this case suppression of non-linear forced resonant oscillations is achieved under
the least possible amplitude �D 0.20 � 0.25 of parametric excitation. Effect of
suppression is illustrated with typical AFC shown in Fig. 3.

As it is seen, in the case of �D 0 maximal amplitudes of lateral oscillations of
flexible element are realized near the resonant point c (here u0/l � 0.07). Additional
pulsation of axial tension force T(t) favors a shift of the quench frequency �2 into
the low-frequency range (shift of point c into the position c2), but doesn’t affect a
value of opposite jump frequency �1. Therefore oscillations with small amplitudes
become the only possible in the wide frequency range lain between points e2 and e of
the AFC, but maximal value of resonant amplitude is reduced in twice (u0/l � 0.035
in the point c2) in comparison with the case of �D 0.

On the base of this effect a new method for suppression of forced lateral
oscillations of flexible element is proposed. The essence of the method may be
explained using device shown in Fig. 1. During operation the right support makes
vertical vibrations by the law h(t) D hsin¨t, that causes the kinematical excitation of
resonant lateral oscillations of flexible element. For suppression of these oscillations
an additional vibration excitation is applied to the system (e.g., by attachment the
end of flexible element to a piezoelectric exciter), initiating a pulsation of axial
tension force T(t) with relative amplitude �D 0.20 � 0.25 and with frequency �
exceeding in 2.8 � 3 times the lowest natural frequency¨1.

Main results of theoretical study are confirmed by experiments with a uniform
rubber cord having length l D 1.5 m and linear density ¡D 0.0415 kg/m (in unloaded
condition). Excitation and analysis of vibrations were carried out using standard
electrodynamic and piezoelectric instrumentation [9].
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4 Conclusions

It is shown that frequency range of stable forced resonant oscillations may be
contracted or extended due to parameters of additional parametric excitation.

1. Sufficient extension of frequency range of stable resonant forced oscillations is
realized under the additional pulsation of axial tension force T(t) with frequency
�D (2 � 2.08)¨1 and relative amplitude �D 0.20 � 0.25. This effect has a
negative influence on machine operation, facilitating an increased dynamic
loading of flexible elements.

2. New approach to the suppression of unfavourable forced resonant oscillations
of flexible element based on action on it with additional pulsation of axial
tension force is proposed. It is shown, that effect of suppression is realized in
the frequency range �D (2.8 � 3)¨1 under the relative amplitude of pulsation
lain within the interval �D 0.20 � 0.25.

References

1. Tsyfansky, S.L., Beresnevich, V.I., Oks, A.B.: Non-linear and Parametric Oscillations of
Technological Vibromachines. Zinatne, Riga (1991) (in Russian)

2. Han, S.M., Grosenbaugh, M.A.: Non-linear free vibration of a cable against a straight obstacle.
J. Sound Vib. 273, 337–361 (2004)

3. Bondar, N.: Nonlinear Autonomous Problems in Mechanics of Elastic Systems. Budivelnik,
Kiev (1971) (in Russian)

4. Beresnevich, V.: Characteristic properties of nonlinear parametric oscillations of flexible ele-
ments, scientific proceedings of Riga Technical University, Series 6: Transport and engineering.
Mechanics 28, 39–47 (2008)

5. Oks, A., Yano, S., Tsyfansky, S., Iwatsubo, T.: Suppression phenomena of resonant oscillations
in strongly nonlinear systems due to additional asynchronous excitations. JSME Int. J. Ser. C
36(1), 45–51 (1993)

6. Tondl, A., Ecker, H.: On the problem of self-excited vibration quenching by means of
parametric excitation. Arch. Appl. Mech. 72, 923–932 (2003)

7. Dukkipati, R.V.: MATLAB for Mechanical Engineers. New Age Science Limited, Tunbridge
Wells (2009)

8. Cifanskis, S., Beresnevich, V.: Specialized analogue-digital computer system. In: High Tech in
Latvia 2004, p. 30. AGB Publishing House, Riga (2004)

9. Tsyfansky, S., Beresnevich, V., Lushnikov, B.: Nonlinear Vibrodiagnostics of Machines and
Mechanisms. RTU Publishing House, Riga (2008) (in Russian)



Appropriate Modeling of Dynamic Behavior
of Quayside Container Cranes Boom Under
a Moving Trolley

N. Zrnić, V. Gašić, A. Obradović, and S. Bošnjak

Abstract The paper deals with the analysis of moving trolley effects on the
dynamic behavior of flexible structure of a mega high-performance quayside
container crane (QCC) boom. The boom is modeled as a system with distributed
parameters, comprising reduced stiffnesses and lumped masses from other parts
of the upper structure. This paper looks both at the “moving force” and “moving
mass” trolley modeling approaches to achieve the required performance of the QCC
boom structure. Deterministic simulation for both considered approaches gives
dynamic structural response of the boom for container transfer from quay-to-ship.
The obtained results for “moving force” and “moving mass” models are compared
in the scope of real values of parameters and future expectations in design of QCC.
The conclusions lead to an appropriate way of model selection that can be used by
engineers in practice.

Keywords Quayside container crane • Moving mass • Moving force • Modeling

1 Introduction

The moving load problem is one of the fundamental problems in structural
dynamics. A lot of work has been reported dealing with the dynamic response of
structures in the field of transportation and various constructions such as cranes,
under the influence of moving loads. Extensive references to the literature on the
subject can be found in the monograph by Fryba [1] with many analytical solution
methods for simple cases.
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The basic approaches in trolley modeling are: the “moving force” model; the
“moving mass” model and the trolley “suspension model”. The simplest dynamic
trolley models are the “moving force” models. The consequences of neglecting the
structure-vehicle interaction in these models may sometimes be minor. In most
moving force models the magnitudes of the contact forces are constant. “Moving
force” models are very simple to use and yield reasonable structural results in
some cases. The review paper concerning with the fundamental load problem of
a uniform simply supported Euler-Bernoulli beam subjected to a constant vertical
force moving at a constant speed is given in [2]. The “moving mass” model is
an interactive model and includes transverse inertia effects between the beam and
the mass. The interaction force between the moving mass and the structure during
the time the mass travels along the structure takes into account the contribution
from the inertia of the moving mass, the centrifugal force, the Coriolis force and
the time-varying velocity-dependent forces. The trolley speed is assumed to be
known in advance and thus not dependent on structural deformations. Generally,
the dynamic structure-trolley interaction predicted by such models is very strong
[3]. The study of a moving mass problem and related effects are given in [4–6]. The
maximum dynamic amplification factors of beams, with different basic boundary
under the action of moving forces that travel at constant speed are given in [7].

It should be mentioned that the problem of the forced motion of a beam, subjected
to a moving load, is associated with serious difficulties when the effect of the
mass of the load is accounted for [6]. But, on the other side it was concluded that
the approximate solution for the “moving-force” model was not always an “upper
bound” solution in terms of the deflection under the moving mass for the related
“moving mass” problem. In other words HP Lee [5] was concluded that the inertial
effect of the moving mass cannot be neglected in comparison with the gravitational
effect even if the velocity of the moving mass is relatively small.

Modern high-performance mega QCCs have already tripled in outreach and load
capacity compared to the first QCC built in 1959 [8]. This is not easily accomplished
given the cantilevered nature of QCC. A cantilever (waterside boom) identified as
the more important structural part [9] is structurally inefficient because almost all of
the structural strength and weight is needed to support its own weight. In practice it
is very complicated and expensive to do an experimental research on a real size mega
QCC. This reason makes the investigations on mathematical models of moving load
necessary, especially during the design stage and particularly having in mind the
large dimensions of the boom and trolley mass.

In recent years, considerable efforts have been made in order to better understand
the dynamic behavior and vibration of larges QCC under a moving trolley, particu-
larly because of a construction of faster and heavier trolleys and the design of slender
support structures without strict deflections limits. This fact resulted in several
papers discussing the application of moving load problem in analysis of structural
behavior of QCCs [3, 9–11]. Also, because of its great practical importance in
design process engineers - practitioners dealing with constructions of QCC have
studied the response of continuous beams to moving loadings [12, 13].
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Therefore, the goal of this paper is to discuss both approaches (“moving force”
and “moving mass”) in analysis of dynamic interaction between QCC and a trav-
eling trolley in order to suggest engineers the appropriate model to be used during
the design process with respect to the level of complexity and accuracy. Particularly,
because it is very difficult and expensive in practice to do an experimental research
on a real-size mega QCC or even on a scale-model.

2 Mathematical Model of QCC Boom

The modeling process (consisting of several intermediate stages) of QCC boom
structure is presented in details in [9]. The adopted model of the QCC boom,
comprising the outline of the whole QCC FEM model, trapezoidal cross section
of boom, as well as the picture of the hinge that enables understanding boundary
conditions of the structural system, is shown in Fig. 1, and for a real QCC the
structural parameters are taken from [3, 9–11] and are shown in Table 1. It is
worthwhile to say that numerical examination of a model that is not a prototype
of some real system is of little interest except for some general conclusions which
can be applied to other, related configurations [14].

Discretization of the mathematical model was necessary, due to the model
complexity, by five admissible functions adopted to generate an accurate estimate
of the system response, as already done and verified in [9]:
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; ¥2.x/D sin

 x

L
; ¥3.x/D sin

2 x
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3 x

L
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4 x

L
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Fig. 1 Model of the QCC boom acted upon by the concentrated moving mass M



84 N. Zrnić et al.

Table 1 Structural parameters of the QCC boom

L L1 E I A m M M1 M2 c1 c2

[m] [m] [N/m2] [m4] [m2] [kg/m] [t] [t] [t] [N/m] [N/m]

65.8 30 2.1�1011 0.25 0.193 1,849 175 3.69 21.17 112�105 32�105

The differential equations of motion for the “full” moving mass model are
obtained by Lagrange’s equations as explained in details in [9]. Deflection of
the boom is assumed in the shape: y.x; t/ D P5

iD1 ¥i .x/ � qi.t/. The difference
between “moving force” and “moving mass” model is in contact force (1). Finally,
after transformations, the contact force between the moving mass and the structure
can be written as (“contribution” of the “moving mass” model is on the right side of
the vertical slash):

FC D M
�
gj � Ry .x; t/� 2v Py0 .x; t /� v2y00 .x; t / � ay0 .x; t /

�
(1)

In the above expression “g” is gravity acceleration, “v” is the velocity of the
trolley as a moving mass, while “a” is the acceleration or deceleration (braking).

In the expression for contact force the term M v2y00 .x; t / D �M
�

v2

R

	
presents

centripetal force, and the term 2M v Py0

.x; t/ Coriolis force.
By applying Lagrange’s equations and after transformations we obtain the final

matrix form (2) for differential equations for the considered model of the boom for
the mega QCC:

5X
jD1

�
mij CM¥i.s/¥j .s/

� ::
qj .t/C

5X
jD1

h
2M v¥i.s/¥j

0

.s/
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Pqj .t/

C
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jD1

h
cij CM v2¥i .s/¥j

00

.s/CMa¥i.s/¥j
0

.s/
i
qj .t/

D Mg¥i.s/; i D 1; 2; 3; 4; 5: (2)

3 Results and Discussion

The system of differential equations is solved numerically by using the Runge-Kutta
method by using Mathematica [15]. Deterministic simulation is used to simulate the
container transfer from shore to ship. For simulation of the trolley motion cycle,
parameters values of the trolley drive are assumed in accordance with the currently
maximum ones, i.e. v D 6 m/s, a D 1.2 m/s2 [8]. For both models, “moving force”
and “moving mass”, the boom deflection under the moving trolley is shown in
Fig. 2a, while the bending momentM D �EIy

00

.x; t/ under the trolley is shown in
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Fig. 2 (a) Boom deflection under the trolley, (b) Bending moment under the trolley
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Fig. 3 (a) Vertical moving mass acceleration, (b) Contact force between the beam and the mass

Table 2 Comparison of the results for the given models

ymax [m] DAFy Mmax [Nm] DAFM Fc [kN] Ry.t/ [m/s2]

Mov. force 0.407 1.136 1.174�107 1.098 1716.75 /
Mov. mass 0.409 1.142 1.189�107 1.114 1749.60 0.21
Aps. Dev [%] 0.49 0.52 1.2 1.45 1.9 /

Fig. 2b. The moving mass acceleration in the vertical direction is shown in Fig. 3a.
The contact force between the moving mass and the structure during trolley travel
is shown in Fig. 3b.

For the sake of clarity comparison between the results obtained both for “moving
mass” and moving force” models is shown in Table 2. The values for dynamic
amplification factors (DAFs) are obtained here in relation to the maximum static
deflection 0.358 m and maximum static bending moment 1.067�109 Nm for the
considered structure.

4 Conclusions

This paper is an attempt to increase our understanding of the dynamics of mega
QCC boom and to facilitate the decision process for model adopting. By analyzing
the numerical results (Figs. 2 and 3 and Table 2) it should be evident that the
dynamic structural response due to moving trolley differs from the quasistatic one.
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It can be seen in Table 2 that the basic structural response “moving force” model is
appropriate for use in engineering problems because it gives a very slight difference
comparing to the “moving mass” model. This fact applies to the extreme up-to-date
parameters of QCC. Although it very difficult to predict the future development of
QCC it seems unlikely to reach in the next decades such an increase of performances
that will favor “moving mass” model to be suitable for engineers in design process.
However, “moving mass” model will be viable for scientific approach.
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Dynamics of the Anti-backlash Designed
Gearings with Elastic Elements

Vojtı̀ch Kloucek

Abstract The paper contains a description of one of principles of the backlash-
free transmissions. Specially is resolved design of the zero-backlash gearing with
countershafts. The backlash elimination in gears and bearings is obtained by the
preloaded torsion-bar spring. There is determined dependence of reaction forces,
acting on gears and bearings, to magnitude of the torsion-bar spring preload. Using
the computer program, created in the Maple environment, is simulated running of
loaded gear with reversation of rotating direction. The outcomes are used for control
of strength, fatigue of material and service life of gearing.

Keywords Anti-backlash transmissions • Gear trains • Precision position
control • Preload • Torsion-bar spring

1 Introduction

In engineering practice there is often a need for precise positioning of physical
objects such as workpieces, tools, assembled parts, transported materials, finished
products etc. Positioning device can be a variable-axis of machine tool, rotary
positioning table, a robotic manipulator and many other cases. In such cases it is
necessary to accelerate and brake considerable weight objects. It follows that drives
of positioning devices operates with a relatively low speeds and relatively large
forces and torques.

In terms of type of motion drives can be categorized into (a) rotary and (b)
linear. The dominant rotary drive are electric motors of various design. However,
they have an optimum efficiency and loading characteristics at higher speeds and
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lower torques than the positioning drives require. Therefore, between the electric
motor and positioning device is necessary to insert the appropriate transmission or
gearbox. Gearbox, as well as any kinematic mechanism, is necessarily made with
clearances and dimensional tolerances. Still current problem is the suppressing of
these backlashes in reversing the shaft rotate direction. This article describes one
way of suppressing the backlash in gears meshes and bearings of gearbox with spur
gears and the load simulation of the gearbox.

2 Design

2.1 Principle of the Backlash-Free Gearbox

Figure 1a schematically illustrates the principle of backlash-free gearing with
countershafts. Torsion bar spring is mounted at a determined preload torque, and
thus act on meshing pinion wheels in opposite directions. When transmissing a
rotary motion, then under the direction of rotation of input shaft performance by
either one or the other path of gearing [1]. Similar methods of backslash elimination
are described by [2] and [3].

2.2 Mounting Conditions

The gear by the Fig. 1a is closed loop of gears. Therefore, it is necessary in design
to comply with geometric and kinematic constraints, which relate to axis distances

Fig. 1 (a) Anti-backlash gear assembly, (b) prototype design of the backlash-free gearbox
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Fig. 2 Mounting conditions (a) general case, (b) prototype design

Table 1 Technical
parameters of gearbox

Rated power P 2.9 [kW]
Input torque M1 18.6 [Nm]
Input speed n1 1,500 [rpm]
Gear module m 1.5 [mm]
Tooth number z1 31 [�]
Tooth number z2 108 [�]
Reduction ratio i 12.1 [�]

and gear circumferential speeds. In general case (Fig. 2) must be satisfied condition
for pitch diameters

d32

d31
D d22

d12
� d11
d21

: (1)

Assuming the same module of all the gears, pitch diameters can be replaced by
the number of teeth

z32

z31
D z22

z12
� z11

z21
: (2)

The advantage of this type of gearing is high variability in dimensions and
therefore large area for optimization of specific applications. For the prototype
design and subsequent calculations was chosen case, when d11 D d12 D d31 D
d32 D d1 and d21 D d22 D d4 D d2 (Fig. 2).

Table 1 lists technical parameters of the gearbox, which are used for subsequent
calculations.
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Fig. 3 External forces and forces on bearings, gear meshes and within torsion-bar spring

3 External and Internal Forces

3.1 Static Equilibrium

The gearing on Fig. 1a is a combined six-member mechanism (including frame).
On Fig. 3 is release of each member. It should be determine 38 unknown forces and
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torques, torques Mtk (torsion-bar spring preload) a M2 (load on output shaft). are
parameters of equation system. There are 30 equilibrium equations, the remaining
eight equations resulting from the geometry of toothing (four meshes, for each one
two equations).

3.2 Dynamic Analysis

For the dynamic analysis was created model by Fig. 4. The gear unit is connected
by a ball screw with a weight, which is constrained by a ball linear guide. The input
of model is known desired kinematics of weight. Subsequently, the reaction forces
within the gearbox and input torque course are calculated. Mainly are controlled
forces on meshes of pinions. To correct function of gearbox, they must be positive
at all events.

For dynamic solution is necessary to know geometric characteristics as well as
characteristics of mass. Weight mass was chosen of 100 kg. Inertia of gears, shafts
and ball screw were determined from the 3D model in SolidWorks environment. For
computing was created universal program in the Maple environment. All parameters
are a variable, so the algorithm is applicable to any gear unit of the same design
(Figs. 5–7).

4 Conclusions

Presented procedure is applicable for optimizing the dimensions of the gearboxes
with same design. Created algorithm is universal, all parameters are implemented

Fig. 4 Dynamic model
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as a variable. It, therefore, is useful for e.g. design of gearbox range. In the dynamic
calculations can be any reaction force expressed as a function of time and therefore
the results are important for monitoring fatigue of material of cyclically loaded parts.
Kinematics of output motion is also freely modifiable.
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Industrial Applications of Extended
Output-Only Blind Source Separation
Techniques

Christophe Rutten, V.H. Nguyen, and J.C. Golinval

Abstract In the field of structural health monitoring or machine condition moni-
toring, most vibration based methods reported in the literature require to measure
responses at several locations on the structure. In machine condition monitoring,
the number of available vibration sensors is often small and it is not unusual that
only one single sensor is used to monitor a machine. This paper presents industrial
applications of two possible extensions of output-only Blind Source Separation
(BSS) techniques, namely Principal Component Analysis (PCA) and Second Order
Blind Identification (SOBI). Through the use of block Hankel matrices, these
methods may be used when a reduced set of sensors or even one single sensor is
available. The objective is to address the problem of fault detection in mechanical
systems using subspace-based methods. The detection is achieved by comparing
the subspace features between the reference and a current state using the concept of
angular coherence between subspaces.

Keywords Health monitoring • Fault detection • Subspace • PCA • SOBI
• Hankel matrices

1 Introduction

Blind source separation (BSS) techniques allow to recover a set of underlying
sources from observations without any knowledge of the mixing process or the
sources. BSS techniques were shown useful for modal identification [1], damage
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detection and condition monitoring [2] from output-only data. In the BSS family,
on can cite for example the Principal Component Analysis (PCA) and the Second
Order Blind Identification (SOBI) [3].

A drawback of many BSS techniques is the need for several sensors. However,
through the use of Hankel matrices these methods can be extended to damage
detection problem where only one sensor signal is available [4].

2 Principal Component Analysis

Let us assume that a dynamical system is characterized by a set of vibration features
collected in the matrix X 2 <.m�N/, wherem is the number of sensors and N is the
number of samples.

PCA provides a linear mapping of data from the original dimension m to
a lower dimension p. In practice, PCA is often computed by a Singular Value
Decomposition (SVD) of matrix, i.e.

X D U†VT (1)

Where U and V are orthonormal matrices, the columns of U define the principal
components (PCs). The order p of the system is determined by selecting the first
p non-zero singular values in † which have a significant magnitude (“energy”) as
depicted in [2].

3 Second Order Blind Identification

As described in [3], SOBI considers the observed signals as a noisy instantaneous
linear mixture of source signals. In many situations, multidimensional observations
are represented according to the following equation:

X.t/ D Y.t/C � .t/ D AS.t/C � .t/ (2)

Where:

• X.t/ D Œx1.t/; : : : ; xm.t/�
T is an instantaneous mixture of source signals and

noise.
• S.t/ D �

s1.t/; : : : ; sp.t/
�T

contains the signal from p narrow band sources
(p < m).

• Y.t/ D Œy1.t/; : : : ; ym.t/�
T contains the sources assembly at a time t .

A is the transfer matrix between the sources and the sensor, called the mixing
matrix. Under certain conditions, the mixing matrix identifies to the modal matrix of
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the structure and the sources correspond to normal coordinates [1]. � .t/ is the noise
vector, modeled as a stationary white, zero-mean random process. Furthermore it is
assumed to be independent of the sources.

The SOBI method aims at recovering the mixing matrix and the sources from
their mixture. More details about this technique can be found in [3].

4 Hankel Matrices

Block Hankel matrices play an important role in system subspace identification [5].
Those matrices characterize the dynamics of the analyzed signals and have been
used for modal identification and damage detection [4, 6, 7].

The covariance-driven block Hankel matrix is defined as follows:

Hr;c D

2
6664
�1 �2 � � � �c

�2 �1 � � � �cC1
:::

:::
: : :

:::

�r �rC1 � � � �rCcC1

3
7775 ; .c � r/ (3)

where r; c are user-defined parameters (r D c, in this paper) and �i represents the
output covariance matrix.

The data-driven Hankel matrix is defined as:

H1;2i D

2
6666666666666664

x1 x2 � � � xj
x2 x3 � � � xjC1
:::

:::
: : :

:::

xj xjC1 � � � xiCjC1
� � � � � � � � � � � � �
xjC1 xjC2 � � � xiCj
xjC2 xjC3 � � � xiCjC1
:::

:::
: : :

:::

x2i x2iC1 � � � x2iCj�1

3
7777777777777775

� Xp

Xf

� “past”

“future”
(4)

where 2i is a user-defined number of row blocks, each block contains m rows
(number of measurement sensors), j is the number of columns (practically j D
N � 2i C 1, N is the number of sampling points).

Enhanced-PCA (EPCA) and Enhanced-SOBI (ESOBI) techniques, as proposed
in [4], consider the Hankel matrices, instead of the observation matrix X, as input
matrix. It can be shown that this procedure not only allows to enhance identification
and detection but also permits the application of both methods to problems where
only one sensor is available.



98 C. Rutten et al.

5 Damage Detection Problem

Damage detection is based on the concept of subspace angle introduced by Golub
and Van Loan [8]. Subspace angles can be used as an indicator to quantify the spatial
coherence between two data sets resulting from observation of a vibration system
[2, 4].

The change in the system dynamics may then be detected by monitoring the
angular coherence between subspaces estimated from a reference observation set
and from the observation set of a current state of the system. A state is considered
as reference if the system operates in normal conditions (i.e. damage does not exist).

In the case of EPCA, the considered subspaces are the active subspaces built
by the first p columns of U while for ESOBI, the subspaces are built by the first
columns of the mixing matrix A.

6 Industrial Applications

6.1 Quality Control of Electro-Mechanical Devices

This industrial application concerns the case of electro-mechanical devices for
which the overall quality at the end of the assembly line has to be assessed. A set
of nine rotating devices was instrumented with two accelerometers: one triaxial
accelerometer was located on the flank of the component, and one monoaxial on the
top. Among this set of nine devices, five of them are known to be healthy (referenced
OK-0 ! OK-4) and the other four are faulty (NOK-1 ! NOK-4). As it was shown
in [7] that the detection is the best in the Y direction, the data in this same direction
are used here to test the methods.

Detection results are presented in Fig. 1. The first healthy device (OK-0) is
considered as the reference state. Both methods were able to make a clear distinction
between the faulty devices and the healthy ones.
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Fig. 1 Diagnosis of rotating devices with EPCA method on the right and ESOBI on the left
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6.2 Quality Control of Weldings

The second example involves an industrial welding machine from a steel processing
plan. The machine was instrumented with a monoaxial accelerometer on the upper
forging wheel. The purpose of this wheel is to flatten the welded joint during the
welding process.

The quality of the welded joints depends on several parameters. In this example,
four distinct parameters were altered and multiple alteration levels were consid-
ered, leading to a batch of 27 welded joints with out-of-range parameters. Six
welded joints were also realized using nominal parameters for false-positive testing
(Table 1). A microscopic quality control of each welded joint was realized at the
end of the campaign to assess their actual quality.

The detection results of EPCA and ESOBI are presented in Fig. 2.
The detection results are good. The subspace angles by ESOBI seem to be more

consistent than EPCA.

Table 1 Welding parameters during the measurement campaign

Welding Name Parameter Nbr. of samples Weld quality

OK Nominal level 6 Good
A �33% covering 3 Acceptable
B �66% covering 3 Bad
C �33% compensation 3 Good
D �66% compensation 3 Acceptable
E �10% current 3 Acceptable
F �20% current 3 Bad
G �10% forging pressure 3 Good
H C5% forging pressure 3 Acceptable
I �66% covering and compensation 3 Bad
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Fig. 2 Faulty welded joint detection results by EPCA (top) and ESOBI (bottom)



100 C. Rutten et al.

7 Conclusion

The presented methods where successfully applied to damage detection problems
in industrial environment. By making use of the Hankel matrices, only one sensor
is needed for the diagnosis which is an appreciable advantage.
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The Influence of Magnetic Accumulators
Equipped with Permanent Magnets on the Drive
of a Mechanical System with the Periodical
Reciprocating Movement and Its Behavior

Frantisek Foune, Pavel Kloucek, Pavel Sidlof, Petr Skop, Martin Pustka,
and Petr Kacor

Abstract In this paper a measurement and an analysis of a common distribution
mechanism for the winding of material on bobbins is described. Its machine-long
rod is equipped with two energy accumulators with permanent magnets to suppress
its longitudinal oscillations. On the basis of measurement data, a FEM model of the
rod was proposed and used for an analysis of the causes of the increased longitudinal
oscillations. Finally, a new layout of one of the accumulators was proposed. It could
lead to better behavior of the whole mechanism.

Keywords Winding of bobbins • Transversal distribution mechanism
• Longitudinal oscillations • Energy accumulators • Permanent magnets •
Halbach array

1 Introduction

Machines on which many bobbins are wound have a common distribution mecha-
nism for the generation of transversal movement. This mechanism has a machine-
long rod carrying winding guides. The rod can be up to 50 m long and it is driven
from one side by a cam or servomotor. Due to its length, the rod longitudinally
oscillates and its free end moves in a different way to its beginning. Such an
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oscillation causes a worse quality of bobbins at the free end, increased wear of parts
and noise, as well as the increased danger of rod buckling. The use of magnetic
energy accumulators was suggested to remedy these shortcomings. In the following
text a measurement of such a mechanism with and without magnetic accumulators
is described and analyzed, and a new layout of the magnetic accumulator at the free
end of the rod is proposed.

2 Settlement of Experiment

The proposed energy accumulators compose of a pair of permanent magnets which
repel each other. The first magnet is firmly joined to a machine frame, the second one
to a moving distribution rod. Both magnets are multipoles created from 12 segments
magnetized in different directions and arranged into a ring in such a way that they
form an axial Halbach array. This way, magnetic poles are transferred into one plane
only. There is just one different way how to do it – to use pole pieces. However the
pole pieces are passive and very heavy elements. Table 1 shows that just the setup of
magnets into a Halbach array provides the highest ratio of their total repulsive force
to their total mass.

Scheme of the distribution mechanism formed by a driving cam, the distribution
rod and two energy accumulators is depicted in Fig. 1. The rod is situated into its
right reversal point (right RP). This arrangement of the magnets allows suppressing
or completely removing the buckling of the rod.

A location of sensors during the measurement on a customer testing stand is
shown in Fig. 1.

Table 1 Comparison of magnets and their structures – results of FEM calculations

#
Material
of magnets

Mass of
magnets
m mg [g]

Mass of Fe
m Fe [g]

Total mass
m [g]

Repulsive
force F [N]

Ratio of
F/m [N/g]

1 N35 298 1186 1484 902 0.61
2 N35 298 – 298 564 1.9
3 N42 182 – 182 600 3.3
4 N42 182 48 230 892 3.9
5 N42 225 – 225 1290 5.7

# FeNdB magnets and structures

1 3� (¿72� ¿25 � 4) C Pole Pieces
2 3� (¿72� ¿25 � 4)
3 12� (1/200 � 1/200 � 1/200)
4 12� (1/200 � 1/200 � 1/200) C Fe wedges
5 Halbach array ¿74� ¿49 � 1/200
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Fig. 1 Components of the stand and layout of sensors for measurement

List of sensors

sS1, sS2 A force sensor in front and behind the magnets, respectively
sPR A rotational incremental sensor of angular position
sPL1, sPL2 A linear incremental sensor near the cam and at the free end, res.
sZ1, sZ2 An acceleration sensor near the cam and at the free end, resp.
56/28, 79/21 A timing belt and gear transmission ratios, respectively
PM1, NPM1 A movable and a stationary magnet near the cam, respectively
PM2, NPM2 A movable and a stationary magnet at the free end, respectively

The measurement was carried out without and with magnets at cam frequencies
of 1.17, 1.83, 2.50, 3.17 and 3.25 Hz.

3 Results of Measurement

In Fig. 2 the results of measurement performed without and with magnets at
the frequency of 3.17 Hz are presented as an example. From the comparison of
these results it is clear that the longitudinal oscillation of the rod was significantly
suppressed during the movement from the left to the right RP, i.e. when the rod was
subjected to buckling. Simultaneously, the maximum magnitude of the force in the
rod at the left RP, and the cam angular velocity variation during the movement from
the left RP to the right RP were reduced substantially.

The dominant frequency of the superimposed longitudinal oscillation of the rod
was determined by comparing Fourier decompositions of the cam generated motion
and the rod motion at its free end. This is the seventh harmonic of the rod movement,
i.e. 22.17 Hz. The cause of such high increase of the seventh harmonic could be a
resonance with some natural frequency of the rod.
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Fig. 2 Results with and without magnets. In the diagrams of displacement and velocity the gray
lines signify the measurement near the cam, the black lines at the free end. In the diagrams of
forces, the black and gray lines signify the force measured by the sensor sS1 and sS2, respectively
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4 Experimental Analysis of the Longitudinal
Oscillation of the Rod

During the measurement on the machine producer stand, the average speed of
longitudinal waves in the rod was calculated from repeated impact excitations. From
the speed of 4756 m/s the lowest natural frequency of the rod with one end clamped
was determined. Its value is 26.1 Hz. The seventh harmonic of the rod movement,
mentioned in the previous section, is very close to it.

5 Computational Analysis of the Longitudinal Oscillation

The compound distribution rod was modeled by FEM [1]. The real distribution
of sections of the rod made of composite material and dural, their cross-sections,
lengths, and masses were preserved. Experimentally determined stress moduli were
used. Next, the discrete mass and rigidity of the distribution box were estimated and
used to tune the model to match the measured data.

Subsequently this model was verified by calculations of the distribution rod
behavior during kinematic excitation by the cam. The results showed a very good
agreement with the measurement.

6 Design of a New Layout

The measurement of the originally designed mechanism according to Fig. 1 showed
a slight drawback consisted in the diminution of the rod longitudinal oscillations
only when the rod is pushed. Although the danger of buckling was suppressed to a
minimum, a new solution, active also when the rod is pulled has been sought. One
of the new suggestions is presented in Fig. 3. The second pair of repelling magnets
was added to the energy accumulator at the free end of the rod.

The results of the new calculations are in Fig. 4. It is clear that the oscillation
generated at the free end of the rod was suppressed and that the given objective was
achieved.

Fig. 3 Two additional repelling magnets placed into the energy accumulator at the free end
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Fig. 4 Results of FEM calculations with original and new layouts of magnets, respectively. The
gray lines signify the rod displacement near the cam and the black lines at the free end

7 Conclusions

With respect to the danger of buckling, the frequency of the rod motion has been
limited by the machine producer to 2.67 Hz. The setup of magnet accumulators
according to Fig. 1 itself will permit increasing the distribution rod frequency at
least up to 3.25 Hz. It can be expected that this 20% improvement will lead to the
same increase in the machine production.

The setup of permanent magnets according to Fig. 3 could suppress the rod
oscillation in both directions of movement. As a result the bobbin packages could
be superior in quality and the energy consumption could be lower due to a lower
variation in the angular velocity of the cam. The vibrations, noise and wear of the
parts of the mechanism will diminish as well.

The distribution mechanism in Figs. 1 or 3 can also be driven by a rotational or
linear servomotor. Since the motion is initiated by a selectable ramp, the magnetic
accumulators allow dimensioning the servo drive to a peak torque or peak force
substantially lower than without them.

The design of the energy accumulators and their layout in the distribution
mechanism according to Figs. 1 and 3 and according to similar setups of permanent
magnets are protected by the Czech and other national patent applications.
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Theoretical Considerations and Practical Trends
for Aseismic Buildings

Ferenc Kolonits and B. Csák

Abstract Two distinct aspects of Reinforced Concrete (RC) structures under
seismic load are studied. Localized deterioration of multi-storey objects at inter-
mediate levels is analyzed and the effect of non-smooth transition in stiffness on the
first vibration mode is pointed at. Further, that a general collapse of a building can
be avoided by more ductile joints. The application of a special plastic (3P-RESIN®)
is shown.

Keywords RC structure • Multi-storey • Intermediate crash • Ductility • Resin

1 Introduction

Seismic loads may effect deterioration in rather different manners. In some cases,
crashes of internal character remain highly localized in the structure, but, more
often, a lot of structural joints got finished off and a collapse occurs. A possible
background of the first defect will be investigated on a well-known example. In
many cases, the process does not stop at that, the joints give way progressively.
A collapse were escaped if the joints could bear (some, but enough) load beyond
their elasticity limit. Ductility can be improved by more dense reinforcement
keeping concrete in position as cracking begins, or by applying plastic additives.
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2 The Intermediate Storey Damage

The most notorious example for this kind of crash is that of the eight-storey Old
Kobe City Hall. The Hyogo-ken Nambu earthquake (01.17.95) razed down the
sixth storey, while the above ones shifted aside as a whole, otherwise there were
moderate damages [1]. In the neighborhood, there occurred detriments of similar
character, however, less pronounced. A series of explanation had been emerging in
the literature and in discussions at courses on earthquake (EQ) safety held in Japan
that time [2]. Let us see some of them.

Above the sixth floor, a later heightening took place and this made a “weak
link”. – The whole building had been erected in 1957, although the frame changed
from Steel-RC to RC at that level. The shear waves reflected from the top lead to
the disaster. – Well, this were similar as a plastic armor-piercing projectile worked,
however, its reflected wave got tensile, more detrimental to armor, while a reflected
shear remained shear and no more. Behold soil slacking due the war bombings. –
A slacked ground would act as amplifier but uniformly and the bombs were mostly
incendiaries. Here and there, a rationale appeared that internal maxima might be
inflicted by higher vibration modes [3]. – This is the very aspect we are going to
investigate now.

In a simple model, the floors are rigid and are moving in parallel, respectively.
The pillars get bending moment and shear. The masses are concentrated at floor
levels. The stresses are considered to be elastic – the results are not able to follow the
crash-down process with, however, they identify the locations of incipient overload.
For a column of height L and a � a cross section, base and top shifted in parallel, the
force needed for unit deformation i.e. stiffness, due bending and shear are shown by
Eq. 1, respectively

kb D a4E=L3; ks D a2E=Œ2.1C v/’sL�: (1)

The shear constant ˛s D 1.5 [4]. The M masses of floors, beams etc. are evenly
distributed among the 72 columns of inter-storey support. The final model will be a
vertical beam of elastic columns with point masses, clamped at the bottom, free at
roof level. Details are shown in Table 1.

Table 1 Storey data of Kobe City Hall and eigenfrequencies/times

Nr M [kg] L [m] a [m] ksum[N/m] ¨ [1/s] T [s]

1 27,479.2 4.15 1 243,017,935.6 13.789 0.4557
2 31,598.6 4.2 1 235,404,896.4 32.544 0.1931
3 31,598.6 3.65 0.85 188,609,516.1 52.581 0.1195
4 31,598.6 3.65 0.85 188,609,516.1 71.104 0.0884
5 31,598.6 3.65 0.85 188,609,516.1 83.356 0.0754
6 31,598.6 3.65 0.65 69,190,033.37 109.80 0.0572
7 31,598.6 3.65 0.65 69,190,033.37 139.02 0.0452
8 26,645.8 3.8 0.6 69,190,033.37 158.69 0.0396
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Fig. 1 Velocity response and maximal displacements at storey levels

The fundamental period is of the same order of magnitude as that given by the
0.1 � (storey nr) rule-of-thumb [5]. The participation of various normal modes can
be calculated on the base of response spectra. From [6], the velocity response Sv

is available – the displacement response is Sd D Sv/¨. The ones pertaining to the
series of eigenvalues may be arranged into a diagonal matrix<Sv;i/¨i>. The column
vector of maximal displacements Vmax can be expressed with the [¥i] Dˆ matrix
of normalized eigenvectors, by Eq. 2, e being an all-one load distribution vector.

Vmax D ˆhSv;i=¨ii ˆThMiie: (2)

The responses for the first three frequencies are Sv D 1.80, 0.33, 0.16 m/s. The
displacement responses are shown on Fig. 1. The higher-order modes do not appear
intensely, the inter-storey damages can not be explained by their multi-bent form.
The relations are as usual: the fundamental mode is the decisive. However, there
is a local change in displacement at the sixth storey. This has a pronounced effect
on both bending and shear stresses as shown in Fig. 2. (Calculated by elementary
formulae, representing rather an index of the stress state).

Under given relations of masses and stiffness, by virtue of the fundamental
mode, the sixth storey is prone to overload, regardless to further impairing by
local changes in reinforcement etc. Sure, the stiffness had been overestimated. The
floors must not be completely rigid. Suppose an implausible, one-fourth stiffness.
Then, the fundamental period would be 0.9 s (just overshooting the quoted rule-of-
thumb). With proportional higher periods, the responses are 2.5, 1.5 and 0.5 m/s,
respectively. The relations would remain essentially the same – the influence of the
first mode would decease far over the peak response at 0.9 s, but such a flaw in
modeling is not real.
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Fig. 2 Bending and shear stresses in diverse modes at storey levels

3 Joints of Enhanced Ductility

The most sensitive spots of an RC frame with respect to EQ impulses are the
structural joints of pillars, floors, beams etc. They are essential in maintaining
stability. The energy released by an EQ mostly rearranges the landscape. However,
there remains enough to do the same to man-made structures. The result depends
on whether this rearranging meant distortion (and of what a level) or raveled rebars,
concrete torn away from. In order to avoid the very bad second option, the joints
must be ductile, i.e. able to carry load beyond limits of their elasticity. Under
reciprocating motion, that results hysteretic energy dissipation. The classic solution
was to put more steel in critical areas, securing concrete from cracks as far as
possible or keeping that together if crumbled [7].

The version recently studied at Budapest University of Technology (Dpt of
Mechanics, Materials and Structures) changes a basic component of the concrete,
the cement in a part of the critical zone. The range of experimental work had been
restricted by fund reasons, authors are aware of only probing steps having been
made. The additive here is a polymer compound with which an elasto-plastic ductile
composite concrete is prepared: the 3P-RESIN®. The layout of the test specimen is
shown on Fig. 3. As for “base line”, a specimen of normal RC had been tested. It
became cracked extensively after ten cycles and crumbling at the 14th. A specimen
with ductile concrete joint had been tested under ˙50 mm constrained deformation.
Having performed 22 rounds, the load upheld had been reduced to 70% (Fig. 4).
Having applied further 21 cycles, the load went down again to 52% (making a total
of 36%, Fig. 5), with one rebar cracked. However, the hinge area remained flawless.
Another specimen had been cycled, having got 22 rounds, further 50 times (Fig. 6).
The degradation went to 23%, two rebars were cracked but the joint remained
integral.
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Fig. 3 Test specimen, concrete grade C16, steel B60.40

Fig. 4 Twenty-two cycles, ˙50 mm, degradation to 70% (gadget weights �250 kN)

4 Conclusions

The storeys of the Kobe building have about the same mass, while stiffness
distribution is 100 – 97 – 3 � 78 – 3 � 28 [%] of. The abrupt change at the sixth
storey results a local maximum of load even in the fundamental mode. Ductile joint
is a very effective tool in maintaining integrity under reciprocating loads. Applying
there a concrete with elasto-plastic additive, a manifold endurance is experienced.
This may be very beneficial in averting structural collapse.
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Fig. 5 Additional 21 cycles, supported force drops to 52%

Fig. 6 Another specimen, further 50 cycles, degradation to 23%
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The Effect of Initial Stress on Nonlinear
Vibrations of an Articulated Beam

Jacek Przybylski

Abstract The aim of this study is to consider the problem of nonlinear transverse
vibrations of a stepped beam with immovable ends and a crack. The crack is
modelled by a hinge with a massless rotational spring. The initial stress is a result
of the residual force generated by a pair of piezoelectric actuators bonded to the
top and bottom surfaces of the beam. A version of the Lindstedt-Poincare method is
used to acquire approximate solutions to the problem. The natural frequencies are
computed from the solution of three consecutive equations, which are distinguished
by growing powers of the small amplitude parameter. It is shown that the residual
force depends on the voltage applied to the piezoactuators, the axial stiffness ratio
of the piezosegment and the beam and on the length of the piezosegment. The
influence of crack locations and spring stiffness parameter on the frequency, mode
shape and the amplitude-frequency relation is analysed for different values of the
applied piezoelectric force.

Keywords Transverse vibrations • Amplitude-frequency relationship • Crack
• Piezoactuator

1 Introduction

An internal crack appearing even in one member of a complex engineering structure
can lead to the failure or catastrophic breakdown of the whole system. Special
monitoring devices are engaged to control the behaviour of dynamically loaded
machines, mechanisms and constructions in the case of initiation and eventual
fatigue crack propagation. One of techniques leads to collecting information
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concerning the dynamic response of structures to control a possible discrepancy
between standard parameters and those demonstrating an unusual behaviour. The
natural frequency and mode shape are the dynamic parameters which changes can be
useful in the detection of the failure information such as the presence and severity of
structure damage. Therefore free vibrations of beams with cracks have been studied
extensively for three decades. The most common crack model is the one in which
the rotational massless spring has been introduced at the location of a crack [1]. This
rotational spring can also model a semi-rigid joint in regard to segmented beams or
columns made of different materials. In this study the influence of the crack, existing
at the interface of a stepped beam with immovable ends, on the natural vibration of
this system is considered. The change in the cross section area of the beam results
from the application of a pair of collocated piezoceramic actuators bonded to the
host structure. An additional aim of the paper is to demonstrate the applicability and
efficiency of the electric field applied to the piezoactuators on the stated objectives.
Reassuming, the analysis of this nonlinear problem is provided to show the effects
of the location of a crack and the piezo-force on the natural frequency, mode shape
and the amplitude-frequency relation of the investigated system.

2 Formulation

Figure 1a presents a deflected axis of an articulated simply supported stepped beam
with a rotational spring of stiffness C. Two identical piezoelectric actuators, of equal
dimensions and made of the same material, are bonded collocally to the upper
and lower surfaces of a beam along its second segment. The cross-section of this
segment is shown in Fig. 1b.

W1(x1,t)

x1

W2(x2,t)

x2

L1 L2

C

hp

h

b hp

a

b

Fig. 1 Deflected axis of the articulated stepped beam (a), Cross-section of the piezosegment (b)
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It has been derived in [2] that two piezoactuators of the same cross-sectional area
(b � hp), being supplied with an equal homogeneous electric field characterised by
the voltage V, generate the residual piezo-force equal to:

Fr D F



1C a

�
L

L2
� 1

���1
(1)

where: a D 1 C EpAp
EbAb

denotes the axial stiffness ratio of the piezosegment to that
of the beam, F D ˙2be31V is the piezoelectric force resulting from the voltage V
applied to the piezoactuators of width b, L is the length of the beam, L2 is the length
of the piezosegment, Eb is the Young’s modulus of the beam, and Ap, Ab are the
cross section areas of the piezoactuators and the beam, respectively. The residual
force Fr being independent of piezosegment’s position, depends not only on the
piezoelectric force F, but also on the axial stiffness ratio a and the ratio between the
length of piezosegment L2 to whole length of the beam L.

Hence the governing equations, describing the lateral vibrations of the i–th
segment of the beam and the axial stretching force, written in the nondimensional
form are

@4wi .�i ; �/

@�i
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C ci Œfr � s.�/� @
2wi .�i ; �/

@�i
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C di!
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where: �i D xi

L
, li D Li

L
, � D ˝t , wi .�i ; �/ D Wi.xi ; t/

L
,
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EbIb
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Parameters ci and di, which are equal to unity for the first segment (c1 D d1 D 1),
for the second segment are: c2D.1C rm/

�1, d2D Œ˛1C .a�1/ ˛2� Œ˛1 .1Crm/��1.
In the applied formulas: ˛1 D Ep =Eb , ˛2 D 
p =
b , rm D ˛1Ip =Ib , where Ib, Ip

stand for the moments of inertia of the cross-section areas of the beam and actuators,
respectively, 
b, 
p are the material densities of the beam and actuators, respectively,
and˝ is a natural frequency of the system.

For the pin-ended beam from Fig. 1a, the boundary conditions are:

w1.�1; �/
ˇ̌
�1D0 D wII1 .�1; �/

ˇ̌
�1D0 D w2.�2; �/

ˇ̌
�2Dl2 D wII2 .�2; �/

ˇ̌
�2Dl2 D 0;

w1.�1; �/
ˇ̌
�1Dl1 D w2.�2; �/

ˇ̌
�2D0;

wII
1 .�1; �/

ˇ̌
�1Dl1 D cm

�
wI2 .�2; �/

ˇ̌
�2D0 � wI1 .�1; �/

ˇ̌
�1Dl1

�
;
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wIII
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2 wIII
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where the nondimensional spring stiffness cm D CL.EbIb/
�1.

3 Approximate Analytical Solution

A version of the Lindstedt-Poincare method is proposed to solve the stated non-
linear boundary value problem. One assumes the following expansions of the lateral
displacement, the axial stretching force and the natural frequency into exponential
series with respect to the amplitude parameter " ("� 1):

wi .�i ; �/ D
NX
nD1

"2n�1wi2n�1.�i ; �/C O
�
"2NC1� ; (5)

s.�/ D
NX
nD1

"2ns2n.�/C O
�
"2.NC1/�; (6)

!2 D !20 C
NX
nD1

"2n !22n C O
�
"2.NC1/� (7)

Inserting Eqs. 5–7 into Eqs. 2–4 and equating coefficients of the same powers
of " one obtains an infinite set of equations of motion and axial forces, as
well as associated boundary conditions. The obtained equations are subjected to
consecutive analytical solutions after separating time and space variables. The
solution of the first three equations gives the opportunity to numerical calculations
of the two first components of the natural frequency from Eq. 7 as a function of the
nondimensional piezoelectric force f, where f D FL2(Eb Ib)�1. The first component
of the frequency (!0) symbolises its linear part. The nonlinear frequency (!)
changes with amplitude, whose maximum is expressed as

wmax D wi1 .�A/ D "
p
�; wmax 2 .0; 3i; (8)

where: �A is the co-ordinate of maximal displacement, � D AbL
2.Ib/

�1 is the non-
dimensional slenderness parameter of the uniform beam.

The solution method of the considered boundary value problem has been fully
described in [3].
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4 Exemplary Numerical Results

An aluminium alloy beam of a cross section 20 � 0.5 mm and a length equal to
0.25 m with two ceramic piezolayers of the thickness equal to 0.125 mm each
has been taken into account. Hence, for the beam and piezocermiac Young’s
moduli Eb D 70[GPa] and Ep D 80[GPa], respectively, the axial stiffness parameter
a D 1.571.

In Fig. 2 the amplitude-nonlinear frequency relationship is presented for a
different spring stiffness cm, expressing local flexibility at the crack location (here
l1 D 0.75). The shown curves characterise the nonlinearity of the hardening type.

Analysing the demonstrated results with those depicted in Table 1, one can
conclude that the stiffer the spring, the greater the linear frequency value and
the lower the influence of the amplitude on the nonlinear frequency. Two icons,
additionally added in Fig. 2, illustrate the change of the first mode shape as a result
of spring stiffening from cm D 0.5 to cm D 106. The effect of the crack on the stated
objectives can be moderate by the piezoelectric force f, which is shown in Fig. 3

Fig. 2 Amplitude-frequency
relation for different values of
the rotational spring
parameter cm, l1 D 0.75,
f D 0. Icons show the first
vibration modes for cm D 0.5
and cm D 106
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Fig. 3 Amplitude-frequency
relation for different values of
the piezoelectric force. Other
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Table 1 Linear frequency !0 as a function of the crack location and the piezoelectric
force f for different rotational spring stiffness cm

l1 D 0.75 l1 D 0.25

cm
f

pcr
D �1:5 f

pcr
D 0

f

pcr
D 1:5

f

pcr
D �1:5 f

pcr
D 0

f

pcr
D 1:5

0.5 5.4372 4.9646 4.4018 5.0388 4.3092 3.4428
1.0 6.9344 6.3008 5.5548 6.6945 5.7269 4.5779
10.0 10.2018 9.1582 7.9682 11.8206 10.1627 8.7564
106 10.8515 9.7222 8.4415 13.4045 11.5716 9.3567

and in Table 1. The stretching of the beam realised by the piezoelectric force of the
value f D �1.5pcr, where pcr is the non-dimensional buckling critical force for the
uniform beam (pcr D 9.86), decreases the nonlinear effect, whereas the compressing
piezoelectric force f D 1.5pcr increases this effect. Although the linear frequency
decreases with the growing values of the piezoelectric force, this force does not
affect the mode shape.

5 Conclusions

This paper has presented a solution to the nonlinear vibration problem of a stepped
beam with an internal crack. After performing numerical simulations, it has been
shown that the local flexibility introduced by a crack and the location of the crack
affect both the linear and nonlinear frequencies as well as the mode shape. The
natural frequency can be tuned by the residual force induced by the piezoelectric
field applied to actuators. All deviations in the dynamic behaviour of the system
might be treated as a signal of a possible crack initiation in the structure.
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Natural Frequencies of Composite Cylindrical
Helical Springs Under Compression

İlyas Kacar and Vebil Yildirim

Abstract The governing equations of cylindrical isotropic helical springs loaded
axially are extended to the study of free vibration of such helices made of composite
materials. Stiffness method is used based on the first order shear deformation theory.
A helical element has six degrees of freedom at each node, three translations and
three rotations. The element stiffness matrix is obtained exactly based on the both
complementary functions and the transfer matrix methods.

Keywords Vibration • Composite springs • Axial load • Stiffness matrix

1 Introduction

Although there are a few study on the vibration of isotropic helical springs subjected
to an axial load [1–6], to the authors’ knowledge there is no study in the vibration
analysis of composite helical springs subjected to an axial force in the related
literature.

In the present work, the free vibration frequencies of unidirectional composite
cylindrical helical springs subjected to the axial static load are computed numer-
ically with the help of the stiffness matrix method. The exact numerical element
stiffness matrix is obtained based on the both the complementary functions and
transfer matrix methods [7, 8]. To determine static axial tip deflections of helical
springs with large pitch angles due to the static axial force, the authors used
analytical expression, which takes into account for the whole effect of the stress
resultants such as axial and shearing forces, bending and torsional moments.
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Fig. 1 Degrees of freedom of a helical element in global coordinates

The global stiffness matrix, K, incorporates the pre-loading effects (Fig. 1). The
global mass matrix, M, is in the diagonal form. In the solution of a large-scale
eigen-value problem, the subspace-iteration method is employed. The numerical
fundamental natural frequencies of such springs,¨(rad/s), are presented in this work
at first time. Apart from those, the critical buckling loads are obtained based on the
dynamic approach.

.K � ¨2M/D D 0 (1)

2 Determination of the Element Stiffness Matrix
of a Composite Helical Bar Subjected to an Axial Static Force

For a helical bar, the Frenet unit vectors associated with the bar axes are

t D dr=ds D .� cos’ sin ™/i C .cos’ cos ™/j C sin ’ k

n D .d t=ds/=.dt=ds/ D � cos ™i � sin ™ j

b D txn D .sin ’ sin ™/i C .� sin ’ cos ™/j C cos’ k (2)
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where ™ is the horizontal angular displacement, ’ is the helix pitch angle, and the
infinitesimal length of the bar is ds D .R=cos’/d™. Frenet unit vectors are related
to each other with the following relations

d t=ds D �n; dn=ds D £b � �t; db=ds D �£n (3)

For a cylindrical helical bar, denoting the centerline radius of the helix by R
(DD/2), the curvature is � D cos2 ’=R, and the tortuosity is £ D sin’ cos’=R.
The governing equations of helical rods made of an anisotropic material and
subjected to the initial force To D .�Po sin ’; 0;�Po cos’/ and initial moment
Mo D .�PoR cos’; 0; PoR sin ’/ are obtained by Yildirim as (Fig. 1)

dU
ds

� A0 T C t x� D 0

d�

ds
� D0 M D 0 (4)

dT
ds

C .D0 M/xTo C p D 0

dM
ds

C .D0 M/xMo C txT C .A0 T/xTo C m D 0

where T and M are the internal force and internal moment vectors, U and � are the
displacement and rotation vectors, p and m are the distributed force and moment
vectors, respectively. A’ and D’ matrices comprise the cross-sectional rigidities for
composite bars [9]. Equation 4 may be put in the form of

S.™/ D F.™/S.0/ (5)

where S (0) is the state vector at ™ D 0. To be able to consider the variable radius
of cylinder and sections, the element transfer matrix F is obtained by solving the
following differential equation 12 times for 12 different initial conditions based on
the complementary functions method [7, 8].

dF�.m/=d™ D DF�.m/ .m D 1; 2; :::; 12/ (6)

where F�.m/ denotes the solution when mth element of the unknown vector equals
unit as its other elements are all zero. These solutions compose the exact transfer
matrix for cylindrical helical springs. The elements of the state vector at both ends
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for an element can be expressed by the element end displacements, di and dj, and
the element end forces, pi and pj, as follows (Fig. 1):

Si D fd1; d2; d3; d4; d5; d6; p1; p2; p3; p4; p5; p6gT D fdipi gT

Sj D fd7; d8; d9; d10; d11; d12; p7; p8; p9; p10; p11; p12gT D fdjpj gT (7)

Using the above definitions, Eq. 5 can be rearranged for an element as

S.™j / D F.™j � ™i /S.™i / (8)

The element transfer matrix can be expressed in global coordinates as

Fijk.™j � ™i / D T�1.™j /Ftnb.™j � ™i /T.™i / (9)

where

T D

2
664

B 0 0 0

0 B 0 0

0 0 B 0

0 0 0 B

3
775 and B D

2
4 � cos’ sin ™ cos’ cos ™ sin ’

� cos ™ � sin ™ 0

sin ’ sin ™ � sin ’ cos ™ cos’

3
5 (10)

In the element equation, p D kd or fpipj gT D kfdidj gT , elements of the
element stiffness matrix, k, is obtained by solving Eq. 8 12 times for 12 boundary
conditions.

3 Numerical Examples

In the first example an isotropic cylindrical helical spring under axial static load
compressed to half of its free axial length is considered. The results are presented in
Table 1 (faxial D 118.8288853 Hz).

Table 1 The present first seven natural frequencies for an isotropic cylindrical
helical spring (Lo /D D 5, n D 30, D D 10 mm, d D 1 mm, ¡D 7,900 kg/m3,
�D 0.3, G D 79.269 GPa, Fixed-Fixed)

f (Hz) f/faxial

Present Study Becker et al. [6] Haringx [1]

Modes •/Lo D 0 •/Lo D 0.5 •/Lo D 0.5

1 79.7091 55.6628 0.4727 0.4742
2 79.7386 55.6831 0.4732 0.4742
3 118.391 118.468 0.9955 1.000
4 135.043 135.147 1.140 1.140
5 191.627 187.234 1.574 1.582
6 191.775 187.486 1.574 1.582
7 236.593 236.477 1.989 2.000
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Table 2 Material properties of some composites

Graphite-epoxy Carbon-epoxy Aramid-epoxy
AS4/3501-6 (T300/N5208) (CFRP) (KEVLAR 49-EPOXY) (KFRP)

E1 (GPa) 144:8 181:0 76:0

E2 (GPa) 9:65 10:3 5:56

G12 (GPa) 4:14 7:17 2:30

G23 (GPa) 3:45 3:43 1:62

¡ (kg/m3) 1389:23 1600:0 1460:0

�12 0:3 0:28 0:34

Table 3 The first six natural
frequencies for P0 D 0.15 N

Modes AS4/3501-6 T300/N5208 KFRP

1 40.5 55.1 17.2
2 41.3 55.5 18.6
3 129 160 88.8
4 130 160 89.8
5 250 304 181
6 259 317 183
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Fig. 2 Variation of the fundamental natural frequencies for various initial static forces

In the second example the geometrical properties of the springs are: D D 5 mm,
d D 1 mm, n D 30, ’D 15o, Fixed-Fixed. Composite material properties are pre-
sented in Table 2. The first six natural frequencies for P0 D 0.15N are listed in
Table 3. Variation of the fundamental natural frequencies with the numerical value
of the initial axial force is illustrated in Fig. 2. As seen from Fig. 2 that the critical
buckling loads are the axial loads at which the fundamental natural frequency
becomes zero. Those critical buckling loads are presented in Table 4.
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Table 4 Critical buckling
loads obtained based on the
dynamic approach

AS4/3501-6 T300/N5208 KFRP

Pcr (N) 0.32 0.58 0.18

4 Conclusions

In this work, the free vibration analysis of composite cylindrical helical springs is
studied by the stiffness matrix method based on the first order shear deformation
theory. The element stiffness matrix obtained with the help of the complementary
functions method comprises the static axial force effects. Numerical results are
verified by the results for isotropic helical springs subjected to an axial force. This
work is handled in the literature at first time.
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Gas Bubbles Motion in an Oscillating Fluid

V.S. Sorokin, I.I. Blekhman, L.I. Blekhman, V.B. Vasilkov, and K.S. Yakimova

Abstract Motion of a gas bubble in an oscillating fluid is of fundamental interest
for the theory of various widely used technological processes, in particular, for the
flotation process. Therefore, many studies have been concerned with this problem,
some of those being undertaken by eminent scientists. The main remarkable effects
are gas bubbles sinking in vibrating fluid’s volume and asynchronous self-induced
vibration of emerging air cushion. In the authors’ recent papers, the problem has
been solved by means of the concept of vibrational mechanics and the method
of direct separation of motions; experimental studies have been also conducted.
The present paper generalizes those studies. It is shown that the condition of gas
bubbles sinking is strongly dependent on its own compressibility as well as on the
compressibility of the surrounding medium. A formula for the average velocity of
gas bubble motion, which significantly depends on the depth of its submergence
and on vibration parameters, is derived. A simple physical explanation of the
experimentally observed and analytically studied effects is given.

Keywords Oscillating fluid volume • Compressibility effects • Method of direct
separation of motions • Sinking condition

1 Introduction

In the literature, the effect of gas bubbles sinking in a vertically oscillating fluid-
filled volume has been attributed to two different mechanisms, which may be called
a “wave-induced motion” [1–3] and a “vibration-induced motion” [4, 5]. The key
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feature of the first one is the gradient of the wave amplitude, while the key feature
of the second mechanism is the compressibility of the bubble. In the present paper,
these mechanisms are considered as being coupled. A gas bubble motion in vibrating
fluid-filled volume is studied accounting for the compressibility of both the bubble
and the gas-saturated layer, which is generated due to the turbulent fluid motion near
its free surface [6]. In paper [1], to simplify the analysis, bubble’s velocity relative to
the fluid was considered to be equal to its velocity relative to the volume, whereas
in the present study this assumption is omitted. A nonlinear differential equation,
which describes bubble’s motion relative to the volume, is derived, and, for the
solution of this equation, the method of direct separation of motions is applied.
The conditions of bubble sinking in gas-saturated fluid layer are determined. An
expression for the critical thickness of this layer, starting from which it moves
into the fluid volume, is derived, i.e. the condition of vibrational instability of the
separate state of the gas-fluid system is obtained.

An approximate expression for the average velocity of bubble’s motion in gas
saturated layer, which strongly depends on the depth of its location and on vibration
parameters, and an expression for the average velocity of penetration of this layer
into the volume are derived.

Based on the obtained theoretical results, a simple physical explanation of
the effects, experimentally observed in the fluid under the action of vibration, is
provided. The results of recently conducted dedicated experiments are reported.

2 Governing Equations

Motion of a bubble in vertically oscillating with amplitude A and frequency ¨ in
harmonic law ’ D A sin¨t fluid-filled cylindrical volume is analyzed (Fig. 1).

Fig. 1 Model of a bubble
in gas saturated fluid

x

m, R
h

H0

A sin wt

x
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It is assumed that the fluid is saturated with gas till the certain depth h 	 H0

(H0 – the height of the fluid column) and that this fluid column may be considered
as an elastic rod. The rest of the fluid is assumed to follow the oscillations of the
vessel. The absolute displacement of the rod’s cross-section, which in undisturbed
state is situated at distance x from its free (upper) edge, is designated as Ÿ.x; t/. With
the boundary conditions set as Ÿ0jxD0 D 0, ŸjxDh D A sin¨t , this displacement is
determined by the expression

Ÿ D g

2c2
.h2 � x2/CA

�
cos

¨x

c


cos

¨h

c

�
sin¨t (1)

here c – sound speed in a gas-saturated fluid.
A pressure in an oscillating fluid at the distance x (x 	 h) from its free surface

is defined by the formula [7]

P D Pe C ¡xg � ¡

xZ
0

@2Ÿ

@t2
.x1; t/dx1; (2)

here Pe is an external (say, atmospheric) pressure, ¡ is the density of gas-saturated
fluid, g – gravity acceleration.

Assuming the bubble to be compact (the condition ¨R
c

� 1 is held, R is the
radius of the bubble) and taking into account the expression (2), the equation of its
motion in gas-saturated fluid can be written as

m Rx C d .m0 Px/
dt

D �F.vrel/C .m � ¡Vb/ g C ¡Vb
@2Ÿ

@t2
.x; t/

�m R’ �
d
�
m0

�
P’� @Ÿ

@t
.x; t/

		
dt

(3)

Here vrel D PxC P’� @Ÿ
@t
.x; t/ is bubble’s velocity relative to the surrounding medium

(gas saturated fluid), m is the mass of the bubble (it accounts for the mass of a
particle attached to the bubble), m0 is the fluid added mass, defined by the formula
m0 D �Vb¡, with � being an added mass coefficient, Vb – instantaneous volume
of the bubble (dot designates the full time derivative). F.vrel/ D k1R

2vrel is the
resistance force to gas bubble motion.

Assuming that gas bubble volume pulsations are small and isothermal, and taking
into account expression (2), the following equation is used to describe the evolution
of the volume of the bubble

¡R0
d2�R

dt2
C 3

�R

R0
Pe D �¡xg � ¡A¨2f .x/ sin¨t (4)
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where f .x/ D c
¨

�
sin ¨x

c

ı
cos ¨h

c

�
, R0 is the radius of the bubble near free surface

of the fluid,�R D R�R0 (the surface tension is neglected, since it is assumed that
the bubble has the radius, larger than 2 �m [1]).

3 Solution by the Method of Direct Separation of Motions

Inasmuch as the condition c
A¨

 1 is held, the variable x can be considered as
parameter while solving the Eq. 4. Thus, we obtain the following expression for the
instantaneous volume of the bubble

Vb D Vb0

�
1 � ¡

Pe

�
xg C A¨2f .x/

�2

�2 � ¨2 sin¨t

��
(5)

where � D 1
R0

q
3Pe
¡

is the eigenfrequency of bubble’s radial oscillations.

For the solution of the problem we use the concept of vibrational mechanics and
the method of direct separation of motions [8]. The solutions to Eq. 3 are sought in
the form

x D X.t/C §.t; �/ (6)

where X – “slow”, and § – “fast”, 2  – periodic in dimensionless (“fast”) time
� D ¨t variable, with the period-� average being equal zero.

As a result, considering the mass of the bubble to be negligibly small in
comparison with the mass of the medium in its volume m � ¡Vb0, we obtain the
following equation of its “slow” motions:

RX C ˜ PX D A2¨4

2�



1

c2

�
¨2

˜2 C ¨2

�
1C 1

�

�
f 0.X/� 1

�

C ¡

Pe

�2

�2 � ¨2

¨2 C 1
3
˜2

˜2 C ¨2
f 0.X/

#
f .X/ � 1

�
g (7)

Here ˜D k1R
2
0

�¡Vb0
(Vb0 is the volume of the bubble near free surface of the fluid), prime

designates a spatial derivative.
Vibrational force, induced on the bubble in gas-saturated fluid layer, has two

components. The first one is controlled by the bubble’s compressibility, while the
second one is controlled by the compressibility of the surrounding medium. The
ranges of the parameters, when one of these force components dominates the other,
are determined.

The conditions of gas bubble sinking (or rising) in gas-saturated fluid layer, can
be obtained from the Eq. 7. If the expression written in the right hand side of this
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equation is positive, then bubble sinks, and if it is negative, then bubble rises. Thus,
the condition of bubble sinking in gas saturated fluid layer has the form

A2¨4

2g

"
1

c2

�
¨2

˜2 C ¨2

�
1C 1

�

�
f 0.X/�1

�
C ¡

Pe

�2

�2 � ¨2
¨2 C 1

3
˜2

˜2 C ¨2
f 0.X/

#
f .X/> 1

(8)

If the inequality (8) is held at the front of the expanding area X D h of the fluid-
gas phase, then bubbles, generated in the layer with thickness h, will move deeper
into the fluid, and the gas-saturated fluid layer will continue to expand. Thereby, by
employing the obtained condition of bubble sinking (8), the condition of vibrational
instability of the separate state of the gas-fluid system is determined.

An approximate expression for the velocity of bubble’s “slow” motion in gas
saturated fluid layer is defined from the Eq. 7 with its “slow” acceleration RX being
considered as small. The velocity of this layer penetration into the volume is equal
to the sinking velocity of the bubble, situated at its boundaryX D h.

To verify analytically obtained results, a numerical experiment was conducted.
Original equations of the gas bubble motion were integrated directly by means
of Mathematica 7, and the obtained results are in good agreement with analytical
solution.

Series of experiments has been conducted on the multi-functional vibration
test rig of the Joint laboratory of Vibrational Mechanics IPME RAS and REC
“Mekhanobr-Tekhnika”. As a result, the assumption that the vibrational force,
induced on the bubble in gas-saturated fluid, has the component controlled by the
bubble’s compressibility and the component controlled by the compressibility of
the surrounding medium, has been entirely confirmed. It has been shown that, at
some ranges of external excitation parameters, either of those can lead to gas bubble
sinking.

4 Conclusions

Motion of a bubble in vibrating volume of a fluid, saturated with gas on a certain
depth, is studied, with compressibility of both the bubble and the gas saturated layer
being taken into account. The conditions of gas bubble sinking in the layer are
determined. The expression for the critical thickness of gas-saturated fluid layer,
starting from which it penetrates into the volume, is derived, i.e. the condition
of vibrational instability of the separate state of the gas-fluid system is obtained.
An approximate expression for the average velocity of bubble’s motion in gas
saturated layer, which strongly depends on the depth of its location and on vibration
parameters, and an expression for the average velocity of penetration of this layer
into the volume are derived. The reported results are applicable for control and
optimization of relevant technological processes.
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It is shown that vibrational force, induced on the bubble in oscillating gas
saturated fluid, has two components controlled by the bubble’s compressibility and
by the compressibility of the surrounding medium, respectively.
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Theoretical and Experimental Basis
of Advanced Vibrational Technologies

I.I. Blekhman, L.A. Vaisberg, and D.A. Indeitsev

Abstract The paper deals with the overview of the new results obtained in the joint
Vibration mechanical laboratory of two companies mentioned above.

Keywords Vibrational technologies • Theory • Experiment • Applications

1 Introduction

Vibrational technologies and machines are increasingly employed in various
applications. At present, development of such technologies has advanced to the
qualitatively new level. It is facilitated by the recent discoveries in this field and by
the emergence of new theoretical and experimental methods. The brief overview
of the new results obtained in the joint laboratory of Vibrational mechanics of
the IPME RAS and REC Mekhanobr-Tekhnika (Saint-Petersburg) is given in the
report. These results cover new theoretical and experimental approaches, dynamics
of vibration excitation, dynamics of vibrational processes.
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2 Development of General Theoretical and Experimental
Approaches

The approach of vibration mechanics and the method of direct separation of motions
are the main theoretical tools for solution of the problems of the action of vibration
on various media and system. They were in detail presented in books [1, 2]; its
advancement is given in articles in book [3] and in presentation [4].

Vibrational stand 486 – US of the Mekhanobr – Tekhnika Corporation was used
as a main tool for the experimental studies. Owing to the use of self-synchronization
phenomenon this equipment provided possibility for obtaining vibrations of various
forms and directions. This makes the stand a unique tool useful for investigation of
various processes and devices [5].

Computer simulation methods were widely used including EDEM software
employing the method of particle dynamics (molecular dynamics method [6]).

3 Problems of Vibration Excitation. Motion of Vibration
Exciter Rotor in Passing Start-Stop Resonance Zone,
Zommerfeld Effect

The problem of passing through a resonance zone in devices with rotating imbal-
anced rotors that operate within the supercritical frequency range is of significant
interest for a number of engineering fields. An important characteristic of this
process is the phenomenon of “sticking” rotor rotation frequency near the eigen-
frequency, which was described for the first time by Zommerfeld (1902), and was
named after him. A number of studies are devoted to this. Such studies began in
Russia as far back as in 1939 and continued in 1953 [1, 7–11], appear to have been
disregarded by the researchers of other countries. The review of early papers on this
problem can be found in [8–13]. In paper [12] the problem is solved by the method
of the direct separation of motions.

The setup of the system is shown in Fig. 1. An unbalanced rotor 2, driven by
an electric motor, is installed on a flexible platform 1. It may move in direction x.
The platform is supported on a fixed base 3 by elastic elements with rigidity c and
damping element with viscous friction factor ˇ.

Fig. 1 The setup of system
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The equations of motion of the system can be found in the publications [1–3,
8–12]. As a result in [1, 12] it is obtained two following equations

I P̈ D L.¨/ � R.¨/C V.¨/; (1)

R§C 2n1 P§C b sin§ � ¡2sin2
§

2
D 0 (2)

Here ¨ is the rotation frequency, § – is a semi-slow vibrational component of the
rotor rotation the angle in relation to uniform¨t , L andR – the torque of motor and
resisting torque respectively, n1 and ¡ – positive parameters.

V.¨/ D � .m©¨/
2

M

n¨3

.¨2 � p2/2 C 4n2¨2
D �n¨MA2 (3)

.p2 D c=M; 2n D “=M; A D m©¨2=M
q
.p2 � ¨2/

2 C 4n2¨2 /

is a torque refereed as vibrational torque which is an additional load on the rotor
imparted by vibrations of the platform on which it is installed. The Zommerfeld
effect is explained by the presence of this torque.

Equation 1 is valid, if P!=!0 << !0 where ¨0 is stationary value of ¨, M is the
mass of the systems. The value

q D
p
b D A

p
M jp2 � ¨2j =2I (4)

is the frequency of small free vibration of the “internal pendulum” (the resistance
force being neglected). This frequency vanishes for p D !: To validity Eq. 2, it is
necessary, that q � !; usually it is sufficient to have q=! < 1=3:

Analysis of Eq. 2 revealed that if in subresonance condition ! < p the stable
position of the internal pendulum is  0 D 0 and unstable position is  0 D  ,
the post-resonance positions are quite the opposite (in absence of damping), i.e. in
passing the resonance zone the internal pendulum turns backward.

These results were generalized in [13] to the case of vibrator rotor being installed
on a movable platform with three degrees of freedom. The paper [14] deals with
semi-slow relative vibrations of two rotors arising during disturbance of self-
synchronization mode. It was found that the frequency of the internal pendulum
oscillations in this case is equal to

p
2q where q is determined by formula (4).

Practical value of the results obtained is that they can be used in the design of
control start-stop systems of the machines under consideration [15]. These systems
provide to lower the power the drive motor and the resonance amplitude.
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4 Dynamics of Vibration Processes

4.1 Travel of Gas Bubble in Vibrating Vessel Filled with Liquid.
Vibrational Injection. Vibro-Jet Effect

This problem is important for development of a lot of treatment processes. Most full
review and own results in this problem are given in [16]. A series of theoretical and
experimental studies in this field has been carried out by the authors of this report
together with collaborators [17–20].

Submersion of gas bubbles into oscillating liquid observed in the experiments
is of great significance. Analytical investigation involving by the method of direct
separation of motions proved that a decisive cause of this phenomenon is the
yieldability of the bubble and gas saturated liquid.

Bubble submersion conditions were ascertained and an expression for average
velocity of immersion was obtained. The paper by V.S. Sorokin and al. summarizing
these studies is presented at this conference. The theory of vibrational gas injection
into liquid and vibro-jet effect are described in [20].

4.2 Behavior of Granular Media in Vibrating Vessels.
Separation of Loose Particles Mixtures and Optimization
of Screening Process

By contrast to many published statements the behavior of granular media under
vibration is distinct from that of a viscous liquid because in the medium there arises
certain vibration forces along with medium fluidization. This circumstance explains
the processes of vibration transportation and specifics of granular medium behavior
in vibrating communicating vessels [1, 18].

A serious challenge in some industries is separation of particles by their shape
These problems were considered in [21] and solved in the patent [22]. The required
result is achieved there by the use of a sloping vibrating surface of which the
properties and vibration parameters have been selected in such way that flat shaped
and spelled particles tend to travel upwards while cube and spherical shaped ones
will roll downwards.

A series of works have been accomplished on creation of devices for a segrega-
tional (“no sieve”) classification of particles by their size and shape [23, 24].

4.3 Some Other Problems

The problem of manufacturing vibratory dynamic materials and composites and
vibrational control of their properties is discussed in [25] and [1–3].
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Papers by K. S. Ivanov and by A. M. Guskov, E. V. Myalo and G. Ya. Panovko in
the collection [3] are devoted to Chelomey’s effect observed in a washer traveling
along a vibrating rod.

Some investigations were aimed at enhancing grinding efficiency of the drum
mills. This was achieved by periodic agitation of the grinding media. This was made
possible by changing conventional shape of the operating chamber.

5 Conclusions

The paper deals with results of two research teams representing two St. Petersburg
institutions and engaged in development of theoretical and experimental fundamen-
tals, which are aimed to provide means for creation of new vibrating machines and
technologies. Many of these findings have been commercialized but still greater part
of them requires effort of designers and inventors.

Acknowledgements The research work reported here was made possible by grants RFBR 09-08-
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References

1. Blekhman, I.I.: Vibrational Mechanics, 400 p. Fizmatlit, Moscow (1994) (In Russian, Engl.
trans.: Singapore et al., World Scientific Publishing Co. (2000) 510 p.)

2. Blekhman, I.I. (ed.): Selected Topics in Vibrational Mechanics, p. 409. WorldScientific
Publishing Co., Singapore/River Edge (2004)

3. Beletsky, V.V., Indeitsev, D.A., Fradkov, A.L. (eds.): Nonlinear Problems in the Theory of
Oscillation and Theory of Control. Vibrational Mechanics, p. 528. Nauka Press, Moscow
(2009) (in Russian and in English)

4. Blekhman, I.I.: On the oscillatory strobodynamics. Accepted as a presentation on ENOC 2011,
Rome, 24–29 July 2011

5. Blekhman, I.I., Vaisberg, L.A., Vasilkov, V.B., Lavrov, B.P., Yakimova, K.S.: Universal
vibrational stand: experience in investigations and some results. Nauchno-technicheskie
vedomosti St. Petersburg State Technological University (3), 224–227 (2003) (in Russian)

6. Arsentyev, V.A., Blekhman, I.I., Blekhman, L.I., Vaisberg, L.A., Ivanov, K.S., Krivtsov, A.M.:
Methods of particles and discrete elements dynamics as a tool for studies and optimization of
natural and waste mineral processing. Obogashcheniye rud (1), 30–35 (2010) (in Russian)

7. Blekhman, I.I.: Self-Synchronization of vibrators in some types of vibration machines.
Inzhenerny Sbornik 16, 49–72 (1953)

8. Blekhman, I.I.: Synchronization of Dynamic Systems, p. 894. Nauka Press, Moscow (1971)
(in Russian)

9. Blekhman, I.I.: Synchronization in Science and Technology, p. 351. Nauka Press, Moscow
(1981) (in Russian, English trans.: ASME Press, New York (1988) 255 p)

10. Vibration in technology. Handbook in 6 volumes, vol. 2, p. 351 (1979); vol. 4, p. 509 (1981).
Mashinostroenie, Moscow (in Russian)

11. Kononenko, V.O.: Oscillatory Systems with Limited Excitation, p. 254. Nauka Press, Moscow
(1964)



138 I.I. Blekhman et al.

12. Blekhman, I.I., Indeitsev, D.A., Fradkov, A.L.: Slow motions in systems with inertial
excitation. J. Mach. Manuf. Reliab. 37(1), 21–27 (2008)

13. Blekhman, I.I., Yaroshevich, N.P.: Transition regimes in inertional excited trans-resonant
vibrational devices with several degrees of freedom of the carrier system. In ref. [3],
pp. 215–238

14. Potapenko, M.A.: Slow vibrations of unbalanced rotor vibration exciters in self-
synchronization disturbance conditions. J. Mach. Manuf. Reliab. 37(3), 27–29 (2008)

15. Tomchin, D.A., Fradkov, A.L.: Control of the passage of a rotor through a Resonance Zone
on the basis of the Speed-Gradient Method. J. Mach. Manuf. Reliab, 34(5), 66–71 (2005)

16. Ganiev, R.F., Ukrainsky, L.E.: Nonlinear Wave Mechanics and Technologies, 712 p. Publish-
ing Center “Regular and Chaotic Dynamics”, Moscow (2008)

17. Blekhman, I.I., Vaisberg, L.A., Blekhman, L.I., Vasilkov, V.B., Yakimova, K.S.: Anomalous
phenomena in liquids under vibration action. Proc. Russ. Acad. Sci. 422(4), 470–474 (2008)
(Engl. trans.: Dokl. Phys. 53(10), 520–524 (2008))

18. Blekhman, I.I., Blekhman, L.I., Vaisberg, L.A., Vasilkov, V.B., Yakimova, K.S.: Vibration
effects in liquid, granular and mixed media: experiment, theory and applications. Obo-
gashcheniye rud (4), 42–47 (2009) (in Russian)

19. Blekhman, I.I.,Vakulenko, S.A., Indeitsev, D.A., Mochalova, Yu.A.: Generation and move-
ment of gas-liquid mixture in a vibrating vessel filled with free surface liquid. Transactions of
XVI symposium “Dynamics of impact-vibration (non-linear) systems” “DYVIS-2009”. M.,
2009, pp. 61–71 (in Russian)

20. Blekhman, I.I., Blekhman, L.I., Vaisberg, L.A., Vasilkov, V.B., Yakimova, K.S.: Nonlinear
effects of liquid flowing out of vibrating vessels. Trans. Russ. Acad. Sci. 391(2), 185–188
(2003) (Engl. trans.: Dokl. Phys. 48(7), 355–358 (2003))

21. Blekhman, I.I., Blekhman, L.I., Vaisberg, L.A., Vasilkov, V.B., Yakimova, K.S.: On separation
of solids by shape on vibrating surfaces. Obogashcheniye rud (2), 23–25 (2007) (in Russian)

22. Blekhman, L.I., Vaisberg, L.A., et al.: Method of separating spherical particles from spalled
ones. Patents Bull. (34), Russian Patent 2,405,634, 10 Dec 2010

23. Blekhman, L.I., Vaisberg, L.A., et al.: Vibratory classifier. Patents Bull. (36), Russian Patent
2,407,600, 27 Dec 2010

24. Arsentiev, V.A., Blekhman, I.I., Blekhman, L.I., Vasilkov, V.B., Feoktistov, A.Yu., Yakimova,
K.S.: Classification of bulk flowing material by vibrational segregation. Set up, simulation,
experiment, Obogashcheniye rud (5), 13–16 (2010) (in Russian)

25. Blekhman, I.I.: Vibrational dynamic materials and composites. J. Sound Vib. 317(3–5),
657–663 (2008)



Regular and Irregular Vibrations in Nonlinear
Discrete-Continuous Systems Torsionally
Deformed

A. Pielorz and Danuta Sado

Abstract In the paper discrete-continuous systems torsionally deformed with a
local nonlinearity are considered. The systems consist of an arbitrary number of
rigid bodies connected by shafts. The nonlinearity is described by the polynomial
of the third degree having a hardening characteristic. In the study a wave method
is applied leading to solving equations with a retarded argument. The numerical
analysis focuses on regular and irregular vibrations. Detailed considerations are
presented for a two-mass system. The possibility of occurring of irregular vibrations
is discussed on the basis of the Poincaré maps and on bifurcation diagrams.

Keywords Regular and irregular nonlinear vibrations • Discrete-continuous
systems • Wave approach

1 Introduction

The paper deals with nonlinear vibrations of discrete-continuous mechanical sys-
tems torsionally deformed with a local nonlinearity having the characteristic of
a hard type, taking into account regular and irregular vibrations. The considered
systems consist of shafts with circular cross-sections connected by rigid bodies. It
should be pointed out that local nonlinearities in torsional systems are justified by
many engineering solutions. Local nonlinearities in the paper are described by the
polynomial of the third degree.
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Governing equations for multi-mass discrete-continuous systems torsionally
deformed are derived in [1, 2]. In the studies a wave approach leading to solving
equations with retarded argument is used, [1–3]. Irregular nonlinear vibrations
including chaos are mainly considered in discrete systems, [4–7]. In [8] some
numerical results concerning irregular nonlinear vibrations in a two-mass system
torsionally deformed are given for local nonlinearities with a soft type character-
istic. Here similar considerations are presented for systems having the hardening
characteristics of the local nonlinearities. The possibility of occurring of irregular
vibrations is discussed on the basis of the Poincaré maps and bifurcation diagrams.
Exemplary numerical results are also given for a two-mass system. In the discussion
of irregular vibrations, the approach used earlier in [4–6] for discrete systems, is
generalized here to the case of discrete-continuous systems.

2 Equations

The i-th shaft in a multi-mass system torsionally deformed, i D 1,2, : : : ,N, is
characterized by length li , density 
, shear modulus G and polar moment of inertia
I0i , [1, 2]. The mass moment of inertia of rigid bodies, i D 1,2, : : :N C 1, are Ji .
The first rigid body J1 is loaded by the harmonic moment M(t), and a local nonlinear
discrete element with a hardening characteristic is attached to it. Equivalent external
and internal damping, having coefficients di and Di , are taking into account in
appropriate cross-sections. It is assumed that displacements and velocities of the
shaft cross-sections are equal to zero at time instant t D 0.

In appropriate nondimensionless quantities, the determination of angular
displacements �i of shaft cross-sections is reduced to solving N equations,
[1, 2],

�i;t t � �i;xx D 0; i D 1; 2; :::; N (1)

with the following nonlinear boundary conditions

M0 sinpt � �1;t t CKr.D1�1;xt C �1;x/� d1�1;t � k1�1 � k3�31 D 0 for x D 0;

�i .x; t/ D �iC1.x; t/ for x D
iX

kD1
lk; i D 1; 2; :::; N � 1;

� �i;t t �KrBiEiC1.Di�i;xt C �i;x/CKrBiC1EiC1
� .DiC1�iC1;xt C �iC1;x/ �EiC1diC1�i;t D 0

for x D
iX

kD1
lk; i D 1; 2; :::; N � 1;
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� �N;t t �KrBNENC1.DN �N;xt C �N;x/ �ENC1dNC1�N;t D 0

for x D
NX
kD1

lk; (2)

and with zero initial conditions. Parameters M0 and p are the amplitude and
the frequency of an external loading, correspondingly. Comma denotes partial
differentiation.

The solutions of Eq. 1 are sought in the form

�i .x; t/ D fi .t � x/C gi

 
t C x � 2

i�1X
kD1

lk

!
; i D 1; 2; :::; N: (3)

Substituting (3) into the boundary conditions (2) we obtain the set of ordinary
nonlinear differential equations with a retarded argument for unknown functions
fi and gi which can found in [1, 2]. Such equations can be solved numerically with
zero or nonzero initial conditions.

3 Numerical Results

The aim of the numerical analysis is to study the possibility of occurrence of
irregular vibrations in systems considered. This is done on the basis of the Poincaré
maps for the two-mass torsional system, presented in Fig. 1, characterized by the
following basic parameters:N D 1; E2 D 0:8; Kr D 0:05; k1 D 0:05; k3 D 0:005:

The first two natural frequencies for the system are then !1 D 0:126; !2 D 0:351:

In [1, 2] it is shown that the effect of the nonlinearity is observed only in
the first two resonant regions. In the case of the nonlinearity with a hardening
characteristic, amplitude jumps are observed. Amplitude-frequency curves for
angular displacement, presented in Fig. 2a, show such jumps for four values of the
amplitudeM0 D 0.1, 0.25, 0.5, 1.0 and with large damping expressed by appropriate
coefficients equal to d0 Dd1 Dd2 DD1 D 0.1. Jumps occur in the second resonant
region. Two amplitude jumps can be obtained, with zero initial and nonzero initial

Fig. 1 Two-mass
discrete-continuous system
torsionally deformed 0 l1

(1)

x

J1 J2

M(t)

(2)
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Fig. 2 (a) Amplitude-frequency curves for angular displacements in x D 0, (b) Bifurcation
diagram for x D 0

conditions, [1]. In the nonzero initial case jumps are observed for larger values of
the frequency p of the external moment M(t). From Fig. 2a it follows that distances
between jumps increase with the increase of M0. It appears that distances of jumps
increase also with the decrease of damping.

Irregular vibrations are looked for with M0 D1 and for small damping, i.e.,
for d0 D 0.001 in the cross-section x D 0. The bifurcation diagram is shown in
Fig. 2b, exemplary maps of Poincaré are presented in Fig. 3, and maximal Lyapunov
exponents � as functions of number of iterations n for two values of frequency p are
given in Fig. 4.

In the Fig. 3d, e we can observe the strange attractors, and values of maximal
Lyapunov exponents presented in Fig. 4 are positive, so in these cases (for p D 0.37
and p D 0.38) motions of angular displacements are chaotic.

4 Conclusions

From considerations in the paper it follows that in torsional discrete-continuous
systems, with a local nonlinearity having a hardening characteristic, except periodic
vibrations may appear also different kinds of irregular vibrations including chaotic
vibrations. Irregular vibrations occur in the limited range of the change of the
parameters representing the system and the external moment. Presented numerical
calculations concern the two-mass system, however governing equations allow us
to widen considerations to more complex systems.



Regular and Irregular Vibrations in Nonlinear Discrete-Continuous Systems... 143

Fig. 3 Poincaré maps for (a) p D 0.04, (b) p D 0.3, (c) p D 0.34, (d) p D 0.37, (e) p D 0.38,
(f) p D 0.39, (g) p D 0.4, (h) p D 0.41, (i) p D 0.42, (j) p D 0.74, (k) p D 0.79, (l) p D 0.87
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Stability of the Vertical Excitation of Slender
Structures

J. Náprstek and C. Fischer

Abstract Vertical slender structures exposed to a strong vertical component of an
earthquake excitation are endangered by auto-parametric resonance effect. In sub-
critical regime the vertical and horizontal response components are independent. In
post-critical regime, the non-trivial horizontal response occurs and dynamic non-
linear interaction of both vertical and horizontal response components takes place.

It can be shown using a simplified analytical model, that there exist several
theoretical stability limits either for the parameters of excitation or for parameters
of the structure and subsoil. One corresponds to appearance of the non-trivial
horizontal response. Other describes the case, when the horizontal response exhibits
steadily increasing amplitude, which fact leads sooner or later to collapse of the
structure.

Even if presence of the horizontal component in the system response does not
automatically mean inevitable collapse of the structure, this type of behaviour
should be avoided. The presented paper studies the stability conditions of the
stationary response on a harmonic excitation and formulates the critical values of
excitation amplitude.

Keywords Dynamic stability • Non-linear resonance • Non-lineardynamics
• Auto-parametric system

1 Introduction

Many studies devoted to dynamics of slender structures (towers, masts, chimneys,
bridges, etc.) related with earthquake attack have been published. They are dealing
predominantly with an influence of horizontal excitation components. On the other
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hand a strong vertical excitation component especially in the earthquake epicentre
area can be decisive. The vertical component of the subsoil movement caused
heavy damages or collapses of many high rise structures due to earthquake attack.
Very widely used linear approach, however, usually doesn’t provide any interesting
knowledge in such a case. It reveals that the origin of these problems consists in
auto-parametric resonance effects.

Auto-parametric systems have been recently studied intensively. These investiga-
tions are motivated by various technical branches and by basic theoretical research
in rational mechanics. A theoretical outline dealing with these systems has been
presented probably for the first in [1]. During this time many papers contributing
to analytical, numerical as well as experimental aspects of auto-parametric systems
have been published mostly by Tondl, Nabergoj and co-authors, e.g. [2–5]. Many
other references can be found. Several monographs, e.g. [6] or [7], presenting a
comprehensive overview of partial results and methods have appeared. A couple
of papers dealing with auto-parametric systems under deterministic and random
excitation have been recently published by authors of this study [8–10].

The mechanical system under study resembles inverse pendulum based systems.
It shares major resonant properties with the inverse pendulum, like the main types
of resonant states: chaotic and cyclic motion. Influence of the bending of the
console, which the studied system comprises, is not significant but noticeable in the
results. The presented contribution extends the previous paper [10] and studies in
detailed analysis of the stability conditions of the stationary response on a harmonic
excitation. It also identifies the critical values of excitation amplitude and formulates
some design criteria.

2 Model Formulation

Let us consider the three DOF theoretical model outlined in the Fig. 1. It describes
roughly a slender structure and its immediate subsoil. Influence of bending of the
structure is taken into account. The system is Hamiltonian, see [11].

Non-dimensional response and excitation components are useful to be introduced
(see Fig. 1 for interpretation) :

$0 D y0

l
; $ D y

l
; ';  D ' C �

l
(1)

The excitation process $0(t) will be considered as harmonic:

y0 D A0 sin!t ) $0 D a0 sin!t; A0 D a0 � l (2)

The governing 3DOF differential system in the form of Lagrange equations
emerge from the kinetic and potential energies of the moving system. Finally it
can be formulated as follows:
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a b

Fig. 1 Outline of the 3-DOF auto-parametric system and used symbols

R$ � �0. P '/� C !20.$ � $0 C �c. P$ � P$0// D 0; .a/

R' � �1. P$'/� C �1 R C �1 P$ P � �1!22 C !1.' C �c P'/ D 0; .b/

R � . P$'/� C !23. � ' C �e. P � P'// D 0; .c/ (3)

where the following notation has been used:

�0 D m

M Cm
; �1 D m � l2

M � 
2 ; !
2
0 D C

M Cm
; !21 D C

M
; !22 D g

l
; !23 D 6EJ

m � l3

3 Analysis

In the post-critical state all the response components are non-trivial. Therefore
expecting a single mode response, following approximate expressions can be
written:

$.t/ D rc.t/ cos!t C rs.t/ sin!t; R2.t/ D r2c .t/C r2s .t/ .c/

'.t/ D pc.t/ cos
1

2
!t C ps.t/ sin

1

2
!t; P 2.t/ D p2c .t/C p2s .t/ .b/

 .t/ D sc.t/ cos
1

2
!t C ss.t/ sin

1

2
!t; S2.t/ D s2c .t/C s2s .t/ .c/ (4)

To make a decision between single- and multi-harmonic approximation is a delicate
question. For some interesting experiences, see [12]. Another opinion can be found
in [13], when internal resonance or its proximity should be analysed.
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Let us use the approximations (4) in the system (3). Going through the harmonic
balance procedures a differential system for unknown amplitudes X can be obtained:

H.X/
dX
dt

D K.X/I H.X/ 2 R
6�6; K.X/ 2 R

6

X.t/ D Œrc.t/; rs.t/; pc.t/; ps.t/; sc.t/; ss.t/�
T (5)

The detailed structure of the matrix H(X) and the vector K(X) is described in [10].
Let us study the properties of the proposed solution (4). The system (5) for

amplitudes X(t) is meaningful if they are functions of a “slow time,” in other words
if their changes within one period T D 2=! are small or vanishing and individual
steps of the harmonic balance operation are acceptable.

Depending on the types of response, the two main cases can be identified:

(a) In sub-critical linear regime the vertical and horizontal response components
are independent. If no horizontal excitation is taken into account, no hori-
zontal response component is observed. In the components defined by (4),
P(t) D S(t) D 0 and R(t) is so called semi-trivial solution.

(b) If the auto-parametric resonance occurs, horizontal response components arise
even if no horizontal excitement is present. All the components R(t), P(t), S(t)
are non-trivial.

Studying properties of the system (5), one should be able to distinguish individual
cases (a) and (b).

Let us look at first at the matrix H(X) of the differential system (5). Its
determinant has the following form:

det.H.X// D 1

256
!6
�
�0

�
pc.t/

2 C ps.t/
2
	

� 4
	2

(6)

It is clear from Eq. 6 that regularity of H (for ! > 0) depends only on P 2(t) :

P2.t/ ¤ 4
M

m

�
1C m

M

	
;

m

M
� 1

The inverse matrix can be formulated easily:

H.X/�1 D 2

0
BBBBBBB@

0 0 0 �!�1 0 �1!
�1

0 0 !�1 0 ��1!�1 0

0 2ı 0 0 ı�0ps.t/ ı�0pc.t/

�2ı 0 0 0 �ı�0pc.t/ ı�0ps.t/

�2ıps.t/ 2ıpc.t/ 0 0 0 4ı

�2ıpc.t/ �2ıps.t/ 0 0 �4ı 0

1
CCCCCCCA



Stability of the Vertical Excitation of Slender Structures 149

0.0

0.5

1.0

0

200

400

0.0 0.5 1.0 1.5
0

400

800

P2

R2

S2

a b c

a0=0.6
a0=0.4
a0=0.2

for a0=0.4

for a0 =0.6

stable

stable
stable

stable

stable

stable

stable unstable

sta
ble

unstable

unstable

0.6 0.8 1.0 1.2

-0.6

-0.4

-0.2

0.0

0.2
a0=0.6

a0=0.4

a0=0.2

det(JK)

0 0.5 1.0 1.5
0

0.2

0.4

0.6

a0 6 real roots 10 real
roots

a b c

2 real roots

a b

c

Fig. 2 Left: (a) stable and unstable branches of the resonance plots for generalised amplitudes
R2, P2, S2. Right top: (b) position of the bifurcation points with respect to excitation frequency !
and amplitude a0. Right bottom: (c) values of the Jacobi determinant det .JK.X// along the zero
solutions K(X) D 0. Model data: M D 1990; m D 10; l D 20; C D 2000; ¡ D 1; �c D �e D
0:32; EJ D 104; g D 9:81

where ı D !�1
�
�0

�
pc.t/

2 C ps.t/
2
	

� 4
	�1

. As for the real structures m � M,

nonexistence of the inverse matrix does not cause problems for ! > 0.
Knowing the exact form of (H(X)) � 1, the normal form of the differential Eq. 5

can be easily established. However, as long as the matrix H(X) is regular, the
original right hand side K(X) can be studied equivalently.

Let us consider stationary response of the system. In this case, the derivatives
dX / dt vanish and the right hand side K(X) has to vanish too. Thus, to identify the
stationary solutions, the zero solution points of K(X) should be traced. In the same
time, the signum and the zero points of the Jacobi determinant of K(X) have to be
checked, as in these points bifurcations could occur.

For the particular data, the dependence of R2(t), S2(t) and P2(t) on excitation
frequency ! is shown in the left hand part of Fig. 2. Three traces are presented
for each variable, they correspond to excitation amplitudes a0 D 0. 2, 0, 4, 0. 6.
Regarding the topmost part of Fig. 2a, it shows the resonance curve of the semi-
trivial solution. For amplitudes a0> 0. 2 are the curves enriched by the lover stable
branches in the resonance region. Each of this non-linear branches begins in the
intersection point with the ascending part of the semi-trivial resonance curve (let
us denote the point as !a for the curve for to a0 D 0. 4) and extends beyond the
intersection point with the descending part of the linear resonance curve (!b) up
to certain point !c. Another interesting point is the fact, that position and shape of
the non-linear stable branch coincides for all different amplitudes a0. The individual
curves differ by their length, see the dotted lines connecting corresponding points
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for R2, P2 and S2. Between the both intersections !a and !b, the upper branch R2 is
unstable and the lower R2 branch is stable. For P2 and S2 holds the opposite case.
The cantilevered part of the non-linear branch R2 (between !b and !c) is twofold,
consisting of both stable and unstable parts.

Figure 2b shows the areas in the (!, a0) plane, where the right hand side K(X)
has 2, 6 or 10 real roots. Boundaries between these areas are formed by bifurcation
points of the equation K(X) D 0 or, alternatively, by singular points of the Jacobian.

Course of the Jacobi determinant det .JK.X// for individual zero solutions from
the Fig. 2a is shown in the Fig. 2c. Let us remind the fact, that the negative sign of the
Jacobi determinant correspond to the stable branch of the solution. The black solid
lines correspond to the semi-trivial solutions for excitation amplitudes a0 D 0. 2, 0,
4, 0. 6. Their corresponding non-linear branches (dashed lines) begin and end in
the zero points of the semi-trivial branches. The non-linear branches are twofold,
which fact gives six or ten real zero solutions in the part between !a, !b and !b, !c

respectively.
Let us attend now in more detail the case, when semi-trivial resonance curve

loses its stability and the non-linear branch arises. The amplitude corresponding to
this particular case forms the upper limit of the design value for any real structure.
The critical amplitude would be characterised by the following three conditions:

K.X/ D 0 I det .JK.X// D 0 I d

d!
det .JK.X// D 0 (7)

Solving (7) numerically for data from the example, the following values can be
obtained: ! D 1:0242; a0 D 0:261.

4 Conclusions

Non-linear auto-parametric system with three degrees of freedom has been in-
vestigated. The aim of this study was to compose a simple mathematical model
which enables to assess the non-linear post-critical dynamic response of a slender
vertical structure on an elastic subsoil exposed to a strong vertical excitation. It has
been shown that under certain condition the semi-trivial solution loses its dynamic
stability and strong horizontal response components become decisive from the point
of view of various standards. Post-critical states have been thoroughly analysed with
respect to excitation frequency and excitation amplitude. Stability of the individual
solution branches has been assessed. The critical value of the excitation amplitude
has been determined. A similar procedure can be applied also for determining
dangerous values of the other structural parameters, like damping ratio etc.
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Bifurcation Diagram of an Impact Oscillator
with Uncertain Impact Model Parameters

R.R. Aguiar, T.G. Ritto, and H.I. Weber

Abstract Understanding vibro-impact systems is basic for impact dynamics used
in resonance drilling. In order to model a vibro-impact system, a contact model
must be chosen. The choice of the best contact model for a certain application is
not an easy task. The numerous models available in the literature are a proof that
research regarding this subject has not come to an end. When considering the force-
based method (or continuous analysis), one challenge is to define the values of the
impact coefficients. The uncertainties related to these parameters are not aleatory,
but rather epistemic. In the proposed approach these variables are going to be
modeled by random variables and the probabilistic model is going to be constructed
using the maximum entropy principle. The purpose of this work is the numerical/
experimental investigation of the impact force behavior in a vibro-impact system,
taking into account uncertainties in the impact model parameters. The experimental
data will be used to validate the mathematical model, using the bifurcation diagram.
An improvement of the Peterka map is proposed to better visualize each impact
force behavior, plotting one stable periodic behavior at a time and adding colors to
the third coordinate, the impact force.
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Keywords Bifurcation diagram • Vibro-impact system • Uncertain impact
coefficients • Stochastic dynamics

1 Introduction

The study of vibro-impact systems has been the aim of several researches, from the
application of a percussive action in rotary drilling for improved performance [3],
to ultrasonic drilling [6], impact dampers [5] and vibro-safe percussion machines.
Experimental investigation of impact problems reveals typical difficulties of this
subject. Each situation is different, and even each impact may present variations.
Analytical models try to compensate that by making use of more elaborate models.
However, when working experimentally, simple impact force models may give
better results when the complexity of the system increases.

When modeling a vibro-impact system some simplifications must be done,
hence, as a consequence: (1) the model chosen for the system possibly does not
describe it correctly (epistemic uncertainty related to the model), (2) the impact
model chosen possibly does not describe the impact correctly (epistemic uncertainty
related to the impact model) and the values of the parameters used in the model
possibly are not correct (epistemic uncertainty related to the parameters).

The objective of this work is to investigate the behavior of an impact pendulum
(hammer) inside a vibrating structure taking into account uncertainties in the impact
model parameters. In the proposed approach these variables are going to be modeled
by random variables and the probabilistic model is going to be constructed using
the maximum entropy principle. The idea is to use the information we have about
the random variables, so that the distribution used for the random variables chosen
is compatible with the physics of the problem. Experimental data will be used to
validate the mathematical model, with help of the bifurcation diagram.

2 Experimental Apparatus and Mathematical Modeling
(Deterministic)

The system analyzed in this work has been developed and fully described in [1]. It
consists of am impact pendulum mounted inside a moving cart, excited by an AC
motor, see Fig. 1a. The test rig considers different values for the impact gap and the
excitation frequency. The methodology is to observe the impact force behavior as
the gap is varied. In this work, results are shown for the 0.0 mm gap. In all results
shown the data was acquired after the transient response.

The system is modeled as a single-degree-of-freedom pendulum embedded in a
cart with prescribed movement, with � as the generalized coordinate, see Fig. 1b.
Equations of motion are:
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Fig. 1 (a) Test rig; (b) Physical representation

ml2 R� �mlA0˝2 cos � sin˝t Cmgl sin � D 0I if l sin � � gap > 0

ml2 R� �mlA0˝2 cos � sin˝t Cmgl sin � D Fi l I if l sin � � gap 	 0

Fi D ki ı C ci Pı (1)

The impact is described using the spring-dashpot model. Impact parameters iden-
tification procedure and comparison between experimental data and deterministic
numerical simulation can be found in [1]. Although the spring-dashpot model is
not capable of reproducing the real impact force profile over time due to the jump
caused by the damping force, this model generated satisfactory results.

3 Uncertainty Modeling

A challenge in the problem analyzed is to define the values of the impact coefficients
ki and ci. The uncertainty related to these parameters are not aleatory, but rather
epistemic [2]. In the proposed approach these variables are going to be modeled by
random variables and the probabilistic model is going to be constructed using the
maximum entropy principle [4]. The resulting stochastic system is computed using
the Monte Carlo method. Let A represent the random variables Ki and Ci (related
to the impact parameters ki and ci). Since there is no explicit information about
their dependence, we are assuming that variables Ki and Ci are independent. The
only available information is the support of the random variable: supp D [a1, a2].
The identified value a (the value identified for ki or ci using the deterministic
model) is not completely reliable to be used as information for the mean value of
A, nevertheless we believe that the true value of the parameter is in the vicinity
of a. Note that the support is not fixed a priori, it has to be calibrated using the
experimental results. Therefore, the maximum entropy principle (using Shannon
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entropy measure, S D �R a2a1 ln.p.a//p.a/da) yields the Uniform probability
density function [4] given by:

pA.a/ D 1Œa1;a2�.a/
1

.a2 � a1/
; (2)

where 1B.a/ is an indicator function that is equal to 1 for a 2 B and 0 otherwise.
The value of a1 and a2 can be computed using the mean value of A;EfAg D a, and
its coefficient of variation CVA D �A=a, where �A is the standard deviation of A:
a1 D a�p

3aCVA, a2 D aCp
3aCVA. It should not be forgotten that the values of

the stiffness/damping are always positive (to be coherent with the physical model),
hence the coefficient of variation of A should be controlled to guarantee this fact.

4 Numerical Results

First, it is presented a comparison between numerical simulation and experimental
data [1]. Figure 2a shows the bifurcation chart of the non-dimensional displacement
(l sin(�)/ A0) in the non-dimensional frequency domain (˝ /!), for the condition of
one impact per excitation cycle, using deterministic parameters. Comparison shows
reasonable agreement.

Due to the difficulty in modeling the impact and identifying the model parame-
ters, it might be useful to analyze the system response in the case where the impact
model parameters are treated as stochastic variables. Four different coefficients of
variation are chosen for the pair (Ki, Ci), CV D f 5%; 10%; 15%; 20%g. No specific
metric was established in order to choose which coefficient of variation best fits
experimental data. By simply comparing the simulation results for each coefficient

Fig. 2 Bifurcation diagram; numerical simulation/experimental data comparison, gap 0.0 mm:
(a) deterministic impact model parameters; (b) stochastic model parameters, CV D 10%



Bifurcation Diagram of an Impact Oscillator with Uncertain Impact Model Parameters 157

Fig. 3 Stochastic bifurcation diagram: pendulum displacement (l sin(� ) / A0); gap 0; influence of
the coefficient of variation: (a) CV D 5% ; (b) CV D 20%

of variation with the experimental data, it was chosen that data for CV D 10% best
fits the experimental results. Figure 2b shows the stochastic bifurcation diagram for
the mentioned CV. In Fig. 3 it is shown the bifurcation diagram from simulation
results for different coefficients of variation.

From charts shown in Figs. 2b and 3, it is noted that the frequency where the
maximum impact force (maximum displacement) occurs in this periodic behavior
(one impact per excitation cycle) does change as the impact model parameters are
varied, so the condition of maximum impact force (frequency and magnitude) are
directly related to the impact model parameters, and consequently the impact model
used to characterize the impact force. Regarding the period-doubling bifurcation,
the frequency where the bifurcation occurs does not change considerably as
the coefficient of variation is changed. After the period-doubling bifurcation, it
is noted that the dispersion of the nonlinear displacement in the upper branch
(2. 67< /˝ /! < 2. 86) increases with the coefficient of variation CV, see Fig. 3.
However, for the lower branch it is observed no dispersion of the points, having the
same result as the deterministic bifurcation diagram, see Fig. 2a. Another relevant
information is that even with a higher value of CV, a full agreement between
numerical simulation and experimental data is not verified. Such fact might be
an indication that some experimental phenomenon is not being considered in the
mathematical modeling (for instance the relative velocity before the impact might
have a tangential component).

To better visualize the behavior of this dynamical system, the map of regions of
stable periodic behavior, the Peterka map [5], is plotted. See Fig. 4. The variable z
determines the number of impacts per excitation cycle. From this chart one can see
the areas where the two main periodic behaviors occur (z D 1 / 1, one impact per
excitation cycle and z D 1 / 2, one impact every two excitation cycles). The maps are
produced from the pairs (Ki, Ci) that generated the lower and upper curves in the
bifurcation diagram, for CV D 10%, see Fig. 2b. Chart shows that main regions of
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Fig. 4 Regions of stable periodic behavior considering different impact model parameters:
(a) lower (Ki, Ci); (b) upper (Ki, Ci)

stable periodic behavior (z D 1 / 1 and z D 1 / 2) are not substantially affected by the
difference in the impact model parameters.

5 Concluding Remarks

This paper has investigated the numerical/experimental impact force behavior of
a vibro-impact system, taking into account uncertainties in the impact model
parameters by means of a probabilistic approach. The value of the coefficient
of variation (a measure of the dispersion) of the random variables (stiffness and
damping impact parameters) were calibrated using the experimental response. It
has been shown that there are some regions that are robust to a variation of the
impact model parameters and others that are sensitive to them. The propagation of
the uncertainty related to the impact model parameters through the system has been
useful to a better understanding of the system response.
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Dynamics of Self-Excited Oscillators
with Neutral Delay Coupling

K. Edelman and O.V. Gendelman

Abstract The work is devoted to analytic and numeric investigation of dynamical
behavior in a system of two Van–der–Pol (VdP) oscillators coupled by non–
dispersive elastic rod. The model is rigorously described by the system of nonlinear
neutral differential delay equations. For the case of relatively small coupling and
moderate delay, an approximate analytic investigation is performed by means
of averaging procedure. If the effective coupling remains small if the system is
far from the internal resonance (sine in the denominator is not small). Region
of synchronization in the space of parameter is established and characteristic
bifurcations are revealed. Numeric study confirms the validity of the analytic
approach in the synchronization region. Beyond this region the analytic approach
is no more valid. Multitude of quasiperiodic and chaotic – like orbits has been
revealed. Especially interesting behavior corresponds to sequential quenching and
excitation of the VdP oscillators. This regime is also explored analytically, by means
of large – delay approximation, which reduces the system to perturbed discrete map.

Keywords Synchronization • Van der Pol oscillator • Time delay • Neutral delay
differential equations (NDDE)

1 Introduction

The idea of reducing the hyperbolic PDE to a system of neutral differential delay
equations involving the boundary conditions of the problem goes back to early
1960s [1–4]. Such systems are a subject of considerable interest and thorough
study now, primarily from the viewpoint of existence of periodic solutions [5].
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Stability of solutions in such delay differential equations also has been studied
quite thoroughly [6, 7]. However, more general properties of such systems from
the viewpoint of nonlinear dynamics, such as synchronization, quasiperiodicity or
existence of nontrivial attractors, received less attention.

In this work, we are going to modify classical system of Van der Pol oscillators
with weak elastic coupling [8], by including a nondispersive elastic rod instead of
the coupling spring. In this way, we are going to obtain a hyperbolic problem with
nonlinear boundary conditions. This system may be rigorously reduced to a system
of two nonlinear neutral differential delay equations. By means of averaging, we are
going to study the regimes of synchronization and quasiperiodicity. Further numeric
simulations will reveal limitations of the standard approaches and will shed light on
behavior of the system in the case of relatively large delays.

2 Description of the Model

Let us consider two oscillators coupled by elastic rod with Young modulus E, cross–
section S, length L and density ¡ (consequently, the sound velocity in the rod is
c D (E/¡)1=2). The oscillators with masses m1 and m2 are placed in points with
coordinates 0 and L, as it is shown at Fig. 1:

The system is described by the following equations:

m1 Ru1 C f1.u1; Pu1/ D ES
@u

@x

ˇ̌
ˇ̌
xD0

m2 Ru2 C f2.u2; Pu2/ D �ES @u

@x

ˇ̌
ˇ̌
xDL

@2u

@t2
� c2

@2u

@x2
D 0; 0 < x < L

(1)

where u(x, t) is the displacement field of the rod, mi and fi, i D 1,2 are masses and
spring/damper characteristics of the oscillators. Continuity of displacements and

Fig. 1 Sketch of the model system
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Fig. 2 Response of the right oscillator, for growing delays

velocities implies the following relationships between the displacements and the
velocities of the rod and the discrete oscillators

u1 D u.0/; Pu1 D @u

@t

ˇ̌
ˇ̌
xD0

; u2 D u.L/; Pu2 D @u

@t

ˇ̌
ˇ̌
xDL

(2)

By using the well – known general solution of the wave equation in (1)
in D’Alembert form we reduce System (1 and 2) to a system of two neutral
differentials – delay equations (NDDE) of the form:
8̂
<
:̂

Ru1 C "Pu1
�
u21 � 1

�C u1 C "� Pu1 D ��Ru2 C "Pu2
�
u22 � 1�C .1C "�/ u2 � � Pu2

�
.t��/

Ru2 C "Pu2
�
u22 � 1

�C .1C "�/ u2 C "� Pu2 D ��Ru1 C "Pu1
�
u21 � 1

�C u1 � � Pu1
�
.t��/
(3)

The system of Eq. 3 was studied numerically using a continuous explicit Runge-
Kutta method. The solver was based on the ddverk [9] algorithm while the Runge-
Kutta coefficients were taken from [10]. We have chosen the eight stage CERK in
order to achieve the maximum accuracy, the numerical results were supported by
analytical studies of the system of Eq. 3.

System (3) was studied with changing parameters £ (the time delay), ¢ (the
second oscillator detuning) and © (the small parameter related to coupling and
nonlinearity). Well-known response regimes for linearly coupled VdP oscillators,
such as stable synchronization, relaxation oscillations and quasi-periodic behavior,
were encountered. Interesting regime, related to sequential excitation and quenching
of the VdP oscillators, was revealed for relatively large delay times (Fig. 2).

Typical behavior of each oscillator in the course of the sequential quenching is
presented at Fig. 3 and propagation of the wave over the rod – at Fig. 4.
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Fig. 4 Propagation of the elastic wave over the rod in the case of the sequential quenching.
Relative coordinate is defined as x/L

To analyze this phenomenon, let us consider the combination of constant
displacement and oscillatory responses. The following ansatz should be used:

uj D uj 0 � i

2

�
	j e

it � 	�
j e

�i t
	
; Puj D Puj 0 C 1

2

�
	j e

it C 	�
j e

�i t
	
; j D 1; 2 (4)

Where uj0 are slow functions of time,

ˇ̌
ˇ̌ 1
uj 0

duj 0
dt

ˇ̌
ˇ̌ � 1

Substituting (4) into (3) and considering the system in a limit of very large
delay times (just in this case we really see the sequential quenching!), adopting
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� D T="2; T D O.1/ and making additional formal change of variables � D "2t ,
we finally obtain:

"4u00
10 C "3u0

10

�
u210 C 1

2
j	1j2 � 1

�
C u10 C "3ku0

10 C

C


"4u00

20 C "3u0
20

�
u220 C 1

2
j	2j2 � 1

�
C .1C "�/u20 � "3ku0

20

�
��T

"2

D 0

"2	0
1 C "

2

�
1

4
j	1j2 C u210 � 1 � i"2u0

10u10

�
	1 C "k

2
	1 C

C e�iT="2


"2	0

2 C "

2

�
1

4
j	2j2 C u220 � i"2u0

20u20 � .1C i�/

�

	2 � "k

2
	2

�
��T

"2

D 0

"4u00
20 C "3u0

20

�
u220 C 1

2
j	2j2 � 1

�
C .1C "�/u20 C "3ku0

20 C

C


"4u00

10 C "3u0
10

�
u210 C 1

2
j	1j2 � 1

�
C u10 � "3ku0

10

�
��T

"2

D 0

"2	2 C "

2

�
1

4
j	2j2 C u220 � i"2u0

20u20 � .1C i�/

�
	2 C "k

2
	2C

C e�iT="2


"2	1 C "

2

�
1

4
j	1j2 C u210 � 1 � i"2u0

10u10

�
	1 � "k

2
	1

�
��T

"2

D 0

(5)

System (5) is a typical system of singularly perturbed delay differential equa-
tions. At this stage, we are interested only in “outer” behavior of the system, which
corresponds to the slow evolution of all variables. So, in this approximation, we
can omit all terms which contain " in the orders above the main one, after some
mathematical manipulations we obtain System (6) which describes a discrete map.

�
1

4
V C C2

1 � 1C k

�2
V D

 �
1

4
W C C2

1 � 1 � k

�2
C �2

!
W

�
1

4
V C C2

1 � 1� k

�2
V D

 �
1

4
W C C2

1 � 1C k

�2
C �2

!
W (6)

where V and W describe the squared amplitudes of the oscillations of the left and
the right VdP oscillators respectively, C1 and C2 are their DC displacements.
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Since obviously V, W � 0, then for jC1j � 1 the only fixed point will correspond
to a trivial solution; this case corresponds to the situation of quenching. For
jC1j < 1, nontrivial fixed point always exists. Therefore, the sequential quenching
is realized for

ˇ̌
Cj
ˇ̌
> 1; j D 1; 2

Only one extremely important question remains unresolved – whether this
sequential quenching is true attractor of the system. In order to check that, let us
make a certain trick – we’ll include very small damping in the rod. Real attractors
are robust: addition of extremely small damping will not destroy them completely.

It is easy to prove that no matter how small the damping will be, the equilibrium
solutions of appropriately modified Eqs. 5 and 6 will be zero. So, the quenching
phenomenon disappears. It means that the regime of sequential quenching is not
robust and does not correspond to a stable attractor.

3 Conclusions

To conclude, the neutral delay differential equations of the two coupled Van der
Pol oscillators demonstrate the well-known responses known also for other types of
coupling. A new response regime – the sequential quenching- was observed. It was
studied analytically and appeared to be a transient behavior of the system
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High Order Nonlinearities and Mixed Behavior
in Micromechanical Resonators

N. Kacem, S. Hentz, S. Baguet, and R. Dufour

Abstract This paper investigates the sensitivity of the third order nonlinearity
cancelation to the mixed (hardening and softening) behavior in electrostatically
actuated micromechanical resonators under primary resonance at large amplitudes
compared to the gap. We demonstrate the dominance of the mixed behavior
due to the quintic nonlinearities, beyond the critical amplitude when the third
order mechanical and electrostatic nonlinearities are balanced. We also report
the experimental observation of a strange attraction which can lead to a chaotic
resonator.

Keywords Nonlinear dynamics • Mixed behavior • Strange attraction

1 Introduction

The large potential of microelectromechanical systems (MEMS) and nanoelec-
tromechanical systems (NEMS) has been widely demonstrated for ultrasensitive
force and mass sensing applications [1, 2]. However, it is a challenge to enhance
their dynamic range (DR) by achieving large amplitudes comparable to the gap
in the case of electrostatically driven resonators without altering their frequency
stability. Combined with the noise mixing issue [3] when the resonator is driven in
the nonlinear regime, this leads to a drastic limitation on the sensor resolution.

An alternative to overcome this physical limitation is the hysteresis suppression
by nonlinearity cancelation which has been the aim of extensive research work
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lately and requests the study of nonlinear dynamics of MEMS and NEMS. Most
nonlinear models dealing with the nonlinearity cancelation in capacitive micro
and nanoresonators includes nonlinear terms up to the third order [4, 5]. So even
experimentally observed [5], the nonlinearity cancelation is limited by the high
order nonlinearities which occur proportionally sooner with respect to the resonator
size. Precisely, the onset of the mixed behavior is close to the critical amplitude for
resonant NEMS sensors.

Indeed, accurate nonlinear models [6, 7] for large amplitudes includes all
main sources of nonlinearities without Taylor series expansion of the nonlinear
electrostatic forces. Kacem et al. developed complete multiphysics models including
high order nonlinear terms and demonstrated analytically the ability to cancel
out the nonlinearities in MEMS and NEMS capacitive clamped–clamped beam
resonators [6] as well as cantilevers [8]. Moreover, Kacem and Hentz [9] identified
experimentally the mixed behavior predicted in [6] i.e. they demonstrated the
physical significance of the quintic nonlinear terms.

In this paper, we report experimentally the high sensitivity of the third order
nonlinearity cancelation to the mixed behavior on a MEMS resonator under primary
resonance at large amplitudes with respect to the gap. Based on a high order
nonlinear model, the fabricated resonator was designed with a large ratio between
its width and the sensing gap in order to maximize its global critical amplitude. We
demonstrate the ability to reach very large amplitudes of order 90% of the sensing
gap without pull-in occurrence. Moreover, strange attraction on a mixed behavior is
experimentally identified which can lead in some configurations to chaos.

2 Experimental Investigations

The fabricated resonator consists in a silicon doubly clamped beam electrostatically
in plane actuated and detected using two electrodes (electrode 1 for actuation and 2
for sensing) which allows for two port electric measurements.

It has been fabricated on 200 mm SOI (Silicon on insulator) wafers and mi-
croelectronic silicon processes. It is 200�m long, 2�m thick, 5�m wide, the
actuation gap is 1�m, and the detection gap 300 nm. It has been designed to
enable the compensation of the nonlinearities thanks to a compact analytical model
[6] including all main sources of nonlinearities (electrostatic and mechanical)
presenting non linear terms up to the seventh order as shown in Eq. 1.
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Fig. 1 Measured critical hardening resonance peak for Vac D 0. 2V. WMax is the displacement of
the beam at its middle point normalized by the gap gd

The device was placed in a vacuum chamber (down to 1 mTorr), and the two-port
electrical measurements were performed at room temperature using a low noise
lock-in amplifier (Signal Recovery 7,280).

As a first step, the critical behavior is approached in order to slowly access the
nonlinear regime. Figure 1 displays a hardening behavior for which the mechanical
nonlinearities are much higher than the electrostatic nonlinearities. Indeed, for a
DC voltage of 1V, the nonlinear negative Duffing nonlinearity is very low which
implies a high quality factor (Q � 104). Hence, in this configuration, the mechanical
critical amplitude is smaller than the electrostatic one (Ac � 80 nm). The hardening
resonance peak of Fig. 1 has been obtained in sweep up and down frequency
which displays a critical behavior at an output voltage of 7�V. The fabricated
device has the characteristic of large width to gap ratio and consequently can
potentially display a linear compensated behavior when both electrostatic and
mechanical nonlinearities are balanced by increasing the nonlinear spring softening
effect.

In order to approach this operating point (hysteresis suppression), the DC voltage
has been increased to 3V and 5V as shown in Fig. 2 where the resonance curves have
been electrically characterized in sweep up and down frequency.

Since the negative nonlinear stiffness is proportional to the square of Vdc (for
Vdc>>Vac), unlike the first peak obtained at a DC voltage of 3V, the second one (left
curve) measured for Vdc D 5V displays nonlinear branches in the softening domain
characterized by a complete modification of the dynamic bifurcation topology. The
frequency shift between both curves due to the negative stiffness is about 2 KHz.

Moreover, the first peak measured at Vdc D 3V displays a quality factor Q D 6,000
which has been measured on a linear curve at a low AC voltage and the same
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Fig. 2 Measured strange hardening and mixed resonance peaks for Vac D 0. 2V showing the
changes on the bifurcation topologies. P is the mixed behavior initiation point and the third
bifurcation is the highest point in the hardening domain

DC voltage. The resonance curve, in this case, is strangely nonlinear (hardening
behavior). The third bifurcation is the highest one in the hardening domain obtained
in sweep up frequency where the corresponding curve displays two regimes: a
first fast in amplitude variation and a second slow with a slope approaching
zero. The first bifurcation is obtained in sweep down frequency and intercepts the
sweep up frequency curve in a small part of the slow regime and the entire fast
regime of amplitude variation. The strange nonlinear hardening behavior obtained
experimentally can be explained by a strong dynamic perturbation due to the
increase of the softening nonlinearitie.

In Fig. 2, the left resonance curve measured at Vdc D 5V displays a quality factor
Q D 4, 000. Using the analytical model of a two ports nonlinear resonator developed
in [6], for these parameters, the resonator should display a linear resonance peak
obtained by the compensation of the mechanical and the electrostatic nonlinearities.
Unlike the mixed behavior (hardening-softening) demonstrated in [9], the experi-
mental peak measured at Vdc D 5V displays clearly a mixed behavior starting by a
softening branch and ending by a hardening one where the peak amplitude is around
three times the critical amplitude displayed in Fig. 1.

Particularly, in this mixed behavior, the P point and the first bifurcation have
the same frequency and the hardening domain is reduced in comparison with
the first resonance curve of Fig. 2. Actually, for the fabricated resonator, the fifth
order nonlinear terms are no more negligible when it is used to operate close to
the hysteresis suppression point. Indeed, the compensation of the nonlinearities is
sensitive to the highly unstable mixed behavior.

Once the mixed behavior was reached, we continue the increase of the DC
voltage in order to track the transition from a mixed to a softening behavior as
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Fig. 3 Measured mixed and softening resonance peaks for Vac D 0. 2V

shown in Fig. 3. The first peak has been measured at a DC voltage of 7. 5V where the
branches obtained in sweep down frequency enable the capture of two bifurcation
points: the first one is the P point which corresponds to the initiation of the mixed
behavior domain and the second one is the highest bifurcation point in the hardening
domain.

Then, in sweep up frequency, the output voltage Vout follows the curve char-
acterized by the bifurcation points 1 and 3. When the frequency of the first
bifurcation point is reached, a strange attractor brings the resonator oscillation to
the upper branch in the hardening domain instead of following the sweep down
frequency curve (jump to the downer branch) which should be physically easier
where the basins of attraction are quite larger. This is another illustration of the
physical importance of the quintic nonlinearities. Hence, it is difficult to achieve
large amplitudes for MEMS and NEMS capacitive resonators without altering their
frequency stability.

In order to suppress the mixed behavior, the effect of the hardening nonlinearities
is reduced in the second peak of Fig. 3 for Vdc D 10V and an estimated quality
factor Q D 2, 000. The electrostatic nonlinearities are amplified with respect to
the mechanical nonlinearities which brings the third bifurcation point at the same
frequency as the first one. Remarkably, the resonator has reached very large
oscillations up to 90% of the sensing gap without pull-in occurrence. Nevertheless,
the highest branch in the softening domain displays an inflection point (potentially
due to the high order hardening nonlinearities) followed by a dynamic relaxation at
the jump down bifurcation point.
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3 Conclusions

In summary, we have demonstrated the high sensitivity of the third order nonlin-
earity cancelation to the mixed behavior in nonlinear capacitive clamped–clamped
MEMS resonators under primary resonance at large oscillations. The experimental
investigations were performed on a fabricated resonator designed using a complete
analytical nonlinear model in order to balance the third order nonlinearities and drive
the resonator linearly at high amplitudes. Beyond the critical amplitude, the quintic
nonlinearities drastically limit the operating domain of the nonlinearity cancelation.
Moreover, strange attractions become possible which can lead to undesirable chaotic
sensors. Consequently, for nonlinear optimized resonant MEMS designs, the onset
of the mixed behavior must be considered.
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The Importance of a Detailed Vehicle Modelling
in the Numerical Prediction of Railway Ground
Vibrations

G. Kouroussis, E. Bergeret, C. Conti, and O. Verlinden

Abstract With the development of continuous technological innovation, the
railway transport is presented as an interesting alternative to the road traffic.
Some drawbacks exist, one of the most problematic being certainly the vibrations
induced by the railway traffic. The presented research wants to establish a reliable
methodology in order to evaluate, from the design stage of a vehicle or of a track,
the efforts transmitted by the vehicle to the track/soil system and consequently
the level of vibrations in the surroundings. An analysis of the interaction between
the track and the soil has been performed in order to show when the track/soil
uncoupling can be assumed, with the aim of working in two stages. The first step
is based on the vertical dynamic behaviour of the vehicle/track subsystem, taking
into account any irregularity in the rail surface. For the soil subsystem (second
step), recent publications showed that the finite/infinite element method can be an
interesting alternative to boundary element method. The objective of this paper is
to demonstrate the real benefit of the vehicle modelling in this kind of problem.
Typical railway applications (Brussels tram, Thalys HST) are proposed, showing
among others that significant reduction of ground vibration level can be obtained
by modifying the dynamic characteristics of the vehicle.

Keywords Ground vibrations • Multibody systems • Vehicle–infrastructure
interaction
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1 Introduction

The development of train lines has considerably grown during the last decade.
Although it has been the subject of continuous technological innovation, railway
transport (high-speed train, freight, tramways, : : : ) is still perceived as an important
source of environmental nuisances on the neighbourhood. Among these nuisances,
the vibrations induced by railway traffic get the same concern as noise, passenger
discomfort or visual impact. Numerical procedures allow to analyse the dynamic
behaviour of a mechanical system and to propose solutions to alleviate the vibrations
before its manufacturing (virtual prototyping).

If the vehicle dynamics simulation packages are now commonly used in railway
industry, it is not yet the case for the track/soil vibrations which are rarely treated
from the very beginning of the design. Although multibody system simulation
tools like ADAMS, SIMPACK or Virtual.Lab are used to assess the dynamic
performances of a vehicle, the simulation of a complete process taking into account
the track and the soil is not yet usually performed: the track, and therefore the soil,
are supposed to be rigid. Nevertheless some authors consider a flexible track in
their simulations. For example, to study the effect of the vehicle running on bridges,
Dietz et al. [1] propose to analyse by co-simulation the interaction between the
vehicle and the track, considering a finite element model for the latter. Knothe and
Grassie have presented an excellent survey of vehicle/track models [2], classifying
the dynamic modelling of railway track in function of their application and of the
purpose of the study. Unfortunately the ground vibration propagation is scarcely
taken into account.

On the other hand, the developed track/soil models rarely consider a detailed
modelling of the vehicle and often reduce the vehicle to a sequence of axle loads [3]
or rigid wheelsets [4]. The main parts of the train are decoupled, neglecting the
inertial forces of the carbodies and the bogie frames. These models are useful to
understand the ground waves propagation and their refraction but it is impossible
for the train constructors to analyse the effect of the vehicle parameters (suspension,
unsprung mass, : : : ) on the environment.

To consider a complete approach of the problem, Kouroussis et al. have proposed
a numerical model, based on the assumption that the vehicle/track interaction and
its effect on the soil are decoupled [5]. An analysis of the interaction between
the track and the soil has been performed in order to show that the track/soil
uncoupling is valid, with the aim of working into two stages. This hypothesis
is valid when the ballast stiffness is small compared to the foundation one. The
presented research wants to establish a reliable methodology in order to predict,
from the design stage of a vehicle or of a track, the efforts transmitted by the
vehicle to the track/soil system and consequently the level of vibrations in the
surroundings.

The objective of this paper is to illustrate the proposed approach through
two important case studies from the tram to the high-speed train, covering the
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present commercial speeds. Various simulations are performed for verifying if the
integration of vehicle dynamics into the prediction model influences the railway-
induced ground vibrations.

2 Multibody/FIEM Approach

In this section, the modelling methodology selected for the ground-borne vibration
prediction is briefly described. The vehicle is modelled with the help of a multibody
approach: the model is formed by the combination of bodies (rigid or flexible bodies,
rotating bodies like wheelsets or independent wheels) and interconnection elements,
related to the suspensions. The track is defined as a finite element beam discretely
supported by the sleepers through the railpad elements, considering the connection
to the ground by the ballast. The equations of motion of the vehicle/track subsystem
can be written as

�
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�� Rqv

Rqt
�

C
�

Cv 0

0 Ct
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Pqt
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�
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�
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where q represents the configuration parameters and mass M, stiffness K and
damping C matrices are defined for the vehicle (subscript v) and the track
(subscript t). The two subsystems are not decoupled since vectors fv and ft contain
the contribution of the wheel/rail contact forces, explicitly considered as non-linear

Fwheel=rail;i D KH z d
3=2; (2)

and taking into account the relative penetration d of each wheel with respect to the
rail. Vector fv also concerns the external forces (essentially gravity) acting on the
vehicle. The first step simulates the vertical dynamic response of the vehicle/track
subsystem to the rail irregularity. The roughness is reconstructed in the time domain
from its power spectral density function. The simulation of the vehicle/track system
is made in the time domain, with the help of a home-made CCC library.

For the soil subsystem (second step), the input forces fsoil are derived from the
sleepers reaction and are directly applied on the soil surface. A recent paper [6]
has shown that the finite/infinite element method (FIEM) can be an interesting
alternative to boundary element method. The soil is modelled with the help of
the finite element software where infinite elements are added at the border of the
region of interest. A mapping formulation is preferred, allowing an elegant means
to include decay functions in the ordinary finite element shape function. Viscous
boundary, represented by a damping matrix Cd is added on the junction between
finite and infinite element, for preventing any residual reflected waves in the region
of interest. The governing equations of motion of the soil subsystem can be written

ŒMs � f Rqg C ŒCs C Cd � f Pqsg C ŒKs� fqsg D ffsoilg (3)
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where qs is the vector related to the dof of the soil subsystem. Ks and Ms are
the global mass and stiffness matrices, respectively, and Cs the intrinsic damping
matrix, representing the viscous damping contribution. As demonstrated in [6],
time domain simulation is more appropriate to simulate the soil dynamic behaviour
(ground wave propagation) and to take into account possible non-linearities. The
calculation time remains reasonable thanks to the explicit integration scheme
coupled with parallel computer programming. With an uncoupled approach, each
subsystem can be modelled in detail and we can focus on the dynamic train/track
interaction which is the principal source of ground vibration. The hypothesis
of decoupling is valid if the ballast stiffness is small compared to the stiffness
of the soil [5]. In this case, the coupling between sleepers through the soil is
limited.

3 Case Study 1: The TRAM T2000

The T2000 light railway vehicle circulating in Brussels is defined as a multi-car
tramway that uses advanced technology like independent rotating wheels and low
floor design. Motors are directly mounted inside the wheels and, to reduce the effect
of the unsprung masses, resilient material equips the motor wheels (rubber layer
between the web and the tread). The vehicle model considers the bounce and the
pitch motions of each component (wheelset, bogie, carbody). The tram case is a
perfect example of dynamic track interaction where the quasi-static deflection has a
small effect on the ground vibrations.

Figure 1 shows the free field vertical velocity at 2 m from the track for a tram
speed v0 of 20 kmh. The results are based on the passing of the vehicle on a local
discontinuity. It can be seen that the model correctly predicts the levels of the ground
velocity. The signals shapes are lightly different but a good correspondence can
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Fig. 1 Vertical ground velocity at 2 m from the track, during the passing of the tram T2000 at
speed v0 D 20 km=h (before modification)
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Fig. 2 Vertical ground velocity at 2 m from the track, during the passing of the tram T2000 at
speed v0 D 20 km=h (after modification)

be observed on the peak particle velocity PPV (maximum of velocity signal). The
influence of the vehicle dynamics is also emphasized through Fig. 2, related to the
same vehicle but with a local modification of the resilient material (more flexible).
Experimental value corroborates the numerical prediction and both results show a
significant reduction of the soil vibratory level without modifying the train weight.
In addition supplementary results can be found in [5] to demonstrate the real benefit
of a complete model of the vehicle, with respect to a sequence of axle loads.

4 Case Study 2: The Thalys HST

When the vehicle speed is large, the quasi-static deflection becomes predominant.
If the track irregularity is almost nonexistent, the pressure mechanism is the major
source of vibrations. The proposed example is related to the Thalys high-speed train
(HST) at Mévergnies (Belgium) along the French border. The proposed model for
the vehicle considers only the vertical motion of the vehicle through a 3 dof -system
for each axle.

Figure 3 gives an example of comparison between experiment and modelling
in the case of a Thalys HST moving at a speed v0 D 275 km=h at 12 m from the
track. Both time evolution and spectrum show a good agreement. The frequency
content shows that the vibrations are dominated by a discrete spectrum where the
fundamental bogie passage frequency at 3. 8 Hz (and particularly its harmonics) play
an important role, amplified at the soil resonance frequency, at around 30 Hz [7].
Due to the complexity of the spectrum, it is difficult to show the influence of the
vehicle, with mode shapes at low frequency (0. 8, 2. 5, 4. 1 and 6. 5 Hz). However
this approach can be useful if integrated by the constructor in his pilot study.
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Fig. 3 Numerical (top) and experimental (bottom) vertical ground velocity at 12 m from the track,
in the case of Thalys HST (v0 D 275 km=h)

5 Conclusion

In this paper, the implementation of a vehicle/track model in time domain simulation
was presented and applied to the assessment of the railway ground vibrations. This
approach can be easily coupled to the multibody modelling of the vehicle, fully
integrating the dynamic wheel/rail interaction and also performed in time domain.
The soil simulation is performed at next step of the analysis, with as input the forces
acting on the ground surface. Some results are presented for a tramway case and a
high-speed train. Induced vibrations are compared to experimental values in order
to validate the proposed approach. These results show the important influence of the
vehicle/track dynamics and the real benefit of a complete model. They demonstrate
the model applicability to the low- and high-speed cases, including the vehicle/track
interaction. By using this approach, solutions to alleviate the ground vibrations
induced by a vehicle can be studied from beginning of the track or vehicle design.
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Nonlinear Sway and Active Stiffness Control
of Long Moving Ropes in High-Rise Vertical
Transportation Systems

Stefan Kaczmarczyk

Abstract In this paper a model to describe the lateral dynamic behaviour of long
moving ropes employed in high-rise vertical transportation is developed. The model
takes into account the fact that the longitudinal elastic stretching of the ropes
is coupled with their transverse motions (sway) which results in cubic nonlinear
terms. The governing non-stationary nonlinear equations are solved numerically
to investigate the passage through resonance conditions arising during the system
operation. The active stiffness control of transverse vibrations of the ropes is
discussed. This involves the application of a longitudinal action at the rope end. The
results of numerical simulation tests demonstrate the ability of multimodal active
control to reduce non-linear low frequency sway of the ropes during and after the
passage through resonance.

Keywords Nonliner sway • Vertical transportation • Cubic nonlinear terms
• Active stiffness control • Longitudinal action

1 Introduction

Sustainable development practice of modern cities worldwide involves the design
and construction of high-rise office and residential buildings. Currently, the world’s
tallest building is the Burj Khalifa in Dubai which has over 160 stories and is over
828 m high. The CN Tower in Toronto, Canada, is the second tallest (over 553 m)
followed by the Taipei 101 office tower in Taiwan (over 509.2 m high).
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Vertical transportation systems are integral parts of tall office and residential
buildings. In modern high-rise built environment high-speed traction-type elevator
systems are employed for vertical transportation of personnel and residents. In such
systems steel wire ropes are used as a means of car and counterweight suspension
and for compensation of tensile forces over the traction sheave. They are driven
to move at speed with their length varying with time during the system operation,
resulting in time-varying dynamic characteristics and rendering the system non-
stationary [1]. The dynamic response of these long slender continua exhibit large
amplitudes, low-frequency non-stationary modes and non-linear dynamic phenom-
ena which often affect the performance of the system.

In this paper a model to describe the lateral dynamic behaviour of long moving
compensating ropes with time-varying length is developed. The model takes into
account the fact that the longitudinal elastic stretching of the system is coupled
with their transverse motions (sway) which results in cubic nonlinear terms. The
governing non-stationary nonlinear equations are solved numerically to investigate
the passage through resonance conditions arising during the system operation. The
active stiffness control [2] of transverse vibrations of the ropes is then applied.
This involves the application of a longitudinal action at the rope support end which
causes time variation of tension and therefore resulting in variation of the transverse
stiffness of the ropes [3]. The results of numerical simulation tests demonstrate the
ability of multimodal active control to reduce non-linear low frequency sway of the
rope during and after the passage through resonance.

2 Equations of Motion

A simplified model of an elevator system is depicted in Fig. 1. An elevator car
(mcar) with compensating ropes of length L(t) and mass per unit length m, is moving
at speed v with the acceleration rate a. The system is equipped with a compensator
sheave assembly of mass M. The system is excited by the building deformations
that are represented by the motion w0.t/ applied above the machine room level. At
the compensator sheave end an axial control motion u0.t/ is implemented by an
actuator in order to extract energy from the system.

In the modern elevators the drive control systems allow an accurately prescribed
velocity and acceleration time profiles of the car/counterweight to be realized.
Thus, it is assumed that vertical transient oscillations of the car/counterweight are
negligible. The strain measure due to stretching of the rope is given as " D uxC 1

2
w2x ,

where .�/x � @ .�/ =@x ; w(x,t) is the lateral response and u(x,t) represents axial
(longitudinal) motions of the rope.

In this study only the lower-order lateral modes are considered. Thus, bearing in
mind that no interaction will take place between these lateral modes and the axial
(longitudinal) modes, the equation of motion describing the lateral displacements
over the spatial domain 0 < x < L.t/ is as follows
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Fig. 1 A simplified model of an elevator system
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where ./t � @ ./ =@t ; T0 D Mg =2 , g denotes the acceleration of gravity, E is
the modulus of elasticity of the rope and A represents the effective (steel) cross-
sectional area of the rope. The lateral displacements at the boundaries are defined as
w .0; t/ D w .L; t/ D 0. In order to accommodate the excitation due to the building
motions in the equation of motion (1) the overall lateral displacements of the rope
are expressed as

w.x; t/ D Nw.x; t/C x

L.t/
wL.t/; 0 	 x 	 L.t/ (2)

where Nw .x; t / are the displacements of the rope relative to its stretched configura-
tion and wL.t/ represent the lateral displacements of the building corresponding to
the upper end of the rope (at the car end termination). Using transformation (2) in
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Eq. 1 an approximate solution to the nonlinear partial differential equation of motion
is sought by using the Galerkin method with the following finite series

Nw.x; t/ D
NX
nD1

ˆn.xIL.t//qn.t/ (3)

whereˆn.xIL.t// D sin n 
L.t/

x; n D 1; 2; : : : ; N are the natural vibration modes of
the corresponding taut string of length L D L(t) with the time-variant tension given
as T .t/ D T0 C 1

2
ma.t/L.t/, and qn (t) represent the modal coordinates.

The Galerkin procedure results in the following ordinary differential equation
with cubic nonlinearities in terms of the modal coordinates

Rqr C 2$r!r.t/ Pqr C �2r

(
Nc2 � v2 C c2

"
1

2

�
wL.t/

L.t/

�2
C u0.t/

L.t/

#)
qr

C
NX
nD1

Krn.t/qnC
NX
nD1

Crn.t/ PqnC
�
�r

2
c

�2
qr

NX
nD1

�2nq
2
n D Qr.t/ (4)

where r D 1; 2; : : : ; N and modal damping represented by the ratios $r has been
added, !r are the undamped natural frequencies of the rope, Nc D p

T .t/ =m and
c D p

EA=m represent the lateral wave speed and the longitudinal wave speed,
respectively, �r D r  =L.t/ , Krn, Crn are time-variant coefficients and the modal
excitation is represented by functionQr.t/.

3 Results

An approximate solution to Eq. 4 can be obtained by numerical simulation with an
explicit Runge-Kutta (4, 5) formula applied. A case of the system with eight ropes
of mass per unit length m D 2.11 kg/m each tensioned by a compensator assembly
of mass M D 3,500 kg is considered. In this case the elevator is moving upwards at
a speed of 8 m/s. The numerical tests are conducted for the system ascending with
the acceleration/deceleration rate of a D 1.2 m/s2 from the lowest landing upwards
to the highest level. The travel height is H D 390 m and the building structure is
subjected to a harmonic sway of frequency 0.1 Hz and amplitude 0.53 m measured
at 402.8 m above the ground floor level. A multimode feedback control axial motion
expressed as

u0.t/ D au

PN
nD1 qn PqnPN
nD1 ¨2nq2n

(5)
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Fig. 2 The dynamic response of the compensating ropes; (a) the variation of the natural
resonances with the length of the ropes: the first mode (solid line curve) and the second mode
(dashed line curve), together with the excitation frequency (vertical solid line); (b) the dynamic
shapes of the ropes during the elevator travel: without feedback control (dashed lines), with
feedback control (solid lines)
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Fig. 3 Axial control motion

where au is the control gain. The results are shown in Fig. 2. The first two natural
frequencies are determined from the eigenvalues of the stiffness matrix which
accommodates the influence of speed and acceleration of the ropes. They are plotted
vs. the length of the ropes in Fig. 2a The dynamic deformations of the ropes when
the elevator approaches the top landing are presented in Fig. 2b to illustrate the
maximum amplitudes of the ropes at various stages of the elevator travel.
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The axial motion u0.t/ of the compensator assembly is plotted vs. time in Fig. 3.
It is evident from the plots in Fig. 2a that the frequency of the load coincides with
the first (fundamental) natural frequency when the length of the ropes is about
215 m. This leads to large motions of the ropes with the amplitudes exceeding
2 m. However, when the active control system with the control gain of au D
0:25 is activated (after approx. 20 s from the elevator start instant) the maximum
deformations of the ropes are reduced by approx. 33%.

4 Conclusions

The results of this study demonstrate resonance conditions that affect the dynamic
response of long ropes employed in high-rise vertical transportation. In particular,
compensating ropes suffer from large lateral displacements that often exceed
allowable limits. The active stiffness control of the lateral response can be achieved
by axial motion applied at the compensator sheave end using a modal control
strategy.
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The Influence of Semi-active Dampers
on the Vibration Behaviour of Passenger Cars

Sebastian Schneider, Daniel Brechter, Andreas Janßen, and Heiko Mauch

Abstract The number of mechatronic components in modern car suspensions is
increasing continuously to solve conflicts concerning design goals. Thus, changes in
the vibration behaviour of the vehicle are caused. It needs to be ascertained whether
this influence has to be taken into account when determining the fatigue life of a car
and its components. Therefore, changes of the loads are studied in measurements
and multi-body simulations of a passenger car with semi-active dampers. The
evaluation of the forces at the wheel centre and at the shock absorber tower shows
that different settings of semi-active dampers have an influence on fatigue life of
the chassis and the car body. It is concluded that these effects need to be taken
into account when determining fatigue life. Furthermore, multi-body simulations
have been successfully applied to study the influence of semi-active dampers on the
loads.

Keywords Vibration behaviour • Mechatronic suspension component • Semi-
active damper • Fatigue life • Multi-body simulation

1 Introduction

Traditionally, the suspension travel response behaviour of a car is defined by
adapting the force-displacement characteristics of the springs and the force-velocity
characteristics of the dampers [1]. When installing passive springs and dampers,
constant curves are specified. However, the limitations of these components result
in a design conflict [2].
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On the one hand, car suspensions have to fulfil various requirements regarding
optimum road holding as well as good handling performance. Therefore, the
dynamic tyre forces need to be reduced. On the other hand, maximum comfort of
the passengers is an important design goal which is achieved by reduction of the
vibrations of the car body. Furthermore, the latter is taken into account for medicinal
reasons in order to avoid damage of human organs. [3]

By means of intelligent components, such as controllable shock absorbers, the
mentioned design conflict can be resolved [4]. Therefore, the number of mechatronic
parts in modern car suspensions is increasing continuously. The introduction of
intelligent subsystems influences the vibration behaviour of the overall vehicle.

Changes in vibration behaviour result in different magnitudes of the forces acting
on the vehicle chassis as well as the body during service. It needs to be ascertained
whether this influence has to be taken into account when determining the fatigue
life of a car and its components. Especially, it is necessary to establish whether the
customer behaviour is appropriately represented on fatigue test tracks. In addition,
extrapolation coefficients which are applied in calculations of fatigue life need to be
verified.

In this paper, the vibration behaviour of a vehicle with semi-active dampers
is studied using experimental and mathematical methods. The aim is to identify
the influence of different shock absorber settings on the loads of a passenger car.
Thereby, it can be determined whether it is necessary that testing procedures involve
the influence of semi-active dampers on the fatigue life of a vehicle.

2 Semi-active Damper

The term ‘semi-active damper’ refers to the classification of vertical dynamic
systems according to [1].

The main construction of the semi-active damper which is considered in this
article corresponds to a conventional hydraulic shock absorber used in passenger
cars. Moreover, it is equipped with a controllable valve. Thereby, the size of the
flow cross-section can be adjusted during service at low energy consumption. As
a result, the energy dissipation of the damper unit can be adapted. In contrast
to conventional dampers, the velocity-displacement characteristics of semi-active
dampers are described by diagrams instead of constant curves, Fig. 1.

Furthermore, the driver can choose from three different settings of the control-
lable shock absorbers (comfortable, normal and sporty performance). Thereby, the
force-velocity diagram is limited to a certain baseline level. If the driver selects
the sporty setting, the minimum value of the absolute damping forces is higher
compared to the comfortable setting.

When adjusting the damping, the controller unit analyses the driving situation,
the road condition, as well as the driver’s choice of setting, within milliseconds.
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Fig. 1 Force-velocity curve
of a conventional damper and
force-velocity diagram of a
semi-active damper

Semi-active DamperConventional Damper
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vz
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vz

3 Method

As mentioned in Sect. 1, the influence of different damper settings on the loads of
a passenger car was studied in vehicle measurements and numerical simulations.
Thereby, it was possible to determine whether it is necessary to adapt and expand
existing procedures for fatigue life prediction so that they take into account changes
of the loads caused by intelligent components like semi-active dampers.

When identifying the vibration behaviour, first calculations were performed
using a quarter car model. Thereafter, vehicle measurements were conducted. The
results were used to set up and calibrate a model for multi-body simulations, Fig. 2.

3.1 Estimation

In preparation for vehicle measurements, a quarter car model was studied to estimate
the magnitude of the influence of the semi-active damper on the vertical vibrations
of the car, Fig. 3. The system representing the effective direction of the damper was
described by the following equations of motion [5]

mB � RzB D �cB � .PzB � PzW /� kB � .zB � zW / ; (1)

mW � RzW D �cB � .PzW � PzB/� kB � .zW � zB/� cW � .PzW � PzE/ � kW � .zW � zE/ :
(2)

In contrast to the equation of motion of a vehicle with conventional dampers, the
behaviour of semi-active shock absorbers was represented by a variable damping
factor cB. However, calculations were only performed using constant values for the
minimum and maximum possible damping. Moreover, the road was represented
by sinusoidal excitations with different frequencies and amplitudes as well as
measurement signal input. These assumptions were sufficient for basic estimations.
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Fig. 2 Procedure for determining the influence of semi-active dampers on the loads of a car
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Fig. 3 Quarter car model with semi-active damper

The results of the above-mentioned calculations were used to estimate acceleration
and force magnitudes during vehicle measurements beforehand.

3.2 Measurement

A passenger car was equipped with sensors on the car body and on chassis com-
ponents to analyse the influence of semi-active dampers on the vibration behaviour,
as well as the loads, during service. Thus, accelerations, strains and forces were
measured on public roads and test tracks. The choice of measuring positions made
it possible to analyse the distribution of forces. In addition, measuring wheels were
used to observe the forces and torques at the wheel centre. Suspension travel was
measured to determine the relative motion between the car body and the chassis.
CAN-bus messages were recorded for plausibility checks of the measurement
signals. Furthermore, a development ECU was used to record input, output and
internal variables of the damper controller unit.

3.3 Simulation

In addition, a vehicle model for multi-body simulations was set up. The semi-active
dampers and their control unit needed to be represented to thoroughly model the
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vibration behaviour of the passenger car. The software code of the controller unit in
the multi-body model corresponded to the software on the hardware ECU of the test
car. Furthermore, the model was calibrated using the results of the measurements.
By means of numerical simulations using the road profile of the test track differences
in vibration behaviour of the car were analysed. Hence, it was possible to eliminate
the influence of varying conditions like different driver behaviour which occur
during measurements.

3.4 Evaluation

The aim of the study was to determine the overall change in the vertical vibration
behaviour due to different settings of the semi-active dampers. In addition, the
difference between semi-active and conventional shock absorbers was analysed.
Furthermore, the evaluation of the measurement and simulation signals was con-
ducted according to a procedure applied in fatigue life prediction as follows:

1. Range pairs were counted by classification of the measurement time signals.
2. A Wöhler curve was set up using values according to a standard procedure.
3. A linear damage calculation according to Miner elementary was performed.
4. Relative damage values were calculated.
5. The power spectral density was analysed to make sure that changes in vibration

behaviour were detected.

The study focused on the vertical movements of the car, because this direction
is mainly affected by the damper characteristics. Furthermore, in vehicle measure-
ments the driver strongly influences the longitudinal and lateral forces whereas the
vertical direction is nearly unaffected. In addition, changes in vertical forces due to
the vehicle’s velocity and the road profile can be minimized by measuring on a test
track applying previously defined velocities in each measurement.

4 Results

During vehicle measurements, the biggest vertical forces at the wheel centres
occurred in the comfortable setting, Fig. 4. Higher damping (normal and sporty
setting) caused a decrease of the vertical wheel forces. On the contrary, the highest
forces at the shock absorber towers (interface of the vertical forces between the
car chassis and the body) were observed in the sporty setting. Decreasing damping
resulted in lower forces on the car chassis.

In the studies of the quarter car model, as well as in the multi-body simulations,
the same observations were made. Furthermore, the influence of the different
damper settings which was determined in first calculations with a multi-body car
model corresponded very well with the results of the vehicle measurements.
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Fig. 4 Relative damage of vertical forces measured at the shock absorber tower and the wheel
centre for different damper settings on a test track

5 Conclusions

The measurement results show that the influence of semi-active dampers needs to be
considered when determining the fatigue life of a passenger car and its components.
Furthermore, multi-body simulations can be used to reveal differences in vibration
behaviour due to different damper settings. Thereby, load assumptions, the design
of components as well as the following calculations of fatigue life can be improved
in an early state of the design process by application of numerical simulations. In
the future, multi-body simulations will be conducted to involve the influence of
different damper settings during laboratory fatigue life tests.
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Detailed Theoretical Preparation of the Drop
Test of an Electron Microscope

Petr Paščenko and V. Kanický

Abstract The article deals with the preparation and execution of the drop test of
the electron microscope assembly. Based on the finite element method (FEM), the
simplified numerical model of the assembly is created for this purpose. The aim
of the nonlinear dynamic analysis has been to obtain the size and direction of
maximum inertia forces in the system during the simulated impact of the model
on basis. Calculated values are verified by actual drop tests of the assembly,
where the microscope is replaced by a dummy body with similar inertial charac-
teristics. During the real tests, accelerations and strains have been measured by
accelerometers and strain gauges placed in selected locations. Theoretical results
are re-adjusted according to the test results. The conditions of the drop tests are
governed by the internal regulations of the manufacturer. Based on the knowledge of
the actual load, the load carrying structural parts of the assembly (supporting frame,
horizontal frame) may be properly designed. Sufficient strength and rigidity must be
guaranteed especially with regard to the transportation where rough treatment can
be expected.

Keywords Drop test • Electron microscope • Dummy body • Supporting
frame • Horizontal frame • Inertial forces
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1 Introduction

The detail computer analysis of the transported assembly of the electron microscope
is provided in this paper. The analysis is supplemented by results of a series of drop
tests performed at a test-room. The drop test is prescribed by the producer as a
load simulation corresponding to the improper treatment during the transport. The
assembly consists of a basic supporting frame, horizontal frame, microscope and
resilient pallet. The wooden box covering the whole assembly is neglected in the
model due to its low weight. The nonlinear dynamic analysis of the simplified FEM
beam model describes the behavior of the assembly during the simulated drop test.
It results in theoretical inertial forces induced at the moment of the impact of the
assembly on the ground. The inertial forces, verified by experiments, can be used
for the quasi-static strength analysis of the detail shell model of both supporting
and horizontal frame. Numerical analyses are then supplemented by series of
real drop tests. The accelerometer is located close to the center of gravity of the
microscope (COG). The exact location of the strain gages is estimated by means of
the preliminary linear analysis of the detailed FEM shell model. The computational
models are then corrected based on the evaluated test results. Consequently, the
reliable stress distribution over both the supporting and horizontal frame can be
determined. Finally, this procedure results in the proper design of the assembly
intended for the transport. The theoretical basis of the drop tests is taken from [1–3].

2 Brief Description of the Problem

In the operating state, the massive body of the electron microscope produced by FEI
Company is supported by four pneumatic springs on an internal horizontal frame,
which is also resiliently mounted on the main supporting frame serving as the work
table. The frame legs are provided with rubber pads.

For the transport, the internal resilient elements are set out of function using
auxiliary fixing bolts. The main frame is resiliently mounted on a horizontal flat
wooden pallet. Both longitudinal beams of the pallet are designed as a pair of
parallel beams mutually resiliently constrained over their whole length in order to
decrease the stiffness of the pallet with respect to the vertical shock response and to
damp the rebounds (see Fig. 1).

During the transport, the supporting frame structure of the microscope may be
accidentally subjected to shock loads, which could result in unacceptable residual
deformations of the frame parts or impairing the device. Hence, it is necessary to
assess the reliability of the transport arrangement of both the supporting frame with
the microscope and the structural system of the pallet with respect to probable loads
during the transport.

Both the assessment of the reliability by computation and the check of the
computation results require the experimental determination of the probable load
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Fig. 1 Assembly with dummy body at testing room

intensity during the transport. The necessary work needed for the proper deign of
both the supporting and horizontal frame may be defined in the next few steps briefly
described below (except the last one):

• Preliminary nonlinear dynamic analysis of highly simplified FEM model.
• Preliminary linear static analysis of detailed FEM model [4].
• Test preparation and procedure [5].
• Test result evaluation – comparison with the theoretical results.
• The quasi-static strength analysis of the detailed FEM model.

3 Preliminary Nonlinear Dynamic Analysis

The aim of the computational analysis is to find a suitable placement of all
needed sensors and the adaptation of the measuring chain. Finally, the assessment
of size and direction of maximum inertia forces in the system is needed. The
simplified computational model of the assembly is created by means of the computer
program COSMOS/M [6]. The model consists of the finite elements BEAM, MASS,
SPRING and GAP (see scheme in Fig. 2). The real spatial frame is replaced
with a planar model. The response to a simulated drop test is computed by direct
integration of the equations of motion. Large displacements are considered. Mass
of the microscope is m D 559 kg, mass of the assembly is m D 792 kg, total
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Fig. 2 Scheme of simplified
nonlinear model

Fig. 3 Curve displacements
vs. time

stiffness of rubber springs in both normal and transversal direction (in GAP1,
GAP2) is k D 2.4E C 6 N m�1, total damping coefficient of rubber springs is
b D 7,000 kg s�1.

In the following text, the analysis in the dominant plane (XY, front-back
direction) is described. The global coordinate system is shown in Fig. 1. The
diagram in Fig. 3 shows the movement of the structure at point B dependent on
time. Fall from a height of 200 mm including the compression of elastic elements
in the impact of assembly on the base is apparent. Maximum vertical and horizontal
movements are uy D �231 mm and ux D �114 mm, respectively.

The diagram in Fig. 4 represents the dependence of the acceleration of COG of
the microscope on time. Maximum values ax D �9.6 m sec2 and ay D �60.5 m�sec�2

are reached at the first impact of the structure at point B on the base. Know-
ing the mass of the microscope, the inertial force in the center of gravity can
be easily determined, i.e. F D 34.2 kN with components Fx D �5.37 kN and
Fy D �33.8 kN.



Detailed Theoretical Preparation of the Drop Test of an Electron Microscope 199

Fig. 4 Curve acceleration
vs. time

Fig. 5 Detailed models
for stress analysis

4 Preliminary Linear Static Analysis

The linear static model (see Fig. 5) is loaded in the COG of the microscope by
inertial force F D 34.2 kN. The analysis shows the most convenient places for
the strain gauges location on the lower edge of the rib in each upper corner of
the frame (see Fig. 6). The figure shows maximum theoretical principal stress
�1 D 179.9 Nmm�2 with a clearly distinct position. Finally, the comparison of the
measured and theoretical computed values is intended.

5 Test Preparation and Procedure

For the preparation of the tests, the results of the preliminary numerical analyses
were considered in order to obtain features of the response with respect to the choice
of the measuring devices. For the measurements of acceleration components ax, ay,
az in the microscope center of gravity, the tri-axial accelerometer of the type KB 103,
serial No. 00 8115, (manufacturer: MMF Radebeul), mounted on a special clamp,
was used (see detail in Fig. 2). The accelerometer was calibrated on the vibration
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Fig. 6 Strain gauge T1�T4 location on stiffening rib

table fitted with the precise standard sensor of the type SV 100, ser. No. 10004,
calibration certificate No. 8012-KL-2045-04 (manufacturer: AURA Milevsko). For
the strain measurements, the foil strain gages of the type 6/350 LY 11, k D 2.01
(manufacturer: Hottinger Baldwin Messtechnik Darmstadt) were used.

Having prepared the test, one of the edges of the pallet with the mounted
support frame was lifted to a height of 200 mm relative to the opposite parallel
edge simply supported by the steel plate (XY plane, front-back direction). The test
started with the sudden removal of the calibrated rod supporting the elevated edge.
Consequently, the rotational motion of the structure (canting) was initiated. Due to
relatively low value of the coefficient of sliding friction, there was a large horizontal
displacement. After the contact of the pallet with the ground, a multiple rebounding
accompanied by sliding was observed. The test was repeated. In the second series of
the tests, the drop test in perpendicular direction was performed (ZY plane, right-left
direction).

6 Results Evaluation

Seven attempts in both planes (XY, YZ) were performed. The results of maximum
vertical accelerations near the COG of microscope ay are shown in Tables 1 and
2. The selected set of evaluated records of the measured quantities is presented
in Figs. 7 and 8. These displayed graphs of functions correspond to the attempt
No. 2.7 with the maximum acceleration. The stress-time relations are derived from
measured strain courses.
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Table 1 Measured vertical accelerations ay (ms�2) in front-back
direction tests

Test no. 2.1 2.2 2.3 2.4 2.5 2.6 2.7

Plane XY 59.0 50.0 62.5 61.0 54.5 56.0 62.8

Table 2 Measured vertical accelerations ay (ms�2) in right-left
direction

Test No. 1.1 1.2 1.3 1.4 1.5 1.6 1.7

Plane YZ 21.7 22.0 17.7 18.2 17.4 19.9 23.4

Fig. 7 Curve acceleration vs.
time (measured)

Fig. 8 Curve stress vs. time
(measured)

The maximum measured acceleration and dynamic stress component in XY
plane are ay D (57.97 C 4.83/�7.97) m�sec�2 and �T3 D 182 Nmm�2 (strain gauge
T3), resp.

The maximum measured acceleration and dynamic stress component in YZ plane
are ay D (20.4 C 3.36/�2.64) ms�2 and �T3 D 87 Nmm�2 (strain gauge T1), resp.
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The measured values for the dominant front-back direction can be compared with
the theoretical values in order to calibrate the computational model for final detail
strength analysis. The satisfactory accordance of the results is evident:

• Maximum measured results: ay D 62.8 ms�2 D 6.4 g, �T3 D 182 Nmm�2,
• Theoretical results: ay D 60.5 ms�2 D 6.2 g, �3 D 179.9 Nmm�2 .

The measured ratio of inertial force components is Fx /Fy D ax /ay D 0.23 while
the computed ratio is 0.16. The difference can be explained by the assumption of a
lower coefficient of friction between the pallet and the floor than it actually was.

7 Conclusions

The numerical analyses supplemented by experiments were performed in order to
receive reliable data for the final numerical analysis of the behavior of both the
supporting and horizontal frames of the microscope when it is accidentally dropped
during the transport. The significant dominancy of the inertial forces in the front-
back direction drop was proved. Based on the comparison of theoretical and test
results, the slightly conservative acceleration in the COG of the microscope a D 7 g
and the inertial force ratio Fx=Fy D ax=ay D 0:2 can be adopted for the final
strength analysis of the both frames.
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5. Kanický, V: Drop test of the new frame of the electron microscope. Research report of AK-
Mechanika, s.r.o. (2010)

6. SRAC (Structural Research and Analysis Corporation): FEM Computer Program COSMOS/M.
SRAC (Structural Research and Analysis Corporation), Los Angeles (2010)



Substitution of Gyroscopic Stabilizer Correction
Motor by Active Control of Pneumatic Spring

Michal Sivčák and J. Škoda

Abstract Ordinary gyroscopic stabilizer consists of appropriate gyroscope
mounted in precession (inner gimbal) and stabilizer (outer gimbal) frames. The
whole stabilizer is pivoted in base frame. In standard configuration, the air spring,
damper and compensation motor are mounted between base frame and frame of
stabilizer. This paper aims to analyze the possibility of simplification this standard
configuration. The simplification consists of replacement of the compensation
motor by active controlled air spring. Leaving out compensation motor brings
minimal change to the whole system, because air spring control circuit and valve
are already mounted and are used to adjust the initial position of the stabilizer
frame. This solution does not increase the costs. Successful application of proposed
modification could reduce the prize of the system. The issue is approached by
analysis of nonlinear dynamical model of gyroscopic stabilizer with built-in air
spring model, electro-pneumatic valve and correction and compensation system.
Precise characteristics of applied air spring and control elements of analyzed system
were measured in university laboratories.

Keywords Vibration-isolation • Gyroscopic system • Active control • Air
spring • Nonlinear dynamic system

1 Introduction

Mechanical system of the gyroscopic stabilizer, which is the topic of this paper,
was closely described in [1]. Kinematic scheme is depicted in Fig. 1. Gyroscope
with vertical rotation axis is mounted in precession frame. The precession frame
is rotary mounted on stabilizer frame with horizontal axis. The stabilizer frame
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Fig. 1 Kinematic scheme

performs rotation with respect to base frame in horizontal axis perpendicular to
precession frame axis. There are two air springs and damper mounted between
the base frame and the stabilizer frame. The torque motor of radial correction is
mounted on precession frame axis between the stabilizer and precession frame. In
previous works, the compensation torque motor was mounted between the base
and stabilizer frame. These torque motors are actuating devices of correction and
compensation system.

Correction and compensation systems are very important parts of the gyroscopic
stabilizer. They consists of two proportional (or PID) feedback loops. Correction
torque motor (on precession frame axis) is driven by feedback from sensor of
stabilizer frame position, which indicates direction of an apparent vertical direction.
Compensation system is a feedback loop, which applies the torque on the stabilizer
frame and is driven with respect to magnitude of angular displacement of the
precession frame.

Use of air springs and some torque motor combination is characterized by
several disadvantages like increase of stiffness, increase stabilizer frame moment of
inertia and complication of construction and price increase. To correct function of
vibration-isolation platform with gyroscopic stabilizer, the compensation torque
of order 102 Nm in magnitude is required (see required system behavior in [1]).
Pneumatic swivel torque motors often use the speed-reducing gearbox which
increases the reduced moment of inertia and stiffness. In many cases the gearbox
is self-locking. Using an active control of the already mounted air springs seems to
be a logical step due to the above mentioned reasons.

2 Mathematical Model

In previous works, the model of air springs was simplified to linear model of spring
with constant preload. The compensation torque dependent on angle displacement
of gyroscope precession frame was applied on stabilizer frame rotation axis.
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We have built modified mathematical model; also more accurate model of air springs
and model of electro-pneumatic valves and their control system were applied.
Changes only affect the right hand side of original motion equations of mechanical
system. Original set of motion equations was derived (see [2]) using Lagrange
equations of the second kind, with external torques on their right hand side. Set
of motion equations:

d

dt

@T

@ Pqi � @T

@qi
C @U

@qi
D Msi CMdi CMpasi CMcori i D 1::3; (1)

where index i D 1 is for stabilizer frame (q1 is its angle displacement), i D 2 for
precession frame (q2 is its angle displacement) and i D 3 is for sensor of apparent
vertical post (q3 is angle between apparent vertical and z-axis of stabilizer frame).
MSi are torques of air springs, Mti are torques of dampers (linear characteristics),
Mpasi are torques of passive resistances (considered only in pivot of apparent vertical
sensor – pendulum) and Mcor2 is torque of correction motor (only on the precession
frame axis). For torque of air springs we obtain

Ms1 D �rp1 .p1 � pa/ Sef .l1.q1//C rp2 .p2 � pa/ Sef .l2.q1// : (2)

Where on the right hand side of the equation index 1 indicates quantities of
left spring and 2 indicates right spring. p1 and p2 are air pressures in springs, Sef

is function of effective area dependent on deflection of spring li(q1) and pa is the
atmospheric pressure.

For the air pressures inside the air springs, another two equations are added to
the set of motion equations. Ideal gas law and the isothermal process are supposed.
The pressure and volume of air inside the air spring are functions of time. Equation
for the pressure inside the spring is

pi � PV .li .q1//C Ppi � V .li .q1// D RTGi ; (3)

where i D 1..2, Gi means mass flow of the air into or out the air spring. Using the
relation between the volume of air in the spring and its effective area in case of
bellow type air spring is possible to modify Eq. 3.

pi � Sef .li .q1// dli
dq1

q1 C pi � V .li .q1// D RTGi (4)

Equations 1 and 3 are complete set of equations for simulations of motion of
described mechanical system. Air mass flows on the right hand sides of Eq. 4 are
defined by mass flow through the control electro-pneumatic valves.

To control the pressures inside the air springs we chose the electro-pneumatic
valves VY1A01 manufactured by SMC. Actually we are talking about pressure
regulator. This type of valve is equipped by control circuit. It was necessary to derive
the model of this pressure regulator for our simulations. Both valves, viewed in
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Fig. 2 Scheme of air springs control

Fig. 2, are connected to PID controller. Required pressures p1r and p2r are the input
into the PID controllers of valves. These pressures are dependent on precession
frame displacement and they are determined by PID controller of compensation
system. Air mass flow through the valve from the source of pressured air to the i-th
air spring can be expressed (according to ISO6358 standard):

GPAi D

8̂̂
ˆ̂̂<
ˆ̂̂̂̂
:
pin � C � ¡a

vuuuut1 �

0
B@
pi

pin
� bPA

1 � bPA

1
CA
2

pi

pin
> bPA

pin � C � ¡a pi

pin
	 bPA

; (5)

similarly the air mass flow from the i-th air spring to the atmosphere can be
expressed:

GARi D

8̂
ˆ̂̂̂<
ˆ̂̂̂̂
:

� pi � C � ¡a

vuuuut1 �

0
B@
pa

pi
� bAR

1 � bAR

1
CA
2

pa

pi
> bAR

�pi � C � ¡a pa

pi
	 bAR

; (6)

where pin is the pressure of pressurized air, C stands for pneumatic conductivity
(must be measured – ISO6358) dependent on valve opening, ¡a signs the normal air
density, bPA and bAR are critical pressure ratios for appropriate flow direction (must
be measured – ISO6358).
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Pressures p10 and p20 which establish the initial position of the system are
calculated by solving Eq. 1 i D 1, where q1 D q2 D q3 D 0 and p1 D p10, p2 D p20.
We have to add another equation to solve initial pressures p10 and p20. Suitable
equation seems to be the one which balances the forces on pivot of stabilizer frame:

FS1 .p10; q1 D 0/C FS2 .p20; q1 D 0/ D .m4 Cm5 Cm6/ g; (7)

where FS1 and FS2 are forces of air springs and m4, m5 and m6 sign weights of
stabilizer frame, precession frame and gyroscope.

In previous work (1), the compensation motor torque was derived as

Mcom D k � q2.t/C d � q2.t/C i �
Z t

0

q2 .£/ d£; (8)

where k, d and i are coefficients of compensation system PID feedback. It will
be useful to use this expression because then we can use the same setup of PID
feedbacks as in previous work [1]. Required air pressures in the springs can be
obtained by solving equations:

MS1 .p1 D p1r ; p2 D p2r / �MS1 .p1 D p10; p2 D p20/ D Mcom; (9)

FS1 .p1r ; q1.t//C FS2 .p2r ; q1.t// D .m4 Cm5 Cm6/ g: (10)

3 Simulations

Parameters of PID controllers of correction and compensation feedbacks were
determined in work [1]. The same settings of these parameters were used to
verify the correctness of this more realistic system. Simulations were performed
using the present mathematical model with step change of transversal acceleration
applied (similar as acceleration during steering maneuver) and with non zero
initial displacement of stabilizer frame. Time responses of stabilizer frame and
precession frame displacement are compared with the same responses of previous
model in Fig. 3.

Responses on step change of transversal acceleration are shown in left column
of Fig. 3. Free motion time responses with initial displacement of stabilizer frame
(magnitude 0.1 rad) are shown in right column. The time responses of stabilizer
frame displacement are very similar in both cases and the differences are very
small within range of 10�5 rad. Time responses of precession frame displacement
show bigger differences. Time responses of precession frame displacement of
previous and present model are quite similar in first case of transversal acceleration
excitation. These time responses are different in magnitude of the highest peak
in second case of free motion, but behavior is similar. Steeper increase and
higher magnitude of precession frame displacement are caused by slower increase
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Fig. 3 Comparison of present more accurate model and previous model

and lower magnitude of compensation torque. Compensation torque acts in same
direction as gyroscopic torque in these cases. These differences are caused by the
time delay of air spring reaction and by nonlinearities of air springs and air mass
flows through the valves.

4 Conclusions

We obtained more accurate mathematic model of one-axis vibration-isolation
platform with gyroscopic stabilizer. Tubing between the air springs and their control
valves are not considered in the mathematical model, but they cause another time
delay of compensation system feedback loop. It is necessary to reduce their length
for this reason.

The same excitation was applied on both models and time responses were
compared. Performed simulations proved that it is possible to simplify the stabilizer
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using active control of the air springs instead of installation of the torque motor.
Suggested design of the compensation system seems to be the correct direction
in the development of one axis vibration-isolation platform with the gyroscopic
stabilizer.
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1. Sivčák, M., Škoda, J.: Radial correction controllers of gyroscopic stabilizer. J. Vibroeng. 12(3),
300 (2010)
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Comparison of Two Conceptions
of the Vibration Isolation Systems

Jan Šklı́ba, M. Sivčák, and J. Čižmár

Abstract The sprung stretcher of a ground ambulance litter as the space conducting
mechanism with three degrees of freedom. The first degree is determined to
compensate the vertical translations of a carriage, the second and third to com-
pensate both horizontal rotations (so called pitching and rolling). The first degree
is realized with scissor or with parallelogram, on the upper base on which the
double Cardane suspension is placed (as the second and third degree). The second
Cardane frame is connected with an own stretcher. The vibration isolation is realized
with controlled pneumatic springs. Their control has two sensing units: sensor of
the relative position of the upper and lower base and sensor of the absolute angle
deflection of the second Cardane frame from an horizontal plane (double electrolytic
level). This level is modeled as a spherical pendulum (on the base of its identified
characteristics). There was analyzed this dynamic system with five degrees of
freedom. The analyze of two conceptions demonstrates that the scissor mechanism
is for the complete space mechanism more useful than the parallelogram.

Keywords Parallelogram • Scissor mechanism • Level • Sensor of the absolute
position
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1 Introduction

As a conducting mechanism of a driver’s seat it is usually used either a scissors
mechanism or a parallelogram. The advantages, resp. disadvantages of these
conceptions are known. The vibration-isolation system is controlled by a relative
lift, resp. by a deflection from an horizontal plane.

If we face a problem in solving a vertical vibration-isolation of an ambulance
stretcher, it is the parallelogram, that proves some construction preferences.

If we want to protect the patient’s body by pitching or rolling of the carriage
either, it is necessary to analyze the effects of vertical vibrations on the absolute
position sensors.

2 Preliminary Considerations

For a proposed motion of an ambulance carriage (3 degrees of freedom): vertical
translation and two rotations around horizontal axes, the following conducting
mechanism (see Fig. 1) with 3 degrees of freedom was chosen:

The first degree – parallelogram (Fig. 2-left) or scissors mechanism (Fig. 2-right).
The second and the third degree – Cardane suspension of the stretcher placed on

the upper base of the first degree.
It is evident, that kinematics of both conceptions is different: The upper base of

parallelogram makes a circular translation motion according to lower base, while
the upper base of scissors makes a straight-lined motion.

Fig. 1 The validation sample of the vibration-isolation system
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excitation

upper base pendulum

excitation

1st frame 2nd frame

x1

x3
x5

x7
x1 x7

Fig. 2 Two conceptions of the vibration-isolation system

3 Dynamic Analysis

Mathematic models of the both version (see Fig. 2) are deduced (on the base of
the Lagrange equations [1]) for the full nonlinear system (T – is kinetic energy,
U – potential energy of the gravity forces, MS and MD moments of the non-
conservative forces and Eq D �

x1 x3 x5
�

vector of general coordinates (there are
the angle deflections of the parallelogram and frames from equilibrium state).

d

dt

@T

@ Pqi � @T

@qi
C @U

@qi
D MSi CMDi; qi D x2:i�1; Pqi D x2:i ; i D 1::3 (1)

Small deflections are deduced from (1) a linearized system (see. [2]).

A REq C .B1.t// PEq C .C0 C C1.t// Eq D EE0 C EE1.t/C EMD (2)

In [2] there are deduced the explicit expressions for members of matrixes and
vectors in Eq. 2 (A – mass matrix, B0 – damping matrix, C0 – stiffness matrix, B1.t/
resp. C1.t/ – matrix of parametric excitation, EE0 – vector of the static moment (in
the equilibrium state must be EE0 D 0), EE1.t/ vector of external excitation).

We will analyze the difference between two versions. The base of this analyze
will be one-way level which is placed on first frame (see Fig. 2). We suppose that
our dynamic system is uncontrolled and is excited only by vertical translation. The
level is modeled as the mathematical pendulum with same natural frequency and
relative damping (see [3]):

Rx7 C � Px7 C
�
g � Rz
l

�
x7 D � Rx3 � g

l
x3 C Ry

l
(3)

z D �.t/CR sin x1; y D
�
R cosx1 parallelogram

0 scissor
(4)
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Fig. 3 Space of possible trajectories of the point (mass centre of the patient’s body) on the second
frame. The scissor mechanism is on the left and parallelogram on the right side

Fig. 4 The pendulum deflection [rad]; excitation by sinus function with frequency 5 Hz and
amplitude 0.01 m. Angle between parallelogram arms and base is 22ı in equilibrium state

The analyzed system has three natural frequencies: 2.1 Hz – parallelogram (scis-
sor), 3.8 Hz – first frame and 4.1 Hz second frame of the Cardan suspension. The
natural frequency of the mathematical pendulum is 3.5 Hz and relative damping 0.1.

If we depict the space trajectories of the mass center of patient’s body, the
difference between the both conceptions is evident (see Fig. 3).

The natural frequencies depend on the choice of pneumatic springs and
their placement. In the over-resonance area the vertical kinematic excitation is
compensated. The upper base of scissors mechanism does not move in absolute
space, while the upper base of the parallelogram makes a periodic horizontal
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Fig. 5 The pendulum deflection [rad]; excitation by sinus function with frequency 7 Hz and
amplitude 0.01 m. Angle between parallelogram arms and base is 22ı in equilibrium state. It is
a case of the first parametric resonance

Fig. 6 The pendulum deflection [rad]; excitation by sinus function with frequency 9 Hz and
amplitude 0.01 m. Angle between parallelogram arms and base is 22ı in equilibrium state

motion. The sensor of absolute position, placed on the first Cardane frame, is
excited by this horizontal motion.

The amplitudes of the excited oscillations are order of magnitude smaller in non-
resonance area (Figs. 4 and 6) for the scissor mechanism. In the first parametric
resonance are the amplitudes of oscillation in same order for both conceptions
(Figs. 5 and 7).
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Fig. 7 The pendulum deflection [rad]; excitation by sinus function with frequency 6 Hz and
amplitude 0.01 m, arms of the parallelogram are horizontal in equilibrium state

4 Conclusion

1. From the point of view of protecting the position sensor from vertical vibrations,
the scissors mechanism is evidently preferred to the parallelogram.

2. The exception forms the area of the first parametric resonance.
3. The transformed horizontal motion of the upper base of the parallelogram,

realized by external excitation of the position sensor is minimized in case the
arms of parallelogram are horizontal in equilibrium state.
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Dynamic Model of Aircraft Passenger Seats
for Vibration Comfort Evaluation and Control

Z. Šika, Michael Valášek, T. Vampola, U. Füllekrug, and T. Klimmek

Abstract The paper deals with the development of the seat dynamical model
for vibration comfort evaluation and control. The aircraft seats have been tested
extensively by vibrations on the 6 DOF vibrating platform. The importance of the
careful comfort control together with the flight mechanics control is namely stressed
for the blended wing body (BWB) aircrafts. They have a very large fuselage, where
the mechanical properties (accelerations, angular accelerations) vary considerably
for different seat places. The model have been improved by adding of dynamical
models of the aircraft passenger seats identified by the measurements on the 6
DOF vibrating platform. The experiments, their results and the identification of the
dynamical seat model are described. The model is further modified by adding of
the comfort evaluation norms represented by dynamical filters. The structure and
identification of the seat model is briefly described and discussed.

Keywords Blended wing body aircraft • Control of aircraft comfort • Aircraft
seat dynamical measurement • 6 DOF vibrating platform • Comfort standards
• Aircraft seat dynamical model
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1 Introduction

Vibrations are present in nearly all operating ranges of all types of aircrafts.
They occur in a wide range of frequencies and amplitudes. They are caused by
different sources like take-off and landing, flight maneuvers in the air, aerodynamic
excitations like turbulences and gusts, the engines and other on-board systems.
In certain frequency and amplitude ranges the vibrations are regarded as more
or less uncomfortable. At higher amplitudes, the vibrations are clearly reducing
the comfort and can affect the health or even the flight safety. The improvement
of comfort on vibration is an important topic when investigating overall passenger
comfort. High passenger comfort might be an important reason for the decision of
airline companies to procure certain types of new aircraft. The research of design
and control of the new type of blended wing body (BWB) aircraft is the topic
of seventh framework EC project ACFA 2020 “Active Control for Flexible 2020
Aircraft” [1]. The importance of the careful comfort control as a pendant of the
flight mechanics control is namely stressed for the BWB aircrafts. They have a very
large flexible fuselage [2], where the mechanical properties (accelerations, angular
accelerations) vary considerably for different seat places. Consequently the ride
comfort might be much more critical than on conventional aircrafts. The appropriate
comfort control design needs the adequate system model. The aerodynamic model
of the aircraft has to be extended by adding of seats dynamical models and the
comfort evaluation dynamical models. The paper presents representation of the
human comfort sensitivity by the dynamical comfort norms described by transfer
functions and representation of the seat by the simplified 3D mechanical model
identified from experiments.

2 Model Extension with Respect to Comfort Evaluation

To take into account the comfort sensitivity the model is completed based on the
comfort standards. The current way of vibration comfort evaluation according to
valid and used standards ISO 2631 and BS 6841 [3, 4] seems to be adequate for the
control design purposes, nevertheless the evaluation of vibration comfort generally
is not completed area [5]. Two variants are considered, firstly the vibration comfort
evaluation using filtered acceleration components from all three translational and
three rotational directions (filter Wb for z translational direction, filter Wd for x, y
translational direction and filter We for ®x, ®y, ®z rotational directions), secondly
the low frequency filter Wf for vertical direction acceleration and sea(motion)
sickness. The BS 6841 norm filters (Fig. 1) for the seat-body contact has been
used, namely the Wd filter for the x, y directions, We filter for the ®x, ®y, ®z

directions (rotations) and Wb filter for the z direction. These filters in fact reflect
the mechanical properties of the human bodies and the final sensitivity of human
vibration perception.
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Fig. 1 Transfer functions of comfort filters based on BS 6841 norm

The complete formula of the comfort evaluation criterion has the following form

a D .kxWda
2
x C kyWda

2
y C kzWba

2
z C krWer

2
x C krWer

2
y C krWer

2
z C kxWca

2
bx

C kyWda
2
by C kzWda

2
bz C kxWda

2
f x C kyWda

2
fy C kzWba

2
f z/

1=2; (1)

where Wd , Wb , : : : are the transfer functions of filters for separate acceleration
components, kx , ky , : : : are the weights defined by the norm and ax , ay , : : : the
corresponding acceleration components [4]. The filters for separate acceleration
components have been transformed to the state-space form and appended to the
original model.

3 Experimental Identification of Seat Transmissibility
Functions

The experimental investigations of the dynamic characteristics of the seats are
required for performing the correct comfort modeling [6]. Therefore the goal
is the experimental identification of the transmissibility functions from the floor
of an aircraft cabin through a typical passenger seat to the sitting person. For
this purpose, a multi-axial vibration simulator MAVIS has been utilized (Fig. 2).
A typical passenger seat with the test dummies is mounted on the vibrating table. All
experiments were performed at the test laboratory of the Institute of Aeroelasticity
of DLR in Göttingen [7].

The measurement of transmissibility functions was performed with two different
tests signals. First, a sine sweep signal was used. The sine sweep signal was applied
at three different levels. In addition to the translational axes x, y, z, also the rotational
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Fig. 2 Drawing of structure of multi-axial vibration simulator MAVIS

Table 1 Characteristics of applied sine sweep excitations

Frequency

Level Axis 1–2 Hz 10–40 Hz Velocity

Low x, y, z 2.5 mm 0.125 g 2 oct/min
Medium x, y, z 5.0 mm 0.250 g 2 oct/min
High x, y, z 10.0 mm 0.500 g 2 oct/min
Low ®x,®y,®z 0.025 rad 1.25 rad/s2 2 oct/min
Medium ®x,®y,®z 0.050 rad 2.50 rad/s2 2 oct/min
High ®x,®y,®z 0.100 rad 5.00 rad/s2 2 oct/min

motions®x, ®y, ®z were excited. The level for the rotational axes was selected in that
way that the vibration severity was comparable to the translational axes. Table 1 lists
the characteristics of the sine sweep excitation for the three levels and the different
excitation axes. Second, a broadband random signal was applied at one level.

Once the response at the cabin floor is available, the transmissibility functions
identified here can be used for evaluation of vibration levels that the passengers
are exposed to. To investigate the influence of possible nonlinearities in more detail
the transmissibility functions of the different levels of sine sweep excitation were
compared to each other. The structural behavior at the low level is reasonably linear.
The verification of computational models should therefore be mainly accomplished
with data of the low level, if the models are assumed to be linear.

4 Identification of Seat Model Based on Experimental Results

The measured frequency response data (transmissibility functions) between six
components (x, y, z, ®x, ®y, ®z) of acceleration of the vibration simulator table
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(Fig. 2) and accelerations on the several points on the dummy (Fig. 3) are the
base for the seat dynamic model creation and identification. Even though within
the Matlab environment the frequency response data can be partly used directly
for the control design [8], the complete incorporation of the seat dynamics needs
creation and identification of the state space model. The aircraft model intended for
the control design [1] has been formulated as linear, therefore the requested seat
model should be also linear.

There are several possible ways how to propose the dynamic model structure,
principally on the scale from fully black box models to the detailed physical models.
The several different types of models have been tested for the identification target.
The best one seems to be relatively simple 3D mechanical model of 12 degrees
of freedom with clear physical interpretation of the model parameters (Fig. 4).
Such type of model can naturally include mechanical relations between acceleration
outputs in several points (Fig. 3) of the dummy. Consequently also the total number
of identification parameters is relatively low with respect to other model forms. It
has totally 23 mass, stiffness, damping and length parameters.

Different optimization methods can be used for the finding of model parameters
in order to find solution close to the experimental frequency response for different
input/output channels. The global optimization methods [9] have been used for
the finding of the initial guess of the local parameter search [8]. The example of
identification results is in Fig. 5 for transmissibility from y acceleration of table to y
acceleration in dummy point P1. The accuracy of identification is always trade-off
between fulfilments for different I/O channels and model complexity.

Fig. 3 Test dummy with dimensions, sensor positions and measurement directions
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Fig. 4 Structure of
considered 12 DOF
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Fig. 5 Transmissibility from y acceleration of table to y acceleration in dummy point P1

5 Conclusions

Within the context of control strategies of blended wing body aircraft, the model
has been extended for the target of comfort control. The simplified mechanical
model of standard aircraft seat with the passenger dummy has been proposed and
identified based on the vibration experiments, taken into account many input and
output acceleration channels. The human comfort sensitivity has been modeled by
adding of dynamical filters from the verified comfort standards.
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Vibration of the Package of Rods Linked
by Spacer Grids

V. Zeman and Z. Hlaváč

Abstract This paper deals with modelling and vibration analysis of the large
package of identical parallel rods which are linked by transverse springs (spacer
grids) placed on several level spacings. The vibration of rods is caused by the
support plate motion. The rod discretization by FEM is based on Rayleigh beam
theory. With respect to cyclic and central package rod symmetry, the system is
decomposed to identical revolved rod segments. The modal synthesis method with
condensation of the rod segments is used for modelling and determination of steady
forced vibration of the whole system. The presented method is the first step to
modelling of the nuclear fuel assembly vibration caused by kinematical excitation
determined by motion of the support plates which are part of the reactor core.

Keywords Vibration package of rods • Modal synthesis method • DOF number
reduction

1 Introduction

Nuclear fuel assemblies are in term of mechanics very complicated systems of
beamed type, whose basic structure is formed from large number of parallel rods
fully restrained in horizontal support plates of the core shroud. The rods are
linked by transverse spacer grids placed on several level spacings between plates.
Vibrations of the fuel assemblies are excited by a support plate motion of the reactor
core caused by seismic ground motion [1] or by pressure pulsations generated by
main circulation pumps [2].
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The goal of the paper is a development of analytical method for modelling
of vibrations of large package of parallel rods linked by spacer grids caused
by kinematic excitation determined by the support plate motion. The developed
methodology and software can be used for vibration analysis of the different large
parallel beam systems.

2 Mathematical Model of the System

For the cyclic and central symmetric package of rods with respect to centre C the
system decomposition on the identical revolved rod segments s D 1, : : : , S (on the
Fig. 1 for S D 6) can be applied. Mathematical model of the rod segment s, in which
the rods are linked by transverse springs (spacer grids) placed on several level
spacings g D 1, : : : , G, was derived on conditions fully restrained rods in fixed lower
(subscript L) and upper (subscript U) support plates. The generalized coordinate
vector of one rod r in segment s is qr;s D Œ.q

.s/
r;L/

T ; .q
.s/
r /

T ; .q
.s/
r;U /

T �T ; where

q
.s/
r;X D

h
�
.s/
r;X ; �

.s/
r;X ; #

.s/
r;X ;  

.s/
r;X

iT
; X D L;U; q.s/r D

h
: : : ; �.s/r;g ; �

.s/
r;g; #

.s/
r;g ;  

.s/
r;g ; : : :

iT
:

General coordinates express displacements of the rod nodal points on the level of
plate L, grids g (g D 1, : : : , G) and plate U. The deformations of the springs with
identical stiffness kg between two arbitrary rods on the level of grid g are expressed

by lateral displacements �.s/r;g ; �
.s/
r;g and bending angles #.s/r;g ;  

.s/
r;g of the rod cross-

section in contact nodal points.
The conservative mathematical model of an arbitrary isolated rod segment s was

derived on the basis of beam theory in the form [3]

MS Rqs C
0
@KS C

QX
qD1

GX
gD1

Kqg

1
A qs D fs.t/; s D 1; : : : ; S; (1)

where Q designates the number of the transverse springs inside one segment and
Kqg is stiffness matrix corresponding to the couplings q by means of the spring kg

between two rods. The mass MS and stiffness KS matrices of all identical parallel
uncoupled rods marked by subscript R in the segment are block diagonalXS D
diagŒXR; : : : ; XR�; X D M;K; with identical mass and stiffness rod matrices
MR, KR derived on the basis of Rayleigh beam theory [4]. The force vector
fs(t) expresses the contact forces acting in end-nodes of the rods L.s/r and U .s/

r

(see Fig. 1b). The vector of generalized coordinates of the rod segment can be

partitioned in the form qs D Œ.q
.s/
L /

T
; .q

.F /
s /

T
; .q

.s/
U /

T
�
T

2R4GRC8R; where q.s/X D
Œ.q

.s/
1;X /

T
; : : : ; .q

.s/
r;X/

T
; : : : ; .q

.s/
R;X /

T
�
T

2R4R;X D L;U are displacement vectors
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Fig. 1 The rod package cross-section (a) and displacements of rod r in segment s (b)

of end-nodes of rods 1, : : : , r, : : : , R coupled with moving rigid plates and q.F /s D
Œ.q

.s/
1 /

T ; : : : ; .q
.s/
r /

T ; : : : ; .q
.s/
R /

T �T 2 <4GR is displacement vector of free rod nodes
in contact points with the springs.

The mathematical model of the rod segment s in the decomposed block form
corresponding to partitioned vector qs can be written as

2
4ML ML;S 0

MS;L M
.F/
S MS;U

0 MU;S MU

3
5
2
64

Rq.s/L
Rq.F /s

Rq.s/U

3
75C

2
4KL KL;S 0

KS;L K
.F /
S KS;U

0 KU;S KU

3
5
2
64
q
.s/
L

q
.F /
s

q
.s/
U

3
75 D

2
4fL.t/f C

s

fU .t/

3
5 ; (2)

where stiffness submatrix K
.F/
S includes all coupling matrices Kqg inside the

segment. The force subvector f C
s of dimension 4GR expresses the coupling forces

in contact nodal points of the outer rods of segment s with adjacent segments s � 1
and s C 1. The displacements of the end-nodes of the rod r in the segment s coupled
with plates can be expressed by the displacements of the lower and upper rigid plates
in the form

q
.s/
r;X D T

.s/
r;XqX ; T

.s/
r;X 2 R4;6; r D 1; : : : ; R; s D 1; : : : ; S;X D L;U: (3)

Relations (3) can be expressed for all rods in the segment as
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q
.s/
X D T

.s/
X qX ; X D L;U; s D 1; : : : ; S; (4)

where TX
.s/ 2 <4R; 6 are the global transformation rectangular matrices. The second

set of equations extracted from (2) and modified using transformation (4) for each
segment s D 1, : : : , S

M
.F/
S Rq.F /S CK

.F/
S q

.F /
S D �MS;LT

.s/
L RqL �MS;U T

.s/
U RqU �KS;LT

.s/
L qL

�KS;U T
.s/
U qU C f C

s (5)

allows us to complete the fee rod nodal point displacements.

3 Condensed Mathematical Model of the System

The global model of the package of rods has to large DOF number n D 4RGS for
calculation of the dynamic response excited by support plate motion. Therefore we
assemble the condensed model of the system using the modal synthesis method [5].

Let the modal properties of the conservative model of the mutually uncoupled
arbitrary rod segment with fully restrained rods in immovable support plates be
characterized by segment spectral �S and modal VS matrices of order 4GR. The
vector q.F /x , corresponding to rod contact nodes of segment s with springs, can be
approximately transformed in the form

q.F /s .t/ D mVSxs.t/; s D 1; : : : ; S ; (6)

where mVS 2 R4GR;mS is segment modal submatrix of chosen ms master modes
included into mVS. The model (5) can be rewritten for each segment using (6) in the
form

Rxs.t/C m�Sxs.t/ D �mV T
S .MS;LT

.s/
L RqL CMS;U T

.s/
U RqU CKS;LT

.s/
L qL

CKS;U T
.s/
U qU C f C

s /;

s D 1; : : : ; S: (7)

The models (7) of all segments can be then written in configuration space x.t/ D
D Œxs.t/� of the dimension m D SmS as

Rx.t/Cm�x.t/ D �mV T ŒML
RQL.t/CMU

RQU.t/CKLQL.t/

CKUQU .t/C fC � ; (8)
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where fC D Œ.f C
1 /

T ; : : : ; .f C
S /

T �T is global vector of coupling forces between
segments and matrices

m� D diagŒm�S � 2 Rm;mI mV D diagŒmV S � 2 Rn;mI
YX D diagŒYS;XT

.s/
X � 2 Rn;6S I

Y D M;KIX D L;U

are block diagonal, composed from corresponding matrices of the identical rod
segments and QX.t/ D ŒqTX.t/; : : : ; q

T
X.t/�

T 2 R6S ; X D L;U are extended
vectors of plate displacements.

The global vector of coupling forces between segments can be calculated from
identity

fC D �@Ep
@qF

D �KCqF ; qF D
h
.q
.F /
1 /

T
; : : : ; .q

.F /
S /

T
iT
; (9)

where Ep is potential (deformation) energy of the spacer grids (springs) between
segments (in Fig. 1 are marked by dashed lines). The expressions (9) and qF .t/ D
DmVx.t/ can be substituted in Eq. 8 and then we get the condensed model of the
rod package of order m D SmS

Rx.t/C .m�C mV TKC
mV /x.t/ D �mV T ŒML

RQL.t/CMU
RQU .t/

CKLQL.t/CKUQU .t/�: (10)

4 Steady Harmonic Response Excited by Support Plate Motion

Let us consider the rod package in Fig. 1, for which the only excitation source is the
harmonic motion of the support plates. In consequence of lightly damped rods and
spacer grids, we consider modal damping of the rod segment characterized in the
space of modal coordinates xs by diagonal matrix DS D diagŒ2D�˝�� where D�

are damping factors of natural modes and ˝� are eigenfrequencies of the segment
with fully restrained rods in immovable support plates. The damping of springs is
considered to be proportional to stiffnesses by coefficient ˇ. That being simplifying
supposed the conservative condensed model (10) will be completed in the form

Rx.t/C .D C ˇ mV TKC
mV / Px.t/C .m�CmV TKC

mV /x.t/ D
D �mV T ŒML

RQL.t/CMU
RQU.t/CKLQL.t/CKUQU .t/�; (11)
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where D D diag[DS, : : : , DS] 2 < m;m. Let us consider the harmonic motion of the
plates in the complex space qL.t/ D qLei!tand qU .t/ D qU ei!t : Steady response
can be expressed as x.t/ D xei!t ; where vector of complex amplitudes is

x D �Œm�C i!D C .1C i!ˇ/mV TKC
mV � E!2�

�1�
�mV T Œ.KL �ML!

2/QL C .KU �MU!
2/QU �; (12)

where QX D ŒqTX ; : : : ; q
T
X �
T
; X D L;U . The complex amplitudes of the free rod

node displacements are qF D mVx or q.F /s D mVSxs; s D 1; : : : ; S , where x D
ŒxT1 ; : : : ; x

T
S �
T :

5 Example

The methodology was tested for steady harmonic response of the package of
rods with six rod segments (S D 6) linked by three identical spacer grids (G D 3)
uniformly located between fully restrained ends of rods with length l D 4 m.
Each segment has 55 identical rods (R D 55) in the form of steel tube (
 D
7; 800 kgm�3; E D 2�1011 Pa) with outer radius 4.55 mm and inner radius 4.25 mm.
The rod spacing is 13 mm and identical spacer grids are characterized by spring
stiffness kg D 200 N/m between adjacent rods. The complex package of rods under
consideration has n D 3,960 DOF. The spectrum of eigenfrequencies is distributed
between values f1 D 3.51 Hz and f3960 D 98.33 Hz and is very crowded.

As an illustration, the frequency response curves of contact points lateral
displacements of the random selected rod r D 10 in the first segment (s D 1) on
the level grids g D 1, 2, 3 are shown in Fig. 2. The excitation is given by plate
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Fig. 2 Frequency response curves of rod lateral displacements in contact points
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motions wired in rigid body. We assume the harmonic body motion defined in
frequency area f 2<1; 10>Hz by amplitude xL D 10�3 m in horizontal axis on
the level of the lower plate and rotation amplitude 'xL D 0:25 � 10�3 rad around
this axis. The considered model (11) with 600 DOF (mS D 100) was used for the
calculation of the response curves. The accuracy of condensed model was tested in
terms of relative errors of 80 lowest rod package eigenfrequencies defined in the
form "� D jf�.mS/ � f� j=f�; � D 1; : : : ; 80 where f� are eigenfrequencies of the
full (noncondensed) model with 3,960 DOF. The relative errors "� for mS D 100 are
less than 1%. The highest peaks correspond to the first resonance state and middle
contact point displacements.

6 Conclusion

The described method enables to investigate effectively the flexural vibration of
the large package of parallel rods fixed between two horizontal plates and linked
by spacer grids. The special coordinate system of radial and orthogonal lateral
axes for each rod makes possible to separate the complex package of rods into
several identical revolved rod segments characterized by identical mass, damping
and stiffness matrices.

This new approach, based on the system decomposition and modal synthesis
method with reduction of DOF number, was applied to the rod package which is
structurally conformable to nuclear fuel assembly. The developed methodology and
software in MATLAB will be further used for modelling the nuclear fuel assembly
vibration caused by kinematic excitation determined by the support plate motions
of the reactor core.
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Combination Resonances and Their Bifurcations
in the Nonlinear Vibromachines
with a Polynomial Characteristic of Restoring
Force and Periodic Excitation

V.N. Belovodskiy and M.Y. Sukhorukov

Abstract In this article main attention is paid to special cases of combination
resonances, namely, low order sub- and superharmonic ones.

Mathematical models of the nonlinear machines of one mass schemes (screening,
concentration tables, transporting machines) with polynomial characteristics of
restoring and dissipative forces and periodic excitation are under consideration.
Their dynamics in the zones of sub- and superharmonic resonances are studied.
By numerical simulation and with the usage of original software the analysis of the
spectral and phase composition of the oscillations is performed, the main types of
bifurcations of the stationary regimes are allocated, the role of the biharmonic part
of the excitation is discovered.

Keywords Vibromachine • Subharmonic resonance • Superharmonic
resonance • Polyharmonic vibration • Numerical analysis

1 Introduction

In the 1970s and 1980s of the previous century, a number of devices implemented
in vibromachines for compaction and transporting, peculiarities of the behavior of
nonlinear systems were developed. However, inexhaustible interest in the use of
polyharmonic vibration in various manufacturing processes, as it is noticed at the
exhibitions of technological equipment, stimulates further research in the field of
combination resonances. This work was done in this direction.
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2 The Model Under Consideration

Dynamics of vibromachines of one mass scheme with kinematic or force excitation,
with accuracy sufficient for practice, is described with a second order differential
equation. Assuming a cubic restoring force and taking into account only resistance
forces in the elastic ties we shall represent it in a dimensionless form in the following
view

d2�

d�2
C �!0

�
1C ˇ� C ��2

� d�
d�

C �
1C ˇ� C ��2

�
� D P cos��: (1)

3 Research Tools

The research tool is numerical simulation using the developed applications of
MATLAB software for constructing bifurcation (amplitude- and phase-frequency)
characteristics, spectral analysis and phase composition of the stationary oscilla-
tions, identifying basins of attraction of periodic regimes [1].

The program for constructing bifurcation diagrams, for example, amplitude- and
phase-frequency characteristics (AFC and PFC), is based on the implementation of
the harmonic balance method to the analysis of Eq. 1, whose solution is sought
in the complex form. The program provides the creation of a system of nonlinear
algebraic equations and its solution with successive changes of one of the parameters
of the system. Getting all the solutions in the search area is provided by a certain
amount of initial test points, the formation of which is made using a Quasi-Random
LpTau sequence. The bifurcation points are defined by monitoring the change of
sign of the Jacobian of the system of the equations. The program of the spectral
and phase analysis is based on the numerical solution of the Cauchy problem for
Eq. 1, finding its steady solutions and of the subsequent numerical expansion in
finite Fourier series of the form

�.�/ D
NX
kD0

Ak cos .k�� � 'k/:

The program of constructing basins of attraction of periodic regimes, or more
precisely their sections � D �0, is based on brute force of the initial points in the
given area and further constructing their orbits using the Poincare map.

4 Research Methods

Initially, by construction of amplitude- and phase-frequency characteristics fre-
quency ranges are allocated, in which the stationary regimes of motions have
pronounced polyharmonic structure. Then, by changing other parameters of the
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system we construct bifurcation curves. A subsequent construction of the basins
of attraction gives information about stability margin. The values chosen for the
simulation parameters correspond to their real range in the vibromachines of
technological purposes.

5 Research Results

In Figs. 1–4 some results are presented. The harmonic components whose ampli-
tudes were greater than 1% of the maximum one were taken into account. We note
some features and formulate the following conclusions.

1. For symmetric characteristics (“ D 0) from the number of the lower ones we
managed to find only the resonances of the order of 1:3 (Fig. 1a, b). The presence
of three pairs of subharmonic regimes is characteristic. The profiles of each group
(a stable one is marked by a solid line, an unstable one – by a dashed line)
differ in phase shift of harmonic components and coincide in parallel transfer, i.e.
Ÿ.�/ D Ÿ.� � s/. The elementary analysis gives grounds for generalization and
allows us to formulate a hypothetical statement: In nonlinear system (1) the set of
subharmonic motions of order 1 W n may be separated into one or more disjoint
classes. Each class contains 2 n regimes and only n of them are stable. Regimes
of stable and unstable groups are identical relatively to the shear and coincide
under the change of variable � WD � C 2  m=! , where m D 0; 1; : : : ; .n � 1/.
Or, what is the same, the phases of their harmonics differ by 2 km=n, where k
is the number of a harmonic,m is the number of a regime.

2. Basins of attraction (BOA, Fig. 1c) show a significant margin of stability motions
of the order of 1:3. This is particularly evident in the fact that the size of the
core of sections £ D 0 of their basins of attraction are in the range 0:5 :: 0:6
and are quite comparable to the core of the principal regime. Judging from our
statement mentioned in previous conclusion they can be regarded as sections
£ D £0 C 2 =n of the basin of attraction of any of the regimes of the stable
group.

3. Figure 2 shows the bifurcation diagrams for the 1:3 resonance. Among the fea-
tures we note its escalation with the introduction of asymmetry “ characteristics
(Fig. 2a), as well as the extreme nature of the dependence when P changes
(Fig. 2b).

4. After decreasing of the resistance in the system the subharmonic regimes of
1:2 were discovered (Fig. 3). Their number and character confirms the above
formulated hypothesis.

5. Asymmetry of the restoring force (Fig. 4a) and asymmetry of excitation (Fig. 4b)
may be considered as factors which facilitate the appearance of the resonance 1:2.
The last figure demonstrates that even small additional force at the subharmonic
frequency can be sufficient for the formation of quite intense motions of the
order of 1:2.



238 V.N. Belovodskiy and M.Y. Sukhorukov

Fig. 1 AFC (a), PFC (b) and BOA (c) of (1) for �¨0 D 0:1, “ D 0, ” D 0:5, P D 10, where
A
.m/

k , '.m/k – are the amplitude and initial phase of k-th harmonic of m-th regime

6. Analyzing the superharmonic zone (Fig. 1a, b) one can note that these motions
have diverse spectral structure and appear quite “naturally” under smooth
changing of the frequency of the excitement.

7. Note “power” features of subharmonic regimes. Let us make an experiment.
Consider the value of � D 3:65 (Fig. 3). It corresponds to A1=2 � 2:16,
A2=2 � 1:08. Putting in (1) “ D ” D 0, we obtain a linear vibromachine. We use
the estimated ratio of A � P

ı
.˜2 � 1/ , which is valid for �  1. We find that

for the formation of polyharmonic oscillations in a linear vibromachine, shaped
in such a way, it must be biharmonic excitation with the following values of its
constituent power: P1=2 � 5:03, P1 � 13:31. Thus, their total value amounts
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Fig. 2 Bifurcation curves for 1:3 under the varying of: (a) “; (b) P

Fig. 3 AFC (a), PFC (b) and BOA (c) of (1) for 1:2 and �¨0 D 0:05

to 18.34 units versus 10 units in the non-linear one. This circumstance allows us
to hope for a perceived decline in energy consumption vibromachines which op-
erate in the regime of subresonances. Additional simplification of design, which
accompanies the use of one vibration exciter instead of two, it seems obvious.
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Fig. 4 AFC and PFC for 1:2 under: (a) asymmetric restoring force “ D 0:1; (b) additional
excitation P1=2 cos .0:5��/, where P1=2 D 0:5

6 Conclusions

The given results demonstrate the polyharmonic possibilities of combination reso-
nances and some reserves of their control for real values of force and dissipation
factors. Among the regular questions on the way to the practical use of combination
resonances we may refer the problem of reaching a project regime of vibromachine
in terms of its limited stability. The ideal way out of this situation is the elastic
characteristics of the option, for which the selected combination regime is globally
stable.
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A Hollow Cylinder Problem in Microstretch
Theory

Esin Inan and Ahmet Kiris

Abstract A hollow cylinder micro-damaged tube under pressure problem is
discussed. Micro damage is modeled with Eringen’s microstretch theory and the
displacement and its comparison with classical result are given.

Keywords Microstretch • Damage • Vibration • Lamé Problem

1 Introduction

In the present work, an example is given for a microstructural model of damage.
This model was introduced by Markov [1]. He considered the damage process
as a generation and growth of microdefects as microvoids. The starting point of
this though is the observation that the microcracking introduces micro-distortion
tensor ˛ as an additional degree of freedom in the elementary volume of the solid,
kinematically independent of the displacement field u .x/. This tensor seems at the
first sight as a geometrical characteristic of the damaged solid. The tensor ˛ has
an equivalent kinematical definition as the averaged value of distortion generalized
by the set of microcracks in the small volume element. With this definition,
the damaged solid becomes a micromorphic continuum in the sense of Eringen
and Suhubi [2]. Thus, the micro-distorsion tensor may be defined as the damage
tensor. Then the basic results concerning the kinematics and the dynamics of the
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micromorphic continua may be employed to damaged solid. More details of this
model are given in [1] and developed in [3].

When switching from a macroscopic to a microscopic approach, a difficulty
occurs due to the lack of sufficient knowledge of materials. This seriously limits
the development of the microscaled models. To cope this unattractive feature, some
simplifications are considered such as micropolar, microstretch or microisotropic
theories. But, it is better to use the microstretch theory than others in damage
problems since taking into account microstretching of the voids is more meaningful
than the microrotation of them. In literature, some damage problems are solved by
microstretch theory [4, 5], but the results are all given in terms of unknown material
coefficients of microstretch medium.

To determine above mentioned unknown material coefficients, we investigated
the vibration of rectangular plates modeled by microstretch theory and a method is
presented for the identification of the upper bounds of microstretch elastic moduli
in [5]. The frequencies of the plates are obtained by extending the Ritz method to
the microstretch theory [5].

Here, we considered a hollow circular tube unbounded along its axis which
occupies the region R1 	 r 	 R2 as an example. The tube is subjected to pressure
at inside and outside surfaces. General formulation of this problem is given in [3]. In
this paper, we used microstretch material properties obtained from [5] for damaged
material and radial displacements are obtained and then comparison with classical
elasticity is given.

2 The Analysis of the Plate Vibration

2.1 Fundamental Equations

In the absence of body forces and body moments, the equations of motion in a linear
homogeneous isotropic microstretch elastic solid are as follows

�
c21 C c23

�rr � u � �
c22 C c23

�r � r � u C c23r � � C N�0r� D ü�
c24 C c25

�rr � � � c24r � r � � C !20r � u � 2!20� D R�
c26�� � c27� � c28r � u D R� (1)

where, �;� are Lamé constant and shear modulus, �; ˛; ˇ; � are the micropolar
constants, �0; �1 and a0 are the microstretch constants, j is the micro-inertia, and
u; � and � are the displacement and the micro rotation vectors and the microstretch
scalar, respectively. And,
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c21 D �C 2�



; c22 D �



; c23 D �



; c24 D �


j
; c25 D ˛ C ˇ



; c26 D 2a0


j
;

c27 D 2�1

3
j
; c28 D 2�0

3
j
; !20 D c23

j
; N�0 D �0



; (2)

Now we consider a homogeneous isotropic rectangular plate with length a;width
b and thickness h and the origin of a Cartesian coordinate system .x1; x2; x3/ is
located at the middle point of the plate whose normal is in the positive direction of
the axes x3. In general the maximum energy functional of a plate is given as

˘ D Vmax � Tmax (3)

where Vmax and Tmax are the linear elastic strain energy and the kinetic energy
of the plate, respectively. Assuming harmonic-time dependence, the periodic dis-
placement, micro rotation and microstretch components of the microstretch plate
undergoing free vibration may be written in terms of the amplitude functions as

fu.x; y; z; t /;�.x; y; z; t /; �.x; y; z; t /g D f.x; y; z/;
u˚.x; y; z/;(.x; y; z/g ei!t : (4)

For brevity, the clear forms of the energy function are not given here and can
be found in [5] with more details. Here, we used triplicate series of Chebyshev
polynomials multiplied by a boundary function, for each amplitude functions of (3),

U1 .�; �; $/ D FU1.�; �/

1X
i;j;kD1

AijkPi .�/Pj .�/Pk .&/ (5)

and similar expressions are valid forU1; U2; ˚1; ˚2 and( with the corresponding
coefficients. Now writing the extreme conditions as

@˘

@Aijk
D 0;

@˘

@Blmn
D 0;

@˘

@Cpqr
D 0;

@˘

@ OAOi Oj Ok
D 0;

@˘

@ OBOl Om On
D 0;

@˘

@ OC Op Oq Or
D 0;

@˘

@
OOAOOi OOj OOk

D 0;

(6)

we obtain the following eigenvalue problem,

�
K �˝2M

�
Z D 0: (7)
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Here the column vector Z may be written with its sub-column vectors

Z D
n
A;B;C; OA; OB; OC ; OOA

o
: (8)

And each sub-column vector is in the following form [5]

A D fA111;:::;A11N;:::;A1k1;:::;A1kN;:::;AI11;:::;AIJKg : (9)

The elements of the stiffness and mass matrix are given in [5].

2.2 Analysis of the Spectrum of the Frequencies

The analysis of the vibration problem has shown that some additional frequencies
exist among the frequencies obtained by the classical theory that arise due to
the microstructure [5]. Besides, it is shown that these additional frequencies
disappear when the microstretch constants are taken as zero. The inverse problem
is established for the identification of the upper bounds of the microstretch elastic
constants as an optimization problem where an error function is minimized. The
final solution of the constants f�; ˛; ˇ; �; a0; �0; �1g are obtained by using Downhill
Simplex Method and one group of results for Gauthier material is obtained as

� D 132:34 kPa; ˛ D 8:3255 � 10�2 kN; ˇ D 0:10282 kN;

� D 3:3349 kN; a0 D 15:947 kN; �0 D 0:57702 kPa; �1 D 34:650 kPa:
(10)

3 Application on a Lamé’s Problem

We consider a hollow circular tube unbounded along its axis, which occupies the
region R1 	 r 	 R2. The tube is subjected radial compression at its internal and
external surfaces;

�r jrDR1 D qi i D 1; 2: (11)

Field equations and the damage evaluation form are considered as follows

��u C .�C �/rr � u � �1r˛ D 0

�1�˛ C �2 Œr .r � ˛/C .r � ˛/r� � �2˛ C �1" D 0 (12)
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Here u D u.r/ is the displacement field and ˛ D ˛.r/ is the damage function.
Then we may write [3]

u D u.r/ D u.r/er ; " D ru D
�

u0 � u

r

	
erer C u

r
I; (13)

and

˛ D ˛.r/ D a.r/erer C b.r/I: (14)

Now substituting these expressions into the above fundamental equations, after
some mathematical manipulations, we get

.�C 2�/
�

u0 C u

r

	0 � �1� D 0

�1

�
a00 C a0

r
� 4a

r2

�
C 2�2r

��
r

	0 C �1r
�u

r

	0 � �2a D 0

�1r

�
b00 C b0

r
C 2a

r2

�0
C 2�2r

��
r

	0 C �1r
�u

r

	0 � �2rb
0 D 0 (15)

and extracting the later from previous one gives

�1


�
a00 C a0

r
� 4a

r2

�
� r

�
b00 C b0

r
C 2a

r2

�0�
� �2

�
a � rb0� D 0: (16)

The structure of this result suggests us to introduce new function F as

F D F.r/ D a.r/� rb0.r/: (17)

Then we can write

F 00 � 1

r
F 0 � �2

�1
F D 0: (18)

The solution of (18) is

F.r/ D r ŒC1I1.�1r/C C2K1.�1r/� (19)

where I1 and K1 are modified Bessel functions and �21 D �2=�1. Now after some
algebra on Eq. 15b, c we arrive

�1

�
 00 C  0

r

�
C 2�2

�
�0 C �

r

	
C �1

�
u0 C u

r

	
� �2 D 0 (20)
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Here  .r/ D a.r/C 2b.r/ and � D  0 C 1
r
F . Now, defining � D  0, we find

�
� 0 C �

r

�0
� �22� C �23

1

r
F D 0 (21)

where

�22 D �2 .�C 2�/� �21
.�1 C 2�2/ .�C 2�/

> 0; �23 D 2�2 .�C 2�/ �21 C �21
.�1 C 2�2/ .�C 2�/

> 0 (22)

and �23 D �21 � �22 . Thus, the general solution can be written as

� D D3I1 .�2r/CD4K1 .�2r/CK0 .�1r/ : (23)

Since � D a0.r/C 2b0.r/, then we get

a.r/C 2b.r/ D D3

�2
I0 .�2r/� D4

�2
K0 .�2r/C 1

�1
K0 .�1r/C C5 (24)

where

C5 D �D3

�2
I0 .�2R1/C D4

�2
K0 .�2R1/� 1

�1
K0 .�1R1/ : (25)

And after some calculations, we find

a.r/ DD3

�2
I2 .�2r/ � D4

�2
K2 .�2r/C 1

�1
K2 .�1r/C 2

�1
ŒC1I2 .�1r/ �C2K2 .�1r/� ;

b.r/ D 1

r�22
ŒD3I1 .�2r/CD4K1 .�2r/� � 1

r

1

�21
K1 .�1r/ � 1

�1
ŒC1I2 .�1r/

�C2K2 .�1r/�C C5

2
(26)

Then, finally we get the displacement as

u.r/ D C6r C C7

r
C �1

�C 2�



D3

�22
I1 .�2r/C D4

�22
K1 .�2r/C C1

�21
I1 .�1r/

C C2

�21
I1 .�1r/ � 1

�21
K1 .�1r/

�
(27)

The constants C1; C2; D3; D4; C6; C7 can be found from stress boundary
conditions.

As an example, the expression of u.r/ is shown on the Fig. 1a for a Gauthier
material with the following initial conditions:
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Fig. 1 The displacement in (a) and it’s comparison with classical elasticity solution
(dashed) in (b)

R1 D 0:01 m; R2 D 0:02 m; q1 D 0:01 GPa; q2 D 0:02 GPa; � D 0:4;

E D 5:31 GPa; �1 D ��0 D �5:7702� 10�7 GPa;

�2 D �1 D 3:465 � 10�5 GPa: (28)

Figure 1b shows the difference in functions u.r/ found for damaged and
undamaged material.

As it is seen from figures, the maximum difference occurs in the mid-part of the
hollow cylinder as it is expected.

4 Conclusions

The effect of micro-damages to the displacement is very small as the microstretch
material properties is the order of 10�5 with corresponding to the classical material
constants.
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Wave Approach in Discrete-Continuous Systems
Torsionally Deformed Taking into Account
Position-Dependent Inertia

Amalia Pielorz

Abstract The paper deals with discrete-continuous systems having position-
depended inertia. The systems consist of an arbitrary number of elastic elements
torsionally deformed connected by rigid bodies. The first rigid body represents an
electrical motor. Constant and variable velocities of the motor are considered.
The studied problems are nonlinear and they are linearized after appropriate
transformations. It is shown that such problems can be investigated by means of the
wave approach using the solution of the d’Alembert type. Numerical considerations
are done for a three-mass model.

Keywords Discrete-continuous systems • Variable inertia • Wave approach

1 Introduction

In the paper discrete-continuous models of systems torsionally deformed having
position-dependent inertia are studied. From papers [1–3] it follows that mechanism
with variable inertia play an important role in systems torsionally deformed.
Discrete models of mechanisms with variable inertia are considered in [3], two-mass
discrete-continuous models are studied in [1, 2] and in [4, 5] multi-mass systems are
discussed. In [2, 4, 5] it is assumed that the rigid body representing a motor has a
constant velocity.

The aim of the paper is to represent governing equations for multi-mass systems
torsionally deformed with variable inertia taking into account the assumption that
the rigid body representing a motor can move with a constant or with a variable
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velocity. In the discussion a wave approach is applied, similarly to studies of
discrete-continuous systems in [6–8]. Exemplary numerical calculations are given
for a three-mass system.

2 Governing Equations

Let us consider a system consisting of N C 1 rigid bodies connected by means of
shafts torsionally deformed. The x-axis is parallel to the main axis of the system,
and its origin coincides with the position of the left-hand end of the first shaft in an
undisturbed state at time instant t D 0. Shaft displacements �i .x; t/ and velocities
are equal to zero at t D 0.

The first rigid body represents an electrical motor and it is generally loaded by
the motor torqueM1 D M0CK.�0�@�1=@t/, whereM0 is the nominal torque,�0

is the nominal angular velocity and K is the slope of the motor characteristic. The
last rigid body is loaded by an equivalent resistance torque equal to M0. The rigid
bodies in the model are characterized by the mass moment of inertia Ji , i D 1, 2,
: : : , N C 1. The mass moment of inertia of the last rigid body depends on the angular
displacement, i.e., JNC1 D JNC1.�N /. The i-th shaft, i D 1,2, : : : ,N, is characterized
by length li , density 
, shear modulus G and polar moment of inertia I0i .

The determination of angular displacements �i of the shafts is reduced to solving
N equations

@2�i

@t2
� c2

@2�i

@x2
D 0; i D 1; 2; :::; N (1)

with zero initial conditions and with the following boundary conditions in cross-
sections where rigid bodies with i D 2, 3, : : : , N C 1 are located

�i .x; t/ D �iC1.x; t/ for x D
iX

kD1
lk; i D 1; 2; :::; N � 1;

�JiC1 @
2�i

@t2
�GI0i

@�i

@x
CGI0;iC1

@�iC1
@x

D 0 for xD
iX

kD1
lk; i D 1; 2; :::; N�1;

JNC1
@2�N

@t2
C 1

2

dJNC1
d�N

�
@�N

@t

�2
CGI0N

@�N

@x
D �M0 for x D

NX
kD1

lk:
(2)

The condition in the cross-section x D l1C l2C� � � C lN can have various forms.
Here it is assumed in the form proposed in [1, 2].

In the cross-section x D 0 two cases are discussed

(a) the first rigid body moves with a constant velocity

@�1

@t
D �0 for x D 0; (3)
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(b) the first rigid body moves with a variable velocity

J1
@2�1

@t2
�GI01 @�1

@x
D M0 CK

�
�0 � @�1

@t

�
for x D 0; (4)

Problems for the both cases are nonlinear. In order to obtain effective numerical
results, new unknown functions are introduced

�i .x; t/ D �0t C ˛i .x; t/ � M0

GI0i

 
x �

iX
kD1

lk

!
; i D 1; 2; : : : ; N; (5)

the variable mass moment of inertia JNC1.�N / is expended in a Taylor series
around �0t , and second and higher order terms are neglected. Introducing the
transformations (5), the static deformations corresponding to the nominal torque
momentM0 appearing in the last conditions in formulas (2) and in (4) are separated.
This leads to determination of functions ˛i by solving N wave equations with linear
boundary conditions having variable coefficients.

The solutions for ˛i are sought in the form of the sum of the functions
representing waves propagating in shafts satisfying identically equations of motion
for the shafts. Using this approach we have to solve linear equations with a retarded
argument having variable coefficients. These equations are similar to those which
one can find in [4, 5] in the case of the first rigid body moving with a constant
velocity. The equations in [4, 5], i.e., taking into account condition (3), were solved
numerically and analytically. In the case of condition (4) only a numerical way is
applied here.

3 Numerical Results

Numerical calculations are focused on the effect of variable inertia on the behavior
of the three-mass system shown in Fig. 1 using appropriate equations with a
retarded argument with N D 2. The system is characterized by the following basic
nondimensional parameters, [4, 5],

Kr D 0:05; B1 D B2 D 1; E2 D 0:8; l1 D l2 D 1; a0 D 1; a2 D 0:05

(6)

and with the mass moment of inertia described by

J3.�0t/ D a0 C a2 cos.2�0t/: (7)

For the system with parameters (6) the first four natural frequencies are equal
!1 D 0.222, !2 D 0.359, !3 D 3.158, !4 D 3.183.
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Fig. 1 Three-mass discrete-continuous system
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Fig. 2 Comparison of numerical solution (dashed line) and analytical solution (continuous line)

The efficiency of the applied wave approach is checked in the case of the
condition (3) comparing an analytical solution with a numerical one in the steady
state of motion. Comparable results for angular displacement ˛ in the cross-section
x D 1 with �0 D 0.05. are given in Fig. 2. The approximate analytical solution
for the three-mass system derived by means of the method of a small parameter
is presented in [5]. Diagrams in Fig. 2 show a good agreement between results
obtained by two different methods.

The analytical solutions in the case when the rigid body representing the motor
moving with a constant velocity, enables us to present results in the form of spatial
diagrams. Exemplary spatial diagram for the angular displacement ˛ is presented in
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Fig. 3 Spatial diagrams for angular displacement ˛
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Fig. 4 Angular displacements in the transient and in the steady states

Fig. 3 for�0 D 3.14. The shape of the diagrams for displacements ˛ can be different
for different�0. In the case of the assumed value�0 the shape is nonlinear, however
for smaller values of �0 appropriate diagrams can be linear along the shaft length,
see [5].

Numerical calculations for the system in which the first rigid body moves with a
variable speed are performed with the parameters (6), and with the nondimensional
parameter K equal to 0.1. Diagrams for angular displacements ˛ in the transient and
in the steady states are presented in Fig. 4 for the cross-sections x D 0, 0.5, 1.0, 1.5,
2.0 with �0 D 0.3. The displacement amplitudes decrease with the decrease of x.
From Fig. 4 it follows that the steady state is gained for nondimensional time greater
than 7,000.
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4 Conclusions

Problems for discrete-continuous systems torsionally deformed with position-
dependent inertia belong to nonlinear problems. These problems can be reduced
to solving partial differential equations with linear boundary conditions having
variable coefficients.

It appears that the proposed wave approach can be an effective tool for deriving
numerical solutions for the considered system having a rigid body with variable
inertia. Diagrams for angular displacements show transient states, steady states
for solutions in several cross-sections. Moreover, in the case of the rigid body
representing the motor moving with a constant velocity, it was possible to do spatial
diagrams including all cross-sections of the three-mass system.

It should be pointed out that systems torsionally deformed with variable inertia
play an important role in mechanisms and mechanical systems, and that using
the wave approach in the discrete-continues models one can determine required
functions in various cross-sections simultaneously.
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4. Pielorz, A., Skóra, M.: Modeling of multimass systems torsionally deformed with variable
inertia. Diff. Eq. Nonlinear Mech. 2006, ID 20758, 1–11 (2006)
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On the Dynamics of the Oscillating Moving
Point Load Acting on the System Comprising a
Pre-stressed Layer and Pre-stressed Half-Space

Surkay D. Akbarov, Nihat İlhan, and Ahmet Temugan

Abstract Within the scope of the piecewise homogeneous body model by the use
of the 3D linearized theory of elastic waves in initially stressed bodies the attempt
is made for the study of the dynamics of the point located oscillating moving load
acting on the system consisting of the pre-stressed covering layer and pre-stressed
half-space. The solution method and the algorithm for attaining the numerical results
are developed and employed. The numerical results on the stress distribution are
presented and discussed. In particular, it is established that the absolute values of
the normal stress acting on the interface plane increase with moving velocity of the
oscillating point-located load.

Keywords Point located oscillating moving load • Initial stresses • Covering
layer • Half-space • Stress distribution

1 Introduction

Within the framework of the piecewise homogeneous body model with the use of the
Three-dimensional Linearized Theory of Elastic Waves in Initially Stressed Bodies
(TLTEWISB) the critical velocity of the oscillating moving harmonic point load
acting on the system comprised a pre-stressed covering layer and a pre-stressed
half-plane is studied. This study can be considered as the development of the
investigation carried out in the paper [1] for the moving oscillating load, as well
as the development of the investigation [2] for the 3D case.
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2 Formulation of the Problem

It is assumed that the covering layer occupies the region f�1 < x1 < 1 , �h 	
x2 	 0, �1 < x3 < C1g the related values of which are denoted by upper index
(1), and the half-plane occupies the region f�1 < x1 < C1 , �1 	 x2 	 �h,..
the related values of which are denoted by upper index (2).

The investigation of the considered problem is based on the following field
equations of the 3D linearized theory of elastic waves in the pre-stressed elastic
bodies [3].
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C �

.m/;0
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!
i; j D 1; 2; 3I m D 1; 2 (1)

In (1) the conventional notation is used.
The perfect contact conditions and boundary conditions on the upper free surface

of the covering layer are written as follows.

�
.1/
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ˇ̌
ˇ
x2

D 0 D 0; �
.1/
22

ˇ̌
ˇ
x2D0

D P0ı.x1 � V t/ei¨t ı.x3/;
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x2D�h; u.1/i
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x2D�h D u.2/i
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x2D�h (2)

where V is a velocity of the point-located moving load, t is a time.
In addition to these, it is supposed that there are boundedness conditions

ˇ̌
ˇu.2/i

ˇ̌
ˇ ;
ˇ̌
ˇ�.2/ij

ˇ̌
ˇ < M D constant as x2 ! �1: (3)

This completes the formulation of the problem.

3 Method of Solution

We attempt to use the Lame´ representations for displacements

u D r � ¥C r � §; r � § D 0; u D .u1; u2; u3/ ; § D .§1; §2; §3/ (4)

In representation (4) the symbols � and � show the vector and scalar products of
vectors, respectively.
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Using the moving coordinate system x0
1 D x1 � V t , x0

2 D x2, x0
3 D x3 and

presenting the sought values as g .x0
1; x

0
2; x

0
3; t / D Ng .x0

1; x
0
2; x

0
3/ e

i¨t we obtain
the following equations for functions ¥.m/ and §.m/n .n D 1; 2; 3/ from equations
given in (1).
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where c.m/1 D
q
�.m/ C 2�.m/=


.m/
0 is speed of the dilatation wave, c.m/2 Dq

�.m/=

.m/
0 is speed of the distortion wave.In Eq. 5, the upper prime in x1 and

x2 and the over bar in ¥.m/ and §.m/ are omitted.
Now we consider the solutions to Eq. 5. For this purpose, as in the paper [1]

we employ the exponential Fourier transformation with respect to the x1 and x3
coordinates defined as

f13F .s1; x2; s3/ D
C1Z

�1

C1Z
�1

f .x1; x2; x3/e
�i.s1x1Cs3x1/dx1dx3 (6)

As a result of this transformation we may obtain from (5) the following equation
with respect to ¥.m/13F .s1; x2; s3/ and §.m/n13F .s1; x2; s3/:
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where
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In (8) the following notation is used � D ¨h=c
.1/
2

From the algebraic equations we find the aforementioned unknowns and,
employing the inverse transform

f .x1; x2; x3/ D 1

42

C1Z
�1

C1Z
�1

f13F .s1; x2; s3/e
i.s1x1Cs3x3/d s1ds3 (9)

we determine the displacements and stresses in the components of the considered
system.

4 Numerical Result and Discussions

It is known that the stresses in the near vicinity of the point located force have a
singularity with order O.r�2/ where r is a distance from the point at which the
force acts. Therefore the foregoing solution will not be available for the cases where
r ! 0 and this statement is taken into consideration under obtaining numerical
results.

The following materials are selected for the considerations: Aluminum (shortly
Al) with properties 
0 D 2700 kg=m3; � D 0:35 c1 D 6420m=s; c2 D 3110m=s;
Steel (shortly St) with properties 
0 D 7860 kg=m3; � D 0:29, c1 D 5890m=s;

c2 D 3210m=s where the density, Poisson’s ratio, the speed of dilatation and
distortion waves are denoted by 
0, �, c1 and c2 respectively. The numerical
investigations have been carried out for the case where the material of the covering
layer (half-space) is Al (St). For estimation of the initial stresses in the components
of considered system we introduce the parameters

˜
.m/
11 D �

.m/;0
11 =�.m/ and ˜.m/33 D �

.m/;0
33 =�.m/.
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Figure 1 shows the influence of the dimensionless frequency � on the graphs
of the dependence between �22h=P0.D �

.1/
22 .0;�h; 0/h=P0/ and dimensionless

moving velocity cr .D V=c
.2/
R / where c.2/R is a Rayleigh wave velocity of the half

space material. The influence of the dimensionless moving velocity of the external
loading on the graphs of the dependencies between �22h=P0 and dimensionless �
is given in Fig. 2. Note that the graphs given in Figs. 1a and 2a are constructed
in the case where ˜.1/11 D ˜

.1/
33 D ˜

.2/
11 D ˜

.2/
33 D 0:0. But the graphs given

in Fig. 1b (Fig. 2b) are constructed in the case where � D 0:4 (cr D 0:4),
˜
.1/
33 D ˜

.2/
11 D ˜

.2/
33 D 0:0 and these graphs characterize the influence of the initial

stretching of the covering layer in the moving direction of the external loading on
the values of the considered stress. The graph obtained in the case cr D 0 (Fig. 2a)
coincides with corresponding one obtained in a paper by [1].
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5 Conclusions

According to the analyses of the numerical results it can be made the following
conclusions:

– the values of the normal stress acting on the interface plane increase with the
moving velocity of the oscillating load;

– the dependence between the mentioned stress and frequency of the oscillating
moving load has non-monotonic character, but the moving of this oscillating load
change this dependence quantitatively, only.
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On the Stress Field Caused by the Time
Harmonic Force in the System Consisting
of the Piezoelectric Covering Layer
and Piezoelectric Half-Plane

Surkay D. Akbarov and Nihat İlhan

Abstract The Lamb problem is considered for the system consisting of the
piezoelectric covering layer and orthotropic half-plane. The investigation is carried
out within the framework of the piece-wise homogeneous body model by utilizing
the exact equations of motion of the linear theory of electro-elasticity.The plane
strain state is considered and it is assumed that between the covering layer and
half-plane the perfect contact conditions satisfy. The boundary value problem
under consideration is solved by employing Fourier exponential transformation with
respect to the coordinate directed along the interface line. The algorithm proposed
in a paper (Akbarov S, Ilhan N, Int J Solids Struct 46:3873, 2009) is developed
to obtain numerical results on the normal stress distribution on the interface plane.
Concrete results are presented and discussed for the piezoelectric materials PZT-
5A, PZT-5H, PZT-4 and PZT- 7A and orthotropic half-plane. The mechanical
properties of the half-plane material are given through the mechanical constants of
the PZT- 5A, PZT-5H, PZT-4 and PZT- 7A. It is established that the piezoelectricity
of the covering layer causes to decrease of the absolute values of the normal stresses
acting on the interface surface.

Keywords Piezoelectric materials • Time harmonic load • Covering layer
• Half-plane • Stress distribution

1 Introduction

The Lamb problem is considered for the system consisting of the piezoelectric
covering layer and orthotropic half-plane. The investigation is carried out within
the framework of the piece-wise homogeneous body model by utilizing the exact
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equations of motion of the linear theory of electro-elasticity. Note that the cor-
responding investigations in the case where the materials of the constituents are
orthotropic ones were made in [1].

2 Formulation of the Problem

The plane strain state is considered in a plane Ox1x2. It is assumed that
between the piezoelectric covering layer f�1 < x1 < C1;�h < x2 < 0g, the
related values of which are denoted by upper index (1), and the orthotropic
half-plane f�1 < x1 < C1;�1 < x2 < �hg, the related values of which
are�1 < x3 < 1g denoted by upper index (2), perfect contact conditions satisfy.
On the covering layer the time harmonic point-located force acts.

According to [2], the governing field equations are taken as follows.

@�
.k/
ij

@xi
D¡.k/ @

2ui .k/

@t2
;
@D

.k/
i

@xi
D 0

�
.k/
ij DC .k/

ijkl”
.k/

kl � e
.k/

kijE
.k/

k ; D
.k/
i D e

.k/

ikl”
.k/

kl � ©.k/i l E.k/

l

”
.k/
ij D1

2

�
u.k/i;j C u.k/j;i

	
; E

.k/
i D �¥.k/; i (1)

where C .k/

ijkl is a component of the stiffness matrix of the k-th material, D.k/
i is a

component of the electric displacement vector, E.k/
i is a component of the electric

field vector, ¥.k/ is an electric potential, e.k/kij and ©.k/i l are piezoelectric and dielectric

constants, u.k/i is a component of the displacement vector, ”.k/ij is a component of

strain tensor, �.k/ij is a component of the stress tensor. We introduce a notation x D
x1 and z D x2:

The perfect contact conditions and boundary conditions on the upper free surface
of the covering layer are written as follows.
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In addition to these, it is supposed that there are boundedness conditions
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ˇ < M D constant as z ! �1: (3)

This completes the formulation of the problem.
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3 Method of Solution

Representing the sought values as g .x0; z0; t/ D Ng .x0; z0/ ei¨t we obtain the
following equations of the motion in terms of displacement from Eq. 1:
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In Eq. 4, the over bar in u.k/, w.k/ and ®.k/: are omitted.
Now we consider the solutions to Eq. 4. For this purpose, as in the paper [1]

we employ the exponential Fourier transformation with respect to the x coordinate
defined as
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As a result of this transformation we may obtain from (4) the following equation
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. The displacements and

electric potential in Eq. 6 are presented as follows.
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.k/z (7)

Taking relation (7) into account we obtain the following relations between the
unknown constants in (7).
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Using Eqs. 7 and 8 and the conditions (2) and (3) we determine the functions
u.k/F .s; z/, w.k/F .s; z/ and ®.k/F .s; z/. To determine the original of these functions we
employ the algorithm developed in the paper [1] is used.

4 Numerical Results

It is known that the stresses in the near vicinity of the point located force have a
singularity with order O

�
r�1� where r is a distance from the point at which the

force acts. Therefore the foregoing solution will not be available for the cases where
r ! 0 and this statement is taken into consideration under obtaining numerical
results.

Concrete numerical results are obtained for the materials the values of the
mechanical, piezoelectric and dielectric constants of which, according a book are
given in Table 1.

Consider numerical results obtained for the dependence between the stress

�22h=P
�
D �

.2/
22 .0;�h/h

	
=P / and dimensionless frequency of the oscillation of

the external force. The graphs of these dependencies are illustrated in Fig. 1. In this
case the graphs given in Fig. 1a–d are constructed for the cases where the material
of the covering layer is PZT- 5A, PZT-5H, PZT-4 and PZT- 7A, respectively. In each
noted case the material of the half-plane is indicated in figures field on the graphs.
In the mentioned figure the solid lines correspond the case where e.1/kij ¤ 0 and

©
.1/

i l ¤ 0, but e.2/kij D 0 and ©.2/i l D 0, i.e. the solid lines correspond the case where
the piezoelectricity and dielectricity of the covering layer material are taken into
account, but the piezoelectricity and dielectricity of the half-plane material are not
taken into account. The graphs given through the dashed lines correspond the case
where e.1/kij D 0, ©.1/i l D 0, e.2/kij D 0 and ©.2/i l D 0.

Table 1 Properties of materials

C44*1010 N/m2 C11*1010 N/m2 C13*1010 N/m2 C33*101 N/m2 ¡ kg/m3

PZT-5A 2.11 12.1 7.54 11.1 7,750
PZT-5H 2.3 12.6 8.39 11.7 7,500
PZT-4 2.56 13.9 7.40 11.5 7,500
PZT-7A 2.53 14.8 8.13 13.1 7,600

e31 C/m2 e33 C/m2 e15 C/m2 ©11*10�8 C/Vm ©33*10�8 C/Vm

PZT-5A �5.4 15.8 12.3 0.811 0.735
PZT-5H �6.5 23.3 17 1.505 1.302
PZT-4 �5.2 15.1 12.7 0.646 0.562
PZT-7A �2.1 9.5 9.2 0.407 0.208
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Consequently, the difference between the graphs illustrated by solid and dashed
lines shows the influence of the piezoelectricity and dielectricity on the character of
the considered stress-frequency relation.

5 Conclusions

According the numerical results given in Fig. 1, one can make the following
conclusions:

– piezoelectricity and dielectricity of the covering layer material causes to decrease
the absolute values of the normal stress acting on the interface plane. This
decreasing can be explained with increasing of the stiffness of the covering layer
material by taking the piezoelectricity and dielectricity of that into account,

– the relation between the considered stress and oscillation frequency of the
external force, as in [1], has non-monotonic character. But in the case under
consideration the values of the oscillating frequency of the external force under
which the absolute values of the stress has its maximum, decrease.
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Contribution to Modal and Spectral Interval
Finite Element Analysis

Milan Sága, R. Bednár, and M. Vaško

Abstract Our paper deals with a non-probabilistic computational approach for
mechanical systems with structural uncertainties. Uncertainties are considered as
bounded possible values – intervals. The main goal is to propose algorithms for
modal and spectral interval computations on FE models. An application of the
chosen approaches is presented, i.e. the first one a simple combination of only inf-
values or only sup-values; the second one presents full combination of all inf-sup
values; the third one uses the optimization process as a tool for finding out a inf-sup
solution and last one is Monte Carlo technique as a comparison tool.

Keywords Uncertain structural parameters • MATLAB • Monte Carlo • Interval
arithmetic

1 Introduction

Generally, it is possible to say that each engineering problem encounters uncer-
tainties in various forms, i.e. in geometrical parameters, material constants, loads,
etc. Many of those uncertainties are based on physical imperfections, the general
diversity and complexity of natural phenomena and of course our ignorance or
inability to precisely describe characteristics of the investigated problem.

Uncertain parameters appear mostly as random variables and thus are described
in the terms of stochastic approach. But without the knowledge of the probability
density and the nature of distribution we are forced to use another approach, which
could describe the parameters with the mentioned restrains and at the same time
contain sufficient information about the character of the uncertainty.
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Alternately to the use of probability methods we can use imprecise probabilities
[1, 2] and the possibility theory, which involves the theory of interval numbers [2–
5], fuzzy numbers and fuzzy sets [6, 7]. Without the information of the relevance of
the data on the interval, we cannot use the fuzzy approach, but are still able to use
the interval approach to describe the uncertain parameters, which are considered as
unknown but bounded with lower and upper bounds.

Our short study proposes algorithms for modal and spectral interval computa-
tions of FE models and their effectivity analysis in view of the input uncertainty
degree (2%, 5%, 10%, 20%).

2 Computational Methods for Interval Spectral Analysis

If we want to use interval arithmetic approach, an uncertain number is represented
by an interval of real numbers [8, 9]. The interval numbers derived from the experi-
mental data or expert knowledge can then take into account the uncertainties in the
model parameters, model inputs etc. Complete information about the uncertainties
in the model may be included by this technique and one can demonstrate how these
uncertainties are processed by the calculation procedure in MATLAB [10].

Classic interval arithmetic application for solution of the numerical mathematics
and mechanical problems in the engineering practice can encounter the problem
known as the overestimate effect. Elimination of this problem is possible only in the
case of meeting specific assumptions, mainly related to the time efficiency of the
computing procedures.

Considering uncertain parameters in interval form, some solution approaches
already used or proposed by the authors are analyzed [11]. Our goal is to present
algorithm description and comparison study of the following numerical methods:

• Monte Carlo method (MC) - as a comparison tool,
• a simple combination of only inf-values or only sup-values (COM1),
• a full combination of all inf-sup values (COM2),
• a method which uses an optimisation process as a tool for finding out a inf-sup

solution (OPT).

The structural uncertainty parameters are usually written into vector x D Œx; Nx�
and the interval modal FE analysis may be formulated as follows [12]

ŒK.x/� �j � M.x/� � vj D 0 or
�
ŒK;K� � Œ�j; �j� � ŒM;M�

	
� Œvj;vj� D 0; (1)

where �j; �j and vj;vj are the j-th eigenvalue with corresponding eigenvector,

K; K; M; M are of course the infimum and supremum of the mass and stiffness
matrices. The application of the classic interval arithmetic for FE analysis is very
limited. Its “overestimation” grows with the problem size (the dimension of the
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system matrices) and has not a physical foundation in the reality. Therefore, it is
efficient to apply the previous numerical methods.

Application of the Monte Carlo method in IFEA may be realized as follows

1. step: generation of the random matrix (uniform distribution)

XMC D Œx1; :::::xm�; .m � 5; 000� 100; 000/;

2. step: solution of �j MC ! ŒK.xj/� �j MC � M.xj /� � Vj D 0 for j D 1:::m;
3. step:

– infimum calculation of the i-th eigenvalue �i D inf.ith row of �MC/;

– supremum calculation of the i-th eigenvalue �i D sup.ith row of �MC/:

In the case of COM1, the numerical approach implementation to IFEA is
following

– infimum calculation � ! ŒK.x/ � � � M.x/� � V D 0;
– supremum calculation � ! ŒK.x/� � � M.x/� � V D 0:

COM1 doesn’t give the correct results every time. We can obtain more proper results
using COM2. Its computational process for IFEA is

1. step: calculation of realizations matrix X2, i.e. 2n inf-sup combinations,
X COM2 D Œx1; :::::xm�; .m D 2n/, n – number of uncertain system
parameters,

2. step: solution of

�j COM2 ! ŒK.xj/� �j COM2 � M.xj/� � Vj D 0 for j D 1:::m;

3. step:

– infimum calculation of the i-th eigenvalue �i D inf.ith row of � COM2/;

– supremum calculation of the i-th eigenvalue �i D sup.i th row of � COM2/:

Generally, the infimum or supremum are not found only in the boundary points
(COM1, COM2) but also in the inner domain of the solution set (OPT). To find the
inf-sup solution using the approach OPT means to solve the optimizing problem
described as follows

– infimum calculation of the i-th eigenvalue

�i.xOPT/ ! minimize value of �i for eq.: ŒK.x/� �i � M.x/� � vi D 0;

– supremum calculation of the i-th eigenvalue

�i.xOPT/ ! maximize value of �i for eq.: ŒK.x/� �i � M.x/� � vi D 0:
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Fig. 1 Analyzed truss structure, dimensions in [m]

Fig. 2 Truss structure split into 7 cross-sectional groups

It should be noted that it is possible to realize the searching process by a
comparison optimizing method (e.g. Nelder-Mead simplex algorithm) or by using
genetic algorithm as a robust tool of global optimization.

3 Interval Analysis of Truss Structure

The three-dimensional truss structure has been analyzed (Fig. 1). The interval
modal-spectral analyses in the range of the first two modal shapes were performed.
As the interval uncertain parameters were the cross-sections of the trusses consid-
ered [13]. Because of the computation memory and time demands, 51 bars have been
split into 7 cross-sectional groups (Fig. 2). All other parameters were considered
as certain. Certain parameters: E D 2 � 1011 Pa, � D 0:3, ¡ D 7800 kg � m�3,
• D 10�5.

Uncertain parameters: xf D Œ0:02; 0:05; 0:10 ; 0:20�,

A1 D 3500 � 10�6 � .1C xfi / m, A2 D 3000 � 10�6 � .1C xfi / m,
A3 D 2500 � 10�6 � .1C xfi / m, A4 D 2000 � 10�6 � .1C xfi / m,
A5 D 1800 � 10�6 � .1C xfi / m, A6 D 1500 � 10�6 � .1C xfi / m,
A7 D 1000 � 10�6 � .1C xfi / m.

The chosen results of our short comparison study are presented in Tables 1, 2 and
graphically on Fig. 3.

4 Conclusions

The paper presents the interval arithmetic application on modal and spectral FE
analysis. The use of the interval arithmetic provides a new possibility of the quality
and reliability appraisal of analyzed objects. In the paper authors investigated
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Table 1 Inf-sup results of the first two natural frequencies

Method

Inputs interval MMC [Hz] OPT [Hz] COM1 [Hz] COM2 [Hz]
width (%) Freq.no. <inf sup> <inf sup> <inf sup> <inf sup>

2 1 <36.5 37.0> <36.3 37.3> <36.8 36.8> <36.2 37.4>
2 <67.4 68.4> <67.5 69.0> <67.9 67.9> <66.7 69.1>

5 1 <36.0 37.4> <35.5 38.1> <36.8 36.8> <35.2 38.4>
2 <66.6 69.3> <65.1 70.8> <67.9 67.9> <65.0 70.9>

10 1 <35.4 38.2> <34.2 39.4> <36.8 36.8> <33.7 40.0>
2 <65.4 70.7> <62.3 73.8> <67.9 67.9> <62.2 74.0>

20 1 <34.0 39.7> <31.4 42.4> <36.8 36.8> <30.8 43.4>
2 <62.8 73.4> <57.0 80.4> <67.9 67.9> <56.8 80.4>

Table 2 Results of the interval width of the natural frequencies

Outputs interval width [%]

Inputs interval width (%) Freq. no. MMC OPT COM1 COM2

2 1 0,74 1,41 0,00 1,69
2 0,80 1,09 0,00 1,72

5 1 1,91 3,56 0,00 4,22
2 1,95 4,19 0,00 4,31

10 1 3,78 7,14 0,00 8,45
2 3,84 8,38 0,00 8,62

20 1 7,71 14,69 0,00 16,91
2 7,80 17,01 0,00 17,24
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possibilities of the modal-spectral solution of truss structure model with interval
cross-sectional areas. It shows the solution efficiency for solving problems including
uncertain parameters with a various width of the interval.

The analyses results can be summarized as follows

• COM1 method is not recommended for this kind of analyses,
• COM2 method provides decent results, but it is limited due to the exponential

growth of the analyses number for complicated problems,
• OPT method provides good results and is suitable for complicated problems

because it does not need so many analyses as in the cases of the MC or COM2
methods.

Acknowledgments This work has been supported by VEGA grant No. 1/0125/09 and VEGA
grant No. 1/0727/10.
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FEM Modeling and Dynamical Behavior
of a Flexible Cracked Linkage Mechanism
with Clearance

Mihai Dupac and S. Noorozi

Abstract In this study the vibration characteristics and dynamical behavior of a
general planar mechanism with a flexible link that contain cracks and a revolute joint
with clearance at the slider is analyzed. The link flexibility is modelled using the
finite element method, and the local flexibilities representing cracks are modelled
using massless rotational springs. The equations of motion are developed for the
non impacting case. The equations of motion in integrated form (called the impact
equations) are used to model impact at the joint. The influence of the angular
velocity, number of cracks, and clearance of the slider revolute joint on the flexural
response of the flexible rod is investigated.

Keywords Vibration • Cracks • Clearance • Impact • FEM

1 Introduction

The effect of clearance, flexibility and cracks on the dynamic behavior of mechan-
ical systems is considerable when high precision and alignment are important. The
dynamical effect of clearances for planar mechanical systems has been studied.
Rotational massless spring models, with stiffness related to the crack have been
used. Different definitions for the spring constants have been presented. Research to
simulate the free vibration of beams with multiple cracks has been developed. The
design and/or dynamics of impact systems with lumped masses have been studied
in [1–4]. Crack initiation and growth occurring under cyclic motion is the reason for
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many connecting rods failure. Fatigue crack propagation and fracture behaviour of
rods subjected to various loading and boundary conditions has been discussed.

In this paper the dynamics of a mechanism with a flexible rod with cracks
clearance is studied. The rod flexibility is modeled using finite element method.
The cracks are modeled by massless rotational springs. Impact equations are used
to study the impact of the system. The influence of cracks and clearance of the slider
revolute joint on the flexural response of the flexible rod is investigated.

2 Theoretical Model and Governing Equations of Motion

To study the effect of flexibility, cracks and clearance, a slider-crank (Fig. 1) with a
flexible link with cracks and joint clearance is considered. The length of the crank
is L and the length of the flexible link is l. For the general case there are in cracks
(modeled with rotational springs denoted byKi ) on the flexible link.

For the clearance model presented in Fig. 2 the journal and sleeve are considered
as two impacting bodies, having radius r and R. The difference in radius R-r defines
the radial clearance b of the joint. The next distinct states appear between the journal
and sleeve: (a) no contact, (b) impact, and (c) permanent contact.

For a beam element (Fig. 3) there are two degrees of freedom at each node
veLi D �1 C �2x C �3x

2 C �4x
3 and veRi D ƒ1 C ƒ2x C ƒ3x

2 C ƒ4x
3.

The relations veLi D YeLi , v0
eLi

D ˆeLi , and veRi D YeRi , v0
eRi

D ˆeRi ,
are related to the transverse deflections YeLi ; YeRi and nodal slope deflections
ˆeLi ; ˆeRi . The boundary conditions are (i) veLi D veRi - displacements, (ii)
EI=Ki :v00

eLi
C v0

eLi
� v0

eRi
D 0 – slopes difference, (iii) v00

eLi
D v00

eRi
- bending

moments, and (iv) v000
eLi

D v000
eRi

- shear forces. Once the interpolating functions are
calculated and stiffness matrix elements ŒKeLi �, ŒKeRi � obtained [5, 6] the equations
are expressed as �eLi D f	eLi g ŒKeLi � fxg and �eRi D f	eRi g ŒKeRi � fxg. The spring
constantKi is computed as in [7] Ki D EJ

ı�
40:8hˇjf1

�
ˇj
�
f2
�
ˇj
��

.

Flexible Link

Rigid Link

q

Cracks Simulated
with Rotational 
Springs

Clearance

Fig. 1 Slider-crank with a flexible link with cracks and joint clearance
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Fig. 2 Revolute joint with clearance (clearance is exaggerated to make it visible)

Fig. 3 Flexible link with cracks. Position vectors and deflection of a flexible cracked element

3 The Equations of Motion. The Kinetic and Flexural Energy

The position vectors of the points PeLk , PeRk are expressed as RPeLk.Rk/ D
r0 C reLk.Rk/, where reLk.Rk/ D xi C veLk .Rk/j (Fig. 3). The absolute velocities

vPeLk .Rk/are given by f vox � P�veLk .Rk/ voy C P�x C veLk.Rk/ 0 g˚ i j k
�T

, where the
angular velocity is P� and vPeLk is the velocity of the point PeLk . The kinetic energy
of the flexible link is

T D 1

2

AL3

nX
iD1

0
@

ˇiZ
xDxi�1

h
.vox � P�veLi /

2 C �
voy C P�x C PveLi

�2i
dx

C
xiZ

xDˇi

h
.vox � P�veLi /

2 C �
voy C P�x C PveLi

�2i
dx

1
CA (1)

where 
 is the mass density, and A is the cross-sectional area.
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The flexural strain V energy due to beam deformation can be expressed as V D
V1 C V2, where V1 is

V1 D 1

2

E � Iz

L

nX
iD1

0
B@

ˇiZ
xDxi�1

�
@2veLi
@x2

�2
C

xiZ
xDˇi

�
@2veRi
@x2

�21CAdx

C 1

2

nX
iD1

Ki �
 
@veLi
@x

ˇ̌
ˇ̌
ˇi

� @veRi
@x

ˇ̌
ˇ̌
ˇi

!2
(2)

and the total strain energy V2 of the beam due to longitudinal loads is

V2 D
nX
iD1

0
B@

ˇiZ
xDxi�1

Px

�
@veLi
@x

�2
dx C

xiZ
xDˇi

Px

�
@veRi
@x

�2
dx

1
CA (3)

In Eq. 3 the longitudinal loadsPx in an element having an external loadPR acting
at its right end and undergoing transverse deflection was considered Px D PR C

L2A .x � 1/ .PvOx � P�vOx/� 1

2

L2 P�2 �AC x2

�
as in [8]. The Lagrange differential

equation of motion (where L is the Lagrangian) for a single finite element is

d
dt

�
@L

@qj

�
� @L

@qj
D 0 (4)

The equation of motion of the system may be expressed in a matrix form as
ŒM �

˚ R̂ � C ŒKs CKd� fˆg D F , where M is the mass is and F the generalized
forces.

4 Equations of Motion with Impact

For the present model it was assumed that impact occurs instantaneously [9–14], no
change occurs during contact, the coefficient of restitution e quantifies the energy
dissipation, and the contact force is as in [11, 14]. The Newton–Euler equations with
frictionless bilateral constraints can be written as [12]

M Pu � f D 0 and Pq D u; (5)

where M(q, t) is the mass, q the generalized coordinates, Pq D u the velocities,
Rq D Pu the accelerations, and f the sum of all generalized forces. The Newton–Euler
equations of motion in integrated form (equations of motion with impact) are
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M uC �M u� D P (6)

where u˙.t/ D lim
�t#"0

q.tC�t/˙q.t/
�t

are the generalized post- and pre-impact veloci-

ties, P D sN dN the generalized impulsive forces having only a vertical component,
sN the impulsive force in normal direction, dN DD .@PrC =@ Pq /T �n the normal force
vector, and PrC the velocity at the contact point. Using the coefficient of restitution e
as in [12, 14] the impact equations can be written in a compact form as



M PdTNPdN 0

� 

uC
sN

�
D


M u�

�edN u�
�

(7)

The contact impulse and velocity after impact can be expressed as

sN D .1C e/
PdN u�

PdNM�1 PdTN
; uC D u� �M�1 PdTN sN (8)

5 Results

In this paper the vibration response of a mechanism with a flexible rod with
cracks and clearance was studied. Numerical simulations have been performed for a
flexible link with one and two cracks (located at 1/3 and 1/2 of the link length), with
the Young’s modulus E D 2.08�1011 [N/m2], Poisson’s ratio �D 0.32, and restitution
coefficient e D 0.47. The crank and link lengths are 0.11 and 0.32 m respectively.
Angular velocities of 100 and 150 rpm have been considered.

Since the journal and the sleeve exhibit impacts that give rise to discontinuous
forces in the joint and jumps in the system velocity, the joint clearance can be treated
as small perturbation on the system.

The influence of the angular velocity, cracks and clearance to the dynamics of
the flexible link can be observed in Fig. 4a. It was observed that the main variable
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Fig. 4 Flexural deflection at the mid-span of the flexible rod for (a) one crack, clearance and
!1, two cracks, clearance and !2, and (b) no cracks, clearance and !1, no cracks,
clearance and !2
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affecting the link vibration was an increased angular velocity combined with cracks.
The influence effect of angular velocity and clearance parameters can be observed
in Fig. 4b.

The interactions between the variables (clearance, angular velocity, cracks)
showed that the stability tended to be affected for medium to high values of the
associated parameters.

6 Conclusions

In this paper the dynamics of a flexible rod with cracks and clearance was studied.
The rod flexibility was modeled using FEM and rotational springs. It was observed
that medium to high values of the clearance, cracks, and angular velocity has a
substantial influence over the dynamics of the mechanism.
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Simulation of a Non-smooth Continuous System

Jan Clauberg, Markus Schneider, and Heinz Ulbrich

Abstract The current paper gives a short overview of the multiphysics simulation
tool MBSim, developed at the Institute of Applied Mechanics - TU München, and
its application on a non-smooth continuous system. Starting at the mathematical
equations describing the dynamical behavior of a non-smooth multibody system
with uni- and bilateral frictional constraints, the used time-stepping integration
method is shortly outlined. The application of MBSim is demonstrated by the
simulation of a continuous coil spring with non-smooth contact mechanics. To
show the quality of the simulation model, a short validation of the coil spring with
experimental data is shown.

Keywords Flexible multibody dynamics • Non-smooth contact mechanics
• Helicoil springs • Experimental validation • Finite elements

1 Introduction

The simulation tool MBSim has been developed at the Institute of Applied Me-
chanics at the Technische Universität München [1] and is available under the GNU
Lesser General Public License [2]. The program is written in CCC and provides
a framework for modelling and simulation of dynamic systems in various physical
domains (e.g. multibody dynamics, hydraulics, electronics, control theory).
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2 Postprocessing Framework

The simulation results are written in the hierarchical HDF5 file format, which also
enables the efficient treatment of large dynamical systems. These files can be read
by H5PlotSerie [3] or Matlab for plotting or by OpenMBV [4] for visualisation.

3 Simulation Framework

In this chapter the mathematical formulation of the dynamic system and the set-
valued force-laws are described.

3.1 Mathematical Formulation

Basis of the formulation of the equations of motion of a dynamic system with bi-
and unilateral constraints is the finite dimensional measure differential equation
[5, 6]

M du D h dt C W d�. (1)

M D M .q/ denotes the symmetric and positive definite mass matrix. The vector
h D h .u; q; t/, depending on the generalized positions q, generalized velocities u
and the time t, contains all external, internal and gyroscopic forces. The directions
of the set-valued contact reactions d� are contained in the matrix W D W .q/.

The acceleration measure du D Pu dt C �
uC � u�� d� and the measure for

impulses d� D � dtC� d� is split into a continuous part ( Pu dt; � dt) and an atomic
part (

�
uC � u�� d�; � d�) with the left and right limit u�; uC and the Dirac point

measure d�.
Integrating (1) yields the equations of motion for a constrained system

M Pu D h C W� (2)

of smooth dynamics as well as the impact equations

Mi

�
uC
i � u�

i

� D Wi �i 8i 2 N (3)

being valid at times ti of impact.
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Fig. 1 Force laws for bi- and unilateral contacts and friction

3.1.1 Set-Valued Force Laws

The computation of the accelerations Pu in (2) and the post-impact velocities uC
i

in (3) requires the knowledge of the unknown reactions � and �i governed by the
set-valued force laws .q; u; �; �i ; t/ 2 N . Therefore, additional conditions must
be formulated.

In MBSim three different basic kinds of set-valued force laws can be considered,
representing bilateral, unilateral and frictional constraints. They are depicted in
Fig. 1. A bilateral force law, which is always closed, implies a bilateral constraint of
the form

gB D 0; �B

<
D
>
0. (4)

Therein gB denotes the normal distance of the interacting bodies in the contact point
and �B the corresponding force. The second type of force law represents a contact
in mechanical systems. It is given by the Signorini–Fichera-condition

gU � 0; �U � 0; gU �U D 0, (5)

with the normal distance gU of the contact contours. As a third force law, friction
can be considered. Therefore, the force of a single contact point is decomposed in a
component �N 2 f�B; �U g normal to the contact plane and a tangential component
�T in friction direction. With the relative tangential velocity PgT and the friction
coefficient �, Coulomb’s friction law is given by

PgT D 0 ) j�T j 	 � j�N j

PgT ¤ 0 ) �T D � PgT
jPgT j � j�N j . (6)

An impact influences all relations between the objects concerning the post impact
generalized velocity uC. Internally, the impact laws are formulated on velocity
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level, substituting g by PgC and � by � in (4) and (5). The formulation of the set-
valued force laws are self-evident from a mechanical point of view, but not suitable
for numerical computation. An appropriate formulation can be attained using the
proximal point to a convex set [5].

4 Continuous Model of a Coil Spring

The simulation of continuous coil springs is still a challenging topic within
multibody simulations. In most cases it is sufficient to describe the behavior of
springs with the spring stiffness c and the spring damping d:

F D cx C d Px (7)

However in highly dynamic cases it is not negligible that the dynamic response
of a spring significantly differs from the static response. In multibody simulations
mainly three methods to describe coil springs are used: multi-mass-models, modal–
models and multi-beam-models [7]. In this paper a continuous spring model based
on a curved beam is introduced and applied to a coil spring with constant radius R,
elliptical cross section and non-constant pitch.

4.1 Equations of Motion

As shown in Fig. 2a cartesian coordinate system (x, y, z) is introduced so that the
z-axis coincides with the central axis of the spring. The spring wire is parametrized
by the two variables s (length of spring wire) and ( (angle of spring wire), in
which uz denotes the compression of the spring. The spring is approximated as a
curved beam (cross section area A, radius R) and the governing equations are derived
in accordance with regular beam theory [8]. Furthermore, an isotropic hookean
material with Young’s modulus E, lateral contraction coefficient �, density 
, shear
modulus G and torsional constant J is used. The relationship between strains and
stresses can be stated by Hook’s generalized law. The cross section is assumed
to be elliptical (Fig. 2). Finally, the equations of motion can be derived resulting
in six coupled differential equations, which can also be obtained from Wittrick’s
equations [9]. The purpose of the spring model described in this paper is to be
applied in multibody simulations. For this reason, the full equations of motion are
reduced to the extensional degree of freedom (z-axis), resulting in a hyperbolic
partial differential equation, also known as the one-dimensional wave equation, with
fz the external load of the spring.


A
duz

dt2
� GJ

R2
d2uz

ds2
D fz : (8)
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Fig. 2 Coil spring with coordinate systems

To gain an appropriate form for multibody simulations (9), the Finite Element
approach is used. In (9) M denotes the mass-matrix, D the damping-matrix, K the
stiffness-matrix and h the vector of external forces.

M Rq C D Pq C K q D h. Pq;q; t/: (9)

Applying the Galerkin–Bubnov-Method to Eq. 8 yields the discretized equations
of motion

Z l

k


ANNT ds

„ ƒ‚ …
M

�d
2q
dt2

C
Z l

k

GJ

R2
dN
ds

dNT

ds
ds

„ ƒ‚ …
K

�q D ŒN � Tz�
l
k C

Z l

k

N � fz ds„ ƒ‚ …
F

: (10)

Lagrange Polynomials of order 2 are applied as shape-functions N. To allow
interaction between adjacent coils, contacts between the coils are introduced.
These contacts are solved by means of non-smooth contact mechanics. The main
advantage of this approach is that the penetration of adjacent coils is minimal,
whereby the energy dissipation within the contacts reaches a maximum (rigid
contacts are considered as full plastic impacts). To be able to validate the model with
experimental data, damping is introduced as Rayleigh damping (mass-proportional
parameter ˛, stiffness-proportional parameter ˇ (11) and within the contacts.

DRayleigh D ˛M C ˇK (11)

4.2 Example of Experimental Validation

In this section an example for the experimental validation of the spring model in
the time domain is shown. A coil spring with seven coils, a non-constant pitch and
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Fig. 3 Force at the clamped
end of a excited spring
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an elliptical cross section is taken into account. The simulation model has seven
elements (Lagrange Polynomials of order 2) and seven contacts between the coils.
The experimental data is gained from a test rig, where the spring is excited by a cam
profile (analogue to the excitation in a combustion engine). Figure 3 shows the data
from the simulation and the experimental data.

5 Conclusions

A simulation model for helicoil springs based on a curved beam is presented. This
model is discretized with the Finite Element approach and implemented in the
multibody simulation tool MBSim. The contacts between the interacting coils of the
spring are modeled by means of non-smooth contact mechanics. By validating the
simulation model with experimental data gained from a spring test rig, the quality
of the spring model is shown. The experimental measured and simulated dynamics
(force levels and frequencies) at high and low prestresses of the helicoil spring reveal
a great matching. For this purpose only about 15 degrees of freedom and seven
contacts between the interacting coils are necessary.
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Characterisation of the Dynamic Behaviour
of Laminated Sheet Glass in Steel-Glass Façades

C. Colomer Segura and M. Feldmann

Abstract The use of steel-glass façades has become a very standard feature in
modern design of buildings, very often including laminated sheet glass panes as
a load bearing element. While these elements are essentially subjected to dynamic
loading due to wind, its design is still based on static load assumptions. A more exact
approach is not possible due to the uncertainties regarding the transfer function of
the glass panes to the structure. In this paper, basic modal identification techniques
are used to characterise the dynamic behaviour of laminated sheet glass and to give
a first approach to account for dynamic effects on steel-glass façades.

Keywords Damping • Laminated glass • Façade • Transfer function • Impulse
excitation

1 Introduction

Current investigations in the field of glass construction are being performed in the
latest years in order to achieve a better understanding of its mechanical properties,
allowing structural engineers to start employing glass elements as load bearing
elements. The newest building designs are very often conceived as slender, irregular
shaped structures wrapped by glass façades. These construction trend aims for
bigger and bigger spans between the glass supports allowing the building to give
a more slender light-weight appearance.

The classical first assumption in the design of façades consisting of a statically
loaded glass element transmitting its loads to the supporting structure is no longer
valid in cases where big glass elements start showing low eigenfrequencies that can
be easily excited by normal wind conditions.
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In these situations, the dynamic properties of the load transfer between the glass
pane and its fixation elements becomes a decisive question in order to predict the
dynamic behaviour of wind (dynamically) excited glass façades. So far laminated
glass (most widely used in these type of constructions) has been assumed to
account for a higher damping than single sheet glass, because of the presence of an
intermediate PVB-sheet. The absence of widely extended codes regulating the use
of glass as an structural element together with the lack of knowledge of its damping
properties are the starting point for this investigation.

Some basic identification techniques [2, 3] of experimental modal analysis
(EMA) basing on the Rational Fraction Polynomials (RFP) Method [4] and the
Polyreference Frequency Domain Method (PRFD) [6] have been implemented
along with a Single Input – Multiple Output (SIMO) experiment with impact
hammer to estimate the modal parameters of the glass elements from the measured
Frequency Response Functions (FRF).

The numerical implementation of the identification methods as well as the
generation of artificial FRFs to validate the implementation have been performed
with Matlab©.

2 Experimental Modal Analysis

In this section the used methods for identifying the dynamic properties of the glass
elements are briefly introduced. An implementation of the original RFP method
according to [2, 4], as well as the original PRFD method according to [2, 6], has
been extended with a user interface to allow for a user-guided system identification
for the evaluation between the physical and non-physical nodes. There exist more
advanced techniques for kind of evaluation [1], but the presence of some strong
discontinuities in the coherence plots of the FRFs hinted at non-linearities [2] for
which a user interactive implementation was preferred.

The employed methods require a controlled excitation of the structure in order
to determine its FRF. In the field of civil engineering, this is often a hard task to
carry out due to the dimensions of the structures. In order to avoid this limitation,
new methods of extracting modal properties from the structural response under
unknown excitation have been developed [5, 7]. For the goal of this investigation and
considering the dimensions of our test specimens, classical identification methods
were appropriated.

2.1 Rational Fraction Polynomials Method

The RFP is a Single Input – Single Output (SISO) Method [4] for modal identi-
fication in the frequency domain. It is based on the viscously damped model and
describes the FRF of the system as a ratio between two polynomials:
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By minimizing the error between the measures FRF values and the model, the
coefficients a k and b k are obtained, from which the modal parameters can be
retrieved. The original implementation of this method can be found in [4].

2.2 Polyreference Frequency Domain Method

The PRFD method is a Multiple Input – Multiple Output (MIMO) Method [6] that
has been implemented in order to evaluate the modal shapes of the detected modes.
For a detailed description of its implementation, we refer to [2].

3 Experimental Investigations

The investigated specimens consisted of rectangular 1,100 � 360 mm glass plates
simply supported on both ends with a span of 1,000 mm.

The response of the plate under impulsive excitation was measured in terms of
accelerations, by sensors placed at positions 1–4. The sensors 1 and 2 were placed
at the middle of the plate, while sensors 3 and 4 at a distance to the supports of
respectively 1 / 3 and 1 / 4 of the span as illustrated in Fig. 1.

The impulse excitation was applied in the center of the plate (Position 2) with a
calibrated impulse hammer, allowing for a broad-band excitation of the glass panel
(see Fig. 2). The measurements were conducted at a sampling rate of 10,000 Hz, in
order to avoid any aliasing effects. The frequencies of interest lied between 0 and
1,000 Hz.

Fig. 1 Test set-up and positions of the sensors, exemplarily laminated sheet glass
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Fig. 2 PSD of the impulse excitation

3.1 Measurement Results

A total of 32 measurements with repeated impulse excitation where performed for
a mono-sheet glass plate and for a laminated sheet glass plate. The spectral analysis
and determination of FRF was done by means of the PSD using Welchs method
with Hamming windowing. A frequency resolution of 0.076 Hz was achieved. The
obtained FRFs are given in Fig. 3.

In order to evaluate the linearity of the response and hence the presence of non-
linearities in the measured data, the coherence function of the FRFs was calculated
(see Fig. 4). During the identification of the modal properties, these results were
considered as an additional criteria to eventually distinguish the physical modes
from the non-physical.

4 System Identification

The FRFs of the mono-sheet glass plate and the laminated sheet glass plate were
investigated by means of the methods briefly presented in Sect. 2. The results of the
modal identification are summarized in Fig. 5.

With the implemented methods it was possible to easily identify the main
vibration modes of the system. The second natural vibration mode could not be
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Fig. 4 Coherence of the FRFs from Fig. 3

identified, since the excitation happened in the middle of the plate, where this
mode shows no amplitude. Higher frequency modes could be identified as well,
although the results (specially for the damping value and modal shape) varied
strongly between simulation runs.
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Fig. 5 Results of the first three identified modes for both mono-sheet and laminated sheet glass

5 Conclusions

The modal properties of typical glass façade elements have been investigated by
means of standard modal identification techniques. The results show a higher
damping ratio in laminated sheet glass compared to mono-sheet glass, as it was
expected. Further investigations including the effects of the steel-glass connections
and different glass configurations are necessary to aim for a general approach in the
dynamic design of steel-glass façades.
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Damping Optimization for Linear Vibrating
Systems Using Dimension Reduction

Peter Benner, Zoran Tomljanović, and Ninoslav Truhar

Abstract We consider a mathematical model of a linear vibrational system
described by the second-order system of differential equationsM RxCD PxCKx D 0,
where M, K and D are positive definite matrices, called mass, stiffness and
damping, respectively. We are interested in finding an optimal damping matrix
which will damp a certain part of the undamped eigenfrequencies. For this we
use a minimization criterion which minimizes the average total energy of the
system. This is equivalent to the minimization of the trace of the solution of a
corresponding Lyapunov equation. In this paper we consider an algorithm for
the efficient optimization of the damping positions based on dimension reduction
techniques. Numerical results illustrate the efficiency of our approach.

Keywords Vibrating system • Lyapunov equation • Energy minimization
• Dimension reduction

1 Introduction

The aim of this paper is the determination of optimal damping for the following
linear vibrational system:

M Rx CD Px CKx D 0; (1)
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where M and K (called mass and stiffness, respectively) are real, symmetric positive
definite matrices of order n. The damping matrix is defined asD D Cu CCext, where
Cext is the external damping. The internal damping Cu is usually taken to be a small
multiple of the critical damping, more precisely [1]

Cu D ˛cCcrit; where the critical damping is Ccrit D 2M1=2
p
M�1=2KM�1=2M 1=2:

(2)

For the sake of simplicity, we will use parameter ˛D 2˛c. Equation 1 can be
transformed to phase space which yields a system of first order differential
equations. For this purpose, let ˚ be a matrix that simultaneously diagonalizes M
and K, that is

˚TK˚ D ˝2 D diag.!21 ; : : : ; !
2
n/ and ˚TM˚ D I: (3)

For the internal damping defined in Eq. 2 it holds that ˚T Cu˚ D˛˝ . The positive
numbers !1,!2, : : : ,!n are the eigenvalues of the undamped system, also called
undamped eigenfrequencies. Then, we can write the differential equation (1) in
phase space as

d

dt
y D Ay; where A D



0 ˝

�˝ �˚TD˚

�
; y D



y1

y2

�
; (4)

for more details see [1–4]. The first order differential equation given above has the
solution y D eAt y0, where y0 contains the initial data. It has been shown in [3, 5] that
A from Eq. 4 is a stable matrix, that is, the eigenvalues of A are in the open left half
of the complex plane.

The main aim is to determine the “best” damping matrix D which will insure
optimal evanescence of each component of y. For this purpose, we will use the
criterion of minimization of the total energy of the system, that is

Z 1

0

E.t/dt ! min; (5)

where E(t) is the total energy of the system at a given time t, as a sum of kinetic and
potential energies. In [3] it is shown that by taking the average over all initial states
of the unit total energy and a given frequency range, the minimization criterion (5)
is equivalent to

traceX ! min; (6)

where X is the solution of the Lyapunov equation

AX CXAT D �GGT ;
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with A as in Eq. 4. The matrix G depends on the eigenfrequencies which have to
be damped. If we are interested in damping of all undamped eigenfrequencies,
then G D I, while in the case of damping of just the first s eigenfrequencies of the
undamped system, the matrix G has the following form [3]:

G D


Is 0 0 0

0 0 Is 0

�T
: (7)

This optimization problem has been intensively considered, see for example
[1–4, 6–10]. Optimal damping aims at optimization of the damping positions as
well as the corresponding viscosities. In this paper we will be mainly interested in
the optimal dampers’ positions. The optimal viscosities can then be determined by
an additional optimization procedure.

Let the external damping be given by

Cext D v1ei1e
T
i1

C v2ei2e
T
i2

C � � � C vkeik e
T
ik
; (8)

where ij, j D 1, : : : , k, corresponds to the damping positions with viscosities vj,
j D 1, : : : , k. It follows directly from Eq. 8 that it is sufficient to find the optimal
positions such that 1 	 i1< i2< : : : < ik 	 n. Since we are interested in determi-
nation of the optimal damping positions and viscosities, we will use a new notation
for traceX which is now a function of the damping positions (i1, : : : , ik) and the
corresponding viscosities (v1, : : : , vk). Thus, let X(C(v1, : : : , vk; i1, : : : , ik)) be the
solution of the Lyapunov equation

AX.C.v1; : : : ; vk I i1; : : : ; ik//CX.C.v1; : : : ; vk I i1; : : : ; ik// AT D �GGT ; (9)

where (i1, : : : , ik) are the damping positions and (v1, : : : , vk) the corresponding
viscosities. The matrix G is given in Eq. 7, while the matrix A equals

A D


0 ˝

�˝ �˛˚T Ccrit˚ � C.v1; : : : ; vk I i1; : : : ; ik/
�
; (10)

where C(v1, : : : , vk; i1, : : : , ik) D˚ TCext˚ and ˚ is the matrix given in Eq. 3.
For a given mass matrix M, stiffness matrix K, internal damping Cu and k

dampers, we are interested in determining the optimal positions iopt
1 ; : : : ; i

opt
k and

corresponding viscosities vopt
1 ; : : : ; v

opt
k such that traceX(C(v1, : : : , vk; i1, : : : , ik)) is

minimal.
In the next section we will discuss the main difficulties in the process of

damping optimization and we suggest a new approach for efficient damping
optimization.
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2 Damping Optimization by “Discrete to Continuous”
Optimization Approach

This section will be mainly devoted to the calculation of the optimal damping po-
sitions. The problem of determining the optimal damping is extremely demanding,
because numerous Lyapunov equations have to be solved. Furthermore, for systems
with large dimensions, even solving a single Lyapunov equations with direct solvers
(such as the Bartels–Stewart algorithm [11]) can become very demanding.

One approach for determination of the optimal damping positions is the “direct”
approach, which includes viscosity optimization for all possible damping configura-
tions. For the external damping given by Eq. 8, we need to optimize the viscosity at
all different configurations of dampering positions such that 1 	 i1 	 i2	 : : :	ik 	 n.
Then the optimal positions are those corresponding to the minimal traceX.

One heuristic optimization approach for the determination of the optimal damp-
ing positions is presented in [9]. In this paper, the authors group the possible
damping positions in order to optimize the viscosities with respect to a smaller
number of damping positions.

Here we will introduce the “discrete to continuous” heuristical approach which
relies on the optimization of functions of real variables. First, we will define an
additional function which will be used in the optimization procedure. We want
to determine optimal damping for k dampers with different viscosities. Thus,
for D � R

2k we define a function f W D ! R by

f .v1; : : : ; vk I i1; : : : ; ik/ D trace.X.C.v1; : : : ; vk I Œi1�; : : : ; Œik�///; (11)

where [ � ] stands for the rounding (we use the MATLAB®; function round) and
the matrix X(C(v1, : : : , vk; [i1], : : : , [ik])) is the solution of the Lyapunov equation
(9). Here ik is considered is as a continuous variable and the damping posi-
tions [i1], [i2], : : : , [ik] with corresponding viscosities v1, v2, : : : , vk determine the
matrix C.

Now, we reduce our optimization problem to the minimization of the function
(11) with continuous domain.Thus, for minimization of this function we can use
standard methods like Nelder–Mead [12] or, for example, Newton like methods.
When we determine the minimum of the function (11) we will denote the point
where the minimum is achieved by .Ov1; Ov2; : : : ; Ovk I Oi1; Oi2; : : : ; Oik/. Then the optimal
positions are ŒOi1�; ŒOi2�; : : : ; ŒOik� with corresponding optimal viscosities equal to
Ov1; Ov2; : : : ; Ovk .

Apart from the above mentioned minimization procedure like the Nelder–Mead
method (implemented in the MATLAB function fminsearch) or the Newton-like
methods (implemented in the MATLAB function fmincon or fminunc), one can
also use a genetic algorithm (implemented in the MATLAB function ga). In the
optimization process we will use the Nelder–Mead method which is much more
robust than the other mentioned methods for our minimization problem.
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A further question in minimization with a Nelder–Mead method is the choice
of good starting points. For this purpose we will define a grid of starting points
for damping positions, which will correspond to the starting points generated in
Steps 1–4 of Algorithm 1. Some fixed values vs1; v

s
2; : : : ; v

s
k will be taken as starting

viscosities.
First, we have to define the parameters d3 and d4 which determine the grid of

starting points .i s1 ; : : : ; i
s
k/. As can be seen from Algorithm 1, the parameter d3 deter-

mines the difference between points inside the region, while the parameter d4 defines
the distance to the edge of the region where the optimal position is to be found.

Note that Nelder–Mead [12] is an unconstrained multidimensional optimization
method. In numerical experiments the optimization procedure could require an
evaluation at the points that are not in the domain (for example, viscosities may
become negative). Thus, at points that are outside the domain where the optimization
is performed, in our optimization procedure we set the function value to some
constant large enough. With this, our optimization procedure will always return a
minimum which is inside the domain of our value function.

3 Damping Optimization Based on Dimension Reduction
and Continuous Minimization

We have introduced the “discrete to continuous” approach which can be applied to
vibrating systems of moderate dimensions. However, for large systems solving of
the corresponding Lyapunov equation is quite demanding itself. Thus, we propose
a new approach which will combine approximation algorithms that use dimension
reduction techniques with the “discrete to continuous” approach introduced in the
previous section.
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In case we intent to damp all undamped eigenfrequencies, we will use the
approximation algorithms introduced in [6]. Contrary to this, in the case when we
damp a selected part of the undamped eigenfrequencies, we will use the dimension
reduction approach derived in [7].

In the minimization process with the “discrete to continuous” approach we
cannot just directly apply the algorithms from [6, 7], since these algorithms optimize
viscosities at given damping positions, while in the “discrete to continuous”
approach we change the damping positions during the optimization process. Thus,
we have to modify our algorithms which use a dimension reduction technique. This
modification includes checking of the corresponding error bound at the each step of
the optimization procedure. More precisely, for the approximation of the function
given in Eq. 11, we have to treat two cases which depend on the eigenfrequencies
which have to be damped.

In the case of damping of selected eigenfrequencies, in Step 5 of Algorithm 1,
we need to calculate an approximation of the function f (v1, : : : , vk; i1, : : : , ik).
Algorithm 2 gives an approximation with a given tolerance ". In Algorithm 2, the
parameter u represents the machine precision. For the purpose of simplification,
on the input we give just parameters that are essential for the understanding of the
algorithm. Similarly, if we damp all eigenfrequencies, in Step 5 of Algorithm 1 we
calculate approximation of the function f (v1, : : : , vk; i1, : : : , ik) using the approxima-
tion algorithms introduced in [6].

In the following example we will demonstrate the performance of damping
optimization using approximation algorithms and the “discrete to continuous”
approach.

Example 1. We consider the n-mass oscillator or oscillator ladder with two
dampers, shown in Fig. 1, which describes the mechanical system of n masses and
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Fig. 1 n-Mass oscillator with two dampers of different viscosities

n C 1 springs with corresponding stiffnesses. For such a mechanical system the
mathematical model is given by M Rx C D Px C Kx D 0, where for the stiffness
and mass matrices we have

K D

0
BBBBBB@

k1 C k2 �k2
�k2 k2 C k3 �k3

: : :
: : :

: : :

�kn�1 kn�1 C kn �kn
�kn kn C knC1

1
CCCCCCA
; M D diag.m1;m2; : : : ; mn/;

where mi> 0 for i D 1 : : : , n are the masses and ki> 0 for i D 1 : : : ; nC 1 are the
stiffnesses. We will consider the following configuration for n D 1,600:

mi D 120� .i � 1/=5; i D 1; : : : ; 100I
mi D i; i D 101; : : : ; nI ki D 4; i D 1; : : : ; nC 1:

For the numerical test, we demand to damp all the undamped eigenfrequencies that
are smaller than 0. 005 by magnitude, yielding s D 34 (s determines the matrix G
given in Eq. 7).

The damping matrix is D D Cu C Cext, where the internal damping Cu is
defined as in Eq. 2 with ˛c D 0. 001. Since we will consider two dampers of
different viscosities, the external damping is defined by Cext D v1eieTi C v2ej eTj for
1 	 i< j 	 n, where ei is the ith canonical basis vector, and v1, v2 are the viscosities
of the dampers applied on the ith and jth mass, respectively.

As we mentioned above, the considered optimization process is extremely
demanding, because it requires solving the Lyapunov equation (9) numerous times.
In order to compare the performance of our approach, instead of performing
optimization in all damping positions (this corresponds to “direct” approach),
we will optimize the viscosities on the following equidistant mesh of damping
positions:

i D 51 W 50 W n; j D i C 51 W 50 W n; (12)

which will give 465 different damping positions. We obtain that the optimal
position with respect to the mesh (12), is the position (i, j) D (651, 1, 352) with
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optimal viscosities (v1, v2) D (107. 03009, 150. 49333), while the optimal trace is
trace(X(v1, v2)) D 993, 067. 32851. More details of the performance of dimension
reduction for this example are shown in [7]. For the optimization of the viscosities
on the above mesh we needed 104 days, which means that for viscosity optimization
at one point of the mesh we need 5. 4 h on average. Recall that a “direct” approach
requires the viscosity optimization for all possible configurations of damping
positions. As there are n.n � 1/=2 different positions, it is impossible to apply
direct optimization here. But optimization becomes possible with our approach
which combines an approximation algorithm with the “discrete to continuous”
approach.

Now, we will present results obtained with the “discrete to continuous” approach
presented in Algorithm 1, but in Step 5 we will use the function approximation given
by Algorithm 2.

In Algorithm 1 we use the following configuration:

d3 D 160I d4 D 80I vs1 D vs2 D 50:

In Algorithm 2 we use the following configuration:

tolstart D 0:02I " D 0:05I c1 D 0:5:

The parameters d3 and d4 define the grid with 45 different points in Algorithm 1.
The function is minimized with the MATLAB function fminsearch and for a
termination tolerance for the function value we take 0. 1, which determines the
absolute error. Thus the relative error has magnitude O.10�7/. For the termination
tolerance of the optimization variables we have used 0. 01 (this also determines
the absolute error). We have obtained that the optimal damping positions equal to
(730, 1,274) with optimal viscosities equal to (120. 47387, 120. 38917). For these
parameters the value of our penalty function equals 987, 258. 34332. This value was
calculated using an algorithm without dimension reduction. Note that combining
Algorithm 1 with dimension reduction technique, we obtain a smaller trace. That
is we have obtained the optimal positions which are not included in the mesh
(12). This is not a surprise since the mesh (12) includes just a small number of
positions.

For calculating the approximation of the optimal damping with this approach we
only needed 0. 532 days. The obtained results with corresponding CPU times were
calculated using an Intel(R) Core(TM) i7 CPU 920 with 12 GB of RAM and 8 MB
cache.

Another possibility for optimization is the application of the heuristic introduced
in [9] with the help of the approximation algorithms which use the mentioned
dimension reduction techniques.
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4 Conclusions

Damping optimization in a mechanical vibrating system is a very demanding
problem due to the numerous Lyapunov equations which have to be solved. In this
paper, we have introduced the “discrete to continuous” approach which considerably
reduces the number of Lyapunov equations which have to be solved. Furthermore,
we have proposed a new approach which is based on dimension reduction and
continuous minimization.

We can conclude that combining the approximation algorithm with the “discrete
to continuous” approach we have significantly accelerated the time needed for the
calculation of the approximation of optimal damping.
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Dynamics Modelling of Tensegrity Structures
with Expanding Properties

Musa Abdulkareem, M. Mahfouf, and D. Theilliol

Abstract Given the prestress level of a tensegrity structural system obtained from
any form-finding method, an important step in the design process is to develop math-
ematical models that describe the behaviour of the system. Moreover, tensegrity
structures are strongly dependent on their geometric, or kinematic, configurations.
As such, except for small scale tensegrity structures with a few structural members,
resorting to the use of computational techniques for analysis is a necessity. Because
tensegrity structures are kinematically and statically indeterminate structures, a free
standing tensegrity structure has at least one rigid body mode apart from the six rigid
body modes that can be eliminated, for example, by applying boundary conditions
assuming the structure is attached to a base. In this paper, a new general tool
(applicable to small and large systems) for systematic and efficient formulation of
structural models for tensegrity systems is proposed. Current tools are limited to
structures with a few degrees of freedom (DOF), however, this new tool simplifies
the analyses of tensegrity structures with several DOFs and provides a new insight
into the behaviour of these interesting and yet challenging structures, at least from
a control systems’ viewpoint.
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1 Introduction

A system that consists of a given set of cables connected to a configuration of rigid
bodies which can be put in a state of static equilibrium as a result of internal forces
of the cables alone in the absence of external forces is called a tensegrity structure. In
tensegrity related research, bars refer to the rigid bodies and a class k tensegrity sys-
tem has as many as k bars in contact at the nodes [1]. In the technological quest for
stronger, stiffer, flexible, and yet, lightweight structural systems, tensegrity systems
have the following additional features, among others: mass efficiency, modularity,
scalability, deployability, accurate modelling, and, as a consequence, precision
control. Form-finding of tensegrity structures involves using the mathematical
properties of tensegrity structures to search and define a configuration that satisfies
the conditions of static equilibrium of the structural system. The main bottleneck
hindering thorough investigation into the dynamic properties of tensegrity structures
is the lack of tools that would efficiently solve the equations of motion of tensegrity
systems for larger systems with several degrees of freedom. Moreover, most current
analysis tools use algebraic formulation and are, as such, limited to tensegrity
structures with a few structural members and a simple connectivity. Thus, research
in tensegrity dynamics is still an emerging field and this paper attempts to provide
tools and insight into the dynamic properties of such structures.

2 Mathematical Formulations

Consider a tensegrity structure with n nodes and b structural members, the forces of
tension (for cables) and compression (for bars), the lengths of structural members
and the nodal forces in three-dimensional Euclidean space form vectors f 2 <b,
l 2 <b and p 2 <3n, respectively. Let the nodal coordinates of all points in 3-
dimensional Euclidean space be assembled into column vectors x 2 <n, y 2 <n

and z 2 <n, where (xi, yi, zi) represents the coordinates of node i, then a matrix of
nodal coordinates N 2 <3�n may be defined as follows:

N D Œ x y z �T D Œni �1�n (1)

where ni 2 <3, given by ni D �
xi yi zi

�T
, is the nodal coordinates of node i.

Furthermore, a branch-node connectivity matrix [2, 3] denoted C may be defined
with the aid of a connectivity graph; for the structural member i connected to two
matched nodes numbered j(i) and h(i) (where j(i)< h(i)), ci; j is written as follows:

ci;j D

8̂
<̂
ˆ̂:

C1 for j.i/ D 1

�1 for h.i/ D 1

0 otherwise

(2)
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Equation 2 makes it easy to write the coordinate differences of the connected
points as u D Cx, v D Cy, and w D Cz. The i’th structural member with nodes h
and j can be uniquely described by a Euclidean row vector bi 2 <3, given by
bi D �

xh � xj yh � yj zh � zj
�

and has the length kbik D ��nh � nj
�� Thus, all

members of the structural system can be assembled into matrix B 2 <b�3 as follows:

B D Œu v w� D Œbi �b�1 D C NT (3)

2.1 Derivation of the Stiffness and Mass Matrices

Tensegrity structures are in a state of minimum potential energy and this energy
(assumed to be due to straining alone) can be written for the whole structural system
as follows:

� D
bX
iD1

i .kbik/ (4)

where  i(kbik) denotes  i is a function of kbik. The stiffness matrix of a tensegrity
structure is given as follows [1]:

K.N/ D
bX
iD1

Ki.N / D Kq.N /CKs.N / (5)

where Ki.N / D �
CiC

T
i ˝ xi

�
, Ci is the i’th row vector of C, ˝ is the Kronecker

product,xi D x00

i bi b
T
i

kbik2 Cqi
�
I3 � bi b

T
i

kbik2
	

, qi D  0

ikbik is the tension coefficient of the i’th

structural member,Ks.N / D .C T ˝I3/diag
h
Œ.�00i � qi

bi b
T
i

kbik2
i
.C T ˝I /; Kq.N / D

CTQC ˝ I3;Q D diag .qi / ;  0
i and  00

i are first and second derivatives of  i with
respect to nodal displacements, respectively. Kq is called the prestress (or geometric)
stiffness matrix and it is mainly a function of tension coefficients, while KB is a
called the elastic stiffness matrix and it is mainly a function of material properties
of the structural members. Let the i’th structural member have mass density 
i and
cross-sectional area Ai; if the member is assumed to deform linearly in the axial
direction only, the consistent mass matrix in local coordinates system is given as
follows [4]:

mi D 
iAi li ;

6



2 1

1 2

�
(6)

The transformation to the global coordinate system is obtained as follows:

m0
i D �Tmi�; � D 1

li



1 0

0 1

�
˝ bi ; M D

bP
iD1

m0
i (7)
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wherem0
i is the global stiffness matrix, � 2 <6�6 is a transformation matrix andm0

i

is obtained by identifying the locations of the i’th structural member in the global
system and including zeros in the remaining location and M is the stiffness matrix
of the entire structure.

3 Numerical Results

For the tensegrity structures shown in Fig. 1, we assume the length l, tension
coefficient q, Young’s modulus E, cross-sectional area A, and mass densities 
 of
each structural member is as given in Table 1.

Figure 2 shows the dynamic simulation of the tensegrity structure of Fig. 1
when three vertically downward loads, each of 300 N, are placed on nodes 10,
11 and 12. Nodes 1, 2, and 3 are made rigid (constrained). The damping constant
$j D 0:02 and the integration step-size is 0.02 s. It can be seen in Fig. 2 that
there is no displacement in the x-direction of node 4. Although, only the results
of the current loading configuration is given, numerous simulations reveal that at
least one nodal coordinate remain unaffected by any loading effect irrespective of
the loading configuration due to the singular nature of the system. More generally,
tensegrity structures are singular systems. Singular systems are systems that satisfy
the following state differential equations [5]:

E Px D A x C B u (8)

where E is a singular matrix with dimension equals to the number of degrees of
freedom n and rank n � r and r is the number of nodes unaffected by the external
forces (zero energy modes). If E is matrix defined as follows:

E D



Ie 0

0 0r

�
(9)

It is easy to see how Eq. 8 can be extended to tensegrity systems.

4 Conclusions

Modal analysis shows that tensegrity structures, even after the six rigid-body modes
are eliminated, include at least one zero-energy. In general, tensegrity structures
are singular systems and formulating the dynamic equations using the state-space
theory provides an opportunity of extending many control system concepts to these
structural systems. In particular, unlike the traditional techniques where mass and
stiffness matrices are reduced by focusing only on few nodal coordinates and which
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Fig. 1 A 2-stage tensegrity structure (bars and cables are drawn as thick and thin lines,
respectively)

lead to models that are strongly dependent on the initial choices, the singular state-
space representation provides a mechanism for enabling the detection of structural
modes with zero energy which is very useful for model reduction and further
analysis. Near future work will focus on employing this model for synthesizing
controllers for tensegrity structures.
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300N on nodes 10, 11, and 12
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Transient Response of FGM Pressure Vessels

Hakan Pekel, Ibrahim Keles, Beytullah Temel, and Naki Tutuncu

Abstract The present study aims to investigate the transient behavior of
thick-walled cylinders under dynamic internal pressure. Analytical solutions are
possible only for simple time-dependent pressure functions. The solution procedure
presented is general in the sense that the pressure applied may be an arbitrary
continuous function of time, impulsive or given in a discrete form. The material
considered is isotropic and heterogeneous with properties varying in the radial
direction termed as Functionally Graded Material (FGM). Laplace transform
method is used and the inversion into the time domain is performed using the
modified Durbin’s method. Verification of the numerical procedure is performed by
comparing the results with those of an analytical solution available in the literature
for a simple exponentially-varying pressure. The inhomogeneity constant in the
material property model is shown to have a significant effect on the transient
response.

Keywords Functionally graded materials • Vibration • Pressure vessel

1 Introduction

Functionally graded materials (FGM) have seen increasing applications in en-
gineering fields. The continuous spatial variation of physical properties in such
materials has eliminated some adverse effects such as stress concentration and
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delamination encountered in ordinary composites. Exact vibration analyses of
homogeneous cylinders using Laplace transform date back as early as 1940s (e.g.
see Tranter [1]). A more recent detailed study on the subject is due to Ghosh [2]
where axisymmetric vibration of thick cylinders under various continuous dynamic
pressures is investigated.

As for the dynamic response of heterogeneous cylinders; the works by Loy
et al. [3] and Pradhan et al. [4] include studies using Rayleigh-Ritz method on the
vibration of cylindrical shells made of functionally graded materials composed of
stainless steel and nickel or zirconia. The transient waves in a functionally graded
cylinder are analyzed by Han et al. [5] using a hybrid numerical method. A finite-
element vibration analysis of FGM thick hollow cylinders is done by Shakeri et al.
[6] where the cylinder is assumed to be made of many subcylinders.

The present paper presents solutions for the axisymmetric forced vibrations of
a functionally graded isotropic thick-walled cylinder. The solutions are obtained
in the Laplace domain and inverse transformation to the time domain is done by
the modified Durbin’s method. For an internal dynamic pressure continuous with
time analytical solutions may be obtained through the calculus of residues. This
analysis is viable only for simple cases of pressure functions. A benchmark solution
given by Keles [7] is used to verify the numerical procedure. In cases of impulsive
and piecewise continuous pressures it becomes inevitable to resort to numerical
inversion schemes. The method chosen in the present work, Durbin’s numerical
inverse Laplace transform method, has been efficiently implemented in vibration
analysis of structural elements (e.g. see Temel [8]). If the pressure is given in a
point-by-point manner its closed-form Laplace transform will not be available and,
for such cases, Durbin’s method is also a valid, efficient procedure.

Elastic modulus and the density of the cylinder are assumed to vary radially
according to a power-law and, for the sake of simplicity, constant Poisson’s ratio
is assumed throughout. Dynamic response is presented for various values of the
inhomogeneity parameter. The analysis presented is readily applicable to FGM disks
and hollow spheres.

2 Governing Equations

Consider a thick-walled hollow cylinder (or a disk) of inner radius a and outer
radius ka where k is a constant. The cylinder is isotropic and made of functionally
graded material. Modulus of elasticity and the density vary through the thickness
as E.r/ D E0r

“ and ¡.r/ D ¡0r
“, respectively, where the exponent “ essentially

represents the degree of inhomogeneity. Under axisymmetric conditions using the
strain-displacement relations, constitutive equations for plane strain and equation of
motion in the radial direction gives the governing differential equation for the radial
displacement Nv in the Laplace domain as
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d2 Nv
dx2

C m1

x

d Nv
dx

C
�m2

x2
� p2

	
Nv D 0 (1)

where p is the Laplace parameter. The boundary conditions are

�r jxD1 D �P.p/ �r jxDk D 0 (2)

The solution of Eq. 1 is given in terms of Bessel functions as

Nv.x; p/ D x®.C1In.px/C C2Kn.px// (3)

where In and Kn are Bessel functions of first and second kind, respectively, of order

n with ® D � “

2
; n D

q
1 � �“

1�� C “2

4

The constant C1 and C2 are evaluated using the boundary conditions. Making
use of the recurrence formulae [9] the complete solution in the Laplace domain is
written as

Nv.x; p/ D �
NP .p/
C11

x®
F.p/

G.p/
(4)

where

F.p/ D ŒKn.pk/S1 C pkKn�1.pk/�In.px/

� ŒIn.pk/S1 � pkIn�1.pk/�Kn.px/ (5)

and

G.p/ D ŒKn.pk/S1 C pkKn�1.pk/�ŒIn.p/S1 � pIn�1.p/�

� ŒKn.p/S1 C pKn�1.p/�ŒIn.pk/S1 � pkIn�1.pk/� (6)

where S1 D .n �m � ®/ andm D C12=C11
To find the final solution in real time domain, the inverse Laplace transform needs

to be performed on Eq. 4. For the internal pressureP.�/ D P0.1�e”�/, a benchmark
solution given by Keles [7] will be used for comparison purposes.

3 Solutions by the Modified Durbin’s Method

For impulsive and piecewise continuous time-dependent pressures the calculus of
residues method seizes to be a viable option; numerical methods are inevitably
employed.
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A numerical inverse Laplace transform technique to obtain the values in the time
domain is Durbin’s inverse Laplace transform technique based on the Fast Fourier
Transform (FFT) algorithm. Durbin’s formulation for inverse Laplace transform is
summarized as follows [10]:

The function f .t/ at time tj is given by

f .tj / Š 2ExpŒaj�t�

T

"
�1
2

Re
n
F .a/

o
C Re

(
N�1X
kD0

. NF .pk/Lk/Exp



i

�
2

N

�
jk

�)#

.j D 0; 1; 2; : : : ; N � 1/ (7)

where NF .pk/ is the Laplace transform of f .t/. The kth Laplace parameter is defined
as pk D aC ik2=T . The number N isN D T=�t where T is the solution interval
and�t is the time increment which is taken as�T D 0:1. The selection of constant
a is done by assigning a value to ˛T . It is suggested that the value of ˛T be in the
range 5–10. For the numerical examples presented in this paper this value is taken
as 6. Finally, the results are modified by multiplying each term in the summation by
Lanczos factor Lk as suggested in [11]

Lk D sin

�
k

N

��
k

N

�
; .L0 D 1/ (8)

If the Laplace transform of the function f .t/ is not given in closed-form such
as in the case of point-by-point definition, the discrete values need first to be
transformed into the Laplace domain as follows:

NF .pk/ D �t

N�1X
nD0

�
f .tn/e

�atn�e�i 2nkN (9)

For various pressures only the term P .p/ is changed in the solution given
by Eq. 4. To verify the numerical procedure, the benchmark solution is resolved
by numerical inversion and virtually an exact match is obtained within six-digit
accuracy by using the first 20 natural frequencies inherent in the solution.

4 Results and Conclusions

Forced vibration analysis of FGM hollow cylinders has been performed using
Laplace transform technique. The material is assumed to be graded with respect
to a power-law whose exponent represents the degree of inhomogeneity. A constant
Poisson’s ratio of 0.3 has been used throughout. For a rectangular wave pressure
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P.t/ D 2P0
1P
kD0

.�1/kU.t � 2k/, where U.t � 2k/ is the Heaviside’s function, the

Laplace transform is given in closed-form as P .p/ D 2P0=Œp.1 C Exp.�2p//�.
This pressure is substituted in Eq. 4, and the numerical inversion into the real-time
domain is performed by Durbin’s method. The radial displacement on the inner
surface is presented in Fig. 1 as a function of the non-dimensional time parameter.
As mentioned in the preceding sections the pressure may be impulsive and given
discretely. As an example of this case, consider the impulsive inner pressure which
is present only up to � D 12.0 as shown in Fig. 2. After this point, there is no pressure
and only free oscillations are present. Using Eq. 9 the real-time pressure values at
time tn read from the graph are transformed into the Laplace domain. Substituting
these values into Eq. 7 yields the discrete solution in the time domain. The results
are displayed in Fig. 2.

The values of the radial displacement decrease when “ increases. A positive
inhomogeneity constant refers to increasing stiffness in the radial direction which
leads to the conclusion that it provides a stress shielding effect. It is obvious that a
negative “ would create a stress amplification effect.

The inhomogeneity constant, which includes continuously varying volume
fraction of the constituents, is empirically determined and is a useful parameter from
a design point of view in that it can be tailored for specific applications to control
the stress distribution.
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Homogenized Perforated Interface in Acoustic
Wave Propagation – Modeling and Optimization

Eduard Rohan and Vladimı́r Lukeš

Abstract We consider acoustic wave propagation described by Helmholtz equation
and involving homogenized transmission conditions imposed along a thin perfo-
rated interface which separates two halfspaces occupied by the acoustic medium.
On this interface homogenized transmission conditions are imposed; they were
obtained by the two-scale homogenization of a layer with an immersed perforated
slab designed as a periodic structure. Design of the perforation can modify
significantly acoustic wave propagation, therefore, optimization of the perforation
can contribute to development of noise-isolation devices and to other practical
acoustic applications. We developed the sensitivity of coefficients involved in the
homogenized transmission conditions with respect to the design of the “holes” in
the slab. Using the two-scale approach we treat the acoustic waves propagating in
a duct which is equipped with the perforated interface. Using numerical examples
we illustrate, how the perforation geometry influences the acoustic transmission.
The optimization problem is solved with a few parameters describing shape of the
perforation.

Keywords Wave transmission • Homogenization • Structural optimization •
Sensitivity analysis

1 Introduction

Optimization of noise transmission in the acoustic fluid belongs to important merits
of the acoustic engineering. Sieve-like structures are classical elements employed
in noise-reducing devices. For example, in the exhaust silencers of the combustion
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Fig. 1 Left: illustration of the transmission coupling – the acoustic pressure jump is proportional
to the transverse acoustic velocity g0. Center: the domain and boundary decomposition of the
global acoustic problem considered. Right: perforated interface and the representative periodic cell
Y D Y � [ S

engines the gas flows through ducts equipped with various sieves which in part
may influence the transmission losses associatedwith acoustic waves propagating in
the exhaust gas. In aerospace and automotive industry there are many applications
related to acoustic waves and fluid flow where optimal design of the sieves
(perforated slabs) is a challenging problem.

In the paper we deal with the acoustic transmission through a perforated slab –
the perforated interface, cf. [1, 2]. In [5], using the asymptotic analysis we
developed the homogenized transmission conditions to be imposed on the interface
plane representing the slab with a periodic perforation which, in general, is designed
by obstacles having arbitrarily complicated shapes.

The limit model of such an interface plane involves some homogenized
impedance coefficients depending on the so-called microscopic problems; these
are imposed in the reference periodic cell embedding an obstacle which represents
the perforation. The two-scale modeling approach allows for an efficient treatment
of complicated designs of perforations. Acoustic response to the global acoustic
problem involving the transmission conditions is subject to the sensitivity analysis.
Namely the total variation of an objective function depending on the acoustic
pressure w.r.t. the obstacle shape at the “microlevel” is derived.

An abstract optimization problem is formulated at three levels: at the “global”
one the pressure field is controlled by the model variables (acoustic momentum)
associated with the homogenized transmission condition; at the “interface” level
these interface variables are solutions of the non-local transmission conditions
depending on the homogenized impedance parameters; finally, at the “microscopic
level” these parameters depend on solutions of auxiliary local problems featured by
the shape of perforations.

We consider the global problem of the wave propagation in a duct ˝ � R
3

filled by the acoustic fluid. ˝ is subdivided by perforated plane � 0 in two disjoint
subdomains˝C and˝ � , so that˝ D ˝C [˝� [�0, see Fig. 1 (obviously, much
more general setting is possible). The acoustic pressure field p is discontinuous in
general along � 0. In a case of no convection flow (the linear acoustics), the waves
propagating in ˝ are described by the following equations where � is the wave
number (i.e. frequency !D �c)
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r2p C �2p D 0 in ˝C [˝�;

transmission conditions G .�; Œp�C� ; Œ@p=@n�
C
� / D 0 on �0;

r i�p C @p

@n
D s2i� Np on @˝; (1)

where s, r and Np are given data, Œ��C� is the jump across �0:
@p

@n
D n:rp is the normal

derivative on � 0. The homogenized transmission conditions G D 0 developed in
[5] introduce two internal variables on � 0: the “in-layer” acoustic potential p0 and
the “trans-layer” acoustic velocity g0, which is coupled with the “off-layer” fields
through: @p=@n˙ D ˙i�g0, so that Œ@p=@n�C� D 0. Boundary @˝D� w[� in[
� out of the duct is split into walls and the input/output parts; by the constants r, s
in (1)3 different conditions on @˝ are respected: r D s D 0 on the duct walls � w,
whereas r D s D 1 on � in and r D 1, s D 0 on � out.

2 Acoustic Problem with Homogenized Sieve

We now formulate the state problem describing acoustic waves in open bounded
domain˝ with immersed homogenized sieve represented by non-local transmission
conditions. We need the following notation:

a˝ .p; q/ D
Z
˝

rp � rq; .p; q/˝ D
Z
˝

pq; hp; qi�0 D
Z
� 0

pq:

The problem is defined at two levels:
At the global level the interface conditions involve three geometrical parameters

A, B, F which characterize the design of the sieve perforation; we define (summation
˛,ˇD 1, 2)

A .p; q/ D
Z
� 0

A˛ˇ@ˇp@˛q; B.g; q/ D
Z
� 0

B˛g@˛q; F .g; h/ D
Z
� 0

Fgh:

(2)

The global problem is to find .p:p0; g0/ 2 H1.˝ n �0/ � H1.�0/ � L2.�0/ such
that

a˝ .p; q/ � �2.p; q/˝ C i�hp; qi�in�out
� i�

˝
g0; Œq�C�

˛
�0

D 2i�h Np; qi�in

A .p0; 	/ � �2&�

˝
p0; 	

˛
�0

C i�B.g0; 	/ D 0;

�i�B. ; p0/ � �2F .g0;  /C i�
1

"0

˝
Œp�C� ;  

˛
�0

D 0; (3)

for all (q,	, ) 2 H1(˝n� 0) � H1(� 0) � L2(� 0), where "0 is the real thickness of
the layer.
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At the local level the geometrical parameters A, B, F are determined upon solving
“microscopic problems”. The perforation design is characterized by computational
cell Y D *�� � 1=2;C1=2Œ with * D ]0, b1[ �]0, b2[, where the fluid occupies
domain Y � and S D Y n Y � represents a rigid obstacle, see Fig. 1. Further
Iy

˙ D* ˙ (0, 0, 1) are the “lower” and “upper” faces of Y. In (3), &� D jY � j=j* j
is the porosity. Below the space H1

# .Y
�/ contains all *-periodic functions in the

Sobolev space H1(Y � ). The local problems read: find ˇ; � 2 H1
# .Y

�/ such that
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for all  2 H1
# .Y

�/, where ry D .@=@yˇ/ and .; /Y � is the inner product in
L2(Y � ). Using the local responses, the geometrical parameters can now be com-
puted, see (2) and Fig. 1:
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where �R D j* j�1 R . Note F> 0 and A is positive definite.

3 Optimal Design Problem

One of the most frequently used criteria of optimality in acoustics is related to trans-
mission loss (TL) evaluated using two pressures pa D p.x D a/; pb D p.x D b/,
where p satisfies the state problem (3). In our numerical tests we observed some
remarkable sensitivity of TL on the perforation design [5].

When the coupling coefficient Bff is nonvanishing, surface acoustic stationary
waves propagate along � 0 being described by amplitudes p0, see (3). Thus,
it is legitimate to look for an optimal design of the perforation, such that
the j p0 j is maximized in L2(� 0) norm. We shall considered the following objective
functions:

˚TL.p/ D O̊ .pa; pb/ D 20 log

� jpaj
jpbj

�
; ˚0.p

0/ D
Z
� 0

jp0j2 : (6)

Let the perforation design be controlled by design variables d which describe the
shape of obstacle S and, thereby, the shape of domain Y� , so that d influences the
homogenized coefficients A, B, F involved in (3). Let us recall that these coefficients
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are integrals of functions ˇ , � which are solutions of the microscopic problems (4)
posed in Y� . At the global level, d influences the overall acoustic fields (p, p0, g0).

We can now define the optimal perforation design problem:

min
d2Dadm

˚.p; p0; g0/

subject to: .p; p0; g0/ solves (3), where A;B; F are given by (4),(5), (7)

where Dadm is the set of admissible designs, constraining shape regularity of @S and
typically some other features, like the size of the obstacle (thickness), or porosity of
the interface.

To solve (7) using gradient-based methods, the sensitivity of ˚ w.r.t. the design
d D (di) must be supplied at any iteration (˚ can be substituted by ˚TL or �˚0, for
instance). For this, any component di is associated with the design velocity field V i

which is constructed e.g. by solving an auxiliary elasticity problem in domain Y � ,
whereby V i 6� 0 is given on @S and V i D 0 on @Y. Then the shape sensitivities
ıA˛ˇ.V i /; ıBˇ.V i /; ıF.V i / and ı$�.V i / of coefficients A˛;Bˇ; F and $ � can
be obtained, as described in [4], using the general approach based on the material
derivative.

The total design sensitivity ı˚.p; p0; g0I V i / D @
@di
˚ is obtained by formula

ı˚.p; p0; g0I V i / D 2R

�Z
�0

ıA˛ˇ.V
i /@ˇp

0@ Qp0 � �2
Z
� 0

ıF.V i /g0 Qg0

��2ı$�.V i /

Z
�0

p0 Qp0 C i�
Z
�0

ıB˛.V
i /
�
@˛ Qp0 g0 � @˛p

0 Qg0�
�
; (8)

where . Qp; Qp0; Qg0/ 2 H1.˝ n �0/ � H1.�0/ � L2.�0/ is the adjoint state, cf. [3],
satisfying the adjoint equation, see [4] for details,

a˝ . Qp; q/� �2. Qp; q/˝ C i�h Qp; qi�in�out
� i�
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Œq�C� ; Qg0˛

�0

C A . Qp0; 	/ � �2&�

˝ Qp0; 	˛
�0

C i�B. ; Qp/� i�B. Qg0; 	/� �2F . Qg0;  /

D �1
2

�
@R.p;p0;g0/˚.p; p

0; g0I q; 	;  / � i@I.p;p0;g0/˚.p; p
0; g0I q; 	;  /� ; (9)

for all (q,	, ) 2 H1(˝n� 0) �H1(� 0) �L2(� 0), where < and = is the real and the
imaginary part, respectively.

4 Conclusions

For illustration we consider a 2D problem of acoustic waves in a duct equipped with
a perforated sieve, see Fig. 1, designed by repeating a slanted rectangle of thickness
h, width b and angle of declination ˛. In the optimal design problem we allow b and
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Table 1 A test of the sensitivity analysis, design gradient rd D (@1
d, @2

d) and relative error
(rel.error)1; 2

d, when compared with central finite difference, where d D (b, ˛) is the design vector.
Parameterization of the obstacle (perforation) by d D (b, ˛), see the illustration below

Coeff. @1
d( �) (Rel.error)1

d @2
d(�) (Rel.error)2

d

A 0.729947 � 0.312262 5.8e-10 � 0.359917 � 5.2e-7
B �0.244708 � 0.611555 4.3e-9 � 0.326677 1.7e-7
F 2.083840 2.623334 � 7.3e-9 � 1.632226 2.0e-6
$ � 0.840000 � 0.160000 � 6.2e-9 � 1e-18 � 1
˚TL 1.616879 5.7e-8 0.620776 4.1e-7

b/2
b/2

b/2
b/2

Fig. 2 Optimization of the perforation design. Left: two cases, initial and optimized TL values.
Right: global acoustic problem, three points a, b, c marked, displayed j p j in ˝ (up) and the
cell Y� for the initial and the two optimized layouts (bottom)

˛ to change, so that the rectangle in the cell Y can rotate and be extended; we state
d D (b,˛).

In Table 1 we report on testing the sensitivity analysis; the design sensitivity of
transmission coefficients A, B, F and & � were compared with central differences
(step 1e-3). Standard accuracy was observed also when testing the sensitivity of the
two-point objective function O̊ .pa; pb/.

We introduce an academic example, to demonstrate the influence of the two
parameters, b and ˛ on the global acoustic field. In general, we consider function
˚.pa; pb; pc/ D ˇ O̊ .pa; pb/ C � O̊ .pa; pc/, where weights ˇ; � 2 R can be
selected, and px D p(x) is the “nodal value” of the numerical solution. In the first case
we take � D 0 and ˇ> 0, so that the transmission loss between a and b is minimized.
In the second case � > 0 and ˇ < 0, thus a combination of both transmissions a-b
and a-c are considered, see Fig. 2. The results (local minima) were obtained by the
SQP algorithm with box constraints which secure the “mesh deformation” during
the design iterations. The acoustic transmission model was implemented in our in-
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house FEM code SfePy, which allows for 3D simulations. We intend to consider
non-academic examples with spline parameterization of the obstacle shapes.

Acknowledgments The research and this publication was supported by research projects GAČR
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4. Rohan, E., Lukeš, V.: Sensitivity analysis for the optimal perforation problem in acoustic
transmission. Appl. Comput. Mech., UWB Pilsen 3, 111–120 (2009)
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Reducing Ground-Borne Micro-Vibrations
by Plate Foundations

L. Auersch

Abstract The soil-structure interaction of elastic plates with horizontally prop-
agating waves through the soil is investigated by a combined finite-element
boundary-element method (FEBEM). The frequency-dependent reduction of the
soil amplitudes by the plate and the amplitude distribution along the plate are
presented. The following parameters are varied, the length and the width of the
plate, the stiffness and the mass of the plate or, as a combination of both, the height
of the plate. The results show that a strong reduction can be achieved for higher
frequencies, at some distance from the edge of the plate, and for stiff (high) plates.

Keywords Plate-soil interaction • Wave excitation • Vibration reduction
• Finite-element boundary-element method

1 Introduction

Production facilities for micro- and nano-technologies must fulfil strong vibration
criteria to guarantee a safe production. In order to reduce the ambient ground
vibration, thick foundation plates are used (Fig. 1). As a basis for the design of
these foundations, the soil-structure interaction of elastic plates with horizontally
propagating waves through the soil is investigated by a combined finite-element
boundary-element method (FEBEM).
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Fig. 1 Reduction of ground-borne vibration by thick foundation plates

2 Problem of Wave-Field Excited Plate-Soil Interaction

A concrete plate with dimensions length L D 60 m�, width a D 20 m�, height
h D 0.7 m�, elastic modulus E D 3 1010 N/m2, Poisson’s ratio �D 0.15, and mass
density ¡D 2,500 kg/m3� is lying on a layered soil of the material constants shear
modulus G D 8 107 N/m2, �D 0.33, and ¡D 2,000 kg/m3 for each layer. The values
are given for the standard system of a plate on a homogeneous half-space, an asterisk
stands for the parameters that are varied here. The condensed parameters (1) bending
stiffness B, mass per area m”, and shear wave velocity Vs

B D Eh3

.1 � �2/12
; m00 D ¡h; vS D

s
G

¡
(1)

are sometimes advantageous. The surface of the soil and the plate are coupled either
in full contact or in a relaxed contact where only the vertical displacements are the
same for plate and soil. The plate is excited by a harmonic wave which is travelling
along its length (x-axis) and which has a constant amplitude u0, the frequency
f (or !D 2 f ), and wave velocity v where the wave velocity and amplitudes of
the Rayleigh wave of the soil are used here. In case of the relaxed contact, only
the vertical wave amplitude u0 is effective. The calculated response of the plate u
is presented in relation to the vertical excitation amplitude u0 as u/u0(x, f ). The
reduction (or amplification) of the plate amplitudes are studied for the different
design parameters of the plate.

3 Finite-Element Boundary-Element and Integral Methods

The finite element method is used to calculate the plate. The Green’s functions of
the homogeneous or layered soil are used to establish a dynamic stiffness matrix of
the soil [1] which is introduced in the FE-code. The soil matrix is fully populated as
the forces at each point depend on the displacements of all other points. Its inversion
is usually the most time consuming task of the soil-structure solution. Building
elements with smaller foundation areas such as high and low walls, beams and rigid
strip foundations have been analysed first [2]. With higher computational power
available, now plates with a large foundation area of 60 � 20 m are calculated. The
use of relaxed boundary conditions facilitates the time consuming solution.
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As an alternative, infinitely long plates can be considered using the integration
in wavenumber domain k. The dynamic stiffness (2) of the plate in the frequency-
wavenumber domain

KP D Bk4 �m00!2 (2)

and the dynamic stiffness (3) of the soil ([3] where the compliance H(k,!) of the
soil is integrated over wavenumber k)

Ks .k; !/ D 1

Hs .k; !/
D 2 

, C1Z
�1

H .k; !/

�
sin ka

ka

�2
dk (3)

are combined for the plate-soil stiffness KPS D KP C KS: The response (4) to the
free-field wave excitation

u

u0
D KS

KP CKS

(4)

is a function of frequency f, if the wavenumber k is replaced by 2 f /v, and
independent from x due to the infinite extension of the plate. Similar wavenumber
integral methods have been used for the force excitation of plates [4].

4 Results of the Coupled Boundary Element Method (FEBEM)

At first, the amplitude distribution along the 60 m long standard plate is shown
in Fig. 2 for different frequencies. At the beginning and the end of the plate,
higher amplitudes can be observed which reach the value u/u0 D 1 for the low
frequencies. After a sharp decay, a moderate decrease of amplitudes follows. At
some distance, the minimum amplitude seems to be reached which is smaller with
increasing frequency. It could also be concluded that the final reduction is reached at
a longer distance for lower frequency. Although the reduction clearly depends on the
distance, it was found that it is independent from the length of the plate. That means
that the displacements at x D 30 m are the same for a 40 m and a 60 m long plate.
Moreover, an influence of the width of the plate is only found for narrow plates of 2
or 4 m width.

The influence of the most important parameter, the bending stiffness of the plate,
is shown in Fig. 3. The frequency dependent transfer functions between the free-
field amplitudes of the soil and the response of the plate start with u/u0 D 1 and hold
this value for the low frequencies. At a certain frequency a strong reduction starts
and low amplitudes are reached within the next 10 Hz. The cut-off frequency clearly
depends on the bending stiffness of the plate.
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Fig. 2 Amplitude distribution for a standard plate and frequencies f D � 0, � 5, 4 10, C 15,
� 20, ˘ 25, * 30 Hz

Fig. 3 Plate response for different bending stiffnesses B D � 0.35, � 1, 4 3, C 10 Nm (L D 60 m,
m” D 0, at x D 30 m, relaxed contact)

The results in Fig. 3 are presented for a plate with no mass. The influence of
the mass is shown in Fig. 4 for plates without any bending stiffness. The mass is
responsible for amplifications of the amplitudes at low frequencies. Without bending
stiffness, amplifications of more than u/u0 D 2 are possible if an additional building
mass ¡/¡0 D 2 or 4 is supposed. In these cases, high-frequency reductions are also
observed which are caused by the mass and not by the stiffness of the plate.
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Fig. 4 Plate response for different mass densities m” D � 1.8, � 3.7, 4 7.5, C 15 103 kg/m2

(L D 60 m, B D 0, at x D 30 m, relaxed contact)

Fig. 5 Plate response for different heights h D � 0.5, � 0.7, 4 1.0, C 1.5 m (L D 60 m, at
x D 30 m, relaxed contact)

If the height of the plate is varied in Fig. 5, stiffness and mass are increased.
Nevertheless, the increase of the stiffness is dominating and the results are similar
to those in Fig. 3. The strong reduction of the amplitudes is ruled by the bending
stiffness. The mass of the different plates is too small to create strong resonance
effects. The low-frequency amplitudes are increased only from u/u0 D 1.0 to 1.05.
For stiff plates with additional building mass (no figure), the amplifications are also
limited to u/u0< 1.2.
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5 Results by the Integral Method and for Full Contact

The results for the plates of different heights have also been calculated with full
contact (Fig. 6). The results show the same strong reduction at high frequencies
as for the relaxed contact. At low frequencies, the full contact yields smaller
amplitudes, a small reduction instead of a small amplification. The full contact
means almost zero horizontal amplitudes under the plate, an additional constraint
for the wave field, and an additional reduction for the amplitudes.

Fig. 6 Plate response for different heights h D � 0.5, � 0.7, 4 1.0, C 1.5 m (L D 60 m, at
x D 30 m, full contact)

Fig. 7 Response of infinitely long plates for different heights h D � 0.5, � 0.7, 4 1.0,
and C 1.5 m (relaxed contact)
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The response of an infinitely long plate is shown in Fig. 7. The transfer functions
for different heights are quite similar to the curves on Fig. 5 for finite plates. Small
differences are found for the low-frequency amplitudes, which are amplified up to
u/u0 D 1.2, and for the high-frequency amplitudes which are stronger than for the
plate of finite length. The results show some similarity to the reduction by finite or
infinite beams for which an approximate reduction u/u0 
 f �4 has been found [1, 5].

6 Conclusion

Both methods (wavenumber integral and combined finite-element boundary-
element method) show consistently the strong reduction of u/u0< 0.1 of the ground
vibration by thick plates. The most important parameter for the strong reduction is
the stiffness of the plate and the effect increases with frequency and distance from
the beginning of the plate.
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Estimation of Parameters of Soil Vibration
Due to Impact Loading

Svetlana Polukoshko, V. Gontza, and S. Sokolova

Abstract The results of the finite element analysis of impact action on structure
and soil are presented in this work. Finite element analysis is executed by means of
Plaxis program, which enables to take into account soil – structure interaction. The
next problems are discussed: vertical impact on concrete foundation, modeled with
axisymmetric models, and horizontal impact on the sheet-piling and on the concrete
bridge pier, simulated with plane strain models.

Keywords Plaxis • Soil vibration • Impulse force • Impact time • Rayleigh
damping

1 Introduction

The soil vibrations could cause the damages of nearby building, therefore estimation
of its level and character is actual problem. A solitary impact on the construction
contiguous with soil results in vibrating of medium. The impact of the moving
body at constructive element it is possible to describe using impulse of force: S DR �
0 P dt D m.v0 � v1/, where P –impact force, m – mass of striking body, v0, v1 –

pre- and post-impact velocity of moving body, � –impact duration. Since duration
of impact may be different, the identical impulse may cause different reaction of
construction and soil. During the time of the impact force action the construction
together with soil displace on some distance, which is determined by the impulse
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intensity, construction properties and resistance of soil. When impulse becomes
equal to zero the deformation does not end: at some moment deformation reaches
maximal values and due to the elasticity of soil damped vibration of structure with
soil is beginning; impact process ends when vibration diminished. In this work
the finite element analysis of impact action on structure and soil is executed using
dynamic module of Plaxis 2D v8 program, which enables to take into account soil –
structure interaction, to use different models of soil and different configuration
of impulse. In Plaxis special boundary conditions are used in order to absorb
waves, reaching the boundaries. The paper deals with next problems: vertical impact
onconcrete foundation, simulated with axisymmetric models, horizontal impact on
the sheet-piling wall and on the massive concrete construction of the bridge pier,
simulated with plane strain models. For each problem different models of soil are
examined: linear-elastic body (LE), Mohr-Coulomb model (MC) and hardening soil
model (HS). Impact impulse of sinusoidal form is applied. The purpose of work is
to examine the behavior of the system soil-construction under impact loading and to
define the parameters of vibrations of soil surface points – displacements, velocities
and accelerations, duration of vibrations fading depending on soil properties.

2 Scientific Background

The basic equation for the time-dependent movement of a volume under the
influence of a dynamic load is:

M Ru
�

C C Pu
�

C Ku
�

D F (1)

where: M – the mass matrix (soil, water and construction), C – the damping matrix,
K – the stiffness matrix, F – the load vector, u –Pu-Ru- displacement, velocity and
acceleration vectors. Here the theory is described on the base of linear elasticity.
However, all models in Plaxis can be used for dynamic analysis. The matrix C
represents the material damping, which is caused by friction or by irreversible
deformations (plasticity or viscosity). If elasticity is assumed, damping can still be
taken into account using the matrix C. In finite element formulations, C is often
formulated as a function of mass and stiffness matrices (Rayleigh damping) as:

C D ’RM C “RK (2)

This limits the determination of damping matrix to the Rayleigh coefficient ’R

and “R. Here, when the contribution of M is dominant, more of low frequency
vibrations are damped, and when the contribution of K is dominant more of high-
frequency vibrations are damped. Liquefaction of soil is not considered in Plaxis
Dynamics. A water-saturated porous soil can bring in the viscous damping on high-
frequencies.
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In the case of perfectly elastic continuous medium for determination of ampli-
tudes of surface waves on comparatively large distance from a source it is possible
to use a formula:

Ar D A0

q
r0=re

�’.r�r0/ (3)

where Ar and A0 – amplitude of the soil vibration on the distance r and r0; ’–
damping coefficient, for sand ’D 0.04 � 0.06 m�2, for clay ’D 0.06 � 0.10 m�2.

3 Numerical Examples of Computation

3.1 Vertical Impact on Concrete Foundation

Concrete foundation for sledge hammer is examined by means of axisymmetrical
model. Height of foundation is 1.7 m, radius –1.5 m; distributed impact load is
imposed in the circle with radius 0.5 m (Fig. 1). Mass of falling part of hammer is
m D 3.5 t, impact velocity –7 m/s, impact impulse S D 25 t�m/s, distributed impulse
s D 32 t�m/s�m2. Impulse action has a duration from 0.1 to 0.001 s, impulse is
assumed sinusoidal Material model of concrete is linear-elastic, non-porous, unit
weigh ”D 25 kN/m3, Young’s modulus Eref D 3�107 kN/m3, Poisson’s ratio �D 0.2.
Material model of soil is LE drained sand, ”D 21 kN/m3, Eref D 50,000 kN/m3,
�D 0.2. In Fig. 1 geometry and finite element mesh is presented, control points
A,B,C,D,E, F,G,H on the surface are located in the coordinates r D 1.53; 2.0; 3.0;
4.5; 6.0; 8.0; 10; 12.5;15.0;18.0 m, point O-under center of foundation.

Results of influence of solitary impact impulse with t D 0.01 s, applied to the
concrete foundation, on its surrounding soil are presented bellow. In Fig. 2 plots of
changing with depth of the modulus of maximal amplitude of vertical vibrations of
soil in control points are given.

Fig. 1 Finite element mesh
and geometry
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Fig. 2 Plots of displacement
uymax D f(y)
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Fig. 3 Vertical displacement uy D f(t) of control points

In Fig. 3 plots of soil particle vertical displacement in control points depending
on time are shown; in Figs. 4–6 modulus of the maximal amplitudes of vibrations,
velocities and accelerations of particles of soil in control points are presented.
Diminishing of these parameters in a direction away from foundation takes place
in accordance with exponential law. MC soil model is also used for comparison of
the results of different impulse duration action (Table 1).

3.2 Horizontal Impact to Bridge Pier

Concrete bridge pier of length 12 m, imposed to the vessel impact, is examined
with plane strain model (Fig. 7). Impact impulse S D 550 tm/s. impact time duration
t D 0.01 s, impact force amplitude of sinusoidal pulse q D 3,600 kN/m2. Material
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Fig. 4 Amplitude uymax of
control points
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model of concrete is linear-elastic, Eref D 3 � 107 kN/m3, �D 0.2. Material model
of soil is LE drained sand, ”D 21 kN/m3, Eref D 50,000 kN/m3, �D 0.3. Rayleigh
damping coefficients are: ’R D 0.010, “R D 0.1; it is assumed that “R>’R in order
to take into consideration the water presence. Calculation is executed also for MC
soil model, the results are close similar. In Figs. 8 and 9 plots of dependence of
vertical uy and horizontal ux displacement of surface points on time are presented
for LE model.

The vibrations relax in 
1 s, the residual horizontal deformation is 4.5 mm, max
vertical velocity 0.06 m/s, acceleration-14 m/s�2.
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Table 1 Parameters of soil in points A (r D 1.53 m) depending on duration of impact

Time interval t, s 0.1 0.05 0.01 0.005 0.001

Amplitude of impact force of
sinusoidal impulse, q, kN/m2

500 1,000 5,000 10,000 50,000

For linear-elastic model of soil
Maximal displacement, ur, mm 1.57 2.61 3.63 3.67 3.67
Maximal velocity, Vy, m/s 0.042 0.102 0.428 0.604 1.144
Maximal acceleration, Wy, m/s2 1.772 9.117 115.0 281.2 242.9
For Mohr-Coulomb model of soil
Maximal displacement, ur, mm 2.58 3.36 3.84 3.86 3.81
Maximal velocity, Vy, m/s 0.063 0.129 0.326 0.390 0.468
Maximal acceleration, Wy, m/s2 4.12 19.06 152 198 950

Fig. 7 Finite element mesh for plain strain model and scheme of control point location

Fig. 8 Plots of uy D f(t) for
surface points
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3.3 Horizontal Impact on Sheet Pile Wall

Sheet pile wall is often used for the berthing; it consists of wall elements, connected
to the anchor wall by means of high-strength steel roads. Sheet piles wall is
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Fig. 9 Plots ux D f(t) for
surface points
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Fig. 10 Finite element mesh for plain strain model and scheme of control point location

imposed to impact of vessel, with duration t D 0.01 s, impact force amplitude
of sinusoidal impulse q D 6,000 kN/m (Fig. 10). Material properties of wall are:
normal stiffness EA D 5.96 � 106 kN/m, flexural rigidity EI D 9.13 � 105 kNm2/m,
weight w D 2.21 kN/m, material model is linear-elastic. Material model of soil is
LE sand, drained, ”D 21 kN/m3, Eref D 35,000 kN/m3, �D 0.3. Rayleigh damping
coefficient “R D 0.1, ’R D 0.01. MC model of soil with friction angle ®D 34º,
cohesion C D 1 kN/m2, E D 35,000 kN/m2 and hardening soil model are also
examined and received results of the first and the second model are similar, the
third is differs.

In Figs. 11 and 12 plots of dependence of vertical displacement uy on time are
presented for LE model and horizontal displacement ux for all models. Residual
horizontal deformation of surface points is close for MC and LE modes and more
less for HS model. The vibrations relax in 0.6 s, the residual horizontal deformation
is 45 mm, max vertical velocity 0.31 m/s, max horizontal velocity 1.68 m/s.

Max acceleration –WxD973 m/s�2 (under force imposing point), WyD171 m/s�2.
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Fig. 11 Plots of uy D uy (t)
for surface points

Fig. 12 Plots of ux D ux(t)
for surface points

4 Conclusions

The results of the finite element analysis of impact action on soil and structure are
presented in this work. Impact on massive foundation and on a flexible construction
is examined. Results of calculation, executed using LE and MC models are differ
not much. In all cases of application of the nonlinear hardening soil model the
displacements and velocities of soil particles are less, but time of damping is longer,
accelerations are higher. Duration of impulse influences on a result, if time of
impulse � is comparable with the natural period of system. The form of impulse does
not influence on results. This approach may be used for the analysis of accidents
results.
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Finite Element Model Updating and Validation
of the Uniovi Structure

José Luis Zapico-Valle, M. Garcı́a-Diéguez, M.P. González-Martı́nez,
and J. Abad-Blasco

Abstract The aim of this paper is the finite element modelling, updating and
validation of the Uniovi Structure. This is a middle-size steel frame. The updating
is based on natural frequencies, which are obtained from the free vibration of the
structure. Three uncertain structural parameters are updated on the basis of the
natural frequencies of two different configurations through an adaptive stochastic
algorithm. Additional configurations corresponding to mass modifications were
used to validate the updated model. It is found that the updated model can reproduce
accurately the first two natural frequencies in all the configurations.

Keywords Model updating • Semi-portal finite element model • Free vibration
test • Model validation

1 Introduction

The Uniovi Structure is a benchmark intended for many purposes: novelty detection
[1], nonlinear identification [2], damage identification and other future applications.
The present work is framed within a methodology for overall seismic damage
identification in buildings. The methodology has been previously developed by the
authors [3] and tested by numerical simulations, but it need to be validated with
experimental data. The methodology relies on a reference finite element model.
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The objective of this work is to develop an appropriate finite element model
capable to reproduce the main dynamic features of the structure from the available
experimental data.

2 Experimental Part

2.1 Description of the Structure, Exciter and Instrumentation

The Uniovi Structure is a four-storey steel frame with two bays in the longitudinal
direction and one bay in the transversal one. The overall dimensions of the structure
are 4 m long, 1.5 m wide and 7.3 m height. All columns and beams are HEA-120 and
IPN-100, respectively, of steel grade S-275. The floors of the frame are steel sheets
4 mm thick connected to the beams through discontinuous weld. The foundations
are two continuous concrete beams lying on the floor of the laboratory.

Each column consisted of two pieces. They are spliced through end plates
connected by four bolts 12 mm in diameter. The columns are welded to 20 mm thick
plates. The beams corresponding to the transversal direction are directly connected
to the web of the columns by a welded-all-around fillet. In the longitudinal direction,
however, the beams are connected to the flange of the columns. The connection was
designed with a 8 mm thick end plate and four bolts 10 mm in diameter.

A pendulum-like exciter was used to excite the frame. It consists of an eccentric
mass connected to the shaft of an electrical motor. The excitation was carried out by
varying harmonically the angular position of the mass. The frequency and amplitude
of the excitation were achieved by controlling the angular position of the shaft
through an electronic regulator.

The regulator is feedbacked by an encoder. The frequency range of the exciter is
from 0 to 100 Hz and the angle is from 1ı to 20ı. The total mass of the pendulum is
1 kg.

The structure was provided with four seismic Brüel & Kjær accelerometers with
a sensibility of 10 V/g. Each was screwed at the middle of the end beam on each
floor pointed to the longitudinal direction. The hardware used to record the signals
was a dSPACE RTI1104 data acquisition card. The signal processing was carried
out by MATLAB.

2.2 Test Planning

Six different mass configurations of the structure were tested. The additional masses
corresponding to each configuration are shown in Table 1. All the experiments
consisted of a 20 s harmonic excitation at frequencies close to the resonances
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Table 1 Mass
configurations. mi: additional
mass on floor i

Configuration m1 [kg] m2 [kg] m3 [kg] m4 [kg]

Initial 0 0 0 0 0
Mass 1 43.4 43.2 43.5 43.3
Mass 2 43.4 43.2 43.5 86.7
Mass 3 43.4 43.2 86.4 86.7
Mass 4 43.4 86.7 86.4 86.7
Mass 5 87.3 86.7 86.4 86.7

Table 2 Identification results. f e
i : experimental results. f a

i : analytical results

Configuration f e
1 [Hz] f a

1 [Hz] Error [%] f e
2 [Hz] f a

2 [Hz] Error [%]

Initial 0 4.5836 4.5836 �0.0006 15.9551 15.9126 0.3206
Mass1 4.4367 4.4367 0.0009 15.3734 15.4149 �0.2698
Mass 2 4.3655 4.3629 0.0586 15.2495 15.3220 �0.4757
Mass 3 4.3227 4.3226 0.0025 15.2094 15.2637 �0.3568
Mass 4 4.3070 4.3070 �0.0011 14.9769 15.0359 �0.3938
Mass 5 4.3031 4.3049 �0.0410 14.9471 14.9678 �0.1385

and then 30 s of free vibration. From the measured free responses the first two
natural frequencies were identified. For this purpose, a time-domain identification
procedure was used [4].

2.3 Data Preprocessing and Nonlinear Modal identification

The free vibration analogue signals were converted into digital ones at a sampling
frequency of 1,000 Hz. As a signal offset and a sort of periodic high frequency
noise were found in the signals, a band-pass filter was used to remove the offsets
and the noise. It was a four order Butterworth filter with cut-off frequencies of 3 and
20 Hz.

A softening model was adopted for the modal stiffness. This nonlinear model was
defined with respect to the modal displacements. The acceleration corresponding
to the free vibration of the model was obtained by numerical integration of the
nonlinear equation of motion as a function of the model parameters and initial
conditions. The identification was posed as an optimization issue. An error function
accounting for the discrepancies between analytical and experimental accelerations
was defined and minimized with respect to the model parameters and initial
conditions. More details about the algorithm can be found in Zapico et al. [4].
The results of the identification are a softening parameter and the dynamic modal
properties of the underlying linear model. More details can be found in [2]. The
results of this modal identification on each mode and configuration are shown in
Table 2 labeled as experimental results.
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3 Analytical Part

3.1 Modelling

The shear model is common in seismic analysis of regular buildings due to its
simplicity. In this case, the structure was modelled with a semi-portal model (see
Fig. 1) in order to take into account the stiffness of the beams, which will be used
for damage identification purposes in future applications [3].

The columns of the model and the structure have the same length, while
the beams of the model have half length than the actual ones. The sum of all
the stiffnesses of columns of each floor was selected as the stiffness of the
corresponding column of the model. They were modelled as Timoshenko beam
elements to take into account the shear deformations. The column splice is modelled
with two additional nodes (9 and 10) and a different beam element. The beams
were modelled with beam elements. All the columns and beams of the model were
modelled as massless elements. The total mass of each floor was lumped at the
corresponding nodes (1, 2, 3 and 4) (see Fig. 1). Only the degrees of freedom
corresponding to the horizontal and vertical translation and the rotation around
normal direction are considered for all the nodes except nodes 5 to 8 where vertical
translations were fixed. The model was coded in MATLAB [5] using the Structural
Dynamics Toolbox [6].

Fig. 1 Left: Semi-portal
model. Right: Degrees of
freedom
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3.2 Updating

The selection of parameters is a critical task on the updating process; only uncertain
parameters that the response is sensitive to should be selected [7]. The Young’s
modulus and columns second moment of area were set to their standard values
(E D 2.07 � 1011 Pa and Ic D 6.06 � 10�6 m4) because only small discrepancies are
expected in these parameters. Other parameters, however, are much more uncertain.
This is the case of the stiffness of the column splice and the stiffness of the beams,
due to the contributions of the floors and handrails. It is assumed that all the beams
have the same stiffness. Thus, the splice second moment of area Is and the beam
second moment of area Ib were selected as parameters to be updated. In addition,
a mass factor d was selected as a global parameter aimed to correct not only the
effects of the mass errors, but indirectly the global stiffness and geometric errors.
The stiffness of the column-foundation joint was modelled as fixed due to the
insensitivity of the response to this parameter.

The updating is posed as the minimization of the following error function

" D 100

4

1X
iD0

2X
jD1

jf e
ij � f a

ij j
f e
ij

; (1)

where subscript i represents the number of configuration, in this case two config-
urations were selected (Initial 0 and Mass 1), and subscript j represents the mode,
in this case the two first ones. The Eq. 1 represents the normalized mean squared
error. The optimization was carried out through a novel adaptive stochastic method
explained in [4].

The algorithm was run 10 times in order to check the converged of the results.
The maximum number of iterations was set to Ns D 2,000. The updated parameters
were Is D 1.055 � 10�5 m4, Ib D 1.182 � 10�5 m4 and d D 1.0461, which correspond
to a fitting error of 0.2960%. As expected, the second moment of area of the splice,
Is, is around three times lower than that of the column, due to the flexibility of the
joint. The obtained second moment of area of the beams, Ib, is higher than that of
the standard section, as a result of the contribution of the floors and other elements.
The global parameter, d, is close to one with a discrepancy lower than 5%, which
indicates that the rest of the physical and geometrical properties of the model are
close to their nominal values. The physical meaning of the results and the low fitting
error guarantee, to some extent, the updating process; it is not a mere mathematical
optimization, but it has physical meaning.

4 Validation

In order to validate the updated model, other mass configurations (Mass 2 to Mass 5)
were used. The results for these configurations along with the discrepancies with
respect the experimental frequencies for each configuration and mode are shown
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in Table 2. As can be seen, the model reproduces quite accurately the first two
frequencies. In the first one, the model prediction errors are up to 0.06%, and in
the second one, they are up to 0.48%.

5 Conclusions

A semi-portal finite element model has been proposed to model the linear com-
ponent of the dynamic behaviour of the Uniovi Structure. The most uncertain
parameters of this model have been selected and updated on the basis of the first
natural frequencies of the structure. These were previously identified in the modal
domain through a softening nonlinear model from the measured free vibration of the
structure. An adaptive stochastic optimization procedure has been used to update
the uncertain parameters. Additional configurations of the structure consisting in
mass modifications have been used to validate the updated model. It is found that
the optimization procedure, which was originally intended for time-domain data, is
effective and robust when using natural frequencies. Moreover, the updated model
can reproduce accurately the first two natural frequencies in all the considered
configurations with discrepancies lower than 0.5%.
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References

1. Zapico-Valle, J.L., Garcı́a-Diéguez, M., González-Martı́nez, M.P., Worden, K.: Experimental
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Design of Symmetric Positive Definite Vibrating
Systems via Inverse Eigenvalue Methods

Ladislav Starek and Daniel Starek

Abstract This contribution considers the inverse eigenvalue problem for linear
vibrating systems described by a vector differential equation with constant co-
efficient matrices. The inverse problem of interest here is that of determining
real symmetric positive definite mass normalized velocity and position coefficient
matrices, which create the vibrating system with the prescribed (in advance)
complex eigenvalues and complex eigenvectors.

Keywords Eigenvalue • Eigenvector • Spectral • Modal matrix • Inverse
formulas

1 Introduction

Here we consider linear lumped parameter system (1) which can be modeled by a
vector differential equation in the second order form given by

M Rq.t/CD Pq.t/CKq.t/ D f1.t/ (1)

where q.t/ is an n vector of time-varying elements representing the displacement of
the masses in a lumped mass model of some structure or device. The vectors Pq.t/
and Rq.t/ represent the velocities and accelerations, respectively. The n vectorf1.t/
represents applied external forces and is time varying. The coefficients M;D and
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K are n�n matrices of constant real elements representing the various physical
parameters of mass, damping, and stiffness. The matrices M , D and K could be
either asymmetric or symmetric and if symmetricM is positive definite.

If M is positive definite and symmetric it has a positive definite matrix square
root, with a symmetric, positive definite inverse denoted by M�1=2. Let us then
consider the transformation q.t/ D M�1=2v.t/. Substitution of this change of
coordinates into Eq. 1 yields

Rv.t/C QD Pv.t/C QKv.t/ D p.t/ (2)

where QK D M�1=2KM�1=2 and QD D M�1=2DM�1=2 are necessarily symmetric
if D and K are and p.t/ D M�1=2f1.t/. The matrices QD and QK are refered to here
as the mass normalized damping and stiffness matrices. The eigenvalue problem for
the systems described by (2) is defined by

.�2I C � QD C QK/v D 0 (3)

where � is a nonzero vector of constants, called the eigenvector, and � is a scalar,
called the eigenvalue. From the spectral theory of matrix polynomials it is well
known that the solutions of the system (2) are intimately connected with the
algebraic properties of the matrix polynomials [1] of the form

L.�/ D �2I C � QD C QK: (4)

Here a scalar � and a nonzero vector x are again called an eigenvalue and
associated (right) eigenvector ofL.�/ if detL.�/ D 0 andL.�/ x D 0, respectively.
This forms an obvious connection.

2 Inverse Formulas

The eigenvalues (and their multiplicities) of a lumped linear system described by
real coefficient matrices are symmetric with respect to the real axis of the complex
plane. This implies that there is a Jordan matrix for such a system with the block
diagonal form

ƒ D .JC ; JR; NJC / (5)

where JC is a matrix with all its eigenvalues in the open upper half of the complex
plane, JR is real matrix and the entries of NJC are the complex conjugate of those in
JC . Here the dimensions of JC and JR are determined by the number of real roots.
If there are 2m complex roots, then the dimension of JC and NJC is 2m � 2m and
the dimension of JR is 2.n�m/. The modal matrices V and W are partitioned in a
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compatible way as Eq. 5, i.e.

V D .VC ; VR; NVC /; W D .WC ;WR; NWC/: (6)

Here the overbar denotes the complex conjugate. Note that the matrix of eigen-
vectors must be arranged in columns such that the complex eigenvectors appear first,
followed by the real eigenvectors and the complex conjugate eigenvector.

Inverse formulas and conditions for given spectral and modal data to determine
symmetric coefficient matrices are given in [2]. Inverse formulas specify the
coefficient matrices QK and QD in terms of the spectral matrices V , W and ƒ. We
obtain

QD D �Vƒ2W T QK D QD2 � V ƒ3W T (7)

with the conditions

VW T D 0 and VƒW T D I: (8)

The formulas (7) determine the two desired coefficient matrices of the system
(2), if the third is chosen with spectral and modal properties, which must satisfy the
conditions (8). Unfortunately, there is no guarantee at this point, that the formulas
given by Eq. 7 will result in QD and QK being symmetric.

If the inverse formulas are to generate real symmetric coefficient matrices, then
the specified spectral and modal matrices must fulfill some further requirements.
From the theory of matrix polynomials [1] it is known that if a monic matrix
polynomial is self-adjoin, then there exist a Jordan triple .U;ƒ;PƒU �), wherePƒ is
a permutation matrix and U � denotes the complex conjugate transpose of the matrix
U . Hence in the case of interest here the spectral matrix ƒ and modal matrices V
andW will generate hermitian coefficient matrices if the left modal matrix is of the
form

W T D PƒV
� (9)

where the real valued matrix Pƒ is given by the formula [1]

Pƒ D
0
@ 0 0 PC
0 PR 0

PC 0 0

1
A : (10)

Then, if X D �
V ƒV

�T
, conditions (8) takes the form

�
V ƒV

�T
PƒV

� D �
0 I

�T
: (11)
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The conditions given by Eq. 11 specify vectors that will generate real symmetric
coefficient matrices for the given spectral matrix ƒ. Note that this also depends
on the structure of the state matrix A. State matrixA is assumed to be simple or
of general Jordan structure and whether or not the dynamic system is overdamped,
underdamped, critically damped, or exhibits mixed damping.

3 A Symmetric Positive Definite Inverse Vibration Problem
for Non-proportional Underdamped Systems

Theorem [3] A Jordan pair .X; J / corresponds to a self adjoint monic matrix
polynomial, if and only if, there is a matrix T 2 AI .J / and a canonical matrix PC
such that

0
BBB@

X

XJ
:::

XJ n�1

1
CCCA
�
T PC T

��X� D

0
BBB@
0

0
:::

I

1
CCCA (12)

T 2 AI .J / denotes the subalgebra of invertible matrices that commute with J .
When the canonical matrix takes the form of (10) and with T D I , n D 2 and for
the case of simple underdamped system (no real eigenvalues), Eq. 12 takes the form

VCPCV
T
C C VCPCV

�
C D 0 (13)

VCJCPCV
T
C C VC JCPCV

�
C D I: (14)

For any Z 2 Cn�n the matrix polynomial L.�/ D .I� � Z�/.I� � Z/ is
nonnegative, if x�L.�/x > 0. Furthermore, L.�/ is positive, if and only if Z has
no real eigenvalues. For such polynomials the Jordan structure of L.�/ is simply
determined by that of Z.

If Z D XZJZX
�1
Z , where JZ D JC is in Jordan normal form and has no real

eigenvalues and the matrix XZ D XC is a matrix of corresponding eigenvectors
for JZ , will ensure that L.�/ has real symmetric coefficients and the pair J D
diag

�
JC ; NJC

�
and X D �

XC ; NXC
�

determine a self adjoint triple for L.�/.
If the pair .X; J / determines a self adjoint polynomial, then by (5) and (6) (or

by Theorem) it is real valued.
When the all conditions for generating symmetric positive definite coefficient

matrices via theory of matrix polynomials are fulfill, then all others inverse formulas
given by (7), where the entries to the inverse formulas are given by Eq. 8 can be used
for determining coefficient matrices.



Design of Symmetric Positive Definite Vibrating Systems . . . 357

Let the imaginary part of the modal matrix be represented as the product Vi D
VrC; of real part of the modal matrix Vr and the matrix C which is real valued and
nonsingular. Assume underdamped system and substitute the value for Vi and after
same manipulations, we yield the simplified form of conditions (8) [2].

2VrEV
T
r D 0 and 2VrF V

T
r D I (15)

where E D PC � CPCC
T and F D JrPC � CJiPC � JiPCC

T � CJrPCC
T . If

we will assume vibrating systems of the simple structure, then PC D I . In the case
E D 0 the matrix C must be orthonormal and upon further examination F must be
symmetric. If Ji is chosen to be in the lower part of the complex plane, then the
matrix F is seen to be positive definite with the appropriate choise of entries of the
matix C (according to the choise of eigenvalues).

Then from (15) can we consider the matrix L defined by

L D 2V c
r F

c
�
V c
r

�T
(16)

It is possible to approve that matrix L is symmetric and positive definite (for
the above condition). Since the matrix L is positive definite it has a Cholesky
decomposition, i.e., there exists a nonsingular matrix T, such that L D T T T and
then we have T T T D 2V c

r F
c
�
V c
r

�T
. Ending this equation yields

2
�
T T
��1
V c
r F

c
�
V c
r

�T
T �1 D I: (17)

A comparison of Eqs. 17 and 15 is

Vr D �
T T
��1
V c
r (18)

then Vr is a matrix of real part of eigenvectors such that the choise of QD and QK,
given by equations QD D �Z�Z� and QK D Z �Z, will be symmetric and positive
definite [4].

The procedure for determining real symmetric positive definite matrices QD and
QK is summarized as follows:

1. Select the required eigenvalues (with the negative real parts and imaginary part
chosen to be in the lower part of the complex plane) of the system described by
Eq. 2 (they are given by the matrix JZ).

2. Choose the appropriate orthonormal matrix C according to the desired designed
system (diagonal for systems with proportional damping and non diagonal for
systems with non proportional damping).

3. Choose a real part of the matrix of eigenvectors V c
r and check the condition (16).

If the matrix L ¤ I , then correct the real part of chosen eigenvectors by (18) to
fullfil the condition (14).

4. Compute the desired coefficient matrices.
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4 Conclusions

This paper presents a solution to the inverse eigenvalue problem for the case that
the desired coefficient matrices be symmetric and positive definite and the system
can have an arbitrary damping (proportional or nonproportional damping). In [2] the
conditions (15) for given spectral and modal data have been defined under which the
inverse formulas determine real symmetric coefficient matrices QD and QK. However,
that solution does not preserve given eigenvectors.

The method has been outlined which allows the synthesis of a symmetric,
underdamped linear system, having desired eigenvalues and eigenvectors. The new
result gives the alternative solution to the inverse eigenvalue problems in vibration
described in [2] and [4].

As was stated, by sequence modification Eq. 15, base on conditions, which
define underdamped system, we yield relation for matrix L Eq. 16, that is real
valued, symmetric and positive definite. Hence is possible to apply a Cholesky
decomposition, from which it is possible to derive corrected eigenvectors of the
system and these have been used on determination coefficient matrices of system QD
and QK .
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Characteristic Response Functions (CRFs)

Nuno M.M. Maia

Abstract Characteristic Response Functions (CRFs) are functions that are typical
of a given structure. Frequency Response Functions (FRFs) are commonly used
with many different objectives, relating output and input and can be expressed
either in terms of poles and residues or in terms of natural frequencies, damping
ratios and modal constants. Frequencies and damping ratios are global properties,
whereas modal constants are local properties, i.e., the former are independent
on the locations of the excitation and measurement co-ordinates and the latter
vary with those locations. Therefore, FRFs vary along the structure. However,
one can use the FRFs to build other functions that do not depend on the modal
constants. Such functions, that depend only on the global properties are called
Characteristic Response Functions (CRFs), as they remain the same no matter where
the measurements are taken. Such feature may be quite useful in some applications.
These kind of functions are developed here. Comparisons are made through the use
of some numerical simulations to illustrate their performance and usefulness.

Keywords Frequency response functions • Modal analysis • System
identification

1 Introduction

The study of the dynamic behavior of a structure often implies the establishment
of a theoretical model from measurements either in the laboratory or in the field,
namely when a numerical model is not easy to develop. Those measurements are
usually expressed in terms of frequency response functions (FRFs), which depend
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on the natural frequencies, damping ratios and also mode shapes. The measured
FRFs vary along the structure, according to the co-ordinates that have been taken
as inputs and outputs. However, some properties of the structure remain unchanged,
like the natural frequencies and damping ratios, while others, related to the mode
shapes vary along the structure. If one manages to “filter out” the effect of the
modal constants, one obtains something independent of the measured co-ordinates
and thus expresses a characteristic of the dynamic behavior of that structure. The
advantages of such type of formulation can be various, like to have a kind of
“signature” of the structure, to have a clearer picture of the number of modes,
to avoid the influence of modes outside the frequency range of interest, to easily
identify the global properties, etc. The first proposal was given by the author and
some colleagues in 1994 [1] and further developments were presented later [2, 3].
The goal of this paper is to derive and study such type of functions.

2 Theoretical Formulation

Assuming that the model of our structure is based on the hysteretic type of damping,
the FRF relating co-ordinates p and q is given by the expression [4, 5]:

Hpq.i!/ D
NX
rD1

'
.r/
p '

.r/
q

!2r � !2 C i�r!2r
D

NX
rD1

C
.r/
pq

!2r � !2 C i�r!2r
(1)

where N is the total number of degrees of freedom, '.r/p is the pth element of the rth

mode shape, '.r/q is the qth modal participation factor, !r is the rth natural frequency

and �r the rth damping ratio. Often, '.r/p '
.r/
q is called the modal constant (C .r/

pq ). As
the response is dominated by each mode in a narrow band frequency around it, it is
usual to approximate expression (1) in the following way:

Hpq.i!/ D C
.r/
pq

!2r � !2 C i�r!2r
CRpq (2)

where Rpq represents the contribution of the neighboring modes. This is acceptable
if the modes are not too close together. Simplifying, Eq. 2 becomes:

Hk D Ck

D �� CRk (3)

whereD D !2r C i�r!2r ,� D !2 and k is the index for each pair pq. Differentiating
once and twice with respect to �, the effect of the residual term disappears:

@Hk

@�
D Ck

.D ��/2
I 1

2

@2Hk

@�2
D Ck

.D ��/3
(4)
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Dividing Eq. 4 between them leads to a new function, the CRF – say ˇ –
independent of the effect of neighboring modes and of the modal constant Ck :

ˇ D @2Hk

@�2

�
2
@Hk

@�

�
D 1

D ��
D 1

!2r � !2 C i�r!2r
(5)

3 Numerical Implementation and Discussion

Equation 5 shows that ˇ has the same form as the FRF of a single degree-of-freedom
with unit modal constant, and so, it must look like such an FRF, around each natural
frequency. Therefore,ˇ should be the same, no matter where one measures the FRF.
It is the Characteristic Response Function (CRF). From Eq. 2, and apart the residual
term, the response FRF at each natural frequency is dominated not only by the
damping ratio�r , but also by the modal constant C .r/

pq . A small modal constant may
hide a resonance peak (Fig. 1). However, the CRF will show that peak, as the CRF
is independent of the modal constants (Fig. 2). The CRF can thus act as a valuable
mode indicator. The identification of !r and �r is easy to perform from Eq. 5. To
have a clear picture of the behavior of the structure, one should superimpose various
CRFs. From three FRFs (Fig. 3), the three CRFs are shown in Fig. 4. The three
curves coincide around each !r . Adding random noise may lead to something like
in Fig. 5, where the right peaks emerge.
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4 New Formulation

The CRF can also be used to identify the modal properties, using the inverse of ˇ:

Re

�
1

ˇ

�
D !2r � !2 and Im

�
1

ˇ

�
D �r!

2
r (6)
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An important step to take is to consider that the influence of the residual modes is
not a simple constant. The low frequency residual modes are represented by a term
inverse to the square of the frequency, and the upper frequency residual modes by a
constant [4]. A more accurate model for the FRF is therefore:

Hk D Ck

D �� C Rk

�
C Sk (7)
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The first and second derivatives are:

H
0

k D @Hk

@�
D Ck

.D ��/2
� Rk

�2
I H

00

k D @2Hk

@�2
D 2Ck

.D ��/3 C 2Rk

�3
(8)

Extracting Ck and Rk from Eqs. 8 in 7, one has:

Hk D H
0

kD � 2H
0

k�C 1

2
H

00

k D� � 1

2
H

00

k �
2 C Sk (9)

Differentiating once more with respect to �, leads to the new CRF:

ˇ D 1

!2r � !2 C i�r!2r
D 1

D �� D 3H
00

k CH
000

k �

6H
0

k C 3H
00

k �
(10)

Using the same data as in Fig. 1 the result is in Fig. 6. An extra peak appears, but
taking another FRF (e.g., C2 D 1), the result is in Fig. 7. The middle peak moves
and so it is not a genuine resonance. More FRFs can be used for this goal.

5 Identification

Example 1. Comparing the performance of the new formula with the previous one,
with !1 D 2 � 40 rad/s, !2 D 2 � 50 rad/s, �1 D 0:01, �2 D 0:01, C1 D 1, and
C2 D 0:01 (the same data used in Fig. 1), the results are presented in Table 1.
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Fig. 7 Equivalent to Fig. 6, with C2 D 1

Table 1 Example 1. Results of the identification of the natural frequencies and damping ratios

!1=2 (Hz) © (%) !2=2 (Hz) © (%) �1 © (%) �2 © (%)

CRF 40.257 0.64 50.240 0.48 0.0107 7 0.0099 1
New CRF 39.769 0.58 49.628 0.74 0.0101 1 0.0099 1

10 20 30 40 50

Frequency (Hz)

A
m

pl
itu

de
 (

dB
)

60 70 80 90 100
-110

-105

-100

-95

-90

-85

-80

-75

-70

-65

-60

Fig. 8 FRF of example 2

Example 2. For two closer modes, say 40 and 43 Hz (the other data remain the
same), the FRF and CRF are shown in Figs. 8 and 9. The CRF detects clearly the
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Fig. 9 New CRF of example 2, corres-ponding to the FRF of Fig. 8

Table 2 Example 2. Results of the identification of the natural frequencies and damping ratios

!1=2 (Hz) © (%) !2=2 (Hz) © (%) �1 © (%) �2 © (%)

CRF 40.215 0.54 43.468 1.09 0.0099 1 0.0155 55
New CRF 39.789 0.53 42.282 1.67 0.0101 1 0.0077 23

second mode, barely visible in the FRF. The results are in Table 2. There is a slight
increase in the error of the second !r , but a better result for �r . This is a very hard
example, as the modes are very close together.

6 Conclusions

– The CRF is independent of the local modal properties, i.e., it is the same no
matter where one excites the force and measures the response; however, this
is only true around each natural frequency. So, it is convenient to superimpose
several CRFs. This enhances the peaks and allow for a simple identification;

– when taking frequency dependent residual modes leads to a more precise CRF,
with a similar appearance, but giving better identification results. A few extra
peaks may appear, but superimposing several CRFs will clarify the problem.

– both functions are quite sensitive to noise and further refinements are needed.

Acknowledgements The current investigation had the support of FCT, under the project
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Active Vibration Suppression by the Receptance
Method: Partial Pole Placement, Robustness
and Experiments

R. Samin, M. Ghandchi Tehrani, and John E. Mottershead

Abstract The receptance method in active vibration suppression is presented.
Robust eigenvalue assignment is achieved by selecting controller parameters that not
only place the eigenvalues at desired locations but also minimize the sensitivity of
the eigenvalues to measurement uncertainty. Partial pole placement is demonstrated
experimentally, in which case certain closed-loop eigenvalues are assigned while
others are deliberately selected to be unchanged by control action.

Keywords Active vibration suppression • Receptance method • Robust and
partial pole placement

1 Introduction

Numerous techniques and algorithms have been developed for active vibration
control, many of which are described in well-known texts including Inman [1],
Preumont [2], Fuller et al. [3] and the review paper of Mottershead and Ram [4].
Ram and Mottershead [5] developed a method based entirely on measured vibration
data, having significant modeling advantages over conventional matrix methods,
including no requirement to know or to evaluate the M, C, K matrices, no need
for the estimation of the unmeasured state and no need for model reduction. This
approach was developed in a series of papers [6–9] including full implementation
in experiments. Datta et al. [10] proposed partial pole assignment as a solution
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to the problem of spillover in structural control problems and this was developed
for the receptance-based approach by Tehrani et al. [8]. In [10] those eigenvalues
that remained unchanged from the open-loop condition were made unobservable
whereas in [8] they became uncontrollable. Full state feedback was necessary to
the method of Datta [10] whereas in [8] one set of eigenvalues were assigned, a
second set were rendered uncontrollable and a third set were neither assigned nor
unchanged, but they took values that could be computed. In practice the third set
of eigenvalues would have high frequencies so, for structures with significant mass,
they would be difficult to destabilize.

2 Brief Review of the Theory

We consider the case of single-input state feedback, and write the second-order
matrix equation as,

�
Ms2 C Cs C K

�
x.s/ D b.s/u.s/C p.s/ (1)

where

u.s/ D � � fT gT
� � sx

x

�
D �.sf C g/T x (2)

is the control input and p.s/ is an external disturbance. The force location vector
b.s/ is written as a general function of s. One particular form results in the control
force as a proportional plus integral term,

b.s/ D b1 C b2
s

(3)

By combining Eqs. 1 and 2 it is seen that,

�
Ms2 C �

C C b.s/ fT
�
s C �

K C b.s/ gT
��

x.s/ D p.s/ (4)

which amounts to a rank-1 modification to the dynamic stiffness matrix.
Modal controllability and observability conditions may be derived from,

®T
k

�
M�2k C C�k C K

�
®k D � �®T

k b .�k/
� ��

gT C �kfT
�

®k

�
(5)

The right-hand-side vanishes whenever
�
®T
k b .�k/

� D 0, the uncontrollability
condition, or .gT C �kfT /®k D 0, the unobservability condition [11]. We notice
that under either of these conditions the eigenvalue �k remains unchanged by
control action. In this article, partial pole placement is achieved by invoking the
uncontrollability condition.
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The Sherman-Morrison formula [12] gives the inverse of a matrix with a
rank-1 modification in terms of the inverse of the original matrix. Thus the closed-
loop receptance matrix is found to be,

OH.s/ D H.s/� H.s/b.s/ .g C sf/T H.s/

1C .g C sf/T H.s/b.s/
(6)

where,

H.s/ D �
Ms2 C Cs C K

��1
(7)

The characteristic polynomial of the closed-loop system is 1C.g C sf/TH.s/ b.s/
and the problem of assigning the poles of the system to predetermined values˚
�1 �2 � � � �2n

�
may then be achieved by the procedure now to be explained.

We begin by denoting,

rk.�k/ D H.�k/b.�k/ (8)

so that for each characteristic equation,

rTk .�k/ � .g C �kf/ D �1; k D 1; : : : ; 2n (9)

or

rTk g C �krTk f D �1; k D 1; : : : ; 2n; (10)

The set of 2n equations with 2n unknowns may be written in matrix form,

G
�

g
f

�
D

0
BBB@

�1
�1
:::

�1

1
CCCA ; G D

2
6664

rT1 �1rT1
rT2 �2rT2
:::

:::

rT2n �2nrT2n

3
7775 (11)

which allows the determination of g and f by inversion of the matrix G.
Robustness of the closed-loop poles to measurement uncertainty may be achieved

by choosing g and f that minimize the sensitivities, typically [9]

@�k

@hpq
D �.g C �k f/T epeTq b .�k/

fT H .�k/b .�k/C.gC�k f/T
�
@H
@s

ˇ̌
sD�k

b .�k/CH .�k/ @ b
@s

ˇ̌
sD�k

	
�.gC�kf/T ep

@hpq

@s

ˇ̌
ˇ
sD�k

eTq b .�k/

(12)
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3 Numerical Example – Sequential Multi-input Robust
Pole Placement

We consider the three degree of freedom system described by,

M D
2
4 2 1

3

3
5 ;C D 0:5

2
4 1 0 0

0 1 �1
0 �1 1

3
5 ;K D

2
4 6 �2 �1

�2 4 �2
�1 �2 3

3
5

The open-loop poles are given by,

�1;2 D �0:0166˙ 0:5516i

�3;4 D �0:1890˙ 1:6044i

�5;6 D �0:2528˙ 2:2289i

The closed-loop poles are assigned to ellipses having centres,

.xc1;2; yc1;2/ D .�0:2;˙0:8/

.xc3;4; yc3;4/ D .�0:5;˙2/

.xc5;6; yc5;6/ D .�1;˙2:5/

with semi-axes a D 0:1 and b D 0:2.
The assignment is applied sequentially. The first pole is assigned followed by the

second and then the third. At each step the previously assigned poles are deliberately
made uncontrollable by the choice of b.s/.

Random perturbation of the measured H.s/ then results in eigenvalue distribu-
tions for both sequential multi-input without minimisation (denoted by grey points)
and with minimisation of the sensitivities (black points) as shown in Fig. 1. The
improvement in robustness to measurement noise is clear. The deterministic solution
is given by the white point for each pole.

4 Experimental Example – Partial Pole Placement

The Liverpool modular structure in the ‘H’ configuration is shown in Fig. 2.
Details of this structure, the test configuration, and measurements for estimating
the receptance matrix may be found in [8]. The receptance transfer function H.s/
was determined from the measured H .i!/ by curve-fitting using the PolyMAX
routine [13].
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Fig. 1 Sequential multi-input robust assignment of poles (Reprinted from [9]. With permission
from Elsevier)

Fig. 2 Modular test
structure – ‘H’ configuration
(Reprinted from [8]. With
permission from Elsevier)
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Fig. 3 Experimental partial pole placement of the torsional modes: (a) h11 (b) h33 (Reprinted from
[8]. With permission from Elsevier)

4.1 Partial Pole Placement of the Torsional Modes

Poles were to be assigned at �3;4 D �12 ˙ 410i and �7;8 D �65 ˙ 640i.

The control force distribution b D �
1 �1 1 �1 �T was chosen so that the

two torsional modes were easily excited. The control gains were found to be

g D �
20000 �20000 840 �840 �T and f D � �55 55 16 �16 �T . Figure 3

shows the measured displacement/input voltage for the open-loop system as the full
lines and the closed-loop system as dashed-dotted lines, for h11 and h33. The results
show that the torsional mode poles were assigned to the prescribed values, while
the bending modes were rendered uncontrollable. The mode at 54 Hz disappears in
h33 (and also in h44,) since the upper arms are at a node of the bending mode labeled
‘1’. Similarly, the mode at 85 Hz almost disappears in h11 (and also in h22), since
the lower arms are very close to a node of the bending mode labeled ‘3’.

5 Conclusions

The receptance method in active vibration suppression is described. Robust pole
placement and partial pole placement are demonstrated in numerical and experimen-
tal examples. It is seen that the eigenvalues of physical structures may be adjusted
significantly in both frequency and damping.
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Education, Malaysia. JE Mottershead and M Ghandchi Tehrani acknowledge the support provided
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Attitude Control of Micro- and Nanosatellites
Using Multi-degree-of-Freedom Piezoelectric
Actuators

Ramutis Bansevicius and V. Kargaudas

Abstract The paper deals with new approach to control attitude of small satel-
lites by using high resolution multi-degree-of-freedom piezoelectric motors and
piezoelectric transducers, generating travelling wave oscillations in the plane,
perpendicular to satellite’s rotation axis. It leads to the increase of the resolution
of system to enable orienting the payload in a precise direction, extends the range of
temperatures to the direction of both positive and negative values and significantly
reduces the cost and simplifies the design. Theoretical analysis of described attitude
control mechanisms is presented.

Keywords Microsatellite • Nanosatellite • Attitude control • Piezoelectric
actuator • Traveling waves

1 Introduction

The major concern of the control of small satellites is to reduce the spinning rate of
the satellite after the launch and, if it is technically possible, to orient the payload in a
precise direction. The attitude determination system of the satellite has to determine
the position of the captured image with a precision of ˙5ı in latitude, ˙7.5ı in
longitude (which can be correlated to the solar local time at zenith) and ˙700 km
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in altitude to guarantee that the atmosphere limb is within the telescope’s field view
[1–4]. Two directions of R&D are covered to realize these aims: (a) The application
of multi-degree-of-freedom piezoelectric motors in orienting systems, giving as
advantages dramatically increased resolution, temperature range and reliability,
simplifying the design and reducing weight and cost; (b) The application of
monolithic piezoelectric transducers in specific travelling waves oscillation modes,
ensuring extremely high resolution, reliability and low energy consumption.

2 Attitude Control by Using Multi-degree-of-Freedom
Piezoelectric Motors

Radial traveling wave is generated in piezoelectric ring (Fig. 1a), resulting in
rotation of the passive mass. The specifics of this 1D attitude control mechanism
lies in high resolution (less than 0.001ı) and small response time, not to mention
small weight and dimensions. Even more effective system with 3 DOF is shown
in Fig. 1b [5, 6], where passive sphere is contacting with piezoelectric cylinder in
3 contact areas; axial traveling wave of the cylinder (Fig. 2) results in controllable
rotation of the sphere around vertical axis; rotation around two perpendicular axes
are generated by exciting asymmetrical oscillations of the cylinder by connecting
signal generators to electrodes 5 [7, 8]. The modification of this system is shown in
Fig. 3, here passive sphere 1 is placed on two piezoelectric disks through contact
points 3, and control of rotation direction is realized by connecting signal generator
to electrodes 4.

Fig. 1 1D and 3D attitude control by one DOF (a) and three DOF (b) piezoelectric motors.
(a): 1 – piezoelectric ring with sectioned electrodes, 2 – passive mass, 3 – elastic fixing element,
4 – spring to ensure contact between piezoelectric ring and passive mass. (b): 1 – passive
ferromagnetic sphere, 2 – contact points, 3 – piezoelectric cylinder, 4 – permanent magnet,
5 – electrodes
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3 Attitude Control by Using Bending Traveling Waves
in Piezoelectric Transducers

Mass m1 of the satellite is assumed to be much more than the mass m2 of the
piezoelectric rod. If C1, C2 are the mass centers of the satellite and the rod
correspondingly, the distance C1C D r1�r2 D CC2, where C is the mass center of
composite body of the satellite and the rod (Fig. 4). The rod of length l performs
traveling wave oscillations around an axis O1 O2, parallel to the axis z, and the mass
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Fig. 4 Traveling bending
waves in piezoelectric rod
and the satellite
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center C2 is assumed to be on the axis O1O2. If position of the satellite is determined
by angle ¥ and traveling wave oscillations of the rod by angle ™, coordinates of a
rod particle dm2 are

x2 D r2 cos¥C u cos ™;

y2 D r2 sin¥C u sin ™;

z2 D const;

where u is displacement of the particle from the axis O1O2. If juj � l and
the rod is uniform, dm2 D 
ds � 
dz, where 
 is mass per length unity, s –
longitudinal coordinate of the rod. As

R
.V /

udm2 D 

R Cl=2

�l=2 ud z D 0 and angular

momentum of the particle is d NLC2 D ��z2 Py2Ni C z2 Px2 Nj C .x2 Py2 � y2 Px2/ Nk�dm2,
angular momentum of the rod

NLC2 D
�
m2r

2
2

P¥C J2 P™
	 Nk; (1)

where J2 is moment of inertia of the rod about the axis O1O2. Derivatives P¥ D
d¥=dt , P™ D d™ =dt are angular velocities of the satellite and the rod. Symmetry
of the rod deformation u .�z/ D u .Cz/ is taken into account. Motion of an every
cross-section of the rod about the axis O1 O2 is translation, when any particle of the
same cross-section moves in a circle of the same radius.

Angular momentum of the satellite NLC1 D NL01 C NL�
C1, where

L0z D m1r
2
1

P¥ (2)

is angular momentum z component of the mass center C1. The next term is angular
momentum of the satellite in its motion about the mass center
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Fig. 5 1D (a) and 3D (b) attitude control systems with bending waves. (a): 1 – piezoelectric
rod with central electrode, 2 – external electrodes, 3 – fixing elements, positioned at the nodes,
4 – central electrode. (b): 1 – case, 2 – piezoelectric transducers

L�
C1x D ¨xJx � ¨yJxy � ¨zJxz;

L�
C1y D ¨yJy � ¨zJyz � ¨xJyz;

L�
C1z D ¨zJz � ¨xJzx � ¨yJzy; (3)

where N̈ is angular velocity,
˚
Jij
�

– inertia tensor of the satellite. The angular
momentum of the whole mechanical system of satellite and rod is constant, and
this constant is zero. Consequently, the vector sum NLC2 C NL�

C1 D 0 and the angular
momentum of the satellite are parallel to the axis of traveling wave oscillation. The
vector NL0, its component (2) and the other two, are neglected asm1r

2
1 � Jz D m1i

2
z .

The radius of gyration iz of the satellite is approximately as the distance r2  r1,
and P¥ D ¨z.

Angular velocity of the satellite can be deduced from (1) and (3)

¨z D � J2

Jz � �xJzx � �yJyz

P™; ¨x D �x¨z; ¨y D �y¨z

where �x D JxyJyzCJxzJy

JxJy�J 2xy , �y D JxyJxzCJyzJx

JxJy�J 2xy .

If the axes x, y, z are the principal satellite axes of inertia and consequently Jxy D
Jyz D Jzx D 0, then ¨x D ¨y D 0 and ¨z D � J2

Jz
P™.

Figure 5 show two practical cases of generating traveling wave oscillations.
Piezoelectric rod 1 is polarized radially, using central electrode (Fig. 5a); connecting
voltage supply with shifted phases to sectioned electrodes generates bending
traveling wave (with two nodes) and velocity ¨. This is the example of one DOF
attitude control; three DOF mechanism is shown in Fig. 5b. Here traveling wave
is realized in planes xz, xy or yz by connecting multiphase signal generator to six
corresponding piezoelectric transducers.

If satellite is a solid cube of mass mo with edges of length a and x, y, z – the
principal axes, which intersect in the geometric center of the cube, then Jx D Jy D
Jz D moa

2 =6 , Jxy D Jyz D Jzx D 0. Let a small in size mass mp is fixed to
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some point yp; zp of the satellite in the plane y, z. Only one product of inertia of the

new system J 0
yz D

h
ª2

.1Cª/2 C ª
i
ypzpmo ¤ 0, ª D mp

mo
, the other J 0

xy D J 0
xz D 0.

Moments of inertia J 0
x; J

0
y; J

0
z will be slightly changed and �x D 0, �y D J 0

yz

J 0
y

.
The axis of satellite rotation will be in the y, z plane. If ’ – angle between rotation
axes of the satellite and the rod, then

tan ’ D �y D ª2 C ª.1C ª/2

.1Cª/2
6

C .ª2 C ª/
z2p
a2

ypzp
a2

:

When yp D zp D 0:5a and ª D 0:1, then tan’ D 0:143. But when the massmp

moves along x or y axis, then tan ’ D �y D 0, that is the satellite is rotating around
the axis of the oscillating rod.

4 Conclusions

The applications of multiDOF piezoelectric motors for attitude control of micro-
and nanosatellite’s can significantly increase the resolution. Applying piezoelectric
transducers in traveling wave mode effectively reduce the cost and simplify the
design, increasing the reliability of orienting systems.
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Vibration Control via Positive Delayed Feedback

Zaihua Wang and Qi Xu

Abstract Based on the method of stability switches and the calculation of the
real part of the rightmost characteristic root, this brief review paper demonstrates,
through two control problems via delayed position feedback and delayed acceler-
ation feedback, that from the viewpoint of stability, a positive delayed feedback
can be superior to the corresponding negative delayed feedback and the delayed
acceleration feedback can be superior to the delayed position feedback.

Keywords Time-delayed feedback • Positive feedback • Vibration control
• Stability switch • Rightmost characteristic root

1 Introduction

One common issue encountered in active control is the time delay in controllers,
filters and actuators. It is frequently the time delay that deteriorates the system
stability and performance. Thus, time delay is often considered as a negative factor
to system modeling, control and analysis. On the other hand, delayed feedback
control has been shown superior to conventional techniques in some active control
problems, such as in reducing sway of cranes [1, 2]. In addition, a delayed feedback
control can be used to achieve total absorption in a harmonically excited damped
system, such as in delayed resonator [3, 4]. In applications, one usually use delay-
line to analog a delayed feedback, or use recording-reproduction to realize a delayed
feedback digitally [5]. A large delay requires more delay elements in controller,
which makes the controller complicated. Thus, a small delay is usually preferable.

Z. Wang (�) • Q. Xu
Institute of Vibration Engineering Research, Nanjing University of Aeronautics and Astronautics,
210016 Nanjing, China
e-mail: zhwang@nuaa.edu.cn
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Though acceleration sensor is widely used in vibration control due to its small
volume, lower cost and easy installation, delayed acceleration feedback is used
very few in literature, compared to the large number of works that use delayed
position feedback. In addition, a feedback control with positive gain is seldom
used in vibration control. This paper shows that from the viewpoint of stability, a
positive delayed feedback can be superior to the corresponding negative delayed
feedback and the delayed acceleration feedback can be superior to the delayed
position feedback, through two control problems for a single degree of freedom
of vibration system.

2 Stabilization to a Free SDOF Vibration

To make the exposition as simple as possible, let us consider the stabilization
problem to a free vibration in dimensionless form described by

Rx.t/C 2� Px.t/C x.t/ D u (1)

where � is negative, u is a control to ensure that the stability of x D 0 is stabilized
[6]. The case with small � > 0 can be dealt with similarly. Two cases are considered.

Firstly, let u D kx.t � �/, then the closed-loop reads

Rx.t/C 2� Px.t/C x.t/ D kx.t � �/ (2)

The solution x D 0 is asymptotically stable if and only if the characteristic equation

�2 C 2��C 1 � ke��� D 0 (3)

have roots with negative real parts only. When � D 0, Eq. 3 has two unstable roots
due to � < 0. As � increases from 0, the stability of x D 0 keeps unchanged for small
� > 0 and it can be changed only if � passes through some points where Eq. 3 has
a pair of conjugate roots on the imaginary axis. Letting � D ˙i! .i2 D �1/ and
separating the real and imaginary parts of Eq. 3 give

sin.!�/ D �.2�!/=k; cos.!�/ D .1 � !2/=k (4)

and F(!) D 0, where F.!/ D !4 C .4�2 � 2/!2 C 1�k2. In order that the unstable
x D 0 is stabilized, it is necessary that F(!) has two different positive roots 0 <
!� < !C [6], which is guaranteed if and only if 4�2 � 2 < 0; 1 � k2 > 0;

.4�2 � 2/2 � 4.1 � k2/ > 0. With ! D !� or ! D !C, one obtains the unique
�� 2 .0; 2/; �C 2 .0; 2/ from sin.�/ D �2�!=k; cos.�/ D .1 � !2/=k

respectively. The critical delay values can be expressed by

�˙;j D .�˙ C 2j/=!˙; .j D 0; 1; 2; � � � / (5)
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a b

For Eq. (2) with ξ = −0.05 For Eq. (8) with ξ = −0.05

Fig. 1 The real part of the rightmost characteristic root of the closed loop vs delay

The unstable x D 0 can be stabilized, it is necessary that [6]

��;0 < �C;0 (6)

And if ��;0 < �C;0, then unstable x D 0 is stabilized for � 2 .��;0; �C;0/.
Moreover, let �C

˙;j and ��
˙;j denote the above defined critical delay values

for the positive feedback (k> 0) and the corresponding negative feedback (k< 0)
respectively, then straightforward computation shows that [6]

�C
�;j
< ��

�;j
; �C

C;j
� �C

�;j
> ��

C;j
� ��

�;j
; .j D 0; 1; 2; � � � / (7)

This implies that from the viewpoint of stability, a positive delayed position
feedback is superior to the corresponding negative delayed position feedback.
For small delay � > 0, as shown in Fig. 1a, a negative feedback deteriorates the
stability of the closed-loop, but a positive feedback improves its stability, and
0 < �C

�;0 � ���;0; �
C
C;0 � �C

�;0 > ��C;0 � ���;0. At � � 1. 5, the positive delayed
feedback leads to optimal stability. Now, if the feedback is taken as u D k Rx.t � �/,
then the closed-loop reads

Rx.t/C 2� Px.t/C x.t/ D k Rx.t � �/ (8)

When j k j < 1, the solution x D 0 is asymptotically stable if and only if the roots

�2 C 2��C 1 � k�2e��� D 0 (9)

have negative real parts only. With �D ˙ i!, Eq. 9 gives

sin.!�/ D .2�!/=.k!2/; cos.!�/ D �.1 � !2/=.k!2/ (10)
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and F(!) D 0, where F.!/ D .1 � k2/!4 C .4�2 � 2/!2 C 1. As done above and
with the notations used above, one can show that [6]

�C
�;j
> ��

�;j
; �C

C;j
� �C

�;j
< ��

C;j
� ��

�;j
; .j D 0; 1; 2; � � � / (11)

Unlike the delayed position feedback, here a negative delayed acceleration feedback
is superior to the corresponding positive delayed position feedback, as shown in
Fig. 1b for Eq. 8 with � D �0:05, where at � � 2, optimal stability is achieved.

3 Total Absorption to a Harmonic Excited Vibration

For a SDOF vibration system with mass m, damping coefficient c and elastic
coefficient k and excitation f (t), the combined resonator system is described by

(
ma Rxa.t/C ca Pxa.t/C kaxa.t/ � ca Px.t/ � kax.t/ D u

m Rx.t/C .ca C c/ Px.t/C .ka C k/x.t/ � ca Pxa.t/ � kaxa.t/ D �u C f .t/

(12)

where ma, ca, ka are the mass, damping coefficient, elastic coefficient of the res-
onator, and u is a feedback control to the resonator, see Fig. 2a. When total
absorption occurs, namely x(t) ! 0 as t ! C 1, one has

(
ma Rxa.t/C ca Pxa.t/C kaxa.t/ � u D 0

�ca Pxa.t/ � kaxa.t/C u D f .t/
(13)

It follows that ma Rxa.t/ D f .t/. If f (t) takes simply as f (t) D f0sin(!0 t), then

xa.t/ D f0 sin.!0t/=.ma!
2
0/ (14)

In what follows, two cases will be considered.
Firstly, let u D �gxa.t � �/ [3], then due to the first equation in (13), the

characteristic function of the resonator via delayed position feedback reads

ma�
2 C ca�C ka C ge��� D 0 (15)

In order that the resonator vibrates with frequency !0, it requires that Eq. 15 has a
pair of conjugate roots �D ˙ i!0. Let �D ˙ i!0, it follows from Eq. 15 that

�ma!
2
0 C ka C g cos.!0�/ D 0; ca!0 � g sin.!0�/ D 0 (16)
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Fig. 2 The delayed resonator and the delay effect on the stability of the combined resonator system

It follows that the feedback gain g must equal to one of the following two values

gpo D C
q
.ka �ma!

2
0 /
2 C .ca!0/

2 or gpo D �
q
.ka �ma!

2
0 /
2 C .ca!0/

2

(17)

Let �po be the unique solution of sin.�po/ D ca!0=gpo; cos.�po/ D .ma!
2
0 �

ka/=gpo in (0, 2), then the critical values of delay can be expressed by

�j D .�po C 2j/=!0; j D 0; 1; 2; � � � (18)

For both cases of ma!0
2 � ka> 0 and ma!0

2 � ka< 0, a positive gpo (corresponding
to a negative feedback) yields a smaller �0 (the minimal critical delay) than the
negative one (corresponding to a positive feedback). That is to say, for the delayed
resonator system, the delayed position feedback should be

u D �gpoxa.t � �0/ WD �
q
.ka �ma!

2
0 /
2 C .ca!0/

2 xa.t � �0/ (19)

where �0 is the minimal critical delay in (18) for the delayed negative feedback.
With g D gpo and � D �0, the corresponding characteristic function defined in

(15) has infinite number of roots including the conjugate pair ˙ i!0 and the other
characteristic roots have negative real parts only.

Moreover, let p(�) be the characteristic function of Eq. 12 with f .t/ � 0, then

p.�/ D det



ma�

2 C ca�C ka C gpoe��� �ca� � ka
�ca� � ka � gpoe��� m�2 C .ca C c/�C .ka C k/

�
(20)

In order to exhibit total absorption, it is necessary that the combined delayed
resonator system described by Eq. 12 with f .t/ � 0 is asymptotically stable for
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delay in an interval containing the minimal critical value �0. The stable intervals
can be obtained by using the method of stability switches [7].

Now, when u D �g Rx.t � �/ [4], the characteristic function of the resonator via
delayed acceleration feedback is given by

pac.�/ D ma�
2 C ca�C ka C g�2e��� (21)

With �D ˙ i!0, separating the real and imaginary parts of pac(i!0) D 0 with gac D
gpo=!

2
0 or gac D �gpo=!20 gives

sin.!0�/ D �.ca!0/=.gac!20/; cos.!0�/ D �.ma!
2
0 � ka/=.gac!

2
0/ (22)

Unlike the resonator via delayed position feedback, here a negative gac (correspond-
ing to a positive delayed feedback) yields a smaller minimal critical delay than the
positive one. Namely, in order to get a smaller minimal critical delay value, the
delayed acceleration feedback should be

u D �gac Rxa.t � �0/ WD gpo Rxa.t � �0/=!20 ; .gpo > 0/ (23)

where the minimal critical delay �0 of the resonator, determined from (22), is the
same as the one obtained for delayed position feedback, and j gac j < gpo if !0> 1.

One interesting observation is, as shown in Fig. 2b, with mD 1kg; cD 2kg=s;

kD 100N=m; ma D 0:2kg; ca D 0:5kg=s; ka D 10N=m; !0 D 10rad=s, that
both the stable intervals � 2 [0, 0. 0565) and � 2 [0, 0. 0779) of the combined
system cover the minimal critical delay �0 D 0. 0464 of the resonator, but
gpo D 11:180N=m and gac D �0:1118N=m satisfying j gac j � gpo, and the
delayed acceleration resonator (with smaller negative real part of the rightmost
characteristic root of the combined system) makes the total absorption occurring in
a shorter time than the delayed position resonator. In this sense, a delayed resonator
via positive delayed acceleration feedback is superior to the one via negative
delayed position feedback.

4 Conclusions

Time-delay feedback control is a kind of control with memory, and it has some
special features different from delay-free control. Though a positive delay-free
feedback is seldom used in control applications, this paper shows that a positive
delayed feedback not only works in vibration control, but also can be superior to
the corresponding negative delayed feedback, from the viewpoint of stability. In
addition, it shows that a delayed acceleration feedback can be superior to the delayed
position feedback. Realization of this observation is left for future investigation.
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Optimization of Semi-active Seat Suspension
with Magnetorheological Damper

Stefan Segla, J. Kajaste, and P. Keski-Honkola

Abstract The paper deals with modeling, control and optimization of semiactive
seat suspension with pneumatic spring and magnetorheological damper. The main
focus is on isolating vertical excitation from the cabin of a bucket-wheel excavator
in order to protect the excavator driver against harmful vibration. Three different
control algorithms are used to determine the desired semi-active damping force:
skyhook control, balance control and combination of balance and skyhook controls.
The dynamic behavior of the semi-active system is optimized using genetic
algorithms. As the objective function the effective value of the seat (sprung mass)
acceleration is used.

Keywords Magnetorheological damper • Vibration isolation • Optimization
• Random vibration

1 Introduction

Most suspension units are still passive ones which do not require any external source
of power. The vibration isolation characteristics of most passive suspensions are
rather limited as a consequence of the trade off in the choice of the spring rate
and damping characteristics in order to achieve acceptable behavior over the whole
range of working frequencies. It is well known from linear systems theory that
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low damping gives good vibration isolation at high frequencies but poor resonance
characteristics. Higher damping results in good resonance characteristics but the
high frequency performance is poor.

The necessity of compromising between the conflicting requirements has moti-
vated the investigation of controlled suspension systems [1–3], where the elastic and
damping characteristics are controlled in closed-loop. The conflicting requirements
led to using optimization techniques [4, 5].

The control strategies can be divided into two main categories: active and semi-
active. In the case of active systems optimum transmissibility has no resonance
amplification and the suspension system performance is superior to any passive
suspension system. Regardless of their indisputable advantages they are still more
complex, expensive and less reliable than the passive suspensions. Further problems
are caused by their high energy consumption (an external source of power is needed)
and possible instability. Semi-active control systems provide reliability comparable
to that of passive devices, yet maintaining the versatility and adaptability of
fully active systems, without requiring large power sources and without possible
instability. The amount of damping can be tuned in real time. Examples of such
devices are variable orifice dampers, controllable friction devices and dampers
with controllable fluids (e.g., electrorheological and magnetorheological fluids).
A variety of control algorithms have been developed in the past 30 years both for
active and semi-active suspensions.

Magnetorheological (MR) dampers have attracted interest in using controllable
actuators for their quick time response and low energy consumption. They belong to
the most promising semi-active devices used nowadays in automotive engineering
and are employed in a number of passenger cars and other types of vehicles. The key
feature of an MR damper is the magnetorheological oil whose rheological properties
can be substantially altered by applying a magnetic field. Variable damping can be
produced by controlling the magnetic field by the electrical current in a solenoid.

2 Dynamic and Mathematical Model of the Seat Suspension

Figure 1 shows a dynamic model of the semi-active seat suspension containing a
passive air spring and a controllable MR damper. The rheological properties (mainly
yield stress) of the MR fluid inside the damper can be substantially altered with the
application of a magnetic field which is produced by the solenoids placed around
the orifices between chambers of the damper. The solenoids supply a controllable
current which changes the rheological properties of the MR fluid and in consequence
the damping force is controlled.

The equation of motion of the semi-active seat suspension with parallelogram
mechanism was derived by using Lagrange’s equations of the second kind. After
linearization for '0 D 9º, ˇ0 D 45º, see Fig. 1, the equation of motion has the
following form
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Fig. 1 Dynamic model of the
seat suspension with air
spring and MR damper
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h2cos2'0
.x � u/C Fsa D m Œ1C cos'0 cos . � '0/�

cos2'0
Ru;
(1)

where m is the mass of the upper part of the seat including the driver, k is the air
spring stiffness coefficient, Fsa is the damping force, c D AC; h D AE, see Fig. 1.
The cabin random excitation u was measured from the platform of the cabin (in
vertical direction).

The simplified model of the MR damper LORD RD �1005-3 described in [6] is
used in this paper. It is more accurate than e.g. the Bingham model. In this simplified
model the mass inertia effects of the fluid in the channels of the piston are neglected.
Consequently the hysteresis loop of the MR damper is neglected and the semi-active
damping force is given by

Fsa D Fsa . Px � Pu; I / D cf k3 . Px � Pu/C Fy.I / tanh Œˇ k3 . Px � Pu/� ; (2)

where I is the electric current (input signal), Px � Pu is the relative velocity between
the upper part of the seat and its base, cf expresses viscous damping of the MR
fluid, ˇ influences the rate of change of the friction force in the vicinity of zero
relative velocity Px � Pu and k3 D �k2/k1 where k1 and k2 describe compressibility of
individual hydraulic and pneumatic parts of the damper.

The parameters of the MR damper described above were experimentally identi-
fied [6] and the following approximation functions hold

cf .I / D c1I C d1; Fy.I / D a2I
3 C b2I

2 C c2I C d2;

k1.I / D b3I
2 C c3I C d3; k2.I / D b4I

2 C c4I C d4: (3)
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Based on the experimental data, a least-square method was employed to deter-
mine the numerical values of all parameters in above equations [6].

3 Desired Damping Force

The desired damping force Fd can be realized only if this force and the relative
velocity Px � Pu have the same sign. Then the calculated input current of the MR
damper, depending on the actual value of the desired damping force and the relative
velocity, is computed from Eqs. 2 and 3. The input current varies in the range of
0–1.25 A (maximum value). Since the MR damper cannot supply power to the
system, the best thing it can do is to generate minimum possible force when the
condition mentioned above is not met (damping force in MR damper cannot be
eliminated totally).

Many semi-active control algorithms have been developed so far. According to
the balance logic, the damping force Fd is as follows

Fd D Fbalance D
(
K jx1j sgn Px1 .or �Kx1/ x1 Px1 	 0;

0 x1 Px1 > 0:
(4)

where x1 D x – u means the relative displacement between the upper part of the seat
and its base and Px1 D Px � Pu means the relative velocity.

The ideal skyhook is given by the following control logic

Fd D Fskyhook D
(
bsky Px Px1 Px > 0;
0 Px1 Px 	 0:

(5)

In this paper we also apply the control logic which is a combination of the control
algorithms based on the balance control and the skyhook control. The desired
damper force is defined as follows

Fd D K1 Px CK2 .x � u/ ; (6)

where K1 is the proportionality factor of absolute velocity feedback loop and K2 is
the proportionality factor of relative displacement feedback loop.

4 Optimization and Results

The dynamic behavior of the semi-active system is optimized using genetic
algorithms [7]. As the objective function the effective value of the seat acceleration
is used [3, 8]
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Fig. 2 Comparison of seat acceleration aseat and cabin acceleration acabin (combined control)

Rxef D
s
1

T

Z T

0

Rx2.t/dt : (7)

Optimization parameters correspond to individual control algorithms:

(a) Balance control: two optimization parameters are used: K, see Eq. 4, and
k (air spring stiffness). Their optimum values are: Kopt D 20.1925�103 N/m,
kopt D 15.01�103 N/m. Objective function: Rxef;min D 1.2056�10�2 m/s2.

(b) Skyhook control: two optimization parameters are used: bsky, see Eq. 5, and
k. Their optimum values are: bsky;opt D 2.927�103 N.s/m, kopt D 15.07�103 N/m.
Objective function: Rxef;min D 1.0954�10�2 m/s2.

(c) Combined control: three optimization parameters are used: K1, K2, and k.
Their optimum values are: K1;opt D 1.5015�103 N.s/m, K2;opt D 1.6097�104 N/m,
kopt D 15.12�103 N/m. Objective function: Rxef;min D 1.0843�10�2 m/s2.

Figure 2 shows the sprung mass acceleration in comparison with the bucket
wheel excavator cabin acceleration in the vertical direction for the combined control.
Despite significant improvements (about 60%), which can be seen from comparing
the effective value of the cabin vertical acceleration ( Rxef;cabin D 2.7124�10�2 m/s2)
and the effective values of the seat acceleration for cases (a), (b) and (c), the
conventional implementation of all control algorithms used in the paper introduces
a sharp increase (jump) in damping force, which, in turn, causes a jump in sprung
mass acceleration. This acceleration jump, or jerk, causes a significant reduction in
isolation benefits that can be offered by semi-active suspensions. Figure 2 clearly
illustrates the problem of acceleration jumps.
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5 Conclusions

The semi-active seat suspension with MR damper effectively reduces vibration
acceleration acting on the excavator driver as it can be seen from comparing the
effective value of the cabin vertical acceleration and the effective values of the seat
acceleration given in the previous paragraph. The improvements are about 60%.
The differences between all control algorithms (after optimization) are practically
negligible. However, it is important to optimize the parameters determining the
desired damping force.

Simplified mathematical models of MR dampers were developed in order to
allow real time control of systems when their mathematical models are to be
implemented directly into the control algorithms. Next work will be devoted to
complete mathematical models of MR dampers taking into account compressibility
and also the mass inertia effects of the MR fluid in the channels of the piston.

Further improvements of the results are associated with modifications to the
formulations of the control algorithms such that the damping force jumps are
eliminated.
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Dynamics of a Rotor Suspended on Gimbals

H.I. Weber and D.H.Z. Carrera

Abstract The Magnus demonstration gyroscope is an instrument that allows a
series of amazing experiences when the rotor loses its axial symmetry. It consists
of a rotor on two gimbals whose inertia and energy loss will be considered in
the modeling. A normalization procedure to reduce the number of parameters
is established. Unlimited rotation around the center is possible for all bodies.
A pointer on the rotor shaft will allow to define two distinct hemispheres which may
capture for some instants the motion, when the energy decreases due to damping.
In changing hemispheres the usual singularities occurring with Euler angles are
crossed challenging the numerical methods. For non symmetric rotors a minimum
kinetic energy will be needed to eject the motion from Lyapunov stable orbits
to a sequence of jumps between both defined hemispheres. In this condition the
movement does not remain inside any basin of attraction, it continues tumbling
without regard to the loss of kinetic energy.

Keywords Free body rotation • Tumbling • Gimbals • Stability

1 Introduction

Thanks to the straightforward way to describe analytically the motion of a free body
in space this is “the” classical problem in rotational dynamics and is found in all the
timeless literature of Mechanics. Centuries passed and the need to gather analytical
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solutions was substituted by numerical integrations. The visualization by graphical
representation of the body motion in space substituted the abstraction imagining a
body cone rolling on a fixed cone, Poinsot 1834. Nevertheless rotation in space is
an advanced subject, rich in unexpected movements, that still brings trouble to our
young engineers. But, since inertial sensors to obtain attitude (angular position in
space) are getting much cheaper, lots of new applications are possible and an effort
should be made to enhance the feeling (intuition) of engineers to problems related
to rotation in space. The first author of this paper remembers well classes in the end
1960s given by K. Magnus using the demonstration gyroscope he developed and is
produced by Phywe [5] where a rotating body in space could be approached by the
gyroscope on gimbals, since the inertia of the gimbals were small compared to the
rotor of the gyroscope. One of the most fascinating experiments is the behavior
of a naturally unstable rotor, which occurs when it turns around of the axis of
intermediate moment of inertia. Repeating these experiments through the last four
decades the first author got the help of the second author to look for answers to
questions that intrigued us for a good time.

These questions refer to regions of operation that usually are outside of the
practical range in common engineering problems like wide amplitude motion. An
unlimited rotation for a body on gimbals seems to be good for training astronauts;
you find it also in science fiction movies and even as fitness training apparatus.
Following topic will be discussed: considering a non-axisymmetric rotor, which
rotates around the axis of minimum or maximum moment of inertia, when it suffers
a disturbance that is big enough, it will start a tumbling motion. Then, what is the
behavior and how is the influence of the inertia of the gimbals and the damping
in the joints. Since this implies in the description of the motion crossing the linear
stability borders, as well as the singularity condition of the Euler angles, what is the
real physical meaning of these angles in terms of the rotor motion?

2 Equations of Motion

Three bodies compose the gyroscope: the outer gimbal will be positioned using the
angle ˛, while ˇ is for the internal gimbal and � represents the rotor spin. There
may be additional masses at the rotor, without changing the position of the center of
mass but eliminating its axi-symmetry. There may also exist other masses fixed on
the extremities of the rotor shaft, flattening or elongating its inertia ellipsoid (Fig. 1).

The compact representation (1) for sequential rotations follows: the angles below
are associated to 3 elementary sequential rotations making use of 4 reference frames
(RF), (F) fixed in space, (Q) to the outer gimbal, (R) to the inner and (S) to the rotor.
The x axis of (F) is vertical.

F
.x;y;z/

˛ .x/���! Q
.x;y0 ;z0/

ˇ .y0/����! R
.x00;y0 ;z00/

� .z00/����! S
.x000;y000 ;z00/

(1)
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Fig. 1 Gyroscope (Phywe) and its main components

Total kinetic energy is obtained by adding the energies of each body, which
can be calculated in the respective RF. For the analysis, a specific problem was
considered: with resting gimbals, the rotor is initially turning at constant angular
speed when, suddenly, an external impact force acts on one of the axes, x or y of RF
(R). This impact generates an instantaneous change in the angular momentum and
the spin axis of the rotor starts a conical motion around the angular momentum
vector. The non axi-symmetric condition of the rotor’s inertia leads to large
amplitude displacements if it was originally turning around the axis of intermediate
inertia; in both other alternatives there is a threshold for the impact force before
this unbound rotation is attained. Small damping will cause a gradual change in the
resulting motion.

Newton-Euler law leads to equations of motion that include the damping
moments between the three bodies due to the low friction ball bearings. Reaction
moments are eliminated. Non-dimensional formulations are more adequate in
nonlinear dynamics: we introduce an equivalent angular speed � obtained by
division of the resulting angular momentum hG after the impact by the principal
moment of inertia of the rotor around axle z00 that supports it (I3). The time in the
analysis will be changed to the non-dimensional value � D �t where v D hG =I3 .

Also: IA.xx/ is the moment of inertia of the external gimbal corresponding to axis
x of (Q), Ip and Id are the principal (polar and diametric) moments of inertia of the
internal gimbal ring in (R), and I1, I2 and I3 are the principal moments of inertia of
the rotor in axes x, y, z of (S) respectively. Parameters (2) are introduced:

�x D IA.xx/ =I3 �1 D I1 =I3 �2 D I2 =I3 �p D Ip =I3 �d D Id =I3 (2)

Viscous friction is assumed in the bearings of the gyroscope;MŒfric�AF D CAF P̨
(normalized as kAF D CAF =hG) is the resistive moment of the bearing in the fixed
base of the outer gimbal and equivalently to the other joints. This is a good model for
the present case but an investigation on the change of behavior due to other contact
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conditions could make good use of the results of [1]. Four additional parameters a,
b, c, d are dependent on the inertia of the rotor and together with the rotor angle �
are used to describe the non axi-symmetry of the inertial configuration of the rotor
in (R). Due to lack of space the final equations of motion will not be presented here.
Please refer to [2, 3] or contact the authors by e-mail.

Parameter values for the simulation are obtained from the Magnus gyroscope.
Initial conditions for the rotor will be � 0.0/ D 1; �.0/ D 0, the impact occurring
along y axis leads to ˛0.0/ D 0; ˛.0/ ¤ 0; ˇ0.0/ ¤ 0; ˇ.0/ D 0 while the impact
occurring along x axis leads to ˛0.0/ ¤ 0; ˛.0/ D 0; ˇ0.0/ D 0; ˇ.0/ ¤ 0.
The impact strength will define the angular velocity along the impact axis and the
deviation (angle) of the other axis.

3 Results and Comments

A sample from the results of Carrera [2] is presented next.
While axi-symmetric rotors present no surprises in the dynamic behavior, even if

the gimbals are considered as part of the system, the lack of symmetry and motion
through the nonlinear range present a great challenge to the understanding. An
example for a flattened rotor (�1, �2< 1) is presented in Fig. 2 (left) considering
a conservative system: representing the angles ˛ and ˇ correspond to observe the
conical motion of the rotor shaft and will be called orbit. More impact intensity
will increase the radius of this orbit and increase the kinetic energy present in the
system, as it can be observed in the figure. After a certain minimum level of energy
the rotor starts jumping from one side to the other (changing hemispheres), looking
for other equilibrium positions, but it does not stop in these large excursion motion.
These jumps will cause high acceleration in the angle coordinates, which represent
the motion of the external and internal gimbal respectively. Careful analysis of this
problem leads to following results: the minimum impact impulse to remove the
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Fig. 2 Orbits of the conservative (left) and non-conservative (right) three body system for different
values of kinetic energy T
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Fig. 3 Instability areas for a flat rotor without gimbals and with gimbals
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Fig. 4 Instability areas for a flat rotor on gimbals, for increasing impact disturbance from left

system from stable oscillations condition can be obtained analytically; infinitesimal
changes in initial impact condition result in other motion geometry, which means
chaos; if the gimbals have no inertia (free body problem), the only possible jump
to the opposite hemisphere is in the ˛ angle (this can be shown analytically); near
to the jump, in the free body problem the orbit tends to a square while the orbit of
the rotor on gimbals stays more like a circle. The non-conservative system in Fig. 2
(right) shows that if the initial kinetic energy exceeds the minimum for the tumbling
of the rotor, it keeps tumbling till the complete dissipation of the energy.

Figure 3 presents the natural instability regions in the Magnus triangle [4], which
is constructed using only with the moments of inertia of the rotor. Observe that the
gimbals change the system stability, even if they have small inertia and damping.

In Fig. 4 stability results for flattened rotors on gimbals are presented, increasing
the impact impulse from left to right. The bottom left corner of each square
represents the free body problem (0,0), showing that between the second and third
square the limit condition was reached. The change in greyscale responds to the
energy present in the system after impact. One can observe that a stable free body
may become unstable due to the gimbals (left), and also that a naturally unstable
flattened rotor may be stabilized through the gimbals (white regions).

In Fig. 5 (right) the friction in the body connections is considered; a bifurcation
diagram is represented considering the viscous damping (equal for all connections)
as a control parameter in the range k (0:0.02) and representing the kinetic energy
variation in a time interval t D 5. The system presents a change in behavior after a
certain value for the damping, showing that the energy loss may be slower even if
the damping is higher. Figure 5 (left) shows that the rotor and the inner gimbal are
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Fig. 5 Energy and energy loss of a flat rotor on gimbals considering friction

the main participants in the energy exchange. The outer gimbal keeps small values:
remember that the motion passes from the rotor to the outer gimbal by means of
the inner gimbal. The inner gimbal is the head of the great orchestra in the walk of
kinetic energy through the gyroscopic system.

4 Conclusions

The minimum energy required to start tumbling motion can be radically altered
by the presence of gimbals. Nonlinear tools are essential for the understanding
of complex rotation conditions. To complete the analysis presented here, [2]
investigates Poincaré maps, quaternions for the free body problem, Poincaré maps
for quaternion coordinates, phase plane analysis and the use of Magnus triangle
for stability representation. Low-cost satellites demand a great care not to be lost
by some instability; besides numerical simulation the use of instruments like the
Magnus gyroscope are of great value in the understanding of phenomena. We could
modify the behavior of the gyroscope, using the torque between the components.
This is a step towards active gimbals.
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Experiment Study on Fuzzy Vibration Control
of Solar Panel

Dongxu X. Li, Rui Xu, and Jiangjian P. Jiang

Abstract Some flexible appendages of spacecraft are cantilever plate structures,
such as solar panels. These structures usually have very low damping ratios,
high dimensional order, low modal frequencies and parameter uncertainties in
dynamics. Their unwanted vibrations will be caused unavoidably, and harmful to
the spacecraft. To solve this problem, the dynamic equations of the solar panel with
piezoelectric patches are derived, and an accelerometer based fuzzy controller is
designed. In order to verify the effectiveness of the vibration control algorithms, ex-
periment research was conducted on a piezoelectric adaptive composite honeycomb
cantilever panel. The experiment results demonstrate that the accelerometer-based
fuzzy vibration control method can suppress the vibration of the solar panel
effectively, the first bending mode damping ratio of the controlled system increase
to 1.64%, and that is 3.56 times of the uncontrolled system.

Keywords Vibration control • Fuzzy logic control • Piezoelectric smart
structure • Solar Panel • Experiment study

1 Introduction

In order to meet limited launch weight and costs, and more power requirement,
space craft solar panels are becoming lager and more flexible, and they usually
have very low damping ratios, high dimensional order, low modal frequencies
and parameter uncertainties in dynamics [1]. Their unwanted vibrations will be
caused unavoidably [2], and harmful to the spacecraft. Vibration suppression must
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be implemented for high precision pointing spacecrafts. In the past decades, many
theoretical and simulated works have been presented. Hence, we should pay more
attention on experiment study of vibration control.

In recent year, some experimental works on vibration control of beam and panel
structure are presented. Paolo Gaudenzi et al. proposed position and velocity control
algorithms to perform vibration control of an active cantilever beam, with the
experimental tests and a good correspondence has been obtained [3]. Guillaume
Barrault et al. implemented a H1 controller design for high-frequency control
over a specified bandwidth using a reduced order plant with corrective terms,
experiments on a cantilever beam demonstrated the effectiveness of the proposed
approach in controlling vibration due to vibration modes within the high-frequency
bandwidth of interest [4]. Z. Mohamed performed experimental investigations into
the development of feed forward and feedback control schemes for vibration control
of a very flexible and high-friction manipulator system [5]. M.A. Rastgaar et al.
introduced orthogonal eigenstructure control for active vibration cancellation in
a plate that is clamped along its four edges, experiment result show that this
method can achieve a better isolation across the entire range of frequency of the
disturbance [6].

In the present work, experiment research was conducted on a piezoelectric
adaptive composite honeycomb cantilever panel. The control algorithm is designed
based on fuzzy logic control theory, and receives the acceleration and acceleration
rate of the panel as inputs. Then the controller was run on dSPACE Real-Time
System. At last, the experimental comparison research was conducted.

2 Mathematic Modeling

A typical single-panel solar panel structure made of composite material with rect-
angular cross section having length L, width b, and thickness h is considered. The
schematic diagram of the experiment system is shown in Fig. 1. The accelerometer
is fixed on the center of the panel tip, and it is used as sensor. And there are eight
PZT patches (length lA, width bA, thickness hA) bonded perfectly on the top surface
of the panel, and they are used as one-channel actuator. The patches are close to the
clamped side of the panel to make better control effect.

The mathematical model is based on mechanics of thin walled structures [7, 8]
and liner theory of piezoelectricity. Furthermore, quasi-static motion is assumed,
which means that the mechanical and electrical forces are balanced at any given
instant [9]. When the panel is vibrating, the stress of the panel and PZT patches are

(
�p.z/ D Ep"p D Epz


�A.z/ D EA"A D EA .z
 �ƒ/
(1)

where Ep, EA are the elastic modulo of the panel and the PZT patches, "p, "A are
the x-direction strain of the panel and the PZT patches, �p , �A are the x-direction
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Fig. 1 Schematic diagram of the experimental system

stress of the panel and the PZT patches, 
 is the curvature of the panel in the certain
section, 
 D m=EpIp , where m is the bending moment in the certain section, Ip
is the inertia moment of the certain section, ƒ is the unconstraint strain of the PZT
patches, it can be calculated by the following equation:

ƒ D d31 � UA=hA (2)

where UA is the control voltage loaded on the PZT patches, d31 is the piezoelectric
constant of the PZT patches.

Then, expressing and solving the moment equilibrium about the centroid of the
beam section

Z 1
2 h

� 1
2 h

�pbhzd z C 8

Z 1
2 hChA

1
2 h

�AbAhAzd z D 0 (3)

we can obtain


 D 48d31UAEAbAhA .hC hA/

Epbh4 C 24EAbAh2h
2
A C 48EAbAhh

3
A C 32EAbAh

4
A

(4)

So the corresponding nominal bending moment induced in the panel by the
actuators can be calculated as

M DmlA D 
EpIplA D 48d31EAEpIpbAhA .hChA/ lA

Epbh4 C 24EAbAh2h
2
A C 48EAbAhh

3
A C 32EAbAh

4
A

�UA
(5)

By applying Hamilton’s principle, the finite element formulation of the solar
panel structure can be derived. The equations of equilibrium governing the linear
dynamic response of a system of finite elements are

M Rq C C Pq C Kq D Ff � Fcontrol (6)
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where M, C, K are the mass, damping and stiffness matrix respectively, q, Pq,
Rq are the displacement, velocity and acceleration vectors of the finite element
assemblage, Ff, Fcontrol are the disturb force and control force matrixes, and

Fcontrol D ˚
M .UA/ 0 � � � 0 �T .

Damping matrixes is calculated by Rayleigh damping model as follow:

C D aMCbK (7)

3 Fuzzy Controller Design

Since the sufficiently precise process mathematic model is hard to get and it
presence of non-linearity in this issue, fuzzy controller will be very suitable.
In this paper, a Mamdani-type fuzzy inference system, which consists of two
inputs and one output, was constructed by using the Fuzzy Toolbox of Matlab.
The controller receives the acceleration (a) and acceleration rate ( Pa) of the solar
panel tip as inputs, while gives the control voltage (V ) as output. Triangular and
trapezoidal shape membership functions were chosen both for inputs and output,
the membership function plots is shown in Fig. 2. Forty-nine rules were used to
describe the present system-controller. All rules have weights equal to 1 and use the
AND-type logical operator, show in Table 1.
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Fig. 2 Membership function plots

Table 1 Fuzzy IF-THEN rule base

a/V/ Pa NB NM NS O PS PM PB

NB NB NB NB NB NM O O
NM NB NB NB NM NM O O
NS NM NM NM NS O PS PS
O NM NS O O O PS PM
PS NS NS O PS PM PM PM
PM O O PM PM PB PB PB
PB O O PM PB PB PB PB
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4 Experiments

In order to verify the effectiveness of the proposed fuzzy controller, experimental
research was conducted on a piezoelectric adaptive carbon fiber/aluminum honey-
comb cantilever panel. The accelerometer is fixed at the tip of the panel to measure
the vibration. The PZT patches bonded perfectly on the top surface of the panel.

The control system is implemented by using dSPACE DS1005. The accelerom-
eter signal is amplified by conditioning amplifier to the voltage range of �10 to
C10 V, and the control voltage of the PZT actuator is amplified by voltage amplifier
to the voltage range of 0–200 V. The sampling period of the control system is
selected as 0.001 s.

Since the first order frequency of the panel is 3 Hz. To excite the first bending
mode of the panel, an excitation voltage ' D 100 sin .3 � 2t/C 100 was loaded
on the PZT patches. The vibration of the panel reaches the maximum amplitude
after 20 s excitation, and then the excitation voltage was deactivated. The resonance
and damping response of the panel is shown in Fig. 3a, and the excitation voltage is
shown in Fig. 3b.

In order to verify the effectiveness of the fuzzy controller, the experimental
comparison research was conducted. To make the same comparison condition, the
same sine wave excitation voltage was loaded on the PZT patches for 20 s, and then
fuzzy controller turned on. The attenuation of the vibration effects with controlled
and uncontrolled are compared in Fig. 4a. The control voltage is shown in Fig. 4b.

From Fig. 4a we can get that: the decay time of the first bending mode vibration
with fuzzy logic control effect is about 12 s, when compared with the open-loop
decay time (more than 50 s), it reveals a great improvement on the response
attenuation. And the logarithmic attenuation rates of every adjacent period are
calculated, shown in Fig. 5a. The damping ratio of the controlled system is 1.64%,
it’s 3.56 times of the uncontrolled system (0.46%). The frequency response of the
controlled and uncontrolled system is shown in Fig. 3. The first order resonance
experiment Fig. 5b.
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5 Conclusions

The problem of vibration control for an active cantilever panel has been considered
in the present research. An accelerometer based fuzzy control system has been used
for its solution. By implemented dSPACE Real-Time System, the control system
was established. Experiment results demonstrate that the fuzzy controller proposed
in this paper can suppress the bending vibration of the composite panel effectively.
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Seismic Vibration Attenuation of a Structural
System Having Actuator Saturation
with a Delay-Dependent H 1 Controller

H. Yazici, Rahmi Guclu, and I.B. Kucukdemiral

Abstract This paper deals with the design of state-feedback delay-dependent
H1 controller for active vibration control problem of seismic-excited structures
having actuator delay, L2 disturbances and actuator saturation. First sufficient delay-
dependent criteria are developed by choosing a Lyapunov-Krasovskii functional
candidate for a stabilizing H1 synthesis involving a matrix inequality conditions.
Then actuator saturation phenomenon is added to the controller design using LMI
constraints. The sufficient conditions for designing such controller are obtained
in terms of delay-dependent bilinear matrix inequalities (BMIs). To overcome
nonlinear optimization problem involved in the delay-dependent conditions, a
cone complementary linearization method is used to find a feasible solution set.
Using proposed method, a suboptimal controller with maximum allowable delay
bound, minimum allowable disturbance attenuation level under actuator saturation
constraints can be obtained simultaneously by a convex optimization technique. A
four-degree-of-freedom structural system subject to Kobe Earthquake excitations is
used to illustrate the effectiveness of the approach through simulations. Simulation
results show that the proposed controller is very effective in reducing vibration
amplitudes of storeys and guarantees stability at maximum actuator delay bound
under actuator saturation constraints.

Keywords Active vibration control • H1 control • Actuator delay • Actuator
saturation • Linear matrix inequalities
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J. Náprstek et al. (eds.), Vibration Problems ICOVP 2011: The 10th International
Conference on Vibration Problems, Springer Proceedings in Physics 139,
DOI 10.1007/978-94-007-2069-5 56, © Springer ScienceCBusiness Media B.V. 2011

413

hyazici@yildiz.edu.tr
guclu@yildiz.edu.tr
beklan@yildiz.edu.tr


414 H. Yazici et al.

1 Introduction

Theoretical and experimental results show that active control methods can reduce
the maximum response of building structure against dynamic excitations suc-
cessfully [1]. However, one important issue of active structural control is the
existence of time delay phenomenon. In active control process, unavoidable time-
delay may appear especially in control channel which mainly results from on-line
data acquisition from long distance sensors at different location of the structure,
computing the control forces, transmitting data and signals to actuator and applying
control forces to the structure. Due to time-delay in control input, unsynchronized
control forces are applied to the structure and this may cause some amount of
degradation in control efficiency or even instability of system. Apart from actuator
delay, one of the main sources of instability is the actuator saturation phenomenon
for the active vibration control problem of structural systems [2]. Due to the
stochastic nature of seismic and wind loadings, it is conceivable that the required
control force may exceed the capacity of the actuator in active vibration control of
structural systems application, resulting in actuator saturation. Actuator saturation
may cause serious deterioration in the performance of the closed-loop system, also
and may lead to instability. In this study, an approach based on LMI and cone
complementary algorithm is presented for designing delay-dependent H1 controller
which provides best performance depending on the actuator saturation limit.

2 Formulation of the Problem

Consider a class of time delayed systems with input saturation and external
disturbance as follows:

Px.t/ D Ax.t/C Bhsat.u.t � h//C Bww.t/

z.t/ D Cx.t/; x.t/ D 0; t 2 Œ� Nh; 0� (1)

where x.t/ 2 <n is the state vector. u.t/ 2 <mu is the control input, w.t/ 2 <mw is
the disturbance input acting on the system, z.t/ 2 <p is the controlled output. Then
A, Bh, Bw, and C are known real constant state space matrices with appropriate di-
mensions. Also, sat(�) is the standard saturation function with unity saturation level,
i.e, sat.u/ D Œsat.u1/sat.u2/ : : : sat.umu/�

T, where sat.u/ D sign.ui/min f1; juijg.
Here we mildly harm the notation by using sat(�) to denote both the scalar valued and
vector valued saturation functions. On the other hand, the delay h is assumed to be
a fixed time delay which satisfies 0 < h 	 Nh. Here, Nh are known positive constants.
Throughout this work, we assume that the disturbance signals acting on system
have bounded energy, i.e., W•W D fw W<C ! <mw I R1

0
wT.t/w.t/dt 	 ı < 1g

for some known constant ı > 0. Then our goal is to find a suitable state-feedback
control law in the form of u(t) D Kx(t), such that the closed-loop system exhibits a
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globally asymptotic stable behaviour and minimum H1 gain from w(t) to z(t) where
disturbances distribute from the set W•. The following lemma is useful in providing
the main results of this paper [3].

Lemma 1. Let u; v 2 <m with u D Œu1u2; : : : ;um�
T and v D Œv1v2; : : : ;vm�

T.
Suppose that jvij 	 1 for all i 2 [1, m]. Then, sat.u/ 2 co fDiu C D�

i v W i 2 Œ1;2m�g
where co denotes the convex hull. From Lemma 1, we can write sat.Kx.t � h// D
DiKx.t � h/ C D�

i Hx.t � h/; i D Œ1;2mu �. And applying the variable change,
BsW D Bh.DiK C D�

i H/ the closed-loop system can be obtained as below.

Px.t/ D Ax.t/C Bs.x.t � h//C Bww.t/

z.t/ D Cx.t/; x.t/ D 0; t 2 Œ � Nh; 0� (2)

3 Simulation Study

In this section, simulations are carried out in order to illustrate the effectiveness
of the proposed controller in reducing the effect of earthquakes on structures. For
simulation study, a four-storey structure is modelled (Fig. 1) [1]. The structural
system has been simulated against the ground motion of Kobe Earthquake (Fig. 1)
[8]. During the simulation the mass, damping and stiffness coefficients for storey
are assumed to be as follows: m1 D 450, m2 D m3 D m4 D 345 ton, c1 D 26.170,
c2 D 490, c3 D 467, c4 D 410 KNs/m, k1 D 18.050, k2 D 340,000, k3 D 326,000,
k4 D 280,000 KN/m.

Figure 2 shows the time responses, frequency responses for the considered struc-
ture and time history of the applied control force saturated Nh D 0:0407. Solving the
control problem by using Yalmip parser with Sedumi solver [9, 10] under Matlab,

0 10 20 30 40 50 60 70 80
-2

0

2

time (s)

(d
2 x 0/

dt
2 ) 

(m
/s

2 )

0 10 20 30 40 50 60 70 80
-0.2

0

0.2

time (s)

(d
x 0/

dt
) 

(m
/s

)

0 10 20 30 40 50 60 70 80
-0.02

0

0.02

time (s)

x 0 
(m

)

a b

k1

k2

k3

k4

m4

m3

m2

m1

u

y1

y0

y2

y3

y4

c1

c2

c3

c4

Fig. 1 (a) Physical model of the structural system and (b) time responses of Kobe Earthquake
excitation



416 H. Yazici et al.

0 10 20 30 40 50 60 70 80
-1

-0.5

0

0.5

1

time (s)

F
u
 (

N
)

0 20 40 60 80
-0.1

-0.05

0

0.05

0.1

time (s)

x 2 (
m

)

0 20 40 60 80
-1.2

-0.8

-0.4

0

0.4

0.8

1.21.2

time (s)

(d
2 x 2/d

t2 ) 
(m

/s
2 )

0 20 40 60 80
-0.1

-0.05

0

0.05

0.1

time (s)

x 4 (
m

)

0 20 40 60 80
-1.2

-0.8

-0.4

0

0.4

0.8

1.21.2

time (s)

(d
2 x 4/d

t2 )(
m

/s
2 )

Uncontrolled

Controlled

Uncontrolled

Controlled

Uncontrolled

Controlled 

Uncontrolled

Controlled

10
-1

10
0

10
1

10
2

-80

-60

-40

-20

0

20

40

6060

frequency (Hz)

x 2/x
0

10
-1

10
0

10
1

10
2

-40

-20

0

20

40

60

80

100100

frequency (Hz)

(d
2 x 2/d

t2 )/
x 0

10
-1

10
0

10
1

10
2

-80

-60

-40

-20

0

20

40

6060

frequency (Hz)

x 4/x
0

10
-1

10
0

10
1

10
2

-40

-20

0

20

40

60

80

100100

frequency (Hz)

(d
2 x 4/d

t2 )/
x 0

Uncontrolled

Controlled

Uncontrolled

Controlled

Uncontrolled

Controlled

Uncontrolled

Controlled

a

b

c

Fig. 2 (a) Time responses, (b) frequency responses of the second and fourth storeys and (c) time
history of the applied control force



Seismic Vibration Attenuation of a Structural System . . . 417

we achieve the following optimal values: the allowable upper actuator delay bound
Nh D 0:0407 s and minimum allowable disturbance attenuation level � D 444,39
using cone complementary algorithm and the controller gain is obtained as K D
NLX�1 D ��0:1937 0:3433 0:0109 0:0891 �2:1265 �1:7608 �1:8466 �1:8975 �.

As it can be observed from Fig. 2, satisfactory vibration suppression is achieved
by the proposed delay-dependent H1 controller under actuator saturation. Since
the system has four degrees of freedom, there are four resonance frequency points
at 0.54, 3.55, 6.56, and 8.86 Hz. Note that the first mode is the most dangerous for
structures during an earthquake. However, it is obvious that this mode is successfully
suppressed by the use of proposed controller.

4 Conclusions

This paper presents an approach for designing a delay dependent state feedback
H1 controller to attenuate the vibration of seismic excited structural system with
actuator delay and actuator saturation. The performance of the proposed control
approach and the system stability are demonstrated by numerical simulation results.
This results show that, in spite of the actuator saturation, the designed controller is
all effective in reducing vibration amplitudes of storeys and guarantees stability at
maximum allowable actuator delay bound.
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Active Vibration Control of Seismic-Excited
Structural System with LMI Based Dynamic
Output-Feedback H1 Controller

H. Yazici, Rahmi Guclu, and G. Keskin

Abstract This paper is concerned with the active vibration control of multi-degree-
of-freedom-structure, which is effected by earthquake. To obtain desired time
history and frequency responses for solution of active vibration control problem,
linear matrix inequality (LMI) based output-feedback H1 controller is designed in
this study. The time history of ground motion of the Northridge earthquake, which
is a disturbance input, is applied to modeled structure. At the end of the study,
the time history of the storey displacements, velocities and frequency responses
of both controlled and uncontrolled cases are presented and results are discussed.
Performance of the designed controller has been shown for the different loads and
disturbance using ground motion of the Northridge Earthquake.

Keywords Active control • LMI • Dynamic H1 control • Output-feedback
• Vibration • Structure

1 Introduction

In recent years, remarkable progress has been made in the field of active vibration
control of engineering structures subjected to earthquakes and strong winds.
Proposed techniques to minimize the structural vibrations, in general, consist of two
categories, namely passive control systems and active control systems [1]. Passive
systems add damping to the structure or isolate it from the source of environmental
excitation, thus reducing vibration. Active systems have the advantage of strong
capacity. Active devices can be designed to influence a number of vibration modes.
Hence, active control is most suited for a multi-degree-of-freedom structure, which
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the response can be influenced by a number natural mode. The effects of the active
control are obviously superior to the passive control in decreasing the response of
structure vibration. Theoretical and experimental results show that active control
methods can reduce the maximum response of structural systems against dynamic
excitations. Kose et al. designed static output feedback controller to attenuate the
structural vibrations against earthquake excitation [2]. Guclu and Yazici applied a
Fuzzy PID controller design in order to mitigate Seismic-Vibration of a Non-linear
Structural System with an ATMD [3].Yazici and Guclu designed LMI based mixed
H2 /H1 state and output feedback controller for active vibration control of seismic
excited structural system [4].

In this study LMI based dynamic output-feedback H1 controller is designed
for active vibration attenuation problem. In order to show effectiveness of the
proposed approach, a five-degree-of freedom structural system is modelled using
a spring-mass-damper subsystem. The system is then simulated against the real
ground motions of Northridge earthquake. Simulation results exhibit that efficient
vibration suppressions are achieved by use of the proposed LMI based dynamic
output-feedback H1 controller.

2 Dynamic Model of Structural System

In this study, a five-storey structure is modeled in Fig. 2a. Since the destructive effect
of earthquakes is mainly the result of horizontal vibrations, the degrees of freedom
of the structure have been assumed only in this direction. During an earthquake, the
maximum inter-storey shear force occurs on the first storey. Assuming equivalent
storey stiffness and ultimate capacities, the destructive effect of an earthquake is
expected to be the largest on the first storey. Besides, it is well known that the
maximum displacements and velocities are expected at the top storey of structures
during an earthquake. Therefore, active control devices (actuators), which supplies
energy to suppress seismic vibrations, are installed on the first and top storey of the
structure. The modeled structural system is shown in Fig. 1. Here, m1 is movable
mass of the ground storey, the mass of each storey is m2, m3, m4, respectively.
x1, x2, x3, x4 are the horizontal displacements and x0 is the earthquake-induced
ground motion disturbance to the structure. The masses, damping and stiffnesses
for each storey are assumed to be identical, and the realistic structural parameters
are given as m1 D 450, m2 D m3 D m4 D m5 D 345 ton, c1 D 26.170, c2 D 490,
c3 D 467, c4 D 410, c5 D 390 KNs/m, k1 D 18,050, k2 D 340,000, k3 D 326,000,
k4 D 280,000, k5 D 240,000 KN/m. All springs and dampers are acting in horizontal
direction. The equations of motion of the system can be obtained easily using
Lagrange equations as below:

M RX C C PX C KX D Fu C Fw (1)
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Fig. 1 Generalized output-feedback control system

Here, [M], [C], [K] are the mass, damping and stiffness matrices of the structure,
respectively. Also, Fu is control force and Fw represents disturbance input.

3 Dynamic Output-Feedback H1 Controller

In the last two decades, robust control problems have been studied effectively in
many fields of control engineering. Active vibration is one of the main topic in
these research works and still remains attractive for new control design schemes.
H1 control depends on minimizing the infinitive norm of transfer function matrix
which is written from controlled output to disturbance input in order to avoiding
the disturbance input to affect the system. Therefore, H1 control is very suitable
control algorithm for the structural systems which are under affect of disturbance
inputs with unknown magnitude as earthquakes.

Equation of motion of the structural system (1) arranges in state-space form for
H1 control design. Figure 1 shows a general plant.

In generalized system chosen matrices and vectors for controller design is given
in equality (2).

Px D Ax C B1w C B2u

z D C1x CD11w CD12u

y D C2x CD21w CD22u (2)

Here, A, B1, B2, C1, C2, D11, D12, D21, D22 is respectively system matrix, distur-
bance input matrix, control input matrix, performance output matrix, measurement
matrix, disturbance input matrix for performance output, control input matrix for
performance output, disturbance input matrix for measurement, control input matrix
for measurement. Also, x 2 <n, w 2 <m1 , u 2 <m2 , z 2 <p1 , y 2 <p2 show state
vector, disturbance input vector, control input vector, performance output vector,
and measurement vector, respectively.
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4 Simulation Results

The structural system has been simulated against the ground motion of Northridge
earthquake. Earthquake ground motions are used as input to a building structure.
The corresponding earthquake motions are shown in Fig. 2b. The horizontal
displacements of the related storeys are obtained by on-line integration of storey
accelerations which are caused by the earthquake effect, see Fig. 3a. This figure
indicates displacements and velocities of the time responses of the second and fifth
storeys of the considered structure, respectively, for both controlled and uncon-
trolled cases. As can be seen from the figure, satisfactory vibration suppression
is achieved by the designed H1 controller. During an earthquake, the maximum
displacements are expected at the top storey of a structure. The displacements
of the fifth storey are minimized successfully using H1 controller. Figure 3b
shows the frequency responses of the second and fifth storey displacements and
velocities, respectively, for both controlled and uncontrolled cases. Since the system
has five degrees of freedom, there are five resonance frequency points at 0.4852,
2.8116, 5.2554, 7.3001 and 8.9607 Hz. As expected, the upper curves belong to
the uncontrolled system. When the response plots of the structural systems with
uncontrolled and controlled cases are compared, a superior improvement in the
mitigation of the resonance values is observed with the proposed controller. The first
mode is the most dangerous during an earthquake and it is suppressed successfully
by the use of H1 controller. As a result, Figs. 3 and 4 show the robustness of the
proposed H1 controller and control force. It is desired that the controller remains
stable and effective when the structure is subjected to seismic excitation.
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Fig. 3 Controlled and uncontrolled displacement and velocities (a) time responses and (b)
frequency responses of the second and fifth storeys

5 Conclusions

In this study, H1 controller have been designed for a multi-degree-of-freedom
structural system having the parameters of a real building and simulation results
have been presented. The main idea behind proposing H1 controller has great
potential in active structural control. The system is modeled including the two
actuators which are installed on first and fifth storey. The structural system is then
subjected to Northridge Earthquake vibrations effects. The simulation results exhibit
that the implementation of H1 controller shows a good response as far as absorbing
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the vibration due to earthquake effects. The improvement in resonance values and
the decrease in vibration amplitudes support this result. Robustness of the proposed
H1 controller is desired that the controller remains stable and effective when the
structure is subjected to seismic excitation.
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Active Vibration Control of Hydrodynamic
Journal Bearings

J. Tůma, J. Šimek, J. Škuta, J. Los, and J. Zavadil

Abstract Rotor instability is one of the most serious problems of high-speed rotors
supported by sliding bearings. With constantly increasing parameters, new machines
problems with rotor instability are encountered more and more often. Even though
there are many solutions based on passive improvement of the bearing geometry to
enlarge the operational speed range of the journal bearing, the paper deals with a
working prototype of a system for the active vibration control of journal bearings
with the use of piezoactuators. The actively controlled journal bearing consists of
a movable bushing, which is actuated by two piezoactuators. It is assumed that the
journal vibration is measured by a pair of proximity probes. Force produced by
piezoactuators and acting at the bushing is controlled according to error signals
derived from the proximity probe output signals. The active vibration control was
tested with the use of a test rig, which consists of a rotor supported by two
controllable journal bearings and driven by an inductive motor up to 23,000 rpm.
As it was proved by experiments the active vibration control extends considerably
the range of the rotor operational speed.
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control • Oil film instability

J. Tůma (�) • J. Škuta • J. Los • J. Zavadil
Faculty of Mechanical Engineering, VSB – Technical University of Ostrava, Ostrava,
Czech Republic
e-mail: jiri.tuma@vsb.cz; jaromir.skuta@vsb.cz; jaroslav.los.st@vsb.cz; jaromir.zavadil.st1@vsb.
cz

J. Šimek
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1 Introduction

Both the VSB – Technical University, Faculty of Mechanical Engineering and
TECHLAB Ltd., Prague, are focused on long-term research in the field of rotor
dynamics. One of the most serious problems is instability of high-speed rotors due to
the journal bearing oil film. To study possibilities of affecting rotor behavior by con-
trolled movement of bearing bushings, a test stand was designed, manufactured and
assembled. Even though there are many solutions based on passive improvements of
the bearing geometry to enlarge the operational speed range of the journal bearing,
such as a lemon bore, pressure dam, tilting pad, etc., the approach to preventing the
journal bearing instability, presented in the paper, is based on the use of the active
vibration control.

Many authors pay attention to the active control of sliding bearings with the use
of magnetic actuators as for example [1, 2]. Piezoactuators as a tool to control of
rotating machines have been intensively investigated in the literature since the end of
1980s. One of the first original contributions dated from the beginning of the 1990s
[3]. These papers did not study the effect of the oil film on the onset of instability
and its suppression using the active vibration control. Worth mentioning are papers
[4] and [5] dealing with the problem of the rotor instability. Because of the lack of
information, it was decided to start research of methods suppressing sliding journal
bearing instability by the active vibration control. The research work was granted
by the Czech Science Foundation as a part of the research project No. 101/07/1345
Active control of journal bearings aimed at suppressing the rotor instability”.
The control system adds an electronic feedback to the rotor-bearing system actuating
the position of a movable bushing. The current passive damper changes into an
active component of the system with controllable properties. The laboratory test
facilities, including the journal bearing equipped with the movable bushing was
designed by TECHLAB Ltd., Prague. The research group of Technical University
of Ostrava developed the control system, which is based on piezoactuators, and put
the system into operation [6, 7].

2 Test Stand

The photos of a controllable journal bearing arrangement, which is implemented for
the active vibration control, are shown in Fig. 1. The test rig consists of a rigid shaft
of 30 mm diameter supported in two cylindrical hydrodynamic journal bearings.
Radial clearance is 45 �m. Bearing span is 200 mm. It is possible to put one or two
discs on the shaft, thus increasing bearing load and rotor mass. However, lowest
stability limit should be achieved with the minimum bearing load, i.e. with hollow
shaft without discs. The test shaft is driven by high-frequency motor through an
elastic membrane coupling, constituting two joints, so that the shaft is decoupled
from motor and free to move. The test rig was designed for speeds up to 23,000 rpm.
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Fig. 1 Arrangement of the test rig and the controllable journal bearing

Bearing bushings are supported in rubber “O” rings, which ensure sealing of oil inlet
and at the same time enable movement of bushings within the clearance in bearing
casing. Bearing bushings can be excited by means of piezoactuators oriented in
vertical and horizontal directions and fastened to the frame. The preloaded open-
loop LVPZT piezoactuators are of the P-842.40 at the coupling and P-844.60 type
at the shaft free end. Both the piezoactuator types require a low voltage amplifier
with the 100 V peak value at the output. The pushing force produced by the P-
842.40 type is of 800 N and the pulling force only 300 N. The piezoactuator travel
range is up to 90 �m. The same travel range reaches the LVPZT piezoactuator of the
P-844.60 type while the pushing force is up to 3,000 N and the pulling force is up
to 700 N in contrast to the P-842.40 type. Concerning the lubricant, it was initially
used the hydraulic oil of the VG 32 grade and then bearing special oil of the OL-P03
grade for high-speed grinder spindle bearing.

Shaft movement is measured by two pairs of proximity probes. Firstly the eddy
current sensors IN-085, supplied by Brüel & Kjær Company, were tested, but
after some problems with the measurement errors the capacitive sensors of the
capaNCDT CS05 type supplied by the Micro Epsilon Company, were installed.

3 Active Vibration Control

There is a critical angular velocity �CRIT at which the rotating shaft becomes
unstable due to the properties of the oil film [2]. If a feedback between the shaft
position and bushing position with respect to the bearing housing is introduced then
the critical speed is enlarged to the value

�MAX D �CRIT

p
KP C 1 : (1)

where KP is the gain of the open control loop. The control system does not stabilize
the behavior of the journal bearing directly by changing the position of the bearing
bushing, but indirectly by changing force that acts on this bushing. Except of
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Fig. 2 Arrangement of piezoactuators and dependence of their force on displacement

the controller gain, the displacement of the bushing depends on stiffness of its
connection with the bearing body through rubber seal rings as it is shown in Fig. 2.
The dependence of the piezoactuator travel and force on electrical voltage and the
dependence of clamping force on bushing displacement are depicted on the right
side of Fig. 2. The working point of the electromechanical system results from the
voltage which is supplied to the piezoactuator. The gain KP of the open control
loop results not only from the setting up of the controller, but from the property of
the bushing clamping as well. Properties of the piezoactuator of the P-844.60 type
(catalogue values) and measured stiffness of clamping (5.5 � 106 N/m) gives the
bushing travel range which is equivalent to the control variable range. The range of
the rotor stable rotational speed is limited by the travel range of piezoactuators and
measurement errors of the proximity probes.

As was mentioned earlier, the signal from the proximity probes is connected
to the dSpace signal processor. The output of the signal processor is connected to
the input of the amplifier that powers the piezoactuator. The electronic feedback
(see Fig. 3) in the below presented experiments was of the proportional controller
type. Although improved dynamic properties of the control loop require adding a
derivative component, the noisy signal produced by the proximity probes is the
reason, for which the derivative feedback was not used [8]. Even if the sensors based
on the electrical capacity principle have a smaller error than the eddy current ones,
the active vibration control has been tested with sensors based on eddy currents.

The shaft rotational speed during the tests under active control (ON) and without
active control (OFF) was increasing at the ramp rate of 7,000 rpm per a minute for
all measurements. For the oil of the VG 10 grade the onset of instability starts at
4,300 rpm. Because the piezoactuator travel range cannot cover the change of the
shaft position from the very beginning up to the level of the bushing centre position,
the active vibration control is switched ON when the shaft lifts up into the stabilized
position, which corresponds approximately to 3,000 rpm. Due to the measurement
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Fig. 4 Time history of the rotor rotation speed when the active vibration control is ON and OFF

error the controller output voltage starts to oscillate with a limited magnitude. As is
clear from Fig. 4, if the active control is switched ON during the rotor run-up, the
onset of instability is changed to 7,300 rpm. This increasing of the limit speed corre-
sponds to the controller gain. The result of measurements at half the open-loop gain
(50%) is shown in the middle part of Fig. 4. The onset of instability occurs at about
6,200 rpm. The active vibration control is immediately switched OFF after starting
the unstable vibration with frequency, which is 0.475 multiple of the shaft rotation
frequency. This phenomenon is called “whirl” due to the oil film and is different
from the first natural frequency of the shaft, which is equal to a constant value.

As is demonstrated in Fig. 4, the active vibration control significantly extends the
range of operating rotational speed. With active control ON, onset of instability is
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increased by about 3,000 rpm in comparison with the operating range without the
active vibration control. The electronic feedback is clearly seen as a complementary
way to the traditional journal bearing design modification, which prevent instability
or shift the rotor instability onset to higher rotational speed.

4 Conclusions

The test rig for experimental investigation of affecting behavior of the rotor
supported in sliding bearings by external excitation was put into operation. The
rotational speed of the rotor is up to 23,000 rpm. The test rig consists of a rigid shaft
of 30 mm diameter supported in two cylindrical hydrodynamic journal bearings
with the span of 200 mm. Standard behavior of the rotor was achieved with low
viscosity oil, with which the oil film had insufficient load capacity to shift journal
centre into unstable position at the bearing centre. The proposed goal of the project
was achieved through controlled movement of only one of two bearing bushings.
The bearing bushing was being moved by means of two piezoactuators oriented
in vertical and horizontal directions. The shaft rotational velocity, at which occurs
the onset of instability, was substantially increased. It seems, that there is a large
potential for further improvements, which could lead to active control of high-speed
rotor behavior in real operating conditions.

Acknowledgments The presented results have been obtained during the solving o research project
SP201118/2011 supported by the Ministry of Education, Youth and Sport of Czech Republic.
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Vibrations Reduction of Industrial Sewing
Machines

P. Šidlof and V. Votrubec

Abstract This paper deals with balancing of industrial sewing machines. We have
proposed an eccentric balancing mechanism that balances crank mechanism of the
needle bar. It significantly reduces vibrations. Big advantage is that the variation
of drive shaft angular velocity only slightly raises. To create a new computational
apparatus we began to use and supplement new simulating software MathModelica.
Optimization, some calculations and evaluations are then executed in software
Mathematica.

Keywords Sewing machine • Balancing • Ununiform angular velocity
• MathModelica

1 Introduction

Industrial sewing machines have high-performance parameters and consequently
high dynamic forces, vibrations and noise. The main dynamic forces source of most
of sewing machines is the needle bar mechanism due to the fact that the needle bar
has relatively high stroke and mass. Less influence has the thread feeder mechanism
and possible rotary imbalances. Many methods for reduction of dynamic forces
were patented, but none of them is practically used, because they are expensive,
require large space or do not reduce vibrations sufficiently. In VÚTS an industrially
implementable method using eccentric balancing mechanism that balances crank
mechanism of the needle bar was patented. Kinematically it is similar to a crank
mechanism with very small stroke. Inertial forces are balanced almost entirely and
imbalanced torque is relatively small. According to small stroke it is a big advantage
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434 P. Šidlof and V. Vorubec

that the balancing mechanism only slightly raises the variation of drive shaft angular
velocity, which influences other mechanisms adversely.

For optimal balancing of the whole machine which contains a number of other
mechanisms, it is necessary to use appropriate software. One of the best and
most universal software is software Mathematica by Wolfram Research Company.
Recently we began to use new simulating software MathModelica for creation of a
new computational apparatus of mechanisms. Optimization and some calculations
are then executed in Mathematica.

2 Balancing of Crank Mechanism of the Needle Bar

Dynamic forces of the crank mechanism are balanced by many methods that are
used e.g. in combustion engines. The simplest method is partial balancing. Usually
only the first or second harmonic component is balanced by means of rotary
balancers placed on shafts that rotate in opposite direction in the same or twice
angular velocity considering the crank shaft. The reduction of the first harmonic
force component in the direction of needle bar motion is possible to achieve by
a balancer on crank shaft which is always used but the force component in the
orthogonal direction rises. Another method is balancing through passive vibratory
dumpers. Total balancing of dynamic forces is possible to achieve simply by inverse
crank mechanism and for total dynamic torque balancing it is necessary to use other
balancing crank mechanisms.

In our proposed method we used at first two balancing mechanisms on the
prototype (main and auxiliary), but only main mechanism was implemented in
the production due to economic reasons [1]. The principle of the main balancing
mechanism is obvious from the Fig. 1. Parts of the machine frame are depicted
in the darkest color. On the drive shaft the inner cam is rotated by 180ı against
the crank of needle bar mechanism. The inner cam is embedded in outer cam that
substitutes connecting rod of the mechanism. The balancer is guided by two flat
springs so that it conducts movable motion in the opposite direction than the needle
bar. Its trajectory is close to a parabola. Mounting on springs is without clearance
and cheap to manufacture. It is possible to use it because the stroke of the balancer
is multiple times smaller than the stroke of the needle bar. The mass of the balancer
is bigger in the similar ratio. The outer cam that substitutes the connecting rod is the
main construction problem, because its angular acceleration regarding to geometric
similarity is as large as the connecting rod angular acceleration of the needle bar
mechanism.

The auxiliary balancing mechanism of the machine prototype had similar con-
struction and it was placed on the opposite end of the drive shaft. Its balancer moved
in the same sense as the needle bar, but it had significantly smaller dimensions and
stroke than the main balancing mechanism.

The balancing was evaluated by measurement on the machine using accelerom-
eters. The measurements were sampled as a function of main shaft angle of rotation
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Fig. 1 Schema of the needle
bar mechanism, thread feeder
mechanism and main
eccentric balancing
mechanism

Fig. 2 Effective velocities of vertical vibrations of sewing machine arm as a function of drive
shaft revolutions (solid line – machine with main and auxiliary balancing mechanism, dotted line –
machine only with main balancing mechanism, dashed line – a competitive machine of a renowned
producer)

so that quality statistic processing would be possible. Vibrations were evaluated by
transferring to time domain. A simple and often used method of vibration check is
calculation of effective velocities of vibrations. On the Fig. 2 there is a comparison
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of results of measurement on a machine with balancing mechanisms (dotted line)
and on a machine from a renowned producer (dashed line), which had similar
parameters of the needle bar mechanism but more massive frame and bigger mass.
It’s allowed revolutions were only 2,500 RPM. Machines were embedded in silent
blocks in the working desk. Effective velocities were evaluated in a frequency range
5–2,200 Hz. It is clear that application of the balancing mechanisms leads to a
significant reduction of vibrations.

Bad influence of additional balancing mechanisms may be the increase of
irregularity of drive shaft rotation that is caused by addition of masses with
reversible motion.

3 Irregularity Increase of Drive Shaft Rotation
due to the Balancing Mechanism

Masses with reversible motion cause angular velocity change of the drive shafts.
Inside the sewing machine other important mechanisms work near dead centers
of the needle bar and due to the stopping of the needle bar, the shaft velocity is
maximal near dead centers. This increases the dynamic stress of mechanisms and
it also changes the frequency content of motions. For qualitative appreciation the
simplest model based on energy conservation principle [2] with only the mass of
the needle bar m and the constant total crank shaft moment of inertia I is used:

1

2
m Ps2 C 1

2
I !2 D 1

2
I !2max (1)

Here Ps denotes derivative of the bar displacement with respect to time (velocity),
! is the main shaft angular velocity and !max is its highest velocity. Velocity can be
expressed as

Ps D ds

dt
D ds

d'

d'

dt
D s0 ! (2)

Symbol s0 is the transmission ratio; the apostrophe denotes the derivative with
respect to angle '. Substituting into the Eq. 1 we can write

!.'/ D Ps
s0 D !maxq

1C m
I
s02

D !max

 
1 � m s02

2I
C 3m s04

8I
� :::

!
(3)

Sliding mass of the balancing mechanism does the same movement as the needle
bar, but with p � smaller stroke and p � bigger mass. The adjunction of the balancing

mechanism consequently causes that the element m
I
s02 extends

�
1C 1

p

	
times. In

our case it was p D 9.5 and the increase of the rotation irregularity is then practically
insignificant.
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From the Eq. 3 it is possible to estimate relation between the frequency content
of the geometric velocity (transmission ratio) of the needle bar s0and the angular
velocity !. Because the first most significant member of the series is proportional
to the second power of s0, frequencies of the main harmonic components of the
angular velocity ! are twofold to frequencies of s0. That can be dangerous in terms
of vibrations excitation. The mentioned effect has a certain analogy in rectification
of alternative current in electrical engineering.

4 The Method of Design and Calculation of Machine Balancing

The balancing of the sewing machine has to work in large range of operating
speed and a level of wear. If mechanisms are balanced through rotary balancers and
balancing mechanisms, it is convenient to use a kinetostatic method for design and
optimization of main parameters. Software capable of calculating with flexibilities
and clearances (e.g. Adams), that are expensive and inconvenient for optimization
are then used for solving design details. One of the best universal computational
software is software Mathematica from Wolfram Research Company. There the
calculation of all mechanisms and the optimization of parameters were realized.
Ten parameters were optimized there, e.g. dimensions and angular rotation of four
rotary balancers on the upper and the lower shaft and dimensions of the balancer of
the main and auxiliary balancing mechanism. The criterion was weighted maximum
of total dynamic force components and torque to the center of mass of the machine.
The optimization of the total dynamic force can be favorably figured by polar
diagrams. An example of the calculation of the balancing that comprises five main
mechanisms is on the Fig. 3.

Computational schemas of mechanisms in the software Mathematica lead to
relatively complicated equations with many constants and variables and it is easy
to make lots of mistakes. Therefore we began to use graphic oriented software
MathModelica which is also able to cooperate with the software Mathematica.

5 Application of Software MathModelica

Software MathModelica uses Modelica language which is based on object oriented
modeling. Its big advantage is describing the model directly by a system of equa-
tions, not as algorithm of solving these equations. Large libraries allow modeling of
complex problems from different fields [3].

Modeling of the mechanism is done by compiling elements. In this software it is
possible to edit and create elements according to user needs. Because the definition
of elements is quite general, it is necessary to make some modifications. The main
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requirement during the calculation is the course of inertial force and torque of
individual bodies, then courses of kinematic quantities. For these and other reasons
a new element of rigid body was created.

The advantage of software MathModelica is its compatibility with Mathematica.
Although MathModelica allows the simulation of the model, some calculations are
more convenient to execute in Mathematica. An example can be optimization of bal-
ancers in the sewing machine. In Mathematica the function is created that includes
definition of parameters for optimizing (e.g. masses of balancers), simulation of
the model in MathModelica, finding the maximum value of total inertial force etc.
This function is then part of the operator for finding the minimum. It is possible
to proceed similarly in other cases. This method eliminates most drawbacks, which
occurred in Mathematica, and makes the calculation more effective.
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6 Conclusions

To reduce vibrations of industrial sewing machines balancing eccentric mechanism
was used. This mechanism almost completely balances dynamic forces of the needle
bar mechanism. In the total balancing we must consider other mechanisms and
rotary balancers. Overall calculation and optimization were executed in software
Mathematica and a significant reduction of vibrations was achieved. In order to
facilitate the calculation, mechanisms are solved in software MathModelica and
optimization and some other calculations are executed in Mathematica.
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Monitoring of Roof Truss Girder Vibration
Using Piezoelectric Sensors – FEM Simulation

Jan Freundlich and Marek Pietrzakowski

Abstract In this paper modelling and numerical simulations of the roof truss girder
with the surface mounted piezoelectric sensors applied to monitoring purposes are
presented. In the first stage, a simply supported beam with piezoelectric sensors,
excited by time varying vertical displacements of the supports, is examined using the
finite element method (FEM) and an analytical approach. The aim of calculations
is to validate the applied finite element (FE) model of the system. The compared
results are in a good agreement and confirm the applied FE model correctness. In the
second stage, a simplified FE model of the roof truss girder is investigated. Dynamic
responses of the roof truss girder with two piezoelectric sensors are achieved using
FEM simulations. As previously, the roof truss girder is excited by the time varying
vertical movement of the supports. The influence of a local failure of the structure
on its dynamic behaviour is tested as well. A defect is modelled by decreasing
stiffness of a selected joint of the bars in the truss girder. The amplitude-frequency
characteristics are calculated and compared with those obtained for the healthy
structure.

Keywords Piezoelectric sensors • Vibration • FEM simulation • Monitoring

1 Introduction

Roof structures used in building construction are exposed to detrimental influence
of environment and various types of vibration generated by heavy vehicle traffic,
which cause alternate loads. Hence, the alternate values of stress, deflection and
acceleration appearing in the important elements ought to be monitored to detection
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and identification of failures in the early stage of evolution. Monitoring of dynamic
behaviour of structures can be realised, among other techniques, using piezoelectric
distributed transducers. A lack of additional power supply is a quite important
advantage in the case of piezoelectric sensors implementation. In order to improve
the operational performance of piezoelectric transducers numerical simulations
are often required. A great deal of theoretical and experimental research efforts
concentrate on actuation (cf [1]) and active damping of slender structures like
beams where piezoelectric sensors/actuators are mainly of the extension-type with
transverse poling direction (cf [2, 3]). In this paper numerical simulations of the roof
truss girder with the surface mounted piezoelectric sensors applied to monitoring
purposes are presented.

2 Comparative Calculations of the Piezoelectric Sensor
Performance

A simply supported beam with the piezoelectric sensor, excited by time varying
vertical movements of the supports (Fig. 1), is examined using the finite element
method (FEM) and an analytical approach. The aim of the calculations is to validate
the applied finite element (FE) model of the system. The piezoelectric sensor
is assumed to be perfectly bonded to the beam surface. The simplified coupling
model is applied, in which the mass and longitudinal inertia forces of piezoelectric
elements are ignored. The beam is modelled according to the Bernoulli-Euler theory,
namely neglecting rotary inertia and shear deformation. The viscoelastic material
properties are approximated by the Kelvin-Voigt model.

The equation of the beam transverse vibration w(x, t) excited by displacements
y1(t) and y2(t) and referred to the undeformed beam axis can be written as

EbJb

�
@4w

@x4
C �

@5w

@x4@t

�
C ¡bAb

@2w

@t2
D �¡bAb

��
1 � x

l

	
Ry1.t/C x

l
Ry2.t/

	
(1)

l

x1

x2y1(t)= w0 sinω ·t y2(t) = w0sin(ω ·t+j) 

Piezoelectric sensor

Fig. 1 Scheme of the considered simply supported beam with the piezoelectric sensor
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where: Eb and ¡b are the Young’s modulus and the mass density of the beam
material, respectively, Jb and Ab are the moment of inertia and area of the beam
cross-section, respectively, � is the damping coefficient.

The solution to the governing Eq. 1 has to satisfy the simply supported boundary
conditions.

The voltage generated by the sensor can be calculated from the formula (cf [4])

Vs D ds31Es .hb C hs/

2C

lZ
0

@2w

@x2
bs.x/dx (2)

where: bs(x) and hs indicate the width distribution and thickness of the sensor,
respectively, Es and ds31 are the Young’s modulus and piezoelectric constant of the
sensor material, C is the sensor capacitance.

The system steady-state response is expressed in frequency domain in terms of
a transfer function. The transfer function (in the complex form) relating the beam
deflection to left side support displacement is given by
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l
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The transfer function relating the output piezoelectric voltage to the left side
support displacement has the form

HV y1 D Vs.¨/
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The analogous transfer functions can be obtained relating to the right support.
The achieved transfer functions enable amplitude-frequency characteristics to

be calculated. The calculations are performed using symbolic calculation soft-
ware “Mathematica”. Vibration and generated voltage amplitudes versus excitation
frequency for phase angle 'D 0 and 'D  are calculated. The comparable calcu-
lations are performed using FE model of the considered system. The appropriate
FE model of the beam with the piezoelectric sensor is prepared. The examined
beam is modelled using 2-nodes, Bernoulli beam elements (B33 [5]). The FE model
of the beam consists of 40 elements. The piezoelectric sensor is modelled using
3D-solid, second order, piezoelectric 20-nodes elements i.e. C3D20E elements
[5]. These elements have additionally electric potential as the nodal quantity.
The FE model of the sensor consists of 24 elements. Piezoelectric coupling is
provided by introducing the piezoelectric and dielectric material coefficients. The
compared voltage frequency characteristics (Fig. 2) are similar for analytical and
FEM approaches and confirm the applied FE model correctness.
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Fig. 2 Voltage amplitude-frequency characteristics for the piezoelectric sensor

3 The FEM Calculations of a Roof Truss Girder

A simplified FE model of the roof truss girder established in MONIT project [1]
is investigated. Dynamic response of the roof truss girder with two piezoelectric
sensors is examined using FEM simulations. The first sensor is located on a bottom
chord whereas the second is located on a diagonal post (web) (Fig. 3). As previously,
the roof truss girder is excited by the time varying vertical movement of the supports.
The scheme of the considered structure is shown in Fig. 3. The amplitude-frequency
characteristics related to the node displacements and the piezoelectric sensor voltage
for the in-phase ('D 0) and out-of-phase ('D ) excitation are calculated.

In the next step, the influence of a local failure of the truss girder structure on
its dynamic behaviour is tested. The defect is modelled by decreasing stiffness of
a selected joint of the bars. The sensors are in the same position as in the healthy
structure. The amplitude-frequency characteristics for the two cases of excitation
('D 0 and 'D ) are calculated and compared with those obtained for the
undamaged structure. Examples of the voltage amplitude-frequency characteristics
of the sensor, which is situated on the bottom chord, are calculated for the roof truss
without and with failure are shown in Fig. 4.

Decreasing the stiffness of the joint causes additional resonant amplitudes of the
roof girder, which produce the voltage resonant peaks in the piezoelectric sensor.
Decreasing of the joint stiffness also results in a shift of the additional resonance
frequencies to lower values (Fig. 4). The changes in the sensor voltage response
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y1(t) = w0 • sin(w • t) y2(t) = w0 • sin(w • t + j )Damaged joint

Piezoelectric sensors

Fig. 3 Scheme of the considered roof truss with the sensors location
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Fig. 4 Voltage amplitude in piezoelectric sensor mounted on the roof truss, which is situated on
the bottom chord

give important information about the state of the monitored structure. The results
can be applied to at least qualitative evaluation of the truss joint destruction.

4 Conclusions

The FE model of the truss structure with piezoelectric sensors is established.
As a validation of the proposed FE model of the truss girder, the amplitude-
frequency characteristics of the simply supported beam with the piezoelectric sensor
is numerically investigated using the FEM and the analytical approach. The obtained



446 J. Freundlich and M. Pietrzakowski

results prove the applied FE model correctness. In the case of the truss girder
structure the influence of the local failure on its dynamic behaviour is tested. The
voltage amplitude-frequency characteristics for the healthy and locally damaged
structure are calculated and compared.

The dynamic responses achieved from FEM calculations of the healthy and
locally damaged roof girder demonstrate sensitivity and usefulness of the applied
piezoelectric sensor for the failure detection and monitoring the effects of its
progress on the examined structure dynamic behaviour.

Thus, piezoelectric sensors cooperating with data acquisition and computation
systems give an opportunity for monitoring the state of truss girders to avoid a
danger of the roof structure breakdown.

Acknowledgments This publication was supported by the European Union project “Monitoring
of technical state of construction and evaluation of its lifespan” (MONIT).

References

1. Tylikowski A., Pietrzakowski M., Freundlich J., Monitoring of vibration processes in the truss
structures using piezoelectric sensors, Proc. of the II Seminar of the Project “Monitoring of
Technical State of Construction and Evaluation of its Lifespan” (in Polish), 2010, pp. 65

2. Crawley, E.F., Anderson, E.H.: Detailed models of piezoceramic actuation of beams. J. Intell.
Mater. Syst. Struct. 1, 4 (1990)

3. Dosch, J.J., Inman, D.J.: A self-sensing piezoelectric actuator for collocated control. Int.
J. Solids Struct. 3, 166 (1992)

4. Pietrzakowski, M.: Experiment on a cantilever beam control and theoretical approximation.
J. Theor. Appl. Mech. 40(3), 667 (2002)

5. ABAQUS HTML documentation: version 6.8, Dassault Systèmes (2008)



An Application of Electromagnetic Induction
in Vibration Control

Radoslav Darula, George Juraj Stein, and Sergey Sorokin

Abstract Excessive vibration of machines and/or structures can be controlled
passively (e.g. introducing resilient elements) and/or actively (e.g. using elements
capable to adjust their properties for actual state of the vibration). An electromagnet,
as a vibration control element, can be implemented in active (or semi-active)
control strategy. This approach is analyzed in the present paper. The electromagnetic
induction occurs in a magnetic circuit exposed to variable magnetic flux, which can
be obtained e.g. by changing reluctance (magnetic resistance) of the system due to
a variable air gap, as the result of armature vibration. The lumped parameter math-
ematical model of the coupled electro-magneto-mechanical system is formulated.
The performance of the model is analyzed, assuming harmonic forced vibration.
By the induction, mechanical energy of vibration is converted into electrical one
and dissipated in the shunt resistance. Two concepts are investigated further –
electromagnet behaves as (a) a spring element (reduction of equivalent system
stiffness); (b) a damping element.

Keywords Electro-magneto-mechanical system • Stiffness modulation • Shunt
damping • Semi-active vibration control
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1 Introduction

When a yoke of an electromagnet (Fig. 1a) is exposed to vibratory motion, the
variable magnetic flux induces voltage in the closed electric circuit, as a result
of Faraday’s law of induction [1]. The induced voltage pushes current through
the closed electric circuit and thus mechanical energy from vibrating yoke is
transformed via magnetic field into electric energy, which is then dissipated in the
shunt resistance. The concept of shunted electromagnetic transducer is analyzed
in [2]. Implementation of electromagnet, as an active inertial control actuator, is
presented in [3]. Some ideas how to combine the passive springs and active vibration
isolation using ‘negative stiffness’ properties of electromagnetic elements can be
found in [4]. The eddy currents induced by electromagnets and their utilization in
vibration control are analyzed e.g. in [5].

The concept of implementation of induced currents dissipation in mechanical
structures using electromagnets was analyzed and proved experimentally in [6].

2 Electro-Magneto-Mechanical Model

The electromagnet is a complex device, which is mathematically described using a
coupled electro-magneto-mechanical model.

The magnetic circuit is composed of three reluctance terms: (a) an air gap of
width 2�d(t); (b) an iron core with flux line length lC and (c) a permanent magnet
(PM) of flux line length lPM. A coil with Nw turns is located around the core. Then,
from Ampere’s law [7] can be written

Nwii.t/ D
I
C

EH � d El D HPMlPM CHClC CHg Œ2d.t/� (1)

where ii(t) is the current induced in the electric circuit; H is the magnetic field
intensity. In general, the induced current ii(t) is negative and behaves as an energy
sink.

Assuming that the PM is operating in linear region of demagnetization curve
(Fig. 1b), then the magnetic field density at PM can be expressed in the form [8]

BPM D Br C �PMHPM (2)

where the permeability of PM is �PM D Br/Hc’, with Br remanent magnetization and
Hc’ apparent coercivity. Both parameters are material characteristics of the PM.

Neglecting the fringing effects of the magnetic flux and assuming constant cross-
sectional area throughout the magnetic circuit SC, i.e. the same magnetic flux
throughout the circuit (BPM D Bg D BC D B(t)), the magnetic flux density becomes
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Fig. 1 (a) Electromagnetic semi-active controller; (b) Demagnetization curve of PM after [8]

B.t/ D �0

2d0

ŒMPM CNwii.t/�

Œ.1C ı/C ".t/�
(3)

where the scaled parameters are: dC D lC/(2�rC), dPM D lPM/(2�rPM), ıD (dC C
dPM)/d0, dimensionless displacement "(t)Dw(t)/d0 and magnetization MPMDHc’lPM.

From Faraday’s law [1], the variation in the magnetic flux ˚(t), due to change of
air gap reluctance in the system shown in Fig. 1a, induces voltage in the coil
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(4)

Substituting the Eq. 3 into Eq. 4, connecting the shunt circuit to the coil and using
Ohm’s law for the electric circuit, ui(t) D Rii(t)

L0

.1C ı/

.MPM CNwii.t//

Œ1C ".t/= .1C ı/�2
d".t/

dt
D Rii.t/C L.".t//

dii.t/

dt
(5)

where L0 D�0SCNw
2/(2d0(1 C ı)) is the self-inductance of the coil for d0 and

L("(t)) D L0/(1 C "/(1 C ı)) is the inductance of the coil for d(t).
Equation 5 is the governing equation of the electrical system.
The electromagnetic coupling force between the mechanical and electrical

system is derived using concept of Maxwell’s pulling force [9]

FM.FM .t// D 2
1

2�0
B2.t/SC D L0

2d0N 2
w .1C ı/

ŒMPM CNwii.t/�
2

Œ1C ".t/= .1C ı/�2
(6)
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The mechanical system is represented by a SDOF mass-spring-damper oscillator
(Fig. 1a). Governing equation is derived using the D’Alembert principle [10]

F �.t/�mm
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dt2
� bd
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dt
� ks".t/ � L0

2d20N
2
w .1C ı/

ŒMPM CNwii.t/�
2

Œ1C ".t/=.1C ı/�2
D 0

(7)

with a scaled excitation force F�(t) D F(t)/d0.
Equations 5 and 7 represent a system of coupled, non-linear equations, with the

coupling terms – the non-linear displacement "(t) and the current ii(t). Because of
the coupling, the two equations need to be solved simultaneously.

3 Operation of the Vibration Controller

Let us assume that the displacement "(t) is sufficiently small, so we can linearize the
non-linear terms in Eqs. 5 and 7 using Taylor’s expansion. Then we get a system of
coupled linear equations in the form:

mm
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CRii.t/; (8)

with the scaled magnetization MPM
� D MPM/Nw. The static term of magnetic force

(which is not considered in Eq. 8) is responsible for pre-stress of the mechanical
spring ks. Depending on the air gap width d0 and the PM properties, permanent
fixation of armature to the core can occur, which is unwanted. The limitations on air
gap width d0 are analyzed in [11].

Solving the system of Eq. 8 for harmonic force excitation F�(t) D F0
�ej¨t,

introducing ii(t) D I0ej¨t, "(t) D E0ej¨t (where amplitudes F0
�, I0, E0 are complex

valued) and neglecting higher order and cross terms, we obtain
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Analyzing the expression on left hand side of Eq. 9, two coupling terms are
present, one real and the other one imaginary (the last two terms). Taking the
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Fig. 2 Response of the system for various values of shunt resistance

excitation frequency (!a) and shunt resistance (R) as parameters, based on the
denominator (!a

2 C R2/L0
2) of the two coupling terms, we can distinguish three

operation regimes of the controller:

• If R/L0 !a (high resistance value and/or excitation frequency within sub-
resonance region), then
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The electromagnet behaves as an inertia reduction element (the second term in
Eq. 10). Magnetic damping, inversely proportional to the resistance R, is added
to the system, too (the third term).

If the resistance is very high (R  L0 MPM
�), or if the shunt is disconnected,

then the Eq. 10 can be simplified further
 
ks � L0M

�
PM

2

d 20 .1C ı/2

!
� !2amm C j!abd D F �

0

E0
(11)

It means that without the shunt resistor just modulation of natural frequency,
due to downwards acting magnetic force, is obtained (Fig. 2, for R/L0 ! 1).

• If R/L0 �!a (neither resistance, nor frequency are dominant), then the system
is strongly coupled and the Eq. 9 remains unsimplified. The magnetic terms are
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function of excitation frequency, i.e. the amount of damping as well as stiffness
modulation is dependent on excitation frequency (Fig. 2 for R/L0 D 100 �/H to
R/L0 D 2 k�/H). This operation region is of particular interest, since amount of
added damping due to the electro-magnetic subsystem influence is the largest.

• If R/L0 �!a (low resistance and/or high frequency excitation), then

ks � !2amm C j!abd D F �
0 =E0 (12)

The overall magnetic field does not influence the system response, which is fully
controlled by the properties of the mechanical system (Fig. 2, for R/L0 D 10 �/H).

4 Conclusions

The linearized model of vibration controller, which implements electromagnetic
induction phenomena to convert mechanical energy into electrical and dissipate it
within a shunt circuit, was investigated. Analyzing the Eq. 9, it was shown, that the
controller operates in three regimes:

• Mechanical system is coupled only to static magnetic field (for dominant resis-
tance/inductance term, i.e. R/L0  !a). The controller is capable to modulate
natural frequency (behaves as a spring element, Eq. 11), no damping is added.

• Mechanical system is fully coupled to the electrical field (when R/L0 �!a),
where the coupling is strong. Added damping, as well as stiffness, are dependent
on excitation frequency (Eq. 9). This regime is of particular interest.

• Mechanical system is fully de-coupled (for very low resistance, high inductance
or large excitation frequency, i.e. R/L0 � !a). There is no influence of either
magnetic, or the electric circuit, i.e. the controller behaves passively (Eq. 12).

For the region with strong coupling (R/L0 �!a), there is a shunt resistance value
with maximal displacement attenuation (R/L0 � 500 �/H, Fig. 2). In general, this
value depends on the ratio of shunt resistance R and coil inductance L0.
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Suppression of the Work-Piece Vibrations
in Milling Using Active Clamp System

A. Parus, M. Hoffmann, and T. Okulik

Abstract The machining is always accompanied by vibration. In certain cases the
level of vibration is very high and may cause shortening of the tool life, poor quality
of machined surface. Operational speed and machined surface depend on dynamic
stability of three components of the machine tool-cutting system: the cutting tool,
the machine tool structure, the work-piece and the clamping system. To assure stable
machining, parameters of the cutting process have to be tuned and frequently the
machining productivity is decreased. For this reasons different types of systems are
developed for suppressing the work-piece vibration. In some cases an additional
modification of the work-piece is allowed and mounting the vibration absorber is
possible. The paper describes a modification of the work-piece dynamic properties
using active clamp system. In comparison to the vibration absorbers this solution has
a great advantageous – adaptation of the work-piece is not necessary. In the paper the
simulation results of different variants of milling process with work-piece mounted
using the active clamp are presented. Piezo actuators are used in order to assure
active influence on the work-piece. The aim of the state space feedback control
system is to minimize the amplitude of the vibration during machining process.

Keywords Active clamp system • Vibration suppression • Stability

1 Introduction

The most undesirable phenomena in machining is chatter. This results in an impaired
surface texture of the work-piece. To alleviate the problem different type of solutions
can be found in literature. During designing stage of a machine tool its dynamics
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Fig. 1 Model of the work-piece mounted in the active clamp

can be shaped to elevate the stability limit. However, in the case of existing machine
tools other methods are to be used. These may be classified into three groups.
The first of them includes methods based on reducing the effect of the phase shift
between the outer and inner modulation through relevant varying the spindle speed
[1, 2]. The next group includes methods based on adaptive control of the feed rate [3,
4]. A separate group is composed of methods to control the energy flow in the MT-
CP system through e.g. changing the tool geometry [5], using smart materials [6]
and employing different passive and active vibration absorbers [7]. Dynamics of the
mass-damping-spring (MDS) system may be shaped by introducing an additional
active element. On the basis of this assumption a concept of the work-piece active
clamp system is proposed. When the work-piece exhibits one dominant vibration
direction the vibration absorber could be used. In some cases the vibration scenario
is more complex and therefore the efficiency of suppression vibration is low. In such
cases the active clamp system acting in X and Y direction could be very effective.
The model of proposed system is presented in Fig. 1.

The work-piece is attached to the mounting plate which can be moved in XY
plane by the piezoactuators. The cutting force Fcut(t) acting on the work-piece cause
vibration, which can be suppressed by a proper control of piezoactuators.

2 Mathematic Model of the Active Clamp with Control System

To control system presented in Fig. 1 the LQG controller is used. Designing of this
type control is based on the model of the MDS system with actuators. Model of the
system is defined by sets of Eqs. 1–3.
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Where subscript p – denotes moving plate, o – work-piece object, x, y –
moving direction, a – actuator, m, K, C – mass, stiffness and damping coefficients,
lp – number of elements in piezo stack, d33 – piezo coefficient. The inputs are
piezo voltage in both direction u1 D ŒUx Uy� and cutting force u2 D ŒFcx Fcy�

considered as a disturbance.
In this model there is no coupling effect between axis x and y. Therefore LQG

controller for all axis was designed separately in similar way to [8]. However
in manufactured system this assumption could be not fulfilled. Moreover, the
properties of the active clamp system (e.g. stiffness, damping etc.) in x direction
could be different than in y direction. In Fig. 2 the frequency response function
(FRF) between piezo voltage and work-piece displacement is presented with and
without LQG controller in x and y direction.
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Fig. 2 FRF of the work-piece mounted in active clamp with and without LQG control. The work-
piece stiffness kox D 2koy

Damping increase in the vicinity of natural frequencies with active LQG
controller can be observed in Fig. 2. In results the vibration amplitude is lower than
in the case, when the work-piece is mounted without active clamp.

3 Cutting Force Model

In order to assess efficiency of vibration suppression a set of milling simulation
for different machining condition was performed. In the simulation the mechanistic
model of cutting force was employed. Equations describing the cutting forces acting
on single insert are presented in a linear form (4) [9, 10]. The location of component
forces and geometrical parameters which are included in this model are shown on
Fig. 3a.

Ft .'/ D KtcA .'/CKteb

Fr .'/ D KrcA .'/CKreb

Fa .'/ D KacA .'/CKaeb (4)

Where Ktc, Krc, Kac – factors of specific resistance for a linear model, respectively
in the tangential, radial and axial directions, Kte, Kre, Kae – coefficients are constants
of the cutting tool edge [9], A(') – the area of cut, b – width of the cut.

The experimental identification of the coefficients was conducted on the basis of
recorded cutting forces during milling with DIN 845-B K-N HSS milling shank cut-
ter (Fig. 3b). The experiment was performed on a CNC milling machine, DMU-60
Monoblock (Fig. 3c). The cutting forces were measured using Kistler dynamometer.
The work-piece was a rectangular block of ‘45’ steel. The dynamometer and the
work-piece were mounted on the machine table. Cutting forces were recorded using
a d-SPACE system. Estimation of cutting force model coefficients was performed
using method described in [11, 12].

The comparison of simulation using the parameters of a mechanistic linear model
with experimental results are presented in Fig. 4.
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Fig. 3 (a) Cutting forces in end milling, (b) Milling shank cutter DIN 845-B K-N HSS,
(c) Photography of a workstation for the measurement of cutting forces on the milling machine
DMU 60 monoblock

Fig. 4 Actual cutting force components (FX, FY , FZ ) (solid line) and forces synthesized using es-
timated coefficients (dashed line) for material constants [Ktc, Kte, Krc, Kre, Kac, Kae] D [1800, 40.5,
816, 25, 396, 3.7], (machining parameters: doc D 3 mm, n D256 rev./min., fz D 0.12 mm/tooth,
v D 20 m/min., B D 12.5 mm, z D 6)
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Fig. 5 Work-piece displacement and piezo control signal for x axis n D 300 rpm ap D 2.3 mm

4 Conclusions

The numerical simulations performed for a wide range of milling parameters
show that usage of the active clamp system is an effective method to suppress
work-piece vibration. In the Fig. 5 only selected results are presented. A gradual
increasing of vibration amplitude can be observed for machining without active
LQG control (dashed line) and we are dealing with a chatter phenomenon. active
LQG control allows to perform stable milling with lower vibration amplitude (solid
line). Moreover the absolute limit width of cut (ap) significantly grows up. From
obtained results can be assumed that using active workholder leads to improvement
of the quality and productivity and increase process.
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11. Hoffmann, M., Powałka, B., Berczyński, S., Pajor, M.: Identification of cutting forces in

frequency domain for milling. Adv. Manuf. Sci. Technol. 34(1) pp. 5–20 (2010)
12. Jayaram, S., Kapoor, S.G., Devor, R.E.: Estimation of the specific cutting pressures for

mechanistic cutting force models. Int. J. Mach. Tool Manuf. 41, 265–281 (2001)



Modelling of Piezoactuator Edge Delamination
in Active Beam Systems

Marek Pietrzakowski

Abstract The objective of the study is to develop the modelling of piezoactuator
edge delamination and the analysis of effects of the progressive damage process
on the active beam dynamic behaviour. Delamination is described as a significant
reduction of the bonding interlayer shear stiffness. It is assumed that the damaged
region extends uniformly across the actuator from its ends to the centre. The beam
is divided into sections for which the governing equations are formulated separately.
The steady-state solution is obtained taking into account boundary and continuity
conditions at the borders of the beam and actuator sections. The influence of the
length and equivalent coupling stiffness of the damaged region on the dynamic
characteristics and the control effectiveness is numerically investigated.

Keywords Vibration control • Piezoactuator • Delamination • Bonding
interlayer

1 Introduction

Techniques based on piezoelectric control show great advantages for thin walled
structures to improve their operational behaviour and ability to reduce unwanted
vibration. Relatively large deformations of piezoelectric actuator patches, generated
during the vibration control, create severe interfacial shear stresses. Alternating in
time loading and also environmental conditions initiate geometrical and material
degradation, which may progress and finally lead to a failure of the control system.
The geometrical degradation is mainly introduced as delamination, which refers
especially to adhesive interlayer damage. The adhesive degradation is characterized
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by a local concentration of micro-cracks, which leads to reduction of the glue shear
stiffness and in consequence decreases significantly the coupling performance of
piezoactuators and their operational effectiveness. In the field of damage detection
well established are techniques based on vibration responses whose a literature
review is given by [1].

This paper develops the model of piezoactuator edge delamination, considered
previously as a gap between interfaces by [2], including now a bonding interlayer
whose shear stiffness is modified depending on the delamination process phase.

2 Formulation of the Problem and Analysis

The system considered herein is a simply supported beam with piezoelectric
patches bonded to its both the upper and lower sides and operating as a collocated
sensor/actuator pair. The beam is modelled according to the Bernoulli-Euler theory
supposing viscoelastic material properties approximated by the Kelvin-Voigt rela-
tion. The closed loop control with velocity feedback is applied to reduce transverse
vibration excited by a time-dependant point force F(t).

For analysis the beam is divided into five sections due to the acting force cross-
section (x1), the location of piezoelectric transducers (x2, x4) and the actuator
delamination length (x3) (Fig. 1).

The delamination process is considered as a local shear stiffness reduction of a
massless viscoelastic bonding layer between the piezoceramic actuator and the host
structure. It is assumed that the damaged section with the constant shear stiffness of
the adhesive layer extends uniformly across the actuator to its centre.

In the case of a relatively thin piezopolymer sensor the perfect bonding assump-
tion is reasonable.

Taking into account the actuator extension, to which the inertial forces also
contribute, and the shear stresses transmitted by the bonding layer, the motion of

x3

x2

x4

Sensor

Actuator

Delaminated section

Glue layer
F(t)x1

Fig. 1 Model of the beam with partially delaminated piezoactuator



Modelling of Piezoactuator Edge Delamination in Active Beam Systems 465

both the undamaged and damaged activated sections is described by two coupled
equations. They can be expressed in terms of actuator strains ©a and beam surface
strains ©b in the following form

Eata
@2©a

@x2
� Gk

tg
.©a � ©b/ � ¡a ta @

2©a

@t2
D 0 x 2 .x2; x3/
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where: ta, tb and tg – actuator, beam and bonding layer thickness, respectively, Q¡ –
equivalent mass density of the activated beam section, ¡a – actuator mass density,
Ea – Young’s modulus of the actuator material, QE – equivalent Young’s modulus
of the activated beam section,Gk – Kirchhoff’s modulus referred to the undamaged
(k D u) or damaged (k D d) actuator section, respectively.

The motion of other beam sections is described by the classical equation

Ebt
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where: Eb , ¡b – Young’s modulus and mass density of the beam, respectively.
Supposing a viscoelastic material of the beam and the bonding layer, Young’s

moduli Eb , QE and Kirchhoff’s moduliGu, Gd are complex.
The details of the governing equations formulation one can find in [2, 3].
The governing Eqs. 1 and 2 have to satisfy boundary conditions at the beam

ends at x D 0 and x D l for a simply-supported beam, continuity of beam deflection,
slope, curvature and transverse force at the borders of the sections at x D x1, x2,
x3, x4, free edge conditions at the actuator ends at x D x2, x4 and continuity of
the actuator longitudinal displacements at the border between its undamaged and
damaged sections at x D x3. The requirements related to the actuator, according to
the stress-strain relation and the displacement-strain relation, yield
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The strain ©p(t) is induced by the external voltage V(t) applied to the uncon-
strained transversally polarised actuator and is given by the equation ©p Dd31V=ta
where d31 indicates the piezoelectric constant.

The steady-state responses of the active system discussed are harmonic single
frequency functions with an angular velocity of excitation ¨ and can be written in
the general form as



©a.x; t/

©b.x; t/

�
D


©a.x/

©b.x/

�
exp .i¨t/ (4)
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The spatial functions ©a(x) and ©b(x), formulating using the modal superposition,
have the form dependent on the section of the beam or the actuator, which is
determined by the boundary and continuity conditions. In order to solve the
boundary-value problem for a viscoelastic system the complex moduli are used for
material properties description.

3 Results

Numerical calculations are performed for the beam of dimensions 380 � 40 � 2 mm
loaded by the harmonic force F(t) of amplitude equal to unity and acting
at x1 D 75 mm. The sensor/actuator pair is located between x2 D 76 mm and
x4 D 114 mm with its centre placed on the fourth mode line. The thickness of the
PZT (lead-zirconate-titanate) actuator is ta D 0.2 mm. The PVDF (polyvinylidene
fluoride) sensor is of thickness ts D 0.04 mm. The material properties of the beam
and piezoelectric transducers are listed in Table 1.

The actuator bonding layer within the undamaged section is of the shear stiffness
parameter Gu/tg D 5 � 1011 N/m3. The beam and glue layer material dumping of
retardation time �b D 10�7 s and �g D 5 � 10�5 s, respectively, is applied to limit
the resonant amplitudes.

Figures 2 and 3 show the beam deflection and shear stress distribution along the
actuator, respectively, which are induced by almost a static voltage (¨D 0.1 s�1) of
the amplitude V0 D 100 V applied to the actuator. The diagrams demonstrate effects
of the bonding layer stiffness degradation comparing with the performance of the
undamaged actuator. A constant length of the damaged section given by the relative
length parameter •D 30% is assumed.
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Fig. 2 Influence of the bonding layer stiffness parameter G/tg within the damaged actuator section
on the beam deflection for a quasistatic voltage loading (¨D 0.1 s�1)
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Table 1 Material properties

Material parameter Beam Actuator (PZT) Sensor (PVDF)

Mass density ¡ [kg/m3] 7800 7280 1780
Young’s modulus E [N/m2] 2.16 � 1011 6.3 � 1011 2.0 � 109

Piezoelectric constant d31 [m/V] – 1.9 � 10�10 3.3 � 10�11

Dielectric constant 233 [F/m] – – 1.06 � 10�10
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Fig. 3 Effects of variation in the bonding layer stiffness parameter G/tg within the damaged
actuator section on the shear stress distribution for a quasistatic voltage loading (¨D 0.1 s�1)
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Fig. 4 Effects of variation in the bonding layer stiffness parameter G/tg within the damaged
actuator section on the active beam response in the first resonance region (•D 30%)

As an example of vibration characteristics the frequency response functions
calculated at the activated field point x D 90 mm are shown in Figs. 4 and 5 in
the first beam resonance. The influence of the shear stiffness degradation within the
30% length of the edge delamination is shown in Fig. 4. The effect of variation in
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Fig. 5 Effects of variation in the delamination length on the active beam response in the first
resonance region for a minimal bonding layer stiffness (G/tg D 1 [N/m3])

the relative length of delamination (•%) assuming an extreme reduction of the glue
layer stiffness (G/tg D 1 N/m3) is presented in Fig. 5.

4 Conclusions

The developed model of the actuator delamination basing on the bonding layer
stiffness degradation is formulated and analysed. The numerical simulations show
the influence of the delamination parameters on the transmitted shear force dis-
tribution, beam deflection and amplitude-frequency characteristics. The increased
delamination length as well as the local bonding interlayer softening result in
a disadvantageous modification of transmitted shear forces which diminishes the
control system effectiveness, and the natural frequency shift related to the global
stiffness reduction of the system is also noticed.

The proposed model of the actuator failure and the results obtained can be useful
for the failure detection and evaluation of damage effects in active structures.
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Application of Proportional Velocity Feedback
Control to Attenuate the Vibrations of a Flexible
Plate Using Piezoceramic Patch Actuators

S. Kulah, U. Boz, and I. Basdogan

Abstract This paper presents a theoretical and experimental study on the control
performance of proportional velocity feedback control with rectangular piezoce-
ramic patch actuators to attenuate the vibrations of a thin flexible plate. For this
purpose, first, frequency response funciton of the plate is obtained based on the
experimental frequency sweep data. Then, a state space model was fitted to the
measured frequency response to be used in the simulations to represent the plant
dynamics. The controlled response of the plate is investigated via simulations using
MATLAB/SIMULINK. Control performance of the controller is investigated and
discussed for various feedback gains.

Keywords System identification • Active vibration control • Piezoelectric
actuator • Velocity feedback • Finite element modeling

1 Introduction

In recent years, many researches showed that Active Vibration Control (AVC) can
successfully reduce vibration of structures at low frequency. Due to this fact, AVC
has found many application areas. One of the first applications is reduction of sound
radiation and transmission by using piezo-actuators on ships’ and submarines’ hull
[1]. Then active control of interior sound radiation at aircraft fuselages and vibration
control at wing surfaces are added to the application field [2]. Piezo-actuators are
imbedded directly into the structure and can defeat many point force drawbacks [1].
They are not heavy and they are easy to implement and use. Dimitriadis et al. [3]
studied the excitation of 2-D structures by using piezo-actuators.
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Fig. 1 Experimental setup

However it is really important to choose control points of the plate. Con-
trol points and measurement points have vital role at controlling vibration [4].
There are many studies about selecting the control points for the piezo-actuators
[5]. The main objective of this paper is to establish general guidelines concerning
the use of piezoceramic patch actuators for the implementation of proportional
velocity feedback control loop on a thin plate. The aim is to investigate the
effect of the piezoceramic patch location and also the control performance of the
proportional velocity feedback loop when the gain is altered. There are studies
in the literature [6, 7], the works of Elliott et al. and Bianchi et al., which have
shown that the response and sound radiation of a thin plate could be effectively
reduced.

1.1 System Introduction

In this study, we demonstrate the vibration control of a flexible plate using a velocity
feedback control loop. For this purpose, we first measure the velocity of the flexible
plate using a Laser Doppler Vibrometer (LDV) and then multiply it with a gain and
feed the signal back to the piezo-patches to change its effective damping.

The thin flexible plate (1 � 1 � 0.001 m) separates two empty cavities. This
setup is mainly constructed to demonstrate some control methodologies that can be
applied for automotive applications. The flexible plate is clamped in all four sides.
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The flexible plate acts like a firewall that separates the engine and passenger
compartments in a vehicle body. Figure 1 shows the flexible plate with the piezo
actuators mounted on it. The shaker is placed at the engine side to excite the flexible
plate. A force sensor (PCB 208 C02 ICP) is attached to the shaker end to obtain
the excitation data needed for system identification procedure and disturbance
information for future control purposes.

The piezo actuators and the velocity measurement points are selected on the
passenger cavity side of the flexible plate. The vibration measurements are done
using Polytech PDV – 100 Portable Digital vibrometer. Physik instrumente (PI)
P-876 DuraAct piezo patches is used to as the actuators. As illustrated in Fig. 1,
this piezoceramic patch transducer works as an actuator to implement a proportional
feedback control loop with a velocity sensor, which detects the out-of-plane velocity
of the panel. Since the aim of this paper is to investigate how the effect of the control
performance of the feedback loop, the velocity sensor signal has been remotely
measured with a laser vibrometer pointed to the center of the piezoceramic patch
actuator, which does not introduce passive dynamic effects to the response of the
panel, as would do an accelerometer for example.

1.2 Determination of Sensor Location

Two PI E-413 piezo amplifiers are used with the NetdB DAQ 12 data acquisition
system. To determine optimal sensor locations on the 0–160 Hz range (the frequency
range of interest for structural borne vibrations for automotive applications), a finite
element model of the flexible plate is built and modal analysis is performed. Then
using the modal analysis results, plate deformations that occur in the first four modes
are drawn on top of each other and intersection of the modes which have the highest
displacement amplitude is selected (also have the highest values for velocity) such
that the sensor locations do not lie along the nodal lines of the low order natural
modes of the panel.

1.3 Determination of Piezopatch Locations

To determine the optimal piezo patch actuator position, frequency response simu-
lations are conducted in ANSYS software. The frequency response functions are
obtained between all the grid points and one of the sensor locations obtained in
the previous section. It was observed that if the sensor and the actuator is used at
the same point then, the maximum amplitudes can be obtained for the frequency
range of interest. For that reason, we decided to use collocated sensor and actuator
locations for this study.
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Fig. 2 Frequency Response Function and estimated models (60th and 11th order) between
piezopatch (volt) and sensor location (velocity)

2 System Identification

The LDV is used to measure the velocity and the upper piezo patch is used to
actuate the panel during the experiments. The obtained data files are imported into
MATLAB workspace as in separate complex and real parts and then this data is used
in the System identification toolbox GUI of MATLAB [8, 9] to generate the transfer
functions between the piezopatch and the velocity sensor.

In the System identification toolbox, initially, a filter between 5 and 150 Hz
range is applied and a linear parametric state space model is estimated from the
frequency response data. For estimation N4SID [10–12] method is applied. Initially
a 60th order model was fit to cover the whole frequency range. However, in order
to obtain a reduced model, order estimation is set between 5 and 50 Hz range such
that the first three modes of the flexible panel are targeted for the vibration control.
The identification procedure is repeated and then a low order 10th order model
is estimated. FRF results for both measured and estimated models (10th and 60th
order) are shown in Fig. 2.

3 Controller Design and Simulation Results

In this study, a velocity feedback control is applied in order to change the effective
damping of the first three plate modes. A SIMULINK® model of the flexible plate
and the feedback loop are developed to demonstrate the effect of the feedback
loop on the vibrations of the flexible plate (See Fig. 3). After obtaining the state
space model of the plate as described in the earlier sections, the velocity gain, G
in the SIMULINK® model was altered to test the significance of the velocity gain
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Fig. 3 Block diagram of control system
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Fig. 4 Time response comparison of the flexible plate

on the vibration characteristics of the flexible plate. The measurement noise was
assumed to be negligible. The system is excited by a sinusoidal signal then a sine
sweep was performed to see the effect of the velocity gain in the frequency range
of interest. The time response of the system is given at 16.1 Hz (first resonance
mode of the plate) in Fig. 4. The open loop and closed loop time response of the
system is compared and the effect of the control feedback is clearly observed after
4 s. The amplitude of the measured velocity reduces significantly when the piezo
patches are actuated. The frequency response of the system is given in Fig. 5 for
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different velocity gains. Both figures show that the velocity feedback control can be
effectively applied to such systems to control the vibrations. However, these results
must be validated with experimental studies in the future.

4 Conclusions

We altered the effective damping of the first three modes to attenuate the vibrations
of the flexible plate using velocity feedback control. Optimum positions of the
sensors and actuators were determined using finite element analysis. Then, the
state space model of the plate was constructed based on the experimental data.
We considered the first three vibration modes of the plate to construct the state
space model. Simulations were performed to control the first three modes using
velocity feedback. Our study shows that all of the modes can be attenuated using
the same velocity feedback gain. However, these results should be also validated
using experimental studies.
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Residual Vibrations in the Drives of Working
Links of Electronic Cam Mechanisms

Miroslav Václavı́k and Petr Jirásko

Abstract In the drives of working links of the mechanisms of processing machines,
electronic cams are currently being promoted due to their effective change of motion
working functions which represent the kinematic excitation of a system. Electronic
cams have their dynamic limitations and provide a compliant electromagnetic
constraint between the stator and the rotor into the kinematic chain of a mechanism.
This constraint in influenced by the electronic drive control system. The paper
generally deals with the dynamic analysis of the drives of electronic cam working
motions which describes a system composed of a mechanical part and an electronic
part. Thus, the analysis describes the generation of disturbing vibrations and
suggests some methods to minimize them.

Keywords Electronic cam • Displacement law • Motion function • Residual
vibrations • Residual spectrum

1 Introduction

In the introduction, there are to be defined such terms as displacement law,
motion function and electronic cam, which are frequently used in this paper.
A function assigning a position quantity of the definite link of a composed cam
mechanism to time, we designate it as motion function of that link [1, 2]. The
motion function of electronic cam (theoretical, actual) is servomotor shaft motion
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in dependence on time and that motion function kinematically excites the compliant
dynamic system of composed mechanism on whose end there is working link [3].
We designate a function assigning a position quantity of another link of composed
cam mechanism to the position of the definite link as displacement law. The
displacement law of electronic cam is a theoretical function of the servomotor shaft
position on the virtual shaft position (Master) or virtual rotation. The displacement
law transformed by a constant (0. derivative) and the angular velocity of the virtual
shaft (1st and 2nd derivatives) is the theoretical motion function.

Electronic cam is a drive (synchronous servomotor fed by a frequency inverter-
servo inverter and controlled by a controller) which realizes exciting motion
function on the output shaft (servomotor rotor). The controller can be programmed
in the PLC via development environment in the area of contiguous motions. The
electronic cam is programmed in the PLC. In each passage (scan) of the PLC
programme, position, velocity and servomotor moment size are defined by means of
output registers. Most of electronic cam producers use a cascade regulation structure
of servo inverters, consisting of a position regulator (proportional usually), a speed
controller (proportional plus integral) and a moment controller (or current controller,
proportional plus integral usually). With some producers (such as Siemens, produc-
ers of single-purpose electronics) it is possible to modify the structure of controllers
and to use it for special applications (adaptive regulation of dynamic processes)
in such a way. From the viewpoint of the engineering applications of mechanism
working links, it is meant by the term of electronic cam such a use of servomotor (as
a servo force link) which is alternative to the drives which are possible combinations
of articulated (joint) cam mechanisms driven by conventional asynchronous motors.

Residual vibrations are disturbing (spurious) and there are the deviations of the
actual motion function of a mechanism working link from its theoretical course
in cam resting zones. Due to compliances in the working link drive, undesirable
deviations from the theoretical motion function occur not only in rest areas. Thus,
all those positional deviations have a periodical character of vibration motions
in both displacement areas and the rest areas of displacement laws or motion
functions. For the important group of technical applications, the resting dwells of
motion functions are essential in which processing technologies are carried out.
Thus, it concerns various handling movements performed by turntables and other
mechanisms as the case may be. Residual vibrations are generally caused by the
compliance of mechanism links and in the case of electronic cams by the compliance
of the electromagnetic constraint between the stator and rotor of the electronic cam
servomotor as well.

In this paper, sources of those vibrations are divided in the mechanical and
the electronic part of the kinematic chain of a working mechanism. Briefly, their
source and possible ways of their minimization are depicted. We will describe those
parasite vibrations in technically significant non-periodical displacement laws with
resting dwells which are also designated as step ones.

Not only electronic cams but also serial and parallel combinations with conven-
tional cam articulated (joint) mechanisms are used in the drives of the working links
of processing mechanisms. Furthermore, one group will be mentioned only.
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2 Residual Vibrations of the Links of Electronic Cam
Mechanisms

In principal, electronic cams have two compliances. It is a flexible electromagnetic
constraint stator-rotor and a flexible output driven mechanical part, with one natural
frequency in the simplest case as to Fig. 1. The features of the electromagnetic
constraint are influenced by the cascade regulation structure of the inverter, in the
case of Yaskawa’s hardware that we use. In Fig. 1, there are two drive variants
with/without output mechanical compliance and with/without a speed-reducing gear
box behind the servomotor (Spinea reducer).

The depiction of the solution is, as in the case of a conventional cam mechanism,
carried out in References [4, 5], including the measurement results on the stand. In
Fig. 2, there is mentioned only the result of the numerical solution of the discrete
model as to Fig. 1 with parabolic displacement law and a natural frequency of
approx. 15 [Hz] in steps of 50 [min�1].

It is worth noting the nature of vibrations on the servomotor output shaft and
the nature of the vibrations of working inertia mass. In Fig. 2, there is reducer
i D 33 between the servomotor shaft and the rotational working mass. The shape
of the deformed (acceleration and positional error) motion function (due to the
compliant electromagnetic constraint stator-rotor) of the working inertia mass,
which is positioned directly on the servomotor shaft, is in Fig. 3 for P modes
(proportional) and PI (proportional plus integral) of speed and moment regulators
(controllers). The movement of the working inertia mass as to Fig. 2 and the size
of residual vibration amplitudes are not significantly influenced by P/PI modes of
speed and moment controllers. The figures are the results of the numerical solution
of the discrete model and agree with the response which is acquired from the
servomotor encoder or the external sensor as to Fig. 1. Due to the restricted size
of the paper, the measurement results are not mentioned, they are contained in
References [2, 4].

The amplitudes of disturbing residual vibrations at the end of displacement
law, which are caused by the compliance of the stator-rotor constraint, are a

Fig. 1 An electronic cam stand and a discrete computation model
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Fig. 2 A solution of the discrete model as to Fig. 1

Fig. 3 P and PI regulations (parabolic motion function with resting dwell)

function of the parameters of the controllers in cascade arrangement (Yaskawa
HW case). Those vibrations are significant in the applications of electronic cams in
handling mechanisms where it is necessary to position by a rotational output at the
shortest time possible. The residual vibrations extend the time interval of handling
remarkably. The end position is signaled by the appropriate bit variable (red) which
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Fig. 4 Parabolic (modification as to VDI 2143) and harmonic motion functions (axes auto)

starts the following technological operations, including the usual blocking of the
mechanism. In Fig. 4, as follows, positioning for two different displacement laws
(green is displacement, black is moment, violet is positional error) is demonstrated
under the same conditions.

Position mechanisms are designed with a high stiffness of the driven mechanical
part; therefore, there are the properties of the electromagnetic constraint stator-
rotor dominant here. One of the important applications is a spindle drum turning
of automatic lathes.

3 Residual Vibrations of the Links of Combined Mechanisms

It is the principle of mechatronic differential drive [2, 6] we have on mind
with combined mechanisms. The resulting working motion consists of two inputs
whereas one input is the displacement law of electronic cam. In the case of step
motions with resting dwells, the resting part of the motion function is a superposition
of both inputs whereas the input motion function of electronic cam has its positional
deviation. The minimization of this positional error or disturbing vibrations is
essential in the differential drive.

4 Methods of Minimizing the Parasite Residual Vibrations

The methods of minimizing the residual vibrations caused by the compliance
in the driven mechanical part of the electronic cam are principally divided in
the superposition of displacement law with a partial harmonic function by the
choice of suitable kinetostatic parameters, methods of feedback control and signal
modification and methods based on feed forward control.

The method of superposition is a reliable method when a correction harmonic
impulse [3, 4] is superimposed to the basic exciting displacement law. This method
is illustrated in Fig. 5 schematically. Superposition is programmed in the PLC and
this impulse is shifted and scaled in phases by the input parameters of the PLC user
function.
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Fig. 5 Superposition of displacement law with harmonic pulse

Methods based on the choice of suitable kinetostatic quantities go out from the
shapes of the residual spectra of displacement laws [1, 4]. As a choice of kinetostatic
quantities it is meant the choice of displacement law as well. The method when
the movement of a dynamical system is determined unambiguously by the values
of the impulse frequency spectrum in the natural frequencies of the system after
completion of an exciting impulse is mentioned in References [7, 8].

Methods based on feedback control are completed by a module for identifying
the residual vibrations and a correction signal generator which is fed to the input
of a speed or current regulator (controller) in a conventional cascade regulation
structure [9].

In the methods based on signal modification in the direct branch of the regulation
structure, the control signal is modified in such a way that residual vibration can be
suppressed (input shaping technique [10]).

Some methods of forward regulation (input shaping as well) are based on the
principle of inverse dynamics. This method is currently being investigated.

5 Conclusions

The residual disturbing vibrations, their description and minimization are a topic
issue of the dynamics of electronic cam applications. Currently, we are working
on the methodical processing of those issues concerning dividing the investigating
methods and evaluating their usability in the application fields as to the definition
from Chap. 1.
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ISBN 978-80-01-04048-5
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Synthesis of Multiple Multiloop Digital
Controller for Vibroprotection Device
with Parallel Structure

L. Rybak, Aleksey Chichvarin, and J. Šklı́ba

Abstract In this paper presented vibroprotection device with 6 degree of freedom
based on Stewart platform. An actuation mechanism with parallel structure consists
of pulse drivers and screw gears. Mathematical model of vibroprotection device is
represented as equation of state in vector-matrix form. Digital controller designed
as multiloop taking into account coordinated work of six actuation mechanisms
with feedback control. Feedback is optimized with the use of solving the discrete
algebraic Riccati equation. Mathematical modeling results are presented.

Keywords Mechatronics • Riccati equation • Vibroprotection • Optimal
control • Stewart platform

1 Introduction

We consider the use of mechatronics system (see Fig. 1a) as an active vibration
isolation system designed for the protection of technological objects, as well as a
human operator, from low-frequency vibration of the foundation. Disks I (platform)
and II (foundation) are connected to one another through six absolutely rigid legs
with spherical joints at their ends.
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J. Šklı́ba
Technical University of Liberec, Liberec, Czech Republic
e-mail: jan.skliba@tul.cz
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Fig. 1 Parallel-structure mechatronics system (a) and scheme of driving mechanism (b)

Each leg is an electromechanical driving mechanism shown in Fig. 1b. This
mechanism has the following structure. The foundation 2 transmits disturbing
vibrations to the object 1. The actuator used to the reducing vibration influence
on the object is controlled by regulator 6 and located between the object and
foundation.

The actuator consists of the parallelogram mechanism 10, warm gear 9, and
electric motor 7. The warm wheel is rigidly connected to the pair of bottom levers
of the parallelogram mechanism. Signals from the sensors (accelerometers 3 and 4
on the object and foundation and the relative displacement sensor 5) are processed
in the regulator. The output signal of the regulator controls the power amplifier 8,
which, in turn, controls the winding of the electric motor. The other five driving
mechanisms of the spatial mechatronic system are implemented in the same way.

2 One-Dimensional Optimal Regulator Synthesis

Describe one-dimensional system in state space. Introducing three state variables
x1 D Px, x2 D z, and x3 D Ia, where z D x � y, we write state equations of the
system in matrix form as

PX D AX C Bu C GY (1)

Equation 1 completely describe behavior of the one-dimensional vibroprotection
system. Particular models of the electric motor differ by the matrices A, B, and G.
The regulator synthesis problem will be solved in a discrete domain. To this end,
Eq. 1 are transformed to the discrete form.

The structure of the optimal digital regulator is expressed as a matrix relation
u Œi � D �FX Œi �, where F D �

f1 f2 f3
�

is the matrix of feedback coefficients with
respect to the state variables. In fact, the optimal regulator is based of feedback with
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respect to the state of the system. Synthesis of the optimal regulator is based on
feedback with respect to the state of the system. Synthesis of the optimal regulator

begins with formulation of the control-variable Z D



z1
z2

�
D


x1
x2

�
D DX, where

D D


1 0 0

0 1 0

�
is the matrix of coupling state and control variables.

The general expression adopted for the quality criterion is an integral of quadratic
form of the control variables and the control signal, of the form

J D
1Z
0

�
q1z

2
1.t/C q2z

2
2.t/C ru2.t/

�
dt ! min

where Q is the weighting-factor matrix for the control variables, r is the weighting
factors for the square of the control signal and are selected experimentally.

Thus, the control problem may be stated as follows: to minimize the amplitude
of the object’s velocity (and hence the amplitude of its acceleration) and limit the
displacement of the object relative to the base, thereby restricting the scope for
control. The matrix of feedback coefficients if F D �

r C BT
�PB�

��1
BT
�PA�, where

P is 3�3 quadratic positive-defined matrix and satisfies the discrete Riccati equation
[1]

P D DTQD C AT
�PA� � AT

�PB�
�
r C BT

�PB�
��1

BT
�PA� (2)

Equation 2 has a solution if the pair .A;B/ is completely controllable, which is the
case here.

Solving Eq. 2 in accordance with the recommendations of [2], we obtain the
control law of the optimal regulator in the form of feedback with respect to state of
the system u Œi � D �f1 Px Œi �� f2z Œi � � f3I Œi �

The structure of a vibroprotection system with an optimal regulator is shown in
Fig. 2.

For given matrix F, system operation with a perturbing signal (f D 1Hz)
of various type is modeled, as shown in Fig. 3: (1) acceleration at the base; (2)
acceleration at the object; (3) displacement of the object relative to the base. The
amplitude of the perturbing signalA Ry D g. In that case, the coefficient of amplitude
suppression of the perturbing signal is A Rx

ı
A Ry D 0; 08.

3 Multiple-Dimensional Optimal Regulator Synthesis

Consider the design of the spatial system depicted in Fig. 4. When one of the discs
is loaded by an external force and another is fixed, there appear reaction forces in
the rods, which form, generally, a power-transmission screw.
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Fig. 2 Structure of one-dimensional vibroprotection system
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Fig. 3 System operation with a perturbing signal (f D 1 Hz) of various type

The interaction of the rigid body and foundation along the leg axes is determined
by the Plucker coordinates of these axes [3]. Let ˛i , ˇi , and �i be angles of the leg
axis unit vector with axes of some rectangular body frame XYZ (Fig. 4).

Moments of the unit vector with respect to these axes are given by li D
�i cos �i �$i cosˇi ,mi D $i cos˛i ��i cos �i , and ni D �i cosˇi ��i cos˛i , where
�i , �i , and $i are coordinates of the points where the rods are attached to the rigid
body (centers of the spherical joints). Displacement of the rigid body (object) in the
space is related to displacements along the six rods by the matrix of the Plucker
coordinates A+ .
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Fig. 4 Design diagram of spatial mechatronic system

Small displacement of the rigid body I relative to foundation II is given by the

column vector X D �
x y z '  �

�T
where x, y, and z are displacements along

axes X, Y, and Z, respectively, and ',  , and � are rotation angles about these axes.

The column vector of speeds is defined similarly as PX D � Px Py Pz P' P P� �T
.

In the framework of the theory of small probable displacements, we can write
� D A+X, P� D A+

PX where� and P� are column vectors of relative displacements
and speeds along the leg axes. If the rigid body is subjected to forces and moments

given by the vector F D �
Fx Fy Fz Mx My Mz

�T
, where Fx , Fy , and Fz are forces

along axes X, Y, and Z andMx ,My , andMz are moments with respect to these axes,
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Fig. 5 Reaction of the system to harmonic signal of frequency 1 Hz (a) and to white noise (b)

we have F D A+R, where R D ŒR1; R2; R3; R4; R5; R6�
T are reactions of the

rods subject to the forces F. Solving this equations in �, P�, and R, we obtain

X D .A+/
�1�I PX D .A+/

�1 P�I R D .A+/
�1F (3)

From (3), it follows that, if matrix A+ is singular, then there is no one-to-one
relationship between the displacements of the attachment points of the rods and
displacements of the rigid body in the frame XYZ, since the inverse matrix does not
exist. Displacements X are not bounded. The same refers to the forces and moments
applied to the rigid body and reactions of the rods.

To solve the vibration isolation problem under consideration, it is required to
control displacements of body I relative to the immovable foundation in such a way
that the position of the body in the inertial coordinate system remains unchanged.

The reactions of the legs in the case of a body of mass m and radii of inertia

x , 
y , and 
z are found from the equation (which is an analogue of the equation

m Rx D R1)
� Rx Ry Rz R' R R� �T D M�1A+

�
R1 R2 R3 R4 R5 R6

�T
.

For the six driving mechanisms, each of which is described by three state
coordinates, we obtain the system of 18 state equations in matrix form PX D
AX C Bu.

Solving this equation we obtain the 18 � 6 matrix of the regulator feedback
coefficients K. Further, in MATLAB we build model of mechatronic system.

Figure 5a shows reaction of the system (curve 2) to the harmonic excitation
(curve 1) in the vertical direction (along z-axis) of frequency 2 Hz. As can be seen,
the system ensures efficient damping of the vibration with the coefficient equal to
0.07. Figure 5b shows reaction of the same system (curve 2) to white noise. In this
case, the damping coefficient is 0.18.
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4 Conclusions

Results of our studies demonstrate that mechatronic systems based on parallel
structure mechanisms can efficiently be used for the isolation of objects from
low frequency vibration applied to the foundation. The multidimensional system
is shown to possess not only a greater damping coefficient compared to the one
dimensional system but also, owing to the effect of cross-coupled links, a wider
frequency range up to 20 Hz. For the one-dimensional system, the frequency range
is limited to 4–8 Hz.
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Investigation of Contact Point Trajectories
of Piezoelectric Actuator with Bidirectional
Polarization

Dalius Mazeika, R. Lucinskis, and R. Bansevicius

Abstract Contact point trajectories of the beam type, quadratic cross-sectional
piezoelectric actuator with non-uniform polarization are analyzed in the paper.
Polarization vectors of the actuator have perpendicular directions on the first and
second half of the actuator. Bidirectional polarization is used to achieve flexural
oscillations of the actuator in perpendicular planes and to increase the number of
degree of freedom of the contact point movement. A particular electrode pattern of
the actuator was found and contact point trajectories are analyzed under different
excitation regimes. Prototype piezoelectric actuator was build and experimental
measurements of contact point trajectories were performed. The results of numerical
modeling and experimental study are compared and discussed.

Keywords Piezoelectric actuator • Bidirectional polarization • Trajectory of
motion

1 Introduction

Piezoelectric actuators are widely used for high precision mechanical systems
such as positioning devices, manipulating systems, control equipment and etc. [1,
2]. Piezoelectric actuators have advanced features such as high resolution, short
response time, compact size, and good controllability [2]. A lot of design and
operating principles of the actuators are used in different devices [1, 2].
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A beam type piezoelectric actuator of multi-mode oscillations is analyzed in the
paper. This type of actuators usually is a single degree-of-freedom (DOF) system
and has limited applicability. Mechanical systems composing several single DOF
actuators are used to design multi DOF system that is each degree of freedom uses
separate actuator [2]. The accuracy of the system decreases and the control scheme
becomes more complex when applying such design principle. Obviously a better
way is to use only one actuator that can move or rotate the body in several directions.

A new principle how to design a beam type actuator with three independent
DOF is proposed. Numerical modeling of a piezoelectric actuator was carried
out to evaluate operating principle by analyzing trajectories of the contact point
under different excitation schemes. A prototype actuator has been made and
experimental study was performed. Finally, the results from numerical simulation
and experimental study were analyzed and discussed.

2 Design and Operating Principle of the Actuator

The contact point of a 3 DOF actuator must produce elliptical motions in three
perpendicular planes independently to move or rotate the slider in three differ-
ent directions. Flexural resonant oscillations in two perpendicular directions and
longitudinal resonant oscillation of the beam are employed. Both flexural and
longitudinal resonant frequencies of the beam must coincide to achieve appropriate
elliptical motion of the contact point. Flexural oscillations of the beam type actuator
can be obtained in two perpendicular directions at the same resonant frequency
when the structure is symmetric and bending stiffness of the structure in both
directions is the same.

Based on these requirements, a bulk piezoceramic beam with quadratic cross-
section was chosen to build the actuator. The actuator was polarized in two
perpendicular directions on the first and second half of the actuator (Fig. 1). Both
vectors of polarization are perpendicular to the longitudinal axis of the beam and
d31 effect is used for generating mechanical motion. Quadratic cross-section and
bidirectional polarization of the beam allows to make possible to excite actuator in
perpendicular planes. Contact point of the actuator was defined at the middle of top
surface of the actuator (Fig. 1).

Multi-mode oscillations consisting of the 1st longitudinal and 3rd flexural
oscillation modes of the beam were chosen as operating mode of the actuator. These
modes define particular dimensions of the beam and can be calculated by equalizing

Fig. 1 Principle scheme of
the actuator
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equations of resonant frequencies of longitudinal and flexural modes [3]. In our case
the ratio of height and length of the beam actuator is equal to 0.09.

Electrode pattern is very important for the beam type actuator because the
required trajectory of the contact point is obtained by exiting particular electrode
sections [4]. The following algorithm how to find the electrode pattern of the
actuator was suggested i.e. to find electrode pattern for longitudinal and flexural
modes separately and then to combine them by defining intersecting areas.

Electrodes pattern for separate oscillation modes can be found referring to
effective work of equivalent mechanical forces of the excited actuator that must be
maximized. The effective work of a piezoelectric actuator can be written as follows:

A
ef

k D ¨k

2

2 
¨kZ
0

nX
iD0

yTk Fk sin .¨kt/ zkdtI (1)

F D L T Wsgn .¥/ I (2)

where F is a vector of amplitudes of equivalent mechanical force in the global
coordinate system, yk – is the eigenvector of k mode, W is a vector of excitation
voltage amplitude, L is a transformation matrix, T is an electroelasticity matrix,
!k is a resonant frequency. Equation 2 shows the relation between electric and
mechanical fields. By evaluating the product of the vectors, Eq. 1 could be written
as follows:
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It can be seen from Eq. 3, that effective work of the actuator strongly depends
on the angle between the vector of the amplitude of the equivalent mechanical force
and the eigenvector of particular mode. So the electrode pattern of the beam actuator
can be defined by evaluating values of cos ˛.

3 Numerical Modelling and Results

Numerical simulation was carried out by employing software ANSYS 11.0. A
finite element model of a piezoelectric actuator with bidirectional polarization was
build. The following dimensions of a beam actuator were used b D h D 4 mm and
l D 44 mm. SP6 piezoelectric ceramics was used for the modeling. No mechanical
constrains were applied in the model. The required natural frequencies were
found at the following frequencies: 34.56 kHz (3rd flexural mode) and 35.34 kHz
(1st longitudinal mode). Based on Eq. (4), the values of cos ˛ were calculated
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Fig. 2 The electrode pattern of the actuator for 1st longitudinal mode (a), and 3rd flexural
mode (b)

Fig. 3 The final electrode
pattern of the piezoelectric
actuator

for these modes. The results of calculations are given in Fig. 2, where different
grey colors represent positive and negative signs and represent electrode sections
for direct and reverse motion. The pattern is given just in one plane for better
understanding.

The intersection of these two patterns gives the same electrode configuration as
in Fig. 2b. So the final electrode pattern of the beam actuator is given in Fig. 3.

Harmonic response analysis of the actuator was performed at the frequency range
from 0–40 kHz with 100 Hz frequency step. The electrodes with numbers a1–a4
were excited (Fig. 3). 100 V harmonic signal was used for excitation. Oscillations
of the contact point were analyzed. Elliptical type trajectory is generating during the
period of the oscillation that could be written in xz plane as follows:

ux D a cos � cosˇ � b sin � sinˇ

uz D a cos � sinˇ C b sin � cosˇ

)
(4)

where a and b are the length of major and minor semi-axis respectively, � is the
parameter and ˇ is the rotation angle of the ellipse axis.

Figure 4 shows the dependence of the length of major and minor semi-axes of
elliptical motion of the contact point versus frequency. The peaks can be noticed in
the graphs where the first and second peaks represent the 1st and 2nd flexural modes
respectively and the 3rd peak at 34.75 kHz corresponds to 1st longitudinal and 3rd
flexural mode and will be used for further investigation.

Three different excitation schemes were defined: (1) oscillations in xz plane
are achieved when electrode a1, a3 are excited; (2) oscillations in yz plane are
achieved when electrode b1, b3 are excited; (3) oscillations in xyz are achieved
when electrode a1, a3, b2, b4 are excited (Fig. 3). The trajectories of the contact
point movement are presented in Fig. 5 when all defined schemes are applied. The
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Fig. 5 Simulated trajectories of the actuator’s contact point under different exciting schemes:
(a) 1st excitation scheme, (b) 2nd excitation scheme, (c) 3rd excitation scheme

Table 1 Numerically and experimentally obtained parameter of the ellipses

Numerical results Experimental results

Parameters No. 1 No. 2 No. 3 No. 1 No. 2 No. 3

Length of major semi-axis, �m 2.3 2.2 2.7 1.4 1.2 0.5
Length of minor semi-axis, �m 0.4 0.4 1.4 0.27 0.33 0.4

Axis angle in xy plane 4ı 85ı 61ı 6ı 88ı 67ı

Axis angle in xz plane 34ı 72ı 34ı 30ı 84ı 61ı

Axis angle in yz plane 98ı 146ı 139ı 83ı 127ı 107ı

major axis of the elliptical trajectory of the contact point is almost parallel to x and
y axes when excitation scheme No. 1 and No. 2 is used respectively. By observing
these two ellipses it can be noticed that the parameter of these ellipses are very
similar (Table 1). This means that quite stable and controllable motion of the slider
must be achieved in xy plane. The rotational motion of the slider will be achieved
based on the elliptical motion of the contact point, when the 3rd excitation scheme
is used.
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Fig. 6 Prototype actuator (a) and the principal scheme of experimental setup (b)

4 Experimental Study

A prototype piezoelectric actuator with bidirectional polarization was made and
experimental investigation was performed (Fig. 6). The same electrode pattern
and excitation schemes of the actuator were used as the numerical simulation. A
special stand for experiments was designed (Fig. 6). Oscillations of the actuator
contact point were measured by a laser vibrometer (Polytec CLV-3D). Results of
measurements are given in Table 1 and compared with the corresponding results
obtained from numerical simulation. It can be noticed, that elliptical motion of the
contact point was achieved in three different plane. Measured angles of the ellipses
axis in different planes are similar as obtained in numerical simulation but lengths
of the semi-axis differ. This can be explained as damping influence of the foam that
was used to put the actuator during the experimental measurements.

5 Conclusions

Numerical and experimental investigation of the piezoelectric actuator with bidirec-
tional polarization confirm that the elliptical trajectory of contact point motion can
be achieved in three directions. An algorithm for electrode pattern calculation was
developed and a particular pattern for corresponding multimode oscillations was
found. Three separate directions of contact point elliptical motion were obtained
during numerical simulation and experimentally. It means that 3DOF motion of
the slider can be achieved. Results of numerical simulation and experimental
measurements are in good agreement.

Acknowledgments This work has been supported by Research Council of Lithuania, Project No.
MIP-122/2010.
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Dynamics of Rotating Systems



Dynamics of High-Speed Rotors Supported
in Sliding Bearings

J. Šimek and R. Svoboda

Abstract The higher the operating speed, the more serious are problems with
rotor stability. Three basic groups of rotors are analyzed and some methods of
suppressing instability are shown. In the first group are classical elastic rotors
supported in hydrodynamic bearings. Practically all high-speed rotors now run in
tilting pad bearings, which are inherently stable, but in specific conditions even
tiling pad bearings may not ensure rotor stability. The second group is composed of
combustion engines turbocharger rotors, which are characteristic by heavy impellers
at both overhung ends of elastic shaft. These rotors are in most cases supported in
floating ring bearings, which bring special features to rotor behaviour. The third
group of rotors with gas bearings exhibits special features.

Keywords High-speed rotors • Sliding bearings • Floating ring bearings • Gas
bearings • Oil whip instability • Oil whirl • Pneumatic instability

1 Introduction

Many technical papers deal with rotor stability [e.g. 1], but most of them present
results of calculation and only few of them bring case histories of stability problems.
Rotors supported in fluid film bearings exhibit basically two types of instability,
both of which are characterized by subharmonic vibration with big amplitudes.
Instability of “oil whirl” type, with frequency dependent on rotational speed, occurs
more likely with rigid rotors, paradoxically namely with rotors in gas bearings.
“Oil whip” instability, encountered mainly with elastic rotors, is characterized by
constant vibration frequency, usually the lowest eigenfrequency of the system. The
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source of instability is in most cases the bearing support itself. Cross-coupling terms
of stiffness matrix, which promote journal orbit around bearing centre, prevail at
some operational conditions (low load, high speed) over direct terms. Special shapes
of bearing surface, consisting of several areas with preload relative to the bearing
centre, increase stability. Tilting-pad journal bearings are inherently stable, because
their cross-coupling terms are at least one order lower than direct terms. However,
in cases of strong external excitation, e.g. from labyrinth seals, even tilting-pad
bearings may not ensure stability of the rotor.

Special type of bearing – floating ring – is used in turbochargers of combustion
engines. The bearing consists of two circular bearings, one of which is rotating with
the speed equal to about 0.1 to 0.3 of the rotor speed. Two oil films in series ensure
strong damping of rotor vibration. The bearings are relatively near one to another
and heavy impellers located at both overhang ends of the rotor produce substantial
gyroscopic moments influencing bending critical speeds of the rotor by splitting to
branches with co-rotating and counter-rotating precession. Some rotors supported
in floating ring bearings exhibit “oil whirl” instability. Special types of instability
are encountered in aerostatic bearings, namely pneumatic instability called “air
hammer”.

2 Oil Whip Instability

As was mentioned earlier, oil whip instability is characterized by violent vibrations
with constant frequency equal in most cases to the lowest eigenfrequency of the
system, usually the first bending critical speed of the rotor. As an example of this
type of instability we can use that of two-stage high-speed steam turbine with
nominal output of 1.7 MW [2].

Impeller of this type of turbine is mounted directly on pinion of high-speed
gearbox. In this particular case the pinion had operating speed about 19,000 rpm.
During function tests of the turbine it appeared that it is impossible to achieve
full operating speed because of excessive vibrations. This fact is demonstrated by
frequency spectra shown in Fig. 1, where amplitude of subharmonic frequency
around 151 Hz grew from about 1.5 �m at 16,100 rpm to more than 40 �m
at 18,500 rpm, which led to shut-down by vibro-diagnostic system. Dynamic
analysis of the rotor supported in tilting pad journal bearings showed, that measured
subharmonic frequency is very near to the calculated first bending critical speed of
the pinion. The results of calculation also proved, that stability reserve of pinion is
very low and that it decreases with growing turbine output. Stability reserve (SR)
at operating speed at idle run was about 24%, which corresponds to logarithmic
decrement (LD) of 0.75. With turbine output increased to 1.5 MW the stability
reserve fell to 0.2% (LD D 0.006), and with 1.7 MW output the calculation indicated
already rotor instability. As the pinion was already supported in tilting pad bearings,
it was not possible to achieve stability by use of bearings with better dynamic
properties. It was necessary to find the source of destabilizing forces, which was
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Fig. 1 Evolution of subharmonic vibration component with speed

as usual the labyrinth seal at the back of impeller. Due to great pressure drop and
relatively big diameter the labyrinth seal generated great destabilizing forces, which
exceeded damping capacity of bearing support. Reduction of destabilizing forces
was achieved by installation of barriers between impeller backside and turbine
casing, which obstructed circumferential flow in this area, so that the steam entered
labyrinth seal with low circumferential velocity component. After this modification
it was possible to operate the turbine up to maximum speed and nominal output.

3 Oil Whirl Instability of Rotor in Floating Ring Bearings

Typical example of turbocharger (TCH) rotor is shown in Fig. 2.
Characteristic feature of TCH rotors are heavy impellers at both overhung ends,

relatively small shaft diameter and short distance between journal bearings. Though
most TCH rotors run with steady small vibration amplitudes, some rotors supported
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Fig. 2 Typical turbocharger rotor supported in floating ring bearings

Fig. 3 Instability of outer oil film in floating ring bearing

in rotating floating bushings exhibit instability, which is manifested by subharmonic
vibration with amplitudes reaching the whole bearing clearance. Instability is of “oil
whirl” type, because its frequency is dependent on rotating speed.

In most documented cases the instability occurred in outer oil film, because
dominating subharmonic frequency was equal to one half of bushing rotational
speed. An example of instability of outer oil film is shown in Fig. 3 [3].

Top down are signals from:

rotor – compressor side
rotor – turbine side
bushing – compressor side
bushing – turbine side

Recorded signals in time domain (left) show, that both ends of the rotor vibrate
in phase and rotor and bushing movement are is also in phase. Frequency spectra
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Fig. 4 Stable operation in non-rotating floating bushings

(right) indicate dominating subharmonic frequency of the bushing about 110 Hz,
which is one half of bushing speed 220 Hz. Rotational frequency of the rotor
1,200 Hz (72,000 rpm) is hardly distinguishable at the spectra. Double amplitudes
of subharmonic vibration of the rotor exceed 100�m, which is practically the whole
bearing clearance (sum of inner and outer diametral clearance).

TCH operation with vibration amplitudes such as in Fig. 3 is very risky and
immediate failure does not occur only due to highly nonlinear properties of oil film.
As permanent operation in these conditions was not permissible, rotating floating
bushings were replaced by non-rotating floating bushings with three- lobbed inner
geometry. As is documented by Fig. 4 (with the same signals, as in Fig. 3), this
modification ensured stable operation with vibration amplitudes at least one order
lower.

4 Pneumatic Instability of the Rotor in Gas Bearing

Rotor instability in gas bearings has in most cases quite fatal consequences, because
gasses have no lubricating properties. In case of instability occurring in high speed,
contact of sliding surfaces results in their heating to high temperature. Even with
very good sliding properties of sliding surface material the contact causes some
damage. The process is so rapid, that there is no chance to record its course.

As an example of rotor supported in gas bearings we use that of power gyro
intended for stabilization of vibro-isolating system [4] (Fig. 5).

Flywheel two with vertical rotation axis is supported by aerostatic thrust bearing
seven and two tilting pad journal bearings. Journal bearing pads three are supported
on flexible elements four, which provide additional damping and enable adjustment
of basic clearance by means of screws five and nuts six. Flywheel drive, provided
by pressurized air, enabled to reach speeds in excess of 14,000 rpm.

Aerostatic thrust bearing exhibited at higher air inlet pressure pneumatic instabil-
ity called “air hammer”, because it is characterized by noise resembling pneumatic
hammer. Pneumatic instability is caused by periodic compression and expansion
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Fig. 5 Air bearing support of power gyro for stabilization of vibro-isolating system

Fig. 6 Pneumatic instability of aerostatic thrust bearing

of air in a chamber, distributing pressure to greater area. Even if the chamber
volume is minimized (in given example the chamber depth was only 0.1 mm) in
some conditions air hammer sets in. It is illustrated by Fig. 6, which shows top
down signals from relative vibration sensor tracing gyro surface, and from two
accelerometers fastened to gyro frame in vertical and horizontal directions.

Frequency of pneumatic instability around 120 Hz can be seen at both vibration
signals from accelerometers. With gyro mass of 3.5 kg this frequency corresponds
to thrust bearing stiffness of 2�106 Nm�1, which is quite close to the calculated value
of 2.48�106 Nm�1.

5 Conclusions

Three types of rotor bearing support were considered and different kinds of
instability were described with help of particular examples. Elastic rotors suffer
mostly from “oil whip” instability, while some turbocharger rotors in floating ring
bearings and also rigid rotors in aerodynamic bearings exhibit “oil whirl” type of
instability with frequency dependent on speed. Aerostatic bearings can suffer in
certain conditions from pneumatic instabilities.
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Smart Machines with Flexible Rotors

Arthur W. Lees

Abstract The concept of smart machinery is of significant current interest. Several
technologies are relevant in this quest including magnetic bearings, shape memory
alloys (SMA) and piezo-electric activation. Recently a smart bearing pedestal was
proposed based on SMAs and elastomeric O-rings. However, such a device is clearly
relevant only for the control of rigid rotors, for flexible rotors there is a need for
some modification on the rotor itself. In this paper, rotor actuation by piezo-electric
patches on the rotor is studied. A methodology is presented for the calculation of
rotor behaviour and appropriate control strategies are discussed. It is shown how this
form of control is a viable option and an estimate of system requirements is given.
It is shown that the most promising option for the control of rotor imbalance is the
imposition of a counteracting bend. However, because the bend can be controlled as
a function of speed, the usual restrictions in comparing a rotor bend and unbalance
do not apply. After outlining the methodology of the calculation, a series of transient
simulations are presented. Finally, difficulties and options in the construction of a
real machine are discussed.

Keywords Rotor • Imbalance • Piezo-electric • Smart

1 Introduction

The concept of a Smart Structure is now a familiar one referring to a structure which
can react to its environment, apply appropriate forces and correct incipient faults.
To date far less attention has been devoted to smart rotor or smart machines and yet
this seems a natural extension of recent work on Condition Monitoring and fault

A.W. Lees (�)
School of Engineering, Swansea University, Singleton Park, Swansea SA2 8PP, UK
e-mail: a.w.lees@swansea.ac.uk
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identification. The simplest case to consider is a machine with a rigid rotor, such as
occurs in a range of small machines. This is a particularly simple case to consider
since the natural frequencies (or more particularly, critical speeds) are controlled
entirely by the stiffness of the bearing pedestals. Lees et al. [1] have shown how
a controllable bearing pedestal may be designed using Shape Memory Alloys and
elastomers, although it is appreciated that there are a number of possible routes
to achieve this goal. Other approaches to the introduction of controllable support
stiffness have been considered by Zak et al. [2] and Cartmell et al. [3]. Recently
Maslen [4] has given a brief review of progress on Smart Machinery, but this too
focuses on bearings, with particular emphasis on magnetic bearings: this is not
surprising as this technology offers great promise.

However, looking further ahead one is naturally led to consider the possibility
of controlling machines with flexible rotors. This is important for two reasons:
in machinery generally there is a trend towards the use of flexible rotors and
secondly, adequate control would enable the operation of much light machines
leading to higher efficiencies and better material utilization. A preliminary study
of such a system has been reported recently by Lees [5] and in the present paper the
methodology is refined and extended.

2 Theoretical Framework

The effective distinction between an imbalance on a rotor and a bend is well
documented: whilst both give rise to synchronous vibration at shaft speed, their
respective variations with frequency is quite different [6]. At low frequency and
bend will give rise to a vibration signal which is finite, but at high frequency the
vibration level will tend to zero. A rotor with imbalance will show the opposite
variation: the response will be negligible at low speed by will tend to a finite
limit as the speed of the rotor is increased. A consequence of this contrast is that
under normal circumstances a the effects of a bend can only be compensated with
imbalance at a single shaft speed, a fact well known to plant operators. Figure 1
shows the layout for a simple system with a central piezo-electric patch;

In this work, the objective is precisely the opposite – the compensation of an
imbalance by the imposition of a rotor bend induced by the activation of piezo-
electric patches. This is rather different to a conventional bend insofar as it can be
varied at will by modification of the applied voltages. Lees [5] described a machine
with a smart flexible rotor with equations

Fig. 1 Simple rotor with
central patch
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and the gyroscopic term is given by

G D dR
dt

MR

The equations of motion were developed in a Lagrangian formulation in which
the state variables were taken as the deflection and the bend together with their
respective time derivatives. The particular example presented in reference 1 studies
a rotor comprising 12 elements with 52 degrees of freedom. Using a Runge–Kutta
time integration it was necessary to condense this problem using Guyan reduction
and 8 degrees of freedom were retained: although this may be considered as the
minimum meaningful example it is worth noting that even this requires integration
of 32 degrees of freedom. The response was reduced by the application of a voltage
to the piezo patch which in turn induced a bend. In reference [5] the optimum
level of voltage is established by applying a trial voltage in a procedure similar to
single plane balancing. Calculations were presented at speeds below the first critical.
Increasing rotor speed presents difficulties because the response of the rotor to the
current application is of a similar form to that due to imbalance.

In the present paper, two changes of approach are reported. Firstly, the rotor
imbalance can be calculated quickly from the state-space equations of motion
without the need for any substantial settling time. Secondly, the difficulties arising
from transients as the bend develops may be circumvented by imposing a bend as
a function of time, then in a separate calculation, calculate the force required to
produce this bend. Not only does this procedure alleviate transient problems, it also
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Fig. 2 Variation in time of vibration and forces acting

reduces the dimensionality of the problem by half. In this approach we demand that
the bend at time t is b(t) and then the equations of motion of the rotor are given by
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�
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ma�2ej� C b.t/ej	

�
ej�t (3)

The time development of the bend b, is now a matter of choice depending on the
forces applied. Consider the case

b.t/ D b0
�
1 � e�˛t � (4)

A difficulty is in the decision of what b should be: in reference [5] this was
achieved by a process akin to single plane balancing. It is clear that an appreciable
interval is required. There is an alternative approach to achieving this result by using
the state- space equation. Figure 2, also taken from reference [5], shows a section
of the timetrace as the calculation begins. It is clearly non-sinusoidal as the starting
transients decay, but the second trace of the figure shows the unbalance force which
is taken from the appropriate component of Eq. 1. Note that this is sinusoidal from
the start of the calculation. This implies that a very much quicker estimate of the
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unbalance may be obtained by using the available knowledge of the system. Note
that the match between imbalance and the bend is obtained by considering modal
contributions.

From Eq. 1, note that it may be conveniently partitioned into blocks and an
estimate for the imbalance is readily obtained for the constant speed case by writing
the relevant part of the equations of motion.

Ky � KRb0 C C Py � M�2y C 2G� Pb0 D ma�2ej�t (5)

Note that since all parameters are available on the left hand side of this equation,
the imbalance are the rotor is readily calculated. This does assume that the model
of the system is sufficiently accurate, but any shortcomings may be overcome by
model upating.

3 Sample Performance

In the examples shown, the effective imbalance term is calculated after two complete
cycles of the shaft. The examples shown use a rotor system with a first critical
speed of 20 Hz. Figure 3 shows the response at a running speed of 10 Hz when
the corrective patch force is applied suddenly. Note the very substantial transients.
The small remaining amplitude is due to phase error and this may be ammended in
more sophisticated calculations. Clearly the rate at which compensation is applied
ddictates the force required in the piezo-patch (or other device).

This could overcome by the introduction of a feedback loop to form a closed
loop system. At speeds above the first critical speeds as one might anticipate, the
response can be much higher but it is again controlled by the bend application.

Obviously there are options to continously update the estimate of the effective
imbalance. The other point to note here is that even with a constant estimate of
the imbalance, the moments and hence the required voltages to induce a bend will

Fig. 3 Response to a sudden
patch voltage (at 10 Hz)
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Fig. 4 Comparison of
requires torques at different
speeds
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vary with the rotational speed of the machine. This variation is, at first sight, a
little surprising and is shown in Fig. 4: substantially less moment is required in the
supercritical case.

4 Practical Issues and Difficulties

The preceeding sections have discussed in detailed the ways in which a rotor can be
controled by the application of moments and forces to the rotor itself. There are, of
course, some formidable obstacles to be overcome becore such a ‘Smart Machine’
can be realised. Three areas of difficulty emerge: (1) bonding of the actuator to the
rotor, (2) The transmission of the high voltages to the actuator, and (3) The selection
of an actuator with suitable dimensions

Piezo-electric actuators have a number of attractions including ease of control,
but the do suffer from a major disadvantage in requiring high voltages, often 1KV
or more. Since they are predominently capacitive devices, the current requirement
is negligible. In view of the ease of rapid control with these devices they must
be viewed with some preference over rival technologies. One challenge, however,
will be the identification of a suitable patch (or set of patches) which will generate
adequate forces. A major question is whether the full voltage should be transmitted
through the slip-rings or transmitted at some lower voltage for amplification of the
rotor. Given the force levels requred, a completely different approach is the use of
Shape Memory Alloys (SMAs).

These are avaiable in the form of wire which would be convenient for the current
application. SMAs, being basically thermally, are intrinsically slower than piezo-
devices in control and they are highly non-linear. On the other hand, ohmic heating
can be used for activation and consequently, the voltages required are dramatically
lower (by a factor of about 100). It is clear that some practical trials are needed as a
next stage in studying this area.
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5 Discussion and Conclusions

Magnetic bearings is probably the most developed aspect of this field as discussed
in reference [4], but their primary application to date has been with respect to rigid
rotors. For flexible rotors, considerable work is required to establish the optimum
control strategy and it is clear that the controllability decreases as the rotor becomes
more flexible. For such cases a control on the rotor become necessary since a flexible
rotor cannot be adequately controlled from the bearings alone at all speeds.
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Stability Investigation of the Steady State
Response of Flexibly Supported Rigid Rotors

Jaroslav Zapoměl and Petr Ferfecki

Abstract A new semiactive coupling element working on the principle of
squeezing two concentric films formed by classical and magnetorheological liquids
has been proposed to achieve the optimum attenuation of the lateral vibration of
rotors. The damping effect is controlled by changing the magnetic field induction.
The steady state solution of the equations of motion is obtained by application of a
collocation method and its stability is evaluated using the Floquet theory. The newly
proposed controllable damping device enables to minimize amplitude of the rotor
vibration by adapting the damping effect to the current operating conditions.

Keywords Rotors • Semiactive damping elements • Magnetorheological fluid

1 Introduction

To achieve optimum performance of damping devices placed between the rotor and
its stationary part, the damping effect must be controllable. For this purpose a new
semiactive coupling element working on the principle of squeezing two concentric
films of classical and magnetorheological liquids has been proposed.

Modelling of classical and magnetorheological squeeze film dampers is mostly
based on assumptions of the classical theory of lubrication [1–5].
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In this paper there is presented a method for analysing the influence of a new
damping element on the steady state vibration of a rigidrotor flexibly supported and
excited by the unbalance forces. The magnetorheological liquid is represented by
Bingham material. The steady state response is calculated by means of a collocation
method and to evaluate its stability the Floquet theory is applied.

2 Determination of the Damping Force

The proposed damping element consists of two rigid rings mounted with the
stationary part and of two ones coupled with the shaft through a rolling element
bearing and with the stationary part by a flexible element (squirel spring). This
enables their vibration in the radial direction but prevents their rotation together
with the shaft (Fig. 1). The gaps between the fixed and flexibly supported rings
are filled with lubricants. The inner layer is formed by classical oil, the outer one
by magnetorheological fluid. The damping element is equipped with an electric coil
generating magnetic field. The change of the magnetic flux passing through the layer
of magnetorheological liquid can be used to control the damping effect.

The mathematical model of the proposed damping element is based on assump-
tions of the classical theory of lubrication. The normal and magnetorheological oils
are represented by Newtonian and Bingham materials and the yield shear stress of
magnetorheological liquid depends on magnetic induction. The further attention is
focused only on the dampers that can be treated as short [1].

The thickness of the oil films depends on the position of the journal centre relative
to the stationary part of the rotor system [1]

hCO D cCO � eH cos .®� ”/; hMR D cMR � eH cos.® � ”/ (1)

hCO, hMR denote the thickness of the films of classical and magnetorheological
oils, cCO, cMR are the widths of the gaps between the rings filled with classical oil

Fig. 1 The proposed
damping element
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and magnetorheological liquid, eH denotes the rotor journal eccentricity, ' is the
circumferential coordinate and ” denotes the position angle of the line of centres.

The pressure distribution in the layer of classical oil is governed [1]

@2pCO

@Z2
D 12˜

h3CO

PhCO: (2)

pCO denotes the pressure in the layer of the classical oil, ˜ is its dynamic viscosity,
Z is the axial coordinate and (:) denotes the first derivative with respect to time.

To describe the pressure field in the layer of magnetorheological fluid, the
Reynolds equation was modified for the case of Bingham liquid [5]. Assuming the
damper symmetry relative to its middle plane it takes the form for Z> 0

h3MRp
03
MR C 3

�
h2MR �y � 4 ˜B PhMR Z

	
p02

MR � 4£3y D 0: (3)

pMR; p
0
MR denote the pressure and the pressure gradient in the axial direction in the

layer of magnetorheological liquid, ˜B is the Bingham dynamical viscosity and � y

represents the yield shear stress.
Equations 2 and 3 are solved with the boundary conditions expressing that the

pressure at the damper’s faces is equal to the pressure in the ambient space. In
addition the solution of Eq. 3 must fulfill the conditions that the pressure gradient
p’ is real (not complex), negative and satisfies the relation

p0
MR < �2 £y

hMR
: (4)

In the simplest design case of the damping element, the rings, between which
there is a layer of magnetorheological liquid, can be considered as a divided core
of an electromagnet. Then the dependence of the yield shear stress on magnetic
induction can be approximately expressed

£y D ky

�
NC I

2 hMR

�ny
: (5)

ky and ny are material constants of the magnetorheological liquid, NC is the number
the coil turns and I is the electric current.

In the areas where the thickness of the lubricating films rises with time ( PhCO > 0,
PhMR > 0) a cavitation is assumed. The pressure in these areas remains constant and
is equal to the pressure in the ambient space. Components of the damping force are
then calculated by integration of the pressure distributions around the circumference
and along the length of the damping element taking into account the cavitation in
the oil films.
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3 Vibration and Stability Analysis of the Investigated Rotor

The rotor consists of a shaft carrying one disc (Fig. 2). The rotor is mounted with
the rolling element bearings whose outer races are coupled with the stationary
part through squirrel springs. Between the springs and the stationary part there are
inserted the new coupling elements. The system is symmetric relative to the disc
middle plane. The rotor is loaded by its weight and is excited by the disc unbalance.
The squirrel springs are pre-bent to eliminate their deflection caused by the rotor
weight.

In the mathematical model, the rotor is considered as absolutely rigid. Its lateral
vibration is described by two nonlinear equations of motion

mR Ry C bP Py C 2 kDy D 2 Fdy .y; z; Py; Pz/CmReT¨
2 cos .¨t C §o/ ; (6)

mRRz C bP Pz C 2 kDz D 2 Fd z .y; z; Py; Pz/CmReT¨
2 sin .¨t C §o/ : (7)

mR is the rotor mass, bP is the coefficient of external damping, kD is stiffness of the
squirrel spring, ! is the angular speed of the rotor rotation, eT is the eccentricity of
the rotor unbalance, t is the time, §o is the phase shift, y, z are displacements of the
rotor centre, Fdy, Fdz are components of the damping force and (:), (::) denote the
first and second derivatives with respect to time.

As the spring elements are pre-bent, the steady state trajectory of the rotor centre
is circular and therefore the time history of the rotor displacements can be described
by harmonic functions of time

y D rC cos¨t � rS sin¨t; z D rC sin¨t C rS cos¨t (8)

To determine the unknown parameters rC and rS a collocation method is applied.
Only one collocation point is needed. Then substitution of (8) and their derivatives
with respect to time into (6) and (7) yields a set of two nonlinear algebraic equations,

Fig. 2 Scheme of the investigated rotor system
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which for the moment of time t equal to zero take the form

�
2 kD �mR¨

2
�
rC � ¨bP rS �mReT¨

2 � 2 Fdy .rC ; rS / D 0; (9)

¨bP rC C �
2kD �mR¨

2
�
rS � 2Fd z .rC ; rS / D 0: (10)

Using the method presented in [6], stability of the steady state vibration is
evaluated by means of the Floquet theory. The equations for the time history of
deviations�y, �z of displacements y, z expressed in the state space have the form

�Pr D W.t/�r; (11)

�r D �
� Py �Pz �y �z

�T
; (12)

W.t/ D

2
66666666666664

�
bP � 2

@Fdy

@ Py
mR

2
@Fdy

@Pz
mR

�
2kD � 2@Fdy

@y

mR

2
@Fdy

@z
mR

2
@Fd z

@ Py
mR

�
bp � 2

@Fd z

@Pz
mR

2
@Fd z

@y

mR

�
2kD � 2@Fd z

@z
mR

1 0 0 0

0 1 0 0

3
77777777777775

:

(13)

The transition matrix H related to Eq. 13 is set up according to the approach
described in details in [6]

H.T; 0/ D e.T�tN�1/WN e.tN�1�tN�2/WN�1 :::::e.t1�t0/W1 ; Wk D 1

tk�tk�1

tkZ
tk�1

W.t/ dt

(14)

for t0 D 0 , tN D T and k D 1; 2; ::: N . T is the vibration period.

4 Example

The orbits of the rotor journal centre and the time histories of the damping
force acting on the rotor in the vertical direction are drawn in Figs. 3 and 4. At
rotor revolutions 100 rad/s, the rising current reduces the vibration amplitude and
increases magnitude of the damping force. When the rotor revolutions are changed
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Fig. 3 The rotor centre orbits and the time-force history (100 rad/s)
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Fig. 4 The rotor centre orbits and the time-force history (500 rad/s)

for 500 rad/s, a small current arrives at increasing amplitude of the vibration instead
of its attenuation. To achieve the damping effect, magnitude of the current must
be considerably increased and the damping force rises. There were also observed
multiple solutions of the equations of motion in some speed intervals.

Such behaviour of the studied damping element is caused by its mutually coupled
stiffness and damping properties and by their nonlinear dependence on the electric
current and speed of the rotor rotation. This shifts the resonance peaks and can lean
the resonance curves to higher excitation frequencies.

Moduli of all eigenvalues of the transition matrix referred to the speed of rotation
100 rad/s are less than one and this implies that the rotor vibration is stable for both
magnitudes of the applied current (0 A, 1 A).
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5 Conclusions

The developed procedure represents a tool for analysing the steady state vibration
and its stability of rigid rotors attenuated by newly proposed semiactive damping
elements working on the principle of squeezing two thin films of classical and
magnetorheological oils. Advantage of these damping devices is that they always
produce some amount of damping, which can be increased if needed, they do not
require a complicated and expensive control system and make possible to achieve
the optimum performance of the rotating machine by means of adapting the damping
effect to the current operating conditions.
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Transactions of the VŠB Technical University of Ostrava, Mechanical Series, LV, pp. 289
(2009)

6. Zhao, J.-Y., Linnett, I.-W., McLean, L.-J.: Stability and bifurcation of unbalanced response of
a squeeze film damped flexible rotor. ASME J. Tribol. 11(6), 361 (1994)



Rotor-Model-Based Identification
of Foundations in Rotating Machinery
Using Modal Parameters

N. Feng and E. Hahn

Abstract The vibration of a rotor bearing foundation system is affected by its
foundation which needs to be identified. Outlined is an identification procedure for
foundations of turbomachinery installations which avoids rotor removal. Input data
requires knowledge of the forces transmitted to the foundation at the bearings and of
the motion of the foundation at specified locations. Such data can be obtained from
existing monitoring instrumentation provided the dynamic properties of the rotor
and the rotor unbalance are known. Numerical experiments show that even with
input data truncated to two significant digits, satisfactory identification is possible
for a flexibly supported undamped rigid block foundation. It is concluded that this
identification technique promises to be applicable in the field.

Keywords Foundation identification • Rotating machinery

1 Introduction

The vibration of a rotor bearing foundation system (RBFS) is affected by its
foundation [1]. To include this effect in the overall analysis, one can either use
measurements to identify equivalent foundation parameters; or one can model the
foundation by finite elements, this latter approach being generally too difficult
[1]. Here, the former approach is adopted and a procedure is developed which
is applicable to existing turbomachinery installations and does not require rotor
removal. The procedure presumes knowledge of the dynamic properties of the rotor;
and uses for input data the forces transmitted to the foundation at the bearings
and the motion of the foundation at specified locations. Suchdata is obtainable

N. Feng • E. Hahn (�)
The University of New South Wales, Kensington, Australia
e-mail: n.feng@unsw.edu.au; e.hahn@unsw.edu.au
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Fig. 1 Unbalanced rotor mounted via bearings on a flexibly supported rigid foundation block

from existing performance monitoring instrumentation [2]. The procedure is here
evaluated for flexibly supported rigid foundation blocks as shown in Fig. 1.

Earlier approaches to identify such foundations proved unsatisfactory, either
because the identification was poor [3] or the resulting nonlinear equations proved
problematic [4]. In ref. [5] the procedure proved successful assuming in-phase
harmonic force excitation at the bearing mounts. In this paper, the force excitation is
caused by rotor unbalance, taking full account of the attenuating/amplifying effects
of the rotor and the nonlinearity inherent in hydrodynamic bearings.

2 Theory

The equations of motion for an n degree of freedom (dof) foundation are:

MRx C CPx C Kx D f (1)

Here M, C and K are the n�n mass, damping and stiffness matrices of the
foundation; and the elements of x are the n dofs chosen to coincide with convenient
measurement locations and include the excitation force application points; i.e.

x D fx1; x2; : : : : : : xngT (2)

The elements of f are the excitation forces transmitted to the foundation at the
bearing supports. In the absence of fluid inertia, they are equal and opposite to the
forces acting on the rotor at the bearing locations. Assuming that the mass matrix
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M is diagonal, and that the system response due to unbalance excitation is periodic
with fundamental frequency� equal to the rotor speed, one can write:

���2I C i�M�1C C M�1K
�
X D M�1F (3)

Here X and F are the corresponding (complex) displacement and force am-
plitudes and M�1 is diagonal with elements 1/M1, . . . ,1/Mn. The elements of X,
viz. X1, : : : , Xn, are obtained from foundation motion measurements, whereas the
elements of F, viz. F1, : : : , Fn, are calculated from knowledge of the rotor model,
the rotor unbalance and rotor motion measurements at the bearing stations [2]. For
identification, one needs to determine the elements of the n�n matrices M�1K and
M�1C and those elements of M�1 which appear in the vector M�1 F.

Selecting a transformation matrix A, so that X D AQ, one can write (3) as:

���2IA C i�M�1CA C M�1KA
�
Q D M�1F (4)

If the n foundation eigenvalues are �1, : : : ,�n and if A is appropriately related to
the system modal matrix, then premultiplying (4) by AT and assuming proportional
damping, one obtains [5]:

���2I C i�Ÿ C œ
�

AT X � ATM�1F D 0 (5)

Here the n�n matrices Ÿ , and œ are diagonal. Thus, for k D 1, : : : , n, one has:

���2 C i�Ÿk C œk
� nX
jD1

ajkXj �
nX

jD1
ajkFj =Mj D 0 (6)

The parameters to be identified in the k’th equation are: �k, �k, ajk (j D 1, . . . , n)
and 1/Mj (j D 1, : : : , n). Because the elements of A are relative values, one can
assign akk D 1. Sufficient independent simultaneous equations can be obtained by
substituting for � and the corresponding Xj and Fj into (6). These equations are
nonlinear, so an effective solution strategy is required. Having found the unknown
parameters in each of the n identification equations, one has, in effect, obtained the
equivalent foundation. Various means are then available for using this ‘foundation’
to obtain the unbalance response of the RBFS. One could, for example, use these
identified parameters to obtain the M�1C and M�1K matrices in (3). Thus, if
k D ATM�1KA, and noting that k D�m where m D ATIA:

M�1K D �
AT
��1

kA�1 D �
AT
��1

œAT (7)

A similar expression pertains to M�1C. Note that should any of the Fj be zero,
one cannot determine 1/Mj: To recover (1), one needs to assign any nonzero number
to 1/Mj and premultiply (3) by the inverse M of this partly fictitious M�1, to yield
the identified mass matrix M and the identified stiffness matrix K (D M M�1K).
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3 Numerical Experiments

The flexibly supported rigid undamped foundation block, previously identified in
ref. [4], was selected to evaluate the proposed identification procedure. Here n D 6.
Figure 2 shows a set of suitable measurement locations on the upper surface of
the block. Using these six independent displacements as dofs is referred to as the
translational coordinate formulation. It allows for the application of the external
force f in the x2 and x5 directions at the connection point C1 and in the x3 and x6

directions at the connection point C2. Unfortunately such a choice of dofs does
not result in a diagonal mass matrix. To ensure this, one can locate rectangular
coordinate axes at the mass centre of the block, aligned in the direction of its
principal axes of inertia. A diagonal mass matrix results if one then selects for
the dofs the displacements of the mass centre in the directions of these coordinate
axes and the rotations of the block about these axes. Using these six independent
displacements as dofs is referred to as the mass centre coordinate formulation. In
this formulation the equations of motion of the foundation are similar to (1) except
the mass, damping and stiffness matrices Mc, Cc and Kc have different elements.
The vector of displacements is then given by:

u D ˚
x; y; z; ™x; ™y; ™z

�T
(8)

Also, the force vector needs to be modified to Df where D is a 6�6 matrix. The
mass centre and the translational dofs are related according to u D Gx and it can be
shown that the transpose of the 6�6 G matrix equals the inverse of the D matrix [4].
Also, the mass matrix M in (1) may be obtained from Mc according to M D GTMc

G, with similar expressions for obtaining the C and K matrices.
Figure 3 shows the stiffnesses supporting the foundation block and their lo-

cations. For W D 317.5 mm, H D 158.75 mm, L D 1,270 mm, and for a mass
of 502.49 kg, one obtains the principal moments of inertia Ix D 5.2765 kg m2,

X5

X1
X2

X3

X4

L

H

X6

C1

C2

W

Fig. 2 Measurement locations and directions
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Iy D 71.761 kg m2 and Iz D 68.595 kg m2. With respect to the mass centre, the
connection points C1 and C2 are at (�L/2, H/2, 0) and at (3 L/8, H/2, 0) respectively.

For the above undamped foundation, one can evaluate Mc, Kc and D directly,
and hence obtain M and K in (1). The numerical experiments then involved using
the above foundation in Fig. 1 with unbalances of U1 D 10�4 kg m, U2 D 10�5 kg
m and U3 D 10�6 kg m. Details of the rotor and bearings are given in ref. [3].

Using in-house software [3], the steady state system response was obtained
over the frequency range of 300 to 1,450 rad/s in steps of 50 rad/s. The input
data ‘measurements’ needed for identification were then the complex response
amplitudes X, and the complex force amplitudes F at these speeds, resulting in 24
input data sets. Parameter identifications were carried out using both the mass centre
and the translational coordinate formulations, assuming that the ‘measurements’
were available either to 5 significant digits or they were truncated to 2 significant
digits. The 5 digit input data results served to evaluate the validity of the identifi-
cation procedure in principle and to define the achievable accuracy of the adopted
computational procedure by minimising the effect of measurement errors. The 2
digit input data better reflected attainable field measurement accuracy.

The solution for the unknowns in (6) involved a nested iterative approach [5].
Each of the six equations yielded 48 simultaneous linear equations with up to seven
unknowns which were solved using least squares regression [3]. The converged
solutions yielded the identified mass and stiffness matrices M and K which were
then used to predict the unbalance response of the RBFS in Fig. 1.

4 Results and Discussion

Using the mass centre coordinate formulation, for both 5 and 2 digit data input,
there was excellent agreement between the actual and identified foundation natural
frequencies and inverse inertia values as shown in Table 1.
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Table 1 Natural frequencies ¨ (rad/s) and inverse inertia values (kg�1 or kg�1 m�2)

Mode 1 2 3 4 5 6

Actual ¨ 765.00 626.74 543.45 1259.0 823.61 1002.2
Actual 1/Mc 0.00199 0.00199 0.00199 0.190 0.0139 0.0146
5 digit data ¨ 765.00 626.74 543.45 1259.0 823.62 1002.2
5 digit data 1/Mc – 0.00199 0.00199 0.189 0.0139 0.0146
2 digit data ¨ 765.13 626.24 544.12 1258.9 823.79 1002.3
2 digit data 1/Mc – 0.00202 0.00197 0.192 0.0140 0.0147
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Fig. 4 Comparison of unbalance responses at different running speeds using mass centre
coordinates

Figure 4 compares the actual unbalance response amplitudes midway along the
rotor of the RBFS in Fig. 1 with that predicted with the identified foundation, using
2 digit input data accuracy. Not surprisingly, with such excellent identification of
the natural frequencies and inverse inertia terms, the predicted and actual unbalance
responses agree perfectly. Similarly excellent agreement was obtained for the
responses at other locations on the rotor as well.

The translational coordinate formulation is far more straightforward, as there
is no need to locate the mass centre nor the directions of the principal axes.
Unfortunately the assumption of a diagonal mass matrix introduced error. As may
be seen in Fig. 5, even with 5 digit input data accuracy, it was not possible to get
such good agreement between the actual and predicted unbalance responses.
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5 Conclusions

The proposed identification procedure is robust and promises to be applicable to
practical installations where the foundation comprises a flexibly supported rigid
foundation block and where measurements to two digit accuracy are feasible.
However, the dofs should ideally be chosen to ensure a diagonal mass matrix.
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Magnetic Actuator Modelling for Rotating
Machinery Analysis

Ricardo Ugliara Mendes, Hélio Fiori de Castro, Kátia Lucchesi Cavalca,
and Luiz Otávio Saraiva Ferreira

Abstract Rotating machines have a wide range of application such as airplanes,
factories, laboratories and power plants. Lately, with computer aid design, shafts
finite element models including bearings, discs, seals and couplings have been
developed, allowing the prediction of the machine behavior. In order to keep
confidence during operation, it is necessary to monitor these systems, trying to
predict future failures. One of the most applied technique for this purpose is the
modal analysis. It consists of applying a perturbation force into the system and
then to measure its response. However, there is a difficulty that brings limitations
to the excitation of systems with rotating shafts when using impact hammers or
shakers, once due to friction, undesired tangential forces and noise can be present
in the measurements. Therefore, the study of a non-contact technique of external
excitation becomes of high interest. In this sense, the present work deals with the
study and development of a finite element model for rotating machines using a
magnetic actuator as an external excitation source. This work also brings numerical
simulations where the magnetic actuator was used to obtain the frequency response
function of the rotating system.

Keywords Magnetic actuator • Rotating machinery • Excitation without
contact • Rotor dynamics
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1 Introduction

Lately, the computer aid design opened doors for a new technique, called finite
element model (FEM), to be applied to rotating machinery modeling. In this
technique, the continuous shaft is divided into finite elements. The first models
used the Euler-Bernoulli beam, whose equations are obtained from the application
of the Lagrange equation in a simple beam. A breakthrough in the modeling of
rotating machines is shown in [1], who studied a model called the Rayleigh beam,
which takes into account the rotational inertia of the shaft and the gyroscopic effect,
dependent on the shaft rotational speed. After a representative model of the shaft is
obtained, other elements of rotating machines (such as bearings, seals, foundations,
rotors) should be incorporated to the model in order to study the phenomena inherent
to these systems. Some expressive authors in this area, [2–4], modeled many of
the components mentioned above and analyzed their influence on rotor dynamics.
A non-linear approach in journal bearings modeling was presented in [5], and an
equivalent coefficients approach by numerically solving the Reynolds equation in
[6]. Non-symmetric rotors or with considerable anisotropy have precession modes
which can be forward or backward. In this sense, a complex modal analysis is
proposed to distinguish these two directional modes [7]. Concerning to non-contact
excitation source, there are important references in this area [8, 9], which deal with
the development of magnetic actuators including the differential linearization, where
two actuators are placed radially opposed. Once magnetic actuators can generate
only attractive forces, this positioning allows applying forces in both the actuator
directions and also linearizes the magnetic force. This work refers to a magnetic
actuator model numerically coupled to a rotor-bearing system model to be used in a
control system design application.

2 Mechanical System

The model of the mechanical system consists in the finite element model (Fig. 1)
of the steel SAE 1030 shaft of 12 mm diameter and 800 mm length, which is split
into 21 nodes – 20 elements (represented by the dots). There is also a 94.82 mm
diameter and 47.5 mm width disc which is placed in the center of the shaft. The
model also considers the actuator journal placed at 62 mm of the first bearing, of
80 mm length and 40 mm diameter. Both the disc and the journal are made of steel
SAE 1020. The system is supported by two hydrodynamic bearings (triangles in
Fig. 1) symmetrically placed at 600 mm from each other regarding to the middle of
the shaft, both with 90 �m clearance, 20 mm width and 30 mm inner diameter.

The equation of motion [1] is given in (1), where ˝ is the rotational speed, M is
the mass matrix, G the gyroscopic effect matrix, K the stiffness matrix and C is the
structural proportional damping matrix [10].

ŒM �f Rq.t/g C .ŒC �C˝ŒG�/f Pq.t/g C ŒK�fq.t/g D ŒF .t/� (1)
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Fig. 1 Finite element model of the mechanical system
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Fig. 2 (a) Model of the journal bearing; (b) Stiffness coefficients; (c) Damping coefficients

F(t) is the external forces vector, containing an unbalanced mass and the actuator
force; q is the generalized coordinate vector, with two translations and two rotations
for each node. The journal bearings are modeled by equivalent coefficients of
damping and stiffness (Fig. 2a) that are added in the corresponding system matrix.
The coefficients are evaluated from the pressure distribution, which is obtained
by Reynolds equation solution, using the finite-difference method. The coefficients
behavior, regarding to the rotational speed, are shown in Fig. 2b, c, [6].

The solution of the homogeneous part of (1) provides the natural frequencies
and natural modes of the system. However, it can be seen that (1) depends on the
rotational speed, i. e. the properties of the system changes as the rotational speed
changes. Therefore, this effect is shown in Fig. 3a, the Campbell Diagram. The
points where the natural frequencies cross the 1X line are called critical velocities.
In rotor dynamics, the precession movements (also called whirl), can be forward, if
they occur in the same direction of the rotor spin, or backward, if in the opposite
direction [11]. The natural modes, for a rotational speed of 1,200 rpm, are presented
in Fig. 3b, c. Figure 3b presents the first forward bending mode of the shaft, and
the first backward bending mode is presented in Fig. 3c. The particular solution of
(1), regarding to the unbalance, gives the operational deflection shape (ODS), as
shown in Fig. 3d, for the rotational speed of 660 rpm. The ODS presents the relative
motion between two or more degrees of freedom from a structure due to an external
excitation force [12], and gives an idea of how the system responds in a specific
frequency, once the response of the system is a linear combination of its natural
modes.
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3 Magnetic Actuator

The force obtained by a magnetic actuator (2) is proportional to the area of the
actuator pole (A), the magnetic flux density (B), which is given by (3) and it is
proportional to the number of turns in the coils (N), the current (i), the length of the
air gap (lg) and the magnetic permeability of the air (�g) [8].

Fm D B2 � A
�g

(2)

B D �g �N � i
2 � lg (3)

Fm D A

�g
4BbBref (4)
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Therefore, the control of the actuator force can be made through the magnetic
field control [13] as shown in Fig. 4, where Bref is the magnetic field correspondent
to the reference force which is compared to the magnetic field measurement made
by the hall sensor. This comparison is the proportional controller input. The output
voltage of the controller is transformed into the correspondent current by the PWM
amplifier (which works in the current control mode) and sent to the coils of the
actuator, generating the magnetic force Fm. Thus, using the differential assembly
with a bias magnetic field (Bb), [8, 9], the linearized resultant force can be written
as (4), according to [13]. The PWM presents a linear behavior in the operation
range of the system, therefore, its behavior is described by a first order polynomial
equation based on experimental tests. The hall sensor behavior is governed by a
first order differential equation, and its gain and time constant were provided by its
manufacturer.

4 Results

Once the model of the magnetic actuator was integrated to the mechanical system
model, a chirp test was accomplished in order to obtain the frequency response
function (FRF) of the rotating system. The frequency of the external excitation
applied by the magnetic actuator was increased from 0 to 50 Hz, in 20 s. Figure 5a
shows a detail of the excitation force frequency increasing. The shaft was kept in
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a constant rotational speed of 30 Hz. From the force and the shaft displacement
(Fig. 5b) the FRF was calculated, and it is shown in Fig. 5c.

Figure 5c shows a peek correspondent to the rotational speed at 30 Hz. There is
also a peek due to the natural frequency (with a phase shift of 180ı) at approximately
23 Hz, which is in agreement with the first natural frequency of the rotor, as
experimentally observed in previous works [5, 13].

5 Conclusions

In this work, a finite element model for rotating machinery, including the model
of journal bearings, using an equivalent coefficients approach, was presented. It was
also included the model of a magnetic actuator, used as an external excitation source.
A chirp test was simulated in order to obtain the frequency response function of the
model, and it showed that the magnetic actuator can be successfully used for this
purpose in rotating machinery analysis.

Acknowledgments The authors would like to thank Fapesp, CAPES and CNPq for the financial
support to this research.
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Quenching Damping-Induced Instability

Ferdinand Verhulst

Abstract The first complete analytic and geometrical explanation of destabilization
of a conservative system by small dissipation was given by Bottema in 1956.
We will discuss a simple-looking but generic model for a particle in an rotating
vessel studied by L.E.J. Brouwer using averaging-normalization techniques with
the purpose to quench such instabilities. Remarkably enough it turns out that for the
rotating vessel both in the case of a rotating well and a rotating saddle, quenching is
possible.

Keywords Dissipation-induced instabilities • Whitney’s umbrella • Brouwer’s
rotating vessel • Gyroscopic quenching

1 Introduction

A number of rotor systems, when modeled as systems without damping, possess
stable equilibria or stable steady motions, but when small damping is introduced,
some of these equilibria or steady motions become unstable.

The crucial ideas for the explanation of these destabilization phenomena were
formulated by Bottema. In the context of bifurcation theory a geometrical explana-
tion can be given in terms of the so-called ‘Whitney umbrella’ and singularities of
maps, see for references [2].

We consider a physically very simple model studied by Brouwer [1] that can
serve as an illustration of destabilization by dissipation. Note however that, although
simple looking, the equations that arise are familiar from other applications. For an
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important and typical case of Brouwer’s rotating vessel we show that quenching of
the instability can be achieved by small modulations of the rotation speed. Several
resonances play a part here.

2 Brouwer’s Rotating Vessel

In 1918 Brouwer [1] studied the equilibrium position of a point mass in a vessel,
described by a smooth surface S, rotating around a vertical axis with constant
angular velocity !. With the equilibrium chosen on the vertical axis at (x, y) D (0, 0)
on S, the linearized equations of motion with internal dissipation added are:

Rx � 2! Py C "c Px C .gk1 � !2/x D 0; (1)
Ry C 2! Px C "c Py C .gk2 � !2/y D 0: (2)

The constants k1 and k2 are the x, y-curvatures of S at (0, 0), g is the gravitational
constant, " is a positive small parameter, c a positive constant. If k1< 0, k2< 0 we
have a ‘bump’ on S and always instability; we leave this case out. Consider two
cases:

1. k1 D k2 D k > 0 (single-well at equilibrium).Without damping ("D 0) stability
if 0<!2< gk (slow rotation) or !2> gk (fast rotation). With damping ("> 0)
stability if 0<!2< gk.

2. k1 D k> 0 and k2 D �k; (saddle at equilibrium). With damping ("> 0) always
instability.

Note that asymmetric damping, putting c Px ! c1 Px; c Py ! c2 Py does not change
the results qualitatively.

Based on earlier studies (see [4]) we choose modulation of the vessel rotation
as this might produce the combination resonances that will change the stability
characteristics. For "D 0 we have solutions .x; Px; y; Py/ that are used to produce
variational equations of the form z̈ D "F(z, y) with z a 4-vector. The righthand side
F is quasi-periodic in t; averaging over the two periods produces averaged-normal
forms that yield an O(")-approximation valid on the timescale 1/" (see [3]). The
variational equations contain hundreds of terms, the algebraic manipulation program
MATHEMATICA is used to compute the normal forms.

3 Quenching Unstable Single-Well Motion

Assume that we have the unstable case !2 > gk. The modulation is given by !2 WD
!2 C 2a" cos�t with again ! a constant. We have
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a = 0 a = 0

a = a1

a = a1
P

a >a2

a = a2

Fig. 1 Movement of the eigenvalues near equilibrium at the single-well with dissipation and small
modulation of the rotation !. The eigenvalues have multiplicity two; for a D 0 (no modulation)

we have two positive and two negative eigenvalues. At a D a1 D c2!2
!2�gk

gk
the two positive

eigenvalues arrive at the origin. For a1 < a < a2.D c2!4

gk
/ four eigenvalues are real and negative

(stability). At P (for a D a2) we have four equal eigenvalues, for a> a2 the eigenvalues move into
the complex plane with negative real part

Rx � 2! Py � �
!2 � gk

�
x D "

��c Px C 2a
!

Py cos �t C 2ax cos �t
�
;

Ry C 2! Px � �
!2 � gk

�
y D "

��c Py � 2a
!

Px cos �t C 2ay cos �t
�

Putting "D 0 we obtain for the frequencies near the origin: �1 D ! Cp
gk; �2 D

! � p
gk: Using the independent solutions of the unperturbed ("D 0) solutions

we introduce the usual variation of constants transformation into the equations of
motion. Using matrix inversion and applying averaging-normalization we have to
make assumptions about the frequencies �1,�2, �. There is only one (combination)
resonance leading to synchronization: �1 � �2 D � or 2

p
gk D �: The averaged-

normal form equations have in the case of this resonance solutions an O(") error-
estimate on the timescale 1/"; in the case of asymptotic stability the estimate is valid
for all time (see [3]). For the equilibrium at the origin we have from the normal form
equations the eigenvalues, see Fig. 1.

3.1 Outside the Combination Resonance

If we have no resonance at first order averaging, the off-diagonal elements vanish
to O("), so that the equilibrium remains unstable. The tuning into the combination
resonance �1 � �2 D � is essential to stabilize the system.
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4 Quenching the Unstable Saddle Motion

Consider now modulation of the vessel rotation in the case of the rotation of a saddle
(unstable by dissipation for any rotational velocity !). Put k1 D k > 0 and k2 D
�k and assume!2> gk. The modulation is given as before. The equations of motion
become:

Rx � 2! Py � "
2a

!
cos �t Py C "c Px � ˇ2x � 2"ax cos �t D 0;

Ry C 2! Px C "
2a

!
cos �t Px C "c Py � ˛2y � 2"ay cos �t D 0:

˛2 D !2 C gk; ˇ2 D !2 � gk:

We perform a similar analysis as before producing the following five resonances:
2˛D � (Mathieu resonance); 2ˇD � (Mathieu resonance); sum-resonance ˛ D ˇC
�; sum-resonance ˛ C ˇ D �; special resonance ˛ D 3ˇ D ˇ C �.

Each of these cases correspond with different synchronization scenarios. After
computing the normal forms to obtain the stability characteristics it turns out that the
two Mathieu-resonances and the fifth, special resonance do not lead to quenching.
Consider the two sum-resonances:

The combination resonance ˛ D ˇ C 	. Putting K D gk=!2 and computing
the normal form matrix we have that the modulation coefficient a produces stability
with four real negative real eigenvalues if

!c

p
4 �K2

K
< a <

2c!

K
:

The eigenvalues are complex with negative real part, implying stability, if

a >
2c!

K
:

The combination resonance ˛ C ˇ D 	. After normalization we find the same
double eigenvalues as in the case ˛ D ˇ C � and so the same stability conclusions.
The two combination resonances enable us to stabilize the gyroscopic system.

In the case of the combination resonances ˛ D ˇ C � and ˛ C ˇ D � the value

a D !c

p
4 �K2

K

corresponds with two real negative eigenvalues and two eigenvalues zero. For
the linear system this boundary case gives instability. On adding nonlinear terms
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we will have a two-dimensional center manifold. For both combination resonances
we conclude that for stability the amplitude of the frequency modulation has to be
larger than a magnitude proportional to c!3/gk.

5 Conclusion

We have revisited the rotating vessel problem formulated by Brouwer that is
destabilized by small damping, whatever its magnitude; this can be interpreted by
what is now called the Whitney umbrella singularity. Interestingly, this gyroscopic
problem can be stabilized again by introducing a small modulation of the rotation
speed and tuning into an appropriate combination resonance. It is remarkable that
this can even be achieved for the rotating saddle problem. As Brouwer’s model is
typical for rotating and gyroscopic systems, the results are promising for quenching
such systems.

Acknowledgements O.N. Kirillov drew my attention to the paper by Brouwer [1]. In a pleasant
cooperation with Theo Ruijgrok, MATHEMATICA was used to handle the normalization procedure
in this paper.
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An Equivalent Blisk Model Considering
the Influence of the Air Flow on Blade
Vibrations of a Mistuned Compressor Blisk

Bernd Beirow, A. Kühhorn, and J. Nipkau

Abstract A discrete blisk model composed by mass-, spring- and dashpot-
elements, the so called Equivalent Blisk Model (EBM) is adapted to the mechanical
properties of a real high pressure compressor blisk considering measured vibration
data. Aiming to integrate the aerodynamic influences in the EBM, aerodynamic
influence coefficients derived from aeroelastic computations are employed.
Intensive numerical analyses of the forced response behavior of the blisk are
performed. In addition, probabilistic mistuning analyses are carried out to assess
the influence of increasing mistuning on the response amplification in dependence
on the excitation order. Since the coupling between disk and blades is one of the
governing parameters affecting the forced response, the influence of the disk’s
stiffness is studied varying the stiffness of those springs representing the disk.

Keywords Blisk • Blade vibration • Mistuning • Fluid structure interaction

1 Introduction

Analyses of rotating turbomachinery components such as compressor rotors (Fig. 1)
are widely based on simulations of perfectly tuned systems. However, due to devi-
ations from the ideal design intention following from geometrical imperfections,
material inhomogeneties or wear respectively, a real turbomachinery rotor will
always be mistuned no matter how small the tolerances may be. In that regard,
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Fig. 1 The 9 stage E3E high pressure compressor [1], six rotors manufactured as blisk

mistuning is referred to as variations of mechanical properties of the rotor’s blades.
These variations lead to differing blade natural frequencies and a splitting of the
orthogonal modes of the slightly damped cyclic symmetric blisk system.

Due to lack of friction at the contact faces of the blades’ roots and the disk,
compressor rotors manufactured as blisk (‘blade integrated disk’), meaning the
blades being an integral part of the disk, are characterized by only little mechanical
damping. During operation a blisk may face engine order excitation which, in the
case of a mistuned system, may lead to so called mode localization and an increase
of blade amplitudes ranging between 20% and 402% [2–5] compared to the tuned
response of an academically ideal blisk. Whitehead [2] found an upper limit of
blade displacement magnification of the forced response due to mistuning given
by 1=2.1C p

N/. In [5] a mitigation of the blade displacement magnification due
to the flow could be shown. In [6, 7] even a reduction of the forced response could
be proved in case of large frequency mistuning.

The following work addresses the mistuning problem focusing on the effect of
increasing mistuning in dependence on structural coupling under consideration of
the flow. A real mistuned blisk of a high pressure compressor is analyzed for that
purpose (Fig. 1).

2 Mistuning Identification and Structural Modeling

Aiming at an identification of structural mistuning as introduced in [8, 9] blade
by blade measurements are carried out. Impact excitation is employed to each
blade step by step applying a miniature hammer and the vibration velocity is
measured at the same blade based on laser-Doppler-vibrometry. In order to isolate
a blade dominated frequency in the particular FRF all blades except the excited
one are detuned with additional mass elements to destroy the slightly disturbed
cyclic symmetry of the mistuned blisk completely. As a result distributions of blade
dominated frequencies are identified (Fig. 2).

The experimental modal information is used to update low degree of freedom
structural models (one for each blade mode shape), the Equivalent Blisk Models [5]
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(Fig. 3). The update of each model is based on an adjustment of both the blade
stiffness (kb; i) and the damping ratio Di of each blade in an iterative approach
requiring that measured and calculated FRF match.

Aiming at a consideration of flow effects, the method of aerodynamic influence
coefficients (AIC) as introduced among others by Hanamura et al. [10] and Nipkau
[6] is implemented in the EBM with the objective to compute forced responses by
means of sensitivity studies. The AIC are determined forcing one reference blade
to perform a sine-shaped vibration in a particular mass normalized blade mode
shape ‰ in a blade assembly. As a result, flow perturbations and hence an unsteady
static pressure distribution arise acting on each blade from which the AIC can be

calculated [6] and written in an influence coefficients matrix OL‰ . Hence, the EBM
equation of motion is given with

MRx.t/C DPx.t/C Kx.t/ D OL‰ �mbx.t/C FF .t/: (1)
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FF is the complex vector of external excitation forces. The effective blade mass
mb acts as a scaling factor to consider the mass normalization of ‰ . Aiming at
a determination of the aeroelastic eigenvalues the mechanical damping matrix D
as well as the external forces FF in Eq. 1 are set to zero. In consequence the
homogeneous eigenvalue problem can be written as

n
œ2®M C

h
K � OL‰ �mb

i o
Ox D 0 (2)

with

œ® D �D®¨i C j¨® (3)

naming the aeroelastic eigenvalue œ® containing the aerodynamic damping de-
scribed with the damping ratio D® and the angular aerodynamic natural frequency
!®. The results in Fig. 4a show that the aerodynamic damping contribution of
mode 1 is between 3 and 4.5 times higher compared to modes 3 and 6. In general,
clearly higher damping values arise for high absolute interblade phase angles ®. The
dependence of !® on ® (Fig. 4b) is inconsistent and its deviation from the angular
structural frequency !i remains clearly below 1%.

3 Sensitivity Analyses

Applying a forward rotating engine order (EO) excitation, forced response analyses
are carried out with respect to increasing mistuning, changes in disk stiffness and
hence, the coupling of disk and blade motion. Exemplarily, the blade modes 1 (1F),
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Fig. 5 Amplification of the maximum tuned displacements due to mistuning

3 (1T) and 6 (1 TL) excited by the operationally relevant EO 7 (1F), EO 2 (1T) and
EO 14 (1TL) are chosen. The modification of mistuning is accomplished scaling
up the measured frequency distributions given in Fig. 2 meaning that the shape
of mistuning is maintained and only a modification of the standard deviation ¢ is
assumed.

The results given in Fig. 5 show that apart from one exception a general
amplification of the maximum blade displacement compared to a tuned blisk arises.
Only for mode 3 and an approximately rigid disk (disk stiffness 100-fold increased,
Fig. 5b) a decrease of the mistuned response below the tuned one for standard
deviations greater than 5% is obvious. However, considering EO2-excitation also
for modes 1 and 6 (Fig. 6) and a rigid disk, a general decrease below the tuned
response arises already at ¢ D 0.4% (mode 1) and ¢ D 0.5% (mode 6). In case of
a flexible disk, only mode 1 leads to ” < 1 (¢ > 1.3%). Since mistuning destroys
the cyclic symmetry, a particular EO 2 does not only excite a blisk mode with
2 nodal diameters as is it the case for a tuned disk, but a linear combination of
multiple EOs depending on the mistuned blisk mode shape (Fig. 6, right). Because
the aerodynamic damping is comparatively low for low nodal diameter modes (low
®, see Fig. 4) but high for higher modes in case of mode 1, the aerodynamic damping
increases with increasing mistuning which works against the otherwise response-
amplifying effect of mistuning. In contrast, an EO14-excition generally increases
the tuned response.
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Fig. 6 Displacement amplification ” for EO 2 and 14 for a flexible and rigid disk

4 Conclusions

The paper addresses a methodology to calculate forced responses of a real blisk
(Rotor 1, E3E-engine) employing discrete low degree of freedom models introduced
as Equivalent Blisk Models (one for each blade mode) with a focus on the
consideration of the fluid–structure interaction. Starting from a blade by blade
frequency check by which mistuning is taken into account, the structural parts
of the actual models are updated. In addition, the effect of increasing mistuning
is analysed scaling up the measured distributions. Based on CFD-computations
aerodynamic influence coefficients are calculated and implemented in the EBMs,
which are henceforward ready for forced response simulations.

It has been shown that the response amplifying effect of mistuning can be
attenuated due to the fluid structure interaction. An excitation of low engine orders,
high mistuning and low coupling abets the attenuation and can even lead to a
reduction of the forced response. Due to the strong dependence of the aerodynamic
damping on the interblade phase angle, the fundamental flap mode 1 is most
sensitive in this context. Nevertheless, since real frequency mistuning of modern,
new blisks commonly does not exceed 1%, the amplifying effect of mistuning still
plays a major role with respect to save engine operation.
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Influence of Dry Friction Damping on Bladed
Disk Vibration

Luděk Pešek and L. Půst

Abstract The paper deals with influence of dry friction damping on bladed disk
vibration. Firstly the 3D FE solution and analysis of the imperfect blade disk
dynamics is presented. Then the dry friction effect is studied analytically on
linearized spring-dry-friction model consisting of equivalent linear stiffness and
damping coefficients. An influence of nonlinearities and unproportional damping
distribution on response curves is discussed as well.

Keywords Blade • Disk • Dynamics • Dry friction • Damping

1 Introduction

The flexural vibrations of imperfect bladed circular disk have been solved by
analytical and numerical models [1]. The aim of this research is to evaluate the
influence of elastic, mass and damping imperfections on the dynamic behavior
of turbine disks. Nowadays experiments on the bladed disk model are carried out
in the dynamic laboratory of the IT AS CR [2]. The disk imperfection results
from implementation of two bunches of five blades with blade-to-blade head
contacts into the original free-end beam blading. The bunches are fixed on opposite
ends of the disk and introduces imperfections in mass, stiffness and nonlinear
damping distribution on the periphery and non-proportional distribution of damping
properties, too. In the first part the numerical FE solution presents method for
analysis of dynamic properties of non-rotating or rotating disk. Spectral analysis of
imperfect disk harmonically excited by turning force field is presented. The circular
disk has many double eigenfrequencies. Positions of nodal diameters are arbitrary at
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perfect disks, but they are fixed with respect to position of imperfection at imperfect
disks. The spectrum of resonance peaks is twice denser than that of a perfect disk.
Since the computation of the wheel dynamics with dynamic friction contacts is
very time consuming the viscous linear damping is considered as approximation
for the blade-to-blade friction coupling [1]. The spring-dry-friction model was also
proposed and its corresponding equivalent linearized form for different friction and
spring parameters was derived. The measured shift of eigenfrequencies at increasing
friction is explained by the effect of non-proportional damping.

2 Spectral Analysis of the FE Model Under Rotating Forces

Experimental bladed wheel model consists of a steel disk with 50 beam blades
completed with two bunches of blades ended by heads linked by wedge-shaped
prisms. The friction couplings between the blades and prisms create damping effect.
The disk is fixed in its center overhung on the rotating shaft. For theoretical solution
of the wheel dynamics with friction contact a three-dimensional FE-model has
been developed in ANSYS environment (Fig. 1). The 57 thousands of eight-node
hexagonal elements SOLID45 were used for the finite element mesh. For modal
analysis and dynamic response on the harmonic excitation the friction contacts were
supplied by fixed connections. Lanczos’s method was applied for calculation of
eigenvalues and modes and harmonic balance method for evaluation of amplitude-
frequency spectra. This paper investigates the eigenfrequencies of the two lowest
modes of nodal diameters (n D 1 and n D 2) and no nodal circle. The lowest pairs
of eigenfrequencies of a perfect non-rotating disk with 60 prismatic blades are:
f1 D 59.21 Hz and f2 D 78.60 Hz [1, 2]. Due to the bunches of five blades, the
bladed disk lost its perfect circular properties and became imperfect with a countable
number of axes in this case two or four symmetry axes. The perfect disk has double
eigenfrequencies f1, f2, which split into two pairs of close eigenfrequencies at the
imperfect disks: f1a D 59.02 Hz and f1b D 52.46 Hz for n D 1 and f2a D 77.98 Hz and
f2b D 72.70 Hz for n D 2.

Fig. 1 FE wheel model
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Fig. 2 Amplitude-frequency
response spectrum of nodes
N14969, N6737 and 65331 of
the wheel with association to
the modes (n D 1, 2) with
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system

For numerical simulations under rotation the turning force field excited the wheel
in steady non-rotating space. Forces of the turning field for optimal excitation of
eigen-mode with n nodal diameters [1] can be described by

F.�ai / D k cos.n�ai C !t/; i D 1; 2; : : : ; nf (1)

where k is an amplification coefficient, �ai is a force circumferential position, ¨ is
excitation frequency, nf number of forces. For excitation of the eigen-mode with
n D 2, the eight forces (nf D 8) placed at the ends of blades with position �ai D
.i � 1/=4 (i D 1, . . . , 8) and k D 1 were chosen. Then the force field (1) moves in
Cartesian co-ordinate system clockwise with a revolution frequency !=n:

The wheel is embedded in the hub. Damping ration 1% was chosen for the
harmonic analysis. The amplitude frequency spectrum of axial displacements uz
in three selected nodes for imperfect (with bunches) wheel under designed turning
force field is drawn in Fig. 3. For symmetric perfect wheel the only resonance f2
(n D 2) is achieved. This resonance occurs when the rotation speed of the turning



560 L. Pešek and L. Půst

field is equal to f2/2 and the traveling wave of the wheel moves with the same
speed counter the wheel rotation. It causes the standing wave in the steady non-
rotating space. In case of imperfect wheel, however, there are two resonances for
eigenfrequencies f2a and f2b instead of the one. Nevertheless due to higher splitting
of the eigenfrequencies the corresponding modes are excited separately without
building the travelling wave. Besides the extra resonance for the frequency f1b is
excited in the spectrum since the associated eigenmode is not fully orthogonal to
the excitation vector due to different stiffness of the free-ended blades and bunches.

3 Spring-Dry-Friction Element and Its Effect
on Resonance Peak

Friction connection with linear elastic micro-deformation can be modeled by a
spring-damper system shown in Fig. 3. Let us suppose a harmonic motion x D
acos!t of point A at initial conditions � D! t D 0, x D a, x1 D a � Ft0/k, where
Ft0 D fFN , is dry friction Coulomb force.

Motions x(�), x1(�) during one period of non-dimensional time � 2 .0; 2 / are
drawn in Fig. 4. The motion x(�) of point A is supposed to be continuous harmonic,
but the motion x1(�) of point B is twice interrupted during a period [3].

In interval 0 < � < �1 is x1 constant

x1 D a � Ft0=k; (2a)

Fig. 4 Time history of motion x, x1
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Fig. 5 Equivalent stiffness
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where the time �1 of change is

�1 D arccos.1 � 2Ft0=.ka//: (2b)

In this time the strength of spring reaches the opposite friction force – Ft0 and
the point B starts motion x1(�) with a constant shift �D Ft0 /k against the motion x
during time interval �1 < � < : x1 D acos� � Ft0=k:

The same motions x(�), x1(�) but with opposite sign occur in the second half
period < � < 2: The friction force Ft (or spring force in point B) is given by the
difference x � x1 multiplied by stiffness k:

Ft D k.a cos � � a C�/ for 0 < � < �1; Ft D �k� D �Ft0 for �1 < � < �
Ft D k.�a cos � C a ��/ for <�<C�1; Ft D k�DFt0 for <�1<�<2:

(3)

Force Ft depends both on displacement x D acos!t and on velocity Px D
�a!sin!t : Ft .x; Px/ and can be replaced by an equivalent linear expression

Ft .x; Px/ D ke.a/x C be.a!/ Px: (3a)

Multiplying function (3) by cos� and integrating we get the equivalent linear
stiffness ke(a) [3]. Similarly we get the equivalent linear damping coefficient be(a!)
by multiplying Ft by function sin� and integrating.

Dependence of equivalent stiffness ke(a) and damping be(a!) on amplitude a of
vibrations is for Ft0 D 0, 4 N/m shown in Figs. 5 and 6 for three spring stiffness
k D 400, 1,000, 2,000 N/m. For very small amplitudes a < Ft0/k, only elastic
deformation occurs at constant stiffness value ke(a) D k.

Up to the limit a D Ft0/k, no energy dissipation exists: be(a!) D 0. After crossing
this limit, stiffness quickly decreases and damping coefficient be(a!) increases,
reaches optimal value and then again slowly decreases. Resonance peaks of bladed
disk computing model in Fig. 2 as well as in [1, 4] are narrow and a predominant
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Fig. 6 Equivalent damping
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sinus form characterizes the resonance vibrations. Therefore the application of
equivalent linearization is justifiable. Let us see, how the addition of spring-dry-
friction element to the linear vibrating system changes the form, shift and height
of resonance peak. Motion in the narrow resonance zones of bladed disk can be
described by

Rq C b Pq C k1q D F0 cos!t; (4)

where in the first mode: m D 6, 8 kg, k1 D 740,000 N/m, b D 5 Ns/m, F0 D 4 N.
Including equivalent linear damping and stiffness into (4) gives

m Rq C .b C be.a!// Pq C .k1 C ke.a//q D F0 cos!t: (5)

with response q D a cos.!t �  /, Solution of Eq. 5 gives nonlinear algebraic
equation of response curve a(!). These curves are drawn e.g. in Fig. 7a. Spring-
friction damping element contains two parameters: dry friction force Ft0 and
stiffness k. Influence of stiffness k on response curve of a weakly damped system
(b D 5, Ft0 D 2, 5 N) is insignificant.

Influence of dry friction force Ft0 on position and height of resonance peak
is demonstrated in Fig. 7a for Ft0 D 0; 1; 2; 3 N at constant spring stiffness
k D 10,000 N/m. Due to increasing friction force Ft0, the resonance peak decreases
and shifts to higher frequency.

These shifts of resonance are small and are negligible for model of bladed
disk IT ASCR. The amplitude fall is important, but it is different from the gained
measurement data. Equation 5 is derived at the assumption that the addition
damping is uniformly distributed on the whole periphery and therefore the height
of resonance peaks continuously decreases at increasing friction force Ft0 as shown
in Fig. 7a. However, the experimental disk IT ASCR in Fig. 1 has damping heads
concentrated only in two separated places, which changes this structure into non-
proportionally damped system [5]. Computational model of such system is in
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Fig. 7b. The effect of such damping distribution on response curves is shown in
Fig. 7c, where resonance amplitudes increase at very low (˛ Š 0) and at very high
additional damping (˛ Š 500), but where an optimum damping exists (˛ Š10).

4 Conclusion

In the numerical approach of the wheel dynamic the amplitude-frequency spectra
of axial displacements for perfect and imperfect wheel under turning force field
were presented. This loading simulates the loading of the rotation wheel by forces
coming from e.g. static pressure field or permanent magnets. For symmetric case the
only resonance occurs when the travelling wave of the wheel moves with the same
speed counter the wheel rotation. It causes the standing wave in the steady non-
rotating space. In case of imperfect wheel in the spectrum there are two resonances
instead of one in the previous case due to the eigenfrequency splitting. Nevertheless
due to higher splitting of the eigenfrequencies the corresponding modes are excited
separately without building the travelling wave.

The main attention in the theoretical part was focused on the analysis of nonlinear
properties of spring-dry-friction element and its linearization by means of equivalent
linear stiffness and equivalent linear damping coefficient. It is shown that the
influence of local stiffness in contact point on the damping level and in consequence
of this also on height of resonance peak is practically small.

More important is the non-uniform distribution of damping elements on the
periphery of disk, which change the disk into a non-proportionally damped system.
The possibility of damping optimization in such a case is shown.
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Damping Capacity of Superelastic
Nickel-Titanium Plain Textiles

L. Heller, B. Marvalová, J. Vlach, K. Janouchová, M. Syrovátková,
and J. Hanuš

Abstract Presented experimental work analyzes the effect of hysteretic supere-
lastic material behaviour on the vibration damping capacity of plain weft knitted
fabrics made of superelastic Nickel-Titanium wires. The damping is evaluated
while the fabric is clamped at a circular boundary and subjected to out-of-plane
mechanical loadings. Through this experiment, we mainly analyze whether the
hysteretic superelastic behavior of Nickel-Titanium wires can effectively increase
the damping capacity of weft knitted fabrics. For this purpose, we present and
discuss comparison of experimentally identified damping capacity of samples
containing, on one hand, wires exhibiting superelasticity and, on the other hand,
common elastic stainless steel wires. Moreover, effects of knit size and loading
parameters such as vibration amplitude, frequency and mean force are analyzed.
The presented study shows clearly that the superelasticity contribute to the overall
damping capacity of knitted fabrics. However, this contribution is unexpectedly low
as it doesn’t exceed 25% of the overall damping capacity. Therefore, it is believed
that, within the range of applied loadings and for given structural parameters,
elasticity is a dominant deformation mechanism in the Nickel-Titanium wires;
whereas, superelastic deformation takes place in a minor volume fraction of wires.

Keywords Nitinol • Superelasticity • Superelastic damping • Weft knitting
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Faculty of Textile Engineering, Technical university of Liberec, Liberec, Czech Republic
e-mail: katerina.janouchova@tul.cz; martina.syrovatkova@tul.cz; jaroslav.hanus@tul.cz
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1 Introduction

Commercially available metallic knitted wire meshes made of common metals
such as stainless steel, plain-carbon steel, copper, tungsten etc. are used in many
applications such as vibration and shock absorbers, engine catalysts, flame arrestors
etc. [1].

The vibration damping capacity of metallic knitted wire meshes arises from
two effects. First, thanks to structural morphology of wire meshes, friction at
wires interlockings and contacts contribute largely to the overall damping capacity.
Second, material damping is an additional source of damping.

Shape memory alloys (SMAs) have been used in damping applications as they
exhibit so called superelasticity. Mechanism responsible for superelastic deforma-
tion of SMAs is a diffusionless displacive martensitic transformation [2], which
basically consists in a reversible change of crystal structure upon loading. in SMAs
has been recognized as an effective deformation mechanism for two reasons. First,
superelasticity allows for large recoverable strains that can reach up to 10%, which
is not common to metals. Second, cyclic superelastic deformation shows large
hysteresis; therefore, superelasticity can be used for vibration damping. However,
this so called superelastic damping of SMAs is highly dependent on three loading
conditions – amplitude, mean force, and frequency [3].

Presented work analyzes the influence of the material damping capacity and
structural parameters on the damping capacity of metallic plain weft knitted fabrics.
First, we describe manufacture technology, structural parameters and wire materials
used for all measured samples. Second, experimental set up and the damping
capacity evaluation are described. Finally, experimental results in terms of the
damping capacity dependence on wire material, structural and loading parameters
are presented and discussed.

2 Metallic Weft Knitted Fabrics

Different types of plain weft knitted fabrics were made in order to test the structural
and material effects on the damping capacity of weft knitted fabrics. Structural
effects were evaluated by testing fabrics with different knit sizes; whereas, material
effects were evaluated on fabric samples made of materials having different material
properties, namely, Young modulus and material damping. In order to test effects of
these two material properties, stainless steel and NiTi weft knitted fabric samples
were made.

2.1 Stainless Steel Weft Knitted Fabrics

Stainless steel samples were manufactured from an austenitic steel wire 304 V
purchased from Fort Wayne Metals Ltd. The wire was produced via cold drawing
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manufacture technology. No heat treatment was applied on the wire after the last
stage of the cold drawing. Tensile behavior of this wire is characterized by ultimate
tensile strength of 
2,100 MPa, ductility of 
1.6% and Young modulus of 
163
GPa. Only one structural type of stainless steel samples was manufactured, which is
characterized by a knit size denoted H6. Dimensions of the knit are shown in Fig. 2.

2.2 NiTi Weft Knitted Fabrics

Several types of NiTi weft knitted fabrics were made, differing in the initial material
state of NiTi wires, final heat treatments applied on fabrics and knit sizes. All used
NiTi wires were of grade NiTi#1 as denoted by wire supplier Fort Wayne Metals
Ltd. Wires have chemical composition 55.82 wt% Ni giving the wires superelastic
behaviour at temperatures above 10ıC.

NiTi wires in two different initial material states were used to manufacture weft
knitted fabrics. Samples denoted NiTi HT and NiTi Hard were made of NiTi wires
that were not heat treated after the final stage of cold drawing wire manufacture
technology. Such so called NiTi hard wires exhibit an elastic tensile behavior
characterized by ultimate tensile strength of 
1,800 MPa, ductility of 
4.5% and
Young modulus of 
55 GPa. Samples denoted NiTi SA were made of straight
annealed NiTi wires, which received a final thermal treatment in a straight shape
after the final stage of cold drawing wire manufacture technology. Therefore, such
wires exhibit superelastic behavior as depicted in Fig. 2 prior to fabric manufacture.
Such a behavior is characterized by an appearance of loading and unloading stress
plateaus that delimit the stress-strain hysteresis (see Fig. 2). Hence, samples denoted
NiTi HT or NiTi Hard were knitted from an elastically behaving NiTi wires;
whereas, samples denoted NiTi SA were knitted from NiTi wires able to undergo
superelastic deformation during knitting.

Weft knitted fabrics made of NiTi hard wires were either heat treated in a
prestretched shape (samples denoted NiTi HT) in an air furnace at 450ıC for 30
min or not heat treated (samples denoted NiTi Hard). Applied heat treatment has two
effects. First, it induces the functional behavior of NiTi wires such as superelasticity
i.e. tensile behavior of such a wire switches from linear elastic one to the one
depicted in Fig. 2. Second, it fixes the wire stress free shape into the one in which
the wire is kept during the heat treatment. Therefore, the wire accommodates the
knit shape and, consequently, heat treated fabrics are relieved from internal stresses
introduced by deformation during knitting. In contrast, fabric samples that were not
heat treated after knitting (i.e. samples denoted NiTi Hard and NiTi SA) contained
internal stresses. To sum up, the samples denoted NiTi HT were free of internal
stresses and the initial microstructure was purely austenitic capable of undergoing
the superelastic deformation upon loading. Samples denoted NiTi Hard contained
an elasticallyprestressed NiTi wires that don’t have the ability to be deformed
superelastically (see Fig. 1).
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Fig. 1 Cyclic tensile stress-strain curves of a heat treated superelastic NiTi wire at two
temperatures

Fig. 2 Comparison of three different knit dimensions of tested weft knitted fabrics

Fabric samples denoted NiTi SA possess a specific material microstructure due to
the initial material state of NiTi wires. As samples were knitted from a superelastic
NiTi wires, the wires might undergo superelastic deformation in some volume
fraction due to bending into knits during the knitting. Therefore, we suppose that the
NiTi wire within this samples was in a partially transformed state i.e. microstructure
consisted of a mixture of austenite and martensite phase. Consequently, superelastic
deformation in these samples could proceed under lower loadings.

Finally, all described samples of NiTi fabrics were made with a knit size denoted
H6 (see Fig. 2). In addition, samples of NiTi HT fabrics were made with two
other knit sizes denoted H2 and H12 (see Fig. 2) in order to investigate the effect
of structural morphology on the superelastic damping. As mentioned above, high
strains are needed to trigger superelastic damping. Within a weft knitted fabric, the
prevailing deformation mechanism is bending of individual knits. As the knit size
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Table 1 Notation and wire material and structural properties of tested weft knitted fabrics

Fabric samples
notation

Wire material and
its initial state

Fabric heat
treatment Knit size

Young
modulus [GPa]

Steel hard Stainless steel, hard No treatment H6 No 163
NiTi hard NiTi, hard No treatment H6 No 55
NiTi HT NiTi, hard 450ıC/30 min H2/H6/H12 Yes 20–50
NiTi SA NiTi, straight

annealed
No treatment H6 Yes 20–50

determines the bending rigidity of knits, the knit size also drives the ability of knits
to undergo superelastic deformation during loading of the whole fabric. Therefore,
three types of NiTi HT weft knitted fabrics were made, differing in the knit size as
to identify the influence of knit size on the occurrence of superelastic deformation.

All tested samples, their notation and related initial wire material state, applied
heat treatment, knit size, presence of superelastic behaviour and tensile Young
modulus are listed in Table 1.

3 Experimental Setup

The damping capacity of weft knitted fabrics was evaluated experimentally under
specific loading conditions. A tested fabric was clamped at a circular boundary of
diameter 150 mm via a home-made rig and subjected to an out-of-plane pressure
through an aluminum spherical cap with base radius of 30 mm and height of 30
mm. Both the clamping rig and the spherical cap were mounted on an Instron tensile
machine ensuring mechanical loading. The loading of fabrics applied through the
spherical cap consisted of a sequence of displacement controlled harmonic motions
with different mean displacement, amplitude and frequency. The mean displacement
defined a prestretch of a tested fabric. In order to ensure steady state vibration, each
harmonic motion spanned over several tens of cycles. Then, an averaged damping
capacity was evaluated using last ten cycles in terms of damping coefficient defined
as a ration of the area of the force-displacement loop to the area under the loading
part of the force-displacement loop.

4 Experimental Results

The damping capacity of all samples was evaluated within an amplitude range
1–5 mm, mean force range 1–10 N and frequency range 1–10 Hz. However, no
considerable sensitivity of the damping capacity on frequency, within the studied
range, was identified. Therefore, reported damping capacities represent averaged
values of measurements performed at 1 and 2 Hz.
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Fig. 3 Amplitude and mean force dependence of the damping coefficient of non-heat treated NiTi
fabric NiTi Hard H6

Fig. 4 Amplitude and mean force dependence of the damping coefficient of heat treated NiTi
fabric NiTi HT H12

No unique dependence of the damping capacity on mean force was identified.
The largest mean force dependence of the damping capacity showed non-heat
treated NiTi fabric (NiTi Hard H6) and heat treated NiTi fabrics with the largest
knit size (NiTi HT H12). NiTi Hard H6 fabric made of an elastic NiTi wire showed
increasing mean force dependence (see Fig. 3); whereas, NiTi HT H12 fabric made
of a superelastic NiTi wire showed decreasing mean force dependence (see Fig. 4).
Other samples showed only slight dependence of the damping coefficient on mean
force.

The damping capacity of all samples displayed increasing dependence on ampli-
tude (see Fig. 5). Such a dependence was more pronounced in the case of samples
made of wires exhibiting the superelastic damping i.e. NiTi HT H2/H6/H12, NiTi
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Fig. 5 Comparison of amplitude dependencies of the damping coefficient of all weft NiTi samples
identified at mean force of 5N

SA H6. These samples, except for sample NiTi HT H2, showed higher absolute
values of the damping capacity, at the highest amplitude, compared to the stainless
steel sample. Moreover, the damping capacity at the highest measured amplitude of
NiTi SA H6 was higher by 25% compared to the stainless steel sample.

5 Discussion and Conclusions

As postulated in introduction, the damping capacity of NiTi weft knitted fabrics is
due to two dissipative mechanisms – (1) friction at wire contacts (2) superelastic
damping. Both mechanisms are inherently amplitude dependent. On the other hand,
friction is the only dissipative mechanism in the case of metallic weft knitted fabrics
made of elastic material such as stainless steel and NiTi hard wires. Therefore, all
tested fabrics showed amplitude dependence of the damping coefficient. However,
samples incorporating wires exhibiting superelasticity showed stronger amplitude
dependence as there are two amplitude dependent dissipative mechanisms acting at
the same time.

NiTi SA H6 fabric made of superelastic NiTi wires showed damping capacity
superior to other superelastic fabrics. Supposedly, applied mean forces were not
sufficient to induce considerably martensitic transformation in NiTi HT samples
that were initially in austenitic state. Therefore, superelasticity in NiTi SA H6 could
proceed more easily upon applied amplitudes as wires in these samples were in
partially transformed state due to deformation applied on them during knitting.

Knit size showed a considerable effect on the damping capacity of superelastic
fabrics. The larger knit width the higher damping capacity was identified. Suppos-
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edly, it is due to the effect of the knit width on the knit bending rigidity, which
decreases with increasing knit width. Therefore, the fabric with largest knit width is
able to undergo larger superelastic deformation in bending and, hence, to dissipate
more energy through superelasticity.

Only a slight effect of Young modulus on amplitude dependence of the damping
capacity was identified from data measured on the stainless steel sample and NiTi
hard wire having three times lower Young modulus. In contrast, absolute values
of the damping differ considerably, which might be due to a different friction
coefficient.

All in all, tested superelastic NiTi weft knitted fabrics showed a higher damping
capacity (up to 25%) under certain circumstances in terms of the fabric structure,
NiTi wire initial state and heat treatment. The best performance showed the NiTi
fabric made from a straight annealed wire, which showed up to 25% higher damping
capacity compared to the stainless steel sample.
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Stress and Dynamic Analysis of Rotating
Composite Disc

Rahul Dev, K. Gupta, and S.P. Singh

Abstract The present paper focuses on the dynamic behaviour and stresses in a
fiber reinforced composite disc for possible applications to turbomachines. The
discs of rotors in turbomachines, in addition to centrifugal loading, are also sub-
jected to flexural vibrations. Variation of bending natural frequencies of composite
disc in different modes, with several numbers of nodal diameters and nodal circles,
is studied with respect to rotational speed and the various fibre reinforcement
configurations. Natural frequencies associated with forward and backward travelling
waves are obtained, which give the critical speed(s) of the disc. The semipolar
configuration is studied in detail, in which the effect of the inclination of the
reinforcement with the radial direction, on the dynamic characteristics of the disc is
examined.

Keywords Composite disc • Polar orthotropic disc • Semipolar disc • Critical
speed

1 Introduction

With the advent of high performance composites, more and more applications are
being explored for effective and light weight designs. Present paper deals with
application of composite material to discs, which are an important subcomponent of
a rotor system. Researchers have examined the possibility of an all-composite-rotor
[1] for turbomachines. Extensive work has been reported on application of fibre
reinforced composite rotor shafts [2, 3]. There have been a few studies reported
on composite discs,for example, on estimation of stresses and buckling loads in
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an orthotropic disc [4], and stiffening of an optical disc [5] by circumferential
reinforced composite annular ring. Koo [6] has explored the possibility of using
composite data disc for larger data transfer rate in computers due to higher critical
speeds. However, most of the work on dynamic analysis of composite disc has been
limited to polar circumferential (CR) and radial reinforcement (RR) configurations.
In the present work the effect of inclination of reinforcement with the radial
direction, on the dynamic characteristics of the disc is studied in detail. The energy
approach is used to set up the necessary governing equations, which are solved by
Rayleigh Ritz method.

2 Theory of Orthotropic Disc

The composite rotating disc has several possibilities of fiber sequences and layer
alignment. The polar orthotropic disc has the fibers in circumferential and/or radial
directions, as shown in Fig. 1a, b. In Fig. 1c, a different orientation is used in which
the fibers are neither radial nor circumferential, but at an angle to the radial direction.
This is referred to as semipolar disc.

The stress strain relation for a single lamina, defined along the material axes (One
for along fibre and two for perpendicular to the fibre), can be expressed as

f¢1 ¢2 T12gT D ŒQij�f©1 ©2 ”12gT (1)

where [Qij] is 3 � 3 stiffness matrix and its elements can be given as,

Q11 D E11
1� v12v21

; Q22 D E22
1 � v12v21

; Q12 D v12E22
1� v12v21

D v21E11
1 � v12v21

(2)

The other terms of [Qij] are zero. For the semipolar configuration of Fig. 1c, in
which the fibers are inclined to the radial direction, the necessary transformation
along the radial and circumferential direction (r and � coordinates) is given by

f¢g D � NQ� f©g; where
� NQ� D ŒT��1 ŒQ� ŒT��T (3)

θ

r

(360.00)
(360.00)

α

z

Fig. 1 (a) Circumferential (b) Radial reinforcement and (c) Semipolar configuration
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where
� NQ� is transformed stiffness matrix. The matrix [T] is given by

ŒT� D
2
4 cos2’ sin2’ 2 sin’ cos’

sin2’ cos2’ �2 sin’ cos’
� sin’ cos’ sin’ cos’ cos2’ � sin2’

3
5 (4)

In above expression, [T] is transformation matrix for a fiber angular position ˛ as
in reference [7]. For rotating disc, the strains, including bending as well as inplane
membrane effects are written in cylindrical coordinate system (r, �) as,

f©g D f©r ©™ ”r™gT D ˚
©0r ©

0
™ ”

0
r™

�T C zf›r ›™ ›r™gT D f©0g C zf›g (5)

where "0 and � are midplane strains and curvatures respectively. From the classical
laminate theory, forces and bending moments per unit length for an N ply laminate
accounting for coupling effects, are

fSr S™ Sr™gT D ŒAij�f©0g C ŒBij�f›g and fMr M™ Mr™gT D ŒBij�f©0g C ŒDij�f›g
(6)

where Aij, Bij and Dij for an N ply laminate are given by,

Aij D
NX

kD1
. NQij/k.zk � zk � 1/; Bij D 1

2

NX
kD1

. NQij/k.z
2
k � z2k�1/ (7)

Dij D 1

3

NX
kD1

� NQij

�
k
.z3k � z3

k�1
/ (8)

Here zi are position of laminae plane from the midplane. The strain energy
associated with bending effect is given as follows [6],

Ub D 1

2

R0Z
Rt

2 Z
0

f¢ r ¢™ ¢ r™g f©r ©™ ”r™gT rdrd™ (9)

The disc is rotating at a speed of !r , and the strain energy due to centrifugal
loading is given by Koo [6],

Uc D 1

2

R0Z
R1

2 Z
0

(
Sr

�
@w

@r

�2
C S™

�
@w

r@™

�2
C 2Sr™

@w

@r

@w

r@™

)
rdrd™ (10)
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Here, Sr, S™ and Sr™ are inplane centrifugal loads per unit length induced because
of rotation !r, which are found by solving the equilibrium equation of motion. For
nonrotating disc, the inplane membrane strains in (5) are neglected. The kinetic
energy of rotating disc for only transverse deflection w, is given by

V D 1

2

Z R0

R1

Z 2 

0

¡tk

�
@w

@t

�2
rdrd™ (11)

For symmetric fiber orientation, coupling effect is also not present which
eliminates [B] matrix. The solution for w is assumed in product form as follows,

w D W.r/ cos.n™/ ej¨t (12)

For the Rayleigh Ritz method, the function W(r) is assumed as a series solution
which consists of polynomial terms multiplied with unknown constants. Each
polynomial term satisfies at least the geometric boundary conditions of the disc. The
disc is fixed at inner radius and free at the outer radius. For rotating disc, the total
strain energy is updated by the inclusion of strain energy due to inplane centrifugal
loading as given in (10). The values of Sr and S™ are obtained from the solution of
equilibrium equations as in (13), while Sr™ vanishes for axisymmetric problems.

@

@r
.rSr/C @

@™
.Sr™/� S™ C ¡r ¨2r D 0; and

@

@r
.rSr™/C @

@™
.S™/C Sr™ D 0 (13)

Substituting solution of Sr and S™ in energy expression (10) and applying the
Rayleigh Ritz method, stiffness matrix [Kc], because of energy due to membrane
stresses is obtained while [Kb] is bending stiffness matrix. The eigenvalue problem
for the case of rotating disc becomes of the form,

��¨2ŒM�C ŒKb�C ŒKc�
� fXg D f0g (14)

3 Results

A disc with the same dimensions as in reference [6] is considered. The outer and
inner radii are 60 mm and 15 mm respectively with uniform thickness of 1.2 mm.
A composite disc with four layers and any of the two materials CFRP (carbon fibre
reinforced plastic) or GFRP (glass fibre reinforced plastic) is taken up for analysis
(Material properties are given in Table 1).

For rotating disc, the critical speed is that rotational speed at which the backward
whirl frequency becomes zero. These backward whirl frequencies are plotted for
CR (circumferential) and RR (radial) discs in Fig. 2. CR configuration gives
higher critical speed than RR configuration. As shown in Fig. 2, GFRP polar
CR orthotropic disc backward whirl frequency in [0/2] mode approaches zero at
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Table 1 Material properties

Material E1 (GPa) E2 (GPa) G12 (GPa) �12 
 (kg/m3)

GFRP 38.6 8.27 4.14 0.26 1,800
CFRP 181.0 10.3 7.17 0.28 1,600
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Fig. 2 GFRP polar orthotropic disc backward wave frequencies (CR (a) and RR (b))

Table 2 Summary of results of GFRP and CFRP rotating disc

Fiber orientation
Critical speed
(RPM) GFRP

Critical speed
(RPM) CFRP

Critical mode
(NC/ND)

[0] (radial only) 12,450 19,300 [0/3]
[90] (circumferential only) 18,650 39,900 [0/2]
[0/90]s 15,475 27,750 [0/3]
[45]4 18,100 34,500 [0/3]

18,650 RPM. The results were in close match with results obtained by Koo [6]. In a
disc mode, [NC/ ND] are number of nodal circles and nodal diameters respectively.
In addition to CR and RR types, the disc is also analyzed with [0/90]s and semipolar
[45]4 configurations and results are shown in Table 2. Higher critical speeds for
CFRP material with similar fibre configurations are listed in Table 2.

The effect of centrifugal loading on natural frequencies of disc for various
fibre configurations was studied. As shown in Fig. 3 for umbrella mode [0/0],
as well as for [0/1] mode, the stiffening effect of centrifugal loading in RR disc
is maximum, while for the CR disc, it is minimum. For the semipolar [45]4,
and combined CR and RR [0/90]s configurations, the centrifugal stiffening effect
lies in between these two. To check the effect of fibre orientation in semipolar
configurations, the natural frequencies are obtained for various semipolar fibre
orientations from pure radial to pure circumferential and results are shown in Fig. 4a.
For ND D 1, natural frequency decreases continuously with fibre angle. For ND D 0,
the natural frequency decreases upto 45ı followed by marginal increase with higher
fiber angle, for ND D 2 the trend is opposite. The variation of inplane radial and
hoop (circumferential) stresses with fibre orientation obtained from the solution of
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equilibrium equation (13) are shown in Fig. 4b for a typical case of 5,000 RPM at
inner radius of disc. Due to difference in moduli of composite disc in the radial and
circumferential direction the predicted stress varies with the fibre orientation. This
is in contrast with isotropic material disc where centrifugal stresses are independent
of longitudinal modulus.

4 Conclusions

Results show that centrifugal stiffening effect on bending natural frequencies of
composite disc is most dominant for the radial fibre (RR) reinforcement, while its
effect is less for the circumferential direction (CR) fibre reinforcement. From the
analysis of the semipolar fibre reinforcement configuration, it is observed that the
effect of fibre angle (with the radial direction) on natural frequencies of the rotating
disc has different trends in modes with different nodal diameters. Three modes with
nodal diameters equal to 0, 1 and 2 are analyzed.
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Identification of Missing Dynamics in Rotor
Systems Using Robust Control Theory Approach

Jerzy T. Sawicki and Ryan Madden

Abstract Analytical models only approximate the true dynamics of analyzed
rotating machines, due to the presence of components that are inherently difficult
to model. Such models of rotating machines are driven by the best engineering
knowledge and experience, and very often are updated based on experimental
results. The problem of un-modeled or missing dynamics can be exacerbated in
the presence of rotor structural damage such as a transverse crack on a shaft. This
paper will present an effective approach for model updating using advanced tools
developed in the robust control theory, specifically �-synthesis. The methodology
will be applied to the identification of minute changes in the dynamics of the rotor
due to the presence of a transverse crack on a shaft. Experimental data collected
from the cracked rotor rig will be utilized to validate the developed approach.

Keywords Identification • Dynamics • Rotor • Structural damage • Robust
control

1 Introduction

Despite continuous improvements in the area of modeling of rotordynamic systems,
some components still remain difficult to model. Examples of such components
are bearings, seals, shrink fits, rotor-bearing interaction or foundations. An intricate
system, containing multiple instances of parts and physical effects that are difficult
to model, leads to an engineering model that can behave much differently than the
actual system. The field of model updating has arisen to correct the engineering
model by driving its output to match that of the experimental data.
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Maslen et al. [1] first developed the method of model reconciliation which
adjusts analytic rotordynamic models to make them consistent with experimental
data. The undertaken strategy by Maslen et al. [1] uses the basic approach of
model-based identification, i.e., controlling the nominal model in order to minimize
the error between its response and that of the experimentally identified system.
The assumption in model-based identification is that the basic model structure is
correct, but there is a missing dynamics that is left out due to modeling errors or
unknown physical phenomena related to specific parts of the system. This method
is innovative in that it distinguishes between the parts of the system which are not
certain in modeling and the easily modeled portions. A controller is applied only
at the uncertain locations and the systems are driven to minimize the modeling
error. When the two responses match, the controller, or its dynamics, mimics the
unmodeled dynamics that is missing in the nominal model. Vazquez et al. [2]
applied model-based identification to identify the dynamics of magnetic journal
bearings. Wang and Maslen [3] advanced the technique by the direct use of
frequency response functions for the nominal and engineering systems, as well as
by implementing a �-controller to drive the model correction.

The objective of this paper is to apply the method of model-based identification
to extract structural damage-induced dynamics in a rotor system. The structural
damage is caused by a minute transverse crack on a rotor. This paper will present
an outline of the robust control tools which are utilized in finding the unmodeled
dynamics. Next, the experimental apparatus will be introduced. Subsequently, the
approach for finding the locally induced crack dynamics will be presented. Finally,
the results of the experiment will be shown along with an analysis of the resulting
unmodeled fault dynamics.

2 Robust Control Tools for Model Updating

The model-based identification technique presented in this paper utilizes a con-
troller synthesized using �-synthesis [4]. The generated controller is a linear time
invariant state-space controller which minimizes the structured singular value, �,
of the closed loop system. The necessary and sufficient condition of a successful
�-controller is that the maximum singular value of the closed-loop system, clp, is
less than one [5]:

�max.clp.j!// 	 1:0 8! 2 R (1)

This condition requires that the closed-loop input, w, and output, z, are weighted
such that:

jOzi j < 1:0 W j Owi j < 1:0 (2)
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Fig. 1 �-controlled model-based identification schematic for finding unmodeled dynamics

Such weighting introduces two performance criteria, Wz and Ww, which place
limits on the norms of the input and output signals. When the criteria in Eqs. 1 and 2
are met, it means that a controller has been generated which meets the performance
criteria.

Figure 1 illustrates the combination of �-synthesis and model-based identifica-
tion into a single control schematic. The unmodeled dynamics is found to minimize
the weighted difference between the true and engineering system outputs due to
a weighted external excitation. The output weighting, Wz, indicates the maximum
allowable error between the true system and engineering system responses to the
external input. This value will be decreased as much as possible while keeping
� 	 1 in order to ensure extracting of the most accurate unmodeled dynamics.

3 Application to Structural Damage Detection in Rotating
Machines

The model identification method has been proven to be able to identify a known
difference in dynamics in a simple example [3]. The developed approach now will
be applied to identify a difference in dynamics induced by structural damage. Test
data taken from a damage detection experimental rotor setup will be utilized to
create a new model for the change in dynamics caused by the presence of a minute
transverse crack in a rotor. The experimental rotor test rig employed in this study is
shown in Fig. 2. The facility was described in detail in [6, 7]. The radial magnetic
bearing serves as the exciter for a sine sweep system ID test. A crack is located at
the bearing midspan and has a depth of 40% of the shaft.

The experiment of extracting the dynamics induced by a transverse crack on a
shaft utilizes the same unmodeled dynamics control schematic as shown in Fig. 1.
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Fig. 2 Rotor crack detection test rig
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Fig. 3 Comparison of sine sweeps of healthy and cracked rotors running at 1,680 RPM (28 Hz)

In this case, the cracked rotor is taken as the true system, truesys, the healthy rotor is
taken as the engineering system, engsys, and the dynamics induced by the presence
of a transverse crack is the unmodeled dynamics. The output weighting, Wz, controls
the maximum allowable error between the cracked and controlled healthy rotor
vibrations at the sensor location.

Both the healthy and cracked models are constructed from identical sine sweep
tests, with the input on the exciter bearing and the output measured at the conical
MB rotor. The sine sweeps are taken while the rotor is rotating at 28 Hz (1,680
RPM), which is done to allow the crack to breathe, i.e., open and close during each
shaft revolution. The results of these sine sweeps are shown in Fig. 3, with indicated
running speed and critical speeds. The developed finite element (FE) based models
are tuned to match the sine sweep trials. The inputs and outputs of the sine sweep
trial are appropriately located in the FE model and an input and output at the crack
location are included as well. This allows for the identification of the local change
in dynamics due to the presence of a minute transverse crack, providing additional
insight that may not be available by simply analyzing the results shown in Fig. 3.



Identification of Missing Dynamics in Rotor Systems . . . 585

102
10-2

100

102
M

ag
ni

tu
de

 (
μm

/A
)

Frequency  (Hz)

truesys
engsys
controlled engsys

25 400

215 Hz

36 Hz 219 Hz
339 Hz

347 Hz

Fig. 4 Rotor model identification system responses

102
10-4

10-2

100

M
ag

ni
tu

de
 (

A
/ μ

m
)

Frequency  (Hz)

194 Hz
256 Hz

218 Hz

307 Hz

342 Hz

56 Hz

25 400

Fig. 5 Identified transverse crack dynamics

In the final step, the �-controlled model-based identification code is run with
a 5.25�m maximum allowable error between the cracked and controlled healthy
rotor vibrations at the sensor location. A corresponding �-bound of 0.9926 is
obtained, confirming that the performance specifications are met. An uncertainty
of 1% is placed on the sensor for both the true and engineering systems. The true,
engineering, and controlled engineering responses are shown in Fig. 4. As shown,
the difference between the healthy (engsys) and cracked (truesys) engineering
responses is eliminated by the addition of the controller on the healthy model
(controlled engsys). The controller is so effective that the two plots overlap over
the entire frequency range. The associated controller plot is shown in Fig. 5. This
controller plot can be interpreted as a model for the local change in dynamics
brought on by the presence of a minute transverse crack on a shaft at the bearing
midspan.

Analysis of Fig. 5 reveals interesting conclusions about the localized effects of
the crack. The controller response shows a more intricate behavior of the crack
dynamics than just a flat reduction of stiffness. Natural frequencies are shown at 194,
256 and 342 Hz, along with anti-resonances at 56 and 307 Hz. Additionally, a valley
occurs at 218 Hz though it is not anti-resonance. Explanations for the controller
response points of interest can be found in the cracked and healthy system responses
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Table 1 Crack detection test rig parameters

Multiple of the
running speed

Frequency
value (Hz)

Controller natural
frequency (Hz)

Controller anti-
resonance (Hz)

2� 56 – 56
7� 196 194 –
9� 252 256 –
11� 308 – 307
12� 336 342 –

in Fig. 3 and the associated models in Fig. 4. The valley at 218 Hz appears to be
caused by the healthy system peak at 219 Hz and an attempt of the controller to
dampen it. The natural frequencies and anti-resonances all appear to be a result of
the 28 Hz running speed.

Table 1 shows the values of different integer multiples of the running speed along
with the location of the controller natural frequencies and anti-resonances. The data
shown in Table 1 indicates that the running speed has a close relationship with the
local change in dynamics brought on by the presence of a minute transverse crack.

4 Conclusions

This paper shows the potential of the �-controlled model-based identification strat-
egy to determine the change in dynamics induced by the uncharacterized physical
phenomena. The presented results address the identification of the structural damage
induced dynamics for a possible enhancement of fault detection technologies. The
extracted transverse crack dynamics demonstrates strong nonlinear characteristics
and influence on the running rotor speed. The approach can be useful in the
development of more accurate mathematical description for crack behavior and its
incorporation into FE based rotordynamic codes.
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An Analysis on the Supporting Structure
Representative Model in Rotating Systems

Felipe Wenzel da Silva Tuckmantel, Kátia Lucchesi Cavalca,
Hélio Fiori de Castro, Patrick Felscher, and Richard Markert

Abstract Power generation systems are composed by several rotating system,
which are supported by bearings, and are installed on foundation structure. For this
reason, a representative model needs to take into account the components effects.
Rotating systems numerical models are well known by the scientific community
specialized in rotor-dynamics to predict the system dynamic behaviour. Instead,
the foundation numerical model is more sensitive to uncertainties. Experimental
models can be the solution to the foundation representation. In this case, some
difficulty in identifying the modal parameters, mainly the damping factors, can
influence the results. This work proposes a comparison between complete system
response using both experimental models of mechanical impedance and mixed
coordinates to represent a test-rig foundation. A classical approach is the assembly
of the impedance matrix of the supporting structure directly from the flexibility
matrix inversion. However, this technique can be limited by the number of degrees
of freedom associated to the rotor-structure connecting elements. Therefore, a
solution based on modal parameters of mass, stiffness and damping to represent the
foundation is also applied and both models are associated to a rotor-bearing system
model for comparison.

Keywords Rotor dynamics • Foundation or Supporting structure • Mechanical
Impedance • Mixed coordinates
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1 Introduction

The goal of the rotor dynamics is to analyze how the vibration levels can be kept as
small as possible. Therefore, its design and optimization become essential to study
the behavior of the system. Therefore, to study the dynamic behavior of this system,
it is necessary to determine the interaction of all components for understanding the
phenomena involved.

Previous works were developed to simulate the behavior of a foundation
[1–6]. In 1992, Stephenson [7] included the effects of the foundation into a rotating
machine model through its modal parameters. However, this method always requires
a number of identified modes equal to the number of measured points to keep the
eigenvector matrix square, facilitating its inversion. To overcome this limitation,
Cavalca [8, 9] used the method of mixed coordinates to include the effect of the
foundation on the rotors, using physical coordinates for the rotor and generalized (or
modal) coordinates for the foundation. The method has the advantage of allowing
the usage of a variable number of modes, since it is not necessary to invert the
eigenvector array. Therefore, the aim of this work is to compare the complete system
response using mechanical impedance and mixed coordinates methods to represent
a test-rig foundation. Finally, the critical points to be considered in each method can
be highlighted.

2 Mathematical Modeling

The complete rotor-bearings-structure system is analysed as two subsystems sep-
arately: rotor-bearings and supporting structure [10]. Thus, each subsystem is
analyzed and the response of the complete system is obtained by unifying the
dynamic response of the subsystems. The equation of motion of the complete system
considers the rotor inertia, mass, damping and stiffness of the shaft and the structure,
as well as the dynamic coefficients of the bearings, which are obtained by numerical
solution of Reynolds equation.

"
ŒMrr� Œ0�

Œ0�
�
Mf

�
# � Rqr.t/

Rqf .t/
�

C
"
ŒCrr�C

�
Cff
� �

Crf
�

�
Cfr
� �

Cf
�C �

Cff
�
# � Pqr.t/

Pqf .t/
�

C


ŒKrr�C

�
Kff
� �

Krf
�

�
Kfr
� �

Kf

�C �
Kff
�
� �

qr.t/

qf .t/

�
D
� fFrg

f0g
�

(1)

Where, Rqr ; Pqr ; qr are the vectors of acceleration, velocity and displacement of the
rotor, Rqf ; Pqf ; qf are the vectors of acceleration, velocity and displacement of the
foundation at the connecting points with the rotor, Mrr, Crr, Krr are the matrices
of mass, damping and stiffness of the rotor, Mf , Cf , Kf are the matrices of mass,
damping and stiffness of the foundation, Crf , Cfr, Cff , Krf , Kfr, Kff are the equivalent
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coefficients of damping and stiffness of the bearings, Fr is the external force due
to the rotor unbalance. The index r corresponds to the rotor, and the index f
corresponds to the connecting points with the foundation. The matrix of mechanical
impedance ŒI.�/� is dependent on the rotation frequency� and it contains the mass,
damping and stiffness of the foundation, being associated to the physical coordinate
system, as given:

ŒI .�/� D ��2
�
Mf

�C j�
�
Cf
�C �

Kf

�
where j D p�1 (2)

Based on the method of mechanical impedance used to simulate the complete
system, the equation of motion in frequency domain is given by Eq. 3:
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The mixed coordinates method consists in describing the displacement vector
of the structure at the connecting nodes as independent variables through a
modal approach [8]. Physical coordinates are used to the rotor and generalized
coordinates to the foundation, to describe the behavior of the complete system.
Thus, only the identified modes that effectively contribute in the system response
are considered, avoiding the need of a number of modes equal to the number of
DOF of the supporting structure at the connecting points with the rotor. The vector
of generalized coordinates fpg, using the modal approach, is:

˚
qf
� D Œˆ� fpg (4)

qf is the displacements vector of the nodes of the foundation connecting points in
physical coordinates, p is the vector of generalized coordinates and [ˆ] is the modal
matrix (or the eigenvector matrix of the foundation).

The equation of motion for the complete system, in mixed coordinates [8] is
obtained:
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Once the modal parameters of the foundation are founded, it can be represented
only by the most meaningful modes within the range of frequencies been analyzed,
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regardless of the number of degrees of freedom associated with connection points
(bearings). The generalized coordinates allow the diagonalization of mass, stiffness
and damping matrices of the foundation when its structural damping can be
considered proportional.

3 Results

The foundation structure was tested with the plate supported by four columns at
its edges (Fig. 1). The structure was excited with an electromechanical actuator
(shaker). Accelerometers measured the response of the foundation due to the
excitation at the bearing supports, besides other points located on the metallic plate
and between the bearings. The excitation was applied in horizontal, vertical and
axial directions at the bearings housing, and in horizontal and vertical directions
in the support plate. The transfer functions obtained in the tests were analyzed in
the modal analysis Modan 3.0 software [11], given the vibration modes, natural
frequencies and modal damping. Table 1 shows the critical frequencies in the range
of 0 up to 100 Hz (the operating range of the rotor is up to 60 Hz), which were ranked
in order of importance by the Global Mode Rank method [12]. The modes were
selected by the mean square of the imaginary components. The bar graph shown in
Fig. 2 represents the modal matrix with 8 modes in the frequency range. The four
degrees of freedom considered are the horizontal and vertical displacements at the
connection points of the foundation (bearings). This chart shows the influence of the
DPFs on each vibration mode. As the modes are coupled, the first step is to verify
if there is a strongly or weakly modal coupling. This analysis can indicate if it is

Fig. 1 Testing the foundation structure of experimental bench
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Table 1 Frequency of the 8
modes in the range of 0 up to
100 Hz in order of importance

Importance Frequency[Hz]

1 7.81
2 79.52
3 72.15
4 83.38
5 42.72
6 67.26
7 47.54
8 46.06

Fig. 2 Influence of the
degrees of freedom on the
vibration modes: bearing 1
horizontal (black), bearing 1
vertical (white), bearing 2
horizontal (light gray) and
bearing 2 vertical (dark gray)

possible to consider them uncoupled and, consequently, to assume a proportional
damping matrix to the foundation. As shown in Fig. 2, modes 1, 3, 4 and 8 are
predominantly horizontal due to the highest horizontal components regarding to the
vertical ones. Instead, mode 5 is strongly vertical.

Modes 2, 6 and 7 present horizontal and vertical components of same magnitude
in both bearings 1 and 2. If the coupling is weak, the modes can be uncoupled in
vertical and horizontal modes at the same frequencies, which are 47.54, 67.26 and
79.52 Hz. Initially, the mechanical impedance was obtained in mixed coordinates,
considering the eight coupled modes, so every mode can influence the vibration
of the rotating system in both directions. Figure 3 shows bearing 1 response to
unbalance, which has been chosen due to the fact that the effects of 8 modes
of the foundation were more significant in this bearing. The response is shown
in logarithmic scale, in order to highlight the effects of vibrating modes of the
foundation in the system response. The peak of amplitude at 19 Hz is due to the
natural frequency of the shaft, while the other peaks are related to the foundation.
Afterwards, the 8 modes were uncoupled in 16 modes (8 horizontal modes and
8 vertical modes). This approach presented no expressive changes in the system
response (Fig. 3), which indicates the foundation modes are weakly coupled. As
modes 1, 3, 4 and 8 are prominent in the horizontal direction, mode 5 in the vertical
direction, and modes 2, 6 and 7 in both directions, 11 uncoupled modes can be
considered, being 7 horizontal and 4 vertical (repeating modes 2, 6 and 7 for both
directions). Figure 4 shows the effect of this reduction is negligible in the system
response. At this point, the less significant modes (mode 8–46.06 Hz – horizontal
and mode 7–47.57 Hz – horizontal and vertical) were disregarded successively until
a significant change in the system response.
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Fig. 3 Unbalance response
(bearing 1):
Rotor-Bearing-Foundation
with 8 coupled modes
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Fig. 4 Unbalance response
(bearing 1):
Rotor-Bearing-Foundation
with 11 uncoupled modes
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Fig. 5 Unbalance response
(bearing 1):
Rotor-Bearing-Foundation
with 8 uncoupled modes
(linear scale)

0
0

1

2

3

4

5

10 20 30 40 50 60 70 80 90 

x 10-5

Speed [Hz]

D
is

pl
ac

em
en

t [
m

]

Node 3
Y (horizontal)
Z (vertical)

The first meaningful change occurs in the elimination of the mode at the
frequency of 67.26 Hz. Therefore, for the uncoupled system, at least 8 uncoupled
modes should be considered to avoid a lack of information in the response (Fig. 5).
The most significant modes are: 5 horizontal modes (7.81 Hz, 79.52 Hz, 72.15 Hz,
83.38 Hz and 67.26 Hz) and 3 vertical modes (79.52 Hz, 42.72 Hz and 67.26 Hz).

The response for the foundation by the method of mechanical impedance
(Eq. 3) is then obtained (Fig. 6). There are differences in the responses shown in
Figs. 5 and 6. However, the results are in good agreement in general. The main
differences are due to the approach used in the method of mixed coordinates when
considering uncoupled and, consequently, in the evaluation of the damping factor.
The adjustment of the damping factor at 42.72 Hz (vertical mode) can be seen
in Fig. 7. So, an accurate identification of the modal damping is required when
applying the mixed coordinates method.
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Fig. 6 Unbalance response
(bearing 1):
Rotor-Bearing-Foundation by
Mechanical Impedance
(linear scale)

0
0

1

2

3

4

5

10 20 30 40 50 60 70 80 90

x 10-5

Speed [Hz]

D
is

pl
ac

em
en

t [
m

]

Node 3
Y (horizontal)
Z (vertical)

Fig. 7 Unbalance response
(bearing 1):
Rotor-Bearing-Foundation
with 8 coupled modes,
modified damping (linear
scale)
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4 Conclusions

Mechanical impedance and mixed coordinates method have been tested. The
supporting structure was represented by coupled and uncoupled modes and in
both cases only the most meaningful modes can be considered in the system
response. In practice, there are limitations in identifying the vibrating modes and
their corresponding damping factors. Consequently, the modal approach must be
carefully carried out when applied to the supporting structure representation in a
rotating system.
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Adaptable Vibration Monitoring

Vitalijus Volkovas

Abstract In order to optimize monitoring and diagnostics procedures, the data
collection periodicity should be altered considering equipment technical condition,
after identifying specific defect and having information about its development. The
paper presents the methodology and algorithm of adaptive vibration monitoring and
diagnostics of rotor system bearings based on vibration monitoring data archive
analysis and the modified vibration’s power spectrum diagnostics method.

Keywords Technical state • Vibration • Monitoring • Adaptability

1 Introduction

Vibration measurements are widely applied to control condition of various technical
systems. Regular measuring of this parameter and estimation of changes in time
allows taking relevant actions based on the results to extend the lifetime of the tested
object, avoid accidents or emergencies. Such functions are performed by vibration
monitoring and diagnostics systems.

Technical condition of the objects and their systems is frequently related to
parameters of dynamics (different constructions), of bearing (rotor systems) vibro-
acoustic processes and their alterations [1, 2]. Vibration monitoring of operating
objects is widely used in practice. It is divided into two groups. In the first group
stationary measurement (with short time between measurements) and analysis sys-
tems are used while in the second case mobile and most frequently modern vibration
measurement (with suitably long time between measurements) and analysis devices
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are applied periodically. In first case information collection is performed so frequent
that only real time measurements are relevant, and in the second case the periodicity
is under consideration in each case.

Both above mentioned monitoring methods (real time or stationary monitoring
and mobile monitoring with suitably long intervals between objects’ testing) are not
optimal. The first one is relatively costly and a considerable amount of inexpedient
information is processed while the second method is subject to a high-level risk of
missing a defect. Therefore monitoring research, the periodicity of which depends
on the existing technical condition of the controlled object, is highly significant in
respect of science, economy and practice.

Adaptive bearing vibration monitoring using data trend characteristics is ana-
lyzed in the monograph [2]. In terms of a concept and idea it was a new attitude
towards monitoring as to an optimized procedure but non-considered issues are
related to specific defects of rotor systems though the technical condition depends
exactly on them. This means that varying measurement intervals did not depend on
specific defects impacting different rate of rotor system deterioration.

A diagnostics method when trend characteristics are not applied to technical state
identification is familiar [3]. It may be modified and then used in the algorithm
of adaptive monitoring measurement interval alterations subject to assessment of
specific defects in the systems.

This study presents the methodology and algorithm of adaptive vibration moni-
toring and diagnostics of rotor system bearings which are generated on the basis of
vibration monitoring data archive analysis and the modified diagnostics method.

2 Concept and Principles of Adaptive Monitoring

The theory and practice of vibration monitoring and diagnostics show that these
procedures are hardly distinguished; assessment of the object condition is a complex
process during which both procedures influence one another. This was clarified
when termination of the object functioning has been recently conducted based on
technical condition and not according to the schedule of routine service or non-
sanctioned event. Regardless of the fact that diagnostics may be carried out at the
“off-line” mode monitoring data is still used and diagnostics results often require a
new part of data of measured quantities. If the amount of the data is considerably
higher, the probability of inaccurate diagnostics may be expected to be lower
[4]. In this case trends of measured quantities may be determined, the technical
condition of the object may be forecasted and periodicity of data collection and
analysis may be objectively selected. However, the trend is integral characteristics of
changed technical condition which does not identify a particular defect. The defect
may develop abruptly and the technical condition may change radically (cannot be
remedied) until the next data collection and analysis moment. The same applies
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to mobile monitoring systems but upon assessment of their significantly greater
periodicity of data collection and analysis a probability of emergency that may
occur between the object control moments highly increases. This means that in the
event of optimization of monitoring and diagnostics procedures, the data collection
periodicity should be altered in respect of technical condition (diagnostics result),
specific defect identified and information on its development.

Periodicity of vibration measurements in monitoring and diagnostics systems
may be basically changed if the tendencies of the controlled object technical
condition change and development are known or if by means of the diagnostics
procedure a specific defect with the known symptoms is detected. Considering the
technical state of object, optimal monitoring expenses and change tendencies of
vibration, it is possible to optimize periodicity of system vibration measurement.

2.1 Principle of Technical Condition Change Tendency

Evaluation of the tendencies of vibration magnitude variations provided new possi-
bilities related to objective results and existing condition of the object (for instance,
rotor system) as well as reasonable variable interval of vibration measurements,
which reduces monitoring costs. When the condition of monitored system is
satisfactory the interval may be sufficiently long and constant. If the tendency of
vibration variations occurs, but the standard requirements (or allowable vibration
levels) do not require shutdown of object of monitoring, the interval between data
collection (measurements) should be decreased in order not to miss the defect
and avoid emergency situations between measurements [2]. Thus, we have two
distinctive tendency stages of the parameter change where measurement periodicity
can be different and objectively grounded. Of course, this applies only to rather
slowly developing faults of the monitored object, which often prevail in practice.
Practically, the state in the first stage (t< t1) is stable and a root-mean-square
values of vibration (r.m.s.) do not reach permissible values. In this case, periodical
measurements are characterized by (mi, � i

2) and mi � const, � i
2 � const as well as a

very slow change of r.m.s. (a change is described by the equation linear regression),
and they are performed with a constant period T. In the second stage (t> t1),
vibration r.m.s. measurements are distinguished for the fact that mi D var, � i

2 D var,
the fault develops considerably quicker and changes of r.m.s. average approximate
in a non-linear function. Then collection of the data to be monitored is better to
be organized with a variable periodicity, using data changing tendencies and r.m.s.
levels, evaluating the risk of omission of a sudden change of the technical state and
help to avoid the economic consequences. The consequent algorithm [2] is rather
simply implemented in a specialized data analysis program of mobile monitoring
device.
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2.2 Principle of Technical Condition Vector Variation

The technical condition of the object is defined by vector G D fXjgT, j D 1, : : : , m,
and its elements are generalized defect characteristics (symptoms) qj: Vector G
depends on object performance mode Go (as well as on defects which occurred after
assembly or during the process and were eliminated and on the quality of repair) and
operation G(t) components. Mathematical model of the technical condition change
may be composed on the basis of the sensitivity theory [5]. It may be written down
as follows:

G D G0 C G.t/ D G .n0; p0/C
mX
jD1

@G
@qj

�qj .t/ (1)

when G0 D G(n0, p0) – a component attributed to the object with deterioration of
almost zero (new) and operated at nominal rate (n0) and load mode (p0);

�qj D Xj – object failure j symptom which is detected when analyzing lifetime of
the object when defect is present during manufacturing (t D 0);

@G/@qj – technical condition vector G sensitivity in relation to the defect according
to corresponding generalized defect characteristic (symptom) qj (t) as dependent
on time within a certain observed interval.

The concept of adaptive monitoring which is based on evaluation of technical
condition alteration according to the formula (1) requires determining symptoms
of known defects of the monitoring object and deterioration of the technical
condition by means of applying the methods of diagnostics. For this reason the
statistic analysis of JSC Lietuvos Elektrinė monitoring system measurement data
and numerical modeling of defect detection possibilities were conducted [6].

3 Numerical Modeling of Defect Detection

Based on JSC Lietuvos Elektrinė periodical monitoring and diagnostics system
measurement data collected during 8 years a bearing deterioration model was
analyzed.

Data is presented in Fig. 1 where black measurement points stand for high-
frequency peak noise of rolling bearings and blue curve means general bearing
noise (the SPM methodology to assess bearing condition is used). During the
analyzed period non-allowable (exceeding 35 dB) peak bearing noises were twice
detected for pump S-008. In September 2003 and October 2007 the bearings were
replaced with the new ones. After replacement the noise decreased to the allowable
limit and did not exceed 35 dB. Meanwhile r.m.s. measurements of the same
bearings remained stable and did not exceed the allowable limit. In order to conduct
numerical modeling of these defects and determine adaptive monitoring periodicity
the tendencies and models of bearing deterioration were defined in a form of a
regression equation.
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Fig. 1 Pump bearing noise measurements

Deterioration model of the first defect (September 2003) of the pump bearing:

y D 22:354e0:0534x; r2 D 0:3799: (2)

Deterioration model of the second defect (October 2007) of the pump bearing:

y D 19:758e0:0646x; r2 D 0:4319: (3)

Here r2 is a determination coefficient of regression equation.
Due to modeling of the monitoring object technical condition alteration the most

common defects of pump electric motors were selected [6].
Every structural failure (defect), not only in rotor systems bearings, has its own

characteristics in the form of spectrum components fsp [1, 2, 4]. According to the
description of a defect provided in the study [4], each defect is evaluated only
in consideration with energy of its characteristic frequencies fsp, existing during
failure, and vibration magnitude Vr:m:s:, which completely defines vibration energy,
is received in [6]. This way the object defect will be estimated by relative rate R:

R D fsp

Vr:m:s:
: (4)

Vr:m:s:value is received after vibrations are measured at the time. During the initial
stage of the defect the components that are characteristic to specific defects occur
in vibration spectrum, therefore magnitude fsp is calculated using these vibration
components as follows:

fsp D
rX

s .fk/
2
: (5)

Here s(fk)2 are components of vibrations spectrum of defected system.
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Fig. 2 Measurement (time) interval correction curve

The standard criteria did not evaluate vibration magnitude proximity to non-
allowable limits. When the defect is under development diagnostics additionally
requires rate R which assesses failure so as the defect is not missed in the early
stage. According to vibration measurement spectra rate R which assesses failure is
deducted from relatively different frequencies fk. The results[6] shown, when the
likelihood of R 	 0.5 defect occurrence is low, when 0.5 	 R 	 0.8 is the defect
development feature, and if R � 1 defect is progressive and it may endanger further
operation of equipment. According to R the periodicity of measurement is changed
in real time based on dependence, which is illustrated in Fig. 2.

The achieved results allow suggesting the methodology of adaptive vibration
monitoring when the periodicity of data collection depends on technical condition
of the object.

4 Conclusion

On the basis of vibration measurement data bank statistical analysis the research
of failure and vibration monitoring data correlation has been conducted, vibration
spectrum frequencies characteristic to a specific defect have been determined, and
it has been suggested to evaluate the technical condition applying the modified
diagnostics method which allows to assess developing defects by means of criteria
offered by standard procedures. In terms of identification of developing defects the
methodology of adaptive (varied vibration measurement periodicity) monitoring has
been suggested on the basis of spectrum characteristic constituents and their energy
ratio with general vibration energy.
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Design of an Optical-Fiber Accelerometer
Based on Polarization Variation
Due to Crushing of the Fiber

Pierre Tihon, Nicolas Linze, Olivier Verlinden, and Marc Wuilpart

Abstract This paper presents the design of a novel kind of accelerometer. The
sensor is based on the modification of the polarization state of the light inside
the fiber by the means of a mechanical transducer. The transducer presented uses
crushing to deform the fiber. Measurements were done with an acceleration varying
from 1 to 40 m/s² and a frequency range varying from 100 to 1,000 Hz. The
measured output is the ratio between the variable part and the constant part of the
optical power at the end of the fiber. A sensitivity of the order of 6E-4/ms² was
found. Numerical simulations were also performed with the Abaqus software. The
obtained sensitivity is quite greater than the measured one which can be explained
by the hypothesizes we made for the simulations.

Keywords Accelerometer • Optical fiber • Polarization • Crushing

1 Introduction

The measurement of accelerations is of great importance in civil and mechanical
engineering. The vibrations of a structure (bridge, building, airplane wing) learn
about its ageing and the need of maintenance.

Different studies have been carried out to develop optical fiber accelerometer
[1–3]. The use of an optical fiber enables distributed or quasi distributed sensing
along the fiber.

Up to now, those studies have especially focused on the distributed aspect of
the sensor. The vibrations are produced by winding a fiber around a piezoelectric
stretcher [2, 3]. The design of a mechanical transducer able to measure actual
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structure vibrations is essential to build a sensor for industrial applications. This
paper proposes a home-made accelerometer based on the crushing of the fiber.

2 Experimental Set-Up

The experimental set-up is given in Fig. 1. Polarized light produced by a laser with
a wavelength of 1,550 nm passes through a polarization controller so that the initial
state of polarization (SOP) gives a maximal sensitivity.

The light then goes along an optical fiber where a mechanical transducer deforms
the fiber. The mechanical transducer is placed on a shaker. The fiber is attached
between two arms of an aluminium U-shape piece (on Fig. 2). One of the arms is
fixed to the shaker, the second one has a mass attached to it and is free to move.
A rubber end is fixed to the crushing part of the arm in order to avoid damaging
the fiber. Its vibrations deform the fiber, causing some birefringence to appear. Two
different arms were made, one with a length of 30 mm, the second with a length of
60 mm.

Laser

Mechanical
Transducer

Shaker

Polarization
controller

Polarizer Photo
Diode

Fig. 1 Experimental set-up

Fig. 2 Mechanical transducer
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The light passes through a polarizer and arrives to a photodiode producing a
tension proportional to the incident optical power. Thanks to the polarizer, the power
at the photodiode varies if the SOP of the fiber varies.

3 Theoretical Background

Light in a single mode optical-fiber has two orthogonal modes of propagation
characterized by two orthogonal states of polarization. Those modes are degenerated
in a perfect circular symmetric fiber. If the circular symmetry is broken (e.g. because
of internal stresses) the two modes are no more degenerated and propagate with
different velocities. The refraction indices are then different for the two modes.
Their difference is called the birefringence ˇ and induces a phase shift ı. They
are given by Eq. (1) [4]

ˇ D kx � ky � k.ınx � ıny/I ı D ˇL (1)

where ˇ is the birefringence, ıni the variation of the refractive index in the direction i
and k is 2 divided by the wave length of the light. L is the length of the birefringent
part of the fiber.

The theory of photoelasticity gives the link between the deformation and the
birefringence [4]

ıni D �n
3

2

X
pij"j (2)

where n is the refractive index of the core, "j the deformation in the direction j and
the pij are the elasto-optic coefficients. For silica, pij D 0.121 if i D j and pij D 0.270
otherwise.

When the phase shift is known it is possible to calculate at each point of the path
of the light its state of polarization thanks to the Stokes formalism [5].

In this formalism the state of an elliptically polarized light is represented by a
vector

s D

2
666664

1

cos 2� cos 2'

cos 2� sin 2'

sin 2�

3
777775

(3)

where � characterizes the ellipticity of the SOP and ' is the orientation of the linear
part of the SOP with regard to a reference axis.
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When a fiber is crushed it becomes a linear retarder with a Mueller matrix
given by

M1 D

2
66666664

1 0 0 0

0 cos2
ı

2
C sin2

ı

2
cos 4q sin2

ı

2
sin 4q � sin ı sin 2q

0 sin2
ı

2
sin 4q cos2ı � sin2ı cos 4q sin ı cos 2q

0 sin ı sin 2q � sin ı cos 2q cos ı

3
77777775

(4)

ı is the phase shift and q the angle between the fastest axis of the light and the
reference axis.

If the linear polarizer at the end of the fiber has an azimuth � its Mueller matrix
is given by

M2 D 1

2

2
66664

1 cos 2� sin 2� 0

cos 2� cos22� sin 2� cos 2� 0

sin 2� sin 2� cos 2� sin22� 0

0 0 0 0

3
77775 (5)

The state of polarization at the end of the crushed fiber is given by

sout D M2M1sin (6)

The first component of this vector gives the power at the end of the fiber. We get

sout .1/ D 1

2
.1C cos 2� cos 2� cos 2' C sin 2� cos 2� sin 2' C ı sin 2� sin 2�//

(7)

In this expression the term in ı is maximal if � and � are equal to ˙45ı (this
corresponds to an initial circular SOP and to a polarizer with an azimuth of ˙45ı).
In this case the sensitivity of the sensor is maximal and we get

sout .1/ D 1

2
.1C ı/ (8)

The phase shift ı varies at the same frequency as the mechanical vibration. The
optical output at the photodiode will then have a part varying at the same frequency
as the vibration added to a constant part.

We see that the ratio of the variable power at the end of the fiber divided by the
constant part is ı.
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4 Numerical Simulations

The deformations in the fiber were simulated with the finite element Abaqus
software.

Three parts are considered in the fiber: the core through which the light passes,
the cladding and the buffer. The core and the cladding are in fused silica, the buffer
in polymer.

The method to calculate the deformation in the crushed fiber is the following: a
model of the fiber alone is first made and crushed with static displacement in order
to measure the stiffness of the fiber. A model of the U-shaped mechanical transducer
is made. The fiber is then replaced by a spring of the calculated stiffness and a modal
dynamic simulation is performed. The calculated displacements at the extremities
of the spring are statically applied to the fiber to find the core deformations.

When the core deformations along the crushed portion of the fiber are known it
is necessary to find the induced birefringence. Matlab is used to calculate at each
point of the core the induced birefringence thanks to the equations of photoelasticity
and then the state of polarization of light at the end of the fiber with the Stokes
formalism. The assumption is made that we are in the most favorable case with
regards to the initial polarization and to the polarization at the final polarizer.

5 Results and Discussion

A first experiment is performed, exciting the shaker at frequencies of 110 and
1,010 Hz with increasing accelerations. Both arms are used. The optical output
measured is the ratio between the amplitude of the variable part of the signal to
the constant part. The results are presented in Figs. 3 and 4.

We can see that in all cases the signal evolves linearly with the acceleration in
the range 3–40 m/s² which means that the sensitivity is constant. The measured
sensitivities are nearly the same at 110 and 1,010 Hz. They are presented in Table 1.

The simulated sensibilities are 2–6 times greater than the measured ones. An
explanation is the fact that the simulated results are computed with the hypothesis
that the light polarization is the best at both the mechanical transducer and the final
polarizer. Nevertheless we only have one polarization controller in our experimental
set-up which is placed at the beginning of the fiber. We then cannot set the light
at the best polarized state at the mechanical transducer and the final polarizer
independently but we can only set a best initial polarized state.

Another difference between simulated and experimental results is that the
simulated optical signal at 1,010 Hz is greater than at 110 Hz while the experimental
results show that this signal is the same for the 6 cm beam and is slightly smaller
for the 3 cm beam. In order to study the influence of frequency on the sensitivity,
measurements are performed at different frequencies between 110 and 1,800 Hz
at a constant acceleration of 15 m/s². The results are presented in Fig. 5. We can
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Fig. 3 Optical output for the 60 mm beam
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Fig. 4 Optical output for the 30 mm beam

Table 1 Sensibilities of the 60 mm beam (left column) and the 30 mm beam
(right column) at frequencies of 110 and 1,010 Hz

Sensitivity (1/ms²) Sensitivity (1/ms²)

Experiment – 110 Hz 6.4E-4 8.3E-4
Experiment – 1,010 Hz 6.4E-4 6.7E-4
Simulation – 110 Hz 2.3E-3 1.5E-3
Simulation – 1,010 Hz 4E-3 2.9E-3
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Fig. 5 Simulated and measured optical data for both beams

see that the measured sensitivity is constant in the range 110–1,000 Hz with an
exception around 600 Hz where it becomes slightly greater. Then the influence of
the first resonance mode occurs and the sensitivity grows quickly. The simulated
results present this growth but it comes at lower frequencies.

6 Conclusion

We have proposed a mechanical transducer to develop an accelerometer based on the
variation of the polarization state of the light. We have shown the possibility to use
a device crushing the fiber to modify its state of polarization. Our device presents a
linear behavior at least in the range 3–40 m/s² and in a frequency range going from
110 to 1,000 Hz. The simulations performed give results with the same order of
magnitude as the measured ones. Work must still be done to get those simulations
closer to the measured results.
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Experimental Research on Brake Squeal

Daniel Wallner and Stefan Bernsteiner

Abstract Since many years experimental researches have been performed in order
to get an insight into the issue of brake squeal. This work presents an innovative test
setup for analyzing friction-excited vibrations and squeal triggering mechanisms.
The investigated brake system showed brake squeal issues at certain operating
points. The purpose was to analyse the brake system in detail on a test rig.
Because the well-known methods of investigation such as laser vibrometer were
not possible, the aim was to develop and generate new measuring points, which
are close to the contact area of disc and pad. Therefore the brake calliper has been
modified; hence the guide are replaced by modified ones. At these pins the friction
force can be measured. Because of an optimized shape it is possible to measure
the vibration of the friction force. The measured signal correlates with a parallel
measured microphone signal. Next the brake disc will be assembled with triaxial
accelerometers. Thus it is possible to determine the operating deflection shape of
the disc. With the results of this work a new contact algorithm should be developed
which can be used e.g. in Finite Element calculations.

Keywords Brake squeal • Vibration measurement • Friction force measurement
• Friction-excited vibration
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1 Introduction

Since many years brake squeal is a challenging issue. Papinniemi et al. [1] referred
in his paper to two research reports from the 1930s. In the meantime there are several
reviews published. For example Cantoni et al. [2] provided an extensive review
including 407 published papers. Among others warranty costs drive this effort to
prevent brake noise issues.

The methods to reduce brake noise can be roughly divided into three main
fields of research. The first approach uses minimal models of the brake system.
Von Wagner et al. [3] describe some of them. These models are mostly abstract
and simplified and can be analyzed analytically. The advantage is, that principal
processes and measures can be described and analysed. But the outcomes are more
or less abstract and a transfer to a complete brake system is difficult.

The second approach uses the Finite Element Method. Ouyang et al. [4] provides
a review on numerical brake squeal analysis. These could be divided into two
methods which are the Complex Eigenvalue Analysis (CEA) and the transient
analysis. The CEA method is using a linearization of the brake squeal solution at
steady sliding states and calculates the complex eigenvalues. A positive real part
of this solution indicates an unstable system. A disadvantage of this method is
that it usually predicts too many unstable modes. Thus means that many critical
points are predicted, but only few of them are able to exhibit instability. Another
restriction is that the solutions are proper for states close to steady states. In contrast
to that the transient analysis method can analyse the effect of time-dependent loads.
Furthermore it is possible to get appropriate solutions if nonlinear effects are present
or the state is far from the steady state.

The third approach includes the experimental methods. There are many different
ways to analyse a brake system. Regarding to the literature the majority of used
measurement methods measure the velocity and the acceleration, respectively. With
these measurement systems the operating deflection shapes (ODS) of e.g. the brake
calliper can be detected. Marschner et al. [5] presented a method which consists
of triaxial acceleration sensors which are mounted in the cooling ducts of the disc.
Ouyang et al. [6] measured the displacement of the disc using 12 capacitive sensors
arranged at a certain diameter. Other research groups used piezoelectric sensors as
for instance [7], which can also be used as actuators to prevent vibrations.

2 Methods

During road testing the analysed vehicle axle showed squeal issues at higher disc
temperature. Because of that the decision was to analyse the axle on a test bench.
The chosen test bench is a combined brake and suspension test bench. Hence it is
possible to test the performance of a brake system or the suspension of a vehicle.
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Fig. 1 Exemplary results from the SAE J2521 squeal noise matrix test original brake pads. The
solid line denotes the temperature, the points denotes a squeal event the relevant sound pressure
level

A special test rack has been designed for the experiments. On this rack a complete
vehicle axle is installed. Using this set up a SAE J2521 test was run to evaluate
the squeal noise matrix. Thereby almost 20% of 1,430 brake applications were
squealing ones. See Fig. 1 for exemplary results. After these tests the aim was to
analyse this brake system in detail.

For further analysis special prototype brake pads, which consist of sintered
material, have been used. This has been necessary because the original brake pads
mostly squeal at higher temperatures. But the used sensors cannot deal with this
and limit the maximum temperature. It was not possible to find repeatable squealing
operating points with the original brake pads at low temperatures.

The design of the prototype pads is optimized to obtain a maximum number of
squeal events. Figure 2 shows a part of the performed SAE J2521 test run with the
new prototype pads. More than 70% of the brake applications squeal. The reason
for that is on the one hand the higher friction coefficient of the prototype pads and
on the other hand that all known countermeasures are waived. Even an improper
material composition regarding squeal behaviour is chosen. As a result it is possible
to perform repeatable and because of that comparable test runs at certain operating
points.

Brake squeal is a self-excited vibration generated by the contact of brake disc
and brake pad. Because of that the friction force is an important parameter, which
should be measured. The investigated brake system consists of a fixed calliper and
the resulting force of the brake torque acts on guide pins. Thus modified guide pins
are developed which measure the resulting force using strain gauges. The pins have
an optimized shape; hence the cross-section looks like an I-beam. This modification
is necessary to obtain an applicable signal. As a result the modified guide pins
measure not only the friction force, but also the superposed vibration of this force.
Figure 3 shows these modified guide pins and the mounted strain gauges.
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Fig. 2 Exemplary results from the SAE J2521 squeal noise matrix test prototype brake pads

Fig. 3 Brake calliper with modified guide pins, strain gauges marked

3 Results

During road testing an audible squeal frequency at 1,890 Hz could be measured
with a microphone. This frequency was also measured with an acceleration sensor
mounted at the brake calliper. These two signals showed a good correlation.

With the invented system a more exact measurement at the test rig is possible.
The measured squeal frequencies are 1,890, 2,000 Hz and the first harmonic at
4,000 Hz. Figure 4 depicts a comparison of the FFT signals from the guide pins
and a reference signal obtained by a microphone. Because of the coherence of the
signals it is assumed, that the measured friction force is a triggering mechanism for
the vibration of the disc, hence for the noise.
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Fig. 4 FFTs of the microphone signal and the two guide pins signals

Fig. 5 Waterfall plot of the acceleration sensor mounted at the inner brake pad

Parallel performed acceleration measurements of the brake pad confirm this
assumption. Figure 5 shows one waterfall plot out of the frequency analysis. The
analysed squeal event lasts approximately 15 s. The shown signal is an online
FFT from an acceleration sensor which is mounted on the brake pad backplate.
The dominant frequency at 2 kHz and corresponding first and second harmonic are
clearly visible.

4 Conclusions and Outlook

Despite decades of research brake squeal is still an elusive issue. For the presented
analysis prototype brake pads which consist of sintered material are used. These
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pads have no countermeasures and thus they squeal very loud and at nearly every
operating condition. As a result it is possible to perform repeatable test runs at
certain operating points.

In order to get further insight into the triggering mechanism special guide pins
have been developed. These pins measure the friction force and the superposed
vibration. The results correlate with a microphone signal. Thus it is possible to
obtain additional information with the presented test setup. But of course, basic
analyses such as frequency analysis or modal analysis are still necessary. The special
pins provide a new innovative measuring device for further fundamental research.
Thus it is possible to evaluate varying material combination and to estimate squeal
triggering mechanisms. Hence friction induced vibrations can be analysed using
these pins.

Next miniature triaxial accelerometers will be installed into the cooling ducts
of the disc. Thus the operating deflections shapes (ODS) of the brake disc can be
determined. A slip ring will transmit the signal. With the obtained results a friction
model and simulation procedures will be verified and improved.
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Experimental Investigation of Vibratory
Peg-in-Hole Insertion for Robotic Assembly

Sigitas Kilikevičius and Bronius Bakšys

Abstract The paper aims to experimentally investigate the process of a compliantly
supported peg insertion into a bush with clearance by a robot, when vibrations
are provided to the bush in the axial direction. The experimental setup of robotic
vibratory assembly and the investigation methodology are presented. The experi-
ments were performed by inserting the peg which is attached to a remote center
compliance device by a robot into the bush mounted on an electrodynamic shaker.
Durations of insertion process stages were measured under various combinations
of excitation parameters of the bush. The experiments show that parameters
of vibratory excitation have an influence on the duration of insertion process.
By selecting suitable excitation parameters it is possible to shorten the insertion
process duration and avoid jamming of the parts to be assembled.

Keywords Vibratory assembly • Peg-in-hole insertion • Vibrations

1 Introduction

One of the newest fields of the vibrations application is a vibratory assembly.
To apply the method of the vibratory assembly, one of the parts in an assembly
position should be provided with vibrations of predefined direction, amplitude and
frequency. The process of automatic vibratory assembly can be divided into two
stages – the alignment of parts connective surfaces and the insertion of parts. During
the alignment stage, due to the influence of vibrations, the compliantly supported
part, being in the contact with the mating part, is able to displace and turn in
respect of the later. Thus, the part-to-part alignment in the assembly position is
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reached, ensuring both the matching of their connective surfaces and prerequisites
for unhindered assembly. The part-to-part position errors, which emerge while
feeding the parts into the assembly position and locating them in assembly devices,
are compensated during the alignment [1, 2]. The vibratory excitation gives a
positive effect also in the stage of parts insertion. Researches show that jamming
can be avoided by providing vibrations to one of the parts to be assembled, thus
facilitating successful assembly [3, 4].

Up to know, the robotized vibratory assembly using vibrations for the alignment
and insertion of the parts are not sufficiently analyzed. The analytical and exper-
imental analysis of the alignment and mating, when one of the parts is provided
with vibratory excitation along the two perpendicular directions, are presented
in the papers [5–7]. The authors analyzed the influence of vibratory excitation
parameters both on the reliability and duration of the alignment. In the paper [8]
the dynamic compliance device for robotic high speed and precision chamferless
assembly is proposed. Vibrations are provided to the work table in the horizontal
plane by two pneumatic bellow actuators, piloted by the pseudo-random binary
signal. However, the processes of alignment and insertion are random and are
not stable. The influence of vibrations on the peg-in-hole insertion process is not
discussed.

This presented paper considers the experimental analysis of the insertion process
when the compliantly supported peg is inserted by a robot into the bush, which
is excited in the axial direction. When the parameters of vibratory excitation are
properly selected it is possible to obtain the minimal insertion process duration and
ensure the successful insertion process.

2 Experimental Setup and Methodology of the Investigation

The experimental setup of robotic vibratory assembly was designed and made
(Fig. 1). Assembly operations are performed by the robot 1 (Mitsubishi RV-2AJ).
The robot gripper 2 holds the experimental remote center compliance device 3,
which is attached to the peg 4. The special construction steel bush 5 was designed
and made, which provides the possibility to acquire the parameters of the insertion
process using the contact method (Fig. 2). The bush is mounted on the platform of
electrodynamic shaker 6. The electrodynamic shaker, providing excitation to the
bush, receives the electric signal of the excitation from the oscillator using the
amplifier. The bush comprises the electrically insulated interdependent segments,
i.e. the chamfer, two sides and the bottom. When the peg touches the different
parts of the bush, the voltage jump occurs, which is acquired by the oscilloscope
and displayed on the computer screen. In such a way it is possible to track all
the stages of the insertion process – peg-chamfer contact, one-point and two-point
contacts of the peg with bush’s hole, the end of the insertion process and to define
the durations of these stages. The experiments were performed using two remote
center compliance devices of different designs. One of them comprises two discs,
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Fig. 1 Experimental setup for robotic vibratory assembly

Fig. 2 Initial state of the
parts in an assembly position
before the insertion: 1 – robot
gripper, 2 – remote center
compliance device with
helical springs, 3 – peg,
4 – bush
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Fig. 3 Remote center
compliance device with a set
of metallic and rubber
bushings

which are interconnected by three helical springs. The springs are allocated at a
particular angle in respect of the device axis. Therefore, the compliance center of
the device is located more closely to the bottom end of the peg. The other remote
center compliance device (Fig. 3) is made of two discs, which are connected by
means of three elastic elements, having rigidity 2.45 N/mm. They are made of a set
of metallic and rubber bushings. The length of the elastic elements is 60 mm, the
diameter 14 mm, the number of layers is ten.

3 Investigation of the Vibratory Insertion Process

Dependences of the durations of insertion stages on the linear positioning error of
the peg "0 were experimentally obtained using the remote center compliance device
with three helical springs (Fig. 2). The experiments were performed inserting the
peg of mass m D 0.1 kg into the bush which diameter isD D 20 mm, the assembly
clearance ı D 0:2mm. The other parameters of the parts arranged in the assembly
position: chamfer angle of the bush ˛ D =4 rad, initial tilt angle of the peg �0 D
0:035 rad, initial linear positioning error "0 D 2:25mm, remote center compliance
device lateral stiffness Kx D 2000N/m, axial stiffness Kz D 5000N/m, angular
stiffness K� D 20Nm/rad, distance from the lower end surface of the peg to the
centre of compliance LC D 10mm, insertion speed v D 0.18 m/s.

When the initial linear positioning error "0 is increasing, the chamfer crossing
duration t1 significantly increases (Fig. 4). The duration t2, which takes time from
the initial instant of insertion to the two point contact stage, is increasing as "0

increases, mainly due to the increased chamfer crossing duration (Fig. 4). When "0
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Fig. 4 Dependences of: (a) the chamfer crossing duration t1; (b) the duration t2; (c) the two-point
contact stage duration ttp; (d) the insertion process duration t3, on the linear positioning error of
the peg "0, when �0 D 0.0175 rad, 1 – without the vibratory excitation, 2 – exciting vibrations of
the bush with the frequency f D 70 Hz and amplitude A D 1.0 mm, 3 – f D 70 Hz, A D 1.5 mm

is increasing, the two-point contact stage duration ttp increases (Fig. 4). This shows
that the two point contact appears at the lower depth of the bush’s hole. It is noticed,
that wedging or jamming usually occurs when the two point contact appears in a
small depth. Besides, the probability that the peg will jump out of the hole increases
when the two point contact appears in a small depth, due to its uneven movement.
Thus, the probability of successful insertion process decreases when the initial linear
positioning error is increasing. The total insertion process duration t3 increases also
when "0 is increasing (Fig. 4). Under higher excitation amplitudes, the insertion
process duration increases more significantly.

The experiments on insertion process durations were performed using the other
remote center compliance device with a set of metallic and rubber bushings (Fig. 3)
and bending stiffness 1,800 N/m. The experiments showed that the excitation
parameters have an influence on the insertion process duration t3. When the
excitation amplitude is increasing, the insertion process duration t3 decreases
(Fig. 5). Figure 6 shows that the insertion process duration decreases also when
the excitation frequency is increasing.

When the excitation frequency f is increasing, the duration t2 slightly increases
(Fig. 7), meanwhile the two point contact stage duration ttp decreases (Fig. 7).
According to this, the conclusion could be made that when the excitation frequency f
is increasing, the two point contact appears as the peg is in a higher depth. Con-
sequently, the increase of excitation frequency facilitates the successful insertion
process.
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Fig. 5 Dependences of the
insertion process duration t3

on the excitation amplitude A,
when the excitation
frequency: 1 – f D 40 Hz,
2 – f D 60 Hz, 3 – f D 100 Hz

Fig. 6 Dependences of the
insertion process duration t3

on the excitation frequency f,
when the excitation
amplitude: 1 – A D 0.2 mm,
2 – A D 0.6 mm,
3 – A D 0.8 mm

Fig. 7 Dependences of: (a) the duration t2; (b) the two-point contact stage duration ttp on the
excitation frequency, 1 – A D 0.2 mm, 2 – A D 0.6 mm, 3 – A D 0.8 mm

4 Conclusions

The experimental analysis of vibratory insertion process is performed when the
compliantly supported peg is inserted by a robot into the bush, which is excited
in the axial direction. The dependencies of the durations of insertion stages on the
excitation amplitude, frequency and linear positioning error are determined. The
experiments showed that the excitation parameters have an influence on the insertion
process duration. When the excitation amplitude and frequency are increasing,
the insertion process duration decreases. As the excitation frequency increases,
the two point contact appears as the peg is in a higher depth, thus jamming can be
avoided. Consequently, the increase of excitation frequency facilitates the successful
insertion process.
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Innovative Multilevel Energy Processor
in Condition Monitoring

C. Cempel

Abstract Working machine can be considered as an equivalent energy processor
(EP) with internally limited energy dissipation. This means, we have limited
machine lifetime and breakdown time, and the observed vibration symptoms of
machine condition can be incorporated into EP model. Up to now one level of EP
model have been in use, but using singular value decomposition (SVD) we need
two levels EP, and due to this it is possible to trace several independent faults of
machine during its life. This possibility allow us to formulate concept of machine
as a multilevel energy processor, and using SVD we determine the second sublevel
of this multilevel EP. The present paper illustrates this way of thinking, and allows
us to deepen our understanding of machine life and the wear on two levels; overall
machine damage and particular faults as well.

Keywords Condition monitoring • Energy processor (EP) • Symptom
observation matrix • Singular value decomposition

1 Introduction

Working machine can be modeled as an energy processor (EP), which processes
input equivalent energy (according to some control program), into some product or
another form of useful energy. As working life of the machine is in progress, the
wear of its parts is starting, what can be acknowledged as internal dissipation of the
input energy, it means – internal damage. The growing internal damage expresses
into some evolving faults, which if not interrupted by renewal, leads to the total
damage of the machine. This wear mechanism of a working machine was already
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modeled as an energy processor and described by the present author in some papers
[1] and books [2]. It was shown there that EP has great diagnostic inference power,
giving possibility to model the life of the machine, its reliability, and even to foresee
system breakdown time and its residual life.

After some years of EP application and use, see for example [3], it seems that
not all inference capability of EP has been uncovered and used. This concerns the
possible hierarchical structure of EP, which if used properly, can lead to better
understanding of some decomposition methods of Symptom1 Observation Matrix
(SOM). So, the aim of this paper is to find some good metaphor, and analogy
between the multilevel EP, and symptom observation matrix processed by singular
value decomposition (SVD). This decomposition is mainly used in contemporary
multidimensional diagnostics of machines and other technical systems.

2 The Concept of Energy Processor (EP)

The first thinking concerning the link between the wear model of machine and
emitted vibroacoustic processes during the life of the machine were published
almost 20 years ago [1, 4, 5]. As a next, well clarified and more generalized model
called Energy Processor (EP) was published in the book [5], see Fig. 1. By the use

Fig. 1 One level energy processor [4]

1Symptom, measurable quantity covariable (or assumed to be) with the system condition.
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of such EP model and some number of observations of one symptom measured
at a real object, it was possible to assess the object symptom reliability R(S) [2],
its breakdown time 
b and residual life time �
 . This approach was used where
the condition of the machine has been described by one symptom only. We may
call it now the total damage symptom, like rms velocity used for simple rotating
machinery according to ISO standards. For such simple machines it can be found
that the observed symptom is of Pareto, or Weibull type, and in these cases the
EP model works well, as one can see for example in [4]. This means simply,
that histogram of observed symptoms is similar to Pareto or Weibull distribution,
what enables to use the assessed distribution exponent � to calculate the model of
symptom life curve S(
), and the symptom reliability R(S).

Not repeating the whole calculation for energy processor concept, we will show
only the essential relations, already mentioned above. Denoting the system lifetime
as 
, externally dissipated power as V(
) and following [5, 6] (see Fig. 1) we will
have the evolution of externally dissipated power in the form of breakdown time 
b

asymptotic curve as below;

V.�/ D Vo.1 � �=�b/�1 (1)

In dependence to functional and structural design of machine, the same amount
of dissipated power V(
) may be transformed differently into the observed symptom
of condition S(
). We denote this difference in transformation by introducing special
symptom operator S(
) D˚(V(
)), which transforms dissipated power into the
observed quantity, covariable with the condition of the machine. The simplest forms
of symptom operators are of exponential type, like Pareto or Weibull. They are
applicable for several types of machines [4]. For Pareto type of symptom operator
we will have observed symptom of system condition S(
) in the form as below;

S.�/ D ˚.V.�// D So.1 � �=�b/�1=� (2)

And if the symptom reliability [2] is of Pareto type for observed symptom we
have at the same time

R.S/D.So=S/�� (3)

where So is the initial value of observed symptom of condition.
These are the essential relations describing the behavior and the possibility of

diagnostic use of one level EP, when total damage symptom S(
) is observed, and
we do know Pareto exponent � from population of symptom observations. Then
we can calculate all needed parameters concerning the machine safety and running,
such as symptom limit value Sl and the machine residual lifetime �
 .
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3 Two Levels Energy Processor and Decomposition
of Symptom Observation Matrix (SOM)

In some cases however, more sophisticated diagnosis of machine is needed, we need
for example specification of fault type, its life evolution or strength, the symptom
limit value for a given generalized fault type Sli, and specific residual lifetime
for respective fault �
 li. These needs evoke a question, is that possible to use
again the EP model for each generalized fault separately? It seems to be positive
answer for this question, particularly when looking at the concept of multilevel
energy processor given in [5], and shown below (see Fig. 2) in the two level
version only. This self limitation follows from the frequent application and use of
singular value decomposition (SVD) [8], or principal component analysis (PCA) in
multidimensional condition monitoring. These methods, SVD in particular, give us
clear identification of total damage symptom for the whole machine, and specific
generalized faults for the first sublevel of decomposition. This will be seen later on,
from some real examples of multidimensional condition monitoring of machines.

Looking deeply at Fig. 2 and comparing with Fig. 1 one can notice that the best
condition observation for each particular fault is, if can one observe particular fault
symptom originating at given energy processor (EP)i. Following (2) this can be
expressed mathematically

Fig. 2 Multilevel energy processor illustrating the idea of two levels decomposition applied in
many papers of the present author by means of SVD
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Si.�/ � ˚i ŒVi .�/� ; i D 1; : : : n: (4)

But symptoms of condition of real machine can be observed at the machine
casing, i.e. only from the outside measuring position, hence another relation
including outside dissipative power V(
) must be written here

Si .�/ � ˚i ŒV .�/�D˚i
hX

Vi .�/
i
; i D 1; : : : n: (5)

Looking deeply at this new definition we can rewrite it expressing in an explicit
way the relation (4) seen inside the EP, and depicting the way of symptom creation,
specific to a given fault seen as non italic term in the first line of formula below;

Si .�/ D ˚i Œ
X

Vi .�/� � ˚i ŒV1.�/�C˚i ŒV2.�/�C : : :

C ˚i ŒV1.�/�C : : :C ˚i ŒVn.�/�

D ˚i ŒVi .�/�C "˚ir ŒV .�/�; i D 1; : : : n: (6)

where ˚ irŒV .
/� in the second line is the residue of our symptom operator, and it
help us to express each particular symptom according to fundamental relation (4).

Repeating this decomposition n times, according to Fig. 2, we will have n
components symptom observation vector S (
) for our two level EP, as below.

S.
/ D

2
664
S1.�/

S2.�/

:::

Sn.�/

3
775 D

2
664
˚1 ŒV1.�/�C "˚1r ŒV .�/�

˚2 ŒV2.�/�C "˚2r ŒV .�/�

:::

˚n ŒVn.�/�C "˚nr ŒV .�/�

3
775 (7)

It will be good now to invent some transformation of above vector, that each
residue of given component of observation vector will be close to zero, it means we
need;

˚ir ŒV .�/� � 0; i D 1; : : : n; (8)

After such transformation, in case of some redundancy of observation, some
of the components of transformed observation vector may be close to zero too,
and the remaining nonzero components will be orthogonal each other, describing
independent faults evolving in a machine.

Now, the above symptom observation vector (7), is observed in a discrete way
along the machine lifetime 
 produces symptom observation matrix (SOM), which
describe the evolution of faults during the life of a machine. Applying singular value
decomposition to our SOM we can obtain exactly what was described above; the
total damage symptom, and particular generalized symptoms as the evidence of
evolving faults in a machine. Due to a limitation of space we will not illustrate the
SVD in detail, but one can look at this in some author papers cited in the literature.
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4 Examples of Two-Level Energy Processor Use in Machinery
Diagnostic Practice

As a first example of application of our idea we will take a hard diagnostic case –
a huge fan for coal milling working at one of Polish thermo power station. Here
the root mean square vibration velocity (Vrms) has been used as a symptom of
condition, and initially altogether 11 symptoms at different places of fan mill
aggregate structure (observation vector) were constantly monitored, over 60 weeks
of a lifetime 
. We will process this case with inclusion of life time symptom to
SOM. How unstable and noisy the fan running environment is, one can notice
from the left top picture of the Fig. 3. It is seen further (middle left picture), that
the symptom normalization to the initial value and centering do not change much
the noisy behavior of primary and generalized symptoms after SVD (bottom left
picture).

Looking at the middle right picture of Fig. 3, one can notice that symptoms No
7,8,9,10,11 do not give substantial contribution to the three dominating generalized
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Fig. 3 Vibration condition monitoring (Vrms) of the coal mill fan observed at three bearings of fan
and electric motor, as processed with life time symptom (LS) added to SOM



Innovative Multilevel Energy Processor in Condition Monitoring 635

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

35
SvdOptGsEv.m; Life evol.of singular values σi

Lifetime/normalized

R
el

. A
m

pl
itu

de
 o

f σ
i

Frob1=33.7238

Sum σi

σi

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Evol.of first(m/2) singular values product; for=loz8b

Lifetime/normalized

N
or

m
al

iz
ed

 a
m

pl
itu

de
 o

f f
irs

t σ
i p

ro
du

ct
s

  m=10

Vol1=0.061981

life-max=59

Rejected two symptoms
 No 1, 2, 

Fig. 4 The evolution of the first few singular values of the coal fan mill of Fig. 3, as the validation
of separate faults evolution according to concept of two level EP

symptoms, and probably can be rejected as redundant at the first approach. With
this respect please note the value of Frobenius modified measure Frob1 D 34.59 and
the volume of the fault space Vol1 D 0.019, at upper right picture. One can also
note here, that there are two generalized symptoms with high information contents
(picture top right), and due to that two symptom limit values are assessed: namely
Slc for the total damage symptom, and Sl1 for the first generalized symptom (bottom
pictures).

Following the confirmation of the underlying thesis of this paper, please take a
look at the picture top right of Fig. 3, where one can notice two dominating singular
values, what may stand for the two evolving faults in the machine. Validation of this
supposition one can see at the next figure left picture, where the evolution of first
few singular values calculated by another program SvdOptGsEv.m is shown. This
picture was taken from the last paper of present author [7], where the hypothesis
concerning the proportionality between the singular value and system damage was
fully exploited. One can see from the left picture of Fig. 4, that the concept of
second level of EP has some confirmation here, at least two life curves of singular
values looks like the life symptom of some advanced evolving damage, approaching
the breakdown. This means that inside machine system two damages has grown
constantly up to the final system breakdown.
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5 Conclusion

The starting point to write this paper was supposition that there exist some
analogy between multilevel energy processor of diagnosed object and singular value
decomposition applied to symptom observation matrix (SOM). We have shown with
the experimental data, that by proper transformation of symptom observation vector
S(
) expressed by relation (7) it is possible to neglect the residual component of
observation vector decomposition. It works much easier when we apply SVD to
SOM of diagnosed object, looking next for the evolution of generalized symptoms
and especially the evolution of singular vales, as proportional to the strengths of
developing damage. What more may mean this result? Well, it seems that when
we chose right mathematical transformation of system observation results, we can
understand better the wearing processes which take place in the running object; the
machine, or some other system.
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Effectiveness of MED for Fault Diagnosis
in Roller Bearings

P. Pennacchi, Roberto Ricci, S. Chatterton, and P. Borghesani

Abstract Diagnostics of rolling element bearings is usually performed by means of
vibration signals measured by accelerometers placed in the proximity of the bearing
under investigation. The aim is to monitor the integrity of the bearing components,
in order to avoid catastrophic failures, or to implement condition based maintenance
strategies. In particular, the trend in this field is to combine in a single algorithm
different signal-enhancement and signal-analysis techniques. Among the first ones,
Minimum Entropy Deconvolution (MED) has been pointed out as a key tool able to
highlight the effect of a possible damage in one of the bearing components within
the vibration signal. This paper presents the application of this technique to signals
collected on a simple test-rig, able to test damaged industrial roller bearings in
different working conditions. The effectiveness of the technique has been tested,
comparing the results of one undamaged bearing with three bearings artificially
damaged in different locations, namely on the inner race, outer race and rollers.
Since MED performances are dependent on the filter length, the most suitable value
of this parameter is defined on the basis of both the application and measured
signals. This represents an original contribution of the paper.

Keywords Minimum Entropy Deconvolution (MED) • Bearing diagnostics
• Bearing failure

1 Introduction

Bearings are mechanical components largely used in rotating machines and em-
ployed in many industrial fields. Unfortunately, due to both the load applied and
the harsh operating environment, bearings are prone to failure and may even lead to
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catastrophic failure of the machinery. Typical failures of rolling bearings are due to
cracks or spalls on roller elements, inner ring, outer ring and seldom on the cage.
For this reason, a proper diagnostics of bearings during their functioning must be
performed.

Bearings diagnostics is usually performed by processing the vibration signals
measured by means of transducers placed near the bearings. A lot of signal
processing techniques have been implemented for this purpose. Envelope analysis
is probably the most established technique: proposed for the first time in [1], it
allows detecting frequencies related to bearings faults. Similar information are
those provided by the spectral kurtosis [2, 3]: also in this case a distribution
in frequency domain is obtained. The reliability of the cyclostationary analysis
for bearings diagnostics has been tested in several applications [4]. Frequency
components strictly related to the fault presence could be traced in the frequency-
cyclic frequency plane. The application of these techniques is necessary for bearings
diagnostics, but their effectiveness is often reduced by both environmental noise and
other vibration sources. For this reason, often it is useful to enhance the measured
vibration signals in order to highlight components, like transients and bursts, due to
faults.

An example of signal-enhancing algorithm is represented by minimum entropy
deconvolution (MED). The MED algorithm, proposed for the first time by Wiggins
[5] for the study of seismic signals, has been recently considered in mechanical field.

In this paper, MED is applied to vibration signals measured on a test-rig able to
test industrial roller bearings. Signals were acquired on undamaged and damaged
bearings at different working conditions. The aim is to investigate the effectiveness
of the MED on experimental signals.

2 Minimum Entropy Deconvolution (MED) Algorithm

The entropy of a signal is related to the amount of information included in it.
This quantity depends on its randomness degree [6]. The MED is based on this
assumption: it tries to minimize the randomness of a signal by minimizing its
entropy. A generic signal x(n) can be expressed as convolution of two terms:

x.n/ D z.n/ � w.n/C �.n/: (1)

where z(n) is the component related to the system behavior, w(n) represents the
excitation and �(n) is the random signal noise. Processing x(n) with a filter f (n) [7],
the output signal y(n) can be obtained:

y.n/ D x.n/ � f .n/ D z.n/ � w.n/ � f .n/C �.n/ � f .n/: (2)

The convolution between the filter and the first signal component gives functions
similar to the Dirac delta function [7] whereas the convolution with �(n) allows
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reducing the signal noise. The y(n) in (2) is a simple solution since it shows the
maximum possible order and it is characterized by parsimony. In other words,
the output is composed of near zero values apart some terms assuming high values.
The parsimony of a signal can be measured by means of the Varimax norm [6]:

V.y/ D
NX
jD0

y4.j /

,0
@ NX
jD0

y2.j /

1
A
2

: (3)

The signal entropy is minimized by maximizing V(y) with respect to the
coefficients of the filter f (n). In this way, the output y(n) that best fits the component
z(n) is calculated. The Varimax norm maximization is performed by means of an
iterative procedure, by solving at each step a non-linear system. The description
of the iterative process is not the aim of this paper: details can be found in [6].
However, the iterative maximization of the Varimax norm allows optimizing the
filter to improve the y(n) parsimony. Since the computational efforts for the iterative
maximization of the norm are dependent on the length of the signal considered
and, obviously, on the number of iterations required, only a part of the complete
acquired signals will be analyzed and a maximum number of iterations has been
set in the algorithm. Moreover, in order to improve MED performances a suitable
length of the filter must be chosen. Many tests carried out on the measured signals
have highlighted that best results are obtained for filter length greater than the 35%
of the fault period. In this paper, filter length is equal to the 75% of the fault period.

3 Experimental Results

As stated in the introduction, the aim of the paper is the application of MED to
vibration signals acquired on both undamaged and damaged industrial bearings
using the test-rig shown in Fig. 1. The main shaft is driven by an electrical motor,
controlled by means of an inverter and coupled to a spiral bevel gearbox with
orthogonal axis. The gearbox output shaft is connected to a rotating shaft supported
by two roller bearings: the bearing under test is located in the middle of the rotating
shaft and it is preloaded with a simple mechanism. In order to introduce noise in
measurements, mainly generated by the gearbox, another electrical motor, similar
to the first one, but functioning as a brake, is connected to the rotating shaft.

Several bearings of the same type (SKF ECP 206 NJ), but in different health
conditions, were tested with the test-rig of Fig. 1. Different rotational speeds were
also considered. During experimental tests, vibrations in vertical and horizontal
directions were measured by means of single-axis piezo-accelerometers placed
on the bearing housing. Acquisitions were performed with a sample frequency of
10 kHz.

The left plot of Fig. 2 shows the raw signal of horizontal vibration acquired for a
damaged bearing with a fault on the inner ring and rotating at 750 rpm. As it can be
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Fig. 1 Test-rig layout. From right to left: active motor, rotating shaft with bearing under test placed
in the middle, gearbox and brake motor
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Fig. 2 Raw signal (left) and MED output (right) for a bearing damaged on inner ring

noted, only an arbitrary portion of the complete signal, lasting 15 shaft revolutions
is considered. The raw signal is characterized by peak-peak amplitude of about 8 g
but, no kind of structure or pattern indicates the presence of a fault.

The right plot of Fig. 2, presents the result obtained after the application of
the MED algorithm to the raw signal. The amplitude of the output is obviously
changed (of one order of magnitude) with respect to the original signal, due to the
introduction of the deconvolution filter: for this reason also the unit of measure is
distinguished by a star (g�). The shape of the output signal is very different from
the original one: MED output clearly highlights peaks, which indicate transitory
variations of vibration. These variations are not related to the shaft rotation, because
multiple peaks are detected for each shaft revolution. By considering consecutive
peaks, it is possible to calculate a time interval dt equal to 0.0102 s corresponding to
a frequency of 98 Hz, which is very close to the theoretical BPFI (Ball Passing
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Fig. 3 Raw signal (left) and MED output (right) for a bearing damaged on outer ring

Frequency Inner) for the rotational speed considered (97.8 Hz). Therefore, the
application of MED to the raw signal allows detecting the presence of a fault in the
inner ring of the bearing. This detection was impossible on the basis of the original
signal.

The left plot of Fig. 3 shows a portion of the vertical vibration, acquired on a
bearing rotating at 1,000 rpm, with a fault on outer ring. The amplitude of vibration
is similar to that of Fig. 2. The raw signal seems regular and no malfunctioning can
be identified.

The result provided by the application of the MED algorithm on the original
signal is shown in the right plot of Fig. 3. The deconvolution highlights a pattern
of peaks not visible in the raw signal. These peaks are equally spaced in time and,
also in this case, they are not strictly related to the shaft rotation period. Considering
the time interval between peaks, they are separated by a dt of about 0.0115 s: this
time gap corresponds to a frequency of 87 Hz which is very close to the theoretical
BPFO (Ball Passing Frequency Outer) of the test bearing for a rotational speed of
1,000 rpm (87.4 Hz). The MED allows identifying a fault on the bearing outer ring
that was impossible to be detected on the basis of the raw signal.

The left plot of Fig. 4 displays the horizontal vibration signal measured on a
bearing affected by a fault on a roller element. The acquisition was performed
with a shaft rotational speed of 1,250 rpm: 40 shaft revolutions are considered.
The amplitude of vibration is similar to that of the previous signals considered in
Figs. 2 and 3 and the trend does not indicate deviations with respect to the normal
functioning.

The application of the MED algorithm to the original signal allows obtaining the
result shown in the right plot of Fig. 4. MED output highlights some peaks whose
pattern is similar to that obtained for a fault in the bearing inner ring. In particular,
high peaks are anticipated or followed by lower peaks (a kind of “sidebands” in
time). By calculating the time interval between these correlated peaks, a dt of about
0.01 s, corresponding to a frequency of 100 Hz, can be obtained. This frequency is
very close to the theoretical 2 � BSF (Ball Spin Frequency) of the bearing for the
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Fig. 4 Raw signal (left) and MED output (right) for a bearing damaged on rolling element

considered rotational speed (101 Hz). The occurrence of the second harmonics of
the BSF is correct considering that a fault on a rolling element is excited two times
for each rotation (on both inner ring and outer ring). The fault on the rolling element,
which detection was impossible from the raw signal, is then identified by means of
the MED.

4 Conclusions

The aim of the paper was the application of the MED technique for bearing
diagnostics. MED has been applied to vibration signals measured on industrial
bearings by means of a test-rig designed and realized for this purposes. Results
provided by MED show that the algorithm is suitable for the detection of bearings
faults and it can be used for enhancing the fault recognition in more complex
applications characterized by higher environmental noise.
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Bearing Fault Diagnostics Using the Spectral
Pattern Recognition

P. Pennacchi, P. Borghesani, S. Chatterton, and R. Ricci

Abstract In the field of diagnostics of rolling element bearings, the development of
sophisticated techniques, such as Spectral Kurtosis and 2nd Order Cyclostationarity,
extended the capability of expert users to identify not only the presence, but also
the location of the damage in the bearing. Most of the signal-analysis methods,
as the ones previously mentioned, result in a spectrum-like diagram that presents
line frequencies or peaks in the neighbourhood of some theoretical characteristic
frequencies, in case of damage. These frequencies depend only on damage position,
bearing geometry and rotational speed. The major improvement in this field would
be the development of algorithms with high degree of automation. This paper aims
at this important objective, by discussing for the first time how these peaks can draw
away from the theoretical expected frequencies as a function of different working
conditions, i.e. speed, torque and lubrication. After providing a brief description of
the peak-patterns associated with each type of damage, this paper shows the typical
magnitudes of the deviations from the theoretical expected frequencies. The last part
of the study presents some remarks about increasing the reliability of the automatic
algorithm. The research is based on experimental data obtained by using artificially
damaged bearings installed in a gearbox.

Keywords Bearing diagnostics • 2nd order cyclostationarity • Envelope
analysis • Bearing characteristic frequencies
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1 Introduction

It is widely recognized [1] that localized damages on the bearing components cover
approximately 80–90% of the failures in rolling element bearings. These defects
on the surface of a bearing part result, during operation, in a train of impulses
which excites vibrations of the system. Theoretically, the impulse train frequency is
kinematically linked to the geometry of the bearing components, but slippage in the
contact rollers-races introduces small deviations. These usually do not compromise
significantly the clarity of the output of the diagnostic techniques for an expert
user, but assume great importance in the development of an automatic algorithm.
This paper, after briefly presenting the typical patterns of damage peaks related to
each type of damage, investigates their deviations from theoretical frequencies and
their dependence on operating conditions. All the considerations made hereafter are
based on an extensive experimental campaign performed on a specifically designed
test-rig, composed of a high-power electric motor and an industrial gearbox,
equipped with a complete and redundant set of accelerometers, in order to measure
vibrations in proximity of each bearing.

2 Typical Shapes of Peak Patterns for Different Damage
Locations

To detect localized damages, for the reasons described in [2], simple Fourier
Transform of the vibration signal is not effective and more sophisticated techniques
such as Envelope Analysis [3], Spectral Kurtosis [4] or 2nd order Cyclostationarity
[5] have to be employed. Despite the complexity of these techniques, most of them
result in a spectrum-like diagram with a range of frequencies on the horizontal
axis and an amplitude index on the vertical axis depending on the technique used.
The presence of a damage is diagnosed by the appearance of a characteristic
pattern of peaks in the neighborhood of a characteristic frequency (all characteristic
frequencies are described in [3]), depending on the location of the damage (inner
ring, outer ring, rollers or cage). A detailed description of the typical spectral pattern
characterizing each damage location is provided below, in the case of rotating inner
ring and fixed outer ring.

Inner ring damage pattern is the richest in term of peaks and therefore clearly
identifiable. Its main peak is located in the proximity of the theoretical Ball Pass
Frequency Inner (BPFI). At least the first harmonics of the main peak are usually
noticeable in the spectral indicator. Together with these BPFI harmonics, the inner
ring damage is characterized by the presence of high peaks at harmonics of shaft
rotational speed and at frequencies given by linear combinations between BPFI
harmonics and shaft ones, called BPFI sidebands. These are due to modulation of the
pulse train by the angular position of the inner ring damage relative to the bearing
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Fig. 1 Typical pattern for inner ring damage

load direction. The pattern of the inner ring characteristic frequencies (IRCF) is
therefore:

IRCF D m � BPFI ˙ n � f m D 0; 1; 2; 3; ::: n D 0; 1; 2; 3; ::: (1)

where f is the inner ring rotational speed.
Figure 1 shows an example of the experimental campaign, regarding an industrial

cylindrical roller bearing (103.5 mm pitch diameter, 18 rollers with 15 mm diameter)
mounted in the industrial gearbox.

Outer ring damage has a main peak located in the proximity of the theoretical
Ball Pass Frequency Outer (BPFO). This frequency is always lower than the BPFI.
The bigger the roller diameter relatively to the pitch one, the bigger the difference
between BPFI and BPFO. Another remarkable difference from the inner ring pattern
is the absence of sidebands, due to the constant load that is applied to the damage
contact, since the damage does not change its position in time. This really simplifies
and “cleans” the pattern of the outer ring characteristic frequency (ORCF), which
presents only the BPFO with its super-harmonics (in most cases at least the
first one):

ORCF D m � BPFO m D 1; 2; 3; ::: (2)

Roller damage pattern is based on two characteristic frequencies combined with
super-harmonics and sidebands: the so called Ball Spin Frequency (BSF) and the
Fundamental Train Frequency (FTF). The first is related to the cyclic contact of
the spall on the roller with the two races, while the second represents the rotational
speed of the cage that modulates the impacts governing the angular position of the
damaged roller relative to bearing load. The two frequencies are found with their
super-harmonics and in linear combination, in a sequence of roller characteristic
frequencies (RRCF) defined as:

RRCF D m � BSF ˙ n � FTF m D 0; 1; 2; 3; ::: n D 0; 1; 2; 3; ::: (3)
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Cage damage patterns are usually simple but rich, presenting only FTF with a
long sequence of super-harmonics (commonly more than five). Therefore the cage
characteristic frequencies (CGCF) are:

CGCF D n � FTF n D 1; 2; 3; ::: (4)

Also peaks at BSF or BPFO are usually present in case of cage or roller damage,
probably owing to induced additional damages on other bearing components.

3 Deviations from Theoretical Frequencies

The slippage between rollers and races has two main effects: (i) it makes the impulse
train cyclic rather than strictly periodic, introducing a random anticipation/delay
with respect to the average period between two subsequent impacts; and (ii) it leads
to an average deviation of the actual impulse train frequency from the theoretical
one. The first phenomenon has been widely described [2], while the second has
been neglect, since it is not so significant in the case of diagnostics performed by
an expert user. On the contrary, these deviations have to be taken into account while
developing an automated algorithm. Therefore, thanks to the experimental activity
carried out by the authors and the variety of the examples reported in literature, it is
possible to list three fundamental and very useful deviation rules:

1. The “direction” of the deviation (higher or lower frequency) depends strongly
on the location of the damage;

2. Sidebands “shift rigidly” together with the main damage peak (e.g., BPFI);
3. Super-harmonics move coherently with the main peak.

The last two rules, quite obvious, are very useful for pattern recognition
strategies, addressed in the next paragraph, while the first one derives from empirical
observation: actual FTF and BSF are always lower than or equal to the theoretical
ones. In absence of other experimental evidence, this could be explained by means
of different lubrication conditions in the contacts between rollers-inner ring and
rollers-outer ring, with a higher slippage on the inner ring side.

This affects not only actual FTF and BSF, but also BPFI and BPFO, since they
are strictly dependent on FTF:

BPFI D NR .f � FTF/ I BPFO D NR � FTF (5)

It is possible to infer that actual BPFI is always greater than or equal to theoretical
one from Eq. 5, while BPFO is always lower than or equal to the theoretical one.
Experimental results confirm that the deviations are higher at low load on the
bearing, when slippage is allowed by low friction. The actual FTF tends towards
shaft rotational speed at low loads, with consequent shift of BPFI upwards and
BPFO downwards. Increasing the load on the bearing, these three frequencies tend



Bearing Fault Diagnostics Using the Spectral Pattern Recognition 647

450

20

40

60

80

100

120

140

160

180

500 550 600 650 2 4 6

20

40

60

80

100

120

140

160

180

frequency [Hz]

Envelope of the signal over time Load over time

Theoretical BPFI

Actual BPFI

tim
e 

[s
]

Load [N]

Fig. 2 Load influence on the BPFI deviation

20

380 390 400 410 420 430

40

60

80

100

120

140

160

180

5 10 15

20

40

60

80

100

120

140

160

frequency [Hz]

Envelope of the signal over time Load over time

Theoretical BPFO

Actual BPFO

tim
e 

[s
]

Load [kN]

Fig. 3 Load influence on the BPFO deviation

asymptotically to the correspondent theoretical ones, decreasing the effect of the
slippage. Also the actual BSF follows this behavior, by reaching asymptotically the
theoretical BSF owing to increasing loads. No evidence of strong influence of speed
on the deviation has been detected during the experimental campaign. An example
of the effect of load on the same cylindrical roller bearing of Fig. 1, damaged on the
inner ring, is given in Fig. 2, while the effect on the same type of bearing, damaged
on the outer ring is displayed in Fig. 3 .
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4 Conclusions

The variability of the frequency of the main damage peaks could lead an automated
damage recognition algorithm to underestimate or totally neglect some critical
situations, even when the damage is severe in rolling element bearings. A necessary
improvement is to introduce a tolerance parameter in the pattern search, consisting
in a frequency band in which the highest peak is identified as a possible damage
peak. The empirical observations made by the authors during a long experimental
campaign indicate that the frequency band should range from the theoretical
frequency either upward or downward, depending on the type of damage under
investigation (e.g. upward only for BPFI). In addition to this, it is convenient, if the
system undergoes different operating conditions, to set a trigger for the acquisition
when load is sufficiently high, so that the average deviations of the actual peak
frequencies are reduced.

In applications characterized by unfavorable operating conditions (low load),
coupled with high external noise, it is possible that misleading peaks, generated
by external sources, appear in the frequency band of interest. This could happen if
the band is set wide in order to cope with the high deviation/variability of the actual
damage frequencies, and could lead to false alarms. In order to identify correctly
the damage peaks it is therefore useful to confirm their damage-related origin by
checking the presence of other pattern characteristic peaks (sideband and multiples).
In fact, due to the general aforementioned deviation rules, once identified a possible
main damage peak, it is possible to determine exactly the frequencies of multiples,
whose deviation will be the multiple of the main peak’s one, and of sidebands, that
will shift rigidly together with the main peak.

References

1. Ferreira, J.L.A., Balthazar, J.C., Araujo, A.P.N.: An investigation of rail bearing reliability
under real conditions of use. Eng. Fail. Anal. 10, 745–758 (2003)

2. Randall, R.B., Antoni, J., Chobsaard, S.: The relationship between spectral correlation and
envelope analysis in the diagnostics of bearing faults and other cyclostationary machine signals.
Mech. Syst. Signal Process. 15(5), 945–962 (2001)

3. Hochmann, D., Bechhoefer, E.: Envelope bearing analysis: theory and practice. In: Aerospace
Conference IEEE, Big Sky, 5–12 Mar 2005, pp. 3658–3660

4. Antoni, J.: The spectral kurtosis of nonstationary signals: formalisation, some properties, and
application. In: 12th European Signal Processing Conference, Vienna, 6–10 Sept 2004

5. Antoni, J.: Cyclic spectral analysis in practice. Mech. Syst. Signal Process. 21, 597–630 (2007)



A New Conception of Bucket Wheel Excavator
Cab and Seat Mounting

J. Blekta, J. Mevald, I. Petrı́ková, J. Petřı́ček, and A. Lufinka

Abstract One of the most important problem of coal mining by bucket wheel
excavators is how to minimize influence of vibrations on driver’s body. Project of
Ministry of Trade and Industry of the Czech Republic solved in Technical University
of Liberec was engaged in this problem. The aim of this project was to design a new
cab and seat mounting of wheel excavator Schrs 1320. A suitable possibilities of cab
suspensions were investigated to minimize driver body vibrations and to improve
influence of mining process to drivers health. After optimization one concept was
chosen. A new methodic of measured data evaluation was created for using in
excavators as well as in laboratory. The new concept of dynamic seat absorber were
designed also.

Keywords Vibrations • Multibody • Simulations • Measurement • Human body

1 Introduction

The bucket wheel excavators are used in the open-cast mines for mining of the
uncovering soil or directly to coal mining. The interaction of bucket wheel with coal
or soil is a source of strong vibrations. These vibrations are transmitted through the
jib to the machine. The cab of the machine is placed near the bucket wheel and
therefore vibration level is very high and deteriorating of working conditions of
operators (see [1]). Vibrations transmitted to the driver sitting seat in dependence on
the frequency can evokevarious illnesses, change perceptions and overall discom-
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Fig. 1 Bucket wheel excavator Schrs 1320 in Doly Nástup Tušimice

fort. Measurement and design modification were performed at the mining machine
Schrs 1320 (Fig. 1) in North Bohemia mines (Doly Nástup Tušimice).

2 Analysis of the Cab Movement

The design of the optimal cabin suspension and effective vibroisolation operator
inside cabin was composed from several steps. The first step was the total analysis
of cab movement. Experimental measurements aimed for investigation of the cab
excitation and movement.

In original conception on Fig. 2, the operator cab (a) is mounted rigidly in the
cab frame (b). This frame is hung on the console (c) by two revolute joints (d)
and one thread rod (e). The accelerometers for vibration measurements were placed
on console, cab frame, cab deck and seat. On each part six signals of six degrees
of freedom was measured. Dewetron DEWE-5000 was used in combination with
MEMS accelerometers (positions 1, 2 and 3) and gyroscopic sensor (position G).

A lot of types of potential cab suspension were analyzed as 2D (Working Model)
and 3D (MSC.ADAMS) models using the simple harmonic and real signals. The
best reduction of vibrations was achieved by parallelogram design (Fig. 3) – cab is
suspended on the frame by three wire rope fittings or alternatively by three bars with
spherical bearings. For this concept the cab acceleration achieve c. one tenth of the
originally values (see Fig. 4). The resonance frequency depends on the length of the
bars. Cab movement is damped by friction damper placed under the cab.
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Fig. 2 Example of accelerometers placing on console and cab frame

Fig. 3 Platform model in MSC.ADAMS

3 Analysis of Seat Movement in Laboratory

To investigate the spatial vibrations, an experimental device has been developed – a
platform with six degrees of freedom which enables measured signal realization in
laboratory (see Fig. 5).
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Fig. 5 Platform with six degrees of freedom (1 concrete foundation block, 2 iron anchoring plate,
3 platform frame, 4 ball joints, 5 hydraulic motors, 6 test board)



A New Conception of Bucket Wheel Excavator Cab and Seat Mounting 653

Fig. 6 Platform model in
MSC.ADAMS software

The real movement of cab deck is recorded as three-axis acceleration in three
draft points. The control of six DOF of the platform are realized by six signals
for six hydraulic engines. Therefore the measured data were converted into control
signals in two steps.

The first step is a conversion of accelerations into translations, see [2]. These data
are used for a next computation step. At the second step the multibody model of the
platform was created in MSC.ADAMS/View software (see Fig. 6). Three points
on platform board were determined in defined positions from measurement in real
cabin. The required number of components of the translational motion converted
from the measured data was applied in this points. It means three components (x, y,
z) in the first point, two components (x, z) in the second point and one component (z)
in the third point. The movement of the platform board was uniquely determined.

4 Design of Multi-degrees Cab Vibroisolation

The functionality of seat mechanism was tested on platform with six degrees
of freedom with measured data obtained in mines during mining. Because seat
mechanism is specified for vertical vibration minimizing, the seat was exposed to
vibration in this direction only.
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Fig. 7 MSC.ADAMS model

Fig. 8 Analytical seat model

The seat acceleration and displacement transmission ratios were computed from
signal measured on platform board and on seat in vertical direction. Multibody
model was created in MSC.ADAMS/View software from subsystems with mass
properties of real seat parts (see Fig. 7),for detail model description see [3].

Simultaneously a one mass analytical model was created in Matlab software
(Fig. 8). This system was modeled as one mass analytical model and mathematically
was described by the second order differential Eq. (1).

m1 � Rz1 C b1 � .Pz1 � Pz0/C k1 � .z1 � z0/C T 1 � 2


arctg .500 � .Pz1 � Pz0// D 0 (1)

where k1 is stiffness of spring,
b1 is damping coefficient of seat damper,
T1 is a constant setting value of dry friction representing the friction between

individual parts of seat,
m1 is mass of seat squab with driver
z0 is vertical displacement of cab deck,
z1 is vertical displacement of seat squab.

This equation was transferred to system of two equations of the first order. This
system was solved by Runge-Kutta method with zero initial conditions.
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Fig. 9 Model of dynamic
absorber

Fig. 10 Seat with dynamic
absorber

Parameters of models were set by comparing simulation results with measure
results of real seat. Seat mounted on platform with six degrees of freedom was
excited by step signals of various amplitude for this purposes. For details see [2].

It has been proposed several construction variants of dynamic absorber. In all
cases overall mass of absorber has been divided to four particular masses, which
each had its own suspension. This allows set a wider frequency range. Differences
between variants were especially in type of used spring. Like the best it has been
shown variant with masses placed on arms mounted on torsion rod. The main
advantages of this solution is the possibility of changing absorber frequency by
moving masses on the arms. Another advantage is low susceptibility to vibrations
in the horizontal plane.

Construction of absorber is composed of four basic parts: frame, torsion rods,
arms of absorber and absorber masses. The frame of absorber is welded from a
rectangular sections. Torsion rods are mounted inside the frame cross sections.
Preview of the absorber model created in ProEngineer software is on Fig. 9. On
Fig. 10 seat with absorber is shown. Dynamic absorber is placed under the seat
squab. Comparison of frequency spectrums of seat squab acceleration for seat with
and without dynamic absorber is shown on Fig. 11. Absorber was set to frequency
2.3 Hz.

5 Conclusion

The significant contribution of this work is not only a theoretical analysis of the
vibroisolation problem, but also practical implementation of designed modifications
with good results. The methodology for evaluation of suitable types of cab
suspensions was created and new cab suspension was designed like parallelogram
using wire ropes. The horizontal vibrations of the cab were significantly diminished



656 J. Blekta et al.

0.5
0

0.05

0.1

0.15

0.2

1 1.5

frequency [Hz]

am
pl

it
ud

e 
[m

m
.s

-2
]

seat without absorber

seat with absorber

2 2.5 3

Frequency spectrum of seat squab acceleration
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by this new conception. On the basis of results of experiments in laboratory with
different types of seats was designed the dynamic absorber diminishing of the
vibration in the vertical direction. Unique vibroisolation also had a positive response
from the operators of the excavator.
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1. Blekta, J., Mevald, J., Petrı́ková, I.: Evaluation of spatial vibrations using a platform with 6
degrees of freedom. In: Proceedings of the EUCOMES 08, pp. 577–583 (2008)

2. Blekta, J., Mevald, J., Lufinka, A.: Reduction of the vibration effects actuating in general
direction on colliery machine driver. In: Proceedings of the Experimental Stress Analysis 2009,
pp. 43–47 (2009)
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Investigation of Dynamics of Laser Shutter
System

A. Bubulis, E. Dragasius, Vytautas Jurenas, V. Maciukiene, and S. Navickaite

Abstract In this paper, the investigation of piezoelectric unimorph laser shutting
system transient vibrations damping is presented. A magnetic force technique and
magneto-rheological fluid (MRF) is used for the damping of transient vibrations
of the piezoelectric unimorph shutter. A methodology is presented for the analysis
and design optimization of piezoelectric unimorph actuator used for laser beam
shutting systems. The magnetically coupled piezoelectric unimorph cantilever and
disc type piezoelectric unimorph motions are analyzed using a one-dimensional
forced harmonic oscillator with a non-linear magnetic spring and MRF damper
setting. Using a magneto-rheological effect for damping of transient vibrations the
piezoelectric unimorph shutter has been experimentally determined.

Keywords Transient vibrations • Piezoelectric unimorph • Magneto-rheological
fluid (MRF) • Damping • Laser shutter

1 Introduction

Laser technologies are used in practically every major industry, from medicine and
computers, to entertainment and construction. Seeking to control laser beam in
modern equipment, there are broadly used laser beam shutting systems that partially
or completely blocks laser beam. Shutters are not limited to a simple periodic on–off
cycle but will follow an arbitrary, varying pattern of openings and closings.

In pursuance of better dynamic characteristics of the laser beam shutting systems
there is a clear tendency in using “smart” materials or materials with controllable
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properties application (piezo materials, shape-memory materials, suspensions with
controllable rheology – electro- or magneto-rheological fluids, artificial muscles,
etc.).

This paper describes improved dynamic characteristics of cantilever and disc
type piezoelectric unimorph shutters. A magnetic force technique and MRF are used
for the damping of transient vibrations of two types piezoelectric unimorph shutters.
A methodology is presented for the analysis of piezoelectric unimorph actuators
used for laser beam shutting systems. The magnetically coupled piezoelectric
unimorph cantilever motion is analyzed using a one-dimensional forced harmonic
oscillator model with a non-linear magnetic spring and fluid damper [1].

Transient vibrations damping in boundary piezoelectric unimorph shutters
positions is the main task of the experiment. During the experiment transient
vibrations damping has been created using two different working modes of
magneto-rheological fluid.

2 Schemes of the Investigated Laser Beam Shutters
and Working Principles

In the present approach a magnetic force technique and MRF are used for the
damping of transient vibrations of the piezoelectric unimorph shutter. Transient
vibrations negative affects dynamic characteristics of piezoelectric laser beam
shutting system.

The bending vibrations of the piezoelectric unimorph are excited by applying an
AC electric signal to the electrode of the piezo unimorph.

The magnetic field has been created using Neodymium magnet with flux density
B D 1,2T.

Geometrical parameters of piezoelectric actuators used in experiment of laser
beam shutting systems are shown in Tables 1 and 2.

Cantilever type piezoelectric laser beam shutter system consists of the piezo-
electric unimorph actuator 1 and special ferromagnetic plate 2 for the laser beam
shutting (Fig. 1). Piezoelectric effect actuates bending deformations of cantilever
type unimorph 1. Laser beam 5 is blocked if electricity doesn’t influence the piezo

Table 1 Geometric parameters of piezoelectric cantilever
type unimorph actuator

L, mm Lp , mm Bm, mm Cb, mm d, mm

30 25 5 3.5 1 : : : 7 (variable)

Table 2 Geometric parameters of piezoelectric disc type
unimorph actuator

D, mm Dp, mm h, mm hp, mm d, mm

31 20 0.5 0.7 1 : : : 7 (variable)
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Fig. 1 The scheme of cantilever type piezoelectric unimorph laser shutting system: Lp length of
piezoelectric plate, L length of piezoelectric unimorph 1, Cb length of special plate 2 for the laser
beam 5 shutting, d distance between the end of unimorph 1 and permanent magnet 4, Bm thickness
of permanent magnet 4, 3 MRF, 6 movement direction of permanent magnet
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Fig. 2 The scheme of disc type piezoelectric unimorph laser shutting system with transient
vibrations damping: D diameter of steel plate, Dp diameter of piezoelectric material plate, hp height
of piezoelectric material plate, h height of steel plate, d variable gap d D d0 ˙�d between disc type
piezoelectric actuator 5 and permanent magnet 3, 1 housing, 2 magneto-rheological fluid, 4 screw
for the gap d control

actuator 1, but in that case if actuator is acted by supply voltage, cantilever type
unimorph actuator is bended and laser beam 5 goes without disturbing through
laser shutter system [2–4]. The transient vibrations of the piezoelectric unimorph
1 are damped using MRF 3. Seeking to create magnetic field that changes viscosity
of MRF 3 is used permanent magnet 4. Transient vibrations damping efficiency
depends on distance d between the tip of unimorph and permanent magnet 4. The
gap d is controlled by the movement of the permanent magnet 4.

Disc type piezoelectric laser beam shutter system (Fig. 2) consists of the disc type
piezoelectric unimorph actuator 5, which consists of two layers: piezoelectric disc
diameter is Dp and steel disc is D. Piezoelectric effect actuates bending deformations
with maximum amplitude in the centre of disc. The gap d is controlled by the screw
4. Magnetic field is also directly proportional to the gap d D d0 ˙�d.

To design and use unimorphs rationally, it is crucial to understand their coupled
electromechanical behaviours through effective modelling [5, 6].

Lumped model of laser beam shutting system with the piezoelectric actuator
is presented in Fig. 3. The deflection z(t) of the piezoelectric unimorph can
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Fig. 3 Lumped model of the
piezoelectric laser shutting
system
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Fig. 4 Magneto-rheological fluid working principles in transient vibrations damping system:
(a) direct shear mode. (b) squeeze mode

be determined by solving the differential equation for a one-dimensional forced
harmonic oscillator.

::
z.t/C beff

m

:
z.t/C keff

m
z.t/ D Fp.t/

m

where beff D be C bm – total effective damping of the system; keff D kb C kmag – total
effective stiffness of the system, Fp – piezoelectric force, m – system mass.

3 Materials Used for Transient Vibrations Damping

Cantilever and disc type piezoelectric laser beam shutter system are illustrated
in Figs. 1 and 2. Magneto-rheological fluids were used for transient vibrations
damping. In cantilever type piezoelectric laser beam shutter system magneto-
rheological effect is working in direct shear mode (for cantilever type piezo
actuator) and in squeeze mode (for disc type piezo actuator). It is shown in Fig. 4.
In experiment was used magneto-rheological fluid of type MRF – 140CG (LORD
Corp, USA).

4 Experiments of Piezoelectric Unimorphs for Laser Beam
Shutter

Experimental research was performed in order to evaluate the influence of the
damper based on MRF to the transient resonance vibrations of the laser beam shut-
ter. The change of the separation distance d in range from 1 mm to 7 mm between a
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Fig. 5 Measured motion responses of the piezoelectric unimorphs: (a) disc type, and (b) cantilever
type piezoelectric actuators, with the square shaped voltage (frequency – 30 Hz) applied to the
piezo actuator: 1, 3 without MRF damping; 2, 4 with MRF damping

Fig. 6 Resonant frequencies of the laser beam shutter versus separation distance d between a
permanent magnet and piezoelectric unimorph: piezoelectric unimorph cantilever, - - - - -
piezoelectric unimorph disc

permanent magnet and piezoelectric unimorph was performed by means of the high-
resolution micrometer. Magneto-rheological fluid of type MRF-140CG was placed
in separation gap between magnet and piezoelectric unimorph as a damper.

The measurement results of the motion response of shutter due to the square-
shaped voltage supplied to piezoelectric actuator is presented in Fig. 5. The resonant
frequencies of the laser beam shutter versus separation distance d between a
permanent magnet and piezoelectric unimorph is presented in Fig. 6.
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5 Conclusions

By applying square – shaped signals to the piezo actuator unwanted dynamics
of the shutter are often a problem, especially for motion with high frequency,
but also if trajectories have to be followed with high velocities. A possibility to
eliminate vibrations consists in applying a damper with the MRF. With a properly
dimensioned damper, it is possible to suppress residual resonance vibration of
the shutter. The results reveal that magnetic coupling with the MRF can be used
for the piezoelectric unimorph cantilever to increase its resonance up to 80% of
the untuned natural frequency, for the piezoelectric unimorph disc increase of the
resonant frequency is only 10%.
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Modelling of Damping Force of Polyurethane
Foam in Dependence on Its Temperature

David Cirkl

Abstract The article deals with measurement and evaluation of damping properties
of polyurethane (PU) foam. This problem is considered from the point of view of
vibroinsulation and dynamical comfort of person sitting in a moving car. The force
response to dynamical compression of PU foam specimen by harmonical course of
displacement is evaluated. Frequency of exciting signal and specimen temperature
is varied in predefined range. Course of damping force is simulated by explicitly
defined function and also its prediction is exemplified.

Keywords Polyurethane foam • Seating comfort • Damping force

1 Introduction

The significant factors of comfort of a person sitting in a moving car are also given
by statical and dynamical properties of seats. Their cushioning is predominantly
made from polyurethane (PU) foam. Damping properties of this material are influ-
enced also by loading frequency and material temperature. Mechanical properties
of PU foam are standardly investigated for ambient temperature (20 ı C). In real
situations the material temperature can differ. Articles [1, 2] deals with evaluation
of thermal comfort of sitting passengers in road–trial study and presents the
temperature in contact area between seat and human varying in interval [28; 37] ı C.
Also other articles deals with thermal comfort of airplane seats [3] or with design of
equipment capable influence thermal conditions of sitting [4].
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2 Experimental Arrangement

For investigation of PU foam properties the specimen of cuboidal shape was used.
Its square basement has dimensions (100 �100) mm and height is 50 mm. The
specimen was made from opened cell TDI material with density 40,99 kg/m3.

This specimen was dynamically compressed by displacement (1) with mean
A0 D 25 mm, amplitude A D 5 mm and frequency f 2 f 0. 1, 0. 5, 0. 7, 1, 1. 5, 2, 3,
4, 5g Hz. Measurement was carried out in thermal chamber assigned with loading
machine Instron E3000. Environment in the chamber was controlled so that steady
state temperature of specimen was T 2 f 10, 20, 30, 40, 50, 60g ı C.

x.t/ D A0 CA sin.!t/; ! D 2f: (1)

3 Methodology of Measurement Evaluation

In case of dynamical compression of the PU foam specimen by harmonical
displacement x(t) for one period we get the hysteresis course of the measured total
force F as shown in Fig. 1a at the top. Let us assume that the damping force Fd is
distributed around the skeleton curve of hysteresis loop symmetrically. Let us also
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Fig. 1 Force decomposition (a) General scheme, (b) Measured total and damping force in
dependence on exciting frequency, T D 20ıC; � denotes maximum of damping force



Modelling of Damping Force of Polyurethane Foam in Dependence on Its Temperature 665

assume that this skeleton curve represents just the restoring force FR. In general it
has progressive nonlinear character and shows hardening behavior with increasing
exciting frequency. In Fig. 1a at the bottom there is the course of damping force in
dependence on displacement x. This dependency shows a typical pear–like character
with significant extreme value Fde at position xe.

Work of damping force (dissipated energy) is given as a curve integral of
damping force Fd with respect to x:

Wd D
I
Fd dx: (2)

4 Measured Quantities

In Fig. 1b there are measured courses of total force response F and damping force
Fd in dependence on displacement x. In this case the frequency is varied and
temperature is kept constant T D 20 ı C. Qualitatively the same courses are also
shown with other temperatures.

From the statistical evaluation of xe follows that there is a slight dependency
on temperature. Furthermore in accordance with previously published results in [5]
or [6] it is possible to say that position of extreme of damping force xe is independent
on exciting frequency. Dependence of position of extreme of damping force is then
expressed by (3).

Oxe.T/ D 27:37C 0:003075T: (3)

Although the foam material is strongly nonlinear in space (x, F), as mentioned
by many authors [7, 8], it is not difficult to prove that the dependency of Wd on
frequency and on temperature can be considered linear (see Fig. 2a,b). In all cases
the coefficient of determination R 2 is greater than 0.95. Such models is possible to
consider linear [9]. Thus it is sufficient to consider polynomial of the first degree to
be approximating function (4).

OWd.f;T/ D 102:9C 5:858f � 0:6553T: (4)

5 Damping Force Simulation

In technical handbooks as [10] or [11] it is possible to find that damping force
of elastic elements, at which damping depends on displacement x and is realized
by energy dissipation inside the material, can be defined by (5). This formulation
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Fig. 2 Dependence of work of damping force on exciting frequency or material temperature
(marks – measurement, lines – linear regression models). (a) Wd D Wd.f /; (b) Wd D Wd.T/;

appears to be applicable in case of description of damping force of polyurethane
foam being compressed. The task then lies in finding the coefficient b˛ and
exponent ˛.

Fd.x; Px/ D b˛x
˛ Px: (5)

To search for the exponent of (5) we will find its extreme by putting its derivative
with respect to x equal to zero. If we have unequivocally assigned x and Px – e.g. by
choosing certain time course – it is possible to assume the (5) as the function of one
variable. Position of extreme is denoted as xe.

dFd

dx
D b˛



˛ x.˛�1/

e Px C x˛e
d Px
dx

�
D 0; where

d Px
dx

D Rx
Px :

Specially for harmonical function of displacement x in form (1) and its time
derivatives we get

˛

xe
� xe � A0

A2 � .xe �A0/2
D 0 ) ˛ D Oxe �A0

A2 � . Oxe � A0/
2

Oxe: (6)

Exciting frequency f has been canceled during calculations what proves that
damping force formulation (5) does not show the dependency of extreme position
on this parameter, which is in accordance with observations.
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Because the position of extreme xe is defined by approximating value Oxe it is
possible to use (6) for exponent calculation. Another way of exponent determination
is described in [12].

As has already been written above the work of damping force Wd for one loading
period is given by line integral of damping force Fd with respect to displacement x.
In (7) we substitute (5) for Fd and we get:

Wd D
I
Fd dx D b˛

I
x˛ Px dx D b˛

Z 2=!

0

x˛.t/ Px.t/dx

dt
dt: (7)

Using time courses x(t) from (1) and its first derivative with respect to time
and differential dx D A!cos(!t) dt, and substituting !t D' we transform this
integration into angular displacement domain '. Under consideration of constant
angular velocity ! during one loading period we can write:

Wd D b˛2f I˛ ) b˛ D
OWd

2f I˛
: (8)

where

I˛ D I˛.A0; A; ˛/ D
Z 2

0

ŒA0 C A sin.'/�˛ŒA cos.'/�2 d' (9)

is an integral independent on frequency of harmonical exciting signal. As (8) shows
the work of damping force Wd depends on frequency linearly which is in accordance
with experimental observation (Fig. 2a). From (8) we express the coefficient b˛
where we substitute work Wd for our purpose by approximation (4).

6 Conclusion

Equation (5) has been calculated for all combinations of exciting frequency and
temperature. Selected instances are pictured in Figs. 3a,b and 4a. Error of simulation
R2 based on Euclidean norm calculation lies in interval [0. 047; 0. 123] and is
considered acceptable.

Up to this point the method of damping force simulation has been used only in
cases really measured. But we can use it in entire domain of definition of quantities
Wd and xe, which means for f 2 [0. 1; 5] Hz and for T 2 [10; 60] ı C. Thus we can
predict course of damping force for frequencies and temperatures for which was not
measured. In Fig. 4b there is a simulation of damping force for example for f D2 Hz
and T 2 f 15, 25, 35, 45, 55g ı C.
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Fig. 3 Results of simulation (Measurement – solid line, Simulation – dashed line). (a) f D
5Hz; T D 60ıC; R2 D 0:047; (b) f D 2Hz; T D 30ıC; R2 D 0:062;
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Fig. 4 Results of simulation (Measurement – solid line, Simulation – dashed line). (a) f D
0:1Hz; T D 10ıC; R2 D 0:106; (b) Prediction of course of damping force in dependence
on temperature T, f D2 Hz
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Nonlinear Vibrational Behaviour
of an Elasto-Pneumatic Training Tool

Claudia Körner, Hartmut Hetzler, and Wolfgang Seemann

Abstract This paper deals with the nonlinear vibrational response of a stepping-
board with nonlinear elasto-pneumatic force elements. Experimental investigations
often show too high vertical ground reaction forces (VGRF) between the test persons
and the training tool during exercises. The goal of this contribution is to identify
the main factors of the dynamical behaviour and thus the biomechanical impact on
humans of this training tool. Therefore this paper presents a mechanical model in
order to investigate the interaction between the nonlinear behaviour of the board
and the athlete. The multiphysical modelling consists of the linear-elastic structural
stiffness part and the nonlinear part due to the pneumatic components. This leads to
a nonlinear ordinary differential equation.

In a first step, the vibrational behaviour is analysed with a linearised equation.
In the second step, the nonlinear vibrational behaviour is investigated using an
harmonic balance method. With this, the influence of various system parameters
is discussed with respect to the VGRF as well as the biomechanical compatibility.

Keywords Nonlinear force element • Linearisation • Harmonic balance method •
Vertical ground reaction force

1 Introduction

From a biomechanical point of view, both effectiveness of workout and the risk
of injuries of an athlete are among the main interest during sport activities [1].
This paper wants to analyse these two facts for the interaction between the athlete
and a gym training tool. Therefore,the vertical ground reaction force (VGRF) is
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investigated to characterise the risk of injuries [1, 2] and the mechanical power of
the athlete is investigated to analyse a steady state workout situation.

2 Modelling

The investigated training tool consists of a stepping board, which is mounted on
four viscoelastic-pneumatic elements (Fig. 1). It is assumed that the behaviour
is predominantly influenced by these force elements. Therefore the following
investigations are focused on these components.

The viscoelastic-pneumatic element consists of a compressible hollow pod,
which contains a certain amount of air. Thus, it may exert forces due to structural
stiffness as well as pressure of the captured air (Fig. 2).

The structural stiffness part is assumed to be linear-elastic and the structural
damping part is assumed to be negligible. The equivalent spring stiffness has been
determined to be c � 13, 600 N / m by a static force-displacement experiment.

As the elastic pod’s volume changes, the pressure of the enclosed air changes.
Moreover, the air chamber can freely exchange air with its surrounding through two
holes on the side. Hence, a model of the pneumatic force element has to account for
the air’s behaviour as well as process of streaming air out and in. The time behaviour
of the pneumatic force element is derived by solving the force equilibrium equation
for a given displacement u(t) of the top area A1 (Fig. 3). The pneumatic force Fp

reads:

Fp.t/ D A1.p1.t/ � p2/ D A1 �p.t/; (1)

where p2 means the constant external pressure, p1(t) the internal pressure and
�p.t/ D p1.t/ � p2 the pressure difference.

Inserting the change rate of volume PV D A1 Py.t/, with y.t/ D h0 � u.t/, into
the time derivative of the ideal gas equation, the pressure difference �p can be
expressed by the following equation:

Fig. 1 Training tool force element

stepping board

Fig. 2 Mechanical model

structural
stiffness

part

pneumatic
force
element
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Fig. 3 Pneumatic component

� Pp D Pm1RT

A1.h0 � u.t//
C .�p C p2/Pu.t/

.h0 � u.t//
; (2)

whereRD 287:059 J=.K kg/ is the specific gas constant, T the ambient temperature,
u(t) a given displacement and h0 D 0. 07 m the initial height of the pod remained
constant in the following. The mass flow Pm1 is related to the pressure difference�p
by the incompressible Bernoulli equation. With this, Eq. 2 yields:

� Pp D �˛�A2RT
p
2
j�pjsgn.�p/

A1Œh0 � u.t/�
C .�p C p2/Pu.t/

Œh0 � u.t/�
; (3)

where 
D const. is the air density, A2 the cross section of the hole and the loss factor
˛ � accounts for the pressure loss through the holes.

Equation 3 is a nonlinear first order ordinary differential equation, which can be
solved numerically by using e.g. Matlab. However, two analytical approaches will
be presented in order to reveal the influence of the system parameters.

3 Linear Approach

In this paper, we assume a harmonic displacement

u.t/ D Ou sin .˝t/ ; (4)

where Ou is the amplitude and˝ the angular frequency.
In a first approach a linearisation of Eq. 3 is investigated. To this end the square

root in (3) is approximated by a linear function

p
j�p.t/j sgn .�p/ � n�p.t/; (5)

where n is determined by minimizing the area between the linear approximation
and the original curve via e D R �pmax

0

�p
�p � n�p

�2
d�p ! min. This yields

the factor n D 6= .5�pmax/ ; where �pmax is the maximum pressure difference,
which either must be guessed or be taken from numerical results.
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Inserting this into a taylor linearisation for u.t/ D u0 C�u, Eq. 3 yields

� Pp C ��p D p2

h0 � u0
�Pu; (6)

where � D n˛� A2RT
p
2
= ŒA1.h0 � u0/� and �Pu D Ou˝ cos.˝t/ under the

condition Ou˝< 1. The steady stade response of the linearised Eq. 6 yields

�p D p2 Ou
h0 � u0



�˝ cos.˝ t/C �2 sin.˝ t/

�2 C˝2

�
: (7)

For small values (Ou˝) a good correspondance between the nonlinear and the linear
solutions of �p(t) is given.

4 Harmonic Balance Method

Using the HBM (harmonic balance method), we assume that the harmonic displace-
ment u(t) (4) leads to a harmonic response

�p.t/ D � Op sin .˝t � "1/ : (8)

Introducing Eqs. 4 and 8 into Eq. 3 and integrating over one cycle˝t D 0. . . 2 , one
finds:

� Op D Ou
h0
p2 cos."1/ and (9)

"1 D � arccos

"
C2

2

 
�1C

r
1C 4

C 4

!#
; for "1 D �

2
:::0; (10)

where

C D 4:944137RT
p
%


p
p2

A2˛�

A1˝
p
h0 Ou ; Ou˝ > 0: (11)

With this, the force Fp reads

Fp.t/ D A1�p.t/ D OuA1
h0

p2 cos."1/ sin .˝t � "1/ : (12)

Figure 4 shows the time behaviour of the force Fp(t) in comparison with a given
displacement u(t). It is found that the global results of numerical and analytical
solutions fit very well. Only the constant part of Fp(t) is not reflected by the HBM
solution, since (8) does not account for a constant part.
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Fig. 4 Fp(t) – numerical vs.
HBM solution
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Fig. 6 Power loss

Figure 5 shows that the analytical approach is suitable for the considered range
of frequencies f and amplitudes Ou; the maximum values Fp;max of both solutions fit
very well.

5 Results and Discussion for a Steady State Workout Situation

In the following, the effectiveness of the workout is quantified by determining the
power loss. During training, we assume that a human body loses energy due to two
main factors: thermical power and mechanical power (Fig. 6).

Thermical power is released to the surrounding by the process of metabolism
consumption, myoactivation, transpiration, etc. This fact is not represented in the
paper. The second main factor is the mechanical power loss Pmech D FVGRF Pu. While
steady state workout on a rigid ground, Pmech vanishes since Pu � 0. However, on a
compliant ground the athlete will transmit mechanical power to the surrounding.
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Fig. 7 Pmech

Fig. 8 Nonlinear –
max(FVGRF) vs. Pmech,
˛ � D 0. 7

0 50 100
300

400

500

600

700

800

900

Pmech [Js−1]

m
a
x
(F

V
G

R
F
)[

N
]
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The mechanical power Pmech(t) is determined by the force FVGRF(t), which the
human exerts on the ground and the associated velocity Pu.t/ (Fig. 7):

Pmech.t/ D FVGRF Pu.t/ D Pmech C Pmech;s.t/ and FVGRF D c u.t/C Fp.t/;

(13)

with Fp(t) the analytical HBM solution from Eq. 12. The displacement is assumed
harmonic as u(t) D Ou sin˝t with ˝D 2 f. The possible range of frequencies is
f D 1 Hz. . . 9 Hz [3, 4]. The power Pmech(t) is divided into a mean value Pmech and
an oscillating part Pmech; s(t). In the long term only the mean value

Pmech D � Ou2 ˝ A1 p2 sin .2 "1/

4 h0
(14)

contributes to the dissipated energy therefore the additional mechanical power loss
due to workout on the investigated training tool.

Figures 8 and 9 show the maximum value of VGRF versus Pmech for the
nonlinear model. Each vertical line stands for a constant amplitude Ou with increasing
frequencies for the defined range. The loss factor is assumed to be between
˛ � � 0. 3. . . 0. 7. With the higher loss factor ˛ � D 0. 7 increasing frequencies give
a slight increase of Pmech, but the VGRF remains constant. Assuming a smaller
loss factor ˛ � D 0. 3, the athlete can reach a higher effectiveness of workout by
increasing his frequency but then he has to tolerate higher forces. Both figures show
that an athlete should rather jump with a higher frequency and smaller amplitudes
in order to have an effective workout but limited ground forces.
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Fig. 9 Nonlinear –
max(FVGRF) vs. Pmech,
˛ � D 0. 3
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û = 0.05 m

Fig. 10 Linear – max(FVGRF )
vs. Pmech, ˛ � D 0. 7,
n D 0. 01
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û = 0.03 m
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Fig. 11 Linear – max(FVGRF )
vs. Pmech, ˛ � D 0. 3,
n D 0. 01
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Figures 10 and 11 show a comparison of max(FVGRF) versus Pmech for the
linearised approach. With ˛ � D 0. 7, even for higher values a good correspondance
of the linear and the nonlinear model is found. For stronger dissipation (˛ � D 0. 3)
the discrepancy between the linearised and the nonlinear model becomes significant.

6 Conclusion

This paper presents the modelling of a nonlinear force element and shows its lineari-
sation as well as its harmonic balance approach. The investigations about interaction
between the training tool and the athlete reveal the influence of the displacement
amplitude and the angular frequency on VGRF. Finally the comparison of the linear
and the nonlinear results shows that using nonlinear modelling is necessary.
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Torsional Wave Propagation in a Pre-Strained
Hollow Three-Layered Circular Cylinder

S.D. Akbarov, T. Kepceler, and M. Mert Egilmez

Abstract This paper studies torsional wave dispersion in a pre-strained three-
layered (sandwich) hollow cylinder made from high elastic materials the mechanical
relations of which are described through the harmonic potential. The investigations
are carried out within the scope of the piecewise homogeneous body model with the
use of the three-dimensional linearized theory of elastic waves in initially stressed
bodies. The analytical expression is obtained for the low wave number limit values
of the torsional wave propagation velocity. The numerical results on the influence
of the initial strains of the cylinders along the torsional wave propagation direction
are presented and discussed.

Keywords Initial strains • Wave dispersion • Three-layered hollow cylinder
• High elastic material • Torsional wave

1 Introduction

Torsional wave propagation in pre-strained bi-material compound cylinder has
been studied in [1–4]. In the present paper these investigations are extended for
three-layered (sandwich) hollow cylinders made from hyper elastic materials. It is
assumed that the initial strains in the components of the sandwich hollow cylinder
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are finite and the magnitudes of these are not restricted. The mechanical relations of
the materials of the cylinders are described through the harmonic potential.

2 Formulation of the Problem

We consider the sandwich hollow circular cylinder and assume that in the natural
state the radius of the internal circle of the inner hollow cylinder is R and the
thickness of the inner, middle and outer cylinders are h.1/, h.2/ and h.3/, respectively.
In the natural state we determine the position of the points of the cylinders by the
Lagrangian coordinates in the cylindrical system of coordinatesOr™z. It is assumed
that the cylinders have infinite length in the direction of the Oz axis and the initial
stress state in each component of the considered body is axisymmetric with respect
to this axis and homogeneous.

For the initial state of the cylinders, we associate the Lagrangian cylindrical
system of coordinatesO 0r 0™0z0. The values related to the inner, middle and external
hollow cylinders will be denoted by the upper indices (1), (2) and (3), respectively.
Furthermore, we denote the values related to the initial state by an additional upper
index 0. Thus, the initial strain state in the inner, middle and external hollow
cylinders can be determined as follows:

u.k/;0r D .œ
.k/
1 � 1/r; u.k/;0z D .œ

.k/
3 � 1/z œ

.k/
1 ¤ œ

.k/
3 ; k D 1; 2; 3: (1)

We introduce the following notation:

r 0 D œ
.k/
1 r; z0 D œ

.k/
3 z; R0 D œ

.1/
1 R (2)

The values related to the system of coordinates associated with the initial state
below, with O 0r 0™0z0 will be denoted by an upper prime.

Within this framework, let us investigate the axisymmetric torsional wave
propagation along theO 0y0

3 axis in the considered body. We do this investigation by
using the coordinates r 0 and z0 in the framework of the Three-dimensional Theory
of Elastic Waves in Initially Stressed Bodies (TLTEWISB). We will follow the style
and notation used in the paper [5].

Thus, we write the basic relations of the TLTEWISB for the case considered. The
equations of motion are:

@

@r 0Q
0.k/
r 0™ C @

@z0Q
0.k/
™z C 1

r 0
�
Q0.k/

r 0™ CQ0.k/
™r 0

	
D ¡0.k/ @2

@t2
u0.k/
™ : (3)

The elasticity relations are:

Q0.k/
r 0™ D ¨0.k/

1221

@u0.k/
™

@r 0 � ¨0.k/
1212

u0.k/
™

r 0 ; Q0.k/
™0z0

D ¨0.k/
1331

@u0.k/
™

@z0 (4)
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In (3) and (4) through Q0.k/
r 0™

, and Q0.k/
™z0 , perturbation of the components of the

Kirchhoff stress tensor are denoted. The notation u0.k/
™ shows the perturbations of

the components of the displacement vector. The constants ¨0.k/
1221,¨

0.k/
1212 and ¨0.k/

3113

in (3) and (4) are determined through the mechanical constants of the inner and
outer cylinders’ materials and through the initial stress state. ¡0.k/ is the density of
the k-th material. By direct calculation it is obtained that for the harmonic potential
there exist the following relations.

¨0.k/
1221 D ¨0.k/

1212 D �.k/

œ
.k/
3

; ¨0.k/
1331 D œ

.k/
1 2�

.k/œ
.k/
1

œ
.k/
1 C œ

.k/
3

C 1

œ
.k/
3

S
.k/;0
33 (5)

where œ.k/and �.k/ .k D 1; 2; 3/ are the mechanical constants of the material k-th
cylinder.

Thus, torsional wave propagation in the sandwich hollow cylinder will be
investigated by the use of the Eqs. 3–5. In this case we will assume that the following
complete contact and boundary conditions are satisfied:

Q0.1/
r™ D 0 at r 0 D œ

.1/
1 R;

(
u0.1/
™

Q0.1/
r™

)
D
(

u0.2/
™

Q0.2/
r™

)
at r 0 D œ

.1/
1 R

�
1C h.1/ =R

�
;

(
u0.2/
™

Q0.2/
r™

)
D
(

u0.3/
™

Q0.3/
r™

)
at r 0 D œ

.1/
1 R

�
1C h.1/ =R

�C œ
.2/
1 h

.2/;

Q0.3/
r™ D 0 at r 0 D œ

.1/
1 R

�
1C h.1/ =R

�C œ
.2/
1 h

.2/ C œ
.3/
1 h

.3/: (6)

In this way, investigation of the considered wave dispersion problem is reduced to
the study of the eigen-value problem formulated through the Eqs. 3–5 and condition
(6). Note that in the case where the initial strains are absent in the constituents in the
cylinder, i.e. in the case where œ.k/1 D œ

.k/
2 D œ

.k/
3 D 1:0, the foregoing formulation

coincides with the corresponding one proposed within the scope of the classical
linear theory of elastodynamics.

3 Solution Procedure and Obtaining the Dispersion Equation

The solution to the Eqs. 3 and 4 is found as follows:

u0.m/.r 0/ D ei.kz0�¨t/
(
A.m/J1

�
s.m/kr 0�C B.m/Y1

�
s.m/kr 0� if �s.m/�2 > 0

A.m/I1
�ˇ̌
s.m/

ˇ̌
kr 0�C B.m/K1

�ˇ̌
s.m/

ˇ̌
kr 0� if �s.m/�2 < 0

(7)

In (7) J1.x/ and Y1.x/ are Bessel functions of the first and second kind of the
first order; I1.x/ andK1.x/ are Bessel functions of a purely imaginary argument of
the first order and Macdonald function of the first order respectively.
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Using the Eqs. 7, 5 and 4 we obtain the following dispersion equation for the
condition (6):

det
��’ij �� D 0; i I j D 1; 2; 3; 4; 5; 6; (8)

In order not to take up too much space here, we will not present here the explicit
expressions of a ’ij .

4 Numerical Results and Discussions

Consider the dispersion relation c D c.kR/ where c .D ¨=k / is the wave
propagation velocity, k is the wave number, ¨ is the frequency and R is the inner
radius of the inner cylinder obtained from a numerical solution of the dispersion
Eq. 14. For simplification of the discussions below we introduce the notation

c
.m/
20 D

q
�.m/

ı
¡.m/ and assume that

œ.1/
ı
�.1/ D œ.2/

ı
�.2/ D œ.3/

ı
�.3/ D 1:5:

Low wave number limit values as kR ! 0. As usual, to obtain this limit value,
each term of the corresponding dispersion equation is expanded into series form for
small values of kR ! 0 and only the limit values of the wave propagation velocity
are taken into account. For the considered problem, after doing some cumbersome
mathematical transformations we obtain the following limit value for the torsional
wave propagation velocity for the low wave number limit:

c

c
.1/
20

D

2
6664
�.1/

œ
.1/
1

�
Ÿ0.1/
1

	2 C �.2/

œ
.2/
1

’
�
Ÿ0.2/
1

	2 C �.3/

œ
.3/
1

“
�
Ÿ0.3/
1

	2

�.1/ C �.2/’

�
c
.1/
2

c
.2/
2

�2
C �.3/“

�
c
.1/
2

c
.3/
2

�2

3
7775

1
2

; (9)

’ D
�
œ
.2/
1

	4�
˜.2/

�4 �
�
œ
.1/
1

	4�
˜.1/

�4
�
œ
.1/
1

	4 ��
˜.1/

�4 � 1
	 ; “ D

�
œ
.3/
1

	4�
˜.3/

�4 �
�
œ
.2/
1

	4�
˜.2/

�4
�
œ
.1/
1

	4 ��
˜.1/

�4 � 1
	 :

˜.1/ D 1C h.1/

R
; ˜.2/ D 1C h.1/

R
C œ

.2/
1

œ
.1/
1

h.2/

R
;

˜.3/ D 1C h.1/

R
C œ

.2/
1

œ
.1/
1

h.2/

R
C œ

.3/
1

œ
.1/
1

h.3/

R
(10)
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Fig. 1 Dispersion curves of
the lowest first mode
constructed under
�.2/=�.1/ D �.2/=�.3/ D
2,h.1/=R D h.3/=R D
0:1,h.2/=R D 0:4

Note that in the case where �.3/ D 0, œ.2/3 D 1:0, œ.1/3 D 1:0 the expression (9)
coincides with the corresponding one obtained in the paper [6].

Numerical results obtained by the numerical solution to the dispersion Eq. 8.
Figure 1 shows the dispersion curves obtained for the first lowest mode in the

cases where �.2/=�.1/ D �.2/=�.3/ D 2,h.1/=R D h.3/=R D 0:1,h.2/=R D 0:4.
Two cases with respect to the initial stretching in the layers are selected. In

case 1 it is assumed that the initial strains exist in all layers of the cylinder and
œ
.1/
3 D œ

.2/
3 Dœ

.3/
3 , but in case 2 it is assumed that the initial strains exist in the middle

layer only. It follows from these results that the initial stretching (compression)
of the layers of the cylinder causes an increase (a decrease) in the torsional wave
propagation velocity. By direct comparison it can be proven that the results shown
in Fig. 1 approach the corresponding values of c=c.2/20 calculated by the expression

(15) as kR ! 0. At the same time, these results show that the values of c=c.2/20
approach to

c
.1/
2 .œ3/

�
D c

.3/
2 .œ3/

	
D c

.1/
20

�
2œ

.1/
3

	 1
2


�
œ
.1/
1

	3
œ
.1/
1

�
œ
.1/
3 C œ

.1/
1

	�� 1
2

as kR ! 1:

5 Conclusions

In the present paper, within the scope of the piecewise homogeneous body model
with the use of the Three-dimensional Linearized Theory of Elastic Waves in
Initially Stressed Bodies, torsional wave dispersion in a three-layered (sandwich)
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hollow circular cylinder with finite homogeneous axisymmetric initial strains has
been studied. The corresponding dispersion equation was derived and analytical
expressions (9) and (10) were found for the limiting values of the velocity at the
lowest dispersive mode from this dispersion equation. Concrete numerical results
are presented for the case where the initial strains in occur in all layers of the
cylinder, and the initial strains occur in the middle layer of the cylinder only.
It follows from these results that in the first lowest mode the initial stretching
(compression) of the layers of the cylinder causes an increase (a decrease) in the
torsional wave propagation velocity.
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Localized Nonlinear Strain Waves in Media
with Internal Structure

A.V. Porubov and B.R. Andrievsky

Abstract Propagation and interaction of localized strain waves is studied using
an essentially nonlinear continuum model accounting for complex bi-atomic lattice.
The model describes coupling between macro-strains and internal strains giving rise
to defects of an internal structure of the material. Interaction of bell-shaped localized
macro-strain and kink-shaped micro-strain wave solutions is studied numerically.
It is shown how predictions of the known exact traveling wave solutions may help
in understanding and explanation of the processes of variations in the behavior of
both localized waves. The most interesting result concerns variation in the wave
velocity caused by initial conditions.

Keywords Nonlinear • Strain • Wave • Internal structure • Numerical solution

1 Introduction

Recently an essentially nonlinear model of a crystalline lattice with deep variations
in the structure has been developed in Refs. [1, 2]. It allows description of the
cardinal, qualitative variations of the cell properties, lowering of potential barriers,
switching of interatomicconnections, arising of singular defects and other damages,
phase transitions. Similar model has been suggested in Refs. [3, 4] to account
for a deformable monoatomic chain endowed with rotatory molecular group. The
variations in the internal structure in both systems are described by coupled
nonlinear equations.
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In the notations of [1, 2] these equations are derived for the vectors of macro-
displacement U and relative micro-displacement u for the pair of atoms with masses
m1, m2,

U D m1U1 Cm2U2

m1 Cm2

; u D U1 � U2

a

where a is a period of sub-lattice. The first variable allows us to describe macro-
strains, while the second variable accounts for the reference displacement of the
internal or the lattice structure. The following coupled governing equations are
obtained in Refs. [1, 2] in the 1D case,


Utt � EUxx D S.cos.u/� 1/x; (1)

�utt � �uxx D .SUx � p/ sin.u/: (2)

Choice of the trigonometric function allows us to describe translational symmetry
of the crystal lattice. In Refs. [3, 4] this function accounts for finite angle rotation of
the molecular group.

There exist exact traveling wave solutions to Eqs. (1) and (2) [5] that describe
propagating localized wave structures. However, they cannot account for arising of
such structures provided that initial and boundary conditions do not coincide with
those required for the exact traveling wave solutions. In this case only numerical
simulations may help to describe dynamical variations in an internal structure.
Previously we considered the domain of the wave velocities where both macro-
and micro- strain waves in Eqs. (1) and (2) have the bell-shaped form [6–8]. Now
we consider the kink-shaped waves for u. Like in Refs. [6–8] the use of particular
exact solution to design and describe numerical results is studied.

2 Exact Localized Wave Solutions

Before performing numerical results, we have to remaind previously obtained exact
localized traveling wave solutions to Eqs. (1) and (2) [5]. These solutions depend
only on the phase variable � D x � V t . Then Eq. 1 is resolved for the function u
by

cos.u/ D 1 � .E � 
V 2/U� � �

S
; (3)

where � is a constant of integration. The Eq. 2 is integrated once, multiplied by
u` and integrated again. Then Eq. 3 is substituted in this equation finally giving an
ordinary differential equation for the macro-strain v D U� ,
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v2� D a0 C a1 v C a2 v2 C a3 v3 C a4 v4; (4)

whose coefficients may be found in Ref. [5]. When a0 D 0, a1 D 0, the ODE (4)
possesses known exact localized bell-shaped traveling wave solutions of two kinds,
one of them reads

v1 D A

Q cosh.k�/C 1
; (5)

whose parameters are defined for two values of � , � D 0 and � D �2S [5]. Thus,
for � D 0 we obtain

A D 4S


.c20 C c2L � V 2/
; Q˙ D ˙ c2L � V 2 � c20

c2L � V 2 C c20
; k D 2

s
p

�.c2l � V 2/

(6)

where c2L D E=
, c2l D �=�, c20 D S2=.p 
/. Another kind of solution may be
found in [5].

The shape of u depends upon the value of the first derivative at � D 0 in the r.h.s.
of Eq. (3) [5]. One possibility reads

u D ˙ arccos

�
.
V 2 � E/Ux

S
C 1

�
for � � 0; (7)

u D ˙2 � arccos

�
.
V 2 � E/Ux

S
C 1

�
for � < 0; (8)

while for another one we have

u D ˙ arccos

�
.
V 2 � E/Ux

S
C 1

�
: (9)

The solution (7) and (8) accounts for the kink-shaped profile of the wave, while
the solution (9) describes the bell-shaped localized wave. The velocity intervals
when one or another profile exists as well as similar analysis for � D �2S may be
found in Refs. [5–7].

Previously the interval .c2L � c20 I c2L/ for � D 0 has been studied in Refs.
[6–8]. Now the interval .0I c2L � c20/ is considered where the kink-shaped traveling
wave solution u (7) and (8) exists. In what follows we shall study whether it may
exist under modified initial conditions, also an influence of the initial velocity and
the amplitude of the initial conditions on the kink existence will be investigated.
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3 Evolution of Kink-Shaped Internal Structure Deviations

To solve Eqs. (1) and (2) numerically the standard MATLAB routine ode45 is used
[9]. The parameters chosen are S D 1, p D 1, 
D 1, c0 D 1, cL D 1. 6, cl D 2, then the
suitable for kinks values of V lie in the interval (0, 1. 25). The initial condition for v
is chosen in the form (5) with Q D QC and with initial velocity V. The condition
for u is used in the form slightly differing form that of described by Eqs. 7 and 8,
namely, u D .1 � tanh.kx// where k D 0. 25 is chosen to be as close as possible
to the shape of the solution (7) and (8).

In the process shown in Fig. 1 the initial velocity V have been chosen equal to
1. 4 that is within the interval .c2L � c20 I c2L/ when no kink-shaped wave propagates
according to the exact solution. However, initial velocity is not kept, it decreases by
the same velocity V for u and v equal to 1. 15 lying within the interval (0; cL

2 � c0
2).

As a result stable propagation of the kink u and the bell-shaped wave v with
permanent shape and velocity is observed. Variation in the initial velocity does not
affect the final velocity of the stable propagation. It is the amplitude of the initial
condition for v that affects this velocity. We multiply previously used condition by
some constant amplitude factor and found that the factor less than unity gives rise
to a decrease in the final stable velocity, while the factor higher than unity yields
its increase. Shown in Fig. 2 is variation in the propagating velocity caused by a
decrease in the initial amplitude of v. Comparison of the last profiles in Figs. 1 and 2
demonstrates the difference in velocities.

The initial position of the inputs should coincide according to the exact solution.
Difference in the relative position fails ability of the numerical solution to change the
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2 0
10 20 30 40 50 60 70 80 90 100

x

V
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2

4

6

x

u

Fig. 1 Simultaneous propagation of macro- bell-shaped and micro- kink-shaped strain waves with
the velocity within the interval prescribed by the exact solution. Points of time correspond to the
neighboring peaks. Final wave profiles are allocated in bold
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Fig. 2 Decrease in the waves velocity due to a decrease in the initial amplitude of v. Points of time
correspond to the neighboring peaks. Final wave profiles are allocated in bold
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Fig. 3 Generation of moving localized bell-shaped micro-strain wave in a lattice from the kink-
shaped input for u whose initial position is shifted behind that of v. Points of time correspond to
the neighboring peaks. Final wave profiles are allocated in bold

velocity so as to shift its value within the needed interval of velocities .0I c2L�c20/: In
this case the initial condition for u splits into two parts as shown in Fig. 3. The kink-
shaped part propagates slowly while the new bell-shaped part moves fast with the
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velocity equal to 1. 5 from the interval .c2L � c20 I c2L/ prescribed by the bell-shaped
exact solutions. Both waves propagate together with the bell-shaped waves v, hence
the last is also split into two bell-shaped parts. It is a new effect of trapping of two
corresponding parts of u by v.

4 Conclusions

It is shown that moving kink-shaped wave of internal variations u may arise in a
lattice even if initial conditions have velocities within the interval of the existence of
the bell-shaped wave. Its velocity depends on the amplitude of the input of macro-
strain v or an external loading. Variation in the relative position of the inputs for
macro- and micro-strains gives rise to a new scenario of the bell-shaped defects
generation from the initial kink-shaped perturbation. The interval of the kink-shaped
wave velocities prescribed by the exact traveling wave solution, is confirmed in
numerics.
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The Dispersion of the Axisymmetric
Longitudinal Waves in the Pre-Strained
Bi-Material Hollow Cylinder with the Imperfect
Interface Conditions

S.D. Akbarov and C. Ipek

Abstract This work studies the influence of the imperfectness of the interface
conditions on the dispersion of the axisymmetric longitudinal waves in the pre-
strained bi-material hollow cylinder. The investigations are made within the 3D
linearized theory of elastic waves in elastic bodies with initial stresses. It is assumed
that the materials of the layers of the hollow cylinder are made from hyper elastic
compressible materials and the elasticity relations of those are given through the
harmonic potential. The shear spring type imperfectness of the interface conditions
is considered and the degree of this imperfectness is estimated by the shear-spring
parameter. Numerical results on the influence of this parameter on the behavior of
the dispersion curves are presented and discussed.

Keywords Bi-material hollow cylinder • Imperfect interface conditions • Initial
strains • Wave dispersion

1 Introduction

The review of the recent investigations related the wave propagation in the pre-
strained elastic bodies was made in a paper [1]. It follows from this review and
from the other analyses of the relevant references that the wave propagation in
the pre-strained compound or layered cylinders has not been investigated before
the last 7 years. The first attempt in this field was made by the first author and
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the list of the corresponding references is given in the papers [2, 3] in which the
axisymmetric wave propagation in the pre-strained compound cylinder made from
the hyper elastic materials was studied. In these papers it was assumed that the
contact condition on the interface between the inner and outer cylinders is a perfect
one; i.e., it is assumed that the forces and displacements are continuous functions
across the interface surface. However, in many cases (for an example, in the case
where the reinforced cables are modeled as a bi-material compounded cylinders),
it is unrealistic to assume a perfectly bounded interface. Consequently, in order
to apply the results of the theoretical investigations to the indicated cases, it is
necessary to take the imperfectness of the contact conditions into account under the
study of the wave propagation in the bi-material compounded circular cylinders.
Taking this statement into account, in the present work the investigation [2] is
extended for the bi-material hollow cylinder with imperfect contact conditions. It
is assumed that the materials of the constituents are hyper elastic compressible ones
and the elasticity relations of those are described by the harmonic potential. The
numerical results are presented and discussed.

2 Formulation of the Problem

We consider the bi-material compounded cylinder consisting of a hollow inner and
hollow surrounding cylinders. In the natural state we determine the position of the
points of the cylinders by the Lagrangian coordinates in the cylindrical system of
coordinatesOr™z. Assume that the cylinders have infinite length in the direction of
the Oz axis and the initial stress state in each component of the considered body is
axisymmetric with respect to this axis and homogeneous. Suppose that the radius
of the external circle of the inner hollow cylinder is Rand the thickness of the inner
and outer cylinders are h.2/ and h.1/, respectively.

With the initial state of the cylinders we associate the Lagrangian cylindrical
system of coordinates O 0r 0™0z0. The values related to the inner and external hollow
cylinders will be denoted by the upper indices (2) and (1), respectively. Furthermore,
we denote the values related to the initial state by an additional upper index, 0. Thus,
the initial strain state in the inner solid cylinder and external hollow cylinder can be
determined as follows.

u.k/;0r D
�
œ
.k/
1 � 1

	
r; u.k/;0z D

�
œ
.k/
3 � 1

	
z; œ

.k/
1 ¤ œ

.k/
3 ; k D 1; 2: (1)

Within this framework, let us investigate the axisymmetric wave propagation
along the O 0z0 axis in the considered body with the use of the 3D linearized theory
elastic wave propagation in bodies with initial stresses. Thus, we write the basic
equations and relations.
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The equations of motion are

L1

�
u0
r
.k/
; u0

z
.k/
	

D ¡0.k/ @2u0.k/
r 0

@t2
; L2

�
u0.k/
r ; u

0.k/
z0

	
D ¡0.k/ @

2u0.k/
z0

@t2
: (2)

The explicit expression of the operatorsLk.x; y/ .k D 1; 2/ are given in [2]. The
notation u0

r 0

.k/, u0
3
.k/ shows the perturbations of the components of the displacement

vector. ¡0.k/ is a density of the k-th material.
Thus, the propagation of the longitudinal axisymmetric wave in the considered

systems will be investigated by the use of Eq. 2. This equation must be supplied
with the following boundary conditions

Q0.1/
r 0r 0

ˇ̌
ˇ
r 0DR0Ch0.1/

D 0; Q0.1/
r 0z0

ˇ̌
ˇ
r 0DR0Ch0.1/

D 0;

Q0.2/
r 0r 0

ˇ̌
ˇ
r 0DR0�h0.2/

D 0; Q0.2/
r 0z0

ˇ̌
ˇ
r 0DR0�h0.2/

D 0: (3)

For the problems under consideration we select the following type imperfectness
for the contact conditions

Q0.1/
r 0r 0

ˇ̌̌
r 0DR0

D Q0.2/
r 0r 0

ˇ̌̌
r 0DR0

; Q0.1/
r 0z0

ˇ̌̌
r 0DR0

D Q0.2/
r 0z0

ˇ̌̌
r 0DR0

;

u0.1/
r 0

ˇ̌
ˇ
r 0DR0

D u0.2/
r 0

ˇ̌
ˇ
r 0DR0

; u0.1/
z0

ˇ̌
ˇ
r 0DR0

� u0.2/
z0

ˇ̌
ˇ
r 0DR0

D F
R

�.2/
Q0.2/

r 0z0 : (4)

where F is the non-dimensional shear-spring parameter, Q0.k/
.ij / is a perturbation of

components of the Kirchhoff stress tensor. The expression for determination these
stresses through the displacement are given, for example, in a paper [2]. The case
where F D 0 corresponds the perfect contact condition, but the case where F D 1
corresponds the fully slipping imperfectness of the contact condition.

3 Solution Procedure and Obtaining the Dispersion Equation

Using the representation for the displacement given in [4]:

u0.k/
r 0 D � @2

@r 0@z0 X.k/;

u0.k/
3 D 1

¨0.k/
1133 C ¨0.k/

1313

�
¨0.k/
1111�

0
1 C ¨0.k/

3113

@2

@z02 � ¡0.k/ @2

@t2

�
X.k/; (5)

where X.k/ is presented as follows.
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X.m/ D X.m/
1

�
r 0� cos

�
kz0 � ¨t� ; m D 1; 2: (6)

The expression for the function X
.m/
1 .r 0/ is determined through the Bessel

functions [2].
Thus using (5) and (6) we obtain the following dispersion equation from (3)

and (4).

4 Numerical Results and Discussions

Assume that ¡.2/=¡.1/ D 1:0, œ.2/=�.2/ D œ.1/=�.1/ D 1:5 (œ.k/and �.k/ (k D 1,2)
are mechanical constants of the k-th material; these constants enter the expression
of the harmonic potential [2]) and consider the dispersion curves c D c.kR/ and
analyze the influence of the non-dimensional shear-spring parameter F on these
curves for various values of elongation parameters œ.2/3 and œ.1/3 . To simplify the

following discussions we introduce the notation c.k/20 D p
�.k/=¡.k/. Consider the

case where �.2/=�.1/ D2, h.2/=R D0:5 and h.1/=R D1:0. Investigate the dispersion
curves related the fundamental mode. First, we analyze graphs given in Fig. 1
which show how the non-dimensional shear-spring parameterF which characterizes
the imperfectness of the contact conditions acts on a behavior of the mentioned
dispersion curves in the case where œ.1/3 D œ

.2/
3 D 1:0, i.e. in the case where there is

not any initial strains in the constituents of the cylinder.
It follows from this analyses that as a result of the shear-spring type imperfectness

of the contact conditions, instead of the dispersion curve corresponding to the
fundamental dispersive mode constructed under satisfaction of perfect contact
conditions, i.e. for F D 0, two types of mode arise. The first (the second) appears

Fig. 1 The influence of the
shear-spring parameter F on
the dispersion curves under
absent of the initial strains
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below (over) the dispersion curve corresponding to the first fundamental mode
constricted by F D 0. We denote the velocity of the wave propagation for F D 0

with c, but the wave propagation velocity of the first (second) branch for F > 0 we
denote with cIF.cIIF/. It follows from the numerical results given in Fig. 1 that the
following relation cIF < c < cIIF takes place.

5 Conclusions

According to the foregoing numerical results the following conclusions are
reached:

– the shear-spring type imperfectness of the interface contact conditions causes
two branches of the dispersion curve related to the fundamental mode to appear,
the first of which disappears, but with the second approach the dispersion curve
obtained for the perfectinterface case as F ! 0 (Fig. 2);

– the dispersion curves of the foregoing two branches of the fundamental mode
approach the corresponding limit dispersion curves related to the fully slipping
interface conditions as F increases;

– the shear-spring type imperfectness of the contact conditions does not change the
low and high wave number limits;

– the initial strains of the layers of the compound cylinder qualitatively change only
the influence of the considered imperfectness of the interface conditions on the
behavior of the dispersion curves (Fig. 3).

Fig. 2 The influence of the
initial strains on the second
branch of the dispersion
curves
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Fig. 3 The influence of the
initial strains on the first
branch of the dispersion
curves
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Dispersive Wave Equations for Solids
with Microstructure

Arkadi Berezovski, Jüri Engelbrecht, and Mihhail Berezovski

Abstract The dispersive wave motion in solids with microstructure is considered
in the one-dimensional setting in order to understand better the mechanism of
dispersion. It is shown that the variety of dispersive wave propagation models
derived by homogenization, continualisation, and generalization of continuum
mechanics can be unified in the framework of dual internal variables theory.

Keywords Dispersive wave • Internal variables • Microstructured solids

1 Introduction

Several modifications of wave equation are proposed to describe wave propagation
in heterogeneous materials reflecting dispersion effects, such as the linear version
of the Boussinesq equation for elastic crystals [1–5], the Love-Rayleigh equation
for rods accounting for lateral inertia [6–10], the Maxwell-Rayleigh equation of
anomalous dispersion [1], the “causal” model for the dispersive wave propagation
[11], and the Mindlin-type model [12].

All the equations listed above are based either on homogenization [2, 3, 9], or on
continualisation [4, 8, 11], or on generalized continuum theories [5, 12]. There is a
clear need in understanding their structure from a unified viewpoint. In what follows,
the description of the non-dissipative dispersive wave propagation is unified by the
dual internal variable approach [13].

A. Berezovski (�) • J. Engelbrecht • M. Berezovski
Tallinn University of Technology, Estonia
e-mail: Arkadi.Berezovski@cs.ioc.ee

J. Náprstek et al. (eds.), Vibration Problems ICOVP 2011: The 10th International
Conference on Vibration Problems, Springer Proceedings in Physics 139,
DOI 10.1007/978-94-007-2069-5 94, © Springer ScienceCBusiness Media B.V. 2011

699

Arkadi.Berezovski@cs.ioc.ee


700 A. Berezovski et al.

2 Thermomechanics in One Dimension

In the case of thermoelastic conductors of heat, the one-dimensional motion is
governed by local balance laws for linear momentum and energy (no body forces)

.
v/t � �x D 0; (1)�

v2

2
C E

�
t

� .�v �Q/x D 0; (2)

and by the second law of thermodynamics

St C
�
Q

�
CK

�
x

� 0: (3)

Here t is time, subscripts denote derivatives with respect time and space, respec-
tively, 
 is the matter density, v D ut is the physical velocity, � is the Cauchy stress,
E is the internal energy per unit volume, S is the entropy per unit volume, � is
temperature, Q is the material heat flux, the “extra entropy flux” K vanishes in most
cases, but this is not a basic requirement.

3 Internal Variables

In the framework of the phenomenological continuum theory it is assumed that
the influence of the microstructure on the overall macroscopic behavior can be
taken into account by the introduction of an internal variable ' which is associated
with the distributed effect of the microstructure. In the dual internal variable theory
[13], an auxiliary internal variable  is used additionally. Then the free energy W
is specified as the general sufficiently regular function of the strain, temperature,
internal variables ', and their space derivatives

W D W .ux; �; '; 'x;  ; x/: (4)

The corresponding equations of state are given by

� WD @W

@ux
; S WD �@W

@�
; � WD �@W

@'
; � WD �@W

@'x
;

� WD �@W
@ 

; $ WD � @W
@ x

: (5)

The dissipation inequality (3) can be rewritten as

.� � �x/'t C .� � $x/ t � .Q=� CK/�x C .�'t C $ t C �K/x � 0: (6)
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Following [14], we chose the non-zero extra entropy flux K in the form

K D ���1�' t � ��1$ t : (7)

Such a choice allows us to reduce the dissipation inequality (6) to

.� � �x/'t C .� � $x/ t �
�
Q � �'t � $ t

�

�
�x � 0: (8)

In this case, the dissipation is clearly decomposed into intrinsic and thermal parts.
The latter means that the dissipation inequality in the isothermal case reduces to

.� � �x/'t C .� � $x/ t � 0: (9)

In the case of zero dissipation, Eq. 9 yields that the evolution equations for internal
variables can be represented in the form [13]

' t D R.� � $x/;  t D �R.� � �x/; (10)

where R is an arbitrary coefficient.

4 Constitutive Model

Having the evolution equations for internal variables in the non-dissipative case, we
can derive a microstructure model. We start with the free energy dependence in the
form

W D 
c2

2
u2x CAux' C QAux'x C aux

�
dF.u/

du

�
x

C 1

2
B'2 C 1

2
C'2x C 1

2
D 2;

(11)

where c is the elastic wave speed, A, QA, B, C, and D are material parameters, F(u) is
the nonlinear contribution at macroscale, a is a scaling coefficient. For simplicity,
we include only the contribution of the second internal variable itself. In this case,
stresses are calculated as follows:

� D @W

@ux
D 
c2ux C A' C QA'x C a

�
dF.u/

du

�
x

;

� D �@W
@'x

D � QAux � C'x; $ D � @W
@ x

D 0: (12)



702 A. Berezovski et al.

The interactive internal forces � and � are, respectively,

� D �@W
@'

D �Aux � B'; � D �@W
@ 

D �D : (13)

The evolution Eq. 10 in the case of zero dissipation take the form

' t D R.� � $x/ D �RD ; (14)

 t D �R.� � �x/ D R.Aux C B' � QAuxx � C'xx/: (15)

It follows immediately from Eqs. 14 and 15, that the evolution equation for the
primary internal variable (14) can be rewritten as the hyperbolic equation

' tt D R2D.� � �x/: (16)

Accordingly, the balance of linear momentum (1) results in


ut t D 
c2uxx C A'x C QA'xx C aŒF 0.u/�xx; (17)

and the evolution equation for the primary internal variable (16) gives

I't t D C'xx C QAuxx � Aux � B'; (18)

where I D 1=.R2D/ is an internal inertia measure.

4.1 Single Dispersive Wave Equation

To derive the single equation we make following steps. We determine the first
derivative of the internal variable from Eq. 18

B'x D �I't tx C C'xxx C QAuxxx � Auxx: (19)

The third mixed derivative ' ttx follows from Eq. 17

A'ttx D �

ut t � 
c2uxx � aŒF 0.u/�xx

�
t t

� QA'ttxx: (20)

The appeared fourth-order mixed derivative the internal variable is calculated by
means Eq. 18

I't txx D C'xxxx C QAuxxxx � Auxxx � B'xx; (21)

and, in its turn, the fourth-order space derivative is determined again from Eq. 17
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QA'xxxx D �

ut t � 
c2uxx � aŒF 0.u/�xx

�
xx

� A'xxx: (22)

Collecting all the results (19)–(22) and substituting them into the balance of linear
momentum (17) we arrive at the dispersive wave equation


ut t � 
c2uxx � aŒF 0.u/�xx D C

B

�

ut t � 
c2uxx � aŒF 0.u/�xx

�
xx

� I

B

�

ut t � 
c2uxx � aŒF 0.u/�xx

�
t t

C
QA2
B

uxxxx � A2

B
uxx: (23)

5 Examples of Dispersive Wave Equations

5.1 Linear Dispersive Wave Equations

5.1.1 Mindlin-Type Model

The Mindlin-type model [12] corresponds to a D 0 (no nonlinearity) and QAD 0 (no
coupling between gradients) in Eq. 23:

ut t D c2uxx C C

B

�
ut t � c2uxx

�
xx

� I

B

�
ut t � c2uxx

�
t t

� A2


B
uxx: (24)

The Maxwell-Rayleigh model of anomalous dispersion [1] corresponds to a special
case of the latter equation with C D 0.

5.1.2 Causal model

Keeping the absence of nonlinearity in Eq. 23 and assuming A D 0 (no coupling
between strain and internal variable; only gradients are coupled), we arrive at the
causal model [11]:

ut t D c2uxx C C

B

�
ut t � c2uxx

�
xx

� I

B

�
ut t � c2uxx

�
t t

C A02


B
uxxxx: (25)

The higher-order dispersive wave Eqs. 24 and 25 differ from each other only by the
last term in the right hand side. However, this difference is essential, because the
second-order space derivative in Eq. 24 exhibits the slowing down the velocity of
propagation, whereas the fourth-order derivative in Eq. 25 does not. At the same
time, derivatives of the wave operator in Eq. 24 cannot be rearranged, whereas it is
possible in Eq. 25 due to the additional fourth-order space derivative.
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5.1.3 Unified Model

The unified model includes both couplings mentioned above

ut t D c2uxx C C

B

�
ut t � c2uxx

�
xx

� I

B

�
ut t � c2uxx

�
t t

C A02


B
uxxxx � A2


B
uxx;

(26)

which generalizes both approaches [15].

5.2 Nonlinear Dispersive Wave: Boussinesq Equation

The obtained dispersive wave Eq. 23 can be reduced to the Boussinesq equation
under following assumptions:

1. I D 0, which means zero microinertia.
2. G D 0 that corresponds to the absence of nonlinearity in microstructure.
3. A D 0 (no coupling between strain and internal variable; only gradients are

coupled).

As a result, Eq. 23 reduces to


ut t � 
c2uxx � aŒF 0.u/�xx D C

B

�

ut t � aŒF 0.u/�xx

�
xx

C
QA2
B

uxxxx: (27)

This equation belongs to the class of the dispersive wave equations which are
characterized by the so-called “Boussinesq paradigm” [16], which means: (a)
bidirectionality of waves; (b) nonlinearity (of any order); (c) dispersion (of any order
modelled by space and time derivatives of the fourth order at least).

This paradigm has its roots in the classical Boussinesq equation for waves in
shallow water, to which Eq. 27 can be reduced by the choice of the nonlinearity
function F(u) D u 3 [16] and C D 0

ut t � c2uxx D
 
3au2



C

QA2

B

uxx

!
xx

: (28)

6 Conclusions

As it was shown on the example of one-dimensional wave propagation, nonlinear
terms can be easily introduced in the framework of the dual internal variables
approach resulting in a generalized nonlinear dispersive wave equation. A cubic
macroscopic nonlinearity leads to the Boussinesq equation.

Acknowledgements Support of the Estonian Science Foundation is gratefully acknowledged.
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Elastic Waves and Defect Modes in Micropolar
Lattices

D.J. Colquitt, A.B. Movchan, N.V. Movchan, and I.S. Jones

Abstract We analyse elastic Bloch-Floquet waves in periodic planar lattices, with
micropolar rotations taken into account. This is followed by the study of standing
waves corresponding to eigenmodes of certain types and defect modes. Examples
include time-harmonic truss and frame structures and systems with rotational
springs. The inertial properties of the system are controlled by distributing the mass
throughout the junction regions in addition to the elastic links. In the analysis of
dispersion properties of Bloch-Floquet waves, we derive analytical asymptotic esti-
mates for the effective group velocities in the acoustic modes to investigate possible
morphological corrections. Periodic arrays of defects are introduced by breaking
several bonds leading to standing defect modes. Explicit analytical estimates are
compared with the results of numerical simulations.

Keywords Asymptotics • Bloch-Floquet waves • Micropolar rotations

1 Introduction

The paper considers the micro-polar dynamic interaction between inertial ele-
ments in a periodic elastic lattice. The lattice structure maybe heterogeneous and
anisotropic, and the elastic waves are dispersive. This paper is motivated by the
earlier work [1–7]. In particular, analysis of the dispersion properties of waves
in two-dimensional elastic discrete systems was included in [4]. The same paper
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includes details of the spectral analysis for two-dimensional lattice systems. The
paper [2] includes a model of dynamic defects within an elastic system induced by
thermal pre-stress. Analysis of the dispersion properties of elastic waves in periodic
continua with pre-stress was also presented in [1].

The analysis of two-dimensional static lattices has been presented in many texts
such as [5–7]. In particular, [5–7] introduced a potential of torsional interaction
between the ligaments at the junction points. After reducing the problem to a
system of finite difference equations, a connection was made with the homogenised
isotropic continuum, for a special class of lattices. The homogenised Lamé constants
were evaluated and the static micro-polar interaction was identified.

The structure of the present paper is as follows. Section 2 deals with the main
notations, geometry and governing equations of the discrete system. Low frequency
approximations for micro-polar heterogenous lattices and asymptotic formulae
for the effective group velocities are also derived in Sect. 2. This section also
includes comparision with the earlier work [5, 6]. Section 3 discusses the dispersion
properties, control of stop band width and localization in a lattice with defects.
Special attention is devoted to standing waves related to rotational motion.

2 Geometry, Governing Equations and Effective
Group Velocities

We consider an infinite diatomic triangular lattice in R2, which consists of an array
of lattice nodes labeled by the multi-index n D .n1; n2/ 2 Z2. The lattice nodes are
connected by thin elastic beams of length l. The interaction between nodes n and p
is described by A.n;p/, that is, A.n;p/ describes the force at n as a result of motion at p.
For a particular node n, we denote the set of neighboring nodes connected to n by
elastic beams as N.n/ and the generalized planar displacement amplitude vector as

u.n/ D .u.n/1 ; u
.n/
2 ; �

.n//
T
. The inertial properties of the nth node are described by the

matrix M.n/ D diag.m.n/; m.n/; J .n//, where m is the mass and J is the polar mass
moment of inertia. For Bloch-Floquet waves of radian frequency !, the equations
of motion for node n take the form

!2M .n/u.n/ C A.n;n/u.n/ C
X

p2N.n/

A.n;p/u.p/ D 0: (1)

The Bloch-Floquet quasi-periodicity conditions have the form u.nCq/ D u.n/eik�q,
where k D .k1; k2/ is the Bloch vector and q D q1t1 C q2t2. The vectors ti are
the lattice vectors and .q1; q2/ 2 Z2. The equations of motion (Eq. 1) then form a
system of the generalised eigenvalue type which has the solvability condition

0 D det
�
M!2 � � .k; !/

� WD g .k; !/ : (2)
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The matrix �.k; !/ is the stiffness matrix of the irreducible cell and M D
diag.M .1/;M .2// is the mass matrix. We note that if the inertia of elastic links
within the lattice is neglected, then the matrix function � is !-independent.
Equation 2 represents the dispersion equation of the discrete system.

2.1 The Effective Group Velocities in the Low Frequency Regime

We consider two classes of lattices: (a) the lattice with massless beams, and (b) the
distributed mass lattice. In the former case the beams connecting the lattice nodes
are assumed to be massless with the entire mass of the lattice being localised at
the nodes. For the latter class, the mass is distributed along the lattice beams in
addition to the nodes. For each type of lattice, we consider three distinct classes of
interactions: (1) the truss interaction, where the lattice nodes are modelled as pin
joints, and we consider only central interactions; (2) the truss and torsional spring
interaction, where there is an additional interaction based on the angle between
the springs; (3) the Euler-Bernoulli beam interaction, where the lattice nodes are
connected by Euler-Bernoulli beams and the angle between the beams is fixed.
In each case, the nodes of the diatomic lattice have masses m1 and m2 and polar
moments of inertia J1 and J2, and each beam has density 
.

The effective group velocity in the low frequency regime is understood as @!=@k
as ! and k tend to zero. For each of the three interactions described above and small
! and k, the dispersion Eq. 2 may formally be expanded in the form

0 D
X
j˛j>0

.@˛g/ .0; 0/
.k; !/˛

˛Š
; (3)

where we sum over the multi-index ˛ D N3
0. Keeping only terms up to j˛ j D 4 in

Eq. 3 and solving for non-negative! yields the estimate for the dispersion equation
in the neighborhood of the origin. Taking the gradient then yields the effective group
velocities of the lattice. For the three classes of interactions described above, the
effective group velocities in the low frequency limit are described below (full details
may be found in [8]). It is convenient to work with non-dimensional parameters. The
non-dimensional velocity is defined as v D Nv=pEsl=m1, where E is the Young’s
modulus of the lattice beams, s is their cross-sectional area and l is their length.
The usual dimensional group velocity is denoted as Nv. Similarly, the masses, polar
moments of inertia and density are normalised thus:m2 D Nm2=m1, Ji D NJi=.m1l

2/

and 
 D N
sl=m1. Here the bars denote the corresponding dimensional parameters
and s is the cross-section of the lattice beams.
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2.1.1 The Truss Interaction

For the case of truss interactions, the two non-dimensional effective group velocities
are

v.1/ 
 3

2

Okp
1Cm2 C 3


; v.2/ 

p
3

2

Okp
1Cm2 C 3


; (4)

where Ok is the normalised Bloch vector. We note that the effective group velocities
of the first class of lattice (massless links) can be obtained by choosing 
D 0. It is
also observed that the total mass in the irreducible cell is 1 C m2 C 6
, whereas
the inertia term appears as 1 Cm2 C 3
 in Eq. 4. That is, there is a morphological
change in the effective group velocities when the inertia is distributed across the
lattice beams. It is also observed that the lattice is isotropic in the low-frequency
regime (the group velocity is not a function of the magnitude of the Bloch vector).

2.1.2 The Truss and Torsional Spring Interaction

We introduce the non-dimensional parameter � D �=cl2, where � is the stiffness of
the torsional spring and c is the longitudinal stiffness of the beams. The effective
group velocities are then

v.1/ 

p
3

2

s
1C 3�

1Cm2 C 3

Ok ; v.2/ 


p
3

2

s
3C �

1Cm2 C 3

Ok: (5)

Once again, distributing the mass along the lattice beams (i.e. choosing a non-
zero 
) results in a morphological change in the effective group velocities. Based
on the earlier static work [5, 6], we can derive similar expressions for the shear and
pressure speeds in a special class of homogeneous triangular lattice with equivalent
interactions:

vs D
p
3

2
p
2

r
3C �

M
; vp D

p
3

2
p
2

r
1C 3�

M
; (6)

where M is the mass within the [monatomic] elementary cell. It is observed that
Eq. 6 is consistent with Eq. 5 for the case of a monatomic lattice with massless links
(
D 0, m2 D 1 and M D 1/.

2.1.3 The Euler-Bernoulli Beam Interaction

The relative size of the flexural d and longitudinal c rigidities is measured by the
non-dimensional parameter ˇ D 2d=cl3.
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The effective group velocities are then

v.1/ 
 3

2

s
1C 2ˇ

1Cm2 C 6

Ok ; v.2/ 


p
3

2

s
1C 6ˇ

1Cm2 C 6

Ok: (7)

In contrast to the previous two interactions, distributing the mass along the lattice
beams results in no morphological correction to the effective group velocities.

3 Dispersion Properties, Defects and Standing Waves

For the case of the Euler-Bernoulli beam interaction we present two dispersion
diagrams in Fig. 1, for the following two cases: (1) a lattice with massless beams and
(2) a lattice with inertial beams. Both dispersion surfaces show evidence of standing
waves – indicated by flat regions where r!.k/ D 0. In particular, we note that
the first two dispersion surfaces are almost flat. Moreover, numerical simulations
indicate that these surfaces correspond to standing rotational modes. Specifically,
the rotational displacement is large compared with the translational components.
Therefore, a simple estimate of the frequencies of these modes may be obtained by
neglecting the translational motion. For the case of massless links, the estimates for
the frequencies of the standing modes are

!
.rot/
˙ D

�
ˇ

J1J2

�
7J1 C 7J2 ˙

q
49
�
J 21 C J 22

� � 82J1J2

��1=2
: (8)

Taking J1 D 2, J2 D 6, ˇD 0. 001 yields estimates of !.rot/
C D 0:0853 and !.rot/� D

0:0454, which are in excellent agreement with the numerical simulations. A standing
wave, involving relative translational motion of nodes within an irreducible cell,
exists at the origin of the higher eigensurface which bounds the band gap in Fig. 1a.
The presence of this standing waves allows for an efficient estimate of the upper
boundary of the band gap. The estimate is found to be !T D p

.11C 198ˇ/=m2:

Using the same parameter values as above, we obtain !T D 1. 058, which is
approximately where the upper boundary of the band gap appears in Fig. 1a.
Contrasting Fig. 1a and b, it is observed that the primary difference is the presence of
a number of additional dispersion surfaces in Fig. 1b in the region of the band gap in
Fig. 1a. Finite element simulations in COMSOL suggest that these additional modes
are related to the fundamental frequencies of the beams. For beam eigenmodes, the
nodal displacements vanish and the problem reduces to that of the free vibrations
of a clamped beam. Such systems have been treated extensively in the literature,
see for example Graff [9]. For a Euler-Bernoulli beam with clamped ends, the first
fundamental frequency is !.beam/ � .4:964/2

p
ˇ=2
. For the numerical values

used to produce Fig. 1b, !.beam/ � 0:4927, gives the approximate location of the
additional dispersion surfaces.
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Fig. 1 The dispersion surfaces for (a) the lattice with massless members; and (b) the distributed
mass lattice, for the case of the Euler-Bernoulli beam interaction. The nominal numerical values
chosen were m2 D 10, J1 D 2, J2 D 6, 
D 1 and ˇD 0. 001

Fig. 2 The triangular diatomic lattice, with a periodic array of defects. The defects are in the form
of buckled beams, where the stiffness of the buckled beams is neglected entirely

3.1 Defect Modes

We now introduce a periodic array of defects into the lattice (Fig. 2), in the form
of buckled beams. Such beam buckling could occur after the application of some
form of pre-stress. For example, selected beams could have a higher thermal
expansion coefficient and buckle under thermal load. The beams are considered
to have buckled to the extent to which they may be neglected entirely. Numerical
simulations reveal a number of standing modes. In particular, we focus on two
rotational modes where only similar nodes rotate. At the first mode, the two lighter
nodes (indicated in white in Fig. 2) rotate, whereas at the second mode, the two
heavier nodes rotate (black in Fig. 2). The estimates for these modes are found to be
!1 D p

10ˇ=J1 and !2 D p
9ˇ=J2. Using the same parametric values as earlier,

these estimates are in excellent agreement with the numerical solutions.
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4 Concluding Remarks

Bloch-Floquet waves in infinite planar diatomic lattices with micro-polar rotations
were considered. Several types of interactions were discussed and explicit estimates
for the effective group velocities in the low frequency regime were derived and
compared with previous results. Estimates for standing waves and defect modes
were derived and compared with the results from numerical computations. The
concepts and algorithms presented here have also been extended to the design of
lattice systems, which allow elastic waves to be focused for a certain frequency
range [8].

Acknowledgements D.J.C. gratefully acknowledges the support of an EPSRC research stu-
dentship (grant EP/H018514/1).
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Analytical Solution of In-Plane Response
of a Thin Viscoelastic Disc Under Impact Load

Vı́tězslav Adámek and František Valeš

Abstract This paper concerns the analytical solution of the in-plane response of
a thin viscoelastic disc to a dynamic load applied to its rim. The exact analytical
relations for the Laplace transforms of radial and circumferential displacements
are derived in terms of Bessel functions for the case of radial and torsional loads
defined by even and odd functions of angular variable, respectively. The numerical
evaluation of the analytical solution is then made for the case of an impulse
radial load and transient wave phenomena are studied in the disc. With respect
to the complexity of presented formulae, the multi-precision implementation of
FFT based numerical algorithm for the inverse Laplace transform is used. The
obtained analytical results are then compared to the results of numerical simulation
performed in the finite element system MSC.Marc. The presented analytical solution
can be used as a benchmark solution for the testing of numerical methods.

Keywords Analytical solution • In-plane vibration • Viscoelastic disc

1 Introduction

The problems of disc-like solids under various types of a dynamic load play an
important role in many fields and practical applications. While the problems of
transverse vibration of circular plates have been studied in detail already in the
past, the in-plane disc response is the aim of works of the past few years. This
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increasing attention is mainly caused by the fact that the in-plane vibration involves
higher frequencies compared with the transverse response and so it plays a role
in the transmission of high frequency components from single parts to whole
equipments. The non-negligible sound radiation from the in-plane vibrating discs
is the second reason of mentioned interest. The authors in [1] have shown that the
in-plane vibration can generate substantial sound, especially when the discs are
relatively thick. This is also related with the railway transport where the impact
noise generated by the wheel running over rail discontinuities is a considerable part
of wheel/rail noise [2].

There exists number of works concerning the steady state in-plane vibration of
stationary or rotating discs from analytical and numerical point of view. But the
authors usually focus on elastic problems of solid or annular discs and mainly on
the determination of natural frequencies and mode shapes under different types of
boundary conditions. Such results are presented for example in [3, 4]. Problems of
rotating discs under various types of edge loads are solved for instance in [5, 6].

All previous papers deal with stationary problems, but studies focused on tran-
sient disc response are relatively scarce and mainly report on numerical methods.
As an example of work based on an analytical approach, we can mention the paper
[7] in which the in-plane radial impact on a moving thin elastic disc is solved.

The investigation of in-plane response of a thin viscoelastic disc to dynamic
edge load is the aim of this paper. The emphasis is placed on the study of transient
wave phenomena and this work is based on [7, 8]. In the second mentioned paper,
the relations for the Laplace transforms of radial and circumferential displacement
components are derived for the case of an uniform radial pressure. With respect to
the fact that we meet more general types of excitations in practical applications, the
effort is to generalize the solution for more frequent types of loading. In particular,
the disc response to radial and torsional excitations which are described by even and
odd functions of angular coordinate, respectively, is investigated using an analytical
approach.

2 Problem Formulation

Let us consider a thin disc of a constant thickness and of the finite radius r1. Its
material of mass density 
 is assumed to be isotropic and linear viscoelastic and
it is modeled by the standard viscoelastic solid. This means that the elastic spring
is arranged in parallel with a spring and a dashpot in series. Material parameters
Ei and �i then correspond to Young’s modulus and Poisson’s ratio of the alone
standing spring (i D 1) and of the spring in series with dashpot (i D 2). The dashpot
properties are then described by normal viscosity �, shear viscosity � and viscous
Poisson’s ratio �. Hereinafter, the relation �1 D �2 D � will be considered for
simplicity.

It is convenient to solve the plane stress problem of the disc in the polar
coordinate system r �' and to choose the disc centre as its origin. Consequently,
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the radial displacement ur(r, ', t) and the circumferential displacement u'(r,', t)
describe the disc response. The boundary conditions are considered in the form
� r(r1,', t) D �0(', t) and � r' (r1,', t) D �0(', t) where �0(', t) and �0(', t) are
arbitrary even and odd functions of ', respectively, and they can be defined on two
disjoint parts of the disc rim. Finally, zero initial conditions are assumed.

3 Analytical Solution

The mathematical model describing the response of the disc consists of two coupled
partial integro-differential equations of motion [8]. This system is solved using
the classical method of integral transforms in combination with Fourier method of
separation of variables.

3.1 Laplace Transforms of Displacement Components

The resulting relations for the Laplace transforms Nur .r; '; p/ and Nu'.r; '; p/ of the
displacement components ur(r, ', t) and u'.r; '; t/ can be expressed formally in the
same form as in [8]. These relations can be then converted to

Nur D r

(
J1.z1/

z1
P0 C

1X
nD1



2nJn.z2/

z22
QnC

�
nJn.z1/

z12
� Jn�1.z1/

z1

�
Pn

�
cos.n'/

)
;

Nu' D r

( 1X
nD1



2

�
nJn.z2/

z22
� Jn�1.z2/

z2

�
Qn C nJn.z1/

z12
Pn

�
sin.n'/

)
;

(1)

where Jn denotes the Bessel function of the first kind (n D 0, 1, 2, : : : ). The functions
z1(r, p), z2(r, p) and the other quantities in (1) are defined for p 2 C by

z1 D ipr

C3
; z2 D ipr

C2
; Ck D Ck.p/ D

s�
1� ˛

pC˛

�
ck22 C ck12 for k D 2; 3;

˛ D E2

�
D ˇ D G2

�
; c2k D

s
Gk



and c3k D

s
Ek



�
1 � �2k

� for k D 1; 2:

(2)

In the next section, we present relations for complex functions Pn(p)
(n D 0, 1, 2, : : : ) and Qn(p) (n D 1, 2, : : : ) involved in (1) which can be derived
using specified boundary conditions.
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3.2 Formulae for Unknown Functions Pn(p) and Qn(p)

Since the boundary conditions are prescribed for the stress components � r and �r';
we need to derive the integral transforms of these stresses using constitutive and
kinematic equations and using relations (1). Doing so and expanding the Laplace
transforms of �0(', t) and �0(', t) into appropriate Fourier series, i.e.,

N�0.'; p/D A0

2
C

1X
nD1

An.p/ cos .n'/ and N�0.'; p/ D
1X
nD1

Bn.p/ sin .n'/;

(3)

we obtain a system of equations for Pn(p) and Qn(p). Its solution can be written as

P0.p/ D A0.p/

2CP2.0; p/
; Pn.p/ D � �CQ1.n; p/An.p/� CQ2.n; p/Bn.p/

�
Dn.p/;

Qn.p/ D .CP1.n; p/An.p/� CP2.n; p/Bn.p//Dn.p/; (4)

where

Dn.p/ D �
CP1.n; p/ CQ2.n; p/ � CP2.n; p/ CQ1.n; p/

��1
;

CP1.n; p/ D 2 
C2
2n

�
Jn�1.z1.r1; p//

z1.r1; p/
� .nC 1/ Jn.z1.r1; p//

z1.r1; p/
2

�
;

CP2.n; p/ D 2 
C2
2

��
1

2
K32 � n .nC 1/

z1.r1; p/
2

�
Jn.z1.r1; p//C Jn�1.z1.r1; p//
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�
;

CQ1.n; p/ D 4 
C2
2

��
1
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� n .nC 1/

z2.r1; p/
2

�
Jn.z2.r1; p//C Jn�1.z2.r1; p//

z2.r1; p/

�
;

CQ2.n; p/ D 4 
C2
2n

�
Jn�1.z2.r1; p//

z2.r1; p/
� .nC 1/ Jn.z2.r1; p//

z2.r1; p/
2

�
(5)

andK32.p/ D .C3.p/=C2.p//
2.

3.3 Numerical Evaluation of the Analytical Solution

It is evident that the substitution of (2), (4) and (5) into (1) results in quite compli-
cated formulae for the Laplace transforms of desired displacement components the
exact inverse transform of which is practically impossible. The inversion is hindered
not only by the complexity of derived relations but mainly by the presence of branch
points. Hence, the FFT based numerical algorithm in combination with "–algorithm
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Fig. 1 Analytical results of spatial distribution of displacement ux at (a) t D 8�s and (b) t D 40�s

as the sequence accelerator was used for this purpose. To avoid the loss of the
analytical solution accuracy, the multi-precision implementation in Maple language
was used so results of arbitrary precision could be obtained [9].

The numerical evaluation of derived analytical solution was made for the time
interval t 2 h0; 40i �s and for the disc of radius r1 D 20 mm and of the following
material properties: 
 D 1100 kg m�3, � D �1 D �2 D 0:4, � D 10432:9 Pa s�1,
� D 29212:0 Pa s�1, E1 D 3. 603 �109 Pa and E2 D 7. 918 �108 Pa. The boundary
conditions were represented by functions �0.'; t/ D ��0 .H.t/ �H.t � t0// for
' 2 �h˛0; ˛0i and by �0(', t) D 0, where H(t) denotes the Heaviside function in
time. This means that only the pressure impulse of amplitude �0 and of time duration
t0 was assumed in the analysis. The calculations were made for �0 D 106 Pa,
t0 D 2�s and ˛0 D =20.

Figure 1 presents the distribution of the horizontal displacement ux which was
calculated on the basis of ur and u' evaluation. The primary waves propagating
from the loaded area can be clearly seen from Fig. 1a which depicts the situation
at t D 8�s. The final distribution of ux at the end of analysis, which is the result of
primary and reflected waves interaction, is then shown in Fig. 1b.

4 Numerical Simulation and Results Comparison

To verify the correctness of the analytical solution derivation and its evaluation, the
numerical simulation in the finite element software MSC.Marc was carried out. This
approach also helped us to find out the capabilities of used numerical model.

The disc mesh consisted of about 16, 000 four-noded isoparametric elements
of basic size 0.2 �0. 2 mm. The Newmark integration method with time step
2.4 �10 � 8 s was used. The obtained numerical results were then compared with
the analytical ones. The comparison of analytical and numerical results for r D r1
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Fig. 2 Comparison of analytical (gray curves) and numerical (black curves) results for r D r1 and
different values of ' – displacement components (a) ur and (b) u'

is presented in Fig. 2 where time paths of ur and u' for three different values of '
are depicted. It should be emphasized that the angle ' D =20 corresponds right
to the end of loaded rim area. It is obvious that curves representing numerical and
analytical solution are nearly identical. The gray vertical lines in Fig. 2a and b mark
the duration of applied loading. The comparison of results for other values of r has
shown that the smaller radius r is, the better consistency is achieved.

5 Conclusion

This paper presents the analytical solution of the in-plane response of a thin
viscoelastic disc to radial and torsional edge load described by even and odd
functions of angular coordinate, respectively. The solution is evaluated for the case
of an impulse radial load and the results obtained are then compared with those of
numerical simulation. Presented solution can be used as a benchmark solution in the
testing of numerical methods in future. Moreover, the numerical evaluation of the
analytical solution is in many cases more effective than the numerical simulation
based on FEM and hence it can be used in optimization problems requiring multiple
evaluations of desired quantities, e.g., problems of material properties identification
etc. This is the principal direction of future work we want to proceed.

Acknowledgements This work has been supported by the grant GA CR 101/09/P082 and by the
project MSM 4977751303.
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Travelling Waves in Non Linear Elastic Solids
with Multiple Microstructures

Franco Pastrone

Abstract In non classical mechanics naturally arises the problem of the propa-
gation of nonlinear waves in solids with different internal structural scales. Here
we make use of a suitable model of one dimensional microstructured solids to
describe the behavior of internal structures with two different scales. Hence we
have an elastic material composed by a macrostructure, a first microstructure (say
a mesostructure) and a second microstructure at some smaller scale. The choice
of suitable microstrains functions ' and  at the two levels respectively, of the
microdisplacement u, of their time derivatives as strain velocities, allows us to
obtain the field equations via a variational principle. In a particular case a sixth
order PDE is obtained, with characteristic hierarchical structure, where the three
levels hierarchy and the various coefficients may reflect the dominance of one
structural level over the other ones in wave propagation. This equation is integrated
in terms of elliptic functions. Using the same basic model, the case of two concurrent
microstructures is studied.

Keywords Hierarchies of waves • Microstructures • Nonlinear waves

1 One Dimensional Solid with Hierarchical Microstructure

We consider a one-dimensional (1 C 1D) microstructured model with two different
scale levels applied for the microstructure. Instead of the two-scale elastic system,
containing both macro- and microstructures, we introduce a material, which is
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supposed to be a compound of a macrostructure, a first level microstructure and
a second level microstructure at much smaller scale. The last may be interpreted as
a nanostructure, to some extent (see [2, 5, 6]).

Therefore, following the model, we deal with three different scalar functions:
the one for the macrostructure and two for the microstructures, one for each scale
level. The model of a material is the one-dimensional manifold, and we consider
the material coordinates in space x and in time t; and the functions v D v(x, t) for the
macrostructure, 'D'(x, t) and  D (x, t) respectively for the first and the second
scale level in microscale. The macro body is supposed to be purely elastic, and
both the first and second level microstructures satisfy the same generalized elasticity
hypothesis as well, therefore the existence of an internal strain energy is assumed.

A particular choice of the strain energy function W defines different nonlinear
models, see [2]; in this paper we consider it in the following form:

W D 1

2
˛v2x C 1

3
ˇv3x � A1'vx C 1

2
B1'

2 C 1

2
C1'

2
x �A2'x C 1

2
B2 

2 C 1

2
C2 

2
x

(1)

This function is the generalization of the strain energy function for nonlinear elastic
solids with one microstructure level to our case, where the introduction of the cubic
term v3x represents the nonlinear behavior of the matrix.

The field equations can be derived as in [2] via a variational principle:

8̂
<
:̂

vtt D ˛vxx C �

ˇv2x
�
x

�A1'x
I1'tt D C1'xx C A1vx � B1' �A2 x
I2 tt D C2 xx C A2'x � B2 

(2)

where ˛, ˇ and Ai, Bi, Ci (i D 1, 2) denote material constants.
To obtain the governing equation in dimensionless form, it is necessary to

introduce some suitable parameters and constants (see [3]) and two different
parameters ıi, i D 1, 2, characterizing the ratio between the microstructure and the
wave length L, and ", accounting for small but finite elastic strain magnitude:

ı1 D .l1=L/
2; ı2 D .l2=L/

2; " D v0 � 1 (3)

where v0 is the intensity of the initial excitation and the values l1 and l2 represent the
size of the microstructural elements. Introducing the macrostrain �D vx (the term
“strain” is used for brevity only; in fact, it is the longitudinal displacement gradient
component, while expressions for genuine strains are nonlinear with respect to �)
and the dimensionless variables

u D �=v0; X D x=L; T D .c0=L/t
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and substituting them into the previous system, we obtain the following coupled
dimensionless equations:

8̂
ˆ̂̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
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�

 D A�

2

p
ı2

B2
'X C ı2
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�
C �

2  XX � 
I �

2 c
2
0 TT

�

(4)

The slaving principle [5] can now be used for further transformations. This
procedure allows us to write one function in terms of the other; on this way we can
obtain the governing equation for the function u(x, t) only. To this end, we determine
the variable  in terms of ' and its derivatives from (4)3. Then the Eq. 43 can be
used to express ' in terms of derivatives of u. This expression will eventually be
substituted into Eq. 41 to obtain the one differential equation for u.

The resulting equation can be written as:

uTT C ˛1uXX C ˛2.u
2/

XX
C .˛3uXX C ˛4uTT /XX

C .˛5u4X C ˛6uTTXX C ˛7u4T /XX
D 0

(5)

where the ˛i are constant coefficients explicitly defined in [3].
The Eq. 5 above may be considered as the hierarchical equation in terms of u,

where two different levels of microstructure are expressed in five different dispersive
terms, and the higher order terms contain the parameters of the second level of
microstructure.

We have obtained a sixth order PDE that is hardly to be solved explicitly in
general case. However, we will find some exact travelling wave solutions of the PDE
(5), when the equation can be reformulated in terms of the phase variable z D x ˙ Vt
in the corresponding ODE, as follows:

.V 2 C ˛1/u
.II/ C ˛2.u

2/
.II/ C �

˛3 C V 2˛4
�

u.IV/ C �
˛5 C V 2˛6 C V 4˛7

�
u.VI/ D 0

(6)

where V is the velocity of wave propagation.
Following the method introduced by Samsonov in [7], upon the introduc-

tion of z and integration twice with corresponding conditions at infinity j z j !
1 ) u, u0 ! 0 the Eq. 6 may be rewritten as the nonlinear ODE of the fourth order:

u.IV/ C au.II/ C b u2 C cu D 0 (7)
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Fig. 1 a D �8, b D �1:5 for the figure on the left, a D �8, b D C1:5 for the figure on the
right

where obviously:

a D .˛3 C V 2˛4/=�I b D ˛2=�I c D .˛1 C V 2/=�I � D ˛5 C V 2˛6 C V 4˛7
(8)

Following the method described in [7], the exact solution to the ODE (7) in terms
of elliptic functions, containing only poles as the critical singularities, can be found
in the following form:

u D M}2 .xIg2; g3/C S} .xIg2; g3/CK (9)

where the coefficients, M, S, K and invariants gi of the Weierstrass elliptic function
} are defined in [3].

In the appropriate limit the Weierstrass elliptic function} may be further reduced
to the elliptic Jacobi cn � function and, in due course, to the bounded solution u0 in
terms of cosh � 2 function, i.e., to the solitary wave solution, as follows:

u0 D s cosh�4.x/C q cosh�2.x/C pI

p D �c=b D ��18928C 3640a� 31a2

507b
I q D 140.52C a/

13b
I s D �840=b;

(10)

which has a form of the so called “mexican hat” (Fig. 1):
The approach used to obtain these solutions is similar to that introduced and

grounded in [7], and can be applied to explicitly solve different higher order ODE,
e.g., the fifth order KdV and the fifth order mKdV equations.

In the first step from (4)3 the expansion

 D A�

2

p
ı2

B2
'
X

C A�

2

p
ı2ı2

B2
2

�
C �

2 'XXX � 
I �

2 c
4
0'XTT

�
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is obtained. Upon substitution into (4)2, which also is to be expanded, this yields

'DA1v0
B1

u C ı1A1v0
B2
1

�
C �

1 uXX � 
I �

1 c
4
0uTT

�Cı22A1.A
�

2 /
2v0

B2
1B

2
2

�
C �

2 uXXXX � 
I �

2 c
4
0uXXTT

�

Finally this expression is inserted in (4)1 resulting in the partial differential equation

uTT D
�
˛"LB1 C A21v0
"L
c40B1

�
uXX C ˇ"L


c40
.u2/

XX
� ı1A

2
1v0

"L
c40B
2
1

�
C �

1 uXX � 
I �

1 c
4
0uTT

�
XX

C ı22A
2
1.A

�

2 /
2v0

"L
c40B
2
1B

2
2

�
C �

2 uXX � 
I �

2 c
4
0uTT

�
XXXX

2 Concurrent Microstructures

Instead of a hierarchy of microstructures, one can be interested in concurrent
microstructures, as introduced in [1], namely in two, or more, microstructures which
act at the same scale level and interact with the macrostructure as well. We can
obtain the fiels equations as done before just introducing a different expression of
the strain energy function, for instance:

W D 1

2
˛v2x C 1

3
ˇv3x CA1'vx C A2 vx C 1

2
B1'

2 C 1

2
C1'

2
x C A12' 

C 1

2
B2 

2 C 1

2
C2 

2
x (11)

where ' and  denote the microstrains of the two concurrent microstructures.
Hence the field equations read:

8̂<
:̂

vtt D ˛vxx C ˇ.v2x/x C A1'x C A2 x

I1'tt D C1'xx �A1vx � B1' �A12 
I2 tt D C2 xx� � A2vx � B2 �A12'

(12)

where ˛, Ai, Bi, Ci, A12 (i D 1, 2) denote material constants.
With the substitution v0 u D vx, from (12)1 we derive:


v0utt D ˛v0uxx C ˇv20.u
2/xx C A1'xx C A2 xx: (13)
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Using the change of parameters already recalled in the previous Section we can
obtain the dimensionless equations

8̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂:


v0c20
L

uTT D ˛
v0
L2

uXX C ˇv20
L2

�
u2
�

XX
C A�

1 l1

L2
'XX C A�

2 l2

L2
 XX

B1' CA12 D �A�

1 l1v0u C l21
L2

�
C �

1 'XX � 
I �

1 c
2
0'TT

�

A12' C B2 D �A�

2 l2v0u C l22
L2

�
C �

2  XX � 
I �

2 c
2
0 TT

�
(14)

This system can be re-written in the simpler formal way:
8̂
<̂
ˆ̂:

uTT D ˛1uXX C ˇ1
�
u2
�

XX
C ˛2'XX C ˛3 XX

B1' C A12 D ˚

A12' C B2 D �

(15)

with the obvious meaning of the coefficients ˛1 and ˇ1 and of the right-hand terms
in (15)2;3 ˚ and � . Iff B1B2 � A212 ¤ 0, the algebraic system (15)2; 3 admits a
unique solution and ' and  are linear combinations of ˚ and � .

Now we have two possibilities:

1. A12 D 0, the concurrent microstructures are fully independent. This case has
already been briefly studied in [1], where the equations for the macro and micro
structures have been obtained neglecting the cubic term in W. We can add here
that, using the slaving principle, one can reach an approximate equation in u only:


v0c20
L

uTT D
"
˛

v0
L2

� .A�

1 l1/
2

L2
v0 � .A�

2 l2/
2

L2

#
uXX C ˇv20

L2

�
u2
�

XX
(16)

which is a well known nonlinear PDE widely studied elsewhere.
2. A12 ¤ 0, the microstructures are coupled. In a very similar way, we obtain a

leading equation of the type:

uTT � AuXX D ˇv20
L2

�
u2
�

XX
(17)

where A briefly denotes the set of coefficients of uXX analogous to the square
brackets in (16), but it contains A12, namely the coupling constant.

Another possibility is to write the system of three second order equations (15)
as an equivalent sixth order equation in u and generalize the procedure followed in
[4, 5], for example.
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Indeed one can imagine higher order coupling terms introducing in W products
of derivatives of ' and  , namely terms containing 'x ,  x', 'x x, but for need
of brevity we do not go further in this direction.

3 Conclusions

The problem of the propagation of nonlinear waves in solids with different internal
structural scales is studied. The general model developed in [2] and [6] has been
used. In the case of one microstructure a sixth order PDE is obtained and the
hierarchy of waves is clearly obtained. Using the same basic model, the case of
two concurrent microstructures is studied and by means of the slaving principle one
can reach meaningful approximate equations.

References

1. Berezovski, A., Engelbrecht, J., Peets, T.: Multiscale modeling of microstrucutured solids.
Mech. Res. Commun. 37(6), 531 (2010)

2. Casasso, A., Pastrone, F.: Wave propagation in solids with vectorial microstructure. Wave
Motion 47, 358 (2010)

3. Casasso, A., Pastrone, F., Samsonov, A.M.: Travelling waves in microstructure as the exact
solutions to the 6th order nonlinear equation. Acoust. Phys. 56(6), 871 (2010)

4. Engelbrecht, J.: Complexity in mechanics. Rend. Sem. Matme. Univ. Pol. Torino 67(3), 293
(2009)

5. Engelbrecht, J., Pastrone, F., Braun, M., Berezovski, A.: Hierarchy of waves in nonclassical
materials. In: Delsanto, P.P. (ed.) Universality of Nonclassical Nonlinearity, pp. 29–48.
Springer, New York (2007)

6. Pastrone, F.: Wave propagation in microstructured solids. Math. Mech. Solids 10, 349 (2005)
7. Samsonov, A.M.: Strain Solitons in Solids and How to Construct Them. Chapman and

Hall/CRC, Boca Raton (2001)



Parallel Implementation of Triangular Cellular
Automata for Computing Two-Dimensional
Elastodynamic Response on Arbitrary Domains

Michael J. Leamy and Adam C. Springer

Abstract In this research we report parallel implementation of a Cellular
Automata-based simulation tool for computing elastodynamic response on complex,
two-dimensional domains. Elastodynamic simulation using Cellular Automata (CA)
has recently been presented as an alternative, inherently object-oriented technique
for accurately and efficiently computing linear and nonlinear wave propagation in
arbitrarily-shaped geometries. The local, autonomous nature of the method should
lead to straight-forward and efficient parallelization. We address this notion on
symmetric multiprocessor (SMP) hardware using a Java-based object-oriented CA
code implementing triangular state machines (i.e., automata) and the MPI bindings
written in Java (MPJ Express). We use MPJ Express to reconfigure our existing
CA code to distribute a domain’s automata to cores present on a dual quad-core
shared-memory system (eight total processors). We note that this message passing
parallelization strategy is directly applicable to computer clustered computing,
which will be the focus of follow-on research. Results on the shared memory
platform indicate nearly-ideal, linear speed-up. We conclude that the CA-based
elastodynamic simulator is easily configured to run in parallel, and yields excellent
speed-up on SMP hardware.

Keywords Wave propagation • Cellular automata • Computational mechanics
• Distributed computing • MPI
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J. Náprstek et al. (eds.), Vibration Problems ICOVP 2011: The 10th International
Conference on Vibration Problems, Springer Proceedings in Physics 139,
DOI 10.1007/978-94-007-2069-5 98, © Springer ScienceCBusiness Media B.V. 2011

731

Michael.Leamy@me.gatech.edu
acspringer@me.com


732 M.J. Leamy and A.C. Springer

1 Introduction

The cellular automata paradigm [1, 2] has recently been adopted to simulate wave
propagation in two-dimensional linear and nonlinear elastic domains of arbitrary
shape [3, 4]. The approach shares an idea central to all cellular automata modeling,
which is domain discretization using autonomous cells (usually rectangular or
hexagonal) whose state is updated via simple rules. In the cited elastodynamic work,
a rule set for non-uniform triangular cells has been developed which allows domains
of multiply-connected, arbitrary shape to be simulated efficiently and accurately. In
fact, the method has been shown to effectively avoid spurious oscillations at the
front of sharp wave fronts without the need for specialized treatment (unlike other
methods – e.g., the finite element method). The method is briefly reviewed next –
full details can be found in the cited work, and Java source code can be found on the
first author’s research web page.

Figure 1 provides a graphical overview of the method. Non-uniform triangles are
employed to discretize a domain into multiple state machines termed automata. The
rule set governing the temporal update of each cell is first arrived at using a balance
of momentum applied to a target cell which sums forces present on each face. In
doing so, the computation of strains is necessary, which is done by categorizing the
strains as either Type I (derivatives in the normal direction) or Type II (tangential
derivatives). Numerical evaluation of the spatial derivatives then follows from
simple finite difference expressions using the appropriate states of neighboring
automata. By choice, we use only von Neumann and what we term secondary von
Neumann neighbors. Finally, a forward-Euler time integration of the momentum

Fig. 1 Left: target cell (or target automaton) geometry with neighbors identified. Top Right:
multiply-connected domain with automata mesh. Bottom Right: rectangular automata illustrating
strains needed for rule set development
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Fig. 2 Comparison of x-displacement results at a snapshot in time (finite element [bottom] vs.
cellular automata [top]) for a sharply loaded domain with an interior hole – see Fig. 1 for the
meshed domain. The left subfigures employ an isoperimetric perspective, while the right subfigures
employ a perspective from the y-axis. The material simulated is aluminum, and the loading occurs
on the left boundary in the form of an imposed Dirichlet boundary condition at the start of the
simulation (Figure reproduced from [3])

equation yields the target cell’s explicit rule set. Simulation proceeds by requesting
that each automata update their state (displacement and velocity components) at
each time step. Note that the method relies solely on local interactions, avoids partial
differential equations and their complexity, and is fully object-oriented. In fact, the
traditional process of assembling and solving a matrix set of equations is traded for
requests to the automata objects to update their state.

Simulation results from the elastodynamic CA approach have been compared to
those from other methods, including commercially-available finite element simu-
lators, and excellent agreement has been documented [3, 4]. For smooth loading
histories, the two methods yield nearly identical results. For sharply discontinuous
loading, such as experienced during impact, the CA approach avoids spurious
oscillations (see Fig. 2), which are a well-known artifact in interpolation-based
approaches such as the finite element method. For this reason, it appears the CA
method is particularly attractive for studying elastodynamic problems where loading
results in sharp wave fronts.
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2 Parallelization Approach and Results

The Message Passing Interface (MPI) was chosen for parallelizing the CA-based
elastodynamic simulator on both symmetric multiprocessor (SMP) shared-memory
and distributed-memory clusters. MPI is the de facto standard for passing messages
(i.e., data), which is the central enabler of distributed computing. While C imple-
mentations of MPI are common, Java implementations are not; furthermore, the Java
language has received little notice as a serious High Performance Computing (HPC)
language. To justify using Java, we first performed a preliminary assessment of its
HPC potential with the example of computing Pi using a Monte Carlo technique.

The Monte Carlo simulation of Pi was written in both Java and C so that we
could compare the runtime performance of both C-based MPI and MPJ Express.
The approach employs randomly-generated numbers on the interval [0,1] for both
x and y coordinates, and then tallies a one if the pair lies inside of the top right
quadrant of the unit circle, and a zero otherwise. Note that the probability of being
inside the circle is ¼ of Pi. After n iterations, the estimate for Pi is therefore four
times the total tally divided by n. By performing ‘inner’ iterations in which each
processor generates n random (x,y) pairs, and m ‘outer’ iterations in which each
processor reports back to a master processor their Pi estimate after performing an
inner iteration, we can control the ratio of time computing Pi to the time passing
messages. Thus the comparison captures both the inherit calculation speeds of C
and Java, and the message passing overheads.

The Monte Carlo estimates of Pi were run on a 64-bit Windows 7 machine with
two Intel Xeon E5506 quad-core processors and 24 GB of available RAM. The C
simulation employed the MPICH2 implementation of MPI as well as Cygwin, a
Linux emulator, to facilitate message passing [5]. The Java version utilizes MPJ
Express [6] and runs natively through the NetBeans IDE. The coded algorithms
are nearly identical in terms of the number of lines of code needed, variable types
employed, and overall program flow. Figure 3 illustrates scaling results from the
simulation. The graph on left shows the weak scaling comparison (fixed problem
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Fig. 4 Left: Graphical depiction of the parallel calculation flow. Right: Speedup as a function of
cores employed on a multi-core shared memory system

size per core) using ten million iterations per core. Strong scaling is also provided
and is used to illustrate the manner in which the solution time varies with the number
of cores employed for a fixed total problem size. We again used ten million iterations
as our problem size. The results indicate that, as implemented, Java performs on
the same order, or better, than C. This conclusion has also been reached in studies
conducted by the MPJ Express developers [6].

Development of a distributed CA algorithm amounts to splitting an array of
automata objects into ‘chunks’ which can then be computed on each processor.
Since each cell (or automaton) is a Java object encapsulating data and methods
(e.g., pointers to neighbors and a step method), the entire object can be passed
to a processor as a single entity. After completing a state update (i.e., a step), the
object requires only that neighbor states residing on other processors be passed to it
before completing another state update. We accomplish neighbor state sharing using
blocking send/receive MPJ Express communications. Communications are often the
bottleneck in a parallelization strategy due to their non-negligible latency. In order
to decrease the number of communications per processor, we populate cells on a
processor by exploiting the neighbor information already stored by the CA cells in
such a way that when a cell is added to a processor, its neighbor cells are next added
to the processor. These neighbor cells are also placed in a first-in, first-out queue
such that their neighbors can be added to the same processor. This process repeats
until the processor has a predetermined number of cells. The straight-forward CA
parallelization approach described can be contrasted with traditional elastodynamic
simulation methods, such as most finite element approaches, which require a sparse
linear system solver and complex decomposition schemes prior to HPC deployment
[7]. Figure 4 provides a graphical depiction of one version of this parallel algorithm
where the Master processor coordinates all sends and receives.

On a symmetric multi-core, shared memory system, we analyzed the perfor-
mance of our algorithm using a ratio of the best sequential running time to the
parallel run time. Figure 4 illustrates the achieved speedup as a function of the
number of employed cores while simulating just over 20,000 cells. For comparison
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purposes, the ideal speedup curve is also provided. For low numbers of processors,
the CA speedup is nearly ideal. With increasing number of processors, the ratio
of MPI communications to cells processed increases, and the achieved speedup
deviates from ideal. However, even when employing the full eight processors, and
thus competing for computing resources with the operating system, the speedup is a
very respectable 6.7 (ideal being 8.0). It is expected that inexpensive machines with
processors well in excess of eight will be on the market in the near future, and based
on the presented results, near-ideal speedup of the CA elastodynamic simulator can
be expected when employing a large proportion of those processors.

3 Concluding Remarks

This paper describes a new simulation technique in solid mechanics for comput-
ing elastodynamic response in arbitrary two-dimensional domains using multiple
processors. The paper documents near-linear speedup with respect to the number
of available processors on shared memory systems. The developed method is
notable for its straight-forward formulation based on local interactions, its ability
to accurately simulate sharp wave fronts, and its compatibility with both modern
object-oriented software paradigms and parallel processing techniques. Follow-on
work will address performance on distributed-memory computer clusters, and may
also consider distributed computing using GPU-based systems.
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Wave Localisation in Structured Elastic Plates

S.G. Haslinger, N.V. Movchan, A.B. Movchan, and R.C. McPhedran

Abstract The paper presents the results of recent work on the modelling of
flexural waves in elastic plates constrained periodically by rigid pins. It includes an
outline of the analysis of the transmission problem for a stack of rigid pin gratings
incorporating lateral shifts. We use a recurrence algorithm to determine reflection
and transmission matrices which characterise the filtering of plane waves by the
structured interface. The representations of scattered fields use the quasi-periodic
Green’s function for a single grating. Both propagating and evanescent fields are
taken into account. A special attention is given to the analysis of trapped modes
which may exist within the system of rigid pin gratings. Analytical findings are
accompanied by numerical examples.

Keywords Biharmonic operator • Flexural waves • Trapped waves

1 Introduction: Geometry and Governing Equations

The paper extends the results of the earlier work [1, 2] on transmission of time-
harmonic waves by periodic gratings. The emphasis here is on the case of flexural
vibrations of thin elastic plates constrained periodically by several rows of rigid
pins acting as a structured interface. The phenomenon we are interested in is the
enhancement in transmission by the system, and its dependence on the internal
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Fig. 1 Interface consisting of
a stack of two gratings of
rigid pins with relative
horizontal shift �. The
periodicity of each grating is
d and the separation of the
gratings is denoted by �.
Plane waves are incident on
the upper grating with angle
of incidence � i

d

i

y

d

x

structure of the interface. In this analysis we also make a connection with the work
[3], which contains approximations of “trapped modes” within a pair of gratings in
an elastic plate.

We consider a thin elastic plate containing periodic gratings. Each grating
consists of an infinite number of rigid pins arranged periodically with spacing d
apart. A finite number of these gratings are arranged parallel to one another, with
separation �. In this paper we study vertical (varying �) and horizontal shifts
(varying �) of these gratings and compare results with those derived in [2] for
stacks in which all gratings are directly below one another. A pair of shifted gratings
representing a structured interface is shown in Fig. 1.

We model the propagation of flexural waves through the structured interface.
We consider plane waves that propagate freely through the homogeneous material
until they reach the stack of gratings whereupon they are reflected and transmitted.
We derive expressions for the reflected and transmitted fields, in which we allow
for both evanescent and propagating waves. Special attention is given to vibration
modes, which enhance transmittance across the stack of gratings.

1.1 Governing Equations

Let W be a solution of the scattering problem for the biharmonic operator (see [2]):

�2W.x/� ˇ4W.x/ D 0; (1)

where ˇ2 D !
p

h=D with D D Eh3=.12.1 � �2// (the flexural rigidity of the

plate), 
 is the mass density, ! is the angular frequency, and h is the plate thickness.
In addition, E is the Young modulus and � is the Poisson ratio.
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The boundary conditions on the circular boundaries of the inclusions are
Dirichlet clamping conditions:

W

ˇ̌
ˇ̌
ˇ
rDa

D 0;
@W

@r

ˇ̌
ˇ̌
ˇ
rDa

D 0: (2)

In what follows, we consider the limit as a ! 0, corresponding to an array of rigid
pins constraining the plate.

For the grating stack problem, the displacement field W is the sum of the incident
wave and the scattered field (to be determined):

W D W .i/ CW .s/: (3)

The field W satisfies the Bloch quasi-periodicity condition along the horizontal
x-axis:

W.x Cmde.1// D W.x/ei˛0md ; (4)

where m 2 ZZ, d is the period, and ˛0 is the Bloch parameter, ˛0 Dˇ sin � i, where
� i is the angle of incidence (see Fig. 1).

The solution of (1) is conveniently expressed in the form

W.r; �/ D WH.r; �/CWM.r; �/; (5)

where WH and WM satisfy the Helmholtz and modified Helmholtz equations
respectively,

.�C ˇ2/WH D 0; .� � ˇ2/WM D 0: (6)

The incident field is represented by plane waves of two types:

1. Propagating (and evanescent) solution of the Helmholtz equation

Wi; H .x/ D 1pj�0j
expfi.˛0x � �0y/g; (7)

where ˛20 C�20 D ˇ2. Here �0 is real and positive for a propagating solution. For
the evanescent solution, �0 is pure imaginary, with positive imaginary part.

2. Evanescent solution of the modified Helmholtz equation

Wi; M .x/ D 1pj O�0j
expfi.˛0x � O�0y/g; (8)

where ˛20 C O�20 D �ˇ2; O�0 D i�0; �0 > 0.

As in [2], we also use similar plane wave series expansions to describe the reflected
and transmitted waves.
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2 Recurrence Algorithm for Shifted Gratings

We follow a similar procedure to that outlined in [2]. For a single grating, we
define the matrices R ˙ and T ˙ to characterise the reflection and transmission of
an incident wave meeting the grating from above (C) or below (�).

R˙ D
 

RḢH RḢM

RṀH RṀM

!
; T˙ D

 
TḢH TḢM
TṀH TṀM

!
: (9)

We then build a stack of gratings by placing an additional grating on top of the
preceding layers.

2.1 Propagation Matrices for Shifted Gratings

When a grating is a component of a stack, it is convenient to adjust the phase
origin to halfway between successive grating elements using propagation matrices.
We define two propagation matrices, one for the vertical direction and the other to
account for the horizontal shifts. With the phase origins for reflected and transmitted
fields placed at y D ˙�=2 and x D �=2 where � represents the relative horizontal
shift, the propagation matrices are defined as follows:

P D
�
P 0

0 P

�
; where P D Œıtpe

i Q�p�=2�; (10)

with Q�p D�p if p corresponds to a Helmholtz-type wave, and Q�p D O�p if p
corresponds to a plane wave of modified Helmholtz type, and

Q D
�
Q 0

0 Q

�
; with Q D Œıtpe

�i˛p�=2�; (11)

where ˛p D ˛0 C 2p

d
varies with the order p of the wave, with p being an integer.

2.2 Recurrence Relations for a Stack of Gratings

For our recurrence procedure, we have similar relations for the reflection and
transmission coefficients for a stack of s C 1 gratings (see [2]), but the introduction
of Q and its conjugate affect the forms of the matrices R ˙ and T ˙ with phase
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origins at x D �=2 and y D ˙�=2. We use three pairs of matrices in the recurrence
procedure and subsequent numerical calculations:

RC
1 D QPRC

1 PQ and T C
1 D QPTC

1 PQ;

R�
1 D QPR�

1 PQ and T �
1 D QPT�

1 PQ;

RC
s D QPRC

s PQ and T C
s D QPTC

s PQ: (12)

Here the subscript s corresponds to a stack consisting of s gratings. The above
matrices are used to derive the following recurrence relations:

RC
sC1 D RC

1 C T �
1 RC

s .I � R�
1 RC

s /
�1

T C
1 ; (13)

T C
sC1 D T C

s .I � R�
1 RC

s /
�1

T C
1 ; (14)

where Ri̇ , T ˙
i , P , Q, P and Q are defined by (10)–(12).

The recurrence procedure without the horizontal shifts is described in detail in
[2]. To evaluate the matrices RC

sC1, TC
sC1, we re-phase with Q accordingly.

3 Conclusion: Trapped Modes for a Pair of Gratings

In [2], attention was given to the existence of trapped modes between a pair of
gratings, characterised by very sharp transmittance at a certain frequency. The model
computation was carried out for an angle of incidence of 30 ı for a symmetrical pair
of gratings where the rigid pins were aligned directly above one another. Here we
investigate how shifting the gratings relative to one another affects the frequency
at which we observe enhanced transmittance across the stack. We also note that in
[3], analysis was conducted to determine explicit representations for trapped modes
between a pair of unshifted gratings, for propagating waves only.

In Fig. 2, we show the transmitted energy as a function of ˇ for a pair of gratings
of rigid pins with unit periodicity, for various horizontal shifts � of one of the layers.
For all of the shifts (dotted line represents no shift, solid line is a shift of 0. 2d and
thick line is a shift of 0. 4d), a very sharp transmittance is observed. This enhanced
transmittance for a pair of gratings corresponds to a trapped mode. The value ˇ

�

of ˇ, for which the trapped mode occurs, increases with increasing shift up to
half of the period (� D 0. 5d), where it attains its maximum. Its minimum (given
in [2]) corresponds to the case of zero shift. The frequency ˇ

�
as a function of

the horizontal shift � is shown in Fig. 3. The curve is symmetric about �D 0. 5, as
expected for a pair of identical gratings incorporating a horizontal shift.

Further analysis will include investigating the quality factors of the resonant
transmittances for various shifts. This will determine the internal structure of
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Fig. 2 (Left) Normalised transmitted energy
P jTpj2 as a function of ˇ for pairs of shifted gratings

of rigid pins with �D 0, 0. 2d, 0. 4d, and normalised reflected energy for a single grating (dashed
line). For all gratings, d D 1, �D 1 and � i D 30ı. The unshifted case (dotted line) has the lowest
frequency corresponding to enhanced transmittance. As the shift � increases from 0. 2d (solid line)
to 0. 4d (thick line), this frequency ˇ
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Fig. 3 The frequency ˇ
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of enhanced transmittance versus horizontal shift �

the interface required to produce maximum transmittance. We shall study stacks
incorporating more gratings and various alternative arrangements of the gratings
which may provide interesting applications in wave-guiding and filtering of flexural
waves in plates.
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Time-Delayed Feedback Control for Flutter
of Supersonic Aircraft Wing

Shu Zhang, Yu Huang, and Jian Xu

Abstract An active control technique called servo delayed feedback control is
proposed to control the flutter of supersonic aircraft wing. It’s motivated to increase
the critical flow velocity. Firstly, the servo delayed feedback control is designed
based on a two-dimensional airfoil so that delayed differential equations are
modelled for the controlled system under consideration. Then, the stability of the
system without time delay and with time delayed feedback control are considered
analytically and flutter boundary of the parameters in the delayed feedback control
system is predicted when time delay varies. Finally, numerical simulation for
time domain with MATLAB/SIMULINK software is made to demonstrate the
effectiveness of the theoretical result. The results show that, critical flow velocity
can be increased by regulating the quantity of time delay and the provided strategy
of delayed feedback to control the flutter in supersonic aircraft wing system is not
only valid but also easily applied to engineering structures.

Keywords Flutter • Stability • Supersonic • Time delayed feedback control

1 Introduction

Flutter instability, which takes place when hypersonic vehicle achieves supersonic
long-range flights, may decrease aircraft performance [1]. Therefore, studying the
flutter properties and control is in great significance. Aeroelasticity is the field that
describes the response and stability properties of physical systems under the interac-
tion of structural, inertial and aerodynamic forces. Various aerodynamic loads have
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been developed over the past decades [2–4]. For example, the Theodorsen function
or the Wagner function is used by many authors to model the aerodynamic loads
[5–7].

If one considers time delay in a control loop, it is well known that such delay has
an important effect on dynamical behaviour [8–10]. Librescu et al. [11] considered
the open/closed-loop aeroelasticity of 2-D lifting surfaces in an incompressible flow
field and the time delay in a control loop. They emphasized the implications of the
time delay on the feedback control and its complex role. Their result represented
that for small time delays the system remained stable, but with increasing delay
the response became unbounded, indicated that aeroelastic instability occurred.
Following Librescu’s work, Zhao [12] investigated also the traditional models in
aero-elastic control for a 2-dof airfoil in low speed flow field. Both Librescu’s and
Zhao’s works indicated that the delay in the control loop could induce the instability
of the airfoil which resulted in the flutter. However, in our past research, it was found
that delay could be taken as a variable parameter or an active control parameter.
Thus, time delay may be used as a simple but efficient measure to control motions
of a system for different applications [8, 13]. Motivated by such idea, we plan to
show that the delay in the control loop may also benefit for flutter suppression of
the airfoil and provide the method to determine the range of the delay to realize the
control.

2 Aero-Elastic Model with Delayed Feedback Control

The structure in which airfoil oscillates in pitch and plunge is shown in Fig. 1.
In this paper, we assume that the flow is incompressible to simplify the theoretical

analysis so that we can focus on the possibility of suppressing the flutter by utilizing
the delay in supersonic flights. Assume that the actuator is located in the place

α

V

b

h

2b

Kα

bxα

x

z

Kh

ba
2th

Fig. 1 Scheme for a 2-dof airfoil, where V is the flow velocity, b the semi-chord length, ba the
distance from the elastic axis Z to mid-chord, bx˛ the distance of the elastic axis from center of
mass, the plunging deflection is denoted by h, positive down ward direction, the pitching angle is
˛, positive nose up and kh and k˛ are plunging and torsional stiffnesses, respectively



Time-Delayed Feedback Control for Flutter of Supersonic Aircraft Wing 749

which has a distance from mid-chord, denoted by x1 and the control strategy is
implemented by the plunging velocity as a time-delayed feedback signal. Then the
aero-elastic model with delayed feedback control for the airfoil in supersonic flow
field is given by

8̂̂
ˆ̂̂<
ˆ̂̂̂
:̂

m RhCmx˛b R̨ C khh D �4c1
b
� Ph � ba P̨ C V˛

	
C gv

Ph.t � �/;

mx˛b RhCmr2˛ R̨ C k˛˛ D �4c1
b2


b

3
P̨ � a

� Ph � ba P̨ C V˛
	�

C gv .x1 � ba/ Ph .t � �/ ;

(1)

where m is airfoil mass, c1 the speed of sound, 
 the air density, V D Mac1, r˛
the radius of inertia, gv the velocity feedback gain and � � 0 the time delay. (1) can
be rewritten as

PX D A .Ma/X C B .gv/X.t � �/; (2)

where X D �
h ˛ Ph P̨ �T

, A and B are given by the coefficients in (1).

3 Stability Analysis

It follows from (1) that X� D .0; 0; 0; 0/ is an equilibrium. To investigate the
stability of the trivial equilibrium, substituting X D NXe�t into (2) yields

D .�; �/ D det
�
�I � A .Ma/ � B .gv/ e

��� � D H .�/C L.�/ e��� D 0 (3)

where H.�/ and L.�/ are polynomial functions of �. For the case � D 0, one has
D .�; �/ D H .�/ C L.�/. Then, one can employ the Routh-Hurwitz criterion to
analyze the stability of the equilibrium and determine the critical value of Ma.

Notice that we are exploring the possibility that whether there exist some values
of the delay and the feedback gain such that the critical velocity for the airfoil
flutter can be increased. Thus, we assume that for � D 0, there is a pair of complex
eigenvalues on the right half plane and other eigenvalues locate in the left half plane.
We hope that the complex eigenvalue in the right half plane crosses imaginary
axis back to the left half plane and the other eigenvalues still locate in the left
half plane for � ¤ 0. To this end, assuming that one of the eigenvalues is given
by � D i! and substituting it into (3), one may solve that sin .!�/ D �1.!/ and
cos .!�/ D �2.!/. Using sin2 .!�/ C cos2 .!�/ D 1 yields F .!/ D 0 where
F .!/ is a polynomial function of!. It should be noticed that there exist positive real
roots of! forD .i!; �/ D 0 and � � 0 if and only if F .!/ D 0. Substituting such!
into sin .!�/ D �1.!/, one can obtain the critical value of the delay, denoted by �c ,
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which is expressed as a function of the critical velocity. For � D �c , the complex
eigenvalues mentioned above cross the imaginary axis and enter the left half plane
when Re

�
d�
d� j�c

�
< 0.

4 Numerical Examples

To illustrate that the provided method mentioned above is feasible, we give some
numerical examples in this section. The parameters in use for the numerical
simulation are taken from [6] as follows:m D 209:95kg, c1 D 340m=s, ˛ D 0:15,
r˛ D 0:5m, b D 0:5m, ba D 0:075m, 
 D 1:2256kg=m3, kh D 1552788N=m,
k˛ D 956584Nm=rad, bx˛ D 0:125m, x1 D �0:5m.

For the case without the delayed feedback (� D 0), using Routh-Hurwitz
criterion, one can obtain that the critical velocity for the flutter of the airfoil is
3.1Ma. The eigenvalues of (1) change with the variation of the flight speed, as
shown in Fig. 2a. Using SIMULINK package in software MATLAB, we plot the
time history of the plunging deflection and the pitching angle for Ma D 2.8, 3.1 and
3.2, respectively, as shown in Fig. 2b, c.
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Fig. 2 Distributions of eigenvalues of Eq. 1 in (a) and time history of Eq. 1 for (b) plunging
deflection and (c) the pitching angle, all figures for � D 0
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Fig. 3 Critical boundary in
(Ma, � ), where stable and
unstable regions are shown
for gv D �270

0
-0.025

0.000

0.025

-0.04

0.00

0.04

-0.1

0.0

0.1
t =0.0287

t =0.03 t =0.03

t =0.0355 t =0.0355

t =0.0287

-0.030

0.000

0.030

-0.05

0.00

0.05

-0.1

0.0

0.1

1 2 3
t

4 5 0 1 2 3
t

4 5

h
h

h

a
a

a

Fig. 4 Time history plots of (1) by SIMULINK for the system with delayed feedback control
when gv D �270, Ma D 3.8 for plunging deflection (left) and pitching angle (right)

For the case � ¤ 0, one can establish the relation between the critical delay and
the critical flight velocity by the procedure in section “Stability Analysis” for any
given feedback gain, as shown in Fig. 3.

It can be seen from Fig. 3 that a suitable choice for values of the delay can
increase the flight critical velocity efficiently. The trivial equilibrium is unstable in
regions (1) and (2), and stable in region (3). To verify the results in Fig. 3, we plot
the time history of the plunging deflection and the pitching angle for different values
of the delay which locate in three regions of Fig. 3, using SIMULINK package in
software MATLAB, as shown in Fig. 4. It follows from Fig. 4 that the analytical
result is in good agreement with the numerical simulation.



752 S. Zhang et al.

5 Conclusions

A servo delayed feedback loop is proposed to control the flutter of the 2-dof airfoil.
A control strategy, i.e. servo delayed feedback control, is designed based on a
two-dimensional airfoil, so that delayed differential equations are modelled for the
controlled system under consideration. We show that the delay can be considered
as an active control parameter to increase the critical flight velocity. The stability
of the system under the feedback control without time-delay and time delayed
feedback control are considered analytically and flutter boundary of the parameters
is predicted when time delay varies. The numerical simulation for time domain with
MATLAB/SIMULINK software is performed to demonstrate the effectiveness of
the theoretical result.

Acknowledgments The research work reported here was made possible by the State Key Program
of National Natural Science of China under Grant No. 11032009 and Shanghai Leading Academic
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Investigation of the Flutter Suppression
by Fuzzy Logic Control for Hypersonic Wing

Dongxu Li, Qing Luo, and Rui Xu

Abstract This paper presents a fundamental study of flutter characteristics and
control performance of an aeroelastic system based on a two-dimensional double
wedge wing in the hypersonic regime. Dynamic equations were established based
on the modified third order nonlinear piston theory and some nonlinear structural
effects are also included. A set of important parameters are observed. And then
aeroelastic control law is designed to suppress the amplitude of the LCOs for the
system in the sub/supercritical speed range by applying fuzzy logic control on
the input of the deflection of the flap. The overall effects of the parameters on the
aeroelastic system were outlined. Nonlinear aeroelastic responses in the open- and
closed-loop system are obtained through numerical methods. The simulations show
fuzzy logic control methods are effective in suppressing flutter and provide a smart
approach for this complicated system.

Keywords Aeroelasticity • LCO • Hypersonic • Nonlinear • Fuzzy logic
control

1 Introduction

Nowadays, hypersonic aeroelasticity are becoming a hot topic since the great
demands of the high speed flight. Flutter, which belongs to dynamic aeroelastic
area, is the most concerned issue as it can cause catastrophic problems to the
whole vehicle. The system can exhibit different dynamic responses, such as Limit
Cycle Oscillations (LCO) or chaotic vibration, owning to the existence of the
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nonlinearities [1]. The contribution of the nonlinearities can be either detrimental
or beneficial [2]. Determination of the flutter boundary and forecast of the dynamic
behavior around the critical states [3] are the main interests of the aeroelasticity
scholars in the past [4]. Librescu [5] studied the dynamic behavior of a 2-D wing
model in the vicinity of the flutter boundary and derived the expression of computing
the linear flutter speed through Hopf-bifurcation theory. Abbas [6] had researched
systematically the bifurcation of the LCOs considering both the structural and
aerodynamic nonlinearities and presented the evolution of the complex dynamic
response under variable flight speed. Active flutter control has been studied widely
[4] in the recent days because of the limitations of the passive control methods, such
as penalties of mass or structure [2]. As a kind of smart control methodology, fuzzy
logic control usually has advantages over other control methods when the precise
statements of the system can’t be given out [7]. G. Karpouzian [8] implemented a
non-adaptive fuzzy logic controller on a two degree airfoil, and revealed its power
of solving inherently complex problems.

In this paper, general equations of aeroelastic model of 2-D wing with a flap
in hypersonic regime are derived using the piston theory. Parametric studies are
achieved by comparing amplitude of the LCOs of different system parameters
that characterize the whole system. Finally, a kind of fuzzy logic control strategy
is implemented on the aeroelastic system, and the simulation demonstrated the
effectiveness and robustness of this smart control methodology.

2 Aeroelastic Model

Figure 1 shows typical 2-D section of a hypersonic wing. Using the Lagrange
Equations, the aeroelastic dynamic equations can be found as follows [9]. The
inertial effects of the control surface are ignored. Thus the flap is not involved in the
dynamics of the wing but simply as an excitation device. The closed-loop aeroelastic

Fig. 1 Diamond section of hypersonic wing with a flap
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governing equations of a 2-D wing featuring plunging-pitching -flapping motion in
dimensionless form are,

R�.�/C �˛ R̨ .�/C 2$h

�
!0

V

�
P�.�/C

�
!0

V

�2
�.�/ D la.�/C lc.�/

�
�˛

r˛2

�
R� .�/C R̨ .�/C 2$˛

V
P̨ .�/C 1

V 2
˛ .�/C �

V 2
˛3 .�/ D ma.�/Cmc.�/ (1)

where � .�/ D h.t/=b is the plunging displacement (positive downward), ˛ is the
pitching angle (positive nose up), � D U1t=b, V D U1=b!˛ is the flight speed
(or flow velocity); !0 D !h=!˛ is the ratio of the plunging frequency and pitching
frequency, � is reduced mass ratio; �˛ static unbalance about the elastic axis, r˛ is
the gyration radius of the wing section; $h D ch=2m!h and $˛ D c˛=2I˛!˛ are the
linear plunging and pitching damping coefficients; la and lc are aerodynamic and
control force,ma andmc aerodynamic and control moment, respectively.

Considering there are nonlinearities of cubic stiffness in the pitching degree
while the plunging stiffness is linear. Pitching moment can be expressed as [5],

M˛ D K˛˛.t/C �K˛˛
3.t/ (2)

� is the nonlinear stiffness factor. For hypersonic regimes, piston theory is an
efficient tool for the aeroelastic analysis in an engineering view [10]. Local pressure
can be obtained through Taylor’s series in the third-order approximation [11]. The
aerodynamic force and moment can be obtained through integration of the pressure
on the upper and lower surface of the wing [2, 5].

Then rewrite the Eq. 1 in the state space form.

PX D NAX C P§.y/C G“C Gd
P“

y D CTX (3)

Where “ is flapping displacement, and all the auxiliary matrix can be found in
reference [5, 11].

3 Fuzzy Logic Control for the Aeroelastic System

Fuzzy logic control is very effective for the situation in which the controlled
systems are very complex. In this study, Mamdani-type fuzzy inference system,
which consists of two inputs and one output, was constructed by using the Fuzzy
Toolbox in Matlab. The controller receives the pitching displacement and the
pitching velocity, while gives the control flapping displacement as a control variable.
Triangular and trapezoidal shape membership functions are chosen both for inputs
and output. The membership function plots are shown in Fig. 2. All rules have
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Fig. 2 Membership function plots. (a) Pitching displacement and velocity, (b) Flapping displace-
ment

Table 1 Fuzzy IF-THEN rule base

P̨ ˇ̌ˇˇ̌˛ NB NM NS O PS PM PB

NB NB NB NM NM NS O O
NM NB NB NM NM NS O O
NS NB NB NM NS O OM PM
O NB NM NS O PS PM PB
PS NM NM O PS PM PB PB
PM O O PS PM PM PB PB
PB O O PS PM PM PB PB

Table 2 Structural and aerodynamic parameters

Parameters Value Parameters Value Parameters Value

b 1.5 (m) r˛ 0.5 H (altitude) 10 (km)
x0 0.65 �˛ 0.25 
1 0.4135 (kg/m3)
x1 0.75 � 20 � 1.4
!0 1.0 $h; $˛ 0.0,0.0 � 100
!˛ 80 (rad/s)

weights to 1 and use the AND-type logical operator, shown in Table 1. These rules
are constructed by employing the knowledge about the oscillating wing.

4 Results and Discussion

4.1 Characteristic of LCOs Around the Critical Points

The baseline parameters of the system are shown in Table 2. The simulations are
separated into two parts: first, fundamental studies of the effects of the system
parameters on the amplitude of the LCOs; second, a simple example is considered
through the aeroelastic response of the closed loop system under different flight
speed to estimate the effectiveness the fuzzy logic control. The initial pitching
placement ˛0 D 0:08722 rad, and the others are all zero.
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Fig. 3 Effects of system parameters on the amplitude of the LCOs. (a) Elastic axis, (b) gyration
radius, (c) frequency ratio, (d) reduced mass ratio, (e) nonlinear stiffness factor

Figure 3 shows the effects of system parameters on the amplitude of the LCOs
in the vicinity of the critical states. Generally, the amplitude of LCOs increases as
the flight speed increases and the existence of the nonlinearities can both delay and
precede the LCOs. In the Fig. 3a, c, d, as the parameters (x0, !0 and �) increases,
the amplitude increases. While in Fig. 3b, e, as the parameters (r˛ and �) increases,
the amplitude decreases. For different parameters the amplitude of the LCOs exhibit
differently in the subcritical and supercritical states.

4.2 Control Effects

Aeroelastic responses are obtained by solving Eq. 3 under different flight speed
conditions in Fig. 4. V=Vf <1 and V=Vf > 1 denotes the subcritical and supercrit-
ical states, respectively. Apparently, the control effects are excellent. In Fig. 4a, b,
the control flapping displacement becomes zero when the system is under control.
While in Fig. 4c, we can see that, for increasing the flight speed, the flap (control
surface) can’t ‘calm down’ even when the system is stable, which is not favorable
for the real system during the flight.
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Fig. 4 Time-histories of the wing under different flight speed (a) Time-histories in subcritical
regime (v/vf D 0.8), (b) Time-histories in critical point (v/vf D 1.0), (c) Time-histories in subcriti-
cal regime (v/vf D 1.2)

5 Conclusions

An aeroelastic model of 2-D wing with a flap was developed. Both fundamental
parametric studies and active control design were conducted. Generally, the pa-
rameters investigated above contribute greatly to the whole system. Through the
numerical simulation, the fuzzy logic control reveals its effectiveness of suppressing
the flutter, while disadvantages also exist which can be seen in section “Control
Effects”. But it can be a powerful tool to expand the flight envelope if we do have a
‘feel’ of the behavior of the system.
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On the Interaction of Compressible Flow
and Human Vocal Folds

J. Prokopová, M. Feistauer, J. Horáček, A. Kosı́k, and V. Kučera

Abstract The paper is devoted to the numerical solution of interaction of com-
pressible flow with elastic structure with application to the simulation of flow in
vocal folds. It is described by the coupling of compressible Navier-Stokes equations
and dynamical elasticity system, solved by the combination of the discontinuous
Galerkin method for the solution of the flow field and conforming finite elements
for the elasticity problem.

Keywords Biomechanics of voice • Discontinuous Galerkin finite element
method • Fluid-structure interaction • ALE method

1 Introduction

The simulation of flow-induced vibrations of elastic body plays an important role in
many areas, for example development of aircrafts and turbines, in civilengineering,
car industry or medicine.

The paper is concerned with the numerical simulation of the biomechanical
problem of compressible flow in interaction with human vocal folds. The flow
field is described by the compressible Navier-Stokes equations considered in a time
dependent domain of the form of a channel representing the human vocal tract. The
governing equations written in the ALE form are discretized by the discontinuous
Galerkin finite element method. It is well-known that this technique is more suitable
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for the solution of the singularly perturbed problems of fluid dynamics than standard
finite element methods [1]. The deformation of the structure is described by the
dynamical linear elasticity equations. They are discretized by the conforming finite
element method. Flow and elasticity problems are coupled via interface conditions.
Some numerical results are presented.

2 Governing Equations for Flow in a Time Dependent Domain

We deal with compressible flow in a bounded domain˝f
t � IR2 depending on time

t 2 [0, T]. We assume that the boundary of˝f
t consists of four disjoint parts @˝f

t D
�I [ �O [ �Wt [ �F , where � I and � O represent the inlet and outlet, respectively,
�Wt represents moving impermeable walls and � F represents fixed impermeable
walls.

Compressible viscous flow is described by the continuity equation, the Navier-
Stokes equations and the energy equation, written in the conservative form [1]

@w

@t
C

2X
sD1

@fs.w/

@xs
D

2X
sD1

@Rs .w;rw/

@xs
in ˝f

t ; t 2 Œ0; T � ; (1)

where

w D .
; 
v1; 
v2; E/
T 2 IR4;

fs.w/ D .
vs; 
v1vs C ı1sp; 
v2vs C ı2sp; .E C p/vs/
T ; s D 1; 2;

Rs .w;rw/ D
�
0; �Vs1; �

V
s2; �

V
s1v1 C �Vs2v2 C k

@�

@xs

�T
; s D 1; 2;

�Vij D �ıijdivv C 2�dij .v/; dij .v/ D 1

2

�
@vi
@xj

C @vj
@xi

�
; i; j D 1;

We use the following notation: 
 – density, p – pressure, E – total energy,
v D (v1, v2) – velocity vector, � – absolute temperature, cv> 0 – specific heat at
constant volume, � > 1 – Poisson adiabatic constant, �> 0,� – viscosity coeffi-
cients, k> 0 – heat conduction coefficient, �Vij – components of the viscous part of
the stress tensor. We set � D �2�=3. The vector functions fs are inviscid fluxes of
the quantity w in the directions xs and Rs represent viscous terms.

System (1) is completed by the thermodynamical relations

p D .� � 1/

 
E � 
 jvj2

2

!
; � D 1

cv

�
E



� 1

2
jvj2

�
: (2)
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In order to simulate flow in a time-dependent domain, we employ the Arbitrary
Lagrangian-Eulerian (ALE) method [2]. This method is based on the use of a
regular, one-to-one ALE mapping At of the reference configuration ˝f

ref D ˝
f
0

onto the computational domain ˝ t
f at time t (the so-called current configuration).

In virtue of this we rewrite system (1) in the ALE form

DA w

Dt
C

2X
sD1

@gs.w/

@xs
C wdivz D

2X
sD1

@Rs .w;rw/

@xs
; (3)

where gs, s D 1, 2, are modified inviscid fluxes gs.w/ D fs.w/ � zsw; s D 1; 2;

DA =Dt denotes the so-called ALE-derivative and z D @At =@t is the domain
velocity [3].

System (3) is equipped with the initial condition w(x, 0) D w0(x), x 2˝ t
f , and

the boundary conditions:

Inlet �I W 
j�I�.0;T / D 
D; vj�I�.0;T / D vD D .vD1; vD2/;

2X
jD1

 
2X
iD1

�Vij ni

!
vj C k

@�

@n
D 0 on �I � .0; T /I

Fixed impermeable wall �F W v D 0;
@�

@n
D 0I

Moving wall �Wt W v D z.t/;
@�

@n
D 0I

Outlet �O W
2X
iD1

�Vij ni D 0;
@�

@n
D 0; j D 1; 2: (4)

Here n is the unit outer normal to @˝ t
f . We have �Wt D At .�W /; where we denote

�W D �W0:

The space discretization of the problem is carried out by the discontinuous
Galerkin finite element method. For the time discretization we use a semi-implicit
scheme, where the ALE-derivative is approximated by the first-order backward
difference and the remaining terms are treated with the aid of a linearization and
time extrapolation [3, 4].

3 The Dynamical Problem of Elasticity

In the sequel,˝b � IR2 will denote a bounded domain representing an elastic body.
Elastic deformations of this body are described by the dynamic equations


b
@2ui
@t2

C C
b
@ui
@t

�
2X

jD1

@�bij

@xj
D 0; in ˝b � .0; T /; i D 1; 2; (5)
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where u(x, t) D (u1(x, t), u2(x, t)), x 2˝b, t 2 (0, T), is the displacement, .�bij /
2
i;jD1

represents the stress tenzor fulfilling the generalized Hooke law for isotropic
material

�bij D Q�div uıij C 2 Q�eij ; i; j D 1; 2; (6)

with the Lamé coefficients Q�; Q�. Often the Young modulus Eb and the Poisson ratio

�b are used. They are defined by Eb D Q�.3Q�C2 Q�/
Q�C Q� ; �b D Q�

2.Q�C Q�/ . Further, eij .u/ D
1
2

�
@ui
@xj

C @uj
@xi

	
; i; j D 1; 2, are the components of the strain tensor and 
b is the

density of the solid material.
In reality, mechanical systems dissipate mechanical energy. The expression

C
b @ui
@t

, where C � 0, is a dissipative damping of the system. The formulation of the
dynamic elasticity problem (5) is completed by the initial conditions u.x; 0/ D 0

and @u
@t
.x; 0/ D 0; x 2 ˝b , and boundary conditions on the boundary @˝b D� W [

� D
b, where � W \� D

b D ¿, �W D �W0 and � D
b is a fixed part of the boundary:

2P
jD1

�bij nj D T ni on �W � .0; T /; i D 1; 2; (7)

u D 0 on � b
D � .0; T /: (8)

By T ni , i D 1, 2, we denote the components of the normal stress. In order to derive
the space-time discretization, we formulate the problem in a weak sense and apply
the finite element method using continuous piecewise linear elements. This leads to
a second order system of ordinary differential equations. For the time discretization
we use the Newmark scheme.

4 Coupled Problem

Up to now the fluid flow and the deformation of the elastic body have been
considered as two separate problems. Now we need to take into account the mutual
interaction of the fluid and the body on the common boundary

�Wt D ˚
x 2 IR2I x D X C u.X; t/; X 2 �W

�
:

The ALE mapping At is determined with the aid of a special stationary linear
elasticity problem. Then the domain velocity z is computer at time t, the flow
problem is solved and the aerodynamical surface force

T ni D �
2X

jD1
�
f
ij nj ; i D 1; 2; (9)
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acting on the body ˝b on � W is determined. Here n is the unit outer normal to the
domain @˝b and �fij D �pıij C �Vij ; i; j D 1; 2, are the components of the stress
tensor of the fluid.

The coupling procedure follows this outline: Let the domain ˝f
tn , the ALE

mapping Atn and the domain velocity z are known at time tn. Then we solve the flow
problem in the domain ˝f

tn and obtain the approximate solution wh. This allows us
to compute the components � ij

f of the stress tensor and the surface force acting
on the domain ˝b on the part of the boundary � W can be determined. Solving the
problem of elasticity we get the approximate displacement uh at time tn. In this way
we get the domain ˝f

tnC1
, compute the ALE mapping AtnC1

and the approximation
of domain velocity zh at time tn C 1. Then we come to the next time step tn C 1.
(This algorithm represents the so-called loose (weak) coupling. More complex and
accurate is the strong coupling.)

5 Numerical Experiments

Here we present numerical results obtained with the aid of the described coupling
technique and applied to the interaction of airflow in the domain ˝f

t , representing
the human vocal tract, with human vocal folds represented by the domain ˝b. The
length of the domain˝f

t is 0. 065 m and the inlet width of this domain is 0. 0087 m.
We use the same time step � D 4:35 � 10�5 s for the flow problem and the

structural problem. The computational process starts by the solution of the flow
problem in the domain ˝

f
t0 at the initial time t0 D 0 s. We use the data � D

1:5 � 10�5 kg m�1 s�1; k D 2:428 � 10�2 kg m s�3 K�1; cv D 721:428m2 s�2 K�1;
Re D 10453. At the inlet we prescribe the velocity vector vin D .4; 0/m s�1 and the
density 
fin D 1:225 kg m�3. At the outlet the pressure pout D 97611 Pa is prescribed.

We assume that the vocal folds are isotropic bodies with the constant material
density 
b D 1040 kg m�3and the damping coefficient C D 0. 1 s � 1. The values of
the Young modulus Eb and the Poisson ratio �b are different in four subdomains of
˝b. See Fig. 1.

Figure 2 shows horizontal and vertical displacement of the elastic body.

Fig. 1 The scheme of the
vocal tract: The material
parameters are Eb D 100 kPa,
�b D 0:4 in˝b

1 ; E
b D 1kPa;

�b D 0:495 in ˝b
2 ;

Eb D 8 kPa;
�b D 0:4 in ˝b

3 ;

Eb D 12 kPa;
�b D 0:4 in ˝b

4
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Fig. 2 Horizontal and vertical displacement of a point lying inside the area ˝3

b of the upper
vocal fold

6 Conclusion

The developed method for the numerical simulation of the interaction of fluid flow
with an elastic body, described by the compressible Navier-Stokes equations and
the dynamic elasticity system, was successfully applied to the simulation of air flow
in human vocal folds. The structure of the flow field computed by the described
coupling procedure is qualitatively similar to the flow patterns obtained in the
case of driven vocal folds [3] and to a realistic threshold of aeroelastic instability
modelled by a simplified lumped model of the vocal folds [5].
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Numerical Simulation of Interaction of Human
Vocal Folds and Fluid Flow

A. Kosı́k, M. Feistauer, J. Horáček, and P. Sváček

Abstract Our goal is to simulate airflow in human vocal folds and their flow-
induced vibrations. We consider two-dimensional viscous incompressible flow in a
time-dependent domain. The fluid flow is described by the Navier-Stokes equations
in the arbitrary Lagrangian-Eulerian formulation. The flow problem is coupled
with the elastic behaviour of the solid bodies. The developed solution of the
coupled problem based on the finite element method is demonstrated by numerical
experiments.

Keywords Fluid-structure interaction • Incompressible viscous flow • ALE
method • Biomechanics of voice

1 Introduction

The phonation onset in biomechanics of voice is an important characteristic of
human voice production. From the point of view of the flow-induced vibrations
the phonation onset can be characterized as a state of the system when it is loosing
the aeroelastic stability, i.e. when the airflow parameters like subglottal pressure
or airflow rate cross a limit value and the system becomesunstable by flutter.

A. Kosı́k (�) • M. Feistauer
Charles University in Prague, Faculty of Mathematics and Physics, Prague, Czech Republic
e-mail: adam.kosik@atlas.cz; feist@karlin.mff.cuni.cz

J. Horáček
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Fig. 1 The domain occupied by the fluid and the parts of the boundary

Frequency-modal analysis of a simplified three-mass model of the vocal fold in
interaction with a potential flow separated at the superior edge of the vocal fold
showed that the two eigenfrequencies are coupled when the instability occurs [1]. A
similar linear stability analysis was performed on a 2-D continuum model of vocal
folds in potential flow by Zhang [2]. Here the instability threshold is studied in the
time domain using 2-D FE model of the vocal folds coupled with 2-D FE model of
the viscous incompressible flow (Fig. 1).

2 The Equations Describing Fluid Flow in a Moving Domain

We deal with incompressible viscous flow in a bounded domain˝f
t �R

2 depending
on time t 2 [0, T]. By v D v(x, t) we denote the velocity and by p D p(x, t) the
kinematic pressure (i.e., pressure divided by the density of the fluid 
f ), x 2 ˝

f
t ;

t 2 (0, T) and � denotes the kinematic viscosity. The incompressible viscous flow is
described by the system of the Navier-Stokes equations equipped with initial and
boundary conditions [3].

In order to simulate flow in a moving domain, we employ the Arbitrary
Lagrangian-Eulerian (ALE) method. This method is based on a special mapping
of the reference configuration˝f

0 onto the deformed, actual configuration˝f
t . We

reformulate the Navier-Stokes equations in the ALE form [4]:

DA

Dt
v C ..v � w/ � r/ v C rp � ��v D 0 in ˝f

t ; (1)
r � v D 0 in ˝f

t : (2)

Here DA

Dt
is so-called ALE derivative and w denotes the domain velocity.

System (1)–(2) is equipped with the initial condition

v.x; 0/ D v0; x 2 ˝f
0 ; (3)

and boundary conditions.
We assume that @˝f

t D �
f
D [ �

f
O [ �Wt , where � f

D ; �
f
O and �Wt are mutually

disjoint. On � f
D , representing the inlet and impermeable fixed walls, we prescribe

the Dirichlet boundary condition, on the impermeable moving walls �Wt we assume
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that the fluid velocity v is equal to the domain velocity of the elastic body and on
the outlet � f

O we prescribe the so-called “do-nothing” boundary condition:

vj
�
f
D

D vD; on � f
D ; (4)

vj�W t D wj�W t ; on �Wt ; (5)

�.p � pref /n C �
@v
@n

D 0; on � f
O : (6)

Here n is the unit outer normal to @˝f
t and pref is a prescribed reference outlet

kinematic pressure.
There are several possibilities how to carry out the space-time discretization.

In order to develop a stable, accurate scheme, which can easily treat complicated
boundaries, we apply the finite element method (FEM). Here, the Taylor-Hood
P2 / P1 finite element pair satisfying the Babuška-Brezzi condition is used. In
order to avoid spurious oscillations in approximate solutions in the case of high
Reynolds numbers we apply the streamline diffusion method together with div-
div stabilization of pressure. For the time discretization we use a second-order
two-step backward difference formula using the computed approximate solution
vn � 1 in ˝tn�1 and vn in ˝tn for the calculation of vn C 1 in the domain ˝tnC1

. For
the numerical solution of incompressible flow we use the program FEMFLUID
developed by P. Sváček.

3 The Linear Dynamical Problem of Elasticity

In what follows, ˝b � R
2 will be a bounded domain representing the elastic body

of the form of vocal folds. We denote by u(x, t), x 2˝b, t 2 (0, T), the displacement
of the body and the strain tensor as

eij .u/ D 1

2

�
@ui
@xj

C @uj
@xi

�
; i; j D 1; 2: (7)

The deformation of the vocal folds is modelled by the generalized Hooke law for
isotropic bodies [5]:

�bij D �div uıij C 2�eij ; i; j D 1; 2; (8)

where .�bij /
2
i;j D 1 denotes the stress tensor and � and � are the Lamé coefficients

related to the Young modulus E and to the Poisson ratio � as

E D �.3�C 2�/

�C �
; � D �

2.�C �/
: (9)
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The dynamic equations of an elastic body have the form


b
@2ui
@t2

C C
b
@ui
@t

�
2X

jD1

@�bij

@xj
D 0; on .0; T / �˝b; i D 1; 2: (10)

The expression C
b @ui
@t

, where C � 0, is a dissipative damping of the system and 
b

denotes the density of the solid material. We complete the elasticity problem with
initial and boundary conditions. The initial conditions read

u.�; 0/ D 0;
@u
@t
.�; 0/ D 0; in ˝b: (11)

Further, let @˝b D �W [� b
D , where � W and � b

D are two disjoints parts of @˝b. Let
surface force T be prescribed on the boundary � W and let the part of the boundary
� b
D be fixed:

2P
jD1

�bij nj D T n
i on �W � .0; T /; i D 1; 2; (12)

u D 0 on � b
D � .0; T /: (13)

We are looking for the displacement u satisfying Eq. (10) and initial and boundary
conditions (11)–(13).

Further, we carry out the space-time discretization. We reformulate the problem
in a weak sense and apply the finite element method using continuous piecewise
linear elements. The semi-discretized problem can be written as a second order
system of ordinary differential equations. For the time discretization we apply
the Newmark scheme. In each time-step we get a linear algebraic system with
symmetric positive definite matrix. The solution of this system was realized by the
solver, which is based on the conjugate gradient method.

4 Solution of the Coupled Problem

Up to now we considered that the fluid flow and the deformation of the elastic body
are separated processes. On the common boundary of both domains we need to take
into account mutual action of the fluid and the body. We denote as the common
boundary set �Wt , defined as

�Wt D ˚
x 2 R

2I x D X C u.X ; t/; X 2 �W
�
: (14)

The domain˝f
t is defined by the displacement u of the part � W at time t. The ALE

mapping At is defined with the aid of a special stationary linear elasticity problem.
If we know the computational domain ˝f

t obtained by the fluid at time t, we can
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solve the problem describing the flow and we can assign the surface force T n acting
on the body˝b on the part of the boundary� W . This surface force is defined by the
equation

T n
i D �

2X
jD1

�
f
ij nj ; i D 1; 2; (15)

where n is the unit outer normal to the domain @˝b and �fij are components of the
stress tensor of the fluid:

�
f
ij D 
f

�
�pıij C �

�
@vi
@xj

C @vj
@xi

��
; i; j D 1; 2: (16)

The procedure of implementation is following. At first the computation of the flow
problem is carried out in the domain ˝f

tn . We get the approximate velocity vh and

pressure ph and can compute the components of stress tensor �fij . The stress tensor
gives us the surface force acting on the domain ˝b on the part of boundary � W .
Further, we solve the elasticity problem and get the approximate displacement uh at
time tn. In this way we get the domain˝f

tnC1
, compute the ALE mapping AtnC1

, and
the approximation of domain velocity wh at time tn C 1. Thus we obtain the datum
wj�WtnC1

in the boundary condition (5). Now the flow problem can be solved at time
tn C 1.

5 Numerical Experiments

We consider model of human vocal folds and vocal tract [6]. The vocal folds
represented by the domain ˝b have different material characteristics in different
subdomains. We use the same time step � D 5 � 10�5 s for the solution of the
coupled flow and elasticity problem and the input data � D 1:5 � 10�5 m2:s�1,

f D 1:17 kg:m�3, C D 0:1 s�1, the initial velocity v0 D 0 and the inlet and outlet
pressure pin D 600 Pa, pout D 0 Pa.

As for the domain ˝b we distinguish subdomains with different material
characteristics. We consider the material density is the same for all subdomains

b D 1; 040 kg:m�3, but the values of Young modulus E and Poissone’s ratio � are
different, see Fig. 2.

On the other part of boundary � W we prescribe the conditions for the movable
boundary. We retrieve the surface forces T n by solving the problem of fluid flow.
The computational process starts by the solution of the flow problem in the domain
˝
f
t˛ at the initial time t˛ D �10�4 s. At time t D 0 the structure is released and

solution of the complete fluid-structure interaction started.
Figure 3 shows velocity streamlines and displacement of the computational

domain at several time instants.
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Fig. 2 The model of vocal fold. Material characteristics

Fig. 3 Streamlines at time instants t D 0.005, 0.0425, 0.04615, 0.0597 and 0.0605 s

6 Conclusion

The numerical method for solving the flow-induced vibration of an elastic body in
incompressible viscous flow has been developed and applied to the simulation of
airflow in interaction with human vocal folds. The results are in good agreement
with previous simulations using simplified models and with known physiological
data (see, e.g. [1]).

Future work will be focused on the simulation of the complete closure of the
channel and on a non-linear elasticity model in the coupled problem.
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Dynamic Stability of a Steady Flow in a Planar
Channel

Karolina Bach, Hartmut Hetzler, and Wolfgang Seemann

Abstract In flexible channels with internal flow the steady state may loose stability
by divergence or flutter, thus leading to undesirable dynamic behaviour. A lot of
investigations have already been done on this subject. The aim of this contribution is
to investigate and compare systematically the influence of various parameters on the
stability behaviour of the coupled problem. Therefore, a simple, yet general model
is built. The fluid is assumed to be inviscid and irrotational and both compressible
and incompressible fluid are considered. The steady flow is bounded by a planar
channel with a rigid and a thin, flexible wall. The latter is modelled as a continuum
on a viscoelastic foundation, which exhibits bending and extensional stiffness. The
influence of the various characteristics on the complex eigenvalues and therefore on
the stability of the steady state is discussed.

Keywords Flow-induced vibrations • Fluid-structure-interaction • Stability
analysis

1 Introduction

Fluid-structure interaction is an important subject in many fields of engineering and
therefore many investigations in this field have already been done. Several problems
were investigated (see [1–4] for example), varying in the assumptions regarding
compressibility of the fluid, external damping of the structure, various types of
stiffness and magnitude of oscillations. The aim of this contribution is to investigate
and compare systematicallythe influence of various parameters and assumptions on
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the stability of the steady state. Therefore, a simple and thus analytically accessible
model is built, which includes various characteristics. Non-dimensional variables
and parameters are introduced for convenience.

2 Problem Statement

As a model for fluid-structure interaction a planar and infinitely long channel is
studied (cf. Fig. 1). The problem is described in Cartesian coordinates Ox; Oy. The fluid
(density O
F ) is assumed to be inviscid and irrotational, allowing the introduction
of a velocity potential O	F , so that vF D .OuF ; OvF /T D r O	F holds. Furthermore,
an isentropic state change is assumed and both incompressible and compressible
flow are considered. Therefore, the two-dimensional flow can be described by the
continuity and Bernoulli equation and, for a compressible fluid, by the ideal gas law.

As the problem is assumed to be independent of the Oz-axis, the flexible wall
is modelled as a one-parametric continuum (constant thickness B, density 
S) on
a viscoelastic foundation (stiffness and damping constants per unit area c and d).
This structure exhibits bending stiffness D, is preloaded by a constant axial tension
S and is exposed to a surface pressure OpF due to the fluid. Furthermore, the non-
permeability condition at the rigid and flexible walls has to be fulfilled [1].

The fluid field variables and the structure displacement are split into steady
quantities and fluctuations:

OpF D Op0 C Op; O
F D O
0 C O
; O	F D O	0 C O	; OuF D Ou0 C Ou; OqS D Oq0 C Oq: (1)

Furthermore, non-dimensional variables and parameters are introduced using

height H, density O
0 and velocity a0 D
q
�

Op0
O
0 as reference parameters [5]:

x D Ox
H
; y D Oy

H
; q D Oq

H
; t D a0 Ot

H
; 
 D O


O
0 ; p D Op
a20 O
0 ; 	 D O	

a0H
; (2)

Fig. 1 Model of the fluid-filled channel



Dynamic Stability of a Steady Flow in a Planar Channel 775

�2 D cH2

B
Sa
2
0

; � D dH

B
Sa0
; ˇ D S

B
Sa
2
0

; ı D D

B
Sa
2
0H

2
; U D Ou0

a0
; ˛ D O
0H


SB
:

(3)

The structural deflections q(x, t) about the steady state are assumed to be small
and of the order of a small parameter ". Based on this assumption a calculation
of perturbations is carried out [1]. To analyse the stability of the steady state the
perturbation problems of the zeroth- and first-orders are considered and the coupled
first-order problem for a compressible fluid under consideration of the steady-state
solutions is described by the set of differential non-dimensional equations.

3 Results

To analyse the influence of the various parameters, the eigenvalues are displayed
versus the investigated parameter. All remaining parameters are fixed, for the
dimensionless wavenumber k a constant positive value is used.

It has been shown in [5], that in absence of damping and axial flow the
eigenvalues of the coupled problem come in pairs of real values with opposite signs.
Increasing �, ı, ˇ, and k cause an increase of the absolute values. In regions were
the characteristics of different eigenvalues of the uncoupled system (˛D 0) cross,
strong coupling effects for ˛ > 0 are observed and for an incompressible fluid an
added mass effect is shown.

In the following the effects of foundation damping �, axial flow-velocity U and
geometry ratio ˛0 are studied. In Fig. 2 the complex eigenvalues for the problem
without axial flow are shown versus the damping parameter � for a compressible
and an incompressibe fluid. The first observation is that for the latter only one pair
of corresponding eigenfrequencies exists while for the former an infinite number
of pairs can be found (here only a detail is outlined) [5]. By looking at the
corresponding eigenmodes of the uncoupled system (˛D 0) this turns obvious. The
horizontal lines in Fig. 2a belong to the so called acoustic modes [1] of the fluid;
in Fig. 2b they are not present since only a compressible fluid can oscillate itself
[6].

While for �DU D 0 the eigenvalues are always real and come in pairs with
opposite signs, Fig. 2 shows the complex eigenvalues for �¤0. Since the imaginary
parts are always positive, the steady state remains stable.

Figure 3 shows the eigenvalues of the coupled system (˛ > 0) for varying U
for both �D 0 and �D 1. It can be seen that a growth of U also causes complex
eigenfrequencies. Due to the transport velocity the eigenvalues are not symmetric
to the abscissa. In contrast to the former example the imaginary parts may become
negative. In case of an incompressible fluid (Fig. 3b) for U D 0 the real eigenvalues
have opposite signs. Without damping (�D 0) the real eigenvalues converge with
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a b

Fig. 2 Eigenvalues vs. damping parameter (U D 0) (a) compressible fluid (b) incompressible fluid

a b

Fig. 3 Eigenvalues vs. flow-velocity (˛ > 0) (a) compressible fluid (b) incompressible fluid

growing velocity. First the positive eigenvalue also gets negative, which means that
both waves are moving into the same downstream direction. Finally, for a critical
velocity, the eigenvalues become complex and the steady state unstable. The same
observation can be made in Fig. 3a for �D 0, first one eigenvalue of an interacting
pair gets negative, before the two branches converge. In comparison to Fig. 3b not
only two, but an infinite number of eigenvalues are interacting with each other.
This interaction of different modes is the reason, why for the compressible fluid
a restabilisation is observed before getting unstable again.

Additionally for �> 0 the influence of external damping is investigated. In
Fig. 3b it can be seen that the steady state gets unstable for smaller values of
U than for the undamped system. Both eigenvalues become negative again, but
in contrast to �D 0, from the moment when both waves move downstream the
steady state looses stability by divergence and then by flutter. For clarity in Fig. 3a
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a b

Fig. 4 Eigenvalues vs. geometry ratio (U D�D 0) (a) compressible fluid (b) incompressible fluid

the eigenvalues for �D 1 are numbered. The imaginary part of eigenvalue 1 also
gets negative for a smaller flow-velocity than for �D 0 and divergence is directly
followed by flutter-instability. The difference to �D 0 is, that no restabilisation is
observed. Before the imaginary part of 1 becomes positive again, the imaginary part
of eigenvalue 3 gets negative. Obviously damping prevents the steady state from
getting stable again.

Finally the influence of H is investigated. Therefore the dimensionless geometry
ratio ˛0 is varied while reference length B is fixed. For U D � D 0 the eigenvalues
are real and symmetric to the abscissa, hence in Fig. 4 only the positive real parts
are displayed. Since coth() D 1. 004 holds, for an incompressible fluid and the
parameters used for Fig. 4b the influence of the channel height almost vanishes for
˛0 >


k

D 3:49. The Horizontal for ˛D 0 in this figure belongs to the structural
mode, for ˛ > 0 the eigenvalues of the coupled system are increasing with ˛0 up to
a limit value. In case of a compressible fluid (Fig. 4a) for ˛D 0 the characteristics
belonging to the structural and acoustical modes are displayed and for ˛ > 0 above
a certain value of ˛0 the eigenvalues of the coupled system are decreasing and also
seem to aspire to limit value.

4 Conclusion

For a given wavenumber a channel conveying compressible fluid has an infinite
number of eigenfrequencies and the uncoupled system exhibits acoustical and
structural modes. In contrast for an incompressible fluid only one pair of eigenvalues
exists. In the absence of axial flow the steady state is stable. Growing axial velocity
causes complex eigenvalues and the steady state is only stable up to a critical
flow velocity. For a compressible fluid in the absence of external damping a
restabilisation is observed before getting unstable again. External damping causes
complex eigenvalues. The critical flow velocities in case of external damping are
smaller than without damping and therefore the damping has a destabilising effect
on the steady state of the coupled problem with axial flow. Without damping and
axial flow the eigenvalues for varying geometry ratio are real and symmetric to the
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abscissa. For an incompressible fluid and the chosen parameters increasing channel
height causes growing eigenvalues of the coupled system, above a certain value the
influence of the channel height almost vanishes. For a compressible fluid above a
certain value of the geometry ratio a growth of the channel height causes descending
eigenvalues.
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Friction-Maintained Dynamic Stability

Keiko Anami, Noriaki Ishii, Charles W. Knisely, Takuma Tsuji, Tatsuya Oku,
and Shigeki Sato

Abstract Mechanical systems relying on Coulomb friction to maintain dynamic
stability may suffer a dynamic instability if exposed to an initial displacement ex-
ceeding a system-specific threshold. In fluid systems, even small values of negative
damping are sufficient to drive the dynamic instability with sufficiently large initial
displacement. The Tainter gate failures at the Folsom dam in 1995 and at the Wachi
dam in 1967 are two well-known failures. To aid in preventing a recurrence, the
authors engaged in a decade long research program that provided evidence that both
gates failed due to an essential dynamic instability mechanism that all Tainter-gates
may possess. This paper presents measurements suggesting “friction-maintained
dynamic stability” of a full-scale 50-ton Tainter gate. Accompanying gate model
studies showed that the gate can fail when exposed to an initial displacement
exceeding a threshold value. The present study should serve to alert gate designers,
owners and operators that many Tainter gates which have not yet failed may,
nonetheless, have a high susceptibility to failure if and when they are exposed to
a sudden input of energy resulting in an initial displacement exceeding the gate-
specific thresholddisplacement.

K. Anami (�)
Department of Mechanical Engineering, Ashikaga Institute of Technology, 268-1 Omae-cho,
Ashikaga, Tochigi 326-8558, Japan
e-mail: anami@ashitech.ac.jp

N. Ishii • T. Tsuji • S. Sato
Osaka Electro-Communication University, Neyagawa, Japan
e-mail: ishii@isc.osakac.ac.jp

C.W. Knisely
Bucknell University, Lewisburg, PA, USA
e-mail: knisely@bucknell.edu

T. Oku
Mayekawa MFG. Co., Ltd., Tokyo, Japan
e-mail: tatsuya-oku@mayekawa.co.jp
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Keywords Hydraulic gate • Flow-induced vibration • Dynamic instability
• Friction-maintained dynamic stability • Initial displacement

1 Introduction

Tainter gates (also known as radial gates) are frequently used for water-level
regulation in impoundment dams. An example of a Tainter gate is shown in Fig. 1.
This particular gate was installed in the Folsom dam in California. During operation
on July 17, 1995, one of the Folsom dam gates failed (see Ishii [1], for details).
Vibration tests of a remaining gate [2], undertaken as part of the failure investigation,
identified the two significant natural vibration modes illustrated in Fig. 1. One mode
was the rigid-body rotational lifting vibration of the whole gate about the trunnion
pin, as denoted by ‚ in Fig. 1. The second significant mode was a relatively low
frequency streamwise bending of the skinplate (see the dotted lines), as denoted
by ‰ in Fig. 1. Under specific conditions, these two vibrations can easily couple
through the inertial and the hydraulic load, and induce intense self-excited vibration
[3]. This mechanism may have caused, or contributed to, the Folsom dam gate
failure, as well as other gate incidents at other dams.

As part of the ongoing investigation of the dynamic instability of the Tainter
gates, field vibration tests were conducted on a full-scale operational Tainter gate
in Japan. During the in-water vibration tests with small gate openings, intense
self-excited vibrations were clearly observed. The measured data suggest that the
observed vibration was a “friction-maintained steady vibration”.

This paper aims to explain why some Tainter gates fail and why many others
do not. Initially, studies are presented of a 50-ton Tainter gate vibrating at small
amplitudes identified as “friction-maintained steady vibration.” Damping due to
Coulomb friction on the side seals and on the trunnion pin, maintains the gate
stability at small vibration amplitudes. Subsequently, laboratory studies of a model
gate show that a gate with “friction-maintained steady vibration” can fail readily

Fig. 1 Side view of an 87-ton
Tainter gate from the Folsom
Dam in California, showing
two predominant natural
vibration modes
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when exposed to an initial displacement exceeding a threshold value. A small initial
displacement, exceeding the system threshold, overcomes the damping effects and
triggers a violent self-excited vibration.

2 Friction-Maintained Steady Vibration of Tainter Gate “C”

Field vibration tests were undertaken on a 50-ton Tainter gate, denoted as gate “C”
[4]. When the gate submergence depth was 9.27 m, intense self-excited vibrations
occurred at small discharge openings. Representative vibration traces measured at
the bottom center of the skinplate are shown in Fig. 2. The upper trace shows
the up-and-down vibration and the lower trace shows the streamwise vibration.
Both waveforms show a clear exponential growth of the vibration amplitude. The
vibration frequencies were 6.79 Hz.

Detailed observations of the gate during the vibrations revealed that the soft
rubber seals, attached to each side of the skinplate, were pressed against the side
seal plate embedded in the concrete pier by the large hydraulic pressure. The rubber
seals themselves experienced repeated elastic expansion and compression in the up-
and-down direction. However, the rubber seals were not sliding over the side seal
plate, but rather were tightly pressed to it.

The rubber seals were soft, and thus acted as a spring, allowing spontaneous
vibration. With increasing vibration amplitude, the elasticity of rubber seal is
significantly reduced, and Coulomb friction between the rubber seal and the side
seal plate resists any further amplification of the vibration, thus maintaining a steady,
moderate amplitude vibration.

If, during this steady vibration, a sufficiently large trigger displacement had been
introduced to overcome the amplitude-dependent damping effect of the Coulomb
friction (equivalent damping is inversely proportional to amplitude), the observed

Fig. 2 Self-excited vibration
waveforms at the bottom
center of the skinplate, with a
gate submergence d0 of
9.27 m



782 K. Anami et al.

friction-maintained stability at a steady vibration amplitude would have been lost
and Tainter gate “C” would have failed completely.

Our theoretical calculation predicts that an intense, self-excited vibration will
overcome the friction-maintained steady vibration, when triggered by a small initial
displacement of 2.9 mm in the vertical direction. Gate failure is predicted when
the streamwise vibration amplitude at the bottom spanwise center of the skinplate
reaches a value of 15.8 mm. As a result, the 50-ton Tainter gate “C” would fail
essentially instantaneously.

3 Model Experiments of Friction-Maintained Steady Vibration

In order to confirm both the existence of friction-maintained steady vibration and
the loss of stability predicted in the previous section, tests were undertaken on a
gate model. A three-dimensional 1/13-scaled model gate of the Folsom dam Tainter
gate is shown in Fig. 3. The fundamental natural vibration modes were reproduced
in this model gate. This equivalent model gate has a height of 1,110 mm, width of
900 mm, skinplate radius of 1,000 mm and the total mass of 42.5 kg.

The in-air natural streamwise vibration frequency of the skinplate, �na§, was
35.0 Hz. The in-water natural streamwise vibration frequency�nw§ was lowered to
5.92 Hz, due to the water added mass with a gate submergence depth of 1.1 m. The
inherent in-water damping ratio was —nw™ D 0:0267 for the whole gate rotational
vibration and —nw§ D 0:0414 for the skinplate streamwise vibration.

Based on a previous study [5], violent coupled-mode self-excited vibrations are
expected when the in-water natural vibration frequency of the skinplate streamwise
vibration,�nw§, is slightly smaller than the natural vibration frequency of the whole
gate rotational vibration around the trunnion pin, �nw™. Based on this expectation,
the whole gate rotational vibration frequency �nw™ was adjusted to be 5.99 Hz,
slightly larger than the skinplate streamwise bending vibration frequency of�nw§ D

Fig. 3 Three-dimensional 1/13-scaled equivalent model gate of the Folsom dam Tainter gate. (a)
Upstream view, (b) side view
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Fig. 4 Model experiment of friction-maintained steady vibration with frequency ratio of 0.86.
(a) Without Coulomb friction, (b) with Coulomb friction

5:92Hz, yielding a frequency ratio of skinplate streamwise natural vibration to
whole gate natural vibration, ”nw.��nw§=�a™/ of 0.99. With this frequency ratio
and with no additional Coulomb friction on the sides of the skinplate, a very
intense dynamic instability with the excitation ratio �w§ and �w™ of 0.035 was
observed, as shown in Fig. 4a, where the upper trace shows the skinplate radial
vibration and the lower trace shows the skinplate tangential vibration, representing
the skinplate streamwise vibration and the whole gate vibration around the trunnion
pin, respectively.

Under the same conditions for which this intense dynamic instability was
observed, small rubber seals with a length of 180 mm and the width of 60 mm
were attached to the sides of the skinplate, to add Coulomb friction damping (that
all operational gates possess) to the model gate. With these rubber seals, the in-water
skinplate streamwise natural vibration frequency was 5.93 Hz, which is nearly same
as in the non-friction study, while the whole gate rotational vibration frequency�ra™

was increased to 6.86 Hz due to spring effect of the rubber seals. The damping ratio
—nw™ increased to 0.0326 due to the added Coulomb friction damping. The frequency
ratio of skinplate streamwise natural vibration to the whole gate natural vibration,
”rnw.� �rnw§=�ra™/ was 0.86. With these conditions, the gate was raised to a small
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gate opening, and spontaneous weak vibration occurred, as shown starting at about
3 s in Fig. 4b, where the amplitude approaches a small constant value of about
0.9 mm for the streamwise vibration and about 0.4 mm for the whole gate vibration.
These vibration amplitudes are limited by the dissipative effects of friction and
correspond to the friction-maintained steady vibrations observed during the testing
of the full-scale Tainter gate “C”, previously shown in Fig. 2.

With these steady vibration amplitudes, the rubber seals are expanding and
contracting due to their elasticity, but do not slide over the side walls. They are
tightly pressed against the side walls. The vibration synchronizes with the whole
gate vibration with the frequency of 6.86 Hz, as shown in the upper frequency plot
in Fig. 4b.

Subsequently, at around the 11 s mark in Fig. 4b a small vertical displacement
trigger of 0.74 mm was introduced while the model gate was undergoing the weak
friction-maintained steady vibrations. With this small displacement trigger exceed-
ing only slightly the friction-maintained steady vibration amplitude of 0.4 mm,
an exponential increase in the vibration amplitude was recorded. As the vibration
amplitude increased, the vibration frequency gradually decreased to 5.93 Hz for
the streamwise vibration, indicating that the synchronization of the coupled-mode
vibration has switched from the whole gate vibration to the streamwise vibration.
Corresponding to the switching of synchronization, the excitation ratio �rw™ of
0.011–0.013 at the beginning of excitation increases to 0.035 which approaches
the level of excitation ratio for no friction damping, shown in Fig. 4a. The
effectiveness of Coulomb friction damping decreases with increasing vibration
amplitude, yielding ultimately an instability that grows nearly as rapidly as it did
with no additional Coulomb friction.

4 Conclusions

Friction maintained stability is clearly better than instability, but it also provides a
false sense of security. Any event (including a seiche, an earthquake or landslide
triggered surge, or even just corrosion of the trunnion pin or hoisting chains) that
inputs a sudden step change in the gate opening has the potential to shatter the false
sense of security provided by friction maintained stability. The combination of field
testing on a full-scale gate and laboratory testing of a model gate fitted with side
seals to simulate the full-scale Coulomb friction has demonstrated the suddenness
of the transition from friction-maintained stability to complete instability and gate
failure. Gate designers, owners and operators are urged to take note of mechanism
presented here.
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Sedimentation of a Spherical Solid Particle
in a Compressible Viscous Fluid Under
Vibration

A. Petrov and M. Shunderyuk

Abstract The differential nonlinear equation of movement of a spherical heavy
solid particle in a fluid in the field of a standing acoustic wave which is created
by the applied vibration is studied. Isentropic dependence of pressure on density in
the form of the cubic polynom is accepted, allowing to obtain the analytic solution
for a standing wave. Speed and density in a wave during the initial moment of time
look like a harmonious standing wave. For time, inversely proportional to amplitude
of a wave, there comes a gradient catastrophe. Further wave characteristics are
described by means of discontinuous functions. Movement of a spherical heavy
solid particle in the field of such wave before the gradient catastrophe is investigated.
The results are compared to the solution in case of linear equation of movement. The
implication of the results to the separation of particles in a fluid is studied.

Keywords Sedimentation • Viscous compressible fluid • Gradient catastrophe
• Separation of particles in a fluid

1 Introduction

The problemin consideration arises when studying a novel method of particles’
separation by means of ultrasonic vibration. In Fig. 1 the design of the experimental
separator used in [1] is shown. In the channel standing waves are obtained by means
of a PZT mounted on the back side of a silicon chip. The PZT provides standing
waves both orthogonal to the liquid flow as well as in the plane of the silicon chip.

When particles are exposed to the acoustic force they will be collected in the
nodes and anti-nodes of the standing wave. Because of the laminar conditions in
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Fig. 1 Experimental particle
separator

Fig. 2 The end of the channel without (left) and with (right) ultrasonic vibration. Suspension with
5 �m particles flowing in water through the 350 �m separation chip. Particle flow 0.01 ml/min

a narrow flow channel, particles once collected in a lateral position will stay there
even after leaving the acoustic force field, forming long bands of particles in the
channel. When operating the separation channel in its fundamental resonance mode
(�=2) a single band formation will be observed in the middle of the channel (Fig. 2).
This fact can be used, for example, to separate particles with different densities. The
figures are taken from [1].

The aim of this article is to study how non-linearity in the standing wave can
affect on the band formation.

2 Equation of Movement of a Spherical Particle

A solid spherical particle with radius a and density 
s in an inviscid compressible
fluid with density and velocity fields 
.x; t/ and v.x; t/ is subjected to the action of
the force equal to the sum of the added mass force and the Archimedes force [2]:



Sedimentation of a Spherical Solid Particle in a Compressible Viscous Fluid . . . 789

F1 D �1
2

.x; t/ V

�
�1
2

Rx C 3

2
w.x; t/C g

�
; V D 4

3
a3;w D @v

@t
C v

@v

@x
(1)

where g is the gravity force acceleration and V is the particle’s volume.
In a viscous fluid at small Reynolds numbers, the particle is additionally

subjected to the action of the Stokes FSt D �6�˛ Px [2], where � is the dynamic
viscosity of the fluid. With account of these forces, we obtain the following Cauchy
problem:

�

sC1

2

.x; t/

�
d2x

dt2
D3

2

.x; t/w.x; t/ � .
s�
.x; t// g�6�a

V

�
dx

dt
� v.x; t/

�

(2)

3 Fields of Velocity and Density

Standing ultrasonic wave with frequency! and amplitudeA satisfies wave equation:

@


@t
C @
v

@x
D 0; 


�
@v

@t
C v

@v

@x

�
C @p

@x
D 0 (3)

We will accept following dependence between pressure and density:

p D .p0 C B/

�




0

��s
� B; B D c2
0

�s
� p0 (4)

where c is velocity of sound in fluid and �s D 3. Also we will consider small fluid
compressibility regarding applied vibration, which means

b D A!

c
! 0

It is proved that the Eq. 3 has following analytical solution when �s D 3:

v D bc cos
.x � vt/!

c
sin


!t


0
; 
 D 
0

�
1 � b sin

.x � vt/!

c
cos


!t


0

�
(5)

At the moment tc D 1=.!b/ the Jacobian of system (5) becomes zero and here
comes the gradient catastrophe.



790 A. Petrov and M. Shunderyuk

−0.1

−1.5 1.5
q

0.1
u

t = 0.5tc t = 0.75tc t = tc

−0.1

−1.5 1.5
q

0.1
u

−0.1

−1.5 1.5
q

0.1
u

Fig. 3 Precisevelocity wave (solid line) and asymptotic (dashed) one at different times

Then we introduce the nondimensional variables:

x D c

!
q; t D �

!
; v D cu; 
 D 
0r; w D c!W; � D a2!.
 C 2
s/

9
ı; 
s D s
0;

g D 9

2

!cb2�

.s � 1/.2s C 1/
; b D 2s C 1

3
"2;

4s C 1

12
D � (6)

We can also obtain explicit asympotics for the fields of velocity and density by
expanding system (5) to the Taylor series with the small parameter b (Fig. 3):

u D b cos q sin � � 1

2
b2� sin 2q cos 2� CO.b3/;

r D 1 � b sin q cos � C 1

2
b2� cos 2q sin 2� CO.b3/ (7)

4 Averaged Equation of Movement

By substituting changes (6) to the Eq. 2 we receive following dimensionless
equation of movement:

Rq C 2s C 1

2s C r
ı. Pq � u/ D 3r

r C 2s
W � .s � r/

.s � 1/
.2s C 1/

.2s C r/
�"4 (8)

Then using asympotics (7) we expand the equation to the Taylor series with small
parameter " (b 
 "2):

Pq D "p; Pp D �"ıp C " cos q cos � � "3 .� C � sin 2q/

� 2s C 1

6
"2 sin 2q.2t sin 2t � cos 2t/ (9)

Notice that here � D 0 in case g D 0.
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Time can be eliminated from the Eq. 9 by applying to it Krylov-Bogoliubov-
Mitropolsky averaging method on the interval ŒT IT C 2� with arbitrary T < �c ,
which gives following substitution for the orders up to "3:

q D Qq � "2 cos Qq cos � � 2"3 Qp sin Qq sin � C "2ı cos Qq sin �

p D Qp C " cos Qq sin � C "ı cos Qq cos � � "2 Qp sin Qq cos �C
C "2ı Qp sin Qq sin � � "ı2 cos Qq sin �C

C 1

3
cos Qq �3 Qp2 sin � C sin Qq Œ.2s C 1/.cos 2T � cos 2�/� C sin 2��

�
(10)

For the averaged equation we then have

Pq D "p; Pp D �"ıp � "3� � 1

4
"3.4� � 1/ sin 2q C 1

12
"3.12� C 1/ cos2T sin 2q

(11)

By choosing in this equation T D =4 C 2n we obtain a single averaged
equation for the initial one on the interval Œ=4I �c�:

Pq D "p; Pp D �"ıp � "3� � 1

4
"3.4� � 1/ sin 2q (12)

The solution of similar equation was obtained in [3]. It is proved that in case of
� D 0 (no gravity) points q D n are the stability points of the system (12).

5 Numeric Results

The following values of the system’s parameters were chosen for numerical
calculations:


 D 1
kg

m3
; 
s D 1:5

kg

m3
; a D 5mkm; � D 10�3 g

cm � s
; g D 0

m

s2

A D 2 � 10�6cm; ! D 2 � 2 � 106s�1 (13)

In order to check the quality of averaged equation in the Fig. 4 presented are
the solutions of the initial precise equation and the averaged one. As it predicted in
theory considerable difference can be seen only at the end of the interval Œ=4I �c D
6 � 103�.

In the Fig. 5. several solutions of the averaged equation with different initial
coordinates and velocities are shown. The resulting band formation consists with
experimental picture in the Fig. 2.



792 A. Petrov and M. Shunderyuk

Fig. 4 The solutions of the
precise equation (solid line)
and the averaged one (dashed
line)
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Fig. 5 Several solutions of
the averaged equation with
different initial conditions
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6 Conclusions

The differential nonlinear equation of movement of a spherical heavy solid particle
in a fluid in the field of a standing acoustic wave which is created by the applied
vibration was studied. By using Krylov-Bogoliubov-Mitropolsky averaging method
we proved that gradient catastrophe that comes at time, inversely proportional to
amplitude of a wave, does not affect the stability of the velocity field’s antinodes.
This consists with the experimental results.
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On the Suppression of Flow-Generated
Self-Excited Vibrations of a Valve

Horst Ecker and Aleš Tondl

Abstract Self-excited vibrations of valves due to the flowing medium represent an
unfavorable effect and danger for some systems, e.g., pipe systems. The dynamics
of a basic valve system is modeled by using an additional differential equation
expressing the effect that the resulting dynamic force acting on the valve is delayed
with respect to the static force component. The static force is created by the inertial
force of the flowing medium at a steady state position of the valve. To enhance the
dynamic stability of the basic system, the valve seat body is designed as a moveable
subsystem that is connected to the inertia reference frame by a visco-elastic element.
The additional damping of the subsystem in combination with the additional degree
of freedom represents the passive means of vibration suppressing. The conditions
for stabilization of the equilibrium position are presented using the transformation
of the differential equations of the disturbed motion into the quasi-normal form.
Stability charts show within which range of parameters stabilization of the system
can be achieved.

Keywords Flow-induced vibrations • Valve oscillations • Vibration suppression
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1 Introduction

Self-excited systems represent an important class of oscillatory systems. Self-
excited vibrations can have a negative effect on the safe operation of various
machines and devices like valves. They occur especially if the valve is only
partly open. Therefore, vibration suppression can be an important problem. In
previous works [1] and [2] passive and active means for suppressing self-excited
vibration have been investigated. A damped mass-spring subsystem was used to
control the motion of the valve, see Fig. 1 (left). Active suppression was realized
by parametric excitation using a periodic variation of the spring stiffness of the
additional subsystem.

In this contribution a different design is used, which shall give the designer
more freedom to choose a suitable system, resp. its parameters. The basic idea
of this passive system is to consider a movable valve seat body with visco-elastic
mounting and elastic connection to the valve. A sketch of that system is shown in
Fig. 1 (right). The valve and the seat body are denoted m1 and m2, the connecting
stiffness elements are k1, k2 and k3, viscous damping for the valve and the seat are
denoted b1, b2, respectively.

The model for the self-excitation mechanism is based on the idea that the
dynamic force due to the pressure by the flowing medium acting on the valve and
the seat is delayed with respect to the static force due to the inertial force of the
flowing medium for the steady state of the non-moving valve. This time delay can
be modelled by an additional first-order differential equation, which reads

PP � ˛ŒF.y/ � P � D 0; (1)

Fig. 1 Schematics of different valve systems. (Left) as used in [1], [2], (Right) System as used in
this study with moveable valve seat body. The valve is operated by displacement y0



On the Suppression of Flow-Generated Self-Excited Vibrations of a Valve 795

where P represents the dynamic force, F(y) the static force, y the relative deflection
of the valve, and ˛ is a positive constant (see [3], Chap. 12).

2 System Description and Equations of Motion

The valve having mass m1 is connected by a spring of stiffness k1 to the operating
device. Operation of the valve (opening and closing) is realized by changing the
value of y0 accordingly. The valve seat body has a mass of m2 and is mounted
by spring and dampers k2, b2 to the reference system. Additionally, a spring k3

connects the valve and the seat body. The deflections of the masses, i.e., the degrees
of freedom, are denoted y1, y2. For the sake of simplicity let us consider linear visco-
elastic elements. The static pressure force acting on the valve can be expressed by a
function F(y1 � y2), which is a monotonically decreasing function. Considering the
above presented description of the system, the following differential equations of
motion can be derived

m1 Ry1 C b1 Py1 C k1.y1 � y0/C k3.y1 � y2/ D P;

m2 Ry2 C b2 Py2 C k2y2 � k3.y1 � y2/ D ��P;
PP � ˛0ŒF.y1 � y2/� P � D 0: (2)

By introducing dimensionless deflections

yi =y0 D xi ; .j D 1; 2/ (3)

and using a time transformation

!1t D �; !1 D
p
k1=m1; d= dt D P. /; d= d� D ./0: (4)

Equations 2 can be transformed into the dimensionless form

x00
1 C �1x

0
1 C x1 � 1C q23.x1 � x2/ D f;

x00
2 C �2x

0
2 CMq22x2 �Mq23.x1 � x2/ D ��Mf;

f 0 � ˛Œ˚.x1 � x2/� f � D 0; (5)

with abbreviations

�1 D b1

m1!1
; �2 D b2

m2!1
; f D P

k1y0
; q22 D k2

k1
;

M D m1

m2

; ˛ D ˛0

!1
; ˚.x1/ D F.x1/

k1y0
; q23 D k3

k1
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3 Stability of the Equilibrium Position

The equilibrium positions of the valve masses are characterized by constant values
x10, x20 which can be determined from the following algebraic equations:

x10 � 1C q23.x10 � x20/ D ˚.x10 � x20/;
q22x20 � q23.x10 � x20/ D ��˚.x10 � x20/: (6)

By inserting for the states x1, x2, f the expressions x1 D x10Cu1, x2 D x20Cu2 and
f D ˚.x10 � x20/ which are based on the disturbances u1, u2, v of the equilibrium
solutions, the following differential equations for the disturbed motion of the system
in a first-order approximation are obtained:

u00
1 C �1u

0
1 C u1 C q23.u1 � u2/ D v;

u00
2 C �2u

0
2 CMq22u2 �Mq23.u1 � u2/ D ��M v;

v0 � ˛Œ˚ 0.u1 � u2/� v� D 0; (7)

where ˚ 0 D @˚.x10 � x20/=@.x10 � x20/ with ˚
0 	 0 because ˚(x10 � x20) is a

decreasing function.
Assuming that the damping terms are relatively small, these equations can be

transformed into the quasi-normal form by using the transformation

u1 D z1 C z2; u2 D a1z1 C a2z2 (8)

which leads to the following relations (see [4], Appendix I, for more details):

z00
1 C˝2

1 z1 D 1

a1 � a2

˚��2.a1z0
1 C a2z

0
2/C a2Œ�1.z

0
1 C z0

2/ � v�
�
;

z00
2 C˝2

2 z2 D 1

a1 � a2

˚
�2.a1z

0
1 C a2z

0
2/ � a1Œ�1.z0

1 C z0
2/� v�

�
;

0 D v0 � ˛Œ˚ 0.z1 � z2/� v�: (9)

with coefficients

a1 D 2Mq23



M.q22 C q23/ � 1 � q23 C

q
.1C q23 �M.q22 C q23//

2 C 4Mq43

�
;

(10)

a2 D 2Mq23



M.q22 C q23/� 1 � q23 �

q
.1C q23 �M.q22 C q23//

2 C 4Mq43

�
;

(11)
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˝2
1;2 D 1

2


�
1C q23 CM.q22 C q23/

��
q
.1C q23 �M.q22 C q23//

2 C 4Mq43

�
:

(12)

Let us consider the stability of single frequency vibrations only, i.e., we will
separate the first mode and the second mode vibration stability. Of course, system
stability requires that both modes are stable. When investigating the first mode
we shall suppose that z2 D 0, which means that the following equations will be
analyzed:

z00
1 C˝2

1z1 D 1

a1 � a2

˚��2a1z0
1 C a2�1z

0
1 � v

�
;

0 D v0 � ˛Œ˚ 0.z1/ � v�; (13)

with ˚ 0 D @˚
@z1

. For this reduced system the characteristic equation reads

�3 C


˛ C 1

a1 � a2 .a1�2 � a2�1/

�
�2

C


˝2
1 C ˛

1

a1 � a2
.a1�2 � a2�1/

�
�C ˛˝2

1 C ˛˚ 0 a2

a1 � a2
D 0: (14)

By using the Routh-Hurwitz criterion the following conditions are obtained:

˛

�
˝2
1 C ˚ 0 a2

a1 � a2

�
> 0; (15)

�
˛ C N�

a1 � a2

��
˝2
1 C ˛

N�
a1 � a2

�
� ˛˝2

1 � ˛˚ 0 a2

a1 � a2
> 0 ; (16)

where the symbol N� D a1�2 � a2�1 is used.
Considering the supposed shape of function ˚ , then ˚

0

is negative and the
condition Eq. 15 is always met because a2< 0. It can be supposed that N� is of rela-
tively small value and therefore the term with N�2 may be neglected. Consequently,
condition Eq. 16 can be expressed in an abbreviated form:

�
�1 � a1

a2
�2

� �
˛2 C˝2

1

�C ˛˚ 0 > 0: (17)

In the same manner we can obtain the condition for the stability of the vibration for
the second mode (z1 D 0):

˝2
2 � a1

a1 � a2
> 0; (18)
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.a1�1 � a2/.˛
2 C˝2

2/C ˛a1˚
0 > 0: (19)

Again the first condition Eq. 18 is always satisfied. Comparing the conditions for
the first and second vibration modes it can be expected that by increasing �˚ 0

the
condition for the first mode will not be met first.

4 Numerical Example

To verify the stability conditions as obtained from the analysis in the previous
section, a numerical example is shown. Based on the differential equations (7) for
the perturbed system, an eigenvalue analysis was carried out numerically by using
the software package MATLAB.

For the numerical approach it is necessary to define function ˚ 0 D @˚=@4u,
which appears in the first-order differential equation of Eq. 7. For this example it
is sufficient to capture the behavior of the valve system by a linear function ˚ 0 D
@˚
@4u D k˚ < 0.

For an exemplary study the parameters of the perturbed system Eq. 7 are chosen
as listed in the caption of Fig. 2. Both diagrams show the real part of the two largest
eigenvalues of the system. The figure to the left is a parameter study of the mass ratio
M D m1

m2
. Due to a positive real part of the first eigenvalue, the system is unstable

for approx. M 	 1. For M � 5 the second mode becomes unstable. The diagram to
the right explains the influence of the connecting stiffness ratio q23 . For this assumed
system, at least q23 > 7 must hold to ensure stability. These results are in agreement
with the conditions derived in the previous section.
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Fig. 2 Real part of eigenvalues for system parameters q22 D 6:25, q33 D 9, M D 2, �1 D 0. 25,
�2 D 0. 25, ˛D 1. 5, � D 0. 2 and ˚ 0 D �4. (Left) Variation of mass ratio M D m1=m2. (Right)
Variation of dimensionless connecting stiffness q23
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5 Conclusion

There are various possibilities for a sophisticated valve design to minimize the
danger of flow-induced self-excited vibrations. The new design presented here is
analyzed analytically and useful stability criteria are derived to get insight into the
influence of the relevant system parameters on the stability behavior. The numerical
stability analysis can be used to optimize the design and maximize the safety margin
with respect to the stability threshold.
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FE Modelling of the Fluid-Structure-Acoustic
Interaction for the Vocal Folds Self-Oscillation

Pavel Švancara, J. Horáček, and V. Hrůza

Abstract The flow induced self-oscillation of the human vocal folds in interaction
with acoustic processes in the simplified vocal tract model was explored by three-
dimensional (3D) finite element (FE) model. Developed FE model includes vocal
folds pretension before phonation, large deformations of the vocal fold tissue, vocal
folds contact, fluid-structure interaction, morphing the fluid mesh according the
vocal folds motion (Arbitrary Lagrangian-Eulerian approach), unsteady viscous
compressible airflow described by the Navier-Stokes equations and airflow sepa-
ration during the glottis closure. Iterative partitioned approach is used for modelling
the fluid-structure interaction. Computed results prove that the developed model
can be used for simulation of the vocal folds self-oscillation and resulting acoustic
waves. The developed model enables to numerically simulate an influence of some
pathological changes in the vocal fold tissue on the voice production.

Keywords Biomechanics of human voice • Numerical simulation of voice
production • Fluid-structure-acoustic interaction • Self-oscillation

1 Introduction

Human voice production is a direct consequence of the flow-induced vibration
of the vocal folds interacting with acoustic spaces of the vocal tract. For better
understanding, the mechanism of phonation for healthy as well as for pathological
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voices it is important to study this problem as the fluid-structure-acoustic interaction
problem. Several experimental and computational studies on this problem have been
published. Main limitations of experimental techniques [1, 2] are in difficulties to
obtain detailed spatial and time information on quantities such as the intraglottal
pressure, velocity distribution, impact stress etc. Literature describing the compu-
tational models includes reduced-order structural models [3], models of fluid flow
[4] and FE models [5, 6]. The main advantage of the FE models is their ability to
deal with complex vocal folds and acoustic spaces geometry and ability to solve
fluid-structure-acoustic interaction combining tissue elasticity with aerodynamics.

Recently, a 3D FE model of flow induced oscillations of the vocal folds in
interaction with acoustic spaces of a simplified vocal tract modelled as a straight
prismatic rectangular channel was developed by the authors [7, 8]. The constant
inflow velocity of the air supplied by the lungs is the driving parameter of this model.
In the present paper new FE model with a 3D shaped vocal tract was developed to
study the effect of real vocal tract shape on acoustics.

2 Complex 3D Finite Element Model of the Voice Production

FE model of the vocal folds together with the FE models of the trachea and
the simplified acoustic spaces of the human vocal tract shaped for simulation of
phonation of vowel [a:] are shown in Fig. 1. The vocal tract model of the acoustic
spaces for the Czech vowel [a:] was created by converting the data from the
magnetic resonance images [9].

The FE model was developed within the program system ANSYS 13.0. The vocal
folds are modelled by a three layered tissue – epithelium, lamina propria and muscle.
Homogenous and isotropic material of each layer was assumed with Young modulus
20 kPa for epithelium, 3 kPa for lamina propria and 65 kPa for muscle. Poisson ratio
0.49 and density 1,040 kg�m�3 was used for all three layers. Proportional structural
damping was used with constants ˛D 150 and “D 3 � 10�4. Collisions of the vocal
folds during phonation are modelled by the symmetric surface to surface contact
pair elements on faces of the vocal folds. Motion of the vocal folds is computed
by transient analysis with time step �t D 1.5 � 10�4 s within the ANSYS/Structure
environment taking into account the large deformations and the vocal folds contact.
The flow of air is modelled as unsteady viscous compressible and laminar using
ANSYS/Flotran code using the material properties: speed of sound 343 m/s, fluid
viscosity 1.8135 � 10�5 kg�m�1�s�1 and density 1.205 kg�m�3. The compressible
Navier-Stokes equations capture acoustic wave propagation phenomena in fluid.
Constant airflow velocity at the entrance to the subglottal space is prescribed as
only one driving parameter (0.4 m/s used here). Zero acoustic pressure is prescribed
on the upper end of the vocal tract.
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Fig. 1 (a) FE model of the vocal folds together with a part of the model of the vocal tract, (b) detail
of the FE model of the three layered tissue of the vocal folds, (c) complete FE model of the acoustic
spaces of the trachea and the vocal tract for vowel/a/(all dimensions are in mm)

FE model consists of 9,744 linear 8-node structural elements and 24,084 linear
8-node fluid elements. Before the fluid-structure interaction simulation starts the
vocal folds are prolonged in the longitudinal direction by ¼ of original length and
pushed slightly into the contact. This is performed as static analyses in several steps
taking into account the large deformations and contact. Fluid-structure interaction is
solved by iterative partitioned solution procedure in ANSYS. Where the results of
the flow solution are transferred as loads on the vocal folds surface, then the vocal
folds motion is computed and then again the fluid flow is solved. This solution is
iteratively repeated until a needed convergence limits for stress and displacement
residuals on interface are reached. The fluid domain mesh is morphed in each time
step according to the vocal folds movement. In order to represent moving boundaries
in fluid domains the Arbitrary Lagrangian-Eulerian (ALE) approach implemented in
ANSYS is utilized. For purpose of modelling of the vocal folds closure the distance
between the faces of the vocal folds is monitored and if exceeds a defined minimal
value, the mesh is not more deformed at these nodes and the flow velocity is set
to zero.
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3 Results and Discussion

Example of computed displacement in x direction of selected nodes on the face
of the left and right vocal fold positioned in the middle of vocal folds length is
shown in Fig. 2 together with fluid velocity and acoustic pressure in corresponding
fluid node on the axis of symmetry of the simplified vocal tract model. From the
results we can see that prescribed constant airflow velocity at the entrance to the
subglottal space produce vocal folds self-oscillations that are stabilized after first
few periods of the transient regime. Fundamental vocal fold oscillation frequency
was 98 Hz, maximum intraglottal fluid velocity was about 30 m/s and maximum
intraglottal pressure was about 700 Pa. The computing time per oscillation period is
approximately 6 h on two Intel Xeon E5520 (8 cores/16 threads) and enabled GPU
accelerator capability on Nvidia Tesla C1060 (240 thread processors).

Figure 3 shows the numerically simulated displacement of the vocal folds in x
direction during one oscillation period at eight time steps from 0.0297 to 0.0360 s.

Computed airflow velocity in the middle cross-section along the vocal tract at
eight time instances during one oscillation period is shown in Fig. 4. Figure 5 shows
the acoustic pressure and corresponding power spectral densities computed at two
selected nodes above the vocal folds and near the lips. The acoustic pressure is also
nearly periodic after first four oscillation periods. In the spectra we can observe peak
of fundamental frequency 98 Hz and many higher harmonics as reported for human
voice [1]. From the spectrum of the acoustic pressure near the lips we can see that
some harmonics are amplified by the resonant frequencies of the vocal tract and
producing so called “formants” typical for the modelled vowel [a:].
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Fig. 2 Numerically simulated displacement in x direction of selected nodes on the face of the
left and right vocal fold (top graph), and the fluid velocity (middle graph) and acoustic pressure
(bottom graph) in a fluid node on the axis of symmetry of the channel modelling the vocal tract
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Fig. 5 Acoustic pressure (left graphs) and corresponding power spectral densities (right graphs)
computed in the selected nodes above the vocal folds (upper panel) and near the lips (lower panel)

4 Conclusions

A complex 3D FE model of the flow induced vocal folds self-oscillations in
interaction with the vocal tract acoustics was created. The used compressible
Navier-Stokes equations enable to model propagation of the acoustic waves in
the vocal tract model and therefore modelling a complete fluid-structure-acoustic
interaction. Computed results showed regular vocal folds oscillations after four
periods of the transient regime.

Numerical simulation of phonation demonstrated very close similarities of the
developed model with a real production of voice in humans [10], especially
the fundamental oscillation frequency, the acoustic resonances corresponding to
the formants of the vocal tract cavity for vowel [a:], the amplitudes of intraglottal
pressure and the mean subglottal pressure.
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Mathematical Modeling of Flow in Human
Vocal Tract

Petra Pořı́zková, Karel Kozel, and Jaromı́r Horáček

Abstract This study deals with the numerical solution of a 2D unsteady flow
of a compressible viscous fluid in a channel for low inlet airflow velocity. The
unsteadiness is caused by a prescribed periodic motion of the channel wall.
Unsteady flow fields for inlet Mach number M1 D 0. 012 and frequency 100 Hz
are presented.

Keywords Bio-mechanics of human voice • CFD • Finite volume method • Low
mach number • Unsteady flow • Viscous compressible fluid

1 Introduction

Fluid-structure interaction problems can be treated in numerous engineering and
other applications.

A current challenging question is a mathematical and physical description of the
mechanism for transforming the airflow energy in the glottis into the acoustic energy
representing the voice source in humans. The voice source signal travels from the
glottis to the mouth, exciting the acoustic supraglottal spaces, and becomes modified
by acoustic resonance properties of the vocal tract.
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Acoustic wave propagation in the vocal tract is usually modeled from incom-
pressible flow models separately using linear acoustic perturbation theory, the wave
equation for the potential flow [1] or the Light-hill approach on sound generated
aerodynamically [2]. In reality, the airflow coming from the lungs causes self-
oscillations of the vocal folds, and the glottis completely closes in normal phonation
regimes, generating acoustic pressure fluctuations. In this study, the channel is
harmonically opening and nearly closing in the narrowest cross-section of the
channel, making the investigation of the airflow field in the glottal region possible.
For phonation of vowels, the frequencies of the vocal folds oscillations are in the
region from ca 82 Hz for bass up to ca 1,170 Hz for soprano in singing voice, the
airflow velocity in the trachea is approximately in the range of 0.3–5.2 ms�1 taking
into account the tracheal diameter in humans in the range 14.5–17.6 mm [1].

2 Mathematical Model

To describe the unsteady laminar flow of a compressible viscous fluid in a channel,
the 2D system of Navier-Stokes equations was considered as a mathematical
model. The Navier-Stokes equations were transformed to non-dimensional form.
The reference variables are inflow variables (marked with the infinity subscript): the
speed of sound Oc1 D 343ms�1, density O
1 D 1:225 kg m�3, temperature OT1 D
293:15K, dynamic viscosity Õ1 D 18 � 10�6 Pa�s and a reference length OLr D
0:02m. The system of Navier-Stokes equations is expressed in non-dimensional
conservative form [3] as:

@W
@t

C @F
@x

C @G
@y

D 1

Re

�
@R
@x

C @S
@y

�
: (1)

W is the vector of conservative variables W D [
, 
u, 
v, e]T where 
 denotes
density, u and v are the components of the velocity vector and e is the total energy
per unit volume. F and G are the vectors of inviscid fluxes and R, S are the vectors
of viscous fluxes. The static pressure p in F and G is expressed by the state equation
in the form

p D .� � 1/



e � 1

2


�
u2 C v2

��
; (2)

where �D 1. 4 is the ratio of specific heats.
General Reynolds number in (1) is computed from reference variables Re D

O
1 Oc1 OLr= O�1. The non-dimensional dynamic viscosity in the dissipative terms is a
function of temperature in the form � D .T=T1/3=4.
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Fig. 1 The computational domains D2; 4. Top: D2, 2L D 16 (320 mm). Bottom: D4, 3L D 24
(480 mm). The width H D 0. 8 (16 mm)

3 Computational Domain and Boundary Conditions

The bounded computational domains D2; 4 used for the numerical solution of flow
field in the channel are shown in Fig. 1. The domains are identical in the inlet
and middle part of the channel. The outlet part of the D4 is prolonged. The upper
and the lower boundaries are the channel walls. A part of the walls changes its
shape between the points A and B according to a given function of time and
axial coordinate. The gap width (in point C) was oscillating between the minimum
gmin D 0. 4 mm and maximum gmax D 2. 8 mm.

The boundary conditions are considered in the following formulation:

1. Upstream conditions: u1 D M1, v1 D 0, 
1 D 1, p1 is extrapolated from D.
2. Downstream conditions: p2 D 1=� and (
, 
u, 
v) are extrapolated from D.
3. Flow on the wall: (u, v) D (uwall, vwall) and @T

@n D 0 (T D �p=
).

The general Reynolds number in (1) is multiply with non-dimensional value M1
H represents kinematic viscosity scale and for computation of the real problem inlet
Reynolds number Re1 D O
1 Oc1M1H OLr= O�1 is used.

4 Numerical Solution

The numerical solution uses finite volume method (FVM) in cell centered form
on the grid of quadrilateral cells. In the time-changing domain, the integral form of
FVM is derived using the ALE formulation. The ALE method defines homomorphic
mapping of the reference domain Dt D 0 at initial time t D 0 to a domain Dt at
t> 0 [4].

The explicit predictor-corrector MacCormack (MC) scheme in the domain with
a moving grid of quadrilateral cells is used. The scheme is the second order accurate
in time and space [3]:
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(3)

where �t D tnC1 � tn is the time step, �i;j D R R
Di;j
dxdy is the volume of cell

Di; j, �x and �y are the steps of the grid in directions x and y, vector sk D (s1, s2)k

represents the speed of edge k.
The physical fluxes F, G, R, S on the edge k of the cell Di; j are replaced by

numerical fluxes (marked with tilde) QF; QG; QR; QS as approximations of the physical
fluxes. The higher partial derivatives of velocity and temperature are approximated
using dual volumes V0

k (see [3]).
To stabilize computation the Jameson artificial dissipation AD(Wi; j)n is added to

the MC scheme [5]. Since the artificial dissipation term is of third order, the overall
accuracy of the scheme is of second order. The vector of conservative variables W
can be computed at a new time level WnC1

i;j D W
nC1
i;j C AD.Wi;j /

n.
The grid used in the channel has successive refinement cells near the wall

(see [6]). The minimum cell size in y-direction is �ymin � 1=
p
Re to capture the

boundary layer effects.

5 Numerical Results

The numerical results were obtained (using a specifically developed program)
for the following input data: uniform inflow Mach number M1 D 0. 012 (Ou1 D
4:116ms�1), Reynolds number Re1 D 4, 481, atmospheric pressure p2 D 1=�

(102,942 Pa) at the outlet, and wall oscillation frequency OfD100 Hz. The computa-
tional domain contained 750 � 100 cells in D2 and 1,050 � 100 cells in D4.

The computation has been carried out in two stages. First, a numerical solution
is obtained, when the channel between points A and B has a rigid wall fixed in the
middle position of the gap width. Then this solution is used as the initial condition
for the unsteady simulation (see [6]).

Figure 2 shows the steady numerical solutions which are the initial conditions for
unsteady computation of the flow field in D2; 4. The maximum Mach number com-
puted in the domain D2 was Mmax D 0. 190 (65 ms � 1) and in D4 was Mmax D 0. 226
(77.5 ms � 1).
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Fig. 2 The steady numerical solution computed in D2 (a) and in D4 (b) –M1 D 0. 012,
Re D 4,481, p2 D 1=�, D4 – 1,050 � 100, D2 – 750 � 100 cells, g D 1. 6 mm

Fig. 3 The numerical simulation of the airflow during the third oscillation cycle computed in D2

(left column, the inlet part of the channel is abridged) and in D4 (right column, the inlet and outlet
part of the channel is abridged) – Of D 100Hz, M1 D 0. 012, Re D 4, 481, p2 D 1=�, D2 –
750 � 100, D4 – 1,050 � 100 cells. Results are mapped by iso-lines of Mach number and by
streamlines

The convergence to the steady state solution is supervised using the L2 norm of
momentum residuals (
u). The residuals indicates the non-stationary solution which
is caused by eddies separated in the un-movable glottal orifice and floating away.

The unsteady solution in domains D2 and D4 during one cycle of oscillation is
shown in Fig. 3. The absolute maximum of Mach number in period is M D 0. 270
(92.6 m � s�1) in D2 (left column) at time t D 26. 12 ms and M D 0. 328 (112 m � s�1)
in D4 (right column) at t D 25. 625 ms.
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6 Discussion and Conclusions

Special program code has been developed for numerical simulation of the airflow in
a channel with vibrating walls for 2D unsteady flow of viscous compressible fluid.

The numerical solution in the channel showed large vortex structures developed
in the supraglottal space moving slowly downstream and decaying gradually. It was
possible to detect a “Coandă phenomenon” in the computed flow field patterns.
A similar generation of large-scale vortices, vortex convection and diffusion, jet
flapping, and general flow patterns were experimentally obtained in physical models
of the vocal folds by using PIV method in [7–9].

The influence of the channel length was tested. The numerical solution showed
more streamlined flow pattern due to the prolonged outlet part of the channel.
The prolongation of the channel inlet part resulted in the developed velocity
profile before entering the narrowest channel cross-section. The Coandă effect
(the direction of the jet) depends on the geometry of the channel, on the type of
domain meshing and on the computational scheme, but is was not so sensitive to the
coarseness of mesh.
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Optimal Design of a Torsional Tuned Damper
for Marine Diesel Engines Using Fluid-Structure
Interaction Analysis

Young-Cheol Kim, D.H. Lee, T.Y. Chung, D.Y. Ham, and Y.B. Kim

Abstract A torsional tuned damper is usually used in order to reduce the torsional
vibration of the crank shaft system in marine diesel engines. The damper consists
of leaf springs, fluid chambers, fluid channels, and intermediate masses. The leaf
springs provide the stiffening force to the shaft system, and the fluid chambers
and channels give the damping force. In this paper, FSI (fluid-structure interaction)
analysis by using FEM is carried out for the calculation of the stiffness and damping
coefficients of the designed damper. The numerical calculation result about the
equivalent damping coefficients is compared to the value obtained from a simple
damping simulation model.

Keywords Torsional tuned damper • Viscous damping • Optimal design • FSI
analysis • Diesel engine

1 Introduction

Torsional vibration of a crank shaft due to torque variation is inevitable in marine
diesel engines. Such excessive torsional vibration can be usually reduced by
installation of a torsional tuned damper. There are several types of torsional damper,
which can be selected by engine speed. The low-speed large engines use usually a
viscous fluid damper with leaf type springs. However, a viscous fluid damper with
sleeve ring is used in the high-speed small engines. Torsional vibration analysis of
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the crank shaft system should be given considerations in the early design stage,
thereby identifying the significant resonance condition. The tuned torsional damper
acts as a dynamic absorber with mass and spring.

Lee [1–3] compared the dynamic characteristics of a diesel engine propulsion
shafting system with different dampers. Kim [4, 5] analyzed the static and dynamic
characteristics of a damping flexible coupling with leaf type springs. Lee [6]
proposed the procedure to get the optimal parameters of a spring-viscous damper
in a diesel engine using the effective modal value.

This paper presents the static and dynamic characteristics of a viscous fluid
damper with leaf type springs. The 1-way FSI (fluid-structure interaction) analysis
by using FEM (finite element method) is carried out for the calculation of the
stiffness and damping coefficients of the damper. The spring deformation by the
external torsional vibration is firstly calculated in transient state, and then the fluid
flow analysis is carried out. The numerical calculation result about the equivalent
damping coefficient is compared to the value obtained from a simple damping
simulation model.

2 Torsional Tuned Damper

2.1 Structure of the Damper

Figure 1 shows the structure of the torsional tuned damper which is attached to the
end of the propulsion shaft for a diesel engine system. This damper behaves as a
dynamic absorber with mass, spring and damping elements. The damper consists
of the 24 pairs of leaf springs, the fluid chambers, the fluid channels, and the
intermediate masses. The material of the springs is a kind of stainless steel. The leaf
springs provide the tuned stiffening force to the shaft system, and the fluid chambers

Intermediate piece

Chamber Leaf spring

a

b

Fig. 1 A torsional tuned damper; (a) the cross section of damper and (b) a fluid channel on a cover
for damping force
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Fig. 2 The relationship
between a torque and a
displacement in the torsional
damper

k l

T

rq

S F

and channels give the damping force to the system. If the external forces are exerted
to the damper, the springs are deformed, and the fluid chambers between the springs
become narrow. Therefore the fluid flow is occurred through the channels on the
cover, and the vibratory engine system can get the damping forces from the damper.

2.2 Specification of the Optimal Designed Damper

The design specification of a damper can be get from the natural frequency analysis
for engine propulsion for a diesel engine system. The design target of the damper
obtained by the optimization method of [6] is proposed that the moment of inertia
is 13 kg-m2, the damping coefficient is 2,300 Nms/rad, and the stiffness coefficient
is 2 MN/rad. The amplitude of torsional harmonic vibratory torque obtained from
engine vibration analysis is 10 kNm. Then, the force exerted on the end point of a
leaf spring can be calculated asthe following (Fig. 2).

F D T

nr
D 104

24 � 0:22
D 1893N (1)

Therefore, the linear stiffness coefficient of a pair of leaf spring, the deflection at
the end point of a spring, and the linear damping coefficient through a fluid channel
on the cover can be calculated as the followings.

ks D k�

nr2
D 2 � 106

24 � 0:222
D 1:72MN=m (2)
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ı D F

ks
D 1893

1:72 � 106
D 1:1mm (3)

cs D c�

nr2
D 2300

24 � 0:2452
D 1600Ns=m (4)

3 FSI Analysis of the Damper

3.1 Structural Analysis of the Damper

Figure 3 shows the FEM model of a pair of springs of damper using ANSYS module
[7]. The number of the mesh elements is 34,085, the vibratory frequency is 15 Hz,
and the number of the transient calculation time step during one vibration cycle
(0.067 s) is 60. As a calculation result, it is verified that the maximum deformation at
the end point of the spring is 1.04 mm, which is close to the design target. Figure 4a
represents the SN curve obtained from material fatigue test for the same material,
stainless steel. From the FEM calculation, it is confirmed that the maximum stress is
528 MPa, and the damper has a sufficient safety margin and service life. Figure 4b
shows the rate of gap change at the end point between a pair of springs, which is
made by deflection of only one spring. It is observed that the frequency of the rate of
gap change is twice of the external vibration frequency, and the two sudden rate of
gap change is occurred during one vibration cycle. This fact gives the nonlinearity

Fig. 3 The FEM modeling for the stiffness calculation of a pair of springs
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Fig. 4 (a) SN curve of the spring and (b) the rate of gap change between a pair of springs

Fig. 5 (a) The FSI modeling and (b) the detailed moving mesh for the fluid

to the damper system. The vibration velocity at the end of a pair of springs is
represented as the following.

vŒmm=s� D 82:0 � cos.30t/ (5)

3.2 Fluid Flow Analysis of the Damper

Figure 5a shows FSI modeling using the CFX module [7]. If the structural
deformation information is linked to the CFX module, then the fluid velocity and
pressure fields can be calculated during one vibration cycle (0.067 s). Figure 5b
shows the moving mesh generated by ANSYS ICEM-CFD. The number of the mesh
elements is 610,000, and the ISO grade of the oil viscosity is 220. As a calculation
result, Fig. 6a represents the flow velocity vector in the rectangular channel on
the cover. It can be observed that the fluid flows to the largest neighboring gap
through the channel. Figure 6b represents the flow resistance damping force due to
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Fig. 6 (a) Flow velocity vector in an oil channel and (b) the calculated damping force
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Fig. 7 (a) The approximated damping force obtained from FSI analysis and (b) a equivalent
simple dashpot model

the external vibration. It is observed that the frequency of the damping force is twice
of the external vibration frequency, and the sudden change in the damping force is
occurred by the periods.

3.3 Damping Coefficient

The damping force is approximated to the cosine curve such as Fig. 7a to get the
equivalent damping coefficient as the following.

Fd ŒN� D 44:5 � cos.30t C 0:28/ (6)
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So the approximated damping coefficient can be obtained from the ratio between
the external vibration velocity and damping force as the following.

ceq D Fd

v
D 44:5

0:082
D 542Ns=m (7)

The equivalent simple damping dashpot model is proposed to confirm the
availability of the damping coefficient obtained using 1-way FSI technique. Force
equilibrium and continuity equation in the dashpot [8] can be derived as the
followings.

q D ab3

12Al�
F D AU (8)

where U is velocity of the dashpot. The simple model equation for the damping
coefficient in a rectangular channel is as the followings.

c D 12A2l�

ab3
(9)

Therefore, the damping coefficient of the equivalent dashpot model with two
different rectangular channels is as the followings.

ceq D c1c2

c1 C c2
D 448Ns=m (10)

The result for the equivalent dashpot model has a good agreement with 17%
difference from FSI result. If the original height of the rectangular channel is
changed from 2 to 1.3 mm, then the design target can be satisfied.

4 Conclusions

The FSI simulation of the torsional damper is successfully carried out to get the
stiffness and damping coefficients. The validity of the method is confirmed by
comparing the results obtained from the equivalent simple dashpot model.
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Cižmár, J., 213
Cirkl, D., 663–668
Claro, J.P., 278
Clauberg, J., 281–286
Cleghorn, W.L., 119, 122
Collet, B., 687, 688
Colquitt, D.J., 709, 713
Cominguez, A.H., 638
Constantinou, M.C., 419
Conti, C., 175–181
Cooke, K.L., 161
Cooper, J.E., 754
Craggs, A., 590
Crawley, E.F., 442
Crum, L.A., 127
Csák, B., 107–112

D
Darlow, M.S., 638
Darula, R., 447–452
Das, S., 380
Datta, B.N., 371, 372
Datta, P.K, 45–50
Davies, P., 665
De Boe, P., 96, 98
de Castro, H.F, 589–595
De Moor, B., 97, 474
Degenstein, T., 616
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Löfberg, J., 415
Loffet, C., 97, 98
Lord, T.M., 14
Los, J., 426, 427
Los, S.J., 425–430
Love, A.E.H., 699
Loy, C.-T., 316
Loya, J.A., 456
Loytsyanskiy, L.G., 129
Lubliner, J., 46
Lucinskis, R., 495–500
Lufinka, A., 649–656
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Náprstek, J., 145–150
Narayan G.-V., 318
Natke, H.G., 630–632
Navickaite, S., 657–662
Nayfeh, A., 46, 47
Nayfeh, A.H., 385
Nayfeh, N.A., 385
Nazarov, S.A., 707, 708, 710
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Šklı́ba, J., 205, 211–216, 487–493, 509
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Ünlüsoy, Y.S., 119
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Wéilpart, M., 609
Weiming, L., 538, 590
Whang, K., 663
Whitehead, D.S., 550
Wiercigroch, M., 35–42, 154
Wiggins, R.A., 638
Wildschek, A., 218
Wilson, R.R., 590
Winner, H., 616
Wittrick, W.H., 284
Wohua, Z., 46
Woolston, D.S., 748
Worden, K., 14, 347
Wright, J.R., 754
Wroblewski, A., 583
Wu, H.X., 405
Wuilpart, M., 607–613
Wunderlich, T., 550

X
Xi, Z.-C., 316
Xian, X., 716, 724–726
Xianlong, J., 196
Xiong, Y., 119
Xu, J., 748
Xu, Q., 385–391
Xu, R., 405–410, 753–758
Xu, X., 36, 290
Xu, Y.L., 184

Y
Yakimova, K.S., 127, 128, 130, 134–136
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