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Preface

This work will introduce the wave equations in higher dimensions at an advanced
level addressing students of physics, mathematics and chemistry. The aim is to put
the mathematical and physical concepts and techniques like the wave equations,
group theory, generalized hypervirial theorem, the Levinson theorem, exact and
proper quantization rules related to the higher dimensions at the reader’s disposal.
For this purpose, we attempt to provide a comprehensive description of the wave
equations including the non-relativistic Schrödinger equation, relativistic Dirac and
Klein-Gordon equations in higher dimensions and their wide applications in quan-
tum mechanics which complements the traditional coverage found in the existing
quantum mechanics textbooks. Related to this field are the quantum mechanics and
group theory. In fact, the author’s driving force has been his desire to provide a
comprehensive review volume that includes some new and significant results about
the wave equations in higher dimensions drawn from the teaching and research ex-
perience of the author since the literature is inundated with scattered articles in this
field and to pave the reader’s way into this territory as rapidly as possible. We have
made the effort to present the clear and understandable derivations and include the
necessary mathematical steps so that the intelligent and diligent reader is able to fol-
low the text with relative ease, in particular, when mathematically difficult material
is presented. The author also embraces enthusiastically the potential of the LaTeX
typesetting language to enrich the presentation of the formulas as to make the log-
ical pattern behind the mathematics more transparent. In addition, any suggestions
and criticism to improve the text are most welcome. It should be pointed out that
the main effort to follow the text and master the material is left to the reader even
though this book makes an effort to serve the reader as much as was possible for the
author.

This book starts out in Chap. 1 with a comprehensive review for the wave equa-
tions in higher dimensions and builds on this to introduce in Chap. 2 the fundamen-
tal theory about the SO(N ) group to be used in the successive Chaps. 3–5 includ-
ing the non-relativistic Schrödinger equation, relativistic Dirac and Klein-Gordon
equations. As important applications in non-relativistic quantum mechanics, from
Chap. 6 to Chap. 12, we shall apply the theories proposed in Part II to study some
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important quantum systems such as the harmonic oscillator, Coulomb potential, the
Levinson theorem, generalized hypervirial theorem, exact and proper quantization
rules and Langer modification, the Schrödinger equation with position-dependent
mass and others. We shall illustrate two important applications in relativistic Dirac
and Klein-Gordon equations with the Coulomb potential in Chaps. 13 and 14. As
crucial generalized applications of Dirac equation in higher dimensions, we shall
study the Levinson theorem, generalized hypervirial theorem and Kaluza-Klein the-
ory in Chaps. 15–17. Some conclusions and outlooks are given in Chap. 18. Some
useful reference materials such as group theory, group representations, fundamental
properties of Lie groups and Lie algebras, the angular momentum theory and the
confluent hypergeometric functions are sketched in Appendices A–E.

This book is in a stage of continuing development, various chapters, e.g., on
the quantum gravity, on the Kaluza-Klein theory, on the supersymmetry and string
theory, on the high dimensional brane will be added to the extent that the respective
topics expand. At the present stage, however, the work presented for such topics
should be complete enough to serve the reader.

This book shall give the theoretical physicists and researchers a fresh outlook
and new ways of handling some important and interesting quantum systems in sev-
eral branches of physics. This book can be used by graduate students and young
researchers in physics, especially theoretical and mathematical physics. It is also
suitable for some graduate students in theoretical chemistry.

Shi-Hai DongMexico city, Mexico
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Chapter 1
Introduction

1 Basic Review

The exact solutions of wave equations with a spherically symmetric potential have
become an important subject in quantum mechanics [1–6]. It should be noticed that
many works along this line have been carried out in the usual three dimensional
space. However, what extra dimensions could there possibly be if we never see
them? It turns out that we do not really know yet how many dimensions our world
has. Nevertheless, all that our current observations tell us is that the world around
us is at least (3 + 1) dimensional space-time as illustrated in general relativity.

The idea of extra dimensions has a rich history, dating back at least as far as
the middle of 1910s and earlier 1920s when the Nordstrom-Kaluza-Klein theory1—
usually named as the Kaluza-Klein theory—was proposed [8–11]. This theory is a
physical model that seeks to unify two fundamental forces of gravitation and electro-
magnetism. More precisely, the idea of additional spatial dimensions is from string
theory, the only self-consistent quantum theory of gravity so far. For a consistent
description of gravity, scientist needs more than (3 + 1) dimensions, and the world
could have up to 11 or more spatial dimensions. The reason why we do not feel these
additional spatial dimensions in our life is because they are very different from the

1The theory was first proposed by the Finnish physicist Gunnar Nordström in 1914. Before Ein-
stein’s general relativity theory was presented, Nordström proposed a relativistic theory for grav-
ity. He unified his gravity theory with Maxwell’s electromagnetism through introducing a 5-vector
gauge field where the first four components are identified with Maxwell’s vector potential Aμ

and the 5th component with the scalar gravity field. After that in 1919 a German mathematician
Theodor Kaluza performed similar calculations but with Einstein’s gravity theory and Maxwell’s
electromagnetism. In terms of a circular extra dimension Kaluza obtained a 4-dimensional action
from a 5-dimensional one. The 4-action contained a graviton, an Abelian gauge boson identified
as the photon and a scalar field that Kaluza put to be constant. The resulting equations can be sep-
arated out into further sets of equations, one of which is equivalent to Einstein’s field equations,
another set equivalent to Maxwell’s equations for electromagnetic field and the final part an extra
scalar field now termed the “radian”. In 1926, it was Swedish physicist Oskar Klein who focused
on the resulting higher modes of the particles and the size of the extra dimension [7].
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three dimensions. It is possible that our world is “pinned” to a three-dimensional
so-called brane located in a higher dimensional space. We could be restrained to a
usual three-dimensional world, which is in fact a part of a more complicated multi-
dimensional universe.2 Perhaps, we could feel these extra dimensions through their
effect on gravity. While the forces such as the electromagnetic, weak, and strong in-
teractions that hold our world together are constrained to the (3+1) dimensions, the
gravitational interaction always occupies the entire universe, thus allowing it to feel
the effects of extra dimensions. Unfortunately, since gravity is a very weak force
and the radius of extra dimensions is tiny and as large as 1 mm so that the gravi-
tational interaction between them becomes very weak. Until now, no evidence for
extra dimensions was found from the high-energy particle accelerators experiments,
but we cannot say that they do not exist at all. The search for extra dimensions is
not over yet. On the contrary, it has only just started. Scientists have been look-
ing for the effects of extra dimensions in collisions that produce different types of
particles, such as quarks and searching events where gravitons are produced in the
collisions and then leave our three-dimensional world, traveling off into one of the
other dimensions [12].

We have noticed that almost all works about higher dimensional wave equations
addressed the generalized orbit angular momentum [13–15], in which Louck stud-
ied the harmonic oscillator potential as an exactly solvable model. In fact, such a
generalization should go back to the earlier works by Appel, Fock, Bargmann, Som-
merfeld et al. [16–19], the notes left by Bateman edited by Erdélyi in 1950s [20] and
others [21]. Most of them paid more attention to the harmonic oscillator [13–15,
22, 23] than hydrogen atom [24–29]. Following Louck’s work, de Broglie and his
collaborators [30] proposed the generating bases as the hyperspherical harmonics to
analyze the higher dimensional harmonic oscillator and molecular vibration. They
considered the rotator model of elementary particles as relativistic extended struc-
tures in Minkowski space under the assumption that elementary particles are not
pointlike, but are rather, extended structures in Minkowski space. Two years later,
Granzow presented orthogonal polar coordinate systems in N dimensional space
and showed explicit representations for total orbital angular momentum operator
[31]. He also proved that the transformation from polar coordinates to Cartesian
ones has a unique form xn = Rf n(θ), n ∈ Z; θ = (θ1, θ2, . . . , θN−1), where xn

could be interpreted as the wavefunction in quantum system. Based on the gener-
alized orbital angular momentum theory, Bergmann and Frishman established the
relation between the hydrogen atom and multidimensional harmonic oscillator by
performing simple transformations on wave equations and wavefunctions [32]. Fol-
lowing this, Čížek and Paldus presented a relation between them for the special
case of even dimensions [33]. Kostelecky, Nieto and Truax obtained a more general

2This is just like an insect crawling on a sheet of paper. For this insect, the universe is pretty
much two-dimensional since it cannot leave the surface of that paper. As a result, the insect only
knows the surface, but up and down does not make any sense as long as it has to stay on the sheet
of that paper. These extra spatial dimensions, if they really exist, are thought to be curled-up, or
“compactified”.
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mapping for arbitrary d and even D that involves a free parameter along with the
corresponding mappings to the supersymmetric partners of these systems [34], in
which they adopted the results about the D-dimensional oscillator with spin-orbit
coupling obtained by Balantekin [35]. One decade later, Kostelecky and his collab-
orator Russell restudied this topic, but following the supersymmetry-based quantum
defect theory [36]. Among the special cases is an injection from bound states of the
three-dimensional radial Coulomb system into a three-dimensional radial isotropic
oscillator where one of two systems has an analytical quantum defect. Also, they
considered the issue of mapping the continuum states [36]. It should be pointed out
that most of contributions about the relationship between the hydrogen atom and
harmonic oscillator in D dimensions are based on the transformation of the radial
equations.

Closely related to this, however, Zeng, Su and Li have made use of algebraic
method, i.e., an su(1,1) algebra as a bridge to establish a most general and simplest
relationship between their energy levels and eigenstates [37]. Similar to this, Lévai,
Kónya and Papp proposed a unified su(1,1) algebraic treatment to the Coulomb and
harmonic oscillator potentials in D dimensions by using Green’s operator calculated
from a Hilbert basis and the generalized Coulomb-Sturmian basis [38]. Except for
these relations, it is noticed that there exist the degeneracies between the hydrogen
atom and harmonic oscillator. For example, Shea and Aravind studied the degen-
eracies of the spherical well, harmonic oscillator and hydrogen atom in arbitrary
dimensions from the view point of group theory [39]. In a similar way, Jafarizadeh,
Kirchberg and their coauthors investigated the degeneracies of the Coulomb poten-
tial in higher dimensions d by using the irreducible representations of the group
SO(d + 1) [40, 41]. The reason why the harmonic oscillator and hydrogen atom
are taken as typically soluble models is because their study represents an interesting
field of mathematical physics in itself, but more importantly results from them are
essential for the description of realistic physical problems.

Obviously, there are no more essential advances on the higher dimensional wave
equations in 1970s. On the contrary, the study on this field has revived and attracted
much attention to many authors in 1980s, e.g., the eigenvalues of the Schrödinger
equation for spherically symmetric states for various types of potentials in N dimen-
sions by using perturbative and non-perturbative methods [42], the 1/N expansion
technique for the Schrödinger equation [43–53], the generalized D-dimensional os-
cillator [54]. It should be noticed that the special case about the 1/N method was
extended by Papp [55], who dealt with the q-deformed radial Schrödinger equa-
tion in N dimensions through the underlying SO(N) group realized in Refs. [56,
57] and opened a new way to derive q-deformed 1/N -energy formulas for arbitrary
spherically symmetrical potentials such as the harmonic oscillator and the Coulomb
potential.

Except for these, the higher dimensional Schrödinger equation are also concerned
with the following scattered fields such as the position and momentum informa-
tion entropies of the D-dimensional harmonic oscillator and hydrogen atom [58],
the Fermi pseudo-potential in arbitrary dimensions [59], the uncertainty relation
for Fisher information of D-dimensional single-particle systems with central po-
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tentials [60], the dimensional expansion for the Ising limit of quantum field the-
ory [61], the scalar Casimir effect for an N -dimensional sphere [62], the multidi-
mensional extension of a WKB improvement for the spherical quantum billiard zeta
functions [63], the study of bound states in continuous D dimensions [64], the sup-
persymmetry and relationship between a class of singular potentials in arbitrary di-
mensions [65], the bound states and resonances for “sombrero” potential in arbitrary
dimensions [66], the renormalization of the inverse squared potential in D dimen-
sions [67], the generalized coherent states for the d-dimensional Coulomb prob-
lem [68], the quantum particles trapped in a position-dependent mass barrier [69,
70], the harmonic oscillator in arbitrary dimensions with minimal length uncertainty
relations [71], the stable hydrogen atom in higher dimensions [72], the relation be-
tween dimension and angular momentum for radially symmetric potential in D-
dimensional space [73], the D-dimensional hydrogenic systems in position and mo-
mentum spaces [74], the first-order intertwining operators and position-dependent
mass Schrödinger equation in d dimensions [75], intertwined isospectral potentials
in arbitrary dimensions [76], convergent iterative solutions for a sombrero-shaped
potential in any space dimension and arbitrary angular momentum [77].

On the other hand, a number of contributions related to the higher dimensional
Schrödinger equation have been carried out in atomic physics. For example, Hosoya
investigated the hierarchical structure of the set of atomic orbital wavefunctions of
D-dimensional atoms by using the set of their rectangular coordinate expressions
[78]. In terms of group theory Dunn and Watson developed a formalism for the N

electron D-dimensional Schwartz expansion and applied it to study the Schrödinger
equation for two-electron system [79, 80]. However, their method seems rather com-
plicated. To overcome the difficulty occurred in [79, 80], Ma and his coauthors made
use of the group theory method [81] to develop a different formalism to separate the
D-dimensional rotational degrees of freedom from the internal degrees of freedom.
They have studied quantum three-body system [82], interdimensional degeneracies
for quantum three-body and N -body systems [83, 84], the quantum four-body sys-
tem [85] and the D-dimensional helium atom [86].

As illustrated above, we find that most of contributions have been made to
higher dimensional Schrödinger equation. In comparison with the non-relativistic
Schrödinger equation case, undoubtedly the studies of relativistic Dirac and Klein-
Gordon equations in higher dimensions seem less than those in the Schrödinger
equation case. Nevertheless, there are considerable works appearing in the liter-
ature. For example, Nieto dealt with the hydrogen atom in arbitrary dimensions D

and particularly studied the Klein-Gordon equation case [87]. This might be the ear-
liest contribution to the generalized Klein-Gordon equation, to our best knowledge.
In fact, such a generalization can be easily achieved from the Schrödinger equa-
tion since the same Laplacian is involved for both equations. On the other hand,
Joseph made a great contribution to self-adjoint ladder operators [88–90], in partic-
ular he applied this method to study the solutions of the generalized angular momen-
tum problem. This revealed many interesting aspects of this approach to eigenvalue
problems and specially its relationship to the addition of angular momentum. In that
work, he obtained a complete set of irreducible unitary representations of the under-
lying algebra so(n) and calculated the corresponding Clebsch-Gordon coefficients
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(CGCs) for the addition of spin and angular momentum in arbitrary dimensions.
Without doubt, this shall provide some useful preliminaries including the spin al-
gebra and Dirac operators to study the Dirac equation in higher dimensions [91],
which was derived by using the fundamental properties of symmetry group SO(N ).
Unfortunately, we have not recognized his work [88–90] before our study [91]. In
the middle of 1980s, Bollini and Giambiagi extended the Wess-Zumino model to
higher dimensions, which led to a generalized Klein-Gordon equation [92]. In terms
of the 1/N expansion technique, the relativistic Dirac and Klein-Gordon equations
were performed [93–98]. Lin carried out the path integration of a relativistic parti-
cle on an N -dimensional sphere [99]. Recently, we have studied the Klein-Gordon
equation with a Coulomb potential in N dimensions by traditional approach [100].
Others related to the Klein-Gordon equation with the Kratzer and pseudoharmonic
potential potentials as well as the comparison theorems for the Klein-Gordon equa-
tion [101–103] have also been studied.

For solvable higher dimensional wave equations, since the energy levels depend
on the dimension N and then bound state energy levels in different dimensions
would be of interest. With this spirit we have studied the effect of dimension N on
the energy levels for some interesting and important quantum systems. For exam-
ple, we have dealt with the higher dimensional Klein-Gordon equation case [100],
the Dirac equation with a Coulomb potential [104], the D-dimensional relativistic
equations with a Coulomb plus a scalar potential [105, 106], the D-dimensional
Schrödinger equation with the pseudoharmonic potential and the Coulomb plus an
inverse squared potential [107, 108]. On the other hand, we have established the
Levinson theorem3 for the Schrödinger equation and Dirac equation in N dimen-
sions [111, 112] and obtained the generalized hypervirial theorem [113, 114].

One of the reasons why the higher dimensional theories have attracted much
attention to many authors is that the higher dimensional theories allow us to re-
duce enormous amounts of information into a concise, elegant fashion that unifies
the two great theories of the 20th century: Quantum Theory and Relativity. It is
evident to show that the contributions mentioned above are made within the frame-
work of quantum theory. Consequently, it is necessary to review the development
of the relativity and gravity in higher dimensional wave equations for complete-
ness. For example, based on our recent work [91] Lin studied the Friedel sum
rule, the Levinson theorem and the Atiyah-Singer index [115, 116]. Such method
was also generalized to quantum modes of the scalar field on AdSd+1 space-time
[117] as well as geometric models of the (d + 1)-dimensional relativistic rotating
oscillators [118]. More importantly, it should be noted that the generalization of
the Dirac equation to higher dimensions might shed light on the solution of the
Kaluza-Klein theory in higher dimensions if the extra dimensions are space-like.
This theory has become a focus of attention for many particle physicists in past
several decades. Its revival stems from the work on the string theory and also from

3It was first proposed by Levinson in 1949 [109] and reviewed by Ma [110]. The Levinson theorem
establishes the relation between the number of the bound states and the phase shift of the scattering
states at the zero momentum.
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Fig. 1.1 The relations among the SO(N ) group, central fields, non-relativistic and relativistic
equations

the supergravity theory. Until now, the study of gravity theory and other relevant
fields has become a main and interesting topic. These contributions can be summa-
rized as follows: the brane models [119], scalar field contribution to rotating black
hole entropy [120], brane cosmology [121], N -dimensional Vaidya metric with a
cosmological constant in double-null coordinates [122], the spherical gravitational
collapse in N dimensions [123], the motion of a dipole in a cosmic string back-
ground [124], repulsive Casimir effect from extra dimensions and Robin boundary
conditions [125], extremal black hole/CFT correspondence in gauged supergravity
[126], massive fermion emission from higher dimensional black holes [127], mag-
netic and electric black holes [128], fermion families from two layer warped extra
dimensions [129], quasinormal behavior of the D-dimensional Schwarzschild black
hole [130], the study of the Schrödinger-Newton equations in D dimensions [131],
rotating Einstein-Maxwell-Dilaton black holes in D dimensions [132], the Kaluza-
Klein theory in the limit of large number of extra dimensions [133], gauge invari-
ance of the one-loop effective potential in (d + 1)-dimensional Kaluza-Klein theory
[134] and the multicentered solution for maximally charged dilaton black holes in
arbitrary dimensions [135].

Heretofore, it should be emphasized that the symmetry group SO(N ) for the sym-
metrically central fields plays an important role in higher dimensional wave equa-
tions. Therefore, we shall outline this group in next Chapter. The relations among
those related topics are shown in Fig. 1.1.

2 Motivations and Aims

The motivations of this work are as follows. Since the literature related to this field
is inundated with scattered articles on this topic we try to give a comprehensive re-
view of the wave equations in higher dimensions and their wide-spread applications
in quantum mechanics, which shall fill the gap in the existing quantum mechanics
textbooks. In particular, we attempt to make use of fundamental properties of the
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rotational group SO(N) to study the higher dimensional wave equations with sym-
metrically central fields. In this book, we are going to put the mathematical and
physical concepts at the reader’s disposal and to pave the reader’s way into this
territory as rapidly as possible.



Part II
Theory



Chapter 2
Special Orthogonal Group SO(N)

1 Introduction

Since the exactly solvable higher-dimensional quantum systems with certain central
potentials are usually related to the real orthogonal group O(N) defined by orthog-
onal n × n matrices, we shall give a brief review of some basic properties of group
O(N) based on the monographs and textbooks [136–140]. Before proceeding to do
so, we first outline the development in order to make the reader recognize its impor-
tance in physics.

We often apply groups throughout mathematics and the sciences to capture the
internal symmetry of other structures in the form of automorphism groups. It is
well-known that the internal symmetry of the structure is usually related to an in-
variant mathematical property, and a set of transformations that preserve this kind
of property together with the operation of composition of transformations form a
group named a symmetry group.

It should be noted that Galois theory is the historical origin of the group con-
cept. He used groups to describe the symmetries of the equations satisfied by the
solutions of a polynomial equation. The solvable groups are thus named due to their
prominent role in this theory.

The concept of the Lie group named for mathematician Sophus Lie plays a very
important role in the study of differential equations and manifolds; they combine
analysis and group theory and are therefore the proper objects for describing sym-
metries of analytical structures.

An understanding of group theory is of importance in physics. For example,
groups describe the symmetries which the physical laws seem to obey. On the other
hand, physicists are very interested in group representations, especially of the Lie
groups, since these representations often point the way to the possible physical the-
ories and they play an essential role in the algebraic method for solving quantum
mechanics problems.

As a common knowledge, the study of the groups is always related to the corre-
sponding algebraic method. Up to now, the algebraic method has become the sub-
ject of interest in various fields of physics. The elegant algebraic method was first
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introduced in the context of the new matrix mechanics around 1925. Since the in-
troduction of the angular momentum in quantum mechanics, which was intimately
connected with the representations of the rotation group SO(3) associated with the
rotational invariance of central potentials, its importance was soon recognized and
the necessary formalism was developed principally by a number of pioneering sci-
entists including Weyl, Racah, Wigner and others [136, 141–144]. Until now, the
algebraic method to treat the angular momentum theory can be found in almost all
textbooks of quantum mechanics.

On the other hand, it often runs parallel to the differential equation approach due
to the great scientist Schrödinger. Pauli employed algebraic method to deal with the
hydrogen atom in 1926 [145] and Schrödinger also solved the same problem almost
at the same time [146], but their fates were quiet different. This is because the stan-
dard differential equation approach was more accessible to the physicists than the
algebraic method. As a result, the algebraic approach to determine the energy levels
of the hydrogen atom was largely forgotten and the algebraic techniques went into
abeyance for several decades. Until the middle of 1950s, the algebraic techniques
revived with the development of theories for the elementary particles since the ex-
plicit forms of the Hamiltonian for those elementary particle systems are unknown
and the physicists have to make certain assumptions on their internal symmetries.
Among various attempts to solve this difficult problem, the particle physicists exam-
ined some non-compact Lie algebras and hoped that they would provide a clue to the
classification of the elementary particles. Unfortunately, this hope did not material-
ize. Nevertheless, it is found that the Lie algebras of the compact Lie groups enable
such a classification for the elementary particles [147] and the non-compact groups
are relevant for the dynamic groups in atomic physics [148] and the non-classical
properties of quantum optical systems involving coherent and squeezed states as
well as the beam splitting and linear directional coupling devices [149–153].

It is worth pointing out that one of the reasons why the algebraic techniques
were accepted very slowly and the original group theoretical and algebraic meth-
ods proposed by Pauli [145] were neglected is undoubtedly related to the abstract
character and inherent complexity of group theory. Even though the proper under-
standing of group theory requires an intimate knowledge of the standard theory of
finite groups and of the topology and manifold theory, the basic concepts of group
theory are quite simple, specially when we present them in the context of physical
applications. Basically, we attempt to introduce them as simple as possible so that
the common reader can master the basic ideas and essence of group theory. The
detailed information on group theory can be found in the textbooks [138–140, 154].

On the other hand, during the development of algebraic method, Racah alge-
bra techniques played an important role in physics since it enables us to treat the
integration over the angular coordinates of a complex many-particle system analyti-
cally and leads to the formulas expressed in terms of the generalized CGCs, Wigner
n-j symbols, tensor spherical harmonics and/or rotation matrices. With the devel-
opment of algebraic method in the late 1950s and early 1960s, the algebraic method
proposed by Pauli was systematized and simplified greatly by using the concepts
of the Lie algebras. Up to now, the algebraic method has been widely applied to
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various fields of physics such as nuclear physics [155], field theory and particle
physics [156], atomic and molecular physics [157–160], quantum chemistry [161],
solid state physics [162], quantum optics [149, 151, 163–168] and others.

2 Abstract Groups

We now give some basic definitions about the abstract groups1 based on textbooks
by Weyl, Wybourne, Miller, Ma and others [136, 137, 139, 140, 169].

Definition A group G is a set of elements {e, f, g,h, k, . . .} together with a bi-
nary operation. This binary operation named a group multiplication is subject to the
following four requirements:

• Closure: if f,g ∈ G, then fg ∈ G too,
• Identity element: there exists an identity element e in G (a unit) such that ef =

f e = f for any f ∈ G,
• Inverses: for every f ∈ G there exists an inverse element f−1 ∈ G such that

ff−1 = f−1f = e,
• Associative law: the identity f (hk) = (f h)k is satisfied for all elements

f,h, k ∈ G.

Subgroup: a subgroup of G is a subset S ∈ G, which is itself a group under the
group multiplication defined in G, i.e., f,h ∈ S → f h ∈ S .

Homomorphism: a homomorphism of groups G and H is a mapping from a group
G into a group H, which transforms products into products, i.e., G → H.

Isomorphism: an isomorphism is a homomorphism which is one-to-one and
“onto” [169]. From the viewpoint of the abstract group theory, isomorphic groups
can be identified. In particular, isomorphic groups have identical multiplication
tables.

Representation: a representation of a group G is a homomorphism of the group
into the group of invertible operators on a certain (most often complex) Hilbert
space V (called representation space). If the representation is to be finite-
dimensional, it is sufficient to consider homomorphisms G → GL(n). The GL(n)

represents a general linear group of non-singular matrices of dimension n. Usually,
the image of the group in this homomorphism is called a representation as well.

Irreducible representation: an irreducible representation is a representation
whose representation space contains no proper subspace invariant under the op-
erators of the representation.

Commutation relation: since a Lie algebra has an underlying vector space struc-
ture we may choose a basis set {Li} (i = 1,2,3, . . . ,N) for the Lie algebra. In

1There exist two kinds of different meanings of the terminology “abstract group” during the first
half of the 20th century. The first meaning was that of a group defined by four axioms given above,
but the second one was that of a group defined by generators and commutation relations.
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general, the Lie algebra can be completely defined by specifying the commutators
of these basis elements:

[Li,Lj ] =
∑

k

cijkLk, i, j, k = 1,2,3, . . . ,N, (2.1)

in which the coefficients cijk and the elements Li are the structure constants and
the generators of the Lie algebra, respectively. It is worth noting that the set of
operators, which commute with all elements of the Lie algebra, are called Casimir
operators.

We shall constraint ourselves in the following parts to study some basic prop-
erties of the compact group SO(N) alongside the well-known compact so(n) Lie
algebra of the generalized angular momentum theory since it shall be helpful in
successive Chapters. We suggest the reader refer to the textbooks on group theory
[136–140, 144, 154, 169] or Appendices A–C for more information.

3 Orthogonal Group SO(N)

For every positive integer N , the orthogonal group O(N) is the group of N × N

orthogonal matrices A satisfying

AAT = 1, A∗ = A. (2.2)

Because the determinant of an orthogonal matrix is either 1 or −1, and so the or-
thogonal group has two components. The component containing the identity 1 is the
special orthogonal group SO(N). An N -dimensional real matrix contains N2 real
parameters. The column matrices of a real orthogonal matrix are normal and orthog-
onal to each other. There exist N real matrix constraints for the normalization and
N(N − 1)/2 real constraints for the orthogonality. Thus, the number of indepen-
dent real parameters for characterizing the elements of the groups SO(N) is equal
to N2 −[N +N(N − 1)/2] = N(N − 1)/2. The group space is a doubly-connected
closed region so that the SO(N) is a compact Lie group with rank N(N − 1)/2.

4 Tensor Representations of the Orthogonal Group SO(N)

In this section we are going to study the reduction of a tensor space of the SO(N)

and calculation of the orthonormal irreducible basis tensors [139, 140].

4.1 Tensors of the Orthogonal Group SO(N)

We begin by studying the tensors of the SO(N). For a given rank n of the SO(N),
we know that there are Nn components with a following transform,

Tc1···cn
R→ ORTc1···cn =

∑

d1···dn
Rc1d1 · · ·RcndnTd1···dn, R ∈ SO(N). (2.3)
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It is noted that only one nonvanishing component of a basis tensor is equal to 1, i.e.,

(θa1···an)b1···bn = δa1b1 · · · δanbn = (θa1)b1 · · · (θan)bn, (2.4)

OR(θa1···an) =
∑

c1···cn
(θc1···cn)Rc1a1 · · ·Rcnan, (2.5)

from which one may expand any tensor in such a way

Tb1···bn =
∑

a1···an
Ta1···an(θa1···an)b1···bn . (2.6)

The tensor space is an invariant linear space both in the SO(N) and in the permu-
tation group Sn. Since the SO(N) transformation commutes with the permutation
so that one can reduce the tensor space in the orthogonal groups SO(N) by the
projection of the Young operators, which are conveniently used to deal with the
permutation group Sn.

Note that there are several important characteristics for the tensors of the SO(N)

group:

• The real and imaginary parts of a tensor of the SO(N) transform independently
in Eq. (2.3). As a result, we need only study their real tensors.

• There is no any difference between a covariant tensor and a contra-variant ten-
sor for the SO(N) transformations. The contraction of a tensor can be achieved
between any two indices. Therefore, before projecting a Young operator, the ten-
sor space must be decomposed into a series of traceless tensor subspaces, which
remain invariant in the SO(N).

• Denote by T the traceless tensor space of rank n. After projecting a Young op-
erator, T[λ]

μ = y[λ]
μ T is a traceless tensor subspace with a given permutation sym-

metry. T[λ]
μ will become a null space if the summation of the numbers of boxes in

the first two columns of the Young pattern2 [λ] is larger than the dimension N .
• If the row number m of the Young pattern [λ] is larger than N/2, then the basis

tensor y[λ]
μ θb1···bmc··· can be changed to a dual basis tensor by a totally antisym-

metric tensor εa1···aN ,

∗[y[λ]θ ]a1···aN−mc··· = 1

m!
∑

aN−m+1···aN
εa1···aN−maN−m+1···aN

y[λ]θaN ···aN−m+1c···, (2.7)

whose inverse transformation is given by

2A Young pattern [λ] has n boxes lined up on the top and on the left, where the j th row contains
λj boxes. For instance, the Young pattern [2,1] is

.

It should be noted that the number of boxes in the upper row is not less than in the lower row, and
the number of boxes in the left column is not less than that in the right column. We suggest the
reader refer to the permutation group Sn in Appendix A for more information.
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1

(N − m)!
∑

am+1···aN
εb1···bmam+1···aN ∗[y[λ]θ ]aN ···am+1c···

= 1

m!(N − m)!
∑

a1···aN
εb1···bmam+1···aN εaN ···am+1am···a1y[λ]θa1···amc

= (−1)N(N−1)/2y[λ]θb1···bmc···. (2.8)

After some algebraic manipulations, it is found that the correspondence be-
tween two sets of basis tensors is one-to-one and the difference between them is
only in the arranged order. Thus, a traceless tensor subspace T[λ]

μ is equivalent to

a traceless tensor subspace T[λ′]
ν , where the row number of the Young pattern [λ′]

is (N − m) <N/2,

[λ′] 	 [λ], λ′
i =

{
λi, i ≤ (N − m),

0, i > (N − m),
(2.9)

where m ∈ (N/2,N].
• If N = 2l, i.e., the row number l of [λ] is equal to N/2, then the Young pattern

[λ] is the same as its dual Young pattern, called the self-dual Young pattern. To
remove the phase factor (−1)N(N−1)/2 = (−1)l appearing in Eq. (2.8), we intro-
duce a factor (−i)l in Eq. (2.7),

∗[y[λ]θ ]a1···alc··· =
(−i)l

l!
∑

al+1···a2l

εa1···alal+1···a2l y
[λ]θa2l ···al+1c···, (2.10)

y[λ]θa1···alc··· =
(−i)l

l!
∑

al+1···a2l

εa1···alal+1···a2l
∗[y[λ]θ ]a2l ···al+1c···. (2.11)

Define

ψ±
a1···alc··· =

1

2

{
y[λ]θa1···alc··· ± ∗[y[λ]θ ]a1···alc···

}
. (2.12)

We observe that ψ+
a1···alc··· keeps invariant in the dual transformation so that we call

it self-dual basis tensor. On the contrary, we call ψ−
a1···alc··· the anti-self-dual basis

tensor because it changes its sign in dual transformation. For example, for even
N = 2l we may construct the self-dual and anti-self-dual basis tensors as follows:

ψ±
1···l = 1

2

{
y[1l ]θ1···l ± (−i)ly[1l ]θ(2l)···(l+1)

}
. (2.13)

Therefore, when l = N/2 the representation space T[λ]
μ can be divided to the

self-dual and the anti-self-dual tensor subspaces with the same dimension. Notice
that the combinations by the Young operators and the dual transformations (2.7)
and (2.13) are all real except that the dual transformation (2.13) with N = 4l + 2 is
complex.

In conclusion, the traceless tensor subspace T[λ]
μ corresponds to a representation

[λ] of the SO(N), where the row number l of Young pattern [λ] is less than N/2.
When l = N/2 the traceless tensor subspace T[λ]

μ can be decomposed into the self-
dual tensor subspace T[+λ]

μ and anti-self-dual tensor subspace T[−λ]
μ corresponding
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to the representation [±λ], respectively. All irreducible representations [λ] and [±λ]
are real except for [±λ] with N = 4l + 2.

As far as the orthonormal irreducible basis tensors of the SO(N), we are going
to address two problems. The first is how to decompose the standard tensor Young
tableaux into a sum of the traceless basis tensors. The second is how to combine the
basis tensors such that they are the common eigenfunctions of Hj and orthonormal
to each other. The advantage of the method based on the standard tensor Young
tableaux is that the basis tensors are known explicitly and the multiplicity of any
weight is equivalent to the number of the standard tensor Young tableaux with the
weight.

For group SO(N), the key issue for finding the orthonormal irreducible basis is
to find the common eigenstates of Hi and the highest weight state in an irreducible
representation. For odd and even N , i.e., the groups SO(2l + 1) and SO(2l), the
generators Tab of the self-representation satisfy

[Tab]cd = −i(δacδbd − δadδbc),

[Tab, Tcd ] = −i(δbcTad + δadTbc − δbdTac − δacTbd).
(2.14)

The bases Hi in the Cartan subalgebra can be written as

Hi = T(2i−1)(2i), i ∈ [1,N/2]. (2.15)

As what follows, we are going to study the irreducible basis tensors of the
SO(2l + 1) and SO(2l), respectively.

4.2 Irreducible Basis Tensors of the SO(2l + 1)

It is known that the Lie algebra of the SO(2l + 1) is Bl . The simple roots of the
SO(2l + 1) are given by [139, 140]

rν = eν − eν+1, ν ∈ [1, l − 1], rl = el, (2.16)

where rν are the longer roots with dν = 1 and rl is the shorter root with dl = 1/2.
Based on the definition of the Chevalley bases, which include 3l bases Eν,Fν , and
Hν for the generators,

Erν√
dν

→ Eν,
E−rν√

dν
→ Fν,

1

dν

l∑

i=1

(rν)iHi ≡ 1

dν
rν · H → Hν, (2.17)
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one is able to calculate the Chevalley bases of the SO(2l + 1) in the self-
representation as follows:

Hν = T(2ν−1)(2ν) − T(2ν+1)(2ν+2),

Eν = 1

2
[T(2ν)(2ν+1) − iT(2ν−1)(2ν+1) − iT(2ν)(2ν+2) − T(2ν−1)(2ν+2)],

Fν = 1

2
[T(2ν)(2ν+1) + iT(2ν−1)(2ν+1) + iT(2ν)(2ν+2) − T(2ν−1)(2ν+2)],

Hl = 2T(2l−1)(2l),

El = T(2l)(2l+1) − iT(2l−1)(2l+1),

Fl = T(2l)(2l+1) + iT(2l−1)(2l+1).

(2.18)

Note that θa are not the common eigenvectors of Hν . By generalizing the spher-
ical harmonic basis vectors for the SO(3) group, we may define the spherical har-
monic basis vectors for the self-representation of the SO(2l + 1) as follows:

φβ =

⎧
⎪⎪⎨

⎪⎪⎩

(−1)l−β+1
√

1
2 (θ2β−1 + iθ2β), β ∈ [1, l],

θ2l+1, β = l + 1,√
1
2 (θ4l−2β+3 − iθ4l−2β+4), β ∈ [l + 2,2l + 1],

(2.19)

which are orthonormal and complete. In the spherical harmonic basis vectors φβ ,
the nonvanishing matrix entries in the Chevalley bases are given by

Hνφν = φν, Hνφν+1 = −φν+1,

Hνφ2l−ν+1 = φ2l−ν+1, Hνφ2l−ν+2 = −φ2l−ν+2,

Hlφl = 2φl, Hlφl+2 = −2φl+2,

Eνφν+1 = φν, Eνφ2l−ν+2 = φ2l−ν+1,

Elφl+1 = √
2φl, Elφl+2 = √

2φl+1,

Fνφν = φν+1, Fνφ2l−ν+1 = φ2l−ν+2,

Flφl = √
2φl+1, Flφl+1 = √

2φl+2,

(2.20)

where ν ∈ [1, l − 1]. That is to say, the diagonal matrices of Hν and Hl in the
spherical harmonic basis vectors φβ are expressed as follows:

Hν = diag{0, . . . ,0︸ ︷︷ ︸
ν−1

,1,−1,0, . . . ,0︸ ︷︷ ︸
2l−2ν−1

,1,−1,0, . . . ,0︸ ︷︷ ︸
ν−1

},

Hl = diag{0, . . . ,0︸ ︷︷ ︸
l−1

,2,0,−2,0, . . . ,0︸ ︷︷ ︸
l−1

}. (2.21)

The spherical harmonic basis tensor φβ1···βn of rank n for the SO(2l+1) becomes
the direct product of n spherical harmonic basis vectors φβ1 · · ·φβn . The standard
tensor Young tableaux y[λ]

ν φβ1···βn are the common eigenstates of the Hν , but gener-
ally neither orthonormal nor traceless. The eigenvalue of Hν in the standard tensor
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Young tableaux y[λ]
ν φβ1···βn is equal to the number of the digits ν and (2l − ν + 1) in

the tableau, minus the number of (ν + 1) and (2l − ν + 2). The eigenvalue of Hl in
the standard tensor Young tableau is equal to the number of l in the tableau, minus
the number of (l+2), and then multiplied with a factor 2. The action Fν on the stan-
dard tensor Young tableau is equal to the sum of all possible tensor Young tableaux,
each of which can be obtained from the original one through replacing one filled
digit ν by the digit (ν + 1), or through replacing one filled digit (2l − ν + 1) by the
digit (2l − ν + 2). But the action of the Fl on the standard tensor Young tableau is
equal to the sum, multiplied with a factor

√
2, of all possible tensor Young tableaux,

each of which can be obtained from the original one through replacing one filled
digit l by (l + 1) or through replacing one filled (l + 1) by (l + 2). However, the
actions of Eν and El on the standard tensor Young tableau are opposite to those
of Fν and Fl . Even though the obtained tensor Young tableaux may be not stan-
dard, they can be transformed into the sum of the standard tensor Young tableaux
by symmetry.

Two standard tensor Young tableaux with different sets of filled digits are or-
thogonal to each other. For a given irreducible representation [λ] of the SO(2l + 1),
where the row number of Young pattern [λ] is not larger than l, the highest weight
state corresponds to the standard tensor Young tableau, in which each box in the
βth row is filled with the digit β because each raising operator Eν annihilates it.
The highest weight M = ∑

ν ωνMν can be calculated from (2.20) as follows:

Mν = λν − λν+1, ν ∈ [1, l), Ml = 2λl. (2.22)

The tensor representation [λ] of the SO(2l + 1) with even Ml is a single-valued rep-
resentation, while the representation with odd Ml becomes a double-valued (spinor)
representation.

The standard tensor Young tableaux y[λ]
ν φβ1···βn are generally not traceless, but

the standard tensor Young tableau with the highest weight is traceless because it
only contains φβ with β < l + 1 as shown in Eq. (2.19). For example, the tensor ba-
sis θ1θ1 is not traceless, but φ1φ1 is traceless. Since the highest weight is simple, the
highest weight state is orthogonal to any other standard tensor Young tableau in the
irreducible representation. Therefore, one is able to obtain the remaining orthonor-
mal and traceless basis tensors in the representation [λ] of the SO(2l + 1) from the
highest weight state by the lowering operators Fν based on the method of the block
weight diagram.

4.3 Irreducible Basis Tensors of the SO(2l)

The Lie algebra of the SO(2l) is Dl and its simple roots are given by

rν = eν − eν+1, ν ∈ [1, l − 1], rl = el−1 + el. (2.23)
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The lengths of all simple roots are same, dν = 1. Similarly, based on the definition of
the Chevalley bases (2.17), we find that its Chevalley bases in the self-representation
are same as those of the SO(2l + 1) except for ν = l,

Hl = T(2l−3)(2l−2) + T(2l−1)(2l),

El = 1

2
[T(2l−2)(2l−1) − iT(2l−3)(2l−1) + iT(2l−2)(2l) + T(2l−3)(2l)],

Fl = 1

2
[T(2l−2)(2l−1) + iT(2l−3)(2l−1) − iT(2l−2)(2l) + T(2l−3)(2l)].

(2.24)

Likewise, θa are not the common eigenvectors of the Hν . By generalizing the spher-
ical harmonic basis vectors for the SO(4) group, we define the spherical harmonic
basis vectors for the self-representation of the SO(2l) as follows:

φβ =
⎧
⎨

⎩

(−1)l−β
√

1
2 (θ2β−1 + iθ2β), β ∈ [1, l],

√
1
2 (θ4l−2β+1 − iθ4l−2β+2), β ∈ [l + 1,2l],

(2.25)

which are orthonormal and complete. In these basis vectors, the nonvanishing matrix
entries of the Chevalley bases are given by

Hνφν = φν, Hνφν+1 = −φν+1,

Hνφ2l−ν = φ2l−ν, Hνφ2l−ν+1 = −φ2l−ν+1,

Hlφl−1 = φl−1, Hlφl = φl,

Hlφl+1 = −φl+1, Hlφl+2 = −φl+2,

Eνφν+1 = φν, Eνφ2l−ν+1 = φ2l−ν,

Elφl+1 = φl−1, Elφl+2 = φl,

Fνφν = φν+1, Fνφ2l−ν = φ2l−ν+1,

Flφl−1 = φl+1, Flφl = φl+2,

(2.26)

where ν ∈ [1, l − 1]. As a result, the diagonal matrices of the Hν and Hl in the
spherical harmonic basis vectors φβ are calculated as:

Hν = diag{0, . . . ,0︸ ︷︷ ︸
ν−1

,1,−1,0, . . . ,0︸ ︷︷ ︸
2l−2ν−2

,1,−1,0, . . . ,0︸ ︷︷ ︸
ν−1

},

Hl = diag{0, . . . ,0︸ ︷︷ ︸
l−2

,1,1,−1,−1,0, . . . ,0︸ ︷︷ ︸
l−2

}. (2.27)

The spherical harmonic basis tensor φβ1···βn of rank n for the SO(2l) is the di-
rect product of n spherical harmonic basis vectors φβ1 · · ·φβn . The standard tensor
Young tableaux y[λ]

ν φβ1···βn are the common eigenstates of the Hν , but in general nei-
ther orthonormal nor traceless. The eigenvalue of Hν in the standard tensor Young
tableaux y[λ]

ν φβ1···βn is equal to the number of the digits ν and (2l−ν) in the tableau,
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minus the number of (ν + 1) and (2l − ν + 1). The eigenvalue of Hl in the standard
tensor Young tableau is equal to the number of the digits (l − 1) and l in the tableau,
minus the number of (l+1) and (l+2). The eigenvalues form the weight m of stan-
dard tensor Young tableau. The action of Fν on the standard tensor Young tableau
is equal to the sum of all possible tensor Young tableaux, each of which can be
obtained from the original one through replacing one filled digit (2l − ν) by the
digit (2l − ν + 1). The action of Fl on the standard tensor Young tableau is equal
to the sum of all possible tensor Young tableaux, each of which is obtained from
the original one through replacing one filled digit (l − 1) by the digit (l + 1) or
through replacing one filled l by the digit (l + 2). However, the actions of Eν and
El are opposite to those of Fν and Fl . The obtained tensor Young tableaux may be
not standard, but they can be transformed into the sum of the standard tensor Young
tableaux by symmetry.

Two standard tensor Young tableaux with different weights are orthogonal to
each other. For a given irreducible representation [λ] or [+λ] of the SO(2l), where
the row number of Young pattern [λ] is not larger than l, the highest weight state
corresponds to the standard tensor Young tableau where each box in the βth row
is filled with the digit β because every raising operator Eν annihilates it. In the
standard tensor Young tableau with the highest weight of the representation [−λ],
the box in the βth row is filled with the digit β , but the box in the lth row with
the digit (l + 1). The highest weight M = ∑

ν ωνMν is calculated from (2.20)
as

Mν = λν − λν+1, ν ∈ [1, l − 1),

Ml−1 = Ml = λl−1, λl = 0,

Ml−1 = λl−1 − λl, Ml = λl−1 + λl, for [+λ],
Ml−1 = λl−1 + λl, Ml = λl−1 − λl, for [−λ].

(2.28)

The tensor representation [λ] of the SO(2l) with even (Ml−1 + Ml) is a single-
valued representation. However, the representation with odd (Ml−1 + Ml) is a
double-valued (spinor) representation.

The standard tensor Young tableaux are generally not traceless, but the standard
tensor Young tableau with the highest weight is traceless because it only contains φβ

with β < l +2. Furthermore, l and l +1 do not appear in the tableau simultaneously
as illustrated in Eq. (2.25). Since the highest weight is simple, the highest weight
state is orthogonal to any other standard tensor Young tableau in the irreducible
representation. Hence, we can obtain the remaining orthonormal and traceless basis
tensors in the irreducible representation of the SO(2l) from the highest weight state
by the lowering operators Fν in light of the method of the block weight diagram.
The multiplicity of a weight in the representation can be easily obtained by counting
the number of the traceless tensor Young tableaux with this weight.
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4.4 Dimensions of Irreducible Tensor Representations

The dimension d[λ] of the representation [λ] of the SO(N) can be calculated by hook
rule [139, 140]. The dimension is expressed as a quotient, where the numerator and
the denominator are denoted by the symbols Y

[λ]
T and Y

[λ]
h , respectively:

d[±λ][SO(2l)] = Y
[λ]
T

2Y [λ]
h

, when λl �= 0,

d[λ][SO(N)] = Y
[λ]
T

2Y [λ]
h

, others.

(2.29)

The first formula in Eq. (2.29) corresponds to the case where the row number of
the Young pattern [λ] is equal to N/2. The hook path (i, j) in the Young pattern
[λ] is defined as a path which enters the Young pattern at the rightmost of the ith
row, goes leftward in the i row, turns downward at the j column, goes downward
in the j column, and leaves from the Young pattern at the bottom of the j column.
The inverse hook path denoted by (i, j) is the same path as the hook path (i, j), but
with opposite direction. The number of boxes contained in the path (i, j), as well
as in its inverse, is the hook number hij . The Y

[λ]
h represents a tableau of the Young

pattern [λ] where the box in the j th column of the ith row is filled with the hook
number Hij . However, the Y

[λ]
T is a tableau of the Young pattern [λ] where each

box is filled with the sum of the digits which are respectively filled in the same box
of each tableau Y

[λ]
Tb

in the series. The notation Y
[λ]
T means the product of the filled

digits in it, so does the notation Y
[λ]
h . Here, the tableaux Y

[λ]
Tb

can be obtained by the
following rules:

• Y
[λ]
T0

is a tableau of the Young pattern [λ], where the box in the j th column of the
ith row is filled with the digit (N + j − i).

• Let [λ(1)] = [λ]. Starting with [λ(1)], define recursively the Young pattern [λ(b)]
by removing the first row and the first column of the Young pattern [λ(b−1)] until
[λ(b)] contains less two columns.

• If [λ(b)] contains more than one column, define Y
[λ]
Tb

as a tableau of the Young
pattern [λ] where the boxes in the first (b − 1) row and in the first (b − 1)
column are filled with 0, and the remaining part of the Young pattern is [λ(b)].
Let [λ(b)] have r rows. Fill the first r boxes along the hook path (1,1) of the
Young pattern [λ(b)], starting with the box on the rightmost, with the digits
(λ

(b)
1 −1), (λ(b)

2 −1), . . . , (λ(b)
r −1), box by box, and fill the first (λ(b)

i −1) boxes
in each inverse hook path (i,1) of the Young pattern [λ(b)], i ∈ [1, r] with “−1”.
The remaining boxes are filled with 0. If several “−1” are filled in the same box,
the digits are summed. The sum of all filled digits in the pattern Y

[λ]
Tb

with b > 0
is equal to 0.
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4.5 Adjoint Representation of the SO(N)

We are going to study the adjoint representation of the SO(N) by replacing the
tensors. The N(N − 1)/2 generators Tab in the self-representation of the SO(N)

construct the complete bases of N -dimensional antisymmetric matrices. Denote Tcd

by TA for convenience, A ∈ [1,N(N − 1)/2]. Then we have

Tr(TATB) = 2δAB. (2.30)

Based on the adjoint representation Dad(G) satisfying

D(R)IBD(R)−1 =
∑

D

IDDad
DB(R), R ∈ SO(N), (2.31)

where R is an infinitesimal element, we have

RTAR
−1 =

N(N−1)/2∑

B=1

TBDad
BA(R). (2.32)

The antisymmetric tensor Tab of rank 2 of the SO(N) satisfies a similar relation
in the SO(N) transformation R

(ORT )cd =
∑

ij

RciTij (R
−1)jd = (RT R−1)cd , (2.33)

where Tab like an antisymmetric matrix can be expanded by (TA)ab as follows:

Tcd =
N(N−1)/2∑

A=1

(TA)cdFA, FA = 1

2

∑

cd

(TA)dcTcd, (2.34)

where the coefficient FA is a tensor that transforms in the SO(N) transformation R

as follows:

(ORT )cd = (RT R−1)cd

=
∑

A

(RTAR
−1)cdFA

=
∑

B

(TB)cd

{∑

A

Dad
BA(R)FA

}
,

(ORT )cd =
∑

B

(TB)cdORFB.

(2.35)

Thus, in terms of the adjoint representation of the SO(N) we can transform FA

in such a way

(ORF)B =
∑

A

Dad
BA(R)FA. (2.36)

The adjoint representation of the SO(N) is equal to the antisymmetric tensor
representation [1,1] of rank 2. The adjoint representation of the SO(N) for N = 3
or N > 4 is irreducible. Except for N = 2,4, the SO(N) is a simple Lie group.
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4.6 Tensor Representations of the Groups O(N)

It is known that the group O(N) is a mixed Lie group with two disjoint regions
corresponding to detR = ±1. Its invariant subgroup SO(N) has a connected group
space corresponding to detR = 1. The set of elements related to the detR = −1 is
the coset of SO(N). The property of the O(N) can be characterized completely by
the SO(N) and a representative element in the coset [139, 140].

For odd N = 2l + 1, we may choose ε = −1 as the representative element in the
coset since ε is self-inverse and commutes with every element in O(2l + 1). Thus,
the representation matrix D(ε) in the irreducible representation of O(2l + 1) is a
constant matrix

D(ε) = c1, D(ε)2 = 1, c = ±1. (2.37)

Denote by R the element in SO(2l + 1) and by R′ = εR the element in the coset.
From each irreducible representation D[λ](SO(2l + 1)) one obtains two induced
irreducible representations D[λ]±(O(2l + 1)),

D[λ]±(R) = D[λ](R), D[λ]±(εR) = ±D[λ](R). (2.38)

Two representations D[λ]±(O(2l + 1)) are inequivalent because of different charac-
ters of the ε in two representations.

For even N = 2l, ε = −1 belongs to SO(2l). We may choose the representative
element in the coset to be a diagonal matrix σ , in which the diagonal entries are
1 except for σNN = −1. Even though σ 2 = 1, σ does not commute with some
elements in O(2l). Any tensor Young tableau y[λ]

ν θβ1···βn is an eigentensor of the σ

with the eigenvalue 1 or −1 depending on whether the number of filled digits N in
the tableau is even or odd. In the spherical harmonic basis tensors, σ interchanges
the filled digits l and l + 1 in the tensor Young tableau y[λ]

ν φβ1···βn . Therefore, the
representation matrix D[λ](σ ) is known.

Denote by R the element in the SO(2l) and by R′ = σR the element in the coset.
From each irreducible representation D[λ](SO(2l)), where the row number of [λ] is
less than l, we obtain two induced irreducible representations D[λ]±(O(2l)),

D[λ]±(R) = D[λ](R), D[λ]±(σR) = ±D[λ](σ )D[λ](R). (2.39)

Likewise, two representations D[λ]±(O(2l)) are inequivalent due to the different
characters of the σ in two representations.

When l = N/2 there are two inequivalent irreducible representations D[(±)λ] of
the SO(2l). Their basis tensors are given in Eq. (2.12). Since two terms in Eq. (2.12)
contain different numbers of the subscripts N , then σ changes the tensor Young
tableau in [±λ] to that in [∓λ], i.e., the representation spaces of both D[±λ](SO(2l))
correspond to an irreducible representation D[λ] of the O(2l),

D[λ](R) = D[+λ](R) ⊕ D[−λ](R), D[λ](σR) = D[λ](σ )D[λ](R), (2.40)

where the representation matrix D[λ](σ ) is calculated by interchanging the filled
digits l and (l+1) in the tensor Young tableau y[λ]

ν φβ1···βn . Two representations with
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different signs of D[λ](σ ) are equivalent since they might be related by a similarity
transformation

X =
(

1 0
0 −1

)
. (2.41)

5 � Matrix Groups

Dirac generalized the Pauli matrices to four γ matrices, which satisfy the anticom-
mutation relations. In terms of the γ matrices, Dirac established the Dirac equation
to describe the relativistic particle with spin 1/2. In the language of group theory,
Dirac found the spinor representation of the Lorentz group. In this section we first
generalize the γ matrices and find that the set of products of the γ matrices forms
the matrix group �.

5.1 Fundamental Property of � Matrix Groups

First, let us review the property of the � matrix groups [88–90]. We define N ma-
trices γa , which satisfy the following anticommutation relations

{γa, γb} = γaγb + γbγa = 2δab1, a, b ∈ [1,N]. (2.42)

That is, γ 2
a = 1 and γaγb = −γbγa for a �= b. The set of all products of the γa

matrices, in the multiplication rule of matrices, forms a group, denoted by �N . In a
product of γa matrices, two γb with the same subscript can be moved together and
eliminated by Eq. (2.42) so that �N is a finite matrix group.

We choose a faithful irreducible unitary representation of the �N as its self-
representation. It is known from Eq. (2.42) that γa is unitary and hermitian,

γ †
a = γ−1

a = γa, (2.43)

whose eigenvalue is 1 or −1.
Let

γ
(N)
ξ = γ1γ2 · · ·γN,

(
γ

(N)
ξ

)2 = (−1)N(N−1)/21. (2.44)

For odd N , since γ
(N)
ξ commutes with every γa matrix, then it is a constant

matrix according to the Schur theorem (see Appendix B):

γ
(N)
ξ =

{±1, for N = 4l + 1,

±i1, for N = 4l − 1.
(2.45)

Two groups with different γ (4l+1)
ξ are isomorphic through a one-to-one correspon-

dence, say

γa ↔ γ ′
a, a ∈ [1,4l], γ4l+1 ↔ −γ ′

4l+1. (2.46)
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On the other hand, for a given γ
(4l+1)
ξ , the γ

(4l+1)
4l+1 can be expressed as a prod-

uct of other γa matrices. As a result, all elements both in �4l and in �4l+1 can be
expressed as the products of matrices γa, a ∈ [1,4l] so that they are isomorphic. In
addition, since γ

(4l−1)
ξ is equal to either i1 or −i1, �4l−1 is isomorphic onto a group

composed of the �4l−2 and i�4l−2,

�4l+1 ≈ �4l , �4l−1 ≈ {�4l−2, i�4l−2}. (2.47)

5.2 Case N = 2l

• Let us calculate the order g(2l) of the �2l . Obviously, if R ∈ �2l , then −R ∈ �2l ,
too. If we choose one element in each pair of elements ±R, then we obtain a set
�′

2l containing g(2l)/2 elements. Denote by Sn a product of n different γa . Since
the number of different Sn contained in the set �′

2l is equal to the combinatorics
of n among 2l, then we have

g(2l) = 2
2l∑

n=0

(
2l

n

)
= 2(1 + 1)2l = 22l+1. (2.48)

• For any element Sn ∈ �2l except for ±1, we may find a matrix γa which is anti-
commutable with Sn. In fact, when n is even and γ appears in the product Sn, one
has γa Sn = −Snγa . However, when n is odd there exists at least one γa which
does not appear in the product Sn so that γa Sn = −Snγa . Therefore, we find that

Tr Sn = Tr(γ 2
a Sn) = −Tr(γa Snγa) = −Tr Sn = 0. (2.49)

That is to say, the character of the element S in the self-representation of the �2l

is

ξ(S) =
{±d(2l), when S = ±1,

0, when S �= ±1,
(2.50)

where d(2l) is the dimension of the γa . Since the self-representation of the �2l is
irreducible, we have

2
(
d(2l))2 =

∑

S∈�2l

|ξ(S)|2 = g(2l) = 22l+1, d(2l) = 2l . (2.51)

Based on Eqs. (2.43) and (2.50), we have detγa = 1 for l > 1.
• Since γ

(2l)
ξ is anticommutable with every γa , one may define γ

(2l)
f by multiplying

γ
(2l)
ξ with a factor such that γ (2l)

f satisfies Eq. (2.42), i.e.,

γ
(2l)
f = (−i)lγ

(2l)
ξ = (−i)lγ1γ2 · · ·γ2l ,

(
γ

(2l)
f

)2 = 1. (2.52)

Actually, γ (2l)
f can also be defined as the matrix γ2l+1 in �2l+1.
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• The matrices in the set �′
2l are linearly independent. Otherwise, there exists a

linear relation
∑

S C(S)S = 0, S ∈ �′
2l . By multiplying it with R−1/d(2l) and

taking the trace, one obtains any coefficient C(R) = 0. Thus, the set �′
2l contains

22l linear independent matrices of dimension d(2l) = 2l so that they form a com-
plete set of basis matrices. Any matrix M of dimension d(2l) can be expanded by
S ∈ �′

2l as follows:

M =
∑

S∈�′
2l

C(S)S, C(S) = 1

d(2l)
Tr(S −1M). (2.53)

• According to Eq. (2.42), the ±S form a class, while 1 and −1 form two classes,
respectively. The �2l group contains (22l + 1) classes. Their representation is
one-dimensional. Arbitrary chosen n matrices γa correspond to 1 and the re-
maining matrices γb correspond to −1. The number of the one-dimensional non-
equivalent representations is calculated as

2l∑

n=0

(
2l

n

)
= 22l . (2.54)

The remaining irreducible representation of the �2l must be d(2l)-dimensional,
which is faithful. The γa matrices in the representation are called the irreducible
γa matrices, which may be written as:

γ2n−1 = 1 × · · · × 1︸ ︷︷ ︸
n−1

×σ1 × σ3 × · · · × σ3︸ ︷︷ ︸
l−n

,

γ2n = 1 × · · · × 1︸ ︷︷ ︸
n−1

×σ2 × σ3 × · · · × σ3︸ ︷︷ ︸
l−n

,

γ
(2l)
f = σ3 × · · · × σ3︸ ︷︷ ︸

l

.

(2.55)

Since γ
(2l)
f is diagonal, the forms of Eq. (2.55) are called the reduced spinor

representations. Remember that the eigenvalues ±1 are arranged in the diagonal
line of the γ

(2l)
f in mixed way.

• Let us mention an equivalent theorem for the γa matrices.

Theorem 2.1 Two sets of d(2l)-dimensional matrices γa and γ̄a satisfying the anti-
commutation relation (2.42), where N = 2l, are equivalent

γ̄a = X−1γaX, a ∈ [1,2l]. (2.56)

The similarity transformation matrix X is determined up to a constant factor. If
the determinant of the matrix X is constrained to be 1, there are d(2l) choices for the
factor:

exp[−i2nπ/d(2l)], n ∈ [0, d(2l)). (2.57)
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5.3 Case N = 2l + 1

Since γ
(2l)
f and (2l) matrices γa in �2l , a ∈ [1,2l], satisfy the antisymmetric relation

(2.42), then they can be defined to be the (2l + 1) matrices γa in �2l+1. In this
definition, γ (2l+1)

ξ in �2l+1 is chosen as

γ2l+1 = γ
(2l)
f , γ

(2l+1)
ξ = γ1 · · ·γ2l+1 = il1. (2.58)

Obviously, the dimension d(2l+1) of the matrices in �2l+1 is the same as d(2l) in �2l ,

d(2l+1) = d(2l) = 2l . (2.59)

For odd N , the equivalent theorem must be modified because the multiplication
rule of elements in �2l+1 includes Eq. (2.45). A similarity transformation cannot
change the sign of γ

(2l+1)
ξ , i.e., the equivalent condition for two sets of γa and γ̄a

has to include a new condition γξ = γ̄ξ , in addition to those given in Theorem 2.1.
If we take γ̄a = −(γa)

T , then we have

γ̄
(2l+1)
ξ = γ̄1 · · · γ̄2l+1 = −{γ2l+1 · · ·γ1}T

= (−1)l+1{γ (2l+1)
ξ

}T

= (−1)l+1γ
(2l+1)
ξ . (2.60)

6 Spinor Representations of the SO(N)

6.1 Covering Groups of the SO(N)

Based on a set of N irreducible unitary matrices γa satisfying the anticommutation
relation (2.42), we define

γ̄a =
N∑

i=1

Ra iγi, R ∈ SO(N). (2.61)

Since R is a real orthogonal matrix, then γ̄a satisfy

γ̄aγ̄b + γ̄bγ̄a =
∑

ij

RaiRbj {γiγj + γjγi}

= 2
∑

i

RaiRbi1

= 2δab1. (2.62)

Due to Eq. (2.42) and
∑

a R1aR2a = 0, we have
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∑

c1c2

R1c1R2c2γc1γc2 = 1

2

∑

c1 �=c2

R1c1R2c2(γc1γc2 − γc2γc1), (2.63)

γ̄1γ̄2 · · · γ̄N =
∑

c1···cN
R1 c1 · · ·RN cN γc1 · · ·γcN

=
∑

c1···cN
R1 c1 · · ·RN cN εc1···cN γ1γ2 · · ·γN

= (detR)γ1γ2 · · ·γN = γ1γ2 · · ·γN . (2.64)

From Theorem 2.1, we know that γa and γ̄a are related by a unitary similarity
transformation D(R) with determinant 1,

D(R)−1γaD(R) =
N∑

i=1

Raiγi, detD(R) = 1, (2.65)

where D(R) is determined up to a constant exp[−i2nπ/d(N)], n ∈ [0, d(N)). In
terms of the definition of the group, the set of D(R) defined in Eq. (2.65) and op-
erated in the multiplication rule of matrices, forms a Lie group G′

N . There exists a
d(N)-to-one correspondence between the elements in G′

N and those in SO(N), and
the correspondence keeps invariant in the multiplication of elements. Therefore, the
G′

N is homomorphic to SO(N). Because the group space of the SO(N) is doubly-
connected, its covering group is homomorphic to it by a two-to-one correspondence.
As a result, the group space of the G′

N must fall into several disjoint pieces, where
the piece containing the identity element E forms an invariant subgroup GN of
the G′

N . The GN is a connected Lie group and becomes the covering group of the
SO(N) . Since the group space of GN is connected, based on the property of the
infinitesimal elements, a discontinuous condition can be found to pick up GN from
the G′

N .
Let R be an infinitesimal element. We may expand R and D(R) with respect to

the infinitesimal parameters ωαβ as follows

Rab = δab − i
∑

α<β

ωαβ(Tαβ)ab = δab − ωab,

D(R) = 1 − i
∑

α<β

ωαβSαβ,
(2.66)

where Tαβ are the generators in the self-representation of the SO(N) as given in
Eq. (2.14). The Sαβ are the generators in GN . From Eq. (2.65) one has

[γc, Sαβ ] =
∑

d

(Tαβ)cdγd = −i{δαcγβ − δβcγα}, (2.67)

from which we obtain

Sαβ = 1

4i
(γαγβ − γβγα). (2.68)

It is easy to prove that Sαβ is hermitian since D(R) is unitary.
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Define3

C =
{
B(N), when N = 4l + 1,

C(N), when N �= 4l + 1.
(2.69)

Based on this, we have

C−1SαβC = −(Sαβ)
T = −S∗

αβ,

C−1D(R)C = {D(R−1)}T = D(R)∗.
(2.70)

This discontinuous condition restricts the factor in D(R) such that there is a two-
to-one correspondence between ±D(R) in GN and R in SO(N) through relations
(2.65) and (2.70). That is to say, the GN is the covering group of SO(N),

SO(N) ∼ GN, (2.71)

where the GN is the fundamental spinor representation denoted by D[s](SO(N)).
Therefore, the Sαβ represent the spinor angular momentum operators [88–90]. The
irreducible tensor representation [λ] is a single-valued representation of the SO(N),
but a non-faithful representation of GN because its faithful representation is a
double-valued representation of the SO(N).

Since the products Sn span a complete set of the d(N)-dimensional matrices, this
can be decided by checking the commutation relations of the Sn with the generators
Sαβ whether there exists a non-constant matrix commutable with all Sαβ . It is found

that only γ
(N)
ξ is commutable with all Sαβ . The γ

(2l+1)
ξ is a constant matrix so

that the fundamental spinor representation D[s](SO(2l + 1)) is irreducible and self-
conjugate.

On the contrary, since γ
(2l)
ξ is not a constant matrix so that the fundamental spinor

representation D[s](SO(2l)) is reducible. By a similarity transformation X, the γ
(2l)
f

can be transferred to σ3 × 1 and D[s](SO(2l)) is reduced to the direct sum of two
irreducible representations

X−1D[s](R)X =
(
D[+s](R) 0

0 D[−s](R)

)
. (2.72)

Two representations D[±s](SO(2l)) are proved inequivalent by leading to an ab-
surdity. In fact, if Z−1D[−s](R)Z = D[+s](R) and Y = 1 ⊕ Z, then all generators
(XY)−1SαβXY are commutable with σ1 × 1, but their product is not commutable
with it,

2l (XY )−1(S12S34 · · ·S(2l−1)(2l))XY = Y−1[X−1γ
(2l)
f X]Y = σ3 × 1, (2.73)

which results in a contradiction.

3BN is the strong space-time reflection matrix and CN is the charge conjugation matrix, which are
usually used in particle physics.
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Introduce two project operators P± [139, 140],

P± = 1

2

(
1 ± γ

(2l)
f

)
, P±D[s](R) = D[s]P±,

X−1P+X =
(

1 0
0 0

)
, X−1P+D[s](R)X =

(
D[+s](R) 0

0 0

)
,

X−1P−X =
(

0 0
0 1

)
, X−1P−D[s](R)X =

(
0 0
0 D[−s](R)

)
.

(2.74)

From the following relation

(C(2l))−1γ
(2l)
f C(2l) = (−i)l(γ1)

T (γ2)
T · · · (γ2l )

T = (−1)l(γ (2l)
f )T , (2.75)

where C(2l) and T denote the charge conjugation matrix and the transpose of the
matrix, respectively, one has

C−1D[s](R)P±C =
{
D[s](R)∗P±, when N = 4l,

D[s](R)∗P∓, when N = 4l + 2.
(2.76)

Two non-equivalent representations D[±s](R) are conjugate to each other when N =
4l+2, while they are self-conjugate when N = 4l. The dimension of the irreducible
spinor representations of the SO(N) is calculated as

d[s][SO(2l + 1)] = 2l , d[±s][SO(2l)] = 2(l−1). (2.77)

6.2 Fundamental Spinors of the SO(N)

For an SO(N) transformation R, � is called the fundamental spinor of the SO(N)

if it transforms through the fundamental spinor representation D[s](R):

(OR�)ν =
∑

μ

D[s]
νμ(R)�μ, OR� = D[s](R)�, (2.78)

where � is a column matrix with d[s] components.
The Chevalley bases Hν(S),Eν(S) and Fν(S) with respect to the spinor angular

momentum can be obtained from Eqs. (2.18) and (2.24) through replacing Tab by
Sab . In the chosen forms of γa given in Eq. (2.55), the Chevalley bases for the
SO(2l + 1) group are given by

Hν(S) = 1 × · · · × 1︸ ︷︷ ︸
ν−1

×1

2
{σ3 × 1 − 1 × σ3} × 1 × · · · × 1︸ ︷︷ ︸

l−ν−1

,

Hl(S) = 1 × · · · × 1︸ ︷︷ ︸
l−1

×σ3,

Eν(S) = 1 × · · · × 1︸ ︷︷ ︸
ν−1

×{σ+ × σ−} × 1 × · · · × 1︸ ︷︷ ︸
l−ν−1

= Fν(S)
T ,

El(S) = σ3 × · · · × σ3︸ ︷︷ ︸
l−1

×σ+ = Fl(S)
T ,

(2.79)
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where ν ∈ [1, l). The Chevalley bases for the SO(2l) group are the same as those
for the SO(2l + 1) except for ν = l,

Hl(S) = 1 × · · · × 1︸ ︷︷ ︸
l−2

×1

2
{σ3 × 1 + 1 × σ3},

El(S) = −1 × · · · × 1︸ ︷︷ ︸
l−2

×{σ+ × σ+} = Fl(S)
T .

(2.80)

The basis spinor ξ [m] of the SO(N) can also be expressed as a direct product of
l two-dimensional basis spinors ξ(β),

ξ [m] = ξ(β1, β2, . . . , βl) = ξ(β1)ξ(β2) . . . ξ(βl), (2.81)

ξ(+) =
(

1

0

)
, ξ(−) =

(
0

1

)
. (2.82)

For even N , the fundamental spinor space can be decomposed into two subspaces by
the project operators P±, �± = P±� , corresponding to irreducible spinor represen-
tations D[±s]. The basis spinor in the representation space of D[+s] contains even
number of factors ξ(−), and that of D[−s] contains odd number of factors ξ(−). The
highest weight states ξ [M] and their highest weights M are given by

ξ(+) . . . ξ(+)︸ ︷︷ ︸
l−1

ξ(+), M = [0, . . . ,0︸ ︷︷ ︸
l−1

,1], [s] of the SO(2l + 1),

ξ(+) . . . ξ(+)︸ ︷︷ ︸
l−1

ξ(+), M = [0, . . . ,0︸ ︷︷ ︸
l−2

,0,1], [+s] of the SO(2l),

ξ(+) . . . ξ(+)︸ ︷︷ ︸
l−1

ξ(−), M = [0, . . . ,0︸ ︷︷ ︸
l−2

,1,0], [−s] of the SO(2l).

(2.83)

The remaining basis states are calculated by the applications of lowering operators
Fν(S).

6.3 Direct Products of Spinor Representations

Since the spinor representation is unitary so that we have

OR�
† = �†D[s](R)−1, (2.84)

�†� = ∑
μ �∗

μ�μ = ∑
μν �

∗
μδμν�ν,

OR(�
†�) = �†D[s](R)−1D[s](R)� = �†�,

(2.85)

which means that �†� keeps invariant in the SO(N) transformations and is a scalar
of the SO(N). In other words, the products of �†

μ and �ν span an invariant linear
space, corresponding to the direct product representation D[s]∗ ×D[s] of the SO(N).
In the reduction of D[s]∗ ×D[s] there is an identical representation where the CGCs
are δμν . In general, one has
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OR(�
†γa1 · · ·γan�) = �†D[s](R)−1γa1 · · ·γanD[s](R)�

=
∑

c1...cn

Ra1c1 · · ·Rancn�
†γc1 · · ·γcn�, (2.86)

where �†γa1 · · ·γan� is an antisymmetric tensor of rank n of the SO(N) corre-
sponding to the Young pattern [1n] with n ≤ N . Otherwise, the respective γa can be
moved together and eliminated.

When N = 2l + 1, the γ
(2l+1)
f is a constant matrix so that the product of (N −n)

matrices γa can be changed to a product of n matrices γa . Thus, the rank n of the
tensor (2.86) is less than N/2, and the Clebsch-Gordan series is given by

[s]∗ × [s] 	 [s] × [s] 	 [0] ⊕ [1] ⊕ [12] ⊕ · · · ⊕ [1l], for SO(2l + 1). (2.87)

The matrix entries of product of γa are the CGCs. The highest weight in product
space is given by M = [0, . . . ,0,2] corresponding to representation [1l].

When N = 2l, according to the property of the project operators P±,

P+P− = P−P+ = 0, P±P± = P±, γ
(2l)
f P± = ±P±,

P∓γb1 · · ·γb2nP± = 0, P±γb1 · · ·γb2n+1P± = 0,
(2.88)

the product of the (N −n) matrices γb can still be changed to a product of n matrices
γb . If n = l, we have

γ1γ2 · · ·γl = (−i)lγ2lγ2l−1 · · ·γl+1γ
(2l)
f ,

γ1γ2 · · ·γlP± = 1

2
{γ1γ2 · · ·γl ± (−i)lγ2lγ2l−1 · · ·γl+1}P±.

(2.89)

If N = 4l, we have

[±s]∗ × [±s] 	 [±s] × [±s] 	 [0] ⊕ [12] ⊕ [14] ⊕ · · · ⊕ [(±1)12l],
[∓s]∗ × [±s] 	 [∓s] × [±s] 	 [1] ⊕ [13] ⊕ [15] ⊕ · · · ⊕ [12l−1].

(2.90)

If N = 4l + 2, one has

[±s]∗ × [±s] 	 [∓s] × [±s] 	 [0] ⊕ [12] ⊕ [14] ⊕ · · · ⊕ [12l],
[∓]∗ × [±s] 	 [±s] × [±s] 	 [1] ⊕ [13] ⊕ [15] ⊕ · · · ⊕ [(±)12l+1].

(2.91)

The self-dual and anti-self-dual representations occur in the reduction of the
direct product [±s] × [±s], but not in the reduction of [+s] × [−s]. The high-
est weights are M = [0, . . . ,0,0,2] in the product space [+s] × [+s], M =
[0, . . . ,0,2,0] in [−s] × [−s], and M = [0, . . . ,0,1,1] in [+s] × [−s].

6.4 Spinor Representations of Higher Ranks

In the SO(3) group, D1/2 is a fundamental spinor representation. The spinor repre-
sentations Dj of higher ranks can be obtained by reducing the direct product of the
fundamental spinor representation and a tensor representation,

D1/2 × Dl 	 Dl+1/2 ⊕ Dl−1/2. (2.92)
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The spinor representations of higher ranks of the SO(N) can also be obtained in a
similar way.

A spinor �a1...an with the tensor indices is called a spin-tensor if it transforms in
R ∈ SO(N) as follows:

(OR�)a1···an =
∑

c1···cn
Ra1c1 · · ·RancnD

[s](R)�c1···cn . (2.93)

The tensor part of the spin-tensor can be decomposed into a direct sum of the trace-
less tensors with different ranks. Each traceless tensor subspace can be reduced by
the projection of the Young operators. Thus, the reduced subspace of the traceless
tensor part of the spin-tensor is denoted by a Young pattern [λ] or [±λ] where the
row number of [λ] is not larger than N/2. However, this subspace of the spin-tensor
corresponds to the direct product of the fundamental spinor representation [s] and
the irreducible tensor representation [λ] or [±λ], and it is still reducible. It is re-
quired to find a new restriction to pick up the irreducible subspace like the subspace
of Dl+1/2 in Eq. (2.92) for the SO(3) group. The restriction is from the so-called
trace of the second kind of the spin-tensor which keeps invariant in the SO(N)

transformations:

�a1···ai−1ai+1···an =
N∑

c=1

γc�a1···ai−1 c ai+1···an, (2.94)

and

(OR�)a1···ai−1ai+1···an

=
∑

c1···cnc′
Ra1c1 · · ·Rancn

[∑

c

γcRcc′
]
D[s](R)�c1···ci−1c

′ci+1···cn

=
∑

c1···cn
Ra1c1 · · ·RancnD

[s](R)

[∑

c′
γc′�c1···ci−1c

′ci+1···cn
]

=
∑

c1···cn
Ra1c1 · · ·RancnD

[s](R)�c1···ci−1ci+1···cn . (2.95)

The irreducible subspace of the SO(N) contained in the spin-tensor space, in
addition to the projection of a Young operator, satisfies the usual traceless conditions
of tensors and the traceless conditions of the second kind

∑

d

ψa···d···d···c = 0,
∑

d

γdψa···d···c = 0. (2.96)

The highest weight M of the irreducible representation is the highest weight in
the direct product space. The irreducible representation is denoted by [s, λ] for the
SO(2l + 1)

{ [s] × [λ] 	 [s, λ] ⊕ · · · ,
M = [(λ1 − λ2), . . . , (λl−1 − λl), (2λl + 1)], (2.97)
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and [±s, λ] for the SO(2l)
{ [+s] × [λ] or [+s] × [+λ] 	 [+s, λ] ⊕ · · · ,

M = [(λ1 − λ2), . . . , (λl−1 − λl), (λl−1 + λλ + 1)],
{ [−s] × [λ] or [−s] × [−λ] 	 [−s, λ] ⊕ · · · ,

M = [(λ1 − λ2), . . . , (λl−1 + λl + 1), (λl−1 − λl)],{ [+s] × [−λ] 	 [−s, λ1, λ2, . . . , λl−1, (λl − 1)] ⊕ · · · ,
M = [(λ1 − λ2), . . . , (λl−1 + λl), (λl−1 − λl + 1)],

{ [−s] × [+λ] 	 [+s, λ1, λ2, . . . , λl−1, (λl − 1)] ⊕ · · · ,
M = [(λ1 − λ2), . . . , (λl−1 − λl + 1), (λl−1 + λl)].

(2.98)

These irreducible representations [s, λ] of the SO(2l + 1) and [±s, λ] of the
SO(2l) are called the spinor representations of higher ranks. It should be noted that
the row number of the Young pattern [λ] in the spinor representation of higher rank
is not larger than l. Otherwise, the space is null.

The remaining representations in the Clebsch-Gordan series (2.97) and (2.98) are
calculated by the method of dominant weight diagram. For example, when [λ] is a
one-row Young diagram, one has

SO(2l + 1): [s] × [λ,0, . . . ,0] 	 [s, λ,0, . . . ,0] ⊕ [s, λ − 1,0, . . . ,0],
SO(2l): [±s] × [λ,0, . . . ,0] 	 [±s, λ,0, . . . ,0] ⊕ [∓s, λ − 1,0, . . . ,0], (2.99)

where [∓s, λ − 1,0, . . . ,0] appears because the factor γb in Eq. (2.96) is anticom-
mutable with γf in P±.

6.5 Dimensions of the Spinor Representations

In a similar way, the dimension of a spinor representation [s, λ] of the SO(2l +1) or
[±s, λ] of the SO(2l) can be calculated by hook rule. The dimension is expressed as
a quotient multiplied with the dimension of the fundamental spinor representation,
where the numerator and the denominator are denoted by the symbols Y

[λ]
S and Y

[λ]
h ,

respectively:

d[s,λ][SO(2l + 1)] = 2l Y
[λ]
S

Y
[λ]
h

,

d[±s,λ][SO(2l)] = 2l−1 Y
[λ]
S

Y
[λ]
h

.

(2.100)

The concepts of a hook path (i, j) and an inverse hook path i, j have been dis-
cussed above. The number of boxes contained in the hook path (i, j) is the hook
number hij of the box in the j th column of the ith row. The Y

[λ]
h is a tableau of the

Young pattern [λ] where the box in the j th column of the ith row is filled with the
hook number hij . The Y

[λ]
S is a tableau of the Young pattern [λ] where each box is
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filled with the sum of the digits which are respectively filled in the same box of each
tableau Y

[λ]
Sb

in the series. The notation Y
[λ]
S means the product of the filled digits in

it, so does the notation Y
[λ]
h . The tableaux Y

[λ]
Sb

are defined by the following rules:

• Y
[λ]
S0

is a tableau of the Young pattern [λ] where the box in the j th column of the
ith row is filled with the digit (N − 1 + j − i).

• Let [λ(1)] = [λ]. Staring with [λ(1)], we define recursively the Young pattern
[λ(b)] by removing the first row and the first column of the Young pattern [λ(b−1)]
until [λ(b)] contains less two columns.

• If [λ(b)] contains more than one column, we define Y
[λ]
Sb

as the tableau of the
Young pattern [λ] where the boxes in the first (b − 1) row and column are filled
with 0, and the remaining part of the Young pattern is [λ(b)]. Let [λ(b)] have
r rows. Fill the first r boxes along the hook path (1,1) of the Young pattern
[λ(b)], starting with the box on the rightmost, with the digits (λ

(b)
1 − 1), (λ(b)

2 −
1), . . . , (λ(b)

r − 1), box by box, and fill the first (λ(b)
i − 1) boxes in each inverse

hook path (i,1) of the Young pattern [λ(b)], i ∈ [2, r] with “−1”. The remaining
boxes are filled with 0. If several “−1” are filled in the same box, the digits are
summed. The sum of all filled digits in the pattern Y

[λ]
Sb

with b > 0 is equal to 0.

7 Concluding Remarks

In this Chapter we have sketched some basic properties for the Lie group SO(N)

since it shall be very helpful in successive several Chapters. The tensor and spinor
representations of the SO(N) group, the calculation of the dimensions of irreducible
tensor and spinor representations have been addressed. The more information about
the properties of the Lie groups and Lie algebras, in particular the SO(N) group as
well as the corresponding Lie algebra may refer to textbooks [136, 138–140].



Chapter 3
Rotational Symmetry and Schrödinger Equation
in D-Dimensional Space

1 Introduction

It is well known that in classical mechanics an image has rotational symmetry if
there is a center point around which the object is turned a certain number of degrees
and the object still looks the same, i.e., it matches itself a number of times while it is
being rotated. In the language of quantum mechanics, isotropy of space means that
the system Hamiltonian keeps invariant by a rotation. In our case the Schrödinger
equation with the spherically symmetric fields possesses this kind of property. If the
Hamiltonian has rotational symmetry, we can show that the angular momentum op-
erators L commute with the Hamiltonian, which means that the angular momentum
is a conserved quantity, i.e., dL/dt = 0. Thus, this constant of the motion enables us
to reduce the D-dimensional Schrödinger equation to a radial differential equation.
This may be explained well from the rotation group theory as below.

This Chapter is organized as follows. In Sect. 2 we give a brief review of the
rotation operator. In Sect. 3 we are going to study the generalized orbital angular
momentum operators in higher dimensions. The linear momentum operators and
radial momentum operator are to be studied in Sects. 4 and 5, respectively. The
generalized spherical harmonic polynomials shall be discussed in Sect. 6. We are
going to study the Schrödinger equation for a two-body system in Sect. 7. We shall
give some concluding remarks in Sect. 8.

2 Rotation Operator

We define the rotation operator OR( �ϕ) in such a way that the rotated scalar state
ψα′(r, t) follows from the initial state ψα(r, t) by

ψα′(r, t) = OR( �ϕ)ψα(r, t). (3.1)

S.-H. Dong, Wave Equations in Higher Dimensions,
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Consequently, the following expression has to be valid

i�
∂ψα′(r, t)

∂t
= i�

∂OR( �ϕ)ψα(r, t)
∂t

= OR( �ϕ)
(
i�

∂ψα(r, t)
∂t

)
= OR( �ϕ)Hψα(r, t)

= OR( �ϕ)HO−1
R ( �ϕ)ψα′(r, t) = Hψα′(r, t), (3.2)

where the last step expresses the requirement of invariance of the Schrödinger equa-
tion concerning rotations or, equivalently, isotropy of configuration space. Certainly,
we have used the fact that the initial state ψα(r, t) satisfies the Schrödinger equation
i�∂ψα(r, t)/∂t = Hψα(r, t).

Therefore, for arbitrary rotation vector �ϕ, we have

OR( �ϕ)HO−1
R ( �ϕ) = H (3.3)

or

[OR,H ] = 0. (3.4)

Since �ϕ is arbitrary, we have

[L,H ] = 0, (3.5)

which means the conservation of angular momentum.
In order to construct the explicit rotation operator, we consider a rotation by an

infinitesimal rotation angle δϕ about z axis. The rotation operator can be written as

ORez
(δϕ) = 1 − iδϕ

�
Lz, (3.6)

where Lz is the generator of infinitesimal rotations to be determined. Applying it to
a position eigenstate leads to

ORez
(δϕ)|x, y〉 = |x − yδϕ, y + xδϕ〉. (3.7)

In a similar way, we may obtain the following relation

〈x, y|1 − iδϕ

�
Lz|ψ〉 = ψ(x + yδϕ, y − xδϕ). (3.8)

Expanding this equation in a Taylor series yields

ψ(x, y) − iδϕ

�
〈x, y|Lz|ψ〉 = ψ(x, y) + yδϕ

∂ψ

∂x
− xδϕ

∂ψ

∂y
, (3.9)

from which we have

〈x, y|Lz|ψ〉 = −i�

(
x

∂

∂y
− y

∂

∂x

)
ψ. (3.10)

As a result, we find

Lz = −i�

(
x

∂

∂y
− y

∂

∂x

)

= xpy − ypx. (3.11)



3 Orbital Angular Momentum Operators 41

The finite rotation operator is obtained by repeating many infinitesimally small
rotations, i.e.,

ORez
(ϕ) = lim

n→∞

(
1 − i

�

ϕ

n
Lz

)n

= e− iϕ
�
Lz . (3.12)

This means that the z component of angular momentum Lz is a conserved quan-
tity. Similarly, we could do infinitesimal rotations about the x or y axis and shall
show that all the components of the angular momentum operator commute with the
Hamiltonian, i.e., satisfying (3.5). Thus, the rotation operator can be written out

ORn(ϕ) = e− i
�
ϕL·n. (3.13)

3 Orbital Angular Momentum Operators

In this section, we study the orbital angular momentum operators [13, 14, 16, 19,
20]. The relations between the Cartesian coordinates xi and the hyperspherical co-
ordinates r and θb in D-dimensional space are defined by

x1 = r cos θ1 sin θ2 · · · sin θD−1,

x2 = r sin θ1 sin θ2 · · · sin θD−1,

xb = r cos θb−1 sin θb · · · sin θD−1,

xD = r cos θD−1,

(3.14)

where b ∈ [3,D − 1]. The unit vector x̂ along x is usually denoted by x̂ = x/r . The
sum of the squares of Eqs. (3.14) gives

r2 =
D∑

i=1

x2
i . (3.15)

Thus r is the radius of a D-dimensional sphere. The Laplacian is given in terms of
polar coordinates by

∇2
D = 1

h

D−1∑

j=0

∂

∂θj

(
h

h2
j

∂

∂θj

)
, (3.16)

where

θ0 = r, h =
D−1∏

j=0

hj , h2
j =

D∑

i=1

(
∂xi

∂θj

)2

. (3.17)
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By direct calculation we have

h0 = 1,

h1 = r sin θ2 sin θ3 · · · sin θD−1,

h2 = r sin θ3 sin θ4 · · · sin θD−1,

h3 = r sin θ4 sin θ5 · · · sin θD−1,

...

hj = r sin θj+1 sin θj+2 · · · sin θD−1,

...

hD−2 = r sin θD−1,

hD−1 = r,

h = rD−1 sin θ2 sin2 θ3 sin3 θ4 · · · sinj−1 θj · · · sinD−2 θD−1,

(3.18)

for D ≥ 3; h0 = 1, h1 = r when D = 2. By substituting these results into Eq. (3.16),
we are able to obtain the following polar coordinate form for the D-dimensional
Laplacian

∇2
D = 1

rD−1

∂

∂r

(
rD−1 ∂

∂r

)

+ 1

r2

D−2∑

j=1

1

sin2 θj+1 sin2 θj+2 · · · sin2 θD−1

×
{

1

sinj−1 θj

(
∂

∂θj
sinj−1 θj

∂

∂θj

)}

+ 1

r2

{
1

sinD−1 θD−1

(
∂

∂θD−1
sinD−2 θD−1

∂

∂θD−1

)}
. (3.19)

The volume element of the configuration space is calculated as
D∏

a=1

dxa = rD−1 dr d�, d� =
D−1∏

a=1

(sin θa)
a−1dθa, (3.20)

where r ∈ [0,∞), θ1 ∈ [−π,π], and θb ∈ [0,π], b ∈ [2,D − 1]. The orbital angular
momentum operators Lab are the generators of the transformation operators OR for
the scalar function, R ∈ SO(D), defined as

Lab = −ixa
∂

∂xb
+ ixb

∂

∂xa

= i

(
xb

∂

∂xa
− xa

∂

∂xb

)

= i[xb∂a − xa∂b], (3.21)

where ∂a = ∂/∂xa .
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It should be noted that there exists a set of commutable angular momentum op-
erators

L2
1 = L2

12 = − ∂2

∂θ2
1

,

L2
2 = −

{
1

sin θ2

∂

∂θ2

(
sin θ2

∂

∂θ2

)
− L2

1

sin2 θ2

}
,

...

L2
j =

j+1∑

a<b=2

L2
ab = −

{
1

sinj−1 θj

∂

∂θj

(
sinj−1 θj

∂

∂θj

)
− L2

j−1

sin2 θj

}
,

...

L2
D−1 = −

{
1

sinD−2 θD−1

∂

∂θD−1

(
sinD−2 θD−1

∂

∂θD−1

)
− L2

D−2

sin2 θD−1

}
,

j ∈ [2,D − 1], L2 ≡ L2
D−1,

(3.22)

where the atomic unit � = 1 is used. The first two operators are recognized as the
ordinary orbital angular momentum operators L2

z and L2 for the three-dimensional
case where θ1 = ϕ and θ2 = θ . It is interesting to note that the generalized orbital
angular momentum operators are independent of the dimensionality of space in the
sense that we obtain the same expression for L2

j independently of whether it is
calculated in a (j + 1)−, (j + 2)−, (j + 3)−, . . ., dimensional space.

Now, the Laplacian may be written as

∇2
D = 1

rD−1

∂

∂r

(
rD−1 ∂

∂r

)
− L2

D−1

r2
. (3.23)

As what follows, we are going to show more properties about the generalized
angular momentum operators Lab . Let us first calculate the following commutation
relations:

[Lab,Lcd ] = i2[(xb∂a − xa∂b), (xd∂c − xc∂d)]
= i2[xb∂axd∂c − xb∂axc∂d + xa∂bxc∂d − xa∂bxd∂c

− xd∂cxb∂a + xd∂cxa∂b + xc∂dxb∂a − xc∂dxa∂b]
= i2[xbδad∂c + xbxd∂a∂c − xbδac∂d − xbxc∂a∂d

− xaδbd∂c − xaxd∂b∂c + xaδbc∂d + xaxc∂b∂d

− xdδcb∂a − xdxb∂c∂a + xdδca∂b + xdxa∂c∂b

+ xcδdb∂a + xcxb∂d∂a − xcδda∂b − xcxa∂d∂b]. (3.24)

Since [xa, xb] = [∂a, ∂b] = 0, the terms of the form xaxb∂a∂b cancel pairwise. More-
over, from the property of the Kronecker delta δab = δba we have

[Lab,Lcd ] = i2[δad(xb∂c − xc∂b) − δac(xb∂d − xd∂b)

− δbd(xa∂c − xc∂a) + δbc(xa∂d − xd∂a)]. (3.25)
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With the help of the angular momentum relation Li ×Lj = εijkLk , where the Levi-
Civita symbol εijk is defined as

εijk =
⎧
⎨

⎩

1, for (ijk) an even permutation of (123),

−1, for (ijk) an odd permutation,

0, otherwise,

(3.26)

we get

[Lab,Lcd ] = i[δadLcb − δacLdb − δbdLca + δbcLda]. (3.27)

By using the antisymmetry of the operators Lab = −Lba , we obtain the standard
form

[Lab,Lcd ] = i[δacLbd + δbdLac − δadLbc − δbcLad ]. (3.28)

This means that the orbital angular momentum operators Lab satisfy the same com-
mutation relations as Eq. (2.14) for the generators Tab in the self-representation of
the group SO(D). What will we do next step is the calculation of the Casimir oper-
ator, which commutes with all group elements Lab .

Define the Casimir operator as the sum over all squares of the group elements

C2 = 1

2

D∑

a,b

(Lab)
2 = 1

2
δacδbdLabLcd . (3.29)

Thus, we may calculate the following commutation relation

[C2,Lfg] = 1

2
δacδbd [LabLcd,Lfg]

= 1

2
δacδbd(LabLcdLfg − LfgLabLcd)

= 1

2
δacδbd{Lab[Lcd,Lfg] + [Lab,Lfg]Lcd}. (3.30)

By inserting the commutation relation (3.28), one gets

[C2,Lfg] = i

2
δacδbd

{
Lab(δcf Ldg + δdgLcf − δcgLdf − δdf Lcg)

+ (δaf Lbg + δbgLaf − δagLbf − δbf Lag)Lcd

}

= i

2

{
Lab(δ

a
f δ

bdLdg + δacδbgLcf − δagδ
bdLdf − δacδbf Lcg)

+ (δcf δ
bdLbg + δacδdgLaf − δcgδ

bdLbf − δacδdf )Lcd

}

= 0. (3.31)

This implies that the Casimir operator commutes with all group elements Lab .
Let us calculate the eigenvalue of the Casimir operator C2 in algebraic way. As

we know, the Casimir operator C2 can also be written explicitly as
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C2 = 1

2
LabLab

= −1

2
(xb∂a − xa∂b)(xb∂a − xa∂b)

= −1

2
(xb∂axb∂a − xb∂axa∂b − xa∂bxb∂a + xa∂bxa∂b)

= −1

2
(xbδab∂a + xbxb∂

a∂a − xbδaa∂b − xbxa∂
a∂b

− xaδbb∂a − xaxb∂
b∂a + xaδba∂b + xaxa∂

b∂b)

= −(xa∂a + xbxb∂
a∂a − Dxa∂a − xbxa∂a∂b). (3.32)

If we define the Euler operator as

J =
D∑

i=1

xi ∂

∂xi
= xa∂a, (3.33)

then we have

J 2 = xa∂ax
b∂b

= xaδa
b∂b + xaxb∂a∂b

= J + xaxb∂a∂b. (3.34)

As a result, we may rewrite Eq. (3.32) as

C2 = −[J + xbxb∂a∂a − DJ − J (J − 1)]
= −[xbxb∂a∂a − J (J + D − 2)]. (3.35)

If we define a Hilbert space f (r) as the space of all homogeneous polynomials
of degree l satisfying the Laplacian, the eigenvalue of the Casimir operator C2 is
calculated as

C2f (r) = l(l + D − 2)f (r). (3.36)

This result can also be obtained by the one-row Young pattern as shown in Sect. 6.

4 The Linear Momentum Operators

Let us first examine the linear momentum operator (� = 1)

pk = −i
∂

∂xk
. (3.37)

According to the polar coordinates, we have

∂

∂xk
=

D−1∑

j=0

∂θj

∂xk

∂

∂θj
. (3.38)
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It is known that the calculations of the first derivatives ∂θj /∂xk are very difficult
since we would need the inverse transformation of Eqs. (3.14). However, it follows
from the transformation equations and the orthogonality of our coordinate system
that

D−1∑

i=0

∂θi

∂xk

∂xl

∂θi
= δlk,

D−1∑

l=0

∂xl

∂θi

∂xl

∂θj
= δijh

2
i , (3.39)

respectively. On multiplying the second equation by ∂θi/∂xk and summing over i,
we obtain

∂θj

∂xk
= 1

h2
j

∂xk

∂θj
. (3.40)

Thus, we find

pk = −i

D−1∑

j=0

(
1

h2
j

∂xk

∂θj

)
∂

∂θj
. (3.41)

Explicitly, we may obtain

pD = −i

{
cos θD−1

∂

∂r
− sin θD−1

r

∂

∂θD−1

}
, D = 3,4,5, . . . . (3.42)

5 Radial Momentum Operator

Let us study the radial momentum operator [170]

pr = − i

2
[∇ · (r̂ · · ·) + r̂ · ∇], (3.43)

where the notation ∇ · (r̂ · · ·) indicates that ∇ differentiates r̂ and everything on its
right.1 On basis of the following identity

1As an illustration, we present it in three-dimensional case. The unit vectors in spherical polar
coordinates are given by

r̂ =�i sin θ cosϕ + �j sin θ sinϕ + �k cos θ, (3.44)

and

∂

∂x
= sin θ cosϕ

∂

∂r
+ cos θ cosϕ

∂

∂θ
− sinϕ

r sin θ

∂

∂ϕ
,

∂

∂y
= sin θ sinϕ

∂

∂r
+ cos θ sinϕ

∂

∂θ
+ cosϕ

r sin θ

∂

∂ϕ
,

∂

∂z
= cos θ

∂

∂r
− sin θ

1

r

∂

∂ϕ
.

(3.45)
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∇(r̂�) = r̂ · ∇� + �∇ · r̂, (3.47)

we have

pr = − i

2
[∇ · r̂ + 2r̂ · ∇], (3.48)

where

r̂ = r
r

=
∑D

a=1 xa x̂a√∑D
a=1(xa)

2
. (3.49)

First, we calculate

∇ · r̂ =
D∑

a=1

∂

∂xa

(
xa

r

)

=
D∑

a=1

[
1

r
−

(
1

r2

)
xa

∂r

∂xa

]

= D

r
− 1

r2

D∑

a=1

xa
∂r

∂xa
. (3.50)

From Eq. (3.15), we have

∂r

∂xa
= xa

r
. (3.51)

Thus, Eq. (3.50) is simplified to

∇ · r̂ = D − 1

r
. (3.52)

By definition ∂/∂r = r̂ · ∇ , we might express the radial momentum operator in D

dimensions as

pr = −i

(
∂

∂r
+ D − 1

2r

)
. (3.53)

If we take into the following identity account
[

∂

∂r
,
D − 1

2r

]
= −D − 1

2r2
, (3.54)

then we have

p2
r = −

{
∂2

∂r2
+ D − 1

r

∂

∂r
+ (D − 1)(D − 3)

4r2

}
. (3.55)

If we take ψ(r, θ,ϕ) = R(r)�(θ)�(ϕ), then we have

∇ · r̂ψ(r, θ,ϕ) =
(

∂

∂r
+ 2

r

)
ψ(r, θ,ϕ),

r̂ · ∇ψ(r, θ,ϕ) = ∂

∂r
ψ(r, θ,ϕ).

(3.46)
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6 Spherical Harmonic Polynomials

The Chevalley bases Hν(L),Eν(L), and Fν(L) can be obtained from (2.18) and
(2.24) through replacing Tab by Lab . Since

Labxd =
D∑

i=1

xi(Tab)id , ORθd =
D∑

i=1

θiRid, (3.56)

then we may obtain the common eigenfunctions Xβ of Hν(L) in terms of φβ given
in Eq. (2.19) for the SO(2l + 1) and in Eq. (2.25) for the SO(2l) through replacing
the basis vector θa by the rectangular coordinate xa .

The spherical harmonics Y
[λ]
m (x̂) are the eigenfunctions of the orbital angular

momentum operators Hν(L) for a single particle,

Hν(L)Y [λ]
m (x̂) = mνY

[λ]
m (x̂), L2Y [λ]

m (x̂) = C2([λ])Y [λ]
m (x̂), (3.57)

where C2([λ]) is the second-order invariant Casimir operator. For an irreducible
tensor representation of the SO(D), the C2([λ]) or C2([±λ]) can be worked out

C2([λ]) =
l∑

i=1

λi(λi + D − 2i), D = 2l + 1 or 2l. (3.58)

Since there is only one coordinate vector x, the representation [λ] for the spher-
ical harmonics Y

[λ]
m (x̂) must be the totally symmetric representation denoted by the

one-row Young pattern [λ] = [λ,0, . . . ,0]. C2([λ] = [λ,0, . . . ,0]) = λ(λ + D − 2)
for the SO(D).

Generally, the highest weight state Y
[λ]
M (x̂) with [λ] = [λ,0, . . . ,0] and M =

[λ,0, . . . ,0] is expressed by

Y
[λ]
M (x̂) = CD,λr

−λ

{
(−1)s(x1 + ix2)√

2

}λ

,

CD,λ =
{ [ (2l+2λ−1)!

2(2l+λ)πlλ!(λ+l−1)! ]1/2, when D = 2l + 1,

[ (λ+l−1)!
2(1−λ)πlλ! ]1/2, when D = 2l,

(3.59)

where CD,λ is the normalization factor and the s is defined as

s =
{
l, D = 2l + 1,

l − 1, D = 2l.
(3.60)

The remaining spherical harmonics Y
[λ]
m (x̂) with the weight m can be calculated by

the lowering operators Fν(L).
In fact, rlY

[λ]
m (x̂) is a homogeneous polynomial of order λ with respect to the

Cartesian coordinates xa and satisfies the Laplace equation

�2[rλY [λ]
m (x̂)] = 0, �2 =

D∑

a=1

∂2

∂x2
a

. (3.61)
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For a given angular momentum l, the degeneracy of the eigenfunctions of L2 is
calculated as

dl(D) = (D + 2l − 2)(D + l − 3)!
l!(D − 2)! . (3.62)

7 Schrödinger Equation for a Two-Body System

An isolated two-body quantum system keeps invariant in the translation of space-
time and the spatial rotation. After separating the motion of the center-of-mass,
there is only one Jacobi coordinate vector for a two-body system in D dimensions,
denoted by R1 ≡ x for simplicity. Note that a factor of the square root of mass has
been included in R1. The eigenfunction of angular momentum has to be proportional
to the spherical harmonics Y

[λ]
m (x̂), where [λ] = [λ,0, . . . ,0] is a one-row Young

pattern

ψ [λ]
m (x) = φ[λ](r)Y [λ]

m (x̂) = φ[λ](r)
rλ

Y [λ]
m (x), x̂ = x

x
, (3.63)

where φ[λ](r) is the radial function. Since the quantum system is spherically sym-
metric, we can study the wavefunction with the highest weight M. The calculation
can be simplified by using the harmonic polynomials

∇2[φ[λ](r)Y [λ]
M (x̂)] = ∇2

[
φ[λ](r)

rλ
Y

[λ]
M (x)

]

= Y
[λ]
M (x)∇2

[
φ[λ](r)

rλ

]
+ 2∇x

[
φ[λ](r)

rλ

]
· ∇Y

[λ]
M (x)

= Y
[λ]
M (x)

{
r1−D d

dr
rD−1 d

dr

[
φ[λ](r)

rλ

]}

+ 2
d

dr

[
φ[λ](r)

rλ

][
x
r

· ∇Y
[λ]
M (x)

]

= Y
[λ]
M (x̂)

{
d2

dr2
φ[λ](r) + D − 2λ − 1

r

d

dr
φ[λ](r)

− λ(D − λ − 2)

r2
φ[λ](r)

}

+ 2

{
−λ

r
φ[λ](r) + d

dr
φ[λ](r)

}
λ

r
Y

[λ]
M (x̂)

= Y
[λ]
M (x̂)

{
d2

dr2
φ[λ](r) + D − 1

r

d

dr
φ[λ](r)

− λ(D + λ − 2)

r2
φ[λ](r)

}
. (3.64)
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Substituting ψ
[λ]
M (x) into the Schrödinger equation in the coordinate system of

the center-of-mass (� = m = 1)

−1

2
∇2ψ

[λ]
M (x) + V (r)ψ

[λ]
M (x) = Eψ

[λ]
M (x), (3.65)

we obtain the following radial equation

−1

2

{
d2

dr2
+ D − 1

r

d

dr
− λ(D + λ − 2)

r2

}
φ[λ](r) = [E − V (r)]φ[λ](r). (3.66)

On the other hand, if we take the wavefunction of the form

ψ
[λ]
M (x) = r−D−1

2 φ[λ](r)Y [λ]
M (x̂), (3.67)

then substituting this into (3.65) allows us to obtain

−1

2

{
d2

dr2
− λ(D + λ − 2) + (D − 1)(D − 3)/4

r2

}
φ[λ](r)

= [E − V (r)]φ[λ](r). (3.68)

Let us turn to physical quantum systems. For a given angular momentum l, the
wavefunction ψl

lD−2...l1
(x) can be now decomposed as a product of the radial func-

tion Rl(r) and the generalized spherical harmonics Y l
lD−2...l1

(x̂)

ψl
lD−2...l1

(x) = r−D−1
2 Rl(r)Y

l
lD−2...l1

(x̂). (3.69)

Substitution of Eq. (3.69) into Eq. (3.66) leads to D-dimensional radial Schrödinger
equation:

d2

dr2
Rl(r) − l(l + D − 2) + (D − 1)(D − 3)/4

r2
Rl(r)

+ 2[E − V (r)]Rl(r) = 0. (3.70)

8 Concluding Remarks

It is known that an isolated two-body quantum system keeps invariant in the transla-
tion of space-time and the spatial rotation in D-dimensional space. Such a quantum
system possesses an SO(D) symmetry. The ration operator, orbital angular momen-
tum operators, linear momentum operator, radial momentum operator and gener-
alized spherical harmonic polynomials are constructed. The Schrödinger equation
with central potentials has been studied in D-dimensional space.



Chapter 4
Dirac Equation in Higher Dimensions

1 Introduction

It is well known that the exact solutions of quantum systems in real three-
dimensional space play an important role in physics. As mentioned above, a number
of works have been contributed to the Schrödinger equation case. On the contrary,
the studies of the Dirac equation in higher dimensions are less than those of the
Schrödinger equation case except for the works in usual three- [171–176], two-
[177] and one-dimensional [178] space.

This Chapter is organized as follows. In Sect. 2 we show how to generalize the
Dirac equation to (D+1) space-time and discuss the conserved angular momentum
operators and their quantum numbers [91]. In Sect. 3 we calculate the eigenfunctions
of the total angular momentums for both odd (2N + 1) and even 2N cases in terms
of the technique of group theory and present the radial equations. In Sect. 4 we
shall deal with the hydrogen-like atoms by the series method. The exact solutions
are expressed by the confluent hypergeometric functions. The eigenvalues as well
as their fine structure energy are also studied. Finally we summarize this Chapter in
Sect. 5.

2 Dirac Equation in (D + 1) Dimensions

The Dirac equation (� = c = 1) in (D + 1) dimensions can be expressed as [179]

i

D∑

μ=0

γμ(∂μ + ieAμ)�(x, t) = M�(x, t), (4.1)

where M is the mass of the particle, and (D + 1) matrices γμ satisfy the anticom-
mutation relation (2.42).

Discuss the special case where only the zero component of Aμ is non-vanishing
and spherically symmetric:

eA0 = V (r), Aa = 0, when a �= 0. (4.2)
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The Hamiltonian H(x) of the system is expressed as

i∂0�(x, t) = H(x)�(x, t),

H(x) =
D∑

j=1

γ0γjpj + V (r) + γ0M,

pj = −i∂j = −i
∂

∂xj
, j ∈ [1,D].

(4.3)

The orbital angular momentum operators Lab , the spinor operators Sab , and the
total angular momentum operators Jab are defined as follows:

Lab = −Lba = ixa∂b − ixb∂a, Sab = −Sba = i

2
γaγb,

Jab = Lab + Sab, 1 ≤ a < b ≤ D,

J 2 =
D∑

a<b=2

J 2
ab, L2 =

D∑

a<b=2

L2
ab, S2 =

D∑

a<b=2

S2
ab.

(4.4)

The eigenvalue of J 2 (L2 or S2) is denoted by the Casimir operator C2(M) to be
determined, where M is the highest weight of the representation to which the total
(orbital or spinor) wavefunction belongs. We will discuss the Casimir operator in
next section. It is easy to show by the standard method [179] that Jab and κ commute
with the Hamiltonian H(x),

κ = γ0

{∑

a<b

iγaγbLab + (D − 1)/2

}

= γ0{J 2 − L2 − S2 + (D − 1)/2}. (4.5)

3 The Radial Equations

As we know, for spherically symmetric potential V (r) the symmetry group of the
system is SO(D) group. To derive the Dirac equation in higher dimensions, we also
need the hyperspherical coordinates in the real D-dimensional space (3.14). It is
known in Chap. 2 that the Lie algebras of the SO(2N + 1) group and the SO(2N)

group are BN and DN , respectively, and the Chevalley bases of the SO(2N) in the
self-representation are the same as those of the SO(2N + 1) except for ν = N =
l as displayed in Eqs. (2.19) and (2.25) [139, 140, 180, 181]. We do not repeat
them for simplicity. The operator Jab can be replaced by Lab or Sab depending on
the studied wavefunction. Hν(J ) span the Cartan subalgebra, and their eigenvalues
for an eigenstate |m〉 in a given irreducible representation are the components of a
weight vector m = (m1, . . . ,mn):

Hν(J )|m〉 = mν |m〉, ν ∈ [1,N]. (4.6)

If the eigenstates |m〉 for a given weight m are degeneracy, this weight is called a
multiple weight, otherwise a simple one. Eν are called the raising operators and Fν
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the lowering ones. For an irreducible representation there is a highest weight M,
which is a simple weight and can be used to describe the irreducible representation.
Usually, the irreducible representation is also called the highest weight represen-
tation and directly denoted by M. The Casimir C2(M) can be calculated by the
formula as follows [182]:

C2(M) = M · (M + 2ρ) =
N∑

μ,ν=1

Mμdμ(A
−1)μν(Mν + 2), (4.7)

where ρ is the half sum of the positive roots in the Lie algebra, A−1 is the inverse
of the Cartan matrix, and dμ are the half square lengths of the simple roots.

As shown above, we have known that the orbital wavefunction in D-dimensional
space is usually expressed by the spherical harmonic Y

[λ]
m (x̂), which belongs to the

weight m of the highest weight representation [λ] ≡ [λ,0, . . . ,0]. For the highest
weight state Y

[λ]
M (x̂) where M = [λ], we have obtained it as Eq. (3.59). Its partners

Y
[λ]
m (x̂) can be calculated from Y

[λ]
M (x̂) by lowering operators Fν(L). The Casimir

for the spherical harmonic Y
[λ]
m (x̂) is calculated by Eq. (4.7) as

L2Y [λ]
m (x̂) = C2([λ])Y [λ]

m (x̂), C2([λ]) = λ(λ + D − 2). (4.8)

Since the spinor wavefunctions as well as those for the total angular momentum are
different for D = 2N + 1 and D = 2N , we are going to study them separately.

3.1 The SO(2N + 1) Case

For D = 2N + 1 we define

γ0 = σ3 × 1, γa = (iσ2) × βa, a ∈ [1,2N + 1], (4.9)

where σa is the Pauli matrix, 1 denotes the 2N -dimensional unit matrix, and
(2N + 1) matrices βa satisfy the anticommutation relations [183]

βaβb + βbβa = 2δab1, a, b = 1,2, . . . , (2N + 1), (4.10)

which are the same as those γa given in Eq. (2.42). The dimension of βa matrices is
2l . Thus, the spinor operator Sab becomes a block matrix

Sab = 1 × Sab, Sab = − i

2
βaβb. (4.11)

The relation between Sab and Sab is similar to that between the spinor operators for
the Dirac spinors and for the Pauli spinors. The operator κ becomes

κ = σ3 × κ, κ = −i
∑

a<b

βaβbLab + D − 1

2
. (4.12)

The fundamental spinor ξ(m) belongs to the fundamental spinor representation
[s] ≡ [0, . . . ,0,1]. From Eq. (4.7) the Casimir for the representation [s] is calcu-
lated as C2([s]) = (2N2 + N)/4.



54 4 Dirac Equation in Higher Dimensions

The product of Y
[λ]
m (x̂) and ξ(m′) belongs to the direct product of two represen-

tations [λ] and [s], which is a reducible representation:

[λ] × [s] 	 [λ,0, . . . ,0,1] ⊕ [λ − 1,0, . . . ,0,1]. (4.13)

Besides, in order to construct a wavefunction belonging to the representation
[j ] ≡ [λ,0, . . . ,0,1] there are two different ways: the combination of Y [λ]

m (x̂)ξ(m′)
and that of Y [λ+1]

m (x̂)ξ(m′). They are different in eigenvalues of κ . Since the system
is spherically symmetric, we only need to calculate the highest weight state for the
representation [j ] in terms of the CGCs

φ|K|,[j ](x̂) = Y
[λ]
[λ] (x̂)ξ([s]) = ND,λr

−λ(x1 + ix2)λξ([s]),
|K| = C2([j ]) − C2([λ]) − C2([s]) + N = λ + N.

(4.14)

φ−|K|,[j ](x̂) =
∑

m

Y [λ+1]
m (x̂)ξ([j ] − m)

× 〈[λ + 1],m, [s], [j ] − m|[j ], [j ]〉
= N2N+1,λr

−λ−1(x1 + ix2)λ{x2N+1ξ([s])
+ (x2N−1 + ix2N)ξ([0, . . . ,0,1,1])
+ (x2N−3 + ix2N−2)ξ([0, . . . ,0,1,1,1]) + · · ·
+ (x3 + ix4)ξ([1,1,0, . . . ,0,1])
+ (x1 + ix2)ξ([1,0, . . . ,0,1])},

−|K| = C2([j ]) − C2([λ + 1]) − C2([s]) + N = −λ − N.

(4.15)

The wavefunction �K,[j ](x) of the total angular momentum belonging to the
irreducible representation [j ] can be expressed as the wave function �K,[j ](x) of
the total angular momentum belonging to the irreducible representation [j ] can be
expressed as

�K,[j ](x, t) = r−Ne−iEt

(
F(r)φK,[j ](x̂)

iG(r)φ−K,[j ](x̂)

)
,

H1(J )�K,[j ](x) = l�K,[j ](x),

HN(J )�K,[j ](x) = �K,[j ](x),

Hν(J )�K,[j ](x) = 0, ν ∈ [2,N − 1],
κ�K,[j ](x) = K�K,[j ](x), K = ±(l + N).

(4.16)

Their partners can be calculated by the lowering operators Fν .
The radial equation depends on the explicit forms of βa (γa) matrices. Therefore,

by considering two introduced operators

β · x̂ = 1

r

2N+1∑

i=1

βixi, β · ∇ =
2N+1∑

i=1

βi

∂

∂xi
, (4.17)
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we obtain

( �β · x̂)φK,[j ](x̂) = 1

r

2N+1∑

a=1

βax
aφK,[j ](x̂) = φ−K,[j ](x̂),

( �β · �p) 1

rN
φK,[j ](x̂) =

2N+1∑

a=1

βapa

1

rN
φK,[j ](x̂) = iK

1

rN+1
φ−K,[j ](x̂).

(4.18)

Substituting �K,[j ](x) into the Dirac equation (4.3) allows us to obtain the radial
equations

dG(r)

dr
+ K

r
G(r) = [E − V (r) − M]F(r),

−dF(r)

dr
+ K

r
F(r) = [E − V (r) + M]G(r).

(4.19)

3.2 The SO(2N) Case

As is well known, the spinor representation of the SO(2N) group is reducible and
can be reduced to two non-equivalent fundamental spinor representations [+s] ≡
[1,0, . . . ,0,1] and [−s] ≡ [1,0, . . . ,0,1,0]. From Eq. (4.7) the Casimir for both
spinor representations are calculated as C2([±s]) = (2N2 − N)/4. In terms of the
βa matrices, we define the γμ matrices for N = 2l:

γ0 = β2N+1, γa = β2N+1βa, a ∈ [1,2N ]. (4.20)

γ0 is a diagonal matrix where half of the diagonal elements are equal to +1 and the
remaining to −1. Because the spinor operator Sab and the operator κ commutes with
γ0, each of them becomes a direct sum of two matrices, referring to the rows with
the eigenvalues +1 and −1 of the γ0, respectively. The fundamental spinors ξ±(m)

belong to the fundamental spinor representations [+s] and [−s], respectively, and
satisfy

γ0ξ±(m) = ±ξ±(m). (4.21)

The product of Y
[λ]
m (x̂) and ξ±(m′) belongs to the direct product of two repre-

sentation [λ] and [±s], which is a reducible representation:

[λ] × [+s] 	 [λ,0, . . . ,0,1] ⊕ [λ − 1,0, . . . ,0,1,0],
[λ] × [−s] 	 [λ,0, . . . ,0,1,0] ⊕ [λ − 1,0, . . . ,0,1]. (4.22)

There are two kinds of representations for the total angular momentum: the rep-
resentation [j1] ≡ [λ,0, . . . ,0,1] and the representation [j2] ≡ [λ,0, . . . ,0,1,0].
Their Casimirs are the same:

C2([j1]) = C2([j2]) = λ(λ + 2N − 1) + 2N2 − N

4
. (4.23)

There are two different ways to construct wavefunction belonging to the repre-
sentation [j1]: the combination of Y [λ]

m (x̂)ξ+(m′) and that of Y [λ+1]
m (x̂)ξ−(m′). Due
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to the spherical symmetry, we only calculate the highest weight state for the repre-
sentation [j1] by the CGCs:

φK,[j1](x̂) = Y
[λ]
[λ] (x̂)ξ+([+s]) = N2N,λr

−λ(x1 + ix2)λξ+([+s]),
φ−K,[j1](x̂) =

∑

m

Y [λ+1]
m (x̂)ξ−([j1] − m)

× 〈[λ + 1],m, [+s], [j1] − m|[j1], [j1]〉
= N2N,λr

−λ−1(x1 + ix2)λ{x2N−1 + ix2Nξ−([−s])
+ (x2N−3 + ix2N−2)ξ−([0, . . . ,0,1,1,0])
+ (x2N−5 + ix2N−4)ξ−([0, . . . ,0,1,1,0,1]) + · · ·
+ (x3 + ix4)ξ−([1,1,0, . . . ,0,1])
+ (x1 + ix2)ξ−([1,0, . . . ,0,1])},

K = C2([j1]) − C2([λ + 1]) − C2([+s]) + N − 1

2

= λ + N − 1

2
.

(4.24)

For the representation [j2] ≡ [λ,0, . . . ,0,1,0], we have

φK,[j2](x̂) =
∑

m

Y [λ+1]
m (x̂)ξ+([j2] − m)

× 〈[λ + 1],m, [−s], [j2] − m|[j2], [j2]〉
= N2N,λr

−λ−1(x1 + ix2)l{x2N−1 − ix2Nξ([+s])
+ (x2N−3 + ix2N−2)ξ+([0, . . . ,0,1,0,1])
+ (x2N−5 + ix2N−4)ξ+([0, . . . ,0,1,1,1,0]) + · · ·
+ (x3 + ix4)ξ+([1,1,0, . . . ,0,1,0])
+ (x1 + ix2)ξ+([1,0, . . . ,0,1,0])},

φ−K,[j2](x̂) = Y
[λ]
[λ] (x̂)ξ−([−s]) = ND,λr

−λ(x1 + ix2)λξ−([−s]),

K = C2([j2]) − C2([λ + 1]) − C2([+s]) + N − 1

2

= −λ − N + 1

2
.

(4.25)

In terms of the explicit forms of βa we obtain

( �β · x̂)φK,[jω](x̂) = 1

r

2N∑

a=1

βax
aφK,[jω](x̂) = φ−K,[jω](x̂),

( �β · �p)r−N+1/2φK,[jω](x̂) =
2N∑

a=1

βapar
−N+1/2φK,[jω](x̂)

= iKr−N−1/2φ−K,[jω](x̂),
ω = 1 or 2.

(4.26)
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The wavefunction �K,[jω](x) of the total angular momentum belonging to the
irreducible representation [jω] can be expressed as

�|K|,[j1](x, t) = r−N+1/2e−iEt {F(r)φ|K|,[j1](x̂) + iG(r)φ−|K|,[j1](x̂)},
�−|K|,[j2](x, t) = r−N+1/2e−iEt {F(r)φ−|K|,[j2](x̂) + iG(r)φ|K|,[j2](x̂)},
κ�K,[jω](x) = K�K,[jω](x), |K| = λ + N − 1/2, ω = 1 or 2,

H1(J )�K,[jω](x) = λ�K,[j1](x),

HN−1(J )�K,[j1](x) = 0, HN(J )�K,[j1](x) = �K,[j1](x),

HN−1(J )�K,[j2](x) = �K,[j2](x), HN(J )�K,[j2](x) = 0,

Hν(J )�K,[jω](x) = 0, ν ∈ [2,N − 2].

(4.27)

Their partners can be calculated by the lowering operators Fν .
By substituting �K,[jω](x) into the Dirac equation (4.3), we obtain the radial

equations

d

dr
G(r) + K

r
G(r) = (E − V (r) − M)F(r),

− d

dr
F (r) + K

r
F(r) = (E − V (r) + M)G(r),

(4.28)

which are the same as those in D = 2N + 1 case.

4 Application to Hydrogen Atom

Although the wavefunctions and the eigenvalues K are different for the cases D =
2N + 1 and D = 2N , the radial equations are unified as

d

dr
GKE(r) + K

r
GKE(r) = [E − V (r) − M]FKE(r),

− d

dr
FKE(r) + K

r
FKE(r) = [E − V (r) + M]GKE(r),

K = ±1

2
(2l + D − 1).

(4.29)

For definiteness we discuss the attractive Coulomb potential

V (r) = −ξ

r
, ξ = Zα > 0, (4.30)

where and later α = 1/137 is the fine structure constant. It is easy to see that the so-
lution for the repulsive potential can be obtained from that for the attractive potential
by interchanging

FKE ←→ G−K−E, V (r) ←→ −V (r). (4.31)

From the Sturm-Liouville theorem [184], there are bound states with the energy less
than and near M for the attractive Coulomb potential and with the energy larger than
and near −M for the repulsive potential, if the interaction is not too strong.
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For convenience, we introduce a new variable ρ in Eq. (4.29) for bound states:

ρ = 2r
√
M2 − E2, E/M ∈ (0,1]. (4.32)

Solving F(ρ) from Eq. (4.29),

FKE(ρ) =
(

−1

2

√
M − E

M + E
+ ξ

ρ

)−1[
d

dρ
GKE(ρ) + K

ρ
GKE(ρ)

]
, (4.33)

we obtain a second-order differential equation of GKE(ρ):

d2

dρ2
GKE(ρ) +

{
−1

4
− K2 − ξ2 + K

ρ2
+ Eξ

ρ
√
M2 − E2

}
GKE(ρ)

+
{
ρ − ρ2

2ξ

√
M − E

M + E

}−1[
d

dρ
GKE(ρ) + K

ρ
GKE(ρ)

]
= 0. (4.34)

From the behavior of GKE(ρ) at the origin and at infinity, define

GKE(ρ) = ρλe−ρ/2R(ρ), λ =
√
K2 − ξ2 > 0,

ω = 1

2ξ

√
M − E

M + E
, τ = Eξ√

M2 − E2
.

(4.35)

Substitution of them into Eq. (4.34) leads to

(ρ − ωρ2)
d2

dρ2
R(ρ) + [ωρ2 − (2λω + 1)ρ + 2λ + 1] d

dρ
R(ρ)

+ [ω(λ − τ)ρ + ω(K + λ) + τ − λ − 1/2]R(ρ) = 0. (4.36)

Equation (4.36) can be solved by the power series expansion method, which was
used in [175, 176] for (3 + 1) dimensions. The results are calculated as

FKE(ρ)

GKE(ρ)

}
= (M2 − E2)1/4

�(2λ + 1)

√
(M ± E)E�(n′ + 2λ + 1)

2M2τ(j + τM/E)n′!
× ρλe−ρ/2{(K + τM/E)1F1(−n′;2λ + 1;ρ)
∓ n′

1F1(1 − n′;2λ + 1;ρ)}
×

∫ ∞

0
(|FKE(ρ)|2 + |GKE(ρ)|2)dr = 1, (4.37)

n′ = τ − λ = 0,1,2, . . . . (4.38)

When n′ = 0, K has to be positive. Introduce a principal quantum number

n = |K| − (D − 3)/2 + n′ = |K| − (D − 3)/2 + τ − λ = 1,2, . . . . (4.39)

The n can be equal to 1 only for K = (D − 1)/2 and equal to other positive integers
for both signs of K . The energy E can be calculated as

E = M

{
1 + ξ2

(
√
K2 − ξ2 + n − |K| + (D − 3)/2)2

}−1/2

. (4.40)
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Expanding Eq. (4.40) in powers of ξ2, we have

E 	 M

{
1 − ξ2

2[n + (D − 3)/2]2
− ξ4

2[n + (D − 3)/2]4

×
(
n + (D − 3)/2

|K| − 3

4

)}
, (4.41)

where the first term on the right hand side is the rest energy M (c2 = 1), the second
one coincides with the energy from the solutions of the Schrödinger equation, and
the third one is the fine structure energy, which removes the degeneracy between
the states with the same n.

5 Concluding Remarks

In this Chapter we have generalized the Dirac equation to (D + 1)-dimensional
space-time. The conserved angular momentum operators and their quantum num-
bers are discussed. The eigenfunctions of the total angular momentums are calcu-
lated for both odd D = 2N + 1 and even D = 2N cases, respectively. The unified
radial equations for a spherically symmetric system are obtained. As an illustration,
we have dealt with Coulomb potential problem by the series approach. The exact
solutions are expressed by the confluent hypergeometric functions. The eigenvalues
as well as their fine structure energy have also been studied.



Chapter 5
Klein-Gordon Equation in Higher Dimensions

1 Introduction

It is known that the exact solutions of non-relativistic and relativistic equations in the
spherically central fields have become an important subject in quantum mechanics.
As illustrated above, the main contributions have been made to the Schrödinger
and Dirac equations. During the past several decades, however, the Klein-Gordon
equation with the Coulomb potential has been studied in three dimensions such as
the operator analysis [185], in an intense laser field [186], in two dimensions [187]
and in one dimension [188–191]. On the other hand, the Klein-Gordon equation
with a Coulomb potential in (D+1) dimensions has been discussed by the different
approaches like the large-N expansion approximate method [93]. The purpose of
this Chapter is to present the Klein-Gordon equation in arbitrary dimensions and
solve the hydrogen-like atom problem.

2 The Radial Equations

For a particle moving in a spherically symmetric potential V (r), the symmetric
group of the quantum system is the SO(D) group. The time-independent Klein-
Gordon equation (� = c = 1) is written as

(−�2 + M2)�(r) = [E − V (r)]2�(r), (5.1)

where M and E denote the mass and the energy of the particle, respectively. As
shown in Eq. (3.69), we take wavefunction as

�(r) = r−D−1
2 Rl(r)Y

l
lD−2...l1

(x̂). (5.2)

Substitution of this into Eq. (5.1) allows us to obtain the D-dimensional radial
Klein-Gordon equation

(
d2

dr2
− κ2 − 1/4

r2

)
Rl(r) = −{[E − V (r)]2 − M2}Rl(r), (5.3)
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where

κ = |l − 1 + D/2| (5.4)

depends on the angular momentum l and the spatial dimension D. Y l
lN−2...l1

(x̂) in
Eq. (5.2) is called the generalized spherical harmonics.

3 Application to Hydrogen-like Atom

As an illustration, we take the symmetric potential V (r) as the Coulomb-type po-
tential

V (r) = −ξ

r
, ξ = Zα. (5.5)

We will discuss the weak potential, say |ξ | < 1/2. The radial equation (5.3) thus
becomes

d2

dr2
Rl(r) + ξ2 − κ2 + 1/4

r2
Rl(r) + 2Eξ

r
Rl(r) + (E2 − M2)Rl(r) = 0. (5.6)

Take a new variable ρ for the bound states:

ρ = 2r
√
M2 − E2, |E| <M. (5.7)

Equation (5.6) thus changes to

d2

dρ2
Rl(ρ) + 1

ρ2

(
ξ2 − κ2 + 1

4

)
Rl(ρ) + τ

ρ
Rl(ρ) − 1

4
Rl(ρ) = 0, (5.8)

with

τ = Eξ√
M2 − E2

. (5.9)

From the behaviors of radial function at the origin and at infinity, we take the
wavefunction of the form

Rl(ρ) = ρλ+1/2e−ρ/2φ(ρ), λ =
√
κ2 − ξ2 > 0, (5.10)

where we assume κ2 > ξ2. The φ(ρ) satisfies the following confluent hypergeomet-
ric equation

ρ
d2

dρ2
φ(ρ) + (2λ + 1 − ρ)

d

dρ
φ(ρ) +

(
τ − λ − 1

2

)
φ(ρ) = 0. (5.11)

Thus, the radial function can be written out

Rl(ρ) = Nlρ
λ+1/2e−ρ/2

1F1(λ − τ + 1/2;2λ + 1;ρ), (5.12)

where Nl is the normalization factor to be determined.
We now discuss the eigenvalues. From the finiteness of the solutions at infinity,

the general quantum condition is obtained from Eq. (5.12)

τ − λ − 1

2
= n′ = 0,1,2, . . . . (5.13)
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By introducing a principal quantum number

n = n′ + κ − N

2
+ 2 = n′ + l + 1, (5.14)

we obtain
Eξ√

M2 − E2
= τ = n − l − 1

2
+

√
κ2 − ξ2 > 0. (5.15)

Therefore, we can obtain E with the same sign as ξ

E(n, l,D) = M
ξ

|ξ |
{

1 + ξ2

(n − l − 1
2 +√

κ2 − ξ2)2

}−1/2

, (5.16)

which essentially coincides with that of [87] except that the factor ξ/|ξ | was not
considered there.

For a large D, we have

E(n,D) = M
ξ

|ξ | [1 − 2ξ2D−2 + 4ξ2(2n − 3)D−3 − · · ·]. (5.17)

For a small ξ , we have

E(n, l,D) = M
ξ

|ξ |
{

1 − ξ2

2[n + (D − 3)/2]2

+ ξ4(D + 6l − 4n)

4(2l − 2 + D)[n + (D − 3)/2]4

}
, (5.18)

where the first term on the right hand side is the rest energy M , the second one is
from the solutions of the Schrödinger equation with this potential, and the third one
is the fine structure energy, which removes the degeneracy between the states with
same n.

We now calculate the normalization factor Nl from the normalization condition
∫ ∞

0
Rl(ρ)

2dr = 1. (5.19)

Since n′ = τ − λ − 1/2 is a non-negative integer, we can express the confluent hy-
pergeometric functions 1F1(−n′;β + 1;ρ) by the associated Laguerre polynomial
L

β

n′(ρ). In terms of the following formulas [192]:

ρ1F1(α + 1;β + 1;ρ) = β1F1(α + 1;β;ρ)− β1F1(α;β;ρ), (5.20)

Lβ
n(ρ) = �(β + n + 1)

n!�(β + 1)
1F1(−n;β + 1;ρ),

∫ ∞

0
ρβe−ρLβ

n(ρ)L
β
m(ρ)dρ = �(n + β + 1)

n! δnm,

(5.21)

we obtain through a direct calculation

Nl = (M2 − E2)1/4

�(2λ + 1)

[
2�(n′ + 2λ + 1)

n′!(2n′ + 2λ + 1)

]1/2

,

λ = [(l − 1 + D/2)2 − ξ2]1/2.

(5.22)
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4 Concluding Remarks

In this Chapter we have presented the D-dimensional Klein-Gordon equation and
applied it to the Coulomb-like potential as an illustration. The eigenfunctions are
analytically obtained and expressed by the confluent hypergeometric functions. The
eigenvalues as well as their fine structure are also studied.



Part III
Applications in Non-relativistic Quantum

Mechanics



Chapter 6
Harmonic Oscillator

1 Introduction

It is well known that the quantum harmonic oscillator is analog of the classical
harmonic oscillator. It is one of the most important model systems in quantum me-
chanics. There are several reasons for its pivotal role. First, it represents one of few
quantum mechanical systems for which the simple exact solutions are known. Sec-
ond, as in classical mechanics, a wide variety of physical situations can be reduced
to it either exactly or approximately. In particular, more complicated quantum sys-
tems can always be analyzed in terms of normal modes—formally equivalent to
harmonic oscillators—of motion whenever the interaction forces are linear func-
tions of the relative displacements. Therefore, it is not surprising that the harmonic
oscillator has become very important for the quantum mechanical treatment of such
physical problems as the vibrations of individual atoms in molecules and in crystals,
in which the linear harmonic oscillator describes vibrations in molecules and their
counterparts in solids, the phonons. Third, the most eminent role of the harmonic
oscillator is its linkage to the boson, one of the conceptual building blocks of mi-
croscopic physics. For example, bosons describe the modes of the electromagnetic
field, providing the basis for its quantization. Even though the linear harmonic os-
cillator may represent rather non-elementary objects like a solid and a molecule, it
provides a window into the most elementary structure of the physical world. The
most likely reason for this connection with fundamental properties of matter is that
the harmonic oscillator Hamiltonian is symmetric in momentum and position, both
operators appearing as quadratic terms. On the other hand, the harmonic oscillator
also provides the key to the quantum theory of the electromagnetic field, whose vi-
brations in a cavity can be analyzed into harmonic normal modes, each of which has
energy levels of the harmonic oscillator type.

This Chapter is organized as follows. In Sect. 2 we first study exact solutions of
harmonic oscillator in arbitrary dimensions. Section 3 is devoted to the recurrence
relations for the radial wavefunction. We shall show the realization of dynamic al-
gebra su(1,1) in Sect. 4. In Sect. 5 we carry out the generalized harmonic oscillator
named the pseudoharmonic oscillator, whose exact solutions, ladder operators and
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DOI 10.1007/978-94-007-1917-0_6, © Springer Science+Business Media B.V. 2011

67

http://dx.doi.org/10.1007/978-94-007-1917-0_6


68 6 Harmonic Oscillator

recurrence relations are presented. The position and momentum information entropy
is reviewed briefly in Sect. 6. Some concluding remarks are given in Sect. 7.

2 Exact Solutions of Harmonic Oscillator

Based on the results presented in Chap. 3, we are going to study the exact solu-
tions of harmonic oscillator. Consider a D-dimensional Schrödinger equation with
a harmonic potential

V (r) = 1

2
kr2, k = Mω2, (6.1)

where M and ω denote the mass and vibration frequency of the particle, respectively.
Let

φ[λ](r) = e−αξ ξβR(ξ), ξ = r2, (6.2)

where α and β are the parameters to be determined. Substituting Eqs. (6.1) and (6.2)
into the radial equation (3.66) where λ = l given in Chap. 3, we have (� = 1)

ξ
d2R(ξ)

dξ2
+

(
2β + D

2
− 2αξ

)
dR(ξ)

dξ

+
{
ξ−1

[
β(2β + D − 2)

2
− l(l + D − 2)

4

]

+ ξ

(
α2 − Mk

4

)
+

[
ME

2
− 2α

(
β + D

4

)]}
R(ξ) = 0. (6.3)

Take the parameters α and β to remove the terms of ξ−1 and ξ ,

α =
√
Mk

2
, β = l

2
. (6.4)

Further defining a variable by

ρ = 2αξ, (6.5)

we obtain the confluent hypergeometric differential equation [192]:

ρ
d2R(ρ)

dρ2
+

(
l + D

2
− ρ

)
dR(ρ)

dρ
+

{
E

√
M

4k
− (2l + D)

4

}
R(ρ) = 0. (6.6)

Therefore, the solutions to the D-dimensional Schrödinger equation with a har-
monic potential are given by

ψl
lD−1,...,l1

(x) = NE,le
−ρ/2ρl/2

1F1(−nr ; l + D/2;ρ)Y l
lD−1,...,l1

(x̂),

ρ = r2
√
Mk, nr = E

√
M

4k
− (2l + D)

4
= 0,1, . . . ,

(6.7)
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where NE,l is the normalization factor. The consideration of the finiteness of the
solutions at infinity leads to a quantum condition that nr has to be a non-negative
integer. Hence, the energy E can be quantized by a principal quantum number n:

En,l = √
k/M(n + D/2), n = 2nr + l = 0,1,2, . . . , (6.8)

from which we note that

l =
{

0,2,4, . . . , n, when n is even,

1,3,5, . . . , n, when n is odd.
(6.9)

The degeneracy of the states with the energy En,l is calculated as

m =
∑

l

dl(D) = (n + D − 1)!
n!(D − 1)! . (6.10)

We now determine the normalization factor NE,l from the normalization condi-
tion

∫
|ψl

lD−1,...,l1
(x)|2

D∏

a=1

dxa = 1. (6.11)

Notice that when nr is a non-negative integer, the confluent hypergeometric func-
tions 1F1(−nr ;β + 1;ρ) can be expressed by the associated Laguerre polynomial
L

β
nr
(ρ). Using Eq. (5.21), through a direct calculation we obtain the normalization

factor

NE,l = (Mk)D/8

�(l + D/2)

[
2�(nr + l + D/2)

nr !
]1/2

. (6.12)

3 Recurrence Relations for the Radial Function

It is shown from Eq. (3.66) that the Hamiltonian of the D-fold degenerate oscillator
for a given angular momentum as follows (� = 1):

H = − 1

2M

{
d2

dr2
+ D − 1

r

d

dr
− l(D + l − 2)

r2

}
+ 1

2
Mω2r2, (6.13)

with the property

HR(n, l) = EnR(n, l), En = ω(n + D/2). (6.14)

For convenience, define a new variable � = √
Mωr . As a result, the Hamiltonian

is modified as

H(l) = −1

2

{
d2

d�2
+ D − 1

�

d

d�
− l(D + l − 2)

�2
− �2

}
, (6.15)

with the property

H(l)R(n, l) = εR(n, l), ε = (n + D/2) (6.16)
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and

H = ωH(l), En = ωε. (6.17)

To obtain the recurrence relations for the radial function, we define the following
operators [14]

A+ = − d

d�
+ l

�
+ �,

A− = d

d�
+ (l + D − 2)

�
+ �,

a+ = d

d�
− l

�
+ �,

a− = − d

d�
− (l + D − 2)

�
+ �.

(6.18)

Based on these operators, we may obtain the following identities on the Hamiltonian

2H(l) =

⎧
⎪⎪⎨

⎪⎪⎩

A−(l + 1)A+(l) − (2l + D),

A+(l − 1)A−(l) − (2l + D − 4),

a−(l + 1)a+(l) + (2l + D),

a+(l − 1)a−(l) + (2l + D − 4).

(6.19)

By multiplying A± and a± appropriately on both sides of Eqs. (6.19), we are able
to obtain

H(l ± 1)A±(l) − A±(l)H(l) = ±A±(l),

H(l ± 1)a±(l) − a±(l)H(l) = ∓a±(l).
(6.20)

Operating on the radial function R(n, l) allows us to obtain

H(l ± 1)A±(l)R(n, l) = (ε ± 1)A±(l)R(n, l),

H(l ± 1)a±(l)R(n, l) = (ε ± 1)a±(l)R(n, l),
(6.21)

from which we have

A±(l)R(n, l) = B±R(n ± 1, l ± 1),

a±(l)R(n, l) = C±R(n ∓ 1, l ± 1),
(6.22)

where

B+ = −√
2(n + l + D),

B− = −√
2(n + l + D − 2),

C+ = √
2(n − l),

C− = √
2(n − l + 2).

(6.23)

In terms of these relations, one is able to derive a few useful recurrence relations
as follows:
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�R(n, l) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

−
√

n+l+D
2 R(n + 1, l + 1)

+
√

n−l
2 R(n − 1, l + 1),

−
√

n+l+D−2
2 R(n − 1, l − 1)

+
√

n−l+2
2 R(n + 1, l − 1),

(6.24)

D + 2l − 2

�
R(n, l) =

⎧
⎪⎪⎨

⎪⎪⎩

−√
2(n + l + D)R(n + 1, l + 1)

− √
2(n − l + 2)R(n + 1, l − 1),

−√
2(n + l + D − 2)R(n − 1, l − 1)

− √
2(n − l)R(n − 1, l + 1),

(6.25)

(D + 2l − 2)
dR(n, l)

d�
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(D + l − 2){
√

n+l+D
2 R(n + 1, l + 1)

+
√

n−l
2 R(n − 1, l + 1)},

−l{
√

n+l+D−2
2 R(n − 1, l − 1)

+
√

n−l+2
2 R(n + 1, l − 1)}.

(6.26)

Before ending this section, let us review the results given by Coulson and Joseph
[89]. In a D-dimensional Euclidean space we define the Hamiltonian

H = 1

2
(p2 + r2), (6.27)

where the atomic units � = M = ω are used. Denote its eigenfunctions by ψl , where
l is the total orbital angular momentum quantum number. If σ (D+1) is a vector in
D-space with components σi(D+1) (i = 1, . . . ,D), then we let

A(D+1) = r · σ (D+1), B(D+1) = −p · σ (D+1), (6.28)

where σ are the generalized Pauli spin operators with the properties [88]

σij = −σji, σij = σ
†
ij , σ 2

ij = 1,

σij σik = iσjk, [σij , σkl] = 0.
(6.29)

From Eqs. (6.27) and (6.28) as well as the properties of σ (D+1), it may be verified
that

[H,A(D+1)] = iB(D+1), [H, iB(D+1)] = A(D+1), (6.30)

which are the Fourier transforms of each other apart from an irrelevant constant.
Combining them leads to an important result

[H,(A(D+1) ± iB(D+1))] = ±[A(D+1) ± iB(D+1)], (6.31)

which means that (A(D+1) ± iB(D+1)) are the ladder operators for the Hamilto-
nian H . We should point out that the ladder operators given by Coulson and Joseph
are self-adjoint ones unlike those (6.18), which cannot be self-adjoint. This is be-
cause the adjoint of either ladder operator must be that operator which steps the
eigenfunctions in the opposite sense.
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Up to this stage the discussion of the ladder operators has been purely algebraic
without reference to any particular set of coordinates. Undoubtedly, it shall be very
interesting to determine the analytical form assumed by A(D+1) and B(D+1) when
expressed in terms of spherical polar coordinates. The results are given by [89, 193]

[A(D+1) ± iB(D+1)] = Â(D+1)[r ∓ (∂/∂r − r−1ln)], (6.32)

where

Â(D+1) = A(D+1)

‖A(D+1)‖ , A(D+1) =
D∑

i=1

xiσi(D+1).

ln =
D∑

m=2

Lm, L(D+1) =
D∑

i=1

σi(D+1)Li(D+1).

(6.33)

This means that the operator may be decomposed into two parts. One of these
Â(D+1) steps the angular part of wavefunction. The other steps the radial part.

4 Realization of Dynamic Group SU(1,1)

In this section, we are going to realize the dynamic group SU(1,1) for the radial
Schrödinger equation [194]. For simplicity, we may write down the D-dimensional
radial function as follows:

RD
nr l

(r) =
√

2nr !
�(nr + l + D/2)

rle−r2/2L
l+(D−2)/2
nr

(r2). (6.34)

Making use of the following relations for the Laguerre functions [192]

x
d

dx
Lβ

n(x) =
{
nL

β
n(x) − (n + β)L

β

n−1(x),

(n + 1)Lβ

n+1(x) − (n + β + 1 − x)L
β
n(x),

(6.35)

as well as the relation (C.29) for arbitrary operators A and B (see Appendix C), we
may obtain the raising and lowering operators for the quantum number nr

L± = 1

2

(
±r

d

dr
− r2 + H(l) ± D

2

)
, (6.36)

where H(l) is the radial Hamiltonian (6.15).
By defining L0 = H(l)/2, it is found that L± and L0 satisfies the commutation

relations of an su(1,1) algebra

[L0,L±] = ±L±, [L+,L−] = −2L0, (6.37)
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with the following properties

L+RD
nr l

(r) =
√

(nr + 1)

(
nr + l + D

2

)
RD

(nr+1)l(r),

L−RD
nr l

(r) =
√

nr

(
nr + l + D

2
− 1

)
RD

(nr−1)l(r),

L0R
D
nr l

(r) =
(
nr + l

2
+ D

4

)
RD

nr l
(r).

(6.38)

The Casimir operator is calculated as

C = L2
0 − L2

1 − L2
2 = L2

0 − 1

2
(L+L− + L−L+) (6.39)

with eigenvalue k(k − 1). After calculating we find the Casimir eigenvalue

CRD
nr l

(r) = 2l + D

4

(
2l + D

4
− 1

)
RD

nr l
(r), (6.40)

from which we have two possible solutions k = (2l + D)/4 or k = −[(2l + D)/

4 − 1]. However, we are interested only in the positive discrete representations of
the su(1,1), D+(k). Thus, we take the former k = (2l + D)/4.

5 Generalization to Pseudoharmonic Oscillator

5.1 Introduction

It is well known that the real molecular vibrations are anharmonic even though the
harmonic oscillator model is widely used as mentioned above. For instance, some
anharmonic oscillator molecular potentials such as the Morse potential and Pöschl-
Teller potential represent two typical model potentials to describe the molecular
vibrations. In this section we want to study the pseudoharmonic oscillator pro-
posed by Goldman and Krivchenkov in the early 1960s and expressed as V (x) =
V0(x/a − a/x)2 [195], where V0 and a represent two potential parameters. It is ob-
vious to see that this potential is the sum of the harmonic oscillator and inversely
quadratic potential. For the inverse squared interaction potential, Post proposed it in
1956 when he studied the one-dimensional many-identical-particle problem for pair-
force interaction between the particles [196]. Since 1961 such a quantum system
has been studied by many authors [2, 195–209]. For example, Landau and Lifshitz
studied its exact solutions in three dimensions [2]. Hurley found that this kind of
pseudoharmonic oscillator interaction between the particles can be exactly solved
when he studied three-body problem in one dimension [198]. Several years later,
Calogero studied the one-dimensional three- and many-body problems interacting
pairwise via harmonic and inverse square (centrifugal) potential [199, 200]. Also,
this potential was generalized by Camiz and Dodonov et al. to the non-stationary
(varying frequency) pseudoharmonic oscillator potential [201–203]. In addition to
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these, such a physical problem was discussed in arbitrary dimensions D [201–205].
Recently, Sage has studied its vibrations and rotations in order to describe the di-
atomic molecule [208], in which he briefly reinvestigated some properties of this
oscillator to study the pseudogaussian oscillator. On the other hand, we notice that
the harmonic oscillator plus inverse squared potential is essentially equal to a pseu-
doharmonic oscillator except for some unimportant parameters as studied in [210].
Consequently, it is unnecessary to restudy this case for simplicity.

5.2 Exact Solutions

As shown in Ref. [3], the pseudoharmonic oscillator is taken as

V (r) = 1

8
κr2

0

(
r

r0
− r0

r

)2

, (6.41)

where κ is a force constant and the r0 represents the equilibrium bond length.
It should be noted that the potential taken here is slightly different from that of
Ref. [207], but they are the same essentially except for an unimportant constant.

Let

φ(r) = e−λξ ξ τR(ξ), ξ = r2. (6.42)

In a similar way, we may obtain the radial equation from Eqs. (3.66) as follows:

ξ
d2R(ξ)

dξ2
+

(
2τ + D

2
− 2λξ

)
dR(ξ)

dξ

+
{
ξ−1

[
τ(2τ + D − 2)

2
− l(l + D − 2)

4
− Mκr4

0

16

]

+ ξ

(
λ2 − Mκ

16

)
+

[
ME

2
+ Mκr2

0

8
− 2λ

(
τ + D

4

)]}
R(ξ) = 0. (6.43)

Take the parameters λ and τ to remove the terms of ξ−1 and ξ ,

λ =
√
Mκ

4
, τ = −D − 2

4
+ 1

4

[
(2l + D − 2)2 + Mκr4

0

]1/2
. (6.44)

Further define a new variable ρ = 2λξ . We may obtain the confluent hypergeo-
metric equation [192]:

ρ
d2R(ρ)

dρ2
+

(
2τ + D

2
− ρ

)
dR(ρ)

dρ

+
{
E

√
M

κ
+ r2

0

√
Mκ

4
− τ − D

4

}
R(ρ) = 0. (6.45)

Therefore, the solutions to the D-dimensional Schrödinger equation with a pseudo-
harmonic potential are written as

ψl
lD−1,...,l1

(x) = NE,le
−ρ/2ρτ

1F1(−nr ;2τ + D/2;ρ)Y l
lD−1,...,l1

(x̂), (6.46)
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where

ρ =
√
Mκ

2
r2,

nr = E

√
M

κ
+ r2

0

√
Mκ

4
− τ − D

4
= 0,1, . . . ,

NE,l = (Mκ)D/8

�(2τ + D/2)

[
�(nr + 2τ + D/2)

2D/2−1nr !
]1/2

.

(6.47)

Likewise, considering the finiteness of the solutions at infinity leads to a quan-
tum condition that nr has to be a non-negative integer. The quantized energy E is
calculated as

Enr,l =
√

κ

M

(
nr − r2

0

√
Mκ

4
+ τ + D

4

)
. (6.48)

The energy spectrum is equidistant for given constants τ and r0.
When r0 is very large, r2

0 � 2/
√
Mκ , we have

Enr,l =
√

κ

M

{
nr + 1

2
− (l + D/2 − 1)2

2r2
0

√
Mκ

}
, (6.49)

and when r2
0 � 2/

√
Mκ , we have

Enr ,l =
√

κ

M

{
nr + l

2
+ D

4
− r2

0

√
Mκ

4
+ Mκr4

0

16(l + D/2 − 1)

}
. (6.50)

5.3 Ladder Operators

During the past half century, the factorization method has played an important role
in physics [3, 193, 211]. With this method, one can construct the ladder operators for
certain potentials such as the Morse and modified Pöschl-Teller potentials and then
constitute a suitable algebra su(2). This approach is different from the traditional
one, where an auxiliary non-physical variable is introduced [212, 213]. In particular,
the matrix elements of some related operators, which is of significance in physics,
can be analytically evaluated from the ladder operators. Therefore, we are going to
establish the ladder operators for pseudoharmonic oscillator.

By using the recurrence relation between the confluent hypergeometric functions
and the associated Laguerre functions as well as the orthogonal relation of the asso-
ciated Laguerre functions as Eq. (5.21), we may reexpress the radial wavefunction
of pseudoharmonic oscillator as follows:

Rn(ρ) = Nnρ
τ e− ρ

2 L
2τ+D/2−1
n (ρ),

Nn = (Mκ)D/8

√
n!

2D/2−1�(2τ + n + D/2)
,

(6.51)

where n = nr is used.
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Now, we study the ladder operators M̂± with the following properties

M̂± = A±(ρ)
d

dρ
+ B±(ρ), M̂±Rn(ρ) = m±Rn±1(ρ), (6.52)

where we stress that these operators only depend on the physical variable ρ.
For this purpose, we begin by applying the operator d

dρ
on the wavefunction

(6.51)

d

dρ
Rn(ρ) =

(
τ

ρ
− 1

2

)
Rn(ρ) + Nnρ

τ e− ρ
2

d

dρ
L

2τ+D/2−1
n (ρ), (6.53)

which is used to construct the ladder operators M̂±.
To this end, if we consider useful relations (6.35) and substitute them into (6.53),

then we are able to obtain the following relations
(

d

dρ
− n + τ

ρ
+ 1

2

)
Rn(ρ) = −n + 2τ + D/2 − 1

ρ

Nn

Nn−1
Rn−1(ρ), (6.54)

(
d

dρ
+ n + τ + D/2

ρ
− 1

2

)
Rn(ρ) = n + 1

ρ

Nn

Nn+1
Rn+1(ρ), (6.55)

from which, together with Nn given in Eq. (6.51), we can obtain the following ladder
operators

M̂− = −ρ
d

dρ
+ τ + n̂ − ρ

2
,

M̂+ = ρ
d

dρ
+ τ + n̂ + D

2
− ρ

2
,

(6.56)

where we have introduced a number operator n̂ with the property

n̂Rn(ρ) = nRn(ρ). (6.57)

The ladder operators M̂± have the following properties

M̂−Rn(ρ) = m−Rn−1(ρ),

M̂+Rn(ρ) = m+Rn+1(ρ),
(6.58)

where

m− = √
n(n + 2τ + D/2 − 1),

m+ = √
(n + 1)(n + 2τ + D/2).

(6.59)

On the other hand, we note that the radial wavefunction can be directly obtained
by applying the creation operator M̂+ on the ground state R0(ρ), i.e.,

Rn(ρ) = NnM̂
n+R0(ρ), (6.60)

with

Nn =
√

�(2τ + D/2)

n!�(n + 2τ + D/2)
, R0(ρ) =

√
1

�(2τ + D/2)
ρτ e− ρ

2 . (6.61)
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We now study a suitable Lie algebra associated with the operators M̂+ and M̂−.
Based on the results (6.58) and (6.59), we can calculate the commutator [M̂−, M̂+]:

[M̂−, M̂+]Rn(ρ) = 2m0Rn(ρ), (6.62)

where we have introduced the eigenvalue

m0 =
(
n + τ + D

4

)
. (6.63)

We can thus define the operator

M̂0 =
(
n̂ + τ + D

4

)
. (6.64)

The operators M̂± and M̂0 thus satisfy the commutation relations

[M̂−, M̂+] = 2M̂0, [M̂0, M̂±] = ±M̂±, (6.65)

which correspond to an su(1,1) algebra.
As we know, there are four series of irreducible unitary representations for the

SU(1,1) group except for the identity representation [214]. Since this quantum sys-
tem has ground state, the representation of the dynamic algebra su(1,1) belongs to
D+(j):

I0|j, ν〉 = ν|j, ν〉,
I−|j, ν〉 = √

(ν + j)(ν − j − 1)|j, ν − 1〉,
I+|j, ν − 1〉 = √

(ν + j)(ν − j − 1)|j, ν〉,
ν = −j + n, n = 0,1,2, . . . , j < 0.

(6.66)

In comparison with Eqs. (6.58), (6.59), (6.63) and (6.64), we have j = −(τ +D/4),
ν = n + τ + D/4, and Rn(ρ) = |j, ν〉.

Finally, from the ladder operators M̂± we may obtain two related functions

ρ = 2M̂0 − M̂− − M̂+, ρ
d

dρ
= 1

2

(
M̂+ − M̂− − D

2

)
, (6.67)

from which, together with Eqs. (6.58) and (6.59), we have
∫ ∞

0
Rn′(r)r2Rn(r)dr =

(
2n + 2τ + D

2

)
δn′,n

−√
n(n + 2τ + D/2 − 1)δn′,(n−1)

−√
(n + 1)(n + 2τ + D/2) δn′,(n+1), (6.68)

and
∫ ∞

0
Rn′(r)

r

2

d

dr
Rn(r)dr = 1

2

√
(n + 1)(n + 2τ + D/2) δn′,(n+1)

− 1

2

√
n(n + 2τ + D/2 − 1) δn′,(n−1)

− D

4
δn′,n. (6.69)
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5.4 Recurrence Relation

To obtain the recurrence relations among the solutions Rn(ρ) given in Eq. (6.51), it
is convenient to employ the associated Laguerre functions satisfying the following
recurrence relation

(n + 1)Lβ

n+1(x) + (n + β)L
β

n−1(x) + (x − 2n − β − 1)Lβ
n(x) = 0, (6.70)

from which, together with the normalization constant Nn we obtain a useful three-
term recurrence relation

√
(n + 1)(2τ + n + D/2)Rn+1(ρ) +√

n(2τ + n + D/2 − 1)Rn−1(ρ)

= (2n + 2τ + D/2 − ρ)Rn(ρ). (6.71)

6 Position and Momentum Information Entropy

In this section we shall review the position and momentum information entropies of
the D-dimensional harmonic oscillator [58]. An information measure closely related
to the entropy is the Boltzmann-Shannon entropy defined by

Sρ = −
∫

ρ(r) lnρ(r)d(r) (6.72)

in the position space and

Sγ = −
∫

γ (p) lnγ (p)d(p) (6.73)

in the momentum space. The position and momentum single-particle densities are
simply given by

ρ(r) = |ψ(r)|2, γ (p) = |ψ(p)|2, (6.74)

where ψ(p) is the Fourier transform of ψ(r). The information entropies Sρ and Sγ

give a measure of the spread of the single-particle density in position and momentum
space, respectively.

These two entropies have shown to play an important role in the quantum-
mechanical description of physical systems. For example, they have made
Bialynicki-Birula and Mycielski (BBM) find a new and stronger version of the
Heisenberg uncertainty relation. The corresponding BBM inequality for single par-
ticle is given by

Sρ + Sγ ≥ D(1 + lnπ). (6.75)

Once the exact solutions of quantum systems are known, it is possible to study them
numerically.
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7 Conclusions

In this Chapter we have made use of previous results given in Chap. 3 to present the
exact solutions of the harmonic oscillator in arbitrary dimensions. The recurrence
relations for the radial functions have been established in terms of the Hamilto-
nian. In addition, we have shown how to realize the dynamic algebra su(1,1) by the
factorization method. As an important generalization, we have also carried out the
pseudoharmonic oscillator case and constructed the ladder operators directly from
wavefunction by factorization method. The matrix elements of some related func-
tions have been obtained analytically from the ladder operators M̂±. We find that
this method represents a simple and elegant approach to obtain them. On the other
hand, a useful recurrence relation among the wavefunction is derived on the basis
of the recurrence relations on the associated Laguerre polynomials. Finally, we give
a useful remark. We note that Oyewumi et al. have restudied pseudoharmonic po-
tential in N -dimensions in 2008 and carried out some expectation values for 〈r−2〉,
〈r2〉, 〈T 〉, 〈V (r)〉, 〈H 〉 and 〈p2〉 as well as virial theorem obtained by means of the
Hellmann-Feynman theorems [102].



Chapter 7
Coulomb Potential

1 Introduction

The exact solutions of the non-relativistic and relativistic equations with a Coulomb
field have been the subject both in quantum mechanics and in classical mechanics.
The well-known exact solutions in almost all textbooks [1, 2] are important achieve-
ments at the beginning stage of quantum mechanics, which provided a strong evi-
dence in favor of the quantum theory being correct.

The purpose of this Chapter is three-fold. The first is to study the analytical so-
lutions of the D-dimensional Schrödinger equation with a Coulomb potential in
arbitrary dimensions [26, 61–63, 78, 87, 99, 215], the relation between the radial
equations of the D-dimensional hydrogen atom and harmonic oscillator [34]. The
second is to realize the dynamic algebra su(1,1) for the radial Schrödinger Coulomb
potential in terms of the Sturmian bases. The third is to study a generalized case, i.e.,
the Coulomb plus an inverse squared potential and then to analyze the variation of
energy levels E(n, l,D) on the dimension D [216]. As far as the potential energy
term, we use results from scattering experiments to fix its form 1/r . Indeed, since
the results of Rutherford-type scattering experiments are independent of the spatial
dimension, we can unambiguously conclude from the experimental data, that in ar-
bitrary dimension D the potential must be of the form like 1/r . This is of course
consistent with the analysis of Refs. [217, 218] that atoms with the usual kinetic
energy coupled to a modified potential of the form 1/rD−2 are not stable, where the
exponent (D − 2) is due to the requirement that Gauss’s law should be still valid in
higher dimensions.

This Chapter is organized as follows. Section 2 is devoted to the study of the
D-dimensional Schrödinger equation with a Coulomb potential. We establish the
shift operators in Sect. 3. In Sect. 4 we illustrate the mapping between the Coulomb
potential and harmonic oscillator radial functions. In Sect. 5 we show how to realize
the dynamic algebra su(1,1) relying only on the radial Schrödinger equation. The
generalized case, i.e., the Coulomb potential plus an inverse squared potential shall
be investigated in Sect. 5. Some concluding remarks are given in Sect. 6.

S.-H. Dong, Wave Equations in Higher Dimensions,
DOI 10.1007/978-94-007-1917-0_7, © Springer Science+Business Media B.V. 2011
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2 Exact Solutions

The D-dimensional Schrödinger equation (� = M = 1) with a spherically symmet-
ric potential V (r) can be written as

−1

2
�2 �(x) = [E − V (r)]�(x). (7.1)

For central potentials, we may separate the angular variables from the radial
one by taking the wavefunction �(x) = Rl(r)Y

l
lD−2...l1

(x̂). Substitution of this into
Eq. (7.1) allows us to obtain the D-dimensional radial Schrödinger equation with a
spherically symmetric potential V (r)

1

rD−1

d

dr

(
rD−1 d

dr

)
Rl(r) +

(
2E − 2V (r) − l(l + D − 2)

r2

)
Rl(r) = 0, (7.2)

where the potential V (r) is taken as a Coulomb potential

V (r) = −Zα

r
= −ξ

r
, ξ = Zα. (7.3)

Upon taking a new variable

ρ = r
√−8E (7.4)

for the bound states, Eq. (7.2) is rearranged as

d2Rl(ρ)

dρ2
+ D − 1

ρ

dRl(ρ)

dρ
+

{
−1

4
+ τ

ρ
− l(l + D − 2)

ρ2

}
Rl(ρ) = 0, (7.5)

where

τ ≡ ξ

√
1

−2E
. (7.6)

From the behaviors of the radial function at the origin and at infinity, we define

R(ρ) = ρle−ρ/2F(ρ). (7.7)

Substituting of Eq. (7.7) into Eq. (7.5), we find that F(ρ) satisfies

ρ
d2F(ρ)

dρ2
+ (2l + D − 1 − ρ)

dF (ρ)

dρ
+

(
τ − l − D − 1

2

)
F(ρ) = 0, (7.8)

whose solutions are nothing but the confluent hypergeometric functions 1F1(a;b;ρ)
with

a = l − τ + D − 1

2
, b = 2l + D − 1. (7.9)

Thus, the eigenfunctions can be expressed as

R(ρ) = Nρle−ρ/2
1F1

(
l − τ + D − 1

2
;2l + D − 1;ρ

)
, (7.10)

where N is the normalization factor to be determined.
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We now discuss the eigenvalues. From the consideration of the finiteness of the
solutions at infinity, the general quantum condition is given by

τ − l − D − 1

2
= nr = 0,1,2, . . . . (7.11)

Introduce a principal quantum number

n = nr + l + 1. (7.12)

As a result, we have

ξ

√
1

−2E
= τ = n + D − 3

2
. (7.13)

From this we obtain the energy levels

E(n,D) = − ξ2

2[n + (D − 3)/2]2
. (7.14)

Notice that the E(n,D) is independent of the quantum number l. On the other hand,
this result means that a stable hydrogen atom exists when the Coulomb-like potential
is taken as the form Eq. (7.3) in higher dimensions.

For a large D, we have

E(n,D) 	 −2ξ2{D−2 − 2(2n − 3)D−3 + 3(2n − 3)2D−4 − · · ·}. (7.15)

We now calculate the normalization factor N . Note that nr = τ − l − (D − 1)/2
is a non-negative integer. We can express the confluent hypergeometric functions

1F1(−nr ;β + 1;ρ) by the associated Laguerre polynomials L
β
nr
(ρ). Based on for-

mulas (5.21), we express the radial function as

R(ρ) = N ρle−ρ/2L2l+D−2
n−l−1 (ρ). (7.16)

The N can be obtained from the normalization condition
∫ ∞

0
R(ρ)2rD−1dr = 1. (7.17)

Before proceeding to do so, we recall a generalized Coulomb-like integral J (γ )
n,α

given in Ref. [219]

J
(γ )
n,α =

∫ ∞

0
e−xxα+γ [Lα

n(x)]2dx

= �(α + n + 1)

n!
n∑

k=0

(−1)k�(n − k − γ )�(α + k + γ + 1)

�(−k − γ )�(α + k + 1)k!(n − k)! , (7.18)

with Re(α+γ +1) > 0. With the help of this integral formula, we are able to obtain

J (1)
n,α = (2n + α + 1)�(α + n + 1)

n! , (7.19)
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where two nonzero contributions (k = n − 1, n) are made to Eq. (7.18) due to the
� functions of the negative integers. It is shown from Eqs. (7.17)–(7.19) that the
normalization factor is calculated as

N =
(

4ξ

2n + D − 3

)D
2
[

(n − l − 1)!
(2n + D − 3)�(n + l + D − 2)

]1/2

. (7.20)

Before ending this section, we want to address the lower-dimensional case briefly
due to recent interest in the lower-dimensional field theory. When D = 1, the eigen-
values (7.14) reduce to the one-dimensional case

En = − ξ2

2n2
, n = 1,2,3, . . . , (7.21)

where we have used shifted n in order to avoid the infinitely bound ground state.
This is because the energy level E0 goes to negative infinity if a principal quantum
number n = 0. That is to say, the Coulomb potential −ξ/|x| behaves like a negative
δ(x) potential well.

The corresponding radial function is calculated as

R = Cρe−ρ/2L1
n−1(ρ), ρ = 2ξ

n
|x|, (7.22)

where C = √
ξ/n is a normalization constant.

Similarly, when D = 2 the eigenvalues are given by

En = − ξ2

2(n − 1/2)2
, n = 1,2,3, . . . . (7.23)

The corresponding eigenfunctions are obtained as

R(ρ) =
(

4ξ

2n − 1

)√
(n − |m| − 1)!

(2n − 1)(n + |m| − 1)!ρ
|m|e− ρ

2 L
2|m|
n−|m|−1(ρ), (7.24)

where ρ = 2ξr/(n−1/2) and the angular momentum quantum number l is replaced
by the traditional notation |m|.

3 Shift Operators

We now study the “ladder operators” for the wavefunction by the factorization
method [3]. Generally speaking, we may apply the recurrence relations of the gen-
eralized Laguerre polynomials to obtain what appear to be the creation and annihi-
lation operators for the radial wavefunction Rn,l(ρ), but what makes us discouraged
is we find that the variable ρ depends on n as shown in Eq. (7.4). In this case, we
have to apply the creation operator acting on Rn,l(ρ) to obtain

M̂+
n Rn,l(ρn) = Ĉn,lRn+1,l(ρn) �= Cn,lRn+1,l(ρ(n+1)). (7.25)
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This means that we must apply a shift operator to change ρ(n) to ρ(n + 1). Such a
deep problem has been discussed by Aebersold et al. [220].

Consequently, we are going to establish the l raising and lowering operators since
the variable ρ does not depend on the quantum number l. That is, we attempt to look
for the shift operators which generate a group of potentials but with the same energy.
This is the so-called potential group approach.

For this purpose, we begin by acting the differential operator d/dρ on the radial
wavefunction Rn,l(ρ):

d

dρ
Rn,l(ρ) =

(
l

ρ
− 1

2

)
Rn,l(ρ) + Nn,lρ

le−ρ/2 d

dρ
L2l+D−2

n−l−1 (ρ). (7.26)

It should be aware that the n in Lα
n(y) corresponds to nr .

Before proceeding, let us first recall an important relation for the derivative of
the associated Laguerre functions [192]

d

dy
Lα

n(y) = − 1

(α + 1)
[yLα+2

n−1(y) + nLα
n(y)]. (7.27)

Substituting this into (7.26) allows us to obtain the following relation
{

d

dρ
− l

ρ
+ 1

2

(
2n + D − 3

2l + D − 1

)}
Rn,l(ρ) = − 1

2l + D − 1

Nn,l

Nn,(l+1)
Rn,(l+1). (7.28)

As a result, we may define the raising operator as follows:

M̂+
l = − d

dρ
+ l

ρ
− 1

2

(
2n + D − 3

2l + D − 1

)
, (7.29)

with the following property

M̂+
l Rn,l(ρ) = m+

l Rn,(l+1)(ρ), (7.30)

with

m+
l = 1

2l + D − 1

√
(n − l − 1)(n + l + D − 2). (7.31)

We now proceed to find the corresponding lowering operator. First, we should
keep in mind that we need obtain a relation between d

dρ
Lα

n(ρ) and Lα−2
n+1(ρ) since

this implies a relation between d
dρ

Rn,l(ρ) and the radial wavefunction Rn,(l−1)(ρ).
To achieve this task we start with the relation [192]

y
d

dy
Lα

n(y) = nLα
n(y) − (n + α)Lα

n−1(y), (7.32)

which, when taking into account the relation [192]

(n + 1)Lα
n+1(y) − (2n + α + 1 − y)Lα

n(y) + (n + α)Lα
n−1(y) = 0, (7.33)

can be transformed into

y
d

dy
Lα

n(y) = (−n − α − 1 + y)Lα
n(y) + (n + 1)Lα

n+1(y). (7.34)
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On the other hand, the relation

Lα−1
n (y) = Lα

n(y) − Lα
n−1(y), (7.35)

together with Eq. (7.33), allows us to set up the following relation1

(α − 1)

(n + α)
Lα

n+1(y) = (α + y − 1)

(α + n)
Lα

n(y) + Lα−2
n+1(y). (7.41)

This relation in turn can be substituted into Eq. (7.34) to give

(α − 1)
d

dy
Lα

n(y) =
[
(α + n) − α(α − 1)

y

]
Lα

n(y)

+ (n + 1)(n + α)

y
Lα−2

n+1(y). (7.42)

Finally, when this equation is substituted into (7.26), this allows us to obtain the
following relation

[
d

dρ
+ l + D − 2

ρ
− 1

2

(
2n + D − 3

2l + D − 3

)]
Rn,l(ρ)

= (n − l)(n + l + D − 3)

2l + D − 3

Nn,l

Nn,(l−1)
Rn,(l−1)(ρ), (7.43)

1To show this formula explicitly, we want to derive it in more detail. It is shown from Eqs. (7.33)
and (7.35) that

(n + 1)Lα
n+1(y) − 2(n + α)Lα

n(y) + (α + y − 1)Lα
n(y)

+ (n + α)[Lα
n(y) − Lα−1

n (y)] = 0, (7.36)

which can be further modified to

(n + 1)Lα
n+1(y) − (n + α)Lα

n(y)

− (n + α)Lα−1
n (y) + (α + y − 1)Lα

n(y) = 0, (7.37)

from which, together with Eq. (7.35) again, we have

(n + 1)Lα
n+1(y) − (n + α)[Lα

n+1(y) − Lα−1
n+1(y)]

− (n + α)Lα−1
n (y) + (α + y − 1)Lα

n(y) = 0. (7.38)

Moreover, this equation can be rewritten as

(α − 1)Lα
n+1(y) + (n + α)[Lα−1

n (y) − Lα−1
n+1(y)]

− (α + y − 1)Lα
n(y) = 0. (7.39)

Using Eq. (7.35) once again, we have

(α − 1)Lα
n+1(y) − (n + α)Lα−2

n+1(y) − (α + y − 1)Lα
n(y) = 0, (7.40)

which is nothing but Eq. (7.41).
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from which we are able to define the lowering operator as follows:

M̂−
l = d

dρ
+ l + D − 2

ρ
− 1

2

(
2n + D − 3

2l + D − 3

)
, (7.44)

with the property

M̂−
l Rnl(ρ) = m−

l Rn(l−1)(ρ), (7.45)

where

m−
l = 1

(2l + D − 3)

√
(n − l)(n + l + D − 3). (7.46)

Essentially, these results (7.29) and (7.44) coincide with those given in [87].

4 Mapping Between the Coulomb and Harmonic Oscillator
Radial Functions

In this section we are going to establish a mapping between the Coulomb and har-
monic oscillator radial functions in arbitrary dimensions [34]. As shown above, the
Coulomb radial functions satisfy the following differential equation

d2Rl(y)

dy2
+ D − 1

y

dRl(y)

dy
+

{
−1

4
+ τ

y
− l(l + D − 2)

y2

}
Rl(y) = 0, (7.47)

where y = ρ = 2rξ/τ and τ = n + (D − 3)/2 as defined in Eq. (7.13). The exact
solutions are given by

R(y) = N yle−y/2L2l+D−2
n−l−1 (y),

N = (4ξ)D/2

(2n + D − 3)(D+1)/2

[
(n − l − 1)!

�(n + l + D − 2)

]1/2

,

En = − ξ2

2τ 2
= − ξ2

2[n + (D − 3)/2]2
,

n = nr + l + 1.

(7.48)

On the other hand, the radial equation of the harmonic oscillator in arbitrary
dimensions can be written out

d2RL(Y )

dY 2
+ d − 1

Y

dRL(Y )

dY
+

{
−Y 2 − L(L + d − 2)

Y 2
+ ε

}
RL(Y ) = 0, (7.49)

where Y = R, ε = 2N + d and N ≥ L. The corresponding solutions are given by

RL(Y ) = Ne−Y 2/2YLL
L−1+d/2
(N−L)/2 (Y 2),

N =
√

2�[(N − L)/2 + 1]
�[(N + L + D)/2] ,

EN = ε

2
= N + d

2
.

(7.50)
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The map taking Eq. (7.48) into Eq. (7.50) is y = Y 2. In particular, for integers
D,d,N,n,L and l, we find that the solutions (7.48) for R(y,D,n, l) can be related
to the solutions (7.50) R(Y,d,N,L) by

R(y,D,n, l) = c0R(Y,2D − 2,2n − 2,2l), (7.51)

where

c0 = 1

2

√
(2ξ)d

τ d+1
. (7.52)

The identity (7.51) establishes the following relations

d = 2D − 2, N = 2n − 2, L = 2l. (7.53)

Therefore, we observe that the Coulomb problem in three dimensions is in one-to-
one correspondence with half the states of the four-dimensional harmonic oscillator
for even values of the quantum numbers N and L.

In affect, there exists a further degree of freedom in the map y = Y 2, i.e.,

R(y,D,n, l) = c0R(Y,2D − 2 − 2κ,2n − 2 + κ,2l + κ), κ ∈ Z, (7.54)

from which we have the following identity

d = 2D − 2 − 2κ, N = 2n − 2 + κ, L = 2l + κ. (7.55)

This is a general feature of this map that the spectrum of the D-dimensional
Coulomb problem is related to half the spectrum of the d-dimensional harmonic
oscillator for any even integer d .

5 Realization of Dynamic Group SU(1,1)

In this section we are ready to realize the dynamic group SU(1,1) for the radial
Schrödinger equation with the Coulomb potential [194]. For simplicity, we write
out the generalized D-dimensional Sturm basis

SD
nr l

(r) = 2
D−1

2

√
nr !

�(nr + 2l + D − 1)
(2r)le−rL2l+D−2

nr
(2r). (7.56)

Making use of the relations for the Laguerre functions (6.35) and formula (C.29),
we may obtain the raising and lowering operators for the quantum number nr

M± = ±r

(
r
d

dr
− r + M0 ± D − 1

2

)
, (7.57)

where M0 is given by

M0 = −1

2
r

{
d2

dr2
+ D − 1

r

d

dr
− l(l + D − 2)

r2
− 1

}
. (7.58)
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It is found that M± and M0 satisfies the su(1,1) algebra commutation relations

[M0,M±] = ±M±, [M+,M−] = −2M0, (7.59)

with the following properties

M+SD
nr l

(r) = √
(nr + 1)(nr + 2l + D − 1)SD

(nr+1)l(r),

M−SD
nr l

(r) = √
nr(nr + 2l + D − 2)SD

(nr−1)l(r),

M0S
D
nr l

(r) = [nr + l + (D − 1)/2]SD
nr l

(r).

(7.60)

Based on M± = M1 ± iM2, we have

M1 = M0 − r, M2 = −i

(
r
d

dr
+ D − 1

2

)
. (7.61)

The Casimir operator for this group is calculated by

C = M2
0 − 1

2
(M+M− + M−M+), (7.62)

with eigenvalue k(k − 1). After calculating we find the Casimir eigenvalue is

CSD
nr l

(r) =
(
D2

4
+ D(l − 1) − 2l + l2 + 3

4

)
SD
nr l

(r), (7.63)

from which we get two possible solutions k = (2l + D − 1)/2 or k = (3 − D −
2L)/2. However, we are interested only in the positive discrete representations of
su(1,1), D+(k). Thus, we take k = (2l + D − 1)/2.

To establish the connection between the Sturmian functions and the radial
Coulomb functions in arbitrary dimensions D, let us write the D-dimensional ra-
dial Schrödinger equation for the hydrogen atom as

HRD
nr l

= ERD
nr l

, (7.64)

where

H = −1

2

{
d2

dr2
+ D − 1

r

d

dr
− l(l + D − 2)

r2

}
− ξ

r
. (7.65)

If we multiply Eq. (7.64) by r , then we may write the above equation as

(H̄ − ξ)RD
nr l

= 0, (7.66)

where H̄ is named the modified Hamiltonian

H̄ = 1

2
(M0 + M1) − E(M0 − M1). (7.67)

In terms of the tilting transformation [137]

RD
nr l

= CeiθM2SD
nr l

, (7.68)

where the normalization constant C can be calculated by Eq. (7.17). In the calcula-
tion, we consider the relation r = M0 − M1 given in Eq. (7.61).
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Multiplying Eq. (7.66) from the left by e−iθM2 yields

(H − ξ)SD
nr l

= 0, (7.69)

where

H = e−iθM2H̄ eiθM2

= 1

2
eθ (M0 + M1) − Ee−θ (M0 − M1)

= [(1/2 + E) cosh θ + (1/2 − E) sinh θ ]M1

+ [(1/2 + E) sinh θ + (1/2 − E) cosh θ ]M0. (7.70)

The final expression was obtained by performing a similarity transformation on both
the compact generator M0 and the noncompact generator M1. During the calcula-
tion, we have used the Hausdroff-Campbell-Baker formula

e−iαM2(M0 ± M1)e
iαM2 = e±α(M0 ± M1). (7.71)

The choice θ = 1
2 ln(−2E) makes the coefficient of M1 vanish. (Note that the

expression for θ is actually n-dependent due to its definition.) Thus, we have

H = √−2EM0. (7.72)

How to calculate the normalization constant C and the radial function? For this
purpose, we require the following condition due to different metrics for two basses

1 =
∫ ∞

0
|RD

nr l
|2rD−1dr = 〈SD

nr l
r|SD

nr l
〉 = Ce−θ 〈RD

nr l
|(M0 − M1)|SD

nr l
〉, (7.73)

from which we have C = √
ξ/κ2, κ = n + (D − 3)/2.

Now, let us obtain the radial Coulomb functions. In terms of Eq. (7.68) we are
able to write its expression as follows:

RD
nr l

(r) = Ceθ(r
d
dr

+D−1
2 )SD

nr l
(r)

=
√

ξD

κD+1
SD
nr l

(ρ)

=
√

(2ξ)D

2κD+1

√
(n − l − 1)!

(n + l + D − 3)!ρ
le−ρ/2L2l+D−2

n−l−1 (ρ), (7.74)

where we have used the following relations

n = nr + l + 1, ρ = 2ξr

κ
, eln θr d

dr g(r) = g(θr). (7.75)

6 Generalization to Kratzer Potential

In this section let us study a generalized Coulomb potential named Kratzer potential.
It is the sum of a Coulomb and an inverse squared potential as discussed in three
dimensions by Landau and Lifshitz [2].
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As mentioned above, the radial equation of the D-dimensional Schrödinger equa-
tion with a spherically symmetric potential V (r) can be written as

d2

dr2
Rl(r) + D − 1

r

d

dr
Rl(r) +

{
2E − 2V (r) − l(l + D − 2)

r2

}
Rl(r) = 0, (7.76)

where the V (r) is taken as a Kratzer type potential

V (r) = A

r2
− B

r
. (7.77)

Upon taking a new variable ρ = r
√−8E for the bound states, Eq. (7.76) can be

rearranged as

d2Rl(ρ)

dρ2
+ D − 1

ρ2

dRl(ρ)

dρ
+

{
−1

4
+ τ

ρ
− 2A + l(l + D − 2)

ρ2

}
Rl(ρ) = 0, (7.78)

where

τ ≡ B

√
1

−2E
. (7.79)

From the behaviors of the radial function at the origin and at infinity, we define

R(ρ) = ρλe−ρ/2F(ρ), (7.80)

where

λ = 2 − D + √
8A + κ2

2
, κ ≡ |2l + D − 2|. (7.81)

The constraint condition is taken as 8A + κ2 ≥ 0. Substituting of Eq. (7.80) into
Eq. (7.78), we find that F(ρ) satisfies

ρ
d2F(ρ)

dρ2
+ (2λ + D − 1 − ρ)

dF (ρ)

dρ
+

(
τ − λ − D − 1

2

)
F(ρ) = 0, (7.82)

whose solutions are nothing but the 1F1[λ − τ + (D − 1)/2;2λ + D − 1;ρ].
Thus, the eigenfunctions can be expressed as

R(ρ) = Nρλe−ρ/2
1F1

(
λ − τ + D − 1

2
;2λ + D − 1;ρ

)
, (7.83)

where N is the normalization factor to be determined.
We now discuss the eigenvalues. From consideration of the finiteness of the so-

lutions at infinity, the general quantum condition is obtained from Eq. (7.83)

τ − λ − D − 1

2
= n′ = 0,1,2, . . . . (7.84)

Introducing a principal quantum number

n = n′ + κ/2 − D/2 + 2 = n′ + l + 1, (7.85)

from which, together with Eqs. (7.79), (7.84) and (7.85), we have

B

√
1

−2E
= τ = n − l − 1 + λ + D − 1

2
> 0, (7.86)
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which leads to

E(n, l,D) = − 2B2

(2n − 2l − 1 + √
8A + κ2)2

. (7.87)

For a large D, we have

E 	 −2B2{D−2 − 2(2n − 3)D−3 + [3(2n − 3)2 − 8A − (2l − 2)2]D−4 − · · ·},
(7.88)

which implies that the energy E is almost independent of the quantum number l

for a large D, but the quantum number l devotes a small contribution to the energy
E(n, l,D) for a small D.

For a small A, we have

E 	 −2B2
{
(2n + D − 3)−2 − 8A

κ
(2n + D − 3)−3

+ 16A2

κ3
(2n + D − 3)−3 + 48A2

κ2
(2n + D − 3)−4 − · · ·

}
. (7.89)

We now calculate the normalization factor. Note n′ = τ −λ− (D−1)/2 is a non-
negative integer. In terms of the formula (5.21), we can express the radial function
as

R(ρ) = N ρλe−ρ/2L2λ+D−2
n−l−1 (ρ), (7.90)

where the N can be obtained from the normalization condition
∫ ∞

0
R(ρ)2rD−1dr = 1 (7.91)

as follows:

N =
(

4B

2n − 2l + 2λ + D − 3

)D
2

×
[

(n − l − 1)!
(2n − 2l + 2λ + D − 3)�(n − l + 2λ + D − 2)

]1/2

. (7.92)

In the calculation, the formulas (7.18) and (7.19) are used.
We now briefly address the lower-dimensional case. When D = 1, the eigenval-

ues (7.87) reduce to

En = − 2B2

(2n − 1 + √
1 + 8A)2

. (7.93)

The corresponding radial function becomes

R(ρ) =
√

2B

2n + 2s1 − 2

[
(n − 1)!

�(n + 2s1 − 1)

]1/2

ρs1e−ρ/2L
2s1−1
n−1 (ρ), (7.94)

with

s1 = 1 + √
1 + 8A

2
. (7.95)
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Fig. 7.1 The energy spectrum E(1,0,D) decreases with the increasing dimension D ∈ (0,2], but
increases with the dimension D ≥ 2. This is a common property of the energy levels E(n,0,D)

regardless of the quantum number n. The parameters A = 1 and B = 8 are taken

Similarly, when D = 2 the eigenvalues are given by

En,|m| = − 2B2

(2n − 2|m| − 1 + 2
√

2A + m2)2
, (7.96)

where the angular momentum quantum number l is replaced by the traditional no-
tation |m|. The corresponding eigenfunctions are obtained as

R(ρ) = 4B

2(n − |m| + s2) − 1

√
(n − |m| − 1)!

[2(n − |m| + s2) − 1]�(n − |m| + 2s2)

× ρs2e−ρ/2L
2s2
n−|m|−1(ρ), (7.97)

with

s2 =
√

2A + m2. (7.98)

Finally, let us elucidate the properties of energy E(n, l,D) as shown in Figs. 7.1,
7.2, 7.3. We take A = 1 and B = 8 for definiteness. It is shown in Fig. 7.1 that
the energy E(1,0,D) decreases with the dimension D for D ∈ (0,2], but increases
with it for D ≥ 2, so do the energy levels E(n,0,D). This is a common variation for
energy levels E(n,0,D) regardless of the principal quantum number n. This kind
of property can be explained well by the first derivative of the energy with respect
to dimension D

∂E(n, l,D)

∂D
= 4B2κ√

8A + κ2(2n − 2l − 1 + √
8A + κ2)3

. (7.99)

This implies that ∂E(n, l,D)/∂D = 0 due to κ ≡ 2l + D − 2 = 0 when l = 0
and D = 2. That is to say, there exists a turning point at D = 2 for l = 0. It is
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Fig. 7.2 The variation of energy E(2,0,D) (red solid line) on the dimension D is very simi-
lar to E(1,0,D). The E(2,1,D) (blue dashed line) increases with the increasing dimension D.
Specially, note that the E(2,1,D) almost overlaps E(2,0,D) for a large D

Fig. 7.3 The variations of energy E(3, l,D) on the dimension D are very similar to E(2, l,D).
The red, blue dashed and black dotted lines correspond to the different angular momentum quan-
tum numbers l = 0,1,2, respectively

found from Eq. (7.99) that ∂E(n, l,D)/∂D ≤ 0 for D ∈ (0,2). On the contrary,
∂E(n,0,D)/∂D ≥ 0 for D > 2. This has been shown clearly in Figs. 7.1, 7.2, 7.3
for E(n,0,D). When l �= 0, the κ is always positive regardless of dimension D.
Thus, the ∂E(n, l,D)/∂D is positive, too. This means that the energy E(n, l,D)

(l �= 0) monotonically increases with the increasing dimension D as shown in
Figs. 7.2 and 7.3.
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Second, we study the variations of energy E(n, l,D) on the quantum number l.
It is shown in Figs. 7.2 and 7.3 that the energy E(n, l,D) is inversely proportional
to quantum number l. For a large D, however, the energy E(n, l,D) is almost in-
dependent of the quantum number l as shown in Figs. 7.2 and 7.3. This can be
explained well by series expansion for 1/D as given in Eq. (7.15). When D is very
large, the third term involving D−4 can be ignored. Thus, the energy E(n, l,D) is
independent of quantum number l. However, when D is not too large, note that the
quantum number l will make a small contribution to energy E(n, l,D) as shown in
Figs. 7.2 and 7.3. In fact, the relation between E(n, l,D) and D can be explained
well by the first derivative of energy E(n, l,D) with respect to quantum number l

∂E(n, l,D)

∂l
= 8B2(κ − √

8A + κ2)√
8A + κ2(2n − 2l − 1 + √

8A + κ2)3
. (7.100)

This implies that ∂E(n, l,D)/∂l < 0 regardless of the quantum number l and di-
mension D. If A = 0, it is shown from Eq. (7.100) that ∂E(n, l,D)/∂l = 0, which
means that the energy E(n, l,D) is independent of quantum number l.

Third, we investigate the variations of energy levels E(n, l,D) on the principal
quantum number n. We observe that the energy E(n, l,D) monotonically increases
with the increasing n. This can be explained by the first derivative of the energy
E(n, l,D) with respect to the principal quantum number n

∂E(n, l,D)

∂n
= 8B2

(2n − 2l − 1 + √
8A + κ2)3

. (7.101)

It should be pointed out that the energy levels E(n, l,D) will gradually tend to zero
for a large dimension D, so do the energy levels E(n, l,D) for a large n.

Before ending this part, we outline a generalized Coulomb potential in arbi-
trary dimensions [38]. In that work, they proposed a unified approach to treat
the Coulomb and harmonic oscillator potentials in D dimensions. The generalized
Coulomb potential is defined as

v(r) = − 1

r2

(
l + D − 3

2

)(
l + D − 1

2

)

+
(
β − 1

2

)(
β − 3

2

)
γ

4h(r)[h(r) + α]

− a

h(r) + α
− 3γ

16[h(r) + α]2
+ 5αγ

16[h(r) + α]3
, (7.102)

where h(r) is defined in terms of its inverse function

r = r(h) = γ−1/2
[
α tanh−1

(√
h

h + α

)
+√

h(h + α)

]
. (7.103)
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The exact solutions of this system are given by

En = −�
2γ

8μ
ρ2
n,

ψn = γ
1
4 ρ

β+1
2

n

√
�(n + 1)

(2n + β + ρnα)�(n + β)

× [h(r) + α] 1
4 [h(r)] 2β−1

4 e− ρnh(r)
2 L(β−1)

n (ρnh(r)),

(7.104)

where

ρn = 2

α

[√
(n + β/2)2 + aα

γ
− (n + β/2)

]
. (7.105)

Here, we give a useful remark on Eq. (7.102). It is clear to see that this po-
tential carries angular momentum dependence: its first term merely compensates
the centrifugal term arising from the kinetic term of the Hamiltonian. Its second
term also has r−2-like singularity, and thus it cancels the angular momentum depen-
dent term in two important limiting cases that recover the D-dimensional Coulomb
and the harmonic oscillator potentials. The third term represents an asymptotically
Coulomb-like interaction, while the remaining two terms behave like r−2 and r−3

for large values of the variable r . In addition, it should be noted that half century
ago Tangherlini [215] proposed a generalized Keplerian problem when he studied
the hydrogen atom in n dimensions, i.e.,

V (n, r) = − e2

(n − 2)rn−2
, (7.106)

which implies that it cannot be acceptable for n = 2. This is the reason why the
Coulomb potential is taken as the logarithmic form ln r in two dimensions.

7 Concluding Remarks

In this Chapter we have studied the analytical solutions of the D-dimensional
Schrödinger equation with a Coulomb potential in arbitrary dimensions. The shift
operators for the Coulomb potential have been established by factorization method.
These operators constructed a set of potentials with the same energy level, i.e., keep
the energy level fixed but change the potential shape. Additionally, the mapping
between the radial equations of the D-dimensional hydrogen atom and harmonic
oscillator has been shown. In addition to these, we have realized the dynamical
group SU(1,1) using the Sturm basis. Finally, we have investigated the variations
of energy E(n, l,D) on the dimension D for the Kratzer potential and reviewed the
generalized Coulomb potential.



Chapter 8
Wavefunction Ansatz Method

1 Introduction

It is well known that the solutions of the fundamental dynamic equations play a
very important role in physics. The exact solutions of wave equations are possi-
ble only for a few potentials. We have to use some approximation methods to ob-
tain their solutions. Until now, many efforts have been made to solve the stationary
Schrödinger equation with the anharmonic potentials containing negative powers of
the radial coordinate [221–243]. Interest in them stems from the fact that the study
of the Schrödinger equation with these potentials provides us for insight into the
physical problem. However, most of those works have been mainly carried out in
the lower-dimensional space. The purpose of this Chapter is, by applying a suitable
ansatz to the wavefunction, to analyze the D-dimensional radial Schrödinger equa-
tion with anharmonic potentials such as the sextic potential V (r) = ar6 +br4 +cr2,
the singular integer power potentials V (r) = ar2 +br−2 +cr−4 +dr−6, the singular
fraction power potentials V (r) = ar−1/2 + br−3/2 and others.

This Chapter is organized as follows. The Schrödinger equation with these anhar-
monic potentials will be treated by the wavefunction ansatz method in Sects. 2–4.
The concluding remarks will be given in Sect. 5.

2 Sextic Potential

For simplicity the atomic units � = μ = 1 are employed if not explicitly stated oth-
erwise. Since the Schrödinger equation with spherically symmetric central fields

{
−1

2
∇2 + V (r)

}
ψ(r) = Eψ(r) (8.1)

keeps invariant in spatial rotation, the solutions of radial Schrödinger equation can
be expressed as

ψ(r) = r−(D−1)/2U(r)Y l
lD−1...l1

(x̂), (8.2)
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where the Y l
lD−1...l1

(x̂) is the generalized spherical functions. Substitution of this into
the Schrödinger equation allows us to obtain the radial Schrödinger equation
{

d2

dr2
− l(l + D − 2) + (D − 1)(D − 3)/4

r2

}
U(r) = −2[E − V (r)]U(r), (8.3)

which can be rearranged as
{

d2

dr2
− κ2 − 1/4

r2

}
U(r) = −2[E − V (r)]U(r), (8.4)

where κ is given in Eq. (5.4).
Now, we are going to study the sextic potential

V (r) = ar6 + br4 + cr2, a > 0. (8.5)

For the solutions of Eq. (8.4) with this potential, we take an ansatz for the radial
wavefunction

U(r) = exp[p(α,β, r)]
∑

n=0

anr
2n+κ+1/2, (8.6)

where

p(α,β, r) = 1

2
βr2 + 1

4
αr4. (8.7)

Substituting Eq. (8.6) into Eq. (8.4) and equating the coefficient of r2n+κ+5/2 to
zero, one can obtain

Anan + Bn+1an+1 + Cn+2an+2 = 0, (8.8)

where

An = β2 + 2(2 + κ + 2n)α − 2c,

Bn = 2E + 2(1 + κ + 2n)β,

Cn = 4n(κ + n),

(8.9)

and two constraint conditions

α2 = 2a, 2αβ = 2b. (8.10)

It is shown from Eq. (8.10) that the values of parameters for p(α,β, r) can be eval-
uated as

α = ±√
2a, β = b

α
. (8.11)

To retain the well-behaved solutions at the origin and at infinity, we choose the
physically acceptable solutions as follows:

α = −√
2a, β = − b√

2a
. (8.12)
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On the other hand, we know that the physical solutions of (8.8) and (8.9), with
real E, require that An−1Cn > 0 for all relevant n, because the matrix equivalent
can then be reduced to a real symmetric form by the substitution [234]

dn =
√

An−1

Cn

An−2

Cn−1
· · · A0

C1
d ′
n, (8.13)

where dn represents the basis vectors of the matrix. However, Cn > 0 for all n,
while An becomes positive for sufficiently large n, unless the series is truncated by
the condition Ap = 0. Therefore, we have

2c + 2
√

2a(2 + κ + 2p) − b2

2a
= 0. (8.14)

This is a restriction on the parameters of the potential and κ . As our previous work
[234], An,Bn and Cn must satisfy the determinant relation for a nontrivial solution

det

∣∣∣∣∣∣∣∣

B0 C1 · · · · · · · · · 0
A0 B1 C2 · · · · · · 0
...

...
...

. . .
...

...

0 0 0 0 Ap−1 Bp

∣∣∣∣∣∣∣∣

= 0. (8.15)

To interpret this method, we will give the exact solutions for p = 0,1 as follows:

(1): when p = 0, it is found from Eq. (8.15) that B0 = 0, which, together with the
values of α and β , leads to

E0 = b(1 + κ)√
2a

. (8.16)

The restriction on the parameters of the potential and κ can be obtained from
Eq. (8.14)

κ = b2 − 4ac

4a
√

2a
− 2, (8.17)

from which, together with κ we are able to obtain an important constraint on
the parameters of potential and the angular momentum quantum number l for
a given dimension D. That is to say, the choice of those parameters of potential
can be taken arbitrarily. The wavefunction for p = 0 can be written as

ψ(0)(r) = a0r
l exp

[
− b

2
√

2a
r2 −

√
2a

4
r4
]
, (8.18)

where a0 is the normalization constant.
(2): when p = 1, we can obtain the following relation from Eq. (8.15)

B0B1 − A0C1 = 0, (8.19)

from which, we have

E1 = b(2 + κ)√
2a

± 1√
2a

√
b2(2 + κ) − 4ac(1 + κ) − 4

√
2a3/2(2 + 3κ + κ2).

(8.20)
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Likewise, the restriction on the parameters of the potential and κ can be
obtained from Eq. (8.14)

κ = b2 − 4ac

4a
√

2a
− 4. (8.21)

The eigenfunction for p = 1 can be read as

ψ(1)(r) = (a0 + a1r
2)rl exp

[
− b

2
√

2a
r2 −

√
2a

4
r4
]
, (8.22)

where the a0 and a1 are the expansion constants. Following this way, we can
generate a class of exact solutions through setting p = 0,1,2, . . . , etc. Gener-
ally, if ap �= 0, but ap+1 = ap+2 = · · · = 0, we have Ap = 0, which leads to
a restriction on the parameters of the potential and κ . The eigenvalue can be
obtained from Eq. (19). The eigenfunction becomes

ψ(p)(r) = (a0 + a1r
2 + · · · + apr

2p)rl exp

[
− b

2
√

2a
r2 −

√
2a

4
r4
]
, (8.23)

where ai (i = 0,1,2, . . . , p) are the expansion constants.

3 Singular One Fraction Power Potential

This potential can be taken as

V (r) = a

r1/2
+ b

r3/2
. (8.24)

Take the following ansatz for the wavefunction

U(r) = exp[αr + 2βr1/2]
∑

n=0

anr
n/2+κ+1/2. (8.25)

On substituting this into Eq. (8.4) and setting the coefficient of rn/2+κ−1/2 to zero,
we have

Anan + Bn+1an+1 + Cn+2an+2 = 0, (8.26)

where

An = β2 + α(n + 2κ + 1),

Bn = β(n + 2κ + 1/2) − 2b,

Cn = n(κ + n/4),

(8.27)

and

α2 + 2E = 0, αβ = a, (8.28)

from which we take the physically acceptable solutions

α = −√−2E, β = − a√−2E
. (8.29)
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Similarly, taking Ap = 0 leads to

Eκ
p = −1

2

(
a2

2κ + 1 + p

)2/3

. (8.30)

(1): when p = 0, it is easy to obtain

Eκ
0 = −1

2

(
a2

2κ + 1

)2/3

. (8.31)

Besides, it is shown from Eq. (8.15) that B0 = 0, which leads to a constraint
condition between the parameters of the potential and κ ,

(κ + 1/4)[a(2κ + 1)]1/3 + b = 0. (8.32)

The eigenfunction for p = 0 can be written as

ψ(0)(r) = exp

[
−
√

−2Eκ
0 r − 2a

√−2Eκ
0

r1/2
]
a0r

l . (8.33)

(2): when p = 1, the eigenvalue can be obtained from Eq. (8.30) as

Eκ
1 = −1

2

(
a2

2κ + 2

)2/3

. (8.34)

On the other hand, based on Eq. (8.15) we have B0B1 = A0C1, which leads
to

[β(2κ + 1/2) − 2b][β(2κ + 3/2) − 2b] = [β2 + α(1 + 2κ)](κ + 1/4), (8.35)

where

β = −[2a(1 + κ)]1/3, α = −
(

a2

2 + 2κ

)1/3

. (8.36)

The eigenfunction for p = 1 now becomes

ψ(1)(r) = exp

[
−
√

−2Eκ
1 r − 2a

√−2Eκ
1

r1/2
]
(a0 + a1r

1/2)rl, (8.37)

where the a0 and a1 are expansion constants.
For a given p, the wavefunction can be written as

ψ(p)(r) = exp

[
−
√

−Eκ
pr − a

√
−Eκ

p

r1/2
]
(a0 + a1r

1/2 + · · · + apr
p/2)rl,

(8.38)

where ai (i = 0,1,2, . . . , p) are the expansion constants.

4 Mixture Potential

This potential has the form

V (r) = ar2 + br + c

r
, a > 0. (8.39)
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Take the ansatz as follows:

U(r) = exp[p(α,β, r)]
∑

n=0

anr
n+κ+1/2, (8.40)

where

p(α,β, r) = βr + 1

2
αr2. (8.41)

Similarly, we can obtain the following set of equations on substituting Eq. (8.40)
into Eq. (8.4) and equating the coefficients of rκ+n+1/2 to zero,

Anan + Bn+1an+1 + Cn+2an+2 = 0, (8.42)

where

An = 2E + 2α(1 + n + κ) + β2,

Bn = −2c + β(2n + 2κ + 1),

Cn = n(n + 2κ),

(8.43)

and

α2 = 2a, αβ = b. (8.44)

Similar to above choice, the physically acceptable solutions are chosen as

α = −√
2a, β = − b√

2a
. (8.45)

Let us now consider the case ap �= 0, but ap+1 = ap+2 = · · · = 0. From Eq. (8.15)
we have Ap = 0, from which we can obtain the eigenvalue

Eκ
p = √

2a(1 + κ + p) − b2

4a
. (8.46)

For example, the exact solutions for p = 0,1 can be illustrated below.

(1): when p = 0, we have

Eκ
0 = √

2a(1 + κ) − b2

4a
. (8.47)

On the other hand, it is shown from Eq. (8.15) that B0 = 0, which leads to
the following restriction on the parameters of the potential and κ ,

2c
√

2a + b(1 + 2κ) = 0. (8.48)

The eigenfunction for p = 0 can be written as

ψ(0)(r) = a0r
l exp

[
−br + ar2

√
2a

]
, (8.49)

where the a0 are the expansion constant.



5 Non-polynomial Potential 103

(2): when p = 1, the eigenvalue becomes

Eκ
1 = √

2a(κ + 2) − b2

4a
. (8.50)

Moreover, it is shown from Eq. (8.15) that B0B1 = A0C1, which leads to a
restriction on the parameters of the potential and κ

(
2c + (1 + 2κ)b√

2a

)(
2c + (3 + 2κ)b√

2a

)
= 2

√
2a(1 + 2κ). (8.51)

The eigenfunction for p = 1 can be read as

ψ(1)(r) = (a0 + a1r)r
l exp

[
−br + ar2

√
2a

]
, (8.52)

where the a0 and a1 are the expansion constants. Similarly, if ap �= 0, but
ap+1 = ap+2 = · · · = 0, we have Ap = 0, from which we can obtain the eigen-
value. For a given p, the restriction can be determined by Eq. (14). The eigen-
function can be read as

ψ(p)(r) = (a0 + a1r + · · · + apr
p)rl exp

[
−br + ar2

√
2a

]
, (8.53)

where the coefficients ai (i = 0,1,2, . . . , p) are the expansion constants.

5 Non-polynomial Potential

This potential has the form

V (r) = r2 + λr2

1 + gr2
. (8.54)

Take the following ansatz

U(r) = exp

[
1

2
αr2

]∑

n=0

anr
2n+κ+1/2. (8.55)

On substituting this into Eq. (8.4) and setting the coefficient of r2n+κ+5/2 to zero,
one can obtain the following recurrence relation

Anan + Bn+1an+1 + Cn+2an+2 = 0, (8.56)

where

An = −2λ + 2g[E + α(1 + κ + 2n)],
Bn = 2E + 2α(2n + κ + 1) + 4ng(κ + n),

Cn = 4n(n + κ),

(8.57)

and

α2 = 2. (8.58)
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With the same reason, we choose α = −√
2. Likewise, if ap �= 0, but ap+1 =

ap+2 = · · · = 0, we can obtain Ap = 0, which leads to the following relation

Eκ
p = λ

g
+ √

2(κ + 1 + 2p). (8.59)

To expound this method, we will give the exact solutions for p = 0,1 as follows.

(1): when p = 0, it is easy to obtain

Eκ
0 = λ

g
+ √

2(κ + 1). (8.60)

On the other hand, it is shown from Eq. (8.15) that B0 = 0, which means
λ = 0. This refers to harmonic oscillator case. The eigenfunction for p = 0 can
be simply written as

ψ(0)(r) = a0r
l exp

[
− r2

√
2

]
, (8.61)

where a0 is the expansion constant.
(2): when p = 1, the eigenvalue can be obtained as

Eκ
1 = λ

g
+ √

2(κ + 3). (8.62)

In this case, it is shown from B0B1 −A0C1 = 0 that a constraint on the potential
parameters and κ is given by

2
√

2g + 2g2(1 + κ) + λ = 0. (8.63)

The eigenfunction for p = 1 can be read as

ψ(1)(r) = (a0 + a1r
2)rl exp

[
− 1√

2
r2
]
, (8.64)

where the a0 and a1 are the expansion constants. Generally, if ap �= 0, but
ap+1 = ap+2 = · · · = 0, we can obtain Ap = 0. The eigenfunction can be writ-
ten as

ψ(p)(r) = (a0 + a1r
2 + · · · + apr

2p)rl exp

[
− 1√

2
r2
]
, (8.65)

where ai (i = 0,1,2, . . . , p) are the expansion constants.

6 Screened Coulomb Potential

For this potential

V (r) = a

r
+ b

r + λ
, a < −b, (8.66)
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take the following ansatz

U(r) = eβ r
∑

n=0

an(r + λ)rn+κ+1/2. (8.67)

Substituting this into Eq. (8.4) and setting the coefficient of rn+κ+1/2 to zero, we
have

Anan + Bn+1an+1 + Cn+2an+2 = 0, (8.68)

where

An = −2a − 2b + (3 + 2n + 2κ)β,

Bn = 2(1 + βλ)(n + κ + 1/2) − 2aλ + n(n + 2κ),

Cn = λn(n + 2κ),

(8.69)

and

β2 + 2E = 0. (8.70)

Based on this Eq. (8.70) we take

β = −√−2E. (8.71)

This is required by the physically acceptable solution. On the other hand, if ap �= 0,
but ap+1 = ap+2 = ap+3 = · · · = 0, it is easy to obtain Ap = 0, i.e.,

Eκ
p = − (a + b)2

2(3/2 + κ + p)2
. (8.72)

To show this method, we present exact solutions for p = 0 and 1 below.

(1): when p = 0, it is found from Eq. (8.72) that

Eκ
0 = − (a + b)2

2(3/2 + κ)2
. (8.73)

The restriction on the parameters of the potential and κ can be obtained from
B0 = 0 as

(κ + 1/2)(κ + 3/2) = λ(2aκ + bκ + 2a + b/2). (8.74)

The eigenfunction for p = 0 now becomes

ψ(0)(r) = a0r
l exp

[−
√

−2Eκ
0 r

]
(r + λ), (8.75)

where a0 is the expansion constant.
(2): when p = 1, one can obtain the eigenvalue as follows:

Eκ
1 = − (a + b)2

2(5/2 + κ)2
. (8.76)

The restriction on the parameters of the potential and κ can be obtained from
B0B1 = A0C1. The eigenfunction for p = 1 becomes

ψ(1)(r) = (a0 + a1r)r
l exp

[−
√

−2Eκ
1 r

]
(r + λ), (8.77)
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where the a0 and a1 are expansion constants. For a given p, if ap �= 0, but
ap+1 = ap+2 = · · · = 0, we have Ap = 0. The eigenfunction can be written as

ψ
(p)
r = (a0 + a1r + · · · + apr

p)rl exp
[−

√
−2Eκ

pr
]
(r + λ), (8.78)

where ai (i = 0,1,2, . . . , p) are the expansion constants.

7 Morse Potential

Due to its mathematical advantages, the harmonic oscillator model has been widely
used to describe the interaction force of the diatomic molecule. Nevertheless, it is
well known that the real molecular vibrations are anharmonic. Among many molec-
ular potentials, the Morse potential as an ideal and typical anharmonic potential
permits an exactly mathematical treatment and has been the subject of interest since
1929 [244]. In particular, the Morse potential will reduce to the harmonic oscillator
in the harmonic limit.

Choose the separated atoms limit as the zero-point energy. The Morse potential
has the following form

V (r) = V0(e
−2βr − 2e−βr ), (8.79)

where V0 > 0 corresponds to its depth, β is related to the range of the potential, and
r gives the relative distance from the equilibrium position of the atoms.

Following approach [245] and our recent work [246], we can take the ansatz for
the wavefunction

R(r) = rτ e−brG(r), b = √−2E, E < 0. (8.80)

Substitution of this into (8.4) leads to

rτ
d2G(r)

dr2
+ (2τrτ−1 − 2brτ )

dG(r)

dr
+

[
τ(τ − 1)rτ−2 − 2bτrτ−1

+ (b2 + 2E − 2V (r))rτ −
(
κ2 − 1

4

)
rτ−2

]
G(r) = 0, (8.81)

which is re-arranged as

[τ(τ − 1) − (κ2 − 1/4)]G(r) +
(

2τ
dG(r)

dr
− 2bτG(r)

)
r

+
(
d2G(r)

dr2
− 2b

dG(r)

dr
− 2V (r)G(r)

)
r2 = 0. (8.82)

From the behavior of the wavefunction at the origin, it is shown from Eqs. (8.81)
and (8.82) that

τ = κ + 1

2
= l + D − 1

2
, (8.83)

where another solution τ = 1/2 − κ is ignored in physics.
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As shown in [246], we expand the Morse potential about the origin as follows:

V (r) = 2V0

∞∑

l=0

clr
l, (8.84)

where we have used an important formula

e−2βr − 2e−βr = (e−βr − 1)2 − 1

= 2
∞∑

l=0

(−1)l(2l−1 − 1)
βl

l! r
l

= 2
∞∑

l=0

clr
l . (8.85)

We take the standard series for G(r) with the form

G(r) =
∞∑

k=0

γkr
k, γ0 �= 0. (8.86)

Substituting of this, together with Eq. (8.85), into Eq. (8.82) and setting the coeffi-
cients of the powers of rn (n = l + k + 2) to zero, one can obtain

∞∑

k=0

[k(2κ + k)]γkrk −
∞∑

k=0

2b(k + κ + 1/2)γkr
k+1 − 4V0

∞∑

k=0

∞∑

l=0

clγkr
l+k+2 = 0,

(8.87)

from which we have

γ1 = bγ0,

γ2 = b(2κ + 3)γ1 + 4V0γ0c0

4 + 4κ
,

γ3 = b(2κ + 5)γ2 + 4V0(γ1c0 + γ0c1)

9 + 6κ
.

(8.88)

Similarly continuing to use Eq. (8.87), we can finally obtain the expansion coeffi-
cients γn as

γn = b(2κ + 2n − 1)γn−1 + 4V0Sn,k

n(2κ + n)
, (8.89)

with

Sn,k =
n−2=N∑

l=0,l≥2

clγN−l . (8.90)

Accordingly, we can finally obtain the analytical solutions of the Schrödinger
equation with the Morse potential in arbitrary dimensions as

R(r) = r1/2+κe−br
∞∑

n=0

γnr
n, γ0 �= 0. (8.91)
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Thus, for a given Morse potential, we can always find the suitable eigenvalue to
make the wavefunction R(r) convergent when r tends to infinity.

8 Conclusions

In this Chapter we have carried out the solutions of the D-dimensional radial
Schrödinger equation with some anharmonic potentials applying an ansatz to the
wavefunction and obtained the restrictions on the parameters of the potential and κ .
These potentials include the sextic potential, singular one fraction power potential,
mixture potential, non-polynomial potential, screened Coulomb potential and Morse
potential. Before ending this Chapter, we give a useful remark on this method. As
far as all insoluble physical quantum systems, we have to treat them by different
approximate methods. By using present wavefunction ansatz method, one is able to
only obtain some so-called eigenfunctions with some constraints on the potential
parameters and quantum numbers.



Chapter 9
The Levinson Theorem for Schrödinger
Equation

1 Introduction

The Levinson theorem [109] as an important theorem in quantum scattering theory
establishes the relation between the total number nl of bound states and the phase
shift δl(0) of the scattering states at zero momentum. For the Schrödinger equation
with a spherically symmetric potential V (r), the short-range central potential V (r)

satisfies the boundary conditions
∫ 1

0
r|V (r)|dr < ∞,

∫ ∞

1
r2|V (r)|dr < ∞.

(9.1)

They are required for the nice behavior of the wavefunction at the origin and the
analytic property of the Jost function, respectively.

Since 1949 the Levinson theorem has been proved by different methods and gen-
eralized to different equations and potentials [184, 247–296]. With the recent inter-
est in higher-dimensional field theory, we attempt to establish the Levinson theorem
for the D-dimensional Schrödinger equation by the Sturm-Liouville theorem.

This Chapter is organized as follows. We study the scattering states and bound
states in Sects. 2 and 3, respectively. The Sturm-Liouville theorem is carried out
in Sect. 4. The non-relativistic Levinson theorem in D dimensions is established
in Sect. 5. The general case will be discussed in Sect. 6. In Sect. 7 we present the
comparison theorem. We summarize our conclusions in Sect. 8.

2 Scattering States and Phase Shifts

Let us consider the D-dimensional Schrödinger equation
(

− �
2

2M
�2

D +V (r)

)
�(r) = E�(r), (9.2)
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which keeps invariant in spatial rotation. Therefore, choose the wavefunction as

�(r) = r−(D−1)/2Rl(r)Y
l
lD−1...l1

(x̂). (9.3)

By separating the angular variables from the wavefunction we obtain the radial
Schrödinger equation as

{
d2

dr2
− (l − 1 + D/2)2 − 1/4

r2

}
Rl(r) = −2M

�2
{E − V (r)}Rl(r), (9.4)

which is a real equation so that we only discuss its real solutions.
For simplicity, we first study Eq. (9.4) with a cutoff potential

V (r) = 0, when r ≥ r0, (9.5)

where r0 is a sufficiently large radius. The general case will be studied in Sect. 6.
Similar to previous works [290, 291], we introduce a parameter λ for V (r)

V (r, λ) = λV (r), V (r,1) = V (r). (9.6)

Thus, Eq. (9.4) can be modified as
{

∂2

∂r2
− η2 − 1/4

r2

}
Rl(r, λ) = −2M

�2
[E − V (r,λ)]Rl(r, λ), (9.7)

where η = |l − 1 + D/2| is the same as κ given in Eq. (5.4) for difference. As you
see below, we use κ to denote the energy.

We now solve this equation in two regions and match the logarithmic derivative
of the radial function at r0:

Al(E,λ) ≡
[

1

Rl(r, λ)

∂Rl(r, λ)

∂r

]

r=r−
0

=
[

1

Rl(r, λ)

∂Rl(r, λ)

∂r

]

r=r+
0

. (9.8)

From (9.1) there exists a convergent solution to Eq. (9.7) at the region [0, r0]. When
V (r,0) = 0 this solution is given by

Rl(r,0) = (πkr/2)1/2Jη(kr), (9.9)

when E > 0 and k = (2ME)1/2/�,

Rl(r,0) = e−iηπ/2(πκr/2)1/2Jη(iκr), (9.10)

when E ≤ 0 and κ = (−2ME)1/2/�. Jν(x) is the Bessel function and Rl(r,0) in
Eqs. (9.9) and (9.10) is a real function. A multiplied factor on Rl(r,0) is unimpor-
tant.

In the region (r0,∞), we have V (r,λ) = 0. When E > 0 the combination of two
oscillatory solutions to Eq. (9.7) can always satisfy Eq. (9.8) so that there exists a
continuous spectrum

Rl(r, λ) = (πkr/2)1/2[cos δl(k, λ)Jη(kr) − sin δl(k, λ)Nη(kr)]
∼ cos

[
kr − (2η − 1)π

4
+ δl(k, λ)

]
, when r → ∞, (9.11)
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where Nν(kr) is the Neumann function. Although V (r,λ) does not depend on λ in
the region (r0,∞), through Eq. (9.8), Rl(r, λ) and the phase shift δl(k, λ) depend
on λ. In fact, from Eq. (9.8) we can obtain

tan δl(k, λ) = Jη(kr0)

Nη(kr0)

Al(E,λ) − k
J ′
η(kr0)

Jη(kr0)
− 1

2r0

Al(E,λ) − k
N ′

η(kr0)

Nη(kr0)
− 1

2r0

, (9.12)

δl(k) ≡ δl(k,1), (9.13)

where the prime denotes the derivative of the Bessel function, the Neumann func-
tion, and later the Hankel function with respect to their arguments. It is found from
Eq. (9.12) that the δl(k, λ) is determined up to a multiple of π due to the period of
the tangent function. As usual, we may use the convention that

δl(k) = 0, when V (r) = 0, (9.14)

which implies that δl(∞) = 0 as defined in [1].

3 Bound States

Because when E ≤ 0 there is only one convergent solution to Eq. (9.7) in the region
r > r0, Eq. (9.7) is not always satisfied

Rl(r, λ) = ei(η+1)π/2(πκr/2)1/2H(1)
η (iκr) ∼ e−κr , when r → ∞, (9.15)

where H
(1)
ν (x) is the Hankel function of the first kind. Actually, Rl(r, λ) in

Eq. (9.15) does not depend on λ. The matching condition (9.8) may be satisfied
only for some discrete energy E, where a bound state appears. Therefore, there ex-
ists a discrete spectrum for E ≤ 0.

It is worth paying attention to the solutions with E = 0. If Al(0,1) (zero momen-
tum and λ = 1) is equal to (1 − 2η)/(2r0), it matches a solution of zero energy

Rl(r,1) = r(1−2η)/2, r0 < r < ∞, (9.16)

from which we know the solution describes a bound state for l > 2−D/2 and a half
bound state for l ≤ 2 − D/2.

4 The Sturm-Liouville Theorem

Since Eq. (9.7) is a Sturm-Liouville type equation, then it must satisfy the Sturm-
Liouville theorem. For this problem, it is known that the logarithmic derivative of
wavefunction is monotonic with respect to the energy [297]. Due to this property,
the Sturm-Liouville theorem has become a powerful tool in proving the Levinson
theorem.
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Denote by Rl(r, λ) the solution to Eq. (9.7) for the energy E
{

∂2

∂r2
− η2 − 1/4

r2

}
Rl(r, λ) = −2M

�2
[E − V (r,λ)]Rl(r, λ). (9.17)

Multiplying Eq. (9.7) and Eq. (9.17) by Rl(r, λ) and Rl(r, λ), respectively and cal-
culating their difference, we have

∂

∂r

{
Rl(r, λ)

∂Rl(r, λ)

∂r
− Rl(r, λ)

∂Rl(r, λ)

∂r

}

= −2M

�2
(E − E)Rl(r, λ)Rl(r, λ). (9.18)

From the boundary condition, both solutions Rl(r, λ) and Rl(r, λ) vanish at the ori-
gin. Integrating Eq. (9.18) from 0 to r0, we obtain

1

E − E

[
Rl(r, λ)

∂Rl(r, λ)

∂r
− Rl(r, λ)

∂Rl(r, λ)

∂r

]

r=r−
0

= −2M

�2

∫ r0

0
Rl(r, λ)Rl(r, λ)dr. (9.19)

By taking the limit E → E, we have

∂Al(E,λ)

∂E
= ∂

∂E

[
1

Rl(r, λ)

∂Rl(r, λ)

∂r

]

r=r−
0

= − 2M

�2Rl(r0, λ)2

∫ r0

0
Rl(r, λ)

2dr < 0. (9.20)

When E = �
2k2/(2M) is larger than zero and tends to zero, we have

Al(E,λ) = Al(0, λ) − c2k2 + · · · , c2 ≤ 0. (9.21)

Similarly, from the boundary condition that Rl(r, λ) tends to zero at infinity, we
have

∂

∂E

[
1

Rl(r, λ)

∂Rl(r, λ)

∂r

]

r=r+
0

= 2M

�2Rl(r0, λ)2

∫ ∞

r0

Rl(r, λ)
2dr > 0. (9.22)

This is another form of the Sturm-Liouville theorem [297]. As E increases, the
logarithmic derivative of the radial function at r−

0 decreases monotonically, but
that at r+

0 for E ≤ 0 increases monotonically. When E ≤ 0 because both sides of
Eq. (9.8) are monotonic as energy changes, the variety of the Al(0, λ) determines
the number of bound states as λ changes.

5 The Levinson Theorem

In this section we apply the Sturm-Liouville theorem to show that both phase shifts
and the number of bound states are related with the variety of the logarithmic deriva-
tive Al(0, λ).
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We first study relation between the nl and the Al(0, λ) when the potential
changes. From the Sturm-Liouville theorem, when E ≤ 0 the logarithmic deriva-
tive of the radial function at r0 is monotonic with respect to E. From Eq. (9.15) we
obtain the logarithmic derivative

(
1

Rl(r, λ)

∂Rl(r, λ)

∂r

)

r=r+
0

= iκH
(1)
η (iκr0)

′

H
(1)
η (iκr0)

− 1

2r0

=
{ 1−2η

2r0
, when E ∼ 0,

−∞, when E → −∞,
(9.23)

which does not depend on λ. On the other hand, when λ = 0 we obtain from
Eq. (9.10)

Al(E,0) =
(

1

Rl(r,0)

∂Rl(r,0)

∂r

)

r=r−
0

= iκJ ′
η(iκr0)

Jη(iκr0)
− 1

2r0

=
{ 2η+1

2r0
, when E ∼ 0,

∞, when E → −∞.
(9.24)

It is evident from Eqs. (9.23) and (9.24) that there is no overlap between two variant
ranges of two logarithmic derivatives when λ = 0 and as the energy increases from
−∞ to 0. Thus, there is no bound state except for the case of l = 0 and D = 2,
where a half bound state occurs at E = 0.

Second, we study the relation between the δl(0, λ) and the Al(0, λ) when the po-
tential changes. The δl(0, λ) is the limit of the δl(k, λ) as k tends to zero. Therefore,
we are interested in the δl(k, λ) at a sufficiently small momentum k, i.e., k � 1/r0.
In this case we obtain from Eq. (9.12)

tan δl(k, λ) = −π(kr0)
2η

22η�(η + 1)�(η)

· Al(l, λ) − 2η+1
2r0

Al(0, λ) − c2k2 − 1−2η
2r0

[1 − (kr0)
2

(2η−1)(η−1) ]
, (9.25)

for l > 2 − D/2,

tan δl(k, λ) = −π(kr0)
2

4

Al(0, λ) − 3
2r0

Al(0, λ) − c2k2 + 1
2r0

[1 + 2(kr0)2 ln(kr0)]
(9.26)

for l = 2 − D/2 (D = 4 and l = 0 or D = 2 and l = 1),

tan δl(k, λ) = −(kr0)
Al(0, λ) − 1

r0

Al(0, λ) − c2k2 + k2r0
, (9.27)

for l = (3 − D)/2 (D = 3 and l = 0), and

tan δl(k, λ) = π

2 ln(kr0)

Al(0, λ) − c2k2 − 1
2r0

[1 − (kr0)
2]

Al(0, λ) − c2k2 − 1
2r0

[1 + 2
ln(kr0)

] , (9.28)

for l = 1 − D/2 (D = 2 and l = 0).
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Likewise, we can also obtain from Eq. (9.12) that the δl(k, λ) increases mono-
tonically as the Al(E,λ) decreases

∂δl(k, λ)

∂Al(E,λ)

∣∣∣∣
k

= −8r0 cos2 δl(k, λ)

π{[2r0Al(E,λ) − 1]Nη(kr0) − 2kr0N ′
η(kr0)}2

≤ 0, (9.29)

where k = (2ME)1/2/�.
Since Eq. (9.7) is analogous to that of two-dimensional case [291], we suggest

the readers refer to Ref. [291]. By repeating the proof in [290, 291], we can obtain
the Levinson theorem for the D-dimensional Schrödinger equation in non-critical
cases

δl(0) = nlπ. (9.30)

Similarly, in critical cases l = 2 −D/2 and l = (3 −D)/2, the Levinson theorem
must be modified as

δl(0) =
{
(nm + 1)π, when l = 1, D = 2, or l = 0, D = 4,

(nm + 1/2)π, when l = 0, D = 3,
(9.31)

when a half bound state occurs. The Levinson theorems given in Eqs. (9.30) and
(9.31) coincide with the results obtained in two and three dimensions.

6 Discussions on General Case

We now discuss the general case where the potential V (r) has a tail at r > r0. Let
r0 be so large that only the leading term in V (r) is concerned in the region r > r0:

V (r) ∼ �
2

2M
br−n, when r → ∞, (9.32)

where b is a non-vanishing constant and n is a positive constant, not necessarily to be
an integer. From (9.1) n should be larger than 3. However, we are also interested in
the modification of the Levinson theorem for n = 2, for which Newton [249–253]
found two counterexamples where the Levinson theorem is violated. Substituting
Eq. (9.32) into Eq. (9.7) and changing the variable r to ξ

ξ =
{
kr = r

√
2ME/�, when E > 0,

κr = r
√−2ME/�, when E ≤ 0,

(9.33)

we get the radial equation at the region (r0,∞)

∂2Rl(ξ, λ)

∂ξ2
+

{
1 − b

ξn
kn−2 − 4η2 − 1

4ξ2

}
Rl(ξ, λ) = 0, (9.34)

for E > 0, and

∂2Rl(ξ, λ)

∂ξ2
+

{
−1 − b

ξn
κn−2 − 4η2 − 1

4ξ2

}
Rl(ξ, λ) = 0, (9.35)

for E ≤ 0.
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When n = 2, if we define

ν2 = η2 + b, (9.36)

then Eq. (9.34) becomes

∂2Rl(r, λ)

∂r2
+

{
2ME

�2
− ν2 − 1/4

r2

}
Rl(r, λ) = 0, r ≥ r0. (9.37)

If ν2 < 0, there are infinite number of bound states. Here, we will not discuss this
case as well as the case with ν = 0. When ν2 > 0, we take ν > 0. Some formulas
given in the previous sections will be changed by replacing the parameter η with ν

(η �= ν). Equation (9.23) becomes
(

1

Rl(r, λ)

∂Rl(r, λ)

∂r

)

r=r+
0

= iκH
(1)
ν (iκr0)

′

H
(1)
ν (iκr0)

− 1

2r0

=
{

1−2ν
2r0

, when E ∼ 0,

−κ ∼ −∞, when E → −∞.
(9.38)

The scattering solution (9.11) in the region (r0,∞) is modified as

Rl(r, λ) =
√

πkr

2
{cosηl(k, λ)Jν(kr) − sinηl(k, λ)Nν(kr)}

∼ sin

(
kr − νπ

2
+ π

4
+ ηl(k, λ)

)
, when r → ∞. (9.39)

The δl(k) can be thus calculated from ηl(k,1)

δl(k) = ηl(k,1) + (η − ν)π/2. (9.40)

The ηl(k, λ) satisfies

tanηl(k, λ) = Jν(kr0)

Nν(kr0)

Al(E,λ) − k
J ′
ν(kr0)

Jν(kr0)
− 1

2r0

Al(E,λ) − k
N ′

ν(kr0)

Nν(kr0)
− 1

2r0

, (9.41)

and it increases monotonically as the Al(E,λ) decreases:

∂ηl(k, λ)

∂Al(E,λ)

∣∣∣∣
k

= −8r0 cos2 ηl(k, λ)

π{[2r0Al(E,λ) − 1]Nν(kr0) − 2kr0N ′
ν(kr0)}2

≤ 0. (9.42)

For a sufficiently small k, the asymptotic formulas for tanηl(k, λ) can be obtained
from the formulas of tan δl(k, λ) given in Eqs. (9.25)–(9.28) by replacing l with
ν + 1 − D/2, except for the cases of 0 < ν < 1/2 and 1/2 < ν < 1. For the latter
cases, we have

tanηl(k, λ) = − π(kr0)
2ν

22νν�(ν)2

· Al(0, λ) − ν+1/2
r0

Al(0, λ) − c2k2 − 1−2ν
2r0

+ 2π cot(νπ)

r0�(ν)2 (
kr0
2 )2ν

. (9.43)



116 9 The Levinson Theorem for Schrödinger Equation

Repeating the proof for the Levinson theorem (9.30) and (9.31), we obtain the mod-
ified Levinson theorem for the non-critical cases

δl(0) = π

2
(2nl + η − ν). (9.44)

For the critical case where Al(0,1) = (−ν + 1/2)/r0, the modified Levinson theo-
rem (9.44) holds for ν > 1, but it should be revised for 0 < ν ≤ 1 as

δl(0) = π

2
(2nl + η + ν). (9.45)

When n > 2, for any arbitrarily given small ε, one can always find a sufficiently
large r0 such that |V (r)| < ε/r2 in the region (r0,∞). Since ν2 = η2 + ε ∼ η2, the
Levinson theorems (9.30) and (9.31) still hold in this case. This conclusion can also
be shown from Eqs. (9.34) and (9.35). In comparison with the centrifugal term, the
term with a factor kn−2 (or κn−2) is too small to affect the phase shift at a sufficiently
small k and the variant range of the logarithmic derivative [∂Rl(r, λ)/∂r]/Rl(r, λ)

at r+
0 . Therefore, the proof given in the previous sections is still valid for this case

and the Levinson theorems (9.30) and (9.31) still hold.
Finally, we check whether two counterexamples in three dimensions (D = 3)

pointed by Newton (see pp. 438–439 in [249–253]), where the Levinson theorems
(9.30) and (9.31) are violated, satisfy the modified Levinson theorems (9.44) and
(9.45).

Example 1

V (r) = 2c2

(1 + c r)2
→ 2

r2
, when r → ∞. (9.46)

The phase shift of the S wave is δ0(0) = −π/2, and there is no bound state for the
S wave, n0 = 0. The Levinson theorem (9.30) is violated. However, from Eq. (9.36)
one has ν = 3/2. The modified Levinson theorem (9.44) still holds.

Example 2

V (r) = −6r
2c2 − r3

(c2 + r3)2
→ 6

r2
, when r → ∞, (9.47)

where c is a constant. The solution of the S wave is

R(k, r) = sin kr

k
− 3r(sin kr − kr coskr)

k3(c2 + r3)

→ c2r/(c2 + r3), when k → 0. (9.48)

The phase shift δ0(0) at zero momentum is equal to zero, but there is a bound state
with E = 0. The Levinson theorem (9.30) is violated. However, from Eq. (9.36) we
have ν = 5/2. The modified Levinson theorem (9.44) still holds.
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7 Comparison Theorem

In this section we are going to study the comparison theorem for the D-dimensional
radial Schrödinger equation. The comparison theorem of quantum mechanics states
that if two real potentials are ordered V1(r) ≤ V2(r), then each corresponding pair
of eigenvalues is ordered E1 ≤ E2. Considering the relation between the Levinson
theorem and the comparison theorem, it is necessary to show how we get the com-
parison theorem. In fact, the derivation is very closely related to the Sturm-Liouville
theorem as shown above except for the difference in disappearance of the central po-
tential.

For a pair of radial functions {R1(r),R2(r)} in a second-order linear differential
equation, it is shown from Eq. (9.4) that the radial equations can be written as

d2

dr2
R1(r) − C

r2
R1(r) = −2M

�2
[E1 − V1(r)]R1(r), (9.49)

d2

dr2
R2(r) − C

r2
R2(r) = −2M

�2
[E2 − V2(r)]R2(r), (9.50)

where

C = (2l + D − 1)(2l + D − 3)

4
. (9.51)

With these two equations, on multiplying Eq. (9.49) by R2(r) and Eq. (9.50) by
R1(r), and subtracting one from the other, integrating this over the variable r ∈
[0,∞) leads to the following equation

(E1 − E2)

∫ ∞

0
R1(r)R2(r)dr = [V1(r) − V2(r)]

∫ ∞

0
R1(r)R2(r)dr, (9.52)

which leads to the comparison theorem

V1(r) ≤ V2(r) ⇒ E1 ≤ E2. (9.53)

It should be noted that the wavefunction R(0) = R(∞) = 0 are used. Since the
Schrödinger equation belongs to the Sturm-Liouville type differential equation, then
this theorem is also called Sturm-Liouville’s comparison theorem.

8 Conclusions

In this Chapter we have discussed scattering states and bound states of the D-
dimensional radial Schrödinger equation with cutoff potential. The Sturm-Liouville
theorem has been used to establish the non-relativistic Levinson theorem in arbitrary
dimensions D. The general case has also been discussed. The comparison theorem
has also been presented briefly.



Chapter 10
Generalized Hypervirial Theorem

1 Introduction

There has been a long history of attempts to calculate the matrix elements and
the recurrence relations among them for some important wavefunctions such as
the Coulomb-like potential, harmonic oscillator, Kratzer oscillator and others [298–
324] because of their wide applications. For example, in order to simplify the cal-
culations of the matrix elements for the Coulomb-like potential, some methods like
the relation among the Laguerre polynomials, the Dirac’s “q-number”, the general-
ized hypergeometric function, the group theoretical approach, the Schrödinger radial
ladder operators, the hypervirial theorem and the various sum rules were used [298–
312]. The recurrence relations for the Dirac equation with the Coulomb-like poten-
tial were also discussed [320, 321]. Recently, we have studied the Klein-Gordon
equation case [322]. On the other hand, the recurrence relations for the harmonic
oscillator, Kratzer oscillator and Morse potential were studied by the generalized
expression of the second hypervirial theorem [317, 318]. Moreover, the two-center
matrix elements and the recurrence relations for the Kratzer oscillator were inves-
tigated [323], which has also been derived by means of a hypervirial-like theorem
procedure [324]. It should be pointed out that almost all contributions appearing in
the literature have been made in three dimensions.

Due to the recent interest in the higher dimensional field theory [13–15, 53, 325]
and the fact that one can easily obtain the results in lower dimensions from the
general higher dimensional results, the purpose of this Chapter is to derive general
Blanchard’s and Kramers’ recurrence relations for arbitrary central potentials in ar-
bitrary dimensions D. These relations are applied to study quantum systems like
the Coulomb-like potential,1 isotropic harmonic oscillator and Kratzer oscillator. In

1It is worth addressing that the “Coulomb-like” potential in almost all contributions mentioned
above and others [326, 327] has the form 1/r . Even though the real Coulomb-like potential in two
dimensions is taken as a logarithmic form ln r , its exact solutions have not been obtained except
for the approximate solutions [328].

S.-H. Dong, Wave Equations in Higher Dimensions,
DOI 10.1007/978-94-007-1917-0_10, © Springer Science+Business Media B.V. 2011
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addition, we also present the results in two dimensions because of recent interest in
lower dimensional field theory and condensed matter physics.

This Chapter is organized as follows. In Sect. 2 we first present a generalized sec-
ond hypervirial formula in dimensions D and then obtain the general Blanchard’s
and Kramers’ recurrence relations. In Sect. 3 we shall apply them to obtain the cor-
responding Blanchard’s and Kramers’ recurrence relations for those certain central
potentials. We also present the corresponding results in two dimensions. Finally,
some concluding remarks are given in Sect. 4.

2 Generalized Blanchard’s and Kramers’ Recurrence Relations
in Arbitrary Dimensions D

We begin by considering the Schrödinger equation in arbitrary dimensions D (� =
M = 1)

Hψ(r) = −1

2
∇2ψ(r) + V (r)ψ(r) = Eψ(r), (10.1)

where r is a D-dimensional position vector with the Cartesian components x1, x2,
. . . , xD . As shown previously, we know that one is able to express wavefunction as
the product of a radial wavefunction Rl(r) and the generalized spherical harmonics
Y l
lD−2...l1

(x̂)

�(r) = Rl(r)Y
l
lD−2...l1

(x̂). (10.2)

Substitution of this into Eq. (10.1) allows us to obtain the D-dimensional radial
Schrödinger equation

{
d2

dr2
+ D − 1

r

d

dr
− l(l + D − 2)

r2

}
Rl(r) + 2[E − V (r)]Rl(r) = 0, (10.3)

from which we may define the radial Hamiltonian as

Hi = −1

2

d2

dr2
− D − 1

2r

d

dr
+ li (li + D − 2)

2r2
+ V (r), i = 1,2, (10.4)

with the properties

H2|n2l2〉 = En2l2 |n2l2〉, 〈n1l1|H1 = En1l1〈n1l1|, (10.5)

where we have used the Dirac notation |nili〉 ≡ Rnili (r).
Before further proceeding, we introduce an arbitrary function f (r) = f , which

is independent of the potential V (r) and assumed to have continuous second, third
and fourth derivatives with respect to all r . From Eq. (10.4) we have

H1f − fH2 = −1

2
f ′′ − f ′ d

dr
− D − 1

2r
f ′ + (l1 − l2)(−2 + D + l1 + l2)

2r2
f,

(10.6)

where the prime denotes the first derivative of the f with respect to the variable r . In
the calculation, we have acted the above operator on the radial wavefunction Rl(r).
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Similarly, we may obtain the following expression

H1(H1f − fH2) − (H1f − fH2)H2

= 1

4
f ′′′′ + f ′′′ d

dr
+ f ′′ d2

dr2
+ D − 1

2r
f ′′′ + D − 1

r
f ′′ d

dr

+ (D − 1)(D − 3) + (l1 − l2)[4 − 2D − 2(l1 + l2)]
4r2

f ′′

− (l1 − l2)(−2 + D + l1 + l2)

r2
f ′ d

dr
+ V ′(r)f ′

+ (l1 − l2)(−2 + D + l1 + l2)

r3
f

d

dr
+ α

4r3
f ′ + τ

4r4
f, (10.7)

with

α = 2l2(D − 5)(l2 + D − 2)

− (D − 3)[−1 + D + 2Dl1 + 2(−2 + l1)l1], (10.8)

τ = (l1 − l2)(−2 + D + l1 + l2)[(2 + l1)(−4 + D + l1)

− (−2 + D)l2 − l22 ]. (10.9)

Substitution of the following identity

d2

dr2
= −D − 1

r

d

dr
+ l2(l2 + D − 2)

r2
+ 2V (r) − 2H2

into Eq. (10.7) leads to

H1(H1f − fH2) − (H1f − fH2)H2

= 1

4
f ′′′′ + D − 1

2r
f ′′′ + τ

4r4
f + 2V (r)f ′′ − 2f ′′H2 + V ′(r)f ′

+ 3 + D2 − 2(−2 + l1)l1 − 2D(2 + l1 − 3l2) + 6(−2 + l2)l2

4r2
f ′′

+ α

4r3
f ′ + B

(
f, l1, l2,

d

dr

)
(10.10)

with

B

(
f, l1, l2,

d

dr

)
= f ′′′ d

dr
− (l1 − l2)(−2 + D + l1 + l2)

r2
f ′ d

dr

+ (l1 − l2)(−2 + D + l1 + l2)

r3
f

d

dr
. (10.11)

Specially, if taking f = rκ (κ is assumed as a non-negative integer), we have

B

(
rκ ,m1,m2,

d

dr

)
= (κ − 1)[κ(κ − 2) − (l1 − l2)(D − 2 + l1 + l2)]rκ−3 d

dr
.

(10.12)

To remove the operator d/dr appearing in Eq. (10.12), by considering f = rκ−2

and Eq. (10.6), we have
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rκ−3 d

dr
= 1

κ − 2
(rκ−2H2 − H1r

κ−2)

+ 1

2

[
(l1 − l2)(D − 2 + l1 + l2)

κ − 2
− κ − D + 4

]
rκ−4. (10.13)

Combining Eqs. (10.12) and (10.13) into Eq. (10.10) and taking f = rκ result in the
following generalized second hypervirial for an arbitrary central potential V (r)

H1(H1r
κ − rκH2) − (H1r

κ − rκH2)H2

= −κ(κ − 1)(H1r
κ−2 + rκ−2H2)

+ κ − 1

κ − 2
(l1 − l2)(D − 2 + l1 + l2)(H1r

κ−2 − rκ−2H2)

+ κrκ−1V ′(r) + 2κ(κ − 1)rκ−2V (r) + ηrκ−4 (10.14)

with

η = −κ[(l1 − l2)
2 − (κ − 2)2](D − κ + l1 + l2)(−4 + D + κ + l1 + l2)

4(κ − 2)
. (10.15)

Based on Eqs. (10.5) and (10.14), we may obtain a useful general Blanchard’s recur-
rence relation for arbitrary central potential wavefunction in arbitrary dimensions D

(En1l1 − En2l2)
2〈n1l1|rκ |n2l2〉

= η〈n1l1|rκ−4|n2l2〉
+

{
κ − 1

κ − 2
(l1 − l2)(D − 2 + l1 + l2)(En1l1 − En2l2)

− κ(κ − 1)(En1l1 + En2l2)

}
〈n1l1|rκ−2|n2l2〉

+ κ〈n1l1|V ′(r)rκ−1|n2l2〉
+ 2κ(κ − 1)〈n1l1|V (r)rκ−2|n2l2〉. (10.16)

For diagonal case ni = n and li = l (i = 1,2), we obtain a simple expression for
the Kramers’ recurrence relation

1

4
(κ − 2)(D − κ + 2l)(D − 4 + κ + 2l)〈nl|rκ−4|nl〉
− 2(κ − 1)Enl〈nl|rκ−2|nl〉 + 〈nl|V ′(r)rκ−1|nl〉
+ 2(κ − 1)〈nl|V (r)rκ−2|nl〉 = 0. (10.17)

For κ = 0,2, from Eq. (10.16) we obtain a very useful Pasternack-Sternheimer
selection rule in arbitrary dimensions D

1

2
(l1 − l2)(D − 2 + l1 + l2)〈n1l1|r−2|n2l2〉 = (En1l1 − En2l2)〈nll1|n2l2〉, (10.18)

which means that this selection rule is independent of the central potential V (r).
Moreover, it is worth studying the recurrence relation among the off-diagonal

matrix elements of V ′(r). For κ = 1, it is shown from Eq. (10.16) that
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〈n1l1|V ′(r)|n2l2〉 = (En1l1 − En2l2)
2〈n1l1|r|n2l2〉

− [(l1 − l2)
2 − 1](l1 + l2 + D − 1)(l1 + l2 + D − 3)

4
· 〈n1l1|r−3|n2l2〉. (10.19)

3 Applications to Certain Central Potentials

3.1 Coulomb-like Potential Case

Let us study the Coulomb-like potential V (r) = −ξ/r in dimensions D. The eigen-
values are given in [325]

Eni
= − ξ2

2[ni + (D − 3)/2]2
. (10.20)

By replacing κ by κ + 2 in Eq. (10.16), we may obtain the general Blanchard’s
recurrence relation for this potential

κξ4

2

(
1

[n2 + (D − 3)/2]2
− 1

[n1 + (D − 3)/2]2

)2

〈n1l1|rκ+2|n2l2〉

+
2∑

j=0

Dj 〈n1l1|rκ−j |n2l2〉 = 0 (10.21)

where

D0 = ξ2(κ + 1)

{
(l2 − l1)(D − 2 + l1 + l2)

×
[

1

[n2 + (D − 3)/2]2
− 1

[n1 + (D − 3)/2]2

]

− κ(κ + 2)

[
1

[n2 + (D − 3)/2]2
+ 1

[n1 + (D − 3)/2]2

]}
, (10.22)

D1 = 2κξ(κ + 2)(2κ + 1),

D2 = 1

2
(κ + 2)[(l1 − l2)

2 − κ2][(l1 + l2 + D − 2)2 − κ2].
(10.23)

For diagonal case, we may obtain the Kramers’ recurrence relation

1

4
κ[κ2 − (D + 2l − 2)2]〈nl|rκ−2|nl〉 + ξ(2κ + 1)〈nl|rκ−1|nl〉

− ξ2(1 + κ)

[n + (D − 3)/2]2
〈nl|rκ |nl〉 = 0. (10.24)

Let us discuss some special cases. First, we study the case κ = |l1 − l2| or κ =
l1 + l2 +D − 2. As a result, it is found from Eq. (10.23) that the coefficient D2 = 0.
The corresponding general Blanchard’s recurrence relation is simplified as
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κ ′ξ4

2

{
1

[n2 + (D − 3)/2]2
− 1

[n1 + (D − 3)/2]2

}2

〈n1l1|rκ ′+2|n2l2〉

+
1∑

i=0

Di〈n1l1|rκ ′−i |n2l2〉 = 0, (10.25)

where the parameter κ appearing in the coefficients D0 and D1 is replaced by κ ′ =
|l1 − l2| or κ ′ = l1 + l2 + D − 2.

Second, we consider the case n1 = n2 = n, but l1 �= l2. If so, we have

ξ2

[n + (D − 3)/2]2
κ(κ + 1)〈nl1|rκ |nl2〉

= ξκ(1 + 2κ)〈nl1|rκ−1|nl2〉
+ [(l1 − l2)

2 − κ2][(l1 + l2 + D − 2)2 − κ2]
4

〈nl1|rκ−2|nl2〉, (10.26)

from which we may obtain a special result for κ = 0

〈nl1| 1

r2
|nl2〉 = 0. (10.27)

This can also be obtained from Eq. (10.18). On the other hand, let us consider the
following two interesting cases for κ = |l1 − l2| and κ = l1 + l2 +D− 2. It is shown
from Eq. (10.26) that

〈nl1|r |l1−l2||nl2〉
〈nl1|r |l1−l2|−1|nl2〉 = [n + (D − 3)/2]2

ξ
· 1 + 2|l1 − l2|

1 + |l1 − l2| , (10.28)

for κ = |l1 − l2|, and

〈nl1|rl1+l2+D−2|nl2〉
〈nl1|rl1+l2+D−3|nl2〉 = [n + (D − 3)/2]2

ξ
· 2(l1 + l2 + D) − 3

l1 + l2 + D − 1
, (10.29)

for κ = l1 + l2 + D − 2.
Third, from Eq. (10.19) we have for the Coulomb-like potential V (r) = −ξ/r

ξ 〈n1l1|r−2|n2l2〉

= ξ4

4

{
1

[n2 + (D − 3)/2]2
− 1

[n1 + (D − 3)/2]2

}2

〈n1l1|r|n2l2〉

− [(l1 − l2)
2 − 1](l1 + l2 + D − 1)(l1 + l2 + D − 3)

4
〈n1l1|r−3|n2l2〉,

(10.30)

from which, together with Eq. (10.27), we have

〈nl1|r−3|nl2〉 = 0. (10.31)

Fourth, we study two special cases for the general Kramers’ recurrence relation
(10.24), i.e.,
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〈nl|r−1|nl〉 = ξ

[n + (D − 3)/2]2
, for κ = 0, (10.32)

〈nl|r2l+D−2|nl〉
〈nl|r2l+D−3|nl〉 = [n + (D − 3)/2]2

ξ
· 4l + 2D − 3

2l + D − 1
,

for κ = 2l + D − 2, (10.33)

which can also be obtained from Eqs. (10.28) and (10.29) under the condition l1 =
l2 = l.

3.2 Harmonic Oscillator

Let us study the isotropic harmonic oscillator V (r) = ω2r2/2 with M = 1 in dimen-
sions D. The eigenvalues are given in [326, 327]

En = ω(D/2 + n), n = 2n′ + l, n′ = 0,1,2, . . . . (10.34)

We find from Eq. (10.16) that the Blanchard’s recurrence relation for the har-
monic oscillator is given by

ω2[(n1 − n2)
2 − κ2]〈n1l1|rκ |n2l2〉

= η〈n1l1|rκ−4|n2l2〉
+

[
κ − 1

κ − 2
ω(n1 − n2)(l1 − l2)(D − 2 + l1 + l2)

− ωκ(κ − 1)(n1 + n2 + D)

]
〈n1l1|rκ−2|n2l2〉, (10.35)

from which we obtain the corresponding Kramers’ recurrence relation

κ − 2

4
(D − κ + 2l)(−4 + D + κ + 2l)〈nl|rκ−4|nl〉

= 2ω(κ − 1)(n + D/2)〈nl|rκ−2|nl〉 − κω2〈nl|rκ |nl〉, (10.36)

from which, we obtain the following two identities

〈nl|r|nl〉 = (D − 1 + 2l)(D − 3 + 2l)

4ω2
〈nl|r−3|nl〉, for κ = 1, (10.37)

〈nl|r2|nl〉 = n + D/2

ω
, for κ = 2. (10.38)

For κ = 1, from Eq. (10.35) we obtain a more general identity for the off-diagonal
case

ω2[(n1 − n2)
2 − 1]〈n1l1|r|n1l1〉

= [(l1 − l2)
2 − 1](l1 + l2 + D − 1)(l1 + l2 + D − 3)

4
〈n1l1|r−3|n1l1〉.

(10.39)
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3.3 Kratzer Oscillator

Let us investigate the Kratzer oscillator [6]

V (r) = V0

(
b2

r2
− 2b

r

)
. (10.40)

The exact solutions in D dimensions are given by [322]

Enl = − 8b2V 2
0

[2n − 2l − 1 +√
8b2V0 + (2l + D − 2)2]2

. (10.41)

It is shown from Eq. (10.16) that the Blanchard’s recurrence relation is obtained as

(En1l1 − En2l2)
2〈n1l1|rκ |n2l2〉

= [2V0b
2κ(κ − 2) + η]〈n1l1|rκ−4|n2l2〉

+
[
κ − 1

κ − 2
(l1 − l2)(D − 2 + l1 + l2)(En1l1 − En2l2)

− κ(κ − 1)(En1l1 + En2l2)

]
〈n1l1|rκ−2|n2l2〉

+ 2V0bκ(3 − 2κ)〈n1l1|rκ−3|n2l2〉. (10.42)

On the other hand, we may obtain the corresponding general Kramers’ recurrence
relation

(κ − 2)

[
2V0b

2 + (2l + D − κ)(2l + D + κ − 4)

4

]
〈nl|rκ−4|nl〉

= 2(κ − 1)Enl〈nl|rκ−2|nl〉 + 2V0b(2κ − 3)〈nl|rκ−3|nl〉. (10.43)

In addition, for κ = 1 we may obtain other interesting and important particular
results from Eq. (10.42), i.e.,

(En1l1 − En2l2)
2〈n1l1|r|n2l2〉

= 2V0b〈n1l1|r−2|n2l2〉
+

{ [(l1 − l2)
2 − 1](D − 1 + l1 + l2)(−3 + D + l1 + l2)

4
− 2V0b

2
}

· 〈n1l1|r−3|n2l2〉 (10.44)

from which, we can obtain the following identity

〈nl| 1

r2
|nl〉 =

{
b + (2l + D − 1)(2l + D − 3)

8bV0

}
〈nl| 1

r3
|nl〉, (10.45)

which can also be derived from Eq. (10.43) by setting κ = 1. We now study
Eq. (10.43) in detail. It is interesting to find that some useful recurrence relations
among the diagonal matrix elements can be obtained from Eq. (10.43)
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Enl =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−V0b〈nl|r−1|nl〉,
[2V0b

2+ (2l+D−3)(2l+D−1)
4 ]〈nl|r−1|nl〉−6bV0
4〈nl|r|nl〉 ,

[2V0b
2+ (2l+D−4)(2l+D)

4 ]−5bV0〈nl|r|nl〉
3〈nl|r2|nl〉 ,

(10.46)

for κ = 2,3 and 4, respectively.
In addition, we may obtain the recurrence relation and identity for the Morse po-

tential V (r) = D(e−2βr − 2e−βr ), as shown in Refs. [317, 318]. From Eq. (10.19),
we are able to obtain the following recurrence relation among off-diagonal matrix
elements

2βD〈n1l1|e−βr − e−2βr |n2l2〉
= (En1l1 − En2l2)

2〈n1l1|r|n2l2〉
−[(l1 − l2)

2 − 1](l1 + l2 + D − 1)(l1 + l2 + D − 3)

4
〈n1l1|r−3|n2l2〉

(10.47)

and the identity between two particular diagonal matrix elements

〈nl|e−βr − e−2βr |nl〉 = (2l + D − 1)(2l + D − 3)

8βD
〈nl|r−3|nl〉. (10.48)

Specially, when D = 3 and l = 0 we have

〈nl|e−βr |nl〉 = 〈nl|e−2βr |nl〉. (10.49)

This coincides with the result given in [329]. It should be noted that the exact so-
lutions of this system have not been obtained up to now. Nevertheless, we can pre-
dict the results (10.47)–(10.49) in theory. Particularly, we find that the formulas
(10.48) and (10.49) are independent of energy levels of this quantum system in di-
mensions D.

Before ending this section, we present the results in two dimensions. This can be
easily realized by setting D = 2 and through replacing l1, l2 by m1, m2, respectively.
For the Blanchard’s recurrence relation, we have

1

κ − 1
[(En1m1 − En2m2)

2〈n1m1|rκ |n2m2〉 − λ〈n1m1|rκ−4|n2m2〉
− κ〈n1m1|V ′(r)rκ−1|n2m2〉]

=
[
m2

1 − m2
2

κ − 2
(En1m1 − En2m2) − κ(En1m1 + En2m2)

]

· 〈n1m1|rκ−2|n2m2〉 + 2κ〈n1m1|V (r)rκ−2|n2m2〉, (10.50)

where

λ = −κ[(m1 + m2)
2 − (κ − 2)2][(m1 − m2)

2 − (κ − 2)2]
4(κ − 2)

. (10.51)

For the Kramers’ recurrence relation, however, we have
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−1

4
(κ − 2)[(κ − 2)2 − 4m2]〈nm|rκ−4|nm〉
= 2(κ − 1)Enm〈nm|rκ−2|nm〉 − 〈nm|V ′(r)rκ−1|nm〉

− 2(κ − 1)〈nm|V (r)rκ−2|nm〉. (10.52)

Similarly, we may obtain similar recurrence relations for κ = 0,2 and κ = 1 and
the corresponding general Blanchard’s and Kramers’ recurrence relations for those
physical potentials. However, we do not present them here for simplicity.

4 Concluding Remarks

In this Chapter based on the Hamiltonian identity we have presented a useful gener-
alized second hypervirial for arbitrary central potential wavefunction in dimensions
D and shown that this formula is very powerful in deriving the general Blanchard’s
and Kramers’ recurrence relations. Interestingly, we have found that the general-
ized Pasternack-Sternheimer selection rule is independent of V (r) for f = rκ with
κ = 0,2. We have applied the proposed general Blanchard’s and Kramers’ recur-
rence relations to study the quantum systems for three certain central potentials.
Some interesting and useful results have been obtained simply. It should be pointed
out that the present approach can be extended to consider f �= rκ off-diagonal ma-
trix elements for arbitrary central potential wavefunction. For example, we have
established the recurrence relations between the exponential functions and the pow-
ers of the radial function for the Morse potential. Finally, we have briefly presented
the general Blanchard’s and Kramers’ recurrence relations in two dimensions.

Before ending this Chapter, we give some useful remarks here. First, it should be
noted that Eqs. (10.32) and (10.38) are two well known virial relations. Second, in
terms of Eqs. (10.50) and (10.52), it is possible to obtain the general Blanchard’s and
Kramers’ recurrence relations among the matrix elements 〈n1m1| ln r rκ−2|n2m2〉
for the logarithmic potential ln r in two dimensions. The merit of this method is
that we need not know the exact solutions of the studied quantum system, but we
may predict some useful results in theory. Third, due to the specificity of the Klein-
Gordon (KG) equation, i.e., the energy levels are involved in the potential V (r),
which arises from the KG equation [E − V (r)]2�(r) = (m2c4 − �

2c2∇2)�(r), it
seems that the present approach is unsuitable for this equation. Nevertheless, we
have applied the so-called Kramers’ approach to obtain the recurrence relation for
the Coulomb-like potential case [322]. Fourth, it is possible to use this method to
study the Dirac equation with the Coulomb-like potential in dimensions D.



Chapter 11
Exact and Proper Quantization Rules
and Langer Modification

1 Introduction

A fundamental interest in quantum mechanics is to obtain the right result without
invoking the full mathematics of the Schrödinger equation. Since last decade there
has been a great revival of interest in semiclassical methods for obtaining approx-
imate solutions to the Schrödinger equation. Among them, the WKB approxima-
tion and its generalization have attracted much attention to many authors [330–333]
since this method is proven to be useful in obtaining an approximate solution to the
Schrödinger equation with solvable potentials.

Since the radial Schrödinger equation in three dimensions can be written in a
similar form to that of one-dimensional case it is not surprising to lead us to apply
one-dimensional quantization rule to study energy levels of quantum system in three
dimensions. However, this is not always correct and sometimes becomes invalid. For
example, when one utilizes the first-order WKB integral to derive the eigenvalues
of hydrogen atom and harmonic oscillator, the quantity �(� + 1) has to be replaced
by (� + 1/2)2 in quantization rule [334]. Such study was first advocated by Young
and Uhlenbeck [335]. In 1937 this problem was re-considered and explained well
by Langer [336]. It should be noted that replacing �(� + 1) by (� + 1/2)2 is valid
only for the first-order integral considered, but the Langer modification is no longer
valid when the second-order integral is included [337, 338]. On the other hand,
the algebraic procedure to adjust Langer modification for higher-order integral, the
discussions related to its physical nature and other studies have been carried out
[339–347].

Recently, the modified WKB method proposed by Friedrich and Trost [342] has
been found to avoid the Langer modification. This can be realized by introducing a
non-integral Maslov index. Furthermore, an exact quantization rule presented by Ma
and his coauthors has been shown to be powerful in calculating the energy levels of
some exactly solvable quantum systems [348–351]. In fact, this exact quantization
rule was relied in some sense on the previous work by Cao and his collaborators
[352–355]. This method has become one of several important formalisms to deal
with solvable quantum systems, but the integrals, in particular the calculations of the
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quantum correction term become rather complicated. To overcome this difficulty,
we have improved it and found a proper quantization rule [356, 357]. By this rule
the energy spectra of all solvable systems can be determined from its ground state
energy only. The trick and simplicity of the rule come from its meaning—whenever
the number of the nodes of φ(x) or the number of the nodes of the wavefunction
ψ(x) increases by one, the momentum integral

∫ xB
xA

k(x)dx will increase by π . This
proper quantization rule has ended the history of semiclassical quantization rules
and opened a new formalism to carry out all solvable potentials.

The purpose of this Chapter is following. We shall first give a brief review of the
fundamental development of the quantization rule including the WKB method, the
exact quantization rule and proper quantization rule. After that we shall establish
the relation between the proper quantization rule, the Maslov index and the Langer
modification. As illustrations we shall choose a few solvable potentials and study
them via these quantization rules.

This Chapter is organized as follows. In Sect. 2 we briefly review the WKB
method since it is closely related to recently proposed exact and proper quantiza-
tion rules. We shall review the exact quantization rule in Sect. 3. As an illustra-
tion, we present its application to asymmetric trigonometric Rosen-Morse potential
in Sect. 4. Section 5 is devoted to extension of the exact quantization rule, i.e.,
the proper quantization rule. In Sect. 6 the performance of the proper quantization
rule is demonstrated in four different situations, the harmonic oscillator, modified
Rosen-Morse potential, Coulombic ring-shaped noncentral Hartmann system, the
Manning-Rosen effective potential. In Sect. 7 the evaluation of the Langer modi-
fication and Maslov index in D dimensions are carried out. The results for most
exactly solvable potentials are presented in Tables 11.1, 11.2, 11.3. In Sect. 8 we
illustrate the calculations of the logarithmic derivatives of wavefunction. Finally, in
Sect. 9 we will summarize our conclusions.

2 WKB Approximation

The success of quantum theory in atomic domain prompted physicists to apply the
Bohr atomic model to complex atoms. It was soon obvious that although the Bohr
model is basically correct, it has many minor flaws. Some flaws in the details of the
Bohr-Sommerfeld-Wilson (BSW) quantization hypothesis were pointed out by Ein-
stein [358] in 1917, and subsequently corrected by Brillouin [359] in 1926 and by
Keller [360] in 1958. Schrödinger’s wave equation of quantum mechanics was pub-
lished in 1926, and in the same year Wentzel, Kramers and Brillouin developed the
semiclassical approximation now known as the Wentzel-Kramers-Brillouin (WKB)
[361–363] approximation. It is of importance because it exhibits the connection with
the older quantization rules of Bohr and Sommerfeld. Important contributions were
also made by Langer [336] in 1937 and by Maslov [364] in 1972. The modern form
of the semiempirical hypothesis, which elucidates the quantum mechanical formu-
lation of level energies, is known as the Maslov-indexed Einstein-Brillouin-Keller
(EBK) quantization [365, 366].
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Table 11.1 Some useful integral formulae
∫ r2
r1

1
r

√
(r − r1)(r2 − r)dr = π

2 (r1 + r2) − π
√
r1r2

∫ r2
r1

√
(r − r1)(r2 − r)dr = π

8 (r2 − r1)
2

∫ r2
r1

√
(r − r1)/(r2 − r)dr = ∫ r2

r1

√
(r2 − r)/(r − r1)dr = π

2 (r2 − r1)
∫ r2
r1

r
√
(r − r1)/(r2 − r)dr = π

8 (r2 − r1)(r1 + 3r2)
∫ r2
r1

r
√
(r2 − r)/(r − r1)dr = π

8 (r2 − r1)(3r1 + r2)

∫ r2
r1

dr

1+r2

√
(r − r1)(r2 − r) = −π + π

2

√

1 − r1r2 +
√
(1 + r2

1 )(1 + r2
2 )

∫ r2
r1

dr

(a+br)
√
(r−r1)(r2−r)

= π√
(a+br1)(a+br2)∫ r2

r1

dr

1−r2

√
(r − r1)(r2 − r) = π

2 [2 − √
(1 − r1)(1 − r2) − √

(1 + r1)(1 + r2)]

Table 11.2 Abbreviated symbols and exactly solvable potentials

Abbreviated symbols Solvable potentials Formulas

HO harmonic oscillator 1
2Mω2x2

MP Morse potential U0(e
−2x/a − U1e

−x/a)

GMP generalized Morse potential U0[1 − b(er/a − 1)−1]2

SRMP symmetric Rosen-Morse potential −U0 sech2(x/a)

ARMP asymmetric Rosen-Morse potential −U0 sech2(x/a) + U1 tanh(x/a)

PT-I Pöschl-Teller I �
2

2Ma2 [ μ(μ−1)
sin2(x/a)

+ λ(λ−1)
cos2(x/a)

]
PT-II Pöschl-Teller II �

2

2Ma2 [ μ(μ−1)
sinh2(x/a)

− λ(λ+1)
cosh2(x/a)

]
EP Eckart potential U0 csch2(r/a) − U1 coth(r/a)

HP Hulthén potential − U0
er/a−1

STRM symmetric trigonometric Rosen-Morse U0 cot2(πx/a)

ATRM asymmetric trigonometric Rosen-Morse U0 cot2(πx/a) + U1 cot(πx/a)

HO3D harmonic oscillator in 3D 1
2Mω2r2 + �(�+1)�2

2Mr2

HA3D hydrogen atom in 3D − e2

r
+ �

2�(�+1)
2Mr2

HOD harmonic oscillator in D dimensions 1
2Mω2r2 + �

2�′(�′+1)
2Mr2

HAD hydrogen atom in D dimensions − e2

r
+ �

2�′(�′+1)
2Mr2

The well known conventional quantization rule in the EBK method can be ex-
pressed in the form

∫ x2

x1

k(x)dx =
(
n + μ

4

)
π, (11.1)

where μ is the Maslov index. It is found that when μ = 0, Eq. (11.1) reduces to the
Bohr-Sommerfeld form. The most popular WKB approximation is the special case
of Eq. (11.1) with μ = 2, i.e.,

∫ x2

x1

k(x)dx =
(
n + 1

2

)
π. (11.2)
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Table 11.3 Solvable potentials, Maslov index μ and eigenvalues En

Solvable potentials Maslov index μ Eigenvalues En

HO 2 �ω(n + 1
2 )

MP 2 −U0
4 [U1 − (2n+1)

a
√
U0

]
GMP 4a(C − b

√
2MU0/�) U0 − �

2

2M [MU0b(b+2)
�2(C+n/a)

− C+n/a
2 ]2,

C = [1 +√
1 + 8MU0a2b2/�2]/(2a)

SRMP 4a(
√

2MU0/� − C) − �
2(C−n/a)2

2M ,

C = [√1 + 8MU0a2/�2 − 1]/(2a)
ARMP 4a(

√
2MU0/� − C) −[ �

2(C−n/a)2

2M + MU2
1

2�2(C−n/a)2 ],
C = [√1 + 8MU0a2/�2 − 1]/(2a)

PT-I 2(μ + λ)

− 4(
√
μ(μ − 1) + √

λ(λ − 1))

�
2(μ+λ+2n)2

2Ma2

PT-II 2(μ − λ)

− 4(
√
μ(μ − 1) − √

λ(λ + 1))

− �
2(λ−μ−2n)2

2Ma2

EP 4a(C − √
2MU0/�) −[ MU2

1
2�2(C+n/a)2 + �

2(C+n/a)2

2M ],
C = [√1 + 8MU0a2/�2 + 1]/(2a)

HP 4 −U0[ a
√

2MU0
2�(n+1) + �(n+1)

2a
√

2MU0
]2

STRM 4a
π
(C − √

2MU0/�)
�

2

2Ma2 (aC + nπ)2 − U0,

C = π
2a [

√
1 + 8MU0a

2

π2�2 + 1]
ATRM 4a

π
(C − √

2MU0/�)
�

2(aC+nπ)2

2Ma2 − Ma2U2
1

2�2(aC+nπ)2 − U0,

C = π
2a [

√
1 + 8MU0a

2

π2�2 + 1]
HO3D 3 + 2� − 2

√
�(� + 1) �ω(n + 3/2)

HA3D 4(� + 1 − √
�(� + 1)) − Me4

2n2�2

HOD D + 2(� − √
�′(�′ + 1)) �ω(n + D/2)

HAD 4(�′ + 1 − √
�′(�′ + 1)) − Me4

2(n+ D−3
2 )2�2

For a diverse class of problems and a variety of potentials, the WKB quanti-
zation rule has proven to be very useful in finding an approximate solution of the
one-dimensional Schrödinger equation. However, except for the harmonic oscillator
and the Morse potential, the WKB quantization rule fails to reproduce exactly ana-
lytic results for other solvable potentials. Further, in the WKB analysis of the radial
Schrödinger equation, exact result can not be obtained unless the classical Hamilto-
nian is slightly modified. The Langer modification, which prescribes replacing the
angular momentum factor �(� + 1) in the effective potential by (� + 1/2)1/2 [335,
336, 367], is seen as a standard ingredient of WKB theory for the quantum systems
with radial symmetry [344, 368]. However, it emerges that the algebraic procedure
for adjusting the Langer-type corrections for higher-order approximations is quite
difficult and cumbersome [339].
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Frequently alternative methods of improving the conventional WKB approxima-
tion are proposed, such as supersymmetry quantum mechanics [369], phase loss
method [341–343] and periodic orbit theory [370, 371]. Among various versions of
the modified quantum conditions [372, 373], one of the promising methods is the
exact quantization rule approach [348, 349, 354], which allows one to determine
eigenvalues of known analytically solvable potentials without ever having to solve
the Schrödinger equation. As mentioned above, this method has become one of sev-
eral important formalisms to deal with solvable quantum systems, but the integrals,
in particular the calculations of the quantum correction term become rather compli-
cated. To overcome this difficulty we have proposed a proper quantization rule.

3 Exact Quantization Rule

Here, we give a brief and necessarily sketchy review of the exact quantization rule
method which is necessary for the subsequent sections. For more elaborate discus-
sions, the reader is referred to Refs. [348, 349].

The one-dimensional Schrödinger equation is given by

d2

dx2
ψ(x) = −2M

�2
[E − V (x)]ψ(x), (11.3)

where the potential V (x) is a piecewise continuous real function of x satisfying

V (x) < E, xA < x < xB,

V (x) = E, x = xA or x = xB,

V (x) > E, x ∈ (−∞, xA) or x ∈ (xB,∞),

(11.4)

where xA and xB are two turning points determined by E = V (x).
The Schrödinger equation is equivalent to a non-linear Riccati equation

− d

dx
φ(x) = 2M

�2
[E − V (x)] + φ(x)2, (11.5)

where φ(x) = ψ ′(x)/ψ(x) is the logarithmic derivative of wavefunction ψ(x). The
exact quantization rule for one-dimensional Schrödinger equation proposed and
studied well in [348, 349] is given by

∫ xB

xA

kn(x)dx = (n + 1)π +
∫ xB

xA

k′(x) φ(x)

φ′(x)
dx,

kn(x) = √
2M[En − V (x)]/�, E ≥ V (x).

(11.6)

The first term (n+ 1)π is the contribution from the nodes of the logarithmic deriva-
tive of wavefunction, and the second is called the quantum correction. It is observed
that, for all well-known exactly solvable quantum systems, this quantum correc-
tion is independent of the number of nodes of wavefunction. Hence, using the sub-
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scription 0 to denote the ground state, it is enough to consider the ground state in
calculating the quantum correction

Q0 =
∫ xB

xA

k′
0(x)

φ0(x)

φ′
0(x)

dx. (11.7)

Let us turn to the three-dimensional Schrödinger equation with a spherically sym-
metric potential. After separation of the angular part of the wavefunction

ψ(r) = r−1R(r)Y �
m(θ,ϕ), (11.8)

the radial Schrödinger equation becomes

d2

dr2
R′′(r) = −2M

�2
[E − Veff.(r)]R(r),

Veff.(r) = V (r) + �
2�(� + 1)

2Mr2
.

(11.9)

Since Eq. (11.9) is similar to Eq. (11.3), its energy levels can be calculated by the
matching conditions of the logarithmic derivatives, where the logarithmic derivative
is defined as φ(r) = R′(r)/R(r). It indicates that the exact quantization rule (11.6)
still holds in this case simply by replacing the variable x with r , which is led to

∫ rB

rA

kn(r)dr = (n + 1)π +
∫ rB

rA

k′(r) φ(r)

φ′(r)
dr, (11.10)

kn(r) = √
2M[En − Veff.(r)]/�, E ≥ Veff.(r), (11.11)

where rA and rB are two turning points determined by E = Veff.(r). It should be
mentioned that some useful integral formulae are given in Table 11.1 for conve-
nience.

4 Application to Trigonometric Rosen-Morse Potential

In this section, we will show how to employ the exact quantization rule approach
to calculate the energy spectra of exactly solvable potentials. Consider, for instance,
the asymmetric trigonometric Rosen-Morse potential [5, 374] given by

V (x) = U0 cot2(πx/a) + U1 cot(πx/a), (11.12)

where U0 > 0, x ∈ [0, a]. Introduce a new variable

y = − cot

(
πx

a

)
, y ∈ (−∞,∞). (11.13)

The turning points yA and yB are determined by solving V (x) = En, where

En = U0y
2 − U1y,

yA + yB = U1

U0
,

yAyB = −En

U0
.

(11.14)
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The momentum kn(x) between them is given by

kn(x) =
√

2M

�

√
En − U0y2 + U1y,

k′
n(y) = −

√
2M U0

�

y − U1/(2U0)√
En − U0y2 + U1y

.

(11.15)

Ma et al. [350] found that the solution of the ground state is given by

E0 = �
2C2

2M
− U0 − MU2

1

2�2C2
, φ0 = −Cy + B, (11.16)

where

C = π

2a

(
1 +

√

1 + 8Ma2U0

π2�2

)
, B = MU1

C�2
. (11.17)

The integral of the momentum kn(x) is calculated to be
∫ xB

−xB

kn(x)dx

= a
√

2MU0/�

π

∫ yB

−yB

√
(yB − y)(y − yA)

(y2 + 1)
dy

= −a
√

2MU0/� + a
√

2MU0/�

π

∫ yB

−yB

y(yA + yB) − yAyB + 1

(1 + y2)
√
(yB − y)(y − yA)

dy

= −a
√

2MU0/� + a
√

2M

�

∣∣Re
{√

En + U0 − iU1
}∣∣. (11.18)

The quantum correction Q0 in the exact quantization rule can be calculated as fol-
lows:

∫ xB

xA

k′
0(x)

φ0(x)

φ′
0(x)

dx

= −a
√

2MU0

π�

∫ yB

yA

(y − B/C)[y − U1/(2U0)]
(1 + y2)

√
(yB − y)(y − yA)

dy

= −a
√

2MU0

π�

{∫ yB

yA

dy√
(yB − y)(y − yA)

−
∫ yB

yA

y[B/C + U1/(2U0)] + [1 − BU1/(2CU0)]
(1 + y2)

√
(yB − y)(y − yA)

dy

}

= −a
√

2MU0

π�

{
π + π Re

[ [U1/(2U0) + i](1 − iB/C)√−E0/U0 + iU1/U0 − 1

]}

= −a
√

2MU0

π�

(
π + a

√
2MU0π

�C

)

= −a
√

2MU0/� + a C − π. (11.19)
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Substituting Eqs. (11.18) and (11.19) into Eq. (11.6) gives

a
√

2M

�

∣∣Re
{√

En + U0 − iU1
}∣∣ = aC + nπ, (11.20)

from which we obtain the eigenvalues as

En = �
2(aC + nπ)2

2Ma2
− Ma2U2

1

2�2(aC + nπ)2
− U0, (11.21)

where n = 0,1,2, . . . . When U1 = 0, this result reduces to the symmetric case. This
result is consistent with that in Refs. [5, 375]. We find that the calculation of the
quantum correction term becomes rather complicated. As what follows, we shall
show how to simplify these tedious and complicated calculation with the help of the
proper quantization rule [356, 357].

5 Proper Quantization Rule

Let us start with the original formulation of the exact quantization rule. Notice that
if one takes n = 0 in Eq. (11.6), then one may find that

∫ x0B

x0A

k0(x)dx = π +
∫ x0B

x0A

k′
0(x)

φ0(x)

φ′
0(x)

dx,

k0(x) = √
2M[E0 − V (x)]/�.

(11.22)

Then the quantum correction term will become
∫ x0B

x0A

k′
0(x)

φ0(x)

φ′
0(x)

dx =
∫ x0B

x0A

k0(x)dx − π. (11.23)

Substituting this equation into Eq. (11.6), we obtain
∫ xB

xA

kn(x)dx −
∫ x0B

x0A

k0(x)dx = (N − 1)π = nπ. (11.24)

Similarly, after this important transformation for the quantization rule in three
dimensions, Eq. (11.10) can also be written in the same form

∫ rB

rA

kn(r)dr −
∫ r0B

r0A

k0(r)dr = nπ. (11.25)

Equations (11.24) and (11.25) are called the proper quantization rules. It may be
found that two integrals involved in the proper quantization rule have the completely
same mathematical form in the present version of the formulation. Therefore, when
applying it to calculate the energy levels, one needs to calculate only the first integral
with respect to the momentum kn(x) or kn(r). Then, replacing energy levels En in
the expression with the ground state energy E0, one immediately obtains the result
for the second integral of k0(x) or k0(r). From now on, the complicated calculations
encountered previously [348, 349, 351, 354, 376–380] will be greatly simplified.
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6 Illustrations of Proper Quantization Rule

In this section, the nice performance of the proper quantization rule will be demon-
strated in following different situations such as the modified Rosen-Morse potential,
a Coulombic ring-shaped noncentral Hartmann system and the Manning-Rosen ef-
fective potential.

6.1 Energy Spectra for Modified Rosen-Morse Potential

The modified Rosen-Morse potential is given by [381, 382]

V (x) = −U0 − U1 sinh(x/a)

cosh2(x/a)
. (11.26)

With y = sinh(x/a), the potential can be re-expressed as

V (y) = −U0 − U1y

1 + y2
. (11.27)

In our previous study [382], the ground state energy was found by solving the
non-linear Riccati equation (11.5)

E0 = −�
2(G0 − 1)2

8Ma2
, (11.28)

where

G2
0 = 1

2
+ 4Ma2U0

�2
+

{(
1

2
+ 4Ma2U0

�2

)2

+
(

4Ma2U1

�2

)2}1/2

. (11.29)

By solving V (xA) = V (xB) = En, we have two turning points yA and yB satisfying

yA = sinh(xA/a) =
−U1 −

√
U2

1 − 4En(U0 + En)

2En

,

yB = sinh(xB/a) =
−U1 +

√
U2

1 − 4En(U0 + En)

2En

,

yA + yB = U1

En

, yAyB = 1 + U0

En

.

(11.30)

The momentum kn(x) between two turning points can then be written as

kn(x) =
√−2MEn

�

√
1 + y2

√
(yB − y)(y − yA). (11.31)

Now, let us calculate the first integral in Eq. (11.24):
∫ xB

xA

kn(x)dx =
∫ xB

xA

1

�

√
2M(En − V (x))dx
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= a
√−2MEn/�

∫ yB

yA

√
(yB − y)(y − yA)

1 + y2
dy

= −πa
√−2MEn/� + aπ

√
M

�

√

U0 +
√
U2

0 + U2
1 . (11.32)

Then, replacing En in Eq. (11.32) with E0 given in Eq. (11.28), we obtain
∫ x0B

x0A

k0(x)dx = π

2

[
1 − G0 + 2a

√
M

�

√

U0 +
√
U2

0 + U2
1

]
. (11.33)

Substituting Eqs. (11.32) and (11.33) into Eq. (11.24) leads to

−π

[
a
√−2EnM

�
− G0 − 1

2

]
= nπ, (11.34)

from which we get the eigenvalues

En = −�
2(G0 − 2n − 1)2

8Ma2
, (11.35)

where n = 0,1,2, . . . , [(G0 − 1)/2]. This result is the same as that in [382]. How-
ever, the procedure in practical calculations for energy spectra for asymmetric
trigonometric Rosen-Morse potential have been greatly simplified [356, 382].

6.2 Energy Spectra for the Coulombic Ring-Shaped Hartmann
Potential

In this subsection, we wish to present that the bound states of an electron in a non-
central but separable potential can be handled as well within this proper quantization
rule frame. Consider, for example, the Hartmann potential, which is the Coulomb
potential surrounded by a ring-shaped inverse square potential. This potential was
originally considered by Hartmann [383, 384] to study ring-shaped molecules.

In spherical coordinates (r, θ,ϕ), the Hartmann potential is defined by

V (r, θ) = ησ 2ε0

(
2a

r
− ηa2

r2sin2θ

)
, (11.36)

where a is the Bohr radius, a = �
2/Me2, ε0 is the ground state energy of the hydro-

gen atom, ε0 = −Me4/2�
2, η and σ are dimensionless positive parameters which

range from about 1 to 10 in theoretical chemistry applications.
In terms of the atomic units (2M = � = 1), the ring-shaped Hartmann potential

in Eq. (11.36) can be expressed as

V (r, θ) = V1

r
+ V2

r2 sin2 θ
, (11.37)

with V1 = −ησ 2e2 and V2 = η2σ 2.
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In order to evaluate bound-state energies of the ring-shaped Hartmann potential,
the total wavefunction can be written as

�(r, θ,ϕ) = 1

r
R(r)Y (θ)eimϕ. (11.38)

Separating the variables in analogy with the usual treatment to a spherical poten-
tial, the Schrödinger equation in spherical coordinates for a particle in the presence
of the Hartmann potential (11.37) is reduced to two ordinary differential equations

d2R(r)

dr2
+

(
E − V1

r
− �(� + 1)

r2

)
R(r) = 0, (11.39)

d2Y(θ)

dθ2
+ cot θ

dY (θ)

dθ
+

{
�(� + 1) − m2

sin2θ
− V2

sin2θ

}
Y(θ) = 0. (11.40)

It is obvious that Eq. (11.39) is the same as that we obtain in solving the prob-
lem of an electron in a Coulomb-like field. Through a mapping function θ = w(x),
Eq. (11.40) can be transformed to the form

d2Y(θ)

dx2
+

(
−w′′

w′ + w′ cotw

)
dY (θ)

dx

+
{
�(� + 1) − m2

sin2 w
− V2

sin2 w

}
Y(θ) = 0, (11.41)

which seems a Schrödinger-like equation if

−w′′

w′ + w′ cotw = 0, (11.42)

that leads to

tan(w/2) = ex, sin2 w = sech2 x, x ∈ (−∞,∞). (11.43)

Using Eqs. (11.42) and (11.43) in the expression for Eq. (11.41) we arrive at

d2Y(θ)

dx2
+ [�(� + 1) sech2 x]Y(θ) = (m2 + V2)Y (θ). (11.44)

We are now ready to consider the treatment of two Eqs. (11.39) and (11.44)
through the proper quantization rule approach, respectively.

First, we will derive the solutions for Eq. (11.44) with the effective potential

Veff.(x) = −�(� + 1) sech2 x. (11.45)

Let

y = tanh(x), yA = tanh(xA), yB = tanh(xB), (11.46)

where xA and xB are two turning points satisfying V (xA) = V (xB) = E�. This gives

E� = −�(� + 1)(1 − y2),

yA + yB = 0,

yAyB = −
(

1 + E�

�(� + 1)

)
.

(11.47)
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From the Riccati equation (11.5) with the potential in Eq. (11.45), one may obtain
E0 = −�2.

Then, the integral of the momentum kn(x) in Eq. (11.24)
∫ xB

xA

kn(x)dx = π
(√

�(� + 1) −√−E�

)
. (11.48)

We can obtain the second integral in Eq. (11.24) from the ground state
∫ x0B

x0A

k0(x)dx = π
(√

�(� + 1) − �
)
. (11.49)

In conjunction with Eqs. (11.48) and (11.49), the proper quantization rule in Eq.
(11.24) becomes

π
(√

�(� + 1) −√−E�

) = n�π + π
(√

�(� + 1) − �
)
. (11.50)

Therefore, from above equation we could be tempted to write the exact energy
eigenvalues of the θ -dependent part for the symmetric Rosen-Morse potential
(11.45) as

E� = −(� − n)2. (11.51)

In the present case E� = −(m2 + V2), this yields

� = n� + (m2 + V2)
1/2. (11.52)

Second, we consider the radial equation (11.39) where the effective potential
looks like

Veff.(r) = V1

r
+ �(� + 1)

r2
. (11.53)

By a similar procedure, we have

rA + rB = V1

Enr

, rArB = −�(� + 1)

Enr

(11.54)

with

E0 = − V 2
1

4(� + 1)2
. (11.55)

Then, the two integrals in the quantization rule are evaluated exactly

∫ rB

rA

kn(r)dr = π

(
V1

√
1

−4Enr

−√
�(� + 1)

)
, (11.56)

∫ r0B

r0A

k0(r)dr = π(� + 1 −√
�(� + 1)). (11.57)

The proper quantization rule in Eq. (11.25) takes the following form

π

(
V1

√
1

−4Enr

−√
�(� + 1)

)
= nrπ + π

[
� + 1 −√

�(� + 1)
]
. (11.58)
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Therefore, from above equation one can immediately obtain the well-known energy
eigenvalues for the Coulomb potential En as

En = − V 2
1

4n2
, n = nr + � + 1, (11.59)

where n is the principal quantum number. This result essentially agrees well with
that of Ref. [385], in which the corresponding energy spectra has been calculated
by the path integral method. One can also verify that the present result is consistent
with that given in other works [383, 386].

6.3 Energy Spectra for the Manning-Rosen Effective Potential

Finally, we shall apply the proper quantization rule to generate the exact solutions
of the Manning-Rosen effective potential [387–390] in D dimensions

Veff.(r) = �
2

2M

[
β(β − 1)α2e−2αr

(1 − e−αr)2
− Aα2e−αr

1 − e−αr
+ α2e−αr�′(�′ + 1)

(1 − e−αr )2

]
, (11.60)

where the modified �′ is given by [380]

�′ = � + D − 3

2
. (11.61)

Introduce a new variable y

y = 1

eαr − 1
,

d

dr
y(r) = −αy(1 + y). (11.62)

Denote the coefficients in the effective potential by parameters V2 and V1, respec-
tively

Veff.(r) = V2y
2 + V1y,

V1 = α2γ 2
�

2

2M
, V2 = α2σ 2

�
2

2M
,

σ 2 = β(β − 1) + �′(�′ + 1),

γ 2 = �′(�′ + 1) − A.

(11.63)

The integral of the momentum kn(r) in Eq. (11.25) gives
∫ rB

rA

kn(r)dr =
∫ yB

yA

√
2MV2

−�αy(1 + y)

√
(y − yA)(yB − y)dy

= −πσ

(√−V1

V2
− En�

V2
+ 1 −

√
−En�

V2
− 1

)
. (11.64)

After some algebraic calculation and simplification, one may arrive at an expres-
sion for the Maslov index

μ = 4

π

∫ r2

r1

k0(r)dr = 4(σ + m), m = 1

2
+

√
1

4
+ σ 2. (11.65)
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By successively using the relations in Eqs. (11.64) and (11.65), the proper quanti-
zation rule in Eq. (11.25) can be expressed as

−πσ

(√−V1

V2
− En�

V2
+ 1 −

√
−En�

V2
− 1

)
=

(
n + μ

4

)
π. (11.66)

Hence, one can immediately obtain the exact energy eigenvalues [388, 389] for the
D-dimensional Manning-Rosen potential as

En� = − �
2

2M

[
(β(β − 1) + A)α

2(n + m)
− (n + m)α

2

]2

. (11.67)

7 The Langer Modification and Maslov Index in D Dimensions

In the last years some attempts [341–343, 374, 391, 392] have been made to avoid
the Langer modification. For example, the Langer modification can be avoided by
introducing the concept of non-integral, energy-dependent Maslov index μ. Since
there is no any correction in the application of the present proper quantization rule,
we will investigate the general relationships between the Langer modification, the
Maslov index and the proper quantization rule as follows.

As shown in previous sections, the proper quantization rule for three dimensional
Schrödinger equation with a spherically symmetric potential [348, 349] takes the
same form as that in one dimension simply by replacing the variable x with r . On
the other hand, it is shown in previous study [380] that this methodology also holds
for D dimensional Schrödinger equation with a spherically symmetric potential,
where the effective potential can be expressed as

Veff.(r) = V (r) + �
2�′(�′ + 1)

2Mr2
, (11.68)

where �′ is given in Eq. (11.61).
Thus, we have the explicit formulation of proper quantization rule in D dimen-

sions
∫ rB

rA

kn(r)dr −
∫ r0B

r0A

k0(r)dr = nπ, (11.69)

with the momentum between two turning points

kn(r) = √
2M[En − Veff.(r)]/�, En ≥ Veff.(r). (11.70)

Equation (11.69) may be rewritten in the form
∫ rB

rA

kn(r)dr =
(
n + μ

4

)
π, μ = 4

π

∫ r0B

r0A

k0(r)dr. (11.71)

In the following, we will investigate the hydrogen atom, harmonic oscillator and
Manning-Rosen potential respectively to show the procedure to obtain the general
form of the Langer modification and Maslov index with the aid of Eq. (11.71).
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First, the effective potential for the hydrogen atom in D dimensions is

Veff.(r) = �
2�′(�′ + 1)

2Mr2
− �

2

2Mr
. (11.72)

The integral of the momentum kn(r) in the quantization rule is calculated to be
∫ r2

r1

kn(r)dr =
[

1√−2En

−√
�′(�′ + 1)

]
π. (11.73)

The Maslov Index for hydrogen atom in D dimensions may be obtained

μ = 4

π

∫ r2

r1

k0(r)dr = 4

(
� −√

�′(�′ + 1) + D − 1

2

)
. (11.74)

By using the quantization rule Eq. (11.71), one may obtain the energy expression
[37, 380]

En = −e4

2

1

(n + D−3
2 )2

. (11.75)

The Langer modification in D dimensions may be derived as

�′(�′ + 1) → �′ + 1/2, (11.76)

which is consistent with that once obtained by Watson’s method [393].
Next, the proper quantization rule is applied to study the harmonic oscilla-

tor in arbitrary dimensions. As is well known, the effective potential for the D-
dimensional harmonic oscillator is

Veff.(r) = 1

2
Mω2r2 + �

2�′(�′ + 1)

2Mr2
. (11.77)

The integral of the momentum kn(r) in the quantization rule Eq. (11.71) is calcu-
lated to be

∫ rB

rA

kn(r)dr = π

2

[
En

�ω
−√

�′(�′ + 1)

]
. (11.78)

One may also evaluate the Maslov index for harmonic oscillator in D dimensions

μ = 4

π

∫ r2

r1

k0(r)dr = D + 2
(
� −√

�′(�′ + 1)
)
. (11.79)

Therefore, the proper quantization rule gives the familiar result for the energy
levels of the D-dimensional harmonic oscillator

En = �ω(n + D/2), n = 2nr + �, (11.80)

where n represents the principal quantum number and nr the radial quantum num-
ber, which is equal to n in the proper quantization rule.

In the case of D = 3, one may obtain the Maslov index from Eq. (11.79)

μ = 3 + 2[� −√
�(� + 1)]. (11.81)

This result is consistent with that μ = 1 + 2[� + 1/2 − √
�(� + 1)] + 1 derived by

the phase loss method [341–343] and that η = 1/2 + [� + 1/2 − √
�(� + 1)]/2 via
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periodic orbit theory [370, 371] by noting that η = μ/4. Obviously, those previous
results [341–343, 370, 371] are the special cases of the general result in Eq. (11.79)
obtained by the proper quantization rule.

8 Calculations of Logarithmic Derivatives of Wavefunction

As shown above, we have illustrated how to obtain the energy levels of some solv-
able quantum potentials. For completeness, we are going to show how we calculate
the logarithmic derivative of wavefunction so that we might get the eigenfunctions.

For this purpose, we can get it by solving the non-linear Riccati equation. It is
known that the logarithmic derivative of wavefunction φ(x) has (N = n + 1) zeros
and n nodes, thus we might express it into an algebraic fraction. As mentioned
above, we only take the logarithmic derivative of the ground state φ0(x) to calculate
the quantum correction since it is independent of the nodes of the wavefunction. In
fact, one is able to take the logarithmic derivative of arbitrary state of wavefunction
to calculate the corresponding quantum correction Q.

As an illustration, we present one-dimensional harmonic oscillator V (x) =
Mω2x2/2. In the case of the ground state, take φ0(x) = −α2x. Substituting it into
the non-linear Riccati equation (11.5) allows us to obtain E0 = �ω/2. For the first
excited state, we can write down the non-linear Riccati equation (11.5) as

d

dx
φn(x) = −2M

�2
En + α4x2 − φ2

n(x), α =
√

Mω

�
. (11.82)

Define

φ1(x) = c2x
2 + c0

x
, c2 < 0. (11.83)

Substituting this into Eq. (11.82) leads to the following expression

c2 − c0x
−2 = −2ME1

�2
+

(
Mω

�

)2

x2 − c2
2x

2 − 2c2c0 − c2
0x

−2, (11.84)

from which we have

c0 = 1, c2 = −Mω

�
= −α2, E1 = −3�

2c2

2M
= 3

2
�ω. (11.85)

In a similar way, for the second excited state we define

φ2(x) = c3x
3 + c1x

x2 + c2
, c3 < 0. (11.86)

After substituting it into the Riccati equation (11.82), we obtain

(3c3x
2 + c1)(x

2 + c2) − 2x(c3x
3 + c1x)

=
[
−2ME2

�2
+

(
Mω

�

)2

x2
]
(c2 + x2)2 − c2

3x
6 − 2c3c1x

4 − c2
1x

2. (11.87)
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This allows us to obtain those coefficients as follows:

c3 = −α2, c2 = − 1

2α2
, c1 = 5

2
, E2 = 5

2
�ω. (11.88)

Now, we attempt to study the third excited state. Define

φ3(x) = c4x
4 + c2x

2 + c0

x3 + c1x
, c4 < 0. (11.89)

Substitution of this into the non-linear Riccati equation (11.82) yields

(c0 + c2x
2 + c4x

4)2 + c1c2x
2 − (c2 − 3c1c4)x

4 + c4x
6 − c0(c1 + 3x2)

=
[
−2ME3

�2
+

(
Mω

�

)2

x2
]
x2(c1 + x2)2, (11.90)

from which we obtain

c0 = c1 = − 3

2α2
, c2 = 9

2
, c4 = −α2, E3 = 7

2
�ω. (11.91)

Finally, we discuss a more complicated case, i.e., the fourth excited state. We
define

φ4(x) = c5x
5 + c3x

3 + c1x

x4 + c2x2 + c0
, c5 < 0. (11.92)

Substituting this into Riccati equation (11.82) allows us to obtain

c0c1 + (c2
1 − c1c2 + 3c0c3)x

2 + [c2c3 + c1(−3 + 2c3) + 5c0c5]x4

+ (−c3 + c2
3 + 2c1c5 + 3c2c5)x

6 + (1 + 2c3)c5x
8 + c2

5x
10

=
[
−2ME4

�2
+

(
Mω

�

)2

x2
]
(c0 + c2x

2 + x4)2, (11.93)

from which we have

c0 = 3

4
α−4, c1 = −27

4
α−2, c2 = −3α−2,

c3 = 7, c5 = −α2, E4 = 9

2
�ω.

(11.94)

Likewise, we are able to calculate those for the higher excited states. In general,
we may define the logarithmic derivatives of the wavefunction with the form

φ2n+1(x) =
∑n+1

m=0 c2mx2m

x2n+1 +∑n−1
m=0 c2m+1x2m+1

,

φ2n(x) =
∑n

m=0 c2m+1x
2m+1

x2n +∑n−1
m=0 c2mx2m

.

(11.95)

More precisely, they can also be unified to

φn(x) = −α2x + 2nα
Hn−1(α x)

Hn(α x)
, (11.96)
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from which we may obtain the wavefunction of harmonic oscillator by integrating

ψn(x) = Nne
− α2

2 x2
Hn(α x), (11.97)

where Nn is the normalization factor, Hn(α x) denote the nth Hermitian polynomial.
The energy levels are given by En = (n + 1/2)�ω.

As illustrated above, it indicates that the quantum correction Q is independent of
the nodes of the wavefunction. Once the logarithmic derivative of the wavefunction
φn(x) is obtained, it is very easy to get the corresponding wavefunction ψn(x) by
integrating with respect to variable x. Certainly, the wavefunctions of other quantum
systems could also treated in a similar way.

9 Conclusions

Since the exact quantization rule approach was proposed by Ma-Xu in 2004, this
new formalism has been applied to determine eigenvalues of most known analyt-
ically solvable potentials and find the relativistic and non-relativistic solutions for
a wide class of physical problems. The advantage of this method is to estimate the
energy eigenvalues with the logarithmic derivative φ0(x) of wavefunction from the
ground state only, without ever having to solve the Schrödinger equation by the
standard method. As an illustration, we have solved the asymmetric trigonometric
Rosen-Morse potential by this exact quantization rule method and found that the
integral calculations become rather tedious and complicated.

To overcome this difficulty, on the basis of this exact quantization rule method,
the proper quantization rule proposed by Qiang-Dong Eqs. (11.24) and (11.25),
more symmetric than the original one, greatly simplifies the calculations of the
complicated integrals in the previous studies. One needs to calculate only one of
two integrals. With the proper quantization rule, the ground state energy is suffi-
cient to determine the energy levels of the quantum system. Thus, due to the fact
that whenever the number of the nodes of φ(x) or the number of the nodes of the
wavefunction ψ(x) increases by one, the momentum integral

∫ xB
xA

k(x)dx will in-
crease by π .

The proper quantization rule method is shown to be convenient to investigate
one dimensional or spherically symmetric D dimensional solvable potentials. It is
verified to be also efficient for the noncentral but separable potentials. After separat-
ing the variables, the radial and the angular pieces of the Schrödinger equation can
both be treated within the same framework. It is shown that the energy levels of the
modified Rosen-Morse potential, the Coulombic ring-shaped noncentral Hartmann
system and the Manning-Rosen effective potential are derived only from the ground
state energy. The procedure is general and the extensions of the present method to
other noncentral separable potentials is straightforward.

Besides semiempirical hypothesis, this Chapter presents an alternative analytic
means for the treatment of the quantization rule, Langer modification and Maslov
index. If the correct energies are expected when one deals with radial quantum sys-
tems in WKB frame, the Langer modification is necessary. If the Langer prescription
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is to be avoided, the ansatz of the non-integer Maslov indices may be introduced as
suggested in some proposals. Within the new quantization rule scheme, the non-
integer value of Maslov indices may be directly derived in a natural way and one
may get energy eigenvalues, without any correction, as accurate as those obtained
from the conventional approaches.

For completeness, we have also shown how to calculate the logarithmic deriva-
tives of the wavefunction in terms of the non-linear Riccati equation. Once they are
available, it is not difficult to obtain the corresponding wavefunction by integrating
them with respect to the argument.

We would like to mention that the semiclassical EBK quantization rule and the
Maslov index are related to the advance of the perihelion of the classical orbit, which
is used to derive the quantum defect parameterization and Ritz expansion [394, 395].
It will be interesting to consider in future how to establish a conceptual relationship
between the present results and both the advance of the classical perihelion and the
quantum defect. It is also important to give further investigation of the properties of
Maslov index for all exactly solvable potentials.

It should also be noted that the well-known quantum Hamilton-Jacobi method
[372, 373, 396, 397], which also gives energy levels without need for solving for
wavefunction and also gives the wavefunctions for all exactly solvable models, and
the present method are not identical. Further investigations of the present method
to other quantum solvable models are necessary in order to explain in more detail
the properties of energy eigenvalues and wavefunctions of those systems. A number
of investigations of this fundamental quantum problem can be expected in the near
future.

Before ending this Chapter, we want to give some useful remarks. First, related
to present study we have noticed that any l-state solutions of the Woods-Saxon po-
tential in arbitrary dimensions within the new improved quantization rule have been
studied recently [398]. Second, Yin et al. have shown why SWKB approximation is
exact for all shape invariant potentials [399] by analytical transfer matrix theory. It
should be noted that this theory is closely related to the exact and proper quantiza-
tion rules. Third, Grandatia et al. have also shown that the exact quantization rule
results from the exactness of the modified JWKB quantization condition1 proved by
Barclay [402] and proposed a very direct alternative way to calculate the appropri-

1It should be noted that the validity of the Ma-Xu formula follows from a Barclay’s result. He
found that for these potentials the JWKB series can be resumed beyond the lowest-order giving
an energy-independent correction which can be absorbed into the Maslov index and written in a
closed analytical expression. Moreover, he showed equally that this result is directly correlated to
the exactness of the lowest-order SJWKB quantization condition [374, 400]. The starting point
is the definition of two classes of potentials, each characterized by a specific change of variable
which brings the potential into a quadratic form. It is shown that this two classes coincide with the
Barclay-Maxwell classes [401], which are based upon a functional characterization of superpoten-
tials and which cover the whole set of translationally shape invariant potentials.
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ate correction for the whole class of translationally shape invariant potentials [403].
The SJWKB quantization rule is written as

∮

En

kn(x)dx = 2
∫ xb

xa

kn(x)dx = 2(nπ + γ ), (11.98)

where γ is an energy-independent correction characteristic of the studied potentials.
In Ma-Xu’s quantization rule, the constant γ is nothing but the quantum correction
Q0. More than ten years later Bhaduri et al. [404] proposed another interesting
derivation of this result which replies on periodic orbit theory.



Chapter 12
Schrödinger Equation with Position-Dependent
Mass

1 Introduction

Generally speaking, the effective mass is taken as a constant in the traditional wave
equations. Recently, the study of the non-relativistic equation with the position-
dependent effective mass has attracted a lot of attention to many authors [405–439].
This is because such systems have been found to have wide applications in various
fields such as the electronic properties of the semiconductors [412], 3He clusters
[413], quantum wells, wires and dots [405, 406, 414], quantum liquids [416], the
graded alloys, semiconductor heterostructures [417] and others. Recently, the alge-
braic method has also been used to study these systems [436–438].

This Chapter is organized as follows. In Sect. 2 we employ a point canoni-
cal transformation to study the D-dimensional position-dependent effective mass
Schrödinger equation. Two typical examples such as the harmonic oscillator and
Coulomb potential are carried out in Sect. 3. Some concluding remarks are given in
Sect. 4.

2 Formalism

According to recent contributions [70, 440, 441], it is shown that the position-
dependent effective mass Schrödinger equation with physical potentials is given
by

∇D

(
1

m
∇Dψ(r)

)
+ 2[E − V (r)]ψ(r) = 0, (12.1)

where m = m0m(r) = m(r). For D-dimensional spherical symmetry, we take the
wavefunction ψ(r) as follows:

ψ(r) = r−(D−1)/2R(r)Y l
lD−2,...,l1

(x̂). (12.2)
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Based on the following formula

∇D

1

m
∇Dψ(r) =

(
∇D

1

m

)
· [∇Dψ(r)] + 1

m
∇2

Dψ(r), (12.3)

substituting (12.2) into (12.1) allows us to obtain the radial position-dependent mass
Schrödinger equation with a spherically symmetric potential

{
d2

dr2
+ m′

m

(
D − 1

2r
− d

dr

)
− η2 − 1/4

r2
+ 2m[E − V (r)]

}
R(r) = 0, (12.4)

where m′ = dm(r)/dr and η = |l − 1 + D/2|.
On the other hand, it is well known that the radial Schrödinger equation with

constant mass (m = m0 = 1) is given by
{

d2

d�2
− η2

1 − 1/4

�2
+ 2[ε − U(�)]

}
ψ(�) = 0, η1 = |� − 1 + D/2|, (12.5)

where � denotes the angular momentum.
By performing the following transformations on above Eq. (12.5)

� = q(r), ψ(�) = f (r)R(r), (12.6)

we have
{

d2

dr2
+

(
2
f ′

f
− q ′′

q ′

)
d

dr
+

(
f ′′

f
− q ′′

q ′
f ′

f

)

− (η2
1 − 1/4)(q ′/q)2 + 2(q ′)2[ε − U(q(r))]

}
R(r) = 0. (12.7)

In comparison Eq. (12.4) with Eq. (12.7) we find that

f (r) =
√

q ′
m

(12.8)

V (r) − E + η2 − 1/4

2mr2
= (q ′)2

m
[U(q(r)) − ε] + (D − 1)m′

4m2r

+ η2
1 − 1/4

2m
(q ′/q)2 + 1

4m
[g(m) − g(q ′)] (12.9)

with

g(x) = x′′

x
− 3

2

(
x′

x

)2

. (12.10)

In the calculation, we have used the following results

f ′

f
= 1

2

{
q ′′

q ′ − m′

m

}
,

f ′′

f
= 1

4

{
3m′2

m2
− 2m′′q ′ + 2m′q ′′

mq ′ − (q ′′)2 − 2q ′q ′′′

q ′2

}
.

(12.11)
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3 Applications to Harmonic Oscillator and Coulomb Potential

In this section, we are ready to illustrate the harmonic oscillator. The solutions are
given by

U(�) = 1

2
ω2�2,

εn = (2n + � + D/2)ω,

ψ(�) = Cn(ω�)�+(D−1)/2e−ω�2/2
1F1(−n;� + D/2;ω�2),

(12.12)

where � is related to η1 given in Eq. (12.5).
Take m(r) = αrτ and q(r) = rν , where α, τ and ν are non-zero real parameters.

For simplicity, we only consider the case ν = 1 + τ/2 with τ �= 2. Thus, (q ′)2/m

becomes a constant. Substituting them into Eq. (12.9) allows us to obtain

V (r) = ν2

α
U(q(r)) = α

2
c2rτ+2,

En = ν2

α
εn = τ + 2

2
c(2n + �(l) + D/2),

R(r) = cn(βr)
(1+τ/2)[�(l)+(D−1)/2]+τ/4e−βr(τ+2)/2

×1F1[−n;�(l) + D/2;βrτ+2],

(12.13)

where c is a real potential parameter, ω = β = 2αc/(2 + τ) and �(l) satisfies a
constraint

16(η2 − 1/4) = 4(2 + τ)2(η2
1 − 1/4) − 3τ 2 + (8D − 12)τ. (12.14)

When τ = 0, m is independent of position r and then � = l. Thus, it is straight to
see that Eqs. (12.13) agree with Eqs. (12.12) completely.

Finally, we briefly carry out the Coulomb potential. The solutions are given by

U(�) = − ξ

�
,

εn = − ξ2

2[n + (D − 3)/2]2
,

ψ(�) = Bn(β�)
�+(D−1)/2e−β�

× 1F1[−(n − � − 1);2� + D − 1;2β�],

(12.15)

where

β = ξ

n + (D − 3)/2
, n = 1,2,3, . . . . (12.16)
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With the same process as that of the harmonic oscillator, we have

V (r) = − d

r1+τ/2
,

En = − 2αd2

(2 + τ)2

1

[n1 + (D − 3)/2]2
,

R(r) = bnr
(1+τ/2)[�(l)+(D−1)/2]+τ/4e−γ r1+τ/2

× 1F1[−(n1 − �(l) − 1);2�(l) + D − 1;2γ r1+τ/2],

(12.17)

where

n1 = nr + �(l) + 1,

γ = 4αd

(2 + τ)2

1

n + (D − 3)/2
,

d = (2 + τ)2ξ

4α
,

(12.18)

where the �(l) satisfies the same constraint as Eq. (12.14).
Before ending this section, we give a useful remark on the recent work [442].

The authors Ballesteros et al. claimed that they have found a new exactly solvable
quantum model in N dimensions with the Hamiltonian

H = − �
2

2(1 + λr2)
∇2 + ω2r2

2(1 + λr2)
. (12.19)

They addressed that the spectrum of this model is shown to be hydrogen-like
(should be harmonic oscillator-like), and their eigenvalues and eigenfunctions are
explicitly obtained by deforming appropriately the symmetry properties of the N -
dimensional harmonic oscillator. We pinpoint that such an understanding is incorrect
since the kinetic energy term was not defined as Eq. (12.3). This means that the
operator ∇ does not commute with the position-dependent mass m(r). Therefore,
this system does not permit exact solutions at all. Furthermore, the choice of the
position-dependent mass m(r) = (1 + λr2) has no physical meaning since the mass
m(r) → ∞ when r → ∞. In particular, the mass m(r) was taken as 1/(1 + λr2) =
1/m(r) for the harmonic oscillator term.

4 Conclusions

In this Chapter we have employed a point canonical transformation to study the D-
dimensional position-dependent effective mass Schrödinger equation. By mapping
this wave equation into a well-known solvable D-dimensional Schrödinger equation
with a constant mass, the exact bound state solutions have been derived for a given
spatial dependent mass distribution. As illustrations, we have carried out two typical
examples such as the harmonic oscillator and Coulomb potential. Before ending this
Chapter, we give two useful remarks on this topic. The advantage of this method is
easy to obtain the corresponding solutions for given position-dependent mass m(r)
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and variable q(r). However, some constraints on the parameters will be appearing
unavoidably. On the other hand, note that Ikhdair and Sever have worked over the
exactly solvable effective mass D-dimensional Schrödinger equation for pseudo-
harmonic and modified Kratzer problems [443]. However, it should be pointed out
that these problems are essentially same as the harmonic oscillator and Coulomb
potential except for a slight modification.



Part IV
Applications in Relativistic Quantum

Mechanics



Chapter 13
Dirac Equation with the Coulomb Potential

1 Introduction

The exact solutions of quantum system with a 1/r type potential are of impor-
tance in quantum mechanics [1, 2, 444]. Due to the recent interest of the higher-
dimensional field theory, many problems related to the Schrödinger equation and
Klein-Gordon equation in (D + 1) dimensions have been discussed. To fill in the
gap between them, we have carried out the Dirac equation with this potential in
(D + 1) dimensions [91].

The purposes of this Chapter are two-fold. First, we exhibit the exact solutions
of the hydrogen atom by the confluent hypergeometric equation approach. The sec-
ond is to investigate the variations of energy difference �E(n, l,D) and the energy
levels E(n, l,D) on the dimension D [87] and also to study the variations of energy
levels E(n, l, ξ) on the potential strength ξ = Zα for a given D.

This Chapter is organized as follows. The exact solutions of the radial equations
will be displayed via the confluent hypergeometric equation approach in Sect. 2.
The variations of energy difference �E(n, l,D) and energy levels E(n, l,D) on
the dimension D as well as the variations of energy levels E(n, l, ξ) on the po-
tential strength ξ = Zα shall be elucidated in Sect. 3. The Dirac equation with a
Coulomb potential plus a scalar potential will be discussed in Sect. 4. Some con-
cluding remarks are given in Sect. 5.

2 Exact Solutions of Hydrogen-like Atoms

As demonstrated in Chap. 4, the D-dimensional radial Dirac equations are written
as

d

dr
GKE(r) + K

r
GKE(r) = [E − V (r) − M]FKE(r),

− d

dr
FKE(r) + K

r
FKE(r) = [E − V (r) + M]GKE(r),

(13.1)
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with

K = ±(2l + D − 1)/2. (13.2)

Let us study the solutions of radial equations (13.1) by the confluent hyperge-
ometric equation approach. This is different from power series expansion method
used in Chap. 4.

Consider the Coulomb-like potential, i.e.,

V (r) = −ξ

r
, ξ = Zα. (13.3)

Introduce a new variable ρ for bound states |E| <M ,

ρ = 2r
√
M2 − E2. (13.4)

Substitution of this, together with Eq. (13.3), into Eq. (13.1) leads to

d

dρ
GKE(ρ) + K

ρ
GKE(ρ) =

(
−1

2

√
M − E

M + E
+ ξ

ρ

)
FKE(ρ),

d

dρ
FKE(ρ) − K

ρ
FKE(ρ) =

(
−1

2

√
M + E

M − E
− ξ

ρ

)
GKE(ρ).

(13.5)

Define the wavefunction �±(ρ) of the forms

GKE(ρ) = √
M − E[�+(ρ) + �−(ρ)],

FKE(ρ) = √
M + E[�+(ρ) − �−(ρ)].

(13.6)

Substitutions of them into Eq. (13.5) allow us to write down
{

d

dρ
�+(ρ) + d

dρ
�−(ρ)

}
+ K

ρ
[�+(ρ) + �−(ρ)]

=
{
−1

2
+ ξ

ρ

√
M + E

M − E

}
[�+(ρ) − �−(ρ)],

{
d

dρ
�+(ρ) − d

dρ
�−(ρ)

}
− K

ρ
[�+(ρ) − �−(ρ)]

=
{
−1

2
− ξ

ρ

√
M − E

M + E

}
[�+(ρ) + �−(ρ)].

(13.7)

Their addition and subtraction yield

d

dρ
�±(ρ) ∓

(
ξE

ρ
√
M2 − E2

− 1

2

)
�±(ρ)

= −
(
K

ρ
± ξM

ρ
√
M2 − E2

)
�∓(ρ). (13.8)

Define the following notations

τ = ξE√
M2 − E2

, τ ′ = ξM√
M2 − E2

. (13.9)
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Equation (13.8) is simplified to

d

dρ
�±(ρ) ∓

(
τ

ρ
− 1

2

)
�±(ρ) = −K ± τ ′

ρ
�∓(ρ), (13.10)

from which we can obtain an important second-order differential equation
{

d2

dρ2
+ 1

ρ

d

dρ
+

(
−1

4
+ τ ± 1/2

ρ
− η2

ρ2

)}
�±(ρ) = 0, (13.11)

where

η2 = K2 − ξ2. (13.12)

For a weak potential, we have

η =
√
K2 − ξ2 > 0. (13.13)

It indicates that Eq. (13.11) is a special case of the Tricomi equation [20]

d2y

dx2
+

(
a + b

x

)
dy

dx
+

(
α + β

x
+ ξ

x2

)
y = 0. (13.14)

From the behaviors of the wavefunction at the origin and at infinity, we define

�±(ρ) = ρηe−ρ/2R±(ρ). (13.15)

Substitution of this into (13.11) leads to

d2

dρ2
R±(ρ) +

(
−1 + 1 + 2η

ρ

)
d

dρ
R±(ρ)

+ τ − η − 1/2 ± 1/2

ρ
R±(ρ) = 0, (13.16)

whose solutions are the confluent hypergeometric functions

R+(ρ) = a01F1(η − τ ;2η + 1;ρ),
R−(ρ) = b01F1(1 + η − τ ;2η + 1;ρ). (13.17)

It is shown from Eqs. (13.6), (13.15) and (13.17) that GKE(ρ) and FKE(ρ) can be
directly obtained by the combinations of the confluent hypergeometric functions.

We now study the relation between the coefficients a0 and b0. Before proceeding,
we recall the following recurrence relations between the confluent hypergeometric
functions [192]

γ
d

dz
1F1(α;γ ; z) = α1F1(α + 1;γ + 1; z)

= αγ

z
[γ 1F1(α + 1;γ ; z) − γ 1F1(α;γ ; z)],

α1F1(α + 1;γ + 1; z) = (α − γ )1F1(α;γ + 1; z) + γ 1F1(α;γ ; z),
α1F1(α + 1;γ ; z) = (z + 2α − γ )1F1(α;γ ; z)

+ (γ − α)1F1(α − 1;γ ; z).

(13.18)
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It is shown from Eqs. (13.11), (13.17) and (13.18) that
(
η − τ

ρ
a0 + τ ′ + K

ρ
b0

)

1F1(1 + η − τ ;2η + 1;ρ) = 0. (13.19)

Since both a0 and b0 cannot be vanishing, we obtain the following relation between
them

b0 = τ − η

τ ′ + K
a0. (13.20)

From Eq. (13.6) we thus have

GKE(ρ) = NKE

√
M − Eρηe−ρ/2

× [(τ ′ + K)1F1(η − τ ;2η + 1;ρ)
+ (τ − η)1F1(1 + η − τ ;2η + 1;ρ)],

FKE(ρ) = NKE

√
M + Eρηe−ρ/2

× [(τ ′ + K) 1F1(η − τ ;2η + 1;ρ)
− (τ − η) 1F1(1 + η − τ ;2η + 1;ρ)],

(13.21)

where the normalization factor

NKE = a0(τ
′ + K)−1(2

√
M2 − E2

)−1/2 (13.22)

is to be determined.
We now study the eigenvalues of this quantum system. The quantum condition is

obtained from the finiteness of the solutions at infinity

τ − η = n′ = 0,1,2, . . . . (13.23)

When n′ = 0, η = τ , and

K2 = τ 2 + ξ2 = (τ ′)2. (13.24)

Therefore, K has to be positive to avoid a trivial solution.
Introduce the principal quantum number n

n = |K| − (D − 3)/2 + n′

= |K| − (D − 3)/2 + τ − η

= l + 1 + n′ = 1,2, . . . . (13.25)

The n may be equal to 1 only for K = (D − 1)/2 and is equal to other positive
integers for both signs of K . The energy E can be obtained from Eqs. (13.9), (13.11)
and (13.25)

E(n, l,D) = M
ξ

|ξ |
{

1 + ξ2

(
√
K2 − ξ2 + n − l − 1)2

}−1/2

. (13.26)

For a large D, we have

E(n,D) 	 M
ξ

|ξ | [1 − 2ξ2D−2 + 4ξ2(2n − 3)D−3 − · · ·], (13.27)

which implies that the energy is independent of l for a large D.
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Fig. 13.1 The energy difference �E(1,0,D) decreases with the dimension D ∈ (0,0.9], while
increases with the dimension D ∈ [1.1,1.9] and then decreases again with the dimension D ≥ 2.1.
The �E(1,0,D) is symmetric with respect to the point (1.5,0), so are those �E(n,0,D). The
parameter ξ = 0.05 is taken here and also in Figs. 13.2–13.6

For a small ξ , we have

E(n, l,D) 	 M

{
1 − ξ2

2[n + (D − 3)/2]2

− ξ4

2[n + (D − 3)/2]4

(
2n + D − 3

2l + D − 1
− 3

4

)}
, (13.28)

where the first term on the right hand side is the rest energy M (c2 = 1), the second
one is from the solutions of the Schrödinger equation, and the third one is the fine
structure energy, which removes the degeneracy between the states with the same n.
It is found from Eq. (13.28) that the energy levels E(n, l,D) are almost independent
of the quantum number l for a small potential parameter ξ as shown in Fig. 13.1.

We now determine the normalization factor NKE from the normalization condi-
tion

∫
�

†
KE�KEdV = 1. (13.29)

Since n′ = τ − η is a non-negative integer, we may express the confluent hyperge-
ometric functions by the associated Laguerre polynomials (5.21). Through a direct
calculation, we obtain the normalization factor

NKE = (M2 − E2)1/4

�(2η + 1)

[
�(τ + η + 1)

2Mτ ′(K + τ ′)(τ − η)!
]1/2

. (13.30)
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3 Analysis of the Eigenvalues

We now analyze the properties of eigenvalues. Recently, Nieto has made use of the
concept of the continuous dimension D to study the bound states of quantum system
with a special potential [87]. With this spirit, we attempt to discuss what happened
to a continuous dimension D as shown in Ref. [100].

It is shown from Eq. (13.25) that n = 1,2,3, . . . and l = 0,1, . . . , n − 1. If the
principal quantum number n and the angular momentum quantum number l are
fixed, the energy difference �E(n, l,D) between eigenvalues for dimensions D

and D − 1 can be calculated by

�E(n, l,D) = E(n, l,D) − E(n, l,D − 1)

= M
ξ

|ξ |
{

1
√

1 + ξ2

(σ+
√

K2−ξ2)2

− 1
√

1 + ξ2

(σ+
√
K2

1 −ξ2)2

}
, (13.31)

where

σ = n − l − 1, K1 = (2l + D − 2)/2. (13.32)

It is found from Eq. (13.31) that the relation between �E(n, l,D) and dimension D

is more complicated than that of the Schrödinger equation case [87]. The problem

arises from the factor
√
K2 − ξ2 (or

√
K2

1 − ξ2). Therefore, for a weak potential it
is shown from Eqs. (13.2), (13.13) and (13.31) that

D = 2(1/2 − l + K)

{≥ 1 + 2|ξ |, when l = 0 and K > |ξ |,
≤ 1 − 2|ξ |, when l = 0 and K < −|ξ |, (13.33)

and

D = 2(1 − l + K)

{≥ 2 + 2|ξ |, when l = 0 and K1 > |ξ |,
≤ 2 − 2|ξ |, when l = 0 and K1 < −|ξ |. (13.34)

We present the variations of energy difference �E(n, l,D) on the dimension D

in Figs. 13.1, 13.2, 13.3. We take the parameters M = 1 and ξ = 0.05 for definite-
ness. It is shown from Fig. 13.1 that there exist two singular points around D ∼ 1
and D ∼ 2 for �E(1,0,D). As the dimension D increases, the energy difference
�E(1,0,D) first decreases with the dimension D in the region (0,0.9] and then
increases with the dimension D in the region [1.1,1.9], and finally decreases again
with the dimension D ≥ 2.1. In particular, it is found that the energy difference
�E(1,0,D) is symmetric with respect to the point (1.5,0). The singular points can
be easily explained from Eqs. (13.31), (13.33) and (13.34). That is, notice that there
exist singular points for K2 = ξ2 and K2

1 = ξ2. Thus, it is shown from Eqs. (13.33)
and (13.34) that D = 1 ± 2ξ and D = 2 ± 2ξ for l = 0, respectively. It is shown in
Fig. 13.2, where n = 2 and l = 1,0, that there are no bound states for D < 0.1. This
can also be explained by Eqs. (13.33) and (13.34). As the dimension D increases, the
energy difference �E(2,1,D) monotonically decreases with dimension D ≥ 0.1.
Finally, we show the �E(3, l,D) as a function of dimension D in Fig. 13.3, where
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Fig. 13.2 The plot of energy differences �E(2, l,D) (l = 0,1) as a function of dimension D.
Note that �E(2,1,D) decreases with the increasing dimension D ≥ 0.1 and the variation of the
�E(2,0,D) on the dimension D is very similar to �E(1,0,D)

Fig. 13.3 The plot of energy difference �E(3, l,D) as a function of dimension D. The red
dashed, green dotted and blue solid lines correspond to l = 2,1,0, respectively

the red dashed, green dotted and blue solid lines correspond to l = 2,1,0, respec-
tively. Note that the energy difference �E(3,2,D) decreases monotonically with
the dimension D. The variations of the �E(n,2,D), �E(n,1,D) and �E(n,0,D)

are very similar to the �E(3,2,D), �E(2,1,D) and �E(1,0,D), respectively.
Second, we display the variations of energy E(n, l,D) on the dimension D in

Figs. 13.4, 13.5, 13.6. It is shown from Fig. 13.4 that the energy E(1,0,D) de-
creases with the increasing dimension D ∈ (0,0.9], but increases with the dimen-
sion D ≥ 1.1. Likewise, this singular point can be explained by Eqs. (13.26) or
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Fig. 13.4 The energy E(1,0,D) decreases with the increasing dimension D ∈ (0,0.9], but in-
creases with the increasing dimension D ≥ 1.1. Note that it is symmetric with respect to axis
D = 1

Fig. 13.5 The variation of energy E(2,0,D) (red dotted line) on the dimension D is very similar
to E(1,0,D). The energy E(2,1,D) (blue dashed) increases with the increasing dimension D.
Specially, for D > 1 the energy E(2,1,D) almost overlaps E(2,0,D)

(13.33), i.e., K2 ≥ ξ2. This means that there are no solutions in D ∈ (1−2ξ,1+2ξ).
Figure 13.5 shows the properties of E(2, l,D), in which the red dotted and blue
dashed lines correspond to l = 0,1, respectively. The variation of the E(2,0,D)

on D is similar to energy E(1,0,D). But energy E(2,1,D) increases monoton-
ically as the dimension D increases. It is found that, when D > 1 the energies
E(2, l,D) (l = 0,1) are almost overlapped. This kind of phenomenon occurs in
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Fig. 13.6 The variations of energy levels E(3, l,D) (l = 2,1,0) on dimension D are similar
to E(2, l,D) (l = 1,0). The energy E(3,2,D) almost overlaps energy E(3,1,D). This can be
explained well by Eq. (13.28). When D > 1, the energies E(3, l,D) (l = 2,1,0) are almost
overlapped. The red dotted, blue dashed and green solid lines correspond to quantum numbers
l = 2,1,0, respectively

Fig. 13.7 The energy E(1,0, ξ) decreases with the increasing potential parameter ξ ≤ 1

n = 3 (l = 0,1,2) as shown in Fig. 13.6. This can be explained well through the
series expansion for 1/D as given in Eq. (13.27).

Third, we exhibit the variations of energy E(n, l, ξ) on the potential strength
ξ in Figs. 13.7, 13.8, 13.9. It is found from Fig. 13.7 that the energy E(1,0, ξ)
decreases with ξ ≤ 1. This can be explained by Eq. (13.26). That is to say, ξ ≤ l+1.
Figures 13.8 and 13.9 show the variations of the E(2, l, ξ) and E(3, l, ξ) on the
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Fig. 13.8 The energies E(2, l, ξ) (l = 0,1) decrease with the increasing potential parameter ξ .
Notice that ξ ≤ 1 for l = 0 (green dotted line), while ξ ≤ 2 for l = 1 (red dashed line)

Fig. 13.9 The energies E(3, l, ξ) (l = 0,1,2) decrease with the increasing potential parameter ξ .
Note that ξ ≤ 1 for l = 0 (blue solid line), while ξ ≤ 2 for l = 1 (green dotted line) and ξ ≤ 3 for
l = 2 (red dashed line). Generally, the energies E(n, l, ξ) decrease with the potential parameter
ξ ≤ l + 1 for a given l

potential parameter ξ . The energies E(n, l, ξ) decrease with potential parameter
ξ ≤ l + 1. In Fig. 13.8, the green dotted and red dashed lines correspond to l =
0,1, respectively. In Fig. 13.9, the blue solid, green dotted and red dashed lines
correspond to l = 0,1,2, respectively. Generally, the energies E(n, l, ξ) decrease
with the potential parameter ξ ≤ l + 1 for a given l.
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Fourth, it is worth pointing out the interest of the singularity at |K| = ξ , i.e.,
l + (D−1)/2 = ξ = Zα. This is a famous phenomenon to make the energy formula
broken down for potential strength with Zα ≥ 1 in three dimensions. When the
Dirac equation with the 1/r potential is generalized to the (D + 1)-dimensional
case, however, the singularity survives and moves to big values for Zα, e.g., Zα =
3/2 for D = 4. Such a kind of phenomenon has been addressed in Ref. [445].

Finally, we want to briefly address the one-dimensional hydrogen atom as dis-
cussed by Moss [189]. The interest arises from its relevance to the behavior of
hydrogen-like atoms in the strong magnetic fields and to hydrogenic impurities con-
fined in the quantum-well wire structures [188]. It is found that when D = 1 and
Z = 1, the energy spectrum (13.26) does not exist at all since the factor

√
K2 − ξ2

becomes imaginary. This is because from the definition |K| = l + (D − 1)/2, K is
equal to zero regardless of the value of potential parameter ξ if D = 1 and l = 0.
This conclusion agrees well with that of Ref. [189].

4 Generalization to the Dirac Equation with a Coulomb
Potential Plus a Scalar Potential

4.1 Introduction

The Dirac equation with a Coulomb potential has been discussed above. Recently,
the bound states and the S-matrix in the quantum scattering theory of the Dirac
equation with a Coulomb plus a scalar potential have been investigated in 3 + 1
dimensions [446–448]. Apart from this, the bound states of the Dirac equation with
the Coulomb plus scalar potential have been carried out both in two dimensions and
in D dimensions [105, 449]. In this section we are going to study the Dirac equation
with a Coulomb potential plus a scalar potential.

4.2 Exact Solutions

We now consider the Dirac equation with a mixed potential including a Coulomb
potential and a scalar potential. The Coulomb potential is taken as

Vc = −v

r
. (13.35)

Also, the scalar potential is chosen as

Vs = − s

r
, (13.36)

which is added to the mass term of the Dirac equation. The v and s denote the
electrostatic and scalar coupling constants, respectively.
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After some algebraic manipulations, we observe that the radial components
FKE(r) and GKE(r) satisfy the following first-order differential equations [105]

d

dr
GKE(r) + K

r
GKE(r) =

(
E − M + v + s

r

)
FKE(r),

− d

dr
FKE(r) + K

r
FKE(r) =

(
E + M + v − s

r

)
GKE(r).

(13.37)

Because this equation keeps invariant by interchanging FKE ↔ G−K−E and
Vc(r) ↔ −Vc(r), we only discuss the attractive Coulomb potential case Vc(r)

(v > 0). The solutions for the repulsive Coulomb potential Vc(r) (v < 0) can be
obtained from the former by interchanging FKE ↔ G−K−E . The scalar potential
Vs , however, has to be discussed by two different cases s > 0 and s < 0.

Likewise, we introduce ρ = 2r
√
M2 − E2 for the bound states |E| < M . Thus,

Eq. (13.37) becomes

d

dr
GKE(ρ) + K

ρ
GKE(ρ) =

(
−1

2

√
M − E

M + E
+ v + s

ρ

)
FKE(ρ),

d

dr
FKE(ρ) − K

ρ
FKE(ρ) =

(
−1

2

√
M + E

M − E
− v − s

ρ

)
GKE(ρ).

(13.38)

Similarly, define the wavefunction �±(ρ) with the forms

GKE(ρ) = √
M − E [�+(ρ) + �−(ρ)],

FKE(ρ) = √
M + E [�+(ρ) − �−(ρ)].

(13.39)

Substitution of them into Eq. (13.38) leads to

d

dρ
�+(ρ) ± d

dρ
�−(ρ) ± K

ρ
[�+(ρ) ± �−(ρ)]

=
[
−1

2
± v ± s

ρ

√
M ± E

M ∓ E

]
[�+(ρ) ∓ �−(ρ)]. (13.40)

Their addition and subtraction allow us to obtain

d

dρ
�±(ρ) ∓

(
vE + sM

ρ
√
M2 − E2

− 1

2

)
�±(ρ)

= −
(
K

ρ
± vM + sE

ρ
√
M2 − E2

)
�∓(ρ). (13.41)

Take the following conventions

τ = vE + sM√
M2 − E2

, τ ′ = vM + sE√
M2 − E2

. (13.42)

Then, Eq. (13.41) is simplified to

d

dρ
�±(ρ) ∓

(
τ

ρ
− 1

2

)
�±(ρ) = ∓τ ′ ± K

ρ
�∓(ρ). (13.43)
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Based on this relation, we are able to obtain the following important second-order
differential equations1

{
d2

dρ2
+ 1

ρ

d

dρ
+

(
−1

4
+ τ ± 1/2

ρ
− λ2

ρ2

)}
�±(ρ) = 0, (13.44)

where

λ2 = K2 − v2 + s2. (13.45)

For a weak Coulomb potential, we take

λ =
√
K2 − v2 + s2 > 0. (13.46)

From the behaviors of the wavefunction at the origin and at infinity, we define

�±(ρ) = ρλe−ρ/2R±(ρ). (13.47)

Substitution of this into (13.44) yields

d2

dρ2
R±(ρ) +

(
−1 + 1 + 2λ

ρ

)
d

dρ
R±(ρ)

+ τ − λ − 1/2 ± 1/2

ρ
R±(ρ) = 0, (13.48)

whose solutions are the confluent hypergeometric functions

R+(ρ) = a0 1F1(λ − τ ;2λ + 1;ρ),
R−(ρ) = b0 1F1(1 + λ − τ ;2λ + 1;ρ). (13.49)

Let us study the relation between a0 and b0. With the same technique as above,
we have

(
λ − τ

ρ
a0 + τ ′ + K

ρ
b0

)

1F1(1 + λ − τ ;2λ + 1;ρ) = 0. (13.50)

Since both a0 and b0 are not equal to zero, we obtain

b0 = τ − λ

τ ′ + K
a0. (13.51)

From Eq. (13.39) one has

GKE(ρ) = NKE

√
M − Eρλe−ρ/2

× [(τ ′ + K) 1F1(λ − τ ;2λ + 1;ρ)
+ (τ − λ) 1F1(1 + λ − τ ;2λ + 1;ρ)],

FKE(ρ) = NKE

√
M + Eρλe−ρ/2

× [(τ ′ + K) 1F1(λ − τ ;2λ + 1;ρ)
− (τ − λ) 1F1(1 + λ − τ ;2λ + 1;ρ)],

(13.52)

1Notice that Eq. (13.44) is a special case of the Tricomi equation as given in Eq. (13.14).
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where NKE = a0(τ
′ + K)−1(2

√
M2 − E2)−1/2.

We now study the eigenvalues of this quantum system. The quantum condition is
given by

τ − λ = n′ = 0,1,2, . . . . (13.53)

When n′ = 0, λ = τ , and

K2 = τ 2 + v2 − s2 = (τ ′)2. (13.54)

Therefore, K has to be positive to avoid a trivial solution.
Introduce a principal quantum number

n = |K| − (D − 3)/2 + n′

= |K| − (D − 3)/2 + τ − λ

= l + 1 + n′ = 1,2, . . . . (13.55)

Based on Eqs. (13.42) and (13.53), we have

Ev + Ms√
M2 − E2

= n − |K| + D − 3

2
+ λ = n′ + λ = n − l − 1 + λ ≡ κ. (13.56)

The energy E can be solved from Eq. (13.56)

E(n, l,D) = M

{
− vs

v2 + κ2
±

[(
vs

v2 + κ2

)2

− s2 − κ2

v2 + κ2

]1/2}
. (13.57)

We now consider a few special cases. First, if v = 0, then λ = √
K2 + s2. Thus,

the energy becomes

E(n, l,D) = ±M

{
1 − s2

(n − l − 1 + √
K2 + s2)2

}1/2

. (13.58)

It implies that there are two branches of symmetric solutions for the positive and
negative energies.

For a large D, we have

E(n,D) 	 ±M[1 − 2s2D−2 + 4s2(2n − 3)D−3 − · · ·], (13.59)

which implies that the energy is independent of l for a large D.
For a small s, we have

E(n, l,D) 	 ±M

{
1 − s2

2[n + (D − 3)/2]2

+ s4

2[n + (D − 3)/2]4

(
2n + D − 3

2l + D − 1
− 1

4

)}
, (13.60)

where the first term on the right hand side is the rest energy M (c2 = 1), the second
one is from the solutions of the Schrödinger equation, and the third one is the fine
structure energy, which removes the degeneracy between the states with the same n.
On the other hand, it is shown from λ given in (13.46) that the scalar potential
parameter s can be taken arbitrarily for the vector potential parameter v = 0.



4 Generalization to the Dirac Equation 171

Second, if s = 0, then λ = √
K2 − v2. It is found from Eq. (13.46) that E has

the same sign as v when K2 > v2. For the attractive Coulomb potential (v > 0) we
have the positive energy E(n, l,D)

E(n, l,D) = M

{
1 + v2

(n − l − 1 + √
K2 − v2)2

}−1/2

. (13.61)

This coincides with the conclusion from the Sturm-Liouville theorem for a weak
attractive potential [184, 247, 248]. For a large D we have the similar result as
Eq. (13.59) (s is replaced by v).

For a small v, we have

E(n, l,D) 	 M
v

|v|
{

1 − v2

2[n + (D − 3)/2]2

− v4

2[n + (D − 3)/2]4

(
2n + D − 3

2l + D − 1
− 3

4

)}
. (13.62)

Similarly, the physical meanings of three terms are similar to those of Eq. (13.60)
except for the different expansion coefficients. This case has been studied in our
recent work [104, 450], to which the reader can refer for more information.

Third, if v = s, from Eq. (13.56) both v and s have to be positive, λ = |K|, and
the positive κ is given by

κ = n − l − 1 + |K| =
{
n + D−3

2 , when K ≥ 0,

n − 2l − 1+D
2 , when K < 0.

(13.63)

The energy is written as

E(n, l,D) =

⎧
⎪⎨

⎪⎩

M{1 − 2v2

v2+(n+D−3
2 )2 }, for K ≥ 0,

M{1 − 2v2

v2+(n−2l− 1+D
2 )2 }, for K < 0,

(13.64)

which implies that the energy is independent of the angular momentum quantum
number l for K ≥ 0, but for K < 0 it depends upon l. If we choose the negative sign
in the result, we have E = −M , which is a singular solution of Eq. (13.56).

We now determine the normalization factor NKE from the normalization condi-
tion

∫
�

†
KE�KEdV = 1. (13.65)

Similarly, through a direct calculation we get

NKE = (M2 − E2)1/4

�(2λ + 1)

[
�(τ + λ + 1)

2Mτ ′(K + τ ′)(τ − λ)!
]1/2

. (13.66)
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Fig. 13.10 The energy E(1,0,D) decreases with the increasing dimension D ∈ (0,1), but in-
creases with the increasing dimension D ≥ 1. The parameters v = 0.2 and s = 0.3 are taken here
and also in Figs. 13.11 and 13.12

4.3 Analysis of the Energy Level

We now analyze the variation of the energy E(n, l,D) on the dimension D. It is
shown from Eqs. (13.46) and (13.56) that the energy E(n, l,D) given in Eq. (13.57)
is closely related with the following two conditions,

s2 + K2 > v2, Ev + Ms > 0, (13.67)

from which we can determine whether the energy is positive or negative. Recall that
we only consider the case with positive v. For the case of negative v, the energy
E(n, l,D) changes its sign. For simplicity, we take sign “+” for the second term
in Eq. (13.57). In fact, the energy levels are also valid if we take sign “−” for the
second term, while the variations shall change with the different choice of the signs.

First, we consider the case s > 0. We discuss the energy E(n, l,D) in two cases
s > v and s < v. For the first case s > v, due to Eq. (13.67) the bound states with
0 <E <M are physically acceptable. We take v = 0.2 and s = 0.3 for the weak at-
tractive Coulomb potential. It is shown in Figs. 13.10, 13.11, 13.12 that the energies
E(n,0,D) first decrease for D ∈ (0,1) and then increase with the increasing di-
mension D ≥ 1, while the energies E(n, l,D) (l �= 0) are almost independent of the
quantum number l. Also, the energies E(n, l,D) are almost overlapped for a large
D. It is shown that the energies E(n,0,D) are symmetric with respect to D = 1
for D ∈ (0,2). For the second case s < v, we take v = 0.3 and s = 0.2. It is found
that there does not permit bound state for l = 0 and D ∈ (0.55,1.45). This can
be explained well from Eq. (13.46), i.e., ((D − 1)/2)2 + s2 ≥ v2 for l = 0. Conse-
quently, there exist the bound states for D ≥ 1+2

√
v2 − s2 and D ≤ 1−2

√
v2 − s2.

The corresponding variations of energies E(n, l,D) on the dimension D are il-
lustrated in Figs. 13.13, 13.14, 13.15, 13.16. It is shown in Fig. 13.13 that the



4 Generalization to the Dirac Equation 173

Fig. 13.11 The variation of energy E(2,0,D) (red dashed line) on the dimension D is similar to
E(1,0,D). The energy E(2,1,D) (blue solid line) increases with the dimension D. For D > 2 the
energy E(2,1,D) almost overlaps E(2,0,D)

Fig. 13.12 The variations of energy levels E(3, l,D) (l = 2,1,0) on dimension D are similar
to E(2, l,D) (l = 1,0). The energy E(3,2,D) almost overlaps energy E(3,1,D). For D > 2, the
energies E(3, l,D) (l = 2,1,0) are almost overlapped. The blue dotted, green dashed and red solid
lines correspond to l = 0,1,2, respectively

energy E(1,0,D) decreases with the increasing dimension D ∈ (0,0.55], but in-
creases with the increasing dimension D ≥ 1.45. There does not exist bound state
for D ∈ (0.55,1.45). It is shown in Figs. 13.15 and 13.16 that the variations of en-
ergies E(n,0,D) (n = 2,3) are very similar to E(1,0,D). The energies E(n,1,D)

(n = 2,3) increase with the dimension D. Note that the energies E(n, l,D) are al-
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Fig. 13.13 The energy E(1,0,D) decreases with the increasing dimension D ∈ (0,0.55], but
increases with the increasing dimension D ≥ 1.45. There are no bound states for D ∈ (0.55,1.45).
The parameters v = 0.3 and s = 0.2 are taken here and also in Figs. 13.15 and 13.16

Fig. 13.14 The plot of energy spectra E(1,0,D) as a function of dimension D. Two signs “±”
are considered. Note that their variations are absolutely different from each other

most independent of the quantum number l for a large D. It should be addressed
that the variation range of dimension D without permitting bound state depends on
the values of the potential parameters v and s. On the contrary, if we choose the sign
“−” for the second term of Eq. (13.57), the variation will be opposite to that of the
sign “+” as illustrated in Fig. 13.14.

Second, we consider the case v > 0 and s < 0. If −s = |s| ≥ v, there is no bound
state according to Eq. (13.67). However, if −s = |s| < v, the variations of ener-
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Fig. 13.15 The variation of energy E(2,0,D) (green solid line) on the dimension D is similar
to E(1,0,D). The energy E(2,1,D) (red dashed line) increases with dimension D. The energy
E(2,1,D) almost overlaps E(2,0,D) for D ≥ 2

Fig. 13.16 The variations of energy levels E(3, l,D) on the dimension D are similar to E(2, l,D)

(l = 1,0). For D ≥ 2 the energies E(3, l,D) (l = 2,1,0) are almost overlapped. The red dashed,
green dotted and blue solid lines correspond to the l = 2,1,0, respectively

gies E(n, l,D) are similar to those of the case 0 < s < v as studied above (see
Figs. 13.13, 13.14, 13.15, 13.16). We do not show them for simplicity.

We now consider some special cases. First, for special case s = 0 and v �= 0,
i.e., the Dirac equation with the Coulomb potential has been investigated in our re-
cent work [104, 450]. Second, for special case v = 0, but s �= 0, it is shown from
Eq. (13.67) that there are bound states for s > 0, say s = 0.2. The variations of the
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Fig. 13.17 The energy E(1,0,D) decreases with the increasing dimension D ∈ (0,1), but in-
creases with the increasing dimension D ≥ 1. The parameters v = s = 0.2 are taken here and also
in Figs. 13.18 and 13.19

Fig. 13.18 The variation of energy E(2,0,D) (green solid line) on the dimension D is similar
to E(1,0,D). The energy E(2,1,D) (red dashed) increases with the dimension D. The energy
E(2,1,D) completely overlaps E(2,0,D) for D ≥ 1

energies on the dimension D are similar to those of the case s = 0.3 and v = 0.2
given in Figs. 13.10, 13.11, 13.12. Likewise, we do not show them here. Third,
for special case v = s, there are bound states for positive s = v > 0. The corre-
sponding variations of the energies E(n, l,D) on the dimension D are displayed
in Figs. 13.17, 13.18, 13.19. Basically, the variations of the energies on the dimen-
sion D are similar to those of the case v = 0.2 and s = 0.3 given in Figs. 13.10,
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Fig. 13.19 The variation of energy E(3,0,D) on the dimension D is similar to E(n,0,D)

(n = 2,1). The energy E(3,2,D) overlaps E(3,1,D) completely. For D ≥ 1 the energies
E(3, l,D) (l = 2,1,0) are completely overlapped. The red dashed, green dotted and blue solid
lines correspond to l = 2,1,0, respectively

13.11, 13.12. However, the energies E(n, l,D) (l �= 0) are completely independent
of quantum number l. This can be explained well from Eq. (13.64) for K > 0. For
D ≥ 2 the energies E(3, l,D) (l = 2,1,0) are overlapped. However, the energy
E(n,0,D) is closely related to the quantum number l as shown in Figs. 13.17,
13.18, 13.19. Also, this can be explained well by Eq. (13.64) for K < 0. It should
be pointed out that there exists a singular solution E = −M = −1 for D = 1 and
l = 0.

We now briefly study the variations of energies on the potential strengths v

and s for a given D = 3 even though such a study which is not less important in
physics. The constraints on the potential parameters v and s are closely related
to the λ defined in Eq. (13.46). That is to say, v2 ≤ K2 + s2 = (l + 1)2 + s2 but
s2 ≥ v2 − K2 = v2 − (l + 1)2. Generally speaking, there is no constraint on the
potential strength s for a small v (weak potential strength). However, there is a con-
straint on the potential strength v, i.e., |v| ≤ √

K2 + s2 = √
(l + 1)2 + s2. These

features are shown in Figs. 13.20 and 13.21. The detailed study for the constraint on
the potential strength v can be found in Ref. [450].

5 Concluding Remarks

In this Chapter we have studied the (D + 1)-dimensional Dirac equation with the
1/r type potential through the confluent hypergeometric equation approach. This
is different from the method used in our previous work [91]. The eigenfunctions
are analytically obtained. The eigenvalues and the fine structure energy have also
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Fig. 13.20 The plot of energy levels E(3, l, v) (l = 0,1,2) as a function of parameter v. They
decrease with the parameter v. The v ≤ √

(l + 1)2 + s2 for D = 3. The red dashed, green dotted
and blue solid lines correspond to l = 2,1,0, respectively. The parameters D = 3 and s = 0.2 are
taken

Fig. 13.21 The plot of energy levels E(3, l, s) (l = 2,1,0) as a function of parameter s. The
energy decreases with s. The red dashed, green dotted and blue solid lines correspond to l = 2,1,0,
respectively. The parameters D = 3 and v = 0.2 are chosen

been studied. The present work has paid more attention to the variations of energy
differences �E(n, l,D) and the energy levels E(n, l,D) on the continuous dimen-
sion D. The variations of energy differences �E(n, l,D) on the dimension D have
been analyzed. Generally speaking, there exist three different kinds of variations.
First, note that the energy difference �E(n,0,D) first decreases, then increases,
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and finally decreases as the dimension D increases. That is, the �E(1,0,D) is sym-
metric with respect to the point (1.5,0). Second, we have found that �E(n,1,D)

decreases with the D, but there are no bound states when D < 0.1. Third, notice
that �E(n, l,D) decreases monotonically with the dimension D.

For the energy E(n, l,D), we have following properties. For the energy levels
E(n,0,D), there exists a singular point at D = 1. That is, the E(n,0,D) is symmet-
ric with respect to axis D = 1 for D ∈ (0,2). The energies E(n,0,D) first decrease
with the dimension D and then increase with it. The energies E(n, l,D) (l > 0) are
almost independent of quantum number l for a large D.

The variations of energy levels E(n, l, ξ) on potential strength ξ have also been
analyzed. For a given dimension D = 3, the energy E(n, l, ξ) decreases with the
potential parameter ξ ≤ l + 1.

As a generalization, we have studied the Dirac equation with a Coulomb po-
tential plus a scalar potential. The eigenvalues and some special cases have been
carried out. We have elucidated the variations of energies E(n, l,D) on the di-
mension D and found following typical properties. First, the energies E(n,0,D)

first decrease with the dimension D and then increase with it. The energy levels
E(n, l,D) (l �= 0) increase with the dimension D. Second, the energies E(n, l,D)

are almost independent of quantum number l and the E(n, l,D) (l �= 0) are almost
overlapped for a large D. Third, the energies E(n,0,D) are symmetric with the
respect to D = 1 for D ∈ (0,2). This is different from the case without the scalar
potential. The variations of energies on potential parameters v and s are also stud-
ied for D = 3. We have found that the constraints on the potential parameters v

and s are closely related to the parameter λ, i.e., v2 ≤ K2 + s2 = (l + 1)2 + s2 but
s2 ≥ v2 − K2 = v2 − (l + 1)2. Generally speaking, there is no constraint on the
potential strength s for a small v. However, there is a constraint on the potential
strength v, i.e., |v| ≤ √

K2 + s2 = √
(l + 1)2 + s2. We have found that the energy

levels E(n, l, v) and E(n, l, s) decrease with the parameters v and s. In particular,
it is interesting to observe that the E(n, l, v) decreases with parameter v ≤ l + 1 for
a given l.



Chapter 14
Klein-Gordon Equation with the Coulomb
Potential

1 Introduction

The exact solutions of non-relativistic and relativistic equations with the Coulomb
potential have become an important subject in quantum mechanics. During the past
several decades, the Klein-Gordon equation with the Coulomb potential has been
studied in three dimensions such as the operator analysis [185], in an intense laser
field [186], in two dimensions [187] and in one dimension [188–191]. With the in-
terest of the higher-dimensional field theory, the Schrödinger equation and the Dirac
equation with a Coulomb potential have been studied in (D + 1) dimensions. The
Klein-Gordon equation with a Coulomb potential in (D + 1) dimensions has been
discussed by the different approaches such as the large-N expansion approximate
method [93] and the associated Laguerre equation approach [64], which paid more
attention to the hydrogen atom case than the relativistic pi-mesonic atom one. The
purposes of this Chapter are two-fold. The first one is to re-study this problem fol-
lowing the confluent hypergeometric equation approach. The another one, which is
the main purpose of this Chapter, is to analyze the variations of the eigenvalues on
the dimension D [64, 87].

This Chapter is organized as follows. Section 2 is devoted to the derivation of
the eigenfunctions and eigenvalues. The properties of the eigenvalues are analyzed
in Sect. 3. The Klein-Gordon equation with the Coulomb potential plus a scalar
potential will be considered in Sect. 4. The comparison theorem is studied in Sect. 5.
Some conclusions are given in Sect. 6.

2 Eigenfunctions and Eigenvalues

For simplicity the atomic units � = c = 1 are employed if not explicitly stated other-
wise. Considering the motion of a particle in a spherically symmetric potential V (r)

in D dimensions, the time-independent Klein-Gordon equation is taken as

(−�2 +M2)�(r) = [E − V (r)]2�(r), (14.1)

where M and E denote the mass and the energy of the particle, respectively.
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As illustrated in previous Chapters, take the wavefunction of the form

�(r) = r−(D−1)/2Rl(r)Y
l
lD−2...l1

(x̂). (14.2)

Substitution of this into Eq. (14.1) yields
{

d2

dr2
− κ2 − 1/4

r2

}
Rl(r) = −{[E − V (r)]2 − M2}Rl(r), (14.3)

where κ ≡ l − 1 + D/2.
For the present work, the symmetric potential V (r) is taken as the Coulomb-type

one

V (r) = −ξ

r
, ξ = Zα. (14.4)

We will discuss the weak potential, say |ξ | < 1/2. The radial equation (14.3) thus
becomes

d2Rl(r)

dr2
+ ξ2 − κ2 + 1/4

r2
Rl(r) + 2Eξ

r
Rl(r) + (E2 − M2)Rl(r) = 0. (14.5)

It is convenient to take a new variable ρ for the bound states:

ρ = 2r
√
M2 − E2, |E| <M. (14.6)

As a result, Eq. (14.5) is changed to

d2Rl(ρ)

dρ2
+ 1

ρ2

(
ξ2 − κ2 + 1

4

)
Rl(ρ) + τ

ρ
Rl(ρ) − 1

4
Rl(ρ) = 0, (14.7)

with

τ = Eξ√
M2 − E2

. (14.8)

From the behaviors of the radial function at the origin and at infinity, we define

Rl(ρ) = ρλ+1/2e−ρ/2φ(ρ), λ =
√
κ2 − ξ2 > 0, (14.9)

where we assume κ2 > ξ2. φ(ρ) satisfies the following confluent hypergeometric
equation

ρ
d2φ(ρ)

dρ2
+ (2λ + 1 − ρ)

dφ(ρ)

dρ
+ (τ − λ − 1/2)φ(ρ) = 0. (14.10)

Finally, the radial function can be expressed as

Rl(ρ) = Nlρ
λ+1/2e−ρ/2

1F1(λ − τ + 1/2;2λ + 1;ρ), (14.11)

where Nl is the normalization factor to be determined.
We now discuss the eigenvalues. From the consideration of the finiteness of the

solutions at infinity, the general quantum condition is obtained from Eq. (14.11)

τ − λ − 1/2 = n′ = 0,1,2, . . . . (14.12)
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Introduce a principal quantum number

n = n′ + κ − D/2 + 2 = n′ + l + 1. (14.13)

Based on Eqs. (14.8) and (14.12), we obtain

Eξ√
M2 − E2

= τ = n − l − 1/2 +
√
κ2 − ξ2 > 0. (14.14)

Therefore, we can obtain E with the same sign as ξ

E(n, l,D) = M
ξ

|ξ |
{

1 + ξ2

(n − l − 1/2 +√
κ2 − ξ2)2

}−1/2

, (14.15)

which essentially coincides with that of Ref. [87] except that the factor ξ/|ξ | was
not considered there.

For a large D, we have

E(n,D) = M
ξ

|ξ | [1 − 2ξ2D−2 + 4ξ2(2n − 3)D−3 − · · ·]. (14.16)

For a small ξ , we have

E(n, l,D) = M
ξ

|ξ |
{

1 − ξ2

2[n + (D − 3)/2]2

+ ξ4(D + 6l − 4n)

4(2l − 2 + D)[n + (D − 3)/2]4

}
, (14.17)

where the first term on the right hand side is the rest energy M (c = 1), the second
one is from the solutions of the Schrödinger equation with this potential, and the
third one is the fine structure energy, which removes the degeneracy between the
states with the same n.

We now calculate the normalization factor Nl from the normalization condition
∫ ∞

0
Rl(ρ)

2dr = 1. (14.18)

Since n′ = τ −λ−1/2 is a non-negative integer so that we can express the confluent
hypergeometric functions 1F1(−n′;β + 1;ρ) by the associated Laguerre polyno-
mial Lβ

n′(ρ). Based on Eq. (5.21) and through a direct calculation, we obtain

Nl = (M2 − E2)1/4

�(2λ + 1)

[
2�(n′ + 2λ + 1)

n′!(2n′ + 2λ + 1)

]1/2

,

λ = [(l − 1 + D/2)2 − ξ2]1/2.

(14.19)

3 Analysis of the Eigenvalues

We now analyze the properties of eigenvalues. It is shown from Eq. (14.14) that
n = 1,2,3, . . . and l = 0,1, . . . , n − 1. If the principal quantum number n and the
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angular momentum quantum number l are fixed, the energy difference �E(n, l,D)

between eigenvalues for dimensions D and D − 1 is written as

�E(n, l,D) = E(n, l,D) − E(n, l,D − 1)

= M
ξ

|ξ |
{

1
√

1 + ξ2

(σ+
√

κ2−ξ2)2

− 1
√

1 + ξ2

(σ+
√
κ2

1 −ξ2)2

}
, (14.20)

where

σ = n − l − 1/2, κ1 = (2l + D − 3)/2. (14.21)

It is found from Eq. (14.20) that the relation between �E(n, l,D) and the dimension
D is more complicated than that of the Schrödinger equation for the hydrogen atom.

The problem arises from the factor
√
κ2 − ξ2 (or

√
κ2

1 − ξ2). For a bound state, it is
found from Eq. (14.2) that λ has to be a real number. Therefore, for a weak potential,
|ξ | < 1/2, we obtain from Eqs. (14.3) and (14.9)

D = 2(1 − l + κ)

⎧
⎪⎪⎨

⎪⎪⎩

≥ 2 + 2|ξ |, when l = 0 and κ > |ξ |,
≤ 2 − 2|ξ |, when l = 0 and κ < −|ξ |,
≥ 2|ξ |, when l = 1,

≥ 0, when l ≥ 2.

(14.22)

Now, we first show the variation of the energy difference �E(n, l,D) on the di-
mension D in Figs. 14.1, 14.2, 14.3. We take the parameters M = 1 and ξ = 11/137
(Z = 11) for definiteness. Recall that the energy and ξ has the same sign as shown
in Eq. (14.15). These three figures display three typical variations of �E(n, l,D)

on D.
It is shown from Fig. 14.1 that there exist two singular points at D ∼ 2 and D ∼ 3

for E(1,0,D). As the dimension D increases, the energy difference �E(1,0,D)

first decreases with the dimension D in the region (0,1.8] and then increases with
the dimension D in the region [2.2,2.8], and finally decreases again with the di-
mension D ≥ 3.2. Recall that the variant range of dimension D is related with the
parameter ξ as shown in Eq. (14.22). The variation of �E(2,0,D) on the dimension
D is very similar to �E(1,0,D). We do not show �E(2,0,D) for simplicity. In
Fig. 14.2 we find that there exists one singular point near D = 1 for �E(2,1,D). As
the dimension D increases, the energy difference �E(2,1,D) first increases with
the dimension D and then decreases with it. We show the �E(3, l,D) (l = 2,1,0)
in Fig. 14.3. Notice that the energy difference �E(3,2,D) decreases monotoni-
cally as the dimension D increases. In particular, it is found that �E(n,0,D) is
symmetrical with respect to point (2.5,0).

Second, we analyze the variations of the energy E(n, l,D) on the dimension D

in Figs. 14.4, 14.5, 14.6. First of all, we emphasize that there is no bound state for s
wave (l = 0) in two-dimensional space D = 2, because from Eqs. (14.3) and (14.2)
we find that κ = 0 and λ is imaginary. Notice that if the two-dimensional space is
considered as a special case of three-dimensional space where all physical quantities
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Fig. 14.1 For D ∈ (0,1.8), the energy difference �E(1,0,D) decreases with the increasing di-
mension D, while increases with the increasing dimension D ∈ [1.8,2.8) and then decreases again
with the increasing dimension D ≥ 3.2. There exist two singular points around D = 2 and D = 3.
Note that �E(1,0,D) is symmetrical with respect to point (2.5,0). The parameter ξ = 11/137 is
taken here and also in Figs. 14.2–14.6

Fig. 14.2 Note that the energy difference �E(2,1,D) increases with the increasing dimension
D ∈ (0,0.8), and then decreases with the increasing dimension D ≥ 1.2

do not depend upon the coordinate in one direction, the Coulomb potential becomes
logarithmic instead of r−1.

It is shown from Fig. 14.4 that the energy E(1,0,D) decreases as D increases in
the region (0,1.8), but increases with it in the region D > 2. Figure 14.5 shows the
properties of E(2, l,D) (l = 1 or 0). The variation of the E(2,0,D) on D is similar
to energy E(1,0,D). However, the energy E(2,1,D) increases monotonically as
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Fig. 14.3 The variation of energy difference �E(3, l,D) on the dimension D. It is noted that
�E(3,2,D) (red solid line) decreases monotonically with the increasing dimension D > 0.
The �E(3,1,D) (green dashed line) and �E(3,0,D) (blue dotted line) are very similar to
�E(2,1,D) and �E(1,0,D), respectively

Fig. 14.4 Note that the energy E(1,0,D) decreases with the increasing dimension D ∈ (0,1.8),
but increases with the increasing dimension D ≥ 2.2. It should be stressed that there exists a sin-
gular point around D ∼ 2. Note that the energy E(1,0,D) is symmetric with respect to axis D = 2
for D ∈ (0,4), so are those energy levels E(n,0,D)

D increases. It is found that the E(2,1,D) is almost overlapped with the E(2,0,D)

when D > 2. This kind of phenomenon occurs to n = 3 as shown in Fig. 14.6. That
is to say, the energy E(3,2,D) almost overlaps with the energy E(3,1,D). This
can be explained well through the series expansion for 1/D as given in Eq. (14.16).
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Fig. 14.5 The variation of energy E(2,0,D) (green dotted line) on the dimension D is very
similar to E(1,0,D). The energy E(2,1,D) (red dashed line) increases with the increasing di-
mension D. Specially, it is found for D > 2 that the energy E(2,1,D) almost overlaps E(2,0,D)

Fig. 14.6 The variation of E(3, l,D) (l = 2,1,0) on the dimension D is similar to E(2, l,D)

(l = 1,0). Note that the energy E(3,2,D) (red dashed line) almost overlaps that of the energy
E(3,1,D) (green dotted line). When D > 2 the energies E(3, l,D) (l = 2,1,0) are almost over-
lapped

Before ending this part, we turn to one-dimensional hydrogen atom case due to
its importance in physics. Actually, this problem has been studied by many authors
[188–191]. When D = 1 and Z = 1 (ξ1 = 1/137), the energy spectrum (14.15)
reduces to the one-dimensional hydrogen atom,
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E = M
ξ1

|ξ1|
{

1 + ξ2
1

(n − 1
2 + 1

2

√
1 − 4ξ2

1 )
2

}−1/2

, (14.23)

which coincides with the result given by Spector and Lee [188], in which Eq. (3)
has a typo on S. The correct expression should be S = 1/2 ± 1/2(1 − 4Z2α2)1/2.
Here we only take the positive sign for S if considering the behavior of the radial
function at the origin. The quantum number n′ used here is n in [188]. The energy
spectrum of the ground state (n = 1) can be obtained as

E = M
ξ1

|ξ1|
{

1 + 4ξ2
1

(1 +
√

1 − 4ξ2
1 )

2

}−1/2

. (14.24)

4 Generalization to the Klein-Gordon Equation with a Coulomb
Potential Plus a Scalar Potential

4.1 Introduction

As mentioned above, the Klein-Gordon equation with the Coulomb potential has
been carried out widely in three dimensions. Motivated by our recent work on the
Dirac equation with a Coulomb plus a scalar potential in two dimensions [449] and
in D dimensions [105], we are going to study the exact solutions of the Klein-
Gordon equation with a Coulomb plus a scalar potential in D dimensions. On the
other hand, we attempt to analyze the variations of the eigenvalues E(n, l,D) on
the continuous dimension D.

4.2 Eigenfunctions and Eigenvalues

Considering the motion of a particle in a spherically symmetric Coulomb potential
Vc(r) and the scalar potential Vs(r) in D dimensions, we take the time-independent
Klein-Gordon equation as [451]

{−�2
D +[M + Vs(r)]2}�(r) = [E − Vc(r)]2�(r), (14.25)

where M and E denote the mass and the energy of the particle, respectively. The
Coulomb potential and the scalar potential are taken as

Vc = −v

r
, Vs = − s

r
. (14.26)

It is evident that Eq. (14.25) keeps invariant by interchanging Vc(r) → −Vc(r) and
E → −E. For simplicity we only discuss the attractive Coulomb potential case
Vc(r) (v > 0). The solutions for the repulsive Coulomb potential case Vc(r) (v < 0)
can be obtained from the former by changing the sign of the energy E. The scalar
potential Vs , however, will be discussed in two different cases s > 0 and s < 0.
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Following Refs. [20, 112, 242], take the wavefunction as

�(r) = r−(D−1)/2Rl(r)Y
l
lD−2...l1

(x̂). (14.27)

Substitution of this into Eq. (14.25) allows us to obtain the radial Klein-Gordon
equation in D dimensions

d2Rl(r)

dr2
+

{
E2 − M2 + v2 − s2 − κ2 + 1

4

r2
+ 2(Ev + Ms)

r

}
Rl(r) = 0. (14.28)

Take a new variable ρ for the bound states:

ρ = 2r
√
M2 − E2, |E| <M. (14.29)

Equation (14.28) becomes

d2Rl(ρ)

dρ2
+ 1

ρ2

(
v2 − s2 − κ2 + 1

4

)
Rl(ρ) + τ

ρ
Rl(ρ) − 1

4
Rl(ρ) = 0, (14.30)

with

τ = Ev + Ms√
M2 − E2

. (14.31)

From the behaviors of the radial function at the origin and at infinity, we define

Rl(ρ) = ρλ+ 1
2 e−ρ/2φ(ρ), λ =

√
κ2 + s2 − v2 > 0. (14.32)

We only consider the weak Coulomb potential case, i.e., κ2 +s2 > v2. Otherwise the
solution becomes oscillatory. φ(ρ) satisfies the following confluent hypergeometric
equation

ρ
d2φ(ρ)

dρ2
+ (2λ + 1 − ρ)

dφ(ρ)

dρ
+

(
τ − λ − 1

2

)
φ(ρ) = 0, (14.33)

from which we finally obtain

Rl(ρ) = Nlρ
λ+ 1

2 e−ρ/2
1F1

(
λ − τ + 1

2
;2λ + 1;ρ

)
, (14.34)

where Nl is the normalization factor to be determined.
We now discuss the eigenvalues. As before, the general quantum condition is

obtained from Eq. (14.34)

τ − λ − 1

2
= n′ = 0,1,2, . . . . (14.35)

Introduce a principal quantum number

n = n′ + κ − D

2
+ 2 = n′ + l + 1. (14.36)

It is shown from Eqs. (14.31), (14.35) and (14.36) that

Ev + Ms√
M2 − E2

= τ = n − l − 1

2
+

√
κ2 + s2 − v2 ≡ β > 0. (14.37)
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The energy E can be solved from Eq. (14.37)

E(n, l,D) = M

{
− vs

v2 + β2
±

[(
vs

v2 + β2

)2

− s2 − β2

v2 + β2

] 1
2
}
. (14.38)

We now consider some special cases. First, if v = 0, s has to be positive due to
Eq. (14.37) so λ = √

κ2 + s2. Thus, we have a pair of solutions ±E(n, l,D) for the
energy

E(n, l,D) = ±M

{
1 − s2

(n − l − 1
2 + √

κ2 + s2)2

} 1
2

. (14.39)

For a large D, we have

E(n, l,D) 	 M[1 − 2s2D−2 + 4s2(2n − 3)D−3 − · · ·], (14.40)

which implies that the energy is independent of the l for v = 0.
For a small s, we have

E(n, l,D) 	 M

{
1 − s2

2[n + (D − 3)/2]2

+ s4

2[n + (D − 3)/2]4

(
2n + D − 3

2l + D − 2
− 1

4

)}
. (14.41)

Second, if s = 0, then λ = √
κ2 − v2. Due to Eq. (14.37), the energy E has the

same sign as v when κ2 > v2. For the attractive Coulomb potential (v > 0), we have
the positive energy

E(n, l,D) = M

{
1 + v2

(n − l − 1
2 + √

κ2 − v2)2

}− 1
2

. (14.42)

It coincides with the conclusion from the Sturm-Liouville theorem for a weak at-
tractive potential [184]. For a large D, we have the similar result to Eq. (14.40) (s is
replaced by v).

For a small v, we have

E(n, l,D) 	 M
v

|v|
{

1 − v2

2[n + (D − 3)/2]2

− v4

2[n + (D − 3)/2]4

(
2n + D − 3

2l + D − 2
− 3

4

)}
. (14.43)

Third, if v = s, from Eq. (14.37) both v and s have to be positive, λ = |κ|, and
the positive β is given by

β = n − l − 1

2
+ |κ| =

{
n + D−3

2 , when κ ≥ 0,

n − 2l + 1−D
2 , when κ < 0.

(14.44)

When κ ≥ 0, we obtain from Eq. (14.37)

E(n, l,D) = M

{
1 − 2v2

v2 + (n + D−3
2 )2

}
. (14.45)
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The energy is independent of the l. However, when κ < 0, the energy depends
upon l.

We now calculate the normalization factor Nl from the normalization condition
∫ ∞

0
Rl(ρ)

2dr = 1 (14.46)

as

Nl = (M2 − E2)1/4

β(2λ + 1)

[
2β(n′ + 2λ + 1)

n′!(2n′ + 2λ + 1)

] 1
2

,

λ =
{(

l − 1 + D

2

)2

+ s2 − v2
} 1

2

.

(14.47)

4.3 Analysis of the Energy Levels

We now analyze the variation of energy E(n, l,D) on the continuous dimension D.
It is shown from Eqs. (14.32) and (14.37) that the energy E(n, l,D) given in
Eq. (14.39) is closely related with the following two conditions,

s2 + κ2 > v2, Ev + Ms > 0, (14.48)

from which we can determine whether the energy is positive or negative. Recall
that we only consider the case with positive v. For the negative v case, the energy
E(n, l,D) changes its sign. For simplicity we take M = 1.

First, we consider the case s > 0. We discuss the energy E(n, l,D) in two cases
with s > v and s < v. When s > v, due to Eq. (14.48) the bound states with 0 <E <

M is an acceptable solution. We take v = 0.2 and s = 0.3 for the weak attractive
Coulomb potential. On the other hand, the sign “+” is taken for the second term
of Eq. (14.38). If we take the sign “−”, the variations are absolutely different from
each other. It is found from Figs. 14.7, 14.8, 14.9 that the energy E(n,0,D) first
decreases for D ∈ (0,2) and then increases with the dimension D ≥ 2, while the
energy E(n, l,D) (l �= 0) is almost independent of the angular momentum quantum
number l. Also, the energy E(n, l,D) are almost overlapped for a large D. It is
shown that the energy E(n,0,D) is symmetric with respect to D = 2 for D ∈ (0,4).
When s < v, we take v = 0.3 and s = 0.2. Note that there is no bound state for l = 0
and near D ∼ 2 since λ < 0. The corresponding variations of energy E(n, l,D)

on the dimensions D are illustrated in Figs. 14.10, 14.11, 14.12. It is shown from
Fig. 14.10 that the energy E(1,0,D) decreases with the increasing dimension D ∈
(0,1.4], but increases with the increasing dimension D ≥ 2.4. There is no bound
state for D ∈ [1.6,2.4]. It is shown from Figs. 14.11 and 14.12 that variation of
the energy E(n,0,D) (n = 2,3) on the dimension D is very similar to E(1,0,D).
For the same reason (λ < 0), there is no bound state when l = 1 and D ∈ (0,0.4].
The energy E(n,1,D) (n = 2,3) increases with the dimension D ≥ 0.4. It is found
that the energy E(n, l,D) is almost independent of the quantum number l for a
large D. It should be pointed out that the variant range of the dimension D in which
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Fig. 14.7 The energy E(1,0,D) decreases with the dimension D ∈ (0,2), but increases with
the increasing dimension D ≥ 2. The parameters v = 0.2 and s = 0.3 are taken here and also in
Figs. 14.8 and 14.9. Note that the energy E(1,0,D) is symmetric with respect to axis D = 2

Fig. 14.8 The variation of energy E(2,0,D) (green dashed line) on the dimension D is very simi-
lar to E(1,0,D). The energy E(2,1,D) (red solid line) increases with the increasing dimension D.
For D > 2 the energy E(2,1,D) almost overlaps E(2,0,D)

the bound state is not admissible is closely related with the values of the potential
parameters v and s.

Second, we consider the case v > 0 and s < 0. If −s = |s| ≥ v, there is no bound
state due to Eq. (14.37). However, if −s = |s| < v, the variation of the energy
E(n, l,D) on the dimension D is similar to that of the case 0 < s < v as shown
above (see Figs. 14.10, 14.11, 14.12).
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Fig. 14.9 The variations of the E(3, l,D) (l = 2,1,0) on the dimension D are similar to
E(2, l,D) (l = 1,0). The energy E(3,2,D) (red solid line) almost overlaps the energy E(3,1,D)

(green dashed line) for a large D. For D > 2, the energies E(3, l,D) (l = 2,1,0) are almost over-
lapped. The red solid, green dashed and blue dotted lines correspond to l = 2,1,0, respectively

Fig. 14.10 The energy E(1,0,D) decreases with the increasing dimension D ∈ (0,1.6], but in-
creases with the increasing dimension D ≥ 2.4. There are no bound states for D ∈ [1.6,2.4]. The
parameters v = 0.3 and s = 0.2 are taken here and also in Figs. 14.11 and 14.12

We now consider some special cases below. First, for the special case s = 0 and
v �= 0, namely, the Klein-Gordon equation with the Coulomb potential has been
carried out in our recent work [100]. Second, for the special case v = 0 but s �= 0,
it is shown from Eq. (14.48) that there are bound states for s > 0, say s = 0.2.
The variations of energy levels on the dimension D shown in Figs. 14.13, 14.14,
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Fig. 14.11 The variation of the energy E(2,0,D) (green solid line) on the dimension D is
very similar to E(1,0,D). The energy E(2,1,D) (red dashed line) increases with the dimension
D ≥ 0.4. The energy E(2,1,D) almost overlaps E(2,0,D) for D ≥ 2.6

Fig. 14.12 The variation of the E(3, l,D) (l = 2,1,0) on the dimension D is similar to E(2, l,D)

(l = 1,0). For D ≥ 2.6 the energies E(3, l,D) (l = 2,1,0) are almost overlapped. The red dashed,
green dotted and blue solid lines correspond to l = 2,1,0, respectively

14.15 are similar to those of the case s = 0.3 and v = 0.2 in Figs. 14.7, 14.8,
14.9. Third, for the special case v = s, there are bound states for the positive
s = v > 0. The corresponding variations of energy E(n, l,D) on the dimension
D are shown in Figs. 14.16, 14.17, 14.18. Basically, their variations are similar
to those of case v = 0.2 and s = 0.3 as shown in Figs. 14.7, 14.8, 14.9. How-
ever, the energies E(n, l,D) (l �= 0) are completely independent of the quantum
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Fig. 14.13 The energy E(1,0,D) decreases with the increasing dimension D ∈ (0,2), but in-
creases with the increasing dimension D ≥ 2. The parameters v = 0 and s = 0.2 are taken and
also in Fig. 14.14. Note that its variation is very similar to that illustrated in Fig. 14.7 except for a
different amplitude

Fig. 14.14 The variation of energy E(2,0,D) (green solid line) on the dimension D is very simi-
lar to E(1,0,D). The energy E(2,1,D) (red dashed line) increases with dimension D. The energy
E(2,1,D) almost overlaps E(2,0,D) for D > 2.6

number l since κ > 0 for l �= 0. This can be explained well from Eq. (14.45). For
D > 2.6 the energies E(3, l,D) (l = 2,1,0) are almost overlapped. However, the
energy E(n,0,D) is closely related with the angular momentum quantum number l
as shown by Figs. 14.16, 14.17, 14.18.
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Fig. 14.15 The variations of the E(3, l,D) (l = 2,1,0) on the dimension D are similar to
E(2, l,D) (l = 1,0). The energy E(3,2,D) (red dashed line) almost overlaps energy E(3,1,D)

(green dotted line). For D > 2.6, the energies E(3, l,D) (l = 2,1,0) are almost overlapped

Fig. 14.16 The energy E(1,0,D) decreases with the increasing dimension D ∈ (0,2), but in-
creases with the increasing dimension D ≥ 2. Note that it is symmetric with respect to the axis
D = 2. The parameters v = s = 0.2 are chosen here and also in Figs. 14.17 and 14.18

We now briefly study the variations of energy levels on the potential strengths
v and s for D = 3. The constraints on the potential parameters v and s are closely
related to the λ given in Eq. (14.32). That is, v2 ≤ κ2 + s2 = (l + 1)2 + s2 but
s2 ≥ v2 − κ2 = v2 − (l + 1/2)2. In general, there is no constraint on the potential
strength s for the small v (weak potential strength). However, there is a constraint
on the potential strength v, i.e., |v| ≤ √

κ2 + s2 = √
(l + 1/2)2 + s2. These features
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Fig. 14.17 The variation of the energy E(2,0,D) (green solid line) on the dimension D is
very similar to E(1,0,D). The energy E(2,1,D) increases with the dimension D. The energy
E(2,1,D) (red dashed line) completely overlaps E(2,0,D) for D ≥ 2

Fig. 14.18 The variation of the E(3,0,D) (blue solid line) on the dimension D is similar to
E(n,0,D) (n = 2,1). The energy E(3,2,D) (red dashed line) overlaps the E(3,1,D) (green
dotted line) completely. For D ≥ 2 the energies E(3, l,D) (l = 2,1,0) are completely overlapped

are displayed in Figs. 14.19 and 14.20. It is interesting to notice that the energy
E(n, l, v) decreases with the parameter v ≤ l + 1 for a given l.

Let us turn to one-dimensional case. When D = 1, the energy E(n, l,D) reduces
to a similar expression to Eq. (14.39), but with a different β

β = n − 1

2
+

√
1/4 + s2 − v2. (14.49)
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Fig. 14.19 The variation of the energy levels E(3, l, v) (l = 0,1,2) on the parameter v. The energy
decreases with the parameter v. The red dashed, green dotted and blue solid lines correspond to
l = 2,1,0, respectively. The parameters D = 3 and s = 0.2 are taken

Fig. 14.20 The variation of the energy levels E(3, l, s) on the parameter s. The energy decreases
with the v. The red dashed, green dotted and blue solid lines correspond to the l = 2,1,0, respec-
tively. The parameters D = 3 and v = 0.2 are taken

The energy E(n, l,D) is determined by two conditions

1

4
+ s2 > v2, Ev + Ms > 0. (14.50)

The discussion is similar to that of the general case as studied above. We do not
mention them for simplicity.



4 Generalization to the Klein-Gordon Equation with a Coulomb Potential 199

Fig. 14.21 The plot of energy levels E(2, l,D) as a function of dimension D for energy (14.38)
with sign “−”. The red solid and green dashed lines correspond to l = 1,0, respectively. The
v = 0.3 and s = 0.2 are taken

Fig. 14.22 The plot of energy levels E(3, l,D) as a function of dimension D. The red solid, green
dashed and blue dotted lines correspond to l = 2,1,0, respectively. Same parameters are taken as
those in Fig. 14.21

Before ending this section, let us mention the case of Eq. (14.38) with sign “−”.
To show this, we are going to illustrate it in Figs. 14.21, 14.22, 14.23, 14.24 by
choosing suitable parameters. It is found that its variation is absolutely different
from the case with “+” sign. Their absolute values of energy spectrum are same but
with different signs.
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Fig. 14.23 The plot of energy levels E(3, l,D) as a function of dimension D. The red solid, green
dashed and blue dotted lines correspond to l = 2,1,0, respectively. The parameters v = 0.2 and
s = 0.3 are taken

Fig. 14.24 The plot of energy levels E(3, l,D) as a function of dimension D. The red solid, green
dashed and blue dotted lines correspond to l = 2,1,0, respectively. Here the parameters v = 0.6
and s = 0.3 are chosen

5 Comparison Theorem

Finally, we present the comparison theorem for Klein-Gordon equation in arbi-
trary dimensions D. In non-relativistic quantum mechanics, this theorem is an im-
mediate consequence of the variational characterization of the bound state spec-
trum as shown in Chap. 9. In the Klein-Gordon equation case, recently Hall and
Aliyu have dealt with this problem [103]. It is found that if ψ1 and ψ2 are node-
free ground states corresponding to positive energies E1 ≥ 0 and E2 ≥ 0 and
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V1(r) ≤ V2(r) ≤ 0, then one has E1 ≤ E2. On the other hand, if V (r, a) depends
on a parameter a ∈ (a1, a2), and E(a) is any positive eigenvalue, then one has
∂V/∂a ≥ 0 ⇒ E′(a) ≥ 0 and ∂V/∂a ≤ 0 ⇒ E′(a) ≤ 0. This can be easily proved
by using Eq. (14.3). For ordered central potentials V1(r) ≤ V2(r), suppose that the
respective ground states {ψ1(r),ψ2(r)} in Eq. (14.3) are node-free and write the
corresponding energy levels as {E1,E2}. The two eigenfunctions are written by

−ψ ′′
1 (r) + C

r2
ψ1(r) = {[E1 − V1(r)]2 − M2}ψ1(r), (14.51)

−ψ ′′
2 (r) + C

r2
ψ2(r) = {[E2 − V2(r)]2 − M2}ψ2(r), (14.52)

with C = (2l + D − 1)(2l + D − 3)/4.
With these two equations we calculate the difference between Eq. (14.51) mul-

tiplied by ψ2(r) and Eq. (14.52) multiplied by ψ1(r) and integrating it over the
argument r ∈ [0,∞) to give the following equation

(E2 − E1)

∫ ∞

0
W(r)ψ1(r)ψ2(r)dr

=
∫ ∞

0
[V2(r) − V1(r)]W(r)ψ1(r)ψ2(r)dr, (14.53)

with

W(r) = E1 + E2 − V1(r) − V2(r). (14.54)

Thus, for positive energy levels E1,E2 belonging to node-free ground states ψ1(r)

and ψ2(r), we have E1 ≤ E2 if V1(r) ≤ V2(r) ≤ 0.

6 Concluding Remarks

In this Chapter we have studied the D-dimensional Klein-Gordon equation with a
Coulomb potential. The exact solutions have been analytically obtained. It is worth
pointing out that when the Coulomb potential is not very strong, an attractive poten-
tial leads to the bound states with positive energies, and a repulsive potential leads
to those with negative energies.

The variation of the energy difference �E(n, l,D) on the dimension D has been
analyzed in detail. In general, there are three kinds of variations. First, the energy
difference �E(n,0,D) first decreases, then increases, and finally decreases as the
dimension D increases. In other words, we have found that �E(n, l,D) is sym-
metric with respect to the point (2.5,0). Second, it is seen that �E(n,1,D) first
increases and then decreases as D increases. There exists a singular point around
D = 1. Third, we have noticed that �E(n,2,D) decreases monotonically as D in-
creases. As far as the energy E(n, l,D) is concerned, the following properties are
displayed. First, when l = 0 there is no bound state around D = 2, i.e., E(n,0,D)
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first decreases and then increases with D > 2.4. More precisely, E(n, l,D) is sym-
metric with respect to axis D = 2. The energy E(n, l,D) with l > 0 is almost inde-
pendent of the quantum number l for a large D.

As a generalization, we have also studied the D-dimensional Klein-Gordon equa-
tion with a Coulomb plus a scalar potential. The eigenfunctions have been gotten
analytically. We have investigated the variation of the energy E(n, l,D) on the di-
mension D in some detail. We have observed following typical properties. First, the
positive energy E(n,0,D) first decreases with the dimension D and then increases
with it. We have found that E(n,0,D) is symmetric with respect to axis D = 2.
When v < s, there is no singular point at D = 2, while there exists one singular
point when v > s. Second, the positive E(n, l,D) (l �= 0) increases with the di-
mension D. Third, the variations of the negative E(n,0,D) and E(n, l,D) (l �= 0)
on the dimension D are completely opposite to those of the positive cases. Fourth,
the energy E(n, l,D) is almost independent of the angular momentum quantum
number l for a large D and the E(n, l,D) (l �= 0) are almost overlapped. Also, the
variations of the energy levels E(n, l, v) and E(n, l, s) on the parameters v and s

have been studied. It is found that the energy levels decrease with those parameters.
Interestingly, we have found that the energy E(n, l, v) decreases with the parameter
v ≤ l + 1 for a given l.

Finally, the comparison theorem has been established by the traditional method.
It is found that for positive energy levels E1,E2 belonging to node-free ground
states ψ1(r) and ψ2(r) we have E1 ≤ E2 if V1(r) ≤ V2(r) ≤ 0.



Chapter 15
The Levinson Theorem for Dirac Equation

1 Introduction

The Levinson theorem [109] is an important theorem in the quantum scattering the-
ory, which sets up the relation between the number of bound states and the phase
shift at zero momentum. It has been generalized and applied to different fields in
modern physics [184, 247–296]. With the interest of higher-dimensional field the-
ory, the Levinson theorem for the Schrödinger equation in arbitrary D dimensions
was studied [112].

As mentioned in Part I, we have generalized the Dirac equation with a spherically
symmetric potential to arbitrary (D + 1) dimensions and constructed the eigenfunc-
tions of the total angular momentum. We have also derived the radial equations [91].
It is found that the total (or orbital, spinor) angular momentum in D-dimensional
space can be described by an irreducible representation of the SO(D) group denoted
by the highest weight, instead of only one parameter j (or l, s) in three-dimensional
space.

In this Chapter we shall uniformly study the Levinson theorem for the Dirac
equation in (D + 1) dimensions by the Sturm-Liouville theorem. In Sect. 2 we
study the generalized Sturm-Liouville theorem. The number of bound states will
be calculated in Sect. 3. In Sect. 4 the Levinson theorem is established by proving
the number of bound states to be equal to the sum of the phase shifts of the scat-
tering states at E = ±M with the given angular momentum. The critical cases are
also analyzed there. Some discussions are given in Sect. 5. Due to the connection
between the Levinson theorem and the Friedel theorem, we shall present in Sect. 6
the Friedel theorem in arbitrary dimensions D. We shall outline the comparison the-
orem for radial Dirac equations in arbitrary dimensions D in Sect. 7. Finally, we
conclude this Chapter in Sect. 8.
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DOI 10.1007/978-94-007-1917-0_15, © Springer Science+Business Media B.V. 2011

203

http://dx.doi.org/10.1007/978-94-007-1917-0_15


204 15 The Levinson Theorem for Dirac Equation

2 Generalized Sturm-Liouville Theorem

As shown in Chap. 4, we have obtained the radial equations as follows:

d

dr
G(r) + K

r
G(r) = [E − V (r) − M]F(r),

− d

dr
F (r) + K

r
F(r) = [E − V (r) + M]G(r),

(15.1)

with K = ∓[j + (D − 2)/2]. For example, in three-dimensional case we take
K = κ = −(l + 1) for spin-up j = l + 1/2 while κ = l for spin-down j = l − 1/2.
When D = 4, the SO(4) group is homomorphism to SU(2) × SU(2), and the rep-
resentations j1 and j2 belong to two different SU(2) groups, respectively. When
D = 2, the SO(2) group is an Abelian group, and K = ±j = ±1/2,±3/2, . . . .
However, Eq. (15.1) still holds for these cases.

The spherically symmetric potential V (r) has to satisfy the boundary condition
at the origin for the nice behavior of wavefunction

∫ 1

0
r|V (r)|dr < ∞. (15.2)

For simplicity, we firstly discuss the case where the potential V (r) is a cutoff one
at a sufficiently large radius r0:

V (r) = 0, when r ≥ r0. (15.3)

The general case where the potential V (r) has a tail at infinity will be discussed in
Sect. 5.

Introduce a parameter λ for the potential V (r):

V (r,λ) = λV (r), V (r,1) = V (r). (15.4)

As λ increases from zero to one, the potential V (r,λ) changes from zero to the given
potential V (r). If λ changes its sign, the potential V (r,λ) changes sign, too.

Although the spherical spinor functions and eigenvalues K are different for the
D = 2N + 1 case and the D = 2N case, the forms of the radial equations are uni-
form:

d

dr
GKE(r,λ) + K

r
GKE(r,λ) = [E − V (r,λ) − M]FKE(r,λ),

− d

dr
FKE(r,λ) + K

r
FKE(r,λ) = [E − V (r,λ) + M]GKE(r,λ),

K = ±1/2,±1,±3/2, . . . .

(15.5)

It is easy to see that the solutions with a negative K can be obtained from those
with a positive K by interchanging FKE(r,λ) ←→ G−K−E(r,−λ), so that in the
following we only discuss the solutions with a positive K . The main results for the
case with a negative K will be indicated in the text.

The physically acceptable solutions are finite, continuous, vanishing at the origin,
and square integrable:
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FKE(r,λ) = GKE(r,λ) = 0, when r = 0, (15.6)
∫ ∞

0
dr{|FKE(r,λ)|2 + |GKE(r,λ)|2} < ∞. (15.7)

The solutions for |E| > M describe the scattering states, while those for |E| ≤ M

describe the bound states. We will solve Eq. (15.5) in two regions, 0 ≤ r < r0 and
r0 < r < ∞, and then match two solutions at r0 by the matching condition:

AK(E,λ) ≡ FKE(r,λ)

GKE(r,λ)

∣∣∣∣
r=r−

0

= FKE(r,λ)

GKE(r,λ)

∣∣∣∣
r=r+

0

. (15.8)

When r0 is the zero point of GKE(r,λ), the matching condition can be replaced by
its inverse GKE(r,λ)/FKE(r,λ) instead. The merit of using this matching condition
is that we need not care the normalization factor in the solutions.

The key point to prove the Levinson theorem is that FKE(r,λ)/GKE(r,λ) is
monotonic with respect to the energy E. From Eq. (15.5) we have

d

dr
{FkE1(r, λ)GKE(r,λ) − GKE1(r, λ)FKE(r,λ)}
= −(E1 − E){FKE1(r, λ)FKE(r,λ) + GKE1(r, λ)GKE(r,λ)}. (15.9)

From the boundary condition that both solutions vanish at the origin, we integrate
Eq. (15.9) in the region 0 ≤ r ≤ r0 and obtain

{FkE1(r, λ)GKE(r,λ) − GKE1(r, λ)FKE(r,λ)}|r=r−
0

= −(E1 − E)

∫ r0

0
{FKE1(r, λ)FKE(r,λ) + GKE1(r, λ)GKE(r,λ)}dr.

(15.10)

Taking the limit E1 → E, we have

lim
E1→E

FkE1(r, λ)GKE(r,λ) − GKE1(r, λ)FKE(r,λ)

E1 − E

∣∣∣∣
r=r−

0

= {GKE(r0, λ)}2 ∂

∂E
AK(E,λ)

= −
∫ r0

0
{F 2

KE(r,λ) + G2
KE(r,λ)}dr < 0. (15.11)

Thus, when |E| ≥ M we have

AK(E,λ) = AK(M,λ) − c2
1k

2 + · · · , when E � M,

AK(E,λ) = AK(−M,λ) + c2
2k

2 + · · · , when E � −M,
(15.12)

where c2
1 and c2

2 are non-negative numbers, and the momentum k is defined as fol-
lows:

k = (E2 − M2)1/2. (15.13)
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Similarly, from the boundary condition that the radial functions FKE(r,λ) and
GKE(r,λ) for |E| ≤ M tend to zero at infinity, we obtain by integrating Eq. (15.9)
in the region r0 ≤ r < ∞

{GKE(r0, λ)}2 ∂

∂E

(
FKE(r,λ)

GKE(r,λ)

)∣∣∣∣
r=r+

0

=
∫ ∞

r0

{F 2
KE(r,λ) + G2

KE(r,λ)}dr > 0. (15.14)

Thus, as the energy E increases, the ratio FKE(r,λ)/GKE(r,λ) at r−
0 decreases

monotonically, but the ratio FKE(r,λ)/GKE(r,λ) at r+
0 increases monotonically

for |E| ≤ M . This is called the generalized Sturm-Liouville theorem [297].

3 The Number of Bound States

Now, we solve Eq. (15.5) for the energy |E| ≤ M . In the region 0 ≤ r < r0, when
λ = 0 we have

FKE(r,0) = e−i(K−1/2)π/2
√
(M + E)πk1r/2J

K− 1
2
(ik1r),

GKE(r,0) = e−i(K−3/2)π/2
√
(M − E)πk1r/2J

K+ 1
2
(ik1r),

(15.15)

where Jm(x) is the Bessel function, and

k1 = (M2 − E2)1/2. (15.16)

When λ = 0 the ratio at r = r−
0 is

AK(E,0) = −i

(
M + E

M − E

)1/2 J
K− 1

2
(ik1r0)

J
K+ 1

2
(ik1r0)

=
⎧
⎨

⎩

− 2M(2K+1)
k2

1r0
∼ −∞, when E ∼ M ,

− 2K+1
2Mr0

, when E ∼ −M .
(15.17)

In the region r0 < r < ∞, due to the cutoff potential we have V (r) = 0 and also

FKE(r,λ) = ei(K+1/2)π/2
√
(M + E)πk1r/2H(1)

K− 1
2
(ik1r),

GKE(r,λ) = ei(K+3/2)π/2
√
(M − E)πk1r/2H(1)

K+ 1
2
(ik1r),

(15.18)

where H
(1)
m (x) is the Hankel function of the first kind. The ratio at r = r+

0 that does
not depend on λ is given by

FKE(r,λ)

GKE(r,λ)

∣∣∣∣
r=r+

0

= −i

(
M + E

M − E

)1/2 H
(1)
K− 1

2
(ik1r0)

H
(1)
K+ 1

2
(ik1r0)



3 The Number of Bound States 207

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

2Mr0
2K−1 , when E ∼ M and K ≥ 1,

−2Mr0 log(k1r0) ∼ ∞, when E ∼ M and K = 1/2,
k2

1r0
2M(2K−1) ∼ 0, when E ∼ −M and K ≥ 1,

−k2
1r0 log(k1r0)

2M ∼ 0, when E ∼ −M and K = 1/2.

(15.19)

It is evident from Eqs. (15.17) and (15.19) that as the energy E increases from −M

to M , there is no overlap between two variant ranges of the ratio at two sides of r0

when λ = 0 (no potential) except for K = 1/2 where there is a half bound state at
E = M . The half bound state will be discussed in next section.

As λ increases from zero to one, the potential V (r,λ) changes from zero to the
given potential V (r), and AK(E,λ) changes, too. If AK(M,λ) decreases across the
value 2Mr0/(2K − 1) as λ increases, an overlap between the variant ranges of the
ratios at two sides of r0 appears. Since the ratio AK(E,λ) of two radial functions at
r−

0 decreases monotonically as the energy E increases, and the ratio at r+
0 increases

monotonically, the overlap means that there must be one and only one energy where
the matching condition (15.8) is satisfied, namely, a bound state appears.

As λ increases, AK(M,λ) decreases to −∞, jumps to ∞, and then decreases
again across the value 2Mr0/(2K − 1), so that another bound state appears. Note
that when r0 is a zero point of the wavefunction GKE(r,λ), AK(E,λ) goes to in-
finity. It is not a singularity.

On the other hand, as λ increases, if AK(−M,λ) decreases across zero, an over-
lap between the variant ranges of the ratios at two sides of r0 disappears so that a
bound state disappears. Therefore, each time AK(M,λ) decreases across the value
2Mr0/(2K − 1) as λ increases, a new overlap between the variant ranges of the
ratios at two sides of r0 appears such that a scattering state of a positive energy
becomes a bound state, and each time AK(−M,λ) decreases across zero, an over-
lap between the variant ranges of the ratio at two sides of r0 disappears such that
a bound state becomes a scattering state of a negative energy. Conversely, each
time AK(M,λ) increases across the value 2Mr0/(2K − 1), an overlap between the
variant ranges disappears such that a bound state becomes a scattering state of a
positive energy, and each time AK(−M,λ) increases across zero, a new overlap
between the variant ranges appears such that a scattering state of a negative energy
becomes a bound state. Now, the number nK of bound states with the parameter K

is equal to the sum (or subtraction) of four times as λ increases from zero to one: the
times that AK(M,λ) decreases across the value 2Mr0/(2K − 1), minus the times
that AK(M,λ) increases across the value 2Mr0/(2K − 1), minus the times that
AK(−M,λ) decreases across zero, plus the times that AK(−M,λ) increases across
zero.

When K = 1/2, the value 2Mr0/(2K − 1) becomes infinity. We may check the
times that AK(M,λ)−1 increases (or decreases) across zero to replace the times that
AK(M,λ) decreases (or increases) across infinity.
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4 The Relativistic Levinson Theorem

We turn to discuss the phase shifts of the scattering states. Solving Eq. (15.5) in the
region r0 < r < ∞ for the energy |E| >M , we have

fKE(r,λ) = B(E)

(
πkr

2

)1/2

· { cos δK(E,λ)J
K− 1

2
(kr) − sin δK(E,λ)N

K− 1
2
(kr)

}
,

gKE(r, λ) =
(
πkr

2

)1/2

· { cos δK(E,λ)J
K+ 1

2
(kr) − sin δK(E,λ)N

K+ 1
2
(kr)

}
,

(15.20)

where Nm(x) denotes the Neumann function, and B(E) is defined as

B(E) =
{
(E+M
E−M

)1/2, when E >M ,

−(
|E|−M
|E|+M

)1/2, when E < −M .
(15.21)

The asymptotic form of the solution (15.20) at r → ∞ is given by

fKE(r,λ) ∼ B(E) cos(kr − Kπ/2 + δK(E,λ)),

gKE(r, λ) ∼ sin(kr − Kπ/2 + δK(E,λ)).
(15.22)

Substituting Eq. (15.20) into the matching condition (15.8), we obtain the formula
for the phase shift δK(E,λ):

tan δK(E,λ) =
J
K+ 1

2
(kr0)

N
K+ 1

2
(kr0)

AK(E,λ) − B(E)
J
K− 1

2
(kr0)

J
K+ 1

2
(kr0)

AK(E,λ) − B(E)
N

K− 1
2
(kr0)

N
K+ 1

2
(kr0)

=
J
K− 1

2
(kr0)

N
K− 1

2
(kr0)

AK(E,λ)−1 − 1
B(E)

J
K+ 1

2
(kr0)

J
K− 1

2
(kr0)

AK(E,λ)−1 − 1
B(E)

N
K+ 1

2
(kr0)

N
K− 1

2
(kr0)

. (15.23)

The phase shift δK(E,λ) is determined up to a multiple of π due to the period of the
tangent function. We use the convention that the phase shifts for the free particles
V (r) = 0 vanish

δK(E,0) = 0. (15.24)

Under this convention, the phase shifts δK(E) are determined completely as λ in-
creases from zero to one:

δK(E) ≡ δK(E,1). (15.25)

The phase shifts δK(±M,λ) are the limits of the phase shifts δK(E,λ) as E

tends to ±M . At the sufficiently small k, k � 1/r0, when E >M , we have
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tan δK(E,λ) ∼ − π(kr0/2)2K−1

(K + 1/2)!(K − 1/2)!

· AK(M,λ)(kr0/2)2 − Mr0(K + 1/2)

AK(M,λ) − c2
1k

2 − 2Mr0
2K−1 [1 + (kr0)

2

(2K−1)(2K−3) ]
, (15.26)

when K > 3/2,

tan δK(E,λ) ∼ −π

2

(
kr0

2

)2

· AK(M,λ)(kr0/2)2 − 2Mr0

AK(M,λ) − c2
1k

2 − Mr0[1 − (kr0)
2

2 log(kr0)]
, (15.27)

when K = 3/2,

tan δK(E,λ) ∼ (kr0)
AK(M,λ)(kr0/2)2 − 3Mr0/2

AK(M,λ) − c2
1k

2 − 2Mr0[1 − (kr0)2] , (15.28)

when K = 1,

tan δK(E,λ) ∼ π

2 log(kr0)

AK(M,λ)−1 + c2
1k

2 − k2r0/(4M)

AK(M,λ)−1 + c2
1k

2 + [2Mr0 log(kr0)]−1
, (15.29)

when K = 1/2. When E < −M we have for a sufficient k

tan δK(E,λ) ∼ − π(kr0/2)2K+1

(K + 1/2)!(K − 1/2)!
· AK(−M,λ) + (2K + 1)/(2Mr0)

AK(−M,λ) + c2
2k

2 + k2r0
2M(2K−1)

, (15.30)

when K ≥ 1,

tan δK(E,λ) ∼ −π

(
kr0

2

)2
AK(−M,λ) + 1/(Mr0)

AK(−M,λ) + c2
2k

2 − k2r0 log(kr0)
2M

, (15.31)

when K = 1/2. The asymptotic forms (15.12) have been used in deriving above
formulas. In addition to the leading terms, we include the next leading terms in
some of Eqs. (15.26)–(15.29), (15.30) and (15.31) to be used only for the critical
case where the leading terms are canceled to each other.

First, from Eqs. (15.26)–(15.29), (15.30) and (15.31) we see that, except for some
critical cases, tan δK(E,λ) tends to zero as E goes to ±M , i.e., δK(±M,λ) are al-
ways equal to the multiple of π . In other words, if the phase shift δK(E,λ) for a suf-
ficiently small k is expressed as a positive or negative acute angle plus nπ , its limit
δK(M,λ) or δK(−M,λ) is equal to nπ . This means that δK(M,λ) or δK(−M,λ)

changes discontinuously when δK(E,λ) changes through the value (n + 1/2)π .
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Second, from Eq. (15.25) we have

∂δK(E,λ)

∂AK(E,λ)

∣∣∣∣
E

= −
(
E + M

E − M

)1/2

· 2[cos δK(E,λ)]2

πkr0[NK+ 1
2
(kr0)AK(E,λ) − B(E)N

K− 1
2
(kr0)]2

≤ 0, E >M
(15.32)

∂δK(E,λ)

∂AK(E,λ)

∣∣∣∣
E

=
( |E| − M

|E| + M

)1/2

· 2[cos δK(E,λ)]2

πkr0[NK+ 1
2
(kr0)AK(E,λ) − B(E)N

K− 1
2
(kr0)]2

≥ 0, E < −M.

Equation (15.32) shows that, as the ratio AK(E,λ) decreases, the phase shift
δK(E,λ) for E >M increases monotonically, but δK(E,λ) for E < −M decreases
monotonically. In terms of the monotonic properties we are able to determine the
jump of the phase shifts δK(±M,λ).

We first consider the scattering states of a positive energy with a sufficiently small
momentum k. As AK(E,λ) decreases, if tan δK(E,λ) changes sign from positive to
negative, the phase shift δK(M,λ) jumps by π . Note that in this case if tan δK(E,λ)

changes sign from negative to positive, the phase shift δK(M,λ) keeps invariant.
Conversely, as AK(E,λ) increases, if tan δK(E,λ) changes sign from negative to
positive, the phase shift δK(M,λ) jumps by −π . Therefore, as λ increases from
zero to one, each time the AK(M,λ) decreases from near and larger than the value
2Mr0/(2K − 1) to smaller than that value, the denominator in Eq. (15.32) changes
sign from positive to negative and the rest factor keeps positive, so that the phase
shift δK(M,λ) jumps by π . We have shown in the previous section that each time the
AK(M,λ) decreases across the value 2Mr0/(2K−1), a scattering state of a positive
energy becomes a bound state. Conversely, each time the AK(M,λ) increases across
that value, the phase shift δK(M,λ) jumps by −π , and a bound state becomes a
scattering state of a positive energy.

Then, we consider the scattering states of a negative energy with a sufficiently
small k. As AK(E,λ) decreases, if tan δK(E,λ) changes sign from negative to posi-
tive, the phase shift δK(−M,λ) jumps by −π . However, in this case if tan δK(E,λ)

changes sign from positive to negative, the phase shift δK(−M,λ) keeps invariant.
Conversely, as AK(E,λ) increases, if tan δK(E,λ) changes sign from positive to
negative, the phase shift δK(−M,λ) jumps by π . Therefore, as λ increases from
zero to one, each time the AK(−M,λ) decreases from a small and positive num-
ber to a negative one, the denominator in Eqs. (15.30) and (15.31) changes sign
from positive to negative and the rest factor keeps negative, so that the phase shift
δK(−M,λ) jumps by −π . In the previous section we have shown that each time the
AK(−M,λ) decreases across zero, a bound state becomes a scattering state of a neg-
ative energy. Conversely, each time the AK(−M,λ) increases across zero, the phase
shift δK(−M,λ) jumps by π , and a scattering state of a negative energy becomes a
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bound state. Therefore, we obtain the Levinson theorem for the Dirac equation in D

dimensions for non-critical cases:

δK(M) + δK(−M) = nKπ. (15.33)

It is obvious that the Levinson theorem (15.33) holds for both positive and negative
K in the non-critical cases.

For the special case K = 1/2 and E ∼ M , where the value 2Mr0/(2K − 1) is
infinity. Since {AK(E,λ)}−1 increases as AK(E,λ) decreases, we can study the
variance of {AK(E,λ)}−1 in this case instead. For the energy E > M where the
momentum k is sufficiently small, when {AK(M,λ)}−1 increases from negative
to positive as λ increases, both the numerator and denominator in Eqs. (15.26)–
(15.29) change signs, but not simultaneously. The numerator changes sign first, and
then the denominator changes. The front factor in Eqs. (15.26)–(15.29) is negative
so that tan δK(E,λ) first changes from negative to positive when the numerator
changes sign, and then changes from positive to negative when the denominator
changes sign. It is in the second step that the phase shift δK(M,λ) jumps by π .
Similarly, each time {AK(M,λ)}−1 decreases across zero as λ increases, δK(M,λ)

jumps by −π .
For λ = 0 and K = 1/2, the numerator in Eqs. (15.26)–(15.29) is equal to zero,

and the phase shift δK(M,0) is defined to be zero. In this case there is a half bound
state at E = M . If {AK(M,λ)}−1 increases (AK(M,λ) decreases) as λ increases
from zero, the front factor in Eqs. (15.26)–(15.29) is negative, the numerator first
becomes positive, and then the denominator changes sign from negative to positive,
such that the phase shift δK(M,λ) jumps by π and simultaneously the half bound
state becomes a bound state with E <M .

Now, we turn to study the critical cases. First, we study the critical case for
E = M , where the ratio AK(M,1) is equal to the value 2Mr0/(2K − 1). It is easy
to obtain the following solution of E = M in the region r0 < r < ∞, satisfying the
radial equations (15.5) and the matching condition (15.7) at r0:

fKM(r,1) = 2Mr−K+1, gKM(r,1) = (2K − 1)r−K. (15.34)

It is a bound state when K > 3/2, but called a half bound state when K ≤ 3/2.
A half bound state is not a bound state, because its wavefunction is finite but not
square integrable.

For definiteness, we assume that in the critical case, as λ increases from a number
near and less than one and finally reaches one, AK(M,λ) decreases and finally
reaches, but not across, the value 2Mr0/(2K − 1). In this case, when λ = 1 a new
bound state of E = M appears for K > 3/2, but does not appear for K ≤ 3/2. We
should check whether or not the phase shift δK(M,1) increases by an additional π
as λ increases and reaches one.

It is evident from the next leading terms in the denominator of Eqs. (15.26)–
(15.29) that the denominator for K ≥ 3/2 has changed sign from positive to nega-
tive as AK(M,λ) decreases and finally reaches the value 2Mr0/(2K − 1), i.e., the
phase shift δK(M,λ) jumps by an additional π at λ = 1. Simultaneously, a new
bound state of E = M appears for K > 3/2, but only a half bound state appears
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for K = 3/2, so that the Levinson theorem (15.33) holds for the critical case with
K > 3/2, but it has to be modified for the critical case when a half bound state
occurs at E = M and K = 3/2:

δK(M) + δK(−M) = (nK + 1)π. (15.35)

For K = 1, the tan δK(E,1) tends to infinity as {AK(M,λ)}−1 increases and
finally reaches 2Mr0, i.e., the phase shift δK(M,λ) jumps by π/2. Simultaneously,
only a new half bound state of E = M for K = 1 appears, so that the Levinson
theorem (15.33) has to be modified for the critical case when a half bound state
occurs at E = M and K = 1:

δK(M) + δK(−M) =
(
nK + 1

2

)
π. (15.36)

For K = 1/2 the next leading term with log(kr0) in the denominator of
Eqs. (15.26)–(15.29) dominates so that the denominator keeps negative (does not
change sign!) as {AK(M,λ)}−1 increases and finally reaches zero, namely, the
phase shift δK(M,λ) does not jump, no matter whether the rest part in Eq. (15.29)
keeps positive or has changed to negative. Simultaneously, only a new half bound
state of E = M for K = 1/2 appears, so that the Levinson theorem (15.33) holds
for the critical case with K = 1/2.

This conclusion holds for the critical case where AK(M,λ) increases and finally
reaches, but not across, the value 2Mr0/(2K − 1). Therefore, for the critical case
when a half bound state occurs at E = M and K ≤ 3/2 the Levinson theorem has
to be modified as follows

δK(M) + δK(−M) =
(
nK + K − 1

2

)
π. (15.37)

Second, we study the critical case for E = −M , where the ratio AK(−M,1) is
equal to zero. It is easy to obtain the following solution of E = −M in the region
r0 < r < ∞, satisfying the radial equations (15.5) and the matching condition (15.7)
at r0:

fKM(r,λ) = 0, gKM(r,λ) = r−K. (15.38)

It is a bound state when K ≥ 1, but a half bound state when K = 1/2.
For definiteness, once again we assume that in the critical case, as λ increases

from a number near and less than one and finally reaches one, AK(−M,λ) decreases
and finally reaches zero, so that when λ = 1 the energy of a bound state decreases
to E = −M for K ≥ 1, but a bound state becomes a half bound state for K = 1/2.
We should check whether or not the phase shift δK(−M,1) decreases by π as λ

increases and reaches one.
For the energy E < −M where the momentum k is sufficiently small, one can

see from the next leading terms in the denominator of Eqs. (15.30) and (15.31)
that the denominator does not change sign as AK(−M,λ) decreases and finally
reaches zero, namely, the phase shift δK(−M,λ) does not jump by an additional
−π at λ = 1. Simultaneously, the energy of a bound state decreases to E = −M

for K ≥ 1, but a bound state becomes a half bound state for K = 1/2, so that the
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Levinson theorem (15.33) holds for the critical case with K ≥ 1, but it has to be
modified when a half bound state occurs at E = −M and K = 1/2:

δK(M) + δK(−M) = (nK + 1)π. (15.39)

Combining Eqs. (15.33), (15.37), (15.39) and their corresponding forms for the
negative K , we obtain the relativistic Levinson theorem in D dimensions.

5 Discussions on General Case

Now, we discuss the general case where the potential V (r) has a tail at r ≥ r0. Let
r0 be so large that only the leading term in V (r) is concerned:

V (r) ∼ br−n, r ≥ r0, (15.40)

where b is a non-vanishing constant and n is a positive constant, not necessary to be
an integer. Substituting it into Eq. (15.5) and changing the variable r to ξ :

ξ =
{
kr = r

√
E2 − M2, when |E| >M ,

κr = r
√
M2 − E2, when |E| ≤ M ,

(15.41)

we obtain the radial equations in the region r0 ≤ r < ∞:

d

dξ
gKE(ξ) + K

ξ
gKE(ξ) =

(
E

|E|
√

E − M

E + M
− b

ξn
kn−1

)
fKE(ξ),

− d

dr
fKE(ξ) + K

r
fKE(ξ) =

(
E

|E|
√

E + M

E − M
− b

ξn
kn−1

)
gKE(ξ),

(15.42)

for |E| >M , and

d

dξ
gKE(ξ) + K

ξ
gKE(ξ) =

(
−
√

M − E

M + E
− b

ξn
κn−1

)
fKE(ξ),

− d

dr
fKE(ξ) + K

r
fKE(ξ) =

(√
M + E

M − E
− b

ξn
κn−1

)
gKE(ξ),

(15.43)

for |E| ≤ M . As far as the Levinson theorem is concerned, we are only interested
in the solutions with the sufficiently small k and κ . If n ≥ 3, in comparison with
the first term on the right hand side of Eq. (15.42) or Eq. (15.43), the potential term
with a factor kn−1 (or κn−1) is too small to affect the phase shift at the sufficiently
small k and the variant range of the ratio fjE(r, λ)/gjE(r, λ) at r+

0 . Therefore, the
proof given in the previous sections is valid for those potential with a tail so that the
Levinson theorem (15.33) holds.

When n = 2 and b �= 0, we will only keep the leading terms for the small param-
eter k (or κ) in solving Eq. (15.42) (or Eq. (15.43)). First, we calculate the solutions
with the energy E ∼ M . Let

α = (K2 − K + 2Mb + 1/4)1/2 �= K − 1

2
. (15.44)
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If α2 < 0, there is an infinite number of bound states. We will not discuss this case
as well as the case with α = 0 here. When α2 > 0, we take α > 0 for convenience.
Some formulas given in the previous sections will be changed.

When E ≤ M we have

fKE(r,λ) = ei(α+1)π/22M(πκr/2)1/2H
(1)
α (iκr),

gKE(r, λ) = ei(α+1)π/2κ(πκr/2)1/2

·
{
− d

d(κr)
H

(1)
α (iκr) + K−1/2

κr
H

(1)
α (iκr)

}
.

(15.45)

Hence, the ratio at r = r+
0 for E = M is

fKE(r,λ)

gKE(r, λ)

∣∣∣∣
r=r+

0

= 2Mr0

K + α − 1/2
, E = M. (15.46)

When E >M we have

fKE(r,λ) = 2M(πkr/2)1/2{cosηα(E,λ)Jα(kr) − sinηα(E,λ)Nα(kr)},
gKE(r, λ) = k(πkr/2)1/2

·
{

cosηα(E,λ)

(
− d

d(kr)
Jα(kr) + K − 1/2

kr
Jα(kr)

)

− sinηα(E,λ)

(
− d

d(kr)
Nα(kr) + K − 1/2

kr
Nα(kr)

)}
.

(15.47)

When (kr) tends to infinity, the asymptotic forms of the solutions are given by

fKE(r,λ) ∼ 2M cos(kr − απ/2 − π/4 + ηα(E,λ)),

gKE(r, λ) ∼ k sin(kr − απ/2 − π/4 + ηα(E,λ)).
(15.48)

In comparison with the solution (15.22) we obtain the phase shift δK(E,λ) for
E >M :

δK(E,λ) = ηα(E,λ) + (K − α − 1/2)π/2, E >M. (15.49)

From the matching condition (15.8), for the sufficiently small k we obtain

tanηα(E,λ) ∼ −π(kr0/2)2α

�(α + 1)�(α)

(
K − α − 1/2

K + α − 1/2

)

· AK(M,λ) − 2Mr0/(K − α − 1/2)

AK(M,λ) − 2Mr0/(K + α − 1/2)
. (15.50)

Therefore, as λ increases from zero to one, each time the AK(M,λ) decreases from
near and larger than the value 2Mr0/(K + α − 1/2) to smaller than that value, the
denominator in Eq. (15.50) changes sign from positive to negative and the rest factor
keeps positive, so that ηα(M,λ) jumps by π . Simultaneously, from Eq. (15.46) a
new overlap between the variant ranges of the ratio at two sides of r0 appears such
that a scattering state of a positive energy becomes a bound state. Conversely, each
time the AK(M,λ) increases across that value, ηα(M,λ) jumps by −π , and a bound
state becomes a scattering state of a positive energy.
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Second, we calculate the solutions with the energy E ∼ −M . Let

β = (K2 + K − 2Mb + 1/4)1/2 �= K + 1

2
. (15.51)

Similarly, we only discuss the cases with β2 > 0, and take β > 0.
When E ≥ −M we have

fKE(r,λ) = −ei(β+1)π/2κ(πκr/2)1/2

·
{

d
d(κr)

H
(1)
β (iκr) + K+1/2

κr
H

(1)
β (iκr)

}
,

gKE(r, λ) = ei(β+1)π/22M(πκr/2)1/2H
(1)
β (iκr).

(15.52)

Hence, the ratio at r = r+
0 for E = −M is

fKE(r,λ)

gKE(r, λ)

∣∣∣∣
r=r+

0

= −K − β + 1/2

2Mr0
, E = −M. (15.53)

When E < −M we have

fKE(r,λ) = −k(πkr/2)1/2

·
{

cosηβ(E,λ)

(
d

d(kr)
Jβ(kr) + K + 1/2

kr
Jβ(kr)

)

− sinηβ(E,λ)

(
d

d(kr)
Nβ(kr) + K + 1/2

kr
Nβ(kr)

)}
,

gKE(r, λ) = 2M(πkr/2)1/2

· {cosηβ(E,λ)Jβ(kr) − sinηβ(E,λ)Nβ(kr)}.

(15.54)

When (kr) tends to infinity, the asymptotic forms for the solutions are:

fKE(r,λ) ∼ k sin(kr − βπ/2 − π/4 + ηβ(E,λ)),

gKE(r, λ) ∼ 2M cos(kr − βπ/2 − π/4 + ηβ(E,λ)).
(15.55)

In comparison with the solution (15.22) we obtain the phase shift δK(E,λ) for
E < −M :

δK(E,λ) = ηβ(E,λ) + (K − β + 1/2)π/2, E < −M. (15.56)

From the matching condition (15.8), for the sufficiently small k we obtain

tanηα(E,λ) ∼ −π(kr0/2)2β

�(β + 1)�(β)
· AK(−M,λ) + K+β+1/2

2Mr0

AK(−M,λ) + K−β+1/2
2Mr0

. (15.57)

Therefore, as λ increases from zero to one, each time the AK(−M,λ) decreases
from near and larger than the value −(K − β + 1/2)/(2Mr0) to smaller than that
value, the denominator in Eq. (15.57) changes sign from positive to negative and
the rest factor keeps negative, so that ηβ(−M,λ) jumps by −π . Simultaneously,
from Eq. (15.53) an overlap between the variant ranges of the ratio at two sides
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of r0 disappears such that a bound state becomes a scattering state of a negative en-
ergy. Conversely, each time the AK(−M,λ) increases across that value, ηβ(−M,λ)

jumps by π , and a scattering state of a negative energy becomes a bound state.
In summary, we obtain the modified relativistic Levinson theorem for non-critical

cases when the potential has a tail (15.40) with n = 2 at infinity:

δK(M) + δK(−M) = nKπ + (2K − α − β)π/2. (15.58)

We will not discuss the critical cases in detail. In fact, the modified relativistic
Levinson theorem (15.58) holds for the critical cases of α > 1 and β > 1. When
0 < α < 1 or 0 < β < 1, ηα(M,1) or ηβ(−M,1) in the critical case will not be
multiple of π , respectively, so that Eq. (15.58) is violated for those critical cases.

Furthermore, for the potential (15.40) with a tail at infinity, when n > 2, even if
it contains a logarithm factor, for any arbitrarily small positive ε, one can always
find a sufficiently large r0 such that |V (r)| < ε/r2 in the region r0 < r < ∞. Thus,
from Eqs. (15.44) and (15.51) we have for the sufficiently small ε

α = (K2 − K ± 2Mε + 1/4)1/2 ∼ K − 1

2
,

β = (K2 + K ∓ 2Mε + 1/4)1/2 ∼ K + 1

2
.

(15.59)

Hence, Eq. (15.58) coincides with Eq. (15.33). In this case the Levinson theorem
(15.33) still holds for the non-critical case.

6 Friedel Theorem

The Levinson theorem is closely related to the Friedel theorem [452] in three di-
mensions described by

�N = 2

π

∞∑

l=0

(2l + 1)δl(EF ). (15.60)

It states that the change of the number of states �N around a potential barrier can
be expressed as the Friedel sum rule [453], which sets up the relation between �N

and the phase shifts at the Fermi energy. It provides a powerful method in calcu-
lating some of the important properties of electron structure. Recently, this theorem
has been generalized to the system of Dirac fermions [454, 455] in two and three
dimensions as well as in arbitrary dimensions [456].

As shown in Ref. [456], the generalized Friedel theorem for Dirac fermions in D

dimensions is given by

�N =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1
π

∑
±K

∑∞
l=0 2d

(
D+l−2

l

)

· ([δK(EF ) − δK(M) + δK(−E′
F ) − δK(−M)]

+ εK(−1)|K| π
2 [sin2 δK(−M) − sin2 δK(M)]), D = 2d + 1,

1
π

∑
±K

∑∞
l=0 2d−1

(
D+l−2

l

)

· [δK(EF ) − δK(M) + δK(−E′
F ) − δK(−M)], D = 2d ,

(15.61)
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where δK(EF )[δK(−E′
F )] and δK(±M) are the phase shifts of scattering states at

Fermi energy Eλ = EF (Eλ = −E′
F ) for Dirac fermions (antifermions) and the crit-

ical points Eλ = ±M of zero momentum with ±M being effective mass of fermion
(antifermion). The notation

∑
±K denotes the summation over the quantum num-

bers K = ±|K|, and εK = +1 (−1) for K > 0 (K < 0). The total angular momen-
tum K = ±(2l + D − 1)/2.

7 Comparison Theorem

Before ending this Chapter, we are going to give a brief sketch of the comparison
theorem for Dirac equation in arbitrary dimensions due to its interest. For the Dirac
problems, this theorem has been discussed by some authors [457–461].

We consider two different attractive potentials Va(r) and Vb(r) satisfying
Va(r) < Vb(r). If we write the corresponding pairs of radial wavefunction as
{Fa,Ga} and {Fb,Gb}, then in terms of Eqs. (15.1) we have

dGa(r)

dr
+ K

r
Ga(r) = [Ea − Va(r) − M]Fa(r), (15.62)

−dFa(r)

dr
+ K

r
Fa(r) = [Ea − Va(r) + M]Ga(r), (15.63)

dGb(r)

dr
+ K

r
Gb(r) = [Eb − Vb(r) − M]Fb(r), (15.64)

−dFb(r)

dr
+ K

r
Fb(r) = [Eb − Vb(r) + M]Gb(r). (15.65)

The difference between Eq. (15.62) multiplied by Fb(r) and Eq. (15.65) multiplied
by Ga(r) leads to the following formula

d

dr
[Ga(r)Fb(r)] = [−M − Va(r) + Ea]Fa(r)Fb(r)

+ [−M + Vb(r) − Eb]Ga(r)Gb(r). (15.66)

In a similar way, the difference between Eq. (15.64) multiplied by Fa(r) and
Eq. (15.63) multiplied by Gb(r) allows us to obtain

d

dr
[Fa(r)Gb(r)] = [−M − Vb(r) + Eb]Fa(r)Fb(r)

+ [−M + Va(r) − Ea]Ga(r)Gb(r). (15.67)

In terms of Eqs. (15.66) and (15.67) we have

[(Ea − Eb) − (Va(r) − Vb(r))][Fa(r)Fb(r) + Ga(r)Gb(r)]
= − d

dr
[Fa(r)Gb(r) − Ga(r)Fb(r)]. (15.68)

By integrating this equation with respect to argument r ∈ [0,∞) and considering
the boundary conditions F(0) = G(0) = 0 and F(∞) = G(∞) = 0, we have
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∫ ∞

0
(Ea − Eb)[Fa(r)Fb(r) + Ga(r)Gb(r)]dr

=
∫ ∞

0
(Va(r) − Vb(r))[Fa(r)Fb(r) + Ga(r)Gb(r)]dr. (15.69)

Therefore, two integrals have the same sign for the node-free wavefunctions
{F(r),G(r)}. It should be emphasized that the potentials and eigenvalues are both
real. On the contrary, if the potential parameters stray into a region such that the
corresponding energy level becomes complex, then Eq. (15.69) will no longer lead
to the expected result Va(r) < Vb(r) ⇒ Ea < Eb since the complex energy levels
cannot be well ordered.

Recently, Hall has supposed that the potential V = V (r, a) depends smoothly on
a parameter a and restated this theorem [460, 461]. For the real attractive central
potential V (r, a) and the corresponding discrete Dirac eigenvalue E(a) = EKn(a),
one has

E′(a) ≥ 0, for
∂V

∂a
≥ 0,

E′(a) ≤ 0, for
∂V

∂a
≤ 0.

(15.70)

Moreover, if we suppose that E1
Kn and E2

Kn are Dirac eigenvalues corresponding
to two distinct attractive central potentials Va(r) and Vb(r), then we have

E
(a)
Kn ≤ E

(b)
Kn, for Va(r) ≤ Vb(r). (15.71)

Finally, it should be pointed out that those attractive central potentials Va(r) and
Vb(r) are time-independent.

8 Concluding Remarks

In this Chapter we have uniformly studied the Levinson theorem for the Dirac equa-
tion in (D + 1) dimensions by the Sturm-Liouville theorem. Thus, the Levinson
theorem have been established by proving the number of bound states to be equal
to the sum of the phase shifts of the scattering states at E = ±M . The general case
where the potential V (r) has a tail at r > r0 has also been analyzed. Finally, we
have discussed the Friedel and comparison theorems for the radial Dirac equation
in arbitrary dimensions D.



Chapter 16
Generalized Hypervirial Theorem for Dirac
Equation

1 Introduction

The recurrence relations for matrix elements are very useful in quantum calcula-
tions, but their direct computation are generally very cumbersome. An interest-
ing and useful recurrence formula is the Blanchard’s relation for arbitrary non-
relativistic matrix elements of the form 〈n1l1|rλ|n2l2〉, where the symbol |nl〉 stands
for non-relativistic hydrogenic radial eigenstate.

As shown in Chap. 10, we have generalized the hypervirial theorem for the non-
relativistic equation case in arbitrary dimensions D. In this Chapter we attempt to
present the generalized hypervirial theorem for relativistic Dirac equation case.

This Chapter is organized as follows. In Sect. 2 we are going to derive the gen-
eralized hypervirial theorem for Dirac equation in off-diagonal case. Section 3 is
devoted to the diagonal case. We summarize our conclusions in Sect. 4.

2 Relativistic Recurrence Relation

Based on the study in Chap. 4, when the factor r(1−D)/2 is built into each radial
function �K,[j ](x, t) we may write out the relativistic radial Hamiltonian1

Ha = −iαr

(
d

dr
+ β

r
Ka

)
+ Mβ + V (r), (16.1)

where

αr = 1

r
�α · �r =

(
0 −1

−1 0

)
, β =

(
1 0
0 −1

)
,

Ka = ∓[ja + (D − 2)/2]
(16.2)

1Note that the first derivative d/dr comes from the radial momentum operator pr = −i�[d/dr +
(D − 1)/2r] as given in Eq. (3.53). Due to the introduction of the factor r(1−D)/2, the second term
(D − 1)/2r in pr is canceled each other.
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with the property αrβ = −βαr . For example, we have in three dimensions

K = κ =
{

−(l + 1), j = l + 1
2 ,

l, j = l − 1
2 ,

(16.3)

and K = 0 in one dimension.
As a result, the reduced radial Dirac Hamiltonian H can be written as a matrix

form

Ha =
[

M + V (r) i( d
dr

− Ka

r
)

i( d
dr

+ Ka

r
) V (r) − M

]
(16.4)

with the property

Haψ(r) = Eaψ(r), (16.5)

where we have introduced purely radial wavefunction

ψ(r) =
(

G(r)

iF (r)

)
. (16.6)

For bound states, they may be normalized by the relation

(ψ(r),ψ(r)) =
∫ ∞

0
[G2(r) + F 2(r)]dr = 1. (16.7)

We use inner products without the radial measure rD−1 because the factor r(1−D)/2

is already built into each radial function as mentioned above.
The corresponding radial equations are written as

dG(r)

dr
+ K

r
G(r) = [E − V (r) + M]F(r),

−dF(r)

dr
+ K

r
F(r) = [E − V (r) − M]G(r).

(16.8)

It is found that this set of radial equations are slightly different from those given in
Chap. 4 due to the exchange between M and −M . Such a modification does not
affect the final result at all.

By using the definition of the Hamiltonian Ha given in Eq. (16.1), we have

H2f (r) − f (r)H1 = −iαr

(
f ′(r) + β

r
�−

21f (r)

)
, (16.9)

where �∓
21 = K2 ∓ K1. Thus, acting this relation on the eigenfunctions yields

(E2 − E1)〈n2K2|f (r)|n1K1〉 = −iαr 〈n2K2|f ′(r) + β

r
�−

21f (r)|n1K1〉, (16.10)

where the matrix elements of radial functions are calculated as follows:

〈n2K2|f (r)|n1K1〉 =
∫

f (r)[F ∗
2 (r)F1(r) + G∗

2(r)G1(r)]dr,
〈n2K2|βf (r)|n1K1〉 =

∫
f (r)[F ∗

2 (r)F1(r) − G∗
2(r)G1(r)]dr.

(16.11)

In a similar way, one is able to obtain the following relations
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H2ξ = −
{
f ′′(r) + f ′(r) d

dr
− β

r2
�−

21f

+ β

r
�−

21

(
f ′ + f

d

dr

)
− β

r
K2

[
f ′ + �−

21

r
βf (r)

]}

− iαr (V (r) − Mβ)

{
f ′(r) + �−

21

r
βf (r)

}
(16.12)

and

ξH1 = −
{
f ′(r) − �−

21

r
βf (r)

}
d

dr

− 1

r
βK1

{
f ′(r) − �−

21

r
βf (r)

}

− iαr

{
f ′(r) + �−

21

r
βf (r)

}
(Mβ + V (r)), (16.13)

where

ξ = H2f (r) − f (r)H1. (16.14)

The difference between (16.12) and (16.13) leads to

H2ξ − ξH1 = −f ′′(r) + �−
21

r2
βf (r)

+ (�−
21)

2

r2
f (r) − 2β

r
�−

21f (r)
d

dr

+ 2K1

r
βf ′(r) + 2iαrMβ

{
f ′(r) + �−

21

r
βf (r)

}
, (16.15)

from which we have

(E2 − E1)
2〈n2K2|f (r)|n1K1〉

= 〈n2K2|H2ξ − ξH1|n1K1〉
= 〈n2K2|−f ′′(r) + �−

21

r2
βf (r) + (�−

21)
2

r2
f (r) − 2β

r
�−

21f (r)
d

dr

+ 2K1

r
βf ′(r) + 2iαrMβ

{
f ′(r) + �−

21

r
βf (r)

}
|n1K1〉, (16.16)

where the first derivative d/dr in (16.16) can be substituted by the Hamiltonian
given in (16.1).

On the other hand, the addition between (16.12) and (16.13) allows us to obtain
the following off-diagonal matrix elements

(E2
2 − E2

1)〈n2K2|f (r)|n1K1〉
= 〈n2K2|H2ξ + ξH1|n1K1〉
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= 〈n2K2|−f ′′(r) − 2f ′(r) d

dr
+ �−

21

r2
βf (r) + �−

21�
+
21

r2
f (r)

− 2iαr

{
f ′(r) + �−

21

r
βf (r)

}
V (r)|n1K1〉. (16.17)

Due to the presence of Dirac matrices, we also need to calculate off-diagonal
matrix elements of expressions involving αrf (r) and βf (r), i.e.,

H2(−iαrf (r)) = −
{
f ′(r) + f (r)

d

dr

}

+ K2

r
βf (r) + iαr(Mβ − V (r))f (r) (16.18)

and

(−iαrf (r))H1 = −f (r)

(
d

dr
+ K1

r
β

)
− iαr(Mβ + V (r))f (r). (16.19)

Summing and subtracting them lead to

(E2 + E1)〈n2K2|−iαrf (r)|n1K1〉
= 〈n2K2|H2(−iαrf (r))−iαrf (r)H1|n1K1〉
= 〈n2K2|−f ′(r) − 2f (r)

d

dr
+ �−

21

r
βf (r) − 2iαrV (r)f (r)|n1K1〉,

(16.20)

(E2 − E1)〈n2K2|−iαrf (r)|n1K1〉
= 〈n2K2|H2(−iαrf (r)) + iαrf (r)H1|n1K1〉
= 〈n2K2|−f ′(r) + �+

21

r
βf (r) + 2iαrβM(r)f (r)|n1K1〉. (16.21)

In addition, one has

H2βf (r) + βf (r)H1 = −iαr

{
�−

21

r
f (r) + βf ′(r)

}

+ 2(M + βV (r))f (r), (16.22)

from which we have

(E2 + E1)〈n2K2|βf (r)|n1K1〉
= 〈n2K2|−iαr

{
�−

21

r
f (r) + βf ′(r)

}

+ 2(M + βV (r))f (r)|n1K1〉. (16.23)

Equations (16.10)–(16.23) are the basic results of our problem. Even though we
might consider, as in the non-relativistic case, radial functions of the form f (r) = rλ

and insert the explicit expression for the Coulomb potential, we do not show them
for simplicity.
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3 Diagonal Case

Let us study the diagonal case �−
21 = 0, i.e., K2 = K1. In this case, it is shown from

Eq. (16.10) that

(E2 − E1)〈n2K1|f (r)|n1K1〉 = −iαr 〈n2K1|f ′(r)|n1K1〉. (16.24)

Similarly, Eqs. (16.16) and (16.17) are simplified as

(E2 − E1)
2〈n2K1|f (r)|n1K1〉

= 〈n2K1|H2ξ − ξH1|n1K1〉
= 〈n2K2|−f ′′(r) + 2K1

r
βf ′(r) + 2iαrMβf ′(r)|n1K1〉, (16.25)

(E2
2 − E2

1)〈n2K1|f (r)|n1K1〉
= 〈n2K1|H2ξ + ξH1|n1K1〉
= 〈n2K1|−f ′′(r) − 2f ′(r) d

dr
− 2iαrf

′(r)V (r)|n1K1〉. (16.26)

Likewise, Eqs. (16.20) and (16.21) become

(E2 + E1)〈n2K1|−iαrf (r)|n1K1〉
= 〈n2K1|−f ′(r) − 2f (r)

d

dr
− 2iαrV (r)f (r)|n1K1〉, (16.27)

(E2 − E1)〈n2K1|−iαrf (r)|n1K1〉
= 〈n2K1|−f ′(r) + 2K2

r
βf (r) + 2iαrβM(r)f (r)|n1K1〉, (16.28)

(E2 + E1)〈n2K1|βf (r)|n1K1〉
= 〈n2K1|−iαrβf

′(r) + 2(M + βV (r))f (r)|n1K1〉. (16.29)

Finally, let us consider a very special case f (r) = 1 and V (r) = −Zα/r . If so,
we have

(E2 + E1)〈n2K1|β|n1K1〉 = 〈n2K1|2

(
M − β

Zα

r

)
|n1K1〉 . (16.30)

Before ending this section, we want to give a few useful remarks on the radial
Hamiltonian H given in (16.4). First, it is found that this Hamiltonian is hermitian
if we consider (d/dr)† = −d/dr , i.e., H † = H . Therefore, the eigenvalues of the
Hamiltonian are reals. Second, it might be noted that there are other two forms of
the radial Hamiltonian. The first one is given by

H = −iαr

(
d

dr
+ K

r
β

)
+ Mβ + V (r), αr = σ2 =

(
0 −i

i 0

)
, (16.31)

whose matrix form becomes

H =
[
M + V (r) −( d

dr
− K

r
)

( d
dr

+ Ka

r
) V (r) − M

]
(16.32)
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satisfying

Hψ(r) = Eψ(r), ψ(r) =
(
G(r)

F (r)

)
. (16.33)

The second is the formalism used by Davydov [462]

H = αrpr + iαr

β

r
K + Mβ + V, αr = σ2, (16.34)

satisfying

H�(r) = E�(r), (16.35)

where

�(r) = r(1−D)/2
(
F(r)

G(r)

)
, (16.36)

and pr is given by Eq. (3.53).

4 Conclusions

In this Chapter we have generalized hypervirial theorem for the relativistic Dirac
equation both in off-diagonal case and in diagonal case. The key issue is to construct
the radial Dirac Hamiltonian. Three different expressions of the Hamiltonian have
been given.



Chapter 17
Kaluza-Klein Theory

1 Introduction

The model of higher-dimensional space-time is a powerful ingredient to be needed
to unify the interactions of various fields in nature. Before starting out the higher-
dimensional Kaluza-Klein theory, let us first consider the five-dimensional Kaluza-
Klein theory. Almost ninety years ago Kaluza put forward the issue that our universe
has more than four dimensions [9–11]. Kaluza introduced an extra compactified di-
mension to unify two fundamental forces of gravitation and electromagnetism in our
world. Kaluza began by taking as action the five-dimensional pseudo-Riemannian
manifold, and he imposed a so-called cylinder condition: the components of the
metric gIJ should not depend on the space like 5th dimension, i.e., he neglected
the effect of the 5th or scalar potential, and set all derivatives of four-dimensional
quantities with respect to the 5th coordinate to zero. The 5 × 5 metric introduced by
him is given by

g
(5)
IJ =

(
g
(4)
μν αAν

αAμ 2V

)
(17.1)

with ∂5gIJ = 0. The g
(4)
μν , Aμ, V and α = √

2GN represent the metric of the four-
dimensional space-time, the gauge field from electrodynamics, the dilaton and the
coupling constant related to the Newton constant GN , respectively. He evaluated the
Ricci tensor for linearized fields

Rμν = ∂i�
i
μν, R5ν = −α∂μFμν, R55 = −�V. (17.2)

The Kaluza’s theory was, up to the point where he introduced the particle, a vac-
uum theory. It did not contain an additional term in the action besides the five-
dimensional Ricci scalar: the field equations are given by setting the Ricci tensor
(17.2) equal to zero.

This theory can be separated into further sets of equations, one of which is equiv-
alent to Einstein field equations, another set equivalent to Maxwell electromagnetic
field equations and the final part an extra scalar field now termed the “radion”. It

S.-H. Dong, Wave Equations in Higher Dimensions,
DOI 10.1007/978-94-007-1917-0_17, © Springer Science+Business Media B.V. 2011

225

http://dx.doi.org/10.1007/978-94-007-1917-0_17


226 17 Kaluza-Klein Theory

should be noted that such a splitting of five-dimensional space-time into the Ein-
stein’s equations and Maxwell’s equations in four dimensions was first discovered
in 1914 by Gunnar Nordström, in the context of his theory of gravity, but subse-
quently forgotten [8].

Five years later, shortly after the discovery of the Schrödinger equation, in 1926
Oskar Klein improved and extended Kaluza’s treatment, and revealed a very inter-
esting geometrical interpretation of gauge transformations [10, 11]. He proposed
that the fourth spatial dimension is curled up in a circle of very small radius, so that
a particle moving a short distance along that axis would return to where it began.
The distance a particle can travel before reaching its initial position is said to be the
size of the dimension. This extra dimension is a compact set, and the phenomenon
of having a space-time with compact dimensions is referred to as compactification.1

The extension of extra dimension turned out to be comparable to the Planck length.
In Klein’s theory, he proposed a more fruitful interpretation of the five-dimensional
metric

g
(5)
IJ =

(
g
(4)
μν + VAμAν VAν

VAμ V

)
. (17.3)

He then varies the action and recovers the full field equations of general relativity,
with the energy-momentum tensor of the electro-magnetic fields, and the source-
free Maxwell’s equations

Gμν = κTμν, ∇μF
μν = 0. (17.4)

So Kaluza’s vacuum theory with the cylinder condition contains the full field equa-
tions. However, this vacuum theory cannot produce non-singular rotation symmetric
particle solutions.

After that, this theory was developed by some authors. For example, Einstein in-
vestigated this theory most intensively from 1938 to 1943. This was performed by
himself and his coauthors Bergmann and Bargmann in the classical Kaluza-Klein
theory with constant dilaton [463–466]. One of their primary objectives was to find
a nonsingular particle solution. Unfortunately, in the full theory this search got frus-
trated. In 1943, Einstein and Pauli argued that solitons cannot exist in this theory,
a result that Einstein may have been disappointed with [466]. Since there are prob-
lems with this theory it predicts the existence of a massless scalar, which has not
been seen so the theory is not phenomenologically acceptable even if it works as
the first model of unified theory. Extra dimensions were then abandoned from a
phenomenological point of view and looked upon as mathematical tools. When the
string theory was invented in the 1980s [467], the extra dimensions were considered
to have some importance from the physical point of view [468, 469]. String theory

1Up to now, there exist two main types of compactifications of an extra dimension. The first is
a circular compactification. With this extra dimension the entire space can be denoted M4 × S1,
where M4 is the regular Minkowski space and S1 is the circle with a radius R. It is chosen to
be small enough to avoid detection. Another type is an orbifold compactification by imposing the
discrete Z2 symmetry, where y → −y on the circle.
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attempts to address the question of merging quantum mechanics with general rel-
ativity into a consistent theory. In the original formulation of those string models,
the size of the extra dimensions where supposed to be compactified to manifolds
of small radii with sizes is about the order of the Planck length 10−36 m, such that
they remain hidden to the experiment, thus explaining the reason why we see only
four dimensions. It is believed that the relevant energy scale where quantum gravity
effects would become important is given by the Planck mass defined through the
fundamental constant as

MPc2 =
√

�c5

8πGN

∼ 2.4 × 1018 GeV. (17.5)

Clearly, this is much above any energy scale we have ever tested. If this is the correct
description of nature, then extra dimensions do exist but they have little influence in
physics at the electroweak scale. Nevertheless, the possibility of extra dimensions
at the weak scale was put forwarded and a new research direction started.

Up to now, two main types of extra dimensions by regarding the fields that live
on them can be clarified as large extra dimensions and TeV flat extra dimensions.
The first case corresponds to extra dimensions where only gravity can propagate,
i.e., gravity has only been tested up to scales ∼1 µm so these types of dimensions
must have a size of a micron or less. The second corresponds to those there are con-
straints coming from collider and indirect tests that force this kind of extra dimen-
sions to be at the TeV scale or more. Another type is the warped extra dimensions
[470–472], of which a more famous model is Arkani-Hamed, Dimopoulos and Dvali
(ADD) model.2 Unfortunately, current search shows no signals of extra dimensions
[473–477]. The extra dimensions has evolved from a single idea to a new general
paradigm with some authors applying it as a tool to address the large number of key
issues that remain unanswerable within the standard model context. However, the
search for extra dimensions is not over yet. On the contrary, it has only just started.
This is because its discovery would produce a fundamental change in how we view
the universe and also some surprising results.

Since the solitons were described in the Kaluza theory in the 1980s, the modern
versions of Kaluza-Klein theory have allowed the 5th coordinate to play an impor-
tant physical role. Space-time-matter theory dates from 1992, and is motivated by
the old idea of Einstein to give a geometrical description of matter [478–481]. This
is realized by embedding the 4-dimensional Einstein equations with sources in the
apparently-empty 5-dimensional Ricci-flat equations, so there is an effective or in-
duced energy-momentum tensor in which properties of matter like the density and
pressure are given in terms of the 5th potential and derivatives of the 4-dimensional

2The large extra dimension scenario of ADD was proposed as a potential solution to the hierarchy
problem, i.e., the question of why the reduced Planck scale M̄pl 	 2.4 · 1018 is so much larger than
the weak scale ∼1 TeV. They propose that we live on an assumed to be rigid 4D hypersurface (also
named a wall or brane). The gravity is allowed to propagate in a (4 + D)-dimensional n-torus T n,
whose radii are equal to R.
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space-time potentials with respect to the 5th coordinate. Membrane theory appear-
ing in 1998 is motivated by explaining the strength of particle interactions compared
to gravity, or alternatively the smallness of particle masses compared to the Planck
value [482–484]. This is done by embedding 4-dimensional space-time as a singu-
lar hypersurface in a 5-dimensional manifold, so particle interactions are confined
to a sheet while gravity is diluted by propagating into the bulk of the 5th dimen-
sion.3 Both space-time-matter theory and membrane theory are in agreement with
observations. We suggest the reader refer to those review papers to recognize their
developments [485, 486].

Even in the absence of a completely satisfying theoretical physics framework,
the idea of exploring extra, compactified, dimensions is of considerable interest in
the experimental physics and astrophysics communities. A variety of predictions,
with real experimental consequences, can be made in the case of large extra di-
mensions or warped models. For example, on the simplest of principles, one might
expect to have standing waves in the extra compactified dimension(s). If the ra-
dius of a spatial extra dimension is given by R, then the invariant mass of such
standing waves would be Mn = nh/Rc, where n is an integer, h the Planck’s con-
stant and c the speed of light. This set of possible mass values is often called the
Kaluza-Klein tower. Similarly, in thermal quantum field theory a compactification
of the Euclidean time dimension leads to the Matsubara frequencies and thus to a
discretized thermal energy spectrum. On the other hand, examples of experimen-
tal pursuits include work by the Collider Detector at Fermilab (CDF) collaboration,
which has re-analyzed particle collider data for the signature of effects associated
with large extra dimensions/warped models. Brandenberger and Vafa have specu-
lated that in the early universe, cosmic inflation causes three of the space dimensions
to expand to cosmological size while the remaining dimensions of space remained
microscopic.

Until now, the higher-dimensional generalizations of this theory to include weak
and strong interactions have attracted much attention for many particle physicists
in the past few years [487–491]. For instance, to unify gravity with the strong and
electroweak forces, the symmetry group of standard model, SU(3) × SU(2) × U(1)
was used. However, in order to convert this interesting geometrical construction
into a true model of reality founders on a number of issues, then the fermions must
be introduced in nonsupersymmetric models. Nevertheless, Kaluza-Klein theory re-
mains an important milestone in theoretical physics and is often embedded in more
sophisticated theories. The revival of interest in Kaluza-Klein theory arose in the
first instance from work in string theories [492, 493], and then from the usefulness

3In modern geometry the extra 5th dimension can be understood as a circle group U(1) since the
electromagnetism can be formulated essentially as a gauge theory on a fiber bundle, the circle
bundle, with gauge group U(1). If one is able to understand this geometrical interpretation, it is
relatively straightforward to replace U(1) by a general Lie group. Such generalizations are often
called Yang-Mills theories. If a distinction is drawn between them, then the Yang-Mills theories
occur on a flat space-time, while Kaluza-Klein treats a more general case of curved space-time.
The base space of Kaluza-Klein theory need not be four-dimensional space-time; it can be any
pseudo-Riemannian manifold, or even a supersymmetric manifold or orbifold.
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of extra spatial dimensions in the construction of N = 8 supergravity theory [494,
495]. In these contributions, it would have been possible to regard the extra spatial
dimensions as a mathematical device. Although the order of the compactification
scale of the additional dimensions has not been confirmed and are also of consid-
erable interest recently, larger extra dimensions were invoked in order to provide a
breakthrough of hierarchy problem in some approaches [483, 496, 497]. It is be-
lieved that the research on higher-dimensional space-time is valuable and become a
focus in the physical community, therefore the theory needs to be explored deeply,
extensively and in various directions.

Due to limited space, many other topics are not being covered, including brane
intersecting models, cosmology of models with extra dimensions both in flat and
warped bulk backgrounds; Kaluza-Klein dark matter; an extended discussion on
black hole physics; as well as many others. The interested reader that would like to
go beyond the present note can consult any of the excellent reviews [469, 485, 498].

As what follows, we shall review the development of the high-dimensional
Kaluza-Klein theory. In particular, (4 +D)-dimensional Kaluza-Klein theories and
the particle spectrum of Kaluza-Klein theory for fermions are to be discussed.

2 (4 + D)-Dimensional Kaluza-Klein Theories

As mentioned above, in order to unify gravitation, not only with electromagnetism
but also with weak and strong interactions, it is necessary to generalize the five-
dimensional theory to a higher-dimensional theory so as to obtain a non-Abelian
gauge group [485].

For the moment, remember that gravity is a geometric property of the space.
Then, the first thing to notice is that in a higher-dimensional world, where Einstein
gravity is assumed to hold, the gravitational coupling does not necessarily coincide
with the well known Newton constant GN . To explain this more clearly, let us as-
sume that there are N extra space-like4 dimensions which are compactified into
circles of the same radius R so the space is factorized as an M4 × K with K = T N

manifold. The higher-dimensional gravity action can be written as

S = − 1

16πG∗

∫
d4+Nx

√|g(4+N)|R(4+N), (17.6)

where G∗ is the fundamental gravity coupling, g(4+N) the metric in the whole
(4 + N)-dimensional spaces.5 We assume that the extra dimensions are flat with-
out curvature, thus the metric has the form

ds2 = gμν(x)dx
μdxν − δabdy

adyb, (17.7)

4The choice of a time-like extra dimension shall lead to the tachyon. Tachyons are well known to
be very dangerous in most theories. This seems to imply that we should only pick the space-like
solution.
5In fact in (4 + D) dimensions a gauge field can be decomposed into a 4D gauge Kaluza-Klein
tower plus D distinct scalar towers.
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where the metric gμν depends only on the four-dimensional coordinates xμ for μ =
0,1,2,3 and δabdy

adyb denotes the line element on bulk, a ∈ [1,N ]. Thus, it is
easy to see that

√|g(4+N)| = √|g4| and R(4+N) = R4 so that we might integrate out
the extra dimensions in Eq. (17.6) to obtain an effective 4D action

S = − Vn

16πG∗

∫
d4x

√|g4|R4, (17.8)

where Vn denotes the volume of the extra space. This equation is precisely the stan-
dard gravity action in 4D if one makes the following identification

GN = G∗/Vn, (17.9)

which is given by a volumetric scaling of the truly fundamental gravity scale.
We denote by yn the coordinates of the compact manifold K . An isometry of K

is a coordinate transformation y → y1 which leaves the form of the metric g̃mn for
K invariant:

y → y1 : g̃1
mn(y1) = g̃mn(y1). (17.10)

The general infinitesimal isometry is given by

I + iεasa : yn → yn′ = yn + εaζ n
a (y), (17.11)

where sa are the generators. The infinitesimal parameters εa are independent of y,
and the Killing vectors ζ n

a , which are associated with the independent infinitesimal
isometries, obey the Lie algebra

ζm
b ∂mζn

c − ζm
c ∂mζn

b = −Ca
bcζ

n
a , (17.12)

where Ca
bc are the structure constants with the following property

[sa, sb] = iCc
absc. (17.13)

For example, the D-dimensional sphere SD has isometry group SO(D + 1).
Now, let us consider the non-Abelian gauge transformations [499]. The ground-

state metric for the compactified (4 + D)-dimensional theory may be written as

ḡAB = diag(0){ημν,−g̃mn(y)} (17.14)

where ημν = (1,−1,−1,−1) is the metric of Minkowski space M4 and g̃mn(y) the
metric of the compact manifold. The non-Abelian gauge fields of the theory may be
expressed by the expansion about the ground state

ḡAB =
(
gμν(x) − g̃mn(y)B

m
μ Bn

ν Bn
μ

Bm
ν −g̃mn(y)

)
, Bn

μ ≡ ζ n
a (y)A

a
μ(x). (17.15)

Non-Abelian gauge transformations come from considering the effect on the
components ḡμn of the metric of the infinitesimal isometry with x-dependent pa-
rameters:

yn → yn + ζ n
a (y)ε

a(x). (17.16)

It shall be found that

Aa
μ → Aa′

μ = Aa
μ + ∂με

a(x) + Cc
abε

b(x)Ac
μ. (17.17)
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If taking Cc
ab = gf c

ab and sa = gSa one finds that this transformation is just the usual
Yang-Mills gauge transformation. Consequently, we have

[Sa,Sb] = if c
abSc. (17.18)

Thus, non-Abelian gauge transformations are generated by x-dependent infinitesi-
mal isometries of the compact manifold K .

3 Particle Spectrum of Kaluza-Klein Theories for Fermions

In this section we are going to give a review of the particle spectrum of the Kaluza-
Klein theories for fermions [500]. We consider, for example, a massless spinor par-
ticle ψ in (4 + D) dimensions. The Dirac equation can be written as

i(γμ∂μ + �αe
m
α ∇m)ψ = 0 (17.19)

with

∇m = ∂m − iωm, ωm = 1

2
ωαβ

m Mαβ, Mαβ = 1

4
i[�α,�β ], (17.20)

where ω is an antisymmetric tensor and Mαβ the spinor representation of the tangent
space group SO(D) of the compact manifold K . The γμ are (22+D/2 × 22+D/2)

gamma matrices satisfying

{γμ, γν} = γμγν + γνγμ = 2δμν, μ, ν = 0,1,2,3. (17.21)

The gamma matrices of the compact space satisfy

{�α,�β} = 2δαβ, α,β = 4, . . . ,3 + D (17.22)

and

{�α,γμ} = 0. (17.23)

Accordingly, we have

∇mψ =
(
∂m − 1

2
iωαβ

m Mαβ

)
ψ. (17.24)

Obviously, M = −i�αe
m
α ∇m plays the role of the mass operator since its eigenval-

ues give the particle masses in four dimensions. It may be shown that the operator
M has no zero eigenvalue [501, 502]. Note that the observed fermions are in fact
zero modes of the Dirac operator, and that their small non-zero masses arise from
physics at a much lower energy scale. Thus, we must change some assumptions
made in deriving Lichnerowitz’s theorem. One possibility, which has been explored
by Destri et al. [503] and by Wu and Zee [504], is to introduce torsion on the in-
ternal manifold K . Even so their explorations have shown that this possible escape
route is also unattractive. This is because there is the arbitrariness of precisely how
the torsion should be introduced.

Next, suppose that D is even, i.e., D = 2N . Define � matrices as follows

� = �1�2 . . . �D = iNσ3 × σ3 × · · · × σ3, (17.25)
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which anticommutes with all matrices �1,�2, . . . ,�D . The gamma matrices for full
tangent space group SO(1,3 + D) are given by

�̄A =
{
γμ × I, A = μ = 0,1,2,3,

iγ5 × �A−3, A = 4, . . . ,D + 3.
(17.26)

In full (4 + D)-dimensional space the “chirality” χ is defined by

χ = �̄0�̄1�̄2 . . . �̄D+3 = −i(−1)Nγ5 × � (17.27)

and χ anticommutes with all matrices �̄0, �̄1, �̄2, . . . , �̄D+3 since γ5 and � are
the pseudo-orthogonal group SO(1,3) and SO(D), respectively. Therefore, χ com-
mutes with all generators MAB of SO(1,3 + D) and can be used to label inequiva-
lent spinor representations. Since

χ2 = −(γ5)
2 × �2 = ±1, (17.28)

where ±1 correspond odd and even N , respectively. The corresponding eigenvalues
are given by

χ =
{±i, N = even,

±1, N = odd.
(17.29)

Let us consider a special case. For odd N , one has χ = ±1, we have spinor
representations with γ5 = +1,� = −i or γ5 = −1,� = +i. Thus, fermions with
left-handed physical chirality have internal chirality +i, and satisfy a different Dirac
equation from the right-handed fermions. Thus, the zero modes might have different
quantum numbers. Actually, the only possibility of this happening is for odd N .
This is because for even N the complex conjugate of the spinor representation with
χ = +i is equivalent to the spinor representation with χ = −1. It is known from
Eq. (17.27) that for even N we have

γ5 = ±1, � = ∓1 (17.30)

for χ = +i, while

γ5 = ±1, � = ±1 (17.31)

for χ = −i. The complex conjugate of the γ5 = 1 spinor is the γ5 = −1 spinor as
usual in SO(1,3). But the complex conjugate of � = −1 spinor of SO(2N) is equal
to itself for even N .

Even so we still have to arrange that the zero modes of the Dirac operator with
� = +i form a complex representation of the symmetry group. That is to say, we
must arrange that the � = +i zero modes transform differently from � = −i zero
modes. Unfortunately, the possibility of achieving this, even in (4n+2) dimensions,
is severely constrained by a theorem of Atiyah and Hirzebruch [505], which requires
that in the absence of elementary gauge fields, the zero modes of the Dirac operator
form a real representation (in any even number of dimensions). The detailed dis-
cussed was done by Witten [500] by introducing gauge fields in order to arrange for
the zero modes to form a complex representation.
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The most comprehensive study of complete fermion spectrum, not just the zero
modes, has been carried out by Schellekens [506, 507]. He has expressed the eigen-
values of the fermion mass-squared operator M2, in the presence of a general in-
stanton background gauge field configuration on a symmetric coset space G/H , in
terms of the Casimir invariants of G and H . For massless fermions the problem is
that given a fermion transforming according to some representation of H ⊂ GYM

to determine in which representation of G the zero modes occur. This has been
done in general for the hyperspheres SD and the complex project planes CPN .
In the former case when D is even, and the fermion is in an irreducible represen-
tation of H = SO(D), then the zero modes form an irreducible representation of
G = SO(D + 1). This generalizes a previously known result [508] for D = 4.

Watamura [509, 510] has also provided a general treatment of compactification
in the case K = CPN in the presence of a monopole U(1) gauge field, and has
shown how for a particular choice of the monopole charge, the fermionic zero modes
belong to the fundamental representation of G = SU(N + 1).

4 Warped Extra Dimensions

Up to now we have been working in the simplest picture where the energy density
on the brane does not affect the space time curvature, but rather it has been taken
as a perturbation on the flat extra space. However, for large brane densities this may
not be the case. The first approximation to the problem can be done by considering
a five-dimensional model where branes are located at the two ends of a closed 5th
dimension. Hence, the 5th dimension would be a slice of an Anti-de Sitter space
with flat branes at its edges. As a result, one can keep the branes flat paying the
price of curving the extra dimension. Such curved extra dimensions are usually re-
ferred as warped extra dimensions. Historically, the possibility was first mentioned
by Rubakov and Shaposhnikov in Refs. [511–514], who suggested the cosmological
constant problem be understood under this light: the matter fields vacuum energy on
the brane could be canceled by the bulk vacuum, leaving an almost zero cosmologi-
cal constant for the brane observer even though no specific model was given there. It
was actually Gogberashvili [515] who provided the first exact solution for a warped
metric. Nevertheless, these models are best known after Randall and Sundrum (RS)
who linked the solution to the hierarchy problem [470]. Later developments sug-
gested that the warped metrics could even provide an alternative to compactification
for the extra dimensions [470].

5 Conclusions

It is hard to address too many interesting topics of the area in detail, as we would
have liked, without facing trouble with the limiting space of this book. In this Chap-
ter we have reviewed the development of the high-dimensional Kaluza-Klein theory.
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The contents are concerned with traditional five-dimensional Kaluza-Klein theory,
(4+D)-dimensional Kaluza-Klein theories and the particle spectrum of the Kaluza-
Klein theory for fermions.

One of the most direct ways to observe the extra spatial dimensions may be in
the cosmological context. Here, Kaluza-Klein theory can give a satisfactory late-
time cosmology, and also suggests various mechanisms for achieving the desired
cosmological inflation at early times, though none of these has so far proved entirely
compelling when detailed calculations have been performed.

In summary, it seems quite likely that even if the original pure Kaluza-Klein
theory cannot be sustained, extra spatial dimensions will play an important role in
the eventual unified theory of interactions, and in understanding early cosmology.
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Chapter 18
Conclusions and Outlooks

1 Conclusions

We are now in the position to draw conclusions for this work. Motivated by the
physical laws in higher dimensions leading to insight concerning those in lower
dimensions, we have introduced wave equations in higher dimensions and put the
mathematical and physical concepts and techniques like the wave equations and
group theory related to the higher dimensions at the reader’s disposal. In some sense
we have provided a comprehensive description of the wave equations including the
non-relativistic Schrödinger equation, relativistic Dirac and Klein-Gordon equations
in arbitrary dimensions and their wide applications in quantum mechanics.

We have introduced the fundamental theory about the SO(N) group which has
been used in the successive Chaps. 3–5 including the non-relativistic Schrödinger
equation, relativistic Dirac and Klein-Gordon equations. As important applications
in non-relativistic quantum mechanics, we have applied our theories proposed in
Part II to study some quantum systems such as the harmonic oscillator, Coulomb
potential, wavefunction ansatz method, Levinson theorem, generalized hypervirial
theorem, exact and proper quantization rules and Langer modification, position-
dependent mass Schrödinger equation. As for as those important generalized appli-
cations to relativistic quantum mechanics in higher dimensions, we have studied the
Levinson theorem and generalized hypervirial theorem for the Dirac equation, the
Klein-Gordon equation and Kaluza-Klein theory. A number of previous results are
summarized and some new materials are presented.

2 Outlooks

Considering the interest in higher dimensional quantum physics, some new appear-
ing fields could be studied. For example, the superstring theory, supergravity shall
become interesting and challenging. On the other hand, the searching of the extra
dimensions both in theory and in experiment also becomes exciting.

S.-H. Dong, Wave Equations in Higher Dimensions,
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Appendix A
Introduction to Group Theory

In this Appendix we are going to outline some basic definitions of the groups based
on textbooks by Weyl, Wybourne, Hamermesh, Miller and others [136–138, 169].

Definition A group G is a set of elements {e, f, g,h, k, . . .} together with a binary
operation which associates with any ordered pair of elements f,g in G a third el-
ement fg. The binary operation named the group multiplication is subject to the
following four requirements:

• Closure: if f,g are in G then fg is also in G,
• Identity element: there exists an identity element e in G (a unit) such that ef =

f e = f for any f ∈ G,
• Inverses: for every f ∈ G there exists an inverse element f−1 ∈ G such that

ff−1 = f−1f = e,
• Associative law: the identity f (hk) = (f h)k is satisfied for all elements

f,h, k ∈ G.

As far as those basic concepts such as Abelian group, subgroup, homomorphism,
isomorphism, representation, irreducible representation and commutation relation
has been reviewed in Chap. 2. Accordingly, as what follows we want to give a few
typical examples to indicate the variety of mathematical objects with the structure
of groups. For more examples, we suggest the reader refer to textbooks by Miller
[138, 169].

Example 1 For the real numbers R, we consider the addition as the group product.
The product of two elements a, b is their sum a + b. We may take 0 as an identity
element. The inverse of an element c is its negative −c. The set odd real number
R constructs an infinite Abelian group. Among the subgroups of R are the integers,
the even integers and the group consisting of the element 0 alone.

Example 2 For a given group G, two elements {0,1} ∈ G, the group multiplication
is given by 0 ·0 = 0, 0 ·1 = 1 ·0 = 1, 1 ·1 = 0. We choose 0 as the identity element.
This is an Abelian group with order n = 2. It has only two subgroups, {0} and {0,1}.
S.-H. Dong, Wave Equations in Higher Dimensions,
DOI 10.1007/978-94-007-1917-0, © Springer Science+Business Media B.V. 2011
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Sometimes it is very convenient to present the law of combination in the form
of a group table, i.e., we label the rows and columns of a square array in terms of
the elements of the group. In the box in the nth row and mth column, we record the
product of the element labeling the nth row by the element labeling the mth column.
An explicit example for the group of order 2 is given as

e a

e e a

a a e

(A.1)

For the group of order 3, one has

e a b

e e a b

a a b e

b b e a

(A.2)

where b = a2.
There are two distinct structures for abstract groups of order 4:

(i)

e a b c

e e a b c

a a e c b

b b c e a

c c b a e

(A.3)

where a2 = b, ab = c = a3, a4 = b2 = e. This group corresponds a cyclic group
{a, a2, a3, a4 = e}.

(ii)

e a b c

e e a b c

a a b c e

b b c e a

c c e a b

(A.4)

where a2 = b2 = c2 = e, ab = c, ac = b, bc = a. This group is called the four-
group V .

1 Subgroups

If we select from the elements of the group G a subset H , we use the notation H ∈ G

to symbolize that H is contained in G. If the subset H forms a group, then we say
H is a subgroup of the group G. There are two trivial subgroups for every group:
the group consisting of the identity element alone and the whole group G itself.
These two subgroups are said to be improper subgroups. The problem of finding all
other proper subgroups of a given group G has become one of the main problems
of the group theory. It should be noted that H forms a group under the same law of
combination as G. Testing a subset H to see whether H is a subgroup requires that
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• the product of any pair of elements of subset H be in H ;
• H contain the inverse of each of its elements.

A good example refers to the rational numbers. As we know, the rational numbers
form a group G under addition. The positive rational numbers form a group G1
under multiplication, but G1 is not a subgroup of G even though the elements of
G1 are a subset of the elements of G. This is because G1 are not satisfied with the
second condition. For a finite group only the first requirement is needed. However,
both requirements are needed for infinite groups.

If H is a subgroup of G, and K is a subgroup of H , then K is a subgroup of G.
This transitive relation leads to the idea of sequences of subgroups, each contain-
ing all those preceding it in the sequence. Each group contains all the successive
subgroups, i.e., G ∈ H ∈ K ∈ · · ·; and in this case, all these groups are isomorphic:
G ≈ H ≈ K ≈ · · ·. Therefore, a group can be isomorphic with one of its proper sub-
groups, but this is impossible for groups of finite order. The symmetry groups Sn,
which are the permutations of degree n, are important because they actually exhaust
the possible structures of finite groups as shown by Cayley’s theorem:

Cayley’s theorem Every group G of order n is isomorphic with a subgroup of the
symmetry group Sn.

Thus, Sn−1 is isomorphic with the n subgroups of Sn. The permutations asso-
ciated with each group element can be obtained by looking at the group table. For
example, in the four-group V given above, to find the permutation corresponding
to, say the element a, we write in the top line the symbols (e a b c) and enter below
them the symbols as they appear in the row where we multiply by a on the left, i.e.,
(a e c b) so

a → πa =
(
e a b c

a e c b

)
. (A.5)

If we label the elements (e, a, b, c) as (1,2,3,4), the permutations corresponding
to (e, a, b, c) are given by

πe =
(

1 2 3 4
1 2 3 4

)
,

πa =
(

1 2 3 4
2 1 4 3

)
= (12)(34),

πb =
(

1 2 3 4
3 4 1 2

)
= (13)(24),

πc =
(

1 2 3 4
4 3 2 1

)
= (14)(23),

(A.6)

where (12) or (34), (13), (24), (14), (23) is called a transposition. The permutation
groups formed in this way have two special features:

• They are subgroups of order n of the symmetry group Sn.
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• It is seen that, except for the identity e, the permutations leave no symbol un-
changed since πb takes ai into bai , which is equal to ai only if b is the identity e.

Permutations in Sn with these two properties are called regular permutations.

2 Cosets

Lagrange’s theorem The order of a subgroup of a finite group is a divisor of the
order of the group.

Suppose two sets of h distinct elements each, H and aH contained in G. If G has
not been exhausted, choosing some element b of G which is not contained in either
H or aH . Thus, the set bH will again generate h new elements of the group G.
Continuing this process, we can exhibit the group G as the sum of a finite number
of distinct sets of h elements each

G = H + aH + bH + · · · + mH. (A.7)

Thus the order g of the group G is a multiple of the order h of its subgroup H , i.e.,

g = mh, (A.8)

where m is the index of the subgroup H under the group G. This means that h is
a divisor of g so that the orders of all elements of a finite group must be divisors
of the order of the group. The sets of elements of the form aH in (A.7) are called
left cosets of H in G. Of course, we are able to multiply H on the right to yield the
corresponding right cosets as follows

G = H + Ha1 + Hb1 + · · · + Hm1. (A.9)

It is seen from Eq. (A.8) that a group, whose order is a prime number, has no proper
subgroups and is necessarily cyclic. Such a group can be generated from any of its
elements other than the identity element.

Lagrange’s theorem can be used to find the possible structures of groups for a
given order. Here we present an explicit example, say order 6, to show its advan-
tage. Since the order of the group is 6, then the order of each of its elements is
a divisor of 6, i.e., 1, 2, 3 or 6. If the group contains an element a of order 6,
then the group is the cyclic group {a, a2, a3, a4, a5, a6 = e}. To find other possible
structures, let us assume that the group contains no element of order 6, but has an
element a of order 3. Thus this group contains the subgroup H ∈ {a, a2, a3 = e}.
If the group also contains another element b, then it contains six different elements
{e, a, a2, b, ba, ba2}. The element b has order 2 or 3. After analyzing its order care-
fully, it is found that the order of element b cannot be 3 and it must be 2. This is
because b3 = e if the order of b is 3, then element b2 must be one of the six ele-
ments listed above. Obviously, we cannot have b2 = e. Assuming that b2 = b, ba or
ba2 implies that b = e, a or a2, which contradicts the assumption that b is different
from these elements. Moreover, if we assume that b2 = a or a2 implies ba = e or
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ba2 = e, respectively. Both of them contradict our assumptions b3 = e. As a result,
the order of element b must be 2. Consequently, we are able to construct the group
table as follows [138]:

e a a2 b ba ba2

a a2 e ba2 b ba

a2 e a ba ba2 b

b ba ba2 e a a2

ba ba2 b a2 e a

ba2 b ba a a2 e

(A.10)

with a3 = b2 = (ab)2 = e. This group is isomorphic with permutation group S3.

3 Conjugate Classes

An element b ∈ G is said to be conjugate to element a if we may find an element
v ∈ G such that

vav−1 = b. (A.11)

In order to separate the group into classes of elements which are conjugate to one
another we shall use an equivalence relation to separate a set into classes. An im-
portant feature of all elements in the same class is that they have the same order. For
example, the distinct classes in S4 are given by

• e;
• (12), (13), (14), (23), (24), (34);
• (12)(34), (13)(24), (14)(23);
• (123), (132), (124), (142), (134), (143), (234), (243);
• (1234), (1243), (1324), (1342), (1423), (1432).

The permutations of Sn operate on a total of n symbols. Assume that we resolve
the permutations into independent cycles and let the number of 1-cycle be v1, of
2-cycle be v2, . . ., of n-cycles be vn. Due to the conservation of the total number n

of symbols, we have the following relation

n∑

i=1

ivi = n. (A.12)
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If we let
n∑

i=1

vi = λ1,

n∑

i=2

vi = λ2,

n∑

i=3

vi = λ3,

...

vn = λn,

(A.13)

then we have
n∑

i=1

λi = n, λ1 ≥ λ2 ≥ λ3 ≥ · · · ≥ λn ≥ 0. (A.14)

The splitting-up of n into a sum of n integers as in (A.14) is called a partition
[λ1, λ2, . . . , λn] of n. Therefore, the problem to find the number of conjugate classes
in Sn is reduced to the problem to partition n. Conversely, there is a corresponding
cycle structure for a given partition as in (A.14)

v1 = λ1 − λ2,

v2 = λ2 − λ3,

...

vn = λn.

(A.15)

Here we list the partitions for a few simple Sn and the total number r of classes

S1: [1]; r = 1,

S2: [2], [12]; r = 2,

S3: [3], [21], [13]; r = 3,

S4: [4], [31], [22], [212], [14]; r = 5,

(A.16)

where [12] = [11] and also others. These distinct classes can also be shown by
Young table.

4 Invariant Subgroups

Starting with a subgroup H ⊂ G, we can form a set of elements aHa−1 where
a ∈ G. This set of elements is again a subgroup of G and is said to be a conjugate
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subgroup of H in G. By choosing various elements a from G, we are able to obtain
different conjugate subgroups. It may happen that for all a,

aHa−1 = H, (A.17)

which means that all the conjugate subgroups of H in G are identical with H . Thus,
we say that H is an invariant subgroup. On the other hand, it is shown from (A.17)
that this equation can be written as

aH = Ha, (A.18)

which leads to another definition of an invariant subgroup: the subgroup H is in-
variant in G if the left and right cosets formed with any element a ∈ G are the same.
This implies that the subgroup H commutes with all elements of the group G.

A group which has no invariant subgroups is said to be simple. Otherwise,
a group is said to be semisimple if none of its invariant subgroups are Abelian.
All the subgroups of an Abelian group are clearly invariant. There are four special
properties for invariant subgroups:

• The product of two cosets of an invariant subgroups is again a coset, i.e.,
(aH)(bH) = (ab)H ;

• Multiplying any coset of H by H yields the coset;
• For a coset aH , we find the coset which is its inverse, i.e., (a−1H)(aH) =

a−1aHH = H ;
• The invariant subgroup contains elements of G in complete class, i.e., for any

class of G, H contains either all or none of the elements in the class.

When we consider the cosets of H as elements and define product as the result
of coset multiplication, the cosets of the invariant subgroup form a group which is
called the factor group G/H , whose order is the index of H in G.



Appendix B
Group Representations

Before starting with group representations [138] we sketch a basic definition related
with the equivalent matrices. The so-called equivalent matrices mean that the matrix
representations of the linear operator T in different bases are equivalent. If a linear
operator T is defined in the space L, the mapping S induces a linear operator T ′
in L′:

T ′ = ST S−1. (B.1)

The operator T ′ is well defined: S−1 takes vectors x′ ∈ L′ into vectors x ∈ L, opera-
tor T transforms vectors x ∈ L into vectors y ∈ L, and finally S takes vectors y ∈ L

into vectors y′ ∈ L′. The final result is that T ′ takes vectors x′ ∈ L′ into vectors
y′ ∈ L′. This means that the operator T ′ is the transform of T by the operator S. In
the matrices representatives, the S is referred as a similarity transformation.

By mapping an arbitrary group G homomorphically on a group of operators
D(G) in the vector space L, we say that the operator group D(G) is a matrix repre-
sentation of group G in the representation space L. The operator corresponding to
the element R ∈ G is denoted by D(R). Given the elements R and S of group G,
then we have

D(RS) = D(R)D(S), (B.2)

D(R−1) = [D(R)]−1 (B.3)

and

D(E) = 1. (B.4)

The corresponding matrix representations of group G are given by

Dij (E) = δij , i, j ∈ [1, n], (B.5)

Dij (RS) =
∑

k

Dik(R)Dkj (S) ≡ Dik(R)Dkj (S). (B.6)

Sometimes we use D
(μ)
ij (R) to distinguish those different representations.
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If the homomorphic mapping of G on D(G) reduces to an isomorphism, then we
call the representation as the faithful representations. Thus, the order of the group
of matrices D(G) is equal to the order g of group G.

1 Characters

If the matrices D(R) will be replaced by their transforms by some matrix S, then
the matrices

D′(R) = SD(R)S−1 (B.7)

also provide a representation of group G, which is equivalent to the representation
D(R). Note that equivalent representations have the same structure even though the
matrices look different.

By taking the sum of the diagonal elements of the matrix, we find that the trace
of a matrix D(R) is invariant under a transformation of the coordinate axes. The
trace is defined by

χ(R) =
∑

j

Djj (R). (B.8)

We see that equivalent representations have the same set of characters. For conve-
nience, we use χ(μ)(R) to denote the character of R in the μ representation. When
we describe a group by listing the characters of its elements in a given representa-
tion, the same number character is assigned to all the elements in a given class since
the conjugate elements in the group G always have the same character. If we label
the classes of the group G by Ki, i ∈ [1, ν], the representation will be described by
the set of characters χi , where ν is the number of the classes in G.

2 Construction of Representations

In physics we start not from an abstract group, but from a group of transformations
of the configuration space of a physical system. One of our problems is to determine
how to go about constructing representations of group G. Another is to see what
connection representations have with physics.

For a transformation T belonging to the group of transformations G, the repre-
sentations can be constructed by x′ = T x. Suppose an associated linear operator OT

acting on the functions ψ(x):

ψ ′(x′) ≡ OT ψ(x′) = ψ(x), x′ = T x. (B.9)

This means that the transformed function ψ ′ ≡ OT ψ takes the same value at the
image point x′ that the original function ψ had at the object point x. In fact, Eq. (B.9)
can also be written as

OT ψ(T x) = ψ(x), or OT ψ(x) = ψ(T −1x). (B.10)
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Based on this, we shall find that the operators also satisfy the same relations as the
group elements, i.e., OST = OSOT and OS−1 = (OS)

−1. Therefore, if we can find
a representation for the operators, we automatically obtain a representation of the
group G. Here, we give a useful remark on (B.10). This formula implies that OT

operating on ψ replaces x by T −1x. If OT ψ is identical with ψ , i.e., OT ψ(x) ≡
ψ(x) so that ψ(T x) ≡ ψ(x). In this case the function ψ is invariant under the
operator OT or under the transformation T .

Let us give a simple example to show how this method works [138]. Consider
the symmetry group Ci with two elements E and I . Given any function ψ(x), from
(B.10) we have

ψ(x) = OEψ(Ex) = OEψ(x), �(−x) = OEψ(−Ex) = OEψ(−x), (B.11)

which means that OE is an identity operator. Similarly, we have

ψ(x) = OIψ(Ix) = OIψ(−x), ψ(−x) = OIψ(−Ix) = OIψ(x), (B.12)

which means that the operator I changes the sign of x in ψ .
As a result, OEψ(±x), OIψ(±x) can be expressed by linear combinations of

ψ(±x) as follows:
{
OEψ(x) = ψ(x) + 0 · ψ(−x),

OEψ(−x) = 0 · ψ(x) + ψ(−x);
{
OIψ(x) = 0 · ψ(x) + ψ(−x),

OIψ(−x) = ψ(x) + 0 · ψ(−x),

(B.13)

which implies that the operators transform the functions ψ(±x) among themselves.
Therefore, by taking ψ(x) = g1, ψ(−x) = g2, we may write

ORgi =
2∑

k=1

gkDki(R), i = 1,2. (B.14)

When compared with (B.13), we find that

D(E) =
(

1 0
0 1

)
, D(I) =

(
0 1
1 0

)
, (B.15)

which give a two-dimensional representation of the group Ci :

I 2 = E, [D(I)]2 =
(

0 1
1 0

)(
0 1
1 0

)
=

(
1 0
0 1

)
= D(E). (B.16)

The general procedure to construct representations can be summarized as fol-
lows. We start from any set of linearly independent functions and apply all the op-
erators OR corresponding to elements R of the transformation group G to each of
the functions. Then we get a set of functions which can all be expressed linearly in
terms of n of them, say ψi , i ∈ [1, n]. In mathematical language, we may express it
as

ORψν =
n∑

μ=1

ψμDμν(R), ν = 1, . . . , n, (B.17)
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from which we may get a proper homomorphism of G on D(G), i.e.,

Dσν(SR) =
n∑

μ=1

Dσμ(S)Dμν(R). (B.18)

3 Reducible and Irreducible Representations

In general, if we may find a basis in which all matrices D(R) of an n-dimensional
representation can be brought to the form

D(R) =
[
D(1)(R) A(1)(R)

0 D(2)(R)

]

, (B.19)

where D(1)(R) are m-by-m matrices, the D(2)(R) are (n−m)-by-(n−m) matrices,
A(1)(R) is a rectangular matrix with m rows and (n − m) columns and 0 represents
a matrix with (n − m) rows and m columns all of whose elements are 0, then we
may say that the representation D(R) is reducible. Successively, we may transform
the basis in the m dimensional space of D(1) and try to bring all matrices D(1)(R)

to the following form

D(1)(R) =
[
D(3)(R) A(2)(R)

0 D(4)(R)

]

, (B.20)

where D(3)(R) is q-dimensional, and D(4) is (m − q)-dimensional and also apply
the same procedure to the matrices D(2)(R). The repeated process clearly comes to
an end. Finally, we may obtain k sets of matrices D(1)(R), . . . ,D(k)(R), which are
irreducible representations of dimension mi (n = ∑k

i=1 mi).
We give an intrinsic criterion of reducibility as follows: If there exists some sub-

space of dimension m< n which is invariant under all transformations of the group,
the representation is reducible. For example, in the case of (B.19) the subspace of
the first m components is invariant:

D(R) =
[
D(1)(R) A(1)(R)

0 D(2)(R)

]⎡

⎣
x
· · ·
0

⎤

⎦ =
⎡

⎣
D(1)(R)x

· · ·
0

⎤

⎦ . (B.21)

If there is no proper subspace which is invariant, the representation is irreducible. If
it is possible to find a basis in which all the matrices of the representation have the
following form

D(R) =
[
D(1)(R) 0

0 D(2)(R)

]
, (B.22)

then we say that this representation is fully reducible. It can be written as D =
D(1)(R) + D(2)(R).
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4 Schur’s Lemmas

There are two main purposes of these lemmas. The first is to find some simpler
criteria for irreducibility. The second is to give some restrictions on the number of
non-equivalent representations.

Lemma 1 If D(R) and D′(R) are two irreducible representations of a group G,
having different dimensions, then if the matrix A satisfies

D(R)A = AD′(R) (B.23)

for all R ∈ G, it follows that A = 0.

Lemma 1.1 If D(R) and D′(R) are irreducible representations of a group G hav-
ing the same dimensions, and if the matrix A satisfies

D(R)A = AD′(R) (B.24)

for all R ∈ G, then either D(R) and D′(R) are equivalent or A = 0.

Lemma 2 If the matrices D(R) are an irreducible representation of a group G,
and if

AD(R) = D(R)A (B.25)

for all R ∈ G, then A = constant · 1.

That is to say, if a matrix commutes with all the matrices of an irreducible repre-
sentation, the matrix must be a multiple of the unit matrix 1.

5 Criteria for Irreducibility

Let us consider an arbitrary representation D(R), which can be expressed in terms
of irreducible representations as

D(R) =
∑

μ

aμD
(μ)(R), (B.26)

where μ are integers. By taking its trace, one gets the compound character

χj =
∑

μ

aμχ
μ
j . (B.27)

We see that the compound character is a linear combination of simple characters
with positive integral coefficients calculated by

aμ = 1

g

∑

j

gjχ
(μ)∗
j χj . (B.28)
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On the other hand, based on (B.27) we have
∑

j

χjχ
∗
j gj =

∑

μ,ν

aμaν
∑

j

gjχ
(ν)
j χ

(μ)∗
j = g

∑

ν

a2
ν . (B.29)

In particular, if the representation is irreducible, all the coefficients aν = 0 except
for one which is unity. Therefore, if the original representation is irreducible, its
characters must satisfy the following relation

∑

j

gj |χj |2 = g. (B.30)

This gives us a simple criterion for irreducibility.
It should be pointed out that (B.29) and (B.30) are extremely useful tools for cal-

culating the character χj . If by some means we find a representation of the group G,
we may calculate the compound character χ and evaluate

1

g

∑

j

gj |χj |2 =
∑

ν

a2
ν . (B.31)

If this quantity is unity, then the representation must be irreducible. In practice, we
may use the orthogonality relations for the characters to calculate them. That is, the
scalar product with weight factors gj of any two rows or any two columns is equal
to zero

∑

j

χ
(μ)
j χ

(ν)∗
j gj = gδμν,

r∑

μ=1

χ
(μ)
i χ

(μ)∗
j = g

gj

δij . (B.32)

General theorem The number of nonequivalent irreducible representations of a
group G is equal to the number of classes in the group.

6 Expansion of Functions in Basis Functions of Irreducible
Representations

As we know, any function ψ can be expressed as a sum of functions which can act
as base functions in the various irreducible representations

ψ =
∑

μ

nμ∑

j=1

ψ
(μ)
j , (B.33)

where the base functions for the μth irreducible unitary representation satisfy the
equations

ORψ
(μ)
j =

∑

k

ψ
(μ)
k D

(μ)
kj (R). (B.34)
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We now try to find the condition that a given function must satisfy in order that it
may belong to the ith row of a given representation. It is found that a set of functions

ψ
(μ)
l = nμ

g

∑

R

D
(μ)∗
lm (R)ORψ

(μ)
m (B.35)

satisfy (B.34) and become a sufficient and necessary condition to make the given
function belong to the ith row of a given representation. That is to say, they form a
basis for the μth irreducible representation.

We now return to (B.33) and ask how to find the ψ
(μ)
j for a given function ψ ,

i.e., how do we resolve the given function into a sum of functions, each of which
belongs to a particular row of some irreducible representation? This can be realized
by introducing a projection operator

P
(ν)
i = nν

g

∑

R

D
(ν)∗
ii (R)OR (B.36)

with property

P
(ν)
i ψ

(μ)
j = ψ

(ν)
i δνμδij . (B.37)

Applying it to (B.33), we obtain the following result

ψ
(ν)
i = nν

g

∑

R

D
(ν)∗
ii (R)ORψ. (B.38)

In analogy to the above, we say that a function belongs to the μth irreducible
representation if it is a sum of functions belonging to the various rows of that repre-
sentation, i.e.,

ψ(μ) =
nμ∑

i=1

ψ
(μ)
i . (B.39)

If we sum over i from 1 to nμ we find that the projection operator becomes

P (ν) = nν

g

∑

R

χ(ν)∗(R)OR (B.40)

with the property

P (ν)ψ(μ) = ψ(ν)δνμ. (B.41)

Therefore, we have

ψ =
∑

μ

ψ(μ), ψ(μ) = P (μ)ψ. (B.42)



Appendix C
Fundamental Properties of Lie Groups and Lie
Algebras

In this Appendix we are ready to outline some fundamental properties of Lie groups
and Lie algebras since they are very helpful for studying quantum systems with
central physical potentials.

Up to now, we have dealt exclusively with finite groups. However, the symmetry
groups for many physical systems consist of an infinite rather than a finite num-
ber of elements. Thus physical problems require that we examine the theory of the
representations of groups with an infinite number of elements.

The infinite groups include two main types such as the infinite discrete and con-
tinuous groups [138]. The elements of infinite discrete group, Ra , are labeled by a
subscript a which runs through the integers 1,2, . . . ,∞. The group manifold is a
countable set of “point” Ra . As what follows, we shall pay more attention to con-
tinuous groups since the Lie groups are closely related to them.

1 Continuous Groups

We say the group is continuous if some generalized definition of “nearness” or con-
tinuity is imposed on the elements of the group manifold. For instance, the set of
transformations x′ = ax +b forms a group, where two parameters a, b ∈ (−∞,∞).
We say that such a group is a two-parameter continuous group. Generally, an r-
parameter continuous group has its elements labeled by r continuously varying real
parameters ai, i ∈ [1, r] so that the elements of the group are R(a1, . . . , ar ) = R(a).
The continuity is expressed in terms of distances in the parameter space. Two group
elements R(a) and R(a′) are “near” to each other if the distance [∑r

i=1(ai −a′
i )

2]1/2

is very small.
The requirements that the elements R(a) form a continuous group are the same

as for finite groups. There must be a set of parameter values a0 such that

R(a0)R(a) = R(a)R(a0) = R(a),

R(ā)R(a) = R(a)R(ā) = R(0),

R(ā) = [R(a)]−1, R(c) = R(b)R(a),

(C.1)
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where R(a0) is the identity element of the group, and R(ā) is the element inverse to
R(a). The c are real functions of the real parameters a and b

cj = φj (a1, . . . , ar ;b1, . . . , br ), j ∈ [1, r]. (C.2)

Even though the requirements are the same as for finite groups, we require that
the parameters of a product be analytic functions of the parameters of the factors;
i.e., the function in (C.1) shall possess derivatives of all orders with respect to both
variables. Also, we require that the ā in R(ā) be analytic functions of the a. We then
get an r-parameter Lie group.

When we say that we have an r-parameter group, this implies that the r pa-
rameters are essential. An r-parameter Lie group of transformations is a group of
transformations

x′
i = gi(x1, . . . , xn;a1, . . . , ar ), i ∈ [1, n], (C.3)

or symbolically

x′ = g(x;a). (C.4)

If the parameters are not essential, then there exist parameter values a1 + ε1,

. . . , ar + εr , where the ε’s are arbitrarily small quantities which are functions of the
ai with

gi(x;a) = gi(x;a + ε) (C.5)

for all values of the argument x. The necessary and sufficient condition for the r

parameters ai to be essential is that it shall be impossible to find r functions χk(a)

which satisfy
r∑

k=1

χk(a)
∂gi(x;a)

∂ak
= 0, for all x and a, i ∈ [1, n]. (C.6)

Starting with (C.4), we can differentiate the x′’s with respect to the x’s and obtain
a set of equations from which the finite set of parameters a can be eliminated. We
shall then be left with a finite set of partial differential equations for the x′’s which
no longer contain any arbitrary elements. Moreover, the general solution of this set
of partial differential equations will rely on just r arbitrary constants. We say that
the group is finite and continuous. Otherwise, we get an infinite continuous group.

Here we give several typical examples of Lie groups. The first is the one-
parameter Abelian group x′ = ax, a �= 0. Its identity element is a = 1, and inverse
element ā = 1/a. Its product element is c = ba. The second is the orthogonal group
in two dimensions O(2). This group is concerned with those transformations which
leave x2 + y2 invariant. This invariance condition

x′2 + y′2 = (a1x + a2y)
2 + (a3x + a4y)

2 = x2 + y2,

a2
1 + a2

3 = 1, a2
2 + a2

4 = 1, a1a2 + a3a4 = 0
(C.7)

imposes three conditions on the four parameters. Thus we have a one-parameter
group written as

(
x′
y′

)
=

(
cosϕ − sinϕ

sinϕ cosϕ

)(
x

y

)
, (C.8)
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where ϕ ∈ [0,2π] is the angle of rotation about the z-axis. This group is Abelian.
The angle of the resultant of two transformations is the sum of the angles of the in-
dividual transformations. Finally, we consider the orthogonal group in n dimensions
O(n). This group leaves

∑n
i=1 x

2
i invariant. Thus, we impose [n+ n(n− 1)/2] con-

ditions on the n2 parameters, which leave us with [n(n−1)/2] essential parameters.
So far we have considered only real transformations of real variables. As what

follows, let us consider a typical example with complex variables. It is the unitary
group in two dimensions U(2)

(
x′

1
x′

2

)
=

(
a11 a12
a21 a22

)(
x1
x2

)
, (C.9)

where x, a are complex and detA �= 0. This group is in fact a unitary group with
AA† = 1. Similarly, the unitary group in n dimensions U(n), i.e., r ′ = Ar , AA† = 1,
imposes [n + 2n(n − 1)/2] conditions on the 2n2 real parameters, leaving us with
n2 essential real parameters.

2 Infinitesimal Transformations and Lie Algebra

The transformation x′ = f (x;a) takes all points of the space from their initial po-
sitions x to final positions x′. It is natural to introduce the concept of infinitesimal
transformations when we consider the gradual shift of the points of the space. It
can also be proved that a one-parameter continuous group is equivalent to a group
of translations and must be Abelian. Due to the infinitesimal transformations, we
introduce the infinitesimal operators of the group as follows

Xj =
n∑

i=1

wij (x)
∂

∂xi
. (C.10)

The operator 1 +∑
j Xj δaj is close to the identity operator. On the other hand, the

infinitesimal operators Xj have the property that their commutators satisfy

[Xα,Xβ ] = wiα

∂

∂xi
wjβ

∂

∂xj
− wjβ

∂

∂xj
wiα

∂

∂xi
= c

γ
αβXγ , (C.11)

where c
γ
αβ are called the structure constants of the Lie group with the property c

γ
αβ =

−c
γ
βα .
Substituting (C.11) into the Jacobi identity

[[Xα,Xβ ],Xγ ] + [[Xβ,Xγ ],Xα] + [[Xγ ,Xα],Xβ ] = 0, (C.12)

we find

c
μ
αβc

ν
μγ + c

μ
βγ c

ν
μα + cμγαc

ν
μβ = 0. (C.13)

Based on this, we have

x′
i =

[
1 +

∑

j

Xj δaj

]
xi = xi +

∑

j

wij (x)δaj . (C.14)
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Consider an example in order to show how to define the infinitesimal operators.
For example, the orthogonal transformations are characterized by the statement that
the transpose AT of the matrix A of the transformation is its inverse AAT = 1. The
proper rotations have determinant unity so that the infinitesimal rotations have a
matrix of the form A = 1 + B where B has all its elements in the neighborhood of
zero. The orthogonality condition requires 1 = AAT = (1+B)(1+BT ) ∼ 1+B +
BT , which leads to B + BT = 0. Therefore B has a skew-symmetric matrix with
the form

B =
⎡

⎣
0 ζ −η

−ζ 0 ξ

η −ξ 0

⎤

⎦ , (C.15)

where ξ, η and ζ are constants.
The infinitesimal rotations are given by

dx = ζy − ηz, dy = −ζx + ξz, dz = ηx − ξy, (C.16)

and the infinitesimal operators are

X1 = z
∂

∂y
− y

∂

∂z
,

X2 = x
∂

∂z
− z

∂

∂x
,

X3 = y
∂

∂x
− x

∂

∂y
,

(C.17)

which correspond to the angular momentum operators for three coordinate direc-
tions and satisfy familiar commutation relations

[X1,X2] = X3, [X2,X3] = X1, [X3,X1] = X2. (C.18)

This means that the commutators of the infinitesimal operators are linearly express-
ible in terms of the infinitesimal operators. If we set iXμ = Jμ, then we have

[J1, J2] = iJ3, [J2, J3] = iJ1, [J3, J1] = iJ2. (C.19)

We have known that for an r-parameter transformation group there are r linearly
independent infinitesimal operators Xj . Linear combinations of these quantities can
be formed to give an r-dimensional vector space. If we are considering problems
concerned with the structure of the Lie group, we should take only linear com-
binations with real coefficients. The r-parameter Lie group has associated with it
a real r-dimensional vector space of quantities

∑
j ajXj which is closed under a

multiplication defined by (C.11). This is the Lie algebra of the Lie group. To every
Lie algebra there corresponds to a Lie group; the structure constants determine the
Lie group locally. To deduce all possible structures of Lie algebra is a formidable
mathematical problem. We do not address it here and suggest the reader refer to
Ref. [138].
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3 Structure of Compact Semisimple Lie Groups and Their
Algebras

When we use the term “closed” to describe Lie groups whose parameters vary over
a finite range, the group manifold itself is then said to be compact. Generally speak-
ing, a set M is compact if every infinite subset of M contains a sequence which
converges to an element of M . The Lie algebra of a compact Lie group is also said
to be compact.

Cartan theorem The necessary and sufficient condition for a Lie algebra to be
semisimple is that detgμν �= 0, where gμν = c

β
μαc

α
νβ .

A necessary and sufficient condition for a semisimple Lie algebra to be compact
is that the matrix gμν be negative definite. Finally, note that for a compact semisim-
ple Lie algebra we can choose the basis so that gμν = −δμν . The actual analysis
of the structure of compact semisimple Lie algebras is beyond the scope of this
Appendix.

4 Irreducible Representations of Lie Groups and Lie Algebras

For simplicity, we restrict ourselves to compact Lie groups in order to prove that
every representation of a compact is equivalent to a unitary representation and can
be fully reducible to a sum of irreducible representations, all of which have finite
dimensions. The regular representation contains all irreducible representations.

Theorem For semisimple Lie groups, every representation of finite degree is fully
reducible.

Casimir theorem The operator C = gijXiXj commutes with all operators of the
representation and is a multiple of the unit operator.

For compact groups gij = −δjj in a suitable basis, so that the Casimir operator
becomes

C =
∑

j

X2
j . (C.20)

For rotation group O(3) with the operators Jμ where μ = 1,2,3, the Casimir
operator is calculated as

C =
∑

i

J 2
i , i = 1,2,3. (C.21)

The number of operators which are required to give a complete set is equal to the
rank of the studied algebra. This can be defined as follows: for any element A, we
look for all independent solutions of the equation [A,X] = 0, which always has at
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least the one solution X = A. We now vary A to reduce the number of independent
solutions of this equation to a minimum number l called the rank of the algebra. The
l operators of the Casimir type are required to characterize an irreducible represen-
tation.

Before ending this Appendix, let us review a few useful commutator identities
to simplify the commutation relations. We often use the following well-known rela-
tions

[AB,C] = A[B,C] + [A,C]B, [A,BC] = B[A,C] + [A,B]C (C.22)

to simplify the commutators involving the products of the operators. On the other
hand, it is shown that for arbitrary polynomial functions r, t of the indicated opera-
tors,

r(A)[t (A),B] = [t (A), r(A)B], [A, t (B)]r(B) = [Ar(B), t (B)] (C.23)

can be effectively used to move the operators in and out of the commutators. In
particular, we find that the following formula is very useful

[A,Bm] =
m−1∑

i=0

Bi[A,B]Bm−i−1, (C.24)

which can be proved by induction on m.
In addition, we have to calculate the operator transformations of the form

e−BAeB in scaling transformations. For this purpose, let us define

g(α) = e−αBAeαB. (C.25)

By differentiating, we have

g(α)′ = e−αB [A,B]eαB, g(α)′′ = e−αB [[A,B],B]eαB (C.26)

and in general

gm(α) = e−αB [. . . [[A,B],B], . . . ,B]eαB, (C.27)

where the multiple commutator contains B exactly m times. Let us expand the g(α)

in Taylor series

g(α) =
∞∑

m=0

1

m!g
m(0)αm. (C.28)

If setting α = 1, we get the following identity

e−BAeB = A + [A,B] + 1

2! [[A,B],B] + 1

3! [[[A,B],B],B] + · · · , (C.29)

which can be used to obtain some scaling transformations.



Appendix D
Angular Momentum Operators in Spherical
Coordinates

In this Appendix we give a brief review of the angular momentum operators in
spherical coordinates [462, 516] due to its wide applications in angular momentum
theory.

It is well known that the expressions for the components of the angular momen-
tum operator L = r × p in Cartesian coordinates can be easily written as

Lx = ypz − zpy = −i�

(
y

∂

∂z
− z

∂

∂y

)
, (D.1)

Ly = zpx − xpz = −i�

(
z
∂

∂x
− x

∂

∂z

)
, (D.2)

Lz = xpy − ypx = −i�

(
x

∂

∂y
− y

∂

∂x

)
, (D.3)

from which we can obtain the following commutation relation

[Li,Lj ] = i�εijkLk, (D.4)

where the indices i, j, k can be x, y, or z, and the coefficient εijk is named Levi-
Civita symbol (3.26). Thus we establish the commutation relations for the compo-
nents of the angular momentum of a spinless particle.

We now want to find the form of these operators in spherical coordinates. By
using the following transformation equations

x = r sin θ cosϕ, y = r sin θ sinϕ, z = r cos θ, (D.5)

then we have

r =
√
x2 + y2 + z2, cos θ = z

r
, tanϕ = y

x
, (D.6)

where r ∈ [0,∞), θ ∈ [0,π], ϕ ∈ [0,2π].
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Consequently, we have

∂r

∂x
= sin θ cosϕ,

∂r

∂y
= sin θ sinϕ,

∂r

∂z
= cos θ,

∂θ

∂x
= cos θ cosϕ

r
,

∂θ

∂y
= cos θ sinϕ

r
,

∂θ

∂z
= − sin θ

r
,

∂ϕ

∂x
= − sinϕ

r sin θ
,

∂ϕ

∂y
= cosϕ

r sin θ
,

∂ϕ

∂z
= 0.

(D.7)

Making use of these relations, we are able to obtain the following expressions

Lx = i�

(
sinϕ

∂

∂θ
+ cos θ

sin θ
cosϕ

∂

∂ϕ

)
,

Ly = −i�

(
cosϕ

∂

∂θ
− cos θ

sin θ
sinϕ

∂

∂ϕ

)
,

Lz = −i�
∂

∂ϕ
,

(D.8)

from which we have

L2 = L2
x + L2

y + L2
z = −�

2
{

1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+ 1

sin2 θ

∂2

∂ϕ2

}
, (D.9)

with the following properties

[L2,Li] = 0, i = x, y, z. (D.10)

Instead of the operators Lx and Ly , we often use the linear combinations of the
operators Lx and Ly as

L± = Lx ± iLy = �e±iϕ

[
± ∂

∂θ
+ i cot θ

∂

∂ϕ

]
, (D.11)

which are called the ladder operators for the magnetic quantum number m but leave
the angular momentum quantum number l unchanged, that is,

L+Ym
l (θ,ϕ) = �

√
l(l + 1) − m(m + 1)Ym+1

l (θ, ϕ),

L−Ym
l (θ,ϕ) = �

√
l(l + 1) − m(m − 1)Ym−1

l (θ, ϕ),
(D.12)

where Ym
l (θ,ϕ) is the spherical harmonics and becomes the common eigenfunction

of L2 and Lz. They correspond to the eigenvalues l(l + 1)�2 and m�, respectively

L2Ym
l (θ,ϕ) = l(l + 1)�2Ym

l (θ,ϕ),

LzY
m
l (θ,ϕ) = m�Ym

l (θ,ϕ).
(D.13)

If we use the properties of the ladder operators L±, then we may express the
spherical harmonics as

Ym
l (θ,ϕ) =

√
(l + m)!

(2l)!(l − m)! (L−)l−mY l
l (θ, ϕ),

Ym
l (θ,ϕ) =

√
(l − m)!

(2l)!(l + m)! (L+)l+mY−l
l (θ, ϕ).

(D.14)
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It is well known that these ladder operators L± together with the operator Lz

satisfy the following commutation relations

[Lz,L±] = ±L±, [L+,L−] = 2Lz, (D.15)

which correspond to an SU(2) group. On the other hand, it is not difficult to see that

L2 = L+L− + L2
z − Lz

= L−L+ + L2
z + Lz. (D.16)

Finally, let us calculate the mean values and root-mean-square deviations of the
operators Lx and Ly in the state Ym

l (θ,ϕ) in terms of the ladder operators L±. By
inverting formulas (D.11), we have

Lx = 1

2
(L+ + L−), Ly = 1

2
(L+ − L−). (D.17)

Thus we see that LxY
m
l (θ,ϕ) and LyY

m
l (θ,ϕ) are linear combinations of the states

Ym+1
l (θ, ϕ) and Ym−1

l (θ, ϕ). As a result, we are able to obtain their mean values as
follows:

〈Lx〉 = 〈Ly〉 = 0,

〈L2
x〉 = 〈L2

y〉 = �
2

2
[l(l + 1) − m2],

�Lx = �Ly = �√
2

√
l(l + 1) − m2.

(D.18)



Appendix E
Confluent Hypergeometric Functions

In this Appendix we shall give some basic properties of the confluent hypergeo-
metric functions for the sake of easy reference. It is well known that the confluent
hypergeometric functions are defined by the series

1F1(α;β; z) = 1 + α

β

z

1! + α(α + 1)

β(β + 1)

z2

2! + α(α + 1)(α + 2)

β(β + 1)(β + 2)

z3

3! + · · · , (E.1)

where the parameter α is arbitrary, but the parameter β is supposed not zero or a
negative integer.

The confluent hypergeometric functions 1F1(α;β; z) satisfy the differential
equation

z
d2φ

dz2
+ (β − z)

dφ

dz
− αφ = 0. (E.2)

Substitution of φ = z1−βφ1 into (E.2) leads to

z
d2φ1

dz2
+ (2 − β − z)

dφ1

dz
− (α − β + 1)φ1 = 0. (E.3)

Therefore, the general solution of (E.2) can be expressed as

φ = a11F1(α;β; z) + a2z
1−β

1F1(α − β + 1;2 − β; z), (E.4)

which implies that the second term, unlike the first, has a singular point at z = 0. It
should be noted that (E.2) is of Laplace’s type and its solutions can be represented as
contour integrals as shown by Landau et al. [2]. The function 1F1(α;β; z) is regular
at z = 0 and has the value 1 there; it satisfies the following relationship

1F1(α;β; z) = ez1F1(β − α;β;−z), (E.5)

which is called the Kummer transformation. On the other hand, this function
1F1(α;β; z) also satisfies the following recurrence relations [462]

(β − α)1F1(α − 1;β; z) + (2α − β + z)1F1(α;β; z) = α1F1(α + 1;β; z),
(α − β + 1)1F1(α;β; z) + (β − 1)1F1(α;β − 1; z) = α1F1(α + 1;β; z),
d

dz
1F1(α;β; z) = α

β
1F1(α + 1;β + 1; z).

(E.6)
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By successive applications of (E.6), we have

dn

dzn
1F1(α;β; z) = �(β)�(α + n)

�(α)�(β + n)
1F1(α + n;β + n; z), (E.7)

where �(x) is the Gamma function.
On the other hand, the polynomials 1F1(−n;m; z)(m ∈ [0, n]) are associated

with the generalized Laguerre polynomials defined by

Lm
n (z) = (−1)m

(n!)2

m!(n − m)! 1F1(−[n − m];m + 1; z)

= n!
(n − m)!e

z dn

dzn
(e−zzn−m)

= (−1)m
n!

(n − m)!e
zz−m dn−m

dzn−m
(e−zzn), (E.8)

from which we may obtain the following relation [192]

Lm
n (z) = �(n + m + 1)

�(n + m)
1F1(−n;m + 1; z). (E.9)

When m = 0, the polynomials Lm
n (z) are called simply Laguerre polynomials

Ln(z) = ez
dn

dzn
(e−zzn). (E.10)

Based on Eqs. (E.9) and (E.10), we have

Ln(z) = �(n + 1)

�(n)
1F1(−n;1; z). (E.11)

We are now in the position to indicate the asymptotic behavior of the confluent
hypergeometric functions. For small values of z, the asymptotic value of the function
1F1(α;β; z) is given immediately by the first terms of the series (E.1). For large
values of the |z|, we have

1F1(α;β; z) = �(β)

�(α)
zα−βez[1 + O(|z|−1)], �e z → ∞,

1F1(α;β; z) = �(β)

�(β − α)
(−z)−α[1 + O(|z|−1)], �e z → −∞.

(E.12)

On the other hand, for bounded values of z and infinitely large values of one
of the parameters we have more asymptotic values of the confluent hypergeometric
functions 1F1(α;β; z)

1F1(α;β; z) = 1 + O(|β|−1), if z and α are bounded, β → ∞,

1F1(α;β; z) = ez(1 + O(|β|−1)), if β − α and z are bounded, β → ∞.

(E.13)

It should be noted that the great significance of the confluent hypergeometric
functions in physics is connected with the fact that the solutions of many homoge-
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neous differential equations can be expressed in terms of this function. For example,
consider the following second-order differential equation

(α0y + β0)
d2φ

dy2
+ (α1y + β1)

dφ

dy
+ (α2y + β2)φ = 0. (E.14)

By taking the following substitution

φ = eνyψ, y = λz + η, (E.15)

we may transform (E.14) into the form

(a0z + b0)
d2ψ

dz2
+ (a1z + b1)

dψ

dz
+ (a2z + b2)ψ = 0, (E.16)

where

a0 = α0

λ
, a1 = A1, a2 = λA2,

b0 = α0η + β0

λ2
, b1 = ηA1 + B1

λ
, b2 = ηA2 + B2,

A1 = 2α0ν + α1, A2 = α0ν
2 + α1ν + α2,

B1 = β1 + 2β0ν, B2 = β0ν
2 + b1ν + b2.

(E.17)

If we define the parameters ν, η and λ so that

α0η + β0 = 0, α0 = −λA1, A2 = 0, (E.18)

then (E.16) coincides with (E.2). Therefore, if we select values of the parameters
ν, η and λ, which satisfy the constraint condition (E.18), and then use the transfor-
mation (E.15), then we find that an arbitrary equation of the type (E.14) reduces to
the equation for the confluent hypergeometric functions (E.2).

By substituting

ψ = z−β/2ez/2w, α = 1/2 − k + η, β = 1 + 2η, (E.19)

we may transform (E.2) into the Whittaker equation

d2w

dz2
+

(
−1/4 + k

z
+ 1/4 − η2

z2

)
w = 0, (E.20)

whose solution is denoted by Wk,η. The connection between the confluent hyperge-
ometric functions 1F1(α;β; z) and the Whittaker function Wk,η is defined by (E.19).
Many mathematical functions which are used in physics can be expressed in terms
of the Whittaker function. The asymptotic value of the Whittaker functions for large
values of z and | arg z| < π is given by

Wk,η = e−z/2zk(1 + O(z−1)). (E.21)
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