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Preface

With the substantial development of modern optoelectronics, optical scan tech-
nology has been increasingly applied in the fields of space laser communication,
laser radar, satellite remote sensing, directed-energy application and medical
detection. Compared with conventional mechanical beam scan systems such as
reflective and gimbaled scan systems, the double-prism beam scan system is
advantageous in compact structure, small moment of inertia, superior dynamic
performance, great operation reliability and high scan precision. As one significant
branch in the optical scan field, the beam steering device based on double prisms
can offer a quite potential alternative to common beam scanners used for laser
communication, airborne laser radar, microstructure processing, biomedicine and
military weapons.

Theoretical research on the double-prism scan system is always confronted with
the nonlinear relation between prism motion characteristics and beam pointing
direction, which produces inherent difficulties in solving forward problem and
inverse problem. Unfortunately, most previous studies on forward and inverse beam
scan theories are not comprehensive and systematic enough to satisfy the appli-
cation requirements in practice. In the book, the double-prism multi-mode beam
scan model is proposed to help explore the forward and inverse problems for coarse
scanning and fine scanning, and the fine scanning theory based on double prisms is
demonstrated to achieve beam scan precision better than microradian order. In
particular, the inverse solution algorithms are deeply investigated in order to sys-
tematize the inverse beam scan theory. The book will enrich the double-prism
multi-mode scan theories and pave the new way to accomplish wide-angle and
high-precision scanning, which can offer basic support for further applications.

By far, most double-prism scan systems have been implemented for beam
pointing or boresight adjustment applications, such as the lasercom test and eval-
uation station (LTES) developed by Jet Propulsion Laboratory (JPL) under the
support of National Aeronautics and Space Administration (NASA), the step-stare
imaging system developed by Defense Research and Development Canada
(DRDC), and the infrared countermeasure device developed by Optra
Incorporation. However, there is a lack of systematic discussion about the beam
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scan technology based on double prisms. In this book, the double-prism multi-mode
beam scan technology is well demonstrated on the theoretical basis. Particularly,
many innovative achievements are presented with emphasis on the double-prism
multi-mode scan strategies, beam scan system design and laboratory test on
multi-mode beam scan performance. The beam scan laws and characteristics are
also investigated through much detailed computation, testing and analysis, which
can help improve the double-prism beam scan technology for more possible
applications. In addition, a series of optical scan devices that incorporate rotating,
tilting or composite-motion double prisms are contrived, accompanied by further
research on their critical techniques and beam scan performance.

The author has been devoted to research on laser scanning and tracking tech-
nologies over the past decade and has presented some systematic and complete
research achievements, especially on double-prism multi-mode scanning concept.
This book is the first monograph intended to generalize double-prism multi-mode
scan principle and methods, which has been accomplished by combining previous
theories and applications with the author’s recent studies. Most significant inno-
vations in this book are summarized as follows. The double-prism multi-mode
beam scan theory is established to help demonstrate double-prism beam scan region
and high-precision radial scan principle. The theoretical model for tilting double
prisms is proposed to achieve micro-radian beam scan precision, which enables
high-precision beam deflection based on general mechanical structure. An iterative
method is developed to solve the inverse problem of rotating double prisms so that
the double-prism system can be successfully applied for passive target tracking
operation. Inverse solution methods for tilting double prisms are also developed to
enrich the high-precision beam scan theory that can be utilized to track arbitrary
target trajectories. Several implementation methods for multi-mode beam scanning
are designed to overcome the nonlinear motion control problem by means of
specific drive mechanisms for double prisms. The performance verification and
accuracy test techniques are both demonstrated for double-prism systems. The
kinematics simulation method for a large-aperture rotating prism is proposed,
together with synthetic analysis on the prism surface deformation due to dynamic
loads. This book features its comprehensive contents, logical descriptions and a
variety of cases examples to clarify many crucial and puzzling issues. It has been
intended to introduce the latest achievements associated with double-prism
multi-mode beam scanning principle and methods, which may enable readers to
have a systematic, comprehensive and profound understanding about the
double-prism multi-mode beam scan systems.

Most work in this book has been supported by National Natural Science
Foundation of China (NSFC) (61675155, 51375347 and 50805107), Key
Laboratory of Space Laser Communication and Verification Technology of Chinese
Academy of Sciences, and Natural Science Foundation of Shanghai. The author
would express sincere gratitude to Mr. Liu Liren, Shanghai Institute of Optics and
Fine Mechanics, Chinese Academy of Sciences, for his careful guidance, and thank
Researcher Sun Jianfeng, Shen Qiande, and Wang Lijuan for their generous
assistance. Thanks to Li Tongbao, academician of Chinese Academy of
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Engineering for his kind concerns. Thank Dr. Gao Peng, Chinese Academy of
Sciences for his great help. This book has been finished under the support of Prof.
Shi Laide, Prof. Bian Yongming, A. P. Liu Guangjun, Prof. Liu Zhao and Dr.
Zhong Jidong with Tongji University. During the development of this book, Yi
Wanli, Sun Wansong, Zuo Qiyou, Gao Xinjian, Liu Xingsheng, Zhang Yang and
other students have paid much hard work. This book excerpts from most research
articles published by the author team, and some chapters excerpt from the disser-
tations of some Master graduates, including Jiang Xuchun, Ding Ye, Wang Wei
and Gao Xinjian. Thank Sun Yanbing (editor in chief) and other editors of National
Defense Industry Press for their substantial support, and thanks to National Defense
Science and Technology Publishing Fund.

This book consists of seven chapters. In Chap. 1, the research status of
double-prism beam scan technology is reviewed. In Chap. 2, the theoretical mod-
elling of double-prism multi-mode scan system is performed. Chapter 3 presents a
deep investigation on the inverse problem of double prism multi-mode scanning.
Chapter 4 concentrates on the beam scan performance for double-prism multi-mode
scanning. In Chap. 5, the design principle and methods for some typical
double-prism scan systems are demonstrated. In Chap. 6, the performance testing
on double-prism multi-mode scan systems is introduced. In Chap. 7, the support
design technology for a large-aperture rotating prism is established.

The book can provide significant reference for technical personnel and scientific
researchers in the fields of photoelectric tracking, optical scanning and industrial
dynamic measurement. It may also attract some teachers, students and potential
enthusiasts who are interested in optical machinery or precision instrument.

Shanghai, China Anhu Li
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Chapter 1 ®)
Introduction Check for

Abstract An overview of beam scan technology is presented with most emphasis
on those common beam scan methods, among which the refractive method using
Risley prisms is further investigated. Previous studies on double-prism systems are
systematically introduced, which concentrate on the theoretical research and imple-
mentation methods required for practical applications such as high-precision beam
alignment, multi-mode target tracking and imaging boresight adjustment. Several
prevalent problems that need be settled in double-prism systems are clarified, includ-
ing inverse solutions, beam scan errors, blind zone, control singularity, nonlinearity
issue, beam distortion and chromatic aberration. Accordingly, the framework of this
book is well organized.

1.1 Overview of Beam Scan Technology

Beam scanning is the technology to change the location of laser beam on the scanned
surface according to a desired propagation path, which can be accomplished by the
use of mirrors, prisms, lenses, rotating diffraction gratings or by changing the refrac-
tive index of transmitted medium. The beam scan device is an integrated system of
optics, mechanics, electronics, automation, sensing, detection and communication. It
has been increasingly applied for space communication, infrared countermeasures,
search and rescue, microscopic observation, industrial measurement, automation
equipment and machine vision [1-3]. With the substantial development of industrial
technologies, more advanced application requirements motive the improvement of
beam scan performance, such as scan coverage, scan precision and dynamic charac-
teristics.

In the fields of free-space laser communication, infrared countermeasures, laser
radar, space observation and industrial automation, the beam scan technology has
shown great application potential for high-precision dynamic scanning, target track-
ing and imaging boresight adjustment [4—6]. The common beam steering approaches
can be divided into three types of gimbaled mirror, reflective rotating mirrors
and refractive rotating mirrors, including mechanical mirror-based gimbals, beam

© National Defense Industry Press and Springer Nature Singapore Pte Ltd. 2018 1
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director units, polygonal mirror mechanisms, Risley prisms, phased-array optics,
and micro-electro-mechanical systems (MEMS) using micro-mirrors. Because of
the large moment of inertia and poor dynamics, a gimbaled mirror cannot offer
the optimal choice to meet those high-precision control requirements. In contrast,
reflective rotating mirrors are usually coupled with motors or driven by piezoelec-
tric ceramics (namely voice coil motors) to accomplish beam scan function. For
example, Physik Instrumente and Ball Aerospace have applied a series of tracking
mirrors for coarse-fine tracking operation in laser communication systems and for
wavefront curvature compensation in space telescopes [7, 8]. However, the beam
deflection angle is twice as much as the rotation angle of a reflective mirror, and
the mirror-based system requires too much working space to achieve large optical
aperture.

Compared with the above conventional beam scan mechanisms, the scan mech-
anism based on refraction theorem can offer not only the outstanding capability
of beam steering and boresight adjustment but also the superior dynamic perfor-
mance. A typical refractive beam scanner consists of rotating double prisms which
can perform coaxial and independent rotation to change the beam propagation path
for beam pointing applications [9]. Such a beam scanner has the advantageous of
compact structure, high accuracy, rapid response, low optical consumption and low
cost. In principle, the use of refractive prisms can reduce the sensitivity of beam
deviation angle relative to each prism orientation. Therefore, the mechanical trans-
mission errors should have relatively less impacts on the beam scan precision. Refrac-
tive prisms are especially suitable for those high-precision scan applications using
monochromatic beam, where several important issues to be solved include beam
steering mechanism, beam scan mode and prism rotation control.

By far, the beam scan technology is always confronted with the following techni-
cal difficulties. The first difficulty lies in wide-range and high-precision beam scan
technique, which requires both global beam scanning over wide range and local beam
scanning with high precision. The second difficulty involves dynamic time-varying
target tracking technique that explains how to control the beam scan operation to
track a transient target under complicated environment. The third difficulty is about
high-precision spatial orientation technique, where the beam scan mechanism and
control method should be innovated in principle to achieve directional beam scan-
ning with better precision than those conventional technologies. Any breakthrough
for the above difficulties can significantly promote the development of photoelectric
scanning and tracking technology, which will account for the progress in national
defense, industrial equipment and other related fields [10].

1.2 Common Beam Scan Methods

Basically, a beam scan device is composed of laser source, optical modulator, beam
scanner, optical receiver and controller. The beam scanner, also called beam deflector,
is the most important component in a beam scan device.
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There are various beam deflectors based on different beam steering principle
and methods, such as acousto-optic deflectors, electro-optic deflectors, micro-opto-
electro-mechanical deflectors, polyhedral reflectors, rotating prisms and tilting
prisms. In general, these beam scan methods fall under three categories, namely
non-mechanical method, micro-opto-electro-mechanical method and mechanical
method [10].

1.2.1 Non-mechanical Beam Scan Method

1. Acousto-Optic Beam Scan Method

Acousto-optic beam deflector is based on the principle of acousto-optic deflection.
The drive source is used to input a radio-frequency power signal into the transducer,
where the electric signal can be converted to an ultrasonic signal and transmitted
into acousto-optic medium. The ultrasonic grating in the medium is then generated
from the elastic-optic effects due to mechanical stress wave, thereby leading to the
diffraction of incident laser beams.

In 1967, Dixon developed an acousto-optic tunable filter based on acousto-optic
interaction in the anisotropic medium [11]. In 1992, Lincoln Laboratory firstly
explored the beam control method using non-mechanical devices and applied an
acousto-optic deflector for laser beam tracking [12]. Brimrose Corp. proposed the
TeO;-based acousto-optic deflector that could achieve about 50 s response time and
only 0.5 W power to perform beam scanning across a 40 mrad range [13]. In 2006,
Wen implemented beam scanning operation for 42 resolvable spots over a 9.048 mrad
range [14]. In 2012, China Electronics Technology Group Corp. employed ZnO
piezoelectric films to achieve the maximum beam steering angle of 5.7° [15].

Without mechanical motion components, the acousto-optic beam scan device can
feature small volume, light weight, low driving power, good compatibility with com-
puters and automatic control. However, there are inevitable shortcomings such as low
beam transmittance, small clear aperture, limited scan coverage and low diffraction
efficiency. In addition, most existing models for acousto-optic scan analysis have
never considered the influence of ultrasonic absorption, uneven ultrasonic distribu-
tion and other factors on the diffracted beam.

2. Electro-Optic Beam Scan Method

Electro-optic beam deflector can steer the laser beam on the basis of electro-optic
effect. At present, the main methods to perform electro-optic beam deflection rely
on the optical-phased-array (OPA) technology, which was firstly proposed in 1971.
Meyer developed a one-dimensional OPA device using the lithium tantalite phase
modulator, which could operate in a 0.5 mm period and a spectral region within 800
times the optical wavelength in order to perform beam deflections across a 0.073°
range. Compared to mechanical beam scan methods, the OPA technology is advan-
tageous in random access, high resolution, high accuracy and rapid positioning. The
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working principle of OPA is mainly in the constructive and destructive interference
for light waves, where the phase modulation can be accomplished by means of liquid
crystals, optical waveguide arrays, electro-optic crystals, electro-optic ceramics and
electro-humidity transducers [16].

In addition, magneto-optic deflector can be utilized for beam deflection due to the
impacts of beam polarization state and additional magnetic field. It is evident that
the magneto-optic effect will result in the same disadvantages as the electro-optic
effect, such as poor beam transmission quality and insufficient clear aperture [15].
Also, there are some immature technologies that require further investigation.

Generally, the non-mechanical beam scan device can offer the benefits of compact
structure, sensitive response, light weight, low power consumption, no moment of
inertia, nanosecond scan speed and random access. Such a beam scan device should
remove many limitations of mechanical beam control methods and further improve
the performance of optical system, including agile beam control, programmable beam
scanning, multi-beam generation and electron lensing. Therefore, the breakthroughs
in non-mechanical beam scan technologies have produced significant impacts on the
development of high-performance laser radars and photoelectric sensors.

1.2.2 Micro-Opto-Electro-Mechanical Beam Scan Method

The core idea of beam scan method based on micro-opto-electro-mechanical system
(MOEMS), namely using an array of actuators to change the shape of a mirror, dates
back to the second century A.D., when Archimedes planned to destroy enemy ships
using solar heat. In his description, the shaped mirror incorporated an array of pol-
ished metal plates, and the actuators were a group of Greek citizens to simultaneously
adjust their mirrors such that the cumulative reflected sunlight could converge to a
common focal point on the enemy ship, setting it aflame [17]. Modern MOEMS beam
scan technology has been flourishing since 1980s. In 1982, Petersen [18] proposed
a silicon-based MOEMS for beam scanning, according to his in-depth investigation
on the mechanical and electronic properties of silicon material. Compared with tra-
ditional beam scan systems, the MOEMS beam scanner is particularly prominent in
dynamic response and power consumption. In addition, the MOEMS is attractive due
to compact size, low cost, great potential for mass production, as well as superior
optical and mechanical properties. With the substantial development of manufac-
turing process, the MOEMS beam scan technology has been applied for barcode
scanning, high-resolution imaging, and laser confocal microscopy. Now available
MOEMS products include optical switch, optical attenuator, optical scanner and
optical display based on digital micro-mirror device.

There are different drive methods used for MOEMS beam scanning, such as
electrostatic drive, electromagnetic drive and thermal drive. The electrostatic drive
method is usually accomplished by means of plate capacitors, which features simple
principle and strong operability. For a MOEMS beam scan device using electro-
static drive method, the common electrode attached to the substrate surface and a
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plurality of regularly arranged electrostatic driving membranes can function as two
electrodes of plate capacitor, respectively. Once the control voltage is applied to a
mirror unit, there will be concave deformation on the corresponding membrane due
to electrostatic attraction, which leads to downward movement of the mirror unit.
Independent movements of multiple mirror units can result in the entire deformation
of a deformable mirror, thereby enabling beam deflection within a small angular
range [19].

Earlier developed MOEMS reflector arrays can only perform one-dimensional
beam scanning with relatively poor accuracy but cannot accomplish phase control
function. Two one-dimensional MOEMS are required to achieve beam scanning
in horizontal and vertical directions, respectively, which accounts for the system
with large physical dimensions, complicated drive programs and low scan speed.
Recently, the two-dimensional MOEMS scan mirror has been proposed for horizontal
and vertical beam scanning, which can avoid the coupling effects among optical
components to improve beam scan speed. For example, Wu et al. [20] reported a
4 x 4 phased array of micro mirrors based on piston-tip-tilt MEMS using electro-
thermal drive, where each mirror had 0.5 mm x 0.5 mm clear aperture. Under 5 V DC
voltage, this system could achieve two-dimensional beam scanning across a range
of over 30°.

Since the MOEMS beam scan technology is advantageous in its capability of
accurate beam control in time and space, compact structure and low power consump-
tion, it can offer a promising beam scan approach for optical communication, military
photoelectric reconnaissance, autonomous space rendezvous, laser rangefinder, laser
guidance, warning and monitoring system and spacecraft miniaturization. However,
there are several complications that may prevent the MOEMS beam scan technol-
ogy from further applications, including the shortage of fundamental research on
MOEMS, the difficulties in micro fabrication and packaging processes, the lack of
system-level performance testing methods, the low testing efficiency and inconsistent
evaluation standards.

1.2.3 Mechanical Method

1. Gimbaled Method

For a gimbaled beam scanner, the laser source should be mounted on a rotary gimbal
to achieve two-dimensional scanning across a wide range [15]. In many applica-
tions where the scanner has large volume and heavy weight, the drive mechanism is
required with relatively large power. Moreover, there are inherent problems such as
coupling motion, coupling inertia, and wire-wound moment interference that may
limit the dynamic performance of a gimbaled scanner [21, 22].

Figure 1.1 shows two typical gimbaled beam scanners. Figure 1.1a gives a three-
dimensional model of coarse tracking turntable for the scan telescope applied in laser
communication terminal at a long link distance. Such a scan telescope is viable to
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Fig. 1.1 Two gimbaled beam scanners. a coarse tracking turntable in scan telescope; b LCT struc-
ture diagram

scan and point within a hemisphere or even a larger three-dimensional space. Usually,
the terminal is installed on a satellite platform and the base of turntable is fixed to
the satellite. The pitch axis of the turntable is parallel to the equator plane, while
the azimuth axis is perpendicular to the equator plane. Beacon light from another
communication terminal can be captured through two-dimensional scan motion of
the turntable. The captured beacon light will be reflected into the optical system by a
mirror. The mirror should rotate according to the target missing distance reported by
the optical system such that the reflected light beam is irradiated into the fine tracking
field of view (FOV) and stabilized at the FOV center as much as possible. If the optical
axis for communication is deviated due to the mutual movement of two terminals,
the telescope system can perform active adjustment according to the change of target
missing distance. Figure 1.1b presents the Laser Communication Transceiver (LCT)
system for laser communication on the space station, developed by Goddard Space
Flight Center (GSFC). This system is based on a Cassegrain-structure telescope,
where the primary mirror is a concave mirror with large diameter, and the secondary
mirror is a convex mirror of small size. The third plane mirror is used to guide the
beam from the gap of horizontal axis. The beam is then reflected downwards by
another plane mirror and turns into a parallel beam that propagates to the optical
base station. The optical path transmitted in the servo turntable, named Coude path,
is common for transmission and reception. The remaining parts of the system has
been integrated inside the base station, including laser transmitter, capture detector,
tracking detector and laser receiver [23].

2. Reflective Method

For reflective method, the beam path is deflected by rotating a mirror mounted in
front of the laser source. The mirror can be a plane mirror, a spherical mirror or a
polyhedral mirror [15].

Beam canners must have two degrees of freedom to implement two-dimensional
scan function. It is possible to realize two-dimensional beam scanning with only one
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mirror, which features simple structure, poor flexibility and coupling effects at high
scan speed. As shown in Fig. 1.2, the addition of mirrors can offer more freedom
and improve the flexibility of the system, but the system control will become more
complicated as a result. Since a scanner composed of one or two mirrors changes the
optical axis of the system, three or four mirrors should be used to keep the optical
axis unchanged, as shown in Fig. 1.2b and c [21].

As shown in Fig. 1.3a, a viable reflective scan system is employed to measure the
diameter of an aerial cable [24]. The device incorporates a planar mirror, a spherical
mirror and a polygonal mirror. Figure 1.3b offers a beam scan example using two-
axis rotating mirror and f-6 scan objective lens. As the scan mirror is controlled to
rotate at a specific angular speed, the scan beam will generate a trajectory in terms of
a certain functional relation. A combination of more scan mirrors can lead to much
richer beam scan trajectories. But the coupling effects among these scan mirrors
maybe occur at high scan speed [15].

Figure 1.4 shows a typical laser scan imaging system using a rotating polygonal
mirror [25]. The spatial direction of a modulated beam is changed with high-speed
rotation of the polyhedron mirror. The beam converges through the lens to form a
one-dimensional or two-dimensional scanned image on the imaging plane. Usually,
the system can produce a telecentric beam path to guarantee the axial parallelism
of emergent beam. In an ideal case, each reflection surface of the polygonal mirror
can steer the beam across an angular range of 47/N, where N denotes the number of
polygonal reflection surfaces. The rotating polygonal beam scanner is advantageous
in high scan speed, wide scan range and motion stability. For an imaging system
using the polygonal beam scanner, the polygonal mirror is often placed in front of
the imaging objective lens such that the modulated beam can form a scan pattern
or image on the imaging plane after transmitting through polyhedral mirror and
objective lens. Now that beam scan operation is performed before objective lens, this
system can realize linear beam scan function by means of objective lens design [25].

Reflective beam scan method requires simple structure and easy implementation
to enable its widespread applications. However, the beam scan precision is rather
sensitive to mechanical errors and rotation angle errors because the angle between
incident beam and reflected beam is twice as much as the incidence angle of beam
path, which may confine high-precision beam control to some extent. Due to the
structure layout of reflective scanner, there should be a long distance between the
scanner and the measured target, which claims more severe requirements for the clear

(a) (b) (c) >

/ A ¥
A

Fig. 1.2 Different mirror combinations. a two-mirror combination; b three-mirror combination; ¢
four-mirror combination
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aperture of optical elements. Therefore, the reflective method is suitable for some
specific applications where small clear aperture is required.

3. Compound Axis System

In the Pointing-Acquisition-Tracking (PAT) system for inter-satellite laser commu-
nication, the PAT performance is generally controlled with a compound axis system,
which incorporates a coarse aiming mechanism, a fine aiming mechanism and a
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pre-aiming mechanism. The beam deflection is mainly accomplished by two-axis or
three-axis gimbaled frame, Cassegrain telescope and fast tilting mirror mechanism.

In the coarse aiming mechanism, a transponder antenna (Cassegrain telescope)
is mounted on an inner gimbaled frame, and two motors on the gimbaled frame
are used to drive the rotation of pitch axis and azimuth axis to achieve beam scan
function. One advantage of this method is that a large field of view can be obtained
through smart control. Unfortunately, there are some significant shortcomings for
this method, such as relatively poor dynamics, great power consumption and large
size of drive mechanism. In addition, the bearing friction induced by coarse aiming
mechanism is one of the primary factors that affect beam scan performance and target
tracking accuracy.

The fine aiming mechanism is mainly composed of a two-axis or three-axis fast
tilting mirror, a piezoelectric ceramic actuator (or voice coil motor), a tracking sensor
and a position sensor. The fast tilting mirror in a closed control loop can track
the incident beacon light according to the error signal from fine tracking detector,
thereby forming a loop for fine tracking. This fine tracking loop can determine the
accuracy of the overall system and thus require wide bandwidth. The pre-aiming
mechanism can also perform beam deflection using a tilting mirror, which should
be planned to pre-deflect the emergent beam with an angle corresponding to the
incident beam. Figure 1.5 shows the structure of a fast tilting mirror. The mirror
can be driven by two piezoelectric ceramics distributed on the rotating axes, each of
which consists of a flexible hinge mechanism. Once a piezoelectric ceramic outputs
a displacement signal, the fast tilting mirror will produce a certain beam deflection.
Different from traditional tracking systems with large inertia and low bandwidth, the
two-axis fast tilting mirror offers smooth motion, no gap, no mechanical friction and
high displacement resolution. The beam deflection range can be up to milliradian
level, the beam deflection accuracy can reach microradian level, and the response
frequency is of kilohertz order. That is, the available bandwidth and tracking accuracy
have been greatly improved [15].

4. Refractive Method

The refractive method can be performed through rotating or tilting optical elements
to change the beam pointing. For example, Fig. 1.6 presents three common beam
scan schemes using one or two refractive prisms [15]. Figure 1.6ais a layout diagram
of rotating single prism, Fig. 1.6b is a layout diagram of tilting double prisms around
two parallel axes, and Fig. 1.6c¢ is a layout diagram of rotating double prisms.

The presented double-prism multi-mode scan system in the book is a typical
refractive beam steering system, which usually consists of two wedge prisms, namely
Risley prisms. Based on the refraction theorem, two prisms can change the direction
of transmitting beam through their rotating or tilting motion, which enable two-
dimensional beam scanning across a certain angular range. The rotating double-
prism beam scan system can change the beam propagation path by the coaxial and
independent rotation of two prisms. Thus, the beam deviation or boresight adjustment
is performed within a large cone region. The tilting double-prism scan system can
achieve beam deviation within a smaller range by tilting two prisms in an orthogonal
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Fig. 1.6 Common refractive beam scan schemes using a rotating single prism, b tilting double
prism and c rotating double prisms

configuration. Due to a large reduction ratio from the tilting angle of each prism to
the beam deviation angle, it is possible to accomplish high-precision beam scanning
with general mechanical setup [10, 26].

Another type of refractive beam scanner is based on the equivalent prism com-
posed of a flat-concave lens and a convex-flat lens with the same radius of curvature
[27, 28]. As shown in Fig. 1.7a, the combination of two lenses do not change the
beam propagation path when the flat surfaces of two lenses are placed parallel to each
other. In Fig. 1.7b or c, the first lens is kept stationary, and the second lens rotates
about its center of curvature. Therefore, the two lenses can be equivalent to a prism
with adjustable wedge angle and principal cross section. If each lens is of cylinder
shape, one scanner can only steer the beam in one direction, and two scanners are
required to perform two-dimensional beam scanning. In addition, a beam scanner
composed of two spherical lenses can also achieve two-dimensional beam scanning.

The advantage of the above scheme is that the rotation angle of the lens is linear
with respect to the beam deviation angle. But for automatic beam scan applications,
the mechanical structure is complicated and the beam scan range is relatively small.
Furthermore, it is difficult to fabricate a lens with cylindrical or spherical surface,
and the fabrication accuracy may be limited.
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(a) {bl_ (c)

Fig. 1.7 Beam scan principle using adjustable prism, where a the prism is at the initial orientation,
b the prism rotates counterclockwise, and ¢ the prism rotates clockwise

1.3 Research Status on Double-Prism Multi-mode Scan
System

1.3.1 Theoretical Research

Rotating double-prism system is an extension of the Risley-prism-based scan tech-
nique [29, 30]. The original Risley prisms refer to a pair of wedge prisms that can
only deflect laser beam within a small angular range. Nowadays, rotating double
prisms can achieve wide-angle beam pointing and scanning due to the rapid progress
of prism processing technique. The beam deflection resolution and accuracy of rotat-
ing double prisms are further improved with the substantial development of preci-
sion machinery and control algorithms [31]. Consequently, the theoretical research
on rotating double-prism system has mainly focused on beam steering mechanism,
beam scan mode and beam scan performance.

1. Forward and Inverse Solutions

The study of beam steering mechanism relies on the relation between the orientations
of two prisms and the pointing direction of emergent beam or the target position.
There are two essential problems encountered in the discussion about beam steering
mechanism, called forward problem and inverse problem [10, 32, 33]. The forward
problem is about how to determine the pointing direction of emergent beam and the
target position according to the given motion laws of two prisms, namely how to
deduce the pitch angle and azimuth angle of emergent beam as well as the target
coordinates from the rotation or tilting angles of two prisms. Contrarily, the inverse
problem requires the motion state of two prisms for the desired beam pointing direc-
tion or target position. In other words, the rotation or tilting angles of two prisms
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need be obtained with the prior knowledge of the pitch angle and azimuth angle of
emergent beam or the target coordinates. Exact solution to the forward problem is
beneficial to explore the beam steering mechanism based on double prisms, which
can provide the prerequisite and foundation for beam pointing applications. As the
reverse process of forward solution, the solution to the inverse problem plays a sig-
nificant role in optical scanning and target tracking applications.

In 1985, Amirault and DiMarzio [34] firstly presented a two-step method to solve
the inverse problem of rotating double prisms, which can simplify the variables
involved with inverse solution and reduce the complexity of computation.

In 1995, Boisset et al. [35] used first-order paraxial theory to derive the approxi-
mate expression for the pointing direction of emergent beam. An iterative method was
then proposed to find out the inverse solution, which can determine prism orientations
according to the measurement information in a closed-loop system. Unfortunately,
this iterative method may fail in many practical applications owing to its dependence
on the measurement data from detector.

In 2002, Degnan [36] employed paraxial ray matrices to describe the beam propa-
gation through Risley prisms. He further developed an analytic method that can solve
the inverse problem without any iterative algorithm. This method is still based on
the first-order paraxial approximation, which may generate great errors when used
for wide-angle beam deviation. Therefore, the method works only when each prism
has quite small wedge angle or refractive index.

In 2007, Tao and Cho [37] performed rigorous ray tracing procedure through
rotating double prisms to obtain the exact expression for target position, where the
influence of all system parameters was under consideration. As for inverse solu-
tion, a numerical iteration algorithm based on the damped least-squares method was
thoroughly presented regardless of its much complicated computation.

In 2008, Yang [32] also applied the non-paraxial ray tracing method for the ana-
lytical formulae that can be used to calculate the pointing direction of emergent beam
from the given orientations of two prisms. Such a forward solution requires tedious
computation and is usually accomplished by computer programming in practice.
Using an explicit Jacobian matrix, Yang implemented the trust region method and
original Newton method to solve the inverse problem through numerical iteration.
The simulation results for a specified rotating double-prism system have indicated
that the Newton method can achieve higher convergence rate and greater robustness
than the trust region method.

In 2009, Tirabassi and Rothberg [38] suggested a vector description of Snell’ law
to enable the concise expression for the exiting point of emergent beam as well as
the beam scan point.

In 2011, Jeon [39] generalized a first-order formula approximate to the forward
solution, which was obtained by representing the beam deviation due to double prisms
with the product of rotation matrices. It turns out that the first-order approximation
can generate high-precision scan patterns in good agreement with the exact solution
obtained from Snell’s law. Using the series expansion of the product of rotation
matrices, this method can also be applied to the system comprising an arbitrary
number of Risley prisms.
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In the same year, Li [40] expanded the exact forward solution for emergent beam
into a power series to help perform numerical comparison among the prediction
results of first-order, second-order and third-order approximations. On the basis of the
most accurate third-order approximation, an inverse solution was further derived with
greatly improved solving accuracy. Moreover, Li [41] presented non-paraxial vector
expressions for the emergent beam from rotating double prisms under four different
configurations. Then the two-step method was demonstrated in detail to formulate the
inverse solution, accompanied by an example of determining two prisms’ orientations
according to the given target trajectory. Even though this method requires rather
simplified computation to obtain the analytical inverse solution, it cannot offer exact
solution to the inverse problem under any near-filed condition, where the beam exiting
position from the system has significant impact on the beam scan position.

In 2013, Zhou et al. [6] applied the first-order approximation method and the non-
paraxial ray tracing method to solve the forward problem of rotating double prisms.
The comparison results have shown that the non-paraxial ray tracing method can
well describe the beam steering mechanism of the system, while the conventional
first-order approximation method may generate forward solution that disagrees with
the experiment data. Generally, the difference between first-order approximation and
experiment data becomes more obvious as the beam deviation angle increases. For
any wide-angle beam steering system based on rotating double prisms, the non-
paraxial ray tracing method offers a more effective and accurate approach to develop
the forward solution.

2. Beam Scan Mode

In order to explore Risley-prism-based beam scan modes, it is necessary to reveal
the intrinsic connection of the beam scan trajectory with the structural parameters
and motion characteristics of the system. Also, the beam scan error requires compre-
hensive analysis to provide available guidance for the mechanical setup and motion
control scheme [33, 42].

In 1999, Marshall [43] presented systematical research on the beam scan modes
originated from rotating double prisms, using the first-order paraxial approximation
method. By selecting particular values for the individual wedge angles, angular veloc-
ities and initial orientations of two prisms, any specific beam scan pattern may be
produced as required in practical applications. However, the first-order approxima-
tion can only generate approximate scan patterns without considering the influence
of all system parameters, such as the spatial distances among two prisms and the
receiving screen.

In 2011, Li [40, 41] applied the non-paraxial ray tracing method to derive the
general expression for beam scan pattern. The third-order theory for beam scan mode
was then established on the series expansion of beam pointing expression. Further
comparison between the approximation of different orders and the exact forward
solution has been performed in both near field and far field. It turns out that (i) the
difference between the beam pointing angle obtained by approximation and the one
obtained by exact solution is relatively small but cannot be ignored in near field,
(ii) the beam scan error resulting from third-order approximation is rather less than
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the one resulting from first-order approximation, and (iii) there will be larger errors
in both first-order and third-order approximation as the wedge angle of either prism
increases.

In the same year, Jeon [39] constructed rotation matrices to help simulate the beam
scan patterns under different ratios of angular velocities and different rotary directions
of two prisms. The beam scan mode was also demonstrated for the combination of an
arbitrary number of prism elements, as exemplified by the four-element Risley prism
system shown in Fig. 1.8. Nevertheless, this method is still based on the first-order
approximation which accounts for an inevitable beam scan error.

In 2012, Horng and Li [44] investigated the most prevalent error sources, from
component errors to misalignment errors, and their impacts on the beam scan pre-
cision of rotating double prisms. It has been found that some slight errors in the
structure and motion parameters of each prism can lead to significant changes in
beam scan mode. Furthermore, the misalignment error of the rotation axis of any
component with respect to the optical axis of the system may result in a severe
decrease of beam pointing accuracy.

In 2013, Schitea et al. [45] modeled rotating double-prism system in Catia V5R20
and generated a variety of beam scan patterns upon introducing difference to the
angular velocities and geometrical parameters of two prisms. Such beam scan patterns
are useful for the parameter selection of rotating double prisms in practice.

3. Beam Scan Performance

Based on the above forward and inverse solutions, many researchers have fur-
ther studied beam scan performance of the double-prism multi-mode scan system,
mainly including beam distortion, image deformation, chromatic aberration and its
calibration.

In 2005, Schwarze et al. [31] investigated the beam compression effect produced
by rotating double prisms, which was quantified with a compression factor in roughly
inverse proportion to the cosine of the angle between the emergent beam and the
emergent surface normal. Without compensation, the compression effect would lead
to lower power density in an infrared countermeasure system and smaller signal-to
noise ratio in a laser communication system.

In the same year, Sun et al. [46] also discussed the distortion of beam shape by
means of the vector refraction theorem. It has been elucidated that the emergent
beam distortion depends on the relative rotation angle of two prisms. In most cases,
the beam shape is compressed in some directions but stretched in other directions.

Fig. 1.8 Four-element
Risley prism system
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However, the beam is purely compressed in one direction when two prisms are at the
same orientation, and there is no beam distortion when the relative rotation angle of
two prisms is 180°.

In 2007, Lavigne and Ricard [47] applied a 3D refraction model to help character-
ize the image deformation resulting from rotating double prisms. Since the light beam
may enter the imaging field of view in different directions, the beam deviation is not
uniform over all image pixels and then contribute to prismatic-like image distortion.
In order to take the beam deviation at each pixel into account, the 3D refraction
model was utilized to modify the linear homographic transformation. Experimen-
tal results have confirmed that the modified transformation can well improve the
real-time calibration method for distorted images.

In 2012, Ostaszewski et al. [29] presented several pictures of the transmitted beam
profile at 0°, 45° and 60° deviation angle, which indicated that the beam could be
more distorted at a larger deviation angle. Moreover, it has been clarified that the
beam distortion will introduce uneven distribution of the light intensity at a distant
terminal, which cannot be avoided for any refractive beam scanner with planar optics.

In 1999, Curatu et al. [48] suggested that the achromatic prisms made of differ-
ent materials could offer compensation for the chromatic aberration induced by a
rotating prism. An achromatic Si—-Ge combination was firstly considered to correct
chromatic aberration in the 3-5 pm spectral region. In order to reduce the secondary
spectrum resulting from two-prism doublet, a three-prism triplet was further pro-
posed on the basis of the apochromatic CaF,—-ZnSe—Ge combination. The chromatic
focal shifts of a single Ge prism, an achromatic Si—Ge prism and an apochromatic
CaF,—ZnSe-Ge prism were respectively 300, 1.43 and 0.7 pm for the demanded
beam deviation. In addition, the achromatic prisms operating in the 8-9.5 wm spec-
tral region were developed and optimized with a commercial software [49]. The final
design adopted one pair of achromatic prisms based on the Ge—ZnS combination,
which could produce a chromatic blur of only 2.9 wm in the focal plane.

In 2000, Sasian [50] derived a compact set of formulae that could be used for
quick estimation of the wave aberrations from a prism and a plane diffraction grating.
Four conditions for the absence of wave aberrations were further described as the
theoretical basis to eliminate aberration.

In the same year, Weber et al. [51] proposed a ZnSe Risley prism pair where
diffractive gratings were etched into the prism surfaces to correct chromatic aber-
ration. Test results in the 4.4-5 wm wavelength band indicated that the correction
offered by diffractive gratings could roughly double the imaging resolution of the
system over the uncorrected case. Moreover, it was concluded that the diffractively
corrected prisms could form an alternative lightweight scanner in missile seekers.

In 2003, Duncan et al. [52] presented the achromatic doublet prisms for infrared
countermeasure applications. Sixteen materials in 120 different combinations were
examined to help investigate the optimum infrared material characteristics. For mid-
wave infrared applications across the 2-5 pm spectral region, it has been shown that
LiF-ZnS doublet prisms can achieve the minimum chromatic dispersion as low as
1.7816 mrad at a maximum beam deviation angle of 45° on average. In 2007, Bos
etal. [53] introduced another prism to overcome the singularity problem of two-prism
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achromatic design. Comparative analysis has indicated that the three-prism system
composed of AMTIR-1-Ge doublet prisms can minimize the secondary dispersion
of a two-prism design to 0.79 mrad.

In 2007, Chen [54] contrived beam steering devices based on one pair of counter-
rotating Grisms, similar to one pair of Risley prisms, in order to achieve the largest
allowable beam deviation angle of 45°. As a combination of prism and grating, Grism
was presented as the integrated diffractive-refractive optics instead of those refractive
optics to minimize the residual chromatic aberration. For example, the worst residual
chromatic aberration was about 100 prad in the apochromatic system.

In 2011, Florea et al. [55] proposed chalcogenide-based Risley prisms for the
minimal spectral dispersion and improved thermal performance in infrared radiation
applications. Evaluation results have shown that the spectral dispersion in the 2-5 pm
region for LiF-As,S; doublet prisms should be three times smaller than that for
LiF-ZnS doublet prisms, and the dispersion in the 8—12 jum region for ZnSe—As;Se;
combination should be twice smaller than that for ZnS—Ge combination.

4. High-Precision Beam Scan Theory

Currently, the theoretical research on Risley prisms has concentrated mostly on rotat-
ing double prisms but rarely on tilting double prisms. Earlier in 2006, Li et al. [56]
developed a geometric method to formulate the hundredfold-order reduction ratio
from the tilting angles of two prisms to the beam deviation angle. It has been verified
in principle that tilting double prisms should achieve beam scan precision of sub-
microradian order, which facilitates the design of mechanical structure and control
system for high-accuracy beam steering operation.

In the same year, Li et al. [S7] demonstrated the vertical filed angle and horizontal
field angle of the emergent beam to help describe the amount of beam deviation
for tilting double prisms. Comparative analysis was also performed to reveal the
influence of different prism parameters on the beam deviation angle. Providing the
incident beam within the same angular range, it was found that two prisms with larger
wedge angle could achieve beam deviation within a wider angular range. However,
the change rate of beam deviation angle would increase as a result, which led to a
certain decrease of beam steering accuracy.

On the above basis, Li et al. [58] further investigated the primary error sources
and their impacts on beam steering accuracy. It has been clarified that the beam
steering accuracy is mainly associated with those possible errors in tilting angles of
two prisms, wedge angle, the homogeneity of refractive index, the incidence angle
of the beam relative to the X-axis, and the perpendicularity between the principal
sections of two prisms. Given the total error converted on prism orientation as 12.72",
the resultant error in beam deviation angle was about 0.365 prad on average, which
could meet the requirement of beam steering accuracy superior to 0.8 prad (1o).

In 2014, Li et al. [59] applied the variable separation method to derive an analytic
inverse solution for tilting double prisms. For example, the tilting angles of two
prisms were deduced from the desired vertical and horizontal angles of emergent
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beam to generate an arbitrary target trajectory. Considering the influence of all system
parameters on the beam exiting position, the lookup-table method was also proposed
to obtain a numerical inverse solution for target tracking in near field.

1.3.2 Implementation Methods

The double-prism multi-mode scan system offers a potential alternative to conven-
tional beam scanners in optical scanning, tracking and positioning applications. To
promote or improve system implementation in practice, many relevant studies have
been presented with emphasis on the opto-mechanical design based on Risley prisms,
the support techniques for large-aperture rotating prism as well as the motion control
algorithms for rotating or tilting double prisms.

1. Opto-Mechanical Design

Based on rotating double prisms, Zu et al. [60] introduced an optical device to sim-
ulate satellite trajectories, where the prism rotation was accomplished with gear
sets driven by servo motors. Sun [21] devised a rotating double-prism device with
worm and gear drive mechanism, which had large transmission ratio to enable high-
precision prism rotation over a slight angular displacement. Specifically, the hybrid
stepper motor was adopted to actuate the worm and gear mechanism joined to each
prism cell, the angle encoder was equipped to acquire angular position feedback for
the real-time compensation of tangential synthetic error, and the self-locking worm
and gear mechanism could contribute to the enhanced stability and robustness of the
whole system. In 2013, Li and Gao [61] proposed a rotating prism device driven by
synchronous belt mechanism, which could offer the advantages of smooth transmis-
sion, little noise and no slip to achieve the precise control of prism rotation. Besides,
Ostaszewski et al. [29] have applied torque motors to directly drive a Risley prism
beam pointer, as shown in Fig. 1.9. Although the direct drive scheme allows compact
structure and easy control of the system, it may suffer from the torque fluctuation
and cogging effects induced by torque motors, which can affect the angular accuracy
of prism rotation. Another shortcoming is that a large-aperture rotating prism need
be accommodated with special customization and addition cost for torque motor.

As for tilting double prisms, Li et al. invented a sophisticated beam steering
mechanism using two optical wedges in 2006 [62, 63] and an orthogonal tilting
double-prism beam scanner in 2010 [64]. For this beam scanner, the joint bearings
were employed to transform the horizontal motion of linear motors to the small-angle
tilting motion of prism cells, and the displacement or angle sensors were involved
in the closed-loop control of high-precision tilting motion. However, the use of joint
bearings will generate motion clearance that has adverse impacts on beam scan
precision. In 2012, Li et al. [65] presented a tilting prism assembly which applied
cam-based drive mechanism to realize the small-amplitude oscillation of prism cell.
The cam was connected to the driving motor through synchronous belt in order to
achieve greater stability and lower noise.
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Fig. 1.9 Prism assembly driven by torque motor. a single-prism system; b lateral view of three-
prism system

Regarding large-aperture rotating double-prism scan device, the simulation, anal-
ysis and test on mechanical support are crucial techniques to mitigate or overcome the
influence of prism weight and different surroundings on the prism deformation. For-
tunately, there are plenty of achievements about optimizing the support structure of
large-aperture optics to enhance its static rigidity, dynamic rigidity and temperature
insensitivity. The integrated simulation and analysis on optical-mechanical-thermal
performance has been performed in many applications, which can be helpful and
instructive to improve the existing support methods.

Dynamic performance analysis is a significant branch of the investigation on opto-
mechanical systems. Currently, it is popular to study the dynamic characteristics of
a specific system or analyze the response of static structure to any external load,
but much less interest has been placed on what impacts the force produced by sys-
tem motion have on the optical components. In fact, both external dynamic loads
and internal motion loads should be taken into account for the accurate prediction
of dynamic characteristics. Chapter 7 will expound more details about the support
techniques for large-aperture rotating prism and the dynamic performance analysis
on opto-mechanical systems.

2. Motion Control Algorithms

In practice, the beam scan operation based on Risley prisms are required with high
precision, rapid response, superior reliability and great controllability. However, the
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motion control of Risley prisms may suffer from some certain difficulties because the
rotating or tilting angle of each prism is nonlinear with respect to the beam deviation
angle [42]. That explains why a lot of motion control algorithms have been proposed
to overcome those difficulties.

In 1995, Boisset et al. [35] developed a closed-loop control system for rotating
double prisms to perform active alignment between beam spot and quadrant detector.
The quadrant detector was used to detect the misalignment error between the center
of beam spot and the center of the detector itself. Given the error signal, an active
alignment algorithm was applied to calculate the required rotation angles of two
prisms to align the beam spot with the center of quadrant detector. The algorithm
can work only when the initial prism orientations are known, and it may fail once the
beam spot position exceeds the detectable range of quadrant detector. In addition,
the required rotation angles of two prisms are obtained from an approximate inverse
solution, which should limit the active alignment accuracy to some extent.

In 2004, Sun et al. [66] employed the Proportion-Integral-Derivative (PID) con-
troller to plan the rotation of driving motors according to the difference between
each prism orientation obtained from lookup-table method and the one measured
with angle encoder. The genetic algorithm was used to optimize the control param-
eters so that the PID controller could offer excellent performance.

In 2006, Sanchez and Gutow [67] proposed a three-element Risley prism system to
eliminate the blind spots and control singularities that were problematic in traditional
Risley-prism systems. But the proposed system was under-constrained and could
produce infinite sets of inverse solutions for the prism orientations. A control law
was then presented to solve these problems, where the proposed system had been
separated into a single prism and a coupled prism pair. In this law, the individual
prism orientation should be calculated from the desired pitch angle and azimuth angle
of emergent beam, and the orientations of other two prisms should be determined
using the difference between the desired beam deviation and the beam deflection
imparted by the single prism. The control law could generate smooth and continuous
motion profiles for three prisms while tracking any arbitrary target trajectory, and
the required angular velocities of three prisms were minimized across the field of
view. Nevertheless, it is evident that the proposed system requires larger hardware
cost and more complicated software design.

In 2007, Garcia-Torales et al. [68] implemented an electronic servomotor system
for rotating double prisms by means of PID control based on an Adaline Neural
Network Algorithm (NNA). Different from traditional PID control methods, the
Adaline NNA involved learning algorithms to simplify the automatic tuning process
for PID control parameters. It was asserted that NNA should increase the coincidence
between the actual values and the preset values of prism motion parameters, such as
angular displacement, angular velocity and angular acceleration. Furthermore, NNA
could improve the anti-interference performance of the system.

In 2010, Liu [69] established a mathematic transfer function model for the control
loop of the coarse-fine composite axis beam steering device based on rotating double
prisms. Simulation results indicated that a composite axis system with greater band-
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width ratio could have more robust capacity to resist the satellite vibration noise and
intrinsic torque disturbance.

Since 2014, Li et al. has been engaged in the development and optimization of
a new control strategy, exemplified by the tilting double-prism scanner driven by
cam-based mechanism [70]. Given any specific beam scan trajectory, the compli-
cated and nonlinear control problem can be transferred to the more operative cam
profile design. As long as the cam profile has been properly designed to linearize
the control of cam rotation, the high-precision tilting motion of two prisms is simply
accomplished by the uniform rotation of driving motors. This method paves a new
way to improve motion control algorithms for Risley prisms, which will facilitate
any further application based on rotating or tilting double prisms.

1.3.3 Practical Applications

The double-prism multi-mode scan system is advantageous in compact structure, high
accuracy, rapid response, large deviation coverage, great dynamic performance and
superior environmental adaptability. As a rather potential technology for wide-angle
beam pointing or boresight adjustment, the double-prism system has been increas-
ingly applied in the fields of laser communication, space observation, infrared coun-
termeasure, target search and rescue, machining, biomedical and military equipment
[10, 33, 71-74].

Generally, the above applications fall under three categories: (i) high-precision
beam pointing and alignment, (ii) multi-mode target search, recognition and tracking,
and (iii) imaging boresight adjustment and observation.

1. High-Precision Beam Pointing and Alignment
(1) Laser Communication and Laser Radar

Free-space optical interconnection is one of the most promising approaches to
overcome the technical difficulties in optical communication, originated from
high-density connections among all electronic subsystems. While operating in the
extremely hostile industrial environment, the optical interconnected devices are sup-
posed to maintain the alignment of optical transmitter and receiver for a long time.
Usually, the boresight alignment is accomplished through either passive methods or
active methods [36, 75, 76]. The passive methods should require a set of strict equip-
ment for long-time and stable alignment, where some pre-alignment components are
equipped to reduce the effective degrees of freedom of the system. In contrast, the
active methods should be accommodated with detectors to measure the misalign-
ment error between any two optical devices, which can be fed back to the tuning
mechanism for real-time alignment. For example, an active alignment method for
free-space optical interconnection has been reported on the basis of rotating double
prisms [21, 36]. In this method, a closed-loop control system can be implemented
with one quadrant detector, two stepping motors, optical components and one control
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computer, as shown in Fig. 1.10. The quadrant detector is utilized to detect the mis-
alignment error of optical axis, according to which the computer controls stepping
motors to adjust rotating double prisms until the optical axis is well aligned with the
center of the detector.

For free-space laser communication, OPTRA Inc. has developed various rotating
double-prism beam steering devices to perform target tracking operation, as shown
in Fig. 1.11. Figure 1.11a and b present four Risley Prism Assembly (RPA) systems
named RP-25F, RP-25S, RP-50F and RP-50S, which offer large torque or high beam
steering rate [77]. Figure 1.11d and e display the rotating double-prism beam steering
devices used for airborne lasercom terminal and compact beam steering, respectively
[78, 79]. Technical specifications listed in Table 1.1 indicate that these devices have
not only impressive advantages in compact structure and low power consumption but
also outstanding performance of beam pointing accuracy and beam scan coverage
[31].

For space flight, the beam pointing device is significantly constrained by its phys-
ical envelope and available power, and a power-off hold function is also required.
Accordingly, Lockheed Martin Advanced Technology Center designed the Minia-
ture Risley Mechanism (MRM) based on rotating double prisms with 0.75° wedge
angle, as shown in Fig. 1.11f. The MRM that featured a closed-loop control sys-
tem and a fail-safe flexure-type break assembly was successfully tested to verify its
performance requirements for space flight [80].

International Telephone and Telegraph Corporation (ITT) contrived the rotating
double-prism beam steering device for simultaneous manipulation of infrared optical
and radio frequency beams, as shown in Fig. 1.11g. This method of hybridizing
sensor and communication payloads into one device opens new possibilities for
instrumentation [81].

Degnan et al. [82] managed to implement a double-prism beam steering device
for transmitter compensation in NASA’s Next-Generation Satellite Laser Ranging
(NGSLR) System. Test results indicated that the system could produce an accept-
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Fig. 1.10 Schematic diagram of active alignment
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Fig. 1.11 Several types of rotating double-prism products. a No. 1 and No. 2 devices; b No. 3 and
No. 4 devices; ¢~h No. 5-No. 10 devices

able transmitter pointing error of sub-arcsec order. Furthermore, it was reported that
rotating double prisms had also been integrated into the boresight adjustment mech-
anism (BAM) for Geoscience Laser Altimeter System (GLAS) launched in 2003
[83], where the BAM was capable of precisely steering laser beam over the range of
+300 arcsec.

Tame and Stutzke [84] proposed the Risley-prism-based beam antenna that could
be applied on a wide variety of mobile platforms for signal transmission. Generally,
Risley prism antennas are compact, cheap and reliable enough to offer a promising
alternative to traditional dish antennas. Li et al. [56] and Sun et al. [85] constructed
an optical tracking, acquisition and tracking (PAT) test-bed to verify the working
performance of inter-satellite laser communication terminals. In this PAT test-bed,
rotating double prisms were employed to simulate satellite motion trajectories across
arange of 360° azimuth and £-15° elevation, where the random accuracy in simulation
should be 50-200 prad. Additionally, tilting double prisms were involved for fine
beam scanning within a range of over 500 jurad, where the fine tuning accuracy could
reach 0.5 prad.

Laser beam steering technology based on rotating double prisms has been further
developed to accomplish beam scanning, target aiming and tracking operations that
are required in the fields of laser radars, laser guidance, laser weapons and laser beam
directors [6]. For laser radar systems where the physical dimensions and beam scan
precision are specially conditioned, rotating double prisms serve as an appropriate
approach to perform high-precision beam scanning. Earlier in 1981, NASA built a
germanium Risley prism scanner for the CO, Doppler lidar mounted on CV-990
aircraft for meteorological research, as shown in Fig. 1.12 [34]. The scanner went
through a severe flight test on that aircraft, and it was demonstrated that the scanner
could successfully position a laser beam used for vector wind velocity measurements.
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Scan coverage

Airborne rotating double-prisin scanner

Fig. 1.12 Rotating double-prism beam scanner in airborne lidar

Fig. 1.13 Second generation
of airborne 3D imaging
lidars

In 2007, Harris Corporation and MIT Lincoln Laboratory proposed a Jigsaw three-
dimensional imaging laser radar which introduced rotating double prisms to actualize
beam scanning in real time and expand the imaging field of view [86]. Results from the
ground integration and test indicated that the system was capable of high-precision
beam scanning over a +20° conical region. Results from the flight test on a UH-1
helicopter have verified that the laser radar could easily recognize various military
targets under the camouflaged scenes. In the same year, Sigma Space Corporation
succeeded in both rooftop testing and flight testing of the second generation airborne
three-dimensional imaging laser radar shown in Fig. 1.13, where the rotating double-
prism system was used as a laser beam scanner to cover a 28° conical region [87].
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Fig. 1.14 Rotating double-prism mechanism applied in optical fiber switch

(2) Optical Switch and Wavefront Control

The beam steering principle by means of rotating double prisms can be applied to
optical switch design for optical fiber laser communication, as illustrated in Fig. 1.14
[75, 88]. Here the beam emitted from the single-mode fiber is coupled into the dedi-
cated information channel after passing through focusing lens, rotating double prisms
and collimating lens in sequence. Switching operation between any two channels is
accomplished by the independent rotation of two prisms. It is asserted that this optical
switch can manipulate broad-band laser beams with an appropriate switching speed,
small insertion loss, great working stability and repeatability up to £0.012 dB or
better. Considering that the beam deviation angle is insensitive to the rotation angles
of two prisms, the beam deviation accuracy can be accommodated with common
stepping motors. Another benefit is that the optical switch offers superior flexibility
for the customization of M x N optical switch arrays, where a large difference is
acceptable between the values of M and N [21].

Rotating double prisms can also function as a wavefront director for interferom-
etry systems, such as the vectorial shearing interferometer used to measure wave-
front aberrations. In general, this interferometer accomplishes large and differential
wavefront displacements using a high-precision rotation device incorporated in a
Mach-Zehnder interferometer. Therefore, Paez and Strojnik [89] and Garcia-Torales
etal. [30,90] developed vectorial shearing interferometers that integrated the rotating
double-prism system to deflect a light beam and control the wavefront displacement
without changing the image orientation. Since the wavefront tilt and displacement
are determined by the relative rotation angle between two prisms, this interferometer
enables consecutive adjustment of both shearing direction and shearing displacement
in order to test symmetrical or asymmetrical optical elements [21].

(3) Laser Doppler Vibrometry and Microstructure Fabrication

Tirabassi and Rothberg proposed a Risley-prism-based scanning head for Laser
Doppler Vibrometry (LDV), as shown in Fig. 1.15 [38, 91]. By far, most popular
commercial laser vibrometers incorporate a pair of orthogonally situated galvanome-
ter mirrors to deflect the laser beam in a point-by-point or continuous scan mode.
But the mirrors with large inertia can limit the performance of LDV in more specific
applications such as circular tracking of high-speed rotors, where the mirrors must
oscillate continuously at high rotation speeds. As a perfect alternative solution, the
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Fig. 1.15 Laser Doppler vibrometer based on rotating double prisms, where a is the schematic
diagram of a laser tracking system and b shows the mechanical model of the system

Prism 1

Fig. 1.16 Schematic diagram illustrating the fabrication principle of spiral spring microstructure

proposed LDV scanning head requires the whole-body rotation rather than contin-
uous oscillation of two prisms to steer the laser beam. In order to predict measured
velocities in general tracking applications, the direction of incident beam to the LDV
must be known, together with an arbitrary known point along the beam path. Experi-
mental data has confirmed that the rotating double-prism tracking system could offer
significant advantages over the conventional dual-mirror scanning system, such as
low moment of inertia and great dynamic characteristics.

Pan et al. [92] applied a rotating double-prism optical device to fabricate
microstructures with high aspect ratio, as shown in Fig. 1.16. Since the spiral spring
microstructures used as resonators in micro-electro-mechanical systems (MEMS)
should have physical dimensions less than 0.25 mm, any conventional processing
technique can hardly achieve the desired accuracy shown in Fig. 1.17. Therefore,
rotating double prisms were utilized to enable fast fabrication of spiral microstruc-
tures, in which the cutting linewidth could be controlled by adjusting the pointing
direction of the final emergent beam. This fabrication method was independent of
crystal orientation and capable of rapid prototyping for silicon-based microstruc-
tures. Vibration test on spiral microstructures has verified that the measured dynamic
characteristics were in good agreement with the simulation results from ANSYS.
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Fig. 1.17 Photomicrograph
of the spiral spring
microstructure produced by
laser cutting

2. Multi-mode Target Search, Recognition and Tracking
(1) Infrared Countermeasures

Infrared countermeasure (IRCM) systems based on waveform jamming technology
can resist the infrared guided missiles that may impose significant threats to mili-
tary aircraft flying in hostile surroundings [31]. A typical IRCM system is usually
composed of a missile warning sensor, multi-band infrared laser and a two-axis gim-
baled beam steering platform. However, two-axis gimbaled platforms suffer from the
large dimensions and the necessity to protrude from the aircraft, which may result in
increased aircraft drag, larger operation power and slow response rate. In addition,
these platforms are highly sensitive to the vibration loads that can produce beam
steering errors and reduce jamming power. For next generation IRCM systems, the
rotating double-prism scanner can offer a more compact, agile and robust alterna-
tive to the conventional gimbaled platform to adjust the imaging boresight for target
search, recognition and tracking applications. The IRCM systems based on rotat-
ing double prisms are especially suitable for airborne, ship-borne or space-borne
laser communication where the installation space is poorly limited. By far, it has
already been reported that rotating double prisms can be applied for optoelectronic
countermeasure, missile seekers and security cameras.

Schwarz et al. [31] developed an IRCM system based on rotating double prisms
to achieve beam steering accuracy better than 1 milliradian over a 110° field of view.
Yuan et al. [93] invented an airborne infrared scanning and observing device for
photoelectric reconnaissance, which featured light weight, compact structure and
insensitivity to vibration. This device incorporated two prisms having individual
wedge angles of 10.3° and 3.5° to deflect the sighting axis with a maximum angle
up to 31°.
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(2) Image Acquisition

In target search, recognition, rescue and surveillance applications, the target search
operation need be accommodated with large imaging field of view (FOV), while the
target recognition requires high image resolution. To accomplish these two opposed
concepts, it is necessary to acquire images with both wide FOV and high resolution
using an opto-mechanical device of finite dimensions. A popular solution to the
above dilemma is to alternate between one imaging system with wide FOV and low
resolution and the other one with narrow FOV and high resolution. However, such a
solution leads to the loss of situation awareness in a narrow FOV and the decrease
of recognition capability in a wide FOV.

Lavigne and Ricard [94] demonstrated an image acquisition strategy based on the
step-stare imaging system which incorporated a pair of achromatic Riley prisms, as
shown in Fig. 1.18. Rotating double prisms were used to deflect the narrow FOV of
a high-resolution camera towards a sequence of pre-calculated best positions across
the desired wide FOV. The high-resolution mosaic images taken at those sequential
positions were assembled together to provide a global image with wide FOV and high
resolution. Characterized by small volume, light weight and low cost, the step-stare
imaging system can achieve perfect combination of wide FOV and high resolution,
which offers a promising approach to facilitate target search and rescue or ground
surveillance on unmanned aircrafts.

(3) Target Tracking

Aiming for smooth tracking of arbitrary target trajectories, Ball Aerospace & Tech-
nologies Corporation contrived a three-element Risley prism beam steering system
instead of the traditional double-prism system to eliminate control singularities. A
prototype of the three-element system has been presented in Fig. 1.11h, together with
its performance parameters in Table 1.1 [29, 67].

To accomplish multi-target tracking for motion capturing, Souvestre et al. devel-
oped the laser tracking system based on a digital micro-mirror device (DMD) and
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Fig. 1.18 Step-stare imaging system, where a illustrates the step-stare image acquisition strategy
and b shows a physical prototype of the system
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rotating double prisms [95, 96]. Conceptually, the laser tracking system was sepa-
rated into a DMD-based local scanner to generate fully reconfigurable laser patterns
and a Risley-prism-based global scanner to enlarge the scan field of view, as shown
in Fig. 1.19. The photo detector could measure the numbers, positions and shapes of
reconfigurable laser patterns in order to determine the relative position between each
laser pattern and target center. According to this relative position, the local scan-
ner and global scanner should be controlled to steer laser beam for target tracking
function.

In the proposed system, two Risley prisms with 50.8 mm clear aperture and 10°
wedge angle were used to perform beam scanning within a 20.4° conical region. Each
prism rotation was driven by a DC motor, and the angular position was measured with
a 2000 pts magnetic encoder. Through the closed control loop using PID controller,
the reduction ratio from DC motor to prism was set to 3 for an angular resolution of
0.03 and a theoretical maximum speed of 3000 rpm. Despite the power loss due to
diffraction, the proposed system can offer advantages such as wide field of view, high
resolution and fully reconfigurable pattern at high refresh rate. In addition, the system
can easily achieve sub-centimeter tracking accuracy at much more effective cost than
traditional fast steering mirrors. Targeted applications of the system include multi-
target tracking, tank reconnaissance and other possibilities where the cooperative
lighting condition is absent or where a hemispheric field of view is required.

3. Imaging Boresight Adjustment and Observation

As a versatile approach to adjust the imaging boresight and enlarge the imaging field
of view, optical instruments based on rotating double prisms have been successfully
applied in the fields of microscopic observation, biomedical imaging, microassembly
and micromanipulation.

(1) Biomedical Observation
Fountain and Knopp [97] invented a scan imaging system for surgical operation,

where Risley prisms were coaxially mounted on separate rotating stages. A surgical
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Fig. 1.19 Principle of multi-target tracking system for motion capturing
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laser beam could be steered and scanned along any arbitrary trajectory by adjusting
the rotation angles of two prisms. Synchronous rotation of the prisms would produce
a circular scan pattern dependent on the relative rotation angle of two prisms, whereas
counter rotation of the prisms at equal speeds and in opposite directions would lead to
adiametric straight scan pattern. Kim et al. [98] developed a novel robotic endoscope
composed of rotating double prisms, an auto-zooming system, a rigid endoscope, a
CCD camera, two sleeves, two driving motors and an encoder, as shown in Fig. 1.20.
The driving motors were used to rotate two separate sleeves in which the prisms
had been inserted, and the encoder was applied to read the actual orientations of
two prisms. Scattered light from the target should transmit through two prisms, rigid
endoscope and auto-zooming system in turn, which was eventually captured by CCD
camera. Upon placing Risley prisms in front the conventional endoscope, it became
feasible to acquire high-quality images across a wide field of view (up to 40°) without
moving the overall system.

Warger II et al. [99] demonstrated a confocal reflectance microscopy for imaging
skin lesions, which incorporated rotating double-prism scanner, avalanche photodi-
ode, telescope, spectroscope, quarter-wave plate and objective lens. It has been veri-
fied that rotating double-prism scanner would enable high-resolution image without
missing pixels as long as the scan frequency was chosen in a proper manner.

(2) Microassembly and Micromanipulation

Insufficient vision information owing to occlusion, low resolution and small field
of view has been a prevalent problem for microassembly and micromanipulation.
Therefore, Tao and Cho [37, Tao et al. 100] proposed a variable view imaging
system (VVIS) based on the integration of optics and robotics technologies. The
VVIS included optical components such as rotating double prisms, steering mirror,
deformable mirror and imaging lenses. Through appropriate motion control of both
rotating double prisms and steering mirror, the proposed system could achieve vari-
able observation views of micro objects to provide sufficient vision information, as
illustrated in Fig. 1.21.

The capability of VVIS has been demonstrated in microassembly simulation
and experiment to perform micro peg-in-hole insertion task, where the 450 pm x
400 pm x 300 pm micro peg was held by a micro manipulator [37, 100]. At the first
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Fig. 1.20 Endoscope with a wide field of view, where a show a prototype for test and b is a
schematic diagram of the overall system
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Fig. 1.21 Operation of variable view imaging system, where a shows the first step and b shows
the second step

step, a vertical view was obtained from the VVIS to provide vision information that
could guide the peg towards the top of a selected hole. At the second step, the orien-
tations of rotating double prisms and steering mirror were adjusted to obtain a tilted
view from the VVIS so that the peg bottom could be observed. According to the vision
information in the tilted view, the micro manipulator was then controlled to insert the
peg into the selected hole. This successful experiment has verified that the rotating
double-prism scanner can be widely applied for vision-based microassembly.

(3) Gun Sight Compensation and Other Applications

Strong [101] proposed a range compensator for gun sight based on rotating double
prisms. As a result of gravity and crosswind factors, any projectile may depart from
its desired flight path in both vertical and lateral directions. For the purpose that the
projectile strikes target, the common solution is to re-aim target using the vertical
and lateral compensation from a reliable experience table, where the influence of
target distance and shooting surroundings has been taken into account. However, the
proposed compensator incorporates rotating double prisms to deviate the gun sight
for departure compensation, which allows the shooter to simply maintain the target
centered with the gun sight.

In pinhole imaging systems used for concealed optical surveillance, rotating dou-
ble prisms can function as a bidirectional tilting mechanism to expand the observation
field of view. The rotating double-prism system can also offer an effective boresight
adjustment approach to accomplish image stabilization. As for large-scale astronom-
ical telescopes, the rotating double-prism system is often employed to atmospheric
scattering. Furthermore, the combination of rotating double prisms and other optical
elements can be applied to correct the dynamic aberrations originated from conformal
domes [102]. Characterized by the insensitivity of beam deviation angle relative to
prism orientations, the rotating double-prism system is particularly suitable for those
applications required with high beam scan precision, such as a boresight alignment
device in the laser altimeter designed for Mars Observer [103].
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1.4 Problems of Double-Prism Multi-mode Scan System

Regarding double-prism beam scan technology, most researchers are interested in
solutions to forward and inverse problems, beam scan mode, beam scan performance,
opto-mechanical setup or motion control method. Double-prism scan systems have
been successfully applied in the fields of laser communication, laser radar, mechani-
cal processing, biomedicine, military weapons and so on. However, there are several
essential problems remaining to be solved for further applications based on double
prisms.

1. Exact Solutions to the Inverse Problem

It is a common choice to use first-order paraxial approximation and non-paraxial
ray tracing method to solve the forward problem of a double-prism system. But
no ideal exact solution has been presented for the inverse problem, which results
from two possible reasons. First, there are many difficulties in the inverse derivation
of multiple beam refractions. Second, the beam exiting position from the second
prism depart from the optical axis of the system owing to the influence of structural
parameters such as prism thickness. Therefore, the exact inverse solution for two
prism orientations are still not available on the basis of the desired beam pointing or
the target coordinates.

The two-step method offers a simplified procedure for the inverse derivation of
beam path. Paraxial ray matrices and non-paraxial ray tracing method can also pro-
duce effective solution to the inverse problem. Nevertheless, the approximate meth-
ods cannot give exact inverse solution and are especially suitable for beam scanning
in far field.

Generally, the lookup-table method or numerical iteration algorithm can be
applied to enhance the solving accuracy for high-precision beam scanning in near
field. However, the huge computation data and certain precision of lookup table will
limit the efficiency and accuracy of inverse solution. As for conventional iteration
algorithms, the solution accuracy can be improved after more iterations, but the
solution efficiency will decrease as a result. Accordingly, these two methods are not
suitable for real-time and high-precision beam scan applications.

Aiming at a rotating double-prism system, this book introduces an iterative algo-
rithm which combines two-step method with forward ray tracing method. The algo-
rithm can offer high accuracy, low computation and high efficiency to meet the
real-time and high-precision requirements of beam scanning and tracking operation
on dynamic targets.

2. Scan Errors

Actually, beam scan errors can cause the decrease of scan stability in various appli-
cation fields. Therefore, it is difficult but essential to analyze the error sources and
their impacts on system performance, as well as the methods of error elimination or
reduction. Actual scan errors which depend on the comprehensive accuracy of the
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system are roughly inducted as follows: (1) solution errors; (2) component errors;
(3) assembly errors.

Solution errors come from approximate or numerical iterative solutions of the
forward and inverse problems. Correspondingly, researchers have made efforts into
these aspects. One hand is to investigate effective and exact solutions of the forward
or inverse problems. The other hand lies in optimizing those solutions, which means
consideration about seeking a good tradeoff between accuracy and speed so as to
accomplish requirements for real-time performance and lower errors of dynamic
scanning.

Practically, inevitable errors of refractive index or structural parameters like wedge
angle and thickness are existent in the prism manufacture. The popular research
on these errors is conducted with theoretical analysis or simulation, such as the
ray tracing method and Zemax modeling method, etc. To reduce those errors, new
processing and detecting techniques are indispensable for the promotion of prism
accuracy and surface quality. Besides, considering environmental factors into the
system design can be another valid approach to reduce errors in the application.

Assembly errors regularly refer to the installation errors of prisms and bearings,
and the mechanical transmission errors that can be equivalent to the rotating or
tilting errors of prisms. In this book, a three-dimensional assembly error model of
the double-prism scan system will be constructed and the effects of those types
of errors on beam pointing precision will be investigated. According to the given
demand for pointing precision, it is significant to calculate the permissible assembly
errors for the design of double-prism multi-mode scan systems.

3. Blind Zone

Sometimes, the beam scan device is supposed to scan globally within a certain
range. However, the unavoidable blind zone caused by structural parameters prevents
rotating double-prism systems from some probable applications, especially of the
near-field scanning, as the blind zone of pointing covers a range up to several hundred
micro-radians around the optical axis. Taking practical tracking or searching for
instance, the blind zone may lead to the target loss. Therefore, it is necessary to
clarify the formation law of blind zone in order to explore its shape, position and
dimension as well as the influential factors, which may help reduce or eliminate the
blind zone.

Similar to one pair of Risley prisms with different wedge angles or refractive
indices, adding a new prism to the double-prism system can effectively mitigate
and even eliminate the scan blind zone [29]. However, it brings new problems such
as complicated solving process and infinite reverse solutions, which make it more
difficult to design the scanning device and the control algorithm.

This book demonstrates deeply why the blind zone forms in rotating double prisms
and how different system parameters have an impact on the blind zone.

4. Singularity Problem

Another puzzle to be resolved is the singularity problem in the control process of
rotating double prisms. In other words, the rotation angles of two prisms will make
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an instantaneous change when the beam points towards the direction parallel to the
optical axis or the direction of maximum deflection angle (or when the scan target
approaches to the center or edge of scan region in a specific trajectory). That requests
for infinite rotation speeds of prisms theoretically, challenging the drive and control
of servo motors. Though few references reported the phenomenon [53, 67], no one
has seriously analyzed the underlying causes and inherent laws of singularity, which
will be discussed later in this book. The addition of another prism, mentioned pre-
viously, enables the smooth and continuous scanning, but the method shows similar
shortcomings to the solution of blind zone.

5. Nonlinear Control Problem

The governing equations that describe the correlation between rotating or tilting
angles of prisms and beam pointing are both nonlinear. Currently, most inverse solu-
tions employ two-step method or lookup-table method, however, their deficiency on
solving accuracy and time complexity may hinder the real-time tracking of uncertain
targets. In this book, an iteration method is provided to solve the inverse problem,
which avoids complicated nonlinear solutions. Besides, the nonlinear scan control
problem is transformed to the design of motion mechanisms, which reduces the diffi-
culty in real-time control and opens a new avenue for the inverse tracking applications
of double-prism system.

6. Beam Distortion Problem

In previous research, the distortion of beam shape in double-prism system has been
proven to be slighter with the decrease of wedge angle. Conversely in the wide-
field scan occasion, the beam is poorly distorted which leads to inhomogeneous
distribution of energy intensity. These may pose negative effects on the double-
prism system, such as lowering the energy intensity in infrared counter measures
(IRCM) and reducing signal-to-noise ratio of laser communication system. Thus,
the influential factors of beam distortion, the quantitative relationship between the
distortion degree and each system parameter, and the compensation or counteraction
of the distortion are attached great importance to the applications of rotating double
prisms. Since the beam distortion properties are investigated in the aspects of the
structure parameters of prisms at arbitrary incident angles, the book can positively
provide a reference for the design of double-prism scan systems.

7. Chromatic Aberration Problem

Chromatic aberration, as a serious defect in prism imaging, is seldom taken into
consideration in application fields of monochromatic beam such as satellite laser
communication. However, optical imaging systems usually employ white light or
polychromatic light, so chromatic aberration cannot be neglected when double prisms
are used for wide-angle adjustment of the imaging visual axis. Currently, there are
two chief achromatic methods for prisms including prism combination method and
grating element method. Prism combination method is to glue prisms with different
dispersion properties together to achieve the chromatic aberration correction. The
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prisms are known as positive-negative glued prism, for instance, Si—Ge prism and
CaF,-ZnSe-Ge prism; while grating element method etches diffractive gratings on
the prism or applies grism [54] in order for calibration. As an integrated component of
prism and grating, the grism replicates the transmission grating onto the bevel edge
of right-angle prism which combines optical performances of the both elements.
The dispersion magnitude of the grism depends on the structural parameters such as
incident angle, the grating constant and wedge angle of the prism. In consequence, the
chromatic aberration can be calibrated with the regulating of dispersion by adjusting
those above parameters in analytical formulae.

1.5 Main Work of the Book

It is a comprehensive book to introduce the double-prism multi-mode beam scan
principle and methods. The emphasis of this book is placed on double Risley-prism
multi-mode beam scan models, effective methods and critical techniques applied in
multi-mode optical scanning and target tracking fields. It is also the first system-
atic book which demonstrates both fundamental multi-mode beam scan theory and
practical implementation techniques based on double Risley prisms.

This book contains rigorous modeling of double Risley-prism multi-mode scan
system, high-efficiency solution algorithms for inverse problem, abundant illustra-
tive examples and scan error analysis, along with design guidance and performance
test on specific beam scan devices. The book presents the latest research results
on forward beam scan models, inverse target tracking algorithms, sub-microradian
fine scan system based on tilting Risley prisms, nonlinear motion control strategy
for double prisms, calibration and experiment techniques for various double-prism
layouts, as well as opto-mechanical system design and analysis. Characterized by
rigorous theoretical derivation illustrated with rich implementation cases and original
beam scanners, the book may offer valuable reference for the further development of
multi-mode beam scan technology used in the photoelectric scanning and tracking
systems.

There are two meanings of multi-mode beam scanning based on double prisms,
explained as follows.

The first meaning refers to multi-mode scan motion of double prisms, since each
prism can operate at rotating, tilting and composite motion mode. The scan mode
with rotating double prisms is suitable for wide-range beam scanning, and the scan
mode with tilting double prisms features high precision owing to the reduction ratio
from the tilting angle of each prism to the beam deviation angle. As for the composite
scan mode, the multi-degree-of-freedom motion of two prisms allows more abundant
scan scales and scan patterns.

The second meaning lies in multi-mode beam scan trajectory, since the size and
shape of any scan trajectory can be changed under different motion modes of two
prisms. In other words, a beam scan trajectory with arbitrary size and shape, such as
straight line, circle, ellipse and hyperbola, can be produced by adjusting the motion
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parameters of two prisms and the spatial distances among all optical elements. Multi-
mode beam scan trajectory is often used in constant or time-varying beam scan
applications where the target trajectory may be complicated.

Actually, the above two meanings are complementary with respect to each other.
A variety of beam scan modes can be generated under different motion modes of
two prisms or under different prism speed ratios at the same motion mode. For some
specific double-prism scan devices, much richer multi-mode beam scan scales and
scan trajectories are available by introducing difference to the combination of system
parameters or the amount of prism pairs.

This book can provide basic support for technical researchers and engineers,
especially those who work in the fields of beam scanning, target tracking, optical
test, opto-mechanical design and optical instrument. It can also serve the potential
enthusiasts in universities, scientific institutions and enterprises.
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Chapter 2 ®)
Double-Prism Multi-mode Scan Theory Gissiia

Abstract The multi-mode beam scan model is firstly established on the basis of dou-
ble Risley prisms. Theoretical modelling of double prisms at rotating or tilting scan
mode is performed with both vector refraction method and geometric method. Several
essential issues concerned with beam scan performance are thoroughly investigated,
including multi-mode parameter selection, multi-mode scan trajectories, scan cov-
erage, blind zone and scan precision. Tilting double prisms are specially explored to
achieve sub-microradian scan precision within smaller scan range in both vertical and
horizontal directions. The multi-prism combination model is also demonstrated for
larger beam scan region, within which multi-mode scan trajectories can be generated.

2.1 Introduction

It is fundamental to establish the beam steering mechanism for developing multi-
mode scan theories and techniques based on double Risley prisms, that is, to find the
internal relation between the emergent beam pointing and the corresponding prism
orientations. There are two basic problems encountered in the beam steering applica-
tions of Risley-prism systems that have to be addressed, namely the forward problem
and the inverse one [1]. The former focuses on how to determine the deviation angle
of the beam emerging from the system according to the given orientations of two
prisms. The latter is about how to inversely solve the orientations of two prisms
according to the given deviation angle of the final emergent beam.

Through forward and inverse solution models, the relation between the beam
pointing position and the corresponding prisms’ orientations can be established in any
double Risley-prism-based system. The beam propagation model based on paraxial
approximation can serve as an effective tool to investigate the double-prism beam
scan mechanism. But in practice, the structural and layout parameters of a double-
prism system will influence the beam steering position at all prism surfaces, and
further, the beam scan position on the target [2]. Therefore, it is essential to establish
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a rigorous mathematical model of the beam propagation through two prisms and
explore the effects of different structural and layout parameters on the beam scan
position, which can help reveal the beam steering mechanism and beam scan law.

2.2 Basic Principle of Double-Prism Multi-mode Scanning

2.2.1 Approximate Solution for Rotating Scan Model

In 1960, Rosell historically adopted a pair of rotating Risley prisms to produce various
beam scan patterns, and derived the beam deviation expressions for both thin prism
and thick prism [3]. Since then, rotating double prisms have been applied in more
and more technical fields.

Conceptually, the rotating double-prism beam steering system is composed of
two coaxial and sequential prisms, which usually have the same wedge angle and
refractive index. Both prisms are capable of independent rotation around the common
axis. As shown in Fig. 2.1, the beam is incident parallel to the optical axis of the
system and refracted by prism 1 and prism 2 in order. With different combinations of
prism orientations, the beam can be steered to any position within a certain angular
range [4]. The pitch angle p and azimuth angle ¢ of the emergent beam can be further
determined according to the rotation angles 6, and 6,, of two prisms.

If the wedge angle of each prism is relatively small, there are approximate formulae
as follows [3]:

Prism 1

Laser source

Fig. 2.1 Schematic diagram illustrating the beam deviation by rotating double prisms
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)’

Fig. 2.2 First-order approximation to the beam deviations imparted by double prisms, where a
describes the beam pointing direction, and b indicates two sets of inverse solutions

0= 9r|+2-9r2 (2 1)
6,16, :
p =2a(n — 1) cos =52

where 6, and 6,, denote the individual rotation angles of two prisms, ¢ and p are,
respectively, the azimuth angle and the pitch angle, n and « represent the refractive
index and wedge angle of each prism.

However, as the wedge angle gets larger, the solving accuracy of the above formu-
lae decreases to some extent, which cannot be accepted in some practical applications.

A first-order approximation method has ever been proposed in reference [4], where
each of two prisms is regarded with relatively small wedge angle. The magnitude of
beam deviation depends only on the wedge angle and the refractive index. Thus, the
emergent beam is always steered towards the thickest end of the principal section of
each prism, despite the prism orientation and the pointing direction of incident beam.
As shown in Fig. 2.2a, the beam deviations imparted by two prisms can be described
by a pair of vectors §; and §,. The beam is firstly steered to one circle centered at
the beginning of &; and taking the length of &, as radius, and then steered to the
other circle centered at the beginning of &, and taking the length of &, as radius.
Consequently, the vector p for the total beam deviation is considered as the sum of
8, and §,. According to the parallelogram law indicated in Fig. 2.2b, there are two
possible solutions of prism orientations to steer the final emergent beam in a certain
direction.

For a double-prism system composed of thick prisms, the incident beam to prism
2 is actually non-paraxial, and the incidence angle of the beam to prism 2 varies
with the relative rotation angle of two prisms, which results in a non-circular field
of view [5]. Nevertheless, the simplified model based on thin prisms can remove
the complication of calculating optical path to provide prediction results, which help
clarify the beam deviation laws in any rotating double-prism scanner.

On the previous basis, Li [6] obtained one general forward solution for the
beam transmitting through two thick prisms. The solution was then expanded into a
power series to deduce the third-order approximation with greatly enhanced accu-
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Fig. 2.3 Beam steering
principle by tilting a single ‘
prism

racy. Unfortunately, this method involves the first-order or third-order non-paraxial
approximation, which can only be utilized to investigate the beam steering issues
over a small angular range.

Therefore, the non-paraxial ray tracing method or the geometric method should be
applied to establish an accurate beam propagation model for the double-prism multi-
mode scan system. The former based on Snell’s law can trace the beam propagation
path in order to obtain a precise forward solution, while the latter can be performed
through the coordinate transformation of beam vectors.

2.2.2 Basic Solution for Tilting Scan Model

The tilting prism used for beam steering has been reported in an earlier optics liter-
ature [7]. Figure 2.3 illustrates the principle of beam steering by tilting one single
prism, where n and « denote the refractive index and wedge angle of the prism,
respectively. The incident beam is specified by the vector A; with an incidence angle
i, and the emergent beam is described by the vector A,, of which the deviation angle
is §. Besides, the incidence angle is prescribed to be positive when the incident beam
is counterclockwise with respect to the prism surface normal, and the beam deviation
angle is prescribed to be positive when the acute angle between the emergent beam
and the incident beam is clockwise. Seen from Fig. 2.3, the emergent beam vector
is A, with a deviation angle § if the prism keeps stationary, and it turns to A5 with a
deviation angle §’ once the prism tilts with an angle .
According to Snell’s law, the final beam deviation angle can be expressed as

8 =i +arcsin(sin av/n? — sin®i — cos « sini) — « 2.2)

Given small wedge angle @ and small incidence angle i, (2.2) can be simplified
as

n+1

S~ (n— 1)<1 + i2>a ~((n— Do (2.3)

n
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Table 2.1 Beam deviation angle §; and change rate 51/9i corresponding to different wedge angle

o
aol/(°) Max Min Range Max Min Mean

Sy/mrad | 8y/mrad |8 /mrad |d8/0i/(rad/(°)) | 981/3i/(rad/(°)) | 881/0il(rad/(°))
2 18.245 |[18.050 |0.1954 [9.800 x 1070 | —1.900 x 10~ | —4.518 x 10~
3 27448 27.082 [03666 |1.133x 107> |—3.209 x 107 | —=1.019 x 107
4 36.720  |36.121 05990 | 1.063 x 107> | —4.768 x 107> | —1.818 x 107
5 46.073 45171 |0.9014 [7.708 x 1070 | —6.587 x 107> | —2.854 x 107>
6 55519 |54.235 | 1.284 2528 x 1070 | —8.677 x 107° | —4.134 x 107>
7 65.071 |63.315 |1.756 —4.933 x 107° | —1.105 x 107* | =5.665 x 107>
8 74744 72433 | 2312 —1.472 x 1075 | —1.373 x 1074 | =7.457 x 107

Differentiating (2.2) with respect to i, we can obtain the change rate of the beam
deviation angle relative to the incidence angle:

. sin o sin i cos i
(—cosicos o — MEERLES L
26 n2—sin?

R |

+
ai . ) . 0. .. 2
1 — (sin @/ n* —sin“i — sin i cos «)

Table 2.1 indicates the dependence of § on @ when the incidence angle of the
incident beam ranges from —5° to 5°.

Providing the incidence angle i within the same range, the beam deviation angle
together with the absolute value of the change rate of beam deviation angle will vary
within a larger range as the wedge angle increases, as shown in Table 2.1. That is, the
beam steering accuracy becomes lower and lower. Consequently, the magnitude of
wedge angle must be synthetically optimized according to the requirements of both
beam scan range and beam scan precision.

It is also inferred from Table 2.1 that, if the wedge angle is as small as 5°, the
tilting motion of the prism within a narrow angular range can be equivalent to the
continuous variation of the beam incidence angle, which enables precise deviation
of the emergent beam.

Reference [8] has provided the accurate and approximate expressions for the devi-
ation angle of the beam passing through a single prism. When o = 5° and i = —30° to
30°, the beam deviation range is plotted in Fig. 2.4a. The accurate and approximate
solutions of beam deviation in Fig. 2.4a are obtained from (2.2) and (2.3), respec-
tively. It was also validated in reference [8] that there could be a hundredfold-order
reduction ratio from the tilting angle of one prism to the consequent beam deviation
angle, as shown in Fig. 2.4b.

Furthermore, the beam deviation angle is non-monotonic when the prism orienta-
tion 6 ranges within —30° to 30°. In order to facilitate the control of beam scanning,
the tilting angle must be limited on either side of the value that results in the minimum

(2.4)
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—— Accurate solution
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Approximate solution of small tilting angle i
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Fig. 2.4 Beam deviation angle associated with the incidence angle, where a shows the variation of
the deviation angle with the incidence angle, and b depicts the change rate of the deviation angle
relative to the incidence angle

Table 2.2 Influence of wedge angle on minimum beam deviation angle and the required tilting
angle range

al(°) 3 4 5 6 7
Smin/(°) 1.5496 2.0668 2.5846 3.1032 3.6227
i/(°) —2.4333 —3.0613 —3.7097 —4.5806 —5.2903
Omin/(°) —2.4333 —3.0613 —3.7092 —4.5806 —5.2903
Omax/(°) 7.1111 5.1111 2.8889 22222 0.88889

beam deviation angle. For a refractive prism, the minimum beam deviation angle can
be determined from

Smin = 2 arcsin(n) - sin% —a (2.5)

Corresponding to different values of the wedge angle «, Table 2.2 lists the min-
imum beam deviation angles &y, the incidence angle i of the beam, as well as the
minimum tilting angle range 6 nin—fmax required to achieve the beam scan range of
600 jurad.

2.3 Theoretical Model of Double-Prism Multi-mode Scan
System

The beam scan mode depends on the motion form of double prisms. There are diverse
motion forms of double prisms, including coaxial rotation, orthogonal tilting motion
and their combination, which can generate multiple scan modes and enhance the
versatility of the system in different scan applications. Generally, the double-prism
system at rotating scan mode is able to perform high-accuracy radial scanning within
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a wide scan coverage, and the one at tilting scan mode will achieve higher directional
scan accuracy as a result of the much larger reduction ratio from prism orientation
to beam deviation angle. Moreover, the system at composite scan mode has more
motion degrees of freedom to produce variable-scale and multi-mode scan patterns.
This section mainly expounds the theoretical modelling of rotating and tilting double-
prism systems, and the composite system can be modelled in a similar fashion.

2.3.1 Rotating Scan Model

Under the Cartesian coordinate system OXYZ defined in Fig. 2.5, the rotating scan
model is composed of two identical prisms [9], named prism 1 and prism 2 sequen-
tially in the positive Z-direction. The prisms have the same wedge angle «, refractive
index n and thinnest-end thickness d. The incident surface 11 of prism 1 is a plane
perpendicular to the Z-axis, and the emergent surface of prism 1 is a wedged plane
12. Oppositely, the incident surface of prism 2 is a wedged plane 21, and the emergent
surface 22 of prism 2 is perpendicular to the Z-axis. For simplicity, the coordinate
origin O(0, 0, 0) is fixed at the center of prism surface 11, the centers of prism sur-
faces 21 and 22 are labeled with O" and O,, respectively, and the distance between
points O and O, is denoted by D,. Both prisms are able to rotate around the Z-axis,
and the counterclockwise rotation angle is defined as positive angle. In addition, the
rotation angular velocities of prism 1 and prism 2 are, respectively, represented by
w; and w,,.

Initially, the principal section of each prism is located in the XOZ plane, with its
thinnest end pointing towards the positive X-direction. The rotation angles of two
prisms are given by 9, = 6,, = 0°, which act as time-dependent variables denoted
by 6,1(¢) for prism 1 and 0,,(¢) for prism 2. Assuming that the laser beam is firstly
incident on the incident surface of prism 1, the angle of the incident beam relative to
the positive Y-direction is denoted by S,;, and that between the beam projection in
the XOZ plane and the positive Z-direction is denoted by y,;. In principle, 8, and
y 1 are taken within 0° to 180° and —90° to 90°, respectively, but their actual ranges
should be properly modified under the consideration of total internal reflection. After
refracted by rotating double prisms, the beam path eventually reaches the screen P in
the XOpY plane, which locates away from the emergent surface center O, of prism
2 with a distance D,. Furthermore, p stands for the deviation angle of the emergent
beam with respect to the positive Z-direction, and ¢ represents the angle between
the emergent beam projection in the XOpY plane and the positive X-direction.

1. Based on Vector Refraction Theorem

According to the vector refraction theorem [10], if the beam transmits through two
homogeneous media, the incident and refracted beam vectors can be expressed as

niAy x N=nyA, x N
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Prism 2

Prism 1

Scrccn\

Fig. 2.5 Schematic diagram illustrating rotating double-prism scan model

2
Ay =LA+ \/1—<ﬂ> [1—(A1~N)2]—%(A1-N) N
2

nz nz

where A and A, are unit vectors for the incident and emergent beams, respectively, N
denotes the normal vector to the refractive surface, pointing from medium 1 towards
medium 2, and the two media have different refractive indices n; and n,.

Each of the above equations can be used to describe the propagation path of the
refracted beam.

The normal vectors to the incident and emergent surfaces of prism 1, denoted by
Ny and Ny,, along with the ones to the incident and emergent surfaces of prism 2,
denoted by N,; and N,,, are obtained from

Ny = (0,0, DT (2.6a)

N1, = (cos 6,1 sin «, sin 6,1 sin «, cos ot)T (2.6b)
Nj1 = (—cos 6, sin «, — sin 6,, sin «, cos a)T (2.6¢)
Ny =(0,0,1)" (2.6d)

The incident beam vector to prism 1, the refracted beam vector at the incident
surface of prism 1, and the emergent beam vector from prism 1 are written as A,¢, 4,1
and A,, in sequence. A,, is also the incident beam vector to the incident surface of
prism 2. The refracted beam vector at the incident surface of prism 2 and the emergent
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beam vector from prism 2 are, respectively, denoted by A,3 and A,;. According to
the vector refraction theorem, we have

Ay = (sin B,1sin y,1, cos B.1, sin B,1cos y1)" = (X0, Yr0» 270)" (2.7a)

1 1\’ 1
App = —Ap + \/1 - (-) “[1— (A -Ni1)?)1— =Arwo-Nii ¢ - Nu
n n n

= (Xr1» Yrt> Zrl)T (2.7b)
Ay =nAp+ {\/1 —n?-[1 —(A;1 - N2)?1 —nAp 'N12} “Nip
= (xr27 Yr2, ZrZ)T (270)

1 1\* 1
Apz=—-An+ \/1 - <—> “[1—=(A;2 - N21)’1 — —As;2 - Nayf - Noy
n n n

= (X,3, ¥r3, 2r3) " 2.7d)

A =nAp+ {\/1 —n?-[1—=(A;3-Nn)*l —nA,; - sz} "Ny
T
= (e Yrfs 2rf) 2.7¢)

All the refracted beam vectors can be further specified by substituting (2.6)
into (2.7). The final expression for the emergent beam pointing is omitted here owing
to the fussy derivation.

2. Based on Geometric Method

Two Cartesian coordinate systems, O XY Z and O,X,Y,Z, are defined as shown
in Fig. 2.6. The coordinate system O;XYZ can rotate at the same speed as prism
1, where the X;0,Z plane is specified by the principal section of prism 1 and the
positive X -direction points towards the thinnest end of prism 1. Similarly, O,X,Y,Z
is a coordinate system rotating at the same speed as prism 2, where the X, 0,Z plane
is specified by the principal section of prism 2 and the positive X -direction points
towards the thinnest end of prism 2. The X;0,Z plane can also be determined in
terms of the emergent beam vector A,, from prism 1 and the beam projection in the
X,0,Y, plane, because the incident beam is purely deflected within the principal
section while propagating through prism 1.

Under the global coordinate system OXYZ, the incident beam vector to prism
1 is given by A9 = (sin B, sin y,, cos B,1, sin B, cos y,l)T. Since the coordinate
system O XY Z can be obtained by rotating the coordinate system OXYZ counter-
clockwise around the Z-axis with an angle 6,1, the incident beam vector is expressed
as follows under the coordinate system O XY Z:

ALy = AnROt(Z, 0,1) = (X]os ios Zho) (2.8a)
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Fig. 2.6 Definition of X
angles under two dynamic
coordinate systems

cos@,; sind,; 0
Where Rot(Z, 6,1) = | —sin0,; cos6,; 0
0 0 1

Under the coordinate system O1X;YZ, the emergent beam vector from prism 1
is written as

1, = (sin B, sin(y), — 81), cos B, sin B, cos(y,, — 1)) (2.8b)

The deviation angle of the emergent beam from prism 1 with respect to the incident
beam can be deduced from

81 = i) — arcsin(sini; cosa — sina‘/ﬁ% —sini)) —« (2.8¢)

where g/, denotes the angle of A relative to the ¥;-axis under the coordinate system
0:X,Y,Z, given by B, = arccos (y;o) ;y/, is the angle between the projection of A},
in the X10,Z plane and the Z-axis, given by y,, = arctan(x//z,,); i represents the
incidence angle of the beam to prism 1, given by i; = y/; and 7 is the equivalent

refractive index of prism 1, given by i1} = \/ n?+ (n> — 1) cot® g/,.
After rotating clockwise around the Z-axis with an angle 6,1, the emergent beam

vector from prism 1 can be transformed as follows under the coordinate system
OXYZ:

App = ALRoOU(Z, —0,1) = (x,2, Y2, 22) " (2.8d)

By rotating the coordinate system O;X,YZ counterclockwise around the Z-axis
with an angle 6,, — 6,;, the coordinate system O,X,Y,Z is also specified. Under
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the coordinate system 0,X,Y,Z, the emergent beam vector from prism 1 can be
expressed as

n\T
A, = ALROU(Z, 0,0 — 6,1) = (x5, ¥/ 2)) (2.92)

The emergent beam vector from prism 2 is expressed as follows under the coor-
dinate system O0,X,Y,Z:

A ;= (sin By sin(y), — 82), cos B, sin B, cos(y/, — 5))" (2.9b)

The deviation angle of the emergent beam from prism 2 with respect to the incident
beam can be obtained from

8y = i, — arcsin(sin i, cos & — sin a,/ﬁ% — sin? h)—«o (2.9¢)

where B/, denotes the angle of A, relative to the ¥'-axis under the coordinate system
0,X,Y,Z, givenby B,, = eur(:cos(yr”z),yr/2 is the angle between the projection of A,
in the X,0,Z plane and the Z-axis, given by y/, = arctan(x’,/z/,); i, represents the
angle of the incident beam to prism 2, given by i, = y/, +; and n, is the equivalent

refractive index of prism 2, given by 71; = \/ n?+ (n? — 1) cot? B/,
After rotating clockwise around the Z-axis with an angle 6,,, the emergent beam

vector from prism 2 can be transformed as follows under the coordinate system
OXYZ:

l T
Arp = AL RO(Z, —6,2) = (Xrp, Yrf. 2rf) (2.9d)
Providing the incident beam perpendicular to the incident surface of prism 1,

namely 8,1 =90° and y,; = 0°, the emergent beam vector from prism 2 is determined
by

Xrf — 08 6,7(sindicosbrcos A, + cosd1sind,) + sinb,, sin &1 sin A0,
Yrf | = | —sinb,,(sindicosdrcos Ab, + cosd sind,) — cosb,, sin §; sin A9,
Zrf c0s 81 cos 8, — sin & sin &, cos A6,
(2.10a)
where

8) = arcsin(n sina) — o (2.10b)
6 =ip — arcsin(sin ip COS o — Sin oz\/n_zz — sin? i2> -« (2.10c)
i, = —arctan(tan §; cos Af,) + « (2.10d)

;= \/nz — 1) cot? B, (2.10e)
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B, = arccos(sin &; sin A6,) (2.10f)
A6, = 6,1 — 6, (2.10g)

The angle of the emergent beam relative to the Z-axis is defined as pitch angle p,
given by

p= arccos(z,f) = arccos[cos §; cos 8, — sin §; sin 8, cos A6, ] (2.11a)

The angle between the emergent beam projection in the XOY plane and the positive
X-direction is defined as azimuth angle ¢, given by

arccos| ——L= |}, y,r > 0
N E

(2.11b)
2w — arccos(

Xrf
= | Yrf < 0
N ey

2.3.2 Tilting Scan Model

Under the Cartesian coordinate system OXYZ established in Fig. 2.7, the tilting scan
model [1] consists of two identical prisms, named prism 1 and prism 2 sequentially
in the positive Z-direction. The prisms have the same wedge angle « and refractive
index n. Initially, the incident surface 11 of prism 1 is perpendicular to the Z-axis,
and the emergent surface 12 is the wedged plane with an angle «. Oppositely, the
incident surface 21 of prism 2 is the wedged plane with an angle «, and the emergent
surface 22 is perpendicular to the Z-axis. For simplicity, the coordinate origin O(0,
0, 0) coincides with the center of prism surface 11, the centers of prism surfaces 21
and 22 are marked as O and O, respectively, and the distance between points O and
0, is denoted by D;. The principal section of prism 1 is located in the XOZ plane
with its thinnest end towards the positive X-direction, whereas the one of prism 2 is
located in the YOZ plane with its thinnest end towards the positive Y-direction.

Prism 1 can tilt around the axis which keeps perpendicular to its principal section
and passes the center point O, at an angular velocity denoted by w,;, while prism 2
is able to tilt around the axis perpendicular to the principal section and passing the
center point Oy, at an angular velocity denoted by w,,. The tilting angles of prism 1
and prism 2 are, respectively, initialized by 6,1 = 8, = 0° and act as time-dependent
variables denoted by 6,(¢) and 6,,(¢). Here the counterclockwise tilting angle is
prescribed to be positive, and thus, the clockwise tilting angle is prescribed to be
negative.

Assuming that the laser beam is firstly incident on the incident surface of prism 1,
the angle of the incident beam relative to the positive Y-direction is denoted by 8,1,
and the angle between the incident beam projection in the XOZ plane and the positive
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Screen P

i

Fig. 2.7 Schematic diagram illustrating tilting double-prism scan model

Z-direction is denoted by y,;. 8,1 and y,; are taken within 0° to 180° and —90° to
90°, respectively, but their actual ranges need be modified under the consideration of
total internal reflection. After refracted by two tilting prisms, the beam finally arrives
at the screen P, which is placed away from the emergent surface of prism 2 with a
distance D,.

1. Based on Vector Refraction Theorem

The normal vectors to the incident and emergent surfaces of prism 1, denoted by N
and N,, along with those to the incident and emergent surfaces of prism 2, denoted
by N,; and N,,, are obtained from

N, = (sin6;1, 0, cos 6,1)" (2.12a)

N1 = (sin(a +6;1), 0, cos(a + 6,1)) T (2.12b)
Noy = (0, —sin(x + 6,2), cos(a + 6,2))" (2.12¢)
N2y = (0, —sin 6y, cos 6,5)" (2.12d)

The incident beam vector to prism 1, the refracted beam vector at the incident
surface of prism 1, and the emergent beam vector from prism 1 are written as A,
A; and A, in sequence. A;, is also the incident beam vector to the incident surface
of prism 2. The refracted beam vector at the incident surface of prism 2 and the
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emergent beam vector from prism 2 are, respectively, denoted by A,3 and A,¢. From
the vector refraction theorem, we have

Ao = (sin By sin 41, c0s By1, sin By cos yi1)"
= (X0 Y10, 210)" (2.13a)

1 1\’ 1
Ajp=—-Ap+ \/1—(—) 1= (A4 N1’ 1——Aw-Nug-Nu
n n n

= (X1, Vi1, 201) " (2.13b)

Ap =nAq +{\/1 —n?-[1 = (A - N12)?] —nAgy 'le} “Ni2
= (X2, Y2, 202)" (2.13¢)

1 1\* 1
Ap=—-Ap+ \/1 - (-) [1—=(App - N21)*l — —Ap - Noj ¢ - Nog
n n n

= (X3, Y13, 213) " (2.13d)

Ay =nAg+ H\/l —n?-[1 —(Ai-Np)*l —nAg- sz] - N2
T
= (er, Yifs th) (2.13e)
Substituting (2.12) into (2.13), all the refracted beam vectors can be determined.
The final expression for the emergent beam pointing is not provided here.
2. Based on Geometric Method

The incident beam to prism 1, specified by Ay =
(sin ;1 sin 41, cos By1, sin By cos y;1)T, is merely refracted within the XOZ plane
while propagating through prism 1. Hence, the emergent beam vector from prism 1
is written as [11]

Ay = (sin B, cos 01, cos B;1, sin B, sin 91])T (2.14a)

The deviation angle of the emergent beam from prism 1 with respect to the incident
beam can be obtained from

81 = i1 — arcsin(sin i; cos @ — sin ou/n_l2 —sin?i;) —« (2.14b)

where 61, is the angle between the emergent beam projection in the XOZ plane and
the positive X-direction, given by 8;; = 7w /2 — y,; + 8;; i) is the incidence angle of
the beam to prism 1, given by i; = y,; —611; and i1} is the equivalent refractive index
of prism 1, given by 71, =+/n2 + (n2 — 1) cot? B,,.
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Fig. 2.8 Definition of the X
angles of the incident beam

to prism 2 with respect to the

coordinate axes

Similarly, while propagating through prism 2, the beam is only refracted within
the YOZ plane. The beam incident to prism 2 is exactly the one emerging from prism
1, which can also be expressed as [11]

An=(cos B2, sin By $in ¥z, sin Bz cos yi2)" (2.15a)

where B, is the angle of A,, relative to the positive X-direction, given by B, =

arccos(sin B, cos 011); and y,; is the angle between the projection of A,, in the YOZ

plane and the positive Z-direction, given by y,» = arctan(cot 8,1/ sin 6;;) (Fig. 2.8).
The emergent beam vector from prism 2 is determined by [11].

Ayp=(c0s By, sin By sin(yin — 82), sin Bra cos(yi2 — )" = (xeps Yips 2ef)"
(2.15b)

The deviation angle between the incident and emergent beams for prism 2 is
available from

8 =ip — axcsin(sin ip COS o — sin a,/ﬁ% — sin? iz) -« (2.15¢)

where i, denotes the incidence angle of the beam to prism 2, given by i, =
Vi + o + 6, and n, is the equivalent refractive index of prism 2, given by
y=y/n2 + (n%> — 1) cot? By,.

The vertical field angle pv is defined by the angle of the emergent beam projection
in the XOZ plane relative to the Z-axis, expressed as

, cot
py = arctan()ﬁ) = arctan¢ (2.16a)

Ztf cos(yi2 — 82)
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The horizontal field angle py is defined by the angle between the emergent beam
projection in the YOZ plane and the Z-axis, expressed as

pon = arctan(2L)=y,, — 8, (2.16b)
2tf

Without any special statement, the incident beam to each double-prism scan model
is supposed to propagate along the optical axis in the subsequent chapters, namely
A=A, = (0,0, 1)T. However, the proposed methods are also helpful to investi-
gate the general situation where the beam is incident with an arbitrary angle.

2.4 Scan Region and Scan Precision of Double-Prism
Multi-mode Scanning

2.4.1 Rotating Scan Mode

1. Beam Scan Region

Based on the rotating scan model in Sect. 2.3.1, the pitch angle of the emergent beam
can be obtained as follows when the incident beam is along the optical axis of the
system:

p = arccos[cos §; cos §; — sin §; sin &, cos A6, ] (2.17)

It can be found that the pitch angle p is concerned with the beam deviation angle
81 induced by prism 1, §, induced by prism 2 and the relative rotation angle A8, of
double prisms, which accounts for the functional relation expressed as p = f (A6,
o, n). Since the wedge angle o and refractive index n are both constants in a specific
rotating double-prism system, the beam deviation angle §; is kept unchanged while
8, is only dependent on the relative rotation angle A#,. Therefore, the expression
for the pitch angle can be simplified as a function associated with Af,, namely
p =f (A6,). Itis further clarified that f (—A8,) = f (A6,) when A6, varies within
—180° to 180°, which confirms p = f (A#,) as an even function. Providing that
o = 10° n = 1.517 and A6, ranges within —180° to 180°, the relation of the pitch
angle p with respect to A, can be determined as shown in Fig. 2.9.

Obviously, the correlation curve in Fig. 2.9 is symmetric about A8, = 0°, and the
pitch angle p decreases with the increment of the absolute value IA6,|. The maximum
value of the pitch angle is ppax = 10.480° when IA6,| = 0°, and the minimum value
is pmin = 0° when IA6,| = 180°, which correspond to the conditions illustrated in
Fig. 2.10a, b, respectively. With the knowledge of IA6,| = 0° in Fig. 2.10a, the pitch
angle is simplified as p = arccos[cos §; cos §; — sin §; sin 6,] = §; + 8>, namely the
sum of beam deviation angles induced by prism 1 and prism 2. Given |A6,| = 180°
in Fig. 2.10b, the pitch angle becomes p = arccos[cos §; cos §, + sin §; sin §,] =



2.4 Scan Region and Scan Precision of Double-Prism Multi-mode Scanning 57

L

0 " . " L "
-180  -120 -60 0 60 120 180
AG/°)

Fig. 2.9 Variation of the pitch angle p with the relative rotation angle A#, of double prisms
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Fig. 2.10 Conditions for the extreme values of the pitch angle p, where a is for the maximum pitch
angle, and b is for the minimum pitch angle

81 — &,. Here §; = §,, which indicates that the beam deviation effects due to prism
1 and prism 2 are canceled by each other, so the final emergent beam propagates
parallel to the incident beam. Moreover, the pitch angle is always taken from 0° to
81 + &, as long as |A@,| varies within 0° to 180°.

Upon rotating prism 1 with an angle C; while keeping prism 2 stationary, the
relative rotation angle of two prisms is given by A8, = C;. The two prisms are
then rotated at the same speed, with the relative rotation angle A8, held constant.
Consequently, the emergent beam can produce a circular trajectory on the screen
located at a distance of D,. The radius of the circular trajectory is r = D;-tanp,
where p =f (Cy). It has been mentioned before that the pitch angle p = f(A#,) is an
even function symmetric about A6, = 0°. Thus, we only consider the situation of C,
> 0°, and the situation of C| <0° can be discussed in the same approach. When A9, =
C takes 0°,45°,90°, 135° and 180° in turn, the far-field scan trajectories produced by
the emergent beam are plotted in Fig. 2.11. Note that the scan trajectories are observed
in the positive Z-direction, and the distance D, is set to 1 mm for simplicity. Seen
from Fig. 2.11, the circular trajectory with the maximum radius of ry,x = 0.185 mm
is obtained when A6, = 0°, while the one with the radius of 0, namely a point, is
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Fig. 2.11 Scan trajectories
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obtained when A6, = 180°. In general, the radius of beam scan trajectory decreases
as AQ, increases from 0° to 180°.

The pitch angle p = f (A#,) has proven a continuous function associated with the
relative rotation angle A@, of two prisms. Thus, the radius of circular scan trajectory
is taken from ry.x to O when A6, varies within 0° to 180°. By changing Af8,, the
emergent beam can be steered to any position within a cone area, specified by the
radius rp,x of bottom surface and the height D,. Figure 2.12 shows the beam scan
trajectory under various combinations of prism orientations, namely the double-prism
beam scan region on the screen located at a distance of D, = 1 mm.

The above analysis indicates that a conical scan region can be formed for any
rotating double-prism system, the volume of which depends on the pitch angle range.
Usually, the pitch angle takes 0° at minimum and reaches its maximum value when
the relative rotation angle of two prisms is 0°. To investigate the beam scan region
under far-field condition, we should only discuss the maximum value pp,x of the
pitch angle.



2.4 Scan Region and Scan Precision of Double-Prism Multi-mode Scanning 59
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Figure 2.13 illustrates the relation of the scan region relative to the wedge angle
«, where the refractive index » is constant at 1.517. Similarly, the relation between
the scan region and the refractive index n is presented in Fig. 2.14, where the wedge
angle o = 10°. It is evident that the beam scan region of a rotating double-prism
system will be enlarged with the increment of wedge angle « or refractive index n.

2. Radial Scan Precision of Emergent Beam

The error analysis model for the pitch angle of emergent beam can be expressed as

ap

on

a a
p (SMV + ‘_,0

L 8o +
I,

n 2.18
5 (2.18)

s

where §a¢,,8, and §, are, respectively, the absolute errors of Af,, « and n.

The wedge angle error §, and refractive index error §, are both classified as
systematic errors, except the random error §¢, in the relative rotation angle of two
prisms. With regard to any specific Risley-prism system, 64, occurs as the unique
factor that affects the pitch angle error 6.

The impacts of 8,5, and d,9 on §, are separately clarified in Fig. 2.15a, b,
c. As shown in Fig. 2.15a, b, the correlation curves of 10p/dxl and 10 p/dnl with
respect to A6, have some essential similarities, such as the symmetric distribution
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Fig. 2.15 The impacts of A6, on the partial derivatives of pitch angle, including a 1dp/dcl, b
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about A6, = 0° and the gradual increment with A6, varying from —180° to 0°.
Meanwhile, the increment of wedge angle « or refractive index n will give rise to a
larger &, corresponding to 8, or §,. It is somewhat different in Fig. 2.15¢ that the
correlation curves of 10 p/d A8,| relative to A6, are also symmetric about A8, = 0°,
but they decrease monotonically as A6, varies from —180° to 0°. Anyway, the &,
corresponding to 8¢, increases as a result of the increasing « or n. The larger o or n
becomes, the worse the impact of each error source on the radial scan precision gets,
which contributes to a larger scan region on the other hand. In practice, we should
make a good balance between scan region and scan precision while selecting the
material and structural parameters of each prism.

Specifically, if the wedge angle « = 10°, the refractive index n = 1.517 and the
relative rotation angle A8, ranges from —180° to 180°, the maximum values of
10 p/0al and 10 p/onl are 1.077 and 0.358 when A6, = 0°, whereas 10 p/d A8, takes
its maximum value 0.092 when A8, = 180°. Assume that the manufacture error
of wedge angle §,, approximates to 1”, the refractive index error §, resulting from
inhomogeneous optical glass is up to & 1 x 107>, and the relative rotation angle error
of two prisms ¢, achieves 0.01°. It can be calculated that the maximum values of
8, induced by each independent factor among d,, §, and 8¢, are about 5.22, 3.58
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and 16.06 rad, respectively. In principle, the radial scan precision can be superior
owing to the large reduction ratio from the relative rotation angle error of two prisms
to the pitch angle error, which reaches hundredfold order for this example.

3. Circumferential Scan Precision of Emergent Beam

To help evaluate the circumferential scan precision of rotating double prisms, the
change rate of azimuth angle is investigated when the system produces a circular
scan trajectory on the screen during one revolution of two prisms.

The relative rotation angle A6, of two prisms is held constant so that the azimuth
angle depends only on the rotation angle 6,, of prism 2.

Given that A6, is the unique influential factor of beam deviation angles §; and
8>, we can find A = sind;cosd,cosAf, + cosd;sind, and B = sind;sinAAH, both
constants. Resolving the emergent beam vector into two components given by x,; =
—Acosf,2 + Bsind,, and y,; = —Asinf,, — Bcosf,,, we have

\ —A cosby, + B sinf,
cosp = ——rl - TC 0T T T (2.19)

S VAR

The azimuth angle ¢ has proven a function associated with the rotation angle 6,,,
expressed as ¢ = f(6,2). Thus, the azimuth angle error 8, can be calculated from

dey

— 13 2.20
a0, |2 (2.20)

-

If y,s > 0, the change rate dg/df,, of the azimuth angle is determined by

do 1 A sin6,, + B cos 6,
de == —A cos,,—B sin6,, : \/ﬁ =1 (2213.)
r2 — oy A+ B
Otherwise y,r < 0, the change rate becomes
do 1 A sinf,, + B cos 6,
de 2 = A cosB,,+B sin6,, ’ m =1 (221b)
’ VAL B? +

Itis worth mentioning that the change rate of azimuth angle is constant at 1 because
the relative rotation angle of two prisms remains unchanged, which accounts for
equal variation of the azimuth angle and each prism orientation. For rotating double
prisms, the circumferential scan precision is always consistent with the rotation angle
precision of each prism.
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2.4.2 Tilting Scan Mode

1. Beam Scan Region

Providing the incident beam along the optical axis, the vertical field angle py of the
emergent beam is expressed as

cot —tané
oy = arctan<ﬂ> = arctan i = arctan ! (2.22a)
s cos(yr2 — 82) COs &2
The horizontal field angle py is given by
Yif
PH = arctan(—) =Yn—0 =—65 (2.22b)
2tf

Obviously, the vertical field angle py and horizontal field angle py are both
functions concerned with the tilting angles of two prisms, denoted by 6,; for prism
1 and 6, for prism 2. Figure 2.16 shows the change laws of vertical and horizontal
field angles, where the wedge angle o = 10°, the refractive index n = 1.517 and each
tilting angle varies within —45° to 45°. It turns out that the tilting angle of prism 1
mainly affects the vertical field angle rather than the horizontal field angle, while the
tilting angle of prism 2 has most effects on the horizontal field angle instead of the
vertical field angle.

If the tilting angle 6,, of prism 2 is kept unchanged, the vertical field angle pvy
acts as a non-monotonous function dependent on the tilting angle 6,; of prism 1. py
firstly increases and then decreases with the increment of 6,; within —45° to 45°.
Similarly, if 6,; is held constant, the horizontal field angle py is a non-monotonous
function relative to 6. py firstly increases and then decreases as 6;, increases within
—45° to 45°. It is interesting to find that the maximum values of py and py, namely
—5.22° and —5.23°, are both obtained when 0,; = —7.56° and 6;,, = —2.34°. To
facilitate the beam steering control of tilting double prisms and to avoid multiple sets

Fig. 2.16 The change laws of a vertical field angle py and b horizontal field angle pu
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of inverse solutions, the tilting angle range of each prism should be narrowed from
—45° to 45° to 0° to 45°, where py and py are both monotonic functions.

2. Beam Scan Precision

The beam scan error model contains error terms induced by tilting angle error,
wedge angle error and refractive index error of each prism, which can be resolved in
the vertical and horizontal directions as follows

9 3 9 3
Sy = |V 15, + | 2LV Ny + [ 2V |5, + [ 2V 5, (2.23a)
60, 26, ot an
pn oH 0pn pH
5 5 8o + | LM |5 4 |2PH s 2.23b
H= ‘ae,l o 'aen o0 e 12T | T | (2.235)

Assuming that = 10° and n = 1.517, the correlation curves of the emergent beam
pointing with respect to prism orientations are plotted in Fig. 2.17. Figures 2.17a,
b indicate the change laws of the partial derivatives expressed as dpy/d0A6,; and
dpy/d0A6,; when prism 2 remains stationary. Similarly, Fig. 2.17c, d display the
variation of the partial derivatives expressed as dpv/d A6, and dpyu/d Af;; when
prism 1 is kept stationary.

It can be concluded from Figs. 2.16 and 2.17 that, the deviation range of the
emergent beam is enlarged as the tilting angle of each prism increases. However, the
absolute value of the change rate of either vertical or horizontal field angle increases
as well, which may produce adverse effects on the beam scan precision. Specially,
the scan precision will be drastically reduced when 6,; or 6,, increases within 20°
to 45°. In order to facilitate the motion control for high-precision beam scanning,
the tilting angles 6,; and 6,, are both limited within 0° to 10°, where the vertical
field angle ranges from —5.66° to —5.29° and the horizontal field angle ranges from
—5.44° to —5.24°.

Once the tilting angle of each prismis limited, |19 py/da| reaches its maximum value
0.621 and 10 py/dal reaches its maximum value 0.567 when 6,; = 10° and 6,, = 10°.
Providing the manufacturing error of wedge angle « up to 1”7, the resultant errors of
pv and py are, respectively, 3.01 and 2.75 prad. It is also found that 19 py/0nl and
[0 po/dnl reaches their individual maximum values of 0.196 and 0.182 prad when
0,41 = 0, = 10°. Given the refractive index error due to inhomogeneous optical
glass as £1 x 107>, the resultant errors of py and py are, respectively, 1.960 and
1.820 prad. Both the wedge angle error and refractive index error are classified
as systematic errors, which can be corrected using optical calibration techniques.
Therefore, the random errors in each tilting mechanism remains to be the primary
error sources of vertical and horizontal field angles.

When 6, = 6, = 10°, the partial derivatives 10 pv/96,l, 10 py/36,1, 10 p1/06,1],
and 19 pu/06 | reach their maximum values 5.42 x 1072,3.17 x 1074, 8.22 x 1074
and 0.339 x 1072, respectively. Therefore, the maximum error in the vertical field
angle can be determined by adding 0.0542 times the tilting angle error of prism 1
to 3.17 x 10~ times the tilting angle error of prism 2, whereas the maximum error
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Fig. 2.17 The change laws of the partial derivatives of field angles with respect to prism orienta-

tions, where a and b show the effects of ;1 on 3’9'% and g%, ¢ and d shows the effects of 6;, on
pv 9pH

a6,, and 3,

in the horizontal field angle is the sum of 8.22 x 10~ times the tilting angle error
of prism 1 and 0.0339 times the tilting angle error of prism 2. These results account
for the fact that the tilting double-prism system can achieve higher scan precision in
both vertical and horizontal directions.

It is noteworthy that the beam scan precision is also relevant to the wedge angle
of each prism. For any single prism, the influence of wedge angle on the beam scan
precision can be considered as in Sect. 2.2.2.

2.5 Coordinate Expressions for Scan Points

2.5.1 Rotating Scan Mode

1. Equations for Incident and Emergent Surfaces of Rotating Double Prisms

Figure 2.18 shows a schematic diagram that illustrates the beam propagation through
the rotating double-prism scanner [9], where the central-axis thickness of each prism
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Fig. 2.18 Schematic diagram illustrating the beam propagation through rotating double prisms
is denoted by d. Given the normal vector N1; = (0, 0, 1)T passing the known point
0(0, 0, 0), the equation for the incident surface of prism 1 is expressed as
z=0 (2.24a)
According to the normal vector N, = (cos 6, sin ¢, sin 6, sin &, cos a)T passing
the known point (0, 0, d), the equation for the emergent surface of prism 1 can be
expressed as
cosb, sina - x +sinf,sina-y+cosa-(z—d)=0 (2.24b)
Similarly, the equation for the incident surface of prism 2 is expressed in terms of
the normal vector N,; = (— cos 6,, sin «, — sin 6,5 sin &, cos ot)T passing the known
point O'(0, 0, D; — d):

—cosbfpsina - x —sinfsina - y+cosa-[z— (D —d)] =0 (2.24¢)

The equation for the emergent surface of prism 2 is expressed in terms of the
normal vector N, = (0, 0, 1)T passing the known point O,(0, 0, Dy):

z= D (2.244d)
And the equation for the screen P can be expressed as

z=D1+D; (2.24e)
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2. Intersection Coordinates of the Beam and Rotating Double Prisms

Since the incident beam propagates along the vector A, = (X0, Yr0, zro)T and
intersects prism 1 at the point J,(x,;, ¥, Z,j), the equation for the incident beam is

. o oy L .y
written as T = X200 — £Z50 — ¢ 0 where £, = —2L.
yro Zr0 Zr0

Referring to Sect. 2.3.1, the refracted beam at the incident surface of prism 1 is
along the vector A, = (X1, ¥r1, z,l)T and passes the point J,(x,j, ¥, 2,;)- Thus, the
equation for the refracted beam is written as = i=2 7V” = & = t,1, and the
intersection point K, (x,x, Y, z%) of the beam and the emergent surface of prism 1

is given by

Xrk = Xp1 - Ll +xrj
Yrk = Yr1 “Icl + Yrj (2.25a)
Zrk = Zr1 "1 t+ Zrj

— €08 6,1 Sina-x,;—sin 6, sina-y,; 7c0sa(z,/fd)

her = - - -
where ¢ COS 6, Sina-X,1+sin 6,1 sin -y, +cos -z,

The equation for the refracted beam at each prism surface can be obtained by
the same means. Combining these equations with the equations for prism surfaces,
we can determine the coordinate values of intersection point between the beam path
and each prism surface. Specifically, the point M, (X, Yym» Zrm) at which the beam
intersects the incident surface of prism 2 is given by

Xrm = Xp2 - I + Xpk
Yrm = Yr2 “Ie2 + Yrk (2.25b)
Zrm = Zr2 2 + Zrk

€08 0,2 Sin o -X, g +8in Oy 8ina-yy —cos a-[zx — (D) d)]
— COS Oy - Sin o0 -x,2 —SiN Oy25inA-y,2+COS A2,

where t., =

The point N (X, Y, 2rm) at which the beam intersects the emergent surface of
prism 2 is given by

Xrn = Xp38c3 + Xpm
Yrn = Yr3le3 + Yrm (2.25¢)
Zrn = Zr3le3 + Zrm
where 7,5 = 2= Z”".
The point at ‘which the emergent beam from prism 2 intersects the screen P,
namely the beam scan point P,(x,,, ., Zp), 1S given by
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Xrp = Xpflea + Xpp
Yrp = yrftc4 + Yrn (225d)
Zrp = ertc4 +2 = D1+ Dy

where #4 = “F2=m = =2,

2.5.2 Tilting Scan Mode

1. Equations for Incident and Emergent Surfaces of Tilting Double Prisms

Figure 2.19 shows a schematic diagram illustrating the beam propagation through
the tilting double-prism scanner, where the central-axis thickness of each prism is
still denoted by d. Given the normal vector N|; = (sin6;;, 0, cos o, passing the
known point O(0, 0, 0), the equation for the incident surface of prism 1 is expressed
as

D D,

(© . '

e

0 0, 0

X

L

Z

Prism 1 Prism 2 Screen P

Fig. 2.19 Shematic diagram illustrating the beam propagation through tilting double-prism system,
where a and b shows the principal sections of prism 1 and prism 2, respectively, and ¢ shows the
system configuration
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sinf; - x+cos6;;-z=0 (2.26a)

The equation for the emergent surface of prism 1 is expressed in terms of the nor-
mal vector N, = (sin(x + 6;1), 0, cos(a + o NT passing the known point (sinf;-d,
0, cosf;-d):

sin(a +6;1) - (x —sin6;; - d) + cos(a + 6;1)(z — cosb,1 -d) =0 (2.26b)

The equation for the incident surface of prism 2 is expressed in terms of the normal
vector Nyj = (0, — sin(e + 6,2), cos(e + 6,2))T passing the known point (0,sinf;,-d,
Dy — cosf-d):

—sin(o + 0;2)(y — sinbyy - d) + cos(a + 02)[z — (D} —cosbyp -d)] =0 (2.26¢)

The equation for the emergent surface of prism 2 is expressed in terms of the
normal vector N, = (0, — sin 6;,, cos 9,2)T passing the known point O,(0, 0, D1):

—sinb - y+cosbp(z — D)) =0 (2.26d)

The equation for the screen P can be expressed as z = D + D».
2. Intersection Coordinates of the Beam and Tilting Double Prisms

It is already known that the incident beam propagates along the vector A,y =
(x:0, Y10, Z;o)T and intersects the incident surface of prism 1 at the point J;(x;;, y,
Z4), Where z; = —x,; -tanf.

Referring to Sect. 2.3.2, the refracted beam at the incident surface of prism 1 is
along the vector Ay = (X1, Vr1, z,l)T and passes the point J,(xy, yij, 2;7). Thus, the
equation for the refracted beam is written as U = = V‘/ == Z” = u.1, and the
intersection point K,(x, Y, zi) of the beam path and the emergent surface of prism

1 is given by

Xk = Xp1lel + X
Yik = Yiilhet + Vi) (2.27a)
Ttk = Z1lUel + 2y

sin(o+6;)- (x,,fsm 61 d)+cos(oz+9,]) (zt,fc,os 01+ d)
sin(a+6;1)-x;1+cos(a+6;1)-2¢1

where u.; = —

Similarly, the equation for the refracted beam at each prism surface can be
obtained. Combining these equations with the equations for prism surfaces, we can
determine the coordinate values of intersection point between the beam path and each
prism surface. The point M, (x4, Y, Zun) at which the beam intersects the incident
surface of prism 2 is given by
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Xim = XpUe2 + Xk
Yim = Yr2Ue2 + YVik (2.27b)

Ztm = Z2Ue2 + ik

sin(@+6,2) - (Vrk —sin 0o -d) —cos(a+6;2) [2k — (D1 —€08 Opp-d) |

where iy = — sin(a+6;2) -y +cos(a+62) 22

The point N,(x;,, Ym, Zm) at which the beam intersects the emergent surface of
prism 2 is given by

Xin = Xi3Ue3 + X

Yin = Yi3Ue3 + Yim (2.27¢)
Ztn = Zr3Uc3 + Zm

__ Sin62-yim—c08 O+ (2m —D1)
where ucy = —— $in 62 y13+€08 62213

The point at which the emergent beam from prism 2 intersects the screen P,
namely the beam scan point P,(x,, ¥, Zy), is given by

Xtp = XiflUed + Xpp
ylp = ytfuc4 + Yin (227(1)
Ztp = ZfUca + Zn

Di+Dr—z

where u.4 = "
1,

2.6 Discussion on Distance Between Two Prisms

Two prisms can be placed as close as possible to a critical distance without collision.
That is, a minimum distance need be set to avoid the motion interference between
two prisms. On the other hand, if two prisms are too far away from each other, the
laser beam may propagate beyond the clear aperture of the system, which implies no
emergent beam from prism 2. Therefore, the maximum distance between two prisms
should meet the requirement of the beam propagation within the clear aperture.

For example, two identical prisms are taken with the wedge angle « = 10° and
the refractive index n = 1.517. The rotation angle ranges of two prisms are set to 0°
to 360° while the tilting angle ranges of two prisms are 0° to 10°. The clear aperture
of each prism is D, = 80 mm, and the thinnest-end thickness is dy = 5 mm. So the
central-axis thickness of the prism can be obtained from d = dy + D,/2-tanc.
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2.6.1 Rotating Scan Mode

In the rotating scan mode, the collision is most likely to occur when the two prisms
are situated with their thickest ends face to face. The minimum distance between two
prisms can be set as two times the thickest-end thickness, given by

2 x (d0+Dp- tana) =2x (5+80- tan 10°) = 38 mm

Actually, considering the size of the frame and other structures, the minimum
distance between two prisms must be multiplied by a safety factor A (A > 1).

In order to calculate the maximum distance between two rotating prisms with the
clear aperture D, = 80 mm, it is necessary to solve the distance D; corresponding
to the distance of 40 mm between the beam exiting point N, and the center point O,
on the emergent surface 22. For rotating double prisms, the radial deviation of the
emergent beam depends on the relative rotation angle A6, of two prisms. Supposing
that the laser beam passes through the center point O along the incident beam vector
A, = (0,0,1)T, prism 2 should be able to rotate within the range of 0° to 360° while
prism 1 is kept stationary. In other words, the relative rotation angle of two prisms
varies within 0° to 360°. By employing the one-dimensional search method, we can
find that the distance from the beam exiting point N, to the center point O, reaches
IN,O3zlmax = 39.939 mm when the distance between two prisms D; = 439 mm, and
IN,O>| >40 mm when D; = 440 mm.

The situation when D; = 439 mm is further illustrated in Fig. 2.20. It can be seen
that the distance IM,O'l between the intersection point M, and the center O’ at the
surface 21 varies with the relative rotation angle A6, of two prisms, as well as the
distance IN,O;| from the intersection point N, to the center O, at the surface 21.
Thus, the maximum distance between two prisms is about D; = 439 mm, and the
emergent beam will nearly exceed the clear aperture of the system when A6, = 0°.

In conclusion, the distance D; between two prisms is determined within
38-439 mm for the specified rotating double-prism system with « = 10°, n = 1.517,
D, =80 mm and doy = 5 mm.

2.6.2 Tilting Scan Mode

At tilting scan mode, the collision is most likely to occur when two prisms tilt
simultaneously with their maximum tilting angles. The smallest distance between
two round prism surfaces can be measured through the measurement function of 3D
design software. Providing the distance between two prisms as D; = 60 mm and
the tilting angle of each prism as 10°, the minimum distance between the opposite
surfaces of two prisms is measured to be 10.92 mm and its projection length in the
Z-direction is 10.12 mm. Consequently, the minimum distance between two prisms is
set to 49.88 mm for reference. Note that the measured distance between two opposite
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Fig. 2.21 Relation between the x;, and 8;;, when a D; = 60 mm, D; = 80 mm, D; = 100 mm
and b D; = 350 mm, D; = 400 mm, D; = 450 mm

prism surfaces in the 3D model of double prisms is actually the minimum distance
between two spatial points, which is shorter than the minimum distance between two
round prism surfaces in the Z-direction. Thus, the minimum distance for reference
is slightly larger than the theoretical minimum distance between two prisms. Similar
to the rotating double-prism system, the minimum distance between tilting double
prisms must be multiplied by a safety factor A (A > 1).

Assume that the incident beam propagates along the vector A,y = (0, 0, 1)T and
passes the center point O. According to Sect. 2.3.2, when prism 1 tilts from 0° to
10° but prism 2 keeps stationary, the laser beam is merely refracted within the XOZ
plane. The emergent beam from prism 1 intersects the incident surface of prism 2 at
the point M,. Specifically, the x,, coordinate of the point M, varies with the tilting
angle of prism 1 as shown in Fig. 2.21, while y,,, = 0 and z,, = D| — cosa/cos(a +
012)-d.
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Table 2.3 Coordinates (xs, ys, zi) of beam exiting point K; and emergent beam vector (x;2, vz,
T
212)

0:1/(°) X/mm Yek/mm Zk/mm X2 yi2 2

0 0.000 0 12.053 —0.092 0 0.996
2 0.144 0 12.105 —0.093 0 0.996
4 0.290 0 12.161 —0.094 0 0.996
6 0.437 0 12.223 —0.095 0 0.995
8 0.587 0 12.290 —0.097 0 0.995
10 0.740 0 12.362 —0.098 0 0.995

Figure 2.21a illustrates three cases with smaller distances between two prisms,
i.e. D1 =60 mm, D; = 80 mm and D; = 100 mm. It is found that the point M, moves
in the positive X-direction with the increment of tilting angle 6,;, and the distance
x| from M, to the center point on the prism surface 21 can reach its maximum
when 6,; = 0°. In Fig. 2.21b, three cases with larger distances between two prisms
are illustrated, i.e. D; = 350 mm, D; = 400 mm and D; = 450 mm. The point M,
moves in the positive X-direction as the tilting angle 6, increases, and the distance
Ix;,| can reach its maximum when 6, = 10°.

Seen from (2.27b), x,, = XU + X mainly depends on three parameters, namely
X1, U and xgx. As the tilting angle 6;; of prism 1 varies within 0° to 10°, the
consequent cordinates (xy, yu, zy) of the beam exiting point K, and the emergent
beam vector (x,, y;2, Zi2)T from prism 1 are listed in Table 2.3.

It can be concluded from Table 2.3 that the x; cordinate increases while the
Xp» value decreases with 6y, increasing within 0° to 10°. When 6, = 0°, u, can
be simplified as u,, = [(D;—d) — z4)/zrn- Since zy and 7z, are changed slightly
during the tilting process, u., mainly depends on D;. Therefore, x,, can be greatly
influenced by x,, but hardly by x,, when the distance D; is small. That accounts for
Xy increasing with 6,7 when D; = 60 mm or D; = 100 mm. On the opposite, X,
is mainly influenced by x;, but not x; anymore when the distance D is large. Thus,
Xm decreases with the increasing 6,; when D; = 300 mm or D; = 440 mm.

We concentrate on the specified double-prism system with the clear aperture D,
= 80 mm. The laser beam will exceed the clear aperture of the system when D; =
440 mm, so the maximum distance between two prisms should be less than 440 mm.
According to the change law of x;,, the maximum value of Ix,,| will be obtained
when 6,; = 10°. In other words, the distance from the point M, to the center point
O’ reaches its maximum when 6,; = 10°.

To determine the tilting status of prism 2 when the beam is farthest from the center
point of the emergent surface, the tilting angle of prism 1 is set to 10° and that of
prism 2 varies from 0° to 10° at a uniform speed. The laser beam is merely refracted
in the YOZ plane while passing through prism 2, and the consequent values of the
refracted beam vector (x;3, yi3, z:3)" are listed in Table 2.4.

Seen from Table 2.4, the laser beam is steered away from the optical axis by
prism 2 as 6, increases within 0° to 10°. Hence, the beam may propagate beyond
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Table 2.4 Sample values of 0,2/(°) X3 Vi3 23
refracted beam vector (x3, - -
i3, z3)T 0 —0.0648 —0.0600 0.9961
2 —0.0648 —0.0721 0.9953
4 —0.0648 —0.0844 0.9943
6 —0.0648 —0.0967 0.9932
8 —0.0648 —0.1091 0.9919
10 —0.0648 —0.1217 0.9904
Fig. 2.22 Relation between 40.14 == _
IN;0,l and 6,2 when Dy = i i/
429 mm and D; = 430 mm ' D =429mm
£ 4006 —— D =430mm
= 40,04 :
= 4002
40
2 4 6 3 10

9,/(%)

the clear aperture of the system if the distance D becomes too large. Consequently,
the maximum distance between two prisms can be obtained when the maximum
value of the distance from the point N, to the center point O, given by |N,O;| =
\/xfn +y2, + (zm — D1)?, is equal to 40 mm.

The relation between IN,O;l and 8,, is illustrated in Fig. 2.22. It can be found that
IN;O3lmax = 39.9995 mm when Dy = 429 mm and IN;O03|pn.x > 40 mm when D =
430 mm, which indicates that the maximum distance between two prisms is about
429 mm. Under the specific condition of D; = 429 mm, 6,; = 10° and 6, = 10°,
the laser beam approaches the boundary of the clear aperture of the system.

In conclusion, the distance D; between two prisms can range within 50-429 mm
for the specified tilting double prism system with o« = 10°, n = 1.517, D, = 80 mm
and dgp = 5 mm.

2.7 Double-Prism Multi-mode Scan Analysis

2.7.1 Blind Zone of Rotating Scan Model

Conditioned by the structural parameters of the rotating double-prism system, the
scan point of the emergent beam cannot cover the area near the coordinate origin
on the screen, which illustrates that a scan blind zone will occur at the center of
the whole scan region [12]. In Fig. 2.23, a scan blind zone is viewed in the rotating
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Fig. 2.23 Scan region of rotating double-prism system

double-prism system with « = 10°, n = 1.517, dy = 10 mm, Dp = 400 mm, D1 =
400 mm and D, = 400 mm.

The scan blind zone probably leads to the target loss during searching and
tracking applications. In order to reduce the adverse influence of the scan blind zone
on the optical scan applications, the key factors affecting the formation of scan blind
zone are investigated as follows.

The beam scan point and the center point on the screen are denoted by P, and
Op, respectively. As indicated in Fig. 2.24, the distance |P,Opl is correlated to the
relative rotation angle |A6,| of two prisms, and the minimum of |P,Opl is defined
as the radius R of the scan blind zone. Upon employing the one-dimensional search
method throughout the accessible range of D; (i.e., 38—439 mm), a unique minimum
value of IP,Opl can be determined when D varies from 38 to 315 mm, accompanied
by A6, = 180°. In Fig. 2.24(a), the minimal |P,Opl of 7.1207 mm occurs when D,
= 100 mm and 140,] = 180°, and the pitch angle of the emergent beam equals to
0. Moreover, as shown in Fig. 2.25a, the minimal |1P,Opl| remains unchanged as D,
varies.

Nevertheless, when Dy varies within [316, 439] mm, the minimal |P, Opl is related
to the factor D,. As shown in Fig. 2.24b, in the case of D; = 400 mm and D, =
1 mm, the minimal |P,Opl is 35.258 mm where |IA0,| = 147.69° or 212.31°. But
in the case of D; = 400 mm and D, = 100 mm, the unique minimal IP,Opl is
35.268 mm where |IA6,I=180°. Moreover, to present the correlation of D, to the
minimal IP,Opl (namely, the radius of scan blind zone) in Fig. 2.25b, D is thus set
to 400 mm as a constant. It is illustrated that with D, increasing within the range of
(1, 2.37) mm, the minimal |P, Opl| occurs on two sides of IA6,| = 180° and increases
from 35.258 to 35.268 mm. In contrast, when D, > 2.37 mm, the minimal |P,Opl
equals to 35.268 mm where IA6,| = 180°, and there is no change in the radius of
blind zone.
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Fig. 2.25 The relation between R and D, when a D; = 100 mm and b D; = 400 mm

In general, a beam scan blind zone cannot disappear in a rotating double-prism
system. Given the wedge angle «, the refractive index » and the thinnest-end thickness
d, the change rules of the blind zone radius can be summarized as follows according
to the distance threshold between two prisms and that between prism 2 and the screen,
written as D, and D, respectively.

(1) If Dy <Dy, the blind zone radius is merely dependent on D; while independent
of D5, which can be obtained at IAGr] = 180°;
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(2) If Dy > Dy., both D; and D, have effects on the blind zone radius. When
D2 < D2c, the blind zone radius gets enlarged with the increment of D,, and
the corresponding relative rotation angles are symmetric about IA6,] = 180°.
When D; > D, the blind zone radius keeps uniform with the variation of D5,
which can only be found at |A6,| = 180°.

2.7.2 Multi-mode Scan Trajectories of Rotating Scan Model

A variety of beam scan trajectories can be generated when two prisms are rotating
at different combinations of angular velocities or angular accelerations. The exact
coordinates of beam scan point in near field is the sum of the approximate coordinates
in far field and the coordinates of the beam exiting point on the emergent surface
of prism 2, except for the Z-coordinate. As shown in Fig. 2.26, several beam scan
trajectories are simulated under different speed combinations of two prisms and
compared with each other in near field and far field, where « = 10°, n = 1.517, D,
= 80 mm, dyp = 5 mm, D; = 100 mm, and D, = 400 mm. In Fig. 2.26, the values
obtained in far field represents the approximate coordinates, and that in near field
represents the exact coordinates. In the subsequent chapters, the meanings of near
field and far field are not changed without any special statement.

As shown in Fig. 2.26i, when two prisms are rotating at the same speed but
in the opposite directions, the beam scan trajectory in far field is close to a line
segment along the X-axis, while it seems like an ellipse symmetric about the origin
in near field. Generally, the scan trajectories do not pass the origin any longer when
two prisms rotate at different uniform speeds matched in near field. Moreover, the
intersection position of the beam path with the emergent surface of prism 2 has
significant influence on the final scan trajectory, which should not be ignored.

It is also worth mentioning that much more interesting scan trajectories can be
generated by introducing difference to the wedge angles of two prisms. For example,
there are several beam scan trajectories simulated in Fig. 2.27. The involved simu-
lation parameters of rotating double prisms are consistent with the aforementioned
ones, except for the wedge angle «, of prism 2. Obviously, different wedge angles
of two prisms can not only increase the diversity of beam scan trajectories, but also
offer a possible way to eliminate blind spots in the beam scan region.

2.7.3 Scan Region of Tilting Scan Model

1. Discussion on Structural Parameters of Prisms

According to (2.27d), the beam scan position on the receiving screen is mainly related
to the structural parameters, the refractive index and the layout arrangement of two
prisms. Taking the laser communication from the earth to the moon for example, the
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Fig. 2.26 (continued)

exact and approximate coordinates of beam scan point will be compared with regard
to a tilting double-prism system with clear aperture of D, = 400 mm. The distance
between two prisms is set to D; = 200 mm and the tilting angles of each prism is
limited to vary within 0° to 10° at the same speed.

Table 2.5 has listed the approximate coordinates (xl/p, v, p) of beam scan points on
the screen under the far-field condition and the exact ones (xy,, y;,) under the near-field
condition. Under the former condition, D, stands for the distance from the earth to the
moon, i.e. D, = 3.844 x 10'" mm. As a result, the maximum difference in (xt/p, yl’p)
and (xtp, y,,,) is 13.14 mm, which occurs when the prism orientations are both 0°.
In general, the difference is acceptable for any long-distance beam propagation, but
it cannot be ignored under the latter condition where D, = 38.44 mm.

Although we only discuss on the tilting double-prism system with the clear aper-
ture D, = 80 mm, a similar conclusion can be drawn by comparing the far-field
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condition with the near-field one. That is, the beam scan error induced by the beam
exiting position is negligible in far field, but not in near field.

Scan Region in Near Field

A tilting double-prism system can achieve higher scan precision than a rotating
double-prism system with the same structural parameters. But it is also important to
obtain appropriate scan region in many optical applications. Therefore, the influence
of the system parameters on the scan region should be firstly investigated when the
system is designed [13].

Figure 2.28 shows the beam scan region of the model described in Sect. 2.6, with
structural parameters of D; = 100 mm and D, =400 mm. The theoretical scan region
is a parallelogram-like area with any two adjacent edges that are nearly perpendicular
to each other. To facilitate the calculation process, the largest rectangular area in the
theoretical scan region can be regarded as the actual scan region. For the following
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Fig. 2.28 Beam scan region
of a tilting double-prism
system

395 -39 385 38 375
y,/mm

Table 2.6 Primary parameters of beam scan region under different values of D>

Dy/mm | Xpmin/mm | Xpmax/MM | Ygpmin/Mm | Ypmax/mm | Area of scan Center of scan
region/mm? region/mm

200 —27.34 —26.28 —20.58 —19.09 1.06 x 1.50 = | (—26.81,
1.59 —19.83)

400 —47.17 —44.82 —39.63 —37.44 2.35 x 2.18 = | (—45.99,
5.13 —38.53)

800 —86.83 —81.90 7771 —74.16 493 x 3.54 = |(—84.37,
17.46 —75.93)

1600 —166.16 | —156.08 —153.87 | —147.60 10.08 x (—161.12,
6.27 =63.19 —150.73)

example, the scan region locates at the specific area where x;, varies within —47.17
to —44.82 mm and y,, varies within —39.63 to —37.44 mm. The scan region has
the size of 2.35 mm x 2.19 mm and the coordinates of its center point are (—45.99,
—38.53 mm).

3. Factors Influencing Beam Scan Region

Regarding the tilting double-prism system in Sect. 2.6, Table 2.6 shows primary
parameters of the beam scan region when D; = 100 mm and D, takes different
values. Obviously, as the receiving screen is placed farther away from the center of
the emergent surface, the scan region gets enlarged and the center of scan region
locates farther away from the center of the receiving screen.

The primary parameters of beam scan region are viewed in Table 2.7 when D,
takes different values and D, = 400 mm. Since D, is held constant, the variation
of D| can only affect the scan range in the X-direction other than the Y-direction.
The deviation of the emergent beam in the Y-direction depends mainly on the tilting
angle of prism 2, and the beam propagation after prism 1 has nothing to do with D;.
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Table 2.7 Primary parameters of beam scan region under different values of D

Dy/mm | Xgpmin/mm| Xpmax/MM yypmin/Mm| Yypmax/mm| Area of scan Center of scan
region/mm? region/mm

50 —4223 | —40.20 |—-39.63 |—-3744 |2.03-2.18=4.42 (—41.22,
—38.53)

100 —47.17 | —44.82 | —-39.63 |—-3744 |2.35-2.18=5.13 (—45.99,
—38.53)

200 —57.04 | —-54.05 |-39.63 |—-37.44 |3.00-2.18=6.53 (—55.55,
—38.53)

400 —-76.79 | —72.51 —39.63 | —37.44 |4.28-2.18=9.34 (—74.65,
—38.53)

Table 2.8 Primary parameters of beam scan region under different values of dg

do/mm Xpmin/MM | Xpmax/MM | Yypmin/mm | ypmax/mm | Area of Center of
scan scan
region/mm? | region/mm
5 —47.17 —44.82 —39.63 —37.44 2.35 x (—45.99,
2.18 =5.13 | —38.53)
10 —46.19 —44.20 —40.27 —37.75 1.99 x (—45.19,
2.52 =5.02 | —39.01)
15 —45.20 —43.58 —40.91 —38.05 1.63 x (—44.39,
2.86 = 4.66 | —42.13)

Both the scan range in the X-direction and the total area of scan region increase with
the increment of D, and the center of scan region moves in the negative X-direction.

Likewise, Table 2.8 presents the primary parameters of beam scan region when
Dy = 100 mm, D, = 400 mm and d takes different values. Now that D; and D,
are kept invariant, the scan region is reduced in the X-direction but enlarged in the
Y-direction with the increment of dy. Correspondingly, the center of scan region has
larger X-coordinate but smaller Y-coordinate.

2.7.4 Multi-mode Scan Trajectories of Tilting Scan Model

When two prisms tilt under different combinations of angular velocities, the various
beam scan trajectories can be generated. In Fig. 2.29a, the beam scan trajectory is
viewed when the tilting angular velocities of prisms are uniform and w;, = 2w;;. The
tilting angles of two prisms are given by 8;,) = — lr—10+ 10 and 6,, = —12¢ —10l +
10, respectively. It turns out that the trajectory is a closed curve, and the beam scan
point moves cyclically along the curve. Similarly, Fig. 2.29b, c display the beam scan
trajectories when w;, = 4w;1, and the tilting angles of two prisms are, respectively,
given by 6, = — It — 10l + 10 and 6, = — 14 —10l + 10. During the beam scan
process, the scan point firstly moves along the path shown in Fig. 2.29b, roughly in the
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Fig. 2.29 Beam scan trajectories under different tilting angular velocities, where the black arrows
show the moving direction of beam scan point. a uniform wy, uniform w;» and wy,» = 2w;1; b and ¢
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for w1 and cosine function for w;

positive X-direction, and then returns to the beginning position along the identical
path shown in Fig. 2.29c. More beam scan trajectories are simulated under non-
uniform angular velocities of two prisms. Providing 6, as 6,1 = Ssin(zwt/5) + 5, 0,
is given by 6, = —12¢ — 101+10 in Fig. 2.29d and 6,, = 5cos(;rt/5) + 5 in Fig. 2.2%.
Each of the consequent scan trajectories is a closed curve, and the scan point moves
cyclically along the curve. It is noteworthy that there are several sharp points on the
former trajectory, while the latter one is relatively smooth due to the sine function
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for w;; and the cosine function for w;,. In general, the scan trajectories shown in
Fig. 2.29 reflect the discontinuous differentiability of tilting angle functions, and
the closed trajectory curves indicate the beam scan periodicity induced by different
tilting cycles within the limited angle range of 0° to 10°.

2.8 Multi-prism Scan Model

To meet the multi-scale and multi-mode beam scan requirements, there is plenty
of multi-prism configurations, such as three prisms, four prisms and other combi-
nations. The multi-prism scan model can expand beam scan region [14], improve
beam scan precision and also produce multi-mode scan trajectories. As a result, the
scan adaptability and flexibility are greatly enhanced although the structure design
and control strategy of a multi-prism system become more complicated than any
double-prism system.

2.8.1 Theoretical Model

By way of example, the triple-prism scan model is chosen from many possible
combinations. Based on the rotating double-prism model in Fig. 2.5, the third prism
is introduced with its plane facet situated outwards, as shown in Fig. 2.30. Another
configuration with the plane facet situated inwards can be discussed with the same
method [15].

D, D, R D .
i
@]
4»“ J A”
,\'|
&
Prism 1 Prism 2 Prism 3 Screen P

Fig. 2.30 Schematic diagram of beam propagation through rotating triple-prism system
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The rotating triple-prism system can be regarded as the combination of a rotating
double-prism system and one directional prism. Three prisms have the same wedge
angle o and refractive index n. The center points at the emergent surfaces of prism
2 and prism 3 are, respectively, marked as O, and Os. The distance between O,
and Os is D;, and the one between O3 and the center point Op on the screen P is
Ds. The rotation angle and angular velocity of prism 3 are denoted by 0,3 and w,3,
respectively. In addition, the intersection point of the final emergent beam with the
receiving screen is defined as P,.

The unit normal vectors to the surfaces of prism 1 and prism 2 have been given
by (2.6a)—(2.6d) in Sect. 2.3.1. As for prism 3, the normal vectors to the incident and
emergent surfaces are expressed as

N3 = (—cosf,3sina, —sin 6,3 sina, cos ) (2.28a)
Nz = (0,0, D" (2.28b)

As shown in Fig. 2.30, A, is the incident beam vector to prism 1, 4,1, 4,5, 4,3,
A4, Ays and A, are the refracted beam vectors at all prism surfaces in turn. The
expressions for A,y, A,1, A, A,3 and A, are available from (2.6) and (2.7). Other
vectors A,s and A,; can be obtained as follows according to the vector refraction
theorem:

1 1\* 1
Ais = —Ap+ \/1—<—) “[1—=(Aps-N31)’1 — —Ajs - N3y ¢ - N3
n n n

= (X5, Yr55 2r5) " (2.292)

A =ndA;s+ {\/1 —n?-[1—-(A,;s-Nn)? _nArS’N32] "Nz

(X Yrps 2rf) (2.29b)

The expressions for the refracted beam vectors can be further derived by substi-
tuting (2.28) into (2.29), omitted here.

2.8.2 Coordinate Expressions for Scan Points

The intersection coordinates of the beam path through any multi-prism scan model
can also be determined as in Sect. 2.5. We still take the triple-prism system for
example in this section

1. Equations for Incident and Emergent Surfaces of Rotating Triple Prisms

As shown in Fig. 2.30, the central-axis thickness of each prism is denoted by d. The
equations for the surfaces of prism 1 and prism 2 are the same as (2.24a) and (2.24d)
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in Sect. 2.5.1, and the equation for the incident surface of prism 3 can be expressed
in terms of the normal vector N3; = (— cos 6,3 sina, — sin 6,3 sin«, cos )T passing
the known point (0, 0, D, + D, — d), as follows

—cos@ssine - x —sinf3sina - y+cosa - [z — (D1 + Dy —d)]=0. (2.30a)

The equation for the emergent surface of prism 3 is expressed in terms of the
normal vector N3 = (0,0, 1)T passing the known point O3(0, 0, D + D»):

7= D+ Ds. (2.30b)
Furthermore, the equation for the screen P is expressed as
z =D+ D, + Djs. (2.30¢)

2. Intersection Coordinates of the Beam and Rotating Triple Prisms

The beam path intersects all surfaces of prism 1 and prism 2 at the points written as

Jr(xrja Yrjs er/')’ Kr(xrk’ Yrks Zrk)a Mr(xrm» Yrms Zrm) and Nr(xrn’ Y Zrn) in sequence,
which can be deduced from (2.25a)—(2.25¢c) in Sect. 2.5.1.

Referring to Sect. 2.8.1, the refracted beam at the emergent surface of prism 2 is
along the vector A4 = (X4, Yr4, z4)" and passes the point N, (X,,, Yu» Zm). Thus,
the equation for the refracted beam is expressed as *= ’: = dm — 2 14 = f.4, and
the intersection point O,(X,,, Y4, Zry) of the beam path with the 1nc1dent surface of
prism 3 is given by

Xrg = Xr4 * lea + Xpy
Yrqg = Yr4 ~lca+ Yrn (2.31a)
Zrqg = Zrd * tea + Zrn

€08 0,3 Sin - X, +8in 6,3 sin -y, —cos &:[2,, — (D1 + Dy —d)]
— €08 6,3 Sin &0-x,4 —sin 6,3 sin o+ y,4+c0S &¢-2,4

where .4 =

Similarly, the point R,(x,r, V., Zr) at which the beam intersects the emergent
surface of prism 3 is given by

Xpp = Xp5 + s+ Xrq
Yrr = Yr5 - les + Vg (2.31b)
Zrr =25 les T 2pg

D, +D:
where t.5 = ;Z”’

The point at which the emergent beam from prism 3 intersects the screen, namely
the beam scan point P,(x,p, Yrp, Zrp), is given by
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Xrp = Xpf * lee + Xpr
Yrp = Yrf “le6 t Yrr (2.31¢)
Zrp = 2rf tlee + Zrr=D1+ Dy + D3

Di+Dy)+D3—z,, — D;

where t.¢ = o o

2.8.3 Scan Region of Rotating Triple Prisms

The geometrical parameters of rotating triple prisms are set as follows. Each prism
has the wedge angle o = 10°, the refractive index n = 1.517, the clear aperture
D, = 80 mm and the thinnest-end thickness do = 5 mm. The distance between prism
1 and prism 2 is D; = 100 mm and that between prism 2 and prism 3 is D, = 100 mm.
Two different scan regions are demonstrated in Fig. 2.31a, b, where the distance from
prism 3 to the screen takes D3 = 40 mm and D3 = 100 mm, respectively.

Seen from Fig. 2.31, the radius of scan blind zone is related to D3 when D and
D, are constant. Comparing with Fig. 2.23, it is evident that the blind zone can be
eliminated by the third prism. Figure 2.32 illustrates the relation between the size of
blind zone and D3. When Dj is relatively small, the radius of blind zone decreases to
some extent; and when D3 > 80 mm, the blind zone is completely eliminated. That
is, the addition of a third prism can narrow or even eliminate the blind zone.

In order to discuss the influence of rotating triple prisms on the beam scan region,
the layout parameters are set as follows. The rotating double-prism system has D, =
400 mm, while the rotating triple-prism system has D, = 100 mm and D3 = 300 mm.
In other words, the distance from prism 2 to the receiving screen is kept consistent

(a) 60; T T T T T 1 (b) 60
40 40
201 201
g £
£ o E o
)_Ib HE-
=201 =20
-40/ -40;
—%0 40 20 0 20 40 60 6—%0 40 =20 0 20 40 60
wa‘nnn ,1’,mem

Fig. 2.31 Scan regions of rotating triple prisms when a D3 = 40 mm and b D3 = 100 mm
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in two systems. Other parameters remain unchanged as before. Figure 2.33a, b sepa-
rately illustrate beam scan regions of the rotating double-prism system and the rotat-
ing triple-prism system. Regarding the double-prism system, the scan region has the
radius of 82.4833 mm and there is a scan blind zone with the radius of 7.1207 mm. As
for the triple-prism system, the radius of scan region becomes 111.6279 mm and there
is no blind zone anymore. In other words, the beam scan region of the triple-prism
system can be enlarged by 84.53% over that of the double-prism system.
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2.8.4 Multi-mode Scan Trajectories of Rotating Triple Prisms

Taking the rotating triple-prism system for example, the multi-mode beam scan
trajectories can be generated under different speed combinations of three prisms, as
shown in Fig. 2.34. The system parameters are o = 10°, n = 1.517, D,, = 80 mm,
dy =5 mm, D; = D, = 100 mm and D3 = 300 mm.

Clearly, rotating triple prisms can generate much richer beam scan patterns. Com-
paring Fig. 2.26a with Fig. 2.34a, it is also found that rotating triple prisms can cover
a larger scan region. Moreover, Fig. 2.34g shows a scan trajectory passing the coor-
dinate origin, which further validates that the blind zone can be eliminated using a
third prism.

2.9 Summary

In this chapter, the multi-mode beam scan model is firstly established on the basis of
double Risley prisms. Theoretical modelling of double prisms at rotating or tilting
scan mode is performed with both vector refraction method and geometric method.
Several important beam scan issues are further investigated, including multi-mode
scan trajectory, scan region, scan precision, parameter matching and multi-prism scan
model. For rotating double-prism scan model, the relation between the pitch angle
of emergent beam and the orientations of two prisms are presented to help quantify
the influence of system parameters on beam scan range and beam scan precision.
The formation mechanism of scan blind zone is revealed in principle. As for tilting
double-prism scan model, the relation between the tilting angles of two prisms and the
change rate of the vertical or horizontal field angle of emergent beam is thoroughly
investigated. It is also clarified that tilting double prisms can achieve higher beam
scan precision within smaller scan range in both vertical and horizontal directions.
Moreover, the multi-prism combination model, especially the rotating triple-prism
model, is introduced to derive the coordinate expressions for the intersection point
at each interface of three prisms. The beam scan region of the triple-prism system
is further demonstrated, within which the multi-mode beam scan trajectories can be
generated.
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Fig. 2.34 Different scan trajectories of rotating triple prisms with different speed combinations of
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Chapter 3 ®
Inverse Problem of Double-Prism Grectie
Multi-mode Scanning

Abstract Several typical methods are presented to solve the inverse problem of
rotating or tilting double prisms, accompanied by numerous cases. Regarding rotat-
ing double prisms, the two-step method for approximate solutions and the lookup-
table method with limited efficiency are both demonstrated. An iterative method
combining two-step method with non-paraxial ray tracing is proposed to generate
more accurate and efficient inverse solutions. Additionally, the damped least-squares
iterative method is introduced for more general applications. As for tilting double
prisms, the analytical method and lookup-table method are well implemented to
solve the inverse problem. Binary lookup-table method and region-converging itera-
tive method are further developed to improve solving accuracy and solving efficiency.

Based on the forward beam scan model presented in Chap. 2, the inverse prob-
lem remains as one crucial issue for the applications of double-prism multi-mode
scanning. The inverse problem is about how to solve the orientations of two prisms
according to the given beam deviation or target position [1]. Due to the nonlinear
relation between the rotation or tilting angles of two prisms and the beam devia-
tion angle [2, 3], it is difficult to obtain any exact inverse solution using analytical
expressions. A numerical method is feasible to solve this problem, but the solving
efficiency and calculation accuracy should meet the requirements of real-time and
high-precision tracking applications. In this chapter, some effective inverse solution
methods will be introduced.

3.1 Inverse Solution for Rotating Double Prisms

3.1.1 Two-Step Method

Two-step method has already been proposed in [4] to solve the inverse problem of
rotating double prisms. Without considering the impacts of structural parameters
on the beam propagation path, two-step method is applicable in some approximate
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situations such as far-field target tracking. Both the thickness of each prism and the
distance between two prisms are negligible, so the emergent beam is considered to
deviate from the center of prism 2 in approximation [5].

1. Two Sets of Inverse Solutions

Given the coordinates of any target point, it is easy to specify the emergent beam by
the unit vector (x, yy, z;f)" or the combination of pitch angle p and azimuth angle
¢. For rotating double prisms, the pitch angle p is only associated with the relative
rotation angle A6, of two prisms, expressed as

p = arccos(z,r) = arccos(cos §; cos 8, — sin 8 sin & cos Ab,)

As indicated by two-step method, the angle A6, is deduced from the desired pitch
angle p at the first step, and the rotation angles 6, and 6, are determined according
to the desired azimuth angle ¢ at the second step.

For simplification, the first step is to keep prism 1 stationary at the initial orienta-
tion of 6,1 = 0 but rotate prism 2 to the 6, orientation. Then A6, can be obtained
once g,y is deduced from the desired p, and the corresponding azimuth angle is
calculated to be ¢(. The second step is to rotate prism 1 and prism 2 synchronously
with an angle ¢ — ¢o deduced from the desired ¢. Thus, the final values of 6,; and
0,, is considered as one set of inverse solution. Similarly, the other set of inverse
solution can be determined if prism 2 is kept stationary while prism 1 rotates at the
first step.

(1) First Set of Inverse Solution

At the first step, it can be deduced that 6,1 = 0 and A6, = 6¢,; — Op,2 = —6¢,2. The
values are applied to the derivation in Sect. 2.3.1, which can simplify the expression
of each beam vector during the beam propagation.

Basically, the normal vectors to prism surfaces are simplified as

Ny = (0,0, )T (3.1a)

Ny = (sina,0,cos o)t (3.1b)

Ny = (— sin & cos 6,2, sin « sin 6y,,, cos a)T 3.1¢)
Ny = (0,0, DT (3.1d)

Providing that the incident beam vector A, to prism 1 travels parallel to the
optical axis of the system, the refracted beam vector at the incident surface of prism
1 is written as A,y = Ay = (0, 0, 1)T. The dot product of A,; and N, is given by
Arl -N12 = CcOoS .
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The emergent beam vector from prism 1 is written as

0 sin o
A =n| 0 +{\/1—nzsin2a—ncosa}- 0
1 cos o

sina(\/ 1 — n?sin® @ — ncos a) by

. : b,
nsin? « + cosav/ 1 — n? sin a

where the intermediate variables by and b, are both constants because the wedge
angle o and the refractive index n are already known. The dot product of A,, and
N,; can be obtained from A,; - N33 = —b; sina cos 6y, + b cos «.

The refracted beam vector at the incident surface of prism 2 is written as

o 12 1
2
Az=—--10|+1,1- (;) [1— (A Ny ]_;(ArZ'NZI)

by
— sin o cos Oy, by — sin o cos Oy,
sin « sin 6y, = 0 |+p1- sin « sin 6y,
cos o by cos o
b .
=L — p1sina cos Bor q1
= p1 sin « sin 6,2 =1 q (3.2b)
by Po
2 + Pl cosa
where the intermediate variable p;, given by p; = ,/1 — (1 — mz) /n? — m/n, is
dependent on m = A, - N33 = —b; sin @ cos 6,2 + b, cos a. The dot product of A3

and N,, can be expressed as A,3 - No» = pg = by /n+p; cosa.
Thus, the emergent beam vector from prism 2 is written as

q1 0
Ay =n| ¢ +|: l—nz(l—p(z))—npo] 0
Po 1
nqi Xorf
el nqz = yOrj (320)

1—n2(1 - pj) Zf
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Since the emergent beam vector is available in the inverse derivation process, the
Z-component of the vector is utilized to determine those intermediate variables in
inverted sequence.

Obviously, prism 1 remains stationary and prism 2 rotates with an angle 6,, in
order to achieve the desired pitch angle p. According to (3.1) and (3.2), the rotation
angle 0,; is written as

bycosa —m

Oop = 2k £ arccos( ) €[0,2n),(k € Z) (3.3)

by sina

where the variables are given by b; = sina(\/l — n?sin* @ — ncos a), b, =
nsin® a+cosay/1 —n2sin*a,m = (n> — 1 — n?p?)/2np1,p1 = (po — ba/n)/ cos
andpy = [1— (1 — z,2f> /n?, respectively.

Then the relative rotation angle can be obtained from A6, = —6y,,, and the X- and
Y-components of the emergent beam vector are xo,; = ng; = by — np; sina cos b2
and yo,; = ng, = np; sina sin 6,2, respectively.

The consequent azimuth angle of the emergent beam is expressed as

Yor
arccos | ——2 |, Yois = 0

2 2
v Xorr T Yorr

Yo = 34
Xorf

/2 2
Xorr + Yoo

At the second step, the relative rotation angle A6, should be kept constant, and
two prisms rotate synchronously with an angle ¢ — ¢ in order to achieve the desired
azimuth angle ¢. Therefore, the rotation angle of prism 1 becomes

27 — arccos , Yor <0

01 =61 +¢ =90 =9 —@o (3.52)
And the rotation angle of prism 2 becomes
B2 =002 +9 — o =01 — A0, = ¢ — g — Ab, (3.5b)

(2) Second Set of Inverse Solution

Similarly, prism 2 is kept stationary at the first step, namely 6;,, = 0. It has been
illustrated in Chap. 2 that the pitch angle p is an even function with respect to the
relative rotation angle Af,. Hence, the absolute value of A6, should be unchanged
in two sets of inverse solutions, which accounts for A, = 6y, and 6;,, = 6Op-2.
The values are also applied to the derivation in Sect. 2.3.1 in order to simplify the
expressions of beam vectors.
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The normal vectors to prism surfaces are written as

Niu = (0,0, )T (3.6a)

N1z = (sin « cos 6y, sin « sin Hy,,, COS a)T (3.6b)
Nj = (—sina,0,cos )’ (3.6¢)

Ny = (0,0,1)T (3.6d)

Since the incident and refracted beam vectors at the incident surface of prism 1
are already known as A,y = A, = (0, 0, 1)7, the dot product of A,; and Ny, is
given by A1 - N1z = cos .

The emergent beam vector from prism 1 is written as

0 sin ¢ cos By,
Anp=n|0 +{\/W—ncosa}- sin « sin 6y,
1 cos

sin & cos 6y, (\/ 1 —n2sin*« — ncos oz)
b] Ccos 90,2
= | sina sin by, (\/ 1 — n?sin> @ — ncos oz) = | bisinbop (3.7a)
by
nsin®a + cosay/ 1 — n?sin®
With the dot product of A,, and N,; given by A,» - N33 = —b; sina cos y,2 +

b, cos a = m, the refracted beam vector at the incident surface of prism 2 is expressed
as

by cos 0,2 N\ 2 1
Az = ~ bysinfy,n | + \/1 — (;) [1- A Nn)’| - ;(A,z “Na21)
by
—sina by cos 02 —sina
0 = ; . b] sin90r2 +p1- 0
cos by cosa
b] COSQorz _ 1
heosts — pysina 5
— by 512 6or2 — qa (37b)
Po

by
2 + picosa

With the dot product of A,3 and N,, given by A,3 - N2z = pg = by/n+p; cosa,
the emergent beam vector from prism 2 is expressed as
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q3 0
Az =n| qa +|:,/1—n2(1 —p%)—npoi|‘ 0
Po 1
nqs X0uf
_ ngs = | vor (3.7¢)
1 —=n2(1 = p? ,
(1 = pp) 2y

Then the relative rotation angle can be obtained from A6,=6y,,, and the X- and
Y-components of the emergent beam vector are x(’,rf = ng3z = by cos Gy, —np; sinw
and yé),f = ng4 = by sin Oy,,, respectively.

The consequent azimuth angle of the emergent beam is given by

x(/»/ ’
PR U — >
arccos( s _), Yorr =0

0rf

9o = / (3.8)
27 — arccos ):()—f> <0

At the second step, two prisms rotate synchronously with an angle ¢ — ¢ to
achieve the desired azimuth angle ¢, and the relative rotation angle is held constant
at A6,. Therefore, the rotation angle of prism 1 becomes

0, =002+ 9 — ¢ (3.9a)
And the rotation angle of prism 2 becomes
b, =9 — ¢ (3.9b)
2. Application of Two-Step Method

When rotating double prisms are employed in target tracking applications, it is nec-
essary to inversely solve the rotation angles of two prisms according to the given
target position. The inverse solutions are useful to control the motors driving two
prisms so that the beam can be steered precisely as soon as possible.

The inverse derivation process has proven that, in far field, only the emergent
beam vector is required to determine the corresponding rotation angles of prisms.
By adjusting the rotation angle of each prism, the emergent beam can be steered
towards any point within scan region to track the target moving along an arbitrary
trajectory.

The following simulation presents the inverse solutions that can be applied to
track 6 specific target trajectories in far field. In simulation, the structural parameters
of each prism are wedge angle o = 10°, refractive index n = 1.517, clear aperture
D, = 80 mm, thinnest-end thickness do = 5 mm, the distance between two prisms
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is D; = 100 mm, and the distance from prism 2 to the receiving screen is D, =
400 mm. Note that the beam scan period is set to 10 s, and the target trajectories are
observed in the positive Z-direction.

Case 1: a linear target trajectory given by y = 40, x € [—10, 10].
Case 2: a circular target trajectory given by x? + y*> = 602,

Case 3: an elliptical target trajectory given by % +gm =1

. . . x = 60cos’® 6
Case 4: an astroid target trajectory given by L3 <0 <2m.
y = 60sin” 0
X = 6tcost
: iral j i ., <t <10.
Case 5: a spiral target trajectory given by y = 6tsint 0<r<10

Figures 3.1, 3.2, 3.3, 3.4 and 3.5 display the rotation angle curves of two prisms
that correspond to linear, circular, elliptical, astroid and spiral target trajectories,
respectively. In each of these figures, (a) shows a target trajectory, while (b) and
(c) illustrate the time-dependent variation of two inverse solution sets obtained by
two-step method, respectively.

Similarly, Fig. 3.6a shows a rose-like target trajectory, while Fig. 3.6b and c
illustrate the time-dependent variation of two inverse solution sets obtained by two-
step method. As indicated in Fig. 3.6, there are sudden changes in the rotation angle
curves, called singularity problem, once the target moves from the 1st quadrant to
the 3rd quadrant or from the 2nd quadrant to the 4th quadrant. To obtain continuous
rotation angle curves, the first set of inverse solution should be interchanged with
the second one wherever a sudden change occurs. Accordingly, the rotation angle
curves are improved as shown in Fig. 3.7.

x = 60 cos 46 cos O
Case 6: -like t t traject i b . , 0<60<2m.
ase 6: a rose-like target trajectory given by y = 60 cos 40 sin 0 <6 <2m

(a) (b)
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Fig. 3.1 A linear scan case by two-step method, where a shows the linear target trajectory, b is the
first set of inverse solution, and ¢ is the second set of inverse solution
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Fig. 3.2 A circular scan case by two-step method, where a shows the circular target trajectory, b
is the first set of inverse solution, and c¢ is the second set of inverse solution
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Fig. 3.3 An elliptical scan case by two-step method, where a shows the elliptical target trajectory,
b is the first set of inverse solution, and c¢ is the second set of inverse solution
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Fig. 3.4 An astroid scan case by two-step method, where a shows the astroid target trajectory, b
is the first set of inverse solution, and c¢ is the second set of inverse solution

In conclusion, two-step method has been applied to determine two sets of prism
orientations for each of the sample points taken from some target trajectories. This
method is well suited for target tracking in far field, without considering the influence
of those structural parameters on the emergent beam. However, the method may fail
to solve the inverse problem in near field, because the emergent beam vector is much
associated with the beam exiting position and cannot be deduced simply from the
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Fig. 3.5 A spiral scan case by two-step method, where a shows the spiral target trajectory, b is the
first set of inverse solution, and ¢ is the second set of inverse solution
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Fig. 3.6 A rose-like scan case by two-step method, where a shows the rose-like target trajectory,
b is the first set of inverse solution, and c¢ is the second set of inverse solution
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Fig. 3.7 Continuous rotation angle curves obtained by interchanging two sets of inverse solutions,
where a is the first set of rotation angle curves and b is the second set of rotation angle curves
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given target position. Therefore, it is indispensable to find other methods to solve the
inverse problem of rotating double prisms employed in near-field applications.

3.1.2 Lookup-Table Method

1. Principle of Lookup-Table Method

The principle of lookup-table method [1, 6] is to establish the mapping relation from
the target coordinates to the rotation angles of two prisms by making a lookup table.
Generally, the lookup-table method can be summarized as follows.

Firstly, make a lookup table. As mentioned before, the coordinates of a scan point
are mainly dependent on the rotation angles 8,; and 6,,, the wedge angle «, the
refractive index n, the central-axis thickness d, the distance D; between two prisms
and D, from prism 2 to the screen. Usually, both rotation angles can vary within
0°-360° during one revolution, while other parameters should be selected properly
according to the application of rotating double prisms. Every revolution of prism
rotation can be further divided into 360°/6,, steps, where 6, is the rotation step
angle decided by beam scan precision. Based on the formulae in Sect. 2.5.1, the
coordinates (X,,, Y, Zrp) of the beam scan point on the screen, named the actual
point, can be deduced from the rotation angles (6,1, 8,,) with a resolution of 6.
Thus, the numerical values of (6,1, 0,2) and (x,,, y», 2») are written to the lookup
table in correspondence.

Secondly, search the lookup table. With a target trajectory given by y =f(x), the
coordinates (X, Y, Z,;,) of each target point are taken from the trajectory at a
certain sampling frequency, where Z,, = Dy +D,. Then it is necessary to search
the lookup table for the actual point closest to each target point, namely to find the
coordinates (x,,, ¥,,, Zrp) of the actual point that will minimize the error given by

A= \/(X,,, — )c,,,)2 + (Y,.,, — yrp)2 + (Z,,, — z,,,)z. The coordinates (X, ¥, Zrp) can
be utilized to further determine the related rotation angles (6,1, 6,;) in the lookup
table, which are approximate to the consequent prism orientations for the target point.

Finally, process data. To establish a continuous function of prism orientations
relative to the elapsing time, the function interpolation or curve fitting method is
employed to process the discrete rotation angles (8,1, 6,,) obtained by lookup-table
method.

2. Application of Lookup-Table Method

In simulation, the involved parameters are « = 10°, n = 1.517, D, = 80 mm, dy =
5Smm, D; = 100 mm and D, =400 mm. Providing the rotation step angle 8, = 0.1°,
the prism rotation can be divided into 3600 steps in one revolution. Additionally, the
Z-coordinate of beam scan point is held constant at Z,,, = z,,, = D| + D, = 500 mm.

Using the Meshgrid function in Matlab, the rotation angles 6,; and 6,, are
combined in random as the element of a 3600 x 3600 matrix. The values of (x,,,
Vrp) corresponding to each element of the matrix are deduced from the formulae
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in Sect. 2.5.1 and then written to the lookup table. Thus, a completed table contains
data with the size of 3600 x 3600 x 2 = 2.592 x 107.

For example, a linear scan case is introduced to demonstrate the application of
lookup-table method. There are only 51 sample points shown in simulation results
to illustrate the beam scan process. With the target trajectory given by y = 40,
x € [—10, 10], the coordinates (X,,, Y ,,,) of each sample point on the target trajectory
can be calculated. Then, the lookup table is searched for the coordinates (x,,, y,,)

that will minimize the error given by A = \/ (X,,, — )c,,,)2 + (er — y,p)z, together
with the corresponding row number N and column number M in the table. The
consequent rotation angles are determined by 6,1 =60, x (N — 1) and 0,5 = 6, X
(M — 1), which are written in the combined form of (6,;, 6,,) to establish a matrix.
This matrix comprises a sequence of approximate prism orientations required for
the target trajectory. In order to connect those discrete elements of the matrix, the
segmented low-order interpolation method is also employed. Therefore, the rotation
angle curves of two prisms can be further obtained in approximation.

Given 4 specific target trajectories, the consequent rotation angle curves of two
prisms are simulated as follows.

Case 1: a linear target trajectory given by y = 40, x € [—10, 10].

Clearly, Fig. 3.8a shows a linear target trajectory and Fig. 3.8b illustrates change
laws of the rotation angles obtained by lookup-table method. Since this method relies
on searching the lookup table for the actual point closest to each target point, the
error between these two points is definitely the reason why the prism orientations
are approximate. There are 51 sample points taken from the target trajectory. The
actual point corresponding to each sample point is listed in Table 3.1, as well as the
consequent rotation angles of two prisms. Note that only the first 16 sample points
can be found because the complete data is of large size. As the calculation results

(a) (b)
10 o
5 Q_
Eh . z rl‘n H'r m

L
3 2 i It

.2

=0 e S

y,/mm

Fig. 3.8 A linear scan case by lookup-table method, where a is the linear target trajectory and b
shows the rotation angle curves of two prisms
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Table 3.1 Calculation results in linear scan case by lookup-table method (not complete)

No. Target point/mm Actual point/mm Error/mm | Prism
orientations/(°)
er er Xrp Yrp A 0r1 0r2
1 —10 40 —10.004 |39.984 0.016 335.5 215.0
2 —9.6 40 —9.598 40.021 0.021 232.0 352.6
3 -9.2 40 —9.197 |39.989 0.012 2314 3522
4 —8.8 40 —8.809 |40.013 0.016 334.0 213.1
5 -84 40 —8.388 | 39.978 0.025 3335 2124
6 -8 40 —8.004 | 39.994 0.007 333.0 211.8
7 -7.6 40 —7.621 | 40.006 0.022 332.5 211.2
8 -72 40 —7.234 |40.016 0.038 228.5 349.9
9 —6.8 40 —6.785 |40.032 0.035 3314 209.9
10 —6.4 40 —6.403 |40.033 0.033 330.9 209.3
11 —6 40 —5.990 |39.972 0.030 330.4 208.6
12 —5.6 40 —5.609 |40.027 0.029 226.1 347.9
13 —52 40 —5.204 |40.020 0.020 225.5 3474
14 —4.8 40 —4.800 | 40.008 0.008 224.9 346.9
15 —4.4 40 —4.396 |39.993 0.008 224.3 346.4
16 —4 40 —3.994 |39.973 0.028 223.7 345.9
() (b)
5 400
60 ou
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Fig. 3.9 A circular scan case by lookup-table method, where a is the circular target trajectory and
b shows the rotation angle curves of two prisms

indicate, the error of the actual point with respect to each target point is within the
range of 0.005 mm < A < 0.038 mm. Besides, it takes 18 s for the whole calculation
in a computer configured with Intel(R) Core(TM) i5 CPU and 8§ GB memory. If
without any special statement, the following calculation tasks are performed under
the same computer configuration.
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Table 3.2 Calculation results in circular scan case by lookup-table method (not complete)

No. Target point/mm Actual point/mm Error/mm | Prism
orientations/(°)
Xip Yy Xrp Yrp A Or1 0r2
1 60.000 0.000 60.015 0.021 0.025 218.5 131.8
2 59.700 5.990 59.716 5.981 0.018 2242 137.5
3 58.804 11.920 58.814 11.945 0.027 153.0 239.7
4 57.320 17.731 57.337 17.727 0.017 158.7 245.4
5 55.264 23.365 55.2717 23.372 0.015 2414 154.7
6 52.655 28.766 52.682 28.747 0.033 247.1 160.4
7 49.520 33.879 49.531 33.889 0.015 175.9 262.6
8 45.891 38.653 45.893 38.673 0.020 258.6 171.9
9 41.802 43.041 41.825 43.040 0.023 264.3 177.6
10 37.297 47.000 37.294 47.020 0.021 193.1 279.8
11 32.418 50.488 32.440 50.492 0.022 198.8 285.5
12 27.216 53.472 27.228 53.483 0.016 281.5 194.8
13 21.741 55.922 21.722 55.946 0.030 210.3 297.0
14 16.050 57.813 16.058 57.827 0.015 216.0 302.7
15 10.198 59.127 10.195 59.143 0.016 298.7 212.0
16 4.244 59.850 4.270 59.863 0.029 304.4 217.7

Case 2: a circular target trajectory given by x? + y> = 60°.

Figure 3.9a shows a circular target trajectory and Fig. 3.9b illustrates change laws
of the rotation angles obtained by lookup-table method. There are 64 sample points in
the circular scan case, among which the first 16 sample points are listed in Table 3.2
together with the related calculation results. It turns out that the error between each
pair of actual point and target point is within the range of 0.015 mm < A <0.034 mm,
and the whole calculation takes 23 s.

2
Case 3: an elliptical target trajectory given by % +iz =1

Figure 3.10a shows an elliptical target trajectory and Fig. 3.10b illustrates change
laws of the rotation angles obtained by lookup-table method. Also, 64 sample points
are extracted from the target trajectory. The first 16 sample points and the related
calculation results are listed in Table 3.3. It can be found that the error between each
pair of actual point and target point is limited by 0.004 mm < A < 0.045 mm, and
the whole calculation takes 25 s.

x =60cos’6

. , 0<6<2m.
y = 60sin’ 0

Case 4: an astroid target trajectory given by {

Similarly, Fig. 3.11a shows an astroid target trajectory and Fig. 3.11b illustrates
change laws of the rotation angles obtained by lookup-table method. The first 16 of
64 sample points on the target trajectory are listed in Table 3.4, together with the
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Fig. 3.10 An elliptical scan case by lookup-table method, where a is the elliptical target trajectory
and b shows the rotation angle curves of two prisms

Table 3.3 Calculation results of the elliptical scan case by lookup-table method (not complete)

No. Target point/mm Actual point/mm Error/mm | Prism
orientations/(°)
X Yy Xrp Vip A 0r1 02
1 40.000 0.000 39.987 —0.001 0.013 232.1 109.6
2 39.800 5.990 39.784 5.998 0.018 136.6 258.7
3 39.203 11.920 39.199 11.921 0.004 248.5 127.6
4 38.213 17.731 38.230 17.708 0.028 1539 272.9
5 36.842 23.365 36.850 23.384 0.021 162.3 278.8
6 35.103 28.766 35.099 28.755 0.011 268.4 154.8
7 33.013 33.879 33.025 33.878 0.011 273.6 163.3
8 30.594 38.653 30.609 38.681 0.032 278.2 171.4
9 27.868 43.041 27.871 43.068 0.027 282.3 179.0
10 24.864 47.000 24.858 47.006 0.009 286.0 186.1
11 21.612 50.488 21.619 50.461 0.028 289.4 192.7
12 18.144 53.472 18.131 53.487 0.019 209.9 303.6
13 14.494 55.922 14.511 55912 0.020 295.8 204.6
14 10.700 57.813 10.689 57.795 0.022 220.0 309.2
15 6.799 59.127 6.839 59.128 0.040 302.3 214.6
16 2.829 59.850 2.860 59.848 0.031 228.7 315.6

related calculation results. It is found that the error between each pair of actual point
and target point is limited by 0.004 mm < A < 0.040 mm, and the whole calculation
takes 28 s.

3. Improvement on Lookup-Table Method

The above four cases indicate that there are sudden changes in the prism orientations
obtained by lookup-table method. In other words, there may be much difference in
the rotation angles of each prism that correspond to the adjacent sample points on
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Fig. 3.11 An astroid scan case by lookup-table method, where a is the astroid target trajectory and

b shows the rotation angle curves of two prisms

Table 3.4 Calculation results of the astroid scan case by lookup-table method (not complete)

No. Target point/mm Actual point/mm Error/mm | Prism
orientations/(°)
er er Xrp Yrp A 0r1 0,2
1 60.000 0.000 60.015 0.021 0.025 218.5 131.8
2 59.105 0.060 59.125 0.071 0.023 219.3 130.8
3 56.483 0.470 56.474 0.468 0.009 139.1 232.8
4 52.314 1.549 52.330 1.520 0.032 137.2 238.6
5 46.883 3.543 46.885 3.563 0.020 232.4 121.6
6 40.552 6.612 40.556 6.628 0.016 240.8 120.1
7 33.732 10.801 33.727 10.801 0.005 143.5 273.3
8 26.845 16.042 26.817 16.047 0.029 266.7 130.4
9 20.291 22.149 20.270 22.146 0.021 283.7 145.5
10 14.411 28.839 14.419 28.812 0.028 298.9 164.1
11 9.464 35.749 9.475 35.760 0.015 201.6 328.9
12 5.600 42.471 5.629 42.489 0.034 313.0 195.2
13 2.855 48.580 2.876 48.555 0.032 219.6 327.6
14 1.148 53.677 1.150 53.704 0.028 225.3 324.2
15 0.295 57.419 0.263 57.405 0.034 229.1 321.0
16 0.021 59.550 0.046 59.572 0.032 231.1 318.7

the target trajectory. Sometimes, such sudden changes may occur repeatedly during
beam scanning. In practice, this phenomenon can increase the response time of
rotating double prisms, which limits the feasibility of some real-time target tracking
applications. The reason for the phenomenon is that the inverse solution for a rotating
double-prism system is not unique. For an arbitrary target point, two sets of prism
orientations can be found during one revolution.

For example, the lookup-table method is applied to track the target point (50, 40).
The error of each actual point in the lookup table with respect to the target point can
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Fig. 3.12 Distribution of the error between actual point and target point, where a display the
three-dimensional distribution and b is a contour plot

Table 3.5 Error A of the target point (50, 40)

Step angle/(°) | Size of lookup | Rotation Valley value | Rotation Valley value
table angles (6,1, 1/mm angles (6,1, 2/mm
0,2) at valley 6,7) at valley
point 1/(°) point 2/(°)
1 360 x 360 | (254, 175) 0.395 (184, 262) 0.174
0.5 720 x 720 | (253.5,175.5) | 0.093 (184, 262) 0.174
0.1 3600 x 3600 |(235.5,175.8) | 0.035 (183.8,262.0) | 0.028

be calculated from A = \/ (X,,, — x,,,)2 + (Y,,, — y,,,)z, and the relation of the error A
and the rotation angles (6,1, 8,,) is plotted in Fig. 3.12. There are two valley points
shown in Fig. 3.12, which validate that the same target point corresponds to two
sets of prism orientations (6,1, 6,,) during one revolution. Thus, the rotation angles
obtained by lookup-table method are prone to switch between two sets of possible
solutions in practical applications.

(1) Determinant Conditions

As shown in Table 3.5, the valley values of the error A and the consequent rotation
angles of two prisms are dependent on the step angle used for searching the lookup
table.

It is evident that the minimum error occurs at the valley point 2 when the step
angle is set to 1° or 0.1°, but at the valley point 1 when the step angle becomes 0.5°.
In other words, the step angle has effects on the error between each pair of actual
point and target point as well as the position at which the minimum error is found.

To illustrate the situation where the target position is changed with slight transla-
tion, the target point (50, 41) is taken for example. The consequent rotation angles
obtained in different lookup tables are listed in Table 3.6, along with the error A
between the actual and target points.

There is only 1 mm translation in the positive Y-direction from the point (50, 40)
to the target point (50, 41). Comparing Table 3.6 with Table 3.5, it is found that both
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Table 3.6 Error A of the target point (50, 41)
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Step angle/(°) | Size of lookup | Rotation Valley value | Rotation Valley value
table angles (0,1, 1/mm angles (6,1, 2/mm
0,2) at valley 6,2) at valley
point 1/(°) point 2/(°)
1 360 x 360 (254, 177) 0.330 (185, 262) 0.103
0.5 720 x 720 (253.5,177) | 0.121 (185, 262) 0.103
0.1 3600 x 3600 | (253.8, 177.7) | 0.022 (184.9,261) |0.019

the minimum error of (50, 40) and that of (50, 41) occur at the valley point 2 when the
step angle is set to 1° or 0.1°. When the step angle becomes 0.5°, the minimum error
of (50, 40) is found at the valley point 1 where the prism orientations (6,1, 6,2) =
(253.5°, 175.5°), but the minimum error of (50, 41) is still at the valley point 2 where
0,1, 0,2) = (185°, 262°). Since there are two valley points, the slight translation of
target point may result in significant changes in the prism orientations, which can
cause the loss of target in real-time target tracking applications.

On the above basis, it is concluded that the rotation angle curves obtained by
lookup-table method will not be continuous enough if the determinant condition is

L . 2 2
only to minimize the error given by A = \/ (X,,7 — xr,,) + (Y,,, — y,p) . To overcome
such a problem, two sets of valley points are compared for the one with better
continuity, namely the improved inverse solution.

(2) Constraint Conditions

In correspondence to each sample point on the target trajectory, two combinations of
prism orientations can be determined once the valley points of the error A are found
by linear search method. The optimal combination of rotation angles for the current
target point is taken as the one that has less difference from the rotation angles for
the previous target point. That is, the rotation angle of each prism cannot switch in
random between the values corresponding to two valley points of the error A. Hence,
the lookup-table method will lead to two possible sets of inverse solutions for any
given target trajectory, as shown in Figs. 3.13, 3.14, 3.15 and 3.16.
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Fig. 3.13 A linear scan case by lookup-table method, where a shows the linear target trajectory, b
is the first set of inverse solution, and c¢ is the second set of inverse solution
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Fig. 3.14 A circular scan case by lookup-table method, where a shows the circular target trajectory,
b is the first set of inverse solution, and c¢ is the second set of inverse solution
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Fig. 3.15 An elliptical scan case by lookup-table method, where a shows the elliptical target
trajectory, b is the first set of inverse solution, and c is the second set of inverse solution
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Fig. 3.16 An astroid scan case by lookup-table method, where a shows the astroid target trajectory,
b is the first set of inverse solution, and c¢ is the second set of inverse solution
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Case 1: a linear target trajectory given by y = 40, x € [—10, 10].

Clearly, Fig. 3.13a shows a linear target trajectory, while Fig. 3.13b and ¢ manifest
two sets of inverse solutions obtained by lookup-table method, respectively. The first
16 of 51 sample points on the target trajectory are listed in Table 3.7, together with
the related calculation results. It can be found that the error between each pair of
actual point and target point is limited by 0.004 mm < A < 0.041 mm in the first set
of inverse solution and 0.004 mm < A’ < 0.041 mm in the second one. The whole
calculation takes 222 and 219 s for these two sets of inverse solutions, respectively.

Case 2: a circular target trajectory given by x? + y> = 60°.

Figure 3.14a shows a linear target trajectory, while Fig. 3.14b and ¢ manifest two
sets of inverse solutions obtained by lookup-table method, respectively. The first 16
of 64 sample points on the target trajectory are listed in Table 3.8, together with the
related calculation results. It is found that the error between each pair of actual point
and target point is limited by 0.0015 mm < A < 0.040 mm in the first set of inverse
solution and 0. 0015 mm < A’ < 0.040 mm in the second one. The whole calculation
takes 215 and 216 s for these two sets of inverse solutions, respectively.

Case 3: an elliptical target trajectory given by % + % =1.

Figure 3.15a shows an elliptical target trajectory, while Fig. 3.15b and ¢ manifest
two sets of inverse solutions obtained by lookup-table method, respectively. The first
16 of 64 sample points on the target trajectory are listed in Table 3.9, together with
the related calculation results. It is found that the error between each pair of actual
point and target point is limited by 0.004 mm < A < 0.046 mm in the first set of
inverse solution and 0.007 mm < A’ < 0.046 mm in the second one. The whole
calculation takes 215 s for each set of inverse solution.

— 3
Case 4: an astroid target trajectory given by x =60 C.OSS o , <6 <2m.
y = 60sin” 0

Figure 3.16a shows an astroid target trajectory, while Fig. 3.16b and ¢ manifest
two sets of inverse solutions obtained by lookup-table method, respectively. The first
16 of 64 sample points on the target trajectory are listed in Table 3.10, together with
the related calculation results. It is found that the error between each pair of actual
point and target point is limited by 0.006 mm < A < 0.046 mm in the first set of
inverse solution and 0.005 mm < A’ < 0.046 mm in the second one. The whole
calculation takes 216 and 217 s for these two sets of inverse solutions, respectively.

The last three cases indicate that there are still sudden changes as one of the prism
orientations approaches 0° or 360°. Considering the 360° rotation cycle of each
prism, the following constraint conditions are placed in the improved lookup-table
method.

If 6,1 (i) — 6,1(i — 1) > 180°, then 6,1 (i) = 6,1 (i) — 360°.
If 6,1 (i) — 6,1 (i — 1) < —180°, then 6, (i) = 6,1 (i) + 360°.
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Fig. 3.17 A circular scan case by the improved lookup-table method, where a shows the circular
target trajectory, b is the first set of inverse solution, and c is the second set of inverse solution
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Fig. 3.18 Anelliptical scan case by the improved lookup-table method, where a shows the elliptical
target trajectory, b is the first set of inverse solution, and c¢ is the second set of inverse solution
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Fig. 3.19 An astroid scan case by the improved lookup-table method, where a shows the astroid
target trajectory, b is the first set of inverse solution, and c¢ is the second set of inverse solution

Thus, the rotation angle range of each prism is extended to —oo to +00, which can
eliminate the phenomenon of sudden changes within 0°-360°. Based on the improved
lookup-table method, the circular, elliptical and astroid scan cases are performed as
shown in Figs. 3.17, 3.18 and 3.19.
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Case 1: a circular target trajectory given by x> + y> = 60°.

Figure 3.17a shows a circular target trajectory, while Fig. 3.17b and ¢ manifest two
sets of inverse solutions obtained by the improved lookup-table method, respectively.
The first 16 of 64 sample points on the target trajectory are listed in Table 3.11,
together with the related calculation results. It is found that the error between each
pair of actual point and target point is limited by 0.015 mm < A < 0.041 mm in
the first set of inverse solution and 0.015 mm < A’ < 0.041 mm in the second one.
The whole calculation takes 216 and 217 s for these two sets of inverse solutions,
respectively.

Case 2: an elliptical target trajectory given by % + % =1.

Figure 3.18a shows a circular target trajectory, while Fig. 3.18b and ¢ manifest two
sets of inverse solutions obtained by the improved lookup-table method, respectively.
The first 16 of 64 sample points on the target trajectory are listed in Table 3.12,
together with the related calculation results. It is found that the error between each
pair of actual point and target point is limited by 0.004 mm < A < 0.046 mm in
the first set of inverse solution and 0. 006 mm < A’ < 0.046 mm in the second one.
The whole calculation takes 238 and 235 s for these two sets of inverse solutions,
respectively.

x =60cos’0

) , 0<6<2n.
y = 60sin’ @

Case 3: an astroid target trajectory given by {

Figure 3.19a shows a circular target trajectory, while Fig. 3.19b and ¢ manifest two
sets of inverse solutions obtained by the improved lookup-table method, respectively.
The first 16 of 64 sample points on the target trajectory are listed in Table 3.13,
together with the related calculation results. It is found that the error between each
pair of actual point and target point is limited by 0.004 mm < A < 0.045 mm in
the first set of inverse solution and 0. 005 mm < A’ < 0.046 mm in the second one.
The whole calculation takes 230 and 247 s for these two sets of inverse solutions,
respectively.

Despite that the solving accuracy is reduced slightly by the improved lookup-
table method, the rotation angle curves prove to be much more continuous, which
can facilitate the motion control of two prisms.

By adding some constraint conditions, two sets of continuous inverse solutions
are obtained to remove the problem of losing target due to the sudden changes
in prism orientations. Nevertheless, the solving accuracy of lookup-table method
depends on the size of lookup table. For example, the accuracy of prism orientations
can achieve up to 0.1° when the step angle is set to 0.1°, and the consequent target
tracking precision is about 0.01 mm. Given an arbitrary target point, the lookup-
table method involves searching a 3600 x 3600 matrix linearly for two valley points,
which requires intensive computation. The above cases indicate that it takes about
4 s on average to obtain one set of inverse solution to each target point, which is
rather time-consuming for tracking dynamic targets. Therefore, the solving accuracy
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can only be enhanced by reducing the step angle, but the amount of calculation will
be increased exponentially as a result.

In principle, the lookup-table method relies on the forward solution of rotating
double prisms to solve the inverse problem. Consequently, the solving accuracy is
uneasy to control and the solving efficiency cannot be satisfactory in real-time target
tracking applications.

3.1.3 Iterative Method

1. Principle of Iterative Method

Generally, the exiting point of the emergent beam from prism 2 is transient in the
inverse problem of rotating double prisms. Without the determination of beam exiting
point, the emergent beam vector cannot be deduced from the given target point on
the screen.

As illustrated in Sect. 3.1.1, two-step method can be applied to obtain the rotation
angles of two prisms because the emergent beam vector is determined in approxi-
mation. Upon neglecting the effects of structural parameters such as the thickness
of each prism and the distance between two prisms, the beam exiting point can be
assumed at the center of the emergent surface of prism 2, and the emergent beam
vector can be further determined according to the given target point. However, the
effects of those structural parameters on the beam exiting point are usually significant
in practice. The beam exiting point is actually transient but not fixed to the center of
the emergent surface of prism 2. Therefore, the emergent beam vector is not available
anymore for the implementation of two-step method in many practical applications.

Combining the inverse derivation formulae of two-step method with the forward
ray tracing formulae [7], an iterative method [8] is proposed on the basis of beam
scan principle in far field and near field. The method can be employed to determine
the orientations (6,1, 6,2) of two prisms with satisfactory precision.

Figure 3.20 illustrates the inverse solving process by the proposed iterative
method. At the first iteration, the beam exiting point is assumed at the center N°(0, 0)
of the emergent surface of prism 2, as required in far field. Given_)the target point as

P(X,p,Y ), the emergent beam vector can be specified by Aff = NOP. Thus, two-step

method is applied to obtain the approximate inverse solution (9}1, 9}2). By substi-

tuting (6, 61) into the forward ray tracing formulae in near field, the consequent
g rl r2 y g q

beam scan point P! (x ) and beam exiting point N'(x},, y!,) are determined.

11
> Yip
The vector specified by A}f = N'P is regarded as the emergent beam vector at the
second iteration. Also, two-step method is applied to obtain the approximate inverse
solution (62, 62), which is substituted into the forward formulae to determine the

2 2
p° rn®

rl»

consequent beam scan point P> (x yfp) and beam exiting point N2 (x y%n)- Simi-

: i-1 _ ari—1 . .
larly, the vector specified by A,," = N'" P (i=3,4 ... n) isregarded as the emergent
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Fig. 3.20 Schematic diagram illustrating the inverse solving process by the iterative method

beam vector at the subsequent iteration, and the above process is repeated to update

the beam scan point P’ (xﬁp,

tive procedure should be stopped as long as the beam scan point P! approaches the
target point P to the extent required by A = \/ (xip — er)2 + (yip - er)z < 6,
where & denotes the given error threshold.

For example, the iterative method is employed to solve the inverse problem for
the target point given by P(0, 20). The error threshold between the beam scan point
and the target point is set to § = 0.0001 mm, and the beam exiting point is assumed
as N°(0, 0) at the first iteration. Consequently, there should be two sets of prism
orientations obtained by the iterative method. The iterative process for these inverse
solutions are presented in Tables 3.14 and 3.15, respectively.

As shown in the above tables, the iterative method is characterized by rapid con-
vergence while solving the rotation angles of two prisms for the target point P(0, 20).
Only 9 iterations are required to obtain each set of inverse solution. In addition, the
final error between the beam scan point and the target point is up to § = 0.0001 mm,
and the numerical accuracy of prism orientations achieves better than 0.01°.

The relation of the error A between the beam scan point and the target point with
respect to the number k of iterations is revealed in Fig. 3.21. It turns out that the
iteration error is reduced rapidly as the number of iterations increases, which can

s ¥i,). Such an itera-

7

yip) and beam exiting point N’ (x
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Table 3.14 Iterative process for the first set of inverse solution to the target point P(0, 20)

No. |Beam exiting Beam scan point/mm Error/mm | Prism orientations/(°)

point/mm

k Xrn Vi Xrp Vrp A 011 02

1 6.830350 |2.312234 6.830350 | 22.312234 | 7.211110 | 195.936655| 344.383475
2 5.609818 |4.516284 | —1.220532|22.204051 |2.519432 |216.204930| 366.329188
3 5.861903 | 4.149227 0.252086 | 19.632943 | 0.445284 | 212.988204| 367.110193
4 5.807144 |4.231077 | —0.054760 | 20.081850 | 0.098479 |213.715934|367.148334
5 5.818955 |4.213569 0.01181219.982491 | 0.021120 |213.560311|367.145861
6 5.816402 |4.217359 | —0.002553|20.003790 | 0.004570 |213.594012| 367.146756
7 5.816954 | 4.216540 0.000552 | 19.999181 | 0.000987 | 213.586734| 367.146578
8 5.816835 |4.216717 | —0.000119 | 20.000177 | 0.000213 | 213.588307| 367.146617
9 5.816861 |4.216679 0.000026 | 19.999962 | 0.000046 | 213.587967| 367.146608
Table 3.15 Iterative process for the second set of inverse solution to the target point P(0, 20)

No. | Beam exiting point/mm Beam scan point/mm Error/mm Prism orientations/(°)

k X, Vo Xy Yip A’ 6/ 0y

1 —7.162066 | —0.566626 | —12.978926 | 15.216695 | 13.832301 | 366.874162 |213.315592
2 —5.570714 4.605747 1.591352 | 25.172373 5.411640 | 323.407555 | 177.846465
3 —5.869522 4.137182 —0.298808 | 19.531435 0.555733 | 327.112376 | 172.834753
4 —5.805519 4.233487 0.064003 | 20.096305 0.115633 326.262754 | 172.852656
5 —5.819306 4.213047 —0.013787 | 19.979560 0.024655 | 326.444326 | 172.854261
6 —5.816327 4.217471 0.002980 | 20.004424 0.005334 | 326.404987 | 172.853221

7 —5.816970 4.216516 —0.000644 | 19.999045 0.001152 | 326.413482 | 172.853428
8 —5.816831 4.216722 0.000139 | 20.000206 0.000249 | 326.411647 | 172.853382
9 —5.816861 4.216678 —0.000030 | 19.999955 0.000054 | 326.412043 | 172.853392

confirm the iterative method with great convergence. In addition, there is much lower
complexity of computation for the iterative method. The whole calculation takes 0.3
and 0.06 s for two sets of inverse solutions, respectively. Hence, the iterative method
is efficient enough to be used in real-time tracking applications for dynamic targets.

2. Application of Iterative Method

In simulation, the iterative method is applied to solve the inverse problem for those
specific target trajectories in Sect. 3.1.1. The error threshold between the beam scan
point and each target point is set to § = 0.0001 mm.
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Fig. 3.21 Relation of the iteration error relative to the number of iterations, where a is for the first
set of inverse solution and b is for the second set of inverse solution
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Fig. 3.22 A linear scan case by iterative method, where a shows the linear target trajectory, b is
the first set of inverse solution, and c is the second set of inverse solution

Case 1: a linear target trajectory given by y = 40, x € [—10, 10].

Figure 3.22a shows a linear target trajectory, while Fig. 3.22b and ¢ manifest two
sets of inverse solutions obtained by iterative method, respectively. The first 16 of 51
sample points on the target trajectory and the related calculation results are listed in
Table 3.16. It is found that the error of the actual point relative to the target point is
up to 0.00007 mm in each set of inverse solution. For the first set of inverse solution,
the calculation takes 0.104 s in total and 0.0020 s on average for each target point.
For the second one, the calculation takes 0.107 s in total and 0.0021 s on average for
each target point.
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Fig. 3.23 A circular scan case by iterative method, where a shows the circular target trajectory, b
is the first set of inverse solution, and c is the second set of inverse solution

Case 2: a circular target trajectory given by x> + y> = 60°.

Figure 3.23a shows a circular target trajectory, while Fig. 3.23b and ¢ manifest
two sets of inverse solutions obtained by iterative method, respectively. The first 16
of 64 sample points on the target trajectory and the related calculation results are
listed in Table 3.17. It is found that the error of the actual point relative to the target
point is up to 0.00004 mm in each set of inverse solution. For the first set of inverse
solution, the calculation takes 0.121 s in total and 0.0019 s on average for each target
point. For the second one, the calculation takes 0.167 s in total and 0.0026 s on
average for each target point.

Case 3: an elliptical target trajectory given by % + % =1.

Figure 3.24a shows an elliptical target trajectory, while Fig. 3.24b and ¢ manifest
two sets of inverse solutions obtained by iterative method, respectively. The first 16
of 64 sample points on the target trajectory and the related calculation results are
listed in Table 3.18. It is found that the error of the actual point relative to the target
point is up to 0.00009 mm in each set of inverse solution. For the first set of inverse
solution, the calculation takes 0.120 s in total and 0.0019 s on average for each target
point. For the second one, the calculation takes 0.123 s in total and 0.0019 s on
average for each target point.

. . . x = 60cos® 0
Case 4: an astroid target trajectory given by ) , 0<6<2m.
{ y = 60sin’ 6
Figure 3.25a shows an elliptical target trajectory, while Fig. 3.25b and ¢ manifest
two sets of inverse solutions obtained by iterative method, respectively. The first 16
of 64 sample points on the target trajectory and the related calculation results are
listed in Table 3.19. It is found that the error of the actual point relative to the target
point is up to 0.00010 mm in each set of inverse solution. For the first set of inverse
solution, the calculation takes 0.128 s in total and 0.0020 s on average for each target
point. For the second one, the calculation takes 0.130 s in total and 0.0021 s on
average for each target point.
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Fig. 3.24 An elliptical scan case by iterative method, where a shows the elliptical target trajectory,
b is the first set of inverse solution, and ¢ is the second set of inverse solution

Xx = 6tcost

: a spiral j i T
Case 5: a spiral target trajectory given by y = 6tsint

0<t<10.

Figure 3.26a shows an elliptical target trajectory, while Fig. 3.26b and ¢ manifest
two sets of inverse solutions obtained by iterative method, respectively. There are 64
sample points taken from the target trajectory, where the first 9 points are inside a
scan blind zone and the consequent prism orientations are not available. Table 3.20
lists the first 16 sample points outside the blind zone and the related calculation
results. It is found that the error of the actual point relative to the target point is up
to 0.00010 mm in each set of inverse solution. For the first set of inverse solution,
the calculation takes 0.159 s in total and 0.0025 s on average for each target point.
For the second one, the calculation takes 0.158 s in total and 0.0025 s on average for
each target point.

x = 60cos 46 cosb

: ik . . ost
Case 6: a rose-like target trajectory given by y = 60 cos 40 sin 0

<0 <2nm.

Figure 3.27a shows an elliptical target trajectory, where the central circle high-
lights a scan blind zone. Figures 3.27b and ¢ manifest two sets of inverse solutions
obtained by iterative method. The enlarged views of A and B are further displayed
in Fig. 3.27d and e, respectively. There are 127 sample points taken from the target
trajectory, and the consequent rotation angle curves of two prisms are not continuous
due to the blind zone. Table 3.21 lists the first 16 sample points outside the blind
zone and the related calculation results. It is found that the error of the actual point
relative to the target point is up to 0.00010 mm in each set of inverse solution. For
the first set of inverse solution, the calculation takes 0.201 s in total and 0.0016 s on
average for each target point. For the second one, the calculation takes 0.204 s in
total and 0.0016 s on average for each target point.

According to the above cases, the solving process for each target point requires
no more than 9 iterations when the solving accuracy is set to § = 0.0001 mm, and the
convergence rate is almost unchanged in two sets of inverse solutions. Compared to
lookup-table method, the iterative method is advantageous in less computation and
superior solving efficiency. Since the calculation usually takes 0.002 s on average for
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Fig. 3.25 An astroid scan case by iterative method, where a shows the astroid target trajectory, b
is the first set of inverse solution, and c¢ is the second set of inverse solution

each target point, the iterative method offers an ideal approach for real-time target
tracking applications. Moreover, the solving accuracy of the method depends on
the iteration error threshold, which implies that the target tracking accuracy can be
controlled in practice.

3.1.4 Damped Least-Squares Iterative Method

The two-step method, lookup-table method and iterative method are all proposed
under the assumption that the incident beam propagates along the optical axis of
the rotating double-prism system. However, the incident beam can be inclined to
the optical axis in some specific applications, where those methods are not feasible
anymore. To solve the inverse problem of such a system, the damped least-squares
iterative method has been proposed in [3].

1. Principle of the Damped Least-Squares Iterative Method

Considering the nonlinear and complicated relation between prism orientations and
the final beam deviation, the coordinates (x,, y,,) of the beam scan point P, are both
expressed as the functions dependent on the rotation angles 6,; and 6,,:

Xrp _ fX(erlserZ) _ F(0) (310)
yrp fy (erl > 9r2)

where @ denotes the joint variable of 6, and 6,,.

The damped least-squares iterative method is then applied to establish the numer-
ical inverse relation for rotating double prisms. Basically, this method involves dif-
ferentiating the forward relation of (3.10) to obtain a Jacobian matrix given by
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Fig. 3.26 A spiral scan case by iterative method, where a shows the spiral target trajectory, b is
the first set of inverse solution, and c¢ is the second set of inverse solution

J = K ‘ (3.11)

Therefore, the inverse solving process based on the damped least-squares iterative
method is summarized as follows [3].

Step 1. The target point is given by P; = (x4, Ya)-

Step 2. Derive the forward relation as shown in (3.10).

Step 3. Initialize the joint variable 6 as 8y = (6,10, 6,20)-

Step 4. Calculate the Jacobian matrix J when # = 6; at the ith iteration.

Step 5. Update 8;, using the formula @;,; = 0;+{J* [P, — F(0;)], where ¢ denotes
a gain factor and J* = J* (JJ Tyer )71. In addition, the damped factor & can be

given by & = (1 — w/wp)? if the variable w = ,/det (JJ T) is under a threshold wy,
otherwise ¢ = 0.

Step 6. Determine the absolute error A between the beam scan point and the target
point by the formula A = |P; — F(0;+)|. If the error A is under an error threshold
3, 0;,1 should be accepted as the final solution. Otherwise return to Step 4.

2. Improvement on the Damped Least-Squares Iterative Method

The disadvantage of the damped least-squares iterative method is that the iterative
process is too lengthy for real-time target tracking applications. Since it is quite time-
consuming to find the Jacobian matrix with four partial differentials at each iteration,
anumerical differentiation method should be employed to obtain approximate partial
differentials with high efficiency [9].

According to this method, an n-order Lagrange interpolation polynomial L, () is
regarded as the substitution for the forward relation F(#) between prism orientations
and target coordinates. Thus, it is acceptable that the partial differentiation functions
of F(0) are approximate to those of L,(#). In this way, the partial differentials of
L,(0) relative to the rotation angle 8, are obtained at a specific node where 6,; = 6.
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Fig. 3.27 A rose-like scan case by iterative method, where a shows the rose-like target trajectory,
b is the first set of inverse solution, ¢ is the second set of inverse solution, d displays the enlarged
view of A in the first set of inverse solution, and e displays the enlarged view of B in the second set
of inverse solution

A similar approach can be applied to deduce the partial differentials of L, (@) relative
to the other rotation angle 6,,, which is omitted here.

The rotation angle 6,, is held constant during the numerical differentiation of
F(0) relative to 6,1, which accounts for the forward relation transformed as F(0) =
g(8,1). For necessity, four more discrete nodes, including 6, = 6, — 2h, 6, =6,
— h, 0 =6+ hand 0y, = 0, + 2h, are taken in the neighborhood of the specific
node 6. Here & denotes the distance between any two adjacent nodes, which depends
on the desired solving accuracy. Then a fourth-order Lagrange polynomial can be
determined as follows in approximation to the function g(6,):

B 542 s+2 9;«] _ 9] . '
L= | Tl (=)@ (3.12)
J

i=s—2 | j=s—2ji ¥ !

Note that g(6;) represents the function values of g(6,;) at the node where 6,; =
0.
By differentiating the interpolation remainder defined as R4(0,1) = g(0,1) —
L4(6,1), the numerical differential of g(6,;) at the specific node where 6, = 6,
is derived as follows.

’9—1 0 8g(0 82 (6 0 LA 3.13
g(s)—m[g( s—2) — 8g(0s—1) + 88 (Os41) — g( s+2)]_%g ) (3.13)



137

Inverse Solution for Rotating Double Prisms

3.1

3% P8 | $0000°0 | L6L96°TH— |8OIELTP—| 8|  0TYSK|  9TLOE| 00000 | £6L96'Th— |EIIELTY— | 8 |L6L96Th— |TIIELTH—| LI
L6'S— L6T8 |  $0000°0 | PO68YO— |S61OF'Er— | 8|  TEISH|  L6'EIE|  $O0000 | 66887°0F— |66197'Er— | 8 |$068F°0v— |66197'Er— | 91
SI'TI—|  vFI8 | 200000 |8L6I¥'9E— [906€TEP— | 8|  LETSK|  8L'8SE|  TO0000 |SL6IH'OE— |806ETEP— | 8 |8L61H'9E— |806ETEF— |  SI
€L0T—|  LET8 | TO000°0|SOVITTE= |626T60v— | L|  1TSSP|  11°TSE| 00000 |TOPTIIE— | 1€6T6°0P— | L |SOPIIIE— |TE6T6OP— | I
LETE—|  €I'P8 | S0000°0 |Z8186'vC— |88SIS9E— | 8| €109y |  €9%bE|  S0000°0 | L8I86'HT— |S8SISOE— | 8 |€8186'vC— |¥8SIS9E— | €I
STth— 1868 |  TO000°0 | TI9SH'8T— |8920T0E— | 6|  8T'L9v|  ITLEE| TO000'0 |019SY8T— |69T0OI'0E— | 6 |TI9SH'8I— |0LZOT0E— | Tl
9709~ |  69'S8 | 00000 |690L6'11— |SITIE1T—| 6|  9SLLY 191€E | $0000°0 | S90L6'11— |LITI6TZ— | 6 |690L6'11— |61TI6 T~ | 11
€TL8~ I¥'9L | €0000°0 | IS6T6'S— |86VLTTI—| 6| 6L86Y|  SI'SEE| €0000°0 |8¥6T6'S— |66vLTTI~| 6|0S6T6'S— |10SLTTI—| 01
80'1L €8°0VC | $0000°0 | 98967°€ | 8L6LS'6 6| €06TE|  8T6SI|  P0O000D | T696YE | 9L6LS'6 6|8896v'€ | SL6LS'6 8
LT'€01 SOPST|  $0000°0 | SOSTH9 | LEOLL'OT 6 IT16T|  T€OPl| 00000 | 10STH9 | 6€0LL 0T 6 |Y0STY9 | THOLL'OT L
TSI YL6YT|  £0000°0 | 6€020'8 | TEOTHIE 6| OVELT|  I6'8E1|  £0000°0 |9€0TO'8 | TEOIFIE 6|8€020°8 | ¥EOIPIE 9
S0°€TT 65THT| 900000 | £8Y0E'8 | 6169607 8|  L86ST|  TEOVI| 900000 |06¥0E8 | 816960 8|98V0€'8 | ¥16960F S
95°871 TOSET| 800000 | ¥2O0V'L | T0OV96'8T L|  €98bT|  LI'TH1|  80000°0 |¥100¥'L | €0v96'8% L|0T00v'L | 80¥96'8Y v
€0°ZET Y0'8TC | 800000 | ITLIS'S | €9L867FS L| ev6eT|  THEPI| 800000 |TTLISS | TIL8G'HS L|91LIS'S | LSL86FS €
eel 9€TTC|  $0000'0 | 006€6'T | 8POEL'8S 8 1STET|  LEEP|  $00000 | ¥68E6C | 8POEL'SS 8| L68E6C | 0SOEL'SS 4
9L°I€] 6v'81T|  $0000°0 | H00000 | L6666'6S 8|  vT8Tz|  ISTIPL| $O0000 |40000°0— |L6666'6S 81000000 | 0000009 I
(/% G| wwyy | wuyc| wuyfx |y ()T'g (g wuyy | wuydd ] wuyda ]y | wuyg | waydy
uonnN[os ASIAAUL JO JOS PUOIAS Y], uonN[OS ASIOAUL JO JIS ISIY Y], jutod jo81e], | "ON

(9101dwod J0U) poyrew AANEIANI Aq 9SBI ULDS AI[-ISOI UI S}[NSAI UONB[NI[E) [T°E AqEL



138 3 Inverse Problem of Double-Prism Multi-mode Scanning

where the last term is relatively small and can be neglected in approximation.

Thus, it is feasible to establish a Jacobian matrix which contains four numeri-
cal differentials at each iteration, given the relation of (3.13). On these basis, the
damped least-squares iterative method improved by numerical differentiation is also
employed to solve the inverse problem for target trajectories in Sect. 3.1.1. The sim-
ulation results indicate that the inverse solutions obtained by this method are always
consistent with those generated from the iterative method, as long as the geometrical
parameters and the iteration error threshold remains unchanged. Despite the slightly
larger time consumption than the iterative method, the damped least-squares itera-
tive method is one of the most fitting approaches for rotating double prisms with an
arbitrary incident beam.

3.2 Inverse Solution for Tilting Double Prisms

3.2.1 Analytical Method

1. Principle of Analytical Method

In a tilting double-prism system, the incident beam is usually supposed to propagate
along the optical axis of the system, and the tilting angle of each prism is limited
within 6 min—60 max. To derive the analytical inverse solution for tilting double prisms,
the emergent beam is specified by the unit vector (x,f, y,, z¢)" or the combination
of vertical field angle pv and horizontal field angle py, which can be transformed as

Ay = Oy 2p)

tan py tan pyg 1

T
B <\/tan2 pv +tan py + 1 /tan? py +tan® py + 1 \/tan® py + tan? py + 1)
(3.14)

It has been mentioned in Sect. 2.3.1 that the X-component of the emergent beam
vector is given by x; = cosf. Thus, the angle 8,, between the incident beam to
prism 2 and the positive Z-direction is written as f;, =arccosx;s. Substituting i; =
—60,; into (2.15), the angle B, can also be determined by

T T . . . .2
B = > +68; = > + arcsin(sin &) cos o + sinay/n? — sin“ ;) — 6,y — o (3.15)

According to (3.15), the angle B, is only associated with the tilting angle 8, of
prism 1, which accounts for the functional relation expressed as B8,, = f(6,1). Then
the variable separation method is applied to (3.15) in order to solve the tilting angle
6, inversely, namely to establish the relation expressed as 8,; =f~'(8,).
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Similarly, with the horizontal field angle given by py = arctan(y; /zy) = v —
8, = —¥&, the beam deviation angle §, due to prism 2 is deduced from 6, = —ppy.
Concerning i = ypp + o + 8, = « + 05, the angle 8, can also be determined by

8 =6p — arcsin[sin(a +6p)cosa — sin (x\/n_zz — sin’(« + Glz)i| (3.16)

According to (3.16), the beam deviation angle §, is merely dependent on the tilting
angle 6, of prism 2, which accounts for the functional relation expressed as &, =
g(0,2). Then the tilting angle 6, can be inversely solved by separating the variables
in (3.16), expressed as 6,5, = g~ (8,).

Therefore, the tilting angle 6,; of prism 1 is expressed in the analytical form as
follows [1]:

, 2 B+3+1 24112
01 = = | kot + (—=1)* arcsin 2 + ki + arctan(g)
2 1) 4 (BB 2Ly
i) + (=

(3.17a)
where 6,;, € [Gtmin’ Olmax](kl, kyeZ), I, = (cosm;—cosa)/sinc,
I, = sinm/sino, mi = Pp + o — 7/2, and Bp = arccosxy =
arccos.(,ov/\/tan2 py +tan? py + 1).

The tilting angle 6, of prism 2 is analytically expressed as
— l§+l}+1 2 0
O = % kym +(—l)k4 arcsin 2 —20(+k37r+arctan<l3 42—111 l4> (317b)
3l4

2

2+1-12

2, (5B*1-0
(1314) +( 5 >

where 0, € [0,min. Omax](ks, ks € Z), I3 = (cosa — cos(py — a))/ sina and
ly = —sin(py — o)/ sina.

2. Application of Analytical Method

Based on the above derivation, the exact solution to tilting angles of two prisms
can be obtained once the emergent beam vector or the combination of vertical and
horizontal field angles is known. Accordingly, the emergent beam can be steered by
tilting prisms to track any moving target within the scan region.

For example, the analytical method is applied for the tilting angle curves of two
prisms that can generate 5 specific target trajectories. Here the influence of the beam
exiting point on the beam scan point is neglected in approximation. In simulation,
the involved parameters of each prism are wedge angle o = 10°, refractive index n =
1.517 and tilting angle range within 0°~10°. The distance from prism 2 to the screen
is set to D, =1 mm, and the beam scan speed remains uniform throughout a period
of 10 s. Note that the target trajectories are observed in the positive Z-direction, and
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Fig. 3.28 A linear scan case, where a shows the linear target trajectory parallel to the Y-axis and
b manifests the inverse solution obtained by analytical method
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Fig. 3.29 A linear scan case, where a shows the linear target trajectory parallel to the X-axis and
b manifests the inverse solution obtained by analytical method

the positive X- and Y-directions are defined to be upward and rightward, respectively
(Figs. 3.28, 3.29, 3.30, 3.31 and 3.32).

Case 1: a linear target trajectory given by x = —0.0950, y €
[—0.095200, —0.091797].
Case 2: a linear target trajectory given by y = —0.0950, x €
[—0.099157, —0.092715].
Case 3: a linear target trajectory given by y = 3 — 0.0455, x €

[—0.099157, —0.092715].

Case 4: a parabolic target trajectory given by y = 300(x +0.0960)> — 0.0950, x €
[—0.099157, 0.092715].

Case 5: a circular target trajectory given by (x + 0.0960)2+ (y + 0.0935)% = 0.0015.
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Fig. 3.30 A linear scan case, where a shows the inclined linear target trajectory and b manifests
the inverse solution obtained by analytical method
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Fig. 3.31 A parabolic scan case, where a shows the parabolic target trajectory and b manifests the
inverse solution obtained by analytical method

3.2.2 Lookup-Table Method

1. Principle of Lookup-Table Method

A lookup-table method [1] is introduced in this Section to solve the inverse problem
of tilting double prisms in near field. The principle of this method is in the mapping
relation from the target coordinates to the tilting angles of two prisms. Without loss
of generality, the lookup-table method can be implemented in three steps.

Firstly, establish a lookup table. For tilting double prisms, the beam scan point is
associated with the structural and positional parameters, including the tilting angles
0,1 and 0,,, the wedge angle «, the central-axis thickness d, the distance D; between
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Fig. 3.32 A circular scan case, where a shows the circular target trajectory and b manifests the
inverse solution obtained by analytical method

two prisms and the one D, from prism 2 to the screen. Those parameters as well as the
tilting angle range 0 min—0:max are usually specified by the application requirements.
For the purpose of discretization, every revolution of tilting motion is further divided
into (0 max — @min)/0 e StEPS, Where 6,,, represents the tilting step angle dependent on
the beam scan precision. Using the formulae in Sect. 2.5.2, the coordinates (x;,, ysp,
Z;p) of beam scan point can be deduced from the combination of tilting angles (6,1,
01), each of which is limited by 8 min—8max With a resolution of 6,,.. The correlated
(011, 612) and (xp, ysp, 24p) are thus written to the lookup table.

Secondly, search the lookup table. With a target trajectory given by y = f(x), a
sequence of target points, expressed as (X, Y, Zy,), can be taken from the tra-
jectory at a certain sampling frequency, where Z;, = D; +D,. Then the lookup
table is searched for a known point closest to each target point. In other words,
the coordinates (x;,, yip, 2;») of the known point will minimize the error given by

A = \/ (X,,, — x,,,)2 + (Yt,, — y,,,)2 + (Zt,, — zt,,)z. According to the coordinates (x;,
Yips Zp), it is convenient to find the related tilting angles of two prisms in the lookup
table, which are regarded as the inverse solution to the desired target point in approx-
imation.

Finally, process data. The function interpolation or curve fitting operation is per-
formed on the discrete tilting angles (6,1, 6,) obtained by lookup-table method,
which leads to a continuous and time-dependent function of prism orientations.

2. Application of Lookup-Table Method

In simulation, the involved geometrical parameters are « = 10°, n = 1.517,
D,=80 mm, dy =5 mm, D; =100 mm and D, =400 mm. The tilting motion of
each prism is limited within the angular range of 0°-10°, which can be further
divided into 2500 steps upon setting the tilting step angle to 8,,, = 0.004°. Note that
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the Z-coordinate of beam scan point is constant at Z;, = z;, = D + D, = 500 mm
in such a tilting double-prism system.

The tilting angles 6,; and 6,, can be combined in random with the Meshgrid
function in Matlab, and these combinations are utilized to establish a 2500 x 2500
matrix. The values of (x;, y;,) that corresponds to each element of the matrix are
determined by the formulae in Sect. 2.5.2 and then written to the lookup table.
Accordingly, a completed lookup table contains data with the size of 2500 x 2500 x
2=125x10".

A linear scan case parallel to the Y-axis is taken for example in order to expound
the lookup table process, where the beam scan operation remains uniform throughout
a period of 10 s. At the sampling frequency of 40 Hz, there are 400 sample points
extracted from the target trajectory. Note that only 40 sample points are displayed in
a concise manner. Once the coordinates (X,,, Y,) of each sample point are deduced
from the target trajectory given by x = —45, y € [—39.63, —37.44], it is required to
search the lookup table for the coordinates (x;, y;,) that will minimize the error given

by A = \/ (Xp — x,p)2 + (Y, — ytp)z, as well as the corresponding row number N
and column number M in the table. The consequent tilting angles are determined by
04 =04.x (M — 1)and 6, =6, x (N— 1), which are written in the combined form
of (6,1, 012) to establish a matrix. This matrix contains a sequence of approximate
tilting angles required for the target trajectory. All discrete elements in the matrix can
be connected together using a segmented low-order interpolation method. Therefore,
the tilting angle curves of two prisms are further obtained in approximation.

By the proposed lookup-table method, the inverse solutions to 5 specific target
trajectories are simulated as follows, respectively.

Case 1: a linear target trajectory given by x = —45, y € [—39.63, —37.44].

Case 2: a linear target trajectory given by y = —38, x € [—47.17, —44.82].

Case 3: a linear target trajectory given by y = 7 — 15.5, x € [—47.17, —44.82].
Case 4: a parabolic target trajectory given by y = (x+45.995)> — 39, x €
[—47.17, —44.82].

Case 5: a circular target trajectory given by (x +45.995)%+(y + 38.535)% = 1.

Figure 3.33 indicates that the beam scan operation along the linear trajectory
parallel to the Y-axis is mainly accomplished by tilting prism 2 within the angular
range from 10° to 0.3°. There is a nonlinear relation between the motion profile of
prism 2 and the target trajectory. The tilting angle of prism 1 still varies within a
certain range of 0.05° due to the slight coupling effect of prism 1 and prism 2. As
shown in Fig. 3.34, the tilting angle of prism 1 ranges from 10° to 0° and that of prism
2 varies within a certain range of 0.16° in order to perform the beam scan operation
along the linear trajectory parallel to the X-axis.

Figure 3.35 presents the tilting angle curves of prism 1 and prism 2 in corre-
spondence to the inclined linear target trajectory. It is clarified that the difference in
the slope of linear trajectory will lead to various tilting angle curves of two prisms.
Given the parabolic target trajectory, the inverse solution for tilting prisms is plotted
in Fig. 3.36. Since the parabolic trajectory is symmetric about x = —0.096, there is
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Fig. 3.33 A linear scan case, where a shows the linear target trajectory parallel to the Y-axis and
b manifests the inverse solution obtained by lookup-table method
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Fig. 3.34 A linear scan case, where a shows the linear target trajectory parallel to the X-axis and
b manifests the inverse solution obtained by lookup-table method

approximate symmetry in the tilting angle curve of prism 2, whereas the tilting angle
of prism 1 decreases monotonously from 10° to 0°. Similarly in Fig. 3.37, the circular
target trajectory is completely symmetric, which accounts for the periodic variation
in the tilting angle curves of both prism 1 and prism 2. In addition, each prism should

stop tilting motion at its initial orientation because the circular trajectory is in a closed
form.
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Fig. 3.35 A linear scan case, where a shows the inclined linear target trajectory and b manifests
the inverse solution obtained by lookup-table method
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Fig. 3.36 A parabolic scan case, where a shows the parabolic target trajectory and b manifests the
inverse solution obtained by lookup-table method

3.2.3 Binary Lookup-Table Method

1. Principle of Binary Lookup-Table Method

It has been previously demonstrated that the tilting angle 6,; of prism 1 has primary
impacts on the vertical field angle pv of the emergent beam and the X-coordinate of
beam scan point, while the tilting angle 6, of prism 2 mainly influence the horizontal
field angle py of the emergent beam and the Y-coordinate of beam scan point. Such
a functional relation between the tilting angles of two prisms and the final beam
deviation remains monotonous within the angular range of 6min—0max. Therefore,
a binary search procedure that can decouple the beam deviation effects of prism 1
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Fig. 3.37 A circular scan case, where a shows the circular target trajectory and b manifests the
inverse solution obtained by lookup-table method

and prism 2 is introduced to the lookup-table method. Compared with lookup-table
method, the major difference in this binary lookup-table method is that the search
procedure can be well optimized to enhance its solving efficiency.

To help elucidate this optimized method, there should be a further description
about the binary search procedure. For example, given a monotonous decreasing
function, the procedure is feasible to search the definition domain for a specific node
corresponding to the desired function value. The initial search range, namely the
definition domain, is divided into two equal sections. If the function value at the
division node is smaller than the desired one, the search range should be replaced
by the former section of the initial search range. Otherwise, the latter section is
considered as the new search range. Through a few iterations, the search range is
narrowed down in order to approach the specific node to an acceptable extent.

Once the above details are accounted for, the binary lookup-table method is sum-
marized as follows for a given target point. Accordingly, the inverse solution to any
target trajectory can be obtained by applying the method to a sequence of sample
points on the trajectory.

Firstly, the first actual point at each row of the lookup table is involved in the
comparison with the target point. The row number M of the one closest to the target
point in the X-direction can be determined through binary search procedure. Then,
all the actual points at row M of the lookup table are utilized for the comparison
with the target point. The column number N of the one closest to the target point in
the Y-direction can be determined by binary search as well. The attention is finally
focused on the actual point at row M and column N of the lookup table, denoted
by T yv . Other relevant points, including T(Mfl)(Nfl), T(Mfl)N, T(Mfl)(NH), TM(Nfl)s
TM(N+1)’ T(M+1)(Nfl)a T(M+1)N and T(M+1)(N+l)’ are taken in the neighborhood of the
point T;y. Among these actual points, the one closest to the target point is required
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to obtain the corresponding tilting angles of two prisms, which are considered as one
set of inverse solution to the target point.

It is evident that the complexity of calculation is greatly reduced by the binary
lookup-table method. This method is outstanding with the solving efficiency supe-
rior to that of the lookup-table method. For example, only hundreds of calculating
operations are demanded for the inverse solution to one target point, if the size of
lookup table is set to 1001 x 1001.

2. Application of Binary Lookup-Table Method

As shown in Figs. 3.38 and 3.39, the peanut-like and peach-like scan cases are
presented to evaluate the solving accuracy and efficiency of the binary lookup-table
method. The geometrical parameters of the tilting double-prism system are o = 10°,
n = 1.517, D,=80 mm, dy =5 mm, D; =100 mm and D, =400 mm. Both prisms
are limited within the tilting angle range of 0°-~10°. On these basis, a 1001 x 1001
lookup table with the step angle of 0.01° is established for search.

X = (0.3 +0.64 sin® t) cost — 46

Case 1: apeanut-like target trajectory given by ,
y = (0.3+0.64sin®r) sins — 38.5
t €0, 2m].

x =0.6(1 +cost)cost —46.6

Case 2: a peach-like target trajecto iven b s
ase < & peach-iike trget Wajectoly 8IVEL DY 1 1 _ 0.6(1 + cos ) sin — 38.5

t €0, 2m].

As one common issue between traditional and binary lookup-table methods, estab-
lishing a lookup table takes much storage space and most calculation time, which
approaches 72 s in the above cases. Worth noting is that 400 sample points are
extracted from the target trajectory in every scan case. Based on the same lookup
table, there are 0.0817 and 0.0805 s spent on finding the inverse solutions to peanut-
like and peach-like target trajectories, respectively. In addition, the average solving
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Fig. 3.38 A peanut-like scan case, where a shows the peanut-like target trajectory and b manifests
the inverse solution obtained by binary lookup-table method
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Fig. 3.39 A peach-like scan case, where a shows the peach-like target trajectory and b manifests
the inverse solution obtained by binary lookup-table method

accuracy at all target points is determined to be 0.0046 mm in the former case and
0.0043 mm in the latter one. It is validated that the binary lookup-table method offers
a more efficient approach to solve the inverse problem of tilting double prisms, with-
out any loss of solving accuracy.

3.2.4 Region-Converging Iterative Method

1. Principle of Region-Converging Iterative Method

Owing to the nature of lookup-table methods, the accuracy and efficiency of inverse
solving process are greatly concerned with the size of lookup table. Either tradi-
tional or binary lookup-table method should allocate most operation time to estab-
lish a lookup table. To overcome these inherent shortcomings, however, requires
more attention on developing a novel method for inverse solution. We thus proposes
a region-converging iterative method based on beam scan properties in the tilting
double-prism system. This method can successively narrow down the possible range
of each prism orientation until the consequent beam scan point comes close enough
to the target point.

Figure 3.40 shows the iterative procedure where the tilting angle of each prism
converges from its initial range to the final solution. For any target point given by
Py = (x4, yq), the procedure can be further demonstrated as follows.

Initially, there is a two-dimensional search region specified by the tilting angle
ranges of prism 1 and prism 2, denoted by 6, 1min—0:1max and 0 2min—02max, respec-
tively. Then the search region is equally divided into 9 sub-regions by introducing
16 specific nodes. These nodes are labeled by T';;, where i and j are both integers
ranging from 1 to 4. Following the formulae in Sect. 2.5.2, the tilting angles of two
prisms at the node T'; are utilized to determine the consequent beam scan point
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Fig. 3.40 Schematic diagram illustrating the principle of region-converging iterative method

P;; = (x;j, yj)- In order to distinguish the sub-region at which the inverse solution
to the target point P, locates, the coordinates of beam scan point P;; at each division
node are substituted into the judging conditions shown in (3.18). If these conditions
are satisfied, the search region can be narrowed to the sub-region specified by four
vertex nodes Tij, T(H.])j, T(,'+1)(,'+1) and Ti0+l).

(xlfi —Xd)[x(i+|)(j+1) —xd] <0 123 G18)
> l’] = s~ .
(5 = ya) [Yarngsy —va] <0

Sometimes it happens that none of the beam scan points at 16 division nodes
satisfies the conditions of (3.18). Hence, there should be extra effort to narrow the
search region, and more importantly, to keep the iterative procedure converging.
Among 9 sub-region centers in the current search region, the one which corresponds
to a beam scan point closest to the target point P, is applied to locate the next search
region. In addition, the next search region is required with a side length larger than
one sub-region, which guarantees the availability of inverse solution.

After finite iterations in the above fashion, the search region becomes converging
enough to achieve the desired accuracy of inverse solving process. Therefore, the
inverse solution to the given target point can be obtained once the side length of
search region is under a prescribed threshold §, namely the solving accuracy.

2. Application of Region-Converging Iterative Method

The triangular and rose-like scan cases are, respectively, presented in Figs. 3.41
and 3.42 to validate the performance of our region-converging iterative method. In
simulation, the geometrical parameters of the tilting double-prism system are still set
toa =10° n=1.517, D, = 80 mm, dy =5 mm, D; =100 mm and D, =400 mm,
and the tilting angle range of each prism is limited within 0°~10°. The desired solving
accuracy remains to be § = 0.001 mm in both cases.

x = 0.35(2cost +cos2t) —46.6

Case 1: a triangular target trajectory given b s
ranguiar farget rajectoty BVELOY 1 1 _ 0.35(2 sint — sin 21) — 38.5

t €0, 2m].
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Fig. 3.41 A triangular scan case, where a shows the triangular target trajectory and b manifests
the inverse solution obtained by region-converging iterative method
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Fig. 3.42 A rose-like scan case, where a shows the rose-like target trajectory and b manifests the
inverse solution obtained by region-converging iterative method

x=0.5cost(cos6t+1) — 46

Case 2: arose-like target trajectory given b , te
EELIAICCIOtY BIVERBY Y | — 0.5sin 1(cos 6 + 1) — 38.5

[0, 27].

There are 400 sample points extracted from both triangular and rose-like tar-
get trajectories for simplification. Without establishing a lookup table, the region-
converging iterative method requires 4.7951 and 5.0559 s to find inverse solutions in
the above cases, respectively. It thus proves that such an iterative method is advanta-
geous in its impressive solving accuracy and stability, as well as the greatly enhanced
solving efficiency for either simple or complex target trajectory. Nevertheless, the
region-converging iterative method will be less efficient than the binary lookup-table
method, once the establishment of lookup table takes a relatively small part of the
total computation time.
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3.3 Summary

This chapter overviews several representative methods that can solve the inverse
problem of rotating or tilting double prisms, exemplified by a variety of implemen-
tation cases. With regard to rotating double prisms, the two-step method [4, 10] is
reviewed in a logical and detailed manner, which generates two sets of approximate
prism orientations during one revolution. In order to obtain more precise inverse
solutions, the lookup-table method is step-by-step demonstrated on the basis of the
mapping relation from prism orientations to the beam scan position. Unfortunately,
the lookup-table method has some shortcomings, such as limited solving accuracy
and large time consumption. Aiming at dynamic target tracking applications, the iter-
ative method that combines two-step method with non-paraxial ray tracing procedure
is proposed to inversely solve the rotation angles of two prisms in real time. Since the
iterative method requires much less computation to achieve superior solving accu-
racy and efficiency, it can serve as a potential approach to track dynamic targets. In
addition, the damped least-squares iterative method is introduced for more generality
to overcome the inverse problem of rotating double prisms, where the incident beam
may be aligned or inclined with respect to the optical axis of the system. As for
tilting double prisms, the analytical method is clearly elucidated by a mathematical
derivation process from the horizontal and vertical field angles of the emergent beam
to the consequent tilting angles of two prisms. Then the lookup-table method suited
with tilting double prisms is also expounded to obtain inverse solution with higher
precision. For target tracking applications, the binary lookup-table method is fur-
ther developed, which can greatly improve the solving efficiency of the lookup-table
method using binary search procedure. Moreover, the region-converging iterative
method is presented so that the two-dimensional search region for inverse solution
can be narrowed down at each iteration. Simulation results has proven this method as
one of the most precise approaches to the inverse solution for tilting double prisms.
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Chapter 4 )
Performance Characterization oo
of Double-Prism Multi-mode Scanning

Abstract Crucial issues that influence the beam scan performance are thoroughly
investigated in both rotating and tilting double-prism systems. For quantitative anal-
ysis, the nonlinearity problem is described with the motion variables of two prisms
during a dynamic beam scan process. The control singularity is well illustrated on the
basis of mapping relation between beam steering rate and beam scan speed. Through
mathematical derivation, the distortion of any beam emerging from rotating or tilt-
ing double prisms is determined to evaluate the stretching and squeezing effects on
beam shape. The error modeling method is further introduced to help demonstrate
the potential sources of beam pointing error in a double-prism system.

In this chapter, we will introduce the double-prism multi-mode beam scan perfor-
mance, including four issues of nonlinear relation, singularity issue, beam distortion
and beam scan error modeling. First, because of the nonlinear relation between the
rotation or tilting angles of two prisms and the final beam deviation angle [1-3], the
reasonable control strategies should be formulated to facilitate the nonlinear motion
of two prisms. Second, it is the singularity issue. When the double-prism system is
used to track any target near the edge of beam scan region, the rotating double prisms
are required with infinite angular velocities, which poses significant challenges to
control the overall system in real time [1]. Third, induced by the refraction of double
prisms, the beam distortion may introduce undesired variation to the far-field beam
energy distribution, and thus produce adverse effects on the application of double
prisms for directional beam energy. The last, it is of great importance and necessity
to establish the beam scan error model of double-prism multi-mode system with
different motion types, considering the influence of both optical and mechanical
errors on the beam propagation. Such an error model will offer much convenience to
quantitatively demonstrate the high-precision beam scan mechanism using double
prisms.
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4.1 Nonlinearity Issue

According to the beam propagation model through rotating double prisms, the devi-
ation angle of emergent beam is determined by the motion status and the structural
parameters of the system. Consequently, the beam deviation law can be expressed as
nonlinear relations in three aspects [1, 3]: (1) nonlinear relation between the rotation
angles of prisms and the beam deviation angle; (2) that between the rotation angular
velocities of prisms and the beam steering rate; and (3) that between the rotation
angular accelerations of prisms and the angular accelation of beam deviation.

In order to investigate the nonlinearity issue in a rotating double-prism system,
we take the first set of inverse solution for example. As illustrated in Sect. 3.1.1, the
rotation angle 6, of prism 1 is limited by 0°-360°, and the relative rotation angle
A6, of two prisms varies within —180-0°.

The pitch angle p of emergent beam is generally resolved into the X-component
px and the Y-component py, defined as [3]

Ox = p COSQ, py = p sing “4.1)

From (2.11), the functional relation of the components px and py with respect to
the rotation angles 6,1 and 6,, of two prisms can be obtained as shown in Fig. 4.1
[3], where each prism has the wedge angle @ = 15° and the refractive index n =
1.517.

It is evident in Fig. 4.1 that prism orientations 6,; and 6,, are nonlinear with the
components py and py of pitch angle, which reduces the availability of inverse solu-
tions by any analytical method. Therefore, those numerical techniques introduced
in Sect. 3.1 are usually employed to solve the inverse problem of rotating double
prisms.
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Fig. 4.1 Nonlinearity between the rotation angles of two prisms and the beam deviation angle,
where a shows the variation of px and py with 6,1, and b shows the variation of px and py with
9r2
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In order to reveal the nonlinearity between the rotation angular velocities of two
prisms and the steering rate of the emergent beam, the beam steering rate is resolved
into the tangential component wy; and the radial component wg [1, 3]. The two
components are, respectively, determined by the time derivatives of azimuth angle
and pitch angle, as follows [1, 3]

de dp
W = dr , Wy = dr (42)

According to the two-step method in Sect. 3.1.1, once the pitch angle reaches
its desired value at the first step, the desired azimuth angle can be achieved by
synchronous rotation of two prisms at the second step. In other words, for the purely
tangential motion of a scan beam, the rotation angular velocities w,; and w,, of two
prisms are required to accord with the tangential beam steering rate wy. Thus, we
can just consider the relation of the angular velocities w,; and w,, with respect to the
radial beam steering rate wg., as shown in Fig. 4.2. Note that the wedge angle of each
prism is set to o = 5°, 10° and 15° in turn. The pitch angle p of the emergent beam
ranges from 0° to the maximum pp,x, while the azimuth angle ¢ remains invariable.

Figure 4.2 shows that the rotation angular velocities w,; and w,; of two prisms
vary severely with the pitch angle p increasing from 0° to ppax. As the pitch angle
p approaches pn.x, the ratios of the angular velocities relative to the radial beam
steering rate, denoted by w,/ws and w,2/wp., even tend to infinity. These require-
ments will bring some significant challenges to the motion control of driving motors.
Moreover, for the cooperative motion of rotating double prisms and tracking target,
the prisms are required with frequently regulated angular velocities to perform beam
steering operation in real-time target tracking applications.
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Fig. 4.2 Nonlinearity between the rotation angular velocities w1, @,2 of two prisms and the radial
beam steering rate wy,
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Fig. 4.3 Nonlinearity between the rotation angular accelerations a1, a2 of two prisms and the
radial angular acceleration e of beam deviation

Similar to (4.2), the angular acceleration of final beam deviation can also be
resolved into the tangential component «;, and the radial component o, expressed
as

d d
afp = d—t(zp, af = d_tIZO (43)

The nonlinear relation between the angular accelerations «,, o, of two prisms
and the radial angular acceleration oy of beam deviation is displayed in Fig. 4.3,
where the nonlinearity appears to be more apparent. Compared to the angular veloc-
ities w,; and w,,, the angular accelerations «,; and «,, undergo more dramatic
variation when the pitch angle p increases from 0° to py.x. The ratios between the
angular accelerations of two prisms and the radial angular acceleration of final beam
deviation, denoted by o, (/s and a,2/a ., also tend to infinity as the pitch angle p
approaches pmax. T0 actualize target tracking application in real time, the angular
velocities and angular accelerations of two prisms should be restricted with reason-
able upper tolerances, respectively, for the synchronous motion of double prisms and
the target.

As for tilting double prisms, the mapping relation from the tilting angles of two
prisms to the deviation angle of the emergent beam can be deduced from (2.16).
Provided that only one prism is tilting while the other prism remains stationary, the
vertical field angle py and the horizontal one py of the emergent beam are both
dependent on the tilting angles 6,; and 6, of two prisms, as shown in Fig. 4.4. Note
that each prism has the wedge angle o« = 10° and the refractive index n = 1.517.

Figure 4.4 manifests the nonlinear relation from the tilting angle 6, of prism 1
to the vertical field angle pv and that from the tilting angle 8,, of prism 2 to the
horizontal field angle py. Given the one-to-one mapping relation from the tilting
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Fig. 4.4 Nonlinearity between the tilting angles of two prisms and the beam deviation angle, where
a shows the variation of py and py with 6,1, and b shows the variation of py and py with 6,

angles of two prisms to the deviation angle of the emergent beam, there is one
unique set of inverse solution for tilting double prisms in correspondence to the
desired vertical and horizontal field angles. In other words, tilting double prisms
are confronted with less complicated nonlinear relation than rotating double prisms.
However, it is always preferable to overcome the inverse problem of tilting double
prisms using numerical techniques immune to the nonlinearity issue.

The steering rate of the emergent beam from tilting double prisms can be resolved
into the vertical component w,v and the horizontal component wsy. The two com-
ponents are, respectively, defined as the time derivatives of vertical and horizontal
field angles, given by

oy, don

-V — 4.4
ar m dt “.4)

Accordingly, the nonlinear relation between the tilting angular velocities w;;, s
of two prisms and the components wyy, wsy of beam steering rate can be plotted in
Fig. 4.5. Obviously, the ratio w; /sy of the tilting angular velocity of prism 1 and the
vertical beam steering rate is relatively large, as well as the ratio w,»/wsy of the tilting
angular velocity of prism 2 and the horizontal beam steering rate. In other words,
both prisms should tilt with considerable angular velocities in order to track any
target of interest. As the target approaches the optical axis of the system, two prisms
are required with even larger angular velocities. Thus, a suitable control strategy
should be formulated to perform the nonlinear beam scan function. It is also visible
that w;i/wsv undergoes large variation with the increment of py, whereas wp/wry
is almost constant at zero. Similarly, the increment of py leads to great variation of
wp/wey but has negligible influence on w;i/wsy. These analysis can further verify
the conclusion that the vertical field angle is primarily affected by the tilting angle of
prism 1, and the horizontal field angle mainly depends on the tilting angle of prism 2.
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4.2 Singularity Issue

To actualize continuous beam steering function using rotating double prisms, the
prisms are required with nearly infinite angular velocities whenever the beam scan
trajectory approaches the center or edge of scan region, which claims for strong
accelerations of two driving motors. In other words, the beam steering process along
a continuous target trajectory can hardly be smooth enough at the center or edge of
scan region. Such a phenomenon is usually called the singularity issue in rotating
double-prism beam scan system [1].

Based on (4.2), the tangential steering rate w; and radial steering rate wy; of the
emergent beam can be further given by [4]

dp 1 1 ay y 1 ax

op=—=—— 4.5a
P70 T X 1+ o 21+ (/) ot (452)
d 1 1 ax 1 1 3
U S S 3 S S S PN
dt ~ Dy 1+ (r/Dy)> 1’9t Dy 1+ (r/Dy)> r dt

where r = /x2+y? and D, = 1 mm. In addition, x and y represent the X- and
Y-differences between the beam exiting point N ,(X,,,,Yu,2,) from prism 2 and the
beam scan point P (X,,,Yp,Zrp)-

The relation of the beam steering rates wy; and wy, relative to the moving speeds
of beam scan point, denoted by v, in the X-direction and vy in the Y-direction, is thus
expressed as

3 1
e P AP S — (4.6a)
ve o Ox 21+ (y/x)
dp 1 1
@p _ %9 (4.6b)

vy dy - )_c'1+(y/)c)2
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. 1 1

o LA A A B (4.60)
Vx 0x Dy 1+ (r/Dy)" 1

. 1 1

R A AP S B (4.6d)
v 9y Dy 1+(r/Dy)° r

It is illustrated in Figs. 4.6 and 4.7 that wy tends to infinity and wj tends to
zero as the beam scan trajectory travels at a uniform speed towards the inner edge
of scan region, namely the edge of scan blind zone, where (x,y) approaches (0,0)
and r approaches zero. That is, the rotation angular velocities of two prisms have
primary influence on the tangential beam steering rate wy rather than the radial one
wyg-. Theoretically, the rotating prisms are required with infinite angular velocities to
steer the beam across the center of scan region, which thus results in a singularity
issue.

As the beam scan trajectory travels towards the outer edge of scan region at a
uniform speed, the ratios w, /@y and w,2/wy from the rotation angular velocities of
two prisms to the radial beam steering rate tend to infinity, while the ratios w,/wg
and w,>/wy; from the angular velocities of two prisms to the tangential beam steering
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rate are both constant at 1. In other words, the rotation angular velocities of prisms
mainly contribute to the radial beam steering rate wy. other than the tangential one
wg. Consequently, the other singularity issue occurs near the outer edge of scan
region, where the rotating prisms are also required with theoretically infinite angular
velocities so as to actualize the continuous beam scan process.

Due to the limited acceleration capability of driving motors, the smooth and steady
beam steering cannot be performed at the center or edge of scan region, which may
lead to the loss of target in many optical tracking applications. Fortunately, [4] has
suggested that the addition of a third prism is promising to eliminate the control
singularities of rotating double prisms.

There is always a 180° sudden change in the azimuth angle ¢ obtained by two-
step method once the beam scan trajectory travels across the center of scan region,
namely from the 1st quadrant to the 3rd one or from the 2nd quadrant to the 4th
one of Cartesian coordinate system. Consequently, two prisms suffer from periodic
sudden changes of 180° in their rotation angles, as indicated by the cases in Sect.
3.1.1.

4.3 Beam Distortion

For double-prism multi-mode scan system, the distortion of scan beam will get more
aggravated when either prism has larger wedge angle or refractive index. The beam
distortion cannot be neglected under some specific conditions [5, 6]. Therefore, the
inverse solution methods in Chap. 3 are combined with the ray tracing method to
elucidate the beam distortion issues at rotating and tilting scan modes, respectively.

4.3.1 Rotating Scan Mode

The distortion of scan beam steered by rotating double prisms has ever been studied in
[7], which merely discusses the influence of prism orientations on the beam distortion.
Considering the influence of other system parameters, the distortion of scan beam
can be further investigated as follows.

1. Incident Beam Parallel to the Optical Axis of the System

Figure 4.8 illustrates a typical rotating double-prism scan system, where prism 1 and
prism 2 are capable of coaxial rotation around the Z-axis. In this system, D and D,
represent the distance between two prisms and the one from prism 2 to the receiving
screen P, respectively, and A, is the incident beam vector. Assume that the incident
beam is circular with the radius r, and it propagates parallel to the optical axis of
the system, namely in the positive Z-direction. With the incident beam centered at
(Ax,A,,0), the beam edge on the surface 11 can be determined from
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Fig. 4.8 Rotating D D,
double-prism scan system -
with the incident beam

parallel to the optical axis
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where 0€[0°,360°].

To visualize beam distortion effects in simulation, the geometrical parameters of
each prism are refractive index n = 3, wedge angle ¢ = 10°, thinnest-end thickness
dy = 10 mm and clear aperture D, = 400 mm, and the defined distances are set to
D =400 mm and D, = 400 mm. Specially, the incident beam has a radius of r =
20 mm, and the beam center at the surface 11 is specified by (0,0,0).

The intersection coordinates between the beam propagation path and the surfaces
of rotating double prisms can be successively deduced from the formulae in Sect.
2.5.1.

A variable ¢ is defined in Fig. 4.9 to evaluate the degree of beam distortion. Given
the circular incident beam with a diameter of Dy, the emergent beam is usually
distorted to be noncircular by rotating double prisms. The most stretched or squeezed
diameter of the emergent beam is denoted by Dj,. Thus, the beam distortion degree
can be expressed as ¢ = ’Do — D6|/D0 x 100%.

Figure 4.10 illustrates the beam distortion under four specific combinations of
prism orientations 6, and 6,,, including (a) 8,1 = 0°,6,, =0°% (b)6,; =0°,0,, =
45° (c) 8,1 = 0°,6,, =90°% and (d) 6,; = 0°, 8,, = 180°. Consequently, the beam
distortion degree ¢ is determined to be 9.16, 9.25, 8.46% and 0 in turn.

Regarding the incident beam with unchanged shape and incidence angle, we can
quantify the influence of wedge angle «, refractive index n and spatial distance D,
on the beam distortion degree ¢, as listed in Table 4.1. Note that the rotation angles
of two prisms are held constant at 8,1 = 0° and 6,, = 0°, respectively.

It is evident in Table 4.1 that the beam distortion degree ¢ will increase once
the refractive index n or the wedge angle o becomes larger. For example, the beam
distortion degree ¢ increases greatly from 1.14 to 9.16% when the refractive index n
varies from 1.517 to 3. Nevertheless, the distance D; has no influence on the beam
distortion degree ¢. It also turns out that the emergent beam is usually squeezed by
rotating double prisms in some directions while stretched in the mutual perpendicular
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Fig. 4.10 Beam distortion under different combinations of rotation angles of double prisms, where
a6, =0%0,,=0%b6, =0°0,,=45%¢cH,1 =0°0,, =90%andd 0,1 =0° 6,2, = 180°

directions. In particular, the emergent beam can only be squeezed when the relative
rotation angle of two prisms A6, = 0°, and there is no more beam distortion when

Af, = 180°.
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Table 4.1 Beam distortion degree ¢ affected by several parameters of rotating double-prism scan

system
Refractive index n Wedge angle «/(°) Distance between two | Beam distortion
prisms D{/mm degree ¢ (%)
1.517 10 400 1.14
2 3.26
3 9.16
5 2.09
13 1.714
10 600 9.16
800 9.16

2. Incident Beam with an Arbitrary Incidence Angle

Two variables &, and §;, are introduced to specify the relative angle between the
incident beam and the Z-axis. As shown in Fig. 4.11, the pitch angle §, is defined
as the angle of the incident beam vector with respect to the positive Z-direction, and
the azimuth angle §, is defined as the angle of the incident beam projection in the
XOY plane with respect to the positive Y-direction.

Generally, we can assume that a circular beam with the radius of r is incident
to rotating double prisms with an arbitrary incidence angle, and the central axis of
incident beam intersects the surface 11 at the point (A,,A,,0). Since the projection
of the circular incident beam is elliptical on the surface 11, the beam distortion issue
can be discussed under the following two situations.

Prism 1

Prism 2

Fig. 4.11 Schematic diagram illustrating the beam propagation through rotating double prisms
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(1) When the circular beam is incident with the azimuth angle §;, = 0° and the pitch
angle §, # 0°, the elliptical beam projection has the major semi-axis of r/cosé,
and the minor semi-axis of r. Thus, the incident beam projected on the surface
11 can be specified by its edge equation:

Xx = Ay +rcosf/cosé,
y=A,+rsiné (4.8)
z=0

(2) When the the azimuth angle and the pitch angle of incident beam are, respec-
tively, 85, # 0° and §, # 0°, there is an angle §; between the major axis of the
elliptical beam projection and the Y-axis. As a result, the edge equation for the
incident beam projected on the surface 11 can be transformed as follows:

cosd, —sinéy () X

X
Y ¢ = | sind, cosd, O y 4.9)
Z 0 01 z

Substituting (4.8) into (4.9), the intersection coordinates of the incident beam and
the surface 11 are finally expressed as

X=cos8,(A; +7 cosf/cosé,) — sindy(Ay +r sin0)
Y=cos6,(A, +r sinf) + sind, (A, +r cos 0/ cos §,) (4.10)
Z=0

Given the incident beam vector A g = (sind,coss;, sind, sin 8;, coss,)T, the inter-
section of the beam propagation path and every prism surface can be successively
determined according to the vector refraction theorem.

In simulation, the geometrical parameters of each prism include n = 3, = 10°,
do = 10 mm and D, = 400 mm. The coordinate origin 0(0,0,0) coincides with the
center of the surface 11. The distance between two prisms and that from prism 2 to
the screen P are, respectively, set to D; = 400 mm and D, = 400 mm. To confine
the final emergent beam within the field of view, the incident beam of a radius » =
20 mm is prescribed with pitch angle §, = 4° and azimuth angle §, = 60°, and the
central axis of incident beam intersects the surface 11 at the point (10,0,0).

On the above basis, Fig. 4.12 presents the beam distortion under four specific
combinations of prism orientations 6,; and 6,,, including (a) 6,; = 0°, 6,, = 0°%
() 6,1 =0° 6,, =45°% (c) 8,1 =0° 0,, =90°% and (d) 6,; = 0°, 6,, = 180°.
Consequently, the beam distortion degree € becomes 8.145,7.971, 6.537 and 0.244%
in turn.

It is validated in Fig. 4.12 that rotating double prisms can squeeze the emergent
beam in some directions but stretch the beam in the mutual perpendicular directions.
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Fig. 4.12 Beam distortion under different combinations of prism orientations, where a 6,1 = 0°,
0,2=0°%b0O,1 =0°60,, =45%c¢c0, =0°6,, =90%and d 6,; =0°,60,, = 180°

In particular, the emergent beam is purely squeezed when the rotation angles of two
prisms are 6,; = 0° and 0,, = 0°, and the beam distortion almost disappears when
0,1 =0°and 6,, = 180°.

Providing the relative rotation angle of two prisms A8, with some fixed value,
Fig. 4.13 shows the relation between the beam distortion degree ¢ and the rotation
angle 6, of prism 1. As shown in Fig. 4.13a, the beam distortion degree ¢ is inde-
pendent of the rotation angle 6,; when the incident beam propagates parallel to the
Z-axis. However, ¢ gets associated with 8, once the incident beam is inclined with
respect to the Z-axis, as shown in Fig. 4.13b. In particular, the beam distortion can
usually be neglected when A8, = 180°.

To help investigate the beam distortion issue when the incident beam is inclined to
the Z-axis, the relation of the beam distortion degree £ with respect to the prism orien-
tation 6, or ,, can be established by fixing one prism and adjusting the other prism.
Hereby, Fig. 4.14a shows the variation of ¢ with 8,, when 6,; remains unchanged,
and Fig. 4.14b manifests the variation of ¢ with 6,; when 0,, is held constant. It
is common in Fig. 4.14 that the beam distortion will be minimized as long as the
relative rotation angle A6, = 180°.

Even though both prisms are kept stationary, the beam distortion may still be
significant when the incident beam propagates with different combinations of pitch
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Fig. 4.13 Relation between the beam distortion degree ¢ and the rotation angle 6, of prism 1,
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Fig. 4.14 Relation between the beam distortion degree ¢ and the rotation angle of each prism,
where a 0,1 and b 6, are held constant, respectively
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Fig. 4.15 Relation of the beam distortion degree ¢ with respect to the pitch angle §, and the azimuth
angle §;, of incident beam, where the prism orientations are a 6,1 = 0°,60,, =0°and b 6,1 = 0°,
0,2 =90°

angle §, and azimuth angle §,. In contrast, Fig. 4.15a indicates the relation of the
beam distortion degree ¢ with respect to §, and §, when the rotation angles of two
prisms are respectively constant at 6,; = 0° and 6,, = 0°, while Fig. 4.15b indicates
the one when 6, = 0° and 6,, = 90°.
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It is shown in Fig. 4.15a that the variation of beam distortion degree ¢ is always
symmetric about the line 6, = 180° as long as 6,; = 0° and 6,, = 0°. Clearly, ¢
increases monotonously as §;, ranges from 0° to 180°. Given &, within 0°-90°, ¢ is
limited by 8.04-9.07% when 8, = 2° and 5.61-9.07% when §, = 6°, which implies
that ¢ decreases with the increment of §,. Given §;, within 90°-180°, ¢ ranges within
9.07-10.23% when 6, = 2° and 9.07-12.31% when §, = 6°, i.e., the increment of §,
will resultin a larger ¢. In addition, similar conclusions can be drawn from Fig. 4.15b.

Besides the aforementioned factors, there are other system parameters that may
make influence on beam distortion, such as the wedge angle «, the refractive index n,
the central-axis thickness d of each prism and the distance D between two prisms.
Therefore, Fig. 4.16 shows the beam distortion degree ¢ varying with any one of these
parameters, where the incident beam is inclined to the Z-axis with a certain angle.

In accordance with the analysis on Fig. 4.13b and 4.16 proves that these system
parameters can hardly affect the beam distortion once the relative rotation angle of
two prisms A, = 180°. However, the beam distortion issue should be considered
if A6, # 180°. For example, when the rotation angles of two prisms are set to
0,1 =0°and 0,, = 0°, the beam distortion degree ¢ increases from 2.676 to 8.145%
as the refractive index n changes from 2 to 3, and ¢ varies from 1.714 to 8.145% as
the wedge angle o changes from 5° to 10°. Similar analysis can be presented when
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Fig. 4.16 Influence of system parameters on the beam distortion degree ¢, where a—d illustrate the
relation of ¢ relative to the refractive index n, the wedge angle «, the central-axis thickness d and
the distance D1, respectively
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Fig. 4.17 Four different configurations in a rotating double-prism system, where a—d represent
configurations 1, 2, 3 and 4, respectively

0,1 =0°and 8,, = 90° or when 8,1 = 90° and 6,, = 0°. It is also worth mentioning
that either the central-axis thickness d or the distance D; is not concerned with the
beam distortion degree ¢.

3. Influence of Prism Configurations on Beam Distortion

Since one prism can be situated with its plane facet inward or outward, there are
totally four different configurations for rotating double prisms [8], as exemplified
in Fig. 4.17. Obviously, the one in Fig. 4.17a has been chosen as the double-prism
configuration in Fig. 4.8.

In the following simulation, the coordinate origin 0(0,0,0) is fixed to the center
of the surface 11, the involved prism parameters are n = 3, « = 10°, dp = 10 mm
and D, = 400 mm, the defined distances are D; = 400 mm and D, = 400 mm. In
addition, the incident beam is inclined to the Z-axis with the pitch angle §, = 4° and
the azimuth angle §, = 60°.

Under any configuration in Fig. 4.17, the beam distortion degree ¢ induced by
specific prism orientations, the maximum beam distortion degree &, and its cor-
responding prism orientations (6,1,0,,) are determined as listed in Table 4.2. Mean-
while, Fig. 4.18 compares the most significant beam distortion under four different
configurations.

Table 4.2 reveals that the beam distortion degree is comparatively large under
configuration 1, which can be minimized under configuration 4. Nevertheless, there
are other influencing factors that should be taken into account for the system design,
such as beam deviation coverage and scan blind zone.
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Table 4.2 Beam distortion degree under four different double-prism configurations

Configurations| & emax (%) | (0r1.0r2)
corresponding to £max

0°,09 (%) | (0°90°) (%) | (90°,0°) (%) | (0°,180°) (%)
1 8.145 7971 6.537 0.244 11.276 (240°,240°)
2 22.743 16.668 8.034 8.407 36.372 (240°,240°)
3 22.743 10.423 6.490 0.244 25.310 (240°,240°)
4 1.689 1.043 3.516 6.917 7.692 (240°,60°)
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Fig. 4.18 Comparison of the most distorted beams under a configuration 1, b configuration 2,
¢ configuration 3 and d configuration 4

4.3.2 Tilting Scan Mode

The beam propagation path through tilting double prisms has been illustrated in
Fig. 2.7, where prism 1 and prism 2 tilt around the X- and Y-axes, respectively,
and the incident beam vector is given by A,,. To quantatively describe the beam
distortion induced by tilting prisms, we assume that the incident beam is circular
with a radius of r = 20 mm, and each prism has refractive index n = 3, wedge angle
o = 10°, thinnest-end thickness dop = 10 mm and clear aperture D, = 400 mm. In
addition, the distance between two prisms is D; = 400 mm and that from prism 2
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Fig. 4.19 Beam distortion under different combinations of tilting angles of double prisms, where
a0, =0%0,=0%b6; =0%6n=5%cH;1 =0°0,=10°%andd 6, = 10° 6,0 = 10°

to the screen P is D, = 400 mm. With the incident beam centered at (0,10,0), the
beam edge on the surface 11 is determined from

x =20cos0
y = 10+20sin 6 4.11)
z=0

where 0€[0°,360°].

Using the formulae in Sect. 2.5.2, the intersection coordinates between the beam
propagation path and the surfaces of tilting double prisms can be obtained in turn.

In simulation, Fig. 4.19 shows the beam distortion under four specific combina-
tions of tilting angles (8,1,8,) of double prisms, including (a) 8,; = 0°, 8, = 0°; (b)
0,14 =0°6,=5°%()8; =0°86, =10°and (d) 6,; = 10°, 6,, = 10°. Specifically,
the beam distortion degree ¢ is determined to be 8.46, 9.52, 13.01 and 20.30% in
turn.

The beam distortion dependent on the geometrical parameters of tilting double
prisms can be separately investigated as long as the incident beam is unchanged in its
shape and incidence angle. Specifically, the beam distortion degree ¢ induced by the
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Table 4.3 Beam distortion degree ¢ induced by several parameters of tilting double-prism scan

system
Refractive index n Wedge angle «/(°) Distance between two | Beam distortion
prisms D{/mm degree ¢ (%)

1.517 10 400 2.56

2 4.61

3 9.52

5 291

13 16.97

10 350 9.52

300 9.52

wedge angle «, the refractive index n as well as the distance D; is listed in Table 4.3,
where the tilting angles of two prisms remain at 6,; = 0° and 6,, = 5°, respectively.

By contrast between Figs. 4.12 and 4.19, it can be found that the emergent beam
is also squeezed by tilting double prisms in some directions while stretched in the
mutual perpendicular directions. Nevertheless, there is an inherent distinction that
tilting double prisms may cause more significant beam distortion than rotating double
prisms, as exemplified by Tables 4.1 and 4.3. The beam distortion degree ¢ will get
larger owing to the increment of wedge angle « or refractive index n. For example,
¢ increases from 2.56 to 9.52% as n varies from 1.517 to 3. Besides, it is noteworthy
that the distance D has completely no influence on beam distortion.

4.4 Error Modeling for Double-Prism Multi-mode
Scanning

If we do not consider the effects of systematic errors, the beam pointing error of
double-prism scan system is mainly determined by the coupling motion accuracy of
two prisms, mainly affected by prism assembly errors, bearing assembly errors and
mechanical transmission errors. The above errors can be attributed to the position
errors of double prisms by means of equivalent analysis.

To formulate the exact expression of beam pointing error, a position error model
that integrates the rotating and tilting motion modes of double prisms should be
established. Such an error model is also useful to elucidate the influence of prism
and bearing assembly errors on the beam pointing accuracy. For convenience, the
transmission errors in mechanical devices developed in Chap. 5 are equavilent to
prism orientation errors, namely the rotation or tilting angle errors of two prisms.
Given the desired beam pointing accuracy, it is thus possible to estimate the error tol-
erances for the development of double-prism scan system in practice. Moreover, the
error analysis method proposed in this section is available for reference in assembly
analysis of dynamic optical systems.
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As two significant error items, the assembly errors of prism and bearing confine
the beam pointing accuracy, which mainly result from the initial installation angle
errors due to prism tilt and bearing tilt, respectively [9]. To perform quantitative
analysis, an imaginary error item can be introduced to the prism or bearing position.
In other words, the prism or bearing should deviate from its theoretical position
around a spin axis. Now that the deviation error and the spin axis are both planned,
the actual emergent beam vector Ag; can be obtained in contrast to the theoretical
one Ayg.

Any vector that rotates around a spin axis will produce a new vector available
from Rodrigues transformation [10]. Therefore, given the unit vector (uy, u,, u,)"
for the spin axis, the incident or emergent beam vector of one rotating prism can be
specified by a rotation matrix Mp:

Mp =A, +cos6.(I —A,) +sind.B, 4.12)

Here I is a three-order unit matrix; § represents the rotation angle of the vector;
and A, and B, are, respectively, given by

2
Uy Uxlly Uyy;

Ap=| Uy, u§ UyU; (4.13a)
Uz Uy Uzlly uf
0 —u; u,

By=| u, 0 —u, (4.13b)
—uy uy 0

In either a rotating double-prism system or a tilting one, the prism elements may
be tilted around the X- or Y-axis and rotated around the Z-axis due to imperfect
assembly. For further explanation, Fig. 4.20a and b exemplify one rotating prism
that has been tilted around the Y-axis and one tilting prism that has been rotated
around the Z-axis, respectively. This section is to reveal what influence the assembly
errors of tilting double prisms have on the beam pointing accuracy. The same analysis
means is also available for the assembly error survey in rotating double prisms.

4.4.1 Pointing Error Caused by Prism Assembly

Since tilting double prisms are asymmetric, both the amplitude and the direction
of prism tilt should be considered for the analysis on beam pointing errors [11].
Accordingly, the beam pointing errors induced by the misassembly of prism 1 and
prism 2 are separately investigated as follows.
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Fig. 4.20 Modeling of prism assembly errors, where a shows one rotating prism that has been
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Fig. 4.21 Modeling of assembly errors of prism 1, where a and b indicate the prism assembly error
&, around the Z-axis and the one 8¢ around the axis OL, respectively

Usually, prism 1 tilts around the Y-axis while prism 2 tilts around the X-axis in
a tilting double-prism system. Taking prism 1 for example, the incident surface 11
is parallel to the XOY plane on the initial state. As shown in Fig. 4.21, the assembly
errors of prism 1 at an arbitrary tilting angle can be divided into two types. One type
has been illustrated in Fig. 4.21(a), where prism 1 is rotated around the Z-axis with
an angle §,. Thus, the normal vectors to the incident and emergent surfaces of prism
1 are both specified by a rotation matrix M p;:

Mpy = Rot(Z, ;) (4.14)
As shown in Fig. 4.21b, the spin axis OL is introduced to help describe the prism

tilt around the X- or Y-axis. The axis OL can be defined by rotating the X-axis
counterclockwise around the Z-axis with an angle 6. In other words, OL passes the
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coordinate origin and locates in the XOY plane, which is further determined by the

unit vector (ux, uy, uz)T = (cosbp, sinfdy, O)T. Hence, the prism tilt around OL can
be equivalent to that around the X-axis when OL coincides with the X-axis and that
around the Y-axis when OL coincides with the Y-axis.

Figure 4.21b indicates the other type of prism assembly errors, where prism 1
is tilted around the axis OL with an angle §y. Specially, the angle §y of prism tilt
represents the assembly error around the X-axis when 6y = 0 and the one around the
Y-axis when 6y = 90°. According to Rodrigues formulae, the rotation matrix M p,
that specifies the incident or emergent surface normal of prism 1 can be expressed as

Mpy; = Ap +cosg.(I — Ap) +sin §9.B, 4.15)

1. Assembly Errors of Prism 1

In this situation, prism 1 suffers from an assembly error of §, or §y, while prism 2 is
perfectly mounted. When the tilting angle of prism 1 is 0°, the normal vector N
to the prism surface 11 and the one Nj,, to the prism surface 12 are, respectively,
written as

110 =Mp2 - Mp;y - (0,0, DT (4.16a)
120 = Mpy - Mpy - (sina, 0, cos )" (4.16b)

When the tilting angle of prism 1 becomes 6,1, the normal vector N1, to the surface
11 and the one N ’12 to the surface 12 are, respectively, deduced from

Nlll = Rot(Y, 911)~N/110 (4.17a)
N,12 = Rot(Y, ezl)-N/lzo (4.17b)

Given the tilting angle 6, of prism 2, the normal vector N%; to the prism surface
21 and the one N%, to the prism surface 22 can be, respectively, expressed as

N’ = (0, sin(« + 6p2), cos(a + 9,2))T 4.17¢)
Ny, = (0, —sin 6y, cos 6y)" (4.17d)

Using the vector refraction theorem, the vector expressions for the beam propa-
gation path through tilting double prisms are sequentially given by

Al =Ap=(0,01T7 (4.18a)

/ / / / / T
Ay =nAy + {\/1 — 21— (ANl - ”A;rNu}-N/lz = (¥2. Y20 22)
(4.18b)
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’ 1 / 1 ’ ! ’ ) /

= (X3 Y3 203) (4.18¢)

T
Al = nAly+ {\/1 — 21 — (Al Npp)] — nA;3.N’22}.N’22 = (i 21

(4.18d)

where Ay, A}, and A}, represent the incident, refracted and emergent beam vectors
of prism 1 in turn; A;; and A;f are, respectively, the refracted and emergent beam
vectors of prism 2.

Therefore, the vertical field angle p{, and the horizontal field angle pj; of the final
emergent beam can be determined by

J
, Xy
py = arctan| — (4.19a)
“f
Vi
pf; = arctan —ff (4.19b)
af

Comparing the theoretical field angles py and py to the actual field angles pg, and
pi; dependent on prism assembly errors, the resultant errors in vertical field angle
and horizontal field angle are, respectively, given by

Apv=|py = pv| (4.202)
Apu=| oy — pl (4.20b)

Since prism 1 is only capable of tilting motion around the Y-axis, the prism tilt
around the X-axis cannot be modified by the linear driving motor.

For the following analysis, each identical prism has the wedge angle o« = 5° and
the refractive index n within 1.517—4, and the tilting angle 6,; or 8,, within 0°-10°.
Meanwhile, the prism tilt amplitude around the X-axis is held constant at §; = 0.2”
in order to simulate the assembly conditions in practice. Figure 4.22 describes the
influence of the prism tilt direction 6y on the maximum error A pgmax Of horizontal
field angle and the maximum error A pynax Of vertical field angle. In the case of n
= 1.517, A pumax reaches its maximum value of 0.51 w rad when 6y = 0° or 180°,
whereas A pymax reaches its maximum value of 0.52  rad when 6y = 90°. Likewise,
providing the prism tilt amplitude around the Y-axis as the stepping angle of linear
motor, namely §o = 0.08”, the error of vertical field angle py can be up to 0.21 . rad.
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Fig. 4.22 Influence of the prism tilt direction 8¢ on Apymax and Apymax When the tilt amplitude
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Fig. 4.23 Influence of the wedge angle o on ApHmax and Apymax When the assembly error of

prism 1 is §; = 0.2”, where a plots A ppmax as a function of & and b plots A pymax as a function of
o

Supposing that the assembly error of prism 1 exists only around the Z-axis, namely
8, =0.2", the variation of A pymax and A pymax With the wedge angle o ranging from
0° to 10° can be illustrated in Fig. 4.23. Furthermore, the impact of the refractive
index n on Appmax and Apymax is revealed. For example, A pgmax reaches about
0.044 . rad while A pymax 1s negligible when o = 5° and n = 1.517.

2. Assembly Errors of Prism 2

Regarding the situation that prism 2 suffers from an assembly error of §, or §o while
prism 1 is perfectly mounted, the resultant beam pointing errors are still available by
the above means.

Since prism 2 can only perform tilting motion around the X-axis, it is impossible
to modify the prism tilt around the Y-axis by the linear driving motor. Therefore, the
prism tilt amplitude around the Y-axis is set to 8o = 0.2” in simulation.

Given 8y = 0.2”, the maximum error Apymax Of horizontal field angle and the
maximum error A pymax Of vertical field angle are both nonlinear functions dependent



4.4 Error Modeling for Double-Prism Multi-mode Scanning 177

—+—The vertical pointing ermor
n=4

A‘“\'nm‘m]} 1 “m,r u rad

0 45 90 135 180
)]

Fig. 4.24 Influence of the prism tilt direction 8¢ on A pymax and Apymax When the tilt amplitude
of prism 2 is §¢o = 0.2

(a) 0.02 (b) 04

0.015

0.01

A‘()Hmin'llll‘“-ad

0.005

4 6 8 10
a/(®) al/(%)

Fig. 4.25 Influence of the wedge angle o on Apgmax and Apymax When the assembly error of

prism 2 is 8§, = 0.2”, where a plots A ppmax as a function of & and b plots A pymax as a function of
a

on the prism tilt direction 6y, as shown in Fig. 4.24. In the case of n = 1.517,
A pamax reaches 0.015 p rad at maximum when 6y = 172°, whereas A pymax reaches
0.0068 p rad at maximum when 6y = 90°. Moreover, the error of vertical field angle
pv is about 0.006 . rad, providing the prism tilt amplitude around the X-axis as the
stepping angle of linear motor, namely §;, = 0.08".

Supposing that the assembly error of prism 2 exists only around the Z-axis, namely
8, = 0.2”, Fig. 4.25 indicates the variation of Apgmax and A pymax With the wedge
angle o ranging from 0° to 10°, as well as the impact of the refractive index n on
ApHmax and A pymax. For example, when o = 5° and n = 1.517, Apymax reaches
about 0.045  rad while A ppmax is comparatively small.
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Fig. 4.26 Modeling of bearing assembly errors of prism 1, where a and b indicate the bearing
assembly error 8, around the X-axis and the one §, around the Z-axis, respectively

4.4.2 Pointing Error Caused by Bearing Assembly

Typical bearing assembly errors are illustrated in Fig. 4.26, where the bearing con-
figuration is simply described by a tilted bearing axis. Taking prism 1 for example, its
bearing axis may be tilted around the X-axis with an amplitude §, or rotated around
the Z-axis with an amplitude §,, as shown in Fig. 4.26a and b. Therefore, any bearing
assembly error of prism 1 can be specified by the combination of §, and §..

To distinguish what influence the bearing assembly errors of prism 1 and prism
2 have on the beam pointing accuracy, we usually assume that one bearing axis is
misaligned with the optical axis of the system while the other bearing is perfectly
mounted in the mechanical structure [11].

1. Bearing Assembly Errors of Prism 1

In this situation, there are bearing assembly errors of prism 1 rather than prism 2.
Theoretically, the bearing axis of prism 1 is specified by

(i, 1y, 1) = (0, 1,07 4.21)
The tilted bearing axis of prism 1 can be further specified by

(), ), )" =RoK(Z, 5.) - Rot(X, 8,) - (uy, uy, ;)"
=(— sin §; cos §y, cos §, cos dy, sin 8T 4.22)
Providing prism 1 with the initial tilting angle of 0°, the normal vector N}, to the

prism surface 11 and the one N, to the prism surface 12 are, respectively, expressed
as

110 = (0,0, DT (4.23a)
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Ny = (sina, 0, cosa)” (4.23b)

When the tilting angle of prism 1 becomes 6,, the rotation matrix M for normal

vectors to the incident and emergent surfaces of prism 1 are obtained in terms of
Rodrigues formulae, as follows

Myp=Ay +cosb;1.(I — Ap) +sin 6,1.By, (4.24a)

where

x x%y Px¥z

Ap = | W, w? wlu, (4.24b)
0 —u, u

By=| u, 0 —u, (4.24¢)
—u, u. 0

Based on the knowledge of M, the resultant normal vector Ny, to the surface 11
and the one N}, to the surface 12 are given by

Ny =M,.Ny, (4.25a)
Njy = My.Nipy (4.25b)

Given the tilting angle 6,, of prism 2, the normal vector N, to the prism surface
21 and the one N, to the prism surface 22 are expressed as

Nj; = (0, sin(ar + 6,2), cos(a +6))" (4.25¢)
Ny, = (0, —sin by, cos 6y)" (4.25d)

Using the vector refraction theorem, these normal vectors Ny, Ni,, N5, and N%,
can be utilized to deduce the actual horizontal field angle pj; and vertical field angle
py of the final emergent beam. Therefore, it is allowed to calculate the errors of
vertical and horizontal field angles from (4.20a) and (4.20b), respectively.

If the bearing tilt of prism 1 occurs around the X-axis with an amplitude §, = 0.2”,
the maximum field angle errors A pymax and Apymax are both functions dependent
on the wedge angle o and the refractive index n, as shown in Fig. 4.27. Clearly,
the bearing assembly error around the X-axis has more significant influence on the
horizontal field angle error Appmax than the vertical one Apvmax. For example,
A pamax can be up to 0.015 p rad when o« = 5° and n = 1.517.

If the bearing assembly error of prism 1 exists around the Z-axis, namely §, =
0.2", the variation of Apgm.x and Apymax With respect to o can be illustrated in
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Fig. 4.28 Influence of the wedge angle @ on Appmax and Apymax When the bearing assembly

error of prism 1 is §; = 0.2”, where a plots Apymax as a function of @ and b plots Apymax as a
function of «

Fig. 4.28. The impact of 7 on A pymax and A pymax can also be revealed. It is evident
that the bearing assembly error around the Z-axis will result in A pypax larger than
A pvmax- Specifically, A ppmax reaches 0.088 p rad when o = 5° and n = 1.517.

2. Bearing Assembly Errors of Prism 2

As for the situation that prism 2 suffers from bearing assembly errors whereas the
bearing of prism 1 is perfectly mounted, the resultant beam pointing errors can also
be determined in the above way.

If the bearing tilt of prism 2 occurs around the Y-axis with an amplitude 8§, =
0.2”, the maximum field angle errors A pgmax and A pymax are both associated with
the wedge angle o and the refractive index n, as shown in Fig. 4.29. Compared to
the horizontal field angle error A pymax, the vertical one A pyyax is obviously more
affected by the bearing assembly error around the Y-axis. For example, A pymax turns
out to be 0.0079 . rad when @« = 5° and n = 1.517.
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Fig. 4.30 Influence of the wedge angle @ on ApHmax and Apymax When the bearing assembly

error of prism 2 is §, = 0.2”, where a plots Apgmax as a function of o and b plots Apymax as a
function of o

If the bearing assembly error of prism 2 exists around the Z-axis, namely §, = 0.2",
the variation of A ppmax and A pymax With @ can be described in Fig. 4.30, as well as the
impact of 7 on A pgmax and A pymax- Nevertheless, it is interesting to find that the bear-
ing assembly error around the Z-axis has little influence on either A ppmax Or A Pvmax-

4.5 Summary

In this chapter, some crucial issues that influence the beam scan performance are
thoroughly investigated in both rotating and tilting double-prism systems. First, the
nonlinearity issue is described by the motion variables of two prisms to view the
dynamic scan process, including the change laws of prism orientations, angular
velocities and angular accelerations. Then, the control singularity is illustrated. The
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relation of the tangential beam steering rate wy; as well as the radial one wy; relative
to the moving speeds v, and v, of beam scan point is established to demonstrate
the formation and distribution of singularity phenomenon. Moreover, the distortion
degree of the beam emerging from rotating or tilting double prisms is assessed by
a quantitative derivation. Simulation results indicate that the change of the wedge
angle and the refractive index may have both stretching and squeezing effects on the
emergent beam. Such conclusions can provide significant guidance on compensating
and correcting the beam distortion. Finally, an error modeling method is introduced
to elaborate the potential sources of beam pointing error in double-prism scan system,
exemplified by comprehensive analysis on prism and bearing assembly errors.
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Chapter 5 ®)
Design of Double-Prism Multi-mode e
Scan System

Abstract Opto-mechanical design principle and techniques are investigated for the
development of double-prism scan devices at rotating, tilting or composite motion
mode. Design schemes based on the most suitable double-prism configuration are
proposed for any scan device, where different drive mechanisms are applied. Partic-
ularly, the rotating double-prism scan device driven by worm and gear mechanism is
implemented to verify beam scan performance. The tilting double-prism scan device
driven by cam-based mechanism is presented to transfer the nonlinear problem to
cam profile design. As for composite motion double-prism scan device, the four-axis
joint control strategy is used to enhance the adaptability to wide-range, high-precision
and multi-scale beam scanning.

In order to improve the performance of double-prism multi-mode scan system, such
as scan mode, scan coverage, scan precision, scan efficiency and trajectory charac-
teristics, this chapter places special emphasis on several critical techniques for the
system design, including double-prism configuration form, drive mechanism and
implementation methods, as well as structure design and performance simulation. A
series of optical scan devices are well developed on the basis of rotating or tilting
double prisms. Essentially, the proposed devices in this chapter can be generalized
with different setup of motion modes of two prisms, such as rotating, tilting and
composite motion.

5.1 Configuration

A circular wedge prism has two sides including a flat side and a wedge one, the former
is called plane facet, which is perpendicular to the optical axis, and the latter is called
wedge facet. For simplicity, the plane facet is denoted by a symbol A while the wedge
facet is labeled with a symbol B. Considering that one prism may be situated with the
plane facet or the wedge facet outward, there are totally four configuration forms for
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(a) (b) (d)

Wedge Plane Plane Wedge Plane Wedge Plane Wedge Wedge Plane Wedge Plane Plane Wedge Wedge Plane

Fig. 5.1 Four different configurations for a double-prism system, where a—d illustrate the forms
of BA-AB, AB-AB, BA-BA and AB-BA, respectively

a double-prism system as shown in Fig. 5.1, described by BA-AB, AB-AB, BA-BA
and AB-BA, respectively [1].

Depending on the arrangement of prisms 2, the above four configurations can be
divided into two groups. The BA-AB and AB-AB configurations are included by
group 1, while the BA-BA and AB-BA configurations are two members in group 2
[1]. Under the coordinate system shown in Fig. 2.5, the incident beam propagates
parallel to the Z-axis. Providing prism 1 and prism 2 with their individual rotation
angles 6,1 and 6,5, the emergent beam vector A,r1 = (Xrr1, Yrfis erl)T that exits
from rotating double prisms under either configuration in group 1 can be further
obtained from the vector refraction theorem, expressed as [1].

Xrf1 = @y cos 0,1 + az sina cos 6,2 (5.1a)

Yrf1 = a1 8in 6, +as sina sin 6,2 (5.1b)

Zrf1 = ay — a3 COS QA (5.1¢c)

Similarly, the emergent beam vector A, = (x, 25 Yrf2, Zr fz)T from rotating

double prisms under either configuration in group 2 can be expressed as [1]

X2 = by cos 6,1 — bzsina cos b, (5.2a)
Yrf2 = by sin 6,1 — by sina sin 6,2 (5.2b)
L2 = —\/1 —n2+ (by + b3 cos a)? (5.2¢)

The coefficients a;, a, and a3 of (5.1a) are determined from the expressions in
Table 5.1, while the coefficients by, b, and b5 of (5.2a) are given by the expressions
in Table 5.2.

Using (5.1a) and (5.2a), the beam deviation induced by rotating double prisms
can be quantitatively compared under different configurations. Given that each prism
has the wedge angle o =10° and the refractive index n=1.517, the pitch angle p of
the emergent beam ranges from 0° to 10.6255° under the BA-AB configuration, from
0.0709° to 10.6986° under the AB-AB configuration, from 0.0690° to 10.4086° under
the BA-BA configuration, and from 0° to 10.4796° under the AB-BA configuration.
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Table 5.1 Coefficients used to express the emergent beam vectors under two configurations in
group 1

Coefficients | BA-AB AB-AB configuration

configuration

aj sina(cos o — sina(—ncosa ++/1 — n? sin? )

n2 — sin a)

2
ar —sin®a + —\/n2 —1+ [n sin? & + cosay/1 — n? sin? a]

cos ay/n? 2

—sin“ «

as —(ay sina cos Af.—

ar cos ) +

V1 =02+ (a; sina cos A6, — as cosa)? Ab, =
9r2 - 9r1

Table 5.2 Coefficients used to express the emergent beam vectors under two configurations in
group 2
Coefficients | BA-BA configuration AB-BA configuration

by sina(cosa — v/n? — sin? o) sina(—ncosa ++/1 — n? sin? )
by \/1 —n? +(sin? a + cosav/n? —sin? @) | nsin®a +cosay/ 1 —n2 sin?

b3 b sin o cos AG, —

bycosa +

Vn2 =1+ (b sina cos A8, — by cosa)? Ab, =
9r2 - er

Although the minimum pitch angle seems relatively small under the AB-AB or BA-
BA configuration, it may result in large beam deviation and even generate blind
zone issues in far-field scan applications. Differently, the minimum pitch angle is
0° under the BA-AB or AB-BA configuration, which implies no blind zone once
the emergent surface center of prism 2 can be regarded as the exiting position of
the emergent beam. To guarantee the adaptability of beam scanning in a variable
distance, rotating double prisms should not be arranged in the AB-AB or BA-BA
configuration. As for rotating double prisms in the BA-AB configuration, there are
multiple beam reflections between the plane facets of two prisms, and the resultant
beam refractions may interfere with the beam scan point. Therefore, the AB-BA
configuration is applied to most rotating double-prism scan devices presented in this
chapter.

Likewise, tilting double prisms can be arranged in the above four configurations,
namely BA-AB, AB-AB, BA-BA and AB-BA. These configurations are different
in the thinnest-end pointing direction of each prism, and as a result, the consequent
beam scan point is steered towards different coordinate quadrants. However, the
horizontal and vertical field angles of the emergent beam from tilting double prisms
are both non-monotonic functions that depend on the tilting angles 6,; and 8,, varying
within —45° to 45°, as shown in Fig. 2.16. To facilitate the motion control of the
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system, it is preferable to restrict the horizontal and vertical field angles within their
monotonic intervals. Such a requirement can be satisfied by placing double prisms
in the AB-BA configuration, once the tilting angle of each prism increases from 0°.
Consequently, the AB-BA configuration is also applied to the tilting double-prism
scan devices presented in this chapter, where prism 1 and prism 2 are situated with
the thinnest ends pointing upwards and outwards, respectively.

5.2 Motion Mechanism

5.2.1 Rotating Double Prisms

The motion mechanism of the double-prism scan device directly determines the key
technical indexes such as the scan mode, scan speed and scan precision of the beam.
Different motion forms have great differences in the space layout, mechanism design
and control requirements.

1. Driven by Torque Motor Directly

Figure 5.2 shows a motor direct-drive rotating double-prism device developed by
Optra Company [2], which uses a torque motor coupling the prism to achieve full-
circle rotation. In this form, the device has advantages of high scan precision, multiple
scan mode, and stable scan trajectory by controlling the rotation angles and angular
velocities of two prisms separately. However, for the full-circle rotating prism, there
are problems such as torque ripple and slot effect, which will affect the control pre-
cision of the prisms. Moreover, direct-drive motors for large-aperture prism systems
generally require special customization that the cost of process are relatively high.
The author [3] proposed a device where two torque motors coupled to prism frames
are respectively used to drive two prisms to achieve a wide range scanning of the
beam.

2. Synchronous Belt Drive

The motion mechanism of the prism driven by servo motor through tension belt has
the advantages of simple structure and flexible arrangement. Meanwhile, it facilitates
adjusting the speed and position of the prism to meet the different scan requirements
in various occasions. In 2007, Garcia-Torales et al. [4] proposed a high precision
prism scanning system driven by the synchronous belt. Three-phase brushless motor
is employed with the size less than 40 mm? and a peak torque of 7.2 N m, which
has a fast response speed. Moreover, the sine-wave driving is easy to achieve smooth
operation and high resolution control.

Li and Gao [5] proposed a synchronous belt drive device for the large-aperture
rotating prisms, as shown in Fig. 5.3. Combined with a rotary encoder to achieve the
feedback adjustment, the precise control of the prism rotation can be accomplished.
The synchronous belt drive system has the advantages of smooth transmission, vibra-
tion absorption, small noise, flexible arrangement, compact structure and accurate
transmission ratio.
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Fig. 5.2 Rotating
double-prism system driven
by torque motor directly,
where 1 is encoder, 2 is
stator, 3 is rotor, 4 is bearing
and 5 is frame

Fig. 5.3 Rotating
double-prism scan device
driven by synchronous belt

3. Gear Drive

Yuan et al. [6] proposed a gear-driven rotating double-prism device. Two sets of
gear pairs are used to drive the two prisms, independently. With the drive of DC
torque motor, the transmission of spur gear meshing, the supporting of optical wedge
precision shaft, as well as the reliable clamping and positioning of optical wedges,
the high-precision scanning can be ensured for large-aperture incident beam. But
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Fig. 5.4 Rotating double-prism device driven by worm and worm gear, where 1 is encoder, 2 is
stepping motor, 3 is base rail, 4 is worm, 5 is worm gear, 6 is prism 1 and 7 is prism 2

with its large size in diametrical dimension, the structure is complicated and not
compact.

Yun et al. [7] mentioned a control method of the rotating prism driven by gears,
but did not give a detailed structural design. Zu et al. [8] proposed a method of using
electromotor unit with the transmission of gears to implement different combinations
of rotating double prisms, which can be used to simulate the relative motion of the
satellite. However, the motor-unit driving scheme and control system are complex,
as well as the space layout of the whole system.

4. Worm Gear Drive

The author [9] proposes a coarse-fine scanning double-prism device. The coarse
scanning is achieved through the worm gear mechanism to drive the prism around
the optical axis. But the fine scanning can be performed by the main section of the
prism tilted around the horizontal rotating axis (or vertical rotating axis). The author
team also proposed a double-prism scan device driven by two sets of worm gear
mechanisms [10], as shown in Fig. 5.4.

The characteristics of motion mechanisms above mentioned are compared in
Table 5.3.
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Table 5.3 Comparison of several rotating double-prism motion mechanisms
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Motion Basic Advantages Limitations Applications
mechanism transmission

principle
Torque motor Torque motor The speed and Torque ripple and | Small aperture,

directly drives
the prism

orientation are
controlled
separately; rich
scan mode and
stable track
trojectory

slot effect affect
the precision,
large motors need
to be customized

motion continuity
and precision are
not high

Synchronous belt

Servo motor
drives prism
rotation through
synchronous belt

Simple structure,
convenient for
angle and angular
velocity
adjustment of the
prism; smooth,
shock-absorbing,
low noise;
accurate
transmission
ratio, no slip

Cracking,
deformation,
lengthening and
breaking occur to
the belt when it
ages

Prism and drive
split; not suitable
for harsh
environments

Transmit torque
by two sets of
gear pairs, which
drive the two

The speed and
orientation are
controlled
separately;

Large in size
along the optical
axis and the
structure is

Large-aperture
system,
high-precision
scanning, and

prisms high-precision, complex and not | low limitation to
respectively stable scanning | compact the size of the
for large-aperture device
beams
Worm and gear | Rotary motor Large There is a Large aperture;
drives the worm, | transmission meshing gap and | no need of
then the worm ratio, simple and | the backlash is changing
gear drives prism | compact structure | difficult to orientation, and
eliminate low speed
scanning

5.2.2 Tilting Double Prisms

The characteristic of the tilting double-prism motion mechanism

motion and short stroke without backhaul clearance.

1. Stepper Motor Direct Drive

is reciprocating

Sun et al. [11] proposed that the tilting motion of the optical element can be achieved
by a stepper motor coupled with the rotating shaft. It has the compact structure and no
mechanical transmission error. However, the resolution of the prism angle is directly
constrained by the step angle of stepper motor. Meanwhile, the feedback of the tilting
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Fig. 5.5 Linear motor screw propulsion prism-swinging mechanism, where 1 is base, 2 is linear
stepper motor, 3 is motor screw, 4 is preloaded spring loop, 5 is stop screw, 6 is nut (top in V-groove)
and 7 is slider

angles of the prisms is not given, which make it difficult to correct the tilting angle
error of the double prisms in real time.

2. Linear Motor Screw Drive

The author [12] proposed a screw propulsion mechanism driven by a linear motor
to tilt the prism. Figure 5.5 shows the model of the linear motor screw propulsion
mechanism, which is mainly composed of a linear stepper motor, a motor screw,
a nut, a stop screw, a slider, a base, and a tilting plate. As we can see, the nut is
installed at the front end of the motor screw. There are two preloaded springs at the
left and right sides to make sure that the V-groove of the tilting plate keeps always in
contact with the nut. Before tilting, the stop screw ensures that the prism frame does
not deviate from its original position. To stay stationary in motion, the motor screw
is connected with the guide rail slider through the guide frame. This mechanism
converts the linear motion of the motor into a small-angle tilting of the prism, which
improves the control precision in principle. The main disadvantage is that the motion
relationship between motor and the prism is relatively complicated as the speed and
acceleration of them are nonlinearly related. In addition, friction and abnormal noise
are easily generated between the nut and the V-groove.
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Fig. 5.6 Double-slider implicated tilting prism mechanism composed of 1-linear motor, 2-cover
plate, 3-L-shaped plate, 4-tilting plate, 5-vertical guide rail and slider, 6-joint bearing, 7-horizontal
guide rail and slider and 8-base

3. Double-Slider Implicating Drive

In order to overcome the friction and abnormal noise generated between the nut
and the V-groove in the linear motor screw propulsion mechanism, the author [13]
designed a tilting double-prism scan device based on a double-slider-implicated
mechanism, as shown in Fig. 5.6.

It is mainly composed of a linear motor, a cover plate, a horizontal guide rail,
a horizontal slider, a joint bearing, a vertical guide rail, a vertical slider, a base,
an L-shaped plate, and a tilting plate. Connected rigidly with the cover plate and
the horizontal slider, the motor mover drives the horizontal slider reciprocates on
the horizontal guide rail. Similarly, connected with the L-shaped plate, the vertical
slider is driven to reciprocate on the vertical guide rail by the joint bearing. In this
way, the linear motion of the motor mover is converted into the tilting motion of the
prism frame through the joint bearing. Compared with the point contact between the
nut and the V-groove in the linear motor screw propulsion mechanism, the surface
contact between the vertical slider and the guide rail has the advantages of smaller
friction.

4. Cam Drive

Figure 5.7 illustrates a cam-based drive tilting prism mechanism [14]. For a spe-
cific scan trajectory, the cam-drive mechanism can transform the complex nonlinear
control into the profile design of the cam and improve the robustness of the control
system. The mechanism is mainly composed of a cam, a motor, two spiral spring, a
synchronous belt, a belt wheel and a tilting plate. The tilting axis is subjected to the
pre-tightening force of the spiral springs to keep the tilting plate in contact with the
cam. In the cam-based drive mechanism, only a proper cam profile is needed to be
designed to precisely realize the predetermined motion law of the prism. However,
due to the relative sliding at the contact line between the cam and the tilting plate,
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Fig. 5.7 Cam drive tilting
prism mechanism, where 1 is
motor, 2 is cam, 3 is tilting
plate, 4 is spiral spring, 5 is
belt wheel and 6 is
synchronous belt

Fig. 5.8 Slider-crank tilting
prism mechanism, where
1-7 denote motor, horizontal
guide rail, connecting rod,
horizontal slider, L-shaped
prism frame connecting
block, crankshaft and belt
wheel, respectively

the system precision will be affected by the abrasion. The measure of adding rollers
at the contact line can be considered to solve the problem.

5. Slider-Crank Drive

Figure 5.8 shows a slider-crank tilting prism mechanism [15]. This mechanism is
mainly composed of a motor, a crankshaft, a connecting rod, a horizontal slider, a
horizontal guide rail, a synchronous belt, two belt wheels, and an L-shaped prism
frame connecting block. Through the slider-crank mechanism, a continuous rotating
motion of the crankshaft can be converted into the reciprocating tilting motion of the
prism. The motion accuracy of double-prism scanner can be ensured.

The comparisons of the above-mentioned tilting double-prism motion mecha-
nisms are shown in Table 5.4.
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Table 5.4 Comparisons of several tilting double-prism motion mechanisms
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Motion Basic Advantages Limitations Applications
mechanism transmission

principle
Stepping motor | Stepper motor Small mechanical | High precision High-speed

directly coupled
to the tilting axis

transmission
error; easy to

for stepper
motors; prone to

scanning; low
requirements for

control the tilting | vibration motion continuity
angle; compact and precision
structure
Linear motor The linear motor | Simple structure; | Non-linear Small-aperture
screw screw pushes the | high control relationship lightweight
tilting plate fixed | precision between motor system;
on the prism and prism tilting | high-precision
frame to tilt angle; friction scanning

and abnormal
sound

Joint bearing,
double-slider

The linear motor
drives the

Small friction, no
abnormal noise

The non-linear
relationship

Large-aperture
heavy system;

guide rail horizontal slide between the low requirement
rail, which drives motor and prism | for scan precision
the vertical slide tilting angle;
guide through the multiple links
joint bearing and and large
drives the prism devices; large
to tilt accumulated
mechanical errors
Cam, The cam rotates | Simplify The mechanical | Constant
synchronous belt | at a constant nonlinear processing is trajectory
speed and the control; compact | difficult; the line | scanning;
prism frame is structure, easy to | contact is easy to | small-aperture
continuously design wear lightweight
driven to tilt by system

the connecting
rod

Slider and crank,
synchronous belt

The motor drives
prism to tilt
through
synchronous belt
and slider-crank
mechanism

High control
precision

The friction at
the slider contact
area affects the
precision

Small-aperture
lightweight
system

5.3 Design of Rotating Double-Prism Scan Device

5.3.1 Design Requirements

According to the requirements of beam scan performance, two sets of rotating double-
prism multi-mode scan system are designed. One is driven directly by a torque motor
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Fig. 5.9 Diagram of the worm and gear rotating double prism scan system, where 1 is laser source,
2 is rotating double prisms, 3 is four-Quadrant detector, 4 is two-dimensional electric slider and 5
is guide rail

[3] and the other is by a worm gear mechanism. Taking the worm gear drive scan
system as an example, as shown in Fig. 5.9. The design requirements are as follows:

(1) The beam scan coverage should allow the pitch angle within £10° and the
azimuth angle across 0°-360°.

(2) The beam scan precision should be better than 50 prad.

(3) The clear aperture of the system is D,=60 mm.

(4) The refractive index of each prism is n=1.517.

(5) The rotating double prisms are driven by worm and gear mechanism.

(6) The applicable wavelength ranges from 500 to 1550 nm (A=650 nm in the
experiment).

5.3.2 Mechanical Structure Design

The rotating double-prism scan system is shown in Fig. 5.9 [10]. Figure 5.10 shows
the exploded view of the single rotating prism assembly, including the base, bearing
ring, prism frame, prism, wedge ring, threaded ring, worm gear, worm, bearing,
stepping motor, and feedback encoder.

The structure parameters of the prism are as follows: the prism wedge angle
a=10°, the refractive index n=1.517, the diameter D=80 mm, the effective clear
aperture D,=60 mm and the thinnest-end thickness dyp =5 mm.
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Fig. 5.10 Exploded view of
single rotating prism
assembly, where 1 is
stepping motor, 2 is worm, 3
is feedback encoder, 4 is
bearing ring, 5 is thread ring,
6 is bearing, 7 is wedge ring,
8 is prism, 9 is worm gear, 10
is prism frame and 11 is base

The rotation angle and angular velocity of the prism can be precisely controlled
by the number and the frequency of pulses of the stepping motor. When the rotating
double-prism scan device is applied to tracking and scanning, the stepping motor is
expected to start and stop continuously and can be accurately positioned as the target
moves. Thus, the detailed parameters of the stepping motor selected for this device
are shown in Table 5.5.

The device is driven by the worm gear mechanism with small impact load, stable
transmission, and low noise, which can effectively reduce the size of the entire device
and can be self-locked to ensure the stability and reliability of the prism position.
The worm is fixed on the prism frame with screws to drive the prism to rotate. The
parameters of the worm and gear are shown in Table 5.6, while the main geometric
parameters are shown in Table 5.7.

A physical photograph of the entire device is shown in Fig. 5.11.

5.3.3 Control System Design

In the rotating double-prism scan system, when two prisms are driven by two stepping
motors, respectively, two rotary encoders collect the rotation angle values of two
prisms and automatically adjust the rotation angles and angular velocities of two
stepping motors, and a LCD is used to display the status of the angular velocities and
angles of two prisms. Furthermore, a series of buttons are designed for parameters
input and interface set. The control functions are shown in Table 5.8.

A LPC1114 processor is used in the control system based on the ARM Cortex-
MO core. With an integrated 32 KB Flash memory, a LPC1114 processor has a



5 Design of Double-Prism Multi-mode Scan System

196

or 125 [ or S e el 8’1 SHTY
ww/y)3us] (Fud S)/enaur | (wod N)Auswow | (W N)/JUawour
Apog JO JUSWOA Suruonisoq one)S | Huy/oueonpuy | 75/0Ur)sIsay vauam) | (,)/e[8ue daig [oPOIN

Jojow Jurddess oy jo s1ojoweIed §°S d[qRL



5.3 Design of Rotating Double-Prism Scan Device

Table 5.6 Main parameters of the worm and gear
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Main parameters Worm gear ‘ Worm
Center distance a/mm 80

Transmission ratio i 69

Modulus m/mm 2

Tooth number/head number Z | 69 1
Modification coefficient x; —0.100

Tooth angle o 20°

Addendum coefficient 2* a 1

Clearance coefficient ¢ 0.25

‘Worm type - Involute
Table 5.7 Main geometric parameters of the worm and gear

Geometric parameters Worm gear Worm
Reference circle diameter 138 22.4
d/mm

Root circle diameter dy/mm 132.6 17.4
Addendum circle diameter 144 26.4
de(or d,)/mm

Gorge diameter d,/mm 141.6 -
Lead angle 5°06'08”

Tooth depth A//mm 4.5

Tooth width b/mm 14 -
Axial tooth thickness S,/mm | 3.14

Universal Asynchronous Serial Transceiver (UART), two SSP controllers, one 12C
bus interface, eight 10-bit AD converters, two 32-bit timers, four 16-bit timers and up
to 42 GPIO interfaces. Figure 5.12 shows the overall design planning of a LPC1114-

based motion controller.

The motion controller mainly includes the following parts:

(1) LPC1114 minimum system: including crystal oscillator, power-on reset circuit
and manual reset circuit;

(2) Power circuit: convert 24-5 V and convert 5-3.3 V;

(3) 24V digital input circuit;

(4) 5V digital and PWM output circuit;

(5) RS485 communication circuit;

(6) RS232 program download interface;

(7) LCDI12864 control interface;

(8) 4 x4 matrix keyboard control interface;

(9) I2C communication interface;
(10) SPI communication interface.
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Fig. 5.11 Physical photo of the rotating double prisms

Figure 5.13 shows the printed circuit board (PCB) of the controller. The whole
appearance of the controller with a shell is shown in Fig. 5.14.

The control box contains a 24 V switchable power supply, 2 stepping motor drivers
and a motion controller, as shown in Fig. 5.15.

A two-phase hybrid stepping motor driver typed by M542 is used in the control
system, as shown in Fig. 5.16. Ituses DC 18-50 V power supply, which is suitable for
the two-phase hybrid stepping motor with driving voltage 24—50 V, current less than
4.2 A and external diameter 42—-86 mm. The driver is subdivided by the current loop
of the AC servo driver. The motor has the characteristics of small torque fluctuation,
smooth running at low speed, and few vibration or noise. Compared with other two-
phase drivers, the torque is much higher at high speed and the positioning precision
is high enough to meet the requirements.

5.3.4 Assembly Error Analysis

In a double-prism scan system, the main error sources that impact on the assembly
accuracy of double prisms can be summarized as tilt errors of the prism and bearing
[16, 17]. The specific analysis is as follows.
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Table 5.8 Requirements for the control functions of the rotating double-prism scan system

Serial Function Quantity required | Quantity designed | Remarks

number

1 24 V Digital input |4 8 4 spare
(encoder)

2 5 VPWM output |2 4 2 spare
RS232 1 1 -
communication
(program
download)

4 RS485 1 1 -
communication
(online
communication)

5 12C 1 1 -

SPIL 1 1 -

7 LCD display 1 1 -
screen (data
display)

8 LED Indicator 1 1 -
(debugging)

9 Buzzer (alarm) 1 1 -

1. Pointing Error Affected by Prism Assembly

In the rotating double-prism scan system, t rotate around the Z-axis. However, the
rotation angle error around the Z-axis may occur during the prism installation process,
that is, the initial position of the prism is not at the 0° position. By rotating the prism
around the axis, the initial position of the prism can be returned to the 0° position, so
in this section we do not discuss about the rotation angle error of the prism around
the Z-axis.

The spin axis OL is introduced to help describe the prism tilt around the X- or
Y-axis, and the axis OL can be defined by rotating the X-axis counterclockwise
around the Z-axis with an angle 6. In other words, OL passes the coordinate ori-
gin and locates in the XOY plane, which is further determined by the unit vector
(uy, uy, u;)" = (cos by, sinfy, 0)T. Hence, the prism tilt around OL can be equiva-
lent to that around the X-axis when OL coincides with the X-axis and that around
the Y-axis when OL coincides with the Y-axis.

Assumed that prism 1 is tilted around the axis OL with an angle 8. Specially, the
angle &y of prism tilt represents the assembly error around the X-axis when 6y =0
and the one around the Y-axis when 6y =90°. According to Rodrigues formulae, the
rotation matrix M, that specifies the incident or emergent surface normal of prism 1
can be expressed as
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Fig. 5.12 LPC1114 Overall design planning

M,=A,+cosdy-(I —Ap,)+sindy - B (5.3)

where I is a three-order unit matrix, and A, and B), are, respectively, given by (4.13a)
and (4.13b).

(1) Assembly Errors of Prism 1

In this situation, prism 1 suffers from an assembly error of §y, while prism 2
is perfectly mounted. According to the rotation matrix Mp, the normal vectors

11> N12, N5y and N, to the prism surfaces 11, 12, 21 and 22 can be obtained,
respectively. Using the vector refraction theorem, the incident, refracted and emer-
gent beam vectors A9, A, and A, of prism 1 and those of prism 2, A,,, A, and
A, > can be sequentially given.
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Fig. 5.14 Appearance of the controller

According to (2.6a-2.6d) and (2.7a-2.7e), the theoretical emergent beam vector
A, of prism 2 can be worked out, and then the pointing error of the rotating double-
prism system, which is the angle A between A, and A, > can be expressed as

Arf . A;'f

A = arccos| ——————
|Ars| - AL ]

(5.4)
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Fig. 5.15 Drive control box. a Front appearance. b Internal structure
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According to the assembly conditions in practice, the tilt amplitude of prism 1
around the axis OL is held constant at §o =1” in order to investigate the pointing
error A caused by the tilt error of prism 1.
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(2) Assembly Errors of Prism 2

Regarding the situation that prism 2 suffers from an assembly error of §y while
prism 1 is perfectly mounted, the resultant beam pointing errors are still available by
the above means. According to practical applications, the tilt amplitude of prism 2
around the axis OL is set to 8o =1” in simulation, to investigate the pointing error
A, caused by the tilt error of prism 2.

Figure 5.17 describes the influence of the prism tilt direction 6 on the pointing
error A when prism 1 and prism 2, respectively, suffer from an assembly error of §.
From Fig. 5.17, when 6y =90° or 270°, the pointing errors A; and A, all reach their
maximum values, which are 0.1032 and 0.0988 jirad, respectively.

2. Pointing Error Affected by Bearing Assembly

The bearing of the rotating prism may deviate from the ideal position during installa-
tion, and the bearing assembly error can be described by a tilted bearing axis. Similar
to the bearing assembly error of the tilting double-prism in Sect. 4.4, prism 1 and
prism 2 rotate around the Z-axis, and the bearing assembly error can be expressed by
the rotation angle of the bearing axis around the axis OL. The unit direction vector
of OL is: (uy, uy, u )T = (cos 6y, sin Gy, 0)T. Supposed that the bearing axis of the
prism is rotated counterclockwise around the axis OL with an angle §,, and the rota-
tion matrix is M, from the previous section. Therefore, the unit direction vector of
the bearing axis is expressed by: (/,, u; u;)T = M, - (cos 6, sin 6, 0)T. According
to Rodrigues formulae, the rotation matrix M, that specifies the incident or emergent
surface normal of the prism can be expressed as

M, = A, +cosb, - (I —A) +sinb, - B, (5.5)

where 6, is the rotation angle of the prism, and A, and B, are, respectively, given by
(4.13a) and (4.13Db).
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To distinguish what influence the bearing assembly errors of prism 1 and prism
2 have on the beam pointing accuracy, we usually assume that one bearing axis is
misaligned with the optical axis of the system while the other bearing is perfectly
mounted in the mechanical structure.

(1) Bearing Assembly Errors of Prism 1

In this situation, there are bearing assembly errors of prism 1 rather than prism 2. Sim-
ilar to the analysis method in Sect. 4.4, the resultant normal vectors, N;, N1,, N5,
and N, and beam vectors, Ao, A, A,, A,3and A, are still available by using
the vector refraction theorem.

Likewise, it is allowed to calculate the pointing error A of the rotating double-
prism system from (5.4).

According to the assembly conditions in practice, the bearing tilt of prism 1 around
the axis OL is held constant at an amplitude §o =0.2”, in order to investigate the

pointing error A caused by the bearing tilt of prism 1.
(2) Bearing Assembly Errors of Prism 2

As for the situation that prism 2 suffers from bearing assembly errors whereas the
bearing of prism 1 is perfectly mounted, the resultant beam pointing errors can also
be determined in the above way.

According to the assembly conditions in practice, the bearing tilt of prism 2
around the axis OL is held constant at an amplitude 8o =1”, in order to investigate
the pointing error A, caused by the bearing tilt of prism 2.

Figure 5.18 describes the influence of the bearing tilt direction 6 on the pointing
error A when prism 1 and prism 2, respectively, suffer from a bearing assembly error
of §p. From Fig. 5.18, when 6 =90° or 270°, the pointing errors A and A, all reach
their maximum values, which are 0.2043 and 0.1977 p.rad, respectively.
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In a word, when the tilt amplitude 3¢ is less than 1”7, the pointing error caused
by the assembly errors of the prism and bearing are controlled within the range of
0.22 prad, which can satisfy the design requirements for the scan device.

5.3.5 Beam Scan Property and Test

For the rotating double-prism scan system, the spatial distance D; between two
prisms must be kept within a certain range. Referring to Sect. 2.6.1, the range of
D1, 38-439 mm, can be obtained by the one-dimensional search method. According
to the analysis in Sect. 2.7.1, there is a scan blind zone at the center of the whole
scan region. In the near-field case, a unique minimum value of IP,Opl, which is the
distance between the beam scan point P, and the center point Op on the screen,
can be determined when D, varies from 38 to 315 mm, accompanied by IAf,|=
180°. For example, when D; =100 mm and 146,1=180°, the minimal |P,Op| of
7.1207 mm occurs and remains unchanged as D, varies. Nevertheless, when D
varies within [316, 439] mm, the minimal |P,Opl is related to the factor D,. In the
case of D =400 mm and D, increasing within the range of [1, 2.37] mm, the minimal
IP,Opl increases from 35.258 to 35.268 mm. In contrast, when D, >2.37 mm, the
minimal |P,Opl equals to 35.268 mm where |A6,|=180°, and there is no change in
the radius of blind zone. When two prisms are rotating at different combinations of
angular velocities, the corresponding different scan trajectories can be generated (as
shown in Fig. 2.26). Generally, the scan trajectories do not pass the origin any longer
when two prisms are rotating at different uniform speeds matched in near-field cases.
Moreover, the position of intersection points at the emergent surface of prism 2 has
significant influence on the final scan trajectory, which should not be ignored.

In this section, two methods are, respectively, employed to measure the variation
range and random error of the beam scan angle.

The beam scan random errors of the rotating double-prism scanner are measured
by the collimator light source and long focal-length observation collimator [16]. The
reticle pattern of the illumination collimator is imaged on the focal plane of the
observation collimator, and the rotation motion of two prisms will generate a cor-
responding image movement. Holding the scan trajectory constant, sectional beam
scan trajectory can be observed on the CCD of the observation collimator and the
measurement of trajectory fluctuation amount can be realized. In this test, the obser-
vation collimator is required for a sufficiently high resolution and suitable field of
view (FOV).

The beam scan angle of the rotating double-prism is measured by using collimator
light source and imaging system [16]. Regarding the CCD optical system as the
receiving system of scan beams, the receiving FOV of the CCD optical system is
determined according to the scan region of the rotating double-prism, which is rotated
to obtain the beam scan angle.
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5.4 Design of Tilting Double-Prism Scan Device

5.4.1 Design Requirements

With regard to the tilting double-prism scan device driven by cam-based mechanism,
the specific design requirements are listed as follows.

(1) The beam scan coverage should allow the vertical field angle no less than
6000 prad and the horizontal field angle no less than 3500 wrad.

(2) The beam scan precision should be superior to 1 prad.

(3) The clear aperture of the system is D,=60 mm.

(4) The refractive index of each prism is n=1.517.

(5) The tilting double prisms are driven by cam-based mechanism.

(6) The applicable wavelength ranges from 500 to 1550 nm.

5.4.2 Motion Law of Two Prisms

In order to meet the above design requirements, each prism element in the tilting
double-prism scan system has the clear aperture D,=60 mm, wedge angle o =10°,
refractive index n=1.517 and thinnest-end thickness dy =10 mm. The distance
between prism 1 and prism 2 is D; =150 mm, and the one from prism 2 to the
receiving screen is D, =400 mm. As shown in Fig. 5.19, the target trajectory is
given by (x+50.251)? +(y+38.840)> = 1. If the elapsed time for scanning the cir-
cular trajectory is set to t=10 s, the driving cams for double prisms should rotate
at the uniform speed of w. =0.2 wrad/s, and the total rotation angle of each cam is
deduced from §=w. x t [18].

Fig. 5.19 A given target -49
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Fig. 5.20 Tilting angle curves of two prisms

Using the lookup-table method [19], the tilting angle curves of two prisms can be
obtained in correspondence to the target trajectory, as shown in Fig. 5.20.

Clearly, the tilting angle curves are displayed with identical tendencies, similar
amplitudes but different phases. Since the X- and Y-coordinates are different at the
initial beam scan point, the initial phases of two curves cannot be consistent with
each other. Meanwhile, the beam exiting position deviates from the emergent surface
center of prism 2 due to the refraction effects, which results in the slight difference
in the amplitudes of two curves.

5.4.3 Cam-Based Oscillating Mechanism

The tilting angle curves of two prisms are generally nonlinear to perform beam
scanning along any specific target trajectory, which requires complicated control
strategies for the driving motors. However, if tilting double prisms are driven by
cam-based mechanisms, the motion control process will be greatly simplified by
transferring the nonlinear relation to the corresponding profiles of two cams. In
other words, the nonlinear motion laws of two prisms can be actualized through
uniform rotation of the driving cams.

1. Analytical Method for Cam Profile

The derivation of cam profile is essential to design the cam-based mechanism. In
principle, the cam profile is determined by the motion law of the follower, namely the
variation law of the angular displacement, angular velocity, and angular acceleration
of the follower with respect to the rotation angle of the cam. The basic motion laws of
a follower include uniform motion, constant acceleration motion, simple harmonic
motion, and so on. Now that the tilting prism acts as the follower of cam-based
mechanism in this section, the cam profile can be obtained from the prism motion
law. Hence, an analytical method is used to solve the mathematical expression for
cam profile [20].
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As illustrated in Fig. 5.21, the point O, represents the rotating axis of cam, the
point O stands for the tilting axis of prism assembly. For simplicity, the distance from
O, to O is denoted by D, and the base circle of each cam is specified with a radius
ro. Under the fixed coordinate system XO.Y, the positive direction of the O.X axis
is defined by the direction from O, to O, and the positive direction of the O.Y axis is
determined by counterclockwise rotating the positive O X axis with 90°. Meanwhile,
there is also a dynamic coordinate system X.O.Y attached to the cam. The tilting
prism assembly is tangent to the cam at the point 7'. Thus, the instantaneous center
of velocity between the cam and the prism assembly locates at the point P, namely
the intersection of the line OO, and the common normal passing the point 7. Note
that § is rotation angle of the cam and 6, is tilting angle of the prism. At the start
point of actuating travel of the cam, the angle of the follower relative to the line OO,
can be expressed as /0.0T=0,y =arcsin(ro/D.), and thus, its complementary angle
is given by /TO.0=358y) =7/2 — 0.

The distance between the rotation center O, of cam and the instantaneous center
P of velocity is determined from

_ DeJd6,/dd|

- (5.5)
1+d6,/ds

O P

In addition, the coordinates of the tangent point T are given by
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= +lpr sin(6; + &
x7 = xp +Ip7 sin(6; + &) 5.6)
yr = —lpr cos(8; + &)

where Ipr=(D. —xp)sin(0,+6,), and xp is the X-coordinate of point P in the fixed
coordinate system. It can be found that d9,/d§ > 0 and xp=Ip.p during the actuating
travel of the cam. Contrarily, d6,/dé <0 and xp=—Ip.p during the return travel of the
cam.

Through the transformation relation from the fixed coordinate system XO.Y to
the dynamic coordinate system X.O.Y, the analytical expression for cam profile is
obtained as follows:

Xe = x7 c08(8 + 8p) — yr sin(§ + §p) 5.7)
Ye = X7 8in(8 + 8o) + yr cos(8 + &) '

2. Design Procedure of Cam Profile

Referring to the equation § =w. x t, each cam for tilting prism rotates at a uniform
speed. Thus, the relation between the tilting angle of each prism and the rotation
angle of the corresponding cam can also be indicated in Fig. 5.20, where 8, is
considered as the X-coordinate. Specifically, §; and §, represent the rotation angles
of two cams for driving prism 1 and prism 2, respectively.

To establish the quantitative motion law of prism tilting angles relative to cam
rotation angles, the variation curves shown in Fig. 5.20 need to be fitted by the least-
squares method. The general formula of each fitting curve can be expressed as an
n-order polynomial:

0, =Co+C18+Ca8%+--+Cp8" (5.8a)

In comparison, the relation curve of the tilting angle of prism 1 with respect
to the cam rotation angle is successively fitted with 5-order, 6-order and 7-order
polynomials. Every sum of squared errors between the fitted and actual values of
all sample tilting angles has been listed in Table 5.9. Obviously, the sum of squared
errors of a 6-order polynomial is much less than the one of a 5-order polynomial
and close to the one of a 7-order polynomial. Considering that the curve fitted with
a 7-order polynomial is definitely more complex, the 6-order polynomial can be
employed as the fitting function for prism 1. In a similar way, the fitting function for
prism 2 is determined to be a 9-order polynomial with better fitting results.

Accordingly, the function for fitting the tilting angle curve of prism 1 is expressed
as

9” :C10+C1181 +C12812+-"+C16516 (Sgb)
The function for fitting the tilting angle curve of prism 2 is given by

9;2 ES Czo + C2182 + szS% + .-+ C293§ (580)
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Table 5.9 Comparison of fitting results produced by different fitting functions

Different fitting functions Sums of squared errors/rad?
Prism 1 | 5-order polynomial 4.447 x 1073

6-order polynomial 1.130x 1077

7-order polynomial 1.129 x 1077
Prism 2 | 8-order polynomial 5.426 x 1076

9-order polynomial 7.338 x 1077

10-order polynomial 7.313 x 1077

Table 5.10 Coefficients of the fitting functions for two prisms

Coefficients | Prism 1 (i=1) Prism 2 (i=2)
Cio 0.0313 0.1064

Ci —0.00289 —0.0741

Ci 0.0758 0.0375

Ci3 —0.0364 —0.0909

Cis 0.00782 0.0975

Cis —0.000940 —0.0459

Cis 0.0000499 0.01160

Ci7 —0.00166
Cig 0.000128
Cig —0.00000410

Furthermore, the coefficients of the fitting functions for prism 1 and prism 2 can
be obtained as shown in Table 5.10.

The height difference between the rotating axis of cam and the tilting axis of
prism assembly is set to 120 mm, namely the vertical distance of two points O and
O.. In general, the radius of base circle of each cam is determined according to
the mechanical principle that the actual pressure angle should not be greater than the
allowable pressure angle. However, since the pressure angle of cam-based mechanism
is constant at 90°, the radius of base circle can be selected with reference to the
cam eccentricity and the principle that avoids the interference among mechanical
components. On these basis, each cam is designed with the radius of base circle r
=10 mm. Furthermore, the profile curves of two cam components can be deduced
from (5.7), as shown in Fig. 5.22. Note that the outer curve and the inner curve,
respectively, specify the theoretical profile and the base circle of each cam, and the
point marked “*” denotes the initial contact position between each prism assembly
and its driving cam during installation.
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Fig. 5.22 Profile curves of a the cam driving prism 1 and b the cam driving prism 2
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Fig. 5.23 Photos of a the first cam component and b the second cam component

5.4.4 Mechanical Structure Design

Through the above theoretical analysis, the cam components used to drive tilting
double prisms are well designed and fabricated as shown in Fig. 5.23.

In practice, the cam drive mechanism suffers from friction, heat and abrasion
generated from the relative movement between cam and follower. Regarding the
overhead cam mechanism shown in Fig. 5.24a, the contact point P between the
cam and the follower always locates at the bottom of push rod. In case of large
transmission force, the addition of a roller is effective to reduce friction, heat and
abrasion. However, the cam mechanism with oscillating follower is a preferable
approach to drive each tilting prism, as shown in Fig. 5.24b. Considering that the
prism assembly has light weight (about 1.224 kg here) and its tilting angle 0 is 10°
at maximum, the transmission force given by F'=G - sinf can be comparatively low,
where G represents the gravity of the follower and F stands for the normal pressure on
the cam. Consequently, there is less friction, heat and abrasion generated in the cam
mechanism with oscillating follower. On the other hand, the contact point P between
the cam and the follower is always changing back and forth, which accounts for the
instantaneous heat much lower than that in the overhead cam mechanism.
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Fig. 5.24 Schematic diagram illustrating the principle of a overhead cam drive mechanism and
b cam drive mechanism with oscillating follower, where 1-4 denote push rod, roller, cam and
oscillating rod in turn
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Figure 5.25 presents a three-dimensional model of the tilting double-prism scan
device driven by cam-based mechanism. The device consists of two identical sub-
systems mounted on the guide rail of the base, each of which comprises a frame, a
cam-based mechanism for tilting prism, a prism cell assembly, a rotary encoder and
so on. The guide rail offers the possibility to adjust the distance between two prisms
and the distance from prism 2 to the receiving screen. The prism cell assembly is used
to fix the prism element and is connected with one end of the oscillating rod. Signif-
icantly, there is a screw inserted into the prism cell, which can be manually adjusted
to keep the principal section of prism vertical or horizontal. The rotary encoder is
used for real-time acquisition of prism orientation. In addition, the cam-based drive
mechanism is mainly composed of a stepping motor, a synchronous belt, two belt
wheels, a plate cam, an oscillating rod and its return facility. The plate cam is driven
by the stepping motor through the synchronous belt. As the follower, the oscillating
rod together with the prism assembly can perform tilting motion within the range of
0°-10°.

5.4.5 Kinematics Simulation and Analysis

The three-dimensional models of two tilting prism assemblies are, respectively,
imported into the Adams software, where the constraints and kinematic pairs between
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Fig. 5.25 Tilting double-prism scan device presented in a the three-dimensional model and b the
explosion view, where 1 is guide rail of the base, 2 is prism 1, 3 is cam-based drive mechanism for
prism 2, 4 is prism 2, 5 is rotary encoder, 6 is return facility for oscillating rod, 7 is oscillating rod,
8 is plate cam, 9 is one synchronous belt with two belt wheels, 10 is stepping motor, 11 is prism
cell assembly and 12 is frame

any two components are placed for further simulation. Since each tilting prism assem-
bly has single degree-of-freedom, only one rotary drive at a uniform speed of 36(°)/s
is required on the rotary shaft of stepping motor. For convenience, the transmission
ratio of the synchronous belt drive mechanism is set to 1. Then the rotary drive at
36(°)/s can be directly added on the rotary shaft of plate cam. After careful inspection
on the kinematics simulation animations, it is ensured that no physical interference
exists between any two components within the preset stroke.

By dividing the 20 s simulation into 200 steps, the tilting angles, angular velocities
as well as angular accelerations of prism 1 and prism 2 are obtained as shown in
Fig. 5.26.

The following analysis can be performed on the basis of Fig. 5.26.

(1) Thetilting angle of prism 1 is 9.4346° at maximum and 1.7890° at minimum, and
the one of prism 2 is 9.3553° at maximum and 1.4141° at minimum. These results
in simulation are mostly consistent with the calculation results in Sect. 5.4.2.

(2) The absolute value of the tilting angular velocity of prism 1 is 2.4276(°)/s at max-
imum, and that of prism 2 is 2.5065(°)/s at maximum. Referring to the 36(°)/s
rotation speed of cam, it is found that the cam-based transmission mechanism
can provide a large reduction ratio.

(3) There is no sudden change in either angular velocities or angular accelerations
of prism 1 and prism 2, which validates the motion smoothness of the cam-based
transmission mechanism.
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Fig. 5.26 Tilting angles, angular velocities as well as angular accelerations of a prism 1 and b
prism 2. Note that the initial tilting angle of prism 1 is 1.789° and the one of prism 2 is 6.088°, but
they are both equivalent to 0° in simulation. Therefore, the actual tilting angles of prism 1 and prism
2 can be determined by adding 1.789° and 6.088° to the equivalent tilting angles, respectively

5.4.6 Scan Error Analysis

Considering the initial prism orientations, the tilting angle curves of two prisms are
displayed in Fig. 5.27. These curves are involved to obtain the beam scan trajectory
in comparison to the target trajectory, as shown in Fig. 5.28. Obviously, the scan
trajectory is almost coincident with the target trajectory. The left part in Fig. 5.28
highlights an enlarged view of the area surrounding the point marked “+”, which
represents the position with a maximum error between two trajectories. Given that
the maximum scan error is 0.0075 mm and the diameter of circular target trajectory
is 2 mm, the maximum scan error accounts for only 0.375% of the diameter of target
trajectory. Therefore, the proposed tilting double-prism scan device is proven with
relatively high scan precision.
The primary sources of beam scan error are demonstrated as follows.

(1) To establish a 2501 x 2501 lookup table, the step angle is constant at . =
0.004°. The tilting angles of two prisms are obtained by searching the lookup
table for the point closest to each sample point on the target trajectory. In other
words, the obtained tilting angles correspond to some points in the lookup table
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Fig. 5.28 Comparison of beam scan trajectory and target trajectory, along with an enlarged view
of maximum scan error

but not exactly the sample points on the target trajectory. Such errors in tilting
angles of two prisms will definitely contribute to the beam scan error.

(2) The polynomial fitting method is employed to derive the functional relation of
prism tilting angles with respect to cam rotation angle. Consequently, there are
fitting errors that may generate the beam scan error.

(3) The cam profiles are actually not closed due to the limitations of polynomial
fitting method. For the closed cam profiles, the last fitted point in each cam
profile should be replaced by the first one. The design errors in cam profiles can
result in the beam scan error as well.
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5.4.7 Influence of Scan Speed on Scan Trajectory

To help reveal what influence the rotation speeds of two cam components have on the
beam scan trajectory, the rotation speed w,; of the first cam is held constant, while
the rotation speed w., of the second cam is set to we; = wc), Wer =2W¢1, We2 =31,
Wep = —Wc], W2 =—2w1 and we = —3w,; in turn. Consequently, six different scan
trajectories are obtained and then divided into three groups for comparison, as shown
in Figs. 5.29, 5.30 and 5.31. The dashed lines stand for scan trajectories produced
under the cam rotation speeds in the same direction, and the solid lines represent
scan trajectories produced when two cam components rotate in opposite directions.
Upon comparing three groups of beam scan trajectories, the following conclusions
can be drawn.

(1) The maximum deviation between the dashed line and the solid line is 0.0244 mm
in Fig. 5.29, 0.0344 mm in Fig. 5.30 and 0.0300 mm in Fig. 5.31. It can be seen
that the dashed lines and the solid lines substantially coincide with each other.
In other words, the rotation direction of the second cam is hardly associated
with the shape of beam scan trajectory. Despite the difference in the rotation
speeds of two cam components, the resultant beam scan trajectories are centrally
symmetric due to the structural symmetry of each cam.

(2) Ifthe second cam rotates more rapidly than the first one, the beam scan trajectory
will travel throughout its Y-range at higher frequency than its X-range. The
multiple of travelling frequency is always equal to the rotation speed of the
second cam divided by that of the first cam. Similar analysis can be performed
if the first cam rotates more rapidly than the second one.



5.4 Design of Tilting Double-Prism Scan Device 217

C
C
A
G T T T T T
ymfmm
Fig. 5.30 Beam scan trajectories when w¢» =2wc| and we» = —2wc|, respectively
C

315 -38 -385 -39 -395
y,/mm
Fig. 5.31 Beam scan trajectories when w¢» =3wc| and we = —3wc], respectively

(3) Regardless of how the rotation speed of the second cam varies with respect to
that of the first cam, the X-range and Y-range of beam scan trajectory are both
unchanged.
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5.5 Design of Composite Motion Double-Prism Scan Device

5.5.1 Design Requirements

In the composite motion double-prism scan device, each prism is capable of both
rotating motion within 0°-360° to perform coarse scanning and tilting motion within
0°-5° to perform fine scanning. Accordingly, the specific design requirements are
listed as follows.

(1) The coarse scan coverage should allow the vertical field angle and the horizontal
field angle ranging from —10° to 10°. The fine scan coverage should allow the
vertical field angle no less than 2500 rad and the horizontal field angle no less
than 1200 prad.

(2) The beam steering precision should be superior to 50 pwrad during coarse scan-
ning and 1 prad during fine scanning.

(3) The clear aperture of the system is D,=60 mm.

(4) The refractive index of each prism is n=1.517.

(5) The rotation motion is directly driven by torque motors, while the tilting motion
is realized through the coordination of linear motors and linkages.

(6) The applicable wavelength ranges from 500 to 1550 nm.

5.5.2 Layout Scheme of the System

In addition to the performance requirements of composite motion, the characteristics
of nested mechanisms should also be considered in the system design. The proposed
scan device mainly consists of double wedge prisms, driving unit (including two
torque motors and two linear motors), position feedback unit (including two tilting
angle encoders and two rotation angle encoders), four-axis joint control unit, and
other electronic and mechanical support components. Figure 5.32 shows a schematic
diagram illustrating the structure design of one prism assembly. The layout of the
other prism assembly is almost identical with the one shown in Fig. 5.32.

Each prism is made of K9 glass material. For sufficient clear aperture of the
system, the plane and wedge facets of each prism are, respectively, fixed by one
circular pressure ring and one wedge-shaped retaining ring that has the same wedge
angle as the prism. The pressure ring and the retaining ring are separated from the
prism by special plastic screws made of nylon material, in order to avoid prism
damage induced by uneven forces.

A pair of cross roller bearings are arranged on the internal prism cell to withstand
loads in all directions, including radial load, axial load and impact load. The external
prism cell is only required to perform tilting motion, which results in relatively less
impact. Therefore, a pair of high-precision angular contact ball bearings are mounted
around the horizontal tilting axis, one of which is fixed while the other is flexible. A
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Fig. 5.32 Structure diagram .3
of one prism assembly,

where 1 is linear motor, 2 is
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pair of cross roller bearings are also mounted around the vertical tilting axis to carry
a certain axial load.

The high-precision angle encoders are employed to obtain real-time feedback
from the rotating and tilting motion of each prism. Accordingly, the rotation angle
encoder is placed on the internal prism cell, and the tilting angle encoder is placed
around the tilting axis of the external prism cell. These encoders come with reading
heads and zero marks, and are equipped with PC counting cards and driver software.

A four-axis joint control scheme is applied to the control unit of the scan device,
as shown in Fig. 5.33. The industrial PC communicates with the logic/motion con-
troller through USB, and the controller is equipped with I/O expansion ports. The
driver interface of rotating axes 1 and 2 (driven by torque motors) and that of tilting
axes 1 and 2 (driven by linear motors) are, respectively, connected to the correspond-
ing motor interface. Meanwhile, the rotating axes 1 and 2 are connected with the
independent servo-axis channel so that any time-based beam scan trajectory can be
planned using the control unit.

5.5.3 Analysis on the Center of Gravity

The analysis on the center of gravity can be performed in two parts, namely adjusting
the center of gravity and calculating the moment of inertia. It is necessary to adjust the
center of gravity, mostly because the center of gravity of rotating components deviates
from the optical axis owing to uneven quality of the prism element. The moment of
inertia can be involved to determine the driving torques required for rotating and
tilting motion of each prism assembly, as a reference for motor selection.
Generally, the center-of-gravity adjustment should be performed with emphasis
on the rotating components of each prism assembly, mainly including internal prism
cell, prism and wedge-shaped retaining ring. Given the prism assembly modelled in
Solidworks software, the center of plane facet of the prism is defined as the coordinate
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Fig. 5.33 Control unit composed of 1-industrial PC, 2-logic/motion controller, 3-rotating axis 1,
4-rotating axis 2, 5-tilting axis 1, 6-tilting axis 2 and 7-1/0 expansion ports

Table 5.11 Mass properties analysis on overall rotating components

Total mass/kg 200.79
Volume/mm?® 3.85x 107
Surface area/mm? 2.27 x 10°
Center-of-gravity coordinates/mm X Y z
0 0.913 34.88

origin, and the direction of the optical axis specifies the Z-direction. Once the material
parameters are selected for each rotating component, the geometrical parameters
of overall rotating components, such as mass, volume, surface area and center-of-
gravity coordinates, can be obtained through the analysis on mass properties. For
convenience, the analysis results are listed in Table 5.11.

Influenced by the wedge-shaped retaining ring, the center of gravity of rotating
components only deviates from the Y-direction with 0.913 mm. To reduce such
deviation as much as possible, a 45° arc groove having a width of 20 mm in the Z-
direction and a depth of 16 mm in the Y-direction is cut out on the top of the internal
prism cell (in the positive Y-direction). In addition, the arc groove is symmetric
about the principal section of the prism element. The optimized internal prism cell
and other rotating components are presented in Fig. 5.34, where the Y-coordinate of
the center of gravity is 6.45 x 10~ mm and the total mass becomes 199.21 kg.
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(a) (b)

Fig. 5.34 Optimized internal prism cell and other rotating components a in the lateral view and b
in the isometric view

Table 5.12 Key parameters of rotating components

Internal prism cell Prism Wedge-shaped
retaining ring
Volume/mm? 1.71 x 107 1.91 x 107 2.14 x 10°
Density/(kg mm~3) | 7.85x 1076 2.53x107° 7.85x 1070
Surface area/mm?> 1.40 x 10° 6.18 x 10° 2.63 x 10
Mass/kg 135.11 48.32 16.78

The moments of inertia to be calculated include the one J, of rotating components
and the other one J, of tilting components. For further calculation, the key parameters
of each rotating component are listed in Table 5.12.

The inertia tensor of overall rotating components relative to the global coordinate
system can be expressed as (unit: kg m?)

Ixx Ixy Ixz 824 0 0
I,=| Iyx Iyy Iyz | =| 0 829 0.01 (5.9)
I7x 17y 177 0 0.01 14.28

Since the rotating components rotate around the Z-axis, the corresponding
moment of inertia is given by J,=1,,=14.28 kg m?. As required in most appli-
cations, any rotating scanner should offer rapid initial response as well as stable and
continuous output. Thus, the rotation angular acceleration of each prism can reach
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Table 5.13 Mass properties analysis on overall tilting components

Total mass/kg 863

Volume/mm? 1.87 x 108

Surface area/mm? 1.23 x 107

Center-of-gravity coordinates/mm X Y Z
—-0.72 —0.005 35.21

B,=9.42 rad/s?, and the available torque from each torque motor selected for rotating
components must be greater than 134.52 N m.

The tilting components refer to the external prism cell and all components mounted
inside the cell. Considering that some components are properly simplified during
modelling, the moment of inertia of overall tilting components can only be determined
in approximation. Based on the mass properties analysis shown in Table 5.13, the
inertia tensor of overall tilting components relative to the global coordinate system
can be expressed as (unit: kg m?)

Lyx Txy Ixz 73.11 —0.47 —0.02
I,= |1,y I}y Iy, | = | —0.47 78.20 —0.01 (5.10)
Ly Iy 1, —0.02 —0.01 137.85
For tilting components that tilt around the X-axis, the corresponding moment of
inertia is given by J, = I}y = 73.11kg m?. Under different application require-
ments, the tilting angular acceleration of each prism can reach 8,=0.0872 rad/s>
instantaneously. Providing the arm of each linear motor as 0.525 m in this device, it
can be found that the available thrust force from the linear motor selected for tilting
components must be larger than 12.143 N.

5.5.4 Design of Drive Mechanism

The drive mechanism should be responsive, stable and reliable enough, since each
prism has the maximum angular acceleration up to 9.42 rad/s> when it is activated
and the maximum rotation angular velocity up to 9.42 rad/s once it is stabilized.
Therefore, the rotating motion of each prism assembly can be achieved through a
torque motor controlled with real-time feedback. Characterized by low speed, large
torque, small torque ripple, superior overload capacity, rapid response and good
linearity, the torque motor is used to eliminate the necessity of transmission gears
and directly drive the load, which can greatly improve the system operation accuracy.
A drive scheme for the rotating components in each prism assembly is formulated as
shown in Fig. 5.35, where the rotor and stator of the torque motor are, respectively,
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Fig. 5.35 Drive scheme for
rotating motion, where 1 is
wedge-shaped retaining ring,
2 is prism element, 3 is
torque motor and 4 is
internal prism cell

Table 5.14 Main parameters of torque motor

Supply voltage/V 340 | Continuous locked-rotor current/A 6

Continuous locked-rotor torque/N m 180 | Peak locked-rotor current/A 36
Armature resistance/S2 8.5 | Inductance/mH 29
Maximum no-load speed/r min~! 95 | Moment of inertia/kg m? 2.4

mounted on the internal prism cell and the external one. The main parameters of the
torque motor are listed in Table 5.14.

The tilting motion of each prism assembly is achieved through the slide and linkage
mechanism, as shown in Fig. 5.36. Using a joint bearing, the horizontal displacement
of the linear motor can be converted into the angular deviation of the junction plate
connected to the external prism cell. Both the horizontal slide and the vertical slide
can realize effective stroke of 100 mm. Since the joint bearing offers the benefits of
self-aligning, self-lubrication, simple structure as well as convenient installation and
uninstallation, it is especially suitable for low-speed, heavy-load and lubrication-free
mechanism. The inner ring of the joint bearing has the maximum deviation range
of £10°. A grating scale is arranged parallel to the horizontal guide on the base,
which can accurately locate the rotor of linear motor. Furthermore, the linear motor
is equipped with two stop blocks placed at the extreme positions of its rotor motion.

As shown in Fig. 5.37, the ironless linear motor is selected to drive the tilting
motion of prism assembly, which employs more lightweight actuator than the iron-
core linear motor. The ironless linear motor is also advantageous in strong acceler-
ation capacity, good dynamic performance, long service life, low full-load rate and
compact structure, so it can be preferable to drive high-precision and small-stroke
motion. Table 5.15 lists the main parameters of the selected motor. The effective
stroke of the linear motor is 75 mm. In order to achieve the prism tilting motion
within the angular range of —1°-5°, it is necessary to mark the extreme positions of
0° and 5° on the guide and place corresponding stop blocks on the base.
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Fig. 5.36 Drive mechanism for tilting motion, where 1 is linear motor, 2 is cover plate, 3 is L-
shaped plate, 4 is junction plate connected to prism cell, 5 is vertical slide on the guide, 6 is joint

5 Design of Double-Prism Multi-mode Scan System

bearing, 7 is horizontal slide on the guide, and 8 is base

Fig. 5.37 Stator and rotor of ironless linear motor

Table 5.15 Main parameters of linear motor

Peak thrust force/N 60 | Thrust force constant/V A™! 15.28
Continuous thrust 20 | Counter electromotive force/V m~! s~! 8.82
force/N

Peak power/W 180 | Motor constant/N W~! 5.65
Rated power/W 20 | Interphase inductance/mH 1.51
Peak current/A 4.8 | Interphase resistance/S2 4.8
Continuous current/A 1.6
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Fig. 5.38 Sketch of overall model in Adams

5.5.5 Kinematics Simulation and Analysis

Considering the existence of wedge facets of two prisms and the special integra-
tion of rotating motion and tilting motion during beam scan process, the multi-body
dynamics software Adams is used to perform kinematics analysis on the displace-
ment, velocity and acceleration at any arbitrary point on each prism. The modeling of
prism element, internal prism cell and external prism cell can be properly simplified,
because the kinematics analysis is only involved with some arbitrary points on each
prism. Further investigation on the simplified model are demonstrated as follows.

Through the three-dimensional modeling software Solidworks, the above model
is established according to the given physical dimensions. After perfect assembly,
the overall model is imported into Adams, where the material and shape of each part
are defined as shown in Fig. 5.38.

The next step is to place constraints on the model, including the definition of
kinematic pairs and the addition of driving forces. The kinematic pairs mainly refer
to four revolute joints, namely joinl between prism 1 and the first internal prism
cell, join2 between prism 2 and the second internal prism cell, join3 between the
first internal prism cell and the external prism cell, and join4 between the second
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Fig. 5.39 Sketch of overall model after adding constraints

internal prism cell and the external prism cell. The marker points of joinl and join2
are, respectively, specified at the CM (center of mass) points of two internal prism
cells. Joinl and join2 can directly free the rotating motion of two prisms, while join3
and join4 can free the rotating motion of two internal prism cells to achieve the tilting
motion of two prisms. Moreover, one fixed pair is defined between the external prism
cell and the ground so as to fix the overall model.

During coarse beam scanning, joinl and join2 are actuated by two rotary drives at
the uniform speed of 36(°)/s. The simulation period is set to 5 s in order to accomplish
the rotating motion of two prisms within 0°~180°. As for fine beam scanning, join3
and join4 are actuated by two oscillatory drives at the uniform speed of 1(°)/s. The
simulation period is also set to 5 s in order to realize the tilting motion of two prisms
within 0°-5°. On these basis, the model can be well prepared for the following
simulation and analysis, as shown in Fig. 5.39.

For example, the kinematics simulation is performed on the point a on the thinnest
end of prism 1. Provided that prism 1 works at rotating, tilting or composite motion
mode, the simulation results on the displacement, velocity and acceleration of the
point a are plotted in Figs. 5.40, 5.41, 5.42, 5.43,5.44, 5.45, 5.46, 5.47 and 5.48.
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Fig. 5.40 Displacement, velocity and acceleration of the point a in the X-direction, when prism 1
works at rotating motion mode
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Fig. 5.41 Displacement, velocity and acceleration of the point a in the Y-direction, when prism 1
works at rotating motion mode

As shown in Figs. 5.40, 5.41 and 5.42, there is no change in the Z-displacement
of the point a once prism 1 can only achieve rotating motion, and the corresponding
velocity and acceleration are both constant at 0. However, the displacement, velocity
and acceleration of the point a are variable in the X- and Y-directions owing to the
wedge angle of prism 1. The maximum X- and Y-velocities can be found when the
X- and Y-coordinates of the point a are 0, respectively, while the minimum X- and Y-
velocities can be found when the X- and Y-coordinates of the point a are maximum,
respectively. In other words, the point a has maximum Y-velocity (or X-velocity)
when the thinnest end of prism 1 is aligned with the negative X-axis (or Y-axis),
while the point @ has minimum Y-velocity (or X-velocity) when the thinnest end of
prism 1 is aligned with the positive X-axis (or Y-axis). Similarly, the X-acceleration
(or Y-acceleration) reaches its maximum value when the X-velocity (or Y-velocity)
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Fig. 5.42 Displacement, velocity and acceleration of the point a in the Z-direction, when prism 1
works at rotating motion mode
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Fig. 5.43 Displacement, velocity and acceleration of the point a in the X-direction, when prism 1
works at tilting motion mode

is minimum, while the X-acceleration (or Y-acceleration) reaches its minimum value
when the X-velocity (or Y-velocity) is maximum.

Given prism 1 at tilting motion mode, the kinematics simulation results are pre-
sented in Figs. 5.43, 5.44 and 5.45. Concerning that the principal section of the tilting
prism 1 locates in the YOZ plane, the X-displacement of the point a is constant, and
the velocity and acceleration are both 0 in the X-direction. Due to the large diameter
and small tilting angle of prism 1, there is approximately linear change in the Z-
displacement of the point a, and the velocity and acceleration are almost unchanged
in the Z-direction. With the increment of the tilting angle of prism 1, the velocity
increases but the acceleration decreases in the Y-direction.

As for prism 1 at composite motion mode, the simulation results are shown in
Figs. 5.46, 5.47 and 5.48. The maximum X-velocity (or Y-velocity) occurs when the
X-coordinate (or Y-coordinate) of the point a is 0, while the minimum X-velocity
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Fig. 5.44 Displacement, velocity and acceleration of the point a in the Y-direction, when prism 1
works at tilting motion mode
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Fig. 5.45 Displacement, velocity and acceleration of the point a in the Z-direction, when prism 1
works at tilting motion mode

(or Y-velocity) occurs when the point a arrives at maximum X-coordinate (or Y-
coordinate). In other words, the point a has maximum Y-velocity (or X-velocity)
when the thinnest end of prism 1 is aligned with the negative X-axis (or Y-axis),
while the point @ has minimum Y-velocity (or X-velocity) when the thinnest end of
prism 1 is aligned with the positive X-axis (or Y-axis). Likewise, the X-acceleration
(or Y-acceleration) reaches its maximum value when the X-velocity (or Y-velocity)
is minimum, while the X-acceleration (or Y-acceleration) reaches its minimum value
when the X-velocity (or Y-velocity) is maximum. As the Z-displacement of the point
a increases, the velocity gets larger in the Z-direction. The maximum Z-acceleration
occurs when the tilting angle of prism 1 is 3°, while the minimum Z-acceleration
occurs when the tilting angle of prism 1 is 0°.
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Fig. 5.46 Displacement, velocity and acceleration of the point a in the X-direction, when prism 1
works at composite motion mode
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Fig. 5.47 Displacement, velocity and acceleration of the point a in the Y-direction, when prism 1
works at composite motion mode

5.5.6 Scan Error Analysis

Generally, the primary sources of beam scan error fall under two categories, namely
systematic errors and random errors. Systematic errors mainly include the processing
errors in the wedge angle and refractive index of each prism and the perpendicularity
error between the principal sections of two prisms. Random errors mainly refer to
the orientation errors in the rotation or tilting angles of two prisms.

1. Rotating Motion Mode

At rotating motion mode, two prisms in the proposed device are supposed to rotate
at the same speed around the Z-axis, expressed as Af,=60,, —6,; =0. Thus, the
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Fig. 5.48 Displacement, velocity and acceleration of the point a in the Z-direction, when prism 1
works at composite motion mode

pitch angle of emergent beam can be determined from the formulae in Sect. 2.3.1,
as follows

p=arccos(cos §, cosd; — sind, sindy) = §; + 6, (5.11)

where p is the pitch angle of emergent beam, §; and §, represent the beam deviation
angles induced by prism 1 and prism 2, respectively.

According to our previous research, 8, is associated with the wedge angle « and
the refractive index n, and §, is dependent on «, n and the relative rotation angle A6,
of two prisms. Now that two prisms rotate synchronously with A6,=0, the pitch
angle reaches its maximum value that equals to the sum of beam deviation angles
induced by two prisms, namely p=10°30'. In addition, there is a reduction ratio
close to 18:1 between the prism rotation angle and the beam deviation angle. Such a
reduction ratio allows lower accuracy requirement for each rotating prism assembly,
which can be significant to achieve high-precision scanning and tracking.

To help reveal the influence of prism orientation errors, an imaginary error dA6,
is introduced to the relative rotation angle Af,. Since dA#6, is relatively small, the
pitch angle p can still be obtained from (5.11) in approximation, and §; is always
independent of the rotation angles of two prisms. Therefore, the total differential of
the pitch angle p is derived through the following differentiation calculus:

851 + 882 88] + 882 832
p = do +

dn +
o on 20,

dA6, (5.12)

where do and dr denote the wedge angle error and refractive index error of each
prism, respectively.
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Table 5.16 Analysis on the systematic errors in rotating double prisms

Systematic errors dn=1x10"° da=1"

Pitch angle error dp/jrad 0.4311 2.259

The error analysis results with regard to rotating double prisms are listed in
Table 5.16. It turns out that the wedge angle error has comparatively large impact on
the pitch angle error.

It has been mentioned in Sect. 5.5.1 that rotating double prisms are required to
achieve beam scan precision better than 50 prad. Given the ratio between prism
rotation angle and beam deviation angle as 18:1, the overall mechanical error of
each rotating prism cannot exceed the upper tolerance of 900 prad. Accordingly, the
comprehensive accuracy of the mechanical structure and control unit used for prism
rotation should be superior to 185.73".

2. Tilting Motion Mode

Once both prisms work at tilting motion mode, the proposed device is regarded as
the tilting double-prism system shown in Fig. 2.7, where prism 1 tilts around the
Y-axis and prism 2 tilts around the X-axis. Given the incident beam vector A¢g =
(x0, Yo, z0)T = (0,0, )T and the emergent beam vector Ay = (xf, Vi zf)T, the
pitch angle of emergent beam can be deduced from (2.15) as follows

p = arccos(xoX s + oYy + 202 ) = arccos(zy) = arccos[sin Bia cos(yp — 82)]
(5.13)

where B;; =arcos[cot(—48)] is the angle of the emergent beam vector A, from
prism 1 relative to the positive X-direction, y,» =0 is the relative angle between the
projection of A in the YOZ plane and the positive Z-direction, §; and §, represent
the beam deviation angles induced by prism 1 and prism 2, respectively.

Seen from Fig. 2.16, the vertical field angle error of the emergent beam is mostly
affected by the tilting angle 6, of prism 1, whereas the horizontal field angle error
mainly depends on the tilting angle 6,, of prism 2. Therefore, the total differential
of the pitch angle is expressed in terms of tilting angle errors df,; and df,,, wedge
angle error da and refractive index error dn, as follows

9 (35 35 35 p (35 35 35
p= L2046, + Pl + ldn ) + L 22246, + 2 da + 2dn
381 89,1 o on 832 89;2 o on

(5.14)

ap P2 1
where & = —F2 = —— an
35[ 351 /l—COt(Sl)z

Using (5.14), we can separately quantify the influence of the systematic errors
and random errors in tilting double prisms. Particularly, there is a perpendicularity
error dt between the principal sections of two prisms, which can be equivalent

9
da—g)Z:l.
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Table 5.17 Analysis on the systematic errors in tilting double prisms

Systematic errors dn=1x10"° da=1" dr=1"
Pitch angle error dp/prad 0.258 3.844 0.332
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Fig. 5.49 Relation of the change rate of pitch angle with respect to a the refractive index n and b
the wedge angle « of each prism

to an undesired deviation of the incident beam in calculation. On the above basis,
Table 5.17 indicates the analysis results on the systematic errors of tilting double
prisms.

Figure 5.49 illustrates the relation between the change rate of pitch angle and the
refractive index as well as the wedge angle of each prism. Providing the refractive
index n within 1.5-1.6, the change rate of pitch angle dp/dn reaches the maximum
value 0.2593 rad and the minimum value 0.2578 rad. The pitch angle error increases
with the increment of refractive index or wedge angle. Specifically, the pitch angle
error can be 0.258 wrad once an error of 1 x 107° is introduced to the nominal
refractive index n=1.517, and the pitch angle error becomes 3.844 prad if there is
an error of 1” in the nominal wedge angle o =10°.

Figure 5.50 reveals the relation of the change rate of pitch angle relative to
the tilting angles of two prisms. As the tilting angle 6, of prism 1 ranges within
0°-5°, the change rate of pitch angle dp/df,; takes the maximum value of 0.0262 or
0.1276 prad/(") (when 6,; =5°), the minimum value of 0.0150 or 0.0726 prad/(")
(when 6,; =0°) and the average value of 0.1001 wrad/(”). Likewise, as the tilting
angle 6, of prism 2 varies within 0°-5°, the change rate of pitch angle dp/d6,, takes
0.0138 or 0.0678 jrad/(”) at maximum (when 6, =5°), 0.0045 or 0.0216 rad/(”) at
minimum (when 6,, =0°) and 0.0447 jrad/(”) on average. Consequently, the aver-
age scale factor between the tilting angle of prism 1 and the beam deviation angle
is 48:1, while the one between the tilting angle of prism 2 and the beam deviation
angle is 108:1.

As mentioned in Sect. 5.5.1, the beam steering precision of this device should be
superior to 1 prad during fine scanning. Since the maximum change rate of pitch
angle takes 0.1276 prad/(”) for prism 1 and 0.0678 rad/(”) for prism 2, the tilting
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Fig. 5.50 Relation of the change rate of pitch angle with respect to a the tilting angle 6, of prism
1 and b the tilting angle 6> of prism 2

motion accuracy of prism 1 should be better than 7.840", and that of prism 2 should
be better than 14.749”. In other words, the mechanical structure and control unit
used for the tilting motion of prism 1 and prism 2 are, respectively, required with the
comprehensive accuracy better than 7.840” and 14.749”.

5.6 Summary

This chapter concentrates on the design principle and techniques of the rotating
double-prism scan device, the tilting double-prism scan device as well as the com-
posite motion double-prism scan device. Through the comparison of four different
double-prism configurations, we select the most suitable configuration form for rotat-
ing or tilting double prisms. Many design schemes of rotating double-prism scan
device and tilting double-prism scan device are further presented on the basis of var-
ious drive mechanisms. For the verification of beam scan performance, the rotating
double-prism device driven by the worm and gear mechanism is well developed with
both mechanical structure and control system. In order to simplify the motion control
process and improve the control accuracy of tilting double prisms, the cam-based
drive mechanism is adopted in the proposed tilting double-prism device, which can
transfer the nonlinear control problem to the cam profile design. As for the com-
posite motion double-prism device, the four-axis joint control strategy is employed
to achieve independent rotating motion and tilting motion of each prism. It turns
out that the composite motion double-prism device has the enhanced adaptability to
perform wide-range, high-precision and multi-scale beam scanning.
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Chapter 6 ®)
Performance Test on Double-Prism Grectie
Multi-mode Scan System

Abstract Performance tests are conducted for the scan devices based on rotating
double prisms, tilting double prisms and cascaded Risley prism pairs. Given a rotat-
ing double-prism scan device, the multi-mode beam scan test and directional beam
tracking test are accomplished to validate the multi-mode beam scan theory using
rotating double prisms, and another test is about the accuracy of inverse solutions
obtained from lookup-table method. A tilting double-prism scan device is tested
to evaluate prism motion accuracy, reduction ratio from prism orientation to beam
deviation, beam deflection range and accuracy. Additionally, the coarse-fine coupling
tracking test is performed on a scan device composed of two Risley prism pairs.

6.1 Introduction

To verify the design principle of the scan system and the functionality of the designed
devices, this chapter mainly focuses on the static and dynamic performance tests of
the double-prism multi-mode scan system [1].

For rotating double prisms, the verification tests incorporate: (1) multi-mode scan
performance; (2) directional tracking performance, which can be expressed as the
deviation between the actual scan point and the theoretical one; (3) lookup-table
method, which can be validated by measuring the beam tracking precision at the
prism orientations reversely solved with lookup-table method [2].

The verification tests on tilting double prisms mainly include: (1) tilting accuracy
of the prism, which is shown as the relation between the tilting angle of the prism
measured by high-precision collimator and that read from the encoder; (2) the func-
tion between the tilting angle of the prism and the corresponding beam deflection;
(3) the scan range of the emergent beam in the vertical and horizontal directions; (4)
beam pointing precision, namely the error between the actual beam deflection caused
by an unit tilting angle of the prism and the corresponding theoretical beam deflec-
tion; test (1)—(3) are measured using autocollimator [3—6], and test (4) is gauged by
an interferometer.

© National Defense Industry Press and Springer Nature Singapore Pte Ltd. 2018 237
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In addition, a coarse-fine tracking method based on two pairs of rotating Risley
prisms with different wedge angles is proposed, and the verification test mainly
focuses on measuring the tracking errors of the coarse tracking subsystem and the
fine tracking subsystem.

The above performance tests should be accomplished softly without vibration
and shocks. Specially, the experimental equipment used in the tilting double-prism
system should be positioned on an air bearing worktable in a super-clean temperature-
controlled laboratory.

6.2 Performance Test on Rotating Double Prisms

6.2.1 Hardware of the Test Platform

A two-dimensional slipway system, composed of two orthogonal guide rails and
a slider mounted on the vertical slipway, is adopted to simulate the motion of any
moving target. A four-quadrant detector, of which the center is regarded as the target
point, is fixed on the slider. Thus, arbitrary planar target trajectories in the XOY plane
can be simulated by controlling the movement of the slider.

The scan range of the designed rotating double-prism system is a circular ring
with the radius of the outer circle R = 82 mm, and therefore the effective stroke of
two guide rails must be greater than 164 mm. Considering the limit switch at each
rail end and the influence of structure parameters, the effective strokes of the X-axis
and Y-axis guide rails are set to 300 mm and 400 mm, respectively.

The guide rails, driven by step motors with step angle of 1.8°, move the slider
through ball screw pairs, of which the type specification is 1204, the diameter is
12 mm, the lead is 4 mm and the round trip accuracy is 0.02 mm. Figure 6.1 is the
picture of the selected two-dimensional slipway, and the functional requirements of
the control system are listed in Table 6.1.

Comparing Table 5.8 and Table 6.1, the functional requirements of the slipway
control system are consistent with those of the prism control system. Hence we
employ the same controller as shown in Sect. 5.3.3 for the motion control of the
two-dimensional slipway.

Four-quadrant detectors, characterized by high homogeneity, symmetry, reliabil-
ity, high sensitivity, wide spectral response range and small blind zone, are widely
used in many high-precision measurement occasions such as laser aiming and dis-
placement monitoring. Therefore, in this test, a four-quadrant detector is selected to
detect the position of the laser spot, and further evaluate the accuracy of the rotating
double-prism system.

A four-quadrant detector is a reverse bias array of four semiconductor diodes,
which are totally identical in theory. Given the constant radiation flux irradiating
from the laser to each quadrant, the photocurrent generated on each quadrant are
equal. Furthermore, the radiation fluxes on each quadrant will redistribute if the laser
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Fig. 6.1 Two-dimensional slipway, where 1 is the slider, 2 and 3 are the ball screws of the X and
Y axis, respectively

Table 6.1 Functional requirements of the two-dimensional slipway control system

No.

Function

Demand quantity

Design quantity

Remark

1

24 V digital input (for limit
switch)

4

8

4 spare sets

5 V PWM output

2 spare sets

RS232 communication (for
program loading)

—

RS485 communication (for
online communication)

12C

SPI

LCD display (for data display)

LED (for debugging)

O| 0| J| | W

Buzzer (for alarm)

U (U (U [N [N

U (NG (U (U [N

spot moves, and thus the position of the laser spot on the detector can be calculated

according to the proportion of the photocurrent on each quadrant.

A set of four-quadrant detector instrument mainly consists of an amplifier, a four-
quadrant probe, a power adapter and some other components. The four-quadrant
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amplifier and four-quadrant probe are shown in Fig. 6.2a and b, with the individual
technical parameters shown in Tables 6.2 and 6.3.

As shown in Table 6.2, the laser spot positioning accuracy of the selected four-
quadrant detector is superior to 0.01 mm, which satisfies the requirement of the
performance test on rotating double-prism system. An USB cable is used to transfer
data from the amplifier to the computer. And the user interface of the four-quadrant
detector software, as shown in Fig. 6.3, is intuitive and easy to use.

6.2.2 Software of the Test Platform

As shownin Fig. 6.4, the test platform mainly consists of the laser, the rotating double-
prism scanner and its controller, the two-dimensional slipway and its controller, as
well as the four-quadrant detector. For the collaborative operation of the test system,
a piece of dynamic tracking software is developed for data exchange and motion
control.

In general, the dynamic tracking software can be divided into two parts, namely
the host computer software and the slave computer software. The former one, embed-

(b)

Fig. 6.2 Components of the four-quadrant detector where a is the four-quadrant amplifier and b is
the four-quadrant probe

Table 6.2 Parameters of the four-quadrant amplifier

Accuracy | Power supply | A/D conversion cycle | Dimension (W x H x L) Weight
0.0lmm |DC33V/£15V |3 ps 160 mm x 80 mm x 155 mm | 960 g

Table 6.3 Parameters of the four-quadrant probe

Diameter of the photosensitive area | Screw | Dimension (W x H x L) Weight

¢6 mm M4 54.5 mm x 54.5 mm x 74 mm 150 g
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Fig. 6.4 Block diagram of the test platform for the rotating double-prism multi-mode scan system

Rotating double-prism
dynamic tracking
system

Dynamic
tracking software

ded with the inverse algorithm of rotating double-prism system and programmed in
Matlab, is used for target point data processing, inverse solution computing, and data
exchange with the slave computer. The latter one, designed on the basis of LPC1114
MCU in Keil for ARM, can not only receive the order from the host computer to
control the step motors, but also monitor the running status of the tracking system
and transfer the feedback data. The RS485 serial bus is used for communication
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between the host computer and the slave computer. Detailed descriptions of the host
and the slave computer software are as follows.

The functions of the host computer software, whose user interface is built based
on Matlab GUIDE, mainly include: (1) obtaining the target coordinate from the
two-dimensional slipway controller through RS485 serial bus; (2) figuring out the
corresponding prism angles using the integrated inverse algorithm; (3) sending the
rotation angles and velocities to the rotating double-prism controller through RS485
serial bus. The block diagram and the user interface of the host computer software
are shown in Figs. 6.5 and 6.6, respectively.

Two controllers, namely the rotating double-prism controller and the two-
dimensional slipway controller, make up the slave computer. Hence the main function
of the slave computer software is to control the rotation angles and velocities of the
step motors. As the block diagram shown in Fig. 6.7, the slave computer can work in
four different control modes. Taking the rotating double-prism controller for exam-
ple, the four different modes are as follows:

(1) Manual mode. The rotation angles, velocities and directions of two prisms are
regulated manually through a 4 x 4 matrix keyboard. Moreover, two keys in
the matrix are specially designed for origin setting and zeroing.

(2) Automatic uniform scan mode. The rotation velocities, directions and the
RUN/STOP switch status are all preset for continuous and uniform rotation
of two prisms. This mode is specialized for the uniform scan test on double
prisms.

(3) Single-step mode. In this mode, a series of rotation angles are pre-stored in
the controller, and the prisms rotate towards the preset angles in single steps
according to key pressing.

(4) Linkage tracking mode. The host computer takes complete control of the prism
motion by sending the motion order to the rotating double-prism controller
through RS485 serial bus.

-
Inverse tracking algorithm of
rotating double-prism system

vy

' ™y
RS485 RS485 A A
. ] Host computer Rotation angles of
larget coordinates o ;
(PC) double prisms

L. >y

Fig. 6.5 Block diagram of the host computer software
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Fig. 6.7 Block diagram of the slave computer software

6.2.3 Multi-mode Scan Performance Test

In order to test the beam scan modes of the designed rotating double-prism system
and evaluate the directional tracking performance, a test platform is established as
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Fig. 6.8 Eexperimental platform for testing the rotating double-prism multi-mode scan perfor-
mance

shown in Fig. 6.8. The test platform mainly includes rotating double-prism device
and its motion controller, laser, coordinate screen, guide rail and slider. More detailed
descriptions of the used components are listed in Table 6.4.

Table 6.4 Parameters and functions of the components used in the multi-mode scan performance
test platform

Device Parameter Function

Rotating double prisms | Wedge angle: o = 10° Deflect laser beam
Refractive index: n = 1.517

Diameter: D = 80 mm

Thinnest-end thickness: dyp = 5 mm
Distance between two prisms: D1 = 100 mm

Motion controller MCU: LPC1114 Motion control of
double prisms

Laser Wavelength: 650 nm Emit collimated laser
Power: P > 2.5mW beam
Focus: variable focus
Coordinate screen Resolution ratio: 1 mm Receive the laser and
Distance away from the emergent surface of | measure the
prism 2: D> = 400 mm coordinates of the laser
spot

Guide rail and slider Stroke of the guide rail: 1000 mm Support components
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Main steps of the multi-mode scan performance test are as follows:

(1) Device installation. Firstly mount the laser on the guide rail while keep the
laser beam parallel to the guide rail and pointing at the origin of the coordinate
screen. Then install the rotating double prisms on the guide rail, and adjust the
prism devices in the radial direction until the optical axis of two prisms are
coaxial with the laser beam. Finally, move two prisms in the axial direction to
the position where the distance between the emergent surface of prism 2 and
the coordinate screen is D, = 400 mm, and the separation between two plane
facets of the prisms is D; = 100 mm.

(2) Set the control mode to manual mode. Rotate the prisms at low speeds and set
each prism origin at the position where the thinnest end is strictly upward.

(3) Set the control mode to single-step mode. Rotate two prisms to the pre-stored
orientation combination obtained from the inverse solution to those sampling
points on the given scan trajectory, and take notes of the laser spot coordinates
on the coordinate screen. Then press the single-step key to measure the next
sampling point and repeat until all the sampling points on the trajectory are
measured. Note that the grid density of the coordinate screen is 1 mm and the
accuracy of the reading coordinate is 0.1 mm, since the last place of the reading
is estimated.

(4) Set the control mode to manual mode and return to zero.

(5) Repeat from step (3) to step (4), and finish the measurement of all four trajec-
tories.

(6) Based on the prism orientations obtained from inverse solutions, calculate the
theoretical laser spot coordinates on the screen using the forward formulae in
Sect. 2.1. Then compare the measured coordinates with the theoretical ones,
and evaluate the multi-mode scan performance of the designed system.

In the test, we set 32 sampling points for each trajectory. And the distance between
the measured actual scan point (x,,, y,,) and the calculated theoretical scan point (X,
Y,,) is defined as scan error A, namely, A = \/(X,, — x;,)* + (Y, — y,p)* (unit:
mm). Tables 6.5, 6.6, 6.7 and 6.8 show the measurement results of four trajectories,
respectively.

Trajectory 1 is a circle which can be obtained by rotating two prisms at the same
speed and in the same direction, namely 6,;:0,, = 1:1. Figure 6.9 shows the actual
scan points and theoretical scan points of trajectory 1. Seen from the figure, the actual
scan point with symbol “x” and the corresponding theoretical scan point with symbol
“o0” are almost coincident. Actually, calculation results indicate that the average scan
error is 1.06 mm.

Trajectory 2 is an ellipse which can be obtained by rotating two prisms at the same
speed but in the opposite direction, namely 6,:0,», = 1: —1. Seen from Fig. 6.10, both
the actual trajectory and the theoretical trajectory are elliptical, and the actual scan
point with symbol “x” and the corresponding theoretical scan point with symbol “0”
are almost coincident. Likewise, the average scan error of trajectory 2 is 0.97 mm.

For trajectory 3 and trajectory 4, the rotation angles of two prisms are set to
0,1:6,» = 1:2 and 6,1:6,, = 1: — 2, respectively. Test results shown in Figs. 6.11
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and 6.12 and Tables 6.7 and 6.8, indicate that the actual and the theoretical scan
trajectory are well matched and the average scan errors are 1.13 mm and 1.02 mm,
respectively.

The above four scan trajectory tests indicate that the actual and the theoretical
scan trajectories are almost coincident, which verifies the theoretical model of rotat-
ing double-prism system and the feasibility of multi-mode scanning. Because of
insufficient test conditions such as the measurement accuracy of the laser spot and
the errors introduced by part manufacturing and device assembly, the measured scan
error is too large to fully exemplify the high-precision scan characteristic of rotating
double prisms. Thus the experiment needs further improvement.

6.2.4 Lookup-Table Method Validation

In this section, the lookup-table method is validated by measuring the tracking pre-
cision of the laser beam directed by the prism orientations reversely solved with
lookup-table method. As shown in Fig. 6.13, the test platform mainly includes rotat-
ing double-prism device and its motion controller, two-dimensional slipway and
its motion controller, laser, guide rail and slider. Detailed descriptions of the used
components are listed in Table 6.9.

Main steps of the lookup-table method validation test are as follows:

(1) Device installation. Firstly mount the laser on the guide rail while keep the
laser beam parallel to the guide rail. The two-dimensional slipway, with a four-
quadrant probe fixed on the X-axis slider, is then placed at the end of the rail and
adjusted to enable its XOY plane perpendicular to the optical axis of the double
prisms. Finally, move two prisms in the axial direction to the position where the

Fig. 6.9 Actual and 100
theoretical points on scan
trajectory 1
50 —_— %
=©-—Theoretical point, &
== Actual point
g
g 0
&
)
-50
-100
-100 -50 0 50 100



6.2 Performance Test on Rotating Double Prisms 251
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distance between the emergent surface of prism 2 and the four-quadrant probe
is Dy = 400 mm, and the separation between two plane facets of the prisms is
Dy = 100 mm.

Set the two-dimensional slipway system to manual mode. Adjust the four-
quadrant detector in the radial direction until the optical axis is aligned with
the detector center, namely the coordinate origin of the target trajectory plane.
Set the rotating double-prism system to manual mode. Rotate the prisms at low
speeds and set the prism origin at the position where the thinnest end is strictly
upward.

A lookup table with the step of 0.1° is established to reversely calculate the
rotation angles of the double prisms according to the coordinates of the sampling
points on the target trajectory. Then the coordinates and the rotation angles are
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Fig. 6.12 Actual and theoretical points on scan trajectory 4

Fig. 6.13 Experimental platform for validating the lookup-table method

written into the two-dimensional slipway control system and the double-prism
control system separately.

(5) Settwo control systems to single-step mode. According to the pre-written coor-
dinates and rotation angles, move the four-quadrant detector to the given sam-
pling point and rotate the double prisms to the corresponding orientations. Then
the deviation from the laser spot to the detector origin can be measured by the



6.2 Performance Test on Rotating Double Prisms 253

Table 6.9 Parameters and functions of the components used in the lookup-table method validation
test platform

Device Parameter Function

Rotating double prisms | Wedge angle: o = 10° Deflect laser beam
Refractive index: n = 1.517

Diameter: D = 80 mm

Thinnest-end thickness: dyp = 5 mm
Distance between two prisms: D; = 100 mm

Two-dimensional Effective stroke of X axis: 300 mm Install the

slipway Effective stroke of Y axis: 400 mm four-quadrant detector
Lead of the ball screw: 4 mm Simulate the target
Round trip accuracy of the ball screw: motion trajectory
0.02 mm

Motion controller MCU: LPC1114 Motion control of

double prisms
Motion control of
two-dimensional

slipway
Laser Wavelength: 650 nm Emit collimated laser
Power: P > 2.5mW beam

Focus: variable focus

Four-quadrant detector | Laser spot positioning accuracy: superior to | Detect the laser spot

0.01 mm and measure its
Measuring range: ¢3 mm deviation from the
Distance from the emergent surface of prism | slider origin
2: Dy =400 mm

Guide rail and slider Stroke of the guide rail: 1000 mm Support components

detector itself. Record the deviation and repeat the measurement process until
all the sampling points are measured.

To validate the lookup-table method and evaluate its precision, the control systems
of both the two-dimensional slipway and the double prisms are considered ideal,
without the errors introduced by mechanical system or control algorithm. Under
the above hypothetical conditions, the precision of the lookup-table method can be
evaluated by the deviations from the detector origin to the actual scan spots of laser
beam at the prism orientations reversely solved with lookup-table method. In this
particular test, an ellipse expressed by x2/40% + y?>/60%> = 1 is chosen as the target
trajectory, and the reading of the detector is accurate to 0.001 mm with the last place
estimated.

The coordinates of 64 sampling points on the ellipse target trajectory shown in
Fig. 6.14 are putinto the lookup-table method to reversely calculate the corresponding
rotation angles. Then the coordinates of sampling points and two sets of prism rotation
angles, as shown in Fig. 6.15a and b respectively, are utilized for motion control of the
two-dimensional slipway and double prisms. The measured deviations corresponding
to two sets of rotation angles are listed in Tables 6.10 and 6.11, respectively. It is
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Fig. 6.14 Ellipse target trajectory and sampling points

easy to figure out that the average deviation of the first set is 0.342 mm, and that of
the second set is 0.233 mm.

The test results show that, the actual beam scan trajectory directed by the prism
orientations reversely solved with lookup-table method is almost coincident with
the given target trajectory, which well verifies the lookup-table method. Specifically,
the maximal deviation between the actual scan point and the target point is as low
as 0.046 mm when the step angle of lookup table is 0.1°. In the actual test, the
deviation is generally larger than the theoretical calculation. It should be noted that
this phenomenon do not result from the solving precision of the lookup-table method
itself, but the comprehensive influence of various system errors, such as parameter
error of the prisms (wedge angle, refractive index, etc.), machining error of the
mechanical parts, assembly error and so on.

(a) (b)

800

600

500

400

300

200

Rotation angles 6..0.,/(°)
Rotation angles ﬂ}l'_{}rffﬁ)

100

Fig. 6.15 Rotation angles of double prisms corresponding to the ellipse target trajectory where a
is the first set and b is the second set
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6.3 Performance Test on Tilting Double Prisms

To test the performance of tilting double prisms, namely tilting accuracy, reduction
ratio, beam deflection range and beam deflection accuracy, static testing methods
based on autocollimator and interferometer are employed in a temperature-controlled
laboratory.

6.3.1 Teston Tilting Accuracy, Reduction Ratio and Beam
Deflection Range

In the section, three technical indicators of tilting double prisms are tested with
autocollimation method, including (1) prism tilting accuracy, which is shown as the
relation between the tilting angle of the prism measured by high-precision collimator
and that read from the encoder; (2) reduction ratio, namely the ratio of the prism tilting
angle with respect to the consequent beam deflection angle; and (3) beam deflection
range, which is specified by the vertical scan range and the horizontal scan range of
the emergent beam.

The test equipment consists of two identical high-precision autocollimator,
high-precision collimator, tilting double-prism system, multi-dimensional adjusting
mount, level platform, air bearing worktable, bracket and so on. The parameters of
the autocollimator are as follows: the focal length is 1000 mm, the effective aperture
is ¢ 100 mm, the scale value is 10” (48.48 . rad), the field of view is 58’ (the resolu-
tion is 1.3” and the full field of view is 1°38’) and the outline dimensions / x d are
1160 mm x @150 mm. The parameters of two identical prisms are as follows: the
wedge angle is 5°, the refractive index is 1.517 and the tilting angle range is 0°-5°.

As shown in Fig. 6.16, two autocollimators and the collimator are fixed on the
level platform without vibration and shocks, respectively for emitting and receiving
laser beam. Two stepping motors are controlled to dynamically adjust the tilting
angles of the horizontal prism and the vertical prism (hereinafter referred to as prism
1 and prism 2). Alongside the prisms, the horizontal axis encoder and the vertical
axis encoder (hereinafter referred to as encoder 1 and encoder 2) acquire the tilting
angles of two prisms in real time. Synchronously, the collimator measures the angle
of the beam reflected by the plane facet of each prism, and the autocollimilator mea-
sures the deflection angle of the beam emergent from the plane facet of each prism.
By comparing the encoder readings and the beam reflection or deflection angles,
the above three indicators can be obtained. According to the above experimental
platform, the test methods are summarized as follows.

(1) Tilting accuracy can be obtained by comparing the tilting angle of the rotation
axis and the beam reflection angle on the plane facet of each prism, which can
be measured by the encoder and the collimator, respectively. Taking the tilting
accuracy of prism 1 for example, the laser beam emitted from autocollimator
1 is reflected by prism 1 and finally received by the collimator. The collimator
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Fig
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. 6.16 Schematic diagram illustrating the experimental platform for tilting accuracy, reduction

ratio and beam deflection range test
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reading, namely the position difference value between the cross hair image from
autocollimator 1 and the cross hair of the collimator itself, are equivalent to the
angle of the beam reflected by prism 1.

The reduction ratio test is performed in a similar fashion, where the encoders
are used to measure the tilting angles of two prisms, and the autocollimators
are used to measure the deflection angle of the beam propagating through the
double-prism system.

The beam deflection range, expressed by the vertical and the horizontal scan
ranges of the emergent beam, can reach its maximum value through independent
adjustment of prism 1 and prism 2 to their individual limit positions, which can
be read from autocollimator 2.

Based on the above test methods, specific experimental procedures are designed

as below.

ey

(©))

3

Turn on the power of two autocollimators to illuminate the reticle. Then adjust
two autocollimators on the level platform fixed on the air bearing worktable
until the optical axis of two autocollimators are strictly aligned. As a result,
two autocollimators can receive the cross hair image from each other, which is
coincident with their own.

Put the horizontal and the vertical tilting prism devices between autocollimator
1 and 2 sequentially. Connect between the prism devices, the step motor control
system and the encoders, and then power on the system. Then tilt prism 1 and
2 respectively until they are basically perpendicular to the optical axis.
Precisely adjust the position of the tilting double prisms and gently tilt prism
1 until the cross hair image returned from the plane facet of prism 1 coincides
with the cross hair of autocollimator 1 itself. Then take notes of the readings
of encoder 1 as the tilting origin of prism 1. Gradually rotate step motor 1 with
equal step length and synchronously take notes of the readings of encoder 1 and
the corresponding cross hair image position in autocollimator 1. After finishing
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Table 6.12 Tilting accuracy of prism 1 and prism 2

Autocollimator/(") The difference/(”) | Encoder reading/(°) The difference/(°) Error g/(")

1 2 1 2 1 2 1 2 1 2
- 238 248 19 |oOUZY 00537 | o755 | 00337 | 1588 | 232
225 -139 —0.0845 | 0.0190
102 3 123 121 20,0508 | —0.0131 0.0377 0.0321 -12.72 —5.54

112 116 - - 0.0352 0.0353 -14.72 -11.08
-10 o8 122 122 [ Q0156 | —0.0484 | 0359 | 00388 | -3.56 | -0.32
—132 220 0.0173 —0.0822

the test of all the preset tilting angles and the corresponding beam reflection
angles, readjust prism 1 to its origin.

(4) Similarly, do the tilting accuracy test for prism 2.

(5) Remove prism 2, precisely readjust the position and the tilting angle of prism 1
and recalibrate its origin.

(6) Gradually rotate step motor 1 with equal step length and encoder 1 gives the
corresponding tilting angles of prism 1. Meanwhile, take notes of the cross hair
image position in autocollimator 2 step by step. By this means, a series of tilting
angles of prism 1 and the corresponding beam deflection angles are recorded as
well as the reduction ratio after simple calculations. Particularly, when prism 1
is tilted to its limit position, the maximal beam deflection range in the vertical
direction can be obtained by the reading in autocollimator 2.

(7) Similarly, finish the reduction ratio test and the horizontal beam deflection range
test for prism 2.

The relationship between the tilting angle of each prism recorded by the encoder
and the beam reflection angle detected by the autocollimator reflects comprehensive
accuracy of the mechanical system and the control system, which should be better
than 13.873” according to the design requirements. Table 6.12 shows the test results
of tilting accuracy for prism 1 and prism 2. Through calculations, the average error
between the beam reflection caused by prism 1 and the reading of encoder 1 is
11.72”, and that of prism 2 is 4.815”, which demonstrates that the tilting accuracy of
the designed mechanical system and control system satisfies the accuracy indicator.

The reduction ratio and the beam deflection range are further analyzed as follows.
Firstly, measure the accurate wedge angles of the prisms, which are «; = 5°10”
and a» = 5°55” in the test. Then draw the curve of the theoretical beam deflection
angle according to the forward calculation based on accurate wedge angles. Finally,
compare the theoretical curve with the measured one. Figure 6.17 not only shows
the vertical beam deflection range, but also illustrates how the beam deflection angle
change along with the tilting angle of prism 1. As the reading of encoder 1 changes
from 0.1449° t0 6.2714°, the vertical beam deflection range is 1053.9052 1 rad. So the
reduction ratio of the prism tilting angle to the beam deflection angle reaches 102:1
while the corresponding theoretical value is 105:1. Similarly, Fig. 6.18 illustrates the
above two indicators of prism 2. As the reading of encoder 2 changes from 1.8159°
to 4.8744°, the horizontal beam deflection range is 358.752 p rad. So the reduction
ratio reaches 149:1 while the corresponding theoretical value is 165:1.
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Fig. 6.17 Relationship 140
between the tilting angle and
the beam deflection angle of
prism 1. The curve with “*”
symbol is the fitting one
based on the measured data
while the other is the
theoretical calculation curve

500k sssessscfassarsnsrdhenaasnassfasnansnani

Beam deviation angle d/prad

200f---

Fig. 6.18 Relationship 500 T T T T T - T
between the tilting angle and 450 T e e T:-:L‘;::.ﬁﬁﬂt.-ﬂ“cﬁm :
the beam deflection angle of A
prism 2. The curve with “*”
symbol is the fitting one
based on the measured data
while the other is the
theoretical calculation curve

400 f--eeenie
350 nenanian
11 (1] SEEEEEE B
250 sesanries

200 f--

Beam deviation angle &/urad

150 -

100

50 1 i i i i i i
0 05 1 15 2 25 335 4 as ]

Tilting angle of prism 2 & _/(*)

6.3.2 Test on Beam Deflection Accuracy

Beam deflection accuracy of the tilting double-prism system is tested through inter-
ferometry. The interferometer parameters are given as follows. The accuracy is better
than A/100, the diameter of the test beam is ¢ 150 mm, the system quality (plane) is
/100, the resolution is better than A/1000 (double pass). Two identical prisms have
the following parameters, namely the wedge angle equal to 5°, the refractive index
constant at 1.517 and the tilting angle range within 0°-5°.

Figure 6.19 illustrates the test method of beam deflection accuracy with an inter-
ferometer. As shown in the figure, the tilting double-prism device is placed between
the interferometer and the reference mirror, and the test beam propagates through the
optical system twice (the path is A;—A,;s—A,51—A,11)- In the test, the interferometer
gives the P-V value of the angle between the emergent beam A,; and the return beam
A1, which can be converted to beam deflection angle. Meanwhile the encoders
record the corresponding tilting angle of the prisms. Therefore the error between the
measured beam deflection angle and the theoretical one can be solved to precisely
calibrate the beam deflection accuracy of the tilting double-prism device.
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Fig. 6.19 Schematic diagram of the beam deflection accuracy test with an interferometer

Based on the above test system, the exact expression of the beam deflection is
deduced as follows. Firstly, prism 1 and prism 2 are adjusted to the position where
their plane facets are perpendicular to the initial incident beam. According to the
vector refraction theorem, the unit vector of the refracted beam can be described as:

n n 2 2 np
Ay = —A; + \/1—(—) (1—(A1.N))—n—(A1-N) N (6.1
2

na n;

where A and A, are the unit vectors of the incident beam and the refracted beam
respectively, N denotes the unit normal vector of the refracting surface, pointing
from medium 1 to medium 2, n; and n, are the refractive indexes of the two media
respectively.

As shown in Fig. 6.19, A;;—A,s are the unit vectors of the beam on every optical
path, and A,; = (0,0,1)T. Ny—N are the initial unit normal vector of the five surfaces
on the optical path. And the posture of the reference mirror is set to satisfy N5 = As.

Assume that prism 1 and prism 2 tilt about the Y axis and the X axis by 6,; and
02, respectively. Then the unit vector expression for A,;—A,s can be derived again.
Similarly, the unit vectors of the return beam, namely A,;;—A,s;, can also be obtained.

The total beam deflection angle after a complete round trip is:

53 = arc COS(—Atll) (62)
The reflection angle on the reference mirror caused by the tilt of the prisms is:

84 = arc cos(—Ays1) — arc cos(Ays) (6.3)
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Therefore, the error accumulation coefficient caused by reflection is:R = §3/64.

Assume that §3; is the theoretical beam deflection angle caused by the prism tilting
angle 6,;), while §, is the actual one measured by the interferometer. Then the beam
deflection error can be expressed as:

(83i — 3ui)
= — 6.4
R (6.4)
The root mean square value of the beam deflection error is:
1
1 < o
o= n_IZ(s[—s) (6.5)

i=1

n
where s = % > s;, and n is the amount of the measured data.

Three setsl olf data are measured. The theoretical beam deflection angles and the
actual measured ones are compared in Figs. 6.20, 6.21 and 6.22. The calculation
results show that the root mean square values of the beam deflection error are o1 =
0.437 wrad, 05 = 0.418 . rad and o3 = 0.402 p rad, respectively.

The error sources that influence the beam deflection accuracy mainly include
reading error, prism position error, dimension error and surface shape error of each
prism, flatness error of the worktable and operation error. These error sources are
analyzed as follows.

The position error and the dimension error of the prisms are categorized as system
error, which can be determined through strict optical system alignment. As for the
surface shape of the prisms, the P-V value is the key influence factor to the mea-
surement accuracy. Hence it is necessary to take a few more measurements and get
the average. Moreover, when observing the autocollimator, we need to adjust the
position repeatedly until the cross hair image is clear. However, due to the dimension
error and the dispersion induced by two prisms, it is possible that the clear image
cannot be reached no matter how the autocollimator is shifted. Then a position where
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the cross hair image is relatively clear should be calibrated as the standard position
for measurement [7].

The random error sources mainly include operation error, reading error, vibration
and so on. Because the requirement of the measurement accuracy is relatively high,
while the accuracy of the autocollimator is generally limited, the random errors may
result in large deviation between the measured values and the theoretical values and
further influence the test results. Therefore, multiple measurements and averaging is
required to minimize the influence of all kinds of random errors.

6.4 Laser Coarse-Fine Coupling Tracking Test on Double
Rotating Risley-Prism Pairs

A novel laser coarse-fine tracking method based on two pairs of rotating Risley prisms
is proposed to perform the forward and inverse tracking function. The second pair
of rotating Risley prisms with narrower wedge angle can achieve higher precision
tracking with narrower field of view (FOV) than the first pair, which largely enriches
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the coarse-fine coupling tracking patterns. In this section, a test platform is established
to validate the effectiveness of the double rotating Risley-prism pairs (DRRP) to
perform laser coarse-fine coupling tracking.

6.4.1 Hardware of the Test Platform

As shown in Fig. 6.23, the experimental setup of the coarse-fine coupling tracking
DRRP consists of a coarse tracking subsystem (CTS), a fine tracking subsystem
(FTS), two controllers, a laser, a coordinate screen, a slider and so on. The CTS
refers to the rotating Risley-prism pair with large wedge angle, which consists of
prism 1 and prism 2. And the FTS is composed of prism 3 and prism 4 with narrow
wedge angle. The distances between the adjacent prisms are D = 100 mm, D, =
80 mm and D3 = 68 mm, respectively. The laser with 650 nm wavelength is adjusted
to be coincident with the optical axis. The laser beam propagates through four prisms
sequentially and finally hits the coordinate screen with a distance of D4 = 1000 mm
from prism 4. The coordinates of each tracking points can be measured according
to the laser spot on the coordinate screen. Table 6.13 shows the detail parameters of
the experimental setup.

In order to realize coarse-fine coupling tracking, the inverse control strategy of
four prisms is summarized as four steps.

Coordinate screen

Fig. 6.23 Experimental setup
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Table 6.13 System parameters of the platform

Device Parameter Function
CTS Wedge angle: o1 = 10° Coarsely deflect laser beam for
Refractive index: ny = 1.517 coarse tracking

Diameter: D = 80 mm
Thinnest-end thickness: dg = 5 mm

FTS Wedge angle: oy = 5° Finely deflect laser beam for fine
Refractive index: ny = 1.517 tracking

Diameter: D = 80 mm
Thinnest-end thickness: dgp = 5 mm

Motion controller | MCU: LPC1114 Motion control of the rotating
Risley-prism pairs

Laser Wavelength: 650 nm Emit collimated laser beam
Power: P > 2.5mW
Focus: variable focus

Coordinate screen | Resolution ratio: 1 mm Receive the laser and measure the
Distance away from the emergent coordinates of the laser spot
surface of prism 4: D4y = 1000 mm

Guide rail and Stroke of the guide rail: 1000 mm Support component

slider

(1) Keep the separated angle between prism 1 and prism 2 constant at A9 = 180°
to locate the FOV of the CTS at the center of the overall FOV of the proposed
system.

(2) Calculate the rotation angles 8; and 6, based on the two-step method to track
a global trajectory rapidly [8], where 6, and 6, denote the rotation angles of
prism 1 and prism 2, respectively.

(3) Given the local feature, rotate prism 1 and prism 2 to steer the beam towards
the specified region of interest.

(4) Solve the rotation angles 83 and 64 based on the Newton’s iterative method to
track the local feature accurately [9], where 63 and 64 denote the rotation angles
of prism 3 and prism 4, respectively.

6.4.2 Performance Test on Coarse-Fine Coupling Tracking

Given the global and local features of the tracking trajectories in Fig. 6.24a and b,
the corresponding rotation angle curves of four prisms are solved according to the
inverse algorithm, as shown in Fig. 6.24c and d. In the experiment, four prisms are
controlled to rotate to the preset rotation angles according to the calculated curves.
And then the real coordinates of the tracking points on the coordinate screen can
be measured, as shown in Fig. 6.24a and c. Tables 6.14 and 6.15 show the detail
experimental data.
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Fig. 6.24 Experimental results for coarse-fine tracking. a The difference between the target points
and the tracking points of the global trajectory; b The difference between the target points and
the tracking points of the local trajectory; ¢ The rotation angles of CTS for tracking the global
trajectory; d The rotation angles of FTS for tracking the local trajectory; e The enlargement of the
zone surrounded the point with the maximal error of 1.033 mm

According to the two-step method, prism 1 and prism 2 are controlled to steer
the laser beam to approach the target point during the coarse tracking process, and
then prism 3 and prism 4 are controlled to perform precise tracking during the fine
tracking process based on the Newton’s iterative method. As shown in Table 6.14,
because the emergent point from the DRRP is regarded as the center of the plane facet
of prism 4 during the coarse process, the tracking points differ greatly from the target
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Table 6.14 Experimental data of CTS
No. | Rotation angle/(°) Target point/mm Tracking point/mm Error/mm

01 6, Xp Y, Xp Yp A

1 70.9261 |529.0739 |60 —103.923 | 63.7 —124.6 21.00539
2 79.49753 | 537.6453 |74.81878 | —93.8198 | 814 —113.6 20.84634
3 88.06896 | 546.2168 |87.96622 | —81.6207 | 97.5 —100.0 20.70484
4 96.64039 |554.7882 |99.14865 | —67.5984 |111.2 —84.1 20.43374
5 1052118 |563.3596 |108.1163 | —52.066 |122.6 —66.0 20.09810
6 113.7832 | 571.931 114.6687 | —35.3706 |131.1 —47.0 20.13030
7 122.3547 |580.5025 | 118.6597 | —17.8851 |136.7 —26.5 19.99173
8 130.9261 |229.0739 | 120 0 139.1 —53 19.82171
9 139.4975 | 237.6453 |118.6597 |17.88507 |138.5 15.5 19.98315
10 | 148.069 246.2168 | 114.6687 |35.37062 |134.6 37.0 19.99775
11 |156.6404 |254.7882 |108.1163 |52.06605 |127.5 56.4 19.86233
12 |165.2118 |263.3596 |99.14865 |67.59841 |117.7 75.0 19.97338
13 | 173.7832 |271.931 87.96622 | 81.62073 |105.5 92.0 20.37554
14 | 182.3547 |280.5025 |74.81878 |93.81978 90.2 107.1 20.32108
15 ]190.9261 |289.0739 |60 103.923 73.3 120.0 20.86524

Table 6.15 Experimental data of FTS
No. | Rotation angles/(°) Target points/mm Tracking points/mm Error/mm

03 04 Xp Y, Xp Yp A

1 276.1177 | 68.07858 | 120 0 120.2 0.6 0.632456
2 263.204 52.25839 | 119.8355 |6.280315 |120.0 73 1.032862
3 254.3603 |38.63871 |119.3426 |12.54342 |119.5 13.0 0.482945
4 249.2697 |27.46227 |118.5226 |18.77214 |118.8 18.8 0.278795
5 247.0608 | 18.23676 |117.3777 |24.9494 117.2 25.0 0.184775
6 246.9525 |10.38621 |1159111 |31.05829 |115.5 31.0 0.415210
7 248.395 3.44211 | 114.1268 |37.08204 |114.0 36.7 0.402527
Average error/mm 0.489938

points. That is to say, the emergent point has relatively high effect on the pointing
position in the near-field applications, where the Newton’s iterative method can be
applied to improve the tracking precision. As shown in Table 6.15, the maximal error
between the tracking points and the target points during the fine tracking process is
1.033 mm with the average value of 0.49 mm. Therefore, the Newton’s iterative
method is available in the FTS during the fine tracking process. In conclusion, the
experiment of coarse-fine coupling tracking demonstrates that the DRRP can be a
promising solution to achieving coarse-fine coupling tracking, which shows great
potentials in spatial orientation tracking applications.



270 6 Performance Test on Double-Prism Multi-mode Scan System

6.5 Summary

The performance tests in this chapter are classified into three groups according to
three kinds of double-prism devices, namely the rotating double prisms, the tilting
double prisms and the coarse-fine coupling double-prism pairs. Firstly, a series of
performance tests on rotating double-prism multi-mode scan system are carried out,
including the multi-mode scan performance, the directional tracking performance
and the inverse solution based on lookup-table method. The first two experiments
verify the model of the rotating double-prism multi-mode scan theory and could pro-
vide references for the applications of the rotating double-prism scan system, while
the third experiment validates the correctness of the lookup-table method for inverse
solution. Secondly, the tilting accuracy, reduction ratio and the beam deflection range
and accuracy of the tilting double-prism multi-mode scan system are tested, respec-
tively. Test results indicate that the hundredfold reduction ratio from the tilting angle
of each prism to the beam deflection angle can be achieved with the prism wedge
angle of 5°, which validates the characteristic of high-precision scanning. Finally,
a novel coarse-fine tracking method based on two pairs of rotating Risley prisms is
proposed and the performance test results show great potential in spatial orientation
tracking applications.
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Chapter 7 ®
Support Design Technology ez
of Large-Aperture Prism

Abstract A radial multi-segmental adjustable support, characterized by easy instal-
lation and radial fine adjustment, is designed to meet the rotational motion require-
ments of the large-aperture scan prism. A dynamic analysis method is established to
study the dynamic response of variable loads on a rotating prism, which is suitable for
the dynamic performance analysis on the optical system, and can provide references
for the performance analysis on similar optical systems. The surface deformation
of the prism is fitted by the Zernike polynomial. The fitting errors of PV and RMS
values are all within the allowable range, which can meet precision requirements for
the surface figure.

7.1 Design and Analysis of Multi-segmental Support

For a large-aperture rotating prism (e.g. 300 mm and above), the radial support is
crucial to ensure the opto-mechanical system performance. A Risley prism discussed
in this chapter is provided with the geometrical properties of large size and nonuni-
form mass distribution. When variable directions of external loads act at different
moving positions of the rotating prism, the different surface deformations as well
as stress distributions maybe occur. The key to solving the problem is appropri-
ately mounting the optics to minimize some unexpected external load effects. Many
scholars have carried out research on the support technology of large-size move-
ment mirror, including active support technology, adaptive support technology and
anti-rotation technology. For example, Cui Xiangqun et al. [1] proposed an active
support technology of thin mirror, aiming at the tentative fabrication test for large-
aperture thin astronomical mirror. Zhu Bo et al. [2] designed the tertiary mirror M3 of
the large-aperture ground-based electro-optical telescope (LGEOT) with rear three-
point support way, to ensure the imaging quality of telescope optical system. Salas
et al. [3] used 18 air bags as the suspension supports of the primary mirror in the
2.1 m telescope and analyzed the control problems. Vukobratovich and Richard [4]
applied roller chain supports to the design of support structures for a large-aperture
mirror and demonstrated its superiority. However, most previous researches focused

© National Defense Industry Press and Springer Nature Singapore Pte Ltd. 2018 271
A. Li, Double-Prism Multi-mode Scanning: Principles and Technology, Springer
Series in Optical Sciences 216, https://doi.org/10.1007/978-981-13-1432-2_7


http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-1432-2_7&domain=pdf
https://doi.org/10.1007/978-981-13-1432-2_7

272 7 Support Design Technology of Large-Aperture Prism

on the modes of static or quasi-static (slow motion) supports, and less on motion
performance analysis of optical systems, especially for large size mirrors.

For the rotating Risley prisms discussed in this book, the radial support is the
key component to ensure the motion accuracy of the whole system. In general, the
radial support ways include multi-point support, mercury belt support, steel support
and roller chain support. Traditional mercury belt support, roller chain support, steel
support and other support ways are hard to meet the movement requirements, while
the flexible support will induce the optical element sensitive to the changes of external
loads, vibration, and other external factors. Theoretically, the multi-point support
way can meet the requirements for dynamic optical systems, but for a large-aperture
rotating prism, especially when the width-radius ratio is small, the multi-point support
way maybe result in large stress concentration and surface deformation. Therefore,
the above support ways are not optimal choices for a large-aperture rotating prism.

In this chapter, a novel radial support method is firstly proposed for the large-
aperture rotating prisms. Then a dynamic analysis method is established to study the
dynamic response of variable loads on a rotating prism. Finally, the prism’s surface
deformation with the rotation angle change are concluded.

7.1.1 Radial Multi-segmental Support

Radial support ways mainly incorporate point support (as shown in Fig. 7.1) and
surface support (as shown in Fig. 7.2). For a static structure, the point support is
convenient to be adjusted with high accuracy, and is widely applied to the situation
in which the displacement or angle needs to be regulated, but the local stress concen-
tration is usually inevitable. Comparatively, the surface support way can attenuate
the stress concentration especially for large optical components, but its adjustability
is relatively poor [5].

The analysis results of point support for a Risley prism is given in Table 7.1. The
prism is characterized by diameter of 600 mm, wedge angle of 10° and thinnest-end
thickness of 30 mm. We choose three-point support, six-point support, nine-point
support and twelve-point support as four typical examples. As shown in Fig. 7.1,

(a) 3

Fig. 7.1 Multi-point support. a Three-point support; b Six-point support; ¢ Nine-point support; d
Twelve-point support
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Fig. 7.2 Surface support. a Steel-belt support; b Mercury-belt support

Table 7.1 Results comparisons of surface deformation and maximum von Mises stress for multi-
point supporting prisms

Support way Deformation von Mises stress/Pa
PV/nm RMS/nm

Three-point 150.33 57.48 1.0 x 10°

Six-point 67.13 22.61 533,830

Nine-point 99.01 47.37 309,040

Twelve-point 87.37 44.07 214,718

the support points are uniformly distributed along the radial direction, and all are
arranged in the same plane 20 mm away from the plane side of the prism. A certain
pre-tightening force is applied to each support point to ensure the support fastened,
and axial displacement constraints are added on both sides of the prism [5, 6].

In order to lessen the stress concentration caused by the impact loads, the surface
support way for a large-aperture mirror are relatively preferred to keep the stability
of motion structure, while the point support and line support ways are rarely used.
A structure of flexible surface support style is proposed in [7] to solve the problem
of support in the mirror movement, as shown in Fig. 7.3. In addition, there are other
surface support ways such as the steel belt support and mercury belt support proposed
in [8].

The above-mentioned flexible support ways are effective for symmetrical opti-
cal mirrors (such as plane mirrors) [9], but they are hardly considered as optimal
schemes for asymmetrical optical components (like wedge-shaped prisms). When
the symmetrical optical element is in motion, the impact loads brought about by the
mass eccentricity can result in the deformation of flexible support, further induce the
shift of prism center, and finally lead the direction error of the output beam.

In order to solve the problem of supporting the dynamic non-uniform prism sys-
tem, we propose a multi-segmental adjustable support method that can solve the
problem of non-uniform mass prism deformation caused by the shift of gravity cen-
ter. As shown in Fig. 7.4, three segments of arc-shaped support blocks are placed on
the circumference of the large-aperture circular prism (the number of segments of
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Fig. 7.3 Flexible surface support structure where 1 is tangential groove and 2 is key (material is
epoxy)

the arc-shaped surface can be selected according to the actual conditions), and the
arc-shaped support blocks are placed in the grooves of the frame. The screw passes
through the frame wall and the screw head is wrung into the screw hole of the support
block. When the screws are tightened, the arc blocks will support the prism together,
but when the screws are reversed, the blocks will separate from the prism easily,
which not only facilitates to disassemble the prism mechanism, but also allows the
fine adjustment of the position of the prism in use. In the design, the clearance fit is
properly ensured between the inner circumference of the frame and the outer one of
the prism. When the supporting block is pulled to the bottom of the groove of the
frame, the circumference of the inner surface constituted by three supporting blocks
is smaller than the inner diameter of the frame, which is advantageous for installation
and adjustment of the prism [9, 10].

7.1.2 Three-Segmental Support Analysis

In order to improve the radial support effect for large-aperture rotating prisms, the
point-surface support, multi-segmental surface support and full surface support have
been compared in the previous research [6, 11, 12]. This section will focus on the
design and analysis of the three- segmental support under two cases of the prism’s
thin end upward and downward, respectively.

1. Analysis Model

The analysis object is a wedge-shaped prism rotating around the optical axis, char-
acterized with diameter D = 500 mm, wedge angle « = 10°, and thin end thickness
dyp = 30 mm. As shown in Fig. 7.5, it is supported by the radial multi-segmental
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1

Fig. 7.4 Adjustable radial multi-segmental support configuration where 1 is cell, 2 is prism, 3 is
support block and 4 is screw

Wedge facet

bae? Plane facet

Fig. 7.5 Schematic diagram of geometric model of the prism

support, where 6 indicates the center angle of support blocks covered around the
circumference of mirrors (6 = 20°), y represents the support angle between two
subjacent support blocks, g is the rotation angle of the prism, and F means the
preload force (F = 10 N).

Using the finite element analysis software tool Ansys, the different layouts of
the three-segmental support are analyzed, and the characteristics of various support
modes are investigated during the rotation process of the prism. The evaluation
indexes include the PV (Peak Value) and the RMS (Root Mean Square) values of the
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prism surface deformation (including the plane facet and the wedge facet). The key
parameters of material used are listed in Table 7.2.

2. Static Support Analysis

There are two kinds of static support situations for wedge-shaped prisms, the thin
end upward and downward, and their support effects are analyzed respectively.

(1) Thin End Upward

When the thin end of the prism faces upwards, a three-segmental uniform support is
firstly provided. One of the support blocks is arranged at the center of the thin end
and forms an angle of y = 120° with the other two support blocks. The finite element
model of three-segmental uniform support is shown in Fig. 7.6. Both the prism and
support block are meshed with 20-node SOLID95 elements, and axial displacement
constraints are added on the prism side and the outermost circumferential node of
the wedge surface side. A tangential displacement constraint and a radial preload
force of F = 10 N were added to the outside nodes of the support block, and the
acceleration of gravity was 9.8 N/kg. Surface-flexible contact with MPC (Multi-point
Constraint) algorithm is added between support block and prism.

The static analysis results show that the total PV value of the prism (sum of the PV
values of the plane facet and wedge facet), defined as T_PV, is 44.559 nm (the total
PV and total RMS values are used in this section for convenience, the same below).
The total RMS (sum of the RMS values of the plane facet and wedge facet), defined
as T_RMS, is 22.948 nm, and the maximum value of von Mises equivalent stress is
0.0659 MPa. Figure 7.7 shows the contour chart of the prism axial deformation and
the von Mises equivalent stress.

Under the static support, in order to seek a better support effect and improve the
surface precision of the prism, the support angle y of the curved support block is
optimized. The two-step optimization method proposed by [6] is applied: in the first
step, use DV SWEEPS algorithm to obtain the corresponding relationship between
the deformed PV value and the support angle y; the second step is based on the first
step optimization result, and use the First-Order optimization algorithm to obtain the
global optimum.

Table 7.2 Material parameters

Part name | Material Density Elastic Poisson Linear Coefficient of
pl(kg m~?) | modulus ratio expansion | thermal
E/GPa coefficient | conductivity
a/°C! MW m~! K1)
Prism K9 glass 2530 81.32 0.209 7.5 x 1076 | 1.207
Support Nylon 66 | 1050 28.3 0.4 8.0 x 1076 |0.27
block
Cell and 45 steel 7800 196 0.24 11 x 1076 | 48
others
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Fig. 7.6 Finite element model of the prism (thin end upward) where 1 is support block, 2 is wedge
facet, 3 is plane facet and 4 is tracking mirror

A = - 168E-04 A =.00564

B =-.106E-04 B =.016597
C=—-441E-05 C =.027553
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F=.142E-04 I =.060422

Fig. 7.7 Contour chart of the prism. a Axial deformation; b Von Mises stress

In the first step, the DV SWEEPS algorithm is an equal step length searching
method, and the scan analysis is performed in the design space to obtain the trend
of prism deformation T_PV value with support angle y. Considering the support
curvature of the support block and the support arrangement of the prism, the search
range is set to [30°, 180°] with the step length 3° to obtain the change curve of the
T_PV value of the prism deformation as a function of the support angle y as shown
in Fig. 7.8.

The second step First-Order optimization algorithm is based on the sensitivity
of the objective function to the design variables. In each iteration, the gradient is
calculated to determine the search direction. Therefore, the calculation accuracy is
high and the occupancy time is relatively long. In the first step, the DV SWEEPS
algorithm provides the initial optimization sequence for the second-step First-Order
optimization algorithm and shortens the search scope of its design variables. We set
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Table 7.3 Optimization results of support angle y (thin end upward)
SET 1 SET 2 *SET 3 SET 4
Maximum von Mises 0.06704 0.06508 0.07585 0.06671
equivalent stress/MPa
Support angle y/(°) 150 153.89 138.29 124.43
T_PV value/nm 43.65 43.72 43.23 4491

the support angle y as the design variable, the allowable stress [6] of K9 glass as
the state variable, the T_PV values of the surface deformation of tracking mirrors
as the objective function, and 120°-160° as the search region of the design variable.
The designed optimization sequence obtained is shown in Table 7.3, where “*” is
the optimal solution.

According to the optimization results, it can be seen that when the support angle
y = 138.29°, the minimum T_PYV value of the prism is 43.23 nm.

The prism support model with the support angle y = 138° is established, and
the static structure analysis is carried out. The analysis result shows that the T_PV
value of the surface deformation is 43.25 nm, the T_RMS value is 22.49 nm and the
maximum value of von Mises equivalent stress is 0.0799 MPa. Figure 7.9 shows the
contour chart of the prism axial deformation and von Mises equivalent stress after
optimization.

According to the analysis result, it can be seen that with the thin end of the prism
upward, the PV value of the surface deformation, under the support optimization
way, has reduced by 2.94%, and the RMS value has decreased by 2.0%, compared
with the three-segmental support way before optimization. To a certain extent, the
surface figure of the prism is improved by the two-step method.

(2) Thin End Downwards

For the case where the prism thin end faces downwards, the three-segment support
and optimization support methods are also analyzed, and the same displacement
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Fig. 7.9 Contour chart of the prism after optimization. a Axial deformation; b Von Mises stress

constraints, force constraints, gravitational accelerations, and contact settings are
added, which are all same as the conditions of thin end upwards. The analysis results
show that the T_PV value of prism deformation under the three-segment uniform
support mode is 45.33 nm, T_RMS value is 22.45 nm, and the maximum equivalent
stress value is 0.1190 MPa.

Similarly, the support angle y is optimized by the aforementioned optimization
method to obtain the design optimization sequence as shown in Table 7.4. It can
be seen that when the support angle y = 133.72°, the T_PV value of the prism
deformation reaches the minimum value 42.97 nm.

A prism support model with an optimal support angle y = 133° is established.
The result shows that the T_PV value of the surface deformation after optimization,
is 43.03 nm, which has decreased by 5.07%, the T_RMS value is 22.22 nm with
the reduction of 1.02%, and the maximum value of von Mises equivalent stress is
0.1060 MPa. The surface quality of the prism is improved to some extent. Figures 7.10
and 7.11, respectively, are the contour chart of the axial deformation and the von
Mises equivalent stress of the prism before and after optimization.

3. Analysis of Rotation Process

Regardless of whether the thin end of the prism is upward or downward, the optimized
support method can improve the surface precision of the prism to some extent. When
the prism rotates to different positions (the analysis of dynamic rotation processes will
be discussed in detail in Sect. 7.2), is the support optimization way still advantageous?
The following analysis will be carried out.

Table 7.4 Optimization results of the support angle y (thin end downward)

SET 1 SET 2 *SET 3* SET 4
Maximum von Mises 0.09086 0.08502 0.10655 0.10608
equivalent stress/MPa
Support angle y/(°) 150 145.42 133.72 137.49
T_PV value/nm 44.00 43.17 42.97 44.29
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Fig. 7.10 Contour chart of axial deformation. a Before optimization; b After optimization
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Fig. 7.11 Contour chart of von Mises stress. a Before optimization; b After optimization

Using the Ansys APDL language, the parametric model of the prism and its sup-
port structure are established. Similar to the above analysis process, the constraints,
gravity acceleration and contact settings are added to the prism model. Here, we
select 5° as the rotation step, and the prism model is analyzed within a rotation
region of 0°-360°. Figures 7.12a and b, respectively, show the motion model (initial
position) and the finite element model (with a rotation angle of 90°) of the prism.

Using Matlab software tool, the T_PV value of the prism deformation after rotation
analysis is fitted, and the relationship between the T_PV value and the rotation angle
B is obtained. Figures 7.13 and 7.14 are the comparison curves of the three-segment
uniform support way and the optimized support way under the conditions of the thin
end of the prism upward and downward.

From Figs. 7.13 and 7.14, it can be seen that when the prism with the thin end
upward rotates in the ranges of [0°, 45°], [155°,210°] and [315°, 360°], the deforma-
tion T_PV value under the three-segmental surface support is greater than the T_PV
value in the optimized support; while when the prism rotates within the ranges of
in the ranges of [45°, 155°] and [210°, 315°], the deformation T_PV value under
the optimizing the support is greater than that under the uniform support. For the
case of the thin end down, when the prism rotates in the rotation ranges of [0°, 70°],
[140°,220°] and [290°, 360°], the deformation T_PV value under the three-segment
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Fig. 7.12 Analysis model of prism rotation. a Motion model (initial position); b Finite element
model (rotate to 90° position)
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Fig. 7.13 Comparison curves of uniform support and optimized support (thin end upward)

uniform support is greater than that under the optimization support; while when the
prism rotates in the ranges of [70°, 140°] and [220°, 290°], the deformation T_PV
value under optimizing the support mode is greater than that under the uniform
support way.

The above results indicate that whether the thin end of the prism is upward or
downward, the optimized support way has certain advantages within several ranges
of the rotation angle, and its support effect is not as good as the three-segmental
support way in the rest ranges when the prism rotates from 0° to 360°. Therefore, for
the static prism, the support way after optimization can improve the surface quality
to a certain extent, but it is not necessarily ideal for the rotating prism.
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Fig. 7.14 Comparison curves of uniform support and optimized support (thin end downward)

7.1.3 Multi-segmental Support Analysis

In view of the rotating prism, it is generally considered that the method of increasing
the number of segmental support surfaces is used to increase the support contact area
and the surface quality can be improved.

In this section, the sensitivity of the prism to the positions of the uniform support
with three, four and six support blocks is firstly analyzed. Then support effects under
three, four and six blocks group for the same prism are compared to each other during
the rotation process of the prism.

1. Study on Position Sensitivity of Support Blocks

Due to the multiple arrangement of multiple segments along the circumference of the
prism, different uniform distribution methods will affect the prism deformation and
stress in different levels, that is, the sensitivity of the prism to the uniform support
block group position is different [10].

Figure 7.15 shows an analysis model for the sensitivity of the prism to the positions
of support blocks. The prism is fixed with the thin end upwards, and the support blocks
rotate from 0° to 360° with the step length of 5°. With the help of parametric modeling
analysis by Ansys APDL language, and the powerful data processing ability of Matlab
software tool, the relation curves of the T_PV value of the surface deformation and
the rotation angle § of support blocks are obtained, as shown in Fig. 7.16.

As shownin Fig. 7.16, the sensitivity of the prism to the positions of support blocks
changes periodically, and the change periods of three, four and six support blocks
are 120°, 90° and 60°, respectively, which are consistent with the actual situation.

Take the results of the first period for a brief analysis (other periods are the same,
omitted here): The minimum T_PV value under the support of three blocks, which
is 44.56 nm, occurs when support blocks rotate to the position of 0° or 120°, as the
position shown in Fig. 7.15a, and it is the best support position for three segments
where the prism is least sensitive to the three-segmental support way. The minimum
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Fig. 7.16 Support effects of support blocks at different locations

T_PV value under the support of four blocks, which is 42.73 nm, occurs when
support blocks rotate to the position of 45°, that is, the position where support blocks
in Fig. 7.15b further rotate 45°. In this position, the surface deformation is the least
sensitive to the four-segmental support way, which is the best support position for
four segments. Similarly, the minimum T_PV value under the support of six blocks,
which is 41.02 nm, occurs when support blocks rotate to the position of 0° or 60°, as
the position shown in Fig. 7.15¢, and it is the best support position for six segments
where the prism is least sensitive to the six-segmental support way.

From Fig. 7.16, it can be found that the four-segmental support curve is under
the four-segmental support curve and above the six-segmental support curve, which
indicates that the support effect for a static prism can be improved with the number
of support segments increasing.
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Fig. 7.17 Surface deformation under different support ways

2. Analysis of Rotation Process

After the above analysis, the optimal support positions of three, four and six support
blocks are obtained. Then the surface deformation of prisms is evaluated during the
prism rotation process in the rotation range of 0°-360° and with the rotation step of
5°.

The relationship between the T_PV value of the surface deformation and the
rotation angle f is shown in Fig. 7.17. As shown in Fig. 7.17, no matter whether the
number of support segments is three, four or six, the maximum T_PV value of the
surface deformation occurs on the rotation position of 180°, which is 46.65,47.53 and
44.39 nm, respectively. It can be found by calculation that the T_PV range between
the maximum value and the minimum value of three-segmental blocks is 22.55 nm,
and that of four and six blocks is 32.05 and 30.63 nm, respectively, which indicates
that the volatility of the surface deformation with three arc-shaped support blocks is
relatively small during the rotation process, that is, the three-segmental support way
can make a better support effect.

The following content of this chapter is mainly about the analysis of various
performances of the prism with three arc-shaped support blocks.

7.1.4 Extension of Multi-segmental Support

In this section, we will investigate the support effect of multi-segmental support
methods for different diameter and different wedge-angle prisms and try to find a
local optimum wedge angle under the different multi-segmental support way within
a certain wedge angle range.
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1. Impact on Prism with Different Diameters

A large-aperture prism that has the thinnest-end thickness of 30 mm, the wedge
angle of 10° and the diameter within 400-1200 mm is used for analysis. The impacts
of different support methods, including three, four and six segments, on the prism
are investigated. Figure 7.18 shows the relationship between the prism deformation
T_PV values and different diameter under different multi- segmental supports.

As shown in Fig. 7.18, with the increase of the diameter, the T_PV value of the
surface deformation is also increasing, that is, the effect of multi-segmental support
ways becomes worse and worse. For example, when the clear aperture of the prism is
equal to or larger than a diameter of 1000 mm, the existing multi-segmental support
ways cannot meet the design requirement of the surface deformation PV values less
than 1/4) (wavelength A = 632.8 nm).

2. Impact on Prism with Different Wedge Angles

For wedge-shaped optical prisms, increasing the wedge angle can expand the imaging
field of view (FOV) and scan range and improve the operating performance of the
optical system. To investigate the impact of the support way of three, four and six
segments on the surface shape, a wedge-shaped prism, with thinnest-end thickness
of 30 mm, diameter of 500 mm and wedge angle of 5°-30°, is selected as the analysis
object. The relationship between the T_PV value of the surface deformation and the
wedge angle, under different multi-segmental support ways, is shown in Fig. 7.19.
From Fig. 7.19, the surface deformation under the multi-segmental support way
can meet the requirement of less than 1/4A within the wedge angle range of 5°-30°.
The T_PV value of the surface deformation does not increase during the wedge angle
increasing, instead, a minimum value occurs at a certain wedge angle. Theoretically,
the surface deformation should be increasing with the increase of the prism wedge
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350 —#—— Four-segment support
300 - Slx-scgnwm.sup]mn

T PV value/nm
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Clear aperture D/mm

Fig. 7.18 Impact of multi-segmental support ways on the prism with different diameters
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Table 7.5 Optimal wedge angle under different support ways

Search region/(°) | Initial value/(°) Optimal value/(°) | T_PV/nm
Three-segmental | 22-26 24 24.76 40.17
support
Four-segmental | 22-26 24 24.08 3542
support
Six-segmental 22-26 24 24.24 33.76
support

angle. However, as the wedge angle increases, the contact area between the prism
facet and the support block also increases continuously, which compensates the
deformation. The optimal wedge angle corresponding to the minimum T_PV value
can be obtained by the following optimization method. Here, we select the wedge
angle o as the design variable, the allowable stress [] of K9 glass as the state variable,
the T_PV value of surface deformation as the objective function, and 22°-26° as the
search region of the wedge angle. The optimization analysis results are shown in
Table 7.5.

The above results show that three, four, and six segment support methods are
suitable for the prisms with wedge angles of 24.76, 24.08, and 24.24°, respectively,
within the prism wedge angle [5°, 30°].

In summary, the better surface quality of the prism in the static support can be
ensured under the multi-segmental support way.
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Fig. 7.19 Impact of multi-segmental support ways on the prism with different wedge angles
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7.2 Dynamic Performance Analysis

In the course of dynamic motions such as tracking and scanning of a large-scale
optomechanical system, the dynamic characteristics of optical elements are affected
by self-weight, as well as the collision, impact and friction of the auxiliary mech-
anism (such as the support system), which may cause that the overall performance
of the optical system cannot meet the expected design requirements. At present, the
research on the structural optimization and performance analysis of optomechanical
systems has been mature gradually by using the finite element method. However,
most previous research focused on the statics characteristics and less on the dynamic
analysis [9].

For the support structure of mirrors, Zhang et al. [13] investigated the dynamic
conditions of mirrors to evaluate the surface deformation and surface quality. Xiao
et al. [14] analyzed the static and dynamic characteristics of the moving reflector’s
mechanism with small coupling displacement according to the theories of mechanics
and dynamics, which can meet the dynamic performance requirements of the mirror.
Burns [15] analyzed the dynamic performance of the deformable mirror for the active
support mechanism of the Gemini telescope. Although many scholars try to study the
dynamic performance of the optomechanical system, an effective dynamic analysis
method has not been established yet.

In this section, considering the influence of dynamic factors, ADAMS software
and ANSYS software platforms are used for the dynamic simulation of the scan
prism system, and the simulation results can be referred for the subsequent support
performance research.

7.2.1 Dynamic Analysis Method

The dynamic analysis method employed in this section is shown in Fig. 7.20 [10].
The dynamic analysis method includes two aspects: First, the dynamic simulation
of dynamic optical systems based on Adams software platform; Second, the perfor-
mance analysis on the support structure of optical elements based on Ansys software
platform.
The specific steps are as follows:

(1) A simplified model of the dynamic optical system is built, and constraints,
loading, and driving source are added by Adams software tool, which are used
for the system dynamics analysis. After the structural dynamics solution, the
load spectrum is obtained based on both the time domain and the spatial domain.

(2) The obtained load spectrum, equivalent to external loads, is added to the optical
element, and the prism surface deformation values and node dynamic response
curves can be obtained.

(3) The prism’s surface shape is analyzed and evaluated. If the analysis results
cannot satisfy the working requirement, the design parameters of the support
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Fig. 7.20 Dynamic performance analysis method for the support structure of dynamic optical
elements

should be modified to improve the system performance until it reaches the
predictive accuracy requirement.

This method makes full use of the technical advantages of Adams and Ansys
software tools, and fully considers external dynamic loads to make simulation con-
ditions for the system close to an actual case, which offers a reliable reference for
the subsequent test and analysis.

7.2.2 Dynamic Simulation and Analysis of Rotating Prism

In this section, the dynamic performance analysis method is used to perform the
dynamic simulation analysis on the prism model under the three-segmental support
way [10].

A simplified moving model of the prism system is built by Adams software tool,
including a wedge-shaped prism, three support blocks, a wedge ring, and a prism
cell. The prism material is K9 glass, characterized by diameter of 500 mm, wedge
angle of 10°, and thinnest-end thickness of 30 mm; Support blocks adopt Nylon 66,
with thickness of 15 mm and center angle of 20°; The wedge ring and prism cell are
made of 45 steel, and its size is set with the wedge-shaped prism and support blocks,
omitted here.
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Fig. 7.21 Simplified mechanism model of the prism system where 1 is support block, 2 is prism
cell, 3 is tracking mirror and 4 is wedge ring

The simplified model of the prism is established and assembled through the 3D
modeling software tool Pro/Engineer, and imported into Adams to define the appear-
ance and material of each component. The overall effect is shown in Fig. 7.21.
Constraints and loads on the prism model include fixed pairs, rotating pairs, contact
forces, preloads, and driving forces. Fixed pairs include JOINT_1, JOINT_2, and
JOINT_3 between the support block A, B, and C and the cell, as well as JOINT_4
between the wedge ring and the cell. The rotating pair is added on the cell. Contact
forces include CONTACT_4 and CONTACT_5 among wedge ring, cell, and prism;
and the contact force between support blocks and the prism will be described in detail
below. The preload FORCE_1, FORCE_2, and FORCE_3 are added on the mass cen-
ter of support blocks A, B, and C, respectively, by 10 N along the radial direction.
The gravity acceleration —9800 mm/s? is added on the whole model. Meanwhile,
rotary driving is added on JOINT_ROTATE with a rotation speed of 30 (°)/s. The
simulation time is set to 12 s, and the prism rotates from 0° to 360°.

During the dynamic simulation, contact forces cannot be measured in real time
under normal conditions. To this end, the following steps are added in the process of
adding constraints:
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(b)

90°— -270°

180°

Fig. 7.22 Loading model of the prism system. a Constrain model; b Schematic diagram of the
prism model

First, support blocks A, B and C are duplicated to obtain support blocks A;, B
and C, and the fixed pairs, JOINT_A, JOINT_B and JOINT_C, are respectively
added between the two corresponding support blocks. Supposed that support blocks
A1, By and C have no mass, and then contact forces, CONTACT_A, CONTACT_B
and CONTACT_C, are added between A|, B; and C; and the prism. Since support
blocks Ay, B; and C; have no mass, contact forces between Ay, B, C| and the prism
are completely transmitted to support blocks A, B and C by fixed pairs JOINT_A,
JOINT_B and JOINT_C, and support blocks A, B; and C; have no effects on the
dynamic characteristics of the prism system. By measuring the force size of the fixed
pairs JOINT_A, JOINT_B and JOINT_C, the size of contact forces can be obtained
inreal time. Figure 7.22 shows the prism system with all constraints and loads added.

Through the dynamic simulation of the prism system, forces of the fixed pairs
JOINT_A, JOINT_B and JOINT_C are extracted to obtain the simulation results as
shown in Figs. 7.23, 7.24 and 7.25, which respectively shows the force F4, Fg and
F¢ at support block A, B and C on the prism when the system rotates from 0° to
360°.

From Fig. 7.23, the contact force at support block A is 10.08 N when the prism
rotates within the ranges of [0°, 73.44°] and [290.16°, 360°], i.e., only the preload
applies on the prism. But when the prism rotates within the range of [73.44°,290.16°],
the contact force at support block A gradually increases and then reduces to the
preload, and a smaller value appears near the 180° position. This is because the
gravity center is not at the geometric center of the prism, and the rotation prism
is always subjected to an eccentric force during its rotation process; therefore, the
maximum contact force at support block A occurs in the positions of 159.84° and
203.76°, that is 393.52 and 391.61 N, respectively.
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Fig. 7.23 Contact force curve at support block A
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Fig. 7.24 Contact force curve at support block B
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Fig. 7.25 Contact force curve at support block C

Figures 7.24 and 7.25 show the contact force at support blocks B and C. Due
to the symmetric layout of two support blocks on both sides of the thick end of
the prism, two contact force curves are basically symmetrical to each other. This
indicates that the contact forces on support blocks B and C have identical effects,
which accords with the actual situation. Maximum values at support block B occur
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when the prism rotates to the 92.88° and 32.4° position—427.11 and 427.84 N,
respectively. Maximum values at support block C occur when the prism rotates to
the position of 334.08° and 269.28°—425.88 and 425.06 N, respectively.

According to the above analysis, the support forces in the case of three support
blocks for the prism can be obtained when the prism rotates from 0° to 360°, and
the force value under the worst condition is extracted. The PV values of the surface
deformation under several worst conditions are calculated and analyzed as follows.

Due to the wedge-shaped structure of the prism, the direction of forces at support
blocks for the prism does not point to the geometric center. Therefore, when per-
forming the surface deformation analysis in Ansys software tool, the support force
values need to be extracted along the X and Y directions (force along the Z direction
is substantially unstressed, so not considered), with the aim of adding constraints
and loads. Table 7.6 lists the support force components along the X and Y directions
at support blocks A, B and C, for the prism under the six worst conditions during
dynamic rotation.

As an example of the finite element analysis process, only one worst condition of
the prism rotating to 32.4° is presented as follows. First, we set the material param-
eters of K9, establish a parametric model of the rotating prism (thin end upward),
and counterclockwise turn the model by 32.4°. We use a SOLID95 unit with 20 s
in Ansys software tool to mesh the finite element model, and divide the prism into
72 and 4 equal parts along the circumference and the axial direction, respectively.
We apply support force of 5.19 N and —8.45 N along the X and Y directions at the
nodes of support block A, apply force of 215.38 and 368.82 N along the X and Y
directions at nodes of support block B, and apply support force of —209.93 N and
—3.21 N along the X direction and the Y direction at the nodes of support block C.
Meanwhile, the axial constraint and tangential constraints are added on the edges of
the two sides of the prism, but excluding the corresponding location area of three
support blocks. Gravity acceleration of 9.8 m/s? is applied on the model. The full
model is shown in Fig. 7.26.

Table 7.6 Support forces along the X and Y directions at support blocks A, B and C for the prism

Rotation angle B/(°) | 32.40 92.88 159.84

Force direction X Y X Y X Y
Force at A Fo/N 5.19 —8.45 177.20 —2.61 149.64 363.88
Force at B Fg/N 215.38 368.82 —216.72 |368.89 —164.95 | —-28.40
Force at C Fc/N —209.93 | -3.21 4.56 9.64 —6.32 8.53
Rotation angle B/(°) | 213.84 269.28 334.08

Force direction X Y X Y X Y
Force at A Fa/N —226.24 |311.06 —167.12 | —12.81 4.24 8.98
Force at B Fg/N 4.34 9.81 —4.89 9.52 247.34 25.04
Force at C Fc/N 232.96 23.09 201.15 374.49 —250.47 |343.42
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Fig. 7.26 Finite element model of prism (32.4° position) where 1 is block B position, 2 is block A
position, 3 is plane facet, 4 is wedge facet and 5 is block C position

Table 7.7 PV Values of Surface Deformation (nm) and Von Mises Values (MPa)

Rotation angle B/(°) | 32.40 92.88 159.84 213.84 269.28 334.08
The PV value on the | 26.42 42.13 103.16 98.64 39.02 26.31
plane facet/nm

The PV value on the | 52.27 62.58 61.14 74.38 61.31 56.49
wedge facet/nm

The von Mises 0.216 0.218 0.434 0.424 0.208 0.206
stress/MPa

For prisms in the other five cases, we perform the same finite element analysis.
The PV values of the surface deformation and the von Mises equivalent stress values
can also be obtained, as shown in Table 7.7. As we can see from the table, when the
prism rotates to 159.84°, the PV value on the plane facet reaches a maximum value
of 103.16 nm, and when it rotates to 213.84°, the PV value on the wedge facet has a
maximum value of 74.38 nm. At the wavelength A = 632.8 nm, the three-segmental
support can meet the requirement of dynamic surface deformation of less than A/4
(our design requirement).

Figures from 7.27, 7.28, 7.29, 7.30, 7.31, and 7.32 are the contour charts of the
prism deformation on the plane facet and the wedge facet under dynamic working
conditions of 32.40°, 92.88°, 159.84°, 213.84°, 269.28° and 334.08°, respectively.

Comparing Fig. 7.17 to Table 7.7, it can be found that the PV value of the sur-
face deformation under the six worst conditions, obtained by the dynamic analysis
method, is much greater than that obtained by the static analysis (In the static anal-
ysis: the PV value on the plane facet is 23.06 nm, and the PV value on the wedge
facet is 22.02 nm). Since the friction, impact, inertia and other dynamic factors are
considered in dynamic analysis, it can nearly reflect the deformation changes over
the full rotation under actual rotation conditions.
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Fig. 7.27 Contour chart of prism deformation (32.40° dynamic working condition). a On the plane
facet; b On the wedge facet
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Fig. 7.28 Contour chart of prism deformation (92.88° dynamic working condition). a On the plane
facet; b On the wedge facet
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Fig. 7.29 Contour chart of prism deformation (159.84° dynamic working condition). a On the
plane facet; b On the wedge facet
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Fig. 7.30 Contour chart of prism deformation (213.84° dynamic working condition). a On the
plane facet; b On the wedge facet
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Fig. 7.31 Contour chart of prism deformation (269.28° dynamic working condition). a On the
plane facet; b On the wedge facet
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Fig. 7.32 Contour chart of prism deformation (334.08° dynamic working condition). a On the
plane facet; b On the wedge facet

7.3 Deformation Value Fitting of Prism Surface

The optical elements of the optomechanical system are prone to produce surface
deformations under the action of self-weight and external loads, which can lead to
concentricity changes and wavefront distortions of the optical system and then affects
the optical properties of the entire system. In order to investigate the wavefront
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aberration, it is necessary to perform the deformation value fitting on the surface
shape. The wavefront of the prism surface always tends to be smooth and continuous,
so changes of the surface deformation can be represented by a linear combination
of complete base functions or a combination of linearly independent base functions.
The method of fitting surface deformation values with Zernike polynomials has
been widely used in optical design software, interference detections and engineering
projects. Zernike polynomials are linearly independent and orthogonal to each other,
which can describe the wavefront boundary of the circular aperture, uniquely and
normatively. In addition, Zernike polynomials have some correspondence with the
primary aberration and are easy to establish contact with the Seidel aberration in the
optical design. In practical optical experiments, the wavefront data is usually made
up of a mixture of multiple aberrations. By the Zernike polynomial fitting method,
it is easy to obtain the specific data information of various wavefront aberrations,
which provides an effective method to solve the aberration coefficients and optimize
the system performance.

In this section, prism surface is the main research object. In addition to the anal-
ysis of the Zernike polynomial and its fitting algorithm, the surface deformation is
calculated under different static and dynamic conditions by the first 15 items of the
Zernike polynomial, and is compared with the surface deformation of the actual sim-
ulation. In the meantime, errors of the PV and RMS values of the surface deformation
are calculated, which can be used to evaluate the fitting precision.

7.3.1 Zernike Polynomial Fitting Theory

1. Aberration Introduction

Generally, the actual optical system is different from the ideal one. The light emitted
from a point of space passes through the actual optical system and does not converge
at a point of the image space but forms a diffuse spot, of which the size is related to
the aberration system.

In the theory of wave optics, the spherical wave emitted by an object point within
the paraxial region still remains a spherical wave after propagating through the optical
system. Due to the presence of diffraction phenomena, the ideal of an object is like a
complex Airy disk. For an actual optical system, due to the presence of aberrations,
the wavefront formed by the optical system is not a spherical surface. The deviation
value between the actual wave surface and the ideal wave surface is defined as the
wave aberration, and its size can be directly used to evaluate the imaging quality of
the optical system.

Generally speaking, it is a conventional method to describe the aberration of an
optical system in the form of power series expansions. Since the form of Zernike
polynomials is consistent with that of aberration polynomials obtained from the
optical detection, it is often applied to describe wavefront characteristics.
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2. Zernike Polynomial Expression

The polar coordinate expression of the Zernike polynomial is [16]:
W, (p,6) = Ry(p) - ©4(6) (7.1)

where R,’j(,o) is an item only related to the radial direction; @ﬁ(@) is an item only
related to the amplitude angle; n is the order of the polynomial; k is a sequence
number related to n, and its value is constant with the parity of »n but its absolute
value is less than or equal to n. If we define k = n — 2m, the expression of R,’j(,o) is:

Z (_1)3 s! m—(vnrr:)—'m—v !'On_zs’ (11 —2m z O)
RI72M(p) = | s=0 (o= (7.2)
Ry, (n—2m < 0)

The expression of @ﬁ(@) is:

®n—2m(9) _ cos[(n —2m)B], (m —2m > 0) (7.3)
" —sin[(n — 2m)0], (n — 2m < 0)

According to R¥(p) and © (9), the specific expression of each Zernike polynomial
item can be written out.

In Cartesian coordinates, the Zernike polynomial with n items can be expressed
as follows:

VL y) =Y aZi(x, y) = a1 Zi(x, Y) + @ Zo(x, y) + ...+ an Zy(x, y)  (14)
k

where n is the item number of the Zernike polynomial; a; is the coefficient of kth
item in the Zernike polynomial; Z (x,y) is the kth item of the Zernike polynomial;
x and y are the coordinate of data points.

The item number of the Zernike polynomial in (7.4) is based on the actual situation,
and itis not a correct fact that the more the item number, the higher the fitting precision
is. In this section, the first 15 items of the Zernike polynomial are finally selected
to fit the surface deformation of the tracking mirror, after the preliminary fitting
program debugging. The expressions of the first 15 items of the Zernike polynomial
in Cartesian coordinates are shown in Table 7.8.

There are many ways to fit the surface, such as triangular patches, cubic B-spline
surfaces and so on. The Zernike polynomial is usually selected as the base function
to fit the measured wavefront. That is because the Zernike polynomial also possesses
several important features except for the highest precision of the fitting wavefront
[16]:
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Table 7.8 The expressions of the first 15 items of Zernike polynomial in Cartesian coordinates

Item number Expression of Zernike kth Item number Expression of Zernike kth

k item k item

1 1 9 V8(3x2% — y?)y

2 2x 10 V8(3x% — y?)x

3 2y 11 V3[6(x2+y2)2 —6(x2+y2)+1]
4 V32x2+2y2 - 1) 12 JV10(4x2 +4y% — 3)(x2 — y?)
5 2/6xy 13 24/10(4x2% + 4y — 3)xy

6 V6(x% — yz) 14 V10(x* — 6)(2y2 + y4)

7 V8(3x2 +3y2 —2)y 15 4/10(x% — y?)xy

8 V8(Bx2+3y2 —2)x

(1) Each item of the Zernike polynomial has a specific physical meaning, corre-
sponding to the primary aberration, and is easy to establish contact with the
Seidel aberrations habitually used in the optical design.

(2) Each item is orthogonal in the unit circle, that is:

/I / WE (o, YW (o, 0)pdpde = | 7710 M=K =) (7.5)
S T 0, (m#mk#q) '

where W,’f (p0,0) and W, (p, 9) are arbitrary two items of the Zernike polynomial;
When k£ =0, § = 1, and when k # 0, § = 0.5. The orthogonality of the Zernike
polynomial makes the coefficients of fitting polynomials independent of each other
to avoid the interference of accidental factors.

(3) The Zernike polynomial also has the unique rotational symmetry (Namely, the
polynomial expression remains constant as it rotates around the origin), which
makes it convergences well in the solving process of optical problems. There-
fore, the Zernike polynomial is ideally suited for the error fitting of the surface
deformation on the circular optical mirror.

(4) When the Zernike polynomial is used as the data interface of programs, it can
compress a large amount of data with good compatibility, and the expressed
data is more intuitive.

3. Fitting Algorithm

It is the most crucial step for the deformation value fitting to solve the fitting coeffi-
cient of the Zernike polynomial. If the fitting coefficient a; cannot be found out cor-
rectly, the subsequent deformation value fitting and aberration analysis will become
meaningless. The methods commonly used to solve the fitting coefficient include:
Gram-Schmidt orthogonalization method, Covariance matrix method, Householder
transformation method, least squares method and so on [16].
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(1) Gram-Schmidt Orthogonalization Method

A set of orthogonal base functions U can be expressed as follows:
U=BZ (7.6)

where B is the coefficient matrix of the element b;; Z is a Zernike polynomial;
Elements in U satisfy the following conditions:

0,1 l
Suu, =00 TE (7.7)
. 1., =1

where 7 is the concentration of discrete data points.
bjj can be given by Gram-Schmidt orthogonalization, that is:

0, i<j

| 1/2
(Zzwm> L=
L\ n (7.8)

i—1
— Z b,’[b[j (Z Z,'U[), i > ]
=1 n

1

DIz
"

From (7.4) and (7.6), we can get:
Vix,y)=ATZ=ATB7'U = C'U (7.9)

where A is the Zernike coefficient matrix; CT = ATB1.
From (7.9) we can get:

vlc=v" (7.10)
Two sides of the above formulas left multiply by U:
vu'c =uv” (7.11)

Since U is an orthogonal matrix, UUT = E, then we can obtain C = UVT.
Combined with CT = ATB~!, the fitting coefficient of the Zernike polynomial, A =
(VUTB)T, can be obtained.

(2) Householder Transformation Method
Householder transformation is also known as reflection transformation or mirror-

injection, which is defined as follows:

H=1-2uu" (7.12)
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where u is a column vector, ucR”. From the above definitions, we can see that the
matrix H has three characteristics: orthogonality (HH" = E), symmetry (H = H")
and involutivity (H? = E).

The following two important theorems are often used in the Householder trans-
formation method:

(1) Setu #0,let p = 1/2lull, then H = 1 — p~'uu" is a Householder matrix.
(2) SetxeRn", 0 = =lIxll, and assume x # —oe, then a Householder matrix H can
be found to make Hx = —oe;, where ; = (1,0, ..., 0)T.

With the help of two theorems above, corresponding algorithms can be pro-
grammed to orthogonalize the measurement matrix Z of the Zernike polynomial,
and the ill-condition of the equations can be avoided to work out the coefficient
matrix A of the Zernike polynomial.

(3) Covariance Matrix Method

Actually, the covariance matrix method is a simplified Gram-Schmidt method, which
avoids the orthogonalization process, and the fitting coefficient a; is worked out by
a linear transformation of the covariance matrix of the Zernike polynomial Z.

D is defined as the covariance between Z; and Z;, set

1 « . .
Dy ==Y (Zi — Z)Zii — Z1) (7.13)
-
where Z; = % Y Zi(G=1,2,...,n), and Dy = Dy.
When the n items of the Zernike polynomial are fitted by using the Gram-Schmidt

method, the matrix consisting of the first n rows in the covariance matrix is:

Dy Dyy -+ Dy, Dy
Dyi Dy -+ Doy D3y

Dnl Dn2 e Dnn Dn,n+1

The following matrix equation can be constructed:

D11 D12 R Dln ai Dl,n+1
D>y Dy -+ Doy, az Dj 41

- (7.14)
Dnl Dn2 ce Dnn an Dn,n+l

The fitting coefficient a; of the Zernike polynomial can be obtained by solving
the above equations. Furthermore, the smooth and continuous fitting function of the
surface deformation can be worked out.
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(4) Least Squares Method

Different from the above algorithms, the least squares method is more concise
and faster. For example, the Householder transformation method, with larger com-
putational complexity, is very complicated and cumbersome. In many references,
the Gram-Schmidt orthogonalization method is recommended because serious ill-
conditions of the coefficient matrix of the canonical equation in the least squares
method can be avoided. In fact, the stability of the Gram-Schmidt orthogonaliza-
tion method and that of the least squares method are consistent in solving the fitting
coefficients of the Zernike polynomial. Namely, with the same order of the Zernike
polynomial, the Gram-Schmidt orthogonalization method is also unable to work out
the correct coefficients if the serious ill-condition of the canonical equation appears
when using the least squares method. Therefore, the least squares method with a
simple algorithm is used to fit the surface deformation in this paper.

7.3.2 Surface Fitting

1. Fitting Principle

After the static analysis on the prism by Ansys software, some information can be
obtained by programming, such as coordinates of surface nodes and deformation
values, which mainly includes: the coordinate of each node on the surface before
deformation xy;, y1;, z1; (i = 1, 2, 3, ..., m), the difference between the nodes before
and after deformation Ax,;, Ay, Azy; (i=1,2,3, ..., m). Where m is the number
of surface nodes.

In the finite element model, Z axis is set as the optical axis of the prism, let

Xi = x1; + Axy;
yi =y + Ayy; (7.15)
Az, = Azy;

Xi, ¥i, Azy; are substituted into the Zernike polynomial, to obtain the following
equations:

arZi(x1, y1) + axZo(xy, y1) + - +an Z,(x1, y1) = AZ;

a1Z(x2, y2) + a2 Zy(x2, y2) + -+ ay Z, (X2, ¥2) = AZy
(7.16)

a]Zl(xWh ym) + 61222()6,”, ym) +--0F anzn(xma ym) = AZm
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Namely,
Z1(x1, y1) Za(x1,y1) -+ Zn(x1, y1) a AZ,
Zi(x2, ¥2) Zo(x2,y2) -+ Zp(x2,¥2) a AZ,
= ) (7.17)
Z1(Xms Ym) Zo(Xm, Ym) =+ Zu(Xms Ym) an AZ,
It can be further written into a matrix form:
ZA =0 (7.18)
where Z is am x n matrix, the element z; = Z;(x;, y;), ( =1,2,3, ...,m;j =1, 2,

3, ..,n)A=(a,a, ..., a,)"; 0=(AZ, AZ,y, ..., AZ)T.

The matrix Z in (7.18) represents the expression of each Zernike polynomial item
of all the extracted nodes. Q indicates the deformation of all nodes along the optical
axis direction of the tracking prism, which can be obtained from results of the finite
element analysis and it is a known quantity. The matrix A is the coefficient of each
Zernike polynomial item that needs to be solved, which is an unknown quantity.
There are many ways to solve the matrix equations above, among them, a simple
and fast method, the least squares method, is used to solve the matrix equation of
(7.18). After finding the Zernike polynomial coefficients, the wavefront function of
the surface fitting can be obtained by substituting these coefficients into (7.4).

2. Process of Deformation Value Fitting

Deformation value fitting of the prism surface mainly incorporates three aspects:
calculation of Zernike Polynomial coefficients, construction of surface wavefront
functions and mapping of fitting wavefront surfaces. Among them, the calculation
of Zernike polynomial coefficients is most crucial.

The solving process of Zernike coefficients consists of two parts: data extrac-
tion and coefficient solving, respectively. In the part of data extraction, firstly the
finite element model of the prism is established, and the solving and analysis are
performed on it. Then data files of the surface deformation are output through APDL
programming, including the node coordinates before deformation and the coordinate
differences before and after deformation. In the part of coefficient solving, firstly the
data in files is sorted into the data which serves for the Zernike polynomial fitting,
then the matrix equation of fitting coefficients is constructed by using Matlab pro-
gramming. Finally, fitting coefficients of the Zernike polynomial can be obtained.

The wavefront function of surface fitting can be constructed after solving the
Zernike polynomial coefficients. Firstly, the fitting data region is selected according
to the aperture size of the fitting surface. Then, aberration items of the Zernike poly-
nomial are determined (In this chapter, the first 15 items of the Zernike polynomial
are selected for the deformation value fitting), and the wavefront function of surface
fitting can be obtained by substituting Zernike coefficients into the aberration items.
Finally, according to the wavefront function, the cloud picture can be drawn, and
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Table 7.9 Fitting coefficients of Zernike polynomial (the first 9 items, 32.40° static working con-
dition)

Fitting coefficient of plane | Fitting coefficient of wedge | Corresponding Seidel
facet a; facet a; aberration

1 —9.27525879 —9.01854778 Translation

2 0.00768386 0.00823912 X-axis tilting

3 —0.00705914 —0.00140176 Y-axis tilting

4 0.00004680 0.00004330 Defocusing

5 0.00000511 0.00000577 Astigmatism (0° or 90°)

6 0.00000446 —0.0000140 Astigmatism (45°)

7 0.00000002 0.00000002 X-axis coma

8 0.00000004 —0.00000003 Y-axis coma

9 0.00000001 0.00000001 Spherical aberration

the PV and RMS values of the surface deformation fitting are worked out for the
subsequent evaluation and comparison.

3. Fitting Examples of Surface Deformation

The surface deformation of the prism under static and dynamic conditions is fitted,
respectively, which is compared and analyzed with the actual simulation cloud pic-
ture. Here we set D = 400 mm as the fitting diameter of the surface. Deformation
value fitting of the prism surface and precision evaluation are performed respectively,
under 32.40° static working condition, 32.40° dynamic working condition, 159.84°
dynamic working condition and 268.28° dynamic working condition [10].

(1) 32.40° Static Working Condition

The finite element model of the prism is established under static working conditions
and the surface deformation data is output after meshing, adding constraints, loading
and solving for the finite element model. After fitting surface deformation by the first
15 items of the Zernike polynomial, Table 7.9 lists fitting coefficients of the Zernike
polynomial (the first 9 items), Fig. 7.33b shows the fitting wavefront on the plane
facet, and Fig. 7.34b shows the fitting wavefront on the wedge facet.

From Figs. 7.33 and 7.34, on the plane facet of the prism, the fitting surface defor-
mation value is PV = 9.2903 nm and RMS = 6.5421 nm, while the deformation value
found by actual simulation is PV = 9.8235 nm and RMS = 6.6946 nm, the relative
errors of which are 5.43 and 2.28%, respectively. on the wedge facet of the prism,
the fitting surface deformation value is PV = 11.5088 nm and RMS = 5.4027 nm,
while the deformation value found by actual simulation is PV = 12.6117 nm and
RMS = 5.1205 nm, the relative errors of which are 8.75 and 5.51%, respectively.
The results are shown in Table 7.10.
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Table 7.10 Comparison of surface deformation quality (32.40° static working condition)

Actual simulation result Fitting result Error (%)
PV value of plane 9.8235 9.2903 543
facet/nm
RMS value of plane 6.6946 6.5421 2.28
facet/nm
PV value of wedge 12.6117 11.5088 8.75
facet/nm
RMS value of wedge 5.1205 5.4027 5.51
facet/nm

(2) 32.40° Dynamic Working Condition

Adopting the same method as 32.40° static working condition, the surface deforma-
tion of the prism is fitted under 32.40° dynamic working condition. Table 7.11, which
is the fitting coefficient of the Zernike polynomial (the first 9 items), Fig. 7.35b, the
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Table 7.11 Fitting coefficients of Zernike polynomial (the first 9 items, 32.40° dynamic working
condition)

Fitting coefficient of plane | Fitting coefficient of wedge | Corresponding Seidel
facet a; facet a; aberration
1 —11.72738175 —10.37480657 Translation
2 0.00602637 0.00962927 X-axis tilting
3 —0.01195571 —0.01327648 Y-axis tilting
4 0.00006018 0.00005777 Defocusing
5 0.00001311 0.00002028 Astigmatism (0° or 90°)
6 0.00000113 0.00001285 Astigmatism (45°)
7 0.00000004 0.00000004 X-axis coma
8 —0.00000002 —0.00000007 Y-axis coma
9 0.00000002 —0.00000001 Spherical aberration
(a) (b)
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Fig. 7.35 Surface deformation comparison of the plane facet. a Actual simulation result; b Fitting
result

fitting wavefront on the plane facet, and Fig. 7.36b, the fitting wavefront on the wedge
facet, can be obtained respectively.

From Figs. 7.35 and 7.36, on the plane facet of the prism, the fitting surface defor-
mation value is PV = 11.7735 nm and RMS = 8.2544 nm, while the deformation
value found by actual simulationis PV =12.6309 nm and RMS = 8.4458 nm, the rela-
tive errors of which are 6.79 and 2.27%, respectively. On the wedge facet of the prism,
the fitting surface deformation value is PV = 13.0424 nm and RMS = 7.2463 nm,
while the deformation value found by actual simulation is PV = 13.7399 nm and
RMS = 7.4167 nm, the relative errors of which are 5.08 and 2.30%, respectively.
The results are shown in Table 7.12.

(3) 159.84° Dynamic Working Condition

Adopting the same method as 32.40° static working condition, the surface defor-
mation of the prism is fitted under 159.84° dynamic working condition. Table 7.13,
which is the fitting coefficient of the Zernike polynomial (first 9 items), Fig. 7.37b,
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Table 7.12 Comparison of surface deformation quality (32.40° dynamic working condition)

Actual simulation result Fitting result Error (%)
PV value of plane 12.6309 11.7735 6.79
facet/nm
RMS value of plane 8.4458 8.2544 2.27
facet/nm
PV value of wedge 13.7399 13.0424 5.08
facet/nm
RMS value of wedge 7.4167 7.2463 2.30
facet/nm

Table 7.13 Fitting coefficients of Zernike polynomial (the first 9 items, 159.84° dynamic working
condition)

Fitting coefficient of plane | Fitting coefficient of wedge | Corresponding Seidel
facet a; facet a; aberration

1 15.04580574 14.74221763 Translation

2 —0.00685881 —0.00105213 X-axis tilting

3 —0.01675630 —0.01360338 Y-axis tilting

4 —0.00007801 —0.00007166 Defocusing

5 0.00000222 0.00002315 Astigmatism (0° or 90°)

6 —0.00001815 —0.00001014 Astigmatism (45°)

7 0.00000006 0.00000006 X-axis coma

8 0.00000001 0.00000002 Y-axis coma

9 —0.00000002 0.00000003 Spherical aberration

the fitting wavefront on the plane facet, and Fig. 7.38b, the fitting wavefront on the
wedge facet, can be obtained respectively.

From Figs. 7.37 and 7.38, on the plane facet of the prism, the fitting surface defor-
mation value is PV = 15.6704 nm and RMS = 10.5589 nm, while the deformation
value found by actual simulation is PV = 16.4310 nm and RMS = 10.8092 nm,
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the relative errors of which are 4.63 and 2.32%, respectively. On the wedge facet of
the prism, the fitting surface deformation value is PV = 13.2356 nm and RMS =
10.4202 nm, while the deformation value found by actual simulation is PV =
13.5834 nm and RMS = 10.6675 nm, the relative errors of PV and RMS are 2.56

and 2.32%, respectively. The results are shown in Table 7.14.

Table 7.14 Comparison of surface deformation quality (159.84° dynamic working condition)

Actual simulation | Fitting result Error (%)
result
PV value of plane facet/nm | 16.4310 15.6704 4.63
RMS value of plane facet/nm | 10.8092 10.5589 232
PV value of wedge facet/nm | 13.5834 13.2356 2.56
RMS value of wedge 10.6675 10.4202 2.32

facet/nm
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Table 7.15 Fitting coefficients of Zernike polynomial (the first 9 items, 269.28° dynamic working

condition)
Fitting coefficient of plane | Fitting coefficient of wedge | Corresponding Seidel
facet a; facet a; aberration

1 1.45598043 3.32522588 Translation

2 0.00054062 —0.00146138 X-axis tilting

3 —0.00133654 —0.00499632 Y-axis tilting

4 —0.00001058 —0.00000976 Defocusing

5 —0.00000288 0.00001382 Astigmatism (0° or 90°)

6 —0.00000817 —0.00000162 Astigmatism (45°)

7 0.00000001 0.00000001 X-axis coma

8 0.00000002 —0.00000003 Y-axis coma

9 0.00000001 —0.00000001 Spherical aberration
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Fig. 7.39 Surface deformation comparison of the plane facet. a Actual simulation result; b Fitting
result

(4) 269.28° Dynamic Working Condition

Adopting the same method, the surface deformation of prism is fitted under 269.28°
dynamic working condition. Table 7.15, which is the fitting coefficient of the Zernike
polynomial (first 9 items), Fig. 7.39b, the fitting wavefront on the plane facet, and
Fig. 7.40b, the fitting wavefront on the wedge facet, can be obtained respectively.

From Figs. 7.39 and 7.40, on the plane facet of the prism, the fitting surface defor-
mation value is PV =7.0791 nm and RMS = 1.2069 nm, while the deformation value
found by actual simulation is PV = 8.5197 nm and RMS = 1.1609 nm, the relative
errors of which are 16.91 and 3.96%, respectively. On the wedge facet of the prism,
the fitting surface deformation value is PV = 9.5505 nm and RMS = 2.8976 nm,
while the deformation value found by actual simulation is PV = 10.7739 nm and
RMS = 2.9376 nm, the relative errors of which are 11.36 and 1.37%, respectively.
The results are shown in Table 7.16.

Whether the working condition is static or dynamic, since the surface deformation
graph obtained by Ansys software tool is sharp, the cross linking is larger, while
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Fig. 7.40 Surface deformation comparison of the plane facet. a Actual simulation result; b Fitting
result

surface deformation graphs of the Zernike polynomial fitting are relatively smooth,
it inevitably results in the relative errors. However, the relative errors of PV and RMS
values both are within the allowable range, and moreover the RMS values are small,
which indicates that Zernike polynomial fitting by the first 15 items is feasible. The
Zernike polynomial fitting data can be used to further study the wavefront aberration
information.

4. Evaluation of Fitting Results

In this section, Zernike polynomials are used to fit the surface deformation of the
prism. The maximum PV value error of the fitting wavefront is 16.91%, and the
maximum RMS value error is 5.51%. The fitting result is within the allowable range,
but the fitting error of PV values is still relatively large. The main reasons are:

(1) Influenced by mesh generation and constraints of the prism model, the cross
linking of data is larger, which is the main reason for low fitting precision.

(2) The larger relative error is unavoidable because the surface deformation graph
obtained by the actual simulation is sharp, and it is not a direct response to the
actual form of aberration, compared with the wavefront surface deformation
fitted by the Zernike Polynomial.

Table 7.16 Comparison of surface deformation quality (269.28° dynamic working condition)

Actual simulation Fitting result Error (%)
result
PV value of plane facet/nm 8.5197 7.0791 16.91
RMS value of plane facet/nm | 1.1609 1.2069 3.96
PV value of wedge facet/nm | 10.7739 9.5505 11.36
RMS value of wedge 2.9376 2.8976 1.37
facet/nm
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(3) The least square method is simple and quick, but the fitting precision is not the
highest, which is also a reason for the larger error.

(4) The number of Zernike items is not proportional to the fitting precision, so it is
necessary to select the number of fitting items reasonably.

7.4 Summary

According to the rotational motion requirements for the large-aperture scan prism, a
radial multi-segmental support way, characterized by easy installation and radial fine
adjustment, is proposed in this chapter. The three-segmental support way is analyzed
under two cases of the thin end upward and downward, and it is found that the
volatility of the surface deformation is least under the three-segmental support way,
compared the support effects before and after optimization. Based on the analysis
platforms of Adams software and Ansys software, the analysis method for dynamic
performances of the optomechanical structure is proposed, which is suitable for the
dynamic performance analysis on the optical system, and can provide references for
the performance analysis on the similar optical system. The surface deformation of
the prism is fitted by the first 15 items of the Zernike polynomial through Matlab
programming. PV values and RMS values of the fitting wavefront are calculated and
then compared with the surface deformation of actual simulation. The fitting errors
of PV and RMS values are all within the allowable range, which can meet precision
requirements for the surface figure.
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