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Preface 

Scale is a unifying concept that cuts across all natural and social sciences. At the 
same time, scaling is a common challenge in both basic and applied research. 
Accordingly, scale and scaling have become two of the most widely used buzzwords 
in ecology today. Over the past two decades, more than a dozen books and many 
more journal papers have been published on the problems of scale and scaling in 
ecology and geophysical sciences. These publications, as reviewed in the chapters of 
this book, have contributed significantly to our current understanding of scale issues. 
A little more than 30 years ago, the noted geneticist and evolutionary biologist, 
Theodosius Dobzhansky, stated that “Nothing in biology makes sense except in the 
light of evolution” (The American Biology Teacher 35:125-129). Today, there 
seems a growing consensus in ecology that pattern and process make little sense 
without consideration of scale.  

While scale issues are widely recognized, a comprehensive understanding of 
scaling theory and methods still is missing. In this book we make several 
observations on the status of research on scale in ecology. First, while ecologists 
have played an active role in the application of scale-related theories such as 
hierarchy, self-similarity, and self-organized criticality, a number of pragmatic 
scaling methods have developed in geophysical disciplines. Many of them may be 
quite appropriate for a range of ecological problems, but are yet to be fully explored 
in ecology. Second, some of the most frequently mentioned scaling theories are 
often seen as being at odds with each other. For example, hierarchy theory implies 
scale-multiplicity and thresholds, while self-similarity and self-organized criticality 
suggest scale invariance. A full understanding of the relationships among different 
scaling theories is needed, and this requires critical examination of recent theoretical 
and empirical studies. Third, most scaling studies in ecology have either ignored or 
inadequately addressed the issues of uncertainty and error propagation, which 
should be an integral part of scaling. We argue that scaling, without considering 
uncertainty, is easy but relatively trivial; scaling with known uncertainty is 
challenging but essential. Fourth, scaling often requires field-based data from 
multiple spatial and temporal scales, but these data rarely exist for many ecosystems. 
Such inadequacies of data further elevate the demand for effective scaling 
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approaches. Finally, scaling theories and methods have seldom been applied 
explicitly in the contexts of environmental management, planning, and decision-
making processes, where the scale of social, economic, political, and ecological 
processes may clash with each other. A pluralistic and interdisciplinary approach is 
needed to resolve scaling problems in such complex situations. 

To address these problems, a workshop entitled “Scaling and Uncertainty 
Analysis in Ecology: Methods and Application” was held during September 17-19, 
2002 at Arizona State University, Tempe, U.S.A., supported through a grant from 
the United States Environmental Protection Agency (EPA). The major objectives of 
the workshop were to identify approaches and methods in scaling and uncertainty 
analysis, and to consider a series of case studies illustrating how scale issues are 
dealt with in various areas of research. More than 20 active researchers in scaling 
and uncertainty analysis were invited to participate in the workshop, many of whom 
were recipients of EPA’s Science To Achieve Results (STAR) program (Regional 
Scale Analysis and Assessment). This book has evolved out of the scaling 
workshop, and is comprised primarily of the papers remaining after a critical 
external review process.  

The book, therefore, presents a comprehensive and up-to-date review and 
synthesis of concepts, theories, methods and case studies in scaling and uncertainty 
analysis that are relevant to ecology. The series of case studies included here 
illustrate how scaling and uncertainty analysis are being conducted in ecology and 
environmental science, from population to ecosystem processes, from biodiversity to 
landscape patterns, and from basic research to multidisciplinary management and 
policy-making issues. The book explicitly considers uncertainty and error analysis 
as an integral part of scaling. While the theme of this book focuses primarily on 
spatial scaling, several chapters deal as well with aspects of temporal scaling. It is 
not intended to be a handbook of “scaling recipes,” but we hope that it will help 
readers gain a fuller understanding of the state-of-the-science of scale issues. We 
expect that this book will be of interest to a wide range of audiences, including 
graduate students, academic professionals, and applied researchers and specialists in 
ecological, environmental, and earth sciences. It may be used as a text or reference 
book for graduate courses in ecology and related disciplines. This book should be 
particularly appealing to scientists and practitioners working on broad spatial scales. 
Also, the book can be useful to decision makers who are conscious about scale 
issues as they translate science into resource use policies.  

We are most deeply indebted to the contributors of papers included in the book, 
whose enthusiasm and dedication have made this book a reality. Many other 
individuals also were instrumental to the completion of the book. We especially 
thank the following people for providing valuable reviews of book chapters: Dennis 
Baldocchi, Klaus Butterbach-Bahl, Mark Castro, Jiquan Chen, Mark R. T. Dale, 
Dean Gesch, Phil A. Graniero, John Harte, Geoffrey J. Hay, Louis R. Iverson, James 
R. Karr, Madhu Katti, Richard G. Lathrop, Helene Muller-Landau, John Ludwig, 
James R. Meadowcroft, Garry Peterson, Geoffrey C. Poole, Edward B. Rastetter, 
Helen Regan, Christine Ribic, Steven W. Running, Santiago Saura, Matthew 
Williams, and Xinyuan Wu. We are extremely grateful to Chuck Redman (Director), 
Nikol Grant, and Shirley Stapleton at the Center for Environmental Studies of 
Arizona State University who provided wonderful logistic support during the scaling 
workshop in Tempe. We also thank Barbara Levinson and Jonathan Smith at EPA 
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for their support for the scaling workshop in Tempe. Last, but not least, we express 
our sincere appreciation to Dr. Catherine Cotton (Publishing Editor) and Ms. Ria 
Kanters at Springer for their wonderful guidance and assistance during the 
production of the book.  

Finally, we should note that several chapters originally had color images which 
later were converted to grayscale. We have made these color figures available online 
at a web site specifically for this book, which also contains the abstracts of all 
chapters and additional information on scaling and uncertainty analysis. The web 
address can be freely accessed at: http://LEML.asu.edu/ScalingBook/. 

Editors 
Jianguo (Jingle) Wu 

K. Bruce Jones 
Harbin Li 

Orie L. Loucks 
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CHAPTER 1 

CONCEPTS OF SCALE AND SCALING  

JIANGUO WU AND HARBIN LI 

1.1 INTRODUCTION 

The relationship between pattern and process is of great interest in all natural and 
social sciences, and scale is an integral part of this relationship. It is now well 
documented that biophysical and socioeconomic patterns and processes operate on a 
wide range of spatial and temporal scales. In particular, the scale multiplicity and 
scale dependence of pattern, process, and their relationships have become a central 
topic in ecology (Levin 1992, Wu and Loucks 1995, Peterson and Parker 1998). 
Perspectives centering on scale and scaling began to surge in the mid-1980’s and are 
pervasive in all areas of ecology today (Figure 1.1). A similar trend of increasing 
emphasis on scale and scaling is also evident in other natural and social sciences 
(e.g., Blöschl and Sivapalan 1995, Marceau 1999, Meadowcroft 2002).  

Scale usually refers to the spatial or temporal dimension of a phenomenon, and 
scaling is the transfer of information between scales (more detail below). Three 
distinctive but interrelated issues of scale have frequently been discussed in the 
literature: (1) characteristic scales, (2) scale effects, and (3) scaling (and associated 
uncertainty analysis and accuracy assessment). The concept of characteristic scale 
implies that many, if not most, natural phenomena have their own distinctive scales 
(or ranges of scales) that characterize their behavior (e.g., typical spatial extent or 
event frequency). Characteristic scales are intrinsic to the phenomena of concern, 
but detected characteristic scales with the involvement of the observer may be tinted 
with subjectivity (Wu 1999). Conceptually, characteristic scales may be perceived as 
the levels in a hierarchy, and associated with scale breaks (O’Neill et al. 1991, Wu 
1999). Ecological patterns and processes have been shown to have distinctive 
characteristic scales on which their dynamics can be most effectively studied (Clark 
1985, Delcourt and Delcourt 1988, Wu 1999). Thus, identifying characteristic scales 
provides a key to profound understanding and enlightened scaling.  

Scale effects usually refer to the changes in the result of a study due to a change 
in the scale at which the study is conducted. Effects of changing scale on sampling 
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and experimental design, statistical analyses, and modeling have been well 
documented in ecology and geography (e.g., Turner et al. 1989b, White and 
Running 1994, Wu and Levin 1994, Pierce and Running 1995, Jelinski and Wu 
1996, Dungan et al. 2002, Wu 2004). In geography, scale effects have been studied 
for several decades in the context of the modifiable areal unit problem or MAUP 
(Openshaw 1984, Jelinski and Wu 1996, Marceau 1999). Scale effects may be 
explained in terms of scale-multiplicity, characteristic scales, and hierarchy, but may 
also be artifacts due to errors in sampling and measurements, distortions in data 
resampling, and flaws in statistical analysis and modeling (Jelinski and Wu 1996, 
Wu 2004). Characteristic scales and scale effects are inherently related to the issue 
of scaling. While characteristic scales provide a conceptual basis and practical 
guidelines for scaling, quantitative descriptions of scale effects can directly lead to 
scaling relations (Wu 2004).  

Figure 1.1. Rapid increase in the use of terms related to scale in the ecological literature. 
Based on an internet search using JSTOR (http://www.jstor.org/), the number of articles 
containing words (scaling, hierarchy, hierarchies, hierarchical, hierarchy theory) shows a 
great increase in four major ecology journals in the last seven decades (gray line). The trend 
for the word scaling alone is similar (black line). The four journals are: Ecology and 
Ecological Monographs published by Ecological Society of America, and Journal of Ecology 
and Journal of Animal Ecology published by British Ecological Society. Note that the number 
of years for the 1990’s was only seven (1990-1996). 

With the recent burst of interest in the issues of scale, the terms scale and scaling 
have become buzzwords in ecology. However, because these terms have been used 
in diverse disciplines, both have acquired a number of different connotations and 
expressions. Good science starts with clear definitions. The development of a 
science of scale or scaling may be hampered if the concepts of scale and scaling are 

, , , , , , ,
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used without any consistency. In this section, we review the main usages of these 
terms, propose a three-tiered scale conceptualization framework, and discuss their 
relevance to the issue of ecological scaling. 

1.2 CONCEPT OF SCALE 

We propose a three-tiered conceptualization of scale, which organizes scale 
definitions into a conceptual hierarchy that consists of the dimensions, kinds, and 
components of scale (Figure 1.2). Dimensions of scale are most general, components 
of scale are most specific, and kinds of scale are in between. This three-tiered 
structure seems to provide a clearer picture of how various scale concepts differ 
from or relate to each other. 

1.2.1 Dimensions of Scale 

We distinguish three primary dimensions of scale: space, time, and organizational 
level. Note that Dungan et al.’s (2002) three dimensions of scale (sampling, analysis, 
and phenomena) are commensurable with what we here call the kinds of scale (see 
below). Space and time are the two fundamental axes of scale, whereas organizational 
hierarchies are usually constructed by the observer (Figure 1.2a). Scale has been 
commonly defined in terms of time or space. In recent decades, the relationship 
between temporal and spatial scales has received increasing attention. It is well 
documented that the characteristic scales of many physical and ecological phenomena 
are related in space versus time, such that the ratio between spatial and temporal 
scales tends to be relatively invariant over a range of scales. This ratio is termed the 

For the purpose of scaling, levels of organization or integration are most useful 
when they are consistent with spatial and temporal scales. Hierarchy theory states 
that higher levels are larger and slower than lower levels, which is consistent with 
the space-time principle. This is generally true for nested hierarchies (i.e., systems 

characteristic velocity (Blöschl and Sivapalan 1995). The idea that spatial and 
temporal scales are fundamentally linked so that complex systems can be decomposed 
in time and space simultaneously is essential to hierarchy theory (Courtois 1985, Wu 
1999). This space-time correspondence principle has been supported by a number of 
empirically constructed space-time scale diagrams (or Stommel diagrams) in the past 
two decades (Stommel 1963, Clark 1985, Urban et al. 1987, Delcourt and Delcourt 
1988, Blöschl and Sivapalan 1995, Wu 1999). These studies have shown that, for a 
variety of physical, ecological, and socioeconomic phenomena, large-sized events 
tend to have slower rates and lower frequencies, whereas small things are faster and 
more frequent. However, one must recognize that not all natural phenomena strictly 
obey the space-time correspondence principle. Many temporally cyclic events, for 
example, take place over a wide range of spatial scales with a relatively constant 
frequency. In some other cases, scale variability of different sources may overwhelm 
the signal of scale correspondence. Furthermore, the space-time scale ratio of most 
ecological phenomena can surely be altered drastically by human modifications. 
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in which small entities are contained by larger entities which are in turn contained 
by even larger entities), but not for non-nested hierarchies (Wu 1999). In this view, 
the three dimensions of scale – space, time and organizational or integrative levels – 
can be related to each other. When moving up the ladder of hierarchical levels, the 
characteristic scales of entities or events in both space and time also tend to change 
accordingly.  

Figure 1.2. A hierarchy of scale concepts: (A) dimensions of scale, (B) kinds of scale, and (C) 
components of scale (A was modified from Dungan et al. 2002; B and C were based on 
Bierkens et al. 2000). 
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1.2.2 Kinds of Scale 

Several kinds of scale can be distinguished based on any of the three dimensions of 
scale (Figure 1.2b). Intrinsic scale refers to the scale on which a pattern or process 
actually operates, which is similar to, but broader than, the concept of process scale, 
a term frequently used in earth sciences (e.g., Blöschl and Sivapalan 1995). Some 
may argue that there is no intrinsic scale in nature, and that scales or hierarchical 
levels are merely epistemological consequences of the observer (Allen and Starr 
1992). We believe that the observed scale of a given phenomenon is the result of the 
interaction between the observer and the inherent scale of the phenomenon. 
Although the existence of intrinsic scales does not mean that they are always readily 
observable, a suite of methods, including spectral analysis, fractal analysis, wavelet 
analysis, scale variance, geostatistics, and multiscale object-specific analysis (e.g., 
Turner et al. 1991, Wu et al. 2000, Hay et al. 2001, Dale et al. 2002, Hall  et al. 
2004), have been used in detecting characteristic scales or scale breaks. Effective 
scale detection requires that the scale of analysis be commensurate with the intrinsic 
scale of the phenomenon under study (Blöschl and Sivapalan 1995, Wu and Loucks 
1995, Dungan et al. 2002, Legendre et al. 2002). Because the latter is unknown a 
priori, multiple observation sets at different scales usually are necessary (Allen et al. 
1984, Wu 1999). 

There are several other kinds of scale that are not intrinsic to the phenomenon of 
interest. Observational scale is the scale at which sampling or measurement is taken 
(also referred to as sampling scale or measurement scale). In experimentation, the 
spatial and temporal dimensions of the experimental system represent the 
experimental scale, which is the primary criterion for distinguishing among micro-, 
meso-, and macro-scale experiments. Similarly, the resolution and extent in space 
and time of statistical analyses and dynamic models define the analysis scale or 
modeling scale. In the context of environmental management and planning, local, 
regional, and national laws and regulations introduce another kind of scale – the 
policy scale, which is influenced by a suite of economic, political, and social  factors.  

These different kinds of scales are related to each other in various ways (Figure 
1.2b). In general, only when the scales of observation and analysis are properly 
chosen, may the characteristic scale of the phenomenon of interest be detected 
correctly; only when the scales of experiments and models are appropriate, may the 
results of experiments and models be relevant; only when the scale of 
implementation of policies is commensurate with the intrinsic scale of the problem 
under consideration, may the policies be effective. In reality, different kinds of 
scales may differ even for the same phenomenon, resulting in the problem of scale 
mismatch (or scale discordance). To rectify such scale mismatch or to relate one 
type of scale to the other usually involves scale transfer or scaling (Bierkens et  al. 
2000). An adequate understanding of the relationship among the different kinds of 
scale needs to invoke the definitions of scale components. 
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1.2.3 Components of Scale 

Dimensions of scale and kinds of scale are useful general concepts, but more 
specific and measurable definitions are required in order to quantify scale and 
develop scaling relations. These are the components of scale, including cartographic 
scale, grain, extent, coverage, and spacing (Figure 1.2c). The traditional 
cartographic scale (or map scale) is the ratio of map distance to actual distance on 
the earth surface. A so-called large-scale map usually covers a smaller area with 
greater detail. Cartographic scale is essential for the creation and use of maps, but 
inadequate for studying the scale-dependent relationships between pattern and 
process in ecology because of its intended rigid connotation (Jenerette and Wu 
2000).  

In ecology and other earth sciences, scale most frequently refers to grain and 
extent – two primary components of scale. Grain is the finest resolution of a 
phenomenon or a data set in space or time within which homogeneity is assumed, 
whereas extent is the total spatial or temporal expanse of a study (Turner et al. 
1989a, Wiens 1989). Grain may be considered as the pixel size for raster data, or the 
minimum mapping unit for vector data. A frequently used geostatistical term, 
support, refers to the smallest area or volume over which the average value of a 
variable is derived (Dungan et al. 2002). In most cases, grain and support have quite 
similar meanings, and thus have often been used interchangeably. However, support 
may differ from grain because support itself includes not only the size of an  
n-dimensional volume, but also its geometrical shape, size and orientation (Dungan 
et al. 2002). When the linear or areal dimension of grain is referred to, grain element 
or grain unit can be used, which corresponds to support unit in the literature. Note 
that soil scientists and hydrologists frequently use scale only to refer to support (e.g., 
Bierkens et al. 2000).  

On the other hand, the concept of extent is less diversified than grain. A term 
equivalent to extent is geographic scale, which was defined by Lam and Quattrochi 
(1992) as the size of a particular map. Both grain and extent are of great importance 
to the study of heterogeneous landscapes (Turner 1989). Besides grain and extent, 
coverage and spacing, which are associated particularly with sampling, are also 
important in scaling. Coverage, not to be confused with extent, refers to sampling 
intensity in space or time (Bierkens et al. 2000), while spacing is the interval 
between two adjacent samples or lag. Spatial coverage can be represented as the 
ratio of the sampled area to the extent of a study, and spacing may be fixed or 
variable depending on the sampling scheme (Figure 1.2c). Support, extent, and 
spacing are sometimes called the scale triplet in hydrological literature, which 
highlights the importance of these three components in scaling (Blöschl and 
Sivapalan 1995).  

The relationship between intrinsic scale and other kinds of scales can be further 
elaborated in terms of scale components. Hierarchy theory suggests that the scale of 
observation must be commensurate with the scale of the phenomenon under 
consideration if the phenomenon is to be properly observed (Simon 1973, Allen  
et al. 1984, O’Neill et al. 1986, Wu 1999). On the one hand, processes larger than 
the extent of observation appear as trends or constants in the observation set; on the 
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other hand, processes smaller than the grain size of observation become noise in the 
data. Thus, the choice of a particular scale for observation, analysis and modeling in 
terms of grain size and extent directly influences whether or not the intrinsic pattern 
and scale of a phenomenon can be eventually revealed in the final analysis. The 
significance of the choice of scale has long been recognized in plant ecology (e.g. 
Greig-Smith 1983) and human geography (Openshaw 1984, Jelinski and Wu 1996). 
In general, the grain size of sampling or observation should be smaller than the 
spatial or temporal dimension of the structures or patterns of interest, whereas it is 
desirable to have the sampling extent at least as large as the extent of the 
phenomenon under study (Dungan et al. 2002).  

In addition, the concept of relative scale can be rather useful for comparative 
studies and scaling across different ecosystems or landscapes. Meentemeyer (1989) 
defined relative scale as the relationship between the smallest distinguishable unit 
and the extent of the map, which can be expressed simply as a ratio between grain 
and extent. Schneider (2001) used range to refer to extent, and defined scope as the 
ratio of the range to the resolution of a research design, a model, or a process. In 
principle, different phenomena and research designs can be compared on the basis of 
their scopes. Relative scale can also be defined by directly incorporating the 
ecological pattern and process under consideration. Such definition is rooted in the 
conceptualization of relative versus absolute space (Meentemeyer 1989, Marceau 

1.3 CONCEPT OF SCALING 

Scaling has been defined differently in various fields of study, and its meanings can 
be quite disparate. Scaling has long been associated with measurement that is “the 
assignment of numerals to objects or events according to rules” (Stevens 1946). In 
this case, scaling is a way of measuring the “unmeasurable” (Torgerson 1958). In 
multivariate statistics, scaling usually refers to a set of techniques for data reduction 
and detection of underlying relationships between variables. Multivariate statistical 
methods, such as polar ordination, multidimensional scaling, principal component 
analysis, and correspondence analysis, have been used extensively in vegetation 
classification and ordination to organize field plots (or community types) into some 
order according to their similarities (or dissimilarities) on the basis of species 
composition. Multidimensional scaling, in particular, is used to represent similarities 
among objects of interest through visual representation of Euclidean space-based 
patterns, and has been widely used to analyze subjective evaluations of pairwise 
similarities of entities in a wide range of fields, including psychology, marketing, 
sociology, political science, and biology (Young and Hamer 1994). These 
multivariate statistical methods can be useful for relating patterns and processes 
across scales (e.g., multiscale ordination; ver Hoef and Glenn-Lewin 1989). 
However, the concept of scaling as either the assignment of numerical values to 

1999). For example, Turner et al. (1989b) considered relative scale as “a transformation 
of absolute scale to a scale that describes the relative distance, direction, or 
geometry based on some functional relationship (e.g., the relative distance between 
two locations based on the effort required by an organism to move between them).” 
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qualitative variables or the reduction and ordination of data is not directly relevant to 
scaling as defined below. 

In physical sciences, scaling usually refers to the study of how the structure and 
behavior of a system vary with its size, and this often amounts to the derivation of a 
power-law relationship. This notion of scaling has often been related to the concepts 
of similarity, fractals, or scale-invariance, all of which are associated with power 
laws. For example, a phenomenon or process is said to exhibit “scaling” if it does 
not have any characteristic length scale; that is, its behavior is independent of scale – 
i.e., a power law relationship (Wood 1998). This definition of scaling has long been 
adopted by biologists in terms of allometry that primarily correlates the size of 
organisms with biological form and process (Wu and Li, Chapter 2). In this context, 
scale refers to “the proportion that a representation of an object or system bears to 
the prototype of the object or system” (Niklas 1994), and ecological scaling then 
becomes “the study of the influence of body size on form and function” (LaBarbera 
1989). Thus, to some, ecological scaling is simply some form of biological 
allometry (e.g., Calder 1983, Schmidt-Nielsen 1984, LaBarbera 1989, Brown and 
West 2000). 

Several other terms are closely related to, but not the same as, scaling. These 
terms are associated with three basic scaling operations: changing extent, changing 
grain size, and changing coverage. Extrapolation is transferring information from 
smaller to larger extents, coarse-graining transferring information with increasing 
grain size, and fine-graining transferring information with decreasing grain size. 
Sometimes, upscaling and downscaling refer specifically to coarse-graining and 
fine-graining, respectively (e.g., Bierkens et al. 2000). When dealing with spatial 
data that do not have 100% coverage, one may need to estimate the values of 
unmeasured spatial locations using information from measured sites – a process 
called interpolation. The reverse process of interpolation is sampling. In practice, 
the three basic operations may all be needed in a single study. That is, different 

However, a more general and widely accepted definition of scaling in ecology 
and earth sciences is the translation of information between or across spatial and 

 

information can be done through explicit mathematical expressions and statistical 
relationships (scaling equations), whereas in many other cases process-based 

mulation models are necessary. This definition of scaling is also referred to as 
scale transfer or scale transformation (Blöschl and Sivapalan 1995, Bierkens et al. 
2000). This broadly defined scaling concept neither implies that scaling relations 
must be power-laws, nor that ecological patterns and processes must show scale-
independent properties in order to “scale” or to be “scaled.” In this case, allometric 
scaling is but only one special case of scaling. Based on the directionality of the 
scaling operation, two kinds of scaling can be further distinguished: (1) scaling up or 
upscaling which is translating information from finer scales (smaller grain sizes or 
extents) to broader scales (large grain sizes and extents), and (2) scaling down or 
downscaling which is translating information from broader scales to finer scales.  

al. 2000, Gardner et al. 2001). In some cases, this across-scale translation of 
Sivapalan 1995, Stewart et al. 1996, van Gardingen et al. 1998, Wu 1999, Bierkens
emporal scales or organizational levels (Turner et al. 1989a, King 1991, Blöschl and 

 et
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methods for interpolation, sampling, coarse-graining, fine-graining, and extrapolation 
may be used together to achieve the overall goal of scaling. In general, to make the 
concept of scale operational, one needs to be specific about the scale components (e.g., 
grain, extent, coverage, spacing). To put the concept of scaling into action, one has to 
invoke specific scaling operations (e.g., extrapolation, coarse-graining, fine-graining, 
interpolation). Any spatial scaling approach or method will inevitably involve one or 
more of the basic scaling operations.  

Note that the definition of extrapolation given above is quite specific and 
unequivocal. However, in the literature, extrapolation in space has been used in at 
least four distinct ways: (1) using known data acquired from certain locations to 
estimate unknown values or draw inferences at other locations, (2) estimating values 
or drawing inferences about things that fall outside the study area, (3) transferring 
information from one scale to another in terms of either extent or grain, and (4) 
transferring information between different systems at the same spatial scale (Turner 

1.4 WHY SCALING AND HOW? 

Simply put, scaling is the essence of prediction and understanding, and is at the heart 
of ecological theory and application (Levin 1992, Levin and Pacala 1997, Wu 1999, 
Chave and Levin 2003). More specifically, two main reasons are commonly 
recognized. First, scaling is inevitable in research and practice whenever predictions 
need to be made at a scale that is different from the scale where data are acquired. In 
general, whenever information is averaged over space or time, scaling is at work. 
For example, the sampling plots that ecologists usually use for determining the 
distribution of organisms or the stocks and fluxes of materials are only a small 
portion of the spatial extent of ecological systems of interest. Thus, system-level 
descriptions dictate the translation of information from these small plots to much 
larger areas. Also, while most ecological studies traditionally have been conducted 
on local scales, environmental and resource management problems often have to be 
dealt with on much broader scales (i.e., landscapes, regions, or the entire globe). To 
bridge such scale gaps requires scaling.  

Second, because ecological phenomena occur over a wide range of scales and 
because there are often hierarchical linkages among them, relating information 
across scales as well as levels of biological organization is an essential part of 
ecological understanding. For example, the dynamics of sub-watershed units and 
their interactions are crucial to understanding the hydrological and biogeochemical 
cycles of the whole watershed ecosystem (Wickham et al., Chapter 12). The 
dynamics of local populations and their interpatch interactions are crucial to 

et al. 1989a, Wu 1999). The multiple meanings of extrapolation may cause confusions. 
For example, the first usage is simply spatial interpolation. The second is consistent 
with the definition of spatial extrapolation as information transfer with increasing 
extent. The third is extremely broad and may refer to coarse-graining, fine-graining, 
or scaling in general. The fourth usage makes sense with regard to the literal 
meaning of the word, but it does not fit the definition of scaling because scaling has 
to involve at least two or more scales. Hence, the term extrapolation should be used 
with caution. 
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understanding population dynamics at the landscape scale. In a similar vein, 
understanding the primary productivity of the whole ecosystem requires knowledge 
of photosynthesis at the individual leaf level.  

While it is imperative in almost all ecological studies, spatial scaling can also be 
extremely challenging in theory and practice. Spatial heterogeneity can greatly 
complicate the scaling process. Spatial heterogeneity may manifest itself in terms of 
various patterns of land use and land cover, topography, hydrology, soils, climatic 
conditions, and biological factors. For example, extrapolation of plot-scale data to 
the landscape or regional scale is a trivial matter in a spatially homogeneous 
(uniform or random) environment. In a heterogeneous landscape, however, simply 
multiplying the plot-scale average with the total study area usually provides a rather 
poor estimate at the landscape scale (Li and Wu, Chapter 3). When ecological 
relationships are translated across scales in heterogeneous environments, they often 
become distorted – a phenomenon known as “spatial transmutation” (sensu O’Neill 
1979, King et al. 1991, Wu and Levin 1994).  

Also, as scale changes, new patterns and processes may emerge, and controlling 
factors may shift even for the same phenomena. Thus, observations made at fine scales 
may miss important patterns and processes operating on broader scales. Conversely, 
broad-scale observations may not have enough details necessary to understand fine-
scale dynamics. In addition, nonlinear interactions, time delays, feedbacks, and 
legacies in ecological systems may impose formidable challenges for translating 
information across scales or levels of organization (O’Neill and Rust 1979, Wu 1999). 
Therefore, on the one hand, spatial heterogeneity, scale multiplicity, and nonlinearity 
are important sources of biodiversity and ecological complexity; on the other hand, 
they are major hurdles for successful scaling.  

Given the various obstacles, how should we proceed with scaling? This is the 
focus of our next chapter, where we will discuss two general scaling approaches: 
similarity-based and dynamic model-based scaling. A dozen specific scaling 
methods will also be examined in terms of their assumptions, ways of dealing with 
spatial heterogeneity and nonlinear interactions, and accuracy of scaling results. No 
matter which approach is used, an important concept in scaling up and down is 
scaling threshold or scaling break, which signifies a narrow range of scale around 
which scaling relations change abruptly. A scaling threshold may also be understood 
as a critical scale of a phenomenon where emergent properties due to nonlinear 
interactions and spatial heterogeneity come into effect. Thus, scaling thresholds, 
when properly identified, may reflect fundamental shifts in underlying processes or 
controlling factors, and can be used to define the domains of applicability of specific 
scaling methods. 

1.5 DISCUSSION 

In this chapter, we have discussed and clarified a number of concepts related to scale 
and scaling as used in a variety of fields of study. We propose a hierarchical 
framework in which the different connotations of scale can be organized with clarity 
and consistency. The three-tiered definitional hierarchy, consisting of the dimensions, 
kinds, and components of scale, shows both the diversity and interrelatedness of the 
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concepts of scale. In the practice of scaling, the components of scale (most 
frequently extent, grain, and coverage) must be invoked. Indeed, scaling methods 
are often designed to capture and deal with the change in these scale components 
singularly or in concert (see Wu and Li, Chapter 2 for details). 

Clarification of key concepts is the first step towards a science of scale. The 
three-tiered definitional hierarchy seems to serve this purpose well even though it is 
only one of many possible ways of organizing these concepts. It is crucial for 
ecologists to recognize the different usages of scale and scaling, and to adopt a 
system of definitions that are consistent, clear, and accommodating to the 
development of quantitative methods. The science of scale will certainly benefit 
from clear concepts and definitions, which are essential for the development of 
effective methods and sound theories of scaling. 
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CHAPTER 2 

PERSPECTIVES AND METHODS OF SCALING  

JIANGUO WU AND HARBIN LI 

2.1 INTRODUCTION 

Transferring information between scales or organizational levels is generally 
referred to as “scaling” (Wu and Li, Chapter 1), and is inevitable in both basic 
research and its applications. Scaling is the essence of prediction and understanding 
both of which require cross-scale translation of information, and is at the core of 
ecological theory and application (Levin 1992, Levin and Pacala 1997, Wu 1999). 
While the importance of scaling in ecology has been acutely recognized in recent 
decades, how to conduct scaling across heterogeneous ecosystems remains a grand 
challenge (Turner et al. 1989, Wu and Hobbs 2002).  

A number of scaling approaches and methods have been developed and applied 
in different disciplines ranging from physics, engineering, biology, to social 
sciences. Two general scaling approaches can be distinguished: similarity-based 
scaling and dynamic model-based scaling methods (Blöschl and Sivapalan 1995). 
Similarity-based scaling methods are rooted in the concepts and principles of 

While the previous chapter (Wu and Li, Chapter 1) discussed various concepts of 
scale and scaling, in this chapter we focus on the major characteristics of the two 
scaling approaches and several more specific upscaling and downscaling methods 

similarity and self-similarity and often characterized by relatively simple mathematical 
or statistical scaling functions, even though the underlying ecological processes of a 
phenomenon may be extremely complex. In contrast, dynamic model-based scaling 
methods use deterministic or stochastic models to simulate the processes of interest, 
and to transfer information across scales by either modifying the parameters and 
input variables of the same model or developing multiple-scaled models. In this 
case, information transfer between different scales is accomplished through 
manipulating the inputs, outputs, and formulations of dynamic models. In both 
approaches, it is important to properly identify scaling thresholds at which scaling 
relations often change abruptly, reflecting fundamental shifts in underlying processes 
or controlling factors and defining the domains of applicability of specific scaling 
methods. 
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within each approach. The purpose of this chapter is not to provide a recipe for 
scaling. Rather, we shall review scaling perspectives and methods in different 
disciplines, and provide a synthesis based on a common conceptual framework. By 
so doing, we expect that a more comprehensive and cohesive understanding of 
ecological scaling will emerge.  

2.2 SIMILARITY-BASED SCALING METHODS 

2.2.1 The Concept of Similarity 

The concept of similarity has been essential in scaling-related studies. In general, 
similarity exists between two systems whenever they share some properties that can 
be related across the systems by a simple conversion factor (Blöschl and Sivapalan 
1995). LaBarbera (1989) summarized three types of similarity concepts applied in 
body size-oriented studies: geometric, physical, and functional similarities (also see 
Gunther 1975). Geometric similarity is characterized by the constancy in shape with 
changing size. In other words, geometric similarity assumes that “geometry and 
shape are size-independent properties” (Niklas 1994). For example, for different 
sized objects of the same shape and geometry, S ∝ L2 , and S ∝ V 2 / 3 , where L, S, and 
V are the linear dimension, surface area, and volume of the objects. Physical 
similarity is defined based on the constancy of the ratios of different forces (also 
called dynamic similarity; see Blöschl and Sivapalan 1995). For example, two 
systems are said to have hydrodynamic similarity if they have the same Reynolds 
number (i.e., the ratio of inertial to viscous forces). Barenblatt (1996) stated that the 
concept of physical similarity is a natural generalization of that of geometric 
similarity in that two similar triangles differ only in the numerical values of side 
lengths, whereas two similar physical phenomena differ only in the numerical values 
of the dimensional governing parameters. Functional similarity refers to the 
constancy in changes of functional variables over a range of system sizes. For 
example, animal metabolic rates (R) change with body size or mass (M ) following a 
power law (i.e., R ∝ M b ). Similarly, if the primary productivity (P) of a group of 
ecosystems changes with their spatial extent (A) in a power-law fashion (i.e., 
P ∝ Ab ), then these ecosystems may be said to have functional similarity.  

In recent decades, the concept of self-similarity has become a cornerstone of 
similarity-based studies. It refers to the phenomenon that the whole is composed of 
smaller parts that resemble the whole itself or that patterns remain similar at 
different scales. Self-similarity is the key idea in fractal geometry (Mandelbrot 1982, 
Hastings and Sugihara 1993), and is considered to be the unifying concept 
underlying fractals, chaos, and power laws (Schroeder 1991). While admitting that 
the terms, fractal and multifractal, still lack an agreed mathematical definition, 
Mandelbrot (1999) offered an informal definition of fractal geometry as “the 
systematic study of certain very irregular shapes, in either mathematics or nature, 
wherein each small part is very much like a reduced size image of the whole.” Such 
irregular shapes, or fractals, exhibit properties of self-similarity which entails scale-
invariance (i.e., patterns or relationships remain unchanged over a range of scales). 
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Commonly cited examples of fractals include coastlines, clouds, snowflakes, 
branching trees, and vegetation patches. However, not all self-similar objects are 
fractals because self-similarity is also found in Euclidean geometry.  

Simple fractals exhibit scale-invariant patterns that can be characterized with 
only one scaling exponent, which is often interpreted as implying one single 
generating process. However, many fractal-like structures in nature are generated by 
a number of generating processes that operate at different scales. These are called 
generalized fractals, or multifractals, which are characterized by a spectrum of 
fractal dimensions that vary with scale. It has been suggested that additive processes 
tend to create monofractals (simple fractals), whereas multiplicative random 
processes generate multifractal structures (Stanley and Meakin 1988, Schroeder 
1991). Multifractals have been used to describe the spatial distribution of people and 
minerals, energy dissipation in turbulence, and many other patterns and processes in 
nature. It is now widely recognized that many, if not most, fractal patterns and 
processes in nature show scale-invariance only over a limited range of scales. 
Hastings and Sugihara (1993) suggested that linear regression methods be used to 
distinguish between patterns with one scaling region (a single power law) and those 
with multiple scaling regions (separate power laws over separate regions). These 
authors asserted that multiscaling is detected if the slope of the regression line 
changes significantly over adjacent regions. 

2.2.2 Dimensional Analysis and Similarity Analysis 

The concepts of similarity are the foundation of dimensional analysis (Blöschl and 
Sivapalan 1995), and have long been used in engineering and physical sciences. 
Barenblatt (1996) indicated that the main idea behind dimensional analysis is that 
“physical laws do not depend on arbitrarily chosen basic units of measurement,” and 
thus the functions expressing physical laws must possess some fundamental property 
(mathematically termed generalized homogeneity or symmetry) that allows the 
number of arguments in these functions to be reduced. Dimensional analysis aims to 
produce dimensionless ratio-based equations that can be applied at different scales 
for a phenomenon under study. In practice, dimensional analysis only applies in the 
framework of Euclidean geometry and Newtonian dynamics (Scheurer et al. 2001). 

Examples of similarity analysis are abundant in physical sciences. For example, 
similarity analysis in soil physics and hydrology started in the 1950s with the 
concept of Miller-Miller similitude, an intuitive depiction of structural similarities in 
porous media at fine spatial scales (Miller and Miller 1956). Miller-similar porous 
media have microscopic structures that look similar in the same way as triangles in 

Dimensional techniques have long been used to derive similarity relationships, 
establish scaling laws, reduce data volume, and help elucidate processes and 
mechanisms in physical and biological sciences (Gunther 1975, Blöschl and Sivapalan 
1995). Like dimensional analysis, similarity analysis is also a simplification 
procedure to replace dimensional quantities required for describing a phenomenon 
with fewer dimensionless quantities; but unlike dimensional analysis, similarity 
analysis requires the governing equations of the phenomenon to be known (Blöschl 
and Sivapalan 1995). 
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Euclidean geometry (Sposito 1998). Similarity analysis, then, involves the 
derivation of scale factors for soil-water transport coefficients on the basis of the 
fine-scale similar-media concept. Later studies extended the concept of the Miller-
Miller similitude from microscopic to macroscopic scales using the idea of 
functional normalization (related to functional similarity) rather than dimensional 
techniques (Haverkamp et al. 1998). In recent decades, fractal and multifractal 
models of soil structure have been increasingly used in similarity analysis of 
hydrological processes and beyond. As Sposito (1998) noted, “fractal geometry has 
become the signature approach to both spatial-scale invariance and temporal-scale 
invariance, as epitomized by self-similarity in the patterns of hydrologic and other 
geophysical processes.”  

One of the most successful examples of using similarity analysis to deal with 
complex physical processes is Monin-Obukhov similarity theory. Atmospheric 
boundary-layer flows, though mostly turbulent, can be viewed as being dynamically 
similar such that the concepts of similarity can provide a powerful framework for 
analyzing empirical data and parameterizing models to represent these complex 
processes. In particular, Monin-Obukhov theory assumes that surface layers with the 
same ratio of the aerodynamic roughness length (z0) to the Obukhov length (L) are 
dynamically similar, with z0 /L being considered as a dimensionless similarity 
parameter. In other words, the theory is based on the assumption of complete 

As an important part of similarity analysis, renormalization group methods 
(Wilson 1975) have been used for studying scaling behavior associated with critical 
phenomena and phase transitions in physical sciences, including turbulence, flows in 
porous media, fracture mechanics, flame propagation, atmospheric and oceanic 
processes (Binney et al. 1993, Barenblatt 1996). The general idea of renormalization 
groups is to simplify mathematically complex models that contain much fine-scale 
detail into simpler models and to develop scaling laws using similarity principles 
and techniques. The simpler models (or equations) consist only of essential 
information of the phenomenon under study, and are able to describe and predict 
coarse-scale patterns with explicit scaling relations. Renormalization group methods 
represent a fundamental concept and powerful technique in theoretical physics 
(Barenblatt 1996), which “make rigorous the scaling process through the derivation 
of equations for blocks of cells in terms of the units that make them up” (Levin and 
Pacala 1997). Critical phenomena and phase transitions are common in ecology, 
particularly with spatial problems (Gardner et al. 1987, Milne 1998), but only until 

similarity of fluxes in terms of Reynolds number (Barenblatt 1996). The development 
of Monin-Obukhov theory follows the general procedures of similarity analysis: (1) 
identifying the atmospheric processes that conform the dynamic similarity principle, 
(2) characterizing these processes with dimensionless similarity parameters (e.g., 
Reynolds number), (3) determining a set of scaling parameters (e.g., scaling wind 
velocity, scaling temperature, scaling humidity) and non-dimensionalized dependent 
and independent variables, and (4) deriving a set of similarity laws that are valid 
over a broad range of scales (Barenblatt 1996). By so doing, Monin-Obukhov theory 
relates turbulent fluxes in the surface layer to mean vertical gradients of wind, 
temperature, and specific humidity (Wu 1990). 
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recently have renormalization group methods been applied in ecological studies 
(e.g., Levin and Pacala 1997, Milne 1998).  

Gunther (1975) pointed out that “Structures and functions of all living beings, 
irrespective of their size, can be studied by means of some basic physical methods, 
viz., dimensional analysis and theories of similarity.” Although it is unlikely that all 
structures and functions of the biological world (even at the organism level) can be 
effectively studied by using dimensional analysis and similarity analysis alone, there 
is little doubt that they will continue to play an important role in biological and 
ecological scaling. A great number of allometric studies in biology and ecology have 
further demonstrated the power and elegance of similarity-based methods. However, 
the applicability and accuracy of these methods may depend on the levels of 
biological organization and the variability of processes with scale. In the following, 
we turn our attention to some of the major issues in allometric scaling. 

2.2.3 Biological Allometry 

Gould (1966) defined allometry as “the study of size and its consequences.” 
Similarly, Niklas (1994) described allometry as “the study of size-correlated 
variations in organic form and process.” Among other definitions of allometry is any 
“departure from geometric similarity” (LaBarbera 1989). For several decades 
allometry has focused primarily on the body size (or mass) of organisms as the 
fundamental variable (Calder 1983, Peters 1983, Schmidt-Nielsen 1984). Niklas 
(1994) summarized three meanings of allometry: (1) a relationship between the 
growth of a part of an organism and the growth of the whole organism, (2) a 
relationship between organism size and biological form and process, and (3) a size-
correlated relationship deviating from geometric similarity that is exhibited by 
objects of varying sizes with the same geometry and shape. Brown et al. (2000) 
noted that allometric studies in biology have been carried out at three levels of 
biological organizations: within individual organisms (e.g., animal circulatory 
networks and tree branching architecture), among individual organisms of different 
sizes (e.g., body-size related variations in biological pattern and process), and within 
populations or communities (e.g., allometric scaling of population density and 
community biomass).  

Allometric scaling is rooted in the concepts of similarity and, as in physical 
sciences, allometric relations in biology usually take the form of a power law: 

0
=  bY Y M           (2.1) 

or,  
0logY = logY b log M +          (2.2) 

where Y is some biological variable, Y0 is a normalization (or scaling) constant, M is 
some size-related variable (usually body mass), and b is the scaling exponent.  

In Equation 2.1, if b = 1, the relationship becomes linear, and is called isometric 
scaling; if b ≠ 1, then the relationship is either geometric scaling or allometric 
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scaling (including fractal scaling). Geometric (or Euclidean) scaling is based on 
complete similarity, whereas allometric scaling is based on incomplete similarity or 
self-similarity (Barenblatt 1996, Schneider 2001a). For example, based on the 
geometric similarity of Euclidean objects we can analytically derive the following 
relationships among volume (V ), area (A), the length dimension (l ), and mass (M): 
A ∝  l 2 ,  V ∝  l 3 , M ∝  V , l ∝ M 1 / 3, and A ∝ M 2 /3 . These simple geometric 
scaling rules mean that, if objects of different sizes are completely similar, their liner 
dimensions and surface areas should be proportional to the 1/3 and 2/3 powers of 
their mass (assuming a constant density). In other words, if b = 1/3, Equation 2.1 
suggests that a property of an object (Y ) is dependent on the length dimension of the 
object (M ); if b = 2/3, then Equation 2.1 suggests that Y is dependent on the surface 
area of the object. However, Brown et al. (2000, 2002), among others, argued that 
organisms do not seem to follow such simple geometric scaling rules; rather, they 
commonly exhibit “quarter-power scaling” relationships – i.e., the scaling exponent 
takes the value of simple multiples of 1/4. For example, b = 3/4 for the whole-
organism metabolic rates of a variety of animals ranging from mice to elephants; b = 
1/4 for the heart rates of animals; b = −1/4 for the life span of animal species; b = 
3/8 for the radius of the aorta of animals and the trunks of trees; and b = −3/4 for the 
population density of animals (Brown et al. 2000, Schmid et al. 2000, Carbone and 
Gittleman 2002). While these scaling relations are general, variability can be 
substantial even for the same biological process. For instance, LaBarbera (1989) 
reported that, for scaling of home range area with body size of terrestrial mammals, 
b = 1.18 for herbivores, b = 1.51 for carnivores, b = 0.97 for omnivores, and b = 
0.74, 1.39, or 1.65 for all mammals depending on data sets used for calculation.  

One of the best-known examples of allometric scaling in plant ecology is the 
self-thinning law in plants. In even-aged plant communities, the average biomass of 
individual plants (W) scales with plant density (D) following a power law: 
W = cD−3 / 2 , or B = cD−1 / 2 , where c is a scaling constant and B (=WD) is the stand 
biomass density. This means that plant population density scales with plant weight 
with a scaling exponent of −2/3 (i.e., D ∝ W −2 / 3) rather than −3/4 as in animals. 
This scaling relation was obtained from regression analysis based on empirical data 
as well as analytical studies based on geometric similarity – the so-called “surface 
area law” ( S ∝ V 2 / 3, where V is the volume and S is the surface area; Niklas 1994). 
While this biomass-density relation has been held as a “law” for decades, recent 
studies have found little empirical evidence to support its universality and 
consistency (Weller 1987, Zeide 1987, Lonsdale 1990). In particular, the scaling 
exponent is not a constant, but rather a variable that is influenced by the shade 
tolerance of plants under study and taxonomic groups of choice. Zeide (1987) 
concluded that “the law is neither precise nor accurate,” and Lonsdale (1990) stated 
that, in the log-log plot of stand biomass vs. plant density, “straight lines are the 
exception rather than the rule.”  

Enquist et al. (1998) showed that whole-plant resource use scales as W 3 / 4  and 
that, accordingly, the scaling exponent for the biomass-density relation or the self-
thinning law is −3/4 (i.e., D ∝ W −3 / 4 ), not −2/3 as previously reported. Thus, they 
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concluded that plants do not differ from animals in terms of scaling of population 
density with respect to body mass, confirming the prediction of their general 
mechanistic model of resource use in fractal-like branching networks (West et al. 
1997). This model, however, has met an increasing number of criticisms claiming 

2.2.4 Spatial Allometry 

While sharing common features of similarity-based scaling methods, biological 
allometry has focused primarily on body size. Most of the allometric equations do 
not directly address the problem of spatial scaling. However, allometry as a general 
method can be applied to spatial scaling when the independent variable is spatial 
scale instead of body mass. Such studies have been termed spatial allometry 
(Schneider 2001a, b). In this case, the similarity principles pertain to the spatially 
extended systems (e.g., habitats, landscapes) rather than the individual organisms. A 
general spatial allometric scaling relation can be written as follows: 

Q(S) = Q(S0 )
S
S0

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

β
          (2.3) 

or,  Q(S) = kSβ , with k = Q(S0 )S0
−β        (2.4) 

where Q(S) and Q(S0) are the values of an ecological variable Q at spatial scales of 
S0 and S, respectively, and β  is the scaling exponent.  

In Equations 2.3 and 2.4, S and S0 may be expressed as extent or grain size. If S 
is extent and S0 is grain size, then the ratio, S/S0, defines the spatial (or temporal) 
scope (sensu Schneider 2001a), which is useful for comparing scaling studies among 
different systems. As with Equation 2.1, Equation 2.3 indicates isometric scaling 
when β = 1, and geometric (Euclidean) or fractal scaling when β ≠ 1. Schneider 
(2001b) pointed out that geometric scaling results when β  is “an integer or ratio of 
integers,” whereas fractal scaling is indicated by a value of β  that is “not an 
integer.” In practice, however, it is not a trivial matter to distinguish between a 
“ratio of integers” and a “fractal” dimension. Thus, inferring the nature of similarity 
based merely on regression results, as often done in biological allometry, is not 
warranted. 

Some allometric relations at the levels of populations and communities may be 
directly related to spatial scaling. For example, if population density scales with 
body mass as D = D0M −0.75 , one can derive a scaling relation between the total 
number of animals (N) and habitat area (A): N = D0AM −0.75  or between the total 
biomass (B) of the animal species and habitat area: B = DAM = D0AM 0.25 . If home 

that it is mathematically flawed and empirically unwarranted (e.g., Magnani 1999, 
Bokma 2004, Cyr and Walker 2004, Kozlowski and Konarzewski 2004). Nevertheless, 
allometric scaling, as a general approach, remains useful, and its rule in spatial 
scaling is discussed below. 
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range scales with body mass as H ∝ M b , then population density can be directly 
related to the size of home range: D ∝ HM −(0.75+ b ) . The best known example of 
spatial allometry, however, may well be the species-area relationship (SAR). SAR 
is commonly described by a power-law function: zS cA= , where c is a constant 
influenced by the effect of geographical variations on S, and z is the scaling 
exponent with a value close to 0.25. SAR has been regarded as “ecology’s most 
general, yet protean pattern” (Lomolino 2000) and one of the few widely accepted 
laws in ecology (Schoener et al. 2001). 

Some recent studies suggested that SAR is an example of scale invariance that 
reflects self-similarity in species abundance and distribution (e.g., Harte et al. 1999, 
Kunin 1999). However, many others have indicated that the value of the scaling 
exponent of SAR may vary widely and that the power-law scaling only holds over a 
finite range of spatial scales in real landscapes (Crawley and Harral 2001, Schoener 
et al. 2001). While scale invariant pattern is often believed to imply a single 
underlying process, SAR may have multiple scaling domains if examined over many 
orders of magnitude in space. This observation favors the explanation that different 
factors determine species diversity at different ranges of scales (Shmida and Wilson 
1985, Crawley and Harral 2001, Whittaker et al. 2001). For example, Lomolino 
(2000) argued that, for isolated ecosystems, SAR has three fundamentally different 
realms: (1) erratic changes influenced by idiosyncratic differences among islands 
and random catastrophic disturbance events for small islands, (2) a monotonic 
deterministic pattern determined by island area and associated ecological factors for 
intermediate-sized islands, and (3) again a monotonically increasing pattern for 
islands large enough for in situ speciation. Nevertheless, as with the self-thinning 
law, the debate and controversies on the universality, scale invariance, and 
ecological interpretation of SAR do not necessarily invalidate the use of the 
allometric scaling approach; it actually demonstrates its usefulness as a research 
tool.  

In landscape geomorphology, it has long been noted that landform attributes 
exhibit allometric relationships (Woldenberg 1969, Bull 1975, Church and Mark 
1980). For example, Hood (2002) identified several allometric scaling relations 
between slough attributes (e.g., area, outlet width, perimeter, length) for rivers in 
the Pacific Northwest of the United States, and showed that detrital insect flotsam 
density was also allometrically related to slough perimeter. In a recent study of the 
landscape dynamics of over 640 peatland bog pools in northern Scotland, Belyea 
and Lancaster (2002) found that the pools became deeper and more convoluted in 
shape with increasing size, and that the relationships between the area, depth, 
width, and length of the bog pools showed allometric (rather than geometric) 
scaling. Schneider (2001a,b) provided a number of examples of spatial allometry 
for lake ecosystems and aquatic mesocosms in terms of the geometric attributes  
of the systems (e.g., volume, area, perimeter, and depth of lakes or mesocosms)  
and biological properties (e.g., fish catch, primary production). In recent decades, 
the allometric study of landform, or landscape allometry, has been elevated  
to a new level of enthusiasm and insight by applying the concepts of fractals and 
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self-organization (Mandelbrot 1982, Turcotte 1995, Rodriguez-Iturbe and Rinaldo 
1997, Phillips 1999, Schneider 2001a, b).  

In landscape ecology, there have been many examples of spatial patterns 
exhibiting allometric or fractal scaling relations (e.g., Milne 1991, Nikora et al. 
1999, Wu 2004). Although some authors attempt to associate power scaling 
relations to underlying “universal” laws or scale invariance theories, such scaling 
relations usually only hold for limited ranges of scale (Milne 1991, Berntson and 
Stoll 1997, Wu 2004). Without resorting to any such grandiose assumptions, 
however, spatial allometry can still be used as a valuable empirical scaling method 
to summarize and extrapolate observed patterns over a range of scales, and to 
provide clues about the underlying processes, using a “scalogram approach” (Wu 
2004).  

2.3 DYNAMIC MODEL-BASED SCALING METHODS 

2.3.1 Some Concepts of Scaling with Dynamic Models 

In contrast with similarity-based scaling methods that deal with complex phenomena 
in a relatively simple manner, dynamic model-based scaling methods focus more on 
the processes and mechanisms of the phenomena under study. They may 
incorporate, but do not rely on, similarity concepts in theory and dimensional 
techniques in practice. Dynamic models are composed of state variables, rate 
variables, input variables, output variables, parameters, and constants. Parameters 
and constants help define rate variables and relate input and output variables to state 
variables. Because these terms are defined differently in the literature, some 
clarifications are needed here to avoid confusion. Following Bierkens et al. (2000), 
parameters may change in space, but not in time; constants are the only part of a 
model that does not change in space and time (i.e., scale-invariant); and all other 
model components may change in both space and time. Dynamic models can be 
implemented in mathematically explicit forms (e.g., differential or difference 
equations) or mathematically implicit forms (e.g., mathematical relation-based or 
rule-based simulation algorithms written in computer languages).  

To illustrate different scaling methods clearly and precisely, let’s assume that a 
dynamic model at a local scale s1  is: 

1( ) ( , , )y s f v iθ=           (2.5) 

where y( s1 ), v, θ, and i are the output variables, state variables, parameters, and 
input variables at scale s1 , respectively.  

Also, let’s assume that a model can be developed at a broader scale s2  as: 

2( ) ( , , )Y s F V I= Θ          (2.6) 
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where Y( s2 ), V, Θ, and I are the output variables, state variables, parameters, and 
input variables at scale s2 , respectively.  

Note that all the model arguments can be vectors. Then, transferring information 
from s1  to s2  usually involves one or more of the following transformations: v ↔ V, 
θ ↔Θ,  i ↔ I, and f (v,θ ,i)  ↔ F (V ,Θ, I ) , depending on how the model arguments and 
relationships at the two scales are linked (Blöschl and Sivapalan 1995, Wu 1999, 
Bierkens et al. 2000). Thus, the transfer of information between scales using 
dynamic models is done through rescaling or other kinds of alterations of inputs, 
parameters, state variables, and model conceptualizations.  

 

Figure 2.1. Upscaling and downscaling as a two-step process when a dynamic model-based 
approach is used (modified from Blöschl and Sivapalan 1995). 

Scaling with dynamic models typically consists of two major steps. For upscaling, 
the two steps are characterizing heterogeneity and aggregating information (Figure 
2.1). First, characterizing spatial heterogeneity involves the classification and 
quantification of spatial patterns (e.g., the number, size, and spatial configuration of 
different types of patches in a landscape), which influence model inputs and 
parameters. Spatial heterogeneity can be characterized either in a spatially explicit 
way (i.e., in the form of maps) or in statistical terms (e.g., statistical moments, 
probability density functions, or pattern indices). In cases where data do not cover 
the entire study area, interpolation is often needed. Many spatial interpolation 
methods exist (Lam 1983, Goovaerts 1997), and geostatistical methods such as 
kriging are particularly useful. In all these cases, geographic information systems 
(GIS) and remote sensing have proven extremely useful (Quattrochi and Goodchild 
1997, Marceau 1999, Hay et al. 2001).  
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Second, aggregating information is to incorporate the quantitative description of 
spatial heterogeneity into local models to obtain predictions at a broader scale (or 
the target scale), be it a larger grain (coarse-graining) or a larger extent 
(extrapolation). Again, a variety of methods may be used in this step depending on 
what and how to aggregate, as discussed below. In general, aggregating state 
variables and inputs can be readily done following such first principles as the laws 
of mass and energy conservation, but aggregating model parameters can be quite 
challenging (Blöschl and Sivapalan 1995).  

For downscaling, the two steps are disaggregating information and singling out 
(Figure 2.1). Disaggregating coarse-grained information is to derive the detailed 
pattern within a spatial domain (fine-graining) with auxiliary data. Because of the 
lack of within-grain (or within-pixel) information, this often requires stochastic or 
probabilistic methods. Singling out is simply to find the location of the 
disaggregated pattern that corresponds to the site of interest, which is usually a 
trivial matter. Note that scaling relations (power laws) derived from similarity-based 
methods are supposed to work for both scaling up and scaling down. In contrast, 
scaling with dynamic models employs both deterministic and stochastic 
formulations, which may differ significantly for upscaling versus downscaling. In 
the following, we discuss several dynamic model-based scaling methods in detail.  

2.3.2 Upscaling Methods 

The literature on upscaling methods is both abundant and confusing because of the 
diversity in disciplines and approaches as well as the idiosyncrasy in terminologies and 
traditions. From a landscape modeling perspective, King (1991) distinguished four 
extrapolation methods: extrapolation by lumping, direct extrapolation, extrapolation by 
expected value, and extrapolation by explicit integration. Blöschl and Sivapalan 
(1995), Becker and Braun (1999), and Bierkens et al. (2000) discussed a number of 
scaling methods in the context of hydrological modeling and soil physics. Based on 
these and other studies, we compare and contrast several model-oriented upscaling 
methods. We focus more on the second step of upscaling – aggregating information. It 
must be emphasized, however, that adequately characterizing spatial heterogeneity is a 
crucial and necessary first step for upscaling with dynamic models, because the 
accuracy in representing spatial pattern may not only affect the accuracy of scaling 
results (see Li and Wu, Chapter 3), but also the model conceptualization and 
simulation scheme. 

2.3.2.1. Extrapolation by lumping 

One of the simplest ways to transfer information between two scales is to obtain the 
target-scale estimate as the output of the local-scale model with the mean values of 
parameters and inputs averaged over the study area – a method called extrapolation 
by lumping (King 1991) or simple averaging (Bierkens et al. 2000). If the local 
model is deterministic, only one model run is needed. This method can be used for 
extrapolation with increasing extent as well as for coarse-graining with increasing 
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grain size (see Wu and Li, Chapter 1). In this case, the local model f ()  is assumed 
to remain valid at the target scale. That is, f () = F (). The method also assumes that 
f ()  is linear such that changes in output variables are proportional to changes in 

input variables and parameters. In addition, horizontal interactions and feedbacks are 
negligible or at steady state. Under these assumptions, the treatment of the spatial 
heterogeneity of the study system is extremely simplistic: spatial variability is all 
squeezed into the averages of model arguments. Mathematically, the lumping 
method can be expressed as: 

Y (s2) =  f (< v >,< θ >,< i >)          (2.7) 

where <variable> denotes the average of a variable, and all other terms are the same 
as before.  

Equation 2.7 holds when y and Y represent a density measure (e.g., population 
density, flux density, carbon storage per unit area). If y and Y represent some 
cumulative or additive variable (e.g., population size, total flux, biomass), then the 
target-scale estimate becomes the product of the local-scale average multiplied by 
the total area, i.e.: 

Y (s2) =  A f (< v >,< θ >,< i >)         (2.8) 

where A is the size of the target grain size in the case of coarse-graining, or the 
spatial extent in the case of extrapolation. 

Thus, extrapolation by lumping uses the same local model at the target scale, with 
highly aggregated values of parameters and inputs. Simply put, lumping is about 
averaging over space. If grain elements are of the same size, arithmetic averaging is 
usually used. But if grain elements are of different sizes, area-weighted averaging 
should be used, instead. The local model is defined at the scale of a grain element or 
patch in the case of increasing extent, and at the size of the smaller grain element 
whose aggregates form the larger grain element in the case of coarse-graining. As a 

2.3.2.2 Extrapolation by effective parameters 

Similar to the simple lumping method, extrapolation by effective parameters 
assumes that the local model applies to the target scale such that upscaling can be 
done by manipulating its parameters and inputs. However, instead of simply 
averaging parameters and inputs over space, the method uses “effective” (also called 
“equivalent” or “representative”) parameters and inputs to produce the target scale 

consequence of the oversimplifying assumptions, extrapolation by lumping is expec-
ted to produce large scaling errors when the model is nonlinear, when the local model 
formulation is no longer applicable at the target scale, or when horizontal interactions 
between grain elements (or patches) are strong and asymmetric (King 1991, Bierkens 
et al. 2000). For example, if the target scale is a landscape consisting of a number of 
different interacting ecosystems, the simple lumping method is more than likely to 
fail. 
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estimates (L’homme et al. 1994, Blöschl and Sivapalan 1995, Bierkens et al. 2000). 
That is, the estimated value of a variable at the target scale, Y (s2) , is the output of 
the local model with a set of effective parameters and inputs: 

Y (s2) =  f (Θr , Ir )           (2.9) 

where Θr  and I r  are the effective or representative parameters and inputs. 
The effective parameter approach has been widely used in soil physics, 

hydrology, and micrometeorology (L’homme et al. 1996, Bierkens et al. 2000).  
A prototypical example of using this method is to find the effective hydraulic 
conductivity for models of groundwater or soil water dynamics (Blöschl and 
Sivapalan 1995). For uniform steady saturated flow through a soil block that is made 
up of smaller blocks of different hydraulic conductivities, the effective conductivity 
equals the arithmetic mean of the small-block conductivities when they are arranged 
in parallel, and the harmonic mean when the small blocks of soil are arranged in 
series. For unsaturated flow, infiltration, and overland flow, such general effective 
conductivity does not exists, and a number of factors other than the porous medium 
itself may affect hydraulic conductivity, even though the geometric mean is found to 
be “effective” in some situations. Micrometeorologists have long used the “flux 
matching” technique in modeling fluxes over heterogeneous landscapes (L’homme 
et al. 1996, Wood 1998). That is, to upscale a certain surface flux over a patchy 
geographic area, one assumes that the plot-scale model, f (θ (x),i (x, t)) , still holds at 
the landscape scale, and then seeks the representative parameters Θ(x)  and inputs 
I (x, t)  that produce the same estimated landscape-scale flux as the summation of 

F (Θr ,I r ) = f (Θr ,I r ) = f [θ (x),i (x, t)
A
∫ ]dA(x)      (2.10) 

where A is the area of a region over which the integration is performed.  
Thus, extrapolation by effective parameters essentially is to run “micro-scale 

equations” using “macro-scale parameters” whose values are assigned to points 
within the study area to assure that the “uniform parameter field” produces the same 
model output as the “heterogeneous parameter field” (Blöschl and Sivapalan 1995). 
The key to this method is to successfully derive a set of representative parameters 
and inputs for scale s2  from parameters and inputs at scale s1  through synoptic 
descriptions of the fine-scale heterogeneous patterns. This is relatively easy for 
linear models where the representative parameters and inputs can be found by 
simply averaging over space. In this case, it becomes the simple lumping method 
again. For nonlinear models, however, finding effective parameters can be a difficult 
task. The values of representative parameters and inputs are determined by several 
factors: the values of parameters and inputs at scale s1 , the detailed formulation of 
the local model, and the difference between the two scales as measured by their 
ratio, s2 / s1  (Bierkens et al. 2000). Effective parameters are rarely unique, and  

fluxes predicted by the local model using heterogeneous parameters and inputs, i.e.,  
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fine-scale parameters used to estimate the target-scale effective parameters are 
themselves mostly approximations (Bierkens et al. 2000). A number of methods 
have been used for deriving representative parameters and inputs, including 

2.3.2.3 Direct extrapolation  

Different from the lumping and effective parameter methods, direct extrapolation 
(sensu King 1991) does not assume that the local model applies at the target scale. 
Instead of averaging parameters and inputs before running the model as in the 
lumping method, direct extrapolation obtains the target-scale estimates by first 
running the local model for each grain element (or patch) of the system with 
geospatially corresponding parameters and inputs, and then averaging (or summing 
up) the model outputs for all the grain elements. Mathematically, the relationship 
between the two scales can be described as: 

2 1( )  ( )   < ( , , )Y s y s f v iθ= < > = >        (2.11) 

or,  Y (s2) =  y(s1)k
k =1

N
∑ =  f (v,θ ,i)k

k =1

N
∑        (2.12) 

where N is the total number of areal units at scale s1 . Again, Equation 2.11 is 
applicable when y and Y represent a density measure, while Equation 2.12 is used if 
y and Y represent an additive variable. 

In direct extrapolation, therefore, spatial heterogeneity is treated explicitly in 
terms of model parameters and inputs. This spatial explicitness can be retained in the 
target-scale estimates as well because the model outputs can also be presented in the 
form of maps in the case of coarse-graining (see Wu and Li, Chapter 1). More 
importantly, if the local model is nonlinear, running it first with spatial data and then 
averaging the outputs can reduce the errors due to model nonlinearity that are 
associated with the lumping method. If the local model is linear (rarely true in 
reality), however, direct extrapolation should produce the same results as the simple 
lumping method, but with higher demands for data preparation and computation.  

Direct extrapolation is conceptually intuitive and technically straightforward, and 
it has been widely used in ecology, hydrology, and soil science. Examples include 
numerous spatially explicit or spatially distributed ecosystem and landscape models. 
Nevertheless, because it requires running the local model at all grain elements, direct 
extrapolation may suffer from excessive computational demand and redundancy 
when the total number of grain elements is great. This can be a real problem even 
with the most advanced computing facility because the computational demand for 

analytical approaches, Monte Carlo simulations, inverse modeling, and direct mea-
surements (Blöschl and Sivapalan 1995, Dolman and Blyth 1997, Bierkens 2000). In 
general, the accuracy of extrapolation by effective parameters is dependent upon 
whether the local model is valid at the target scale and whether representative 
parameters and inputs can be found that adequately account for the spatial hetero-
geneity of the system under study.  
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such simulations increases exponentially with the number of grain elements. This 
problem can be alleviated by running the local model for each patch type (the 
aggregate of grain elements of the same type) instead of each grain element or 
individual patch because direct extrapolation is spatially “explicit,” but not spatially 
“interactive.” In other words, grain elements or patches are treated individually 
without considering the influences among them (see Peters et al., Chapter 7). The 
scaling results in the two cases should be similar as long as the variability of inputs 
and parameters within each patch type is insignificant.  

Moreover, it is important to note that the assumption behind direct extrapolation 
that horizontal interactions and feedbacks are negligible or at steady state may  
not be valid in many situations, especially when lateral hydrological flows and ex-
changes of energy, materials and biological organisms in landscapes are significant 
and asymmetric. In other words, only one of the two components of spatial pattern, 
compositional heterogeneity (the diversity and relative abundance of patches), is 
recognized in this approach, leaving configurational heterogeneity (the geometric 
and spatial arrangement of patches) and its functional consequences unaccounted. 
Another implicit assumption is that there are no new patterns and processes 
emerging as the spatial extent increases. This can be a severe problem when direct 
extrapolation is practiced over a broad range of scale. Finally, spatial data on many 
processes often are not available for all the grain elements, resulting in obstacles for 
the effective application of this method. 

2.3.2.4 Extrapolation by expected value 

Similar to direct extrapolation, extrapolation by expected value (sensu King 1991) 
does not require the local-scale model to apply at the target scale. The expected 
value method treats model arguments as random variables, quantifies spatial 
heterogeneity by the joint probability distribution of model arguments, and uses the 
expected value of the local model outputs (also random variables) as the target-scale 
estimate (King 1991), i.e., 

Y (s2) =  E[ y(s1)] = E[ f (v,θ ,i)]         (2.13) 

or,  Y (s2) =  A E[ y(s1)] =  A E[ f (v,θ ,i)]       (2.14) 

where E[] is the mathematical expectation operator.  
For discrete variables, the mathematical expectation of model outputs can be 

expressed as summations, i.e., 

E[ y(s1)] = f (v j ,θk ,il ) φ (v j ,θk ,il )
l=1

s
∑

k=1

r
∑

j=1

q
∑      (2.15) 
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where ()φ  is the joint probability distribution functions of the model arguments that 
describe the spatial heterogeneity of the model domain. For continuous variables, 
integrals are used in the places of summations.  

Apparently, the most critical step in upscaling with the expected value method is 
to compute the mathematical expectation of the outputs of the local model, which 
requires an accurate description of the fine-scale spatial heterogeneity or variability. 
If the joint probability density functions, φ () , can be estimated explicitly, the 
expected value of model outputs can be derived directly using analytical or 
numerical techniques (King 1991). However, in many cases the explicit forms of the 
joint probability density functions cannot be found, and thus a sampling approach 
(e.g., Monte Carlo simulation) may be used to compute the expected value of the 
outputs of the local model. While direct extrapolation requires a full representation 
of the heterogeneity in a spatially explicit manner, the expected value method 
defines the fine-scale spatial heterogeneity only in statistical terms. However, both 
methods share two key issues: accurately describing spatial heterogeneity in terms 
of model arguments at the fine scale, and properly aggregating outputs from the 
local model to derive the estimate at the broader scale.  

Because the local model does not have to be applied to the target scale, 
extrapolation by expected value can be a rather general upscaling approach. It also 
overcomes some of the problems encountered in the previous methods: for example, 
the problem of oversimplifying spatial heterogeneity in the lumping method, 
difficulties in deriving effective parameters, and excessive data and computational 
demands with direct extrapolation when the target scale is too broad in extent. The 
method of expected value is quite amenable to uncertainty analysis (Li and Wu, 
Chapter 3) and, particularly, the results of Monte Carlo simulation may be used to 
estimate an unbiased confidence interval for the extrapolated value at the target scale 
(King 1991). This approach has been applied to a number of important ecological 
phenomena, including extrapolating information on primary production, trace gas 
fluxes, and other biophysical properties from local plots to landscapes or regions 
(e.g., King 1991, King et al. 1991). 

A major potential problem with the expected value method is that, as in direct 
extrapolation, neither the geometric attributes and spatial arrangement of patches nor 
the interactions and feedbacks among grain elements (or patches) are explicitly 
considered. Therefore, scaling errors with this method are expected to increase when 
lateral flows and feedbacks are strong and significantly asymmetric or far from a 
steady state. Also, as with direct extrapolation, this method does not account for any 
new patterns and processes that emerge with increasing extent. In real landscapes, 
however, new processes and controls do emerge at progressively broader scales. If 
these “new” attributes have significant nonlinear effects, a method completely 
ignoring them is not only theoretically improper but practically inaccurate as well.  

2.3.2.5 Explicit integration 

If the spatial variations of all the arguments of the local-scale model can be 
adequately and explicitly represented as functions of space (x, y) in closed form, and 
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if the indefinite integral of the local model with respect to space exists (and can be 
obtained), upscaling between two scales can be accomplished by directly integrating 
the local-scale model. This method was termed explicit integration (King 1991), i.e., 

( )2( ) ( , ), ( , ), ( , )
R

Y s f v x y x y i x y dAθ= ∫∫      (2.16) 

where x and y are spatial coordinates, and A is the area of the region R over which 
the integration is performed. 

The local model only needs to be evaluated once, and the prediction can be made 
precisely at any spatial scale within the defined region, R. In contrast with the 
lumping, effective parameters, direct, and expected value methods discussed earlier, 
the structure of the local-scale model now changes as a function of space during 
extrapolation by explicit integration. Explicit integration is elegant, efficient, and 
accurate when all of its requirements are met. However, because of the prevalence 
of nonlinear relationships in ecological models and complex spatial structures of 
model arguments, the applicability of explicit integration as an upscaling method is 
rather limited in practice. First of all, it is difficult or even impossible to represent 
spatial heterogeneity with closed-form mathematical functions of model arguments 
with acceptable accuracy. Second, even if this can be done, finding the indefinite 
integrals of nonlinear models, in general, is a formidable task. If the closed-form 
indefinite integrals cannot be found, approximating the double definite integral by 
numerical methods is equivalent to either direct extrapolation or extrapolation by 
expected value (King 1991).  

2.3.2.6 Spatially interactive modeling 

Not only do many processes in landscapes vary in their characteristics from one place 
to another, but also they often interact in space to generate feedbacks and emergent 
properties (Raupach et al. 1999, Wu 1999, Peterson 2000). Such examples include 

various scales. To adequately understand and predict such phenomena across scales, 
models must explicitly consider the horizontal interactions of the processes under 
study. 

Spatially interactive modeling integrates the two aspects of spatial scaling – 
characterizing heterogeneity and aggregating information between scales – into the 
dynamic models themselves. In this case, local-scale models or submodels are usually 
embedded in the larger-scale model (e.g., a metapopulation model consisting of many 
interacting local population models or a landscape model composed of multiple 
ecosystem models). Spatially interactive modeling deals explicitly with not only 
spatial variations in model arguments, but also the interactions among grain elements 
or patches. In other words, the values of the arguments of a local-scale model in one 
grain element or patch not only differ from, but also are functions of, the attributes of 
other (often neighboring) patches and the landscape matrix. Spatially interactive 

population dynamics in patchy environment, hydrological and biogeochemical dyna-
mics in complex landscapes, and land-water and land-atmosphere interactions on 
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modeling is able to incorporate feedbacks, time delays, and new features on larger 
scales. Different types of models emphasize different aspects of between-patch 
interactions (e.g., dispersal and species interactions in population and community 
models; hydrological and material exchanges in ecosystem models; spreading 
disturbances like fires and pests in many landscape models). In this case, the model 
conceptualization at the local scale ( s1 ) may be described as follows: 

y(s1) = f v k ,θ k ,i k
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

+ δpk + δmk         (2.17) 

where 1( )y s  is the model output at the local scale s1 , vk  is a state variable for patch 
k, θ

k  and i k  are parameters and input variables for the same patch k, δpk  is the net 
exchange between patch k and all other patches, δmk  is the net exchange between 
patch k and the landscape matrix, and f ()  defines the local model in terms of 
within-patch dynamics. Then, the prediction at the target scale at any point of time t, 
Y (s2 , t) , can be described as: 

Y (s2 , t) =  yk (s1, t)
k=1

N
∑ =  f v k ,θ k ,i k

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

+ δpk + δmk
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ k=1

N
∑    (2.18) 

where N is the total number of grain elements or patches at scale s1 . 
For ecological processes in a shifting landscape mosaic, the dynamics of both 

landscape pattern and ecological processes, as well as their interactions, have to be 
modeled explicitly. For example, the overall population density in a dynamic 
landscape may be predicted by coupling the patch dynamics of the biological 
population of interest and the changing habitat patches (Levin and Paine 1974, 
Levin 1976): 

jn (t) =
1
A

 [ A{ − ξ ρ (t,α ,ξ ) dαdξ ] ϕ j
o

0

∞
∫

0

∞
∫ (t)

                         + ξ ρ (t,α ,ξ ) ϕ j (t,α ,ξ ) dαdξ }
0

∞
∫

0

∞
∫     (2.19) 

where n j (t)  is the overall population density of species j in the landscape, 
ρ (t,α ,ξ ) is the probability density function describing the frequency distribution of 
patches of age α  and size ξ  at time t, ϕ j (t,α ,ξ ) is the population density of species 
j within a patch of age α  and size ξ  at time t, ϕ j

0 (t)is the population density of the 
same species in the non-patch area, and A is the total area of the landscape.  

Specifying such models in closed forms and solving them analytically are 
difficult or impossible for real landscapes. Spatially explicit simulation modeling 
with Monte Carlo integration provides a general approach to dealing with such 
complex patch dynamics problems (Wu and Levin 1997). 
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In the past two decades, a great number of spatially interactive models of 
different kinds have been developed in ecology and earth sciences, examining such 
topics as metapopulation dynamics (Hanski 1999), landscape dynamics (e.g., Li  
et al. 1993, Wu and Levin 1997), hydrological and biogeochemical processes (e.g., 
Tenhunen and Kabat 1999, Beven 2000), and socioeconomic processes (Schweitzer 
1997). Many modeling approaches have been used, including various grid-based 
models, cellular automata, and individual-based and agent-based models. Most, if 
not all, spatially interactive models are multiscaled or hierarchical. For scaling 
across broader spatial scales such as landscapes and regions, GIS and remote 
sensing techniques have increasingly been used in such models. The main sources of 
error in upscaling with spatially interactive modeling vary from case to case, but are 
due primarily to the characterization of spatial heterogeneity, formulation of spatial 
interactions, interface of multiple scales, and computational algorithms. In addition, 
such models can be quite demanding in data and computational requirements. 

2.3.2.7 Extrapolation along a scaling ladder 

The upscaling methods discussed above are in principle only applicable to situations 
where there are neither significant asymmetric between-patch interactions nor scale-
dependent or emergent patterns and processes. These are typically “short-range” 
scaling methods because the assumptions behind them are less likely to be satisfied 
over a broad range of scale. When scaling involves multiple scale domains or levels 
of organization, new patterns and processes at different scales as well as vertical 
linkages need to be taken into account. How can these “short-range” upscaling 
methods be used for transferring information over a “long range” of scales that have 
multiple scaling domains or organizational levels? 

To address this question, Wu (1999) proposed a “scaling ladder” approach based 
on the hierarchical patch dynamics (HPD) paradigm, which integrates hierarchy 
theory and patch dynamics (Wu and Loucks 1995). The scaling ladder approach 
facilitates the understanding and scaling of patterns and processes in different kinds 
of heterogeneous landscapes (Hay et al. 2001, Poole 2002, Wu and David 2002, 
Burnett and Blaschke 2003). The first step in this approach is to construct a spatially 
nested hierarchical system with distinctive scaling domains or levels of organization. 
Top-down (partitioning) or bottom-up (aggregation) schemes can be used in this 
step (Wu 1999). A top-down approach identifies the levels of a hierarchy by 
progressively partitioning the entire system downscale, whereas a bottom-up scheme 
involves successively aggregating or grouping similar entities upscale. A priori 
spatial hierarchies based on empirical observations and natural biophysical 
boundaries may be used as long as they are spatially nested and relevant to processes 
of interest. Such empirical hierarchies are commonly found in all fields of study, 
including the individual-population-community-biome or plot-ecosystem-landscape-
region hierarchies (e.g., Urban et al. 1987, Jarvis 1995), soil-type hierarchies 
(Woodmansee 1990), hydrologic unit hierarchies (e.g., site-drainage-subwatershed-
watershed-subbasin-basin-subregion-region; Griffith et al. 1999), and landscape and 
geomorphological hierarchies (e.g., Reynolds and Wu 1999).  



36 J. WU AND H. LI 

It is important to realize that the appropriateness of a given hierarchy varies with 
the process under study and research questions to be addressed (Wu and Loucks 
1995, Wu 1999, Omernik 2003). Quantitative methods, including landscape metrics, 
spatial statistics, and object-oriented approaches can be used for identifying patch 
hierarchies (e.g., O’Neill et al. 1991, Li and Wu 2004, Hay et al. 2001, 2003, Hall  
et al. 2004, Wu 2004). As emphasized in Wu and Loucks (1995) and Wu (1999), 
these spatial hierarchies should be constructed with consideration of both pattern 
and process, such that they are neither completely arbitrary, nor simply products of 
spatial analyses. Also, they are dynamic, not static, as indicated by the phrase 
“hierarchical patch dynamics.” Once an appropriate patch hierarchy, or a scaling 
ladder, is established, the short-range scaling methods discussed above can be 
applied within each scale domain or between two adjacent hierarchical levels 
(Figure 2.2). This can be accomplished by changing grain, extent, or both.  

 

Figure 2.2. Illustration of the scaling ladder approach in which scaling up (or down) is 
implemented by changing model grain size, extent, or both across successive domains of scale 
(redrawn from Wu 1999). 

2.3.3 Downscaling Methods 

The central question of downscaling is: given the aggregated values, the probability 
distributions, or the functional relationships of variables at a particular scale, how 
can they be derived at a smaller scale (Bierkens et al. 2000)? In many applications, 
the objective of downscaling is, “given the average value over a certain domain, to 
derive the detailed pattern within that domain” (Blöschl and Sivapalan 1995). 
Downscaling methods usually share the assumption that the variable to be 
downscaled varies according to some function of space within the support units, and 
thus downscaling the variable is essentially to seek the parameters of this function 
such that the average value of the support unit or its probability distribution is 
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maintained (Bierkens et al. 2000). In principle, downscaling does not produce 
unique solutions because the values of a variable at scale s1  may vary within a grain 
unit in an infinite number of ways without changing the average value at s2 . For 
example, for a grain unit at scale s2  composed of 4 smaller grain units at scale s1 , 
there are an infinite number of combinations of the values that the four s1  grain units 
may take to produce the average value of 1. 

While there are various needs for downscaling over relatively fine scales, the 
current literature on downscaling is clearly dominated by climate studies on much 
broader scales. Because General Circulation Models (GCMs) operate at spatial 
resolutions (usually >2˚ in both latitude and longitude) that are too coarse for 
understanding the regional and local impacts of global climate change, there has 
been a great deal of research in climate downscaling in the past few decades. 
Specifically, climate downscaling refers to “a set of procedures by which we attempt 
to take information available at the relatively poor spatial resolution of the GCMs, 
and derive regional-scale data that can be used for ecosystems modeling, climate 
impact assessment, and other tasks that require higher resolution climate data” 
(Crane et al. 2002). Thus, the primary objective of climate downscaling is 
disaggregating (i.e., fine-graining) GCM outputs to produce patterns of surface 
climatic conditions (e.g., temperature, precipitation, wind velocity) at regional (and 
eventually local) scales on which most ecological and socioeconomic processes 
operate. Parallel to the two general approaches to scaling, the methods of 
downscaling are also commonly classified into two main approaches: empirically-
based statistical downscaling and process model-based downscaling (Hewitson and 
Crane 1996, Crane et al. 2002).  

Bierkens et al. (2000) discussed three kinds of downscaling methods (1) 
deterministic downscaling, (2) conditional stochastic downscaling, and (3) uncon-
ditional stochastic downscaling. In deterministic downscaling, the average property 
at scale s2  is known exactly, and the objective is to find a single deter-ministic 
function to describe the spatial or temporal variation of values at scale s1 , such that 
the average of disaggregated values matches the known average value at scale s2 . In 
conditional stochastic downscaling, the average property at scale s2  is also known 
exactly, but the objective is to find a set of equally probable functions that can 
predict the disaggregated values at s1  while maintaining the same known average 
value at s2 . Monte Carlo analysis can be used in this case. Unconditional stochastic 
downscaling occurs when only the probability density function of the average 
property at scale s2  is known. The objective is to find a family of equally prob- 
able functions of the spatial or temporal variation at s1  that produce the known 
probability density function of the average property at s2 . Blöschl and Sivapalan 
(1995) and Bierkens et al. (2000) provided several examples in the context of soil 
and hydrological sciences (e.g., disaggregating information on soil properties in a 
soil profile or over a geographic area, and downscaling hydrological time series or 
spatial pattern of rainfall). These three kinds of downscaling methods can employ 
either empirical functions or mechanistic models (Bierkens et al. 2000).  
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The empirically-based statistical downscaling approach derives quantitative 
relationships between large-scale synoptic circulation features (e.g., upper level 
winds, geopotential heights, and sea level pressure) predicted by GCMs and regional 
climate conditions (e.g., temperature, precipitation, wind velocity) based on 
observations. These relations, in some form of y = f (x) , are often referred to as 
“transfer functions,” which are obtained through multiple linear regression, artificial 
neural networks (ANNs), classification and regression trees (CART), and other 
statistical methods (Hewitson and Crane 1996, Wilby et al. 1998, Sailor et al. 2000, 
Crane et al. 2002). Note that, in contrast with the empirical methods in allometric 
and similarity analysis discussed earlier, empirical downscaling in climate studies 
rarely invokes similarity assumptions of any kind. The feasibility and the validity of 
the empirical approach hinge on the fundamental assumption that “stable empirical 
relationships can be established between atmospheric processes occurring at 
disparate temporal and/or spatial scales” (Wilby et al. 1998). Thus, such empirical or 
statistical relationships do not have the capacity to explain how circulation-related 
processes affect regional/local climate, and their predictive ability is undermined by 
the fact that transfer functions are often varying in time. Empirical techniques in 
climate downscaling have been widely used because they are operationally simpler 
and computationally much less demanding than the process modeling approach. 

The process-based downscaling approach, also called nested modeling, embeds a 
higher-resolution regional climate model within a global GCM so that the coarse-
grained predictions from GCM are dynamically translated into fine-grained outputs 
of the regional model. In most cases, the output of GCM from a large grid cell is used 
to provide boundary conditions for the regional climate model inside the grid cell in 
one-way nesting schemes. There are also two-way nesting schemes in which GCM 
and the embedded regional climate model run simultaneously and interact with each 
other across scales. Because the land surface characteristics may significantly affect 
local, regional, and even global climatic processes (Pielke and Avissar 1990, Raupach 
et al. 1999), nested modeling provides a necessary and promising approach to climate 
downscaling and to coupling geophysical and ecological processes across scales in 
general. However, because of the excessive computational demands and the lack of 
understanding of interface mechanisms of climatic processes at different scales, two-
way nesting has not yet been commonly used in climate downscaling with GCMs. 

2.4 DISCUSSION AND CONCLUSIONS 

We have classified numerous scaling methods into two general approaches: 
similarity-based versus dynamic model-based. The first approach itself has a 
diversity of methods, including those relying on empirical, statistical methods and 
those based on first principles and analytical methods such as dimensional and 
similarity techniques. The dynamic model-based scaling approach, in contrast, puts 
more emphasis on the processes and mechanisms of interest, and employs a variety 
of methods for modeling (deterministic and stochastic), quantifying heterogeneity, 
and aggregating information across scales. Similarity-based scaling techniques also 
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have been used in dynamic model-based scaling methods. Thus, the two general 
approaches are not mutually exclusive; on the contrary, they should be considered 
complementary.  

The similarity-based scaling approach is elegant and powerful when it is found 
applicable to the problem at hand. If the scaling relations are valid, using them for 
extrapolation is simple and bi-directional (both up and down). However, caution 
must be taken when underlying processes and mechanisms are inferred from such 
scaling relations. Brown et al. (2000) asserted that “most biological scaling 
relationships are manifestations of a single underlying scaling process, which 
appears to be based on quarter powers and to be unique to living things.” However, 
because ecological systems are mixtures of physical, chemical, biological, and 
socioeconomic processes, it is unlikely that a single similarity criterion applies to all 
or most of them (Prothero 1986). The empirical determination of a power scaling 
relationship cannot be simply taken as prima facie evidence for similarity (i.e., 

There are several reasons why dynamic-model scaling methods ought to be used 
in many situations. First of all, not all ecological patterns and processes adequately 
meet the criteria of complete similarity (e.g., geometric similarity) or incomplete 
similarity (e.g., self-similarity or self-affinity). Therefore, alternative methods are 
needed for translating information from one scale to another for those patterns and 
processes. Second, the goals of scaling may be not only to describe and predict 
across scales, but also to understand patterns and processes at multiple scales. 

ecologists are often interested in quantifying how spatial heterogeneity interacts with 
ecological processes in their efforts to scale across space. This requires an approach 
that deals with space explicitly and processes directly. Apparently, similarity-based 
methods that rely on regression or differential equations are inadequate to achieve 
this objective.  

Dynamic model-based scaling methods can be used to overcome these 
shortcomings because (1) they are not constrained by similarity assumptions, (2) 
they can explicitly consider dynamic processes and their interactions, and (3) they 
can couple patterns and processes in spatially explicit fashion. Spatial scaling with 
dynamic models has two critical steps: accurately defining and quantifying the fine-
scale heterogeneity and properly aggregating or integrating this heterogeneity 

objects of different sizes are similar in geometry and shape) because “pseudo-
similarity” may also result in straight lines in a log-log regression plot (Prothero 
1986). Thus, geometric similarity will for sure result in power laws of simple 
multiples of 1/3, but the reverse is not guaranteed (Niklas 1994). The same can be 
said about the relationship between power laws and other kinds of similarity. One 
needs to bear in mind that statistical equations merely express correlations, any of 
which can be spurious (Prothero 1986).  

However, most similarity-based methods are empirical, relying primarily on statistical 
techniques, and do not deal directly with dynamic processes. Empirical equations 
provide useful information on quantitative relations among variables, but tell us little 
beyond the quantitative relations themselves (Prothero 1986). On the other hand, 
analytical similarity-based methods either demand explicit mathematical expressions 
of processes under study or start with well-established first principles. These 
requirements can rarely be met for most complex ecological problems. Third, 
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through model arguments or outputs to derive broad-scale projections (King 1991, 
Blöschl and Sivapalan 1995, Wu 1999). Besides the methods discussed here, there 
are other dynamic modeling techniques also relevant to spatial upscaling. For 
example, the methods of model simplification or model aggregation (e.g., O’Neill 
and Rust 1979, Iwasa et al. 1989, Cale 1995) are useful for upscaling especially when 
they directly address the problem of spatial aggregation. Metamodeling – developing 
coarse-scale models based on fine-scale models – is directly relevant to upscaling 
(e.g., de Vries et al. 1998, Urban et al. 1999, Bierkens et al. 2000).  

To develop a science of scaling, a pluralistic strategy is necessary. The pluralism 
should not only be reflected in the views and theories of scaling, but also need to be 
implemented in the methods and applications of transferring information across 
scales. Pluralism does not mean arbitrary division and diversification; rather, it 
provides a realistic basis for enlightened scaling. It would be nice if the systems of 
all kinds in the universe behaved like a sandpile, so that simple power laws could 
adequately describe “how nature works.” Although some physical, ecological, and 
socioeconomic systems may indeed exhibit scale-invariant behavior within certain 
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CHAPTER 3 

UNCERTAINTY ANALYSIS IN ECOLOGICAL STUDIES: 
An Overview  

HARBIN LI AND JIANGUO WU  

3.1 INTRODUCTION 

Large-scale simulation models are essential tools for scientific research and 
environmental decision-making because they can be used to synthesize knowledge, 
predict consequences of potential scenarios, and develop optimal solutions (Clark  
et al. 2001, Berk et al. 2002, Katz 2002). Modeling is often the only means of 
addressing complex environmental problems that occur at large scales (Klepper 
1997, Petersen 2000). For example, investigations of global climate change 
(Wobbles et al. 1999), regional assessments of net primary productivity and carbon 
dynamics (Jenkins 1999, Peters et al., Chapter 7, Law et al., Chapter 9), and 
landscape analysis of fire spread (Hargrove et al. 2000) rely heavily on simulation 
modeling at various scales. However, uncertainty in simulation modeling is often 
overlooked even though it is a fundamental characteristic of modeling that can be 
caused by incomplete data, limitations of models, and lack of understanding of 
underlying processes (Beck 1987, Reckhow 1994, Clark et al. 2001, Berk et al. 
2002, Katz 2002, Stott and Kettleborough 2002, Urban et al., Chapter 13). If 
simulation results are to be useful, researchers must show the reliability of the model 
output by providing information about model adequacy and limitations, prediction 
accuracy, and the likelihood of scenarios (Clark et al. 2001, Katz 2002).  

Uncertainty affects every aspect of modeling (Reckhow 1994, Klepper 1997, 
Jansen 1998, Katz 2002, Stott and Kettleborough 2002, Urban et al., Chapter 13). 
Data may contain errors that result from problems with sampling, measurement, or 
estimation procedures (O’Neill and Gardner 1979, Regan et al. 2002). Incomplete 
data are a common problem, especially in spatial modeling at broad scales. Models 
are imperfect because they are simplifications of real systems and always have 
errors in their assumptions, formulation, and parameterization. Moreover, effects of 
these errors on model adequacy are often insufficiently evaluated (Beck 1987, 
Reckhow 1994). In fact, most large-scale models are not fully validated, partly 
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because validation data are not available (sometimes no data can be collected under 
the existing technological and logistical constraints) and partly because techniques 
for validating spatial models have not been perfected. Although the importance of 
uncertainty in modeling is well recognized, few studies of ecological modeling 
provide critical information about uncertainty, confidence levels or likelihood 
associated with simulation results (Reckhow 1994, Clark et al. 2001, Rypdal and 
Winiwarter 2001, Katz 2002). This lack of discussion and reporting is unfortunate 
because predictions that are not accompanied by information about uncertainty are 
of limited value in policy- or decision-making. Researchers must adopt a new 
modeling philosophy that requires that uncertainty in models and modeling be 
understood, quantified when possible, and reduced to an acceptable level when 
feasible.  

Scaling is the translation or extrapolation of information from one scale to 
another in time or space or both (Blöschl and Sivapalan 1995, Wu 1999, Wu and Li, 
Chapters 1 and 2). For example, scaling is needed to resolve most of the large-scale 
management problems because most of our knowledge and data is obtained by 
means of small-scale research. In the process of scaling, errors in data and models 
may be propagated into results. It is not adequate simply to ask how to scale: one 
must ask how to scale with known reliability and uncertainty even when ecological 
systems and models involved are often complex. Thus, uncertainty analysis is an 
essential part of scaling because it provides critical information about the adequacy 
of models or algorithms used in the scaling process and about the accuracy of 
scaling results (Katz 2002).  

In this overview, we will focus on the major concepts and techniques of 
uncertainty analysis associated with up-scaling methods (i.e., those that extrapolate 
information from fine scales to coarse scales; Wu and Li, Chapters 1 and 2). 
Specifically, we will identify sources of uncertainty in the scaling process and 
illustrate approaches to and techniques of uncertainty analysis. Because translating 
or extrapolating is usually done with the help of models (Wu and Li, Chapter 2), 
scaling can be regarded as a special case of modeling (i.e., modeling with changing 
scales). Therefore, most discussion of uncertainty in modeling is directly applicable 
to uncertainty in scaling. Also, it should be noted that most of the techniques of 
uncertainty analysis discussed below are more suitable for ecological models with 
low to intermediate complexity than for highly complex models like the general 
circulation models employed in climate change research (Allen et al. 2000, Forest  
et al. 2002, Stott and Kettleborough 2002).  

3.2 UNCERTAINTY AND RELATED CONCEPTS 

The term uncertainty implies some kind of error, inexactness, unreliability, and 
imperfection in our knowledge and understanding of the systems under investigation 
(Funtowwicz and Ravetz 1990, Petersen 2000, Regan et al. 2002, Katz 2002). Some 
degree of uncertainty is unavoidable in modeling and scaling because there are 
always errors associated with the stochastic nature of ecological processes, system 
complexity caused by spatial heterogeneity and nonlinear relationships, unreliability 
and unavailability of data, and/or imperfections of models (Mitchell and Hulme 
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1999, Katz 2002, Regan et al. 2002, Stott and Kettleborough 2002, Groffman et al., 
Chapter 10, Urban et al., Chapter 13). However, many of the uncertainties in 
simulation modeling should be quantified and reduced, and different sources of 
uncertainty be ranked with respect to their relative contributions to errors in model 
output. The term uncertainty is sometimes used to mean levels of risk involved in a 
scenario, action, or inaction defined by policy or management decisions, but such 
usage may require caution because risk implies probability and consequence that can 
be themselves uncertain (Pate-Cornell 1996, Katz 2002). All of these uncertainties 
should be studied thoroughly and systematically (Reckhow 1994), but they may 
require different treatments. Some uncertainties can be quantified and reduced (e.g., 
input uncertainty; Katz 2002), some can be quantifiable but hard to reduce (e.g., 
natural variability of data; Nauta 2000, Regan et al. 2002), some may be 
unquantifiable (e.g., model uncertainty; Beck 1987, Klepper 1997, Regan et al. 
2002, Stott and Kettleborough 2002), and some may have only insignificant effects 
on model output in a particular modeling exercise (e.g., omission of minor processes 
or variables; Katz 2002).  

Uncertainty analysis is the process of assessing uncertainty in modeling or 
scaling to identify major uncertainty sources, quantify their degree and relative 
importance, examine their effects on model output under different scenarios, and 
determine prediction accuracy (Jansen 1998, Katz 2002). Uncertainty analysis is 
employed primarily to determine whether the estimated prediction uncertainty is 
acceptable for a particular model application and, if it is not, to highlight factors 
whose uncertainty is pivotal in policy considerations and to recommend ways of 
reducing prediction error (Jansen 1998, Katz 2002). Specifically, uncertainty 
analysis addresses questions like: What is the magnitude of error in large-scale 
estimates? How is error propagated in the scaling process? Which factors are most 
critical, most poorly understood, or least predictable? How can errors be reduced? 
What is the probability that an event or scenario will occur? Uncertainty analysis 
can increase the credibility of modeling even when much of uncertainty may not be 
reduced (Rykiel 1996, Rypdal and Winiwarter 2001). Thus, understanding, 
quantifying, reporting, and ultimately reducing uncertainty in large-scale assessment 
is of great interest to policy makers.  

Sensitivity analysis and scenario analysis are closely related to uncertainty 
analysis (Saltelli et al. 2000, Melching and Bauwens 2001, Katz 2002). The 
similarity is that they all involve in running models under perturbations (e.g., 
changes in model structure, parameters, or input data) and may use similar 
techniques (e.g., Monte Carlo simulation). Sensitivity analysis quantifies the rate of 
change in model output when one or more input variables and parameters are varied 
by a fixed amount or proportion while the others are held constant (Klepper 1997, 
Katz 2002). A more formal approach to sensitivity analysis with various statistical 
sampling methods may also be used (Saltelli et al. 2000). Sometimes, the absolute 
rate of change is converted into a relative measure to make comparisons among 
different parameters more meaningful (i.e., absolute vs. relative sensitivity). 
Sensitivity analysis is often used as a model-testing tool to examine model behavior 
in terms of the most sensitive parameters. A scenario is a possible future boundary 
condition (represented by a set of key input values or sometimes by trajectories of 



48 H. LI AND J. WU 

key input values) on the basis of which simulations are run (Clark et al. 2001). In 
other words, a scenario is the IF in the WHAT-IF questions of simulation modeling. 
In scenario analysis, all of the inputs are changed simultaneously. Scenarios are 
model input rather than predictions, but they may be defined by results of previous 
simulation studies. Scenario analysis usually focuses on policy-relevant possibilities 
of future conditions (e.g., best case vs. most likely case vs. worst case), and is an 
effective means of communicating a large amount of technical information obtained 
by simulations with large, complex models (Wobbles et al. 1999, Clark et al. 2001, 
Katz 2002). Both sensitivity and scenario analyses may best be regarded as 
necessary precursors to full-fledged, probability-based uncertainty analysis (Katz 
2002).  

3.3 SOURCES OF UNCERTAINTY 

Uncertainty in modeling may come from many different sources, which in turn may 
be classified into many different categories (O’Neill and Gardner 1979, Funtowwicz 
and Ravetz 1990, Jansen 1998, Petersen 2000, Katz 2002, Stott and Kettleborough 
2002, Urban et al., Chapter 13). However, most classifications of uncertainty 
sources consider similar sets of factors when viewed as a whole. In this overview, 
we discuss three main sources of uncertainty: models themselves, input data, and 
scaling algorithms (O’Neill and Gardner 1979, Jansen 1998, Katz 2002, Urban et al., 
Chapter 13). Note that uncertainty in scaling algorithms may be regarded as part of 
model uncertainty, but we separate them here because it presents a unique problem 
and is a focus of this book.  

3.3.1 Model 

Model uncertainty has two basic components, model structure and model parameters 
(Figure 3.1; Morgan and Henrion 1990, Klepper 1997, Katz 2002). Model structure 
uncertainty is caused by the modeling processes of simplification and formulation. 
Model simplification is essential to modeling and is the identification and selection 
of the processes, relationships, and variables that are the most important to the 
system of interest and the modeling objectives. Simplification is done by assuming 
that some processes may be ignored because they explain an insignificant amount of 
variability in model predictions. Model simplification may also reflect a failure to 
understand certain processes. Model formulation focuses on the mathematical 
translations of relationships and the designs of algorithms and computer codes. 
Because many of the assumptions and subjective judgments must be made during 
model construction but are not often reported, most hidden error is created in the 
process of model formulation. Therefore, model structure uncertainty is the failure 
to include relevant processes and the unreliability caused by deficiencies in 
confidence, quality, and scientific basis of the equations and algorithms that 
represent the selected processes and their interactions.  

Model parameter uncertainty is introduced by the modeling process of 
parameterization of models (Morgan and Henrion 1990, Klepper 1997, Katz 2002). 
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Model parameterization is the estimation and calibration of parameters. Calibration 
produces a set of optimal parameter values by forcing selected model outputs to 
agree with testing data. Model parameter values are built into models and may be 
fixed or change in space and time. Model parameter uncertainty results from 
imperfect knowledge about the parameters, lack of data or understanding, and errors 
in the estimation and calibration processes. Given the large number of parameters 
involved in ecological models, the first step in uncertainty analysis is often to 
perform sensitivity analysis to identify the parameters that may have significant 
effects on model output. Uncertainty analysis requires that statistical distributions 
(or ranges, means, variances) of parameters be known. However, a common 
problem in uncertainty analysis is that the accuracy of measurements and/or 
estimates of parameters are unknown. Modelers often have no information about the 
variability of parameters and have to make assumptions about parameter 
distributions (Urban et al., Chapter 13).  

 

Figure 3.1. Sources of uncertainty in scaling and modeling. 

A lesser known but perhaps more critical problem in model parameterization is 
the use of free (or fuzzy) parameters in model functions (Petersen 2000, Berk et al. 
2002). Free parameters are those whose values are arbitrarily assigned or tuned in 
model calibration to make the model output fit the testing data. Problems arise when 
a model contains many free parameters that have no physical meanings and thus are 
not subject to evaluations by observation or measurement. Although the use of free 
parameters is often unavoidable when models are complex, their overuse can 
introduce large uncertainty into model output, and their uncertainty can severely 
diminish the value of the calibrated model (Petersen 2000). Thus, if models require 
intensive calibration of key parameters before they can be applied to new sites, they 
are of limited use in large-scale spatial simulation or scaling because data needed for 
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such calibration may be unavailable and because model predictions may have high 
uncertainty due to the calibration. Reducing the number of free parameters in 
models should alleviate these problems and improve models (Petersen 2000) but 
poses a daunting challenge to model developers. 

3.3.2 Input Data 

Input data are those required to run models for specific applications. Input data are 
usually from measurements or observations and are composed of systems attributes 
and driving variables. Systems attributes define the simulation settings about 
characteristics of the modeled system and its environment (e.g., evapotranspiration 
rate, leaf area index, spatial distribution of vegetation). Systems attributes are often 
fixed as constants even though they may have a range of values and change over 
time. Uncertainty in systems attributes is a major focus and is relatively easy to 
handle in uncertainty analysis. Driving variables define the environmental 
conditions (e.g., climate variables) that change in space and time, but are not 
affected by the model. Driving variables are often not examined in uncertainty 
analysis, but treated as part of the simulation conditions. This is primarily due to 
technical difficulties involved. However, if variability of a driving variable needs to 
be considered, it can be done via scenario analysis.  

Data uncertainty can be caused by unknown data quality, high natural variability 
of the system, or lack of information (Figure 3.1; O’Neill and Gardner 1979, Jansen 
1998, Regan et al. 2002). Data quality is affected by instrument or measurement 
errors, sampling errors, and database management errors. Data quality is always a 
concern in modeling and it becomes a major problem in uncertainty analysis when 
errors in sampling or measurement for observed data and errors in interpolation or 
aggregation for estimated data are not reported (Berk et al. 2002, Regan et al. 2002). 
The data employed in modeling exercises are usually collected for other purposes, 
and this often causes difficulties in model construction and testing because they may 
not adequately represent key characteristics of the modeled system. In such cases, 
critical reviews of data quality should be required before model simulations. A 
related problem is inappropriate use of data outside their intended purpose or 
domain. For example, whether model testing data are obtained independently and at 
the appropriate scale is a question of data quality.  

Variability in ecological systems may result from spatial heterogeneity of 
environmental conditions or from randomness in interactions of different processes. 
Natural variability of data is a critical factor in uncertainty analysis that must be 
considered because modeling only with average values can produce severe bias in 
predictions, especially for nonlinear models (O’Neill 1979, Scherm and van 
Bruggen 1994). Spatial variability in systems attributes and driving variables need to 
be effectively incorporated into simulation modeling. We will discuss this point in 
the next section. Natural variability in data is the most studied in uncertainty 
analysis.  

Lack of information is a pervasive problem in ecological research, especially in 
large-scale modeling where the emphasis is on synthesis. Unavailability of large-
scale and long-term data greatly hinders uncertainty analysis and model evaluation 
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because large-scale processes often cannot be predicted directly from fine-scale data 
(Clark et al. 2001). Thus, it is imperative to obtain experimental and observational 
data at landscape or regional scales. Other data availability concerns include 
inadequacy of resolution and duration of observational studies, and gaps in temporal 
and spatial coverage (Clark et al. 2001). Techniques for dealing with missing data 
must be developed for scaling; at the present state of knowledge, data requirements 
often cannot be met and uncertainty analysis must be conducted with key data 
missing (Berk et al. 2002). Missing data is the uncertainty source that cannot be 
quantified (Funtowwicz and Ravetz 1990).  

3.3.3 Scaling Algorithm 

Scaling algorithms are a new source of uncertainty. One perspective of scaling is 
that it is an uncertainty problem of error propagation. This is partly because the 
factors that cause problems in scaling (e.g., spatial heterogeneity, nonlinearity) are 
also those that contribute greatly to uncertainty (Schulze 2000). Scaling in space 
brings forward two causes of uncertainty: mismatch of scales in model or data and 
spatial heterogeneity of system variables and parameters. Mismatch of scales is an 
issue of model adequacy and occurs when models are applied at scales different 
from those for which they have been developed or when the support of a model  
(or data) changes with changing scales. Support refers to the nature of the modeled 
entities, such as size, shape, orientation, and heterogeneity (Heuvelink 1998a, Wu 
and Li, Chapter 1), and changes of the support may cause changes in parameter 
values and even in functional forms of the model (Heuvelink 1998a, Katz 2002). 
Models are often developed for application at a specific scale or domain of scales 
(Reynolds et al. 1993, Heuvelink 1998a, Katz 2002). Thus, when a model is applied 
outside its designed domain of scales, the uncertainty of model structure may 
increase as a consequence of loss of model adequacy (Rykiel 1996). Spatial 
heterogeneity and its representation in scaling algorithms is a major source of 
scaling uncertainty. Ecological processes and phenomena exhibit both stochastic and 
patterned variations over a wide range of spatial scales. Such spatial heterogeneity 
increases system complexity and raises questions about the adequacy or 
representativeness of sampling methods and data. The problem of accounting for 
spatial heterogeneity explicitly in scaling (or modeling in general) is a critical 
challenge and remains to be resolved (Hunsaker et al. 2001, Lowell and Jaton 1999, 
Groffman et al., Chapter 10, Urban et al., Chapter 13). The scale-specific nature of 
models and data and the heterogeneous characteristics of the system must be 
considered in scaling.  

3.4 METHODS OF UNCERTAINTY ANALYSIS 

Uncertainty analysis focuses on effects of uncertainty from different sources on 
model output under multiple scenarios. Uncertainty analysis is not employed 
routinely in ecological studies mainly because the existing techniques are neither 
widely known nor universally applicable and effective. This section reviews the 
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existing techniques of uncertainty analysis and points out their key characteristics 
and deficiencies. We discuss: (1) model evaluation to examine model structure 
uncertainty, (2) examination of error propagation to quantify uncertainties in model 
parameters and input data, and (3) prediction accuracy and error partitioning to 
present scaling (or model output) uncertainty.  

3.4.1 Model Evaluation: Model Structure Uncertainty 

Model structure uncertainty can affect model output significantly, but it is often not 
addressed in traditional uncertainty analysis (Morgan and Henrion 1990, Klepper 
1997, Katz 2002, Regan et al. 2002). Models that are to be employed to solve real-
world problems should first be subjected to model testing. Uncertainty analysis 
remains important even if model uncertainties have been dealt with by means of 
sensitivity analysis during model testing. It is critical to establish prediction 
confidence, especially when models must be applied to new sites or systems. A 
complete analysis of uncertainty that deals with all major sources of uncertainty 
should be pursued whenever possible (Reckhow 1994). Thus, it is a good practice to 
treat evaluation of model adequacy as part of uncertainty analysis (Heuvelink 
1998a).  

We use the term model evaluation in preference to the controversial term model 
validation (Oreskes et al. 1994, Rykiel 1996). Because models are always imperfect, 
it is the adequacy, not the validity, of models that is to be determined. Beldring 
(2002) defined two important aspects of model evaluation: scientific evaluation and 
performance evaluation. Scientific evaluation examines the extent to which the 
model’s behavior is consistent with prevailing scientific theory and determines 
whether the model can describe the physical processes of interest. Performance 
evaluation determines the degree to which model-predicted values agree with a 
corresponding set of reliable and independently obtained observations. Model 
evaluation is usually done in the process of model construction, but a more detailed, 
systematic analysis should also be performed in model applications to ensure a 
model’s practical value.  

In practice, model evaluation examines the degree of adequacy in a model’s 
assumptions, simplifications, formulations, and predictions (Rykiel 1996). Model 
adequacy is defined operationally by the following criteria of model behavior and 
prediction accuracy (Cale et al. 1983, Oreskes et al. 1994, Rykiel 1996, Beldring 
2002): (1) Models should be consistent with prevailing scientific theory and 
concepts; (2) Models should have no detectable flaws in internal structure and logic 
chain; (3) Models should contain all necessary components, critical variables and 
processes to achieve the objectives; (4) Models should yield predictions that agree 
with observations; (5) Models should incorporate well-tested submodels with sound 
(acceptable) algorithms or formulations; (6) Models should be used within the 
domain of designed applicability and scales; (7) Models should be tested for 
multiple state variables, in multiple years, and at multiple locations (systems); and 
(8) Models should produce results with acceptable confidence levels. This last 
criterion is added because of the recognition of the important roles that uncertainty 
analysis plays in establishing credibility of models. However, specifics about the 
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implementation of this criterion still need to be developed because what constitutes 
an acceptable confidence level will depend on the objectives of a particular 
application. Although any deviation from these criteria can cause serious problems, 
a determination of model adequacy is in essence a judgment that takes into account 
the objectives of the study and the characteristics of the system of interest (Rykiel 
1996).  

Some of the model structural errors identified in model evaluation can be 
eliminated, as when modifications of the model can successfully remove the 
inconsistencies with theory and the logic flaws in model formulation and algorithms. 
Some can be quantified, as when outputs from alternative models can be contrasted 
to determine differences in their agreements to observations (Jansen 1998). Some 
can be reduced, as when mismatch of scales in models and data can be avoided or 
corrected and when missing critical variables and processes can be included. 
Unfortunately, some model structural uncertainty is not quantifiable and cannot be 
reduced or eliminated because it reflects imperfections that are inherent in all 
models (Beck 1987, Klepper 1997, Katz 2002, Stott and Kettleborough 2002). 
However, there are ways to cope with this unquantifiable uncertainty. Some 
techniques, like the Bayesian Forecasting System (Krzysztofowicz 1999a), combine 
all of the untreatable uncertainty and provide some measure of it as a whole. Also, 
good model testing can go a long way in reducing uncertainty. The key is to perform 
model evaluation thoroughly and systematically.  

Model comparison can provide a benchmark for and insight into model 
uncertainty, especially when no data are available for model testing (Klepper 1997, 
Jain et al. 1997, Berk et al. 2002). One model may be compared with another to 
identify possible problems. Large differences in key model behavior indicate a need 
for detailed analysis and evaluation of the model under study. Similar to the 
hierarchical modeling approach to scaling (Reynolds et al. 1993), a fine-scale 
mechanistic model can be used as a surrogate for reality in testing models of lesser 
complexity (Jansen 1998, Urban et al., Chapter 13). However, model uncertainty 
cannot be quantified through such inter-model comparison alone because the true 
system values and formulations are still unknown. Moreover, similarity of model 
predictions is not a sufficient indicator of the new model’s predictive quality (Jansen 
1998). Thus, model comparison is useful but limited in its capability to determine 
model uncertainty.  

3.4.2 Error Propagation: Uncertainties in Model Parameters and Input Data 

Errors propagate from model parameters and input data to model outputs in the 
process of modeling or scaling. In essence, to quantify errors and their propagation 
is to determine how variances or standard deviations of random variables get 
combined and manifested in the model predictions or large-scale estimates of some 
state variables. The variability in the state variables (i.e., model output) is then used 
as a measure of the output uncertainty. Many techniques can be used to analyze 
uncertainties in model parameters and input data. These include applications of 
probability theory, Taylor series expansion, Monte Carlo simulation, generalized 
likelihood uncertainty estimation, Bayesian statistics, and sequential partitioning 
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(Gardner and O’Neill 1983, Gardner et al. 1990, Rastetter et al. 1992, Heuvelink 
1998b, Jansen 1998, Wiwatenadate and Claycamp 2000, Katz 2002). In this section, 
we will describe these major techniques of uncertainty analysis. Other techniques 
(e.g., the fuzzy set method, Franks and Beven 1997, Scherm 2000; the 
Rosenblueth’s method of approximation, Heuvelink 1998b; the fingerprinting 
techniques of climate variability, Allen et al. 2000, Forest et al. 2002, Stott and 
Kettleborough 2002) also exist. We refer the reader to the cited literature for 
methods not covered here.  

To demonstrate these techniques, we suppose a simple system with three random 
variables, X, Y, and Z, in which Z is a monotonous function of X and Y:  

Z = Φ X,Y( ) .            (3.1) 

We use µZ , σ Z
2 , µX , σ X

2 , µY  and σ Y
2  to denote the means and variances of Z, X, 

and Y. Note that X and Y can be either predictive variables or model parameters, and 
that Φ  is a model to estimate output Z from inputs X and Y. 

3.4.2.1 Probability theory 

Probability theory method employs probability theory of moments of linear 
combinations of random variables to define means and variances of random 
functions (Wiwatenadate and Claycamp 2000). The essence of this approach is to 
calculate analytically the mean and variance of the output as a function of random 
variables of input, using the basic statistics of the random variables as follows. For 
the case of Z as an addition or subtraction function of X and Y, i.e., 

Z = Φ X,Y( ) = X ± Y ,          (3.2) 

the mean and variance of Z can be calculated by the equations  

µZ = µX ± µY            (3.3) 

σ Z
2 = σ X

2 + σ Y
2 ± 2 ⋅σ XY .         (3.4) 

For the case of multiplication, i.e.,  

Z = Φ X,Y( ) = X ⋅Y ,         (3.5) 

similar equations can be used to calculate the mean and variance of Z, i.e., 

µZ = µX ⋅µY ,          (3.6) 

σ Z
2 = σ X

2 ⋅σ Y
2 + µY( )2 ⋅σ X

2 + µX( )2 ⋅σ Y
2 .      (3.7) 
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Here, X and Y are assumed to be independent. If X and Y are correlated, the variance 
equation can get complicated. Similar equations can also be derived for the case of 
division (or ratio), but the variance equation may not always exist.  

The probability theory method is powerful. Its main advantage is that it is 
analytical and provides exact solutions, i.e., it has neither estimation error nor 
approximation error. For example, it works when one knows the functional form and 
the basic statistics of the random variables (e.g., means, variances). For example, 
when dealing with relationships from literature, one does not have to have the raw 
data for X and Y. Thus, use of the probability theory method to study error 
propagation is straightforward for simple linear models. The disadvantage of the 
method is that it does not apply to nonlinear functions. However, it may be used to 
deal with uncertainties in complex models when combined with other techniques. 

3.4.2.2 Taylor series expansion 

The Taylor series method uses the Taylor series expansion at the point of µX , µY( ) 
to estimate the mean and variance of a simple function of random variables 
(Rastetter et al. 1992, Heuvelink 1998b). The idea of the Taylor series method is to 
first approximate the model by a linear function and then solve analytically for the 
combined error from the error propagation. In most situations, the first or the second 
order Taylor approximation is sufficient. Higher order Taylor methods are seldom 
used because the gain in reduced approximation errors may be greatly outweighed 
by the increased complexity.  

Where the second order Taylor approximation is employed, the method can be 
presented as follows. For the same system defined by Equation 3.1, the mean of Z is 
defined by applying the original function with the means of the component random 
variables, and the variance of Z is estimated by the Taylor series expansion, i.e.,  

µZ ≈ Φ µX , µY( ),           (3.8) 

σ Z
2 ≈ ∂Φ

∂X
2

⋅ σ X
2 + ∂Φ

∂Y
2

⋅σ Y
2 + 2 ⋅ ∂Φ

∂X ⋅ ∂Φ
∂Y ⋅ σ XY ,  (3.9) 

where ∂Φ
∂X

 and ∂Φ
∂Y

 are partial derivatives of Z with respect to X and Y, and σ XY  
is the covariance. If X and Y are independent (i.e., σ XY = 0), then a simplified 
equation can be obtained by eliminating the covariance term in Equation 3.9.  

The Taylor series method is a useful alternative to the probability theory method, 
which cannot be employed when the random function Φ  is complex. One important 
characteristic of the method is that the function can be of any kind; but obviously, 
different types of equations will have different approximation errors. Thus, the main 
advantages of the method are that it is analytical, is flexible in terms of functional 
forms, and can be applied to models of moderate complexity. The main dis- 
advantages are that it requires that models be presented as differentiable functions 
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and that the approximation errors are usually unknown. The Taylor series method 
has been used in ecological modeling for carbon dynamics in peatland (Bubier et al. 
1999) and for water quality in a Florida watershed (Zhang and Haan 1996).  

3.4.2.3 Monte Carlo simulation 

The Monte Carlo method computes output statistics (means, variances) by repeating 
simulations with random sampling of input variables and model parameters 
(Gardner and O’Neill 1983, Gardner et al. 1990, Rastetter et al. 1992, Heuvelink 
1998b, Jansen 1998, Katz 2002). The basic procedures are to define input 
distributions, sample randomly from the input distributions, run simulations with 
repeated samplings, and determine probability distribution for the output.  

The method can be presented as follows. For a model of any complexity (e.g., 
Equation 3.1),  a realization of Z is obtained by 

Zi = Φ Xi , Yi           (3.10) 

with X and Y being defined by 

Xi ={ X | X ~ N µx , σ x }       (3.11) 

Yi ={ Y | Y ~ N µy , σ y }     (3.12) 

where Xi and Yi are values obtained from samples of normal distributions, and all 
other terms are the same as defined previously. With repeated sampling of size N, 
the statistics of the output can be calculated by 

µZ = Zii
∑ N           (3.13) 

σ Z
2 = Zi − µZ

2

i
∑ N −1.       (3.14) 

Notice that both X and Y are assumed to be independent and have normal 
distributions. Joint distributions are required if the independence assumption does 
not hold. Other theoretical distributions (e.g., lognormal, uniform) may also be used. 

The Monte Carlo method is the most commonly used technique for uncertainty 
analysis because it has no strict requirement about the exact formulation of the 
function and is therefore easily implemented and generally applicable. The function 
can be either a simple empirical model or a complicated dynamic model; the steps of 
Monte Carlo error analysis effectively remain the same because the method treats 
the function as a black box (i.e., only input and output are considered) and studies 
the resulting outputs by systematically sampling from the input space. The main 
disadvantages of the Monte Carlo method are that the results are not in an analytical 

( )

( )

( )
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form and that joint distributions for correlated variables are often unknown or 
difficult to derive. The Monte Carlo method is computationally intensive, but one 
can employ sampling schemes to reduce the computation burden. A common 
sampling scheme is the Latin hypercube sampling in which the range of a variable is 
stratified and each stratum is sampled once with an equal probability (McKay et al. 
1979). The Monte Carlo method has been used to study uncertainty related to forest 
dynamics (Gardner et al. 1990), water quality (Gardner and O’Neill 1983, Zhang 
and Haan 1996), soil acidification at the European scale (Kros et al. 1999), and 
nitrate leaching at a regional scale (Hansen et al. 1999).  

3.4.2.4 Generalized likelihood method 

Generalized likelihood uncertainty estimation (GLUE) is a statistical technique for 
simultaneously calibrating the parameter and estimating the uncertainty of predictive 
models (Beven and Binley 1992, Zak and Beven 1999). It operates on the 
assumption that many parameter sets may be equally acceptable in producing 
reasonable simulations of the observed data. The method can be presented as 
follows (Zak and Beven 1999, Brazier et al. 2000). First, a likelihood measure is 
selected to determine the goodness of fit in comparing observations with model 
predictions. This measure is chosen on basis of its appropriateness in relation to the 
model, the observed data, and the objectives of the study. For example, if the 
absolute error is chosen as the likelihood measure, the likelihood function for a 
single observation is given by  

L Z | ZObs = 1 − ZObs − Z ZObs
N
      (3.15) 

where ZObs is the observed value of the predicted variable Z, and N is the shaping 
factor of the likelihood function (Zak and Beven 1999). Second, Monte Carlo 
simulations are run with all parameter sets, using the following equations,  

Xi = X | X ~ U a,b( ){ }          (3.16) 

Yi = Y | Y ~ U c,d( ){ }          (3.17) 

where X and Y are uniformly distributed parameters with ranges of (a,b) and (c,d), 
respectively. Third, a predetermined threshold, L*, is used with the likelihood 
measure to identify and exclude those parameter sets that perform poorly (i.e., 
having a likelihood of zero or below the threshold). This process defines an 
acceptable parameter space, Ra, which is composed of values of all physically 
reasonable parameter sets from the potential parameter space in Monte Carlo 
simulations, i.e.,  

Xi
*,Yi

* ∈Ra             (3.18) 

( ) ( )
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given that        

L Zi
* | ZObs > L*.          (3.19) 

Finally, the simulation results with acceptable parameter sets are then to define 
likelihood weighted distributions of predicted results from which uncertainty bounds 
are derived.  

GLUE is a hybrid technique for parameter calibration and output uncertainty 
assessment that combines Monte Carlo simulations and likelihood analysis. The 
advantage of GLUE is that it provides a probabilistic distribution of model 
prediction so that output uncertainty is defined. The probabilistic distribution is 
enhanced by the selection of the acceptable parameter space because only physically 
reasonable parameter sets are used. The disadvantage of GLUE is that it does not 
explicitly consider the effects of individual parameters on model predictions because 
it considers only sets of parameter values. However, sensitivity analysis may be 
performed to determine the relative importance of model parameters and the 
processes they represent. The same sensitivity analysis can also be used to reduce 
the number of parameters used in GLUE by selecting only those that show 
significant effects on model predictions (Zak and Beven 1999). Another 
disadvantage is that the applicability of GLUE is limited by the need for 
observations against which model predictions can be compared in the likelihood 
analysis. Such observations are often unavailable in scaling projects. GLUE has 
been used primarily in hydrological modeling (Zak and Beven 1999, Brazier et al. 
2000).  

3.4.2.5 Bayesian statistics 

Bayesian statistical methods quantify uncertainty by calculating probabilistic 
predictions. The procedure has three stages: (1) determination of the prior 
probability distribution for model parameters, (2) construction of a likelihood 
function for the statistical model, and (3) derivation of the posterior probability 
distribution for the parameters by using the Bayes rule to adjust the prior distribution 
based on the observed data (Katz 2002). The Bayes rule states that the posterior 
probability distribution is proportional to the prior probability distribution multiplied 
by the likelihood, i.e., 

P Z | ZObs = P Z( )⋅ P ZObs | Z P ZObs      (3.20) 

where P Z | ZObs( ) is the posterior probability distribution for the predicted variable 
Z given the observations ZObs, P(Z) is the prior probability distribution of Z, 
P ZObs | Z( ) is the conditional distribution of the observations, and P(ZObs) is the 
marginal distribution of the observations. The probabilistic predictions generated by 
Bayesian statistical methods are used to define modeling uncertainty.  

( )

( ) ( ) ( )
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One example of such methods is the Bayesian Forecasting System (BFS) 
developed for deterministic hydrologic models by Krzysztofowicz (1999a, 1999b). 
The BFS first identifies the random inputs whose uncertainty significantly affects 
the model outputs and varies from forecast to forecast. Then, the BFS decomposes 
the total uncertainty into input uncertainty and model uncertainty. Krzysztofowicz 
(1999a, 1999b) proposed that model uncertainty should be the combined uncertainty 
from all other sources, including imperfections of the model, incorrect estimates of 
parameters, and incorrect estimates of deterministic inputs. The BFS has three 
components (steps): (1) the input uncertainty processor, which runs simulations with 
parameter values of the random inputs and defines the uncertainty in model output 
caused by the input uncertainty; (2) the model uncertainty processor, which yields 
the posterior density based on the prior density and the likelihood function; and (3) 
the integrator, which integrates input uncertainty and model uncertainty into a 
predictive distribution. The characteristics of Bayesian statistical methods in general 
and BFS in particular are that they are a process of learning from data, require prior 
probability distributions and observations, and provide probabilistic predictions in 
the form of posterior distributions.  

3.4.2.6 Sequential partitioning 

The sequential partitioning method is not a new technique, but rather a hybrid 
approach based on a new strategy (Rastetter et al. 1992). It may apply a combination 
of probability theory, Taylor series, and Monte Carlo methods in clearly defined 
steps or modules in the process of modeling or scaling up. The sequential 
partitioning method should be useful to deal with uncertainty in complex models 
when other methods are difficult to implement. The procedures employed vary from 
situation to situation, but the general approach is as follows. Complex models are 
first divided into independent compartments or modules, and appropriate techniques 
are used to identify the most critical variables in each module. Various methods are 
then employed to examine uncertainty associated with the critical variables from 
different compartments. For example, to study uncertainty in net ecosystem 
productivity, one may first use the Monte Carlo method to determine uncertainties 
related to the processes of photosynthesis and respiration separately, and then apply 
the probability theory method to combine the findings of these analyses. As all of 
the previously discussed methods of uncertainty analysis have limitations and as 
ecological models are getting too complex, the sequential partitioning method may 
be a promising alternative, given that successful division of complex models into 
independent compartments can be achieved. This approach requires the full access 
to the source codes of the models, a requirement that often cannot be met (Urban  
et al., Chapter 13).  

3.4.3 Presentation of Prediction Uncertainty 

Uncertainty from different sources is manifested in model output, and effective 
communication of the manifestations of uncertainty in modeling is a critical 
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component of uncertainty analysis. In this section we use some examples to show 
how results of uncertainty analysis can be summarized and reported as output 
uncertainty, prediction accuracy, and error contributions of critical factors.  

Output uncertainty is usually presented quantitatively as the probability 
distribution or statistical characteristics of model predictions. In the BFS and GLUE 
approaches, the uncertainty of each model prediction is defined by the probability 
distribution of model output. Thus, no additional analysis is needed. In other 
approaches (e.g., Taylor series, Monte Carlo simulation), the variance of an output 
variable is a common measure of error (Heuvelink 1998b, Rypdal and Winiwarter 
2001). Often, the confidence levels for predicted values of system variables are 
presented as indicators of degree of uncertainty, and coefficient of variation (CV) is 
used to compare uncertainties associated with different variables or different 
applications. There are no simple criteria for judging the acceptability of estimated 
prediction uncertainty in model applications. However, a clear indicator of 
unacceptable uncertainty is that the simulation results cannot be used to determine 
the basic status of the system being modeled. For example, high uncertainty may 
prevent researchers from unequivocally answering the following questions: Is the 
system a carbon sink or source? Does a system perturbation generate a positive 
effect or negative effect or no effect at all on the processes of interest? Failure to 
answer such questions will limit effective applications of simulation modeling to 
resource management.  

Many measures of prediction accuracy can be used in uncertainty analysis 
(Kvalseth 1985, Armstrong and Collopy 1992, Mayer and Butler 1993, Beldring 
2002). For example, the Nash-Sutcliffe modeling efficiency index, R2, is often used 
to assess the goodness of fit between model predictions and observations. The index 
is defined as (Nash and Sutcliffe 1970):  

R2 = 1 − Zi − ˆ Z i
2

i
∑ Zi − µZ

2

i
∑        (3.21) 

where Zi  is the observed value of Z and ˆ Z i  is the simulated value of Z. The values 
of R2 range from minus infinity to 1.0, with higher values indicating better 
agreement. Other error measures include root mean square error (RMSE) and mean 
absolute percentage error (MAPE). In addition, the goodness of fit may also be 
revealed by graphic displays of results, such as the plot of observed (Z ) against 
predicted ( ˆ Z ) values or the plot of residual ( Zi − ˆ Z i ) against predicted values. The 
selection of an error measure depends on the situation. None of the error measures is 
best in all circumstances (Armstrong and Collopy 1992).  

Determining how much error each of the critical factors contributes to the total 
uncertainty is important because this information may indicate how uncertainty can 
best be reduced. The questions to resolve are: What is the ranking of the relative 
contributions of factors to the total uncertainty of model output? Which factor is the 
most critical uncertainty source? The usual approach is to use the variance of the 
output distribution as a measure of prediction uncertainty because the variance can 

( ) ( )
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often be decomposed into meaningful parts. When the output variance can be 
partitioned, the analysis of uncertainty contributions becomes essentially a form of 
analysis of variance (Heuvelink 1998b). Although partitioning of variances is not 
always possible, it can be achieved by many techniques of uncertainty analysis. 
Notice that, for models with multiple outputs, rankings of input parameters as 
sources of uncertainty are not unique, but output specific (Klepper 1997). If a single 
set of ranks is of interest, one can use the ranks of output variables as weights to 
derive a composite ranking of input parameters for the model. Below, we discuss 
methods of partitioning variance and determining error contributions in association 
with sensitivity analysis, probability theory, Taylor series, and Monte Carlo 
simulation procedures.  

Klepper (1997) described a simple technique for determining the relative 
importance of output variables to input parameters in sensitivity analysis. The basic 
procedure is to run Monte Carlo simulations with parameter values sampled from 
the parameter space, obtain a linear regression model of the output variable on the 
corresponding parameters, and calculate relative sensitivity as an aid to inter-
pretation of the results. For the simple system defined in Equation 3.1, the regression 
model is in the form of 

Z = a + b ⋅ X + c ⋅Y         (3.22) 

where a, b, and c are the regression coefficients. The relative sensitivity is given by 
the standardized regression coefficient, i.e.,  

SX = b ⋅σ X σ Z          (3.23) 

SY = c ⋅σ Y σ Z          (3.24) 

where SX and SY are the relative sensitivity indices of variables X and Y, 
respectively. Equations 3.22, 3.23, and 3.24 can easily be extended to a general 
system with more variables and parameters. This approach is effective if the 
coefficient of determination of the regression model is high; otherwise, additional 
analyses are needed.  

For the analytical methods of uncertainty analysis (i.e., probability theory, 
Taylor series), variance partitioning is straightforward because the prediction error is 
already decomposed and treated as a function of the variances of the independent 
variables. The relative contribution of a variable to the total uncertainty is defined by 
the fraction of the terms associated with its variance (e.g., Equations 3.4, 3.7, and 
3.9). For example, the relative contribution by variable X as calculated by the Taylor 
series method (see Equations 3.8 and 3.9) can be expressed as  

UX = f σ X
2 σ Z

2          (3.25) 

f σ X
2 = ∂Φ / ∂X( )2 ⋅σ X

2 + ∂Φ / ∂X( ) ⋅ ∂Φ / ∂Y( ) ⋅σ XY    (3.26) 

( )

( )
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where UX  is the relative contribution to the total uncertainty by variable X, and 
f σ X

2( ) is uncertainty associated with variable X. Equation 3.26 assumes that the 
covariance is shared equally by the two variables involved. Similar equations can be 
derived for Y. This analysis can also be extended to a general system with more 
variables and parameters.  

When the Monte Carlo simulation method is employed, error contributions of 
critical factors must be determined indirectly because the variances are not given in 
an analytical form. Similar to the regression method discussed for sensitivity 
analysis, correlation analysis can be used with simulation results. Melching and 
Bauwens (2001) used correlation coefficients between model parameters (or 
variables) and model outputs to rank the importance of the parameters in predicting 
pollutant loading in streams. A more complicated method requires that, in addition 
to the Monte Carlo simulation that considers the uncertainty of all factors (i.e., σ Z

2 ), 
new simulations be conducted to define the uncertainty caused by a particular factor 
(Katz 2002). 

Katz (2002) described two approaches: the absence effect approach and the 
presence effect approach. The absence effect approach requires a new simulation 
with the uncertainties of all factors but one (e.g., X ) to calculate the top-marginal 
variance, which is defined as the expected reduction of prediction variance if the 
uncertainty of factor X is assumed to become perfectly known (Katz 2002). The 
procedure is represented by the following equations:  

U−X = σ −X
2 σ Z

2           (3.27) 

σ −X
2 = σ Z

2 −σ ALL − X
2         (3.28) 

where U−X  is the relative error contribution of the factor X, σ − X
2  is top-marginal 

variance of X, σ Z
2  is the variance caused by all factors, and σ ALL − X

2  is the output 
variance calculated without factor X. Similarly, the presence effect approach uses a 
different new simulation to consider the uncertainty only from factor X in 
calculating the bottom-marginal variance, which is defined as the prediction 
variance caused by the factor of interest when all other factors are assumed to be 
perfectly known (Katz 2002). The equation for the error contribution is given by 

U+X = σ +X
2 σ Z

2          (3.29) 

where U+X  is the relative error contribution of the factor X and σ +X
2  is the bottom-

marginal variance of X. For linear models with independent sources of uncertainty, 
U−X  and U+X  are the same and the sum of uncertainty contributions from all 
sources is equal to the total prediction variance. For complex models, however, both 
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the absence and presence effect approaches should be used to define the range of the 
relative error contribution of a particular factor (Katz 2002).  

3.5 CONCLUDING REMARKS 

Future research should focus on bridging data gaps and developing new techniques 
of uncertainty analysis so that uncertainty in complex models can be assessed 
effectively. Lack of good data is the most critical obstacle to uncertainty analysis 
(Berk et al. 2002). Conducting well-designed field experiments and observations, 
especially at large scales, to meet the data requirements for uncertainty analysis 
should be a top priority. However, the problem of inadequate data may be partially 
resolved by improving the way data are reported: the variability of key variables and 
parameters (e.g., variance, range) should be presented together with the mean 
values. Another challenge in uncertainty analysis is the high complexity of models 
needed to address environmental assessment and resource management issues at 
large scales. This difficulty may be resolved by the sequential partitioning method 
discussed above and the disintegrated uncertainty analysis approach recommended 
by Katz (2002). Both approaches imply a strategy of keeping uncertainty analysis 
simple and doable by assessing uncertainties in individual model components 
separately. Nonetheless, effective techniques should be developed to conduct 
uncertainty analysis with complex systems when data are incomplete and models are 
insufficiently verified. For example, quantitative information about spatial 
heterogeneity should be incorporated into scaling procedures to reduce uncertainty 
and improve predictions.  

Development of new techniques or innovative ways of using existing techniques 
should also be directed at creating capabilities of providing ideal outputs of 
uncertainty analysis – those that can fully characterize the uncertainty involved in 
modeling or scaling. These desirable outputs of uncertainty analysis include: (1) 
measures of model adequacy, (2) full probability distributions of model outputs 
(e.g., density function, probability-weighted values), (3) reliability of model results 
(e.g., accuracy, confidence level, error), (4) relative contribution or importance of 
each factor as an error source to total uncertainty, (5) the likelihood of different 
scenarios (probability or ranking), and (6) identification of the least understood or 
predictable components of the model (critical factors).  

It is imperative that prediction uncertainty be treated as a critical issue and 
uncertainty analysis as a mandatory component in scaling because uncertainty in 
scaling is inevitable and should be assessed thoroughly to ensure the credibility and 
reliability of scaling results. Important sources of uncertainty in scaling include 
scaling algorithms, model parameters, quality and natural variability of data, and 
heterogeneous environment. These uncertainties must be quantified and reduced to 
ensure that scaling results are used effectively in policy- and decision-making. The 
existing techniques of uncertainty analysis (e.g., Taylor series expansion, Monte 
Carlo simulation, Bayesian statistics) can provide basic information about prediction 
accuracy, effects of uncertainty from different sources on scaling results, and the 
relative importance of individual sources of uncertainty even though they have some 
major limitations. The use of uncertainty analysis in ecological studies has been 



64 H. LI AND J. WU 

rather limited. However, with recognition of the importance of uncertainty analysis 
in both research and application, uncertainty analysis will become an integral part of 
modeling and scaling.  
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CHAPTER 4 

MULTILEVEL STATISTICAL MODELS AND ECOLOGICAL 
SCALING 

RICHARD A. BERK AND JAN DE LEEUW 

4.1 INTRODUCTION 

A useful way to conceptualize ecological processes operating at different spatial 
scales is through what Wu (1999) calls hierarchical patch dynamics. A key notion is 
that a few parts of a large hierarchical structure can be studied in isolation insofar as 
these parts are distinguished from the rest by “near-decomposability.” In effect, a 
segment of special interest within the hierarchical structure interacts weakly with the 
rest and then only asymmetrically. In this chapter, we focus on a particular kind of 
segment comprised of nested elements; higher levels are composed of the 
components of the level below. We consider multilevel statistical models that can be 
used to describe how variables characterizing higher levels affect processes 
operating at lower levels.  

For simplicity, consider a subset of a hierarchy with two levels. The basic idea is 
to have a regression equation characterizing relationships at the lower (or micro) 
level and then have one or more of the regression coefficients at the micro level a 
function of predictors at the macro level. At the micro level, for instance, taxa 
richness may be a function of stream velocity (and other things). Then at the macro 
level, the regression coefficient linking stream velocity to taxa richness may be a 
function of proximity of the stream to land used for agriculture. Thus, one can 
address how the relationship between stream velocity and taxa richness varies (or 
not) in different locations, here with locale characterized by proximity to land use 
for agriculture. That is, one can learn when to generalize over sites and when not to 
generalize over sites. One can also learn how different scales are related.  

These sorts of relationships can easily be formulated as interaction effects within 
a conventional regression analysis. However, the usual estimation procedures will 
not properly characterize the uncertainty in the output, so that the confidence 
intervals and hypothesis tests will not perform properly. A key problem is that the 
model’s errors (or disturbances) are not likely to behave as if drawn independently 
from a single distribution. Special estimation procedures are required. Such 
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procedures, often constructed within a multilevel framework, are well known and 
widely available in existing software (Raudenbush and Bryk, 2002). Our goal, 
therefore, is to summarize some recent extensions of multilevel models to more 
complicated and realistic situations common in ecological research. In the next 
section we provide an overview of the work. Technical details follow in subsequent 
sections (the more formal theoretical work here is primarily the work of de Leeuw). 

4.2 EXTENSIONS OF MULTILEVEL MODELING 

Our first extension of traditional multilevel modeling allows for spatial 
autocorrelation in the residuals of multilevel models. More proximate spatial units at 
the micro level can be expected to have model disturbances that are more alike than 
spatial units at the micro level that are more distant from one another. Thus, 
transects that are closer together will likely have disturbances that are more similar 
than transects that are farther apart. Failing to take this spatial autocorrelation into 
account will generally lead to biased estimates of the standard errors, and hence, 
inaccurate confidence intervals and hypothesis tests. Uncertainty will be 
characterized incorrectly. 

Formally, a good solution to this problem for linear regression can be found in a 
classic paper by Ord (1975). For the usual sorts of regression models, one constructs 
a matrix capturing the distance between all micro units within each macro unit (e.g., 
transects within research sites) and builds that information into the estimation 
process. We initially adopted this approach, introduced it into a multilevel 
formulation, and applied it to two data sets. One data set was collected to study 
biodiversity in streams located in Ventura County, California, and the other was 
collected to study the impact of marine preserves on biodiversity and total fish 
biomass in coral reefs in the Philippines. 

Our early results were disappointing. First, there was essentially no theory or 
empirical research in ecology or related disciplines to inform in sufficient detail the 
construction of the distance matrix. One difficulty was, for example, that it was not 
clear how to measure distance given ocean currents, which transport nutrients more 
readily between some locals than others. “Distance” was a function of spatial 
proximity and the direction and speed of prevailing current; locations formally 
closer together could easily have less in common than locations farther apart. 
Another difficulty was that there are a number of different distance functions that 
could have been used in the distance matrix (e.g., exponential decay with increasing 
distance) and, again, there is no guidance from the scientific literature. We believe 
that similar problems are common for a wide variety of environmental applications.  

Second, except for very simple and somewhat unrealistic models, the numerical 
methods used in the estimation did not perform well. There were several technical 
reasons, but a key obstacle was that the regression coefficients and the distance 
matrix were “competing” for much the same information. This was because the 
predictors necessarily also contained spatial information. Micro units that were 
closer were likely to be more similar not just in their disturbances, but in the values 
of their predictors. Such predictors could include composition of the streambed and 
the amount of shading from trees along the banks, for instance. Because of the 



 SCALING WITH MULTILEVEL STATISTICAL MODELS 69 

 

competition for spatial information, the output from the statistical models tended to 
be very unstable. Small changes in the model or the data could introduce large 
changes in the output, which is a sure sign of trouble.  

Finally, we planned to move beyond multilevel linear models to multilevel 
generalized linear models. In generalized linear models outcome variables can be 
counts or proportions. Thus, we would be able to include popular procedures, such 
as logistic regression for binary outcomes and Poisson regression for count data. 
Unfortunately, the Ord’s approach led to effectively intractable mathematical 
problems when applied to generalized linear models.  

These difficulties forced us to reconsider the entire enterprise and indeed, the 
usual philosophy by which spatial modeling is undertaken. To begin, we suspect that 
for spatial regression models, far too much is made about the exact form of the 
distance matrix. With scant scientific guidance about how the distance matrix should 
be formulated, any one of several competing formulations can be applicable. But, 
there is no way to know which is the best. In addition, the distance matrix by itself  
is rarely of much scientific interest. Its usual role is to allow for more accurate 
estimates of the regression coefficients that are the real focus of scientific concern. 
In statistical parlance, the distance matrix represents a set of “nuisance parameters.”  

At a deeper level, George Box’s famous dictum applies: “all models are wrong, 
but some are useful.” Given the current state of subject-matter knowledge, it is naive 
to aim for the “right” model. And in the absence of the right model, many of the 
usual statistical concerns become relatively unimportant. In particular, confidence 
intervals and tests no longer have much probative value. Rather, one should develop 
models that are informative and relatively simple and that capture in broad-brush 
strokes the essential features of the empirical world at hand (Berk 2003).  

These and other considerations led us to consider methods by which the distance 
matrix could be well approximated and in a manner that eliminated much of the 
instability produced by taking the Ord approach. Two methods now seem to be 
especially effective. The first method extracts the eigenvectors of the distance matrix 
and uses the first few to adjust for spatial autocorrelation. This still requires, 
however, that a distance matrix be specified. The second method constructs simple 
functions of the spatial coordinates (e.g., longitude and latitude) and uses these to 
adjust for spatial autocorrelation. For example, one might include longitude, latitude, 
and their product. Analyses of real data and our own simulations indicate that both 
methods work well, although the second method is somewhat simpler to implement. 
Moreover, one can in both cases improve the approximation of the distance matrix 
as much as desired by using more of its eigenvectors or more complicated functions 
of the spatial coordinates. That is, one can make the approximations arbitrarily close 
to the specified distance matrix, although at some point the instabilities reappear. 
Finally, we have developed novel algorithms for estimating multilevel linear models 
with spatial autocorrelation that have been implemented in our software. The formal 
properties of these procedures have also been derived.  

With our new approach, we can now easily turn to multilevel generalized linear 
models with spatial autocorrelation. All of the pieces are now in place. It is 
important to emphasize again, however, that we have in important ways refor-
mulated the manner in which the modeling is approached; we are no longer  
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seeking the right model but rather, a useful model (For a rich elaboration on this 
point, see Berk 2003, p. 206-218).  

4.3 THE FORMAL STRUCTURE OF MULTILEVEL MODELS 

We have built on several existing traditions in statistics. Spatial regression models 
(Anselin 1988) are heteroscedastic linear models with correlated disturbances, in 
which the covariance between the disturbances depends on the spatial distance of the 
sites. Random coefficient models (Longford 1993) are heteroscedastic linear models 
with correlated disturbances, in which the covariance between the disturbances 
depends on the predictor similarity of the sites. Multilevel models (Kreft and de 
Leeuw 1998) are random coefficient models in which the predictor similarity is 
determined by the fact that sites are grouped into clusters. Disturbances between 
clusters are uncorrelated, but within clusters the covariance depends on the predictor 
similarity of the sites. Since distance and similarity are closely related constructs, 
one would expect a relationship between these three classes of models. 

Spatial regression models and random coefficient models both have correlated 
disturbances, with the size of the correlation depending on the similarity of the sites. 
Similarity can be defined spatially or, more generally, in terms of similarity of the 
sites on a number of predictors which may not be spatial. Multilevel models simplify 
the overall correlation structure by assuming that sites in different clusters are 
uncorrelated, which means that the covariance matrix of the sites is block-diagonal, 
and presumably sparse. 

It should come as no surprise, then, that much of our work relies on the earlier 
work of many others. But, we make four new contributions as follows: (1) we 
combine autoregressive models with multilevel models; (2) we consider spatial 
effects both as functions of non-spatial covariates with random coefficients and as 
autocorrelated disturbances; (3) we usefully approximate autocorrelated disturbance 
structures by using spatial regressors with random coefficients; and (4) we develop 
augmentation and majorization methods to estimate generalized multilevel 
autoregressive models. These are iterative computational methods dealing with the 
nonlinearities in such models (De Leeuw 1994).  

The first three contributions are summarized below. Our work on the fourth 
contribution is available upon request. We also have a single, broad “take-home 
message.” The development of statistical tools for environmental applications and 
the use of those tools should forego the traditional search for the “correct model” 
and focus instead on building one or more “useful models.”  

4.3.1 Basics 

We assume multilevel data. In the simplest case with two levels, the units of level 
one (which we call the one-units) are nested in units of level two (the two-units). 
Because of our concentration on spatial examples, we will often use the terminology 
of (research) “sites” and “transects” for the units in our levels. Transects are nested 
in sites. In the two-level case, we have m two-units, and within two-unit j, we have 
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nj one-units. For each two-unit j, there is a vector zj, of length p, of regressors 
describing the two-units. This implies that there will be p regression coefficients, 
excluding the intercept, for two-units. There are also (nj x q) matrices Xj of 
regressors describing one-units. This implies that there will be q regression 
coefficients, excluding the intercept, for one-units. The total number of one-units in 
all m two-units is n.  

We usually allow for an intercept in regression models. So, we add a column of 
nj x 1 columns of 1’s to Xj, with 1 as the lead element in zj. Then, the standard two-
level model assumes that within each two-unit j we have a random-coefficient 
regression model of the form  

yij = xijs β jss=0

q
∑ + εij .         (4.1) 

Here, i is the index used for one-units (I = 1, 2, …, nj), which are nested in the two-
units. We follow conventional practice and assume that the disturbances ε ij are 
uncorrelated with the predictors; there are no “omitted variables” at the one-unit 
level, and the functional forms are appropriate. In practice, these assumptions must 
be carefully examined and justified. Often they will be found wanting. Note that 
random variables are always underlined and that we use element-wise notation 
initially, but matrix notation further on. 

The q+1 random regression coefficients β
js

 in Equation 4.1 express the 
relationship between the first-level predictors and the outcomes. These random 
coefficients, of which there are p+1 for each two-unit j, are themselves outcomes of 
a second regression model, with fixed regression coefficients, shown in the equation 

β js = z jrγ rs
r=0

p
∑ + δ js ,       (4.2) 

in which the random regression coefficients are outcomes predicted by second-level 
predictors. Again following convention, we assume that the disturbances, δ js , are 
uncorrelated with the predictors; there are no “omitted variables” at the two-unit 
level, and the functional forms are appropriate. Of course, both assumptions are 
likely to be substantially wrong in practice, which again underscores the need to 
focus on useful models, not correct models. More will be said about this later.  

In the spatial case, the first level predictors describe properties of the transects. 
They can be spatial, in the sense that they are functions of the coordinates of the 
transects, or non-spatial. The second level predictors describe properties of the sites, 
and again they can be spatial or non-spatial. 

One can substitute Equation 4.2 into Equation 4.1 to write the model as a single 
equation: 
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yij = xijss=0
q∑ { z jrγ rs + δ js}r=0

p∑ + εij

     = xijsz jrγ rs +r=0
p∑s=0

q∑ xijsδ jss=1
q∑ + εij .

     (4.3) 

Thus, we see that the fixed part for two-unit j has the form  

E( yij ) = γ rss=0

q
∑

r=0

p
∑ z jr xijs          (4.4) 

with (p+1)(q+1) fixed predictors, each a product of a first-level and a second-level 
variable, often called “interaction variables.” The random part has the form  

yij − Ε( yij ) = xijsδ js + εijs=0

q
∑ .       (4.5) 

Thus, first-level disturbances for different two-units are uncorrelated, and so are 
second level disturbances. The dispersion matrices of the first-level disturbances are  

Ε( ε j ′ ε j ) = σ j
2Λ j ,         (4.6) 

and those of the second-level disturbances are  

E(δ jδ
′

j ) = σ j
2Ω j .         (4.7) 

The dispersion matrix, σ j
2Λ j , allows the one-unit disturbances ε ij for a given 

two-unit to have different variances and to be correlated with one another. The 
dispersion matrix, σ j

2Ω j , allows the disturbances δ js  for a given two-unit to have 
different variances and to be correlated with one another. The former is where 
spatial dependence not captured by the regressors is likely to be seen. The latter will 
reflect dependence between the random coefficients that is not spatial, but a result of 
chance processes not captured by the two-unit model. 

As a practical matter, it will be impossible to estimate the values of Λ j  and Ω j . 
These matrices contain weights that determine the disturbance variances and 
covariances and as such, there are far too many parameters to estimate. Often to 
simplify we suppose that Ω j  are the same for all two-units, and usually σ j

2 are 
supposed to be the same too. Still, in most cases (see the examples below), Ω j  and 

We now need some additional assumptions on the distribution of the disturbance 
terms. Some very general ones are: Ε(εij ) = 0 ; Ε(δ js) = 0; 

 
C (εij ,εkA) = 0 if 

  j ≠ A ; 
  
C (δ js ,δ At ) = 0  if   j ≠ A ; and 

 
C (εij ,δ As) = 0 . 



 SCALING WITH MULTILEVEL STATISTICAL MODELS 73 

 

Λ j  are assumed to depend on a small number of parameters θ , which may again be 
constant over two-units.  

4.3.2 Example 

A simple spatial example may help clarify the model. It is not intended to be 
realistic, but to illustrate some key concepts. The one-units are observation stations, 
and the two-units are one of three counties. We suppose that rainfall at station i in 
county j depends on altitude (alt) and distance from the ocean (dfo).  

rain ij = β
0 j

1ij + β
1 j

altij + β
2 j

dfoij + ε ij ,      (4.8) 

where 1ij  is the intercept, which is equal to one for all one-units. We do not assume 
that the regression coefficients are the same for all three counties. In fact, they vary 
according to a second regression model, for which we use indicator variables coding 
for the counties in the study. Thus, for s = 0, 1, 2,  

β
js

= γ 0s1 j + γ 1sLA j + γ 2sSB j + δ js ,       (4.9) 

where again 1ij  is the intercept, now equal to one for all two-units. All observation 
stations in Los Angeles County (LA) have the same random coefficient distribution, 
and so do the observation stations in San Bernadino County (SB) and those in 
neither Los Angeles nor San Bernadino County.  

If one substitutes the equations at the county level into the equations at the 
station level, for ki ≠  and assuming for notational simplicity that σ j

2  and Ω j  are 
the same for all two-units,  

C (rain ij ,rainkj ) = σ 2[1 altij dfo
ij

]
ω 00 ω 01 ω 02
ω 10 ω11 ω12
ω 20 ω 21 ω 22

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

1
altkj
dfokj

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
  (4.10) 

Thus, the covariance between the one-units in the same two-unit is determined 
by the similarity of predictor values of the one-units, where similarity is measured 
by their inner product in the matrix Ω . This is a key insight, which shows why 
estimation of the parameters in spatial multilevel models can be difficult when one 
believes that certain sets of disturbances are correlated as well.  

4.3.3 Matrix Notation 

Define the matrix Zj as the direct sum of q copies of the row vector zj
t. Thus, it is q 

by qp, and it looks like  
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Z j =

′ z j 0 0 ... 0
0 ′ z j 0 ... 0
0 0 ′ z j ... 0
0 0 0 ′ z j 0
0 0 0 0 ′ z j

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

       (4.11) 

Using this matrix and stacking the γ rs  in a single vector γ , we can rewrite 
Equation 4.2 as  

β
j

= Z jγ + δ j ,         (4.12) 

If we substitute Equation 4.12 into Equation 4.1, we find  

y
j

= U jγ + X j δ j + ε j ,        (4.13) 

E( y
j
) = U jγ , with U j ∆ X j Z j ,      (4.14a) 

V ( y) = σ j
2 (X jΩ j ′ X j + Λ j ) .      (4.14b) 

It is convenient to write ∑ j  for X jΩ j ′ X j + Λ j . Now Uj is of the form  

  U j = [ x j1 ′ z j / x jq ′ z j ] ,       (4.15) 

where x jr  is column r of Xj. Thus, in Equation 4.14a, the predictors in Uj are 
products of a first-level predictor from X and a second-level predictor from Z. In 
principle, all these cross-level interactions are part of the model, but we can 
eliminate some of them by setting the corresponding element of γ  equal to zero. 
Also observe that often the first column of both the Xj and of Z is an intercept 
column with all elements equal to +1. If we form all cross-level interactions, this 
implies that the columns of X and Z themselves also occur as predictors, because 
they are the intersections with the intercept at the other level. 

4.3.4 Generalizations 

4.3.4.1 More than two level 

In a more-than-two-level model, there are one-units, two-units, and so on, nested 
within each other. For instance, we can have transects nested within streams nested 
within watersheds. For this case we can adopt a more general notation. Suppose we 
have nr observations on level r, and qr predictors on that level. Thus, we have 
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nr × (qr + 1)  matrices X (r) with predictors. We also use indicator matrices G(r), which 
are nr × nr+1, and which indicate how the r-units map into the (r+1)-units. 

The first two equations defining our multilevel model are  

y
i1
(1) = xi1s1

(1)

s1 = 0

q2

∑ gi1i2

(1) y
i2s1

(2)

i2 =1

n2

∑ + ε i1
(1),      (4.16a) 

y
i2s1

(2) = xi2s2

(2)

s2 = 0

q2

∑ gi2i3

(2) y
i3s1s2

(3)

i3 =1

n3

∑ + ε i2s1

(s) .     (4.16b) 

Thus, we have n1 random variables in y(1) . These are the observed outcomes. 
We have n2 × q1 unobserved random variables in y(2) , these are the random 
regression coefficients from our previous formulation. Then we have n3 × q1 × q2 
unobserved random coefficients in y(3), and so on. 

In the same way as before, we can combine equations to form single equations, 
which rapidly become unwieldy. For both mathematical reasons and ease of 
interpretation, it is wise to work with the fewest levels that can be justified. In 
practice, complex models also can have very unstable results and often will not 
converge at all. It is far better to have a model that is too simple than a model than is 
too complex. From Equation 4.16 we find, for example, 

y
i1
(1) = xi1s1

(1)

s1 = 0

q1

∑ gi1i2

(1) [ xi2s1s2

(2)

s2 = 0

q2

∑
i2 =1

n2

∑ gi2i3

(2) yi3s1s2

(3)

i3 =1

n3

∑ + εi2s1

(s) ] + ε i1
(1) .  (4.17) 

4.3.4.2 Multivariate outcomes 

If there is more than one outcome variable, we can use a simple trick to force the 
model into the multilevel framework. We use variables as the first level. Thus 
variables are nested in transects, transects in sites, and so on. For example, if there 
are three outcomes contained in three columns of the data set, one can reorganize the 
data so that within each one-unit there are three rows, one for each outcome. In each 
of these rows is the value for each of the three outcome variables respectively, with 
the values in the columns for predictor variables duplicated three times. Having 
multiple outcomes just adds a level to the hierarchy. In addition, missing data on the 
outcomes can be incorporated without difficulty, because some transects simply 
have fewer units (i.e., variables) than others.  

We suspect that because there are often several ecologically interesting response 
variables for a given analysis, this approach to multiple outcomes can be widely 
useful. That is, even if there is no need for multilevel models because of a particular 
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hierarchical structure, multilevel level models can be used when there is a need to 
consider more than one outcome at a time.  

4.3.4.3 Non-independent two-units 

In our models, we usually assume that Ω j  are the same for all sites. With this 
assumption, it is possible to use a simple model for correlated sites, which has 

4.3.4.4 Generalized MAR models 

In the same way as linear models are generalized to generalized linear models, one 
can try to construct generalized mixed linear models from mixed linear models. The 
trick is simply to condition on the random effects. In generalized linear models, 
first-level observations are independent given the random effects, and thus, the 
conditional distribution is a simple product of univariate Poisson, binomials, or 
gammas. But in generalized mixed linear models with autocorrelated or spatially 
correlated first-level disturbances, one no longer can use independence, and there is 
a need to assume that the disturbances within sites have multivariate Poisson, 
binomial, or gamma distributions. There is no agreement in statistics about how to 
define such multivariate distributions, and the definitions that are popular do not 
have many of the simplifying properties of the univariate versions. 

We shall see below, however, that models with correlated first-level disturbances 
can be approximated by models with additional random effects and uncorrelated 
first-level disturbances. In these approximations, conditioning on the random effects 
makes the observations independent again, and the results developed for generalized 
mixed linear models apply again. This is perhaps the key technical point of this 
paper. To see why this works, we need to consider in greater detail the nature of the 
disturbances in the models.  

4.4 MODELS FOR DISTURBANCE DISPERSIONS 

The dispersion matrices Λ j  of first-level disturbances can take many different 
forms. Generally, they are a function of a number of unknown parameters, collected 
in a vector ρ . Estimation simplifies considerably if the Λ j  are known, and in 
particular in the homoscedastic case with uncorrelated disturbances in which 

  
C ( y

j
, y

A
) = σ jA (X jΩ ′ X A + Λ j

1 / 2ΛA
1 / 2       (4.18a) 

for all   j ≠ A , and  

C ( y
j
, y

j
) = σ jj (X jΩ ′ X j + Λ j )        (4.18b) 

for all j, where   σ jA  are the covariances between sites. 
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Λ j = I j , the identity matrix of order nj. But in spatial situations the assumption that 
the disturbances are uncorrelated often is difficult to defend. 

This is why a great deal of attention has been paid to modeling the dependence 
of spatial observations, taking as the main inspiration the literature on time series 
models. The key paper in spatial autoregressive (SA) modeling is Ord (1975). Also 
compare Griffith (2002b) and Anselin (2001). There are various forms of these SA 
models, but the most important ones are one-parameter models, in which the single 
parameter ρ  is interpreted as spatial autocorrelation. It indicates the strength of the 
spatial effects.  

In multilevel models, restrictions are often placed on Ω j . For instance, it is 
common to assume that they are equal or that specific elements are zero. We shall 
discuss these restrictions later, and concentrate here on the first-level disturbances. 

4.4.1 The Spatial Lag Model 

The spatial lag model is also known as the AR, or autoregressive response model. It 
specifies  

y
j

= ρ jW j y
j

+ X j β
j

+ ε j ,       (4.19) 

where ε j  is homoscedastic with variance σ j
2 . With y

j
 on both sides of the equal 

sign, this is an AR model with 

E( y
j

β j ) = (I j − ρ jW j )−1 X j β j        (4,20a) 

V ( y
j

β j ) = σ j
2[(I j − ρ jW j )(I j − ρ j ′ W j )]−1.     (4.20b) 

In this formulation, the autoregression is defined directly in terms of the 
outcomes. The spatial dependence is built into the model in a structural manner. 
That is, the data analyst will typically have a subject-matter rationale for why and 
how values of the outcome variable are related. For example, if water quality in a 
lake is the outcome of interest, there may be diffusion of pollution from any one 
location to locations nearby. Depending on the value of ρ j , the diffusion effects 
might be large or small, or perhaps even be negative. Note also that to isolate the 
role of the predictors, adjustments have to be made for the diffusion process, which 
links the outcome across locations. A failure to make such adjustments may mean 
that effects attributed to one or more of the predictors are really just a result of the 
movement of pollution from one place to another.  
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4.4.2 The Spatial Error Model 

The spatial error model is also known as the SAR or simultaneous autoregressive 
model (Anselin 2001). It is expressed as 

y
j

= X j β
j

+ ζ
j
,         (4.21a) 

and it assumes an autoregression structure for the error terms. Thus  

ζ
j

= ρ jW j ζ j
+ ε j ,         (4.21b) 

where the ζ
j
 are homoscedastic with variance σ j

2. This leads to 

E( y
j

β j ) = X j β j ,         (4.22a) 

V ( y
j

β j ) = σ j
2[(I j − ρ jW j )(I j − ρ j ′ W j )]−1.     (4.22b) 

This formulation implies that the spatial dependence is not potentially 
confounded with the predictors. It derives solely from dependence among the 
disturbances themselves. Disturbances that are more proximate in space, for 
instance, may tend to be more alike than disturbances that are farther apart. The 
reasons for the dependence are usually not of much interest. As such, the 
dependence is a mere nuisance and/or beyond current subject matter interest.  
The goal is to “mop up” the spatial dependence in the disturbances so that it does not 
affect the precision of estimates of the β j  or estimates of their standard errors.  

4.4.3 The Conditional Autoregression Model 

Under the conditional autoregression model (CAR), also discussed in Anselin 
(2001), we let  

y
j

= X j β
j

+ (I j − ρ jW j )−1/ 2ε j ,       (4.23) 

where W j  is now a symmetric weight matrix, and ε j  is homoscedastic with 
variance σ j

2. This implies 

E( y
j

β j ) = X j β j ,         (4.24a) 

V ( y
j

β j ) = σ j
2[(I j − ρ jW j )]−1.      (4.24b) 
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If dependence in the disturbances can be treated as a mere nuisance, the model 
that one uses for the disturbances is of little importance as long as the dependence is 
taken into account when the regression coefficients are estimated. In this context, the 
conditional autoregressive model can be seen as an alternative to the spatial error 
model, and it has some of the same look and feel. Larger values of ρ j  imply more 
dependence among the disturbances. And just as for the spatial error model, the 
dependence may be a function of distance; closer disturbances may tend to be more 
alike. The main advantage of CAR model is that it can be as effective in mopping up 
dependence in the disturbances as the spatial errors model, but will be far easier to 
compute. 

4.4.4 Weight Matrices 

How to choose Wj has been discussed many times in the geostatistics literature. A 
good review is Bavaud (1998; see also Cressie 1991). Although it is possible to give 
some general indications, choosing a precise and appropriate Wj is difficult, 
probably even more difficult than choosing a correct set of predictors. The usual 
problem is that there is too little a priori knowledge to inform the choice and at best 
some general clues in the data. 

4.4.4.1 Choice of weights 

For Wj in spatial situations, we assume that its elements are similarities of transects 
in site j. The more similar (the closer) the transects, the larger the corresponding 
element in Wj. If we do not have a good reason to choose a specific Wj, we can make 
it some (decreasing) function of the transect distances, but again choosing the 
function is often disturbingly arbitrary. In many cases, moreover, we even want to 
replace simple Euclidean distance by other distances (measured along a network or 
stream, for instance), which take the actual spatial setting into account. Throughout, 
we suppose the elements of Wj are non-negative.  

4.4.4.2 Large matrices 

In spatial analysis we often encounter situations in which the order of Wj is very 
large, maybe 105 or 106. Obviously in such cases, it will generally not be possible to 
store floating-point matrices of this size, let alone compute their determinants, 
inverse, or eigen-decomposition.  

There are several ways around this problem. The first is to use patterned weight 
matrices of zeroes and ones (coding adjacency or nearest neighbor, for instance), 
with a determinant or an inverse available in analytical form (Pace and Zou 2000). 
The second is to use sparse matrix techniques for weight matrices with a very large 
proportion of zeroes (Pace and Barry 1997a, 1997b, 1997c) (again, adjacency 
matrices come to mind). We have also seen that multilevel analysis suggests 
partitioning transects or sites into clusters, and making the between cluster covariance 
equal to zero. This also introduces a great deal of sparseness. And finally, fast 
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numerical approximations to the loss function are also a possibility. Specifically, 
techniques for approximating the determinant in the normal log-likelihood for all 
AR, SAR, and CAR models are in Smirnov and Anselin (2001) and Griffith (2002a). 

In the models discussed in this paper, we have the additional complication that 
the dispersion matrix is made up of two components: a part based on similarity of 
the regressors and a part based on spatial information, coded in the weight matrices. 
This makes patterned weight matrix and sparse matrix techniques more difficult to 
use, and we have to resort to other types of approximations. 

4.4.4.3 Normalizing the weights 

It is computationally convenient if the weight matrices in the SAR and AR models 
are symmetric. Then, we get a more simple formulation,  

(I j − ρ jW j )(I j − ρ j ′ W j ) = (I j − ρ jW j )2, 

which is easier to work with. Unfortunately, in many applications an asymmetric set 
of weights may make more sense (think of the influence of stream flow or hillside 
slope on ecological distance, for instance). 

Consider why having symmetric matrices is convenient. If the Wj are known 
symmetric matrices, one can compute the spectral decomposition, W j = K jΦ j ′ K j , 
and we find 

Λ j (ρ j ) =
1

(1 − ρ jφ js)2s
∑ k js ′ k js  for SAR     (4.25a) 

and Λ j (ρ j ) =
1

1 − ρ jφ jss
∑ k js ′ k js  for CAR.    (4.25b) 

Thus, the eigenvectors of Λ j (ρ j )are the same as those of Wj, and the eigenvalues 
are simple functions of the eigenvalues of Wj. If ρ j  changes, only the eigenvalues 
change; the eigenvectors remain the same. 

For interpretation purposes, one can normalize the weights in such a way that the 
rows of Wj sum to unity. This makes the weight matrix stochastic, and by Frobenius 
theorem implies that the largest eigenvalue of Wj is equal to +1. This means that the 
smallest eigenvalue of I j − ρ jW j  is 1 − ρ j , and thus I j − ρ jW j  is positive definite 
as long as ρ j < 1, which helps in the interpretation of ρ  as a type of autocorrelation 
coefficient. 

In some cases, it is desirable for Wj to be both symmetric and normalized (i.e., 
doubly stochastic). This is discussed for CAR models in Page and LeSage (2002). 
We have developed an algorithm and computer codes to normalize non-negative 
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symmetric matrices in such a way that they become doubly stochastic (the codes 
available upon request). 

4.4.5 Special Case: Time Series Models 

If the outcomes are one-dimensional (e.g., if transects are arranged in lines), then it 
makes sense to use a time series model for the first-level disturbances (Hedeker 
1989, Hedeker and Gibbons 1996). We discuss these models here briefly because 
they show where the SA models come from, and because they are more likely to be 
familiar. 

A first obvious choice for a time-series model is the random walk, which has  

ε j = W j ε j + ζ
j
,        (4.26) 

where W j  has all elements equal to zero, except for those immediately below the 
main diagonal, which are one. It follows that  

ε j = T jζ j
,          (4.27) 

where Tj has all elements on and below the main diagonal equal to one and all 
elements above the main diagonal equal to zero. Thus,  

Λ j = T j ′ T j ,          (4.28) 

which means that element (s, t) is equal to min(s, t). 
In an AR(p) process,  

ε j = W j ε j + ζ
j
,        (4.29) 

where Wj has a band of width p below the diagonal and zeroes elsewhere. There are 
p parameters, the autoregression coefficients, in Wj. The AR(1) model is much like 
the random walk, except that the element below the diagonal is the single parameter 
ρ j . 

An MA(q) process also uses a banded matrix with parameter values, but now  

ε j = W jζ j
,         (4.30) 

where Wj has diagonal one, and a band of width q in each row below the diagonal. 
Thus, an MA(1) has diagonal one, and ρ j  below the diagonal. 

It is easy to extend this to ARMA( p,q) and even more complicated processes, but 
this is comparatively straightforward and it may be overkill in many practical 
situations. For our purposes, the most interesting models are AR(1) and MA(1), 
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which can be defined in term of the backshift matrix B j , which has elements equal 
to one below the diagonal only. Then for AR(1), we have 

Λ j (ρ j ) = I j + ρ j B j
−1

I j + ρ j ′ B j
−1

,     (4.31a) 

and for MA(1) we have  

Λ j (ρ j ) = I j + ρ j B j I j + ρ j ′ B j .      (4.31b) 

The random walk is AR(1) with ρ j = 1. 

4.5 MODEL APPROXIMATION 

Now we turn to approximations of various AR models that can lead to practical 
computational results. Because, as noted earlier, the concept of “the true model” is at 
least obscure and because even if we know how to think about “the true model,” we 
usually do not have very precise information about which Wj produces it, it makes 
sense to employ an approximation of the dispersion matrix that is computationally 
convenient. We will first simplify the model by an approximation that works well 
for small ρ j , and then we approximate the model by another formulation with 
homoscedastic first-level disturbances (i.e., a model with Λ j = I j ). 

4.5.1 Simplified AR 

Consider again the SAR model described in the section of the spatial error model 
above. Recall that the variance-covariance matrix of the disturbances was 
σ j

2[(I j − ρ jW j )(I j − ρ jW j )]
−1

j
2 represent

Λ j (θ ) . In the Simplified AR Model (SIMAR), assume  

Λ j (θ ) = I j + ρ jW j ,        (4.32)  

where the off-diagonal elements of the symmetric matrix Wj are again some 
decreasing function of the Euclidean distances between the transects or, more 
generally, of the spatial dissimilarities.  

In the CAR model, if ρ j  is small,  

(I j − ρ j ′ W j )−1 = I j + ρ jW j + o(ρ j ) ,      (4.33) 

and in the SAR and CAR models,  

, where all  of  the terms to the right of σ

( (

(

( (

( ((
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Λ j( ρ j ) = (I j − ρ jW j )−1(I j − ρ j ′ W j )−1

        = I j + ρ j (W j + ′ W j ) + o( ρ j ) , 
     (4.34) 

which are both of the SIMAR form. 
For both AR(1) and MA(1), and small ρ j ,  

Λ j = I j + ρ j (B j + ′ B j ) + o( ρj ) ,      (4.35) 

which is again of the required SIMAR form. 

4.5.2 Spatial Effects As Random Coefficients 

By using random coefficients in appropriate ways, one can emulate the covariance 
structure of the SIMAR without assuming correlated disturbances for the first-level 
units. Thus, one can maintain Λ j = I j . The trick is really quite simple. In our 
spatial multilevel models  

y
j

= U jγ + X j δ j + ε j ,        (4.36) 

V ( ε j) = σ j
2 (I j + ρ jW j ) .         (4.37) 

Now suppose W j = K jΦ j ′ K j  is the spectral decomposition of Wj. Then,  

y
j

= U jγ + X jδ j + K jη j
+ ζ

j ,      (4.38) 

where δ j  and η
j
 are uncorrelated, and where  

V (η
j
) = σ j

2ρ jΦ j ,        (4.39a) 

V (ζ
j
) = σ j

2I j .         (4.39b) 

But, Equations 4.38 and 4.39 can be interpreted as a simple multilevel model in 
which the covariance matrix of the random effects is of the form  

Ω 0
0 ρ jΦ j

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ .          (4.40) 

First-level disturbances are homoscedastic, and the regression coefficients 
corresponding with the eigenvector-predictors Kj only have a random part and a 
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vanishing fixed part. Moreover, the random parts are uncorrelated, with a diagonal 
dispersion matrix proportional to the eigenvalues of Wj. In short, one can write the 
SIMAR model as a multilevel model with restrictions on the covariance matrix of 
the random effects. 

4.5.3 Positive Definite Variances 

One problem with this formulation is that it is not guaranteed that the eigenvalues 
Φ j  of Wj are non-negative. If there are negative eigenvalues, then Equation 4.39a is 
difficult to interpret. One can use the fact, however, that I j + ρ jW j  must be positive 
definite. Suppose ρ j > 0 , and write yj for the smallest eigenvalue of Wj. Then,  

I j + ρ jW j = (1 + ρ jψ j )I j + ρ jK j (Φ j −ψ j I j ) ′ K j ,    (4.41) 

and we can rewrite Equation 4.39 as 

V (η
j
) = σ j

2ρ j (Φ j −ψ j I j ) ,       (4.42a) 

V (ζ
j
) = σ j

2 (1 + ρ jψ j )I j .       (4.42b) 

These are somewhat more complicated restrictions, but they always give positive 
semidefinite dispersion matrices.  

4.5.4 Using Fewer Eigenvalues 

A second problem with our approximation is that we replace a very large spatial 
disturbance covariance matrix with a very large number of random effects. The 
number of random effects added is equal to the order of the spatial covariance 
matrix. We attack this problem by using only a small number of eigenvectors of Wj, 
those corresponding with the largest eigenvalues (in modulus). Thus, we use a 
principal component type approximation to the random effects. With spatial 
information in Wj using some function of the distances, two or three principal 
components are likely to give a rather good approximation. 

4.5.5 General Approach 

Instead of approximating the SA models by SIMAR, and then approximating 
SIMAR by using eigenvectors, one can employ a more straightforward approach 
that can reduce the computational burdens. Consider the following multilevel model 
for site j  

y
j

= X j β
j

+ Z jη j + ε j ,        (4.43) 
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where Xj contains regression coordinates, and Zj contains functions of the spatial 
coordinates. For our second level model, we use 

β
j

= A jγ + δ j ,         (4.44a) 

η
j

= B jκ + ξ
j
.         (4.44b) 

This implies 

    y
j

= X j A jγ + Z j B jκ + ν j  ,       (4.45a) 

where 

v j = X jδ j + Z jξ j
+ ε j ,       (4.45b) 

and thus, with suitable uncorrelatedness assumptions, 

E( y
j
) = X j A jγ + Z j B jκ ,        (4.46a) 

V ( y
j
) = σ j

2 (X jΩ j ′ X j + Z jΘ j ′ Z j + I j ) .      (4.46b) 

This becomes an approximate multilevel Ord model if we let Bj = 0 (i.e., the 
spatial regression coefficients do not have a fixed part), and we let Θ = ρ j

2I j  (i.e., 
the spatial regression coefficients are uncorrelated). Then, 

E( y
j
) = X j A jγ ,         (4.47a) 

V ( y
j
) = σ j

2[ X jΩ j ′ X j + (I j + ρ j
2Z j ′ Z j )] .     (4.47b) 

Moreover, to get closer to SA, one can choose Zj in clever ways, using the results 
that we discussed earlier in this section. If the Wj matrix in the Ord model is a 
function of the spatial distances, then it obviously is a function of the coordinates, 
and thus all its eigenvectors are functions of the coordinates. If we choose Zj as a 
low-rank (principal component) approximation of Wj, using the eigenvectors, then 
we can get very close to the Ord model. 

With the practical approximation of the Ord Model, applications to the 
generalized linear model follow easily and directly. Work on these extensions is 
nearly completed, and software development has begun.  
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4.6 EMPIRICAL EXAMPLE 

We have data from coral reefs along Olango Island in the Phillipines (unpublished 
data provided by Craig Schuman and Domingo Ochavillo). There are 33 sites with 
four transects in each. There are 14 sites in areas that are protected; fishing is 
prohibited. There are 19 sites that are in unprotected areas; fishing is allowed (and is 
common). And the fishing can include very destructive practices such as poisoning 
fish. The data that we analyze is an aggregate over four equally spaced observations 
along each transect. Thus, transects are our lowest level, and the second level is sites 
in the multilevel spatial model.  

To keep the example simple, we use the same formulation illustrated in the 
example section above. The main difference is that the specific response is the 
number of different fish species. Therefore, the results reported are for a Poisson 
response variable within our multilevel framework. At the lowest level, the number 
of fish species is a function of how sandy the bottom is. The larger the percent of the 
bottom that is sandy, the fewer species one would expect. This relation depends on 
the intercept ( β0) and the slope of regression ( β1) at the level of the site. Then, the 
intercept is a function of whether the reef is protected via γ 0. Note that a reef is 
coded 1 if the reef is protected and 0 otherwise. The slope is also a function of 
whether the reef is protected via γ 1. Thus, both of the parameters at the level of the 
site are treated as random coefficients with a structural component determined by 
whether the reef is protected. In Table 4.1, we used an augmentation algorithm, but 
the results are much the same for any of the simplifications that we have discussed. 

Table 4.1. Model for species counts estimated by augmentation algorithm (N = 132). 

Predictor Coefficient Standard Error 
Protected ( γ 0) 5.58 3.75 
% Sandy Bottom ( β1) -0.18 0.04 
Protect X % Sandy ( γ 1) 0.05 0.08 
Constant ( β0) 27.6 2.10 
θ  (AR parameter) 0.44  –  

Focusing first on the regression coefficients from Table 4.1, one can see that if a 
reef is unprotected there are on average nearly 28 distinct fish species at a site. At 
these unprotected sites, for each additional percent of the bottom that is sandy, the 
number of species drops by 0.18; for every additional 10%, the number of species 
drops by 1.8. In the protected sites, the number of fish species is greater by 5.58. 
Finally, in the protected sites, the negative impact of a sandy bottom on the number 
of species is a bit less pronounced. The regression coefficient of -0.18 is now -0.13. 
For every 10% increase in sandy bottom, the number of species is reduced by 1.3.  

The autoregressive parameter is 0.44, which is of moderate size. There is some 
meaningful spatial autocorrelation in the residuals. When this is taken into account, 
we see in Table 4.1 that the percent of the bottom that is sandy is easily twice the 
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standard error. The impact of protecting a reef is about 1.5 times its standard error, 
statistically significant at the 0.10 level for a one-tailed test. The coefficient for the 
interaction effect is less than its standard error. One should treat any formal tests 
with great caution, in part because the data were not collected by random sampling, 
and there is no compelling model-based sampling alternative. Also, it is virtually 
certain that important explanatory variables have been overlooked. But if one 
chooses to take formal tests seriously, the interaction effect can be discarded. 

4.7 SOFTWARE 

The results shown in Table 4.1 were produced by developmental software that we 
wrote in R. But, one can obtain consistent estimates of all the regression parameters 
using any software for Poisson regression, usually as a special case of the 
generalized linear model. One just has to substitute the higher level equations into 
the lower level equations, simplify, and proceed as usual. And if confidence 
intervals and tests are not formally justified (which is often the case), one does not 
have to proceed any farther. Moreover, all of the conventional regression diagnostics 
for the generalized linear model apply (Cook and Weisberg 1999).  

Getting the uncertainty right is more difficult and, at this point, requires special 
software. We hope to have ours available soon. In the meantime, there are two good 
options that can be employed with existing software. First, if one can justify the 
spatial lag model discussed above, then once the substitution of the two-unit model 
into the one-unit model is completed, the GLM version of Equation 4.19 (e.g., 
logistic regression or Poisson regression) can be estimated in all of the major 
statistical packages with their routine GLM procedures. Consistent parameter 
estimation follows. Second, and far more generally, there exists, at least in SAS 
PROC MIXED (Littell et al. 1996), MLwiN (Goldstein 1995), GLLAMM (Rabe-
Hesketh et al. 2002), and HLM (Raudenbush and Bryk 2002), the ability to do 
mixed effects generalized linear models. For a comparison of these packages we 
refer to De Leeuw and Kreft (2001). In each of them one can include functions of 
the spatial coordinates for the one-units but with their regression coefficients 
constrained to be equal to zero. We have had good success including just the 
horizontal coordinate, the vertical coordinate (e.g., longitude and latitude), and their 
product as one-unit predictors. Most of the spatial autocorrelation in the model will 
likely be “soaked-up.” The standard errors should then be sufficiently accurate for 
most purposes.  

4.8 CONCLUSIONS 

In this paper, we discussed tools for the construction of multilevel linear models 
with ecological data. Extensions to multilevel generalized linear models followed 
directly. With these tools, one can examine how variables at one level are related to 
processes at another level; one can study the interactions between phenomena at 
different spatial/temporal scales. If one can also make the case that the structure of a 
model is very nearly right, and one has either random sampling or credible-model 
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based sampling (Berk, 2003), conventional ways of representing uncertainty apply. 
Our suggestions for obtaining useful estimates of the standard errors are then 
appropriate. However, we favor a more realistic approach in which description is the 
primary goal. 

ACKNOWLEDGEMENTS 

This work was supported by a grant from the EPA STAR program. 

REFERENCES 

Anselin, L. 1988. Model validation in spatial econometrics: a review and evaluation of alternative 
approaches. International Regional Science Review 11:279-316. 

Anselin, L. 2001. Spatial Regression. http://geog55.gis.uiuc.edu/˜luc/talks/spreg.pdf. 
Bavaud, F. 1998. Models for spatial weights: a systematic look. Geographical Analysis 30:153-171. 
Berk, R. 2003. Regression Analysis: A Constructive Critique. Sage Publications, Newbury Park, CA. 
Cook, R. D., and S. Weisberg. 1999. Applied Regression Including Computing and Graphics. Wiley. 
Cressie, N. 1991. Statistics for Spatial Data. Wiley. 
de Leeuw, J. 1994. Block relaxation methods in statistics. Pages 275-289 in H. H. Bock, W. Lenski, and 

M. M. Richter, editors. Information Systems and Data Analysis. Springer, New York. 
de Leeuw, J., and I. G. G. Kreft. 2001. Software for multilevel analysis. Pages 187-204 in A. H. Leyland 

and H. Goldstein, editors. Multilevel Modelling of Health Statistics. Wiley, New York. 
Goldstein, H. 1995. Multilevel Statistical Medels. Arnold. 
Griffith, D. A. 2002a. Quick but not so Dirty. ML Estimation of Spatial Autoregressive Models. 

Technical Report. Department of Geography, Syracuse University, Syracuse, NY. 
Griffith, D. A. 2002b. Spatial Autoregression. Syracuse University, Syracuse, NY. 
Hedeker, D. R. 1989. Random Regression Models with Autocorrelated Errors: Investigating Drug Plasma 

Levels and Clinical Response. Ph.D. Thesis. University of Chicago at Illinois, Chicago, IL. 
Hedeker, D. R., and R. D. Gibbons. 1996. MIXREG: a computer program for mixed-effects regression 

analysis with autocorrelated errors. Computer Methods and Programs in Biomedicine 49:229-252. 
Kreft, I., and J. de Leeuw. 1998. Introducing Multilevel Modeling. Sage Publications, Newbury Park, CA. 
Littell, R. C., G. A. Milliken, W. W. Stroup, and R. D. Wolfinger. 1996. SAS System for Mixed Models. 

SAS Institute, Cary, NC. 
Longford, N. 1993. Random Coefficient Models. Oxford University Press, Oxford. 
Ord, J. K. 1975. Estimation methods for models of spatial interactions. Journal of the American Statistical 

Association 70:120-127. 
Pace, R. K., and R. Barry. 1997a. Fast CARs. Journal of Statistical Compution and Simulation 59:123-

147. 
Pace, R. K., and R. Barry. 1997b. Quick computation of spatial autoregressive estimators. Geographical 

Analysis 29:232-246. 
Pace, R. K., and R. Barry. 1997c. Sparse spatial autoregressions. Statistics and Probability Letters 33:191-

197. 
Pace, R. K., and D. Zou. 2000. Closed-form maximum likelihood estimates of nearest neighbor spatial 

dependence. Geographic Analysis 32:154-172. 
Page, R. K., and J. P. LeSage. 2002. Conditional Autoregressions with Doubly Stochastic Weight 

Matrices (manuscript). 
Rabe-Hesketh, S., A. Skrondal, and A. Pickles. 2002. Reliable estimation of generalized linear mixed 

models using adaptive quadrature. The Stata Journal 2:1-21. 
Raudenbush, S. W., and A. S. Bryk. 2002. Hierarchical Linear Models, second edition, second edition. 

Sage Publications, Newbury Park, CA. 
Smirnov, O., and A. Anselin. 2001. Fast maximum likelihood estimation of very large spatial auto-

regressive models. Computational Statistics and Data Analysis 35:301-319. 
Wu, J. 1999. Hierarchy and scaling: extrapolating information along a scaling ladder. Canadian Journal of 

Remote Sensing 25:367-380. 



89 
J. Wu, K.B. Jones, H. Li, and O.L. Loucks (eds.), 
Scaling and Uncertainty Analysis in Ecology: Methods and Applications, 89–108. 
© 2006 Springer. Printed in the Netherlands. 

CHAPTER 5 

DOWNSCALING ABUNDANCE FROM THE DISTRIBUTION 
OF SPECIES: 

Occupancy Theory and Applications 

FANGLIANG HE AND WILLIAM REED 

5.1 INTRODUCTION 

One of the most important contributions to our understanding of how and why 
species distribute in landscapes is to document the significant correlation between 
abundance and distribution of species across a broad range of scales (Brown 1984, 
1995, Gaston and Blackburn 2000). The correlation suggests that there is a general 
tendency that locally abundant species are more widely distributed in space than rare 
species, which forms a positive distribution-abundance (or occupancy-abundance) 
relationship. While the observed relationship of this macroecological pattern begs 
for ultimate biological accounts (Brown 1984, Hanski et al. 1993, Gaston 1994, 
Kolasa and Drake 1998, Gaston and Blackburn 2000), the mathematical forms of the 
relationship derived from physical, statistical and geometrical considerations have 
greatly advanced the study on the topics and have indeed provided a solid ground for 
fermenting biological explanation further (Maurer 1990, Wright 1991, Hanski et al. 
1993, Leitner and Rosenzweig 1997, Hartley 1998, Kunin 1998, He and Gaston 
2000, Kunin et al. 2000, Harte et al. 2001, He et al. 2002; see Holt et al. 2002 for a 
review). An important implication of the distribution-abundance correlation is to 
allow for the derivation of species abundance from information on species 
distribution, a downscaling process (Wu and Li, Chapters 1 and 2). Here we will 
follow this premise to derive abundance by examining the spatial distribution of 
species in landscapes based on the combinatorial theory of occupancy. 

The combinatorial theory of occupancy can date back as far as Pierre Laplace 
(Barton and David 1962) and has a long application in physics (Feller 1967). 
Laplace’s classical example of occupancy considers the following birth game. 
Assume that there are N births taking place within a year and that each birth has the 
same chance to occur in any of the 365 days. What Laplace wanted to know was 
how many days out of the 365 would have no births, i.e., the number of empty days. 
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Similarly, in statistical mechanics physicists are interested in knowing how N 
particles occupy a space composed of M small cells. The most well-known models 
that describe the number of empty cells (without particles) include Maxwell- 
Botltzmann and Bose-Einstein models. In this chapter, however, we wanted to know 
the reverse: not how many cells are empty, but how many particles are there 
provided that the number of empty cells is known. Specifically, let’s consider a real 
example illustrated in Figure 5.1a in which a 50 ha plot in a rain forest of Malaysia 
is evenly divided into 800 cells of 25 × 25 m each (Figure 5.1b). The distribution (or 

 

Figure 5.1. Example of distribution of canopy tree species Dacryodes rubiginosa in a 500 × 
1000 m tropical rain forest plot of Malaysia. (a) The actual distribution of 591 stems of the 
species in the plot. (b) The lattice representation of the species distribution with a map 
resolution of 25 × 25 m. The area of occupancy Aa1 by the species is 171875 m2. (c) The 
coarse-scale lattice map generated by aggregating four adjacent cells in (b) with a map 
resolution of 50 × 50m. The area of occupancy Aa2 by the species is 325000 m2. 
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occurrence map, binary map, or atlas) is so generated that a cell is grey if the species 
is present and white if it is absent. Thus, a grey cell has at least one tree, but can 
have many more. Given such a map, we want to find out how many trees there are; 
of course, for Figure 5.1 we already know the number of trees and their locations in 
the plot. Note that real distribution maps are usually not as regularly bordered as 
Figure 5.1, but, for simplicity, statistical derivations dealt with in this study will be 
based on a map with assumed regular borders. It will become clear later that the 
models so derived are equally applicable to irregular maps. 

In its mathematical form, a distribution can be defined as 

x = x1, x2,..., xM( ),         (5.1) 

where the subscript (1, 2, …, M ) is a (spatial) location index for the M cells, xi is 
represented by either 0 or 1, depending on the absence or occurrence of the species 
in the cell. The vector x can be a random or systematic sample from a study area, or 
an exhaustive sample (census) that covers entire area of interest as illustrated in 
Figure 5.1b. Although random or systematic sampling is important, this study 
concentrates on exhaustive sampling.  

In Equation 5.1, when xi = 1, we know for sure that there is at least one 
individual occurring in that cell. Therefore, for an observation x, we know that there 
are at least xi∑  individuals occurring in the M cells. But how many are actually 
there? This chapter was designed to answer this question. The reminder of the 
chapter is organized into three sections:  

(1) We start from a classical occupancy model to derive an abundance estimate 
by assuming that the individuals of a species are randomly and 
independently placed in space. The classical occupancy estimate was 
evaluated by simulations and real data from a tropical rain forest of 
Malaysia.  

(2) Following the same approach for the classical occupancy model, we derive 
an abundance estimate by assuming contagious distribution of the 
individuals. The estimate was also evaluated for the same data from the 
tropical rain forest.  

(3) We show the connection of the estimates to species detectability in 
population sampling and derived a variance estimate to quantify uncertainty 
in detectability. 

5.2 OCCUPANCY MODELS OF RANDOM PLACEMENT 

5.2.1 The Classical Occupancy Model 

The individuals of a species in an area can be distributed in many ways, which range 
from aggregated to regular patterns. Different spatial distributions result in different 
occurrence maps (Equation 5.1), even though the number of occupied cells may 
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remain the same. In total, there are 
M
m
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

 or 
M
u
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

 possible maps for xi = m
i=1

M
∑  and 

u = M – m, where m is the number of occupied cells, u is the number of empty cells. 
Figure 5.2 shows an example for M = 4, m = 2. Amongst these maps, the simplest 
case arises when all N individuals of a species are randomly distributed in a study 
area, A. This is equivalent to the situation of N individuals randomly placed into the 
M cells that comprise the area. Several models can be used to describe this random 
placement. In the statistical literature they are known as the “classical occupancy 
model” (Barton and David 1962, Kolchin et al. 1978). 

 

Figure 5.2. Six possible maps of distributions for M = 4, m = 2 occurrences. Location index  
s = (1, 2, 3, 4) is shown in the upper left map. 

In the classical model, a species with N individuals is assumed to be randomly 
and independently distributed among the total number of M cells. The cell size is 
denoted as a, which defines the resolution of a map, or is called scale or grain in 
landscape ecology. It is clear that the probability that an individual falls in a given 
cell is simply 1/M or a/A and the number of organisms, n, in a given cell follows a 
binomial distribution, i.e., 

1 1( ) 1( ) ( )n N nN
p n

n M M
−⎛ ⎞⎟⎜= ⎟ −⎜ ⎟⎜ ⎟⎜⎝ ⎠

,  n = 0, 1, 2, ..., N.     (5.2) 

This model can be equally written in terms of areas as 

p(n) =
N
n
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 
(a

A )n (1−
a
A )N − n , n = 0, 1, 2, ..., N.     (5.3) 
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A realization of Equation 5.2 or Equation 5.3 produces an occurrence map as 
given in Equation 5.1. What we are interested in here is to estimate N given the 
occupancy in the map. The problem can be thought of as equivalent to placing N 
balls randomly and independently into M cells. Some cells will end up with no balls, 
some will have one ball, and others have several balls.  

It can be shown that the random placement process will lead to the moment 
estimate of abundance N as (see the Appendix) 

ˆ N =
ln(1 − m /M )
ln(1 −1/M )

         (5.4) 

with approximate variance given as 

V(N) =
V(u)

[M (1 – 1/M ) N ln(1 – 1/M )]2
      (5.5) 

where V(u) is given by Equation A5 in the Appendix. 
Equation 5.4 relates abundance N to the number of occupied cells m and the total 

number of cells M. A more desirable expression that explicitly links N to mapping 
scale a can be readily obtained as  

ˆ N =
ln(1 − Aa / A)
ln(1 − a / A)

         (5.6) 

where Aa is the total occupied area (= a × m), A is the total study area (= a × M).  
While Equation 5.4 was derived from regularly shaped maps, Equation 5.6 is 

suitable for both regular and irregular maps because the data on areas are used. 
Equation 5.6 was obtained previously by He and Gaston (2000) by a different 
approach and the derivation here is more rigorous. The variance given by He and 
Gaston (2000) is incorrect although it differs from Equation 5.5 by a small term. 

The estimate given in Equation 5.6 can be further simplified for abundant species 
distributed in a large study area. It is easy to show that, when the study area A → ∞ 
(or the total number of cells M → ∞), Equation 5.6 becomes 

ˆ N = −
A
a

ln(1 −
Aa
A

) .        (5.7) 

Its variance can be similarly derived from Equation 5.5 when N>>M as 

V ( ˆ N ) =
A
a

exp(
Na
A

) .        (5.8) 
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5.2.2 Simulation Test and Applications 

5.2.2.1 Simulation 

The performance of Equation 5.4 or 5.6 was evaluated by generating a random 
distribution of a known number of “trees” (points) in an area. We simulated the 
distribution of “species” in a study plot of 500 × 1000 m. Three “species” were 
generated. The first one had 500 “trees” that were randomly located within the study 
plot. The plot was then divided into a lattice with scale a = 50 × 50 m to create a 
distribution map. Based on this map, the number of trees was estimated by using 
Equation 5.4. The simulation was repeated 100 times. The estimates are shown in 
Figure 5.3 (Species 1), along with the upper and lower bounds of the 95% 
confidence defined by N ± 1.96 V ( ˆ N ) , where V ( ˆ N )  is given by Equation 5.5. 

The second “species” had 2000 “trees”, but this time the distribution was 
converted into a map with scale a = 25 × 25 m (as illustrated in Figure 5.1b). The 
third “species” had 5000 “trees” in a map at the same scale as for the second species. 
The results in Figure 5.3 show that Equation 5.4 estimates the abundances 
reasonably well for the randomly and independently distributed species. It appears 
that with the increase in N the approximate 95% confidence intervals constructed 
using the asymptotic variance of Equation 5.5 are too liberal when N >> M. 

There was no estimation in the second simulation for species 3 (see the last table 
in Figure 5.3). This happens when a species fills up the entire area of a study. In this 
case, m = M, there is no solution to Equation 5.4. 

5.2.2.2 Applications 

We now apply Equation 5.4 to estimate the abundances of tree species in a lowland 
rainforest of Malaysia. The forest is located in the Pasoh Forest Reserve of Malaysia 
(2°55' N, 102°18' W). A 50 ha rectangular plot (500 × 1000 m) was initially 
established in 1987 and the census was repeated in 1990 and 1995 (Manokaran et al. 
1999). The data from the 1995 census were used in this study. In each census, all 
free-standing trees and shrubs with diameter at breast height ≥ 1 cm were located by 
geographical coordinates on a reference map, and identified to species. In the 1995 
survey, there were a total of 378224 trees belonging to 824 species. The most 
abundant species had 10470 individuals. Figure 5.1a is the distribution for one of the 
824 species. The spatial patterns of the species surveyed in1990 were analyzed by 
He et al. (1997) which showed that about 80% of the species were aggregated, 20% 
had random distributions, and only one displayed a regular distribution. Because the 
abundance of each species was known, these census data allowed us to test the 
models that we developed. 

Thirty-five of the 824 species were selected for analysis to represent the 
abundance range and spatial distribution patterns of the forest. The observed (true) 
abundances for the 35 species are listed in Table 5.1 together with the areas of 
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be read from Table 5.1 for a given scale a. Substitute these three values into 
Equation 5.6, the abundance for each species could be estimated, and its 
corresponding variance can also be obtained from Equation 5.5. The results are 
shown in Table 5.2. The results for the simplified Equation 5.7 at a = 25 × 25 m are 
also presented in Table 5.2. It is clear that the simplified Equation 5.7 differs very 
little from Equation 5.6 even for rare species. 

Figure 5.3. Estimation of abundance for three simulated “species” in a 500 × 1000 m  plot. 
The figures on the left-hand column are the outputs of 100 simulations for each species. The 

ˆ( ) ,  where ˆ( )V N
on the right-hand column are the outputs o f the first five simulations for each species. 

occupancy at four scales (a = 10 × 10, 12.5 × 12.5, 25 × 25 and 50 × 50 m). Note 
that the total area of the study A is 500000 m2 and that the area of occupancy Aa can 

N ± 1. 96 V N  is given by Equation 5.5. The tables dashed lines are  
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Table 5.1. Observed (true) abundance for 35 of 824 species in the Pasoh plot, and their area 
(m2) of occupancy at four scales: 10 × 10, 12.5 × 12.5, 25 × 25 and 50 × 50 m. 

 Cell Size (m2)  
 Species 

 
 Abundance 

10 × 10 12.5 × 12.5 25 × 25 50 × 50 
1 1 100 156.25 625 2500 
2 10 900 1562.50 5000 15000 
3 13 1300 2031.25 8125 32500 
4 22 1900 2968.75 11250 45000 
5 27 2600 4062.50 15625 55000 
6 30 2900 4531.25 14375 32500 
7 50 5000 7500 27500 90000 
8 98 9300 14375 51250 155000 
9 115 9700 15156.25 45625 130000 

10 122 11700 18437.50 65625 202500 
11 155 14600 22031.25 79375 235000 
12 157 14700 22812.5 83750 255000 
13 177 16700 25312.50 82500 245000 
14 207 19700 30468.75 105625 290000 
15 302 27600 42031.25 140625 322500 
16 325 30800 46406.25 158125 385000 
17 333 31100 47968.75 159375 362500 
18 384 33200 50312.50 162500 377500 
19 405 36100 55156.25 175625 395000 
20 490 44700 64687.50 195000 390000 
21 520 43900 63750 161875 302500 
22 522 45000 68593.75 199375 407500 
23 537 47300 70625 203125 357500 
24 742 63900 92968.75 262500 445000 
25 874 72900 109062 290000 477500 
26 891 74600 110469 286875 462500 
27 1371 111400 156875 353750 482500 
28 1419 115200 166562 376250 497500 
29 2190 168000 231094 428750 492500 
30 2793 166200 222812 410625 490000 
31 3181 190300 246094 421250 492500 
32 6031 308200 371562 478125 495000 
33 7202 173400 200000 287500 392500 
34 8571 186400 207656 275000 340000 
35 10470 383300 433750 496875 500000 
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Table 5.2. Estimated abundances for the 35 species in Table 5.1 using random placement 
Equation 5.6 and its simplified Equation 5.7 at four scales. The last row measures the 
“goodness-of-estimation” ∆ of Equation 5.9. 

Cell Size (m2) 10 × 10 12.5 × 12.5 25 × 25 50 × 50 
Species True Equation 

 5.6 
Equation 

 5.6 
Equation 

5.6 
Equation 

5.7 
Equation  

5.6 
1 1 1 1 1 1 1 
2 10 9.0 10.0 8.0 8.0 6.1 
3 13 13.0 12.0 12.1 13.1 13.4 
4 22 19.0 19.1 18.2 18.2 18.8 
5 27 26.1 26.1 25.4 25.4 23.3 
6 30 29.1 29.1 23.3 23.3 13.4 
7 50 50.3 48.4 45.2 45.3 39.6 
8 98 93.9 93.3 86.5 86.5 74.0 
9 115 97.9 98.5 76.5 76.6 60.1 

10 122 118.4 120.2 112.5 112.6 103.6 
11 155 148.2 144.2 138.2 138.3 126.7 
12 157 149.2 149.4 146.6 146.7 142.3 
13 177 169.8 166.2 144.2 144.3 134.3 
14 207 201.0 201.2 189.7 189.8 173.1 
15 302 283.9 280.9 264.0 264.2 206.6 
16 325 317.9 311.7 303.9 304.1 293.2 
17 333 321.1 322.7 306.9 307.1 257.6 
18 384 343.5 339.3 314.2 314.4 280.6 
19 405 374.7 374.0 346.0 346.2 311.4 
20 490 468.2 443.3 395.2 395.4 302.1 
21 520 459.4 436.4 312.8 312.8 185.3 
22 522 471.5 472.1 406.7 407.0 336.6 
23 537 496.8 487.2 416.8 417.0 250.4 
24 742 683.6 658.2 595.2 595.6 440.4 
25 874 787.9 787.3 693.6 694.0 618.7 
26 891 807.8 798.8 681.8 682.2 516.8 
27 1371 1260.2 1204.7 982.8 983.4 668.8 
28 1419 1309.3 1296.3 1116.4 1117.1 1057.0 
29 2190 2047.2 1984.5 1557.8 1558.7 837.8 
30 2793 2020.1 1887.4 1376.6 1377.4 780.5 
31 3181 2394.8 2168.1 1477.7 1478.7 837.8 
32 6031 4790.3 4348.6 2501.9 2503.4 918.7 
33 7202 2129.2 1634.4 684.1 684.5 306.7 
34 8571 2332.2 1717.1 638.4 638.8 227.3 
35 10470 7274.3 6466.7 4057.6 4060.1  –  

∆  1.206 1.368 1.996 1.994 2.649 
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To measure the “goodness-of-estimation”, we define 

∆ = b2 ( ˆ N i )∑           (5.9) 

where b( ˆ N i ) =
ˆ N i − Ni

Ni
 for species i. 

The results in Table 5.2 show that except for those rare species there is 
considerable underestimation and that the underestimation becomes stronger with 
the increase of scale as evident from the measurement of ∆ of Equation 5.9 (see the 
last row of Table 5.2). This is expected because few species in nature would present 
a truly random and independent distribution. Except at very low abundance, 
individuals of most species are typically aggregated. The underestimation of the 
random placement Equation 5.6 is largely due to the aggregation of a species, 

dis

independently distributed, Equation 5.6 is biased. To reduce the bias, we need a 
method to take account of species aggregation. 

5.3 OCCUPANCY MODELS OF CONTAGIOUS PLACEMENT 

5.3.1 The Contagious Occupancy Model 

Aggregated pattern arises when the distribution of individuals of a species among 
cells is produced by contagious processes. In this situation, the assumption of 
randomness and independence no longer holds; instead, a cell that already has an 
individual would be more likely to contain more individuals, and an occupied cell 
would be more likely to be adjacent to another occupied cell (and vice versa for 
empty cells). Barton and David (1959) show that contagious processes can either be 
modeled by a negative hypergeometric distribution arising from a Polyà urn model 
(they termed this model as pseudo-contagious process) or by a model of true 
contagion in which cells to be occupied are first selected at random and the number 
of individuals in the selected cells are then determined as realizations of 
logarithmically distributed random variables. It is well known that such a process 
generates the negative binomial distribution. For this latter model it can be shown 
that the moment estimate of abundance N of a species is (see Appendix B) given by 

ˆ N = Mk 1 −
m
M

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

−1/ k
−1

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
       (5.10) 

where k is the aggregation parameter of the negative binomial distribution that takes 
positive values. Aggregated species have small k while random species have large k. 
Equation 5.10 can also be expressed in terms of areas as 

-(overestimation would be more common if a species is actually at regular 
tribution). In other words, if the individuals of a species are not randomly and 
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ˆ N =
Ak
a

1 −
Aa
A

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

−1/ k
−1

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

       (5.11) 

with approximate variance (see Equation B5)  

V ( ˆ N ) = 1 +
N

Mk
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

2k+ 2
V (u)         (5.12) 

where u is the number of empty cells and V(u) is given by Equation B4 in the 
Appendix. 

5.3.2 Test for the Contagious Abundance Estimate 

Given a distribution map, there are two unknown parameters N and k to be estimated 
in Equation 5.10 or 5.11. To use the method of moments one would normally equate 
the observed first and second moments with their theoretical mean and variance (see 
Equation B3 and B4 in the Appendix). In this case, however, a map only has one 
single observation on u, and its variance V(u) is not available. Splitting the map to 
create more observations will not work, because there will be a new unknown 
parameter for each part of the map (the number of organisms in that part). A 
possible alternative is to group cells to produce a coarser scale map (Kunin 1998, He 
and Gaston 2000). This will lead to two equations of Equation 5.10 or 5.11 for two 
unknown variables N and k with the assumption that the aggregation parameter k 
remains the same at both scales. We realize that this assumption does not necessarily 
hold in reality (Pielou 1957, Taylor et al. 1978). However, if the difference in scale 
for the two maps is not large, this assumption may be plausible. 

From the fine-scale map we can read the area of occupancy Aa1 at scale a1. The 
second map can be produced as follows. If any of the adjacent cells at the fine-scale 
map are occupied, then the aggregated cell at coarse-scale is occupied; otherwise, it 
is left empty. The second map has a coarse scale a2 and an area of occupancy Aa2 
(see Figure 5.1c for an example). 

With the two maps so generated, N and k in Equation 5.10 can be evaluated 
numerically using, e.g., Newton-Raphson method. The estimated abundances for 35 
of the 824 species are shown in Table 5.3. The first one is calculated in terms of two 

1
2

a2

 
2

1
2

and a2 = 50 × 50 m2. The results show that Equation 5.10 works fairly well. 
Compared with the random placement Equation 5.4 in the previous section, the 
estimation is substantially improved (compared the ∆’s in the last rows of Tables 5.2 
and 5.3). Estimation for rare species (e.g., abundance ≤ 2000) appears to work 
particularly well, which is indeed the strength of the method (Equation 5.10) 

= 25 × 25 m . The second map pair is the two maps with scales at a  = 25 × 25 m  
maps: the fine-scale map with a  = 12.5 × 12.5 m  and the coarse-scale map with 
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Table 5.3. Estimated abundance for the 35 species in Table 5.1 using the contagious 
occupancy Equation 5.11 in terms of two map pairs: 12.5 × 12.5 − 25 × 25 m, and 25 × 25 − 
50 × 50 m. The last row measures the “goodness-of-estimation” ∆ of Equation 5.9. 

Species   True 12.5 × 12.5 − 25 × 25 25 × 25 − 50 × 50 
1 1 1 1 
2 10 11.0 9.1 
3 13 13.0 13.0 
4 22 19.4 18.0 
5 27 26.4 26.2 
6 30 32.1 34.0 
7 50 49.5 47.6 
8 98 96.0 91.7 
9 115 110.3 85.1 

10 122 123.1 115.9 
11 155 146.3 142.7 
12 157 150.4 148.1 
13 177 175.8 147.9 
14 207 205.4 196.3 
15 302 287.2 294.3 
16 325 314.3 307.7 
17 333 328.5 329.5 
18 384 348.9 328.0 
19 405 384.7 359.9 
20 490 463.0 446.8 
21 520 515.1 439.5 
22 522 500.8 439.8 
23 537 518.5 576.3 
24 742 683.4 687.0 
25 874 826.6 724.2 
26 891 851.0 774.8 
27 1371 1312.8 1206.3 
28 1419 1375.2 1138.1 
29 2190 2209.1 2492.7 
30 2793 2200.8 2043.2 
31 3181 2659.5 2193.3 
32 6031 6341.9 14253.4 
33 7202 4803.7 1603.1 
34 8571 9078.3 4603.2 
35 10470 8548.8 3528.3 
∆  0.542 1.920 

 

 

because the abundance information on rare species is the major concern of 
conservation.  
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abundances for rare species which are actually very simple to compute, their 
conclusions are thus unfortunately biased. 

Similar to Equation 5.4, the accuracy of the estimation of Equation 5.10 also 
depends on the scale of observation. The results as measured by ∆ of Equation 5.9 
(the last row of Table 5.3) show that the estimation becomes progressively poorer 
with the increase in the scale from the map pair of 12.5 × 12.5 − 25 × 25 m2 to that 
of 25 × 25 − 50 × 50 m2. In addition to the effect of scale on the accuracy of 
abundance estimates, the precision (i.e., the variances of Equation 5.5 and 5.12) of 
the estimates also varies with scale. Figure 5.4 shows the effect of spatial 
aggregation on the variance-scale relationship for Equations 5.5 and 5.12. At 
random distribution (Equation 5.5), variance in abundance monotonically increases 
with scale (the dashed line), while the variance of Equation 5.12 can be hump-
shaped for aggregated species. The practical implications of the variance-scale 
relationship are that sampling scale for randomly distributed species should be as 
small as possible if high precision is to be achieved, and that, for aggregated species, 
the model scales that lead to high variance should be avoided in order to achieve 
high precision. 

  

Figure 5.4. Variance-scale relationships. The dashed curve is the variance for the classical 
random placement estimate (Equation 5.5). The solid curves are the variances of Equation 
5.12 with the aggregation parameter k varying from 0.1 to 100. The plot is produced by 
setting N=500 and a from 0 to 5000. Note Equation 5.12 approaches Equation 5.5 at large k. 

It is apparent that a considerable degree of underestimation still remains for 
those very abundant species. This underestimation is also observed for abundant 
insects (Warren et al. 2003). However, in that study they did not estimate 
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Equation 5.11 is an important occupancy-abundance model in ecology (Wright 
1991, Hanski et al. 1993, Hartley 1998, He and Gaston 2000), which is typically 
written in the standard form as 

p = 1 − 1 +
Na
Ak

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

−k
         (5.13) 

where p is the proportion of occupied area, or Aa /A.  

very flexible in that many other occupancy-abundance models are its special cases 
(He and Gaston 2000, He et al. 2002). For example, it is easy to show that the 
random placement Equation 5.6 is a special case of Equation 5.11 at k = –N. 
Equation 5.13 also provides a basic tool for investigating other biodiversity patterns, 
such as species-area curves (He and Legendre 2002, He et al. 2002) and beta 
diversity patterns (Plotkin and Muller-Landau 2002).  

When used for sampling populations, occupancy p is often referred to as species 
detectability. The occupancy-abundance model (Equation 5.13) suggests that the 
detectability depends not only on the abundance of the species but also on its spatial 
distribution and the size of sampling unit. This finding is useful in sampling design. 
For instance, for a given abundance we know from Equation 5.13 that strong 
aggregation (i.e., small positive k) leads to small detectability and randomly 
distributed species (large k) have large detectability. So, in order to retain a high 
level of detectability for an aggregated species, it is necessary to use a large sample 
area (i.e., large a). Similarly, Equation 5.13 would help us calculate the size of 
sample areas for rare and common species for a predetermined detectability p. 

Another important sampling issue is that the presence of a species in a site may 
or may not be observed in the field, i.e., there is always an uncertainty associated 
with detectability. The nondetection may mean that the species is truly absent or that 
it is missed because of insufficient survey efforts or sampling errors (MacKenzie  
et al. 2002). The latter scenario will inevitably lead to underestimation of occupancy 
rates. This uncertainty in occupancy p can be quantified according to the theory of 
occupancy in the Appendix. Because p = m/M = 1 – u/M, where the number  
of empty cells u is a random variable, it is easy to show that p has a variance of 
V (p) = V (u) M 2,  where the variance V(u) is given either by Equation A5 or B4, 
depending on whether the random placement model or the contagious model is used. 
V(p) provides information on the uncertainty in the detectability. 

 

5.4 UNCERTAINTY IN OCCUPANCY AND SPECIES DETECTABILITY 

More than any other occupancy-abundance models in the literature (see Holt  
et al. 2002 for a review), Equation 5.13 unifies occupancy (p), species abundance 
(N), the spatial pattern of the species (k), mapping scale (a), and the extent of study 
area (A) into a single mathematical form. In addition, Equation 5.13 is mathematically 
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5.5 CONCLUSIONS 

Based on the discussions in previous sections, we make the following conclusions: 
(1) The widely recognized distribution-abundance macroecological pattern 

suggests that distribution and abundance of species are closely correlated so that we 
may infer about one from the other. This premise provides an essential basis for 
deriving information on abundance in terms of the distribution of species. In this 
chapter, we approached this problem by modeling the distribution of species in 
landscapes with the occupation process that N balls are placed into M cells following 
the theory of combinatorial occupancy. 

(2) Two abundance estimates were derived from the theory of occupancy. The 
first one, as given by Equation 5.6, was derived under the assumption that the N 
unknown balls are randomly and independently placed into M cells. The second 
estimate (Equation 5.11) was derived from the contagious process that generates 
aggregated distribution of species (the negative binomial distribution). The random 
placement Equation 5.6 is a special case of Equation 5.11 at k = – N. 

(3) While Equation 5.6 predicted very accurately the abundance of randomly 
placed species, it underestimated the abundance of aggregated species. Equation 
5.11 greatly improved the accuracy of the estimation for real species because it 
accounts for aggregation with the addition of parameter k. Nevertheless, both 
simulated and observed data showed that the accuracy of the estimates consistently 
decreases with scale (i.e., the mapping resolution). The underestimation is 
particularly serious for abundant species as evidenced in Tables 5.2 and 5.3. 
Similarly, high intensity of aggregation would result in a poor estimation. In the 
extreme case, if a species is so highly aggregated that all of the individuals are 
clustered in a single cell, none of the methods could differentiate this species from 
the one that has only one individual and occurs also in a single cell. 

(4) Equation 5.13 is a fundamental occupancy-abundance model that unifies 
occupancy ( p), species abundance (N ), the spatial pattern of the species (k), mapping 
scale (a) and the extent of study area (A) into a single mathematical form. The model 
suggests that occupancy (or species detectability) depends not only on the 
abundance of the species but also on its spatial pattern and the size of sample unit. 
This finding would help us understand the factors that may influence the 
detectability of species in a field survey and, thus, design the survey in order to 
maintain a desirable level of detectability (e.g., to calculate the size of sample unit). 
The derived variance for the occupancy p can be used to quantify the uncertainty in 
the detectability. 

(5) Two obvious questions need to be answered: How can we further incorporate 
the information on scale (i.e., mapping resolution) and aggregation to improve the 
estimation? What scale should be used for mapping a distribution to ensure a certain 
level of accuracy? The questions about scale appear to be more challenging. 
Answers necessarily depend on the life history properties of organisms. For 
example, for insects with small body sizes and highly aggregated distribution, a 
small mapping scale compatible with the size of the insects should be used (e.g., in 
centimeters or a few meters), while for large body trees, a relatively large mapping 
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scale may be used (e.g., in 10 or 100 meters). The underestimation caused by strong 
aggregation may be solved by some ad hoc methods. The aggregated mapping 
method used in this chapter (Figure 5.1b, c) assumed that k in Equation 5.11 was 
constant. This assumption may be relaxed by correcting the k by comparing the 
observed map with its random counterpart. 

(6) This study deals only with exhaustive survey of a distribution map as defined 
by Equation 5.1. It will also be interesting and useful to consider Equation 5.1 as a 
random sample from a distribution map. If one knows that a species is randomly and 
independently distributed, the classical occupancy estimate Equation 5.6 can be 
applied to estimating abundance in this sampling scheme. But in other situations 
where the random and independent assumption does not hold, the estimation of 
abundance is a challenging task. This is certainly an interesting problem deserving 
further investigation. 

APPENDIX: DERIVATION OF OCCUPANCY-ABUNDANCE MODELS 

A. The Random Placement Occupancy Model 

Assume a distribution map of m occupied cells out of M total number of cells. Let u 
(= M – m) be the number of empty cells, and let Ei  be the event that the ith cell is 
empty and E i  be the event complementary to Ei . Then the probability that one 
particular, say the first, cell is empty is p(E1) = (1 − 1

M )N  which is equivalent to n 
= 0 in the binomial distribution Equation 5.2, or obtained by replacing A in Equation 
5.3 by a × M. 

The probability that two particular, say the first two, cells are empty is 
p(E1E2 ) = (1 − 2

M )N . This probability can again be derived from Equation 5.2 with 
n = 0 by replacing 1 by 2 since there are two empty cells, or by replacing a by 2 × a 
in Equation 5.3. Similarly, the probability that u particular cells are empty is 
p(E1...Eu ) = (1 − u

M )N . 

Here we shall not be interested in a particular set of cells but the number of u 
empty cells given N balls being placed into M cells. From Figure 5.2, we know there 
are  

  
 
  
 possible combinations for u (out of M ) empty cells. Thus the probability 

that there are u empty cells is p(u) =
M
u
⎛ 
⎝  

⎞ 
⎠  

p(Ei1 ...Eiu
E ju

...E j M −u
) . It is equivalent to 

p(u) = p(E1...EuE u +1...E M ) .       (A1) 

M
u
⎛
⎝

⎞
⎠

M
u
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⎝

⎞
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Because E1, …, Eu , E u +1, …, E M  are independent events, by some 
probability operations, we arrived at 

p(E1...EuE u+1...E M ) = 1 −
u
M

⎛ 
⎝ ⎜ 

⎞ 
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N
−1( )i M − u

i
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⎠ ⎟ i= 0

M − u
∑ 1 −

i
M − u
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N

                                 = −1( )i M − u
i
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M − u
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u + i
M
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⎞ 
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N
.

  (A2) 

Finally, the probability that there are u empty cells given N balls randomly and 
independently placed into M cells is derived by substituting Equation A2 into 
Equation A1, i.e., 

p(u) =
M
u

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

−1( )i M − u
i

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ i= 0

M − u
∑ 1 −

u + i
M

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

N
,  for u = 0, 1, …, M.  (A3) 

The factorial moment of the number of u empty cells of the probability mass 
function equation A3 is known to be (Johnson et al. 1993, p. 415) 

λ[r] =
M !

(M − r)!
(1 −

r
M

)N , 

where λ[r] = E(
u!

(u − r)!
) . Thus the expectation and variance of the number of empty 

cells are 

E(u) = λ[1] = M (1 −
1
M

)N         (A4) 
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+ −

 

 (A5) 

The variance for the number of occupied cells m is the same as Equation A5 for a 
given map with fixed M because V (u) = V (M − m) = V (m) . 

Given an occurrence map, it is obvious that the moment estimate of E(u) is 
simply M - m. Hence, the estimate of N can be solved from Equation A4 as 

ˆ N =
ln(u / M )

ln(1 −1/ M )
=

ln(1 − m /M )
ln(1 −1/ M )

.       (A6) 

λ=

= −−−−−

−



106 F. HE AND W. REED

The approximate variance of the abundance estimate N̂  in Equation A6 can be 
easily obtained by applying the delta method to Equation A6, i.e., 

V ( ˆ N ) =
∂( ˆ N (u))

∂u
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

u= E(u)

2

V (u) ,       (A7) 

where V(u) is as Equation A5 and N̂  is as Equation A6. The derivative is evaluated 
at E(u) of Equation A4. The variance so obtained is 

V ( ˆ N ) =
V (u)

M (1 −1/M )N ln(1 −1/M )
2 .       (A8) 

B. The Contagious Occupancy Model 

For the contagious process that generates the negative binomial distribution, Barton 
and David (1959) show that the distribution of the number of empty cells u has 
probability mass function: 

p(u) =

M
u

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

kM + N −1( )(N ) (−1) i M − u
i

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ i= 0

M − u
∑ kM − k(u + i) + N −1[ ](N ) ,  (B1) 

where i( j ) =
i!

(i − j)!
, k is the aggregation parameter of the negative binomial 

distribution, N is the (unknown) number of organisms of a species distributed in a 
defined area with size A, M is the total number of cells dividing A. 

The rth factorial moment of u is 

λ[r] = M (r) kM −1( )! kM − kr + N −1( )!
(kM + N −1)!(kM − kr −1)!

      (B2) 

from which the expectation and variance of u can be found. However, Barton and 
David (1959) show that, even for relatively small M and N, the pmf given by 
Equation B1 can be well approximated by a normal distribution with mean and 
variance: 

E(u) = M 1 +
N

Mk
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

−k
        (B3) 

⎡
 

⎣  ⎢
 ⎤

⎦
⎥
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V (u) = Me−2µ eµ −1 − µ( )       (B4) 

where µ =
N
M

.  

Given a binary map, it is straightforward that the observed first moment estimate 
of E(u) is M – m. Therefore, from Equation B3 the moment estimate of N, Equation 
5.10, is resulted. The variance of the estimate ˆ N  of Equation 5.10 can be derived 
from Equation B3 and Equation B4 using the delta method following Equation A7: 

V ( ˆ N ) =
1

M 2 1 +
N

Mk
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

2k+ 2
V (u)      (B5) 

where V(u) is given by Equation B4.  
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CHAPTER 6 

SCALING TERRESTRIAL BIOGEOCHEMICAL PROCESSES: 

Contrasting Intact and Model Experimental Systems 

MARK A. BRADFORD AND JAMES F. REYNOLDS 

6.1 INTRODUCTION 

Planet Earth is undergoing enormous change, clearly discernable on time scales  
of decades to centuries. This is largely a result of human activities, especially  
the emission of greenhouse gases and pollutants, the clearing of global forests, the 
urbanization of agricultural cropland, and many other extensive modifications in the 
land surface. Significantly, these rates of change are unprecedented in the Earth’s 
geological history (Committee on Global Change 1988), and one of the great 
scientific challenges of the 21st century is to forecast future behaviors of global 
ecosystems under the constant pressure of human insults (Clark et al. 2001). This 
requires that we better understand feedbacks and interactions of the major patterns 
and processes of the key components of planet Earth: the atmosphere, oceans, 
freshwater, rocks, soils, and biosphere. In an attempt to meet this challenge, an 
interdisciplinary approach to studying systems dynamics on a planetary-scale has 
emerged, known as Earth System Science (ESS) (Schellnhuber 1999, Lawton 2001).  

 Biogeochemical processes of terrestrial ecosystems are at the core of ESS 
research (Schellnhuber 1999). Hence, considerable effort has been invested towards 
understanding the relative importance of biotic and abiotic regulators and 
controllers. Of special interest are how natural and human-induced perturbations 
may affect the rates and directions of biogeochemical processes in terrestrial 
ecosystems, especially in terms of potential feedbacks to climate systems (Walker 
and Steffen 1996, Pielke 2002). Given the complexity of global systems and their 
many interconnections, one of the main scientific challenges of ESS is to document 
change, diagnose underlying causes, and develop plausible projections of how 
natural variability and human actions may affect global biogeochemical cycles in the 
future. With regard to the latter, once we have the requisite quantitative 
understanding of process rates, as well as a detailed understanding of key regulatory 
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mechanisms, the goal is to extrapolate findings obtained at one temporal and spatial 
scale to another. 

 Typically extrapolations for terrestrial ecosystems are done using mathematical 
models (see Goudriaan et al. 1999, Prinn et al. 1999, Wu and Li, Chapters 1 and 2). 
However, in this chapter we focus on extrapolations via empirical experimentation: 
we discuss experimental designs that inform about process rates and regulatory 
factors at spatial and temporal scales greater than the one on which the experiment 
is conducted. Paradoxically, while most experiments are in fact intended to further 
understanding and knowledge at scales beyond the ones at which they are actually 
being conducted (e.g., 1 m2 plots or a forested watershed), most fail to incorporate 
the spatial and temporal scale considerations necessary to justify such an 
extrapolation (Gardner et al. 2001). A number of issues are germane to this 
discussion, including the specific characteristics of the factors under investigation, 
the importance of nonlinear responses, the type of treatment imposed (e.g., step vs. 
gradual), and whether the goal is spatial or temporal extrapolation.  

 We discuss experiments conducted using two general types of systems: intact 
systems and model systems. Our objective is to compare and contrast these 
approaches in the context of their potential for contributing to our predictive 
understanding of process rates and their regulators in terrestrial biogeochemical 
cycles. In this chapter we will show that: (1) intact ecosystem experiments can 
provide process rates, mechanistic understanding and absolute/relative treatment 
effects suitable for direct extrapolation, but rarely do; and (2) model ecosystem 
experiments can provide the sign (positive or negative) of treatment effects and 
insights into their mechanistic basis. However, data obtained on process rates and 
absolute/relative treatment effects are not suitable for extrapolation. We concur with 
Gardner et al. (2001) that there is a need for much greater “scale awareness” in 
ecology, especially with regard to the role of experimental design and execution. 
Our primary objective is to raise awareness of the importance of spatial and 
temporal scale considerations in the design and interpretation of experiments, so that 
findings at the scale of an experimental plot and duration may be extrapolated with 
known confidence. 

6.2 DEFINITIONS 

For the purposes of our discussion, empirical experimental systems are grouped into 
two classes: (i) intact and (ii) model. Prior to embarking on our discussion it is 
important to note that although neither mathematical modeling nor observation are 
explicitly discussed here, we recognize the critical importance of these approaches, 
which are adequately covered elsewhere (e.g., Goudriaan et al. 1999, Gardner et al. 
2001). Also, much discussion on scaling in experimental ecology is semantic and, 
albeit this is an important debate, it is beyond the scope of our discussion. The 
literature is replete with terminology that is often contradictory and/or case-specific; 
hence, we cite established terminology where possible and provide definitions when 
introducing context-specific terms.  
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 6.2.1 Intact Ecosystem Experiments 

Intact ecosystem experiments (IEEs) utilize plots where the established ecosystem  
of interest, e.g., a forest, agricultural field or desert, is sampled “intact” by the 
experimenter. Within the ecosystem of interest, a defined area is selected 
(arbitrarily, pragmatically or using a statistical rationale) and one or more factors are 
manipulated or perturbed across replicate plots in situ. Treatment effects are 
quantified by way of comparison with non-manipulated “control” or “reference” 
plots. Examples of IEEs are the exclusion of exotic, mammalian herbivores using 
fenced areas across 30 locations (Wardle et al. 2001); surrounding six 30 m diameter 
forest plots with free air CO2 enrichment (FACE) rings and exposing half to ambient 
and half to elevated atmospheric CO2 concentrations (DeLucia et al. 1999); and 
establishing ten alpine tundra plots and adding nitrogen fertilizer to five (Neff et al. 
2002).  

 6.2.2 Model Ecosystem Experiments 

In contrast, model ecosystem experiments (MEEs) are conducted either within the 
field or laboratory. We define MEEs as those where the experimental system is 
either wholly or partially “constructed” and one or more treatments are applied. 
Well-known field examples are the biodiversity manipulations at Cedar Creek 
(Tilman et al. 1996) and the pan-European Biodepth study (Hector et al. 1999), 
where plant communities of varying species richness and composition were 
constructed. Laboratory-based experimental systems span ranges of biotic 
complexity from simple Gaussian style systems (e.g., McGrady-Steed et al. 1997), 
through individual plants in pots of soil grown in controlled environment chambers 
(e.g., Fernández and Reynolds 2000), to multi-species, multi-trophic systems 
constructed as analogues of intact systems (e.g., Lawton 1996). A vegetated soil 
monolith placed within the laboratory would, although an intact unit, be defined as 
an MEE because its climate is constructed.  

6.3 MEASURING TREATMENT EFFECTS USING INTACT ECOSYSTEM 
EXPERIMENTS 

6.3.1 Plot Size and Spatial Extrapolation 

We define internal regulators as factors that affect some ecosystem process of 
interest and which, in contrast to external regulators, vary within the system. 
Examples of each are soil fertility and air temperature, respectively. The key to 
extrapolating results from experimental plots to larger spatial scales is an 
understanding, or at least appreciation, of which internal factors regulate the process 
under investigation (e.g., how soil nitrogen affects plant growth; how soil water 
affects leaf photosynthesis) and how these factors are spatially distributed. To 
illustrate this point, we use an example whereby we assume that the values of the 
factors are invariant over time and exert their control internally on the process of 
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interest. If we have an understanding of what internal regulatory factors are 
important – and their spatial distribution in the environment – we can opt to select 
the size of our plots to capture the spatial heterogeneity of these regulatory factors 
(i) within a single plot (e.g., Figure 6.1a), or (ii) through use of multiple plots, each 
of which is placed within a spatially homogenous patch of the regulatory factors 
(e.g., Figure 6.1b). 

 

 

 

Figure 6.1. Selection of plot sizes (open 
circles) to capture the spatial 
heterogeneity of a regulatory factor and, 
thus, permit spatial extrapolation of the 
measured process from the plot to the 
landscape. Letters in italics denote a 
fixed level of the regulatory factor. There 
are four levels, w-z, and the spatial 
distribution of the regulatory factor is 
repeated every two homogenous areas. In 
(a) and (b) plot sizes permit extrapolation 
to the landscape. In (a) the plot size 
captures the heterogeneity within a single 
plot. In (b) four plots are required to 
capture the same heterogeneity but the 
advantage is that the collected data can 
be used to construct the shape of the 
relationship between the rates of the 
process and the levels of the regulatory 
factor. Plots can be placed anywhere 
within the homogenous area of a single 
value of the regulatory factor. In (c) the 
plots are inappropriately sized to capture 
the spatial heterogeneity and so the 
results from the plots cannot be 
extrapolated to the landscape. In the 
scenario depicted in (c) the plots could be 
positioned to capture an equal proportion 
of w-z within them but in reality the 
heterogeneity is unlikely to be so 
uniformly distributed. 

To capture the spatial heterogeneity of the regulatory factors within our plots we 
first need to know over what “target” area we plan to extrapolate our results and 
then measure the spatial heterogeneity of the regulatory factors across this 
landscape. The advantages of capturing the spatial heterogeneity within our plot size 
(Figure 6.1a) are: (i) measured process rates can be directly extrapolated across the 
landscape of interest; (ii) there is an inherent assumption that large plot sizes inform 
more about how a system would naturally respond to a perturbation than smaller 
plot sizes; and (iii) as plots increase in size within a fixed spatial area the variation 
between replicate plots decreases. The disadvantage is that we do not generate data 
necessary to construct the shape of the relationship between process rates and 
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regulatory factors. This information is required to parameterize predictive models 
given that many processes respond nonlinearly to variation in regulatory factors 
(Figure 6.2a-c). From the relationships depicted in Figure 6.2a-c it is clear that a 
single mean value of the regulatory factor (as would be obtained by “capturing” the 

the response of the process of interest across varying regulator values (Figure 6.2d).  

 

Figure 6.2. Examples of nonlinear relationships between a process (Y) and regulatory factor 
(X). For the purposes of our discussion, nonlinearity exists when the relationship between X 

between respiration from a forest soil and soil temperature across 10 to 32oC. Redrawn from 
Fang and Moncrieff (2001); not all single measurements ( filled circles) are shown. (b) 
Bradford et al. (2001) found that soil water potential explains 78% of the variation in net, soil 
methane oxidation rates measured across one year in a temperate forest. (c) Barrett and 
Burke (2000) report a strong linear correlation between soil organic carbon content and 
gross nitrogen immobilization but in fact the relationship is better described by a power 
function (shown as solid line). (d) Examples of relationships (broken lines with open symbols) 
that could be constructed were measurements (filled circle denotes the mean) of a process  

plots were sized to capture the spatial heterogeneity in regulatory factors within single plots 
(see Figure 6.1a). With only a single x-value there is no way to establish the shape of the 
relationship between X and Y. 

spatial heterogeneity within single plots) cannot be used to determine the shape of 

(y-variable) taken at only one mean value of the regulatory factor (x-variable), such as if 

and Y is not constant (i.e., dY/dX ≠ constant). (a) A positive, exponential relationship exists 
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Theoretically, an alternative approach – to establish plots within spatially 
homogenous patches (Figure 6.1b) – generates the same rate estimates as obtained 
using larger plots and enables the shape of the relationship between process and 
regulatory factor to be quantified. A second advantage is that smaller plot sizes are 
often more tractable for manipulation but the trade-off is that greater replication is 
needed. Selection of a plot size that falls somewhere between (Figure 6.1c), the size 
that captures the spatial heterogeneity in a single plot (Figure 6.1a) and smaller plots 
that contain homogenous areas (Figure 6.1b), can only inform about the response of 
the specific experimental plot being investigated; the experimental results will have 
little quantitative relevance to areas outside of the experimental plot. 

 Our discussion of what constitutes a suitable plot size for valid spatial 
extrapolation belongs in an “ideal world” – in reality, a number of complications 
come to bear. First, large plots that capture spatial heterogeneity will rarely have 
smaller homogenous areas evenly proportioned within them and, therefore, rate 
estimates may differ between large and small plot experiments. Appropriate 
replication can reduce these differences. Second, single factors do not regulate 
biogeochemical processes although, in many cases, a single factor can explain a 
significant part of the observed variation in measured process rates (e.g., Figure 
6.2a-c); in such instances, basing plot size on the spatial heterogeneity of this factor 
will provide more information than if spatial considerations were ignored. Third, 
spatial patterns may vary with time. This limitation is perhaps most relevant when 
variation is stochastic (e.g., localized rainfall within a desert) as opposed to non-
stochastic (nutrients accumulate under desert shrubs across time, increasing 
differences in soil fertility between shrubs and interspaces; Schlesinger et al. 1996). 
Fourth, the identity of the landscape unit next to the one of interest, and/or the 
degree of connectedness between similar units (e.g., corridors in fragmented 
landscapes), can markedly influence processes (see Peters et al., Chapter 7, 
Groffman et al., Chapter 10, Lloyd et al., Chapter 14). Fifth, in many experiments 
multiple processes are measured within an experimental plot (e.g., Shaver et al. 
1998, DeLucia et al. 1999, Bradford et al. 2002) and their regulatory factors may not 
only be different but also distributed, in terms of their heterogeneity, across 
distinctly different spatial areas. As a result there may not be a single plot size that 
enables all the measured processes to be extrapolated legitimately. And finally, in 
many cases there may be no a priori knowledge of which factor(s) regulates a 
process until an experiment has been conducted. 

The above scenarios illustrate the need to consider the appropriate plot size in 
designing IEE studies. For example, one may decide that issues of spatial scale 
cannot be incorporated into an experiment due to limiting resources or knowledge 
about regulatory factors. If so, at least this is a conscious decision and as such the 
ability to extrapolate the results spatially can be critically assessed. Such “scale 
awareness” is a marked improvement on the current norm (Gardner et al. 2001).  

6.3.2 Variability in External Regulatory Factors 

In this section we develop our discussion of spatial scale in IEEs. What temporal 
scale considerations are necessary when biogeochemical processes are primarily 
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regulated by external factors, and secondarily by internal factors? To illustrate, we 
use an excellent IEE example in the recent literature where both temporal and 
spatial patterns are shown to determine the absolute and relative magnitude of 
treatment effects. Smith et al. (2000) exposed an intact Mojave Desert ecosystem to 
elevated atmospheric CO2 and showed that new shoot production of a dominant 
perennial shrub doubled in a high rainfall year but was not affected by elevated CO2 
in the subsequent year, which was characterized by low rainfall. Further, in the high 
rainfall year production of annual and exotic grasses, which failed to germinate in 
the drought year, was higher under elevated CO2 and the magnitude of the treatment 
response was greater within fertile “shrub-islands” than in open interspaces between 
perennial plants. Precipitation – an external factor that varies temporally – is the 
dominant control on system productivity and when delivered in sufficient amounts 
the spatial pattern of soil fertility across the landscape (an internal factor) becomes 
an important determinant of the system response to elevated CO2. Such information 
on the spatial and temporal controls on productivity is necessary to predict how the 
Mojave might respond, at the landscape level, to future environmental change.  

Spatial and temporal patterns in deserts are of course typified by extremes. 
Identifying and then incorporating similar scale considerations into other types of 
ecosystems (e.g., tropical and temperate forests) that appear more spatially and 
temporally homogenous in terms of factors, such as soil nutrient availability and 
rainfall, may be more difficult but potentially no less pertinent. For example, the 
magnitude of plant biomass responses to elevated CO2 appears dependent on soil 
nutrient availability for the majority of species tested from across biomes (Bazzaz 
and Catovsky 2002). The primacy of this control is likely to be dependent on other 
factors, such as climate (e.g., Smith et al. 2000), but commonly there is detailed 
information on variation in such factors across years, which can be used to 
determine the degree of confidence that one can extrapolate results in time and 
space. However, published relationships between processes and regulatory factors 
should be assessed with caution prior to designing spatially- and temporally-sound 
experiments. For example, actual evapotranspiration (AET) explains marked 
variation in plant litter decomposition rates across latitudes (Aerts 1997), but within 
a particular system litter quality or soil community composition may be a better 
predictor (Aerts 1997, González and Seastedt 2001). Were such scale considerations 
to be ignored, predictions about how decomposition will respond to perturbation 
might very well be flawed. Probably the best example of such scale-ignorance is the 
plant diversity-productivity debate. Here, the hump-shaped relationship of diversity 
with increasing productivity (see Mittelbach et al. 2001), generated from inter-
community/site comparisons across a landscape, has been used to suggest that a 
similar relationship should occur within a single community/site (Loreau et al. 
2001). 

6.3.3 Temporal Scale 

Many of the same considerations used to determine appropriate spatial scales for 
extrapolation are relevant when deciding upon the necessary temporal grain and 
extent to extrapolate experimental findings. After defining grain and extent, we 
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discuss these considerations with respect to temporal scale and at the same time 
continue discussion appropriate to spatial scaling. 

 

Figure 6.3. Examples of nonlinear relationships between the magnitude of treatment effect on 
a process and different levels of the regulatory factor. (a) Effect of CO2 concentration 
(ambient, open circles; elevated, filled circles) on the proportion of biomass that is Trifolium 
repens in four species plant mixtures, across a gradient of nitrogen availability. At low 
nitrogen concentrations there is a marked effect of CO2 but at high nitrogen, the CO2 
concentration does not affect representation of T. repens in the mixtures (Navas et al. 1999). 
(b) The impact of nitrogen addition (compared to the control) on the biomass response of 
plant communities of increasing species richness. More diverse communities show a greater 
response to nitrogen treatment (Reich et al. 2001). (c) Volk et al. (2000) show that the relative 
response of plant biomass in two species mixtures to an increase in CO2 concentration 
markedly decreases when amended with higher levels of simulated rainfall. (d) Soil organic 
matter content (a surrogate for soil fertility) regulates the aboveground biomass of individual, 
two-year old, loblolly pine seedlings but planting density moderates its regulatory role (Zutter 
et al. 1997). One (filled circles), two (open circles), three (filled triangles) and four (open 
triangles) seedlings were planted per m2. 

 Grain is the smallest spatial or temporal resolution at which data are collected 
(i.e., the limit to which individual measurements can be resolved), whereas extent is 
the spatial size (length, area or volume) of the study and the total duration over 
which it is observed (Wu and Li, Chapter 1). See Kemp et al. (2001) for discussion 
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of how these definitions are modified depending on whether the data of interest are 
observed in nature, collected through experimental manipulations, or measured as 
intrinsic scales of a natural system. In the previous section we used the Smith et al. 
(2000) study to highlight how temporal variability in regulatory factors can often 
affect the magnitude of treatment response of a process. This builds on the argument 
that relationships between processes and regulatory factors may be nonlinear (Figure 
6.2) because it can be demonstrated that a linear relationship between the magnitude 
of treatment effect on a process and the regulatory factor(s) is unlikely (Figure 6.3). 
Thus, the temporal extent of IEE studies must capture enough variability to 
construct a robust relationship between regulatory factors, processes and treatment 
effects. This will be dependent on (i) variability in the regulatory factor(s), (ii) the 
process measured, (iii) the presence of synergies, feedbacks and thresholds, and (iv) 
how each treatment is applied. We discuss each in turn, highlighting the four main 
areas that we believe are necessary for consideration when deciding the temporal 
grain and extent of an experiment.  

 6.3.3.1 Variability in regulatory factors 

Similar to selection of plot size (i.e., spatial extent), there is a strong relationship 
between the amount of heterogeneity in the regulatory factor that the experimenter is 
able to capture (to explain variation in the measured process) and the robustness of 
the mechanistic understanding generated. That is, the more levels of the regulatory 
factor at which the process is measured, the better quantified the relationship. 
Ideally, experiments should be run for as long as is feasible to enable this. When 
choosing spatial extent one can measure the spatial arrangement of regulatory 
factors; however, in setting the temporal extent one must presuppose how the 
regulatory factor will vary over time. This might be based on past records (if they 
exist), speculations, hunches, analogies with other studies, etc.: in other words, 
predict the future! Here, perhaps, is when the experimenter is most at the mercy of 
factors outside experimental control. 

 6.3.3.2 Frequency of measurement: integrative vs. active processes 

The frequency with which to measure a process is the next decision to be made. The 
term frequency is synonymous with that of sampling density. The frequency chosen 
for a study will be dependent upon the process of interest (see below) and there is 
little to be gained by setting the frequency to the same resolution as the temporal 
extent of the IEE. For example, if we measured tree growth once at the end of a 
three year experiment it is unlikely that we could ever extrapolate this result in time. 
We would need exactly the same pattern of climatic conditions to manifest over a 
three year period to do so, which is unlikely. However, had we increased the 
frequency of our measures we would have been able to plot the treatment effect 
against values for regulatory temporal factors (e.g., climatic variables) and therefore 
construct a relationship potentially useful for extrapolation – as done by Smith et al. 
(2000). These authors measured aboveground production of the dominant shrubs at 
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their desert site in two successive years that differed markedly in rainfall and, as a 
consequence, rate of shrub growth. Had they measured production only at the end of 
the second year, then they could not have determined that production was dependent 
upon rainfall within a year because they would have had a single production 
estimate that integrated across two years of different rainfall patterns. 

 Commonly, the process of interest determines the frequency that we choose. For 
example, estimates of net primary productivity (NPP) constitute a measure of plant 
biomass production across time that is influenced by external factors such as climate 
and nitrogen deposition, and by internal factors such as site fertility, herbivory, 
competition, species identity and facilitation. All of these factors operate over the 
growing season but NPP is usually measured only once (e.g., during peak growth) or 
twice (rarely) to assess treatment effects (e.g., Hector et al. 1999, Shaw et al. 2002). 
We define measures such as NPP as a temporally-integrative process, in contrast to 
a temporally-active process, such as soil CO2 efflux. The former may have units of, 
for example, kg m-2 y-1 whereas the latter, µmole m-2 s-1. These distinctions muddy 
the notion of frequency to a certain extent because it does not simply define how 
often a process is measured. For example, if we measure NPP and soil CO2 efflux 
once a year then the frequency is the same; however, the information gathered 
regarding the response of the process to the treatment will reflect very different 
time-scales (and therefore temporal grains!). Further, the integrative vs. active 
nature of a process is likely to be on a continuous rather than discrete scale, and the 
exact positioning for a process may depend on what ecosystem is being investigated. 
For example, soil CO2 efflux in a well-drained soil may be a truly active process, but 
in a wetland, where movement of gas through soil is restricted, changes in 
atmospheric pressure and freeze-thaw cycles can lead to release of large build-ups of 
trace gases (Bubier et al. 2002). Hence the active vs. integrative nature of a specific 
process may be temporally, as well as ecosystem, dependent.  

Such considerations directly impinge on the frequency with which we decide  
to measure a process and what mechanistic understanding we construct. For 
temporally-active processes, which have the potential to exhibit marked short-term 
variation if regulated by, say, a single but temporally dynamic factor, frequent 
quantification is necessary to generate robust estimates (e.g., Bradford et al. 2001). 
The advantage is that frequent quantification will permit strong relationships 
between process and regulator to be constructed within relatively short time-scales. 
In contrast, the mechanistic basis for variation in a temporally-integrative process 
such as NPP can be difficult to obtain because so many factors have had the 
opportunity to affect the rate estimate obtained at a single time point. Even after a 
number of years of measurement, causative mechanistic-relationships may be hard 
to identify (Shaw et al. 2002, Field et al. 2003, Mitchell and Reich 2003), unless 
regulatory factors exert their influence in a temporally predictive manner (e.g., litter 
decomposition shifting from nitrogen- to lignin-controlled as in Taylor et al. 1989). 
Identification of causation may be further compounded by changes induced by 
treatment on the system of study over time that then interact with the treatment to 
modify the original treatment impacts on the process of interest, as discussed next. 
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 6.3.3.3 Synergies, feedbacks and thresholds 

The magnitude and direction of treatment effects in IEEs may change over time not 
simply through variation in the magnitude of a regulatory factor (Figure 6.3) but 
because of synergies, feedbacks and thresholds (Reynolds et al. in press). Synergies 
arise when two or more processes/factors interact in such a way that the outcome is 
greater than the sum of their separate effects (e.g., multiplicative rather than 
additive). Feedbacks occur when a system or process is modified by changes in its 
own influence or size. If the initial (direct) response is enhanced, the feedback is 
considered positive; if decreased, the feedback is negative. Thresholds occur where 
critical values or set points are reached. They often result in major nonlinear changes 
in a process, and are products of the complex of synergies and feedbacks that exist 
in both climate and biological systems (Harte 1996). Thus, in short, the temporal 
responses of processes to treatment will be the result of variation in regulatory 
factors modified by the action of synergies, feedbacks and thresholds (examples are 
provided in Table 6.1) – a highly complex situation indeed!  

How one can reconcile the potential complexity of mechanisms that result in 
observed treatment effects with the necessary understanding for temporally 
predictive science is a moot point. Schellnhuber (1999) challenges us to consider: 
“Where are the limits of scientific predictability in complex systems?” Holling et al. 
(2002) argue that it is essential to distinguish what is understandable or predictable 
(even if uncertain) from that which is inherently unpredictable. It is clear that 
prediction (i.e., temporal extrapolation) operates at the frontier of what is amenable 
to the scientific method today and this must be borne in mind when questions of 
temporal scaling are posed.  

 6.3.3.4 Press vs. pulse and step vs. gradual 

Intact ecosystem experimental treatments can be categorized as press or pulse. 
Based on the definition of Bender et al. (1984), a press experiment is where the 
perturbation is sustained (often at a constant level) across time (e.g., exposure of 
intact communities to elevated CO2). In contrast, pulse experiments involve a 
relatively brief period of perturbation (e.g., single application of nitrogen fertilizer). 
The investigator is typically interested in how a system/process deviates from its 
pre-treatment state (press and pulse) and then how quickly, if at all, it returns to its 
pre-treatment state (pulse only). With pulse experiments the transient response of a 
process to treatment is usually the response of most interest. For accurate 
quantification of process values across time, knowledge of the timing of process 
response to treatment is required. Williams et al. (1999) demonstrated that N2O 
efflux from grassland soils amended with bovine urine was practically instantaneous 
(< 4  h)  and that the flux values observed were approximately six times higher within 
the first 24 hours than after them. This marked initial response was missed in earlier 
studies, leading to underestimates of soil N2O flux. Where more integrative 
processes are measured (e.g., Pfisterer and Schmid 2002), a single process 
measurement may integrate across declining or increasing responses of the process 
to treatment over time but at a temporal grain finer than that measured. Thus, the 
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sensitivity of the measured process response to the pulse perturbation may be under- 
or over-estimated, respectively. 

Table 6.1.  Examples of ecological nonlinearities on biogeochemical processes caused by 
thresholds, feedbacks and synergisms.  

Thresholds Feedbacks Synergisms 

Al stress-acid deposition: 
The calcium/aluminum 
(Ca/Al) molar ratio of the 
soil solution is an 
ecological indicator of 
thresholds, beyond which 
the risk of forest damage 
from Al stress and 
nutrient imbalances 
increases (Cronan and 
Grigal 1995). Based on 
data from 89 forested 
catchments across 
Europe, Dise et al. (2001) 
found thresholds for N 
and S depositions, above 
which Al is released from 
forests at maximum rates. 

Weed density-
productivity: When weed 
populations reach a 
threshold density, crop 
production is reduced 
(Brown et al. 1999). 

Canopy chemistry-N 
cycling: Estimates of soil 
C:N ratios indicate that 
63% of the White 
Mountains in New 
Hampshire fall below 22, 
a critical threshold for the 
onset of nitrification 
(Ollinger et al. 2002). 

Herbivores-plants-N 
cycling: Herbivores 
indirectly decelerate N 
cycling in savannah by 
decreasing the abundance 
of plant species with 
nitrogen-rich tissues. 
They may also decelerate 
succession by reducing 
the cover and biomass of 
woody plants (Ritchie  
et al. 1998). 

Elevated CO2-respiration: 
Plants grown in elevated 
CO2 increase C input to 
the rhizosphere, which in 
turn feedbacks to affect 
tree growth and soil C 
dynamics. For example, 
additional soil C inputs 
increase rhizosphere 
respiration (Cheng 1999). 

Canopy chemistry-N 
cycling: Foliar N 
increases with increasing 
net N mineralization, 
suggesting a positive 
feedback between foliar 
chemistry and soil N 
status (Ollinger et al. 
2002).  

Herbivore-root growth: 
Herbivores have a  

Vegetation pattern-NPP: 
In arid ecosystems 
clumping or banding of 
vegetation results in an 
overall increase of 
production and plant 
diversity due to the 
combined benefits of the 
redistribution of 
precipitation and nutrients 
into patches (Aguiar and 
Sala 1999). 

Litter quality-
decomposition: Mixing 
litters of different 
nitrogen concentration has 
negative synergistic 
effects on decomposition 
rate (Smith and Bradford 
2003). 

Insects-fire-C 
sequestration: Climatic 
change will affect the 
frequency and intensity  
of pest outbreaks, which 
causes a considerable loss 
of wood and affects fire 
frequencies. This 
synergism between 
outbreaks, fires, and 
warming must be 
accounted for in models  
if realistic carbon 
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Table 6.1 (contd.)   

Thresholds Feedbacks Synergisms 

Plant cover-soil loss: 
Minor changes in shrub or 
grass cover resulting from 
climatic variability and 
grazing can lead to sudden 
increases in soil erosion 
(Breshears and Barnes 
1999). 

Bark thickness-fire 
susceptibility: Forest 
fragmentation and 
intentional burning of 
grasslands in the dry, 
subhumid tropical forests 
of Bolivia is increasing. 
Hence, the frequency of 
fires in local forests, 
which did not develop 
with fires, is likely to 
increase. A bark thickness 
below 18 mm makes the 
tree species highly 
susceptible to fire damage 
and 81% of the species are 
below this threshold and, 
therefore, likely to 
experience cambial injury 
from low intensity fires; 
thus, biomass C storage in 
this region is at grave risk 
(Pinard and Huffman 
1997). 

positive feedback on root 
growth, stimulating 
growth 7× more than 
shoot production (Frank 
et al. 2002).  

Logging-fires-C loss: For 
the 1997-98 Indonesian 
fires, the largest fire 
disaster ever observed, 
forest fires primarily 
affected recently logged 
forests while primary 
forests or those logged 
long ago were less 
affected. These results 
support the hypothesis of 
positive feedback 
between logging and fire 
occurrence (Siegert et al. 
2001), both of which 
affect C loss from 
tropical forests. 

Soil N-plant growth-
CO2: Populus grown 
under elevated CO2 and 
low-N soil have reduced 
photosynthetic capacity, 
but in high-N soil, 
photosynthesis is 
enhanced (Zak et al. 
1993). 

sequestration forecasts in 
a warming climate are to 
be made (Volney and 
Fleming 2000). 

Plant diversity-soil 
processes: Two-species 
mixtures of ten different 
grassland plants had 
higher or lower soil 
microbial biomass, 
respiration: biomass ratio 
and plant litter 
decomposition than the 
additive prediction from 
monoculture treatments 
(Wardle and Nicholson 
1996). 

Soil nutrients-UV 
radiation-plant growth: 
Enhanced UV-B radiation 
(equivalent to a 15% 
ozone depletion) and high 
soil nutrient levels interact 
synergistically to 
accelerate growth of 
Phlomis fruticosa, a fast-
growing, drought-
deciduous Mediterranean 
plant species (Levizou and 
Manetas 2001). 

Given that the main focus of pulse experiments is to quantify transient dynamics, 
they tend to be less criticized than press experiments for being short-term. However, 
the criticism that short-term experiments may quantify transient dynamics which 
may be opposite to long-term effects (Tilman 1989), is equally applicable to press 
and pulse manipulations. These “transient dynamics” may result from ecological 
mechanisms that would be observed under natural circumstances, such as the 
crossing of critical thresholds (see Table 6.1 for examples). Alternatively, they may 
be artifacts of the way in which treatment is applied. For example, in the Duke 
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Forest FACE study, where an entire stand of loblolly pine is being exposed to 
elevated atmospheric CO2 concentrations, the growth of the forest in the first three 
years was significantly enhanced. However, after three years this stimulation was 
lost, a result of the negative feedback of insufficient soil nutrients (Oren et al. 2001). 
In a modeling exercise, parameterized using data from the same FACE site, Luo and 
Reynolds (1999) demonstrated that had the treatments been applied in a gradual 

2 
-1 – then 

the marked and transient increase in productivity would not have been observed. 
This was due to differences in forest N demand between a gradual and step increase 
in CO2. Of course, many treatments are applied in such a “step” fashion – we simply 
do not have the time to “realistically” mimic a gradual change in CO2 concentration, 
mean annual temperature, or rainfall variability, as predicted under IPCC scenarios 
(Houghton et al. 2001). What is important is to recognize the implications of such 
step changes on our ability to extrapolate results in time and how the mechanistic 
understanding generated aids future prediction (e.g., Luo 2001). For some treatments 
the step vs. gradual categorizations are less relevant, if at all. For example, one can 
realistically impose treatments to investigate the response of an agricultural field to 
long-term fertilizer application (Hütsch et al. 1993) or the novel occurrence of exotic 
species within ecosystems (Alvarez and Cushman 2002). Regardless of whether the 
“step” categorization applies, the whole concept of step vs. gradual application has 
stimulated important debate and experimentation into the effects of different levels 
of applied treatment. 

 The responses of processes to different levels of treatment are typically 
nonlinear, even when applied over the same spatial and temporal extent. For 
example, in a Texas grassland net N mineralization rates in soils decrease 
exponentially with increasing CO2, with the largest changes occurring at subambient 
concentrations (Gill et al. 2002). In a separate study, Granados and Körner (2002) 
examined the potential for elevated CO2 to accelerate the growth of climbing vine 
species of tropical forests, and hence tree turnover. In both species, the increase 

 -1
2

-1 -1 enhancement 
caused a massive reduction of the stimulation. Yet most experiments use only one 
treatment level, potentially masking nonlinear relationships. If we wish to 
extrapolate treatment effects in time or space, across which the magnitude of the 
press or pulse of the perturbation simulated by the experimental treatment may 
differ, then we need to quantify the shape of the relationship between processes and 
treatment levels.  

6.4 MEASURING TREATMENT EFFECTS USING MODEL ECOSYSTEM 
EXPERIMENTS 

 6.4.1 Laboratory and Field MEEs 

We define MEEs as those where the experimental system is either wholly or 
partially constructed. Our definition includes three types of MEEs. In type (1) the 

increment in CO concentration – rather than a step from ambient to 550 ml l

from 280 (pre-industrial) to 420 ml l  CO  had a much larger effect on growth than 
the increase from 420 to 560 ml l . Further, the 560 to 700 ml l
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climate is constructed and the biotic component remains “intact” – i.e., laboratory 
experiments using, for example, vegetated soil monoliths that are removed from the 
field. In type (2) the climate is “intact” and the biotic component is constructed – 
i.e., field experiments where, for example, the plant community is grown from seed 
and controlled for richness and functional-type composition. Lastly, in type (3) both 
the climate and the biotic component are constructed. These are laboratory 
experiments using biotic systems that are not “intact”, e.g., those typically 
conducted in controlled environment chambers (e.g., Lawton 1995, Reynolds 2001). 

 Type (1) MEEs isolate an “ecosystem-unit” from the rest of its landscape and 
introduce a suite of questions regarding the “reality” of process rates and treatment 
effects measured under laboratory conditions. For example, what impact will the 
absence of immigration have? Has the disturbance altered soil nutrient availabilities? 
Do diurnal patterns of temperature need to be simulated? Questions with respect to 
disturbance effects of the removal into the laboratory have a different basis to those 
that question the effects of obstructing processes such as immigration and diurnal 
variation in climate. Disturbance effects are non-target changes in the system of 
interest, whereas isolation from biotic and abiotic factors that would not be under 
experimental control in intact ecosystems is a deliberate attempt to maximize the 
relative contribution of treatment to variation in measured process rates. In short, the 
aim is to increase the chances of detecting a signal, if one exists, by reducing noise.  

 The rationale of maximizing the signal-to-noise ratio also underlies the use of 
type (3) MEEs. In addition, many of the treatments imposed on these MEEs may not 
be feasible under field conditions. For example, to manipulate the soil community in 
the field, and maintain it over biological meaningful temporal and spatial scales, 
presents many logistic difficulties (Kampichler et al. 2001). Thus, partial or 
complete construction of an experimental system is often necessary to test the posed 
hypotheses (e.g., the model soil communities created by Bradford et al. 2002 and De 
Deyn et al. 2003). The same “feasibility” criterion underlies the use of the majority 
of field MEEs. For example, construction of plant communities of set initial density 
and varying diversity simply would not be possible without a constructionist 
approach (e.g., Hooper and Vitousek 1997). Given that the biotic system has been 
partially constructed, which clearly is not a natural situation, the decision to conduct 
the experiment in the field rather than in the laboratory is often an attempt to 
increase the realism of the experimental system. These constructed vs. real 
components to MEE design are properties associated with internal and external 
validity. 

 6.4.2 Internal and External Validity 

Manly (1992) stated that, “Internal validity concerns whether the apparent effects or 
lack of effects shown by the experimental results are due to the factor being studied, 
rather than some alternative factor. External validity concerns the extent to which 
the results of an experiment can be generalized to some wider population of 
interest.” Internal validity is likely to be highest when all factors are under the 
experimenter’s control. External validity will be highest when the experimental 
system corresponds to the natural system under investigation in all aspects (Naeem 
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2001) and, following Manly’s definition, when the experimental plot is appro-
priately temporally and spatially scaled for extrapolation. Given the huge number of 
studies conducted using model ecosystems, and the fact that they all trade-off 
external for internal validity to some extent, it is appropriate to ask: What 
understanding we can extrapolate from MEEs to facilitate temporally and/or 
spatially predictive science? Maybe this very question is why some of the most well 
known MEEs, such as those that initially evaluated the effects of elevated CO2 on 
ecosystem response (e.g., Billings et al. 1982) and the role of biodiversity in 
ecosystem functioning (e.g., Naeem et al. 1994), have produced much debate and 
experimentation to challenge/confirm the original findings. 

 6.4.3 Scaling MEEs – Process Rates and Treatment Effects 

Our discussion of the factors that must be considered prior to extrapolating 
experimental results in space or time from intact systems apply equally to MEEs 
(see Gardner et al. 2001 for new perspectives and review of this topic). Given these 
obstacles, and the question of validity, when can we extrapolate process rates and 
absolute/relative treatment effects from MEEs? The answer is probably “almost 
never” (if we decide that we can, then uncertainty analysis will be an essential 
component; see Li and Wu, Chapter 3). 

 To support our contention that process rates and absolute/relative treatment 
effects from MEEs can almost never be extrapolated we provide the following 
hypothetical example. A type (1) MEE (intact system, constructed climate) is used 
by Dr. Climatron to investigate how soil CO2 efflux is affected by carbon addition. 
Prior fieldwork by his group has demonstrated that soil moisture and temperature are 
regulators of CO2 efflux and so they collect a soil monolith suitably sized to capture 
heterogeneity in moisture at the landscape level. Glucose solution amendments are 
imposed as the treatment and water amendments as the control. Carbon dioxide 
efflux is then measured across a range of soil moistures at different temperatures. 
Using field measurements of temperature, moisture and efflux, from carbon 
amendment and control plots, Dr. Climatron’s group cross-calibrate the relationship 
generated in the laboratory with that in the field. They find that temperature and 
moisture explain most of the field variation in efflux and, as a result, can quite 
accurately predict the measured CO2 efflux of the monoliths maintained in the 
laboratory from the imposed soil moistures and temperatures. That is, their 
laboratory measurements have high external validity. They then use their MEE to 
determine the efflux at temperatures and moistures higher and lower than those 
observed during their field observations, and at different levels of carbon 
amendment. Thus, they are quantifying relationships at values beyond those 
calibrated against field measurements.  

This property of MEEs is a strength of the MEE approach, but how confident can 
we be in their extrapolation? Given the high external validity of their original 
laboratory measurements (given the good fit with field data) our confidence is high 
but we recognize that they are assessing potential and not actual process rates. 
Hence, whether we can scale their results to the field becomes questionable. Had 
they first sieved the soil and then reconstructed the monolith, before placing it in the 
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field (type [2] MEE) or laboratory (type [3] MEE), they would still be measuring 
potential effects but our confidence in whether the measured process rates reflect 
those of an intact system would be much less than when they used a type (1) MEE. 
For example, they may have altered characteristics of the system, such as drainage, 
through sieving which might influence efflux. Nevertheless, carbon amendment 
would probably still stimulate heterotrophic respiration, so we might be confident to 
extrapolate the sign of the treatment effect, which would be positive, to the field. 

 We suggest that process rates and absolute/relative treatment effects measured 
in MEEs should not be extrapolated to intact systems. Further, through controlling 
for regulators and isolating the system in the case of lab MEEs, we remove 
mechanisms that may contribute to feedbacks, synergisms and thresholds. Thus, the 
longer we run a study, or the simpler a system is, then the more we must question 
whether the sign of the treatment effect can be extrapolated. It is worth noting that 
the sign of treatment effects in relatively long-term and complex MEEs are the same 
when both field and laboratory MEEs are used (Naeem et al. 1994, Hector et al. 
1999), despite marked differences in validity. In contrast, using simpler systems, 
Navas et al. (1999) demonstrated that type (3) MEEs with isolated plants could not 
be used to predict the behavior of species mixtures under elevated CO2 and a 
nitrogen gradient, whereas monocultures could. Their work suggests that there may 
be critical levels of validity across which we cannot scale. It is imperative that we 
determine if such critical thresholds of validity exist given the very large number of 
MEEs conducted using single plants. 

 Naeem (2001) provides a more in-depth evaluation of how validity relates to 
extrapolation and, interestingly, concludes that the current biodiversity-productivity 
debate is premature given that appropriately valid/scaled experiments have not been 
conducted to address the question. His conclusion may be applicable to many 
scientific debates because of the lack of “scale awareness” in the experiments 
conducted by all sides to support their arguments. 

 6.4.4 Scaling MEEs – Mechanisms 

So when are MEEs useful? We believe MEEs are best suited to identifying 
causation/mechanisms and become most powerful in this respect as internal validity 
is increased. For example, demonstration of semi-conservative replication of DNA 
would not have been possible without a highly simplified MEE (Meselson and Stahl 
1958). Similarly, Goddard and Bradford (2003) used the MEE approach to 
demonstrate the potential for a population of fungi found widely in terrestrial 
ecosystems to evolutionarily adapt, within relatively few generations, to altered 
carbon and nitrogen availability in the environment. Further, the role of soil fertility 
in determining plant responses to elevated CO2 was worked out using MEEs 
(Bazzaz and Catovsky 2002). However, at the same time internal validity increases 
such that our confidence in extrapolating this causation to natural systems decreases 
due to loss of external validity. In a thought provoking article Lawton (1995) 
challenges us to consider this loss as a research question as opposed to a limitation. 
We agree. For the purposes of extrapolation of mechanisms from MEEs to the field, 
we suggest that short-term, complex MEEs are best suited. If we wish to know how 
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important a mechanism may be in an intact system then, given that as complexity 
increases the signal-to-noise ratio decreases, one approach may be to identify a 
potential mechanism using a highly simplified system. Then, while maintaining the 
same temporal extent, increase system complexity and measure whether the 
mechanism of causation is still detectable. Unfortunately there is still a catch – weak 
interactions, which are hard to detect above non-controlled variation, are 
increasingly being shown to be important in ecological dynamics (e.g., Berlow 
1999). 

6.5 CONCLUSIONS 

The challenges of global changes and Earth System Science are great. To 
extrapolate biogeochemical process rates, and treatment effects on them, across time 
and space greater than the experimental extent requires an understanding of the 
factors that regulate the process, how these factors are temporally and spatially 
distributed, and what feedbacks, thresholds and synergies may manifest. We cannot 
expect the shape of the relationship between process rates, or treatment effects, and 
regulators to be linear; multiple levels of treatments must be imposed across varying 
values of regulatory factors. We need to determine if the process being measured is 
integrative or active within the specific ecosystem under investigation and whether 
the treatment responses observed are artifacts of the way treatment is imposed (e.g., 
step vs. gradual).  

 Spatial and temporal extrapolation differs in a key regard. The latter attempts to 
predict the future behavior of ecosystems and is inherently more complex due to the 
greater number of uncertainties and interactions that act across temporal as opposed 
to spatial scales. Research intent on extrapolation might then be best focused on 
spatial issues but, given the societal need for temporally predictive science, well-
resourced multi-disciplinary studies that critically evaluate their own limitations will 
be required to tackle temporal scaling. Model ecosystem experiments will contribute 
to this effort and their use will be best targeted at unravelling the mechanisms 
behind causation of treatment effects observed in intact systems. Neither intact 
systems nor model systems alone will provide the necessary understanding required 
to scale experimental results across time and space, and discussion (Carpenter 1996, 
Carpenter 1999, Drenner and Mazumder 1999) of which is superior is constructive 
only if to highlight this point. There is a need for much greater “scale awareness” in 
ecology and this is reflected both in this and related volumes (e.g., Gardner et al. 
2001). 
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CHAPTER 7 

A FRAMEWORK AND METHODS FOR SIMPLIFYING 
COMPLEX LANDSCAPES TO REDUCE UNCERTAINTY  

IN PREDICTIONS 

DEBRA P.C. PETERS, JIN YAO, LAURA F. HUENNEKE, 
ROBERT P. GIBBENS, KRIS M. HAVSTAD, JEFFREY E. 

HERRICK, ALBERT RANGO, AND WILLIAM H. SCHLESINGER 

7.1. INTRODUCTION 

Many of our most pressing ecological problems, such as the conservation of 
biodiversity, spread of invasive species, patterns in carbon sequestration, and 
impacts of disturbances (e.g., fire) must be addressed at the landscape scale (see 
Law et al., Chapter 9, Groffman et al., Chapter 10, Urban et al., Chapter 13). 
However, much of our information about these problems comes from plot-scale 
studies that must be extrapolated to the landscape. Because landscapes are complex, 
this extrapolation is not always straightforward or easy to accomplish (Turner et al. 
1989a, Wu and Li, Chapter 2, Braford and Reynolds, Chapter 6). Landscape 
complexity results from the processes, factors, and their interactions that occur 
across a range of spatial and temporal scales. The problem is further complicated by 
the presence of contagious or neighborhood processes that connect different parts of 
a landscape. Dispersal of seeds by wind or animals, fire, and erosion and deposition 
of soil and nutrients by wind and water are examples of spatial or contagious 
processes that influence ecosystem dynamics. Landscape complexity makes it 
difficult to understand and predict ecosystem dynamics across spatial scales with 
high levels of confidence or certainty. Our goal is to develop a conceptual 
framework and operational approach to simplifying complex landscapes in order to 
minimize both prediction errors and costs associated with measurement, analysis, 
and prediction.  

A number of methods are available to extrapolate information that differ in the 
key processes involved (King 1991, Jarvis 1995). There are three main classes of 
extrapolation methods: (1) nonspatial, (2) spatially implicit, and (3) spatially explicit 
(Peters et al. 2004). These methods differ in the amount of spatial information 
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required to carry out the analysis. In most cases, the objective of the extrapolation is 
to obtain a single estimate for an entire landscape. 

Nonspatial methods are the simplest and contain the fewest parameters. These 
methods include linear extrapolation where fine-scale information is extrapolated to 
broad-scales using weighted averages based on the area covered by each type of  
landscape unit. The classic example is the extrapolation of net primary production 
from sampled plots to biomes (Leith and Whittaker 1975). Other extrapolation 
techniques are possible (King 1991). In each case, it is assumed that spatial location 
on a map and quantification of contagious processes are not needed for the 
extrapolation.  

Spatially implicit methods include the importance of spatial location in both the 
input and response variables. For example, gap models that simulate grassland or 
forest successional dynamics (Peters 2002, Keane et al. 2001, Symstad et al. 2003), 
nutrient cycling models (e.g., Burke et al. 1991, 1997), and most biogeographic 
models currently used to predict vegetation types at regional to global scales (e.g., 
Neilson and Running 1996, Melillo et al. 1995) are spatially implicit methods. These 
models typically simulate grid cells that differ in properties such as soil texture, 
precipitation, and temperature. Simulations are conducted for each grid cell 
containing a unique combination of parameters. Spatial location is important to the 
extrapolation because location is used to determine the value of some parameters, 
but it is assumed that the important processes occur within a grid cell; thus 
connections among grid cells are assumed to be negligible.  

Spatially explicit or interactive methods are the most complex in that they 
require information on spatial location as well as on neighborhood processes. 
Familiar examples of spatially explicit models include cellular automata (Hogeweg 
1988), dispersal models that compute dispersal likelihood in terms of the distance 
between the target and source sites (Coffin and Lauenroth 1989, Clark et al. 1998, 
Rastetter et al. 2003), and models of contagious disturbances such as fire and disease 
(Turner et al. 1989b, Miller and Urban 1999). In each case, simulations are 
conducted for grid cells that differ in properties such as soil texture and climate. 
Furthermore, both processes within and among grid cells are important to ecosystem 
dynamics. Parameter values of a grid cell may depend upon either the identity of its 
neighboring cells, or specific exchanges of material or individuals among 
neighboring cells may be modeled explicitly. 

Each of the three classes of scaling methods has tradeoffs in errors associated 
with uncertainty. Studies of model error have shown that simple models are often 
optimal when information is imprecise (O’Neill 1979, Reynolds and Acock 1985). 
However, more complicated models may be better when dynamics are complex and 
extensive data are available; yet these data may be expensive to collect and contain a 
number of small errors that accumulate to produce disproportionately large 
uncertainties in predictions (Gardner et al. 1980, Li and Wu, Chapter 3). Thus, there 
are relative trade-offs between errors of omission (high in simple models, low in 
complex models) and errors of commission (high in complex models, low in simple 
models) for each method. In general, one should select the simplest method possible 
that represents the key processes influencing system dynamics in order to minimize 
both types of error (Peters et al. 2004).  
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Typically, researchers select one method for an entire landscape that depends on 
the question being addressed. However, the use of one method likely results in high 
errors of omission for some parts of a landscape, and high errors of commission for 
other parts. For example, a nonspatial extrapolation will result in high errors of 
omission for the areas on the landscape where contagious processes are particularly 
important, such as topographic lows where water accumulates and production is 
higher than the landscape average. Similarly, using a spatially explicit method for an 
entire landscape will result in high errors of commission associated with including 
unnecessary and poorly estimated parameters for those areas where spatial location 
and contagious processes are relatively unimportant, such as level uplands where 
dynamics are best explained by precipitation and soil texture. Because each 
parameter has an associated uncertainty in its estimate, including unnecessary 
parameters increases the overall uncertainty of the prediction (Peters et al. 2004). 

Because landscapes consist of a mosaic of sites differing in spatial heterogeneity 
and degree of connectedness, we expect that a combination of scaling methods is 
needed to simplify complex landscapes in order to minimize errors of prediction. 
This general approach is similar to hierarchical scaling strategies (Wu 1999). Linear 
extrapolations may be most appropriate for the parts of a landscape that are 
relatively homogeneous. Spatially implicit or explicit approaches are expected to be 
necessary for those parts with high spatial heterogeneity or connectedness with 
neighboring sites (Peters et al. 2004).  

We focus on the important and timely problem of scaling patterns in carbon 
sequestration and dynamics across semiarid and arid ecosystems to illustrate our 
approach of combining these methods to simplify landscapes. Recent estimates 
suggest that the carbon sink in grasslands and shrublands in the coterminous U.S. 
from 1980-1990 may be similar to that in forests (Pacala et al. 2001). In particular, 
shrub-dominated ecosystems are important contributors to carbon sinks due both to 
their extensive area (44% of the total land area of the U.S.) and to their high 
potential sequestration rates (Hibbard et al. 2001). The area dominated by shrubs 
and other woody plants has increased worldwide over the past century because of 
complex interactions among a number of factors, including effects of large and 
small animals, drought, fire, climate change, and changes in soil properties 
(Humphrey 1958, Schlesinger at al. 1990, Allred 1996, Van Auken 2000). Increases 
in above- and belowground carbon storage as well as increases in emissions of NOx 
and non-methane hydrocarbons (e.g., terpenes, isoprene, and other aromatics) have 
resulted from the replacement of grasses by shrubs (Archer et al. 2001, Hartley and 
Schlesinger 2001, Jackson et al. 2002).  

Estimates for carbon sinks and losses in areas encroached upon by woody plants 
have a high degree of uncertainty because of landscape-scale variation in edaphic 
and topographic factors (Pacala et al. 2001, Hurtt et al. 2002). Furthermore, spatial 
patterns in carbon and other soil nutrients may be complex because of processes 
such as wind and water erosion, and animal redistribution of plant material and 
nutrients (Schlesinger and Pilmanis 1998). Our specific objectives were: (1) to 
illustrate the use of each of the three scaling methods for extrapolating estimates of 
carbon dynamics based on aboveground net primary production (ANPP) for arid and 
semiarid landscapes, (2) to examine the key processes and factors leading to 
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heterogeneity in carbon dynamics at the landscape scale, and (3) to develop a 
framework to identify the landscape locations where each scaling method is most 
appropriate.  

7.2 SYSTEM DESCRIPTION 

The study was conducted using data collected from the Jornada Basin Long Term 
Ecological Research site (JRN) located in southern New Mexico (32.5oN, 106.8oW). 
The Jornada consists of the Jornada Experimental Range, a 78,266-ha area 
administered by the USDA Agricultural Research Service, and the adjacent 
Chihuahuan Desert Rangeland Research Center, a 25,900-ha area administered by 
New Mexico State University. The JRN is characteristic of the northern Chihuahuan 
Desert with long term (80 y) mean annual precipitation of 248 mm/y (SD = 87) and 
mean monthly temperatures ranging from 3.8oC in January to 26.1oC in July. 
Elevation ranges from 1200m in the basin to >2500 m in the mountains.  

Similar to many other arid and semiarid ecosystems, a key characteristic of the 
JRN is that much of the area has changed from perennial grasslands to shrublands 
within the past 100 years (Buffington and Herbel 1965, Gibbens and Beck 1988, 
Fredrickson et al. 1998). In many areas within the JRN basin, black grama 
(Bouteloua eriopoda) dominated grasslands have been replaced by one of three 
shrub species: honey mesquite (Prosopis glandulosa), creosote bush (Larrea 
tridentata), and tarbush (Fluorensia cernua). Grasslands dominated by tobosa 
(Hilaria mutica) commonly occur in low-lying areas. Currently at the JRN, 
communities dominated by these five species occur on >90% of the study area. 
Subdominant plants include annuals and other perennial grasses, forbs, subshrubs, 
and other shrubs. 

7.3 EXTRAPOLATION OF ANPP FROM PLOTS TO A LANDSCAPE 

We used aboveground net primary productivity (ANPP) sampled seasonally in three 
exclosures in each of the five major vegetation types as our plot-level estimates of 
changes in carbon storage (Huenneke et al. 2001, 2002). Within each vegetation 
type, exclosures were selected to represent the range of variability in production of 
that type rather than as replicates of average conditions. Each exclosure was 
sampled using 49 1-m2 quadrats. Methods of sampling are described in detail in 
Huenneke et al. (2001, 2002). Annual values of ANPP from 1990-1998 were 
averaged across exclosures and years to obtain a long term estimate for each 
vegetation type (http://jornada-www.nmsu.edu). We then used one of three methods 
(nonspatial, spatially implicit, spatially explicit; Peters et al. 2004) to illustrate how 
to extrapolate these plot-level estimates to the entire Jornada landscape. 

7.3.1 Nonspatial 

The average plot-based estimate of ANPP for each of the five vegetation types was 
extrapolated nonspatially to the landscape scale using a weighted-averaging method 
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(Table 7.1). Average ANPP from plot-scale estimates ranged from 96 g m-2 y-1 in a 
shrub-dominated area (tarbush) to 229 g m-2 y-1 in an upland perennial grassland 
(black grama). These ANPP values for each vegetation type were weighted by the 
area associated with that type using an eight-ha resolution map generated from field 
surveys conducted in 1998. Most of the area (90%) is dominated by one of two 
shrubs (creosote bush, honey mesquite). Only 2% of the area is currently dominated 
by the perennial grass, black grama, a species that historically dominated much of 
the area. Using this weighted averaging method, the average ANPP for the JRN is 
143 g m-2 y-1 during the period of sampling (1990 to 1998). 

Table 7.1. Vegetation type by ANPP (g m-2 from Huenneke et al. 2002) and area to obtain 
weighted average for the JRN. ANPP is long-term average and standard deviation of all dates 
and years. Area extent (ha) obtained from Gibbens et al. (in prep). Areas not dominated by 
these vegetation types (others) were excluded from the analysis. 

Vegetation type Mean ANPP (g m-2 y-1) 
[standard deviation] Areal extent (ha) 

Black grama 
grasslands 229 [114] 699 

Creosotebush 
shrublands 139 [51] 14,485 

Honey mesquite 
shrublands 140 [60] 34,387 

Tarbush shrublands 96 [20] 3,826 
Tobosa playa 
grasslands 194 [214] 844 

Weighted average 143  

Nonspatial extrapolation of ecosystem variables from plots to larger areas is 
useful for coarse-scale comparisons where heterogeneity within landscape units is 
less important than large-scale patterns. For example, comparisons of biomes often 
use nonspatial extrapolations (Lieth and Whittaker 1975, Webb et al. 1978, Knapp 
and Smith 2001). Tabular estimates of ANPP for each vegetation type also allow 
comparisons with similar types of vegetation within the region as well as with other 
types of grasslands and shrublands (Lauenroth 1979, Le Houérou et al. 1988). 
However, nonspatial methods have limited utility when dealing with specific parts 
of a heterogeneous landscape where variation in ANPP is high (Huenneke et al. 
2001, 2002). For example, grazing management that assumes a constant, uniform 
estimate of ANPP for an entire landscape will result in over-use in areas with below-
average ANPP and under-use in areas with high ANPP. 
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Figure 7.1. Site map showing location of Jornada LTER within New Mexico and the U.S. 
Study site insert shows location of the 15 areas sampled for ANPP. 
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7.3.2 Spatially Implicit 

Spatially implicit methods combine plot-scale estimates of carbon with spatial 
databases in a geographic information system (GIS). For the JRN, we extrapolated 
the ANPP estimate for each vegetation type (Table 7.1) using the vegetation map of 
1998 (Figure 7.1). This spatially implicit map shows the spatial distribution of 
ANPP across the JRN (Figure 7.2). Although total ANPP is the same as for the 
nonspatial approach, large-scale patterns are evident that cannot be discerned from a 
tabular format (Table 7.1). For example, remnant grassland areas dominated by 
black grama are located primarily in the west and south whereas tobosa grasslands 
are located along a previous channel of the Rio Grande that went through the center 
of the JRN from northwest to southeast ca. 1.6 million years ago (Mack et al. 1996). 
Low productivity tarbush sites are mostly located in the southeast.  

Another spatially implicit method could be used that includes spatial variation in 
environmental factors in the extrapolation. Plot-scale measures of soil texture, 
elevation, and precipitation could be used with ANPP estimates to develop a 
regression equation for each vegetation type. Spatial maps of these same variables 
(soil texture, elevation, and precipitation) could then be used with the regression 
equations to extrapolate ANPP across the landscape (Figure 7.3). Although we have 
not conducted this analysis, this spatially implicit approach would provide a more 
spatially resolved map than the previous example (Figure 7.2), and would account 
for potential variation in ANPP as related to variation in environmental factors.  

Spatially implicit methods have been used frequently in arid and semiarid 
landscapes where environmental heterogeneity is often recognized as important. 
Spatial variation in ANPP has been documented because of variation in elevation 
and soil properties that likely affect water availability, although the redistribution of 
water was not actually measured (Ludwig 1986, 1987). Patterns in other properties 
of vegetation have been found associated with landforms, microtopography, and 
soils (Stein and Ludwig 1979, Wieranga et al. 1987, Wondzell et al. 1990, 1996, 
Wondzell and Ludwig 1995). Soil properties, including carbon, are often 
extrapolated from soil pits and field surveys selected to represent characteristic 
locations on a landscape (Gile et al. 1981). Although many of these earlier efforts 
did not publish maps, all of the sampling methods were spatially implicit in that the 
design was stratified by the environmental variation and the results were 
extrapolated to similar locations on the landscape. 

Spatially implicit methods of extrapolation are increasingly used as the 
availability of spatial databases and GIS analyses increases. Recent examples 
include the extrapolation of above- and belowground carbon pools across the JRN 
landscape from 1858 to present using maps of soils and precipitation as inputs to the 
CENTURY simulation model (Mitchell et al. 2002). Spatial variation in field 
estimates of carbon pools have also been extrapolated to the landscape scale using 
maps of soils and landforms (Monger et al. 2006). Spatial variation in shrub 
invasion and loss of perennial grasses with implications for changes in biomass 
quantity and vertical distribution through time have also been related to maps of soil 
texture, precipitation, elevation, and other factors (Yao et al. 2002). Identification of 
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landscape locations where shrub invasion has occurred most rapidly allows 
management efforts to focus on these sensitive areas.  
 

Figure 7.2. Spatially implicit extrapolation of ANPP to the JRN landscape using the 
vegetation map and plot-based estimates. Both creosote bush and mesquite have the same 
average ANPP (139 g m-2) and are shown in the same color. 
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Figure 7.3. Spatially implicit extrapolation of ANPP to the JRN landscape using a regression 
equation between plot-based measures of ANPP, soil texture, average precipitation, and 
elevation. The regression equation is then used to predict ANPP for the entire landscape 
using maps of the explanatory variables. 

7.3.3 Spatially Explicit 

Spatially explicit approaches include landscape location as well as neighborhood or 
contagious processes, such as seed dispersal or wind and water redistribution of soil 
particles. These approaches require information on the movement or transfer of 
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materials, energy or information within and among spatial units on a landscape. 
Because these transfers are difficult and costly to measure for large areas, field 
experiments typically focus on specific areas of interest rather than attempting to 
instrument an entire landscape. For example, Schlesinger and Jones (1984) related 
patterns in plant biomass to localized runoff and run-on areas in the Mojave Desert. 
Recent experiments at the JRN have also documented the importance of water 
redistribution to patterns in vegetation (Wainwright et al. 2000, 2002).  

Alternatively, spatially explicit simulation models can be used to represent large 
areas if sufficient information is known for model parameterization and validation. 
Peters and Herrick (1999) used a spatially explicit simulation model to examine the 
importance of seed dispersal to the recovery of perennial grasses following shrub 
invasion on sites with different vegetation and soil properties. Plot-scale parameters 
were combined with spatial maps of soil texture and precipitation as well as the 
movement of seeds among plots to extrapolate model results to a landscape. 
Spatially explicit simulation models can also be combined with regression models to 
simulate ecosystem dynamics. 

In general, spatially explicit models are becoming increasing popular in ecology 
as computer limitations decrease and the quality and quantity of spatial information 
increases (e.g., Dunning et al. 1995, Schimel et al. 1997, He and Mladenoff 1999). 
However, complex models that require a large number of parameters that are 
difficult to estimate, and thus, have greater errors associated with them and are more 
difficult to validate than simple models (Oreskes et al. 1994, Rykiel 1996). 

7.4 WHAT MAKES A LANDSCAPE COMPLEX? 

Landscapes are complex because of interactions among contagious or neighboring 
processes and spatial variation in the physical template and disturbance regime. 
Contagious processes are related to three main vectors of dispersal (water, wind, 
animals) that redistribute seeds, nutrients, soil particles, and water. The physical 
template includes factors such as soil properties (texture, depth), precipitation, 
temperature, and elevation. The disturbance regime includes both natural (e.g., fire) 
and management-related disturbances (cultivation, roads, herbicide). Landscapes are 
complex because the importance of these processes, environmental factors, and 
disturbances varies for different sites. On some sites, spatial heterogeneity in soil 
texture can be the most important factor for explaining ecosystem dynamics whereas 
the redistribution of water may be more important on other sites. Furthermore, more 
than one contagious process or environmental factor may be important for some 
sites such that complex interactions among processes determine ecosystem 
dynamics. 

In arid and semiarid ecosystems, patterns in ecosystem dynamics and ANPP are 
complex at the landscape scale because of a number of processes that are also 
variable at the landscape scale. Spatial variation in water redistribution at the 
landscape scale is most important along elevational gradients where channels and 
arroyos move water from upslope to downslope (Figure 7.4). Spatial variability in 
soil properties interacts with variability in water redistribution to generate complex 
patterns in ANPP. The result is that upper alluvial fans or bajadas dominated by 
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creosote bush with thin, rocky soils have higher runoff, less available water, and 
lower ANPP than downslope positions. The extreme situation occurs when water 
accumulates in playas on soils with high water holding capacity and high plant 
production (Huenneke et al. 2002). Because water is an important dispersal agent for 
seeds as well as soil particles, plant litter, and nutrients, these materials are also 
expected to be heterogeneously distributed across the landscape.  

Figure 7.4. Aerial photo showing complex landscapes at the JRN. Some areas near the 
mountains are dominated by water erosion as shown by the arroyos. Other areas on sandy 
soils are dominated by wind erosion as shown by dunes. Effects of animals on low plant 
production occur near water sources (wells). Human-caused disturbances are also non-
uniformly distributed across the landscape. Areas with homogeneous vegetation and soils 
also occur. 

Wind redistribution of particles is also unevenly distributed at the landscape 
scale with important consequences for patterns in ANPP (Figure 7.4). Sandy soils 
dominated by honey mesquite are more susceptible to wind erosion than other soil-
plant community combinations (Gibbens et al. 1983, Gillette and Chen 2001). Soil 
particles eroded from interdune areas in mesquite-dominated systems are deposited 
both locally in dunes and at large distances in vegetation types located downwind. 

The effects of animals on ecosystem dynamics and ANPP are also non-uniformly 
distributed across a landscape (Figure 7.4). Both small and large animals are 
effective dispersal agents of seeds and nutrients. Densities of small animals are often 
related to soil properties and vegetation type (Kerley and Whitford 2000). 
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Furthermore, small animals, such as ants and rodents, are selective in the seeds 
collected with differential effects on seed availability and plant species dynamics 
(Inouye et al. 1980). Large animals, such as cattle, are effective dispersal agents of 
mesquite seeds, and likely played an important role in the expansion of this shrub 
into perennial grasslands. Spatial heterogeneity in ANPP also results from non-
uniform grazing patterns by cattle (Paulsen and Ares 1962). Areas currently 
excluded from cattle often have higher plant production than adjacent grazed areas. 
Low plant production also occurs near watering holes where grazing and trampling 
are intense (Fusco et al. 1995, de Soyza et al. 1997, Nash et al. 1999). 

Spatial heterogeneity in ANPP also occurs as a result of spatial variation in 
disturbances. Fire occurs most frequently in grassland systems with high production 
and continuous fuel load. Although low production occurs immediately following a 
fire, high production is possible later in the season if rainfall is high (Drewa et al. 
2001). By contrast, low production can be maintained if fire occurs during or before 
a drought. Other types of disturbances, such as herbicide treatments, cultivation, 
road and building construction are also heterogeneously distributed across a 
landscape (Figure 7.4). These disturbances affect patterns in ANPP both locally on 
the disturbed area as well as in adjacent areas through modifications to wind and 
water erosion.  

7.5 SIMPLIFYING COMPLEX LANDSCAPES: A NEW CONCEPTUAL 
FRAMEWORK 

In our conceptual framework, landscapes consist of a mosaic of sites where spatial 
variation in the environment and contagious processes may or may not be important 
in understanding and predicting ecosystem dynamics. Our approach to simplifying 
complex landscapes is to determine the locations on a landscape where spatial 
information and contagious processes must be known in order for predictions to be 
accurate. Predictions for the remainder of the landscape can be obtained using 
estimates from representative sites that are extrapolated to similar areas using either 
nonspatial or spatially implicit methods (Peters et al. 2004). One approach to 
identifying these locations and to determining the important spatial processes is to 
combine remotely sensed images with field data and spatial databases residing in 
GIS.  

For example, remotely sensed images combined with field estimates of ANPP 
can be used both to determine the most appropriate vegetation spectral index for 
each of the major ecosystem types, and to identify the locations (“hot spots”) with 
extremely low and high ANPP values for each ecosystem type compared with the 
rest of the landscape. Spatial databases can be used to provide insight into the key 
processes operating to generate these extremely low or high values. For example, 
digital elevation models can be used to determine the locations where water is 
expected to runoff as a result of steep slopes or where water accumulates when the 
slopes are shallower than the surrounding locations. Spatial databases of animal 
distribution can be generated using average stocking densities combined with the 
location of exclosures (no animal activity) and water sources (locations of intense 
animal activity). Correlating vegetation indices from the remotely sensed images 
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with the spatial databases can confirm the greater importance of spatial processes at 
these key locations compared with the rest of the landscape. Uncertainty analyses 
can then be conducted to identify the major sources of uncertainty, and to explore 
the effects of reducing the uncertainty in predictions by including spatial databases. 
Identifying these locations and key processes is the first step in simplifying complex 
landscapes in order to prioritize management decisions and to guide research 
questions and experimental designs. 

7.6 SUMMARY AND CONCLUSIONS 

Complex landscapes pose a critical challenge to ecologists. Addressing problems at 
the landscape scale requires the extrapolation of information from plot-scale studies. 
Three general classes of extrapolation methods exist that differ in the amount of 
spatial information required. For a given problem, ecologists typically use one 
method for all parts of a landscape. However, the use of one method likely results in 
high errors of omission for some parts of a landscape, and high errors of commission 
for other parts, thus resulting in high uncertainty in predictions for the entire 
landscape. An alternative approach was developed that simplifies complex 
landscapes into different parts where each extrapolation method is most 
appropriately used. This approach reduces the uncertainty in predictions at the 
landscape scale, and provides guidance to ecologists and land managers interested in 
the key parts of the landscape where spatial variation and contagious processes have 
the greatest impact on ecosystem dynamics. This approach is expected to also be 
useful for other ecosystems where complexity in landscape structure and spatial 
processes are important. 
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CHAPTER 8 

BUILDING UP WITH A TOP-DOWN APPROACH: 

The Role of Remote Sensing in Deciphering Functional and Structural 
Diversity 

CAROL A. WESSMAN AND C. ANN BATESON 

8.1 INTRODUCTION 

“. . . . particularity and contingency, which characterize the ecological sciences, and 
generality and simplicity, which characterize the physical sciences, are miscible, and 
indeed necessary, ingredients in the quest to understand humankind s home in the 
universe.” 

~ John Harte, 2002 

Ecological scaling, and hence any efforts to define universalities, is challenged 
by inherent nonlinear synergies and heterogeneity, cross-scale processes, thresholds, 
and emergent properties of ecosystems (e.g., Wu 1999, Peterson 2000, Wu and Li, 
Chapter 2). Techniques are required that are able to translate place-centered, 
mechanistic understanding (the “peculiarities and contingencies” sensu Harte 2002) 
across a range of spatial and temporal scales. Remote sensing of the Earth’s surface, 
while limited in its ability to fully address all the challenges, helps constrain the 
scaling problem through its synoptic view of biophysical and biochemical structure 
across different scales (Wessman 1992, Wessman and Asner 1998). The structure of 
landscapes and regions (i.e., the properties of cover types and their distribution) are 

Historically, ecologists have dealt with the complexity of ecological systems 
through small, place-centered studies. This approach, in controlling for environ-
mental variation, has led to important advances in our understanding of mechanisms 
behind ecological phenomena, and has moved us more directly from pattern to 
causal processes (Harte 2002). However, the need to develop broader “universal 
laws” in ecology is important in the context of global-wide environmental change. 
While ecological “laws” may lack the exactness and universality of physical laws, 
they will improve our power to predict the consequences of change due to human 
activities and climate variation, “signposting routes to a sustainable future” (Lawton 
2001). 

,
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Scaling in remote sensing is controlled in two fundamental ways: (1) hetero-
geneity in composition and configuration of the landscape under observation relative 
to sensor characteristics, and (2) nonlinear functional relationships between surface 
radiation and ecologically relevant parameters. The objective of this paper is to 
explore these aspects of the remote sensing scaling problem, and the power and 
uncertainties they interject into the upscaling of field measurements. First, we 
introduce the ecological variables and relationships that the community has or is 
attempting to measure with remote sensing. We then review briefly the radiation and 
remote sensing properties that are important to upscaling. Finally, we synthesize 
some of the more important sources of uncertainties and error in algorithms used to 
scale surface parameters.  

8.2 ECOLOGICAL VARIABLES RETRIEVED BY REMOTE SENSING 

Extraction of variables from imagery falls into two broad categories. First, classifi-
cation techniques are used to categorize the landscape into discrete recognizable 
units with relevance to various mapping aims. Second, continuous variables are 
retrieved on the basis of spectral-biophysical relationships in each pixel. In the 
former, within-class variance is ultimately ignored as pixels are assigned discrete 
values representing a given category. In the latter, pixel values will lie within the 
range of variability of the retrieved variable contained by the observation. 
Continuous variables such as leaf area index (LAI), fractional cover and fraction of 
absorbed photosynthetically active radiation (fAPAR) represent basic components or 
singular functions of the landscape and will largely scale as a function of the 
radiative transfer properties of landscape components, their relative dominance in 
the grid cell, and the linearity of the retrieval algorithm. Scaling of discrete, 
categorical variables will be influenced by the size and nesting of ground 
components detectable at diverse resolutions.  

The ecological variables that take on significance as scales are increased and that 
can be estimated remotely are integrative in nature or represent important constraints 
on processes (Table 8.1). These include structural variables such as LAI, biomass, 
land cover, and fractional cover of landscape components (e.g., green vegetation, 
bare soil) that quantify, to greater or lesser degrees, the spatial heterogeneity 
important to extrapolation or modeling of related processes. fAPAR is one of the 

of great importance and interest to the ecological scaling effort for two reasons. 
First, structure superimposes constraints on the functioning of ecological systems at 
broad to finer scales. Second, the structure itself is an expression of the functional 
properties that emerge from interactions among biological, physical and geo-
chemical processes. Scaling in remote sensing, by its attention to surface hetero-
geneity and the derivation of surface parameter algorithms (Chen 1999), takes an 
important role in earth system science, predicated on the assumption that we 
recognize the appropriate features to be scaled (Wessman 1992, Wessman and Asner 
1998). In many respects, remote sensing mandates a generality in our observations 
of the earth’s surface that, welcome or not, forces a new perspective of ecological 
properties. Through interchange between observational-based science and ecological 
scaling theory, generalities in ecological dynamics will surface. 



 ECOLOGICAL SCALING WITH REMOTE SENSING 149 

few parameters that provide a direct connection between ecosystem structure and 
function (Asner and Wessman 1997), and it also provides a means to link to other 
functional attributes of ecosystems such as nitrogen use, CO2 assimilation, and water 
loss (Sellers 1987, Running et al. 1994, Field et al. 1995). Remote sensing of foliar 
chemistry is of interest due to its role in ecosystem productivity. Estimates of spatial 
variation in canopy chemistry from hyperspectral imagery, while empirically 
derived through local to regional calibration, are valuable for landscape-level links 
to ecosystem processes such as productivity and decomposition (Wessman et al. 
1988, Zagolski et al. 1996, Martin and Aber 1997, Smith et al. 2002). 

Table 8.1. Ecological variables commonly derived from remotely sensed imagery (after Milne 
and Cohen 1999). 

Variable Type Units Applications 
Land Cover Categorical ha, % Ecosystem model stratification, 

land use change, habitat 
characterization, ecosystem 
management 

LAI  Continuous m2 m-2 CO2 and trace gas exchange 
models or measurement 
extrapolation, carbon allocation 

NPP, NEP Continuous g m-2 yr-1 Estimation of ecosystem carbon 
gain 

Fractional cover Continuous % Ecosystem model stratification, 
land use/land cover change, 
succession, biophysical land 
surface modeling 

Canopy 
chemistry 

Continuous %, g m-2 Ecosystem productivity models, 
decomposition 

Canopy 
geometry 

Continuous m Land-atmosphere energy flux, 
climate models 

Each of these variables gains significance with broadened extent in either of two 
ways. The importance of their magnitude and distribution, alone or in combination 
with other remotely sensed variables, may indicate configuration and/or connectivity 
of landscape components undetectable at the field level. Also, certain remotely sensed 
variables are incorporated into process models to drive or constrain simulations of 
biogeochemical process, land-atmosphere energy and trace gas flux, and large-scale 
climate models.  

8.3 THE RETRIEVAL OF ECOLOGICAL VARIABLES 

Remote sensing is a valuable means of upscaling ecological variables due to 
multiple scales of observations and stability of satellite platforms in space and time. 
Repetitive acquisitions at temporal scales of interest (e.g., diurnal, seasonal, 
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interannual, duration of transient weather systems) enable analyses of change to 
answer questions about trends and cycles. But, fundamental to the retrieval and 
interpretation of ecological variables from remote sensing platforms are the 
reflectance characteristics of the observed surface and its components. Aside from 
some types of mapping and sophisticated radiative transfer methods, remote sensing 
does not replace any widely used ground measurement in ecology (Prince 1999). 
Most parameters derived from remote sensing data require a certain level of 
calibration with ground conditions (van Leeuwen et al. 1997, Qi et al. 2000). Each 
technique for the inference of an ecological variable must be understood in terms of 
the factors contributing to the measurement of reflectance integrated over the pixel.  

The reflectance signal measured by the sensor is the integrated outcome of a 
complex interaction of surface scattering properties, including single and multiple 
scattering of photons, and solar and sensor viewing geometry. For example, 
vegetation reflectance is primarily a function of tissue (wood, green, senesced) 
optical properties, canopy structure and geometry (leaf and stem area and 
orientation, foliage clumping), soil reflectance, illumination conditions, and viewing 
geometry (Ross 1981, Myneni et al. 1989). The structural attributes of ecosystems 
(e.g., species composition, vertical structure, canopy closure) determine the relative 
contributions of tissue, canopy and landscape factors that drive the variation in a 
reflectance signal (Asner 1998). Sorting out these factors requires an understanding 
of the sources of variation at each scale (which is ecosystem dependent) as well as 
an adequate sampling (spectral, angular, and temporal) of the spectrum. 

Spectral algorithms like vegetation indices (VI) that are relatively simple and are 
composed of few spectral bands are widely used to monitor vegetation dynamics and 
to infer biophysical properties such as leaf area index (LAI) and fAPAR. The main 
shortcoming of vegetation indices is the lack of functional relationships with 
biophysical parameters (van Leeuwen et al. 1997, Qi et al. 2000). Empirical or 
modeled relationships with variables such as LAI, fAPAR, and biomass can be 
developed on a site-specific basis, but these relationships are subject to changes in 
vegetation properties, soil background, atmosphere and the sun-surface geometry. 
Validation efforts for the MODIS sensor are aimed at testing the accuracy of VI 
products via multi-scaled analyses in order to gain an understanding of the causes of 
errors for potential improvement in future algorithms (Tian et al. 2002a). 

Radiative transfer models provide a means to assess the canopy radiation regime 
from a physical and mechanistic basis, and model inversions derive variables that 
are more directly related to biophysical properties of vegetation. Current models are 
based on the physics of photon scattering, and range in complexity from one-
dimensional (vertical profile) algorithms to complex three-dimensional landscape 
simulations (Liang and Strahler 1993, Myneni and Asrar 1993, Kuusk 1995, Asner 
and Wessman 1997). The models that include scaled scattering characteristics of 
leaves, canopies, and soil can be used to explore the radiation regime in landscapes. 
For example, understanding the relative influence of structure at different scales 
(tissue, canopies, landscapes) on the fAPAR of an ecosystem helps determine what 
variables need to be accounted for and which can be ignored or held at a constant 
value in future studies (Asner et al. 1998b, Asner et al. 1998c). The anisotropic 
scatter of radiation by vegetation canopies has been exploited through measurement 
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and modeling of the bidirectional distribution function (BRDF) to retrieve LAI and 
canopy geometry (Li and Strahler 1992, Privette et al. 1994, Braswell et al. 1996, 
Asner et al. 1997, Asner 2000). This continues to be a strong area of research with new 
operational BRDF instruments (e.g., MISR, POLDER) (Jin et al. 2002, Chopping et al. 
2003). Less quantitative, but analogous to these modeling approaches, spectral mixture 
analysis decomposes the reflectance signal into the fundamental contributing 
components of the landscape (e.g., soil, green foliage, senesced vegetation) and 
simplifies the interpretable connection to biophysical parameters (Wessman et al. 
1997, Sabol et al. 2002). 

In this paper, we focus on the upscaling of biophysical variables through remote 
sensing. However remote sensing methods in land cover classification and feature 
mapping are very important aspects of remote sensing scaling and need to be noted 
here. Classification is a well-established approach to map land-cover types that 
represent composites such as vegetation and land use, habitat, or ecosystem types. 
Land cover maps are used widely as one means to quantify landscape heterogeneity 
and parameterize the biophysical properties of plant canopies in models of climate 
and biogeochemical processes. Efforts continue to improve accuracies and quantify 
errors associated with classification algorithms (e.g., Hlavka and Dungan 2002), 
particularly in the interest of scaling to continental and global scales (e.g., Friedl  
et al. 2002, Lotsch et al. 2003). The ability to describe spatial patterns and the 
underlying processes that generate them is largely determined by the relationships 
between the objects in the scene and the scales at which we observe them. A 
significant literature exists on scaling issues specific to feature extraction, spatial 
structures, and the spatial variation in remote sensing imagery (Marceau and Hay 
1999). Multiscale approaches to upscaling and feature extraction are being 
developed to contend with the multi-scaled and spatially distributed objects in a 
landscape (Hay et al. 1997, 2001). 

8.4 QUANTIFYING BIAS AND ERROR 

There are several sources of error and bias in analyses based on remote sensing that 
are caused by the indirect relationship between reflected radiation and surface 
characteristics. The most obvious source of error is the intervening atmosphere 
between the sensor and the reflecting surface. Although methods have been 
developed to remove atmospheric effects from imagery (Gao et al. 1993, Qu et al. 
2000), these methods do not duplicate ground based spectra and can themselves 
delete spectral features critical for detecting the presence of ground components in 
the scene (Kruse and Dwyer 1993).  

Another source of error that has been studied extensively in the literature and is 
algorithmic in nature involves extrapolating relationships between remotely sensed 
parameters and surface attributes from the scale for which they were developed to a 
coarser resolution. For example, a functional relationship between LAI and the 
NDVI, whose defining constants were found by relating the NDVI values at a 30 m 
pixel size to ground values adequately sampled on 30 m plots, may not be the 
correct relationship for predicting LAI from AVHRR or MODIS at 1 km pixels. In 
order for a quantitative algorithm to be scale invariant with respect to a particular 
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landscape, either the algorithm must implement a linear function between the 
parameters or ecological parameter values within the larger pixel must be constant 
(Hu and Islam 1997). Hence, for quantitative algorithms, heterogeneity and non-
linearity are the two factors determining the magnitude of scaling errors and bias. 
Since most radiance-to-ground relationships are developed on a small scale, methods 
are needed to measure the potential aggregation error and ideally add a correction 
factor. We will review several approaches for estimating large-scale quantities using 
smaller scale, field-acquired measurements. Many of these methods require pixel-
level knowledge of fractional coverage by ground components. We investigate 
spectral mixture analysis (SMA), which inverts a mixture model to retrieve cover 
fractions, as a tool for measuring heterogeneity that can be incorporated into scaling 
methods.  

Most but not all algorithms bridging remote sensing and surface attributes 
require adequate ground sampling for calibration and validation. Misregistration of 
image pixels with their ground locations is common and has an impact relative to the 
scene heterogeneity. Spatial statistics has provided tools such as the variogram, local 
variance and kriging to help in designing efficient sampling schemes by detecting 
spatial correlations and consequently appropriate lags between samples to achieve a 
set of statistically independent values. We will review some of these methods and 
issues related to error in their application. 

8.4.1 Aggregation Error 

We first present a theoretical framework for understanding the issues involved in 
applying a functional relationship from the scale for which it is correct to an 
aggregate. Let R  be a function between the bands of a remote sensing instrument 
with spatial resolution L and a surface parameter P. That is,  

R(b1
L (i), ..., bm

L (i)) = PL (i)          (8.1) 

where b j
L (i)  is reflectance of the ith pixel in band j and PL (i)  is the ground 

parameter value in pixel i. Suppose we aggregate the pixels of the instrument into 
superpixels of size nL. We can compute two quantities: 

1
n2 R(b1

L (i), ..., bm
L (i))

i=1

n 2

∑          (8.2) 

and R(
1

n2 b1
L (i)

i=1

n 2

∑ , ...
1

n2 bm
L (i)

i=1

n2

∑ )        (8.3) 

An algorithm implementing Equation 8.2 will be described as parameter-
aggregated since it is the mean of the ground parameter PL (i) over the subpixels 
that comprise the superpixel. Algorithms implementing Equation 8.3, on the other 
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hand, will be described as band-aggregated since the bands are aggregated into a 
superpixel before the function R  is applied. R  is scale invariant if and only if 
Equation 8.2 and Equation 8.3 are equal and these two quantities are identically 
equal if and only if R  is a linear function of its variables. However, for a particular 
scene, if objects such as forests or grasslands have a typical size at least as large as 
the size of the superpixel, then all subpixels will be similar and hence their bands 
values and means will be approximately equal and scale invariance will persist for 
any function. Equality of band values over the subpixels, of course, will not happen 
in a real scene, but band variation over an object often has a negligible effect on the 
equality between Equation 8.2 and Equation 8.3 above (e.g., within forest variance 
in LAI produces small scaling errors). Since R was developed for resolution L, 
Equation 8.2 is the correct value for the ground parameter computed for the 
superpixel. However, for large-scale imagery such as AVHRR, we usually do not 
have subpixel information and ground sampling to produce relationships is not 
feasible. We look at error associated with using Equation 8.3 to estimate LAI from 
the normalized difference vegetation index (NDVI). But, first, we investigate the 
nonlinearity of the NDVI itself. 

8.4.1.1 NDVI 

The NDVI exploits differences in vegetation reflectance response between the red 
and NIR to detect ground vegetation properties and is computed by 

NDVI = (NIR − red) /(NIR + red)        (8.4) 

However, since the NDVI is not a linear function of its variables (NIR and red 
reflectance), the NDVI of a superpixel need not equal the mean NDVI of its 
subpixels (i.e., the parameter-aggregated NDVI doesn’t equal the band-aggregated 
NDVI). This discrepancy will introduce error in scaling up a functional relationship 
R between the NDVI and a ground parameter even when R is linear provided that 
the lower resolution pixels are not homogeneous. Hu and Islam (1997) investigated 
the effects of landscape heterogeneity on scaling errors with respect to the NDVI 
and reported the following: 

a) The relative difference between the parameter-aggregated and band-
aggregated NDVI (i.e., relative scaling error) is a function of within-
superpixel variance of red and NIR reflectances and within superpixel 
covariance between the two bands. If the distribution of red and NIR 
reflectances among the subpixels is too highly heterogeneous, then the error 
will be too great to approximate the parameter-aggregated NDVI with the 
band-aggregated NDVI algorithm.  

b) There was significant scaling error in a hypothetical example when the 
band-aggregated algorithm was used to estimate NDVI. 

c) A correction term CT to account for within-superpixel heterogeneity can  
be computed from information found on the superpixel level and  
in the hypothetical example band-aggregated NDVI + CT gave a good 
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approximation to the parameter-aggregated NDVI. The term CT is computed 
through functional relationships parameterizing within-superpixel variance 
and covariance between NIR and red bands with reflectances acquired by 
the sensor.  

The NDVI error measurement and correction algorithm in Hu and Islam (1997) 
has not been tested on remotely sensed data from two different instruments at two 
different scales. Since its assumptions are simplistic (e.g., all vegetation has the 
same reflectance and likewise for background) and only first and second order 
correction terms were considered, the result remains preliminary until such testing is 
performed. Aman et al. (1992) degraded SPOT and TM data collected over tropical 
sites in West Africa and agricultural fields in France from 20 and 30 m respectively, 
to resolutions ranging from 200-1000 m, which are more suitable for global 
vegetation studies. They found a significant linear correlation between parameter-
aggregated and band-aggregated NDVI for resolutions below 1000 m with slope and 
intercept close to 1 and 0 respectively. Hence, they concluded, on the basis of their 
samples, that the parameter-aggregated NDVI can be estimated from the band-
aggregated NDVI with acceptable errors. That is, the errors are less than the 
uncertainties relating the high resolution NDVI and ground parameters and the 
errors resulting from radiometric corrections. However, similar experiments with 
other landscape types need to be performed to determine the domain of acceptability 
for the band-aggregated algorithm.  

8.4.1.2 NDVI and LAI 

The infeasibility of collecting LAI values in the field on a scale required for global 
and regional vegetation studies mandates efforts to compute LAI through functional 
relationships with vegetation indices derived from remotely sensed imagery or 
through inversions of radiative transfer models. Chen and Cihlar (1996) found the 
nonlinear relationship  

NDVI = 0.5520*LAI 0.1844         (8.5) 

between the NDVI computed from TM imagery and LAI values collected in boreal 
conifer forests in the Boreal Ecosystem-Atmosphere Study (BOREAS) site with a 
plant canopy analyzer (LAI-2000, Licor). 

The scaling error incurred in upscaling this algorithm from the TM 30 m pixel 
resolution to 1 km AVHRR pixels was investigated by first degrading the TM 
imagery to the AVHRR resolution (Chen 1999). Study areas of 990 m × 990 m with 
mixtures of vegetation and water were selected from the imagery to give a range of 
water coverage from 0% to 93%. Coexistence of these two highly contrasting 
surfaces in the same low resolution pixel was expected to produce large scaling 
errors since the LAI retrieval algorithm is nonlinear. The correct computation of LAI 
is the parameter-aggregated algorithm which first computes LAI from the TM-
derived relationship at each subpixel and then averages LAI over the TM subpixels 
of the AVHRR pixel. However, typically subpixel values would not be available and 
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Chen (1999) investigates the error in scaling up the TM-derived relationship 
Equation 8.5 via the band-aggregated algorithm, which uses the NDVI of the 
AVHRR pixel as input into Equation 8.5. Note that in the band-aggregated 
algorithm, non-linearity appears both in the computation of the NDVI from the NIR 
and red reflectance bands and in the computation of LAI from the NDVI. A 
theoretical error analysis based on mixed vegetation and water pixels derived a 
relative error that only depends on knowledge of the water fraction w within each 
pixel and the scaling exponents relating AVHRR NDVI and TM NDVI to LAI. The 
latter exponent (TM NDVI = cLb) corresponds to 0.1844 in Equation 8.5. Constants 
of the AVHRR power law (AVHRR NDVI = c0Lb0) can be estimated if subpixel 
water fractions are known since AVHRR NDVI at the BOREAS site has a strong 
power law relationship with (1-w) and LAI in the mixed pixel is proportional to (1-
w), with an unknown constant of proportionality equal to LAI of 100% vegetation, 
i.e., LAI(100%). It is shown in Chen (1999) that the relative error for a pixel is given 
by  

(LAI(parameter - aggregated) - LAI(band - aggregated))
LAI(100%)

= (1 − w) + (1 − w)b0 / b    (8.6) 

where w is the fraction of the pixel covered by water. The scaling exponent b for 
AVHRR pixels over the BOREAS site had a value of 0.68; by differentiating 
Equation 8.6 with respect to w, the maximum relative error is 0.44 and occurs for 
w = 0.384. Computations of relative errors for the 990m × 990m study sites fell 
encouragingly close to the theoretical predictions derived from Equation 8.6.  

Chen (1999) also revealed problems with linear algorithms. Although changing 
densities within the pixel do not introduce error into linear algorithms, scaling errors 
do occur when a linear relationship changes over diverse landscape components 
(e.g., vegetation versus water) and discontinuities are introduced. For example, the 
simple ratio (SR) scaled with LAI as SR = 2.78+0.824*LAI at the BOREAS sites 
and a bias was introduced since SR over water (LAI = 0) is approximately 1 and not 
2.78. Scaling errors are easier to derive for the nonlinear algorithm, since in the 
linear case error derivation requires knowledge of LAI (100%) as well as the water 
fraction.  

With both the linear and the nonlinear algorithms, negative biases occur when an 
algorithm from a finer resolution is used to estimate LAI at coarser resolutions. For a 
pure pixel (all vegetation), the bias with the nonlinear algorithm in Chen (1999) was 
less than 2% and there was no bias for the linear algorithm. Hence, errors with pure 
pixels could be ignored. When water and vegetation were both present, negative 
biases occurred in Chen (1999) close to 40% for the linear algorithm and exceeded 
44% for the nonlinear algorithm. Errors increased with increased heterogeneity. 

Another technique for estimating LAI per pixel is based on inversion of a 
radiative transfer model that produces top-of-canopy reflectance in terms of leaf 
tissue and soil radiative properties, LAI and leaf angle distribution (LAD). From 
remotely sensed data, top-of-canopy reflectance is known and other parameters such 
as LAD and leaf optical properties may be estimated from other sources or 
constrained to lie within a realistic range of values. Top-of-canopy reflectance 
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viewed at different, but known, sun sensor geometries gives several different con-
strained equations which can be inverted to retrieve values of parameters like LAI. 
More complexity is added to the model when other elements besides vegetation 
canopies are included in the pixel. In this case of pixel heterogeneity, the one-
dimensional (1-D) model is supplanted with a three-dimensional (3-D) model 
equation, which accounts for horizontal transport of photons potentially interacting 
with more than one element type within the pixel. Tian et al. (2002b) retrieved LAI 
values from AVHRR 1 km data aggregated to several coarser resolutions (8, 16, 32, 
and 64 km). Their imagery was acquired over North America and classified into 6 
vegetation biomes and bare soil. A lookup table was used in their model equation to 
associate with each biome its single scattering albedo, which measures the total 
scattering of energy per unit volume of the biome canopy. Coarser scales result in 
more mixed pixels. However, equating reflectance of mixed pixels with subpixel 
reflectance averages in the model equation neglects the effects of heterogeneous 
scattering elements within the pixel on the radiative regime and can lead to 
significant errors in the retrieval of LAI (Tian et al. 2003). Tian et al. (2003) found 
large LAI errors when forests were minority biomes within non-forest pixels and 
developed a spatial resolution-dependent radiative transform formulation. In this 
formulation, the single scattering albedo is adjusted to become a weighted average 
of the single scattering albedos of the six biomes with weights equal to the fractional 
cover within the pixel. Hence, again, knowledge of fractional cover is a requirement 
for estimating LAI. 

8.4.2 Spectral Mixture Analysis 

During the 1980’s, researchers began to examine spectral mixture analysis (SMA) as 
a means to characterize subpixel heterogeneity by modeling a pixel’s reflectance as 
a linear combination of the reflectance spectra of ground components (e.g., soil, 
green vegetation, dead vegetation, rock, etc.), called endmembers (Adams and 
Adams 1984, Adams et al. 1986, Smith et al. 1990). The coefficients in the linear 
model should lie between 0 and 1 and may be constrained to sum to 1. Physically, 
they correspond to the fractional coverages of the ground components in the pixel. 
Consequently, SMA is a promising tool for providing heterogeneity parameters 
needed to extend algorithms from finer to coarser resolution.  

Asner and colleagues (Asner et al. 1997, Asner et al. 1998a) combined SMA 
with an easily inverted 1-D model to calculate LAI for woody and herbaceous 
vegetation types in a complex savanna landscape. Inversion of the 1-D model for 
each of the cover types, in effect, accounted for the spatially heterogeneous 
landscape and, avoided a computationally intense inversion of a 3-D model. The 
study was initiated with high resolution spectral mixture analysis (Landsat TM) to 
compute fractional cover of trees, shade, senescent grass, bare soil and water. A 
suite of AVHRR images was acquired over the same area at different sun-sensor 
geometries. For each AVHRR image, the SMA model using the TM fraction covers 
was inverted to produce NIR and red reflectance values for tree, grass, shade and 
soil at the 1-km scale of the AVHRR pixel (Asner et al. 1997). Inconsistent shade 
fractions resulting from different sun-sensor geometries were corrected using a 



 ECOLOGICAL SCALING WITH REMOTE SENSING 157 

 

geometrical-optical model (Li and Strahler 1992) prior to the inversions. These 
angular reflectances were used with a 1-D radiative transfer model to compute LAI 
for each vegetation type (tree and grass). Regional canopy LAI was computed by 
multiplying the type LAIs by their respective fractional covers. SMA in this example 
was critical not only because of the efficiency of inverting a 1-D radiative transfer 
model to compute LAI for two vegetation types (tree and grass), but also because 
inversion of the AVHRR SMA model produced endmember reflectance values for 
the AVHRR instrument, resolution and sun-sensor geometry.  

The promise of SMA for solving scaling problems must be tempered, of course, 
by recognition of several sources of errors in the mixture model. First of all, multiple 
scattering of photons between different ground components can invalidate the 
linearity assumption. However, fraction errors from nonlinear mixing can be 
minimized by acquiring images from view angles close to the hot spot direction 
(Villeneuve et al. 1998). SMA requires the knowledge of endmembers, which are 
reflectance spectra of pure ground components. Selection of endmember spectra is 
the most difficult task in SMA and the most profound source of cover fraction 
errors. Perhaps, the most common methods of acquiring endmembers are collecting 
them from the field or picking pixels from the image that are homogeneously 
covered by one ground component. However, it is very difficult to align field-
collected spectra with image spectra even after (or because of ) atmospheric 
correction or conversion from radiance to reflectance (Kruse and Dwyer 1993). 
Moreover, remotely sensed images over arid and semi-arid landscapes may not have 
at their resolution pure pixels of green vegetation and in this situation using image 
endmembers will distort all cover fractions. A promising solution to the endmember 
selection problem has been methods that derive endmembers from the variance 
structure of the data (Boardman 1993, Bateson and Curtiss 1996) using principal 
component analysis. These derived endmembers do not necessarily coincide with 
pixel reflectances and may represent pure spectra when there are no pure pixels in 
the image. Moreover, since they are derived from the image, they have been 
subjected to all image pre-processing. In recent years, the assumption that each 
ground component is represented by a unique spectral signature has been questioned 
and new mixture models (Asner and Lobell 2000, Bateson et al. 2000) have been 
devised that substitute for a single endmember spectrum a bundle or collection of 
spectra representing endmember variability. Bundle unmixing produces ranges of 
possible fraction values (Bateson et al. 2000) or mean and standard deviation (Asner 
and Lobell 2000). 

8.5 CALIBRATION AND VALIDATION 

Tracking ground characteristics such as LAI, fAPAR and biomass with indices such 
as the NDVI derived from spectral reflectance requires ground sampling to establish 
functional relationships between the ground characteristics and reflectance-based 
indices, whose values have no direct physical interpretation. Regression modeling 
and curve fitting are common methods used to determine from image pixel values 
and corresponding ground samples the best equation to relate the imagery to the 
landscape. Because typical pixel sizes range from 20m to 1km and the extent of the 
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imagery is usually very large, efficient sampling strategies adequately representing 
image and ground variability are needed. Random sampling with a sample size n = 
(σ t / e)2, where σ is the standard deviation, e the desired error and t  the Student’s  
t-value for a 95% confidence interval and (n-1) degrees of freedom, can result in 
unnecessary ground sampling since it does not consider spatial correlations. That is, 
sampling neighboring pixels or neighboring regions within a pixel with correlated 
values can introduce costly redundancies. Systematic sampling based on spatial 
statistics may achieve results at least as good with a fraction of the effort. 

An important tool of spatial statistics is the semivariogram, which is a function 
γ (h)  measuring the average dissimilarity between parameter values sampled at 
ground locations or computed for image pixels that are h units apart. The semi-
variogram at lag h is mathematically defined by 

γ (h) = 1
2k(h) (V (xi) − V (xi + h))2

i=1

k(h)
∑       (8.7) 

where V (xi )  is the value of the parameter at ground location or pixel ix , V (x i+h)  
is the value at a location or pixel h units away and k(h) is the number of differences 
at lag h. In many natural scenes, γ (h)  will increase with h since nearby locations 
have similar characteristics compared to those at a distance. Since semivariance in 
the field or in an image is computed for discrete lag values, a continuous 
mathematical curve C is fitted to the scatter plot of lag versus semivariance in order 
to analyze spatial patterns. A spherical model (Isaaks and Srivastava 1989) is most 
commonly used for the fit and has three properties useful for understanding spatial 
correlations and deriving sampling strategies. When a spherical model is used, the 
graph of C increases with h until it reaches a plateau P at the lag S. P (referred to  
as the sill of the semivariogram) estimates the true variance of the data and S (called 
the range) is the lag distance at which values become uncorrelated and represents 
the typical size of objects in the scene. The value lim

h→0
γ (0) = c0  is called the nugget 

and its deviation from 0 may be due to fine scale or subpixel variance, measurement 
error or fitting with an incorrect model (Isaacs and Srivastava 1989). 

Tian et al. (2002b) devised sampling strategies for validating MODIS LAI 
products by decomposition of semivariograms into hierarchical components (e.g., 
semivariances of forest, stands and trees) to reveal the spatial pattern of different 
characteristic scales within the scene. Other applications of the semivariogram to 
ground validation and calibration can be found in (Curran 1988). 

Atkinson et al. (2000) used semivariograms to determine two scales of variations 
for biophysical properties of mean tree diameter at breast height, mean diameter at 
first leafing branch and tree density in a tropical forest of Cameroon Africa. Two 
sampling strategies were investigated in the analysis. One strategy maintained 1 ha 
subplots, while the other strategy averaged them to obtain a larger nugget area. 
Large nugget values relative to the sill for subplot semivariograms suggested 
variation at the 1 ha scale. The sill was reached at 20-25 km for all semivariograms. 
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From the analysis, the authors concluded that AVHRR 1 km data could capture the 
large-scale variance.  

Atkinson et al. (2000) also evaluated within-pixel sampling strategies based on 
ordinary block kriging that is a best linear unbiased estimation (BLUE) method that 
uses the semivariogram to approximate mean values from a set of sample points. 
Block kriging determines the weights in the weighted average 

V (P) = w i V (x i )
i=1

k
∑           (8.8) 

where V (x i )is the parameter value at point ix  and each ix  is in the ground pixel P 
whose mean value V is being approximated. To insure an unbiased estimate (i.e., 
mean error of the estimator is 0), weights iw  are constrained to sum to one. The 
weights are also constrained to minimize the variance σ k of the errors. This variance 
is referred to as the block kriging or estimation variance. Under the BLUE 
constraints the estimation variance is  

σ k = wiγ (xi,P) +∑ µ − γ (P,P)        (8.9) 

where µ is the Lagrange parameter, γ (x i ,P)  is the integral semi-variance between 
the pixel P  and xi , and γ (P,P) is the within pixel variance (for more details, see 
Atkinson et al. 2000, Isaaks and Srivastava 1989). Note that σ k  does not depend on 
the particular values of V( x i ), but only on the semivariogram and the spatial pattern 
of x i ’s. Hence, given the semivariogram, the kriging variance can be computed for 
any sampling strategy. Burgess et al. (1981) used block kriging to show that 
systematic sampling is more efficient than random sampling. Other researchers have 
used it to determine sample sizes needed for a specified precision (Webster et al. 
1989). 

Atkinson et al. (2000) examined two sampling strategies for scaling up 1 ha 
subplots for comparison with 1km AVHRR pixels. The subplots were arranged in an 
equilateral triangular pattern with each triangle constituting a plot. Although the 
estimation variances derived from representing each plot by the average of the three 
subplots were approximately 3 times less than those calculated as if a single subplot 
value was used to represent the triangular plot, the regression precisions obtained 
with the two sampling strategies were very close. They differed by factors of 1.02 
(basal area), 1.03 (biomass) and 1.03 (tree density). That is, a sampling strategy 
based on intensive fieldwork may yield considerably better estimates of ground 
parameters than a less costly one without substantially improving the precision of 
the regression model to predict values in unknown locations. Regression modeling 
and prediction are, of course, the ultimate goals. 

In conclusion, sampling and validation strategies based on semivariance and 
kriging can prove the sufficiency of smaller, more easily obtainable sample sizes. 
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However, even these sizes can be unnecessarily large when the purpose of the data 
(i.e., to develop regression equations) is ignored. 

8.6 CONCLUSIONS 

Biophysical variables (structural and functional) needed to track global 
environmental change must be collected at large scales that require the use of 
remotely sensed data. However, field studies are still necessary to relate remotely 
sensed parameters to their landscape counterparts. Consideration of the scaling 
problems inherent in extrapolating from the field to the image is critical to the use of 
remote sensing as a tool. An awareness, at the very least, of the sources of variance 
within a reflectance observation is important, as the structure of the canopy (leaf 
area, presence of senescent material, etc.) and landscape (canopy closure, 
background, etc.) will strongly influence the reflectance signal, and hence the 
biophysical interpretation. 

When remote sensing algorithms are nonlinear (e.g., computing LAI from 
NDVI, radiative transfer inversions), errors resulting from scaling from high to low 
resolution are mainly due to increased mixing of ground components in the larger 
pixel. Maps of the landscape based on spectral mixture analysis, classification or 
other methods are useful in measuring and correcting for this error. However, 
classification accuracy is sensitive to pixel size relative to the size of objects in the 
scene since relative pixel size impacts within-class variance and the level of classes 
(i.e., tree stands versus forests) that can be mapped. Pixel size also impacts selection 
of endmembers for SMA when pure image endmembers are being sought, since 
pixel heterogeneity increases with pixel size. However, methods for constructing 
endmembers from the variance structure of the data are promising techniques for 
retrieving endmembers from the image when no pure pixels reside in the imagery. 
Scaling up parameter values from the ground to the image requires calibration and 
validation. Spatial statistics provides tools (local variance, semivariogram and 
kriging) for determining adequate distances between sample locations and testing 
efficiency versus accuracy trade-offs for various sampling strategies. 

Moving from high resolution (e.g., TM) to coarse resolution imagery (e.g., 
AVHRR, MODIS) has scaling challenges, but it seems that, with adequate measures 
of surface heterogeneity through such methods as spectral mixture analysis and land 
cover classification, the problems are not insurmountable. The generality needed to 
gain perspective of the large-scale properties of ecological phenomena is attainable 
through remote sensing, yet we must understand the tool well enough to accurately 
accomplish the scaling operations we need. In concert with this, an active and 
reciprocal connection between remote sensing, ecological field studies, and scaling 
theory is important to guide scaling efforts and allow for the “surprises” which 
deepen our insights into the general behaviors of ecological systems. 
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CHAPTER 9 

CARBON FLUXES ACROSS REGIONS  

Observational Constraints at Multiple Scales 

BEVERLY E. LAW, DAVE TURNER, JOHN CAMPBELL, 
MICHAEL LEFSKY, MICHAEL GUZY, OSBERT SUN,

 STEVE VAN TUYL, AND WARREN COHEN 

9.1 INTRODUCTION 

Scaling biogeochemical processes to regions, continents, and the globe is critical for 
understanding feedbacks between the biosphere and atmosphere in the analysis of 
global change. This includes the effects of changing atmospheric carbon dioxide, 
climate, disturbances, and increasing nitrogen deposition from air pollution 
(Ehleringer and Field 1993, Vitousek et al. 1997). Quantification and uncertainty 
analysis of carbon pools and fluxes by terrestrial biota is needed to guide policy and 
management decisions. Unanswered questions include: (1) how and where is the 
terrestrial biosphere currently sequestering carbon? (2) how might forests be 
managed to maximize carbon sequestration? Managed carbon sequestration would 
have to be optimized within and among geographic regions with attention to how 
this might affect biodiversity and how to manage for the effects of “natural” 
disturbances on carbon storage and fluxes.  

Processes in the terrestrial biosphere are dynamic and occur over a wide range of 
spatial and temporal scales. For example, net ecosystem production is the net effect 
of several large fluxes: photosynthetic uptake, and release of carbon dioxide (CO2) 
by respiration from autotrophs (plants) and heterotrophs (e.g., microbial 
decomposition). Scales range from micrometers and microseconds (e.g., cellular 
processes such as photosynthesis) to kilometers and centuries (e.g., decomposition 
of recalcitrant pools of soil carbon) (Figure 9.1). Disturbance can have a significant 
effect on CO2 loss to the atmosphere through decomposition of necromass such as 
that left from logging of forests, or pulses of CO2 to the atmosphere from fire, and 
through manufacturing of forest products. Interannual variation in climate can 
influence photosynthesis and respiration differently such that net CO2 uptake can 
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change significantly. These factors complicate any simple scheme to quantify 
carbon storage and fluxes from ecosystems, yet it is important to know how 
disturbance and climate interact to affect biogeochemical processes for more 
informed management at the regional scale. 

 

Figure 9.1. Temporal and spatial scales of major processes affecting forest ecosystems. 

Scaling strategies in terrestrial processes often involve upscaling process data at 
a scale smaller than the scale of interest (e.g., leaf-level photosynthesis), and 
combining this information with structural and environmental data to quantify 
process rates at the scale of interest (Aber et al. 1993, Jarvis 1995, Wu and Li, 

In this chapter, we demonstrate an approach to using field observations, remote 
sensing tools, and a biogeochemistry model (Biome-BGC) in a spatially nested 
hierarchy (Wu 1999) to improve predictions of carbon pools, productivity, and net 
ecosystem production (NEP) for every square kilometer of forests in a region. We 
examine uncertainty in a variety of ways for the different levels of data analysis. 

9.2 ISSUES IN SCALING ECOSYSTEM PROCESSES 

The interaction of processes operating at different spatial and temporal scales is one 
of the greatest challenges to regional estimates of biogeochemical processes. At any 
scale there is heterogeneity in types and rates of processes. For example, 
photosynthetic rates vary within a tree canopy (Reich et al. 1997). At larger scales, 

Chapters 1 and 2). Such strategies take into account the feedbacks among components 
(e.g., atmosphere and vegetation), and linkages across scales (e.g., leaf-stand-
landscape), and require that models are used and tested at each scale. 
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the rates vary among different developmental stages of a given tree species as an 
indirect result of disturbance, and among different plant functional groups or 
biomes. Field observations are necessarily limited in scope, and logistical 
considerations make it infeasible to measure everything everywhere all of the time. 
Moreover, we simply do not understand some processes (e.g., respiration, carbon 
allocation within plant) as well as we understand others (e.g., photosynthesis). 
Simple aggregation and extrapolation schemes to larger spatial and longer temporal 
scales using field observations miss the critical role of feedbacks, which is an 
essential feature of scaling (Jarvis 1995, Wu and Li, Chapter 2).  

Scientists have studied ecological systems for decades through observational 

Biogeochemistry models are quantitative representations of our understanding of 
the storage and transport of carbon, water and nutrients through soil, vegetation and 
the atmosphere. They incorporate nonlinearity of processes, and the multiple scales 
and interactions of processes. They generally operate in two-dimensional space and 
are typically run with hourly to daily climate data over years to centuries. A 
limitation of such process models is that they require mass and energy balance, 
sometimes at temporal and spatial scales that may not make sense relative to how 
processes actually occur. Mass and energy balance also cannot necessarily be 
quantified with field measurements to test model assumptions. For example, flux 
sites that measure ecosystem energy components have found that on average, they 
can only account for ~80% of net radiation (Wilson et al. 2002). As a result, models 
are often evaluated by comparison with measurable budget components (e.g., Law  
et al. 2001a).  

Biogeochemistry models use input parameters for the physiology, biochemistry, 
structure, and allocation patterns of vegetation functional types, or biomes. For 
single-stand simulations it is possible to measure many of the required model 
parameters, but as spatial coverage increases, data availability decreases, and 
generalized biome parameterizations are applied. For example, parameterization 
may be simplified to constant foliar nitrogen across a biome or life form in a region 
using data from the literature. Similarly, allocation of carbon to plant tissues may be 
assigned as fixed fractions across age classes and climatic zones. Undocumented 
parameter selection and unknown model sensitivity to parameter variation for larger-
resolution simulations are currently a major limitation to regional and global 
modeling (White and Running 1994, White et al. 2000). Although some ecosystem 
process models are dynamic and converge towards carbon, nitrogen and water 
balances, they can result in the right answer for the wrong reasons, or a predicted 
variable such as net primary productivity can be quite inaccurate because of a 
variety of uncertainties in model structure or parameters.  

studies, experiments, and development of models that incorporate their understanding 
of ecosystem function. Process models can be used to extend knowledge across time 
and space and to test hypotheses about coupling of processes and responses to 
environmental conditions. Considerable efforts have been expended to develop 
biogeochemical models to examine terrestrial ecosystem responses to global change 
(Melillo et al. 1993, Cramer et al. 2001). However, the connections between climate, 
soil conditions, and vegetation dynamics are poorly understood and are highly 
simplified in most models.  
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Decision rules are usually developed for selecting parameters in regional 

modeling. The procedure is usually to identify the simplest parameterizations (the 
default variables) and to then test the model to determine which parameters need 
more specification. Another method for parameterization is data assimilation, which 
has been used for a long time in atmospheric research, but it is relatively new to 
scaling ecosystem processes (e.g., Cescatti 1997). Data assimilation is the process of 
finding the model representation that is most consistent with the observations. Data 
assimilation usually proceeds sequentially in time. The model organizes and 
propagates forward the information from previous observations. Information from 
new observations is used to modify the model state, and to be as consistent with 
them and the previous observations (e.g., time series in Kalman filter, a Bayesian 
approach). As more data become available, such an approach may make sense for 
some parameters in regional carbon cycle scaling applications. 

Another scaling issue is the mismatch of scales between observations and 
predictions. Model output variables include carbon storage in live and dead pools, 
net primary production (NPP), and net ecosystem production (NEP). Computational 
logistics and availability of spatial data for running the models may require 
simplifications that include linear aggregation of input and output variables. “Big 
leaf ” models such as Biome-BGC assume a homogeneous 2-dimensional layer of 
foliage for resource use, carbon uptake and transpiration over a grid cell that can 
range from 30 m to 1 km to 0.5 degree (longitude and latitude) on a side. Evaluation 
of modeled NPP across a region is often conducted by comparing 1 km mean NPP 
values with 1 hectare means from tree structure measurements scaled by allometry, a 
mismatch in spatial scales when in reality, NPP may be heterogeneous within 1 km 
(e.g., clearcut and mature forests within 1 km; Turner et al. 2003). Temporal 
mismatches in scale also occur, whereby time-integration of available data and 
model output differ. Limited availability of field estimates of NPP or biomass across 
regions and continents has resulted in comparisons between model averages over 
years with field estimates over a variety of single or multiple years. The mismatch in 
time and space has uncertainties associated with it, yet this is difficult to quantify 
and overcome. 

9.3 AN APPROACH TO SCALING AND UNCERTAINTY ANALYSIS OF 
ECOSYSTEM PROCESSES IN FORESTS – A CASE STUDY 

The goal of the regional TERRA-PNW project is to estimate carbon storage, NPP 
and NEP for every square km of forest across a region over several climate years 
with improved accuracy, and explain sensitivity of NEP to cover type, forest age, 
disturbance, and interannual variability in climate. The approach is to spatially 
distribute a biogeochemistry model (Biome-BGC) which assimilates a wide range of 
spatially explicit information about the environment, using a combination of remote 
sensing and field observations as model input and for model testing. To treat the 
complexity of the carbon cycle, our modeling approach takes advantage of the near 
decomposability (sensu Wu 1999) of the ecological hierarchy (Table 9.1). At the 
level of the ecosystem, our emphasis is on NEP (annual time step). The associated 
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processes of photosynthesis and heterotrophic respiration are treated separately at 
the daily time step. At the ecosystem level, the key dynamic is the successional trend 
from negative NEP to positive NEP over multiple years. Because our emphasis here 
is primarily on annual NEP, we do not treat the longer time frames and processes 
relevant to interactions within holons at the upper levels of the hierarchy, e.g., 
interactions among age classes within a landscape mediated by fire, or interactions 
among ecoregions within a region mediated by climate change. However, 
differentiation of these upper levels remains useful because it permits specification 
of unique model parameterizations for ecophysiological constants such as specific 
leaf area (SLA). 

Table 9.1. Delineation of the ecological hierarchy. 

Level  Examples 
Region  Pacific Northwest 
Ecoregion  Coast Range, West Cascades 
Landscape  Intensive Management, Wilderness 
Ecosystem  Young, Mature, Old Growth Stands 
Functional Group  Producers, Decomposers 

 

Figure 9.2. Hierarchical approach to collecting the field data used to develop model 
parameters, develop remote sensing algorithms, and validate model output. Due to 
confidentially requirements, mapped locations are only approximate. 

Biome-BGC is fundamentally a daily time step model of coupled carbon, 
nitrogen, and water cycles (version 4.1.2; Thornton et al. 2002). It requires spatial 
data on land cover classification, stand age, and a reference leaf area index (LAI), all 
provided by satellite remote sensing, and it is driven with a distributed daily 
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climatology (DAYMET model). Model outputs included gross photosynthesis 
(GPP), net primary production (NPP of foliage, above- and belowground wood, fine 
roots), heterotrophic respiration (Rh) and NEP. 

Model sensitivity tests are used to determine critical input variables to measure 
in the field for a range of forest types and developmental stages. White et al. (2000) 
conducted a sensitivity analysis with Biome-BGC and found that simulated NPP for 
all biomes is significantly affected by variation in foliar and fine root C:N, and NPP 
of woody biomes is strongly controlled by leaf nitrogen in Rubisco, maximum 
stomatal conductance, and SLA while non-woody biomes are sensitive to fire 
mortality and litter quality. 

The scaling strategy is to use a spatially nested hierarchy (Wu 1999) to optimize 
field measurements for model parameters and testing. Field observations range from 
inventory data (many locations, few variables), to extensive sites, and intensive sites 
(chronosequences and tower flux sites, greater frequency and types of 
measurements, fewer locations) (Figure 9.2). Some field measurements are 
relatively easy to make, and are needed for the wide range of vegetation types and 
environmental conditions. For example, the model parameters foliar C:N and SLA 
can be measured at mid-season at many locations (extensive sites). More difficult 
measurements, such as stomatal conductance, are carried out at fewer intensive sites, 
or values are obtained from the literature. Remote sensing is a useful tool for 
obtaining spatially distributed vegetation characteristics (Wessman and Bateson, 
Chapter 8). A large pool of field data is required to develop and test remote sensing 
algorithms for vegetation mapping, so field observations are needed at many 
locations to cover the domain of application (e.g., LAI, forest type, and forest age at 
extensive sites).  

To aid diagnostics, model outputs are evaluated with observations at a variety of 
spatial and temporal scales, starting with the most intensive observations and 
followed by more distributed sites that have less information. Then necessary 
improvements in model structure and parameters are identified and implemented, 
and model testing is reiterated at multiple scales.  

We demonstrate the scaling approach over an east-west swath across central 
Oregon (300 km × 50 km) that covers a strong climatic gradient from the mild 
coastal conditions where water is not limiting to growth, to the Cascade Mountains 
where snowfall and freezing temperatures occur, to the semi-arid east side of the 
Cascade Mountains where temperatures are more continental (as in Figure 9.3). 

9.4 FIELD OBSERVATIONS 

9.4.1 Flux Sites: Measurements 

Eddy covariance flux sites, such as the AmeriFlux network of sites (currently 80 sites 
in North, Central and South America) provide net CO2 and water vapor exchange 
data. Flux systems comprise three-axis sonic anemometers that measured wind speed 
and virtual temperature, and infrared gas analyzers that measure concentrations of 
water vapor and CO2 above the canopy. Fluxes are averaged half-hourly, and data are 
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evaluated for quality (Law et al. 2001a, Baldocchi 2003). Additional biological 
measurements typically made at the sites provide data for evaluating flux 
components (e.g., transpiration, respiration). Flux data are aggregated daily to 
examine seasonal trends in simulated and observed GPP, net ecosystem production 
(NEP), and latent energy flux (LE, evaporation and transpiration), and diagnose 
potential causes for discrepancies.  
 

 

Figure 9.3. Forest cover type map derived from remote sensing and supplementary GIS data. 
Grey lines denote ecoregions in each of which are recognized five forest classes (conifer, 

the forested area and as such do not resolve on this figure. 

9.4.2 Flux Sites: Uncertainty Analysis 

deciduous, mixed, semi-open, and open). Semi-open, and open together represent only 8% of 

In previous studies (Anthoni et al. 1999) we quantified uncertainty in eddy flux 
estimates of NEP by combining systematic errors geometrically, and estimated that 
the overall uncertainty of the daytime carbon dioxide flux was ~±12% of the mean 
half-hourly flux. Nighttime fluxes are more problematic due to low wind conditions 
in tall canopies, and when data are screened to remove these periods, the cumulative 
error can result in substantial uncertainty in annual estimates of NEP. Therefore, the 
flux data are most useful for testing models when aggregated to a daily or monthly 
timestep, a range consistent with the time-step of Biome-BGC. 
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9.4.3 Chronosequence Plots: Measurements 

To expand the range of forests types for which we had reliable estimates of NEP, 36 
additional study plots were established across a strong precipitation gradient in the 
study region. The chronosequence plots are consist of 3 independent replicates of 4 
age classes blocked by 3 forest types. Forest ages range from 10 to 300 years and are 
classified as either initiation, young, mature or old.  

The mass balance approach we used to estimating NEP is: 

NEP = (NPPA – RWD) + (∆CFR + ∆CCR + ∆Csoil – fine litterfall)    (9.1) 

where NPPA is aboveground net primary production (wood and foliage by both 
over- and understory plants), RWD is the respiration from woody debris 
(decomposition of coarse and fine woody debris, stumps and snags), ∆CFR is the net 
change in fine root C (not different from zero in this study), ∆CCR is the difference 
between the net growth live coarse roots and the decomposition of coarse roots 
attached to stumps, ∆Csoil is the net change in mineral soil C (not different from zero 
in this study), and fine litterfall includes leaves and twigs <1 cm diameter falling to 
the ground in one year.  

Procedures for measuring the components of equation 1 are detailed in Law et al. 
(2003) and generally rely on radial stem growth and allometric biomass equations 
for estimating woody production, optical measures of LAI and leaf turnover for 
estimating foliar production, volume inventory and decay functions for estimating 
dead wood respiration, and soil coring for estimating change in soil and fine root C.  

9.4.4 Chronosequence Plots: Uncertainty Analysis 

Both an experimental and measurement uncertainty was assessed for the NEP values 
(Table 9.2). For the purpose of describing the range of behavior exhibited by a 
certain condition class (forest type and age in this study) the most useful measure of 
uncertainty is an expression of the variance among true replicates of the condition, 
i.e., “experimental” uncertainty. This was calculated for all measured parameters, 
including NEP, simply as the standard deviation among the replicated plots (3 per 
age class). Computing the experimental uncertainty is appropriate only when there 
are true plot replicates (see Hurlbert 1984). 

For the purposes of model validation, there is a desire to know the measurement 
error, which can stem from both the instrument error (e.g., calibration of carbon 
dioxide gas analyzer) and the error that arises from sample design (e.g., variation 
among soil cores used to estimate plot-level fine root mass). To assign measurement 
uncertainty to a composite parameter such as NEP, it is necessary to know the 
uncertainty associated with its components such as wood production or coarse 
woody debris decomposition. However, it is not possible or practical to account for 
all sources of uncertainty. For instance, measurement uncertainty exists in the coring 
of tree boles to determine their radial growth, however we know from prior analysis 
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that this error is insignificant compared to the extrapolation of these data to uncored 
trees on the same plot based on diameter-increment regressions. Consequently, the 
uncertainty in the radial increment component of NPPA is based solely on the 
diameter-increment regressions. 

Another example of using sampling error as the primary source of measurement 
error is in the assessment of plot-level LAI, which was measured with an LAI-2000 
at 39 points regularly stratified throughout each plot. The standard deviation of these 
39 measurements served as the plot-level uncertainty. Potentially, uncertainties in 
LAI could also be attributed to error in clumping corrections at both leaf and stand 
scale, but such errors are not quantifiable in practice. Fractional values of LAI (e.g., 
0.5) make little difference biologically and in process modeling as indicated by 
model sensitivity tests (Thornton et al. 2002). 

Table 9.2. Means, experimental uncertainties, and measurement uncertainties for field 
estimates of aboveground net primary production (NPPA), belowground net primary 
production (NPPB), and net ecosystem production (NEP), for each age class and cover type 
represented by the chronosequence plots. 

 NPPA 
(gC m-2 yr-1) 

NPPB 
(gC m-2 yr-1) 

NEP 
(gC m-2 yr-1) 

Cascade Head       
Initiation 793 (83, 22)* 273 (83, 95) 555 (95, 37) 
Young 801 (26, 48) 259 (99, 73) 393 (104, 63) 
Mature 657 (44, 59) 202 (22, 70) 423 (55, 73) 
Old 486 (145, 49) 217 (68, 81) 238 (98, 71) 
HJ Andrews       
Initiation 315 (24, 34) 252 (52, 118) 199 (23, 35) 
Young 476 (127, 31) 234 (45, 66) 288 (115, 44) 
Mature 478 (103, 40) 274 (74, 99) 314 (170, 54) 
Old 318 (53, 56) 218 (34, 128) −24 (148, 83) 
Metolius       
Initiation 114 (42, 8) 94 (52, 43) −129 (110, 17) 
Young 231 (27, 19) 169 (47, 43) 117 (59, 31) 
Mature 323 (151, 36) 162 (75, 62) 169 (200, 46) 
Old 180 (71, 27) 152 (34, 45) 34 (121, 35) 

* The first value in parentheses is the experimental uncertainty (1 SD of the mean of 3 
replicate plots). The second value in parentheses is the average measurement uncertainty 
calculated for each site-age combination (measurement uncertainty determined for each plot 
by Monte Carlo simulation as 1 SD of 1000 standard normal iterations, accounting for 
covariance among equation components). 

Once an appropriate measurement uncertainty was assessed for each of the 
components of NEP (Equation 9.1), Monte Carlo simulations were used to 
determine a final aggregate uncertainty. By randomly sampling within the probable 
distribution of each variable (set by its own measurement uncertainty), a single 
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Monte Carlo run generates one probable value for NEP. Repeating the simulation 
1000 times generates a distribution of probable NEP values. A final measurement 
uncertainty for NEP is expressed as the standard deviation of this distribution. In this 
study we assumed that uncertainty about each component of NEP had a standard 
normal distribution. When using Monte Carlo simulations it is important to consider 
the covariance among component variables. Some Monte Carlo models 
accommodate a correlation matrix that quantifies the covariance among equation 
components. A simpler alternative, employed here, was to combine equation 
components known to be computationally linked (such as understory wood and 
foliage mass which are both derived from stem diameter) into one variable before 
running the Monte Carlo simulation. In this study, experimental uncertainties in 
NEP averaged 44% and measurement uncertainties averaged 19% of the mean NEP, 
with the highest uncertainties in the oldest forests (Table 9.2). 

9.4.5 Extensive Plots: Measurements 

There is generally a large gap in field observations between the relatively low 
number of sites where it is feasible to make intensive measurements, and the large 
number of inventory sites where only a few measurements are made. To bridge this 
gap, we established 60 additional plots using a hierarchical random sample design 
that allowed maximum representation of forest types that exist in the region, the age 
classes present, and the climate space. A single visit to the plots provided data on 
soil and canopy C and N, maximum LAI, biomass and aboveground productivity for 
the range of environmental conditions and forest types. LAI measurements from 
these plots were used to develop the regressions that predicted LAI from remote 
imagery. 

9.4.6 Extensive Plots: Uncertainty Analysis 

Uncertainty computations for the extensive plots followed the same procedures 
described above for the intensive plots. The uncertainty in field estimates of NPPA 
and live mass aboveground (LMA) at the extensive plots averaged 8 and 9% of the 
means (1 SD), respectively.  

9.4.7 FIA/CVS Inventory Plots: Measurements 

Federal forest inventories are repeated on a large number of forested plots in Oregon 
that are visited relatively infrequently. Current Vegetation Survey (CVS) plots are 
on federal national forest lands (4468 CVS plots in Oregon) and Forest Inventory & 
Analysis plots (FIA) are on private lands (1120 plots). CVS and FIA sampling 
intervals are 10 and 8-12 years, respectively. The measurements made on these plots 
are primarily tree structural dimensions and species. These data are used to estimate 
biomass during each measurement period, and ~10-year mean stemwood production. 
Limited measurements of some variables, such as wood increment (33% of trees) 
and tree height (23% of trees), reduce confidence in the accuracy of the estimates of 



 SCALING UP CARBON FLUXES ACROSS REGIONS 177 

 

biomass and productivity but remain valuable since the large number of plots can be 
used to evaluate trends in stemwood biomass and growth across climatic zones and 
forest types, and to determine relative accuracy of model predictions in these 
different conditions. For the inventory plots, stemwood mass was calculated from  

Biomassb = Volumeb Wood Density       (9.2) 

where Volumeb is stemwood volume, and wood density is the dry density of wood.  
The ~10 year mean NPP of aboveground stemwood was estimated from  

NPPAw = Biomassw2 – Biomassw1       (9.3) 

Where NPPAw is aboveground NPP of stemwood and Biomassw2 and Biomassw1 are 
aboveground woody biomass at current and previous time steps, respectively. 
Previous and current height of unmeasured trees was modeled using height-diameter 
equations developed in the region from forest inventory data (Garman et al. 1995). 
The study area was divided into four geographic regions, each corresponding to 
commonly acknowledged physiographic zones in Oregon (Oregon Coast Range, 
Western Cascades, and Eastern Cascades – after Franklin and Dyrness 1973). When 
possible, physiographic zone and species-specific allometric equations were applied 
to estimate volume. Wood density data were acquired for most of the major 
hardwood and softwood species of western Oregon through wood density surveys 
conducted by the U.S. Forest Service (USDA Forest Service 1965, Maeglin and 
Wahlgren 1972).  

9.4.8 FIA/CVS Inventory Plots: Uncertainty Analysis 

Error estimates for NPPAw are based on uncertainty in radial growth propagated 
through the allometric models. In Van Tuyl et al. (2005), we made estimates of the 
potential magnitude of error associated with using generic wood densities and non-
site specific allometry. The error associated with using generic versus plot-specific 
wood densities on 36 plots was estimated to be about 10%. An empirical comparison 
of volume equations used in this study suggests that errors as high as 40% of the 
mean could result from using equations not developed in the study area. These 
results suggest that site-specific volume allometry is much more important to 
making quality estimates of biomass and NPP than are site-specific wood density. 

9.5 REMOTE SENSING OBSERVATIONS 

The role of remote sensing in this study, as in many regional studies, is to provide 
large-domain spatial data layers that the biogeochemistry process model requires: 
LAI, stand age, and forest type. In particular, the prediction of stand age throughout 
this ecologically diverse region required different approaches in different stand 
types. While reasonable continuous estimates of stand age have been made using 
remote sensing of closed-canopy Douglas-fir/western hemlock forests in western 

×
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Oregon (Cohen et al. 2001), similar efforts in the open forests east of the Cascade 
Mountains were met with only limited success. Therefore, questions of scaling over 
these varying stand types must inherently address the varying data precisions in each 
area.  

9.5.1 Land Cover 

Forest cover for the study area was created by updating the 1988 forest cover layer 
created by Cohen et al. (2001) using the same land cover classes (Table 9.3). Non-
forest areas (primarily urban and agricultural areas totaling 24% of land area) were 
defined using masks taken from Cohen et al. (2001) and supplemented with 
information from the National Land Cover Database (NLCD) for the eastern portion 
of the study area (Vogelmann 1998). For the purposes of this study, all forested 
areas in the East Cascades ecoregion were considered closed coniferous forest, and 
their extent was fixed by the NLCD coverage. Of over 8.8 million hectares of forest, 
3% was in an open condition, 8% was semi-open, 5.5% was deciduous, and 16% 
was mixed forest (Figure 9.3). The resulting land cover information was validated 
using 24 aerial photos distributed throughout the western study area, with an average 
accuracy of 82%, and a range of 49% to 97%.  
 

 

Figure 9.4. Leaf area index (LAI) map derived from Landsat EMT+. 
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9.5.2 Forest Age 

The date of stand replacing disturbance can serve as a surrogate for stand age, with 
the caveat that stand re-establishment periods can vary according to resource 
availability and competition for resources (e.g., Law et al. 2003). To increase the 
accuracy of the estimates of age in the earliest stages of forest succession (when 
carbon flux changes rapidly), the continuous estimates of stand age were combined 
with age estimates based on mapping of disturbance through change detection. 

A map of forest age was created by using an existing 1988 dataset of Cohen et al. 
(2001) extending it to the east side of the Cascade Mountains. It was updated  
to reflect age in Year 2000, and masked to remove areas that had changed since 
1988. Regression between the 2000 tasseled-cap image and the ages in 1988 were 
used to estimate the remaining ages needed for new conifer areas. This relationship 
explained 68% of variance of log-transformed age, with an RMS residual of 0.392 
log-years, which were similar to the 65.9% of variance and 0.592 RMS residual of 
0.57 reported by Cohen et al. (2001). 

Table 9.3. Forest cover definitions for remote sensing land cover classification. 

Cover Class Definition 
Non-forest Forested Cover < 0 
Open Total Forest Cover < 30% 
Semi-open 30% < Total Forest Cover < 70% 
Deciduous  Total Cover > 70% and Conifer Cover < 30% 
Mixed Total Cover > 70% and 30% < Conifer Cover < 70% 
Conifer Total Cover and Conifer Cover > 70% 

9.5.3 Leaf Area Index 

The remote sensing estimates of leaf area index (LAI) ranged from 1 to 12 in the 
West Cascades and Coast Range, and 0.5 to 8 in the East Cascades (Figure 9.4). To 
construct LAI algorithms, LAI was measured at the 96 extensive and intensive plots 
following methods in Law et al. (2001b). Polygons were hand digitized around each 
of the plots in reference to the Landsat ETM+ scene to ensure that a homogenous 
region was being referenced in the comparison of spectral characteristics and LAI. 
Both the tasseled-cap index and NDVI indices were calculated from the ETM+ 
mosaic and stepwise multiple regressions were used to determine the best set of 
variables for predicting LAI. The resulting equation uses brightness raised to the 
second power and wetness raised to the power of 11.606, explains 80% of variance, 
and has an RMSE of 1.668 (Figure 9.5). Subsequent analysis of the residuals for the 
East Cascades ecoregion indicated that LAI in those plots was underestimated by 
~20%. Using a combined data set of 24 plots collected in 1999 and 2001, a new 
coverage was calculated for the East Cascades. The resulting equation uses only the 
wetness variable, raised to the power of 14.876, explains 82% of variance and has an 
RMSE of 0.742 (Figure 9.5). Both equations explain similar percentages of 
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variance, but the RMSE for the East Cascades is lower, probably due to the lower 
number of observations in this ecoregion.  

Figure 9.5. Predicted and observed leaf area index (LAI) for field plots in the Eastern 
Cascades and combined plots of the Coast Range and Western Cascades. 

9.6 IMPLEMENTATION OF THE DISTRIBUTED MODELING 

9.6.1 Overview 

The Biome-BGC model (Thornton 1998, Thornton et al. 2002) was selected for this 
application because it includes the complete carbon cycle, it can assimilate input 
data from multiple sources (notably plot level measurements of parameters such as 
foliar nitrogen concentration), and it disaggregates carbon cycle processes 
sufficiently enough to allow comparisons with a wide variety of observations. The 
model has been previously tested at individual plots in coniferous forests of the 
PNW region (Running 1994, Law et al. 2001a). 

Biome-BGC was run on a 25 m grid covering most of Oregon west of the 
Cascade Mountains. Much of the forested portion of the Pacific Northwest is 
characterized by clearcut patches smaller than 1 km2 (Cohen et al. 2002), so high 
spatial resolution is essential to characterize spatial patterns in carbon flux (Cohen  
et al. 1996, Turner et al. 2000). Conversely, a 1 km resolution is suitable to capture 
much of the significant variation in climatic variables. 

9.6.2 Climate Inputs 

For climate inputs, Biome-BGC requires daily estimates of minimum and maximum 
temperature, precipitation, vapor pressure deficit, and solar radiation. A daily time 
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step, 1-km grid for these variables over the period of 1980-1997 was used in this 
application. This data set was generated by interpolation of meteorological station 
data using the DAYMET program (Thornton et al. 1997, Thornton and Running 
1999, Thornton et al. 2000). 

9.6.3 Model Spinup 

Biome-BGC was specifically designed to simulate changes in carbon fluxes over 
long periods. The model must therefore be run over a 1000+ year “spinup” to bring 
the slow turnover soil carbon pools into near steady state. Disturbances such as 
clearcut harvests are then imposed, accounting for tree carbon affected by the 
disturbance. For each model run in this analysis, two successive disturbances 
separated by 60-90 years (depending on location) were simulated at the end of each 
spin-up such that 1/3 of the live tree carbon was transferred to the coarse woody 
debris pool at each disturbance. The model was then run forward to the age specified 
by the remote sensing classification. The 18-year climate time series was run 
repeatedly in these analyses and manipulated such that the last year of secondary 
succession was always 1997. 

9.6.4 LAI Optimization 

LAI is prognostic in BIOME-BGC, and although LAI can be remotely sensed, it 
cannot simply be prescribed in the model because of the continuous interaction 
among the various model compartments. Earlier analysis in Pacific Northwest 
conifer stands has shown a strong linear relationship between stand LAI and a site 
water balance index based on annual precipitation, annual potential evapo-
transpiration, and soil water holding capacity (Grier and Running 1977). To achieve 
agreement between remotely sensed LAI and simulated LAI for a given cell in this 
application, a secant method (Cheney and Kincaid 1985) was used with model runs 
at different soil depths to iteratively solve for the soil depth that minimizes the 
difference between a reference LAI (e.g., from remote sensing) and simulated LAI 
at a specified stand age. An initial value of soil depth to seed the iterations was taken 
from a digital map of soil depths based on the State Soil Geographic (STATSGO) 
database (Kern et al. 1997). In young stands that may not have achieved equilibrium 
LAI, the minimum possible soil depth was constrained by the distribution of 
STATSGO soil depths in the ecoregion. Using this approach, the fit between 
remotely sensed LAI and Biome-BGC LAI was good (r2  = 0.97) with an RMSE of 
0.5 LAI units. 

9.6.5 Integrating 1 km and 30 m Data 

A critical issue in the distributed model implementation was the scale mismatch 
between land cover and LAI data at the 25 m resolution and the climate data at 1 km 
resolution. Because of computational constraints associated with the model spinups, 
a unique model run could not be made at each 25 m cell in the region of interest. 
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Thus, a separate model run was made only once in each 1 km cell for each 
combination of cover type and age class. For use in the soil depth determination, a 
reference LAI was determined for each cover type × age class combination within 
each 1 km cell. The remotely sensed reference LAI was the mean for all 25 m cells 
belonging to each cover type × age class combination within the 1 km cell. 

9.6.6 Ecophysiological Inputs 

Biome-BGC requires a set of ecophysiological constants for model initialization. 
We created a generic set of constants for each cover type based on the values in 
White et al. (2000). The White et al. (2000) analysis determined that the model was 
particularly sensitive to values of foliar C:N and SLA, so we also created ecoregion-
specific sets of constants where foliar C:N and SLA values were means based on 
field measurements at the intensive and the chronosequence plots. 

9.6.7 Comparisons of Simulations with the Survey Data 

The comparison of simulated stemwood production with observations from the FIA 
survey data was constrained by a number of factors. Besides the initial problem of 
converting information on distributions of diameter and growth increment into wood 
production, these factors included (1) plot location, (2) convergence of model output 
and inventory data on a common parameter, and (3) achieving overlap in time 
between the observations and the simulations. 

Perhaps the most significant issue for model evaluation inaccuracy in some plot 
locations. Federal law currently prohibits release of FIA plot locations for both 
private and public lands (recent amendment of the Food Security Act). Thus, 
researchers outside of the FIA program are extremely limited in their ability to 
conduct analyses of the data in a spatial context. In addition, locations of the CVS 
plots on public land were not determined with Global Positioning Systems, so the 
locations are somewhat uncertain. 

Because much of the forested land in the study area is publicly owned, the set of 
CVS plots was used for the purposes of comparing survey-based and simulated 
wood production. CVS locations were accepted as reported and the coordinates were 
used to determine an associated 1 km cell within the climate grid. In the model 
spinups used to determine soil depth, the reference LAI was the mean value for all 
25 m cells in the relevant cover class within the 1 km cell. After the soil depth was 
selected, the model spinup completed, and the disturbances imposed, the model was 
run to the age specified by the CVS data. 

The problem with temporal overlap in the CVS and simulated data is caused by 
the nonuniformity in the year of visit to the permanent plots, and the observation 
that there is large interannual variation in bolewood production based on climate 
variation in the Pacific Northwest (Turner et al. 2003). CVS plots are visited on a 
roughly 10-year interval, and the growth increment is reported for the previous 10 
years. There are also delays in getting the data into the FIA database. Thus data at 
the time it was received from FIA (in the year 2001) may have been five or more 
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years old. The model NPPAw can be aggregated over any interval desired, and for 
this study the mean NPPAw over the 10 yr period from 1988-1997 was selected for 
the comparisons. Because of the many constraints on achieving a implemented in 
this Biome-BGC application such that allocation to fine roots and leaves one-to-one 
comparison in space and time between the CVS data and the simulation data, 
comparisons were made more generally by examining relationships of NPPAw to 
stand age within the ecoregions.  

An age-specific allocation scheme was increased in older stands, except those of 
the East Cascades ecoregion where empirical data indicated that allocation to fine 
roots is greater in young stands (Law et al. 2003). The ecological rationale for 
increased root and leaf allocation with age follows the nutrient limitation hypothesis, 
i.e., nutrients become more limited in late succession because they are increasingly 
sequestered in the biomass. Allocation to fine roots thus increases, and 
correspondingly stemwood production decreases. This is not an appropriate rationale 
for water-limited ecosystems, where relatively large allocation to roots throughout 
stand development is critical for survival. 

Figure 9.6. Simulated and observed aboveground stemwood production in relation to stand 
age for the West Cascades CVS inventory plots. Grey bars are the standard deviation of 6 to 
36 plots depending on age class. 

To implement the allocation shift in the model simulations for the Coast Range 
and West Cascades ecoregions, a nonlinear increase in the allocation to leaves and 
fine roots was prescribed in late succession. The relevant parameters were a 
maximum stemwood production rate in young stands, a lower stable stemwood 
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production rate in older stands, and an age that indicated the midpoint of the 
transfer. These parameters were based on a cubic polynomial fit to the CVS NPPAw 
data by ecoregion (Figure 9.6). With the dynamic allocation implemented in the 
model, the ratio of NPPAw in old and young stands came into much closer agreement 
with the observations (Table 9.4). 

Table 9.4. Model/data comparisons (CVS plot data) for the ratio of aboveground net primary 
production for wood (NPPAw) at the low and high extreme points of the cubic polynomial fit 
for NPPAw versus forest age. Units are g C m-2 y-1. N is the number of observations, CI is the 
95% confidence interval for the predictions at the forest ages corresponding to the high 
(young) and low (old) extremes of the fitted cubic polynomial model. 

Across all ecoregions, the model NPPAw values were similar to the CVS data in 
that the highest magnitudes were in the Coast Range ecoregion, slightly lower values 
in the West Cascades ecoregion, and much lower values in the East Cascades. There 
was generally more scatter in the CVS observations than in the simulations. This may 
occur in part because of a tendency for the scaling approach to under-represent sites 
with low and high LAI (due to the necessity of averaging LAI within each cover class 
by age class combination over the 1 km grid cells). The permanent plot data will be 
further utilized for model improvement by examining the relationships of NPPAw to 
climate indices such as annual potential evapotranspiration, and evaluating the degree 
to which the model is responding in a similar fashion. 

9.6.8 Comparisons of Simulations with the Extensive Plot Data 

Comparisons were made between observations and modeled NPPAw, total 
aboveground NPP (NPPA), and stem mass at the 96 extensive plots (including the 
intensive chronosequence plots). The model was run with the same protocols as for 
the CVS plots but used field observations of LAI as the reference LAI in 
determining soil depth. The comparisons (Table 9.5) showed good agreement for 
 

 N Ratio Young CI Old CI 
Observations       
Coast Range 383 0.50 705 272 -1137 354 −64 - 772 
West Cascades 1677 0.44 469 214 - 724 208 −45 - 462 
Model-Before 
Dynamic Allocation       
Coast Range 373 0.92 353 263 - 443 324 243 - 413 
West Cascades 1626 0.86 330 182 - 477 285 138 - 432 
Model-After Dynamic 
Allocation       
Coast Range 373 0.69 456 353 - 559 314 211 - 416 
West Cascades 1626 0.51 366 235 - 497 185 55 - 315 
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NPPAw and NPPA, but a tendency for the model to underestimate stem mass at older 
stand ages. A potential cause of stem mass underestimation is overestimation of tree 
mortality and those relationships are being explored with model sensitivity analyses 
and with evaluation of mortality estimates in the literature. 

Table 9.5. Regression statistics (observed vs. modeled) for extensive plot and chronosequence 
plot comparisons (b = slope and a = intercept). Flux units are g C m-2 y-1, mass units are g C 
m-2. See text for NPP abbreviations. 

Table 9.6. Effects of alternative parameterization schemes on regression statistics for 
comparison of observed and modeled aboveground net primary production (NPPA; b = slope 
and a = intercept). In the default case, all sites were run with the same set of ecophysiological 
constants. In the ecoregion case, there was a unique parameterization of the ecophysiological 
constants for each ecoregion, and in the site-specific case, there was a unique 
parameterization for each site. 

Parameterization a SE b SE R2 RMSE 
Default 107 36 0.92 0.07 0.70 148 
Ecoregion 49 33 0.94 0.06 0.75 121 
Site Specific 63 41 0.89 0.08 0.63 150 

To reveal the benefits of using the ecoregion-specific observations of foliar  
N concentration, SLA, and leaf retention, a comparison of observed and modeled 
NPPA was also made for a model run using a generic conifer parameterization. 
Without the ecoregion parameterization, the model produced significant additive 
bias, and the RMSE was considerably higher (Table 9.6). The use of even more 
specialized (site-specific) values of foliar N, SLA, and leaf retention also showed 
improved fit over the generic conifer parameterization, but the RMSE was just as 
high due to large model error at a few sites. For each parameterization scheme, 
regressions of model-error against climate indices such as annual precipitation and 
summer precipitation were weak at best, except for the site-specific parameterization 
scheme. Possibly, other parameters linked to foliar C:N and SLA must be changed 
in parallel to achieve consistent improvements. Further analyses of these model 
errors in relation to climatic gradients may be helpful for diagnostic purposes. 

Variable a SE b SE R2 RMSE 
Extensive Plots (N=75) 
NPPAw 90 26 0.80 0.08 0.59 116 
NPPA 59 32 0.93 0.06 0.75 121 
LMAw 3770 863 0.57 0.04 0.74 8950 
Chronosequence Plots (N=36) 
NPPAw 62 31 0.81 0.09 0.69 100 
NPPA 36 37 0.93 0.08 0.82 103 
NPP 20 79 1.10 0.11 0.73 207 
LMAw 4240 1210 0.54 0.05 0.76 9630 
NEP 99 38 0.55 0.12 0.37 183 
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9.6.9 Comparisons of Simulations with Chronosequence Data 

At the chronosequence plots, comparisons were made between field-based and 
modeled NPPAw, NPPA, total NPP, stem mass, and NEP (Table 9.5, Figure 9.7). The 
agreement between model and observations was best for NPPA and NPP. For other 
variables the correlations were positive (with regression slopes >0.5), but further 
work on model development is needed. Future work will focus on the mortality 
parameter and on components of heterotrophic respiration, which strongly influence 
modeled NEP.  

 

Figure 9.8. Comparison of flux tower 
observations and model simulations of 
gross primary production (GPP) and net 
ecosystem production (NEP) at the 
Metolius young ponderosa pine site in 
2002. 

9.6.10 Comparisons of Simulations with Flux Tower Data 

Flux tower estimates of evapotranspiration were initially used to evaluate the 
generic parameterization derived from White et al. (2000). In examining observed 
and modeled evapotranspiration, it became evident that the default maximum 
stomatal conductance parameter was too high, and it was therefore reduced 
significantly. For the year 2001 comparisons, the time series plots of daily GPP at 
the young pine tower site suggested a slight underestimation of GPP in mid-growing 

class combination. 

Figure 9.7. Simulated and observed net 
primary production (NPP) and net  ecosystem 
production (NEP) for the chronosequence 
study plots. Values are means and standard 
deviation of 3 replicate plots per site × age 
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season (Figure 9.8). The model also consistently underestimated NEP throughout 
most of the growing season. There remain significant uncertainties in the nighttime 
NEE estimates from the tower data and the modeled NEE is the small net of the 
large GPP and heterotrophic respiration (errors in both). Thus, the comparisons must 
be considered tentative. Comparisons will be made with results of continuing efforts 
to quantify heterotrophic respiration fluxes in the field (Law et al. 2001a, 2003).  

9.6.11 NEP Surfaces 

After completion of model testing and parameterization based on the complete suite 
of observational data, the model will be run wall-to-wall over the east-west swath in 
western Oregon. Preliminary test areas in the three ecoregions (e.g., Figure 9.9) 
show the effects of management and environmental gradients. NEP is relatively low 
in areas recently clearcut for harvest, and highest in young stands (age 30-100) that 
have a closed canopy and have lost most residues from their stand-originating 
disturbance. NEP on the drier east side of the Cascades tends to be relatively low. 

sensing/
modeling scaling approach will also permit analysis of interannual variation in NEP 
(Turner et al. 2003). 

Figure 9.9. Simulated net ecosystem production (NEP) for selected areas in the study region. 

Besides analysis of within region heterogeneity in NEP, the remote 
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9.7 CONCLUSIONS 

Scaling in space and time is essential if we are to address global change issues 
relevant to terrestrial carbon cycling. We demonstrated a scaling strategy that uses a 
spatially nested hierarchy of observations for model parameterization and testing, 
along with a simulation model that provides a means of integrating environmental 
information at a range of spatial and temporal scales. Observations that include flux 
towers, intensive field sites, and inventory data increase understanding of ecological 
processes and permit the iterative process of model testing and improvement, 
recognizing there are uncertainties in field observations as well as model estimates. 
Uncertainty estimates for field observations, that are aggregates of multiple 
measurements, can be calculated by determining upper and lower boundaries for 
each component measurement and propagating these estimates through to a single 
variable (NEP in this case) with Monte Carlo models. Field observations over a 
range of environmental conditions are necessary for accuracy assessment of remote 
sensing estimates of vegetation characteristics. Knowledge of model sensitivities to 
key parameters helps to determine measurements that should be made at inventory 
sites (e.g., wood increment and density), extensive sites (e.g., foliar and soil carbon 
and nitrogen), and intensive sites (e.g., A-Ci curves – photosynthetic response to 
internal CO2). In coniferous forests of the Pacific Northwest, disturbance history and 
environmental gradients are the major controls on carbon pools and fluxes. Thus, for 
regional analysis of carbon, nitrogen and water cycling it is critical to have spatial 
data layers such as remotely sensed estimates of cover type, changes in cover or 
disturbance, and spatially distributed climate. Advancements of the approach might 
include more iterative model development and testing and data assimilation 
techniques. 
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CHAPTER 10 

LANDSCAPE AND REGIONAL SCALE STUDIES OF 
NITROGEN GAS FLUXES 

PETER M. GROFFMAN, RODNEY T. VENTEREA, LOUIS 
V. VERCHOT, AND CHRISTOPHER S. POTTER 

10.1 INTRODUCTION 

Nitrogen (N) gas fluxes have great relevance to soil fertility, water quality and air 
quality. Analysis of these fluxes presents several conceptual and practical scaling 
challenges because they are mediated by microorganisms at the scale of microns and 
seconds but have relevance at relatively large spatial (meters to kilometers and 
larger) and temporal (years, decades) scales. In this chapter, we evaluate three 
scaling issues that arose as part of an analysis of the effects of N deposition on 
gaseous N loss from temperate forest ecosystems in the northeastern U.S.  

How does this chapter fit into the context of this book and the topic of “scaling 
and uncertainty analysis in ecology?” It occurs to us that there are three main groups 
of scientists grappling with scaling issues: (1) those with an inherent conceptual 
interest in scaling, (2) those interested in micro-scale processes (e.g., N gas fluxes) 
that are relevant at large scales and (3) those interested in solving large scale 
problems (e.g., nitrate delivery to coastal waters) that are regulated by micro-scale 
processes. We fall solidly in the second group, researchers who have been struggling 
to measure N gas fluxes at micro-scales being asked to evaluate the importance of 
our results to large-scale problems such as the fate of atmospheric N deposition or 
nitrate delivery to coastal waters (these knotty problems are defined below). Given 
that N gas fluxes are miserable to measure at micro-scales (lousy methods, absurd 
variability over small spatial and temporal scales), we, and most other micro-scale 
researchers, are uncomfortable scaling our miserable data to larger scales. That is, if 
you take a bad number measured at a small scale and extrapolate it to a very large 
scale, do you end up with a “very bad number” or a “big bad number” or what? So, 
be warned gentle reader, that landscape and regional scale studies of N gas fluxes 
are “not for the squeamish.” But, given the difficulty of our challenge, we are 
pleased to contribute to a book that includes representatives from all three scaling 
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motivation groups. In our view, exchange of ideas and challenges among these 
groups is the key to making progress in this critically important area of environ-
mental science. 

Our case study addresses three distinct scaling challenges: (1) how to account for 
landscape scale variability in regional studies – an experimental design issue, (2) 
how to account for the episodic nature of gas flux – a temporal scaling issue, and (3) 
how to validate landscape and regional scale flux estimates – an uncertainty and 
validation issue. The experimental design issues that we address are also discussed 
in the chapters by Wu and Li (Chapters 1 and 2), Bradford and Reynolds (Chapter 
6), and Peters et al. (Chapter 7). Li and Wu (Chapter 3) provide a relevant discussion 
of uncertainty and error analysis that is relevant to our third challenge. 

10.2 N GAS FLUXES AND ATMOSPHERIC DEPOSITION – SOME 
BACKGROUND 

Soil-atmosphere N gas fluxes are the most poorly characterized component of the 
terrestrial N cycle (Mooney et al. 1987, Schlesinger 1997). There are three gases that 
are produced; nitric oxide (NO), nitrous oxide (N2O) and dinitrogen (N2), as a by-
product of multiple N transformations that occur in soil (Firestone and Davidson 
1989). The most important transformations that lead to gas flux are nitrification, an 
aerobic process, and denitrification, an anaerobic process. Given that these processes 
have complex regulating factors and high variability in time and space, N gas fluxes 
often exhibit extreme variation (Foloronuso and Rolston 1984, Parkin 1987, 
Robertson et al. 1988). Moreover, it is difficult to measure gas fluxes without 
disturbing the physical soil environment and/or the biological transformations that 
produce the fluxes, leading to frequent concerns that observed results are artifacts of 
a particular method (Groffman et al. 1999).  

Fluxes of N gases influence several ecosystem (10 m), landscape (100m), 
regional (>100 km) and global scale processes. At the ecosystem scale, N gas fluxes 
can deplete soil stocks of inorganic N, an essential, and frequently limiting (to plant 
growth) nutrient (Vitousek and Howarth 1991). At the landscape scale, these fluxes 
can prevent or mitigate the movement of excess inorganic N from terrestrial 
environments (e.g., highly fertilized agricultural fields) into water bodies where they 
can cause overgrowth of aquatic plants and eutrophication (Lowrance 1998). At 
regional and global scales, N2O is a “greenhouse” gas that can influence the earth’s 
radiative budget and plays a role in stratospheric ozone destruction (Prather et al. 
1995). Nitric oxide is a highly reactive gas that is a precursor to tropospheric ozone 
formation and is readily converted to reactive N and deposited back to the earth’s 
surface in precipitation (NRC 1992). 

In addition to the greenhouse effect, an additional regional scale phenomenon 
affected by N gas fluxes is atmospheric deposition. Human activities have greatly 
increased the global production of reactive nitrogen through fertilizer use and  
fossil fuel combustion, leading to enrichment of the atmosphere and increased  
rates of reactive N deposition to the earth’s surface (Vitousek et al. 1997). There  
is concern that enriched deposition can create a series of adverse consequences in 
the environment, resulting in N “saturation” or an N “cascade” affecting forests, 
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groundwater and freshwater and coastal aquatic ecosystems (Aber et al. 1989, 
Galloway et al. 2003). One of these effects may be to enhance N gas fluxes, 
contributing to the greenhouse effect (N2O) or increasing ozone levels and N 
deposition (NO).  

The fate of N deposition in terrestrial ecosystems is one of the greatest current 
mysteries in environmental science. Many studies have found that a very high 
percentage (>90%) of the N deposited on terrestrial ecosystems is retained, i.e., not 
exported from the ecosystem via hydrologic pathways (Boyer et al. 2002, van 
Breemen et al. 2002). The specifics of this vast retention, which consists of N 
storage in soils and vegetation and gaseous losses, are not well characterized. 
Quantifying the contribution of N gas fluxes to this retention is of great interest 
because this N is removed from the ecosystem while N stored in soils and plants 
remains available for cycling within, and export from, the ecosystem. There is also 
interest in determining if N gas fluxes could be a sensitive indicator, or early 
warning symptom of the onset of N saturation.  

Previous studies have suggested that N gas fluxes in northeastern forest soils are 
low (Bowden 1986, Bowden et al. 1991), but only a small number of sites have been 
studied. Moreover, these studies have, for the most part, only measured N2O. Fluxes 
of NO have recently been shown to be much higher than those of N2O in forest plots 
receiving long-term experimental N additions (Venterea et al. 2003a). Fluxes of N2 
are basically unknown, but could be an important component of ecosystem retention 
of atmospheric deposition, with no negative environmental impact.  

10.3 A REGIONAL SCALE STUDY OF THE IMPORTANCE OF N GAS 
FLUXES TO THE FATE OF ATMOSPHERIC N DEPOSITION 

We received funding from the US Environmental Protection Agency’s Science To 
Achieve Results (STAR) program on Regional Scale Analysis and Assessment to 
investigate the “effects of N deposition on gaseous N loss from temperate forest 
ecosystems.” Our project has four objectives: (1) to determine the importance of 
gaseous loss of N from temperate forest ecosystems, (2) to determine the impacts of 
N deposition on gaseous loss of N from these ecosystems, (3) to test a mechanistic 
model that relates N gas emissions to N availability and soil moisture content, and 
(4) to develop a new and more mechanistic version of the daily NASA-CASA 
ecosystem model for N gas emissions that can be applied at the regional level using 
satellite remote sensing and other spatial data sets in a geographic information 
system (GIS) format. This new simulation model will be used to assess trends in N 
cycling over gradients of N deposition in the northeast US and to project changes in 
N gas fluxes with changing air pollution.  

The project takes advantage of an N deposition gradient in the northeastern US 
that runs from West Virginia (high deposition - ~12 kg N ha-1 y-1) north and east to 
Maine (low deposition - ~5 kg N ha-1 y-1). Our approach was to make monthly  
in situ measurements of gas fluxes using chamber (~0.10 m2) methods (Venterea  
et al. 2003a) along with measurements of ancillary N cycle processes at five sites 
along the gradient: Fernow Experimental Forest, WV, Catskill Preserve, NY, 
Harvard Forest, MA, Hubbard Brook, NH, and Bear Brook, ME. We then used the 
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data to modify existing process (hole in the pipe) and ecosystem (NASA-CASA) 
scale models and then use regional data sets to run the models at the regional scale.  

The project presents three distinct scaling challenges: (1) how to account for 
landscape scale variability at each point along the regional gradient, i.e., how to 
determine the “representative flux” at each site, (2) how to account for the episodic 
nature of gas flux, e.g., bursts of flux in response to rainfall events, given a monthly 
sampling program, and (3) how to validate the landscape and regional scale 
estimates of flux that we produce given that we have no large-area, independent way 
to measure flux at landscape and regional scales. In the sections below we discuss 
how we have addressed each of these scaling challenges. 

10.3.1 Challenge #1 – How To Account for Landscape Variability along a Regional 
Gradient 

This challenge arises from the fact that although our five sites are aligned along a 
marked N deposition gradient, there is considerable natural variability in N 
dynamics and gas flux at each site due to variation in soils, vegetation, geology, 
elevation, aspect, and land use history. To establish a “representative flux” at each of 
our five sites, it was necessary to account for these factors in the selection of our 
monthly sampling locations.  

Figure 10.1. The Hubbard Brook Experimental Forest, showing 100 plot locations utilized in 
the “valley-wide” study. Numbers are plot designations previously established by Schwarz 
 et al. (2003). Dashed lines are approximate boundaries of areas used in previous watershed-
scale studies (Likens and Bormann 1995). From Venterea et al. (2003b). 

At the Hubbard Brook Experimental Forest in New Hampshire, we designated 
the Hubbard Brook valley, a 3,160-ha catchment within the White Mountain 



 SCALING UP N GAS FLUXES ACROSS LANDSCAPES 195 

 

National Forest of central New Hampshire, USA (43o 56' N, 71o 45' W), as the 
representative landscape unit for this location along our regional N deposition 
gradient. While the HBEF has been the site of numerous watershed/ecosystem scale 
studies (Likens and Bormann 1995), the vast majority of these studies have taken 
place in a series of small watersheds in the northeast corner of the Hubbard Brook 
valley. For this study, we participated in a multi-investigator effort to characterize 
variation in ecosystem properties across the entire valley. To accomplish this, we 
sampled 100 randomly selected plots, a subset of 400 plots that had been established 
for an earlier valley-wide vegetation study (Figure 10.1, Schwarz et al. 2003), 
incubated samples in the laboratory, and measured potential net N mineralization 
and nitrification and N2O production (Venterea et al. 2003b). We then examined 
relationships between these N cycle variables, which have been shown to be strongly 
related to N gas fluxes (Davidson et al. 2002, Venterea et al. 2003a) and landscape 
parameters (elevation, aspect, dominant tree species).  

Our hypothesis was that there were not going to be strong landscape scale 
patterns in N cycling at Hubbard Brook. The forest is relatively uniform northern 
hardwood forest composed of yellow birch (Betula alleghaniensis Britton), sugar 
maple (Acer saccharum Marsh.), red spruce (Picea rubens Sarg.) and American 
beech (Fagus grandifolia Ehrh.) with small amounts of paper birch (Betula 
papyrifera Marsh.), balsam fir (Abies balsamea), red maple (Acer rubrum), Eastern 
hemlock (Tsuga canadensis), white ash (Fraxinus americana), and striped maple 
(Acer pensylvanicum L.) (Schwarz et al. 2003). Soils are acidic (pH 3.5 - 5.5) and 
consist of well-drained, Typic Haplorthods of sandy loam texture derived from 
glacial till (USDA 1996). The implications of this hypothesis for our regional 
project were profound – if sustained, it meant that we could sample anywhere (or at 
least randomly), e.g., in a nice flat site close to the road, rather than have to establish 
sites “all over the damn place . . .”  

Somewhat surprisingly (given the relative uniformity of soils and vegetation 
described above), we observed strong, coherent landscape patterns of N cycling 
across the landscape of the Hubbard Brook valley. All process rates were higher on 
south facing than on north facing slopes, and at high elevation than at low elevation 
(Figure 10.2). These patterns were driven by the effects of aspect and elevation on 
soil moisture and the distribution of vegetation. The results are consistent with many 
other studies that have found strong patterns in N cycling with elevation and aspect 
(Schimel et al. 1985, Burke 1989, Groffman and Tiedje 1989, Bohlen et al. 2001).  

The nitrification and N2O fluxes were higher than we expected, with nitrification 
representing over 50% of net mineralization and N2O flux representing more than 
0.70% of net nitrification. These results suggest that N cycling at Hubbard Brook is 
relatively dynamic, and that the potential for N gas fluxes is relatively high. These 
results were surprising given that this site is towards the low end of our regional N 
deposition gradient and that streamwater nitrate losses at this site are low (Aber et al. 
2002).  
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Figure 10.2. Landscape patterns in N cycle processes at the Hubbard Brook Experimental 
Forest: Top – Aspect, Middle – Elevation (< or > 600 m), and Bottom – Vegetation type (> 
50% basal area). Mineralization and nitrification data from Venterea et al. (2003b). RS = red 
spruce, AB = American beech, YB = yellow birch, SM = sugar maple, and PB = paper birch. 

The results from our “valley-wide” study were used as a basis for picking sites 
for our monthly measurements of in situ gas fluxes. They increased our confidence 
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that we were measuring representative fluxes at this point along our regional N 
deposition gradient because we had evidence that our design encompassed the major 
landscape-scale factors influencing flux at this location. This confidence depends on 
the idea that the laboratory-based potential fluxes that we measured are indicative of 
field fluxes, which is well supported conceptually and practically (Davidson et al. 
2002, Venterea et al. 2003a), and that we have not missed any key landscape-scale 
factors influencing flux at this point along the gradient e.g., dead moose carcasses 
may be hotspots of N gas flux. The intensive sampling that we did (100 plots) 
suggests that this is not the case, but this is impossible to verify (see discussion of 
our third scaling challenge below; also see Wu and Li, Chapters 1 and 2, Bradford 
and Reynolds, Chapter 6, Peters et al., Chapter 7, and Wagenet 1998 for discussions 
of landscape scale experimental designs). We were also left to grapple with 
questions about the number of sites and measurements necessary to produce well-
constrained estimates of flux. Unfortunately, few of our sites for monthly flux 
measurements were able to be located in flat locations near the road!  

Figure 10.3. Response of (a) NO flux and (b) N2O flux to 25-mm of water added on August 17 
and October 27 of 2001 to control, low N (50 kg N ha-1 y-1) and high N (150 kg N ha-1 y-1) 
plots at the Harvard Forest, MA. Asterisks indicate if post-wetting fluxes are significantly 
different from pre-wetting fluxes at p < 0.05. From Venterea et al. (2003a). 
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It is important to note that Hubbard Brook was only one of the five points along 
our regional N deposition gradient. At the other points on the gradient, analyses of 
landscape-scale controls on flux and site selection were based on previous work at 
the sites by other investigators. Our regional study was greatly aided by the fact that 
numerous N cycling studies have been carried out at these sites. 

10.3.2 Challenge #2 – How to Account for the Episodic Nature of N Gas Fluxes? 

N gas fluxes are notoriously episodic, with short bursts of production occurring 
following rainfall or thawing events accounting for a high percentage of annual flux 
(Groffman et al. 2000). The best way to produce accurate evaluations of flux is to 
make continuous (greater than daily) measurements (Papen and Butterbach-Bahl 
1999, Groffman et al. 2000). However, continuous monitoring of flux is difficult and 
expensive even at one site, and it is certainly not possible at landscape and regional 
scales. We approached this challenge with a mixture of field campaigns to assess the 
episodic nature of flux and simulation modeling to accomplish temporal scaling.  

Figure 10.4. The “hole-in-the-pipe” conceptual model of N gas fluxes. From Firestone and 
Davidson (1989). 

At the Harvard Forest, MA site, we assessed episodic fluxes of NO and N2O 
associated with wetting events (Figure 10.3), diurnal temperature changes and N 
additions. Data from these assessments, combined with data from our monthly 
sampling allow us to parameterize flux models for these gases based on the “hole- 
in-the-pipe” formulation devised by Firestone and Davidson (1989). In this model, 
the overall rate of N transformation is depicted as the flow of water through a pipe, 
and N gases leak out through holes in the pipe (Figure 10.4). The overall rate of N 
transformation is controlled by soil and organic matter quality variables and is 



 SCALING UP N GAS FLUXES ACROSS LANDSCAPES 199 

 

represented by measurements of gross and/or net N mineralization and nitrification. 
The size of the holes is controlled by more transient soil conditions such as pH, 
temperature and water content. The hole-in-the-pipe model can be run at a daily time 
step and is thus capable of depicting the episodic nature of N gas fluxes. We suggest 
that process models, carefully calibrated with site-specific field data, are useful tools 
for depicting the episodic nature of N gas fluxes. Until we have technology that 
allows for continuous measurement of fluxes, at multiple sites, these models will 
continue to be important tools in landscape and regional scale studies of these 
fluxes.  

It is interesting to note that the fluxes of NO at the Harvard Forest site were high, 
up to 8% of inputs, while N2O fluxes were much lower. Previous studies at this site 
also found low N2O fluxes (Bowden et al. 1991, Magill et al. 1997). Our new NO 
data suggest that N gas fluxes are larger, and more responsive to N deposition, than 
previously thought. Fluxes of NO were not responsive to wetting events, but N2O 
fluxes were. 

10.3.3 Challenge #3 – How to Validate Landscape and Regional Scale Estimates of 
Flux 

In addition to serving as tools for depicting the episodic nature of N gas fluxes, i.e., 
for temporal extrapolation, we use models as spatial extrapolation tools to produce 
landscape and regional scale estimates of flux. We are in the process of linking our 
process models with the NASA-CASA model (Figure 10.5), which is an aggregated 
representation of major ecosystem C and N transformations (including gas fluxes) 
that can be run at regional scales when driven by a set of gridded coverages at 1-km 
spatial resolution (Potter et al. 1996, 1997).  

The N gas emission components of the NASA-CASA model have been re-
evaluated in the context of our field measurements. Revisions are underway in the 
CASA framework, based in part on recent validation/comparison studies (Davidson 
et al. 2000, Parton et al. 2001). Regional driver data sets that will be used for 
extrapolation include nitrogen deposition isopleth maps, daily climate drivers, soils 
and satellite-based estimates of leaf area index, and land cover and vegetation type. 
The NASA-CASA model will generate predicted nitrification rates in forest soils, 
which will in turn be used to predict NO and N2O emission fluxes from soil surfaces 
as a function of simulated soil water content, temperature, pH, bulk density, and 
texture. Field measurements of these parameters at our five experimental sites will 
be used to make model calibration checks of the trace gas algorithms.  

While the NASA-CASA model will produce landscape and regional scale 
estimates of flux, we have no way to directly validate these estimates because there 
is no way to independently assess flux at these scales. While we feel that our models 
are conceptually sound and empirically robust, it is possible that we have overlooked 
critical controlling factors at the landscape and regional scale, e.g., dead moose 
carcasses that may be hotspots of N gas flux in our northern sites. Given our 
inability to truly validate our estimates, some alternative approaches are possible. 
First, it is possible to predict fluxes for new sites within our region and then validate 
these predictions with field measurements. Second, we can evaluate our flux 
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estimates in the context of what is known about other fluxes at these well-studied 
sites. For example, if our estimates of gas flux are much higher than precipitation 
inputs and/or streamwater outputs of N, we will suspect that our estimates are too 
high. Finally, we can develop and apply other, independent modeling/extrapolation 
approaches to the region and see if estimates are similar. Clearly, none of these 
alternative validation approaches is very satisfying, but it is currently the best we 
can do. We can also apply standard methods of uncertainty analysis to our model 
results (reviewed by Li and Wu, Chapter 3), but again, these do not allow for true 
validation of our landscape and regional scale flux estimates. 

Figure 10.5. The NASA-CASA ecosystem carbon and nitrogen process model showing how 
landscape and regional scale data can be used to drive ecosystem process (including N gas 
fluxes) models. 

10.4 CONCLUSIONS 

Landscape and regional scale studies of N gas fluxes are difficult. Are the scaling 
challenges inherent in these studies insurmountable? One way to evaluate this is to 
ask if we have successfully addressed the objectives of our project. We have met our 
first objective (i.e., to determine the importance of gaseous loss of N from temperate 
forest ecosystems) with data suggesting that N gas fluxes, especially NO, are more 
important in northeastern forest soils than previously thought. For our second 
objective, we have evaluated the response of N gas fluxes to N deposition, with 
fertilization studies and by comparison of sites along our regional deposition 



 SCALING UP N GAS FLUXES ACROSS LANDSCAPES 201 

 

gradient (still underway). This comparison is greatly facilitated by our landscape 
experimental designs, which allow us to establish representative fluxes for each site 
along the regional gradient. These designs will also allow us to evaluate the 
importance of deposition as a driver of flux compared to “local factors” such as 
elevation, aspect and vegetation type.  

Our third objective, to develop models of N gas fluxes, has also been achieved, 
by collection of data to parameterize flux models for our sites. It is important to note 
that hole-in-the-pipe type modeling is ongoing at many sites around the world, 
providing many opportunities for comparison and synthesis (Verchot et al. 1999, 
Davidson et al. 2000).  

We will also achieve our fourth objective, producing regional scale estimates of 
N gas fluxes. However our ability to validate these estimates is indirect and 
incomplete and therefore our confidence in their accuracy is low. We will compare 
our estimates of flux with regional deposition estimates and budgets (Boyer et al. 
2002, Driscoll et al. 2003) and will carry out spatial validation, i.e., prediction of 
flux at new sites. However, true validation will await the development of new 
methods (e.g., micrometeorological towers, aircraft-based measurements, new 
isotope approaches) that allow for independent measurement of fluxes at ecosystem, 
landscape and regional scales.  
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CHAPTER 11 

MULTISCALE RELATIONSHIPS BETWEEN LANDSCAPE 
CHARACTERISTICS AND NITROGEN CONCENTRATIONS 

IN STREAMS 

K. BRUCE JONES, ANNE C. NEALE, TIMOTHY G. WADE, 
CHAD L. CROSS, JAMES D. WICKHAM, MALIHA S. NASH, 

V. O’NEILL, ELIZABETH R. SMITH, AND 
RICK D. VAN REMORTEL 

11.1 INTRODUCTION 

There have been numerous papers reporting relationships between watershed and 
landscape characteristics and chemical, physical, and biological attributes of streams 
(see summary in Lee et al. 2001). Some of these studies have shown strong linkages 
between stream and near-site landscape conditions (Lammert et al. 1999, Stauffer  
et al. 2000, Talmage et al. 2002), while others show stronger linkages between 
stream and watershed-scale, landscape conditions (Roth et al. 1996, Allan et al. 
1997, Herlihy et al. 1998, Davies et al. 2000, Jones et al. 2001a). Moreover, there 
are differences in the importance of environmental variables in explaining variation 
in stream condition among the various studies (for a comparison, see Roth et al. 
1996 and Lee et al. 2001).  

Differences in results are not surprising given the wide range of scales and 
biophysical settings, and the potential for variation in environmental conditions 
(e.g., precipitation and flow) among the years in which these studies were 
conducted. Scaling is one of the top challenges facing environmental managers and 
ecologists alike (Wu 1999, Wu and Hobbs 2002). 

Stream chemistry, including nitrogen concentration, seems to be controlled by 
overall watershed conditions (Carpenter et al. 1998, Herlihy et al. 1998, Jones et al. 
2001a), although point sources and atmospheric nitrogen deposition also can be 
significant sources of nitrogen in streams (Behrendt 1996 and Smith et al. 1997, 
respectively). Studies of the importance of land cover and land use in riparian zones 
is well documented (Lowrance et al. 1984, Peterjohn and Correll 1984), but most 
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have been limited in geographic scope and biophysical variability. Moreover, little is 
known on how effective forested riparian buffers are in filtering nitrogen in different 
biophysical settings across broad regions.  

Figure 11.1. The Mid-Atlantic study area and watersheds used in the analysis. 

Excess nutrient loading into streams, from atmospheric inputs and land surfaces, 
is a key issue with regards to maintaining the chemical and biological condition of 
streams (Carpenter et al. 1998, Jones et al. 2001a). High levels of nutrients in 
streams can create both risks to human health and biological condition (Ator and 
Ferrari 1997). Smith et al. (2001) found a strong relationship between landscape 
characteristics, especially the amount of urban and agriculture on greater than 3% 
slopes, and relatively high concentrations of fecal coliforms in South Carolina 
streams. They hypothesized that excess loadings of nutrients from animal and 
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human waste was the likely cause of this pattern. Atmospheric nitrate deposition is 
considered to be a significant source of nitrogen in streams, especially in the 
northeastern U.S (EPA 1996, Smith et al. 1997, Clark et al. 2000).  

The scaling relationships of factors affecting stream nitrogen and changing 
importance of explanatory variables across a broad geographic region are important 
in determining what management actions might be effective in reducing the risk of 
excess nutrient loadings to streams (Hunsaker and Levine 1995). The Environmental 
Protection Agency (EPA), through its responsibilities relative to the Clean Air Act, 
has been trying to reduce atmospheric inputs of nitrogen to streams through 
implementation of emission standards (EPA 1996, Holland et al. 1999).  

In this chapter, we analyze relationships between total stream nitrogen and 
explanatory variables representing three different scales – regional atmospheric 
nitrogen deposition, watershed level land surface characteristics, and land cover 
composition within the riparian zone – using a statistical approach that was used to 
design the NASA space shuttle. We also discuss potential sources of error in the 
application of the statistical approach. Finally, we discuss how changes in scaling 
functions might be used as an indicator of overall watershed condition. 

11.2 METHODS 

11.2.1 Stream Data and Watershed Delineation 

Four hundred seventy-seven (477) observations of total nitrogen were obtained from 
the 1993 and 1994 Environmental Monitoring and Assessment Program (EMAP) 
stream surveys in the Mid-Atlantic region (370 total samples, EPA 2000) and from 
the STORET database (107 total samples) from approximately the same time period 
using similar collection methods. Dates of collection were similar to those for land 
cover acquisition (see below). Watersheds for each of the 477 samples were 
delineated from 30 m Digital Elevation Model (DEM) data using ArcInfo GIS 
watershed delineation software (ESRI 1996). Each stream sample represented the 
pour point for the upstream watershed or catchment area. The watersheds were 
widespread across the region, varied considerably in size, and represented a wide 
range of biophysical settings (Figure 11.1). 

11.2.2 Explanatory Variables 

We used a set of variables similar to those used by Jones et al. (1997, 2001a) (Table 
11.1). The variables represented three spatial scales: (1) wet nitrate deposition, 
which had a broad regional pattern (see Jones et al. 1997), (2) watershed-level 
characteristics of land cover, elevation, slope, and soil characteristics, and (3) 
riparian zone land cover characteristics. We used an atmospheric wet nitrate 
deposition model (SAMAB 1996) to estimate watershed level atmospheric inputs of 
nitrogen. This model used the EPA wet deposition network data from 1993 (see 
Holland et al. 1999) to create a broad deposition grid of the region. Grid values were 
then modified and calculated on 180 × 180 m grid cells derived from a resample of 
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the DEM based on the strong correlation between wet nitrate deposition and 
elevation (SAMAB 1996). Atmospheric wet nitrate deposition values were then 
calculated for each watershed in a GIS.  

Table 11.1. Independent variables used in the regression tree analysis. See Jones et al. (1997, 
2001a) for calculation of variables and implementation of soil loss and nitrate deposition 
models, respectively. 

Metric Explanation 
Agriculture on steep slopes 
(AGS3) 

Percent of watershed with agricultural land cover 
occurring on greater than 3% slopes 

Agricultural land cover (ALC) Percent of watershed with agricultural land cover 
Forest land cover (FLC) Percent of watershed with forest land cover 
Soil loss (POSO) Proportion of watershed with the potential for soil 

losses greater than 2240 kg ha-1 yr-1 
Road Density (RD) Average number of kilometers of roads per square km 

of watershed 
Roads near streams (RXS) Proportion of total stream length having roads within 

30 m 
Riparian agriculture (RIPA) Percent of total watershed with agricultural land cover 

within 30 m of the stream 
Riparian forest (RIPF) Percent of watershed area with forest land cover within 

30 m of the stream 
Slope gradient (SG) Average percent slope gradient for the watershed 
Forest Fragmentation (FFRG) Of all the pairs of adjacent pixels in the watershed that 

contain at least one forest pixel, the percentage for 
which the other pixel is not forest 

Wetland land cover (WLC) Percent of watershed with wetland land cover 
Nitrate Deposition (ND) Estimated average annual wet deposition of nitrate  

(kg ha-1 yr-1) 

Watershed and riparian-level land cover metrics were generated in a GIS using 
the National Land Cover Database (NLCD, Vogelmann et al. 2001). The NLCD was 
generated from Landsat Thematic Mapper data (30 meter resolution) that consisted 
of approximately 21 land-cover classes for the Mid-Atlantic region (Vogelman et al. 
2001). However, similar to Jones et al. (2001a and b), we reclassified the NLCD 
data into six classes: agriculture, urban, wetland, water, forest, and barren. 
Descriptions of the variables (landscape metrics) are given in Table 11.1 and can 
also be found in Jones et al. (1997), Jones et al. (1999), and Jones et al. (2001a). A 
metric for soil loss was generated in a GIS at the watershed scale by applying the 
RUSLE soil loss equation (Jones et al. 1997).  

11.2.3 Regression Tree Analysis 

We performed Regression Tree Analysis (RTA) using CART® software (Breiman  
et al. 1984, Steinberg and Colla 1995) to investigate existing patterns between the 
dependent variable, total nitrogen, and the set of watershed explanatory variables 
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listed above. Total nitrogen concentration values were log-transformed using a 
natural log transformation prior to any analyses.  

RTA is a binary, recursive partitioning process whereby the data are 
consecutively split into two child nodes using a set of splitting rules. The goal of 
each split is to reduce the variance within each parent node whereas the overall goal 
of the RTA is to produce terminal nodes containing data with maximized 
homogeneity (i.e., low variance). Improvement is measured by how much the 
variance is reduced and at each split; CART® evaluates all possible splits for all 
variables. With our analysis, for example, CART® examined a potential 5247 splits 
(477 possible nitrogen values × 11 variables) to determine the most effective root 
node split. In the tree structure produced by RTA, “yes” answers always go to the 
left and “no” answers always go to the right. These child nodes then either become 
terminal nodes with no further splits or become parent nodes themselves. The mean 
value for each terminal node is then the predicted value for watersheds with the 
same attributes as those in the terminal node. We used the default modes in running 
the analyses, including the 1-SE rule to define the tree. Additionally, we evaluated 
the consistency of the tree against a set of 25 randomly selected trees generated from 
the Bagging program in CART®. We compared the sum of residuals squared and 
absolute deviations from the initial tree against those generated from the committee 
of trees to evaluate the consistency of variables selected for the tree. CART® also 
provides a list of surrogate and competing variables for each split in the tree, along 
with their potential contribution to the resolving power of the overall tree. Surrogate 
variables are usually correlated to the selected variables and can be almost as good 
in resolving a particular split in the tree as the selected variables. When surrogate 
variables explain nearly as much variability as the selected variables for particular 
breaks in the initial tree, randomly generated trees (e.g., through the Bagging 
program) often yield tree splits with alternating variables.  

The analysis was performed with no pre-conceived idea of stratifying the sample 
(e.g., by ecoregion) but one of the goals of this analysis was to identify emerging 
patterns among groups of watersheds via the RTA and then to investigate the spatial 
patterns demonstrated by the terminal nodes to determine whether they shared 
common biophysical characteristics.  

We classified total nitrogen concentrations into three condition classes based on 
results of stream surveys conducted by EMAP in the Mid-Atlantic Highlands (EPA 
2000), and summarized conditions for each terminal node. These classes were good 
(<5.9 Ln N mg/L), fair (5.9 Ln N mg/L to 6.5 Ln N mg/L), and poor (>6.5 Ln N 
mg/L). 

11.2.4 Spatial Analysis of Terminal Node Members 

In order to evaluate the spatial relationship among the nodal sample points identified 
by RTA, a nearest-neighbor analysis of complete spatial randomness was conducted. 
We used the nearest-neighbor algorithm of Clark and Evans (1954) with the edge-
correction methodology of Donnelly (1978) as implemented in the “Animal 
Movement Analysis” ArcView extension (Hooge and Eichenlaub 1997).  
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This ArcView extension calculates a nearest-neighbor index for a given polygon 
theme. In practice, this polygon theme would be a pre-defined boundary (e.g., 
watershed boundary, county boundary, or a defined sample-site boundary). 
However, inasmuch as the nodal point theme generated by the RTA analysis spans 
across large geographic regions, polygon boundaries were defined by connecting the 
outermost coordinates of each set of nodal points (the “minimum convex polygon”) 
(Hooge and Eichenlaub 1997). The strength of this method is that each analysis of a 
point theme focuses on the distribution of points as they appear spatially, without 
imposing a political or other boundary condition. 

The index of Clark and Evans (1954) is generated by calculating the ratio of the 
mean nearest-neighbor distance among all sample points (numerator) and the 
expected mean nearest-neighbor distance under the assumption of a Poisson process 
(denominator). Under complete spatial randomness, this ratio will tend toward unity, 
whereas a ratio less than one is indicative of a clustered pattern and ratio greater than 
one is indicative of a uniform pattern (Hooge and Eichenlaub 1997). 

11.2.5 Ecoregion Characterization of Watersheds 

Since existing evidence suggests a relationship between stream condition and 
ecoregions (Hughes et al. 1987, Herlihy et al. 1998, Griffith et al. 1999), we 
characterized ecoregion composition for each RTA terminal node. Unlike Herlihy  
et al. (1998) who assigned an ecoregion designation based on the stream sampling 
location, we calculated the percentage of the watershed surface in different 
ecoregions. We used a digital coverage of Omernik Ecoregions (Omernik 1987) to 
determine the proportion of each ecoregion on each of the 477 watersheds. 

11.3 RESULTS 

11.3.1 Tree Structure 

The RTA analysis yielded a tree structure with eight terminal nodes and an overall 
strength (1-relative resubstitution error) of 0.615 (Figure 11.2). The sum of residuals 
squared and absolute deviations from the initial tree (30.99 and 29.03, respectively) 
were similar to those generated from the committee of 25 randomly generated trees 
(29.73 and 26.80, respectively).  

The most important variable (improvement of 0.45) and first split on the tree was 
the percentage of forest at the watershed scale. Three hundred watersheds were split 
into a group that had greater than 68.3% forest (right side of the tree) and 177 were 
in a group with less than or equal to 68.3% forest (left side of the tree, Figure 11.2). 
Three of the four terminal nodes on the right side of the tree had streams with 
average total nitrogen values in the good class (range 5.1 to 6.4 Ln N mg/L), 
whereas three of the four terminal nodes on the left side of the tree had poor average 
values (range 5.9 to 8.1 Ln N mg/L, Figure 11.2). The percentage of watershed area 
in agricultural land cover and forest fragmentation were surrogate values 
(association >0.75) for forest land cover, but were not selected in the model because 
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the amount of forest provided the greatest improvement in the model at this level in 
the tree. Moreover, the percentage of forest at the watershed scale was the first 
splitting variable in all 25 randomly generated trees in the Bagging analysis.  

Figure 11.2. Regression tree results for 477 Mid-Atlantic streams and associated watersheds. 
Variable breaks (threshold values), total number of paired stream/watershed samples, and the 
average total nitrogen concentration (Ln mg/L) are given at each interior node. Variable 
abbreviations are given in Table 11.1. Variables inside parentheses indicate surrogate 
variables (greater than >75% association). Numbers inside parentheses below surrogate 
variable names are the relative importance of that split in the model. Terminal nodes with 
solid line boxes indicate average nitrogen values in the good range; dashed line boxes 
indicate fair range; dotted line boxes indicate poor range (see discussion in Methods section). 
Numbers (and range) of stream samples in good, fair, and poor condition are given below 
each terminal node. 

At the next level on both sides of the tree, total wet nitrate deposition was the 
most important variable determining total nitrogen concentration in Mid-Atlantic 
streams (0.07 and 0.05 improvement in the model on the left and right sides of the 
tree, respectively) and there were no surrogate variables (Figure 11.2). Lack of a 
surrogate was expected because atmospheric nitrogen deposition was not correlated 
with any of the other variables used in the analysis. On the right side of the tree, 
watersheds with relatively low N deposition were further divided based on the 
amount of riparian forest; 69 watersheds had less than or equal to 90.4% riparian 
forest and 67 had greater than 90.4% riparian forest (Figure 11.2). Percent 
agriculture and percent forest at the watershed scale were surrogate values for this 
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split (Figure 11.2). Both terminal nodes (nodes 5 and 6) had average stream total N 
values in the good class, but those in the terminal node with greater amounts of 
riparian forest (Node 6) had the lowest total N concentrations (5.1 Ln N mg/L versus 
5.8 Ln N mg/L, Figure 11.2). Additionally, the majority of watersheds in terminal 
node 6 had total stream N concentrations in the good condition class, with no 
watershed in poor condition, whereas terminal node 5 had a greater percentage of 
watersheds in fair and poor condition (Figure 11.2).  

The group of watersheds on the right side of the tree with relatively higher 
atmospheric N deposition were further divided into a group of 98 watersheds with 
greater than 87.8% forest and a group with less than or equal to 87.8% forest; the 
former had average total N concentration in streams in the good range and the later 
in the fair range (Figure 11.2). Terminal node 8 also had a higher percentage of 
watersheds in good condition than did terminal node 7 (Figure 11.2). Surrogate 
variables included the amount of agriculture at the watershed scale, forest 
fragmentation, and the amount of agriculture on steep slopes.   

On the left side of the tree, watersheds with relatively higher atmospheric N 
deposition were split into a group of 25 watersheds with relatively lower potential 
soil loss and a group of 41 watersheds with relatively higher potential soil loss 
(Figure 11.2); percent agriculture was a surrogate for potential soil loss in this part 
of the tree. Although both terminal nodes had streams with average total N 
concentration in the poor range, those watersheds in terminal node 3 (lower potential 
soil loss) had on average lower total N concentrations in streams than terminal node 
4 (7.2 versus 8.1 Ln N mg/L), and the former had a greater percentage of watersheds 
in good or fair condition (Figure 11.2). Finally, watersheds with relatively lower 
atmospheric N deposition were divided into a group of 94 watersheds with less than 
or equal to 69.3% riparian forest and a group of 17 watersheds with greater than 
69.3% riparian forest (Figure 11.2). Terminal node 2 had an average total N 
concentration in streams in the fair range whereas terminal node 1 had an average in 
the poor range, and the former had a higher percentage of watersheds in the good 
and fair range than did the later (Figure 11.2). There were no surrogate variables for 
the split of these watersheds and stream samples.  

11.3.2 Geography and Characteristics of Terminal Nodes 

Of the eight terminal node point themes analyzed, five were found not to differ 
significantly from a random distribution of points (Table 11.2). Node 1 points were 
found to be more clustered than would be expected by chance, and nodes 2 and 5 
were found to be more uniformly spaced than would be expected by chance. 
However, few data points were available for analysis for node 2, and hence one 
should exercise caution when interpreting the results for this particular set of points 
(Table 11.2). Terminal node 5 sites tended to be widely dispersed in forested areas 
in the southern half of the Region (Figure 11.3). Terminal node 1 sites, which had on 
average relatively high concentrations of stream N, consisted of geographic clusters 
in the Washington, D.C. area and in valleys in the Appalachian Mountain region 
(Figure 11.3).  
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Table 11.2. Summary of the nearest-neighbor analysis for the eight nodal point themes 
generated by Regression Tree Analysis. The R-statistic and |z|-statistic for the Clark and 
Evans (1954) test are shown along with a generalized p-value obtained from a normal-curve 
statistical table (Zar 1999); significant p-values (<0.05) are shown with an asterisk. The 
result column indicates whether the point theme is indicative of a random, clustered, or 
uniform spatial distribution. 

Node 
No. 

Sample 
Size 

Polygon 
Boundary Pts 

Polygon  
Area (m2) 

R- 
Statistic 

|z|-Statistic P-Value Result 

1 94 9 1.828 × 1011 0.751 4.624 <0.001* Clustered 
2 17 7 9.845 × 1010 1.596 4.700 <0.001* Uniform 
3 26 5 8.197 × 1010 0.986 0.134 >0.5 Random 
4 41 9 7.445 × 1010 0.969 0.386 >0.5 Random 
5 69 12 1.173 × 1011 1.130 2.059 <0.02* Uniform 
6 67 11 1.091 × 1011 1.078 1.215 >0.2 Random 
7 66 12 1.007 × 1011 1.095 1.475 >0.2 Random 
8 97 9 9.136 × 1010 1.011 0.202 >0.2 Random 

Table 11.3. Summary of independent variable values for each terminal node. Values are 
means ± SD. Mean differences between the amount of riparian forest and total forest in 
watersheds are also given, as is the average log N concentration for each terminal node. See 
Table 11.1 for variable names. 

Metric Node1 Node2 Node3 Node4 Node5 Node6 Node7 Node8 
AGS3 20.9 

±14.4 
10.2 
±9.1 

16.0 
±6.9 

33.7 
±12.6 

9.3 
±6.1 

1.8 
±3.3 

10.9 
±5.7 

1.7 
±2.0 

ALC 47.6 
±18.2 

32.6 
±14.1 

34.0 
±14.9 

62.0 
±14.1 

15.5 
±8.5 

3.2 
±5.5 

17.6 
±7.8 

2.9 
±2.8 

FLC 40.1 
±12.9 

55.4 
±10.2 

60.0 
±11.1 

35.1 
±13.7 

81.3 
±8.6 

95.9 
±6.1 

78.7 
±5.7 

96.0 
±3.3 

POSO 37.1 
±18.1 

22.6 
±12.5 

26.8 
±7.4 

52.7 
±12.9 

34.6 
±17.3 

34.8 
±24.8 

20.6 
±10.3 

17.7 
±14.9 

RD 225.2 
±154.8 

215.5 
±88.2 

208.2 
±67.5 

221.6 
±56.6 

124.3 
±54.9 

94.0 
±89.3 

163.2 
±53.4 

96.5 
±51.5 

RIPA 26.4 
±15.6 

7.9 
±6.3 

17.8 
±9.9 

36.5 
±15.1 

13.7 
±12.1 

1.2 
±1.9 

10.2 
±9.3 

1.9 
±3.4 

RIPF 45.9 
±17.0 

81.2 
±9.5 

63.0 
±13.9 

43.2 
±18.9 

74.3 
±14.0 

97.8 
±2.9 

81.7 
±12.4 

94.2 
±7.5 

SG 4.9 
+4.1 

2.9 
+2.2 

6.7 
+2.9 

6.2 
+2.6 

12.7 
+7.3 

15.9 
+7.6 

8.4 
+4.1 

12.3 
+5.2 

FFLS 26.1 
+10.8 

19.1 
+7.1 

16.7 
+10.3 

31.4 
+15.0 

8.3 
+3.9 

2.6 
+3.0 

10.4 
+5.2 

2.5 
+2.3 

WLC 0.5 
±0.9 

0.6 
±0.7 

20.3 
±0.9 

19.7 
±1.0 

13.4 
±1.3 

13.3 
±1.6 

19.7 
±1.6 

19.8 
±2.1 

ND 14.2 
+2.2 

14.4 
+1.6 

16.7 
+10.3 

31.4 
+15.0 

8.3 
+3.9 

2.6 
+3.0 

10.4 
+5.2 

2.5 
+2.3 

RIFL-FLC 5.8 25.7 3.1 8.1 −7.0 1.9 3.0 −1.7 
LogNConc. 7.0 5.9 7.2 8.1 5.8 5.1 6.4 5.8 
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Figure 11.3. Spatial distribution of terminal node members across the Mid-Atlantic region. 
Terminal node numbers correspond to numbers from the regression tree in Figure 11.2. 

Although only terminal node 1 watersheds were spatially clustered, there 
appeared to be a geographic pattern related to a combination of the amount of forest 
and wet nitrate deposition (Figure 11.3, Table 11.3). Those terminal nodes with 
watersheds with the greatest amount of forest and least amount of agriculture had the 
lowest average concentrations of total nitrogen in streams (terminal node 6, Table 
11.3), but relatively higher atmospheric nitrate deposition increased total stream 
nitrogen even when the average amount of forest exceeded 78% (Table 11.3). For 
example, watersheds in terminal node 8 had on average 96% or more forest (Table 
11.3) yet average total nitrogen values were only slightly in the good range (5.8 Ln 
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N mg/L). Moreover, watersheds in terminal node 7 had on average stream N 
concentrations in the fair range (6.4 Ln N mg/L, Figure 11.2). Watersheds in 
terminal nodes 7 and 8 tended to be in the northern part of the region where 
atmospheric wet nitrate deposition was the greatest (Table 11.3, Figure 11.3). The 
four terminal nodes with 68.3% or less forest had average total stream nitrogen 
values in the poor range, except for terminal node 2, which was in the fair range (but 
on average, only 0.1 Ln N mg/L from the good range, Table 11.3). The highest total 
stream nitrogen values were found in terminal node 4 which were in northern areas 
of region (Figure 11.3); these areas had high atmospheric nitrate deposition and 
relatively low amounts of forest (Table 11.3). Terminal node 2 had on average 25.7 
percent more riparian forest than total forest in the watershed, by far the greatest 
difference in these two metrics (Table 11.3), and tended to be in central and 
southwest portion of the Region, but not entirely (Figure 11.3).   

Table 11.4. Average percent of watershed area composed of Omernik Level IV ecoregions 
summarized by regression tree terminal nodes. n = the number of watersheds in the terminal 
node. The total number of Ecoregions = 43. 

Terminal Node %  
Area 

Terminal Node %  
Area 

Node 1 (30 Ecoregions, n = 94)  Node 2 (15 Ecoregions, n = 17)  
Piedmont Uplands  23.7 Chesapeake Rolling Coastal Plain 29.4 
No. Limestone Dolomite Valleys   14.2 Forested Hills and Mountains 11.8 
So. Limestone Dolomite Valleys  13.9 No. Shale Valleys 10.6 
Other Valleys 17.1 Other Valleys 7.1 
Other Uplands and Plateaus  14.5 Uplands and Plateaus 11.0 
Node 3 (19 Ecoregions, n = 26)   Node 4 (16 Ecoregions, n = 41)  
No. Limestone Dolomite Valleys 10.5 No. Shale Valleys 32.8 
No. Sandstone Ridges 11.8 Piedmont Uplands 16.7 
No. Shale Valleys 12.6 No.Limestone Dolomite Valleys 11.1 
Pittsburgh Low Plateau 11.5 Other Valleys 8.2 
Uplands and Valleys/Mixed La 10.6 Ridges and Mountains 14.3 
Node 5 (26 Ecoregions, n = 69)  Node 6 (19 Ecoregions, n = 67)  
Northern Inner Piedmont 12.0 Cumberland Mountains 16.4 
Northern Sandstone Ridges  10.6 Northern Sandstone Ridges  13.8 
Other Mountains and Ridges 43.7 Southern Sandstone Ridges  11.2 
Low Plateaus and Uplands  4.6 Other Ridges and Mountains 28.9 
Valleys and Coastal 11.5 High and Interior Plateaus 20.0 
Other Plateaus 6.8   
Node 7 (20 Ecoregions, n = 66)  Node 8 (14 Ecoregions, n = 97)  
Uplands and Valleys 18.5 Unglaciated Allegheney High Plains 26.7 
Unglaciated_Allegheney_High_Plains 12.8 Forested Hills and Mountains 25.5 
Northern Shale Valleys 10.1 Northern Sandstone Ridges 13.3 
Mountains and Ridges 21.2 Northern Dissected Ridges 12.0 
Other High Plateaus 8.2 Glaciated Allegheney Plateau 10.2 
Low Plateaus 24.3 Coastal 4.7 
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Figure 11.4. Spatial distribution of condition classes for stream nitrogen based on average 
condition classes for terminal nodes given in Figure 11.2. p = poor, f = fair, g = good. 

A reclassification of terminal nodes into stream N condition classes (poor, fair, 
good) resulted in a geographic pattern that supports conclusions described above 
(Figure 11.4). Many of the good condition sites were in the mountainous areas of the 
Region where the total percentage of forested land cover at the watershed scale was 
relatively high. However, a relatively large percentage of the fair condition sites 
were in the northern part of the Region (e.g., Pennsylvania, Figure 11.4) where 
forests make up the majority of the land cover, but also where wet nitrate deposition 
is relatively high. Poor condition sites are widely distributed across the Region but 
tended to be in agricultural and urban areas (Figure 11.4).  

There appeared to be no strong pattern of terminal node membership by 
ecoregion (Table 11.4), although terminal nodes with average N concentration 
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values in the good range tended to be in ecoregions with ridges, high plateaus, or 
mountains (Table 11.4). This is not surprising in that these areas are almost entirely 
forest. Terminal nodes that on average were in poor condition tended to be 
comprised of ecoregions characterized by valleys, mixed uplands and valleys, low 
plateaus, or Piedmont uplands (Table 11.4).  

11.4 DISCUSSION 

In our study, the regression tree analysis (RTA) produced a set of scaling structures 
that were derived from the entire set of independent variables representing regional, 
watershed, and riparian level scales. Although RTA has uncovered scaling 
relationships between environmental characteristics and breeding bird and fish 
species richness (O’Connor et al. 1996, Rathert et al. 1999), most scaling studies 
generally apply an a priori set of scales and model assumptions prior to the analysis. 
For example, many studies have used a hierarchical classification structure, such as 
ecoregions, to pre-stratify samples prior to analysis and model development (Herlihy 
et al. 1998, Detenbeck et al. 2000, Jensen et al. 2000). Moreover, many models are 
implemented from conceptual constructs with little empirical testing of variables and 
associated scales of importance (Aber 1997). Finally, RTA determines how scaling 
relationships among variables changes as biophysical conditions changes across the 
Region. Although results of multiple linear regression analysis have shown forest 
and atmospheric nitrogen deposition to be important determinants of stream nitrogen 
in the Mid-Atlantic region (Jones et al. 2001a), these results don’t determine how the 
importance of these variables change in different biophysical settings across the 
region. Understanding how the importance of environmental variables changes in 
different biophysical settings is critical in determining area-specific environmental 
protection and management needs (Kennen et al. 2002). Moreover, an understanding 
of which environmental factors constrain local-scale, stream conditions help 
environmental managers determine the scale at which environmental improvements 
and policies must be pursued. Our results suggest that, in the central Appalachian 
Mountains and northeast and north central portions of the region, management of 
atmospheric nitrate deposition is critical in reducing stream nitrogen concentration 
even in relatively forested watersheds. Our results also suggest that in areas with 
relatively low atmospheric nitrate deposition it is possible to decrease nitrogen 
concentrations in streams by increasing the ratio of riparian forest to overall forest in 
the watershed, even when the overall amount of forest in the watershed would 
otherwise result in excess nitrogen (e.g., streams in poor condition based on nitrogen 
concentrations). In at least one watershed (Pohick Creek, Fairfax County, Virginia), 
this pattern appears to have resulted from zoning policies that protected forest and 
wetland in the riparian zone (Figure 11.5). Additionally, many of these watersheds 
were forested at the outflow areas near the stream sample locations. Forested areas 
near the outflow of the watershed may decrease stream nitrogen more than areas 
upstream due to greater overall biological assimilation of inorganic stream nitrogen 
occurring at the former (Wickham et al. 2003).   

In our study, total nitrogen concentration in streams was determined first by the 
amount of forest at the watershed scale and second by the amount of wet nitrate 
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deposition at the regional scale. The amount of forest is primarily controlled by 
local-scale conversion of forest to farmland or residential and urban land use, but 
large, relatively continuous patches of forest exist in mountainous portions of the 
region because these areas have been difficult to develop (steep slopes and shallow 
soils that prohibit agriculture and roads, Jones et al. 2001b). Atmospheric wet nitrate 
deposition exhibits a regional pattern of increasing deposition from southwest to 
northeast (Clark et al. 2000). Higher deposition rates extend further south in the 
Appalachian Mountains (due to the strong positive association between elevation 
and deposition (Nodvin et al. 1995, SAMAB 1996). Although there was some 
spatial clustering of watershed members in individual terminal nodes (e.g., terminal 
node 1), differences in the scales and extent of these two major environmental 
constraints resulted in a relatively loose spatial structure – most terminal nodes were 
randomly distributed across the region. This is because the amount of forest on 
watersheds is not determined entirely by regional constraints, like topography and 
geology, and because large patches of forests do not exhibit the same regional 
pattern as atmospheric nitrate deposition. Similarly, nitrogen concentration in 
streams does not exhibit a strong ecoregion affiliation since patterns of atmospheric 
nitrate deposition were not included in the delineation of ecoregion boundaries, 
although mountainous ecoregions in the Mid-Atlantic region tend to have high 
amounts of forest and hence lower stream nitrogen concentrations. 

 

Figure 11.5. Forest spatial distribution within the Pohick watershed. The Pohick watershed 
belongs to terminal node 2 and had a N concentration in the good range despite being in a 
highly developed watershed. 
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11.4.1 Model Uncertainty and Sources of Error 

The strength of our RTA model (the RTA equivalent of a multiple linear regression 
r2 is 1 - the relative resubstitution error) compares favorably to other models 
predicting stream chemistry from landscape and watershed-scale metrics, where the 
stream data were based on single samples taken during low or base flow (Herlihy  
et al. 1998), and to RTA analysis relating multiple scale relationships between fish 
and bird species richness and environmental factors (Rathert et al. 1999, O’Connor 
et al. 1996.)  

The Bagging analysis in CART® provides a way to evaluate the consistency of 
the tree generated by the primary analysis, including the importance of certain 
variables in determining splits in the tree. It compares consistency in the selection of 
variables and splits between the initial tree and randomly generated trees, as well as 
the sum of squares and sum of absolute deviations, which reflect the goodness of fit 
of the initial tree versus the consensus tree. In our study, the initial tree performed as 
well as the consensus tree. Another statistical routine, Random Forests, also is used 
to evaluate tree consistency and selection of variables in RTA. However, we did not 
have access to this program and were thus unable to use it to evaluate our data set. 

There are several sources of error that might account for unexplained variance in 
our model, including errors in the land cover and soil data (Yang et al. 2001, Van 
Rompaey and Govers 2002, respectively), exclusion of key environmental factors, 
such as geology and ground water (Winters 2001), exclusion of finer-scale variables 
affecting local processes (Lawler and Edwards 2002, Rompaey and Govers 2002), 
and a mismatch in scales between single-season, low flow stream samples and 
watershed and regional patterns of land surface features and atmospheric nitrate 
deposition (Jones et al. 2001a). When data on stream nutrients include 
concentrations during peak events (from fixed, multiple-year stream samples as 
opposed to one-time samples), correlation coefficients between landscape 
characteristics and stream nutrient concentrations can increase to nearly 0.90 (Jones 
et al. 2001a). Moreover, local-scale processes, such as differences in fertilizer 
applications, become less important than watershed-scale landscape conditions when 
considering peak flow events (Vuorenmaa et al. 2001). Quantitative relationships 
between stream nitrogen and watershed- and regional-scale environmental 
characteristics strengthen because multiple-year stream samples match the temporal 
scale at which major disturbances occur across the watershed and region. It is during 
these peak events when the condition of the watershed has the greatest impact on 
stream condition (Jones et al. 2001a). 

Sensitivity analysis may be one way to evaluate the relative importance of the 
different sources of error listed above in the RTA. This involves changing the values 
for one of the potential error sources (for example, land cover percentage) while 
holding the other variables constant. A similar analysis is then performed on the 
other variables to evaluate other potential sources of error and their impact on the 
model generated from the RTA. For a more thorough review of sensitivity analysis 
see Li and Wu (Chapters 3) and Law et al. (Chapters 9). 
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11.4.2 Changes in Scaling Relationships as an Indicator of Watershed Condition 

It may be possible to use scaling functions between streams and watershed areas as 
an indicator of the health or condition of the aquatic system. Although hierarchy 
theory provides an important framework for the design of scaling studies (Allen and 
Starr 1982, O’Neill et al. 1989), the tendency has been to describe ecological 
processes and patterns as having discrete scales (Turner et al. 1989, O’Neill et al. 
1991). Although such an approach helps reduce ecologically complex, middle-
numbered systems so that their patterns and processes can be better defined and 
understood (Wu 1999), it may be important to define how scaling relationships 
change given certain levels of disturbance. One potential approach would be to 
evaluate how the strength of the relationships between stream chemistry and biology 
and overall watershed condition (e.g., the amount of atmospheric nitrate deposition 
and forest land cover at the watershed scale) changes as a function of increasing 
precipitation on the watershed. Figure 11.6 is a simple conceptual model of how this 
approach might work.  

Figure 11.6. Simple conceptualization of changes in scaling relationships between stream 
nitrogen and watershed-scale, landscape characteristics with increasing levels of 
precipitation at a regional scale. 

The strength of the relationship might be determined through a linear or non-
linear multivariate approach, where some type of association statistic (e.g., 
correlation coefficient) would be used to assess changing relationships across scales. 
Watersheds or catchment areas with natural vegetation have a tendency to decrease 
energy (resulting from vegetation canopy interception) and increase infiltration 
(resulting from greater surface roughness) and hence respond (run-off, erosion, and 
sediment movement) more slowly to increasing precipitation than watersheds with 
higher amounts of anthropogenic and impervious surface cover (Jennings and 
Jarnagin 2002). In terms of scaling functions and hierarchy, stream segments with 
catchment areas consisting of large amounts of natural vegetation would remain 
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independent of watershed-scale conditions for longer periods of time given broader-
scale disturbance events (e.g., broad-scale precipitation events) than stream 
segments associated with catchments with higher amounts of anthropogenic land 
cover (Figure 11.6). Local-scale processes affecting nutrient cycling and biological 
condition would tend to dominate longer in the former than in the latter. Changes in 
the strengths of associations between stream and watershed level conditions might 
help identify those areas at greatest risk to broad-scale, disturbance events. They 
also may be an indicator of the resiliency of the watershed to a broad-scale event or 
disturbance.  

The scaling relationships between streams and broader-scale environmental 
conditions would likely vary among different biophysical settings. For example, 
higher gradient watersheds and associated streams would likely respond more 
rapidly to increasing precipitation than lower gradient watersheds due to higher 
energy associated with steep hillsides and slopes. Developing an indicator of aquatic 
ecosystem health based on changing scaling relationships would require significant 
enhancement of today’s water monitoring networks. Fixed, multi-year samples of 
streams are critical in determining how stream chemistry, physical habitat, and 
stream biota respond to local versus watershed versus regional environmental 
conditions given different intensities of disturbance, yet long-term monitoring sites 
are mostly lacking. The National Water Quality Assessment (NAQWA) program is 
the only extensive program that systematically collects long-term data on water 
quality across the United States, but many of these studies have data collections 
covering only a few years. Moreover, long-term data on stream biology are nearly 
non-existent. Long-term biological data are critical in understanding the history of 
disturbance and its potential influence on current biotic community structure 
(Harding et al. 1998). The American Institute of Biological Sciences (AIBS) has 
proposed the National Ecological Observatory Network (NEON) to provide an 
infrastructure for collection of long-term biological and ecological data to fill these 
gaps. Such a network would dramatically enhance our ability to link stream 
biological conditions with broader-scale changes in landscape conditions and 
processes.  
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CHAPTER 12 

UNCERTAINTY IN SCALING NUTRIENT EXPORT 
COEFFICIENTS 

JAMES D. WICKHAM, K. BRUCE JONES, TIMOTHY G. WADE, 
AND KURT H. RIITTERS 

12.1 INTRODUCTION 

Nutrient export coefficients are estimates of the total load or mass of nitrogen (N) or 
phosphorus (P) exported from a watershed standardized to unit area and unit time 
(e.g., kg ha−1 yr−1). They have been widely used as tools for environmental 
management of lakes, rivers and coastal waters because excessive nutrient 
enrichment (eutrophication) leads to several negative environmental effects 
(Carpenter et al. 1998). Yuan and Norton (2003) have shown, for example, that 
moderate increases in phosphorus concentrations in mid-Atlantic headwater streams 
shift benthic community structure toward a greater abundance of algae feeders, and 
others have shown that excessive nutrient input leads to “blooms” of nuisance algae 
(Paerl 1988, see Carpenter et al. 1998). Because of the potential negative 
environmental effects of excessive nutrient input, some programs are developing 
targeted goals of nutrient export by watershed (e.g., Linker et al. 1996). 

Nutrient export has been linked strongly to watershed land-cover composition 
(Beualac and Reckhow 1982, Frink 1991, Panuska and Lillie 1995). As forest is 
replaced by urban and agriculture, both nutrient export averages and variances tend 
to increase. Thus, the spatial heterogeneity of land cover in a watershed is an 
important influence on nutrient export. 

Watershed nutrient export coefficients are widely reported in the literature for 
watersheds ranging in size from 102 to 105 hectares (Dickerhoff Delwiche and Haith 
1983, Lowrance et al. 1985, Clesceri et al. 1986, Jordan et al. 1997, Fisher et al. 
1998), but have not been investigated for scale effects despite the wide range in 
watershed sizes for which they have been reported. Watersheds are analogous to 
grain (i.e., pixel size) in raster maps. Just as the size of a pixel can be changed, 
watersheds can also be resolved into few or many units for a given area. The 
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watersheds used in the studies cited above could have been divided into two or more 
subunits with nutrient export coefficients estimated for each. 

Dividing watersheds into one or more subunits represents one approach to 
scaling. Scaling nutrient export introduces at least two issues related to error analysis 
and uncertainty (see Li and Wu, 2003, Chapter 3). First, moving nutrient loads 
across subwatersheds requires estimation of loss rates as they move from upstream 
to downstream. In-stream decay of nutrients varies as function of discharge and 
geographical location (Smith et al. 1997, Peterson et al. 2001). Second, the total load 
exported from the entire watershed is dependent on whether nutrient export among 
subwatersheds is assumed to be independent. Dependence exists if nutrient export 
patterns among subwatersheds are similar. Subwatersheds can be assumed to behave 
independently if their nutrient export values are not strongly similar. The purpose of 
this chapter is to examine the effects of these two sources of uncertainty on 
estimated nutrient export as a function of the number of subwatersheds resolved. 

12.2 MODELING NUTRIENT EXPORT 

Modeling nutrient export as a function of watershed resolution encompassed three 
methodological steps. These steps were: (1) development of a model simulating 
nutrient export, (2) systematic changes to subwatershed resolution, and routing of 
nutrient export across subwatersheds, and (3) examination of changes in nutrient 
export as a function of subwatershed resolution. 

We selected the Deer Creek watershed in northeastern Maryland (Figure 12.1) to 
examine scale effects because discharge data were available for the main tributary, 
and these data were needed to move N and P across subwatershed boundaries. The 
Deer Creek watershed is located on the western shore of the Chesapeake Bay, and 
drains into the Susquehanna River just before it empties into the Bay. Deer Creek is 
about 44,000 hectares, and forest, agriculture, and urban land-cover percentages are 
about 39%, 60%, and 1%, respectively (Vogelmann et al. 2001). The land-cover 
classes are well distributed spatially throughout the watershed; neither forest, nor 
agriculture, nor urban are concentrated in one or more sections of the watershed. A 
digital copy of the Deer Creek watershed was provided by the state of Maryland, 
Department of Natural Resources (MD DNR). 

We used a nutrient export simulation model based on land-cover composition to 
estimate total loads of N and P (Wickham et al. 2000). The nutrient export model 
was constructed by fitting existing, empirical data for watersheds with homogenous 
(or nearly so) land cover (Reckhow et al. 1980) to exponential, Weibull, normal, and 
log-normal theoretical distributions. The empirical data were found to best fit log-
normal distributions (Wickham et al. 2000). The fitted log-normal distributions were 
used to model N and P loads for mixed-use watersheds using Equation 5 from 
Reckhow et al. (1980):  

L = ci Ai
i=1

3
∑

j =1

n
∑          (12.1) 
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to estimate mean and variance. Nutrient export coefficients were calculated by 
dividing the output from Equation 12.1 by the total watershed area. Percentages of 
forest, agriculture, and urban by subwatershed were acquired from the National 
Land Cover Data (NLCD) (Vogelmann et al. 2001). A previous evaluation of 
Equation 12.1 indicated that land-cover composition could be used to simulate 
nutrient export for individual watersheds where monitored data were lacking 
(Wickham et al. 2003).  

 

Figure 12.1. Location Map. The solid lines identify the watershed boundary and the dashed 
lines identify the stream network. The solid circle identifies the location of the USGS gauging 
station used for discharge estimates. The location of the Deer Creek watershed within the 
state of Maryland is shown on the inset map. The location of the upper Choptank watershed is 
also shown on the inset map because it is referenced in the text. 

The nutrient export model (Equation 12.1) estimates the export from an 
individual watershed or subwatershed, but does not account for contributions from 
upstream neighbors (Wickham and Wade 2002). For subwatersheds that have 
upstream neighbors, some fraction of the exported load from the upstream 
subwatershed must be included in the load estimated for the downstream 
subwatershed. Accounting for upstream contributions was accomplished by 
modifying Equation 12.1: 

resampling of the log-normal distributions for i land-cover classes (urban, agriculture, 
where L is the load (mass) of N or P, c is the returned coefficient from statistical 

forest) and A is the area of each land-cover class. The model is iterated (i.e., j = 1, n) 
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L = ci Ai + ci Aie
(−d • T )

i=1

3
∑

i=1

3
∑

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ j =1

n
∑       (12.2) 

where c, A, i, and j are the same as in Equation 12.1, e is the base of the natural 
logarithm, d is a decay or in-stream loss coefficient, and T is travel time (in days). 
The segment of Equation 12.2 after the plus sign represents the load from the 
upstream subwatershed that is exported to the downstream subwatershed and 
decayed in the main channel of the downstream subwatershed. The decay coefficient 
(d ) accounts for loss of N and P as they move along the stream channel as a result of 
biotic and abiotic processes (Hill 1979, Burns 1998). We used the upper and lower 
bounds of the 90th percentile confidence interval from Smith et al. (1997) for d 
(0.2981 and 0.4768 for N; 0.1885 and 0.3497 for P) to capture the uncertainty 
associated with estimating in-stream processing of nutrients. Travel time (T ) is a 
function of stream velocity, which in turn is related to stream discharge (Leopold 
and Maddock 1953). We chose a stream velocity of 0.6 meters per second based on 
reported empirical relationships between discharge and velocity (Dewald et al. 1985) 
and long-term discharge for a gauging station on the main stream of the Deer Creek 
watershed (station #1580200, http://water.usgs.gov). 

We resolved the Deer Creek watershed into two to 20 subwatersheds to examine 
scale effects. Changes to subwatershed resolution were accomplished using an equal 
stream length criterion: at each resolution, each subwatershed contained 
approximately equal lengths of the main stream. Identification of equal stream 
lengths was accomplished by isolating the main tributary as a separate data set, and 
using GIS software to locate the points along the main tributary that split that stream 
into two to 20 equal lengths. These points were then used to identify the boundaries 
of each subwatershed where each point served as the subwatershed outlet. 

Equation 12.2 was applied at all subwatershed resolutions from two to 20 under 
two different assumptions. Under one assumption, the value of c for land-cover class 
i was selected independently for each subwatershed. Thus, there were 6 (2 
watersheds) to 60 (20 watersheds) random draws of c at each iteration of the model, 
one for each of the three land-cover classes (urban, agriculture, forest) in each 
subwatershed. Independence was based on the assumption that each subwatershed 
potentially represented a different ecosystem in regard to nutrient export. 
Differences in land ownership, topography, soils and other factors from one 
subwatershed to the next would translate into different rates of nutrient export for 
each subwatershed. Under the second assumption, only a single value of c for each 
land-cover class was used for all subwatersheds. That is, only three values of c were 
used regardless of subwatershed resolution. Comparison of the two outputs 
measures the effect of the assumption of independence and how that effect changed 
with subwatershed resolution. 

For each subwatershed scale, the nutrient export model was iterated 10,000 
times, and the effect of scale was measured as changes in variance of the annual 
nutrient export coefficients. Nutrient export coefficients show considerable intra-
site, temporal variance (Reckhow et al. 1980, Lowrance et al. 1985, Fisher 1998, 
Panuska and Lillie 1995), and iteration of our model over 10,000 runs was designed 
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to simulate that variance. We focused on variance, rather than the mean, because 
variance is a more relevant measure for environmental management. For example, 
comparison of temporal N and P export data for the upper Choptank River (Fisher  
et al. 1998) against the Chesapeake Bay nutrient export goals (Linker et al. 1996) 
indicate that annual N export for the upper Choptank has exceeded the minimum 
standard for N, ~7.0 kg ha−1 yr−1, 4 times in ten years even though the ten-year 
average for the Choptank is only 6.18 kg ha−1 yr−1. 

Variance was expressed as the difference between the 5th (Q5) and 95th (Q95) 
percentiles. We chose the difference between Q5 and Q95 rather than the classical 
measure of variance ( x − x ( )2 n −1∑ ). The classical measure of variance estimates 
the average departure from the mean. The percentile range more closely matches 
changes in measured export values that might be realized from one year to the next.  

12.3 WATERSHED NUTRIENT EXPORT SCALING RELATIONSHIPS 

Scaled relationships between subwatershed resolution and nutrient export variance 
were quantified using a power law (Schneider 1998, 2001) (Table 12.1). A 
Euclidean exponent of negative one (−1) translates to a 50% reduction in variance 
for every doubling of subwatershed resolution (e.g., 5, 10, 20, etc.), whereas an 
exponent approaching zero would indicate that subwatershed resolution had little 
effect on nutrient export variance. Exponents close to zero would suggest that scale 
was not an important factor to consider when quantifying watershed nutrient export. 

Table 12.1. Scaled relationships between nutrient export and subwatershed resolution. 

Assumption Nutrient Decay Model* R2 

Independence N −0.2981 δ Q = 16.2 s−0.427 0.98 
 N −0.4768 δ Q = 15.7 s−0.463 0.98 
 P −0.1885 δ Q = 1.61 s−0.419 0.98 
 P −0.3497 δ Q = 1.51 s−0.432 0.98 
Dependence N −0.2981 δ Q = 21.1 s−0.036 0.71 
 N −0.4768 δ Q = 19.9 s−0.060 0.91 
 P −0.1885 δ Q = 1.91 s−0.020 0.26 
 P −0.3497 δ Q = 1.84 s−0.046 0.74 

* δQ = Q5 − Q95  and s equals the number of subwatersheds resolved (2 to 20). 

Under independence, there was a strong relationship between the scale of 
subwatershed resolution and nutrient export variance, with exponents less than 
−0.40 for all combinations of nutrients and in-stream decay rates. Independence 
assumes spatial heterogeneity is an important factor in controlling nutrient export by 
treating subwatersheds as distinct ecosystems that have differences in land use 
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practices, soils, topography, and other factors. The net effect of independence was 
dampened nutrient export variance (Figures 12.2 and 12.3). Dampening occurred 
because there was an increased likelihood that at least one subwatershed had high 
nutrient export, thereby increasing the minimum simulated export values (e.g., Q5) 
as subwatershed resolution increased. At the same time, there was a decreased 
likelihood that many subwatersheds had high nutrient export, thereby decreasing the 
maximum simulated export values (e.g., Q95). Assuming independence had the 
effect of reducing nutrient export variance as subwatershed resolution increased.  

Another pattern in Figures 12.2 and 12.3 is variance stability with increasing 
subwatershed resolution. One interpretation of the scaling relationship under 
independence is that it marks the maximum number of watersheds needed to study 
nutrient export (Palmer 1988, Jelinski and Wu 1996, Marceau 1999). The 
relationships between subwatershed resolution and nutrient export variance in 
Figures 12.2 and 12.3 indicate variance stability at about 10 subwatersheds. 

When the assumption of independence among subwatersheds was removed, 
scaled relationships between subwatershed resolution and nutrient export variance 
disappeared (Figure 12.4), with Q5 and Q95 remaining relatively constant at about 3 
and 21 kg ha−1 yr−1, respectively. The seven-fold difference between Q5 and Q95 
translated into a potential range of 792,000 kg yr−1 in annual load when multiplied 
by the watershed area. In contrast, the same range was only 176,024 kg yr−1 under 
independence (high in-stream decay, 20 subwatersheds).  

The relative importance of independence versus dependence and in-stream decay 
rates in uncovering scaled relationships between nutrient export variance and 
subwatershed resolution are evident in the exponents. Comparison of model 
exponents across assumptions for the same in-stream decay rate reveals the 
importance of independence versus dependence, whereas comparison within 
assumptions for different decay rates reveals the importance of in-stream processes. 
The difference in model exponents across assumptions for the same decay rate was 
about −0.4 in all cases, whereas the difference in model exponents for different 
decay rates while holding the assumption constant was 0.024 to 0.036 for N and 
0.013 to 0.026 for P (Table 12.1). The assumption of independence (or lack thereof ) 
was the primary factor producing the scaled relationship between nutrient export 
variance and subwatershed resolution.  

12.4 IMPORTANCE AND IMPACT OF UNCERTAINTY SOURCES 

Scaling nutrient export coefficients as a function of subwatershed resolution (i.e., 
moving from Equation 12.1 to Equation 12.2) introduced two sources of uncertainty: 
1) estimation of in-stream decay rates and 2) and similarity in nutrient export 
behavior among subwatersheds (independence versus dependence).  Both sources of  
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Figure 12.2. Variance in N export for the terminal subwatershed as a function of the number 
of subwatersheds resolved. Y-axis units are kg ha-1 yr-1. Amplitude of the vertical line is the 
variance in nutrient export as expressed by the range for the 5th to 95th percentiles. Reading 
from the bottom to the top, the dots represent the 5th, 25th, 50th, 75th, and 95th percentiles. A 
line connects the 50th percentiles to aid visual orientation. A dashed line is used to depict N 
export variance when Deer Creek is treated as a single watershed, because the model does 
not incorporate decay unless there are two or more subwatersheds. Model results were 
generated under the assumption of independence of nutrient export among subwatersheds. 
The inset shows Deer Creek resolved into 2 and 20 subwatersheds. 
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Figure 12.3. Variance in P export for the terminal subwatershed as a function of the number 
of subwatersheds resolved. The lines, dots and Y-axis units are the same as in Figure 12.2. 
Model results were generated under the assumption of independence of nutrient export among 
subwatersheds. 
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Figure 12.4. Variance in N export as a function of the number of subwatersheds resolved with 
the assumption of independence removed. The lines, dots, and Y-axis units are interpreted the 
same as in Figures 12.2 and 12.3. 

uncertainty are relevant to environmental management issues. Higher in-stream decay 
rates reduce the total load of N and P exported from Deer Creek to the Susquehanna 
River and Chesapeake Bay, and independence suggests that ecosystems operate to 
reduce the magnitude and frequency of extreme events. High rates of in-stream decay 
and independence provide ecosystem services (Westman 1977, Costanza et al. 1997) 
that can foster more effective environmental management. Our simulation results 
suggest that the Chesapeake Bay N management goal (Linker et al. 1996) of ~8.0  
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kg ha−1 yr−1 for Deer Creek (Wickham et al. 2003) would be met 80% of the time 
under the combination of high in-stream decay and independence (Table 12.2).  

Table 12.2. Upper percentiles of N export for 20 subwatersheds. 

 Independence Dependence 
 In-stream Decay In-stream Decay 

Percentiles High Low High Low 
Q50 6.87 7.69 5.52 6.36 
Q60 7.15 8.10 6.47 7.45 
Q70 7.54 8.50 7.94 8.97 
Q80 7.99 9.00 9.90 11.16 
Q90 8.58 9.70 13.28 15.06 

Published in-stream decay rates are highly variable because of their relationship 
to factors such and discharge and climate (Smith et al. 1997, Preston and Brakebill 
1999, Alexander et al. 2000, Peterson et al. 2001). In-stream decay rates are 
surrogates for biotic and abiotic processes such as assimilation and sedimentation. 
Rates of in-stream decay have been measured only in a few studies, and the 
measurements have focused on N (e.g., Hill 1979, 1981, Sjodin 1997, Burns 1998, 
Peterson et al. 2001). We chose to frame uncertainty surrounding estimation of in-
stream decay by selecting the upper and lower 90th percentile confidence intervals 
for N and P in-stream decay from Smith et al. (1997), and it is unclear if more 
rigorous analyses (see Li and Wu, Chapter 3) would have improved our results. 

Ideally, direct evaluation of independence versus dependence would be based on 
long-term records of observed data of input (atmospheric, anthropogenic) and output 
(discharge) of N and P for several subwatersheds. Comparison would be made for 
subwatersheds with similar land-cover compositions since our model, and the 
empirical literature on which it is based, show that land-cover composition is a 
strong driver of nutrient export. Regression relationships of input versus output 
could be used to test for significantly different slopes between subwatersheds with 
similar land-cover compositions. Significantly different slopes would suggest that 
subwatershed-to-subwatershed differences in topography, soils and other factors 
have resulted in dissimilar patterns of nutrient export (independence) between 
neighboring subwatersheds. These regression relationships would also be developed 
for sets of subwatersheds across different locations. Consistency in the regression 
relationships for several subwatershed sets across different watersheds would be 
needed to confidently rely on one assumption or the other. 

N and P input and output data at the subwatershed level for the Little River 
watershed near Tifton, Georgia (Lowrance et al. 1985) provide some evidence 
supporting independence. The size and land-cover compositions of subwatersheds N 
and O within Little River are similar, but their slopes for N and P input versus 
export are different for over the years 1979 through 1981. Temporal data on N and P 
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do not appear to be available for years subsequent to 1981 (http://www.tifton.uga. 
edu/sewrl/archived_data.htm). 

Evidence for independence versus dependence could also be inferred from long-
term data for a single watershed. For example, long-term data for Deer Creek, if it 
existed, could be compared to the simulated variances in Figures 12.2 and 12.4 to 
draw an inference on which assumption was more valid. Data from the upper 
Choptank (Fisher et al. 1998; see Figure 12.1) have not been collected at a 
subwatershed level, but the N and P export ranges from its ten-year temporal record 
for the entire watershed can be compared to the range of simulated values for Deer 
Creek presented in Figures 12.2 and 12.4. Temporal variance (1981-1990) in N and 
P export for the upper Choptank were 8.61 (2.89 to 11.5 kg ha−1 yr−1) and 0.51 (0.14 
to 0.65 kg ha−1 yr−1), respectively. The δ Q values for N across all decay values and 
subwatershed resolutions were 4.00 to 12.44 under independence, but were 14.75 to 
18.35 under dependence. Likewise, the δ Q values for P across all decay values and 
watershed resolutions were 0.42 to 1.26 under independence, but were 1.49 to 1.79 
under dependence. The simulated ranges for N and P export for Deer Creek under 
independence agree more closely with the temporal record for the upper Choptank.  

The temporal data from the upper Choptank and Little River watersheds are 
limited by a short time span. Variance in its N and P export coefficients for the 
upper Choptank may increase as more observations are added, favoring dependence. 
Likewise, a longer temporal record for the Little River might ultimately favor 
dependence.  

12.5 SUMMARY AND CONCLUSION 

Our modeling of nutrient export treats each subwatershed as an ecosystem unit that 
imports, produces, removes, and exports nutrients (Leibowitz et al. 2000). Evidence 
for scaling relationships between nutrient export coefficients and subwatershed 
resolution appeared to be most strongly tied to production of nutrients for each 
subwatershed. Scaling was evident when production of nutrients among 
subwatersheds was assumed to be dissimilar (i.e., independence), but largely 
disappeared when nutrient production among subwatersheds was assumed to be 
similar (i.e., dependence). There is little data to test the assumption of independence, 
and hence scaling of nutrient export coefficients is hindered more by lack of 
empirical evidence supporting the plausible theoretical foundation that 
subwatersheds behave independently in terms of their nutrient export patterns than 
methodological constraints to test that theoretical foundation (Wu and Li, Chapters 1 
and 2). 
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CHAPTER 13 

CAUSES AND CONSEQUENCES OF LAND USE CHANGE  
IN THE NORTH CAROLINA PIEDMONT: 

The Scope of Uncertainty 

DEAN L. URBAN, ROBERT I. MCDONALD, EMILY S. MINOR, 
AND ERIC A. TREML 

13.1 INTRODUCTION 

The Triangle Landscape Change Project is an on-going effort at regional assessment 
centered on the Triangle region of North Carolina, a region framed by the cities of 
Raleigh, Durham, and Chapel Hill. Like many regions of the eastern United States 
and elsewhere, the Triangle has an agricultural and industrial past, while its current 
status is defined by high-tech industries of Research Triangle Park, three major 
universities, and a growing retirement community. The Triangle is one of the fastest-
growing regions in the United States, with some portions experiencing 30-50% 
population growth in the 1990-2000 decade (Triangle J Council of Governments, 
public comm.).  

As a case study for the patterns and consequences of land use change, the 
Triangle is compelling because its period of explosive growth is rather recent and 
thus coincides with the period of record of satellite imagery. The availability of 
imagery is augmented by the inclusion of Duke Forest as a NASA SuperSite; 
specialized imagery flown for the Forest also encompasses much of the larger 
region. In addition, a wealth of ancillary ground-based data are available (including 
the Duke Forest data archives, with monitoring data originating in the 1930’s), and 
so there is a rich geospatial data infrastructure to support large-scale studies of 
landscape pattern and landscape change.  

The Triangle Landscape Change Project embraces a set of related research 
themes under the umbrella of land use/land cover change (Figure 13.1). Land use 
pattern provides a framework and template in which we are studying various 
consequences of changing landscape pattern. These themes include forest dynamics, 
forest bird communities, and watershed impacts. These themes are coupled in that 

r
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forests affect watershed hydrology via transpiring and intercepting leaf area as well 
as via protective ground cover typically associated with intact forests. Forests also 
provide the template of bird habitat, in terms of forest composition and structure, 
while land cover provides a larger context via edge effects on nesting success and 
potential dispersal limitations for habitat patches isolated by human land uses. 
Coincidentally, forest bird communities are coupled to watershed impacts indirectly 
because many forests are preserved as riparian buffers and these buffers represent a 
significant amount of forest habitat for wildlife.  

Figure 13.1. Schematic of linkages among research themes in the Triangle Landscape 
Change Project. 

We believe that the Triangle Landscape Change Project is typical of many 
large-scale programs in integrated assessment, which increasingly rely on a shared 
geospatial data infrastructure and various models to interpolate field data and 
extrapolate the assessment to the regional scale. Two implications of this approach 
are that the projects within the larger program tend to be loosely coupled (i.e., 
studies done by people with different objectives), and that there is no single model 
that represents the program (i.e., there may be several models). Often, the end-users 
of the models are not the people who developed the models initially, as illustrated by 
the increasingly common use of institutionalized models such as Century (Parton  
et al. 1987), BASINS (US EPA 2001), and other models. These aspects of integrated 
studies pose some challenges when we attempt to account for uncertainty in the 
model projections.  

Our goal in this chapter is to explore issues related to uncertainty encountered 
when attempting to conduct integrated, regional-scale assessments using coupled 
models. Specifically, we will (1) describe sources of uncertainty in scaling to 
regional applications with increasing reliance on remotely sensed data, and illustrate 
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how these sources of uncertainty are often “lost in translation” in loosely coupled 
applications in integrated assessments; and (2) explore methods for propagating 
these sources of uncertainty and communicating this information to a client audience 
of fellow scientists as well as city and regional planners.  

We will focus on the wood thrush (Hylocichla mustelina) as a case study and 
illustration. The wood thrush is an example of an area-sensitive forest bird species, a 
species that seems to prefer intact woods and is sensitive to nest predation and brood 
parasitism by cowbirds (Molothrus ater) (Brittingham and Temple 1983, Roth and 
Johnson 1993, Hoover et al. 1995). Thrushes have recently been exhibiting a 
regional decline in Triangle-area Breeding Bird Censuses and are consequently a 
species of some concern (Sauer et al. 2002). For our present purposes, the goal of 
forecasting regional patterns of abundance of the wood thrush is appealing because 
this represents quite a stretch for our data (indeed, perhaps the worst possible case), 
and thus introduces a number of issues related to uncertainty and error propagation 
in integrated assessment.  

13.2 SCALING CONSIDERATIONS AND STRATEGY 

Like many of our peers, we are interested in scaling our understanding of ecological 
processes and patterns at small scales – the scale of field studies or detailed 
simulation models – to their implications at the much larger scales of resource 
management and policy decisions (Christensen et al. 1996). The mismatch in scale 
between science and management has led to a variety of scaling strategies, often 
aimed at interpolating and extrapolating fine-scale information over larger extent 
(Peters et al. 2004). 

Our approach to this scaling dilemma has been to pursue an explicitly two-
scaled approach to ecological modeling. At a fine scale, we develop detailed (often 
spatially explicit) simulators geared to interact directly with field studies; these 
models are often developed in a reciprocal iteration between model analysis and 
model-guided field studies (Urban 2000, Urban et al. 2002). To extend the 
understanding garnered at fine scales to a much larger spatial extent, we build new 
models as statistical summaries of the detailed simulators. These new models 
capture the essential behaviors of the simulators, but at much coarser resolution and 
consequently, over much larger areas. The statistical models are essentially models 
of the simulators, or meta-models (Acevedo et al. 1995, Urban et al. 1999). In the 
case of forest dynamics, the detailed simulators have been forest gap models, while 
the meta-models have taken various forms including semi-Markovian state transition 
models, stage-structured matrices, or cellular automata (Urban et al. 1999). In each 
case, the paired models (detailed simulator plus meta-model) provide a toolkit that 
allows us to work at either fine or coarse scale, while preserving a common 
conceptual and parametric framework. 

In the case of animal metapopulations, our approach has been conceptually 
similar although the details vary. Our approach to forecasting regional abundance 
patterns for wood thrushes and other forest birds entails two linked approaches. Our 
ultimate goal is to develop macroscopic proxies for metapopulation dynamics, based 
on graph theory (Urban and Keitt 2001). Graph theory is compelling for such 
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applications because it can incorporate the richness of species life-history traits 
(habitat affinities, dispersal behavior) while still being immensely efficient 
computationally. This latter concern is important because our study area – like many 
applications in regional scale conservation practice – entails thousands of potential 
habitat patches and it would be logistically infeasible to address these through field 
studies or detailed simulation modeling. To infuse as much ecology as possible into 
this macroscopic approach, however, we are conducting preliminary assessments 
based on a very detailed individual-based simulator of metapopulation dynamics 
(modified from Urban and Shugart 1986). Our initial efforts suggest that a graph-
theoretic model can capture the essentials of the detailed simulator, while allowing 
us to work with extremely large and spatially complex landscapes. At issue is the 
question whether this detailed simulation approach can be defended, given the very 
real potential that error propagation might overwhelm any insights garnered from 
the detailed model.  

13.3 SOURCES AND SCOPE OF UNCERTAINTY 

One conventional definition of sources of uncertainty identifies four components of 
error in ecological models (reviewed by Gardner and Urban 2003, Peters et al. 
2004). These include: (1) measurement error (or observation error) associated with 
the data used to build or parameterize the model; (2) model error (or model 
misspecification) associated with the selection of state equations or the structure of 
the model; (3) estimation error associated with fitting the parameters for the model; 
and (4) process error, due to stochastic processes beyond the scope of the model 
(e.g., inter-annual variation in climate as an influence on recruitment or survivor-
ship). In practice, these sources are reasonably straightforward to identify for simple 
models such as regressions, although even in this case estimation error is partially 
linked to model error and measurement error. As we will show, these definitions are 
not as satisfying for more complicated simulations, especially in integrated 
assessments where the total (cumulative) error in one model is subsumed into, or 
lost from, a coupled application. For example, in our case study there are 
complexities and associated uncertainty in land cover classification, forest 
characterization, and habitat modeling that are subsumed into what might be labeled 
“measurement error” in the metapopulation model. Similar instances will become 
apparent in the following illustrations. 

In general, this introduces the notion of scope in defining model uncertainty. By 
scope, we refer to the tendency for sources of uncertainty or error to be recognized 
or ignored, depending on the specific focus of any single component of a larger 
integrated project. Our use of the word scope parallels its connotation in computer 
programming, to the extent that local functions might not be aware of parameters or 
variables elsewhere in the program; reciprocally, variables internal to a function 
might be invisible to the larger program. Thus, in our case the uncertainty inherent 
to image classification is well recognized by the colleague who was primarily 
responsible for performing these analyses; but these might be lost on a secondary 
consumer of the results of these analyses. As noted previously, the complicated 
result of one component of the project (“model output” in its own right) becomes 
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“input data” for the next person in the chain. As ecological applications increasingly 
are integrated efforts by large research teams, this potential for error propagation 
within and across projects is an especially compelling technical issue.  

Given the rather fuzzy definitions of sources of uncertainty, it might be equally 
useful to distinguish sources that are inside as compared to outside a model. For 
example, once implemented as code, a model is reasonably well contained, with its 
assumptions and algorithms known, hence the uncertainty or potential error 
stemming from these is also knowable. By contrast, data used as initial or bounding 
conditions (e.g., a habitat map in the case of a population model) or for para-
meterization (e.g., demographic rates) can be gathered or estimated independent of 
the model itself (Botkin 1993). These data have their own intrinsic uncertainty (e.g., 
measurement or estimation error), but they might also induce further error as they 
interact with the model. In a sense, the distinction of whether a source is inside or 
outside a model also defines its accessibility to a client user of the model. For 
example, the specification of a dispersal algorithm in a metapopulation model might 
be well described, but a client user rarely has the capability to alter the algorithm to 
assess the uncertainty associated with that or an alternative algorithm; the end-user 
can only manipulate data and inputs external to the model. This is important because 
the conventional framework for uncertainty analysis (reviewed below) can only  
be extended to parameters or model components that can be freely varied by the 
modeler, and for which the error distribution (or range of variability) can be 
estimated.  

One common approach to model uncertainty and sensitivity analysis uses 
regression as the framework (Gardner 1984, Gardner et al. 1981, Haefner 1996; also 
see Li and Wu, Chapter 3). In this, the model is driven by a set of input parameters 
x, each element xi of which has an error distribution (typically presumed normal). 
The model is run in Monte Carlo fashion and, for each iteration, a stochastic set of 
input parameters is generated by sampling from the error distribution of each 
parameter in turn (i.e., drawing a random parameter value from the mean ± 1 SE). 
For each iteration, a selected output variable is retained along with the input 
parameters for that run. This is repeated for a large number of runs. The analysis 
consists of regressing the output variable on the input parameters. A parameter’s 
uncertainty is indexed by its partial explanatory power in the regression (partial R2), 
a direct measure of the extent to which uncertainty in the parameter maps onto 
uncertainty (variability) in model output. For the sake of clarity, note that this same 
approach is used for sensitivity analysis, but in this case each parameter is perturbed 
randomly by some arbitrary amount – say 10% of its nominal value. A parameter’s 
sensitivity is indexed as its (standardized) partial regression slope: a measure of how 
much model output changes given a slight change in the input parameter. A 
parameter can have high uncertainty only if it has high sensitivity relative to its 
estimation error.  

Clearly this regression approach to model uncertainty is awkward for model 
inputs that cannot be provided as a mean and standard error. It is difficult enough for 
Boolean or categorical variables (e.g., open- versus cavity-nesting bird species); for 
elements such as dispersal algorithms, the approach must be modified so that these 
 



244 D. L. URBAN ET AL. 

inputs can be assessed. This is not complicated – it merely requires that the 
framework be relaxed somewhat – and it still relies on Monte Carlo simulations 
using a variety of model configurations.  

13.4 CASE STUDY: FORECASTING WOOD THRUSH ABUNDANCE 
PATTERNS 

As part of an exercise in forecast evaluation, Minor et al. (unpublished manuscript) 
attempted to assess the implications of various sources of uncertainty on the 
precision of predictions made with an individual-based metapopulation simulator. 
The illustrations provided here are extracted from their larger analysis. The basic 
steps involved in forecasting wood thrush abundance patterns are intuitively 
straightforward: (1) classify land cover for the region, masking out nonforest 
habitats; (2) predict forest stature and gross composition to aid in predicting 
potential wood thrush habitat; (3) classify potential wood thrush habitat (i.e., 
“habitat” versus “nonhabitat”); and (4) simulate thrush metapopulation dynamics for 
this habitat mosaic. 

As we shall illustrate, these simple steps invite a frustrating variety of potential 
sources of error or uncertainty. Our task is to identify and isolate these sources of 
uncertainty.  

In this illustration, we hold to two presumptions: (1) the wood thrush project is 
loosely coupled to other components of the larger research agenda (i.e., this 
application is not conducted simultaneously with other tasks, and some information 
about uncertainty is lost in the chain of custody), and (2) the metapopulation model 
itself is not accessible to the end-user (i.e., we will not alter the code, and will need 
to frame the analysis in terms of elements accessible through parameterization). For 
purposes of illustration, we focus here on four components of uncertainty selected to 
represent the range of these sources and their interactions. First, we will consider 
alternative definitions of potential wood thrush habitat. This habitat map represents a 
series of analyses and models, but is provided to the metapopulation model as 
boundary condition “data.” As model error, we will accept the gross structure of the 
metapopulation model as plausible, and focus instead on the implementation of bird 
dispersal between habitat patches. As one source of estimation error, we will 
consider the impacts of the uncertainty associated with our best estimate of wood 
thrush clutch size. We also will consider the impact of edge effects on nesting 
success, in effect an influence on net fecundity. Maximum dispersal range represents 
the third source of estimation error. Finally, we will consider process error as the 
sum of the main stochastic processes in the simulator: variation in clutch size, 
mortality, and dispersal (each implemented on a per-bird, per-event basis). We now 
consider the four steps to forecasting thrush populations in turn. 

13.4.1 Land Cover Classification 

We have compiled a time series of anniversary-dated winter/summer pairs of 
Landsat Thematic Mapper imagery. The images span the years 1986-2001 on 
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roughly a 3-year interval, depending on the availability of high-quality (cloud-free) 
images. Following radiometric and geometric rectification, the images were 
subjected to a supervised maximum-likelihood classification using high-resolution 
digital airphotos to identify training samples. Because the distribution of spectral 
values did not meet assumptions of multivariate normality, the classification was 
conducted using log-transformed spectral values. The classification was collapsed 
into 7 land cover types: (1) developed, (2) deciduous forest, (3) evergreen (pine) 
forest, (4) mixed forest, (5) sparse vegetation (agriculture, lawns), (6) shallow water, 
and (7) deep water. Because our land use change model (under development) 
considers land cover at the scale of a pixel (30-m cell) within the context of land use 
defined at the scale of the parcel, this simple classification scheme is sufficient for 
our purposes. The classification is reasonably robust; more importantly for our 
purposes, the classification provides posterior probabilities of membership in each 
land cover class, for each pixel of the image. Thus, we have direct estimates of the 
uncertainty of the land cover classification – uncertainties that might be inherited by 
subsequent applications that make use of the classified land cover maps. In this 
illustration, however, the applications are loosely coupled and what is conveyed 
from the land-cover classification project is simply a land cover map for further 
processing – the details about classification error are beyond the scope of the next 
stage.  

13.4.2 Forest Stature and Composition 

Using the land cover as a generous mask, we then predicted gross forest composition 
and structure as basal area of hardwoods and pines. In this, we used the 
winter/summer difference in greenness to separate deciduous hardwoods from 
evergreens (almost entirely pines in this region). Basal area estimates were derived 
from long-term sample quadrats archived in georeferenced form in the Duke Forest 
database. Basal area of hardwoods and pines was regressed separately on spectral 
values. The regressions were highly significant (R2 = 0.54, P < 0.001 and R2 = 0.73, 
P < 0.001, respectively). Importantly, because these predictions were by regression 
we can retain the prediction error for each component of forest stature. Thus, it is 
possible to map not only the regional extrapolation of hardwood basal area, but also 
the associated uncertainty. Again, however, these detailed measures of uncertainty 
are lost in translation; we have access to predicted maps of forest stature (basal area) 
for pine and hardwood components.  

13.4.3 Potential Wood Thrush Habitat Classification 

We should confess at this point that we have very limited field data on the habitat 
affinities of the wood thrush in our study area. Das (2000) used local census data 
and habitat measurements to attempt to discern separate effects of microhabitat (size 
class distribution, species composition) and landscape context (distance to edge, 
amount of development in the neighborhood), but small sample sizes rendered many 
tests nonsignificant. While we are collecting new data to build more reliable habitat 
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models, we have created a somewhat arbitrary habitat model for use in this 
illustration. The habitat model is based on predicted basal area, thresholded at values 
consistent with the limited field observations available. Thus, the uncertainty 
associated with the regressions is lost from this assignment of potential habitat, 
beyond the scope of this stage of the project. To provide a contrasting range of 
habitats, we used two thresholds. We constructed a “generous” habitat map by using 
15 m2 ha-1 of hardwood basal area to define “habitat” (Figure 13.2) and made a 
“strict” habitat map by using 20 m2 ha-1 as the second threshold (Figure 13.2). The 
strict habitat map included 306 discrete patches (defined using an 8-neighbor rule) 
with a total area of 794 ha, while the generous map included 823 patches and 3230 
ha of habitat. We should emphasize that these maps are intended only to illustrate 
the magnitude of uncertainty that might arise from uncertainty in habitat classifi-
cation; the maps themselves should not be over-interpreted in terms of thrush 
habitat. In particular, it is reasonable to assume that we have missed significant 
predictive power about thrush habitat because we cannot remotely sense understory 
density in these forests, a component of habitat quality that is probably important to 
the wood thrush based on our field observations.  

Figure 13.2. Contrasting maps of potential wood thrush habitat, defined generously (left) and 
strictly (right) in terms of hardwood basal area. Because the shaded clusters of cells are 
difficult to resolve, patches are overlaid with circles indicating their relative sizes. Insets are 
expanded to highlight differences in habitat definition, below; note the generous map has 
more patches and patches tend to be larger. 

As with previous steps of this integrated application, issues arise that are 
somewhat logistical but with significant implications to the application at hand. In 
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mapping potential habitat, one logistical constraint is that there is a potentially 
overwhelming number of habitat patches if every pixel classified as “habitat” is 
actually retained (see Keitt et al. 1997 for a similar dilemma). In practice, some 
minimum patch size is selected, and smaller patches are discarded and ignored. In 
this case, the distribution of patch sizes is roughly negative-exponential, so the 
number of patches increases dramatically as the minimum patch size is reduced. For 
our purposes, we have retained patches larger than 1 ha (a rough estimate of territory 
size for the thrush; Roth et al. 1996). But this decision invites three sources of error: 
(1) some actual habitat is discarded and, hence, some potential thrushes are not 
included; (2) the apparent distances between patches are increased by removing 
interstitial habitat, and so landscape connectivity is decreased; and (3) if small 
patches are sinks (sensu Pulliam 1988), then their removal actually improves the 
habitat mosaic and thus produces biases predictions about the metapopulation. 
Importantly, each of these sources of error or bias is largely unaccountable after the 
decision is made to discard small patches.  

13.4.4 The Metapopulation Model METAPOP1 

Model overview. The metapopulation model is an individual-based simulator that 
tracks male birds in each patch of habitat mosaic (Urban and Shugart 1986). This 
version simulates a single species, although a multi-species version also exists 
(Urban et al. 1988). This is an “island” model, meaning that the landscape is 
partitioned into discrete “habitat” patches and a “nonhabitat” matrix. Each patch has 
a carrying capacity based on its area of preferred habitat and territory size for the 
species being simulated. Territorial breeders are distinguished from nonterritorial 
“floaters” that are assumed to occupy marginal habitats. The model works on an 
annual time step. Each year, birds are subjected to stochastic over-winter mortality 
with a probability based on expected longevity. Adults have age-independent 
survivorship, and juveniles (young of the year) and nonterritorial floaters have 
higher mortality rates than territorial adults. Survivors that occupy territories are 
then allowed to nest. The species has a mean clutch size (number of eggs per nest) 
with a standard deviation estimated from field studies. Actual clutch size is 
generated stochastically for each nesting attempt by each bird. The species may nest 
once or more per season (defined by the mean number of broods per year). For each 
nesting attempt, the brood may be subjected to stochastic nest predation and brood 
parasitism by cowbirds. Predated nests are lost entirely, while parasitism costs one 
fledgling of the host. Both processes are implemented as edge effects, according to 
functions defined in terms of the maximum rate in edges and the distance from the 
edge to which these processes extend into the forest. Rates and edge widths are 
estimated from field studies – which, we should note, vary drastically among field 
studies (Paton 1994, Lahti 2001). Juveniles successfully fledged are added to the 
pool of floaters for that patch, and then birds are dispersed.  

Dispersal is implemented as the product of two species life-history parameters. 
A bird’s dispersal range defines the maximum distance that it will disperse in a 
single episode (move). A species may move multiple times during dispersal, with 
the number of moves defined by its mobility. At each move, a bird disperses 
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probabilistically to a new patch. If the patch has unoccupied habitat available, the 
bird settles; otherwise, it moves again. This continues until the bird settles in habitat 
or all moves are used. Birds that do not find habitat persist as floaters in the last 
patch they sampled. Dispersal is also modified by site fidelity. Breeders have very 
high site fidelity; floaters have low fidelity. Thus, breeders tend to occupy the same 
site for their entire adult life, while floaters (including juveniles) tend to disperse to 
find new habitats. This algorithm represents a crude but efficient model of our 
understanding of bird dispersal (Greenwood et al. 1980, Greenwood and Harvey 
1982).  

At the end of each simulation year, the model updates censuses of each habitat 
patch and writes a variety of output statistics describing populations for each patch 
and for the entire landscape mosaic. The simulations are run in replicate, and the 
replicates are further summarized to provide means and standard deviations of 
patch-level and landscape-level populations.  

13.4.4.1 Parameterization 

The model requires a total of 20 parameters, 5 of which control a set of replicate 
simulations and 15 of which are species life-history parameters (Table 13.1). Of the 
15 life-history parameters, four are essentially set as constants for any species, so 11 
parameters must be estimated for a focal species. Previous sensitivity analyses 
identified clutch size and survivorship as being quite sensitive, while dispersal 
parameters were less so (at least in the landscapes simulated, which seemed 
reasonably well connected; Urban et al. 1988 and unpublished model analyses; see 
also Pulliam et al. 1992). For the case study illustrated here, we emphasize clutch 
size as a source of parameter uncertainty. This is not to deny that other parameters 
are important; rather, our point can be illustrated readily with clutch size.  

As an additional factor related to model parameterization, we also considered 
nest parasitism and brood parasitism as edge effects. In this, we set the range 
(functional edge width) and intensity (rate or probability) of these effects as 
constants, and then simply toggled these effects on or off in particular simulations. 
These effects are essentially reductions in fecundity and would be equivalent to a 
commensurate reduction in clutch size, but because they occur near forest edges 
they have the potential to have a local rather than a global impact on model 
behavior. We address the influence of dispersal parameters on model uncertainty 
explicitly in the following section.  

13.4.4.2 Alternative dispersal models 

Dispersal is difficult to observe in most cases, and for metapopulations it is 
logistically infeasible to expect to observe dispersal sufficiently to describe the 
process adequately from data. For birds, there is a wide range of opinions about how 
dispersal operates, leading to a variety of algorithms as implemented in population 
models. Our implementation is intended to be quite simple. Compared to models 
that attempt to simulate dispersal behavior (e.g., McKelvey et al. 1993, Gustafson 
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and Gardner 1996), our model simulates the result of dispersal. In this, a bird has a 
probability of dispersal from patch i to patch j that depends only on the distance 
between the patches, dij, and the size of the target patch j. (Because the model 
simulates birds individually, there is also an effect of the size of the donor patch i 
due to the likelihood that larger patches tend to support more birds.) We model 
dispersal probability as a negative-exponential function of distance:  

pij = exp(-θ dij ) ⋅ aj        (13.1) 

where θ is an extinction coefficient estimated from the tail distance at which 
ij j

complicated by the way that the distances dij are defined. For purposes of 
illustration, we compare two such alternatives.  

Table 13.1. Parameters used in the metapopulation simulator. 

Parameter Definition Value1 Assignment2 
PCCI % of carrying capacity initialized 50% constant 
XNP Max rate nest predation 65% Input/constant3 
DENP Edge distance, predation 100 m Input/constant3 
XBP Max rate, parasitism 75% Input/constant3 
DEBP Edge distance, parasitism 200 m Input/constant3 
TS Territory size 1 ha input 
MBD Max breeding density 50 per 100 ha input 
Tsmin Min occupiable territory 0.50 ha constant 
Xclutch Mean clutch size 2.5 eggs input 
SClutch Std Dev (clutch size) 0.5 input 
NBroods Broods per season 2 input 
NT Nest type (open/cavity) open input 
NHt Nest height (1=ground, 3=canopy) 2 (midcanopy) input 
XSurv Annual survivorship 0.65 input 
RSFlt Relative survivorship of floaters 0.50 constant 
SFBrd Site fidelity of breeders 0.90 constant 
SFFlt Site fidelity of floaters 0.10 constant 
Range Dispersal range per move 1500 m input 
Mobil Number of dispersal moves 3 input 

 

p =0.01, and a  is the area of the target patch. Even this simple approach can become 

1Nominal values set for model experiments, based on literature values (detailed in Urban and 
Shugart 1986, Urban et al. 1988, Minor et al., unpublished manuscript).  
2Values are set as: constants (typically not varied by end-user); inputs for edge effects 
(defined for the geographic study area and which do not vary by species); or species-level 
inputs, (defined for each focal species to be simulated).  
3Inputs for edge effects (constant for study area). 
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minimum cell-to-cell distance between any two cells, one from each patch, and 
saving this as the edge-to-edge distance. This is computationally straightforward 
(though the recursion is sufficiently tedious in a GIS that it is easier to do the 
computations in a stand-alone program). For very large landscapes (N>>1000’s of 
patches) this approach can become computationally daunting. This approach 
presumes implicitly that dispersing animals are sufficiently clever to find and use 
this minimum-distance path.  

The second alternative estimates between-patch distances as least-cost paths, 
using optimal routing algorithms in a GIS (Bunn et al. 2000). This requires the 
(ultimately arbitrary) assignment of relative resistances to dispersal (“costs”) for all 
cover types within a landscape. The routing algorithm then finds the “cheapest” path 
from the donor patch to the target patch. The least-cost patch method can be 
computationally infeasible for large sets of patches, because the analysis amounts to 
performing the routing solution recursively in the GIS. Various GIS-based 
algorithms have been devised and are available from websites such as ESRI’s (for 
Arc/Info). Our approach has been to write a custom macro in Arc/Info by which we 
find least-cost paths for pairs of patches that are within a minimum Euclidean 
distance of each other (e.g., twice the dispersal range of the focal species), and 
substituting simple edge-to-edge distances for patches farther apart. This saves 
considerable computation time and, because dispersal between distant patches 
occurs only via stepping-stone paths, this does not affect the traversability of the 
mosaic. Note that least-cost paths assume that the dispersing organisms are actually 
quite clever, that is, they sample cover types locally and tend to find the easiest route 
from patch to patch.  

This implementation of dispersal distances essentially uses different 
parameterizations to assess contrasting conceptual models of how birds disperse. In 
the case of either definition of dispersal distances, dispersal probabilities (Equation 
13.1) are re-normalized in the model to account for the proximity of habitat patches 
(the raw probabilities typically sum to >> 1.0).  

Clearly, there is a world of complexity available to us in implementing 
alternative dispersal models. This decision clearly influences overall model 
uncertainty in that the choice of dispersal model also dictates the kinds of 
parameters needed to implement it. This uncertainty is added to that due to the 
definition of habitat patches, as discussed above. Further, in many simulators, the 
probability of mortality increases as individuals disperse (e.g., the models described 
by McKelvey et al. 1993), and so assumptions about dispersal might also propagate 
through demographic rates or indeed to habitat definitions (Anders et al. 1998). We 
do not pretend to cover this full range of issues, but instead focus on two aspects of 
dispersal: (1) the implications of habitat resistance as implemented as least-cost 
paths, and (2) maximum dispersal range for the focal species. Note that because of 
underlying land use pattern, using least-cost paths will tend to have local rather than 
global effects in the model.  

The first alternative estimates between-patch distances as the minimum edge-
to-edge distance between the two patches. In practice, this is done by finding the 
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13.4.5 Experimental Design 

As an illustration of how uncertainty can propagate through coupled regional 
assessments, Minor et al. (unpublished manuscript) contrived a set of model 
experiments to include several sources of uncertainty. In this, they considered a total 
of 32 cases, including: 

• 2 alternative habitat maps (“strict” versus “generous”), 
• 2 dispersal models (Euclidean versus least-cost distance), 
• 2 dispersal ranges (1500 versus 3000 m), 
• 2 clutch sizes (2.5 versus 3 eggs/clutch), and 
• 2 levels of intensity of edge effects on nesting success (on/off ). 
Each simulation was initialized with a population at 50% of carrying capacity 

for the landscape, and with the initial birds randomly distributed among patches. We 
simulated 100 years of population dynamics, by which time populations either 
stabilized or the trend was well established. We ran 100 replicate simulates for each 
case, in which stochastic processes (dispersal, mortality, and nesting success) were 
free to vary on a per-bird, per-event basis. Total error or uncertainty in the forecasts 
is the result of all of these sources.  

 

Figure 13.3. Relative importance of each simulated factor as a source of uncertainty in the 
metapopulation model, based on ANOVA. Analyses were conducted separately for total 
population size (left-side axis) and percent of carrying capacity (right-side axis) because the 
two habitat maps had very different amounts of habitat. Sources of uncertainty are arrayed as 
input data (left), model, estimation, and process error (right). 
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We analyzed the model simulations by ANOVA, using the experimental 
treatments as main effects. We should note that, of these factors, only clutch size 
and dispersal range would be easily amenable to implementation in the conventional 
regression framework for uncertainty analysis; that is, only these two parameters 
have estimates and standard errors. Process error, i.e., the result of stochastic 
implementations in the model, appears in the analysis not as a main effect but rather 
as within-treatment (replicate) variability.  

13.4.6. Relative and Cumulative Effects of Uncertainty 

With this range of parameters, simulations resulted in populations that ranged in size 
from 20-87% of carrying capacity. In the ANOVA, each main factor had a 
significant effect. When total population size was analyzed as the response variable, 
the choice of habitat map had the largest effect as expected, since the generous map 
includes substantially more habitat. When percent of carrying capacity was analyzed 
instead (to remove the effect of total habitat area), the rank order of factors was very 
similar (Figure 13.3).  

Almost all first-order interaction effects (7 of 10) were significant as well in this 
analysis (Table 13.2). In particular, there was a strong interaction between choice of 
habitat map and dispersal factors (Euclidean/least-cost path distances as well as 
dispersal range). Clutch size also showed an interaction with the habitat map and 
with edge effects.  

using percent of carrying capacity as the population response variable. 

Source of variation 
 

DF 
 

Sum of 
Square 

Mean 
Square 

F value 
 

Pr (F) 
 

Dispersal model 1 5.68 5.68 3476.25 0.00 
Map 1 65.57 65.57 40150.67 0.00 
Clutch size 1 60.44 60.44 37006.97 0.00 
Dispersal distance 1 19.80 19.80 12121.84 0.00 
Edge effects 1 1.28 1.28 786.29 0.00 
Dispersal model × map 1 0.41 0.41 251.30 0.00 
Dispersal model × clutch size 1 0.00 0.00 0.80 0.37 
Dispersal model × dispersal distance 1 0.08 0.08 51.09 0.00 
Dispersal model × edge effects 1 0.00 0.00 0.86 0.35 
Map × clutch size 1 1.60 1.60 979.97 0.00 
Map × dispersal distance 1 2.98 2.98 1827.02 0.00 
Map × edge effects 1 0.06 0.06 34.09 0.00 
Clutch size × dispersal distance 1 0.07 0.07 43.23 0.00 
Clutch size × edge effects 1 0.27 0.27 166.55 0.00 
Dispersal distance × edge effects 1 0.00 0.00 0.62 0.43 

Table 13.2. Results of ANOVA on sources of uncertainty in the metapopulation simulator, 
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To illustrate the uncertainty associated with a simulation model, the convention 
is to use Monte Carlo methods to propagate uncertainty through the model. This 
approach is readily extended to include process error; indeed, this is routinely done 
with stochastic simulators. Likewise, it is straightforward to propagate estimation 
error through a model, by using stochastic parameter sets from specified 
distributions of the parameters. This approach becomes somewhat unwieldy when 
we attempt to extend it to include model error and data error of a form such as an 
input habitat map. In the simplest case for our metapopulation model, the 
simulations would be run in Monte Carlo fashion, and for each run a new set of 
input map, dispersal model, and parameter set would be drawn from a set of 
alternatives; process error would be included by default because the model is 
stochastic. But because the initial habitat maps and (especially) the dispersal-
distance matrix are quite demanding computationally, this implies building a set of 
alternatives beforehand and then selecting from these for each simulation. Again, 
this is quite feasible in principle but rather tedious in practice. We have illustrated 
this approach by randomly selecting a set of 100 simulations from the full set (3200) 
used in our model experiment. From this set, we computed the range of population 
sizes as percent of carrying capacity. Because this range is not normally distributed 
(being bounded by 0 and carrying capacity), we index the variation as simply the 
central 95% quantiles of the data. For comparison, we also illustrate the amount of 
process error for a simulation with nominal parameter values, based on 100 replicate 
simulations. The differences are rather telling (Figure 13.4).  

Figure 13.4. Illustration of total uncertainty as propagated through the model, compared to 
the confidence limits generated by stochastic “process error” alone.  

We should emphasize that we do not propose Figure 13.4 as the true uncertainty 
in this modeled scenario. Rather, we offer this as an illustration of the potential 
magnitude of the implications of ignoring sources of error that are beyond the scope 
of conventional uncertainty analysis. In this case, the uncertainty associated with the 
underlying habitat map far outweighs the influence of details internal to the 
metapopulation model. Yet, even this simple illustration ignores potentially 
important implications of more extreme alternatives to the dispersal algorithm, as 
well as multiple combinations of model specifications and parameter estimation 
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error. On the other hand, we can also take some solace in that all sources of error are 
not equally likely in this case, and so if we bounded the selection of alternatives by 
some notion of their likelihood (i.e., via prior probabilities), we could reduce the 
extreme levels of uncertainty shown in Figure 13.4. For example, we do not think 
that the 1500 or 3000 m dispersal range is equally likely, and we could constrain our 
estimate of clutch size more tightly by using the available data more carefully. The 
use of prior probabilities to constrain error estimates in this way is only a slight 
generalization of the conventional approach of drawing parameter estimates from 
their empirical distributions. This approach is especially amenable to hierarchical 
Bayesian approaches to modeling (e.g., Wikle et al. 1998, Wikle 2003, Clark 2003), 
in which each component of the model has its prior and (fitted) posterior 
distributions.  

13.4.7 A Patch-Level Perspective 

Edge effects and differences in dispersal mediated by the “resistance” of local land 
cover should result in local rather than global influences on population dynamics. 
One example of these is illustrated in Figure 13.5, which shows the local persistence 
(years occupied of the last 10 years of a simulation) of selected patches. In this case 
the differences in local persistence are mediated by the local prevalence of 
developed lands, which reroute dispersal locally and thus change the pattern of 
dispersal subsidy that is key to patch recolonization after a chance local extinction. 
Because dispersal in this model is largely via short dispersal events among stepping-
stone patches, local dispersal limitations have the potential to propagate within 
connected subregions of the habitat mosaic. This spatial error propagation would 
lead to strongly autocorrelated errors in model predictions.  

Figure 13.5. Local effects of model uncertainty, as generated by variation in dispersal 
distance as modeled using least-cost paths as dispersal routes. Circles are overlaid on habitat 
clusters to indicate their relative size (see Figure 13.2). Effects of connectivity on population 
persistence are expressed locally.  
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We would expect edge effects on recruitment to have a similarly local influence 
on population dynamics, if habitat “edginess” varied locally within the study area. 
That is, if patches in one region of the study area were especially edgy, then there 
would be some potential for strong local patterns in populations to emerge. As 
discussed previously, this also would invite a local interaction with dispersal, so that 
local source and sink patches could have an influence that propagated to other 
nearby patches to which they were strongly connected. The lack of a dominant edge 
effect in our simulations probably reflects the reality that most of the patches are 
equivalently edgy.  

While we have not yet explored these local influences rigorously, the 
illustration in Figure 13.5 does provide an immediate aid to this future effort. 
Patches or regions that show a strong local effect as indicated by high patch-level 
uncertainty, clearly present themselves as compelling candidates as focal sites for 
follow-up field studies. This is an example of model-guided sampling design, a 
powerful approach for locating study sites that can provide crucial information 
efficiently (Urban 2000, 2002, Urban et al. 2002). In this case, the candidate sites 
are those exhibiting the strongest manifestation of key model uncertainties. This 
model-data dialogue is an added benefit of the approach to uncertainty analysis that 
we illustrate here: the modeling process is self-correcting if the approach admits 
iteration between model analysis and model-directed field studies.  

13.5 CONCLUSIONS 

Ecological forecasts extrapolated to regional scales invite a variety of sources of 
uncertainty. Performing integrated assessments across coupled applications (land 
use change, forest dynamics, bird communities, and watershed impacts) invites new 
sources that are problematic because they may not conform readily to conventional 
approaches to uncertainty analysis and error propagation. Moreover, if the separate 
components of such assessments are pursued by different research teams, 
participants or clients might not even be aware of these sources of uncertainty. At 
the least, the role of uncertainty may change dramatically across coupled project 
components with different specific objectives. For example, classification errors in 
the land cover maps might have very different implications for watershed hydrology 
than for thrush metapopulations. Because a client audience deserves – indeed, may 
demand – a full accounting of uncertainty in ecological predictions (Clark et al. 
2001), it is crucial that we devise thorough but efficient methods for incorporating 
uncertainty in integrated regional assessments.  

While an efficient analytic approach to uncertainty in integrated assessments 
remains a challenge, it is already quite feasible to communicate uncertainty in 
ecological extrapolations and forecasts. We do this routinely by adding error bars or 
confidence limits to histograms and line graphs; there is no reason why we should 
not include this information in maps as well. For example, we have estimated both 
classification error and prediction error for model predictions here, and these 
approaches are increasingly easy with the powerful cartographic tools available in 
geographic information systems. Further, we know how to translate model 
sensitivity and uncertainty from parameter space to geographic space (e.g., Urban 
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2000), and wider use of this approach can lead to a healthy model-data dialogue in 
which model-guided field studies are used to collect new data to improve the model 
most efficiently.  

There remains a technical challenge of finding computationally efficient 
methods for incorporating a range of sources of uncertainty into simulations. This 
may entail generalized methods for Monte Carlo simulations, or alternative 
formalisms for model development (e.g., hierarchical Bayesian models). It is 
unlikely that we will find a convenient “one size fits all” solution, and so a healthy 
variety of approaches should be pursued.  
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CHAPTER 14 

ASSESSING THE INFLUENCE OF SPATIAL SCALE ON THE 
RELATIONSHIP BETWEEN AVIAN NESTING SUCCESS 

AND FOREST FRAGMENTATION 

PENN LLOYD, THOMAS E. MARTIN, ROLAND L. REDMOND, 
MELISSA M. HART, UTE LANGNER, 

AND RONALD D. BASSAR 

14.1 INTRODUCTION 

Ecological processes are dependent on the spatial and temporal scale at which they 
are viewed, and a process at any one scale may be influenced by factors at other 
scales. Thus, an ecological process at a broader scale may act to constrain processes 
at finer scales (Allen and Starr 1982, Thompson et al. 2000). Developing a full 
understanding of the spatial scales at which habitat conditions impinge on ecological 
processes therefore demands a multi-scale approach (Wiens 1989). The continuum 
of possible spatial scales can be broken into: (1) the space occupied by an 
individual, (2) the patch scale – the habitat patch occupied by many individuals and 
species, (3) the landscape scale – the collection of different habitat patches occupied 
by local populations, and (4) a biogeographic scale that encompasses different 
climates, vegetation formations, and assemblages of species (adapted from Wiens  
et al. 1986). Habitat fragmentation alters the spatial arrangement, shape and relative 
proportions of different habitat patches. These changes have a profound influence on 
ecological processes that are sensitive to alteration of the composition of 
environments, particularly at spatial scales 2-4 above. 

 Two ecological processes, nest predation and brood parasitism by the Brown-
headed Cowbird (Molothrus ater), are the primary influences on nesting success of 
most North American land birds (Martin 1992). Many studies that have investigated 
the relationship between habitat and nesting success have focused on the question of 
how vegetation characteristics of the nest micro-environment influence nest success 
(e.g., Martin 1992, Larison et al. 2001). This focus is at the scale of the space 
occupied by an individual bird (Wiens et al. 1986). In contrast, studies at broader 
scales are mostly concerned with how variation in predator/parasite density or 
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movement pattern associated with coarser-scale habitat features has an impact on 
nesting success. For example, at the scale of a local patch, nests situated closer to 
habitat edges often experience higher predation or parasitism rates, largely due to 
elevated predator/parasite densities at habitat edges (Andren and Angelstam 1988, 
Burke and Nol 2000). The relative density of predators and parasites within edge 
habitat may further depend on the relative proportions of different habitats at 
broader, landscape scales. Thus, a handful of studies have examined how nesting 
success varies with degree of habitat fragmentation within 1-10 km radii of study 
sites (Robinson et al. 1995, Tewksbury et al. 1999).  

 Understanding the ecological basis for scale dependence in nest predation and 
parasitism, requires an understanding of the distribution and abundance of predators 
and parasites in relation to edge, area, and biogeographic effects. These have been 
examined in greatest detail for the Brown-headed Cowbird. Cowbirds generally 
forage in open, short-grass habitats, particularly agricultural and other human-
modified habitats (Lowther 1993). However, they often parasitize hosts breeding in 
forested habitats. Female cowbirds therefore commute daily between their foraging 
areas and nearby forested habitats to parasitize hosts (Donovan et al. 2000). This 
gives rise to an “edge effect” where parasitism is greater along the edges of forests 
that are closer to cowbird feeding habitat. Individual cowbirds are capable of 
commuting up to 15 km between foraging and breeding resources (Curson et al. 
2000). In the eastern United States, however, average commuting distances are more 
commonly 1-3 km (Thompson 1994, Gates and Evans 1998, Raim 2000, Thompson 
and Dijak 2000). The distance that cowbirds will penetrate forest interiors is 
correlated with the local population size of cowbirds in suitable habitat surrounding 
the forest (Donovan et al. 1997). This local abundance of cowbirds is, to a large 
extent, limited by the availability of suitable feeding areas, an area effect. Thus, 
local cowbird abundance increases as the relative area of human-transformed, 
usually agricultural habitats increases (Donovan et al. 1997). Thus, edge effects at 
the patch scale are expected to be constrained by variation in local cowbird 
abundance associated with area effects at local landscape scales within as much as a 
10 km radius. 

 At a biogeographic scale, the relative abundance of cowbirds is greatest within 
the Great Plains (incorporating portions of southern Canada, North and South 
Dakota, Nebraska, Kansas, and Oklahoma) and becomes progressively less towards 
the eastern and western edges of their range (Peterjohn et al. 2000). This pattern of 
relative abundance reflects the historical distribution of cowbirds in North America. 
They are believed to have been originally concentrated in the Great Plains of central 
North America but to have spread eastward and westward during the 19th and 20th 
centuries (Mayfield 1965, Rothstein 1994). Consequently, cowbird abundance 
decreases with increasing distance from the center of abundance in the Midwest, 
independently of continental patterns in land cover (Thompson et al. 2000). This is 
consistent with a general ecological pattern of spatial variation in abundance: 
density declines from the region of peak density towards the boundaries of the range 
(Brown 1984). Predator abundance and the risk of nest predation are hypothesized to 
exhibit similar scale dependence (Donovan et al. 1997, Tewksbury et al. 1999, 
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Thompson et al. 2002), although biogeographic variation has yet to be documented 
in sufficient detail. 

 Most studies have investigated the relationship between habitat features and 
nesting success at small and medium scales for individual species at usually single 
sites, but very few have investigated larger-scale influences. A notable exception is 
the study of Robinson et al. (1995), which quantified levels of nest predation and 
cowbird parasitism for nine species across a gradient of forest fragmentation 
(quantified within a 10 km radius of study sites) spanning nine landscapes within six 
mid-western states of the United States. Hochachka et al. (1999) also found that 
increased forest cover within a 10 km radius resulted in lower rates of cowbird 
parasitism of hosts in general. Using nest success data collected on the Ovenbird 
(Seiurus aurocapillus) collated in the Breeding Biology Research and Monitoring 
Database (BBIRD), we extend this approach to ask:  

• what are the relationships between forest fragmentation and each of nest 
parasitism and nest predation?  

• how do these relationships vary with the scale at which habitat fragmentation 
is assessed? 

The Ovenbird is a Neotropical migrant songbird that nests on the ground in the 
interior of mature forests in the eastern United States and Canada. It is known to be 
sensitive to forest edges, incurring higher nest mortality in edge habitat, and is a 
preferred host of the Brown-headed Cowbird (Van Horn and Donovan 1994). It is 
therefore expected to be highly sensitive to forest fragmentation. 

14.2 METHODS 

Ovenbird nest success data were collated from 121 plots within 15 BBIRD sites 
scattered across the eastern United States (Figure 14.1). Within each site, between 3 
and 20 plots, each incorporating an area of approximately 10-50 ha, were separated 
by distances of 1-50 km from one another. Study sites were not selected randomly. 
Contributing investigators selected sites and plots to meet the needs of their own 
research agendas, but used the standardized BBIRD protocol (see Martin and Geupel 
1993) for collecting the nest data. We treated the plots of more than one investigator 
as a single site if these plots were less than 50 km apart. 

 Habitat features at a variety of spatial scales were derived from the National 
Land Cover Dataset (NLCD; Vogelmann et al. 2001). The NLCD recognizes 21 
different land cover types mapped at a 30 m2 pixel resolution. For our analyses, we 
grouped certain NLCD land cover types to recognize the following four land cover 
types of principal interest: 

• forest – includes deciduous, evergreen and mixed Forests, and woody 
wetlands;  

• grassland – includes grassland/herbaceous, and pasture/hay;  
• cropland – includes orchards/vineyards/other, row crops, small grains, and 

fallow; and 
• developed – includes grassland and cropland, as defined above, together with 

residential and commercial/industrial/transportation. 
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Figure 14.1. Distribution of the 15 Ovenbird sites (solid circles) and other BBIRD sites (open 
circles) across the United States relative to forest cover (grey). The breeding range of the 
Ovenbird extends to the north and east of dashed line, with a disjunct population in Colorado 
(Van Horn & Donovan 1994). 

We then extracted a number of landscape-level habitat metrics using ArcInfo 
(ESRI 2002) and Apack (Mladenoff and DeZonia 2002) software at four principal 
spatial scales: 

• the forest patch within which the study plot was embedded; 
• within radii of 1, 5, and 10 km of each study plot center;  
• within radii of 50, 100, and 150 km of each study site center (defined as the 

center of the minimum convex polygon connecting all plots); and 
• the biogeographic region. 
For analysis, we selected a suite of landscape-level habitat metrics that we 

thought had intuitive biological meaning with respect to the hypothesized edge, area 
and biogeographic influences on predator/parasite abundance. These included 
distance from plot center to nearest forest edge or nearest developed land cover edge 
(at the patch scale), percent forest, core forest, grassland, cropland and developed 
land cover (at the landscape scale). Using Breeding Bird Survey data downloaded 

research/sauer), we also examined the distance between site center and the nearest 
edge of core distribution (average count ≥30) of cowbirds in the Midwest (at the 
biogeographic scale). We used multiple regression (forward stepwise) to analyze 
and control for the effects of these predictor variables on the rates of predation and 
brood parasitism experienced by Ovenbirds at 15 sites. Suitable transformations 
were applied to all variables that were not normally distributed. 

from the USGS Patuxent Wildlife Research Center server (pwrcftpr.er.usgs.gov/ 
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14.2.1 Comparison with Neutral Landscapes 

To test (1) the representativeness of the BBIRD study sites and (2) the scaling 
relationship between forest area and increasing radial distance, we compared forest 
metrics within increasing radial distances around plot and site centers between the 
15 ovenbird sites and a series of 202 sets of neutral landscapes that were randomly 
selected throughout the eastern US (defined as the continental land area east of 
100th Meridian). The number and distribution of sites and associated plots within 
each randomized set was designed to mimic the total sample of forested sites in the 
BBIRD database east of the 100th Meridian. We had 251 plots distributed among 27 
unique forested sites east of the 100th Meridian (range = 1-31 plots/site and 0-64360 
m between site and plot centers). Thus, the number of random sites in each set was 
limited to 27; the number and distribution of plots within each site varied from 1-31; 
and the distance between these plots could not exceed 64.36 km. Further details of 
the sequential steps involved in the randomization process follow below. 

 Firstly, the inside perimeter of the 48 contiguous United States was buffered by 
30 km. This was done to avoid or reduce the number of water or no data cells that 
might skew landscape statistics calculated within larger radii (50, 100, 150 km) 
around site centers that fell close to Canada, Mexico, or a major coastline. Secondly, 
the analysis was limited to the area within the buffer east of 100th Meridian. 
Furthermore, sampling parameters were defined such that the number and dispersion 
of plots at each site conformed to the pattern observed among the 27 BBIRD sites 
(see above). Thirdly, for each run, 27 sites were selected randomly. For a point to be 
selected as a random site center, two criteria had to be met: (a) it had to fall on a 30 
m grid cell representing a forested cover type in the NLCD and (b) at least 10% of 
the cells within a 100 km radius had to represent forested cover types as well. Once 
a site center was suitably located, random points representing individual plot centers 
were selected, one at a time, and each evaluated according to the same two criteria 
as the site centers. After 27 random sites and their surrounding 260 plots were 
located in this manner, new site centers were assigned to each based on minimum 
convex polygons enclosing the plots at each site. This process was repeated 201 
times, resulting in 5454 random sites and 52520 plots. The data were stored as two 
GIS point coverages, one containing all 202 27 random site centers, and the other 
all 202 260 random plot centers. Percent area covered by forest was calculated 
within 1, 5, and 10 km of all random plot centers and within 50, 100, and 150 km of 
all site centers. As with the landscape analyses of the actual 15 Ovenbird sites, areas 
of water or no data (e.g., outside the extent of NLCD coverage) were not included in 
calculations of land cover proportions (e.g., % forest, grassland, agriculture, etc.) 
around any of the random plots or sites. Finally, expecting that landscape 
configuration would play some role in determining the reproductive success of 
ovenbird populations, we examined selected metrics for the 15 Ovenbird landscapes 
and compared those to neutral landscapes created using Apack’s percolation map 
output option (Mladenoff and DeZonia 2002). Neutral landscapes (Gardner et al. 
1987) have randomly-assigned cell values, but maintain exactly the same land cover 
proportions as the input map, allowing us to ascertain how Ovenbird landscape 
structure differs from random with percent forest cover held equal. 

×
×
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14.2.2 Sources of Uncertainty 

In our study, uncertainty was derived primarily from sampling error and high natural 
variability in nest predation and parasitism, and secondarily from other data quality 
issues such as measurement and database management error. Sampling error related 
to: (1) differences in sample size of nests from sites/plots for which predation and 
parasitism rates were determined; and (2) non-random selection of sites/plots within 
the geographical distribution of the species under study. Sample size varied from 
five to 241, which led to a wide range in the standard error associated with 
individual data points used in the regression analyses. 

 Measurement error may arise from: (1) differences in the interpretation of nest 
fate among contributors; (2) positional errors in the mapped locations of study plots; 
(3) variation in the distribution of plots within sites (tightly clustered at some sites, 
but scattered over many kilometers at others) that affects the representativeness of 
the site center location; (4) errors in land cover classification and image registration 
in the NLCD land cover database; and (5) the loss in resolution resulting from the 
aggregation of nest success data at a spatial scale potentially greater than that being 
assessed. We were unable to quantify error in nest-fate interpretation, but a detailed 
field protocol and annual meetings with contributors probably reduced it to an 
acceptable level. The coordinates for most study plot centers were estimated to be 
within 10 m of their true locations, although a few may be off by as much as 1 km. 
As a result, outputs may be affected by actual positional errors as well as errors in 
relation to NLCD land cover. Although the NLCD land cover database offers the 
most current and consistent national coverage at high resolution (30 m), it may 
either fail to map the appropriate habitat features for Ovenbirds, cowbirds and/or 
nest predators, or fail to represent them at adequate resolutions. Ideally, a distance 
measure to the nearest edge is required for each nest, but this was not available. As a 
best approximation, we aggregated data from all nests in a plot, and measured 
distance from plot center to the nearest edge. This may aggregate data from nests 
within both edge and interior habitat, resulting in a loss of resolution. Aggregating 
data from all plots within a site results in a further loss in resolution.  

14.3 RESULTS 

We found a similar scaling relationship between the increase in total forest area 
within increasing radii of landscape area for both the 15 Ovenbird sites (described 
by: y = 1.911x + 2.439, R2 = 1 on a log-log plot) and the 5454 sites that were 
randomly selected throughout the eastern United States (described by: y = 1.946x + 
2.378, R2 = 1 on log-log plot). In both cases, the exponents (1.91 and 1.95) were 
slightly less than the isometric value of 2, indicating that forest cover tends to 
become slightly less abundant with increasing breadth of scale (i.e., the radial 
distance surrounding the analysis area). For both the random and actual sites, 
doubling the measurement scale from a 50 to 100 km radius around the site center 
results in substantially less than twice the proportional amount of forest found within 
the larger area (21.91 = 3.75 times the proportional amount rather than 22 = 4.0 if 
scaling was isometric). 
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 Comparisons of angular second moment, aggregation index, and contagion 
suggest that the Ovenbird landscapes have fewer cover classes, more clumping, and 
fewer patches than the neutral landscapes (Table 14.1). For angular second moment 
and contagion, differences were strongest for Ovenbird sites with relatively high 
forest cover. Total edge density suggests that the Ovenbird landscapes have lower 
perimeter/area ratios than might be expected, meaning that patches tend to be more 
circular or square, and/or larger. Indeed, the average patch perimeter/area ratios for 
Ovenbird landscapes were lower than for neutral landscapes. Ovenbird landscapes 
also tended to have patches with larger perimeters based on the average perimeter of 
patches in landscape; this in turn suggests more complex shapes. 

 Among the 15 BBIRD sites, percent forest cover was highly correlated across 
all spatial scales with percent grassland cover (r = –0.82 to –0.86, P < 0.001), 
percent cropland cover (r = –0.83 to –0.90), and percent developed land cover  
(r = –0.91 to –0.99). Distance to nearest edge/developed edge was significantly 
correlated with percent forest cover at finer scales, such as within a 1 km radius  
(r = 0.64–0.77, P = 0.01–0.001), but not with percent forest cover at broader scales, 
such as within a 100 km radius (r = 0.31–0.43, P = 0.11–0.26). Cowbird abundance 
was significantly negatively correlated with both distance from the center of 
cowbird distribution in the Midwest (rp = –0.85, P < 0.001), and with percent forest 
cover within a 100 km radius (rp = –0.91, P < 0.001). 

14.3.1 Effects on Nest Parasitism 

Sample size (number of nests) did not affect estimates of nest parasitism rate among 
plots (F45 = 1.58; P = 0.22) or sites (F14 = 1.28; P = 0.28). Among sites, nest 
parasitism rate was positively correlated with average distance to the nearest 
developed edge and patterns of land cover (particularly developed land cover) across 
all landscape scales, but was not related to distance from the center of cowbird 
distribution (Table 14.2). Although autocorrelation among scales complicates 
comparisons of correlation coefficients across scales, the data suggest that land 
cover patterns at the 5-100 km landscape scales are likely the best predictors of nest 
parasitism rate. The relationship between nest parasitism (arcsine-square-root-
transformed) and percent developed land cover within a 10 km radius (arcsine-

36.9, P < 0.001, R2 = 0.72). 
 At only three sites did sufficient variation in percent forest cover among plots at 

one or more of the 1-10 km radii scales enable tests of the relationships between 
indices of forest fragmentation and each of Ovenbird nest parasitism rate and nest 
predation rate. At each of these sites, parasitism rate was not significantly related to 

landscape scales declined. This negative relationship was significant at the 10 km 
radius scale at Hoosier National Forest (r = –0.81, P = 0.03), and at both the 5 km  
(r = –0.74, P = 0.002) and 10 km (r = –0.60, P = 0.02) radii scales at Wayne 
National Forest (Figure 14.2). In addition, the three sites differed significantly in the 
levels of parasitism on Ovenbirds, independent of the effect of forest cover at the
1-10 km radii scales (Table 14.3). These differences can be attributed to differences 

square-root-transformed) is described by the regression: y = 0.774x + 0.02269 
(F = 

distance to nearest developed edge, but generally increased as percent forest cover at 



266 P. LLOYD ET AL. 

breeding on plots with relatively low forest cover at the 100 km radius scale 
generally experienced considerably higher nest parasitism than those breeding on 
plots with relatively high forest cover within a 100 km radius, independent of the 
degree of forest cover at smaller spatial scales. 

Figure 14.2. Relationship between nest parasitism rate (arcsine transformed) and percent 
forest cover (arcsine transformed) at a spatial scale of 1 km, 5 km and 10 km radii of plot 
centers, and 100 km radius of site centers for three sites. Relative percent forest cover at the 
100 km radius scale is classified as low (Hoosier NF), medium (Wayne NF) or high 
(Chippewa NF). 

Table 14.1. For scales of 50 and 100 km, comparison of landscape metrics for 15 Ovenbird 
sites and their corresponding neutral landscapes. ASM = angular second moment; AI = 
aggregation index; COR = contagion - Riitters; TED = total edge density; PPAR = patch 
perimeter/area ratio; APP = average patch perimeter in landscape. 

Ovenbird Landscapes 
Low Forest 

Cover (n = 5) 
Medium 

Forest Cover 
(n = 3) 

High Forest 
Cover (n = 7) 

Neutral 
Landscapes 

(n = 15) 

 
Landscape 

Metric 

 
Radius 
(km) 

mean ± sd mean ± sd mean ± sd mean ± sd 
ASM 50 0.139 ± 0.026 0.319 ± 0.042 0.553 ± 0.139 0.221 ± 0.147 
ASM 100 0.139 ± 0.015 0.294 ± 0.034 0.452 ± 0.107 0.171 ± 0.095 
AI 50 0.807 ± 0.021 0.888 ± 0.021 0.926 ± 0.026 0.515 ± 0.208 
AI 100 0.818 ± 0.018 0.879 ± 0.019 0.911 ± 0.020 0.464 ± 0.165 
COR 50 0.358 ± 0.042 0.533 ± 0.054 0.659 ± 0.113 0.413 ± 0.167 
COR 100 0.371 ± 0.053 0.512 ± 0.058 0.592 ± 0.086 0.375 ± 0.129 
TED 50 0.130 ± 0.015 0.075 ± 0.014 0.050 ± 0.017 0.324 ± 0.139 
TED 100 0.122 ± 0.012 0.081 ± 0.012 0.059 ± 0.013 0.358 ± 0.110 
PPAR 50 1.080 ± 0.009 1.090 ± 0.039 1.108 ± 0.031 1.249 ± 0.044 
PPAR 100 1.076 ± 0.008 1.088 ± 0.025 1.100 ± 0.027 1.241 ± 0.039 
APP 50 0.770 ± 0.063 0.846 ± 0.187 0.721 ± 0.111 0.351 ± 0.084 
APP 100 0.791 ± 0.063 0.854 ± 0.112 0.737 ± 0.093 0.363 ± 0.088 

in percent forest cover between sites at the broader landscape scale. Thus, Ovenbirds 
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Daily nest predation rate increased with increasing sample size among sites (F14 = 
7.33; P = 0.02), but not among plots (F45 = 0.07; P = 0.79). These sample-size 
effects are difficult to explain, largely because they are not repeated across both 
plots and sites. An increase in nest predation rate with sample size might be 
expected if sample size reflects breeding density and nest predation is positively 
density dependent. After controlling for the sample size effect, predation rate 
correlated positively with degree of forest fragmentation at the 1-100 km radii scales 
among sites, with percent area developed at the 5-10 km radii scales serving as the 
best predictors of predation on Ovenbird nests (Table 14.2). Among plots within the 
three sites with sufficient variation in landscape context, nest predation was 
significantly negatively correlated with increasing distance from the nearest edge at 
Chippewa National Forest (r = –0.84, P = 0.38), but not at Hoosier National Forest 
(r = –0.68, P = 0.09) or Wayne National Forest (r = 0.35, P = 0.2), and was not 
related to percent forest cover at any landscape scale. 

Table 14.2. Summary of the best predictor variables ( fragmentation indices) for the 
relationship between each of nest parasitism rate and nest predation rate among BBIRD sites 
(plot averages for scales of patch and 1-10 km radii) using multiple regression analysis. 

Scale Independent variables Dependent variables Adjusted R2 Partial 
Correlation 

Patch Parasitism To developed edge 0.50**  
Predation Sample size 0.36*  

1 km Parasitism Percent area developed 0.32*  
Predation Sample size 0.51* 0.75 

 Percent area developed  0.58 
5 km Parasitism Percent area developed 0.70***  

Predation Sample size 0.67*** 0.83 
 Percent area developed  0.74 

10 km Parasitism Percent area developed 0.72***  
Predation Sample size 0.66*** 0.83 

 Percent area developed  0.73 
50 km Parasitism Percent forest cover 0.72***  

Predation Sample size 0.54** 0.74 
 Percent area developed  0.61 

100 km Parasitism Percent area developed 0.70***  
Predation Sample size 0.58** 0.73 

 Percent forest cover  – 0.66 
Biogeographic Parasitism To center cowbird range – 0.08  
*P < 0.05; **P < 0.01; ***P < 0.001. 

14.3.2 Effects on Nest Predation Rate 
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14.4 DISCUSSION 

The allometric scaling relationship observed between landscape measurement length 
(radial distance) and forest area is similar to that found by Wiens and Milne (1989) 
in their examination of the area of bare soil in grassland microlandscapes (fractional 

people are likely to be included in the analysis, such that we would expect or predict 
a positive allometric relationship (exponent > 2.0) between length of landscape 
measurement (i.e., radial distance) and area impacted by people. Further analyses 
are required to explore this hypothesis. Second, BBIRD investigators selected plots 
that were located in forest vegetation (the better to find Ovenbird nests). Thus, the 
plot locations were defined at a local scale, whereas for the 202 randomization runs, 
the broader landscape context was considered. That is, potential sites and plots were 
selected only if they had at least 10% forest within 100 km. These random results 
did not produce a significantly different pattern in forest cover at any landscape 
scale from the 15 Ovenbird sites, suggesting that: (1) accounting for land cover at a 
broader scale had no noticeable effect on the observed relationship and (2) BBIRD 
sites are representative of overall forest conditions in the eastern United States. 

 Furthermore, we observed that the landscapes surrounding the 15 sites with 
Ovenbird data, particularly those with relatively high forest cover, tend to have 
structural characteristics in the surrounding 50 and 100 km that accord reasonably 
well with those preferred by Ovenbirds (Van Horn and Donovan 1994). That is, 
landscapes are characterized by larger patches with simpler shapes occurring in 
more clumped configurations than would be expected in neutral landscapes.  

 If patch-specific edge effects on nest parasitism and predation are constrained 

parasitism and predation among sites to partition among spatial scales in a 

models were always most parsimonious. Our inability to detect edge effects on nest 
parasitism rate, even among plots within individual sites, may be due to a 
combination of inappropriate resolution due to data aggregation within plots and 
sites, plot location errors, and landscape area effects overwhelming edge effects. 
Nonetheless, studies that have focused on the local patch scale have found strong 
edge effects on Ovenbird nest parasitism (Donovan et al. 1995, Porneluzi and 
Faaborg 1999, Burke and Nol 2000, Flaspohler et al. 2001). Despite the strong 
evidence of biogeographic variation in cowbird abundance, which is expected to 
translate into biogeographic variation in nest parasitism, we found that nest 
parasitism rate on Ovenbird nests was unrelated to distance from the core area of 
cowbird abundance in the Midwest. Our results suggest, therefore, that landscape-
level patterns of land cover, which are most significantly correlated with nest 
parasitism in our analyses, may overwhelm any biogeographic effect. Landscape 
area effects are not expected to extend beyond the home-range limits of cowbirds 
(maximum 20 km radius). Nonetheless, among BBIRD sites with similar percent 
forest cover at local landscape scales (within 1-10 km radius), considerable variation 

exponent of 1.8; see Schneider 1998). Two points are important for the inter- 
pretation of this relationship. First, it may reflect the broad extent of anthro-  
pogenic impact across the eastern US – the larger the area examined, the more 

by landscape and biogeographic effects, then we could expect variation in nest 

multivariate analysis. This was not the case. Instead, we found that univariate 
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in parasitism rate remains (Figure 14.2). Much of this variation is correlated with 
percent forest cover at the broader landscape scales (50-100 km radii of study sites), 
suggesting that the relative severity of parasitism among sites may be determined by 
the broader landscape context. As an illustrative example, the Hoosier National 
Forest study site averages 98%, 88% and 84% forest cover within 1 km, 5 km and 
10 km radii of its study plots, i.e., it is located within the interior of a locally heavily 
forested area, with most of the Ovenbirds studied nesting at least 2 km from the 
nearest agricultural edge. Nest parasitism risk could, therefore, be expected to be 
relatively low. Yet, Ovenbirds breeding at this site suffered a 30% nest parasitism 
rate. This is likely due to the Hoosier site being surrounded by heavily fragmented, 
largely agricultural habitat at a broader landscape scale, which reduces the percent 
forest cover at the 100 km radius scale to just 31%. 

 Edge effects on nest predation rates were detected only in comparisons of plots 
within individual sites, but not in the comparisons of site averages among sites 
(Table 14.2). This is not surprising given that the edge-mediated increase in 
predation risk for Ovenbirds, mostly from edge-adapted predators such as corvids, 
raccoons and opossums, generally extends no farther than 100-200 m from forest 
edges, an effect that may be lost in aggregate data. Published daily nest predation 
rates on Ovenbird nests range from 4.2%-7.8% within 200 m of forest/agricultural 
edges (Burke and Nol 2000, Rodewald and Yahner 2001), and 3.8-5.4% within 200 
m of recent clear-cut edges within forests (King et al. 1996, Flaspohler et al. 2001, 
Rodewald and Yahner 2001), but just 1.7-2.7% within interior forest > 200 m from 
the nearest edge (King et al. 1996, Burke and Nol 2000, Flaspohler et al. 2001). The 
among-site analyses suggest that Ovenbird nest predation is significantly correlated 
with landscape context within a 5 km radius (Table 14.3). The potentially strong 
influence of landscape context on nest predation rates was recently highlighted by a 
rigorously designed experiment using artificial ground nests. Donovan et al. (1997) 
found that in landscapes with <15% forest within a 10 km radius, predation was high 
in forest edge and interior; at 45-55% forest cover, predation was high in forest edge 
and low in forest interior; and at >90% forest cover, predation was low in both forest 
edge and interior. 

Table 14.3. Results from ANCOVA tests for three different radii from plot centers at three 
sites (Site 1 = Hoosier National Forest; site 2 = Wayne National Forest; site 3 = Chippewa 
National Forest). The dependent variable is nest parasitism rate, with site as a main effect 
and percent forest cover as a linear covariate. 

 1 km 
(Sites 2 and 3) 

5 km 
(Sites 1 and 2) 

10 km  
(Sites 1 and 2) 

Source of variation F P F P F P 

Forest cover 2.76 0.12 19.16 <0.001 11.54 0.003 

Site × forest cover 5.34 0.03 19.25 <0.001 14.32 0.001 

To summarize, the relatively coarse resolution of our aggregated data is likely to 
downplay the influence of edge effects, particularly edge effects on nest predation, 
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which tend to be limited to 100-200 m of forest edges. Edge effects on nest 
parasitism may be limited to 100-200 m of forest edges in extensively forested 
landscapes (Burke and Nol 2000), or extend several kilometers into forest in highly 
fragmented landscapes (Robinson and Robinson 1999, Ford et al. 2001). 
Nonetheless, there is incontrovertible evidence of strong edge effects on Ovenbird 
nest parasitism and predation from a host of detailed field studies. Our results 
emphasize the overwhelming influence of landscape context, particularly on nest 
parasitism rates, in agreement with other studies and reviews (Donovan et al. 1997, 
Thompson et al. 2002). Although we found no strictly biogeographic effect on nest 
parasitism, biogeographic variation in cowbird abundance that is independent of 
relative feeding resource availability at landscape scales does exist, and can be 
expected to constrain the influence of landscape area effects on nest parasitism 
(Thompson et al. 2000). 

 Considered as a whole, the available evidence highlights the importance of 
considering the effects of forest fragmentation on patch-specific demography within 
a top-down spatial hierarchy that includes biogeographic effects exerting constraints 
on landscape-level effects, which, in turn, exert constraints on patch-scale edge 
effects, as proposed by Thompson et al. (2002). This hierarchical conceptualization 
of the scale-dependence of ecological processes has important implications for 
scaling, the extrapolation of ecological processes across scales (Wu 1999, Li and 
Wu, Chapter 3). Using knowledge of patch-specific edge effects of parasitism and 
predation on nesting success to estimate average nesting success within the patch as 
a whole may require only information on the edge-perimeter to core area ratio for 
that patch, assuming that the influence of the landscape is uniform for the patch as a 
whole. However, landscape context will likely vary among patches as landscape 
extent increases, and biogeographic context will vary among landscapes. Thus, 
scaling up an ecological process, such as nest predation or parasitism, from a patch-
scale model to a model for a larger spatial extent requires consideration of the 
changes in the functional representation (i.e., transmutation) of that ecological 
process at each of the recognized levels of the spatial hierarchy (King et al. 1991). 
BBIRD data are derived from point locations within patches. We describe the 
relationships between these point data and habitat variables at different scales 
around these points, but we do not attempt to construct scaling relations to scale up 
from these data, as they lack sufficient resolution at an important level in the 
hierarchy, that of the relationship between nest success and distance to edge. With 
sufficient data resolution at the patch, landscape and biogeographic scales, 
multilevel statistical models (as described by Berk and de Leeuw, Chapter 4) could 
be used to derive scaling functions to describe the transmutation of processes such 
as nest predation and parasitism across these spatial scales. 

14.5 CONCLUSIONS 

Ovenbird nest parasitism rate and daily nest predation rate correlated positively with 
the extent of forest fragmentation at landscape scales, particularly within a 5-10 km 
radius of study plots. Our results emphasize the overwhelming influence of 
landscape context over edge effects, especially on nest parasitism rates. Given the 
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extensive published evidence of edge effects on nest predation in particular, we 
highlight the importance of considering the effects of forest fragmentation on patch-
specific demography within a top-down spatial hierarchy. 
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CHAPTER 15 

SCALING ISSUES IN MAPPING RIPARIAN ZONES WITH 
REMOTE SENSING DATA: 

Quantifying Errors and Sources of Uncertainty 

THOMAS P. HOLLENHORST, GEORGE E. HOST, AND 
LUCINDA B. JOHNSON 

15.1 INTRODUCTION 

Riparian zones are the ecotones or transition areas between upland and aquatic 
ecosystems, located at the margins of rivers, lakes, ponds and wetlands. Their 
boundaries are defined by changes in soil, moisture, and vegetation (Naiman 2000, 
Décamps 1996, Gregory et al. 1991). Although these ecosystems may be small 
relative to the aquatic systems they abut, they perform many important ecosystem 
services, including shading (thus buffering air and water temperature), retaining 
nutrients and/or sediments, stabilizing stream banks and littoral zones, and providing 
organic material (leaves, wood) and critical habitat for a diverse community of plant 
and animal species (Malanson 1993). Riparian zones are highly variable systems 
whose structure and composition are shaped by geomorphology, vegetation patterns, 
disturbance regimes (Décamps 1996), as well as current (Erickson and DeYoung 
1993) and perhaps historic land use practices (Foster et al. 2003). Processes that 
operate over a large range of temporal and spatial scales control these structuring 
factors. At one end of the time/space continuum are processes such as tectonics, 
volcanism, glaciation, and climate change. At intermediate spatial and temporal 
scales are historic land use practices (e.g., burning regimes implemented by native 
peoples, permanent land cover conversion) and catastrophic flooding. At small 
scales, localized flooding and land management practices influence the structure and 
function of riparian zones. Some processes occur over multiple scales and their 
effects may also vary by scale. 

The fine-scale variation of vegetative cover resulting from moisture and soil 
gradients around streams and wetlands has posed a challenge to research scientists 
and land managers (Muller 1997, Congalton et al. 2002). One of the current 
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challenges in watershed science is the development of economical and accurate 
methods for mapping riparian areas. The problem of quantifying riparian zones is 
particularly difficult in developed areas (e.g., urban and agricultural) and arid 
landscapes, where riparian zones are frequently narrower than the resolution of the 
standard land cover data sets often used for watershed characterization.  

The current widespread availability of inexpensive and user-friendly geographic 
information systems (GIS), and a larger selection of spatial data layers with global to 
regional coverage has expanded the use of these tools worldwide. A negative effect 
of the expanded use of these tools and data is that users occasionally overlook the 
inherent limitations, particularly with respect to the scale (grain and extent) of the 
data relative to the question being asked. The recent availability of an updated 
USGS National Land Cover Dataset (NLCD; Vogelmann et al. 2001) has enabled 
researchers, managers and policy makers to explore many new questions. Of 
particular interest is the possible use of the NLCD for addressing water quality 
questions from a watershed perspective.  

The specific requirements for mapping vegetation communities from satellite 
imagery were assessed by Woodcock and Strahler (1987) and Marceau (1994). Both 
papers concluded that satellite remote sensing was more appropriate for mapping 
broad vegetative categories rather than distinct vegetative communities. Although 
higher resolution imagery is now available, the high cost of acquiring and 
processing these data precludes their use for large regions. Yet, high-resolution data 
derived from aerial photography also is constrained by the high cost of acquiring, 
interpreting, and digitizing data. Therefore, highly resolved maps of riparian areas 
are often only available for portions of the streams, as opposed to the entire 
contributing watershed. Muller (1997, p. 419) states, “The scale factor is of prior 
importance for studying riparian vegetation,” yet this factor is seldom taken into 
account in ecological assessments of riparian zone function. Our objectives in this 
chapter are to (1) quantify the potential errors and sources of uncertainty in the use 
of the NLCD data for mapping land use and cover in riparian zones in agricultural 
landscapes, (2) examine the scale effects with respect to changing grain and extent 
in these mapping exercises, (3) compare these phenomena in stream versus wetland 
riparian ecosystems, and (4) assess these differences in landscapes whose matrix is 
dominated by agriculture versus those with a more diverse matrix. 

Quantifying scale effects, hierarchical linkages, and resulting uncertainty 
associated with mapping and analyzing riparian zones is necessary for understanding 
the structure and composition of riparian areas along streams and wetlands. An 
understanding of the underlying processes that influence riparian zones and control 
water quality is of fundamental interest not only to researchers and resource 
managers, but also to policy makers and private landowners who must evaluate the 
potential consequences of land management practices under different scenarios.  

15.2 METHODS 

We quantified the effects of data source grain and extent associated with the analysis 
of stream and wetland riparian areas by comparing land cover summaries from two 
commonly used sources: photo-interpreted land cover from large-scale aerial 
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photography (0.5 m resolution) and Landsat-based land cover (30 m resolution) 
from the NLCD. The stream analyses were based on a set of 12 watersheds in 
southeastern Minnesota; a parallel analysis was conducted on 36 central Minnesota 
wetlands (Figure 15.1). Stream sites were located in southeastern Minnesota, a 
region dominated by intensive rowcrop agriculture; wetland sites were located in 
central Minnesota, where land use is more diverse. Streams ranged from the first to 
the third order with baseflow width of 3.4 to 11.2 m with a mean of 5.4 m. The total 
length of streams within watersheds ranged from 8.3 to 40.4 km with a mean of 26.6 
km. Sites were chosen to reflect a range of land uses within the region as part of a 
larger study to identify indicators of stream condition. Wetlands types were 
palustrine emergent (Cowardin 1979), and ranged in size from 0.3 to 9 ha with a 
mean of 1.9 ha. These sites also were chosen to reflect the gradient of land uses, as 
part of another study identifying indicators of wetland condition. 

Figure 15.1. Distribution of stream and wetland study areas. 
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Streams and wetlands were buffered to 500 m, and land cover within this buffer 
was visually interpreted and digitized on-screen based on rectified aerial photo 
mosaics. The aerial photos were medium scale (1:15,880) color infrared (CIR) 
imagery obtained from the Minnesota DNR Department of Forestry. Most of the 
CIR photography was taken during the fall, and ranged in year from 1994-1997. 
Photos were scanned at 800 dpi and georeferenced to USGS Digital Orthophotos. 
Stereo pairs were used for map interpretation, and map polygons were screen-
digitized using ArcView GIS. Polygons as narrow as 2 m were identified with a 
minimum map unit of 100 m2. Polygons were classified according to a modified 
Anderson Level II classification (Anderson et al. 1976) also used by the NLCD. A 
subset of interpreted map polygons was visited in the field to assess the consistency 
of the classification.  

Land cover from the NLCD data was clipped to the 500 m map extent and 
resampled from 30 m to 0.5 m to match the resolution of the air-photo data. This 
allowed us to compare the two data sets in a spatially explicit manner. For this part 
of Minnesota, the NLCD was classified from Landsat imagery collected between 
1989 and 1994. Land cover classes for both the NLCD data and the air-photo land 
cover were aggregated to provide a common 9-class land cover scheme (Table 15.1). 
The two sets of land cover data were then summarized for a series of incremental 
buffers (5, 10, 30, 60, 90, 120, 150, 200, 300, 400, and 500 m) around each stream 
or wetland. 

To understand bias and scale effects associated with mapping riparian land cover 
data, we compared proportions from the NLCD and photo-interpreted data for the 
cover classes within each buffer width. Land cover proportions were plotted across 
the range of buffer widths to quantify the type and magnitude of differences between 
the data types as well as the effect of changing spatial extent with increasing 
distance from the stream or wetland. Comparisons between the photo and the NLCD 
data were performed by calculating the relative proportional differences between 
photo and NLCD data for each buffer width (e.g., [proportion of LU photo – 
proportion of LU NLCD]/ proportion of LU photo). To assess the potential effects of 
differences in the composition of the landscape matrix we performed these analyses 
independently for: (1) three predominately agricultural watersheds (“Most-Ag” – 
defined as the three streams with the highest proportion of agricultural land within 
the 500 m buffer, ranging from 69-85%), (2) three watersheds with the lowest 
proportion of agricultural land use in the 500 m buffer (“Least-Ag” – ranging from 
36-40%), and (3) all 12 watersheds combined. A similar stratification was conducted 
for wetland sites (“Most-Ag” – ranging from 57-73%; “Least-Ag” – ranging from  
0-5%). To quantify errors of commission (i.e., erroneously classifying a given cover 
type, e.g., classifying a pixel as agriculture when it is grassland) and errors of 
omission (i.e., failure to classify a given cover type, e.g., failure to classify 
residential land use properly) we performed pixel-to-pixel comparisons of the two 
data sets. Error estimates for 5, 30, 90, and 500 m buffers were calculated separately 
for the 12 streams and 36 wetlands to understand how the NLCD varied from the 
more highly resolved photo data, and how these differences varied with spatial 
extent of the analysis. For the purpose of our analyses we consider the photos to be 
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the more accurate data source, or ground-truth, recognizing that there is underlying 
error in both data sets and possible errors due to registration. 

Table 15.1. Cross walk of land cover classifications with Anderson classification. 

Photo Class NLCD Class Common Class / Anderson Anderson 
Level 

Contour Crop Row Crops Agriculture (ARC)  I 
Row Crop Row Crops Agriculture (ARC)  I 
High Intensity Commercial/Industrial/

Transport 
Commercial (COM)  

II 
Low Intensity Commercial/Industrial/

Transport 
Commercial (COM)  

II 
Large Farm 
Operation 

Commercial/Industrial/
Transport 

Commercial (COM)  
II 

Highway (Paved) Commercial/Industrial/
Transport 

Commercial (COM)  
II 

Livestock Commercial/Industrial/
Transport 

Commercial (COM)  
II 

Poultry Commercial/Industrial/
Transport 

Commercial (COM)  
II 

Cattle Commercial/Industrial/
Transport 

Commercial (COM)  
II 

Confined Feeding Commercial/Industrial/
Transport 

Commercial (COM) )  
II 

Gravel Pit/Mine Quarries/Strip 
Mines/Gravel Pi 

Commercial (COM) I 

Coniferous Evergreen Forest Forest (FO)  I 
Deciduous Deciduous Forest Forest (FO)  I 
Mixed Forest Mixed Forest Forest (FO) I 
Shrub Shrubland Forest (FO) I 
Grass Grasslands/Herbaceous Grass (FR) I 
Forage Crop Pasture/Hay Grass (GR)  I 
Hay Pasture/Hay Grass(GR) I 
Pasture Pasture/Hay Grass (GR) I 
Golf Course Urban/Recreational 

Grasses 
Grass (GR) I 

Right Of Way Urban/Recreational 
Grasses 

Grass (GR) I 

Grave Yard Urban/Recreational 
Grasses 

Grass (GR) I 
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Table 15.1 (contd.) 

Photo Class NLCD Class Common Class / Anderson Anderson 
Level 

Low Intensity Low Intensity Residential Low Intensity Residential 
(RLI)  II 

Small Farm Stead Low Intensity Residential Low Intensity Residential 
(RLI)  II 

Secondary Road 
(Paved) 

Low Intensity Residential Low Intensity Residential 
(RLI)  II 

Secondary Road 
(Un-Paved) 

Low Intensity Residential Low Intensity Residential 
(RLI)  II 

Local Road (Paved) Low Intensity Residential Low Intensity Residential 
(RLI)  II 

Local Road
 (Un-Paved) 

Low Intensity Residential Low Intensity Residential 
(RLI)  II 

Access Road (Paved) Low Intensity Residential Low Intensity Residential 
(RLI)  II 

Access Road
 (Un-Paved) 

Low Intensity Residential Low Intensity Residential 
(RLI)  II 

Rail Road Low Intensity Residential Low Intensity Residential 
(RLI)  II 

Robust Emergent Emergent Herbaceous 
Wetlands 

Emergent Wetland (PEM)
II 

Non-Persistent 
Emergent 

Emergent Herbaceous 
Wetlands 

Emergent Wetland (PEM)
II 

Bog/Fen Emergent Herbaceous 
Wetlands 

Emergent Wetland (PEM)
II 

Aquatic Bed Emergent Herbaceous 
Wetlands 

Emergent Wetland (PEM)
II 

Wet Meadow Emergent Herbaceous 
Wetlands 

Emergent Wetland (PEM)
II 

Pasture Emergent Herbaceous 
Wetlands 

Emergent Wetland (PEM)
II 

Reed Canary Grass Emergent Herbaceous 
Wetlands 

Emergent Wetland (PEM)
II 

Scrub-Shrub Woody Wetlands Forested Wetland (PFO) II 
Forested Woody Wetlands Forested Wetland (PFO) II 
Pond, Small Stream Open Water Open Water (POW) I 
Lake Open Water Open Water (POW) I 
River Open Water Open Water (POW) I 
High Intensity High Intensity Residential High Intensity Residential 

(RHI)  II 

To determine if there were scale effects related to grid cell size with respect to 
estimates of land cover proportions, we also resampled the photo classification at a 
series of cell sizes ranging from 0.5 to 120 m and recalculated the land cover 
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proportions. This analysis was repeated for all buffer widths to determine if any 
scale effects related to grain sizes were sensitive to the spatial extent of the data. 

15.3 RESULTS 

15.3.1 NLCD to Air-Photo Comparisons – Streams 

In the Most-Ag watersheds the NLCD classification essentially did not recognize the 
stream or its buffer (Figure 15.2A); thus, the classified land use for the 5-10 m 
buffers did not differ from the 100-500 m buffers. The NLCD data reported 85% 
rowcrop agriculture (ARC) and approximately 10% grassland (GR) at all buffer 
widths. In contrast, the air-photo classification reported 10-16% agriculture at the  
5-10 m buffer widths, increasing to a maximum of 78% in the 500 m buffer (Figure 
15.2B). As a result, when compared to the photointerpreted data, the NLCD data 
over-represented rowcrop agriculture by between 40-74% within one pixel width 
(~30 m) of the stream, diminishing to a difference of only 7% at 500 m (Figure 
15.3A). Commercial land use (COM) comprises a very small proportion of the 
landscape; however, the mapping bias for this land use was very similar to that of 
agricultural land use (Figure 15.3A). 

Figure 15.2. Land cover proportions surrounding streams in the 3 most and 3 least 
agricultural areas (RLI and RHI have been combined with COM for this figure). (A) Most Ag 
NLCD; (B) Most-Ag Photo; (C) Least-Ag NLCD; (D) Least-Ag Photo. 
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Figure 15.3. Relative proportional differences between air photo and NLCD within Most-Ag 
and Least-Ag streams (see Methods for calculations). (A) Most-Ag streams; (B) Most-Ag 
streams; (C) Least-Ag streams; (D) Least-Ag streams. 

Figure 15.4. Land cover proportions surrounding all streams and all wetlands (RLI and RHI 
have been combined with COM for this figure). (A) All Streams NLCD; (B) All Streams 
Photo; (C) All Wetlands NLCD; (D) All Wetlands Photo. 



 SCALE EFFECTS IN MAPPING RIPARIAN ZONES 283 

 

 

Figure 15.5. Relative proportional differences between air photo and NLCD within all 
streams and wetlands (see methods for calculations). (A) Streams; (B) Streams; (C) 
Wetlands; (D) Wetlands. 

 
 

Figure 15.6. Land cover proportions surrounding wetlands in the 3 most and least 
agricultural areas (RLI and RHI have been combined with COM for this figure). (A) Most-Ag 
NLCD; (B) Most-Ag Photo; (C) Least-Ag NLCD; (D) Least-Ag Photo. 
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Figure 15.7. Relative proportional differences within most and least agricultural wetlands 
(see methods for calculations). (A) Most-Ag wetlands: Grass, open water; (B) Most-Ag 
wetlands: agriculture, forest, grassland, emergent wetland, forested wetland, open water, 
low-density residential, high-density residential; (C) Least-Ag wetlands: agricultural land 
use; (D) Least-Ag wetlands: forest, grassland, emergent wetland, forested wetland, open 
water, low-density residential, high-density residential. 

All other land use classes were under-represented in the NLCD relative to the 
photo in these Most-Ag watersheds. In the air-photo classification, slightly more 
than 50% of the riparian land cover within the 10 m buffer was classified as a 
permanent wetland (PEM, PFO) (Figure 15.2B), but less than 1% of that buffer was 
classified as wetland by the NLCD (Figure 15.2A). The proportion of grassland was 
fairly similar in the air-photo and NLCD classification (10% versus 16%; Figure 
15.2A, B), but the air-photo classification reported more forest (FO), particularly 
within the first 30 m (15-20%; Figure 15.2B) compared to the NLCD (4%; Figure 
15.2A).  

In Least-Ag watersheds, where no single land use type dominated the matrix, the 
NLCD overestimated the amount of agricultural land, by more than 8 times (Figure 
15.3C), classifying the 10 m buffer as ~25% agricultural (Figure 15.2C), compared 
with approximately 3% in the air-photo data (Figure 15.2D). Although low-density 
residential (RLI) and commercial areas represent a very small proportion of the 
watershed as a whole, the NLCD data completely missed these land uses (Figure 
15.2C, 2D, 3D). Unlike the Most-Ag watersheds, the NLCD and photo 
classifications of permanent wetlands in Least-Ag watersheds were fairly similar. 
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Proportions of forest and grasslands for both classifications also were within 5% of 
one another across all buffer widths (Figure 15.3D). 

Across all twelve streams, differences between the photo and the NLCD were 
dampened; the greatest differences were observed within the first 10 m (Figure 
15.4A, 4B), with agriculture being over-represented in the NLCD by 2-4 times 
relative to the photo (Figure 15.5A). Grasslands, followed by forests, exhibit the 
smallest differences between the two data sets across all buffer widths (Figure 
15.5B). 

15.3.2 NLCD to Air-Photo Comparisons – Wetlands 

The wetlands study area had slightly less agricultural landuse than the stream study 
area at the scale of the 500 m buffers (65% versus 78% measured in photos). In 
wetland riparian zones within Most-Ag areas, grassland and open water (POW) 
classes displayed the largest discrepancies between the two data sources (Figure 
15.6A, 6B). Grassland was greatly over-represented in the NLCD within the first 
pixel width (~30 m), while open water was over-represented out to 200 m and then 
converged with NLCD at buffers greater than 200 m (Figure 15.7A). Agricultural 
land use within the 5-10 m buffers was also over-represented, but to a much smaller 
extent than in streams, and the proportions converged beyond 30 m. Forest cover 
was generally under-represented close to the wetland, and over-represented at 
buffers greater than 300 m from the wetland (Figure 15.7B). Low-density residential 
and commercial land uses were consistently under-represented by the NLCD across 
all buffer widths. 

In the Least-Ag wetlands essentially no agricultural land use was observed in the 
air-photo classification, at buffer widths less than 300 m (Figure 15.6D), while the 
NLCD showed approximately 10-15% agricultural land cover across all buffer 
widths (Figure 15.6C). Open water also was over-represented in the NLCD relative 
to the photo within the first 200 m of the wetland (Figure 15.6C, 6D, 7D). Low-
density residential land was not detected in the NLCD data in the first 90 m 
surrounding the wetlands, and thereafter was under-represented, relative to the photo 
data (Figure 15.7D). Forest cover was also under-represented in the NLCD data 
within the first 5 m of the wetland, but converged with the photo data beyond that 
distance. 

Across all 36 study wetlands, the NLCD data were relatively similar to the 
photos (Figure 15.4C, 4D), with the exception that NLCD over-represented 
agriculture by approximately 7 times within the 5 m buffer, decreasing to 3 times 
within the 10m buffer (Figure 15.5C). Grassland also was over-represented in the 
NLCD for the first 10 m surrounding the wetlands (Figure 15.5D). 

15.3.3 Effects of Changing Spatial Extent 

Differences between the photo and NLCD classifications for most land use types 
diminish with increasing buffer distances, albeit to different magnitudes for the two 
ecosystem types and landscape matrix types (Figures 15.3, 15.5, 15.7). A notable 
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exception is open water and forest cover in Most-Ag wetlands (Figure 15.7A, 7B). 
Emergent wetlands are underestimated by NLCD at approximately the same rate as 
forested wetlands within the first 30 m, but beyond that emergent wetlands converge 
with NLCD, while forested wetlands remain under-represented across all buffer 
extents. 

In Most-Ag streams, areal measures of agricultural land use for both data sets 
converge at around 60 m, although nearly a 10% difference (relative to the photo 
data) persists beyond that point (Figure 15.2A, 2B). In the Least-Ag watersheds 
differences between the two data sets diminish rapidly within the first 60 m, but do 
not converge to the same extent (Figure 15.2C, 2D, 3C). Relative to the photo, the 
NLCD continues to over-estimate agricultural land use by 30% at the largest spatial 
extent (500 m). Responses across the 12 study watersheds are intermediate; relative 
to photos, NLCD measurements of agricultural land use is over-estimated by 17% at 
the largest spatial extent (Figures 15.4A, 4B, 5A).  

15.3.4 Classification Error 

Classification concordance between the photo and NLCD were low across all buffer 
widths and both ecosystem types (Figure 15.8). Not surprisingly, classification 
differences were greatest at the sub-pixel level, but persisted to the 500 m buffers. 
Overall errors were similar for wetlands and streams at the 5 m buffer width, but at 
wider buffers error rates were higher for wetlands than streams (Figure 15.8).  

 

Figure 15.8. Overall mapping accuracy of NLCD data for 30- and 500- m buffers for all 
stream and wetland study sites, based on a comparison with airphoto data. 

In the stream analyses, classification differences were high across all scales, but 
highest at narrow (30 m or less) buffer distances (Table 15.2). A pixel-by-pixel 
comparison of classification errors shows that, while 81% of pixels that were 
agricultural in the air-photos were correctly classified in the NCLD data, 37-55% of 
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pixels that were commercial, emergent wetland, grassland, and low-density 
residential, and 100% of high-density residential pixels were erroneously classified 
as agriculture by NLCD (Table 15.2). This effect persisted at greater spatial extents; 
in the 500 m buffer, 40-50% of grassland, emergent wetland, high-density 
residential (RHI) and commercial were still misclassified as agriculture (Table 15.2). 
Not surprisingly, agriculture and grassland are most frequently confused with one 
another in the NLCD. 

Table 15.2. Error analysis. Column values represent errors of omission (a land cover type 
classified as something else); row values represent errors of commission (other classes 
classified as that particular land cover type). Values on the diagonal represent the proportion 
that is correctly classified. Abbreviations can be found in Table 15.1.    

30 meter buffer - Streams 

NLCD ARC FO GR PEM PFO POW RLI RHI COM 
Com-

mission 
ARC 0.81 0.31 0.43 0.55 0.31 0.32 0.49 1.00 0.37 3.76 
FO 0.03 0.42 0.05 0.05 0.37 0.12 0.07 0.00 0.09 0.77 
GR 0.14 0.22 0.49 0.11 0.10 0.20 0.32 0.00 0.47 1.57 

PEM 0.01 0.01 0.02 0.26 0.08 0.22 0.01 0.00 0.00 0.33 
PFO 0.00 0.04 0.00 0.02 0.15 0.01 0.01 0.00 0.00 0.08 
POW 0.00 0.00 0.00 0.00 0.00 0.13 0.00 0.00 0.00 0.01 
RLI 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 
RHI 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

COM 0.00 0.00 0.01 0.00 0.00 0.00 0.09 0.00 0.08 0.11 

0.19 0.58 0.51 0.74 0.85 0.87 0.99 1.00 0.92  

500 meter buffer - Streams 

 
Com-

ARC 0.83 0.27 0.52 0.47 0.27 0.27 0.48 0.04 0.40 2.71 
FO 0.02 0.47 0.04 0.06 0.35 0.14 0.06 0.01 0.05 0.72 
GR 0.14 0.24 0.42 0.15 0.13 0.20 0.37 0.09 0.47 1.79 

PEM 0.00 0.01 0.01 0.30 0.14 0.13 0.00 0.00 0.00 0.30 
PFO 0.00 0.01 0.00 0.01 0.11 0.01 0.00 0.00 0.00 0.04 
POW 0.00 0.00 0.00 0.00 0.00 0.26 0.00 0.00 0.00 0.00 
RLI 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.43 0.00 0.44 
RHI 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.26 0.00 0.01 

COM 0.00 0.00 0.01 0.00 0.00 0.01 0.04 0.17 0.07 0.24 

0.17 0.53 0.58 0.70 0.89 0.74 0.97 0.74 0.93  

   

Omis-
sion 

ARC FO GR PEM PFO POW RLI RHI COM mission 

Omis-
sion 
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Table 15.2 (contd.) 

30 meter buffer - Wetlands 

 
ARC 0.30 0.07 0.22 0.12 0.13 0.14 0.17 - 0.00 0.85 
FO 0.07 0.46 0.10 0.11 0.19 0.05 0.15 - 0.04 0.71 
GR 0.38 0.25 0.44 0.22 0.17 0.31 0.53 - 0.96 2.82 

PEM 0.18 0.17 0.22 0.45 0.28 0.45 0.14 - 0.00 1.44 
PFO 0.06 0.04 0.01 0.06 0.17 0.01 0.01 - 0.00 0.19 
POW 0.01 0.01 0.00 0.05 0.06 0.04 0.00 - 0.00 0.13 
RLI 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - 0.00 0.00 
RHI 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - 0.00 0.00 

COM 0.00 0.00 0.00 0.00 0.00 0.00 0.01 - 0.00 0.01 

sion 0.70 0.54 0.56 0.55 0.83 0.96 1.00 - 1.00  

500 meter buffer - Wetlands 

 ARC FO GR PEM PFO POW RLI RHI COM 
Com-

mission 
ARC 0.62 0.06 0.29 0.10 0.09 0.06 0.13 0.01 0.17 0.89 
FO 0.04 0.61 0.08 0.11 0.33 0.09 0.13 0.11 0.16 1.05 
GR 0.31 0.23 0.54 0.18 0.16 0.10 0.57 0.03 0.63 2.21 

PEM 0.03 0.04 0.07 0.54 0.18 0.19 0.03 0.00 0.02 0.56 
PFO 0.00 0.02 0.01 0.04 0.23 0.03 0.01 0.00 0.00 0.12 
POW 0.00 0.00 0.00 0.02 0.01 0.53 0.00 0.08 0.00 0.12 
RLI 0.00 0.03 0.01 0.00 0.00 0.00 0.12 0.70 0.00 0.75 
RHI 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.00 0.00 

COM 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.02 0.02 

0.38 0.39 0.46 0.46 0.77 0.47 0.88 0.93 0.98  

The NLCD classification around wetlands was less concordant with the air-photo 
classification than around streams. Only emergent wetlands had higher classification 
concordance in wetlands than streams, for both the 5 m and the 500 m buffer widths 
(Table 15.2). At 30 m, 44-46% of forest cover, grassland, and emergent wetland 
were classified similarly between the photo and NLCD. Within the 30 m buffer, 
agriculture was correctly classified by the NLCD only 30% of the time. The NLCD 
under-represented the amount of agriculture in this narrow buffer, confusing these 
areas with grasslands 38% of the time. At 500 m, classification concordance 
improved substantially for all classes except emergent wetlands and commercial 
land. Correct classifications ranged from 53% to about 62% for agricultural land 
use, forest, grassland, emergent wetland and open water. Agricultural land use was 
misclassified as grassland 29% of the time by NLCD.  

ARC FO GR PEM PFO POW RLI RHI COM mission 
Com

Omis-

Omis-
sion 

- 
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15.3.5 Grain Size Effects 

Although these differences between the NLCD data and the photo data might be 
attributed to scaling up to a larger grain size, we don’t believe they are. After 
recalculating land cover proportions for the resampled land cover maps (essentially 
scaling up the photo data), we found that, in general, the estimates of proportional 
land cover were quite insensitive to grid cell size – there was very little change in 
the proportions of land cover, even between the extremes of grid cell sizes. This 
insensitivity to grain size was consistent across all buffer distances (Figure 15.9). 
We did observe a few instances in which classes such as light residential, which 
were initially present in low abundance (<1% of the landscape), “disappeared” as 
the aggregation process caused these types to be subsumed into more dominant 
classes. 

Figure 15.9. Visual effects of resampling aerial photo derived land cover data from 0.5 m to 
30, 60 and 90 m. 

15.4 DISCUSSION 

Many ecological assessments employ remotely sensed data such as Landsat or other 
space-borne sensors to quantify anthropogenic stress factors, such as land use, 
human-induced changes in landscape pattern, or alteration of riparian zones. These 
data cover broad geographic extents, are collected with relative frequency, and have 
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been shown to be good predictors of ecological health or impairment. It is 
uncommon, however, to consider the uncertainty resulting from classification errors 
or spatial resolution as part of the assessments, or in the use of these data as inputs to 
predictive models (Li and Wu, Chapter 3). Even more rarely are these errors 
analyzed in a spatially explicit manner, as we did here. These errors appear to be 
particularly problematic in quantifying the composition and spatial structure of 
riparian ecosystems, which have unique attributes that make them ecologically 
important but difficult to quantify with traditional Landsat-based classifications such 
as the NLCD.  

In this study we developed spatially explicit assessments to determine if 
accuracy varies spatially according to specific features in the landscape, particularly 
wetlands, streams and the riparian zones near them. Our results show that, in the 
Midwest, accuracy does indeed vary spatially in relation to these important 
landscape features. This uncertainty results from challenges inherent in the 
classification of satellite imagery as well as landscape context and structure of the 
area under consideration. 

15.4.1 Classification Issues 

Although state level NLCD classification accuracies are not yet available for 
Minnesota, accuracy assessments are available for the eastern United States 
(Stehman et al. 2003). Overall, the classifications generally meets the standards, 
established by Anderson et al. (1976), at Level I, but are inadequate for Level II. 
Nearly half of the land cover classes we used were Level I, which had significantly 
better accuracies (Table 15.1).  

While the 30 m resolution data has proven to be effective for watershed-scale 

features such as riparian vegetation. Congalton et al. (2002) also found that there 
were large discrepancies between air-photo and Landsat TM classifications of 
riparian vegetation structure that were attributed to the inherent diversity of riparian 

channels between their two data sources. Essentially, these discrepancies result from 
differences in grain size (resolution), map registration, temporal differences, 
classification method (manual vs. statistical), classification level, and classification 
error.  

to reduce the number of isolated pixels, satellite classification procedures are 
fundamentally different than manual interpretation of air photos, in which the 

analyses (Johnson and Gage 1997, Hernandez et al. 2000, Jones et al. 2001), 
the present analyses suggest that it is relatively ineffective for quantifying fine-scale 

imposing a raster grid over these narrow features potentially causes the stream 

Riparian zones are highly diverse with respect to soil, moisture and topography 

vegetation, the linear arrangement of riparian zones, and the displacement of stream 

and have diverse vegetative communities that vary at sub-pixel scales. Super- 

itself, riparian vegetation and upland vegetation to be included in an individual 
pixel, resulting in classification error. This effect may be compounded by regist- 
ration errors. In addition, supervised or unsupervised image classifications op- 
erate on an individual pixel basis. While post-classification filtering is often used 
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interpreter can use adjacency, contextual and other visual cues to generate polygon-
based classifications.  

Potential annual and inter-annual differences in wetland extent, as well as 
differences in both the width and location of a stream channel between the photo and 
the NLCD dates may also contribute to classification differences. Finally, 
similarities in the spectral response of certain land cover types (e.g., grasslands, 
crops) present a technical challenge that is independent of the resolution of the data. 

Using a larger range of grid cell sizes for testing grain size effects, Turner et al. 
(1989) reported that any land cover present in less than 50% would ultimately be 
lost at coarser resolutions. At the range of grid cell sizes in our study, however, this 
scale effect was quite weak. A key point made by Turner et al. (1989) and also by 
Saura (2002) is that the rate at which land cover types are lost with increasing grain 
size is controlled by the spatial arrangement of cover types – specifically, features 
with a high level of contagion disappear at a slower rate than more disaggregated 
types. The continuous linear nature of riverine wetlands and other riparian features 
may contribute to the persistence of these types with increasing grain size. 

Other landscape metrics, such as dominance and contagion (Turner et al. 1989) 
or mean patch size and landscape shape indices (Wu 2004) do show predictable 
sensitivities to grid cell size. Turner et al. (1989) reported a decrease in dominance 
and contagion with increasing grid cell size, and that this response was a stair-step 
function that was strongly related to changes in the numbers of land cover classes. 
Our resampling exercise would likely show similar trends in patch shape, edge and 
other metrics (Figure 15.9), but it is interesting to note that proportional abundances 
of riparian cover types were preserved when grid cell sizes were changed over 
approximately three orders of magnitude. This relative insensitivity to grain size 
implies that classification accuracy and map extent are more important in modeling 
riparian attributes than map grain. 

15.4.2 Landscape Context 

In a largely agricultural region in the Midwestern US, we found that there were large 
differences in the ability of the NLCD and air-photos to classify land use in riparian 
zones, but these differences were exacerbated when the landscape matrix was 
dominated by rowcrop agriculture. The ecosystem type (wetland versus stream) 
around which the riparian zone was examined also influenced the direction and 
magnitude of the discrepancies between the NLCD and the air-photos.  

Riparian zones are inherently variable ecosystems, due to the gradients in soils, 
moisture, and topography that control vegetation patterns, as well as disturbance type 
and frequency (Gregory et al. 1991, Décamps 1996, Naiman et al. 2000). As a result, 
riparian vegetation communities are very diverse and therefore difficult to map 
accurately using satellite image classification methods (Muller 1997, Congalton et al. 
2002). There is also a regional component underlying the inability of Landsat imagery 
to accurately map riparian land use and cover. In the Midwestern US, the headwaters 
of small streams (not originating in wetlands) are highly accessible to mechanized 
equipment and are therefore vulnerable to anthropogenic disturbances including 
channelization and vegetation removal (L. Johnson, personal observations). Intensive 
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land use practices in these agricultural areas frequently result in removal of woody 
riparian vegetation and conversion to herbaceous plant communities or narrow 
wooded buffer strips on stream banks with row crops planted to the edge of the 
bank. The intact patches of forest vegetation that remain vary in size and 
composition depending on stewardship practices of private landowners. As a result, 
many riparian buffer strips are much narrower than the 30 m resolution of Landsat 
imagery.  

Primarily as a result of the narrow configuration of the riparian buffer strips, the 
magnitude of classification error was striking. Since confusion exists among both 
land uses that might ameliorate the problems associated with agricultural land use 
(emergent wetlands, grasslands and forest), and those that exacerbate it (high-
intensity residential and commercial), these classification errors have the potential to 
generate additional uncertainty when modeling ecosystem processes.  

The fact that commonly accessible satellite imagery does not accurately map 
riparian zones has large implications for researchers and managers. Ecological 
processes across the riparian zone occur at a number of spatial scales, many of 
which are finer than the spatial resolution of Landsat sensors. The immediate 
stream/land interface is characterized by a number of material transfer processes, 
including inputs of groundwater and overland flow, associated transports of 
sediments and nutrients, and delivery of fine organic matter. Expanding this 
interface to the 5-10 m buffer includes processes such as shading, delivery of coarse 
organic matter, entrainment of particulates, and use of the buffer as a migration 
corridor. Clearly, misrepresentation of these immediate features due to classification 
error will increase the uncertainty in predictions of how stream biological, chemical, 
and physical properties respond to land use, as well as subsequent management 
policies created to sustain riparian function. Based on our analyses, NLCD data 
would overestimate the amount of rowcrop agriculture and underestimated other 
land cover classes in this heavily agricultural landscape. As a result, models 
predicting the potential effect of rowcrop agriculture on in-stream processes, such as 
primary production or eutrophication, would not accurately reflect the effects of land 
use and land cover, since riparian vegetation that could potentially provide shade, or 
ameliorate nutrient and sediment inputs would not have been evident.  

Land cover types within riparian zones have adjacency relationships that are 
dissimilar to those in other parts of the watershed. These relationships are due to 
both landscape physiognomy (e.g., topographic conditions favor the development of 
wetlands along streams) and human activities (farmers may be less likely to clear 
riparian forests for agriculture). The present study indicates that the NLCD scale of 
classification does not effectively capture these relationships. Since there are 
specific ecological or hydrological processes associated with these adjacent systems, 
such as the wetland’s role in retaining sediments, not accounting for these elements 
would likely result in overestimating the amount of environmental stress on the 
system. This could then lead to overestimating the ability of a stream or wetland 
ecosystem to recover from that stress. 
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15.4.3 Landscape Structure 

The discrepancies shown above are due in part to the spatial structure of these land 
cover types. The riparian systems we studied were embedded in an agricultural 
region where row crop agriculture constituted 56% and 49% of the study areas for 
streams and wetlands, respectively. The boundaries of agricultural fields are 
typically defined in two ways – as topographic breaks, which often correspond to 
boundaries of riparian systems, and ownership or road boundaries. For economic 
and logistic reasons, patches in agricultural land use tend to be large and have fairly 
simple shapes. The mean sizes of agricultural patches were 12.2 and 28.6 ha in the 
stream and wetland systems, respectively; mean patch sizes for all other types 
combined ranged from 0.4 to 5.9 ha. The lowest perimeter-area ratios, an index of 
shape complexity, occurred in the agricultural, commercial, and high-intensity 
residential land use types – all these were less than 0.06 m m-2, compared with the 
range of 0.25 to 0.46 m m-2 for forests, permanent wetlands, and grasslands. The 
raster nature and resolution of TM satellite imagery makes it poorly suited to 
identifying small features with complex boundaries (Benson and MacKenzie 1995, 
Moody and Woodcock 1995), which characterize wetlands and forest systems 
within riparian zones. As the proportion of agriculture increases as it did from the 
Least- to Most-Ag study sites, these patterns should become even more pronounced. 

Many anthropogenically-modified landscapes exhibit a certain level of self-
similarity across some range of scales. Krummel et al. (1987), for example, found 
that human activities structure the landscape at grain sizes up to 73 ha; forest patches 
in the range of 28-73 ha tend to have rectangular or simple shapes related to land use 
patterns or survey and township divisions. Above this range, topographic and 
hydrological patterns produce patches that have higher fractal dimensions (i.e., more 
complex shapes). Our results indicate that the topography and hydrology generate 
complex patterns at finer scales as well – the immediate patterns observed adjacent 
to stream and wetland systems. These riparian systems are fundamentally different 
from the agricultural matrix in both composition and spatial structure. This is related 
again to the interactions of physiognomy and human land use within riparian zones, 
which promotes the formation of narrow features with complex boundaries oriented 
in parallel to the stream channel or concentrically around open-water wetlands. 

15.5 CONCLUSIONS: IMPLICATIONS FOR SCALING 

Remotely sensed data from aerial photography and space-borne sensors have had 
wide applications in watershed assessments. In previous studies, we have used 1-ha 
resolution air-photo data to quantify variation in water chemistry (Johnson et al. 
1997), stream macroinvertebrates and habitat in agricultural landscapes (Richards  
et al. 1996), and 16 ha resolution Land Use/Land Cover (LUDA) data for 
quantifying variation in stream macroinvertebrates and habitat characteristics in 
heavily forested landscapes (Richards and Host 1994). Numerous researchers have 
conducted similar analysis. In all these studies, however, there were significant 
amounts of unexplained variation in the response variables, which can be attributed 
to both the natural variation in the variable, as well as not incorporating other causal 
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variables. A chronic and well-documented shortcoming in all these analyses is the 
lack of fine-scale information on riparian condition (Richards et al. 1996).  

The NLCD data used here is no exception. The National Land Cover 
Characterization Project has provided 30 m coverage of 21 land use classes over the 
conterminous United States. This ambitious project has created a publicly available 
dataset with wide variety of applications, including environmental inventories, 
watershed assessments, and fire risk assessment (Vogelmann et al. 2001). It is 
important to consider, in any modeling, analysis, or planning effort, the appropriate 
scale of the source data relative to the questions being asked. In this study, we have 
shown that there are limitations to the NLCD (and to other Landsat or coarser) scale 
data that relate to data resolution, spatial extent, and classification resolution for 
fine-scale landscape features, in particular, riparian communities along streams and 
wetlands. The scale of ecological processes at the interface of terrestrial and aquatic 
systems is well below the spatial resolution of Thematic Mapper data. 

In spite of these limitations, remotely sensed data remains a valuable tool for 
ecological assessment. As higher resolution data, in the form of SPOT, IKONOS, 
Radarsat and Quickbird imagery receive more widespread use, we will have an 
increased ability to incorporate causal information at finer spatial scales. These new 
data sources will improve both our analytical and modeling efforts, as well as the 
management interpretations that stem from them.  
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CHAPTER 16 

SCALE ISSUES IN LAKE-WATERSHED INTERACTIONS: 

Assessing Shoreline Development Impacts on Water Clarity 

CAROL A. JOHNSTON AND BORIS A. SHMAGIN 

16.1 INTRODUCTION 

Lakes are valued for their recreational benefits and aesthetics, clearer lakes being 
more desirable than murky lakes. Lake water clarity is affected by the production of 
microscopic algae suspended in the water column, which is in turn affected by 
nutrient inputs to lakes. Certain human land uses within lake watersheds can 
increase waterborne nutrient fluxes to lakes, so regulations that restrict land use to 
protect lake integrity are widely accepted. Maine, Minnesota, and Wisconsin have 
implemented land use zoning laws within the shorelands surrounding lakes 
statewide. Lakeshore zoning programs also exist for large regions within Michigan 
(Great Lakes Shorelands Management Program) and New York (Adirondack Park, 
New York City Watershed). 

Shoreland zoning limits human activities within the lake/land interface, with the 
underlying assumption that land perturbations proximal to the lake have the greatest 
effect on water quality. However, more distal portions of watersheds may have a 
greater effect if streams provide efficient pathways of connection between upland 
and lake (see Wickham et al., Chapter 12, Jones et al., Chapter 11). Subsurface 
ground water flow into lakes often influences lake water and chemical budgets to a 
greater extent than surface water inflow, and the spatial extent of regional ground-
water systems may be considerably different than the spatial extent of land surface 
draining into lakes (Winter et al. 1998). Furthermore, within-lake processes may 
override the influence of incoming materials from the watershed. Understanding of 
the relative importance of proximal vs. distal, surface water vs. ground water, and 
watershed vs. in-lake processes is essential to enlightened lake management. 

In Minnesota, shoreland regulation was enacted in 1989 (Minnesota Regulations 
Parts 6120.2500-6120.3900). Statewide standards, implemented by county and city 
governments, set guidelines for the use and development of shoreland property. 
Minnesota defines lake shoreland as lands within 1000' from the ordinary high water 
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level of lakes larger than 25 acres (10 acres in municipalities). The regulations are 
implemented by a hierarchy of political entities operating over different spatial 
scales: (1) the state sets minimum standards, (2) counties and municipalities 
implement zoning ordinances, (3) lake area differentiates larger lakes subject to 
regulation from small lakes that are not, and (4) shoreland is the area within which 
land use activities are regulated. Shoreland regulation is not mandated at the federal 
level, but Section 305(b) of the Federal Water Pollution Control Act provides 
impetus to states to improve lake water quality (EPA 2002). 

The ecoregion scale has also been embraced by state agencies responsible for 
protecting Minnesota’s lakes, because the biology and chemistry of Minnesota’s 
lakes was regionally variable even before the arrival of European settlers. Studies of 
reference lakes, deemed to be representative and minimally impacted by humans, 
have shown large differences among Minnesota’s four major ecoregions in 
transparency, phosphorus, and chlorophyll concentrations, measures of lake water 
quality (Heiskary and Wilson 1989). These studies resulted in different phosphorus 
target concentrations for lakes in these ecoregions (Heiskary and Walker 1988). 

The Minnesota Department of Natural Resources (MDNR) funded this and a 
companion study to investigate the relationship between development and the 
condition of lakes within the Northern Lakes and Forests and North Central 
Hardwood Forest ecoregions. The research had the specific goal of creating a 
methodology to assess the cumulative effects of development on lakes by relating 
indicators of human activity to indicators of environmental condition. The methods 
used in the research were statistical analysis of landscape empirical relationships 
using a very large sample size (Johnston and Shmagin 1999). 

The analysis of scaling effects was not an a priori goal of this research. By 
specifying two separate ecoregions, the MDNR demonstrated an awareness of the 
concept that spatial extent could be delimited so as to minimize spatial heterogeneity 
due to underlying natural variability. Apart from this initial definition of extent, 
however, addressing scaling issues was not a specific goal of the management 
agency. Despite the relative lack of scaling design, a number of scaling issues 
emerged from the research as unanticipated findings, as discussed at the conclusion 
of the paper. 

16.2 METHODS 

The overall approach used in this study was to statistically analyze empirical data 
for multiple lakes and their surrounding landscapes. Data consisted of three types: 
(1) GIS databases defining the spatial extents of lakes, shorelands, and watersheds, 
(2) databases of lake transparency data from field measurements, and (3) databases 
of lake, shoreland and watershed characteristics, primarily GIS-derived. Only 
existing databases and GIS-derived data were used; no new field data were collected 
for the study due to funding limitations. 



 SCALE ISSUES IN LAKE-WATERSHED INTERACTIONS 299 

 

16.2.1 Study Region 

The Northern Lakes and Forests (NLF) ecoregion (Omernik 1987) covers 68,243 
km2 in northeastern Minnesota, nearly 1/3 of the state. Split by three major drainage 
divides, the waters of the NLF region ultimately flow to the St. Lawrence Seaway, 
Hudson Bay, and the Gulf of Mexico. As its name implies, the ecoregion is 
primarily covered by forests (75% of ecoregion area) and lakes and marsh (11% of 
ecoregion area), with relatively little agriculture (5% cultivated land, 7% pasture & 
open land: Heiskary and Wilson 1989). Population of the shoreland zone is quite 
variable, however, with human populations ranging from 0 to 5,754 people in the 
shoreland zone (Johnston and Shmagin 1999). The abundance of lakes, lack of 
agriculture, and wide range of shoreland population make the NLF ecoregion an 
ideal region to study the effects of lakeshore development on lake quality. 

Lakes in the NLF ecoregion are some of the cleanest in the state (MPCA 1999). 
Fully 26% of the lakes in the NLF ecoregion are oligotrophic (i.e., nutrient 
depauperate), in comparison with only 4% of the lakes in the Central Hardwood 
Forests ecoregion. In recognition of the exceptional water quality in the ecoregion’s 
lakes, the Minnesota Pollution Control Agency (MPCA) has set lower thresholds for 
phosphorus concentrations that threaten swimmable use: 30 µg L-1 in the NLF 
ecoregion vs. 70 µg L-1 in the Western Corn Belt Plains and Northern Glaciated 
Plains ecoregions. These thresholds take into account regional differences in citizen 
user perceptions and values from minimally impacted lakes. 

16.2.2 Defining Extents of Spatial Entities 

16.2.2.1 Lakes 

The unique identification of lakes within the study region was crucial to ensure that 
indicators of lake condition (derived primarily from EPA’s STORET database) were 
linked to the appropriate GIS-derived landscape data. A coding system for uniquely 
numbering the thousands of lakes in Minnesota, commonly referred to as the 
Division of Waters (DOW) lake identification system, was used by Minnesota state 
agencies that submit lake condition data to STORET (Minnesota Conservation 
Department 1968). Lake identifiers used by other federal agencies (e.g., for lakes in 
Chippewa and Superior National Forests) had to be converted to the DOW system. 
We obtained, edited, and merged county-wide USGS Digital Line Graph hydro-
graphy databases to which DOW lake numbers had been added, and clipped the 
result with the mapped boundary of the NLF ecoregion. The resulting database 

16.2.2.2 Shorelands 

The shoreland zone was determined by using a GIS to establish a 1000' buffer 
around the edge of each study lake, consistent with the regulatory definition of 
shoreland zone. Because lakes were often closer than 1000' from each other, the 

contained 5,408 lakes with area >10 ha, hereafter referred to as the NLF Lakes 
Database (Johnston and Shmagin 1999). 
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shoreland zone of one lake often intersected the shoreland zones of other lakes. 
Therefore, it was necessary to iteratively generate a shoreland zone buffer for each 
study lake, and use it to clip out shoreland land use/land cover data for each 
individual lake. This process was accomplished by an ARC/INFO AML program 
that repeatedly selected a lake, generated its buffer, measured buffer area, and 
clipped out and saved shoreland data. 

16.2.2.3 Watersheds 

Although MDNR is in the process of mapping the watersheds for individual lakes in 
the state, that work was not completed when this study was done. Alternatively, we 
used an existing digital database of stream watersheds (average area = 40 
km2/watershed) that had been manually delineated and digitized by the Minnesota 
Department of Natural Resources, referred to as “minor watersheds” (http://lucy. 
lmic.state.mn.us/metadata/wshed95.html). This minor watershed coverage was 
intersected with the NLF Lakes database to determine lake occurrence within the 
minor watersheds. Of the 1189 minor watersheds in the NLF ecoregion that 
contained lakes, there was a median of three lakes per watershed. All lakes 
occurring within a minor watershed were assigned the same watershed attributes. 

16.2.2.4 Ecoregion 

Original boundaries of the NLF ecoregion, developed for a national aquatic 
ecoregion map by the U.S. Environmental Protection Agency (Omernik 1987), were 
recompiled by the Minnesota Pollution Control Agency to match MDNR minor 
watershed boundaries. The “Minnesota Ecological Classification System” 
(http://www.dnr.state.mn.us/ecs/index.html) is a finer scale eco-regionalization 
system developed by the MDNR Division of Forestry which aided in the 
interpretation of results. 

16.2.3 Dependent Variable: Secchi Transparency 

Secchi transparency was used as the measure of lake condition. Secchi depth is a 
simple measurement whereby a 20 cm black and white disk is lowered into a lake 
until it is no longer visible by an observer at the surface. This depth of disappearance 
is a measure of the transparency of the water, and is usually related to the trophic 
state of the lake (Carlson 1977). Lakes that are oligotrophic are clear, nutrient poor, 
and low in chlorophyll A due to lack of algal production. “Eutrophication” occurs 
when the addition of nutrients (particularly phosphorus) increases the primary 
productivity of algae suspended in lake water, thereby decreasing water clarity 
(Smith 1979). Lakeshore development can accelerate eutrophication by contributing 
nutrients to lake water from leaking septic systems, lawn fertilization, runoff from 
impervious surfaces, and eroded phosphorus-rich soil particles (Anderson et al. 
1999, Garn 2002).  
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Secchi transparency is usually interpreted as an indicator of eutrophication, but it 
can also be affected by factors unrelated to eutrophication, such as dissolved organic 
compounds or suspended sediments in the water column. Data on lake Secchi depths 
were retrieved from the U.S. Environmental Protection Agency’s STORET database 
and from the Minnesota Department of Natural Resources Fisheries Data Warehouse 
(FDW), a repository of lake survey data collected by the Fish and Wildlife Division 
(Scidmore 1970). Secchi transparency data were matched in time to correspond with 
the time periods represented by available land use/land cover data: 1977-1979 and 
1994-1996 (see Shoreland Land Use and Population Characteristics section below). 

16.2.4 Independent Variables: Lake, Shoreland and Watershed Characteristics 

Given the objective of the study, to investigate the relationship between development 
and the condition of lakes, we utilized a number of independent variables quantifying 
shoreland land use and population characteristics (Table 16.1). Natural as well as 
anthropogenic factors are known to affect lake condition, so we additionally 
characterized lake morphometry and watershed physical and soil characteristics. 
Because land use and population are subject to change over time, shoreland zone 
characteristics were period-specific, but lake and watershed characteristics were not. 

16.2.4.1 Lake morphometry 

Lake area and perimeter were measured by GIS using our NLF Lakes Database, and 
lake buffer area was measured by GIS as the area of the shoreland zone, the 
derivation of which is described below. These three variables were log-transformed 
to normalize their data distribution prior to statistical analysis. Maximum lake depth 
data were obtained from three state agencies: (1) the FDW, (2) lake assessments 
conducted by the Minnesota Pollution Control Agency pursuant to Section 305(b) of 
the Federal Water Pollution Control Act, and (3) the SWIM Lake Summary 
Database maintained by the Land Management Information Center of Minnesota 
Planning. In all cases, maximum lake depth was greater than Secchi transparency 
depth (i.e., the Secchi disk didn't hit bottom before it disappeared from view). 

16.2.4.2 Watershed characteristics 

Watershed physical and soil characteristics were obtained primarily from  
GIS databases included in the Minnesota Land Management Information  
Center’s MGC 100, a statewide 100 meter cell size raster database series 
(http://lucy.lmic.state.mn.us/). Minor watershed boundaries (see “Defining Extents 
of Spatial Entities”) were intersected with MGC 100 files for topography, soil 
characteristics, public land ownership, and proximity to roads (Table 16.2). 
Topographic and soil properties were selected due to their potential relationship to 
nonpoint-source pollution: topography drives water flow, surface and vadose soil 
textures can influence water runoff, the P content and erodibility of watershed soils 
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can influence P and suspended solids contributions to lakes, and watershed soil pH 
can influence lake pH. 

Table 16.2. Watershed-scale physical and chemical characteristics derived from Minnesota 
Land Management Information Center MGC 100 databases. 

Database Description Processing 

Elevation elevation in meters above 
mean sea level, derived 
from USGS 1-Degree DEM 
3- x 3-arc-second data 
spacing 

computed average watershed 
elevation (m), elevation range 
within watershed (m), and average 
slope of non-lake watershed area 
(%) 

Public Ownership ownership as of 1983 for 
land under federal, state, or 
county jurisdiction 

original 62 categories grouped into 
3 categories: wilderness, non-
wilderness public, and private; as 
% of non-lake watershed area 

Proximity to Highways 40-acre parcels adjacent to 
or containing roads and 
intersections 

original 26 categories grouped into 
3 categories: paved roads, unpaved 
roads, and no highway access; as 
% of non-lake watershed area 

MPCA Soil Materials surface soil texture original 9 categories grouped into 
5 categories; as % of non-lake 
watershed area 

MPCA Vadose Zone 
Materials 

soil texture in the vadose 
zone 

original 9 categories grouped into 
5 categories; as % of non-lake 
watershed area 

Available P in the 
Rooting Zone 

interpreted from Minnesota 
Soil Atlas 

4 categories: low, medium, high, 
variable from low to high; as % of 
non-lake watershed area 

Soil pH interpreted from Minnesota 
Soil Atlas 

11 original pH categories grouped 
into 6 categories: <5.5, 5.6-6.0, 
6.1-7.3, < 6.0, > 6.0, no_rating 

Surface K-factor soil erodibility factor (K) in 
the Universal Soil Loss 
Equation, interpreted from 
Minnesota Soil Atlas based 
on surface soil texture 

33 original K-factor categories 
grouped into 7 categories: 1-7,  
8-19, 20-24, 25-27, 28, 29-36, 
no_rating 

Lake Area, % of 
Watershed 
(LAKE:SHED) 

water area from MPCA Soil 
Materials file 

as % of total watershed area 

16.2.4.3 Shoreland land use and population characteristics 

The boundary of each shoreland zone was used to clip data from existing land 
use/land cover databases representing two different time periods: 1977-1979 and 
1994-1996 (Table 16.1). USGS Land Use/Land Cover had been mapped by 
interpretation of aerial photos taken in 1977-79, whereas the Minnesota 1990s 
Census of the Land had been derived from Landsat Thematic Mapper imagery. The 
two data sets have classification systems that are similar but not identical, the main 
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difference being that the Census of the Land distinguishes two agricultural classes 
(“cultivated” and “grassland”), and separates brushland from forest. 

A Shoreland Development Survey conducted in 1982 by MDNR was used as a 
source of housing data to correspond with the 1977-79 land use data. The original 
data, expressed as counts per lake of seasonal and permanent homes, were divided 
by GIS-derived lake and lake buffer areas to compute densities. The 1990 U.S. 
Census was used as a source of population data to correspond with the 1994-96 land 
use data. The number of people within the shoreland zone was computed by 
multiplying population per census block by the proportion of block area within the 
GIS-derived shoreland zone, and summing the results for the entire shoreland zone 
of each lake. A t-test for independent samples was used to compare Secchi 
transparency and maximum depth of lakes with no human population vs. lakes with 
one or more persons in the shoreland zone. 

16.2.5 Data Sets and Statistical Analysis 

In order to establish relationships between dependent and independent variables, we 
compiled data matrices containing both types of data. To be considered for analysis, 
a lake had to have Secchi transparency measured within 1977-79 or 1994-96, and a 
maximum depth measurement. Relationships between dependent and independent 
variables were thus established on three data sets: the 163 lakes sampled in 1977-79 
for which maximum depth and 1982 DNR Shoreland Development Survey data 
were available (“Data Set I”), the 321 lakes sampled in 1977-79 for which maximum 
depth data were available, which included the 163 lakes in the first data set (“Data 
Set II”), and the 575 lakes sampled in 1994-96 for which maximum depth data were 
available (“Data Set III”). 

Statistical analysis to assess the effects of environmental characteristics on 
Secchi transparency consisted of an exploratory phase and a multiple regression 
phase. In the exploratory phase, descriptive statistics were generated for each 
variable, the normality of the data was examined, and log10 transformations were 
performed on variables where necessary to stabilize the variance (Snedecor and 
Cochran 1980). In the multiple regression phase, we performed stepwise multiple 
regressions between Secchi transparency (dependent variable), and environmental 
characteristics. Independent variables were selected for inclusion in regression 
equations based on the magnitude of partial correlations with Secchi transparency. 
Selected variables were then included or rejected, using an F-test threshold of 4.0. 
All variables retained in the stepwise multiple regressions were significant at  
p < 0.05. 

We hypothesized that lake clarity would decrease with increasing shoreland 
development due to increased lake eutrophication associated with that development. 
Specifically, we hypothesized that Secchi transparency would be inversely related to 
the following measures of shoreland development (described in Table 16.1): 
BUFURB, SEASONHM, PERMANHM, SEASONLK, PERMANLK, SEASONBUF, 
PERMANBUF, PERSONS, PERSONLK, and PERSONBUF. We also hypothesized 
that Secchi transparency would be inversely related to the proportion of mining land 
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use in the shoreland (BUFMIN) due to increased turbidity caused by suspended 
sediments associated with mining activities. 

16.3 RESULTS 

16.3.1 Univariate Relationships between Development and Secchi Transparency  

Secchi transparency ranged widely within the NLF ecoregion, from 0.6 to nearly 12 
m. Lakes also varied widely in degree of development, with human populations 
ranging from 0 to 5,754 people in the shoreland zone. However, there were no 
significant correlations between development-related variables and lake 
transparency, with the exception of mining in the shoreland zone (BUFMIN), which 
was associated with clearer lakes in data set III (r = 0.181) but not data set II  
(r = 0.030). This relationship was affected by the fact that three of the clearest lakes 
in data set III were mine pit lakes, with transparencies exceeding 7.8 m: Tioga Mine 
Pit, Sabin Lake, and the Judson Mine Pit. These lakes were not part of the 1977-79 
data set. 

An unexpected result was that lakes with people living around them were 
significantly clearer than those without (t = 1.98, P = 0.048). Mean Secchi depth for 
lakes with people (n = 417) was 3.26 m, and mean Secchi depth for those without  
(n = 172) was 2.97 m. Maximum lake depth was also significantly greater for 
populated than unpopulated lakes, averaging 11.1 m for unpopulated lakes and 14.5 
m for populated lakes (t = 3.82, P = 0.000). This difference in maximum lake depth, 
rather than the presence or absence of people per se, may explain why the populated 
lakes were clearer than unpopulated lakes. There is also the possibility of self-
selection, in that people prefer to live on clearer lakes. 

16.3.2 Relationships between Environmental Setting and Secchi Depth 

In the stepwise regressions, maximum lake depth was the first explanatory variable 
selected for all three data sets, with deeper Secchi transparencies associated with 
deeper lakes (i.e., deeper lakes were clearer). Maximum lake depth provided 47 to 
75% of the explanatory power of the stepwise multiple regressions. 

The LAKE:SHED ratio was negatively related to transparency in the stepwise 
regressions for all three data sets, meaning that lakes in watersheds with a large 
proportion of lake area tended to be less transparent than lakes embedded in 
watersheds with a small proportion of lake area. Although lakes with a high value 
for LAKE:SHED tended to be large (the nine lakes with the highest LAKE:SHED 
ratios were among the 20 largest lakes in the state: Table 16.3), not all large lakes 
had high LAKE:SHED values. The LAKE:SHED variable seemed to be an indicator 
of the size of a lake’s littoral zone (i.e., lake areas with a depth < 4.6 m), rather than 
lake area per se. Littoral zone area was not used as an independent variable in this 
study because these data are not widely available for Minnesota lakes, but most of 
the nine lakes with the highest LAKE:SHED ratios had large littoral zones, ranging 
from 20% to 47% of total lake area. These large littoral zones were a subaqueous 
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continuation of the gradually sloping, glaciated land surface surrounding the lakes. 
For example, Big Sandy Lake in Aitkin County is embedded in the relatively 
subdued topography of the Culver End Moraine (Hobbs and Goebel 1982), and the 
maximum elevation in its watershed is only 44 m higher than the lake surface 
(Figure 16.1). The lake area variable (LGLKAREA) was not selected as an 
explanatory variable in any of the stepwise multiple regressions. 

Table 16.3. Lakes with the largest LAKE:SHED values, sorted by transparency. Littoral  
zone = lake area with depth < 15 feet, computed as a proportion of total lake area. 

Lake Name Secchi depth, 
m 

Lake area, 
ha 

LAKE:SHED, 
% 

Maximum 
lake depth, m

Littoral zone, 
% 

Cass 4.42 6429 45% 36.6 20% 
Whitefish 3.96 3149 49% 42.1 37% 
Gull 2.74 3961 46% 24.4 30% 
Vermilion 2.66 15825 44% 23.2 37% 
Mille Lacs 2.35 51748 76% 12.8 25% 
Winnibigoshish 2.07 22976 52% 21.3 32% 
Bemidji 1.89 2617 42% 23.2 29% 
Island Lake Res. 1.68 3333 41% 28.7 44% 
Big Sandy 1.55 2943 60% 25.6 47% 

Figure 16.1. Map of Big Sandy Lake (2,943 ha) and its watershed (dashed line), illustrating 
high LAKE:SHED ratio and gentle terrain. Topographic contour interval = 10 m. Elevation 
of Big Sandy Lake = 370 m. 
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Average watershed slope was positively related to transparency in the stepwise 

regressions, steeper terrain being associated with deeper Secchi transparency. 
Examination of the slope map for the NLF region revealed a concentration of 
steeply sloping lands along the northernmost edge of the ecoregion (Figure 16.2). 
This region constitutes the Border Lakes Subsection of the Laurentian Mixed Forest 
Province, as defined by the Minnesota Ecological Classification System (http:// 
www.dnr.state.mn.us/ecs/index.html): 

This subsection consists of scoured bedrock uplands or shallow soils on bedrock, with 
large numbers of lakes. Glacial ice moved from west to east across the subsection, 
deepening stream valleys in the bedrock. Long, east-west oriented lakes now occupy 
these enlarged valleys. Topography is dominantly rolling with irregular slopes and 
many craggy outcrops of bedrock. 

Given our emphasis on potential human impacts on lake condition (Table 16.1), 
it was surprising that few variables related to human activity were selected in the 
stepwise regressions. No human activity variables were selected for data sets I and 
II. In data set III, the number of people per unit lake area (PERSONLK) was 
inversely related to lake clarity, and BUFMIN was positively related to Secchi 
transparency, because very clear mine pit lakes were associated with this land use. 

 

Figure 16.2. Slope map for the northern edge of the Northern Lakes and Forests Ecoregion, 
with outline of the Border Lakes Subsection of the Laurentian Mixed Forest Province, as 
defined by the Minnesota Ecological Classification System. 
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16.4 DISCUSSION 

16.4.1 Influence of Lake Morphometry 

Maximum lake depth was consistently the single best predictor of Secchi 
transparency: deeper lakes were clearer. Lake depth provided 47 to 75% of the 
explanatory power of the stepwise multiple regressions, much more than any 
variable related to development. Lake depth is not a causative variable in and of 
itself, but is related to internal cycling of phosphorus (within-lake scale) and ground-
water fluxes (regional scale). Deeper lakes have a greater tendency to thermally 
stratify, such that the layer at the surface which receives the most light (the 
epilimnion) is effectively separated from the phosphorus-rich waters at depth except 
during times of lake water mixing, usually during the spring and fall (Nurnberg 
1998). The phytoplankton that can decrease lake transparency require both light and 
phosphorus, so this spatial segregation of essential resources limits primary 
production during periods of stratification, thus keeping the lakes more transparent 
(Fee 1979). Very shallow lakes are less likely to stratify, and those that do may have 
more frequent wind-driven mixing events. 

Lake mixing may also explain the perplexing result that Secchi transparency 
decreased with an increase in the LAKE:SHED ratio. Based on Schindler’s (1971) 
work on Canadian lakes, we expected that the greater the contributing area of 
watershed to a given volume of lake, the greater the external loading of nutrients to 
the lake. Our study showed that lakes in watersheds dominated by very large lakes 
(high LAKE:SHED ratio) tended to be less transparent than lakes embedded in 
watersheds with a smaller proportion of lake area (low LAKE:SHED ratio), the 
opposite of Schindler’s prediction. We believe that this is due to the complicating 
effect of internal phosphorus release from mixing events, because the lakes with the 
highest LAKE:SHED ratios were large and had large littoral zones. Internal 
phosphorus release depends on contact of the profundal sediment with lake water, 
which is enhanced by deep summertime mixing events in shallow lakes (Larsen  
et al. 1981, Jacoby et al. 1982, Patalas 1984). In a study of 96 lakes in the Twin 
Cities, Minnesota metropolitan area, Osgood (1988) found that the ratio of mean 
lake depth to the square root of lake surface area was a good indicator of a lake’s 
internal phosphorus loading due to frequent mixing. Similarly, Nurnberg’s (1998) 
model of phosphorus retention was based on mean lake depth and annual water 
residence time. Thus, the influence of the LAKE:SHED variable in this study is 
probably due to a lake-scale phenomenon (mixing), rather than the watershed scale. 

Deeper lakes are also more likely to intercept regional aquifers, thereby 
receiving a larger percentage of their water inputs from ground water (Winter et al. 
1998). Ground water is typically low in nitrogen and phosphorus, so that lakes 
receiving a substantial portion of their water volume from deep regional aquifers are 
likely to be nutrient-limited than those that receive water primarily from surface 
water. For example, ground water provides 40% of the annual water volume to 
White Clay Lake in Wisconsin, but only 26% of the nitrogen and 21% of the 
phosphorus because of the dilute concentrations of those nutrients in ground water 
(Madison and Peterson 1976). This input of nutrient-poor ground water dilutes 



 SCALE ISSUES IN LAKE-WATERSHED INTERACTIONS 309 

 

nutrient inputs from other water sources, thereby decreasing potential phytoplankton 
production. 

16.4.2 Influence of Shoreland Development 

Although the shoreland is the scale of greatest interest to land managers, few 
shoreland-scale variables were found to have a significant influence on lake quality 
by this analysis. We expected lakes with greater development and human 
populations to be less transparent, due to nutrient inputs from failing septic systems 
and lawn fertilizers (Anderson et al. 1999, Garn et al. 2002). However, we found 
that only small, shallow lakes in the most urban settings had demonstrably 
diminished transparency relative to other lakes in the ecoregion. We believe that 
lake water clarity in the NLF ecoregion is controlled primarily by processes 
operating at different scales than the shoreland scale, specifically in-lake nutrient 
cycling and regional geomorphology and groundwater inputs (see below), and that 
any nutrient contributions from shoreland development are negligible as a driver of 
lake eutrophication except when that development exceeds extreme thresholds. This 
finding is consistent with a study reconstructing water quality from fossil diatoms in 
20 NLF lakes, which concluded that the phosphorus concentration and rates of 
sediment accumulation in lakes in the NLF Ecoregion have increased only slightly 
from pre-European times and that little change is apparent over the last 20 years 
(Heiskary and Swain 2002). 

Mining in the shoreland was associated with clearer lakes, a result that was 
initially counterintuitive. Mine pit lakes receive nearly all of their water volume 
from ground water, which explains their observed clarity. When surface mines are 
abandoned, pits dug deep into the earth fill with nutrient-poor ground water that 
sustains minimal primary production. Such ground-water dominated lakes are 
hydrologically isolated from the land surface surrounding them. Thus, the positive 
relationship between mining in the buffer zone (BUFMIN) and Secchi transparency 
is probably unrelated to any actual activity within the shoreland, but rather a 
landscape scale effect due to the source of the water delivered to the hole in the 
ground created by mining. 

16.4.3 Watershed to Regional Scale Influences 

Given that topography drives surface water runoff and soils on steeper slopes are 
usually more erosive than comparable soils on level slopes, we expected that lakes 
in watersheds with steeper terrain would be less transparent. In fact, we found the 
opposite relationship: lakes in steep terrain were clearer. In the NLF, average 
watershed steepness is greatest in the bedrock-controlled Border Lakes area (Figure 
16.2). This region contains the Boundary Waters Canoe Area Wilderness, and 
comprises undulating Precambrian bedrock of the Laurentian Shield with small 
watersheds and abundant lakes. Thus, although measured at the watershed scale, 
average watershed slope is really a surrogate indicator for a larger underlying 
geomorphic region. We expect that this relationship between average watershed 
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slope and lake transparency would not hold in subsections of the state where 
topography is not bedrock-controlled. 

16.4.4 Variables Measured at One Scale May Reflect Influences at Another Scale 

As the results demonstrate, measurements of independent variables made at one 
scale may actually indicate processes occurring at a different scale. For example: 

• LAKE:SHED ratio is a watershed-scale measurement, but appeared to be an 
indicator of within-lake mixing 

• Lake depth is a lake-scale measurement, but can be an indicator of regional 
ground-water inputs 

• BUFMIN is a shoreland-zone measurement, but appeared to be an indicator 
of regional ground-water inputs 

• Average watershed slope is a watershed-scale measurement, but in 
northeastern Minnesota it appeared to be an indicator of regional 
geomorphology. 

Discovery of these relationships required critical examination of the results with 
a knowledge of lake-scale limnological processes and regional-scale hydrology and 
geology. Such a critical examination might not have occurred if the results had been 
less counterintuitive. Because correlative results do not determine cause and effect, 
the results from landscape empirical studies such as this one should always be 
interpreted within a broader scientific context. 

The primary dependent variable, Secchi transparency, also responds to 
phenomena at a variety of scales: within-lake phosphorus cycling, people in the 
shoreland zone, regional ground water and geomorphology. This complicates the 
interpretation of Secchi transparency as a response variable. 

16.4.5 Lakes as Complex Systems 

The rationale behind shoreland zoning derives from the first law of geography – 
“Everything is related to everything else, but near things are more related than 
distant things” (sensu Tobler 1970). However, the relationship between lakes and 
landscapes may also be governed by the second law of geography (sensu Arbia et al. 
1996): “Everything is related to everything else, but things observed at a coarse 
spatial resolution are more related than things observed at a finer resolution.” In this 
case study, for example, the condition of lakes within the Border Lakes Subsection 
(Figure 16.2) appeared to be governed more by their common regional geomor-
phology than by any finer-scale land uses superimposed upon that geomorphic 
foundation. 

This case study illustrates the problem of scale multiplicity in ecological pattern 
and process (King et al. 1991, Wu 1999, 2004). Real environments have hierarchical 
structure, such that each patch contains smaller patches of component subhabitats, 
which in turn contain finer scale subhabitats, and so on (MacArthur 1972, Urban  
et al. 1987). A point observation such as Secchi transparency integrates the effects 
on lake eutrophication of ecological drivers operating at multiple scales, making it 
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difficult to parse out the most influential scale of influence. A lake is thus an 
example of “organized complexity” (Weaver 1948, Allen and Starr 1982), in which 
systems have more components than can be characterized deterministically by 
analytical mathematics but an insufficient number of random components to be 
characterized adequately by traditional statistical methods (Wu 1999). 

16.4.6 Consider the Scale of Regulatory Reality 

Public policy often dictates the scales at which management agencies operate 
(Loucks et al., Chapter 17). The limits of the shoreland zone defined by different 
states probably had more to do with the political feasibility of implementing land 
use controls than any ecological analysis. There is no ecological reason why the 
lakeshore regulated in Maine is 250' wide, whereas the lakeshore regulated in 
Minnesota and Wisconsin is 1000' wide. In fact, one study has shown that pollutant-
contributing areas do not follow a pattern defined by an equidistant corridor around 
a stream, but are irregularly shaped (Levine et al. 1993). Other studies have shown 
that correlations between land use measured at the watershed scale is as good or 
better as a predictor of stream water quality than is land use measured at within an 
equidistant corridor around the stream (Omernik et al. 1981, Hunsaker et al. 1992). 
The challenge is to define a shoreland zone that is both politically and ecologically 
defensible. 

State agencies charged with managing natural resources generally implement 
statutes uniformly statewide, because to do otherwise might imply political favoritism. 
However, when there is a compelling scientific reason to regionalize states into 

of phosphorus criteria for lakes in different ecoregions of the state. Our results suggest 
that the next logical step after regionalization is to differentiate lakes into depth 
classes, using the scale of the lakes themselves to apply different standards. 
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smaller areas for regulatory purposes, management agencies are becoming in- 
creasingly willing to do so. Minnesota was an early proponent of the regionalization 



312 C. A. JOHNSTON AND B. A. SHMAGIN 

REFERENCES 

Allen, T. F. H., and T. B. Starr. 1982. Hierarchy: Perspectives for Ecological Complexity. University of 
Chicago Press, Chicago. 

Anderson, K. A., T. J. Kelly, R. M. Sushak, C. A. Hagley, D. A. Jensen, and G. M. Kreag. 1999. 
Summary Report on Public Perceptions of the Impacts, Use, and Future of Minnesota Lakes. 
University of Minnesota Sea Grant and Minnesota Department of Natural Resources, Office of 
Management and Budget Services. 

Arbia, G., R. Benedetti, and G. Espa. 1996. Effects of the MAUP on image classification. Geographic 
Systems 3:123-141. 

Carlson, R. E. 1977. A trophic state index for lakes. Limnology and Oceanography 22:361-369. 
Environmental Protection Agency (EPA). 2002. National Water Quality Inventory, 2000 Report. Office 

of Water, U.S. Environmental Protection Agency, Washington, D.C. 
Fee, E. J. 1979. A relation between lake morphometry and primary productivity and its use in interpreting 

whole-lake eutrophication experiments. Limnology and Oceanography 24:401-416. 
Garn, H. S. 2002. Effects of Lawn Fertilizer on Nutrient Concentration in Runoff from Lakeshore Lawns, 

Lauderdale Lakes, Wisconsin. U.S. Geological Survey, Middleton. 
Heiskary, S. A., and E. B. Swain. 2002. Water quality reconstruction from fossil diatoms: applications for 

trend assessment, model verification, and development of nutrient criteria for lakes in Minnesota, 
USA. Water Quality Division, Minnesota Pollution Control Agency, St. Paul, MN. 

Heiskary, S. A., and W. W. Walker. 1988. Developing phosphorus criteria for Minnesota lakes. Lake and 
Reservoir Management 4:1-10. 

Heiskary, S. A., and C. B. Wilson. 1989. The regional nature of lake water quality across Minnesota: an 
analysis for improving resource management. Journal of the Minnesota Academy of Science 55: 
71-77. 

Hobbs, H. C., and J. E. Goebel. 1982. Geologic Map of Minnesota: Quaternary Geology (1:500,000 
map). State Map Series S-1. Minnesota Geological Survey, University of Minnesota, St. Paul, MN. 

Hunsaker, C. T., D. A. Levine, S. P. Timmons, B. L. Jackson, and R. V. O’Neill. 1992. Landscape 
characterization for assessing regional water quality. Pages 997-1006 in D. McKenzie, E. Hyatt, and 
J. McDonald, editors. Proceedings of International Symposium on Ecological Indicators. Elsevier, Ft. 
Lauderdale, FL. 

Jacoby, J. M., D. D. Lynch, E. B. Welch, and M. A. Perkins. 1982. Internal phosphorus loading in a 
shallow eutrophic lake. Water Resources 16:911-919.  

Johnston, C. A., and B. A. Shmagin. 1999. Relationship between development and condition of lakes in 
Minnesota’s northern lakes and forests ecoregion. Natural Resources Research Institute Technical 
Report NRRI/TR-99/34. 

King, A. W., A. R. Johnson, and R. V. O’Neill. 1991. Transmutation and functional representation of 
heterogeneous landscapes. Landscape Ecology 5:239-253.  

Larson, D. P., D. W. Schults, and K.W. Malueg. 1981. Summer internal phosphorus supplies in Shagawa 
Lake, Minnesota. Limnology and Oceanography 26:740-753. 

Levine, D. A., C. T. Hunsaker, S. P. Timmins, and J. J. Beauchamp. 1993. A geographic information 
system approach to modeling nutrient and sediment transport. ORNL-6736. Environmental Sciences 
Division Publication No. 3993. Oak Ridge National Laboratory, Oak Ridge, TN. 

MacArthur, R. H. 1972. Geographical Ecology: Patterns in the Distribution of Species. Princeton 
University Press, Princeton, NJ. 

Madison, F. W., and J. O. Peterson. 1976. White Clay Lake Demonstration Project, Final Report to the 
U.S. Environmental Protection Agency. Department of Soil Science, University of Wisconsin, 
Madison, WI. 

Minnesota Conservation Department. 1968. An inventory of Minnesota lakes. Bulletin No. 25, Division 
of Waters, Soils, and Minerals, Minnesota Conservation Department, St. Paul, MN. 

Minnesota Pollution Control Agency (MPCA). 1999. Minnesota Lake Water Quality Assessment Data: 
1998. An update to data presented in the Minnesota Lake Water Quality Assessment Report: 1990. 
Water Quality Division, Minnesota Pollution Control Agency, St. Paul, MN. 

Nurnberg, G. K. 1998. Prediction of annual and seasonal phosphorus concentrations in stratified and 
polymictic lakes. Limnology and Oceanography 43:1544-1552.  

Omernik, J. M. 1987. Ecoregions of the coterminous United States. Annals of the Association of 
American Geographers 771:118-125. 



 SCALE ISSUES IN LAKE-WATERSHED INTERACTIONS 313 

 

Omernik, J. M., A. R. Abernathy, and L. M. Male. 1981. Stream nutrient levels and proximity of 
agricultural and forest land to streams: some relationships. Journal of Soil and Water Conservation 
36:227-231. 

Osgood, R. A. 1988. Lake mixis and internal phosphorus dynamics. Archiv Fuer Hydrobiologie 113: 
629-638. 

Patalas, K. 1984. Mid-summer mixing depths of lakes of different latitudes. Internationale Vereinigung 
Fuer Theoretische und Angewandte Limnologie Verhandlungen 22:97-102. 

Schindler, D. W. 1971. A hypothesis to explain differences and similarities among lakes in the 
Experimental Lakes Area, Northwestern Ontario. Journal of the Fisheries Research Board of Canada 
28:295-301. 

Scidmore, W. J. 1970. Manual of Instructions for Lake Survey. Minnesota Department of Conservation, 
Special Publication 1 (revised), St. Paul, MN. 

Smith, V. H. 1979. Nutrition dependence of primary productivity in lakes. Limnology and Oceanography 
24:1051-1064. 

Snedecor, G. W., and W. G. Cochrane. 1980. Statistical Methods, 7th edition. Iowa State University 
Press, Ames, IA. 

Tobler, W. 1970. A computer movie simulating urban growth in the Detroit region. Economical 
Geography (Suppl.) 46:234-240. 

Urban, D. L., R. V. O’Neill, and H. H. Shugart. 1987. Landscape ecology: a hierarchical perspective can 
help scientists understand spatial patterns. Bioscience 37:119-127. 

Weaver, W. 1948. Science and complexity. American Scientist 36:536-544. 
Winter, T. C., J. W. Harvey, O. L. Franke, and W. M. Alley. 1998. Ground Water and Surface Water.  

A Single Resource. USGS Circular 1139. U.S. Geological Survey, Denver, CO. 
Wu, J. 1999. Hierarchy and scaling: extrapolating information along a scaling ladder. Canadian Journal of 

Remote Sensing 25:367-380. 
Wu, J. 2004. Effects of changing scale on landscape pattern analysis: scaling relations. Landscape 

Ecology 19:125-138. 



 315 
J. Wu, K.B. Jones, H. Li, and O.L. Loucks (eds.), 
Scaling and Uncertainty Analysis in Ecology: Methods and Applications, 315–325. 
© 2006 Springer. Printed in the Netherlands. 

CHAPTER 17 

SCALING AND UNCERTAINTY IN REGION-WIDE WATER 
QUALITY DECISION-MAKING  

ORIE L. LOUCKS, HARRY J. STONE, AND BRUCE M. KAHN 

17.1 INTRODUCTION 

Quite interesting questions about information flow across scale arise when we try to 
extend knowledge about ecological scaling to the corresponding scale questions 
arising when human societies make natural resource policy choices. In this paper we 
examine scaling in relation to planning and management (see Wu and Li, Chapter 1) 
for water quality at national, regional, state, and local levels (Stone 2004). However, 
the geopolitical scales at which institutional decisions are made do not often match 
spatially or temporally with the scale and dynamics of natural resource systems 
(Peterson 2000). Unlike ecological systems, state, federal and local regulatory 
decisions are bounded by historical decisions and legal jurisdiction or issues 
associated with the responsibilities of each level of government. In scaling for 
decision-making, we need to understand how such bounds change with time, as well 
as with spatial scale (Ostrom 1990). 

In water quality regulation, limitations to the flow of information (scaling) 
associated with different levels in a hierarchy of decision-making authority, from 
federal to state to the local level, can also lead to uncertainty over who has 
responsibility at a specific level for specific management outcomes on the ground. 
The challenge for environmental policy analysts, therefore, is to understand how 
scaling influences, first, the debate about policy options, and secondly, the decisions 
after a policy has been determined, across the hierarchy of scale. Such understanding 
must include knowledge about the functioning of ecological systems, the sources of 
power or authority in policy systems, an ability to deconstruct the network of 
decision-making nodes, and the relationships associated with transfer of information 
or control across scale (Wu and Li, Chapter 1). 

Here we follow the definition of scaling provided in Wu and Li (Chapter 1), and 
want to elaborate on what is implicit in use of the term “policy scale,” which is 
listed along with intrinsic scale, process scale and observational scale. These last 
three scales can all be seen as linked to potential information transfer across levels in 
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an ecological hierarchy. Policy relevant scaling for resource planning and 
management, however, must also be framed in relation to levels of government and 
the diverse geopolitical and non-government institutions that laws and regulations 
create. One can ask at what scale should we focus, but the answer noted by Wu and 
Li (Chapter 1) allows a focus on the role of information related to hierarchical 
system functioning, or the control mechanisms operating across a continuum of 
scale. Such information, in either ecological or policy systems, can transfer upward 
or downward through the levels of organization. The information flow can be 
followed through the hierarchy (or network) of public institutions just as well as 
through an ecological foodweb. Therefore, we do not initially focus on any one scale 
as being more important than others, but on scaling as the understanding and 
analysis of the flow of information, influence, and control across a range of scales, 
in ecological systems as well as among institutions and public policy systems. 

Differences over regulatory jurisdiction lead to troubling questions about scale 
when the issues are presented in terms of a “conflicting power structure” (Stone 
2004). Various authors have noted how conflict may arise from three dimensions of 
power implicit in the scale at which power operates in decision-making (Peterson 
2000). Overt power occurs during brief periods of time and in a specific place. 
Covert power controls the type of decisions that can be made, and occurs at larger 
institutional scales. Structural power, the broadest dimension, works through the 
manipulation of culture (Luke 1973). These three power considerations frame the 
way information from various scales influences resource management decisions. 
According to Gaventa (1980), the power element may be broadly diffuse at some 
times, but at other times a majority of sustainable development decisions could rest 
in the hands of the elite.  

Unique problems arise for policy-related scaling, however, in suburban or rural 
areas where water quality decisions implemented in one local political jurisdiction 
can have effects in other jurisdictions downstream. Upstream rural landowners may 
be seen as a kind of minority, sometimes neither powerful politically nor powerful 
economically. Their non-participation in framing choices can lead to a further loss 
of power (Stone 1980). Such powerlessness is structural, but local, although it may 
be reinforced by institutions that potentially control regional policy system 
outcomes. Local officials, when confronted by local rural landowner interests, often 
have to heed an elite from a larger regional scale, after considering aspects of their 
own economic self-interest. Based on economic, associational and social elements of 
scale (Stone 1980), an elite can exert great influence on information transfer across 
scale when making choices, often disregarding the less concentrated or less powerful 
interests (Crenson 1971, Stone 1982, 2004).  

The questions we ask in this paper, therefore, relate to understanding how 
information or influence from the largest scale (federal legislation) either controls, 
becomes diffused, or is made uncertain, as it passes to the States for implementation 
and then to local government for decisions on the ground. Our hypothesis is that 
hierarchical flows of information affect policy and decision outcomes by modifying 
personal or institutional power structure at local to national scales, thereby 
influencing institutional responses at the next lower or next higher level. For 
example, an individual landowner, low in the hierarchy, may be influenced to make 
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a choice, or decision, by the institutionally broader considerations of the county or 
state scale. However, the landowner can join with many others to resist and modify 
regulatory decisions being passed down from the state. We will use two case studies 
to consider such scale-determined processes for water quality regulation and the 
uncertainty that is generated across the full range of scale. 

17.2 A FRAMEWORK 

Just as our understanding of the nature and strength of ecosystem functioning is 
framed by hierarchically-linked levels of organization within ecosystems, with 
interaction across scales (Allen and Starr 1982), so also must our understanding of 
scaling in institutional decision-making be framed. Individual human behaviors are 
guided by values, attitudes, education and experience (Heberlein 1974), and 
similarly, the scope and connectedness of institutional behavior can be influenced by 
the attitudes and information made available through local, regional and national 
group leadership and their governing bodies (Edleman 1964). Societal factors link 
individual human responses, as well as institutional responses, to water quality 
problems across a range in scales. The responses on the part of various interest 
groups include education, the use of media, technologies available, changing value 
systems, and local to national power structures (Heberlein 1974). Economic factors 
at local, regional or national scales also may determine how cross-scale information 
transfer can affect water quality outcomes.  

Therefore, the critical variables of interest for this paper, across a range of scales, 
are, first, various water quality measures, and secondly, the array of local to national 
policies and decisions already made to protect water quality. The federal Clean 
Water Act of 1972 established broad national goals and made the early policy 
choices, including the “fishable, swimmable” targets. However, local point-source 
dischargers, and even non-point contributors to pollution, often seek exemptions 
from regulation at some level due to considerations of personal hardship. In 
addition, on-the-ground water quality outcomes have elements that are physical and 
relatively unmanageable (e.g., consequences from seasonal low flow), and 
ecological (e.g., shifts in species composition). Thus, the ongoing process for 
making policy choices about water quality has had to consider information 
imbedded at the various scales of pollutant inputs and the physical and biological 
responses of ecosystems. Although local publics (or their institutions) often seek to 
moderate local control, the downstream consequences of choices made upstream 
influence ecological outcomes at scales extending far beyond the local domain. 
Information on large-scale downstream effects from upstream decisions should, 
theoretically, be adjudicated at some even larger scale (probably national) that 
considers rules for a level playing field across all such watershed problems. The 
result has been downscaling from federal regulations under the Clean Water Act, to 
the state and local level, with enforcement largely by mid-level institutions, the state 
agencies, but with judicial appeal of decisions at all scales from local to national. 

A key feature of scaling is illustrated in the principle of “command and control,” 
or top-down decision making. Our most common experience with such hierarchies 
(and associated information scaling) is conveyed to us through institutions where we 
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work or live. One example is the structuring (across a range of scales) of federal 
agency budget and planning processes (Table 17.1; Sample 1990). Scale here ranges 
from thousands of people at the largest level, to just a few individuals at the finest 
scale. It is interesting to note the counter-scaling in budget and planning, where the 
top-down directives have to be responded to from the bottom, all the way back to the 
top. We need to be aware of the appropriate application of power and authority at  
all the levels involved. Interestingly, clear assignment of responsibility and 
accountability in financial matters generally avoids any substantial uncertainty for 
budget-related decision processes across these scales. 

Two policy scholars, Sabatier (1999) and Ostrom (1990), consider how scale 
operates during the political choice process in a democracy at any scale. They 
represent relationships and information flow as structured from the bottom up, 
recognizing grass roots public needs that then generate a typical up-scaling 
phenomenon. They see individuals as operating to make choices at each level, from 
local through area-wide “collective choice” situations, to “state variables in the 
world.” People affected by choices made in this way then have the potential to 
influence the downscaling processes discussed above in relation to individuals 
wanting to overturn regulations applied in local situations. Uncertainty in outcome 
exists here because of diffuse “community” inputs, often reflecting subtle shifts in 
societal values at various temporal and spatial scales, shifts that are rarely 
predictable.  

Linkages between physical or ecological system scales, and institutional or 
management scales, have been described by Gunderson and Holling (2002). The 
framework they suggest for considering scale in decision-making by institutions 
requires that linkages be understood and specified at each scale, with due 
consideration of up-scaling versus downscaling processes. Two other components of 
scale are considered by Gunderson and Holling (2002, citing Sabatier and Ostrom 
papers) as being central to public choice processes: broad scale in temporal inputs 
and outcomes, and a very large range in the numbers of people involved (from 100 to 
108). Both up-scaling and downscaling processes can be present in the expectations 
from choices affecting these scales, as is implicit in the concept of “panarchy” used 
by Gunderson and Holling (2002).  

Finally, before we come to some case studies, we should consider both 
institutional hierarchies of scale and associated sources of power as forces for 
change in the dynamic “adaptive cycle” theory presented by Holling in several 
papers (see Gunderson and Holling 2002, and Stone 2004). During the relatively 
slow “conservation” phase of an adaptive cycle, institutional decisions (from both 
downscaling and up scaling), and the application of concentrated institutional 
interest or power, tend to sustain the institution’s previous practice, even if it is out 
of date. However, when external circumstances change substantially, often at a large 
scale (following a federal court reversal, or election of new leadership in relation to 
an issue), a quick “release phase” is generated. In this phase, new information can be 
transferred from other scales and becomes a part of adopting new policies and 
related decisions. Most decisions are highly predictable during the conservation
phase, but when external conditions change and create a “release phase,” the use 
of new knowledge may make outcomes relatively more reasonable, but also
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unpredictable for a time (Gunderson and Holling 2002). In the case studies that 
follow, we should expect to see uncertainty deriving from both ecological system 
scaling and from policy system scaling. We may also see patterns of change in the 
institutions managing resources, a pattern that could derive as well from a change in 
knowledge-use across scales.  

Table 17.1. Downscaling in the budget development and planning process of the U.S. Forest 
Service (after Sample 1990). 
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17.3 CASE STUDY I: ECOLOGICAL RISK AND CONSERVATION 
DECISIONS IN BIG DARBY CREEK 

We have conducted research for several years in the Big Darby Creek watershed of 
central Ohio to examine how U.S. EPA’s Ecological Risk Assessment process can 
be applied to species conservation and water quality improvement (Erekson et al. 
2005). The Big Darby is recognized regionally for its scenic beauty, generally good 
water quality, the unique biological diversity it supports, and the recreational 
opportunities it affords residents of the nearby city of Columbus, Ohio. The studies 
have focused on the portion of the Big Darby landscape that faces likely suburban 
development over the next 20 years, and on the fact that this stream is home to a 
unique assemblage of rare and endangered freshwater mussel and fish species. 
Stream conditions are being monitored in terms of the Index of Biotic Integrity 
(Cormier and Smith 1996). Results show that at least three tributary streams, those 
influenced by the spreading out of Columbus, have experienced degradation of 
water quality and associated loss of biotic diversity.  

The risks to resources in the Big Darby landscape derive from local agricultural 
practice (which is gradually improving), as well as from the growth of suburban land 
use. These changes are taking place over an extended time scale, but in combination 
they add gradually to the risk of water quality impairment and species loss in the 
main Big Darby stream. The risks could be reduced through good land management 
practices for both urban and agricultural land (Cormier and Smith 1996, Cormier  
et al. 2000), practices that are required generally by federal law, but which must be 
implemented and enforced through state and local governments. Agricultural use 
currently occupies 92.4% of the land, with an estimated 1,170 farms in the 
watershed. Under the present pattern of development, the small towns and rural-area 
industries do not have greater impacts on water quality than agriculture, but 
substantial urbanization is occurring in eastern portions of the watershed adjacent to 
the city of Columbus. To understand the risks to water quality in the main stem, and 
in selected tributaries, we need to consider both the ecological scale at which effects 
are expressed within the watershed, and the scale (and information flow) through 
which decisions are made to protect (or degrade) water quality in this multi-county 
area.  

We investigated the public’s willingness to pay to prevent risks to both water and 
biological diversity (Erekson et al. 2005), and in the course of that work considered 
the results in relation to hierarchical policy systems and decision-making in the 
Darby watershed. Reducing the non-point source (NPS) pollution from farmland has 
been a federally legislated goal, but implementation is to be accomplished through 
local zoning and agricultural incentive programs, largely a responsibility of the 
states and local government. Like other states, however, Ohio state agencies must 
listen to local expressions of concern, including the erosion of private property 
rights and the increasing costs to farmers being imposed by regulation. Accordingly, 
responsibility for decisions to minimize non-point source pollution devolves into a 
web of institutional relationships and incentives with three or four levels of 
government involved. 
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At the most local level, responsibility for certain land-use zoning decisions can 
be seen as the responsibility of township trustees. The several scales at which 
stakeholders function and decisions get made are outlined implicitly in Table 17.2. 
Clearly, many more local stakeholder groups are involved than there are higher 
order interests, considering both the kinds of individuals and the responsibilities of 
institutions listed in Table 17.2. Similarly, hierarchy theory tells us that many more 
local decision-makers should be recognized at the lower levels than at the state or 
federal level, as is expected in any hierarchical structure. Because the federal water 
quality legislation was passed many years ago, we also see an element of temporal 
scale here, as over time, more and more local institutions seek “balanced” 
implementation of higher order regulations. 

Table 17.2. Elements of scale and authority evident among stakeholders and decision makers 
concerned with water quality in the Big Darby Creek Watershed of Ohio. 

Stakeholders Decision-Makers 

Farm owners and families Township Trustees 
Rural businesses Town Councils 
Non-farm rural residents County Planning Agencies 
Incorporated towns County Commissioners 
Developers and builders Metro Columbus Sewer District 
Sport fishers and hunters Hog and Egg Producers Associations 
Recreational visitors State and County Health Agency & 

Inspectors 
Columbus Metro Parks (& users) Bank Loan Officers 
Local Conservation NGO’s (& 
members) 

State and County Courts 

Federal Non-regulatory Conservation 
Agencies 

Ohio EPA Enforcement Agencies 
Ohio EPA Division of Surface Water 

 U.S. EPA Region V 
 U.S. EPA Office of Water 

In the face of varied interpretations of the intent of legislation and associated 
regulations, concern about unfunded mandates, the relative dearth of known con-
sequences for downstream owners, and the diffuse political influence of those owners, 
Ohio has modified its management decision process in several ways. The most 
important change has been in designating a number of multi-county watersheds in the 
State where water quality targets have been established through public hearings, and 
strict review of local decisions (followed by enforcement) has been implemented by 
state agencies. The Big Darby watershed is one such priority site, requiring township 
and county permitting authorities to consider downstream consequences, subject to 
state review. As shown in Table 17.2, the state retains authority in these watersheds to 
overturn local upstream discharge or runoff decisions that could degrade downstream 
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water quality. This is recognition that information transferred across ecological scale 
(in the stream) must influence the decisions across equivalent scales among 
decision-making institutions. Related federal, state and conservation NGO programs 
also work in parallel with the state regulatory agencies at this large watershed scale. 
Review by state courts, as shown in Table 17.2, is a crosscutting decision scale that 
has overturned some aspects of the county and state watershed decision process.  

The pattern seen in Table 17.2 captures a variety of scaling elements, beginning 
with direct transfers of authority and information from federal agencies to state 
agencies, and then to the county commissions or their designated agency heads. As we 
consider these transfers of information (and responsibility), we should also consider an 
emerging array of new decisions, evident in the capacity (or disinclination) of each 
scale to carry out enforcement, including investigation and prosecution of violators. 
Clearly, the lowest scale, with what may be the most severe budget limitations, has 
tended to show the least prosecutorial capacity. The indeterminate transfer of only 
implicit authority across scale illustrates a kind of diffusion of responsibility that adds 
to uncertainty about policy choices and decision-making at these fine scales. We also 
need to consider the evidence of up-scaling, as local residents and farm owners 
challenge top-down decisions and avoid compliance. Often they are supported in their 
decisions by mid-scale farm produce trade associations and local-scale township 
trustees or county commissioners. Indeed, during 2002, state legislation was passed in 
Ohio authorizing the State Department of Agriculture to take over from the Ohio 
Environmental Protection Agency all the permitting of wastewater discharges from 
industrial hog and egg producers, an indication of a state-wide aggregated response at 
mid-scale, adding further uncertainty as to who has long-term authority and power at 
this scale. 

This Big Darby case study, therefore, demonstrates the principle that a hierarchy 
in ecological scale, seen in watershed systems is associated with a hierarchy in 
decision-making and concomitant power. However, this hierarchy of decision-
making is not the simple command and control relationship often implicit in the idea 
of a decision-maker. Scale effects in water-related decisions are seen to involve 
information flow upward across scales, some of the time, and downward across 
scales at other times, contributing further to diffusion of authority and uncertainty. 

17.4 CASE STUDY II: TOTAL MAXIMUM DAILY LOAD REGULATION  
IN MILL CREEK, CINCINNATI 

For situations found when conventional control of permitted sources of pollution fail 
to achieve desired water quality standards, the U.S. Clean Water Act has other 
provisions to reduce all pollutant sources. A plan is mandated through Total 
Maximum Daily Load (TMDL) regulations to reduce all sources of pollutants to 
within a specified daily limit. Mill Creek is a stream in the greater Cincinnati area of 
Ohio that flows from its semi-rural headwaters through suburbia and into downtown 
Cincinnati (Stone 2004). It has been identified by federal and state authorities as 
having failed conventional improvement and now requires a TMDL to reduce 
current and future pollutant loads. For Ohio, and therefore for the Mill Creek stream, 
the water quality goal mandated by the federal Clean Water Act has been defined 
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biologically as meeting a threshold level of the Index of Biotic Integrity (IBI). An 
IBI score of 40 or higher (Division of Surface Water 2001) would meet Ohio’s 
minimal requirement for water quality in warm water streams. IBI is calculated 
based on the abundances and variety of fish sampled, and ranges from 12 to 60. 
Because IBI encompasses both the top and the bottom of in-stream food chains, it 
can be viewed as an indicator across scale of many environmental stressors and 
resultant biological conditions (Karr and Chu 2000, Stone 2004).  

Conceptual and practical problems of scale and uncertainty arise in preparing any 
part of a TMDL implementation plan. The problems mostly arise from the upstream to 
downstream effect gradient, described for the Big Darby. The effects are primarily 
associated with cumulative land use impacts along the length of the stream. The land 
use impacts flow from the cumulative decisions regarding land development, storm 
runoff and wastewater discharges, all made by local municipalities with certain state 
and federal agencies reviewing them. Local decision processes tend to promote local 
growth, often at the expense of downstream water quality. Given the presence of 24 
municipal jurisdictions within the Mill Creek watershed, TMDL planning and the 
considerations of scaling inputs and outcomes become extremely complex. 

Conflict arises when water quality objectives that are set nationally by the Clean 
Water Act cannot be met except through what is perceived to be great (and unequal) 
costs to local communities. When a TDML plan requires all pollutant discharges to 
the stream to be reduced, even modestly, stakeholders who once held a right to non-
point source discharges, or held pre-existing discharge permits, feel imposed upon, 
and challenge the TMDL through up-scaling processes. What is interesting is that, 
despite very costly measures to retrofit and restore modest levels of IBI in the 
downtown main stem of Mill Creek, other municipalities upstream are making plans 
to increase the release of storm-water flows and associated pollutants, potentially 
degrading IBI in the midsections of the watershed. 

As seen in the Big Darby case study, therefore, an apparent loss of power and 
authority, along with increased uncertainty, characterizes the transient from large-scale 
to local scale control and back again. Tension is expressed between competing 
communities, as well as across scale, as local-scale stakeholders resist measures 
introduced at the larger scale, and federal representatives resist initiatives for local 
exceptions. The result is an interaction among up-scaling and down-scaling processes, 

result from cross-scale information processes directly, or may result from the strength 
of resistance and up-scaling passed back to the state and federal agencies. In the Mill 
Creek case, the up-scaling component is driven, in substantial part, by scaling 
elements implicit in the wastewater treatment costs necessary to achieve compliance 
with the TMDL plan (Stone 2004). 

17.5 DISCUSSION AND CONCLUSIONS 

As noted in Wu and Li’s discussion (Chapter 1) of kinds of scale, environmental 
planning and management frame what they identify as “policy scale.” The Mill 
 

as decision responsibility is passed across levels of scale, greatly increasing un- 
certainty in some decisions. The diffusion of authority during downscaling may 
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Creek and Big Darby case studies presented here provide field models of how 
scaling, as information-flow hierarchically, functions within ecological and 
sociopolitical systems. Both the variables (or aggregated variables) and the 
processes in these decision-making models illustrate functions for information flow 
and sources of uncertainty. Information is needed at each scale and decisions are 
expected from institutions at each scale (state, local and national). Formalizing the 
relationships among variables and processes (especially enforcement, for example) 
would aid in understanding scaling effects directly, but jurisdictional rights and 
prerogatives inevitably add to uncertainty from one geopolitical area to another. 
Also, as suggested by Gunderson and Holling (2002) and by Stone (2004), decision 
outcomes can be very different depending on whether the institutional dynamics 
(from local to national scales) are in the conservation phase or the release phase of 
the adaptive cycle (Stone 2004). 

We have looked at the theory underlying scaling for public policy, and at two 
water-quality case studies for decisions implementing a policy. We find that down-
scaling relationships are at least as important in water quality as up-scaling is for 
landscape and other ecological scaling applications discussed in previous chapters. 
Uncertainty is inherently prominent in decision making, of course, but the uncertainty 
is not due to pixel resolution, imprecise measurements, or from an inadequate model. 
Rather, the sources of uncertainty in scaling for policy and decision-making appear to 
derive from the blurring of responsibilities across scale, or diffuse information flows 
across scale. The uncertainty at fine-grained scales of decision-making for water 
quality cannot be expressed numerically, but can be understood and is predictable 
much of the time.  

Both the theory and the case studies presented here show that describing the way 
that information flow is affected by scale can greatly help our participation in 
decision-making processes. Describing and modeling the sources of uncertainty in 
information flow across scale has a potential for improving public dialog with 
respect to the decisions being made. Understanding of the scaling among ecological 
relationships within watersheds, together with the scaling for decision-processes, is a 
pressing need. Probably most important, this review shows that an appreciation of 
who benefits and who loses among federal, state and local stakeholders after certain 
decisions is critical for evaluating outcomes. Understanding of legal and institutional 
authority, hierarchically, should complement our knowledge of interaction and 
complexity across scale (from biophysical to social/political). It is this knowledge 
that will help most in achieving compatibility between social, economic, and 
ecological systems that are now seen as being at odds with one another, partly due to 
scale and uncertainty effects. 
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CHAPTER 18 

SCALING WITH KNOWN UNCERTAINTY:  

A Synthesis 

JIANGUO WU, HARBIN LI, K. BRUCE JONES,  
AND ORIE L. LOUCKS 

18.1 INTRODUCTION 

Scale is a fundamental concept in ecology and all sciences (Levin 1992, Wu and 
Loucks 1995, Barenblatt 1996), which has received increasing attention in recent 
years. The previous chapters have demonstrated an immerse diversity of scaling 
issues present in different areas of ecology, covering species distribution, population 
dynamics, ecosystem processes, and environmental assessment. Scale issues occur 
in every facet of ecological research, including study design, data collection, 
experimentation, statistical analysis, and modeling. The scales of observations and 
outcomes in the case studies range from plots, ecosystems, landscapes, to regions.  

Readers will surely ask then, what new synthesis can be achieved from these and 
other recent contributions to the literature on scale? We see several overarching 
themes evident in the theory, methods, and case studies presented here, not 
necessarily in every chapter, but from the body of work as a whole. The following 
themes are illustrative: novel ideas for integrating diverse scaling perspectives, 
distinctions among sources of uncertainty, advances in the quantification of scaling 
error, improved applications of scaling principles, improved recognition of the 
phenomenon of scale effects (especially for cross-scale material exchange of 
chemicals, gases, etc.), and advances in the use of scale-related understandings for 
public policy and decision-making.  

Taken together these themes can be understood and organized by thinking 
through three closely related scale issues: identifying characteristic scales, 
understanding scale effects, and developing methods for scaling and quantifying 
sources of error in relation to uncertainties. In this last chapter of the book, we 
attempt to build from the richness of the methods and case studies toward an 
integration of the entire volume. To do this we briefly recapitulate scale and scaling 
concepts, summarize how different kinds of scale issues are dealt with in the 
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chapters, and present a synthesis in the form of a pluralistic scaling paradigm. In the 
end, we conclude with some general guidelines for scaling. 

18.2 WHAT HAVE WE LEARNT ABOUT SCALE AND SCALING? 

In the past two decades, scale and scaling have become a central issue in biological 
and earth sciences. While many concepts exist, a comprehensive conceptual 
framework of scale and scaling is still lacking. To address this gap we first need to 
answer the question, what do authors really mean by “scale” and “scaling?”  

Diversity of concepts is not necessarily a problem in development of a new area 
of science or discipline, but divergence of concepts without addressing a common 
set of key questions can be a profound problem (Wu and Hobbs 2002). The issues 
may be manageable when the same terms have been used with only small 
differences in connotations across disciplines, but major problems arise when the 
terms are used without clear definitions. To achieve a comprehensive understanding 
of scale issues, therefore, the full range of concepts relating to scale and scaling in 
ecology need to be compared and contrasted in a coherent framework. This has not 
always been accomplished in the chapters of this book, but it is one of the main 
objectives of the book.  

Chapter 1 introduced the definitions of scale and scaling used in disciplines 
ranging from physical to social sciences, and proposed a three-tiered conceptual 
framework: dimensions, kinds, and components of scale. Space, time, and levels of 
organization are the three common dimensions in discussion of scale issues, evident 
in many of the proceeding chapters. Although there are general scaling rules 
common to the three dimensions, the behavior of one phenomenon across scales 
may differ significantly when examined in each of these dimensions. Time and 
space emerge as the most fundamental dimensions for scaling. Scaling across 
hierarchical or integrative levels of organization, which inevitably involves change 
in time and space, is also important in many studies. As hierarchy theory suggests, 
response patterns at higher levels of organization tend to be massive and slow, while 
phenomena at lower levels tend to be fine-grained and fast. Thus, scaling in the three 
dimensions can be related to one another through space-time correspondence 
principles along with hierarchy theory. As shown in the case study chapters, 
observational, experimental, modeling and policy scales can all be distinguished 
from the intrinsic scale of a phenomenon within each dimension. Each different kind 
of scale has its own meaning, as determined by a variety of factors, and these do not 
necessarily correspond to the intrinsic scale of phenomena. In the practice of scaling, 
or to develop quantitative relationships across scales, the components by which scale 
is defined (e.g., extent, grain, and coverage) also have to be specified. 

Ecological scaling as the study of organism-based allometry has existed for 
several decades, but the recent burst of interest in spatial scaling coincided with the 
rapid development of landscape ecology in the past two decades. While the term, 
scale, has acquired a score of connotations in different sciences, the early definition 
of scaling used in physics and biological allometry has proven to be too narrow for 
development of a science of scaling in ecology. Our search of papers on scaling 
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that nearly all of them deal with power-law scaling one way or another. However, a 
review of the ecological literature and of the chapters in this book indicates that 
scaling is more than the search for power laws or systematic size relationships. 
These sources show that ecological scaling includes, but is more than, organism-
centered allometric studies. Scaling is generally defined as the translation of 
information across spatial, temporal, and organizational scales in this book.  

This general definition of scaling neither prescribes its goal as the search for 
power-law relationships, nor as documentation of narrowly-defined scale-invariant 
phenomena. This synthesis chapter, therefore, adopts the above broad definition of 
scaling, with emphasis on the translation of information across space. Why is this 
broad definition necessary? As the previous chapters have shown, ecological 
patterns and processes can be related in a number of different ways across scales, 
and pluralistic theories and methods will be needed to discover them. Power laws 
are elegant and compelling when they are found to exist, but most scaling issues in 
practice cannot be equated to a search for such simplistic relationships (see also the 
next section). Accordingly, a range of scaling methods have been developed in the 
case studies to deal appropriately with the broad range of scaling problems 
encountered. 

18.3 DEALING WITH SCALE ISSUES 

Current literature in ecology, and in this book, requires that three types of scale 
issues be distinguished: characteristic scales, scale effects, and scaling and 
associated uncertainty. The chapters of this book have dealt with these issues 
through a variety of objectives and from different perspectives, as illustrated by the 
summary in Table 18.1. In this section, we provide a systematic overview of how 
these three types of scale issues have played out, using material from the chapters as 
well as from recent literature on scale and scaling. 

18.3.1 Characteristic Scales 

Characteristic scales are “intrinsic scales” on which phenomena of interest operate, 
and thus are central to description and understanding of the phenomena (Wu and Li, 
Chapter 1). Characteristic scales are intrinsic because they are inherent to the system 
to be observed and do not change at the pleasure of the observer. However, because 
they are usually determined through observation and analysis, characteristic scales 
have the possibility of being distorted or misrepresented, which leads to the problem 
of scale mismatch between the intrinsic and observed scale. In general, fine-grained 
sampling schemes tend to generate data that blur coarse-scale patterns (i.e., high 
noise/signal ratio), whereas coarse-grained sampling schemes will surely miss fine-
scale patterns. Thus, in any study it is critically important to choose a scale that is 
commensurate with the characteristic scale of the phenomenon of interest based on 
relevant empirical knowledge or through an exploratory scale analysis. 

published in Nature and Science (using the ISI Web of KnowledgeSM ) has shown 
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Different scales of observation or policy-making may lead to disparate outcomes 
(see, for example, Wessman and Bateson, Chapter 8, Groffman et al., Chapter 10, 
Loucks et al., Chapter 17). Indeed, scale mismatching may have been one of the 
most common problems in ecological studies. Such problems may be a consequence 
of a flawed study design in which mismatches between different kinds of scale 
(intrinsic, observational, experimental, analytic, modeling, and policy scale) are 
encountered. This situation is also an example of scale effects, which will be further 
discussed. Therefore, to describe and understand a given phenomenon, there may be 
no single correct scale (Levin 1992, Wu and Levin 1994), but there are certainly 
scales that are more revealing than others. 

The idea of characteristic scale appears to be at odds, however, with the often 
misinterpreted prevalence of scale-invariant phenomena in nature, inferred 
frequently from theories such as fractal geometry and self-organized criticality (e.g., 
Bak 1996). Recent studies based on these theories have claimed that ecological 
systems are characterized by self-organized criticality and self-similarity, and 
exhibit scale invariant patterns over several to many orders of magnitude (e.g., Bak 
1996, Jørgensen et al. 1998, Sole et al. 1999, Brown et al. 2004). However, others 
have pointed out that some of these analyses were problematic because of 
misinterpreting ecological data or overreaching from the results (e.g., Raup 1997, 
Kirchner and Weil 1998, Dodds et al. 2001, Plotnick and Sepkoski 2001, Cyr and 
Walker 2004). Studies of both biophysical and socioeconomic systems have shown 
much evidence that complex systems often exhibit both scale-dependent behaviors 
and characteristic scales (Clark 1985, Courtois 1985, Urban et al. 1987, Delcourt 
and Delcourt 1988, Holling 1992). Such findings are consistent with the prediction 
from hierarchy theory that patterns and processes in complex systems tend to have 
distinctive characteristic scales, through both internal self-organization and multiple-
scale external constraints (O’Neill et al. 1986, Schweitzer 1997, Wu 1999). Several 
chapters of this book also provide evidence to support the presence of distinctive 
characteristic scales, illustrated in the context of carbon cycling (Law et al., Chapter 
9), nitrogen fluxes (Groffman et al., Chapter 10), avian population dynamics (Lloyd 
et al., Chapter 14), lake-watershed interactions (Johnston and Shmagin, Chapter 16), 
and policy-making processes (Loucks et al., Chapter 17). 

In reality, neither all patterns and processes always have a clearly identifiable 
hierarchical structure, nor do they all exhibit scale-invariant behavior. These two 
perspectives should be viewed as complementary, rather than opposing to each 
other. For example, as discussed by Wu and Li (Chapter 2), extrapolation along a 
scaling ladder (or the hierarchical patch dynamics scaling approach) integrates both 
perspectives. Dealing with scale issues requires as much appreciation of scale-
dependent phenomena as seeking scale-invariant instances. For either one, the kinds 
of phenomena and the ranges of scale (or scale domains) in which scale-dependence 
or scale-invariance occurs must be specified if the higher-level, comprehensive 
integration is to be achieved. The existence of characteristic scales suggests that 
scale analysis should be a necessary first step in dealing with complex phenomena 
(Levin 1992, Wu and Loucks 1995). Numerous landscape metrics and spatial 
statistical methods can be used for this purpose (Turner et al. 2001). Jones et al. 
(Chapter 11) provides an example of using classification and regression trees 
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(CART) to analyze relationships between total stream nitrogen and its controlling 
variables at local riparian, watershed, and regional scale. While multiple-scale 
dynamic models are commonly used for this purpose (Wu and Li, Chapter 2), 
statistical methods such as multilevel statistical models (Berk and Leeuw, Chapter 4) 
may also be effective in identifying and linking characteristic scales. 

18.3.2 Scale Effects 

Scale effects occur whenever changes in the scale of observation, analysis, 
modeling, or experimentation lead to changes in the results of a study. The idea of 
characteristic scales suggests that scale effects are bound to occur whenever the 
scale of observation involves a mismatch with the intrinsic scale of a phenomenon. 
Such effects, although generally expected, may not be specifically predictable. In 
contrast, theories of scale-invariance and self-similarity tend to imply that scale 
effects either do not occur or can be readily predicted mathematically. Empirical 
studies have shown that scale effects may result in inaccurate classifications or 
distorted maps (see Wessman and Bateson, Chapter 8 and Hollenhorst et al., Chapter 
15), and altered or erroneous statistical and modeling results (see Jones et al., 
Chapter 11, Wickham et al., Chapter 12, Lloyd et al., Chapter 14, Johnston and 
Shmagin, Chapter 16). Bradford and Reynolds (Chapter 6) show that, in 
experimental studies, scale effects may be more common than ecologists tend to 
admit when microcosms or artificial systems are used to mimic natural systems. In 
this case, a crucial issue at stake is the tradeoff between the internal and external 
validity of experiments (Naeem 2001). Thus, scale effects do seem often to impede 
our ability to accurately interpret the results of a study, be it observational or 
experimental, and add to the uncertainty of scaling operations. In general, an 
increase in grain size may lead to lower variability in system variables due to 
averaging or smoothing effects, while an increase in extent may lead to higher 
variability due to the inclusion of more diverse conditions.  

The studies in this book and elsewhere show that scale effects are pervasive in 
natural and social systems, and commonly found in basic research studies as well as 
in policy-making and political processes (Loucks et al., Chapter 17). It is interesting 
to note the problem of gerrymandering, dating from more than a hundred years ago, 
as an example of scale effects as well as the interaction between observational 
science and social and political processes. Elbridge Gerry (1744-1814), the governor 
of Massachusetts from 1810 to 1812, signed a bill into law that redistricted the state 
allegedly to benefit his Republican Party in elections. As a result of the redistricting, 
one of the congressional districts was shaped like a salamander, and the term 

(http://
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geography as part of what has been known generally as “the modifiable area unit 
problem” or MAUP (Openshaw 1984). Although MAUP studies clearly are relevant 
to understanding scale effects and space-scale interactions in general, the subject has 
generally been ignored in ecological literature until recently (Jelinski and Wu 1996). 

gerrymander was derived from the two words: Gerry and salamander 
webster.com/). The purposeful manipulation of the local boundaries of 
districts (i.e., changing grain size and configuration) altered the outcome of 

 election process at a larger scale. Scale effects have long been studied in human 
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In parallel, plant community ecologists have long studied the effects of changes in 
sample size and position on vegetation pattern results from field surveys. The 
diversity of studies on scale effects in the previous chapters demonstrates that, 
today, most ecologists are aware of these effects. However, no discipline outside 
landscape ecology, which focuses on the relationships among pattern, process, and 
scale (Turner et al. 2001, Wu and Hobbs 2002), has placed more emphasis on 
understanding scale effects.  

Of course, scale effects may also be artifacts if the scales of study are entirely 
arbitrary, in which case the actual patterns and processes become distorted. When 
the scales of study are determined based on understanding of the phenomena of 
concern, however, observed scale effects can be used to improve understanding of 
scaling relationships and the accuracy of scaled outcomes (Jelinski and Wu 1996, 
Wu 2004). Hence, future studies of scale effects will have to move beyond merely 
reporting their occurrence to focus work on the development of more sophisticated 
scaling relations and scale-dependent understanding (Wu 2004). 

18.3.3 Approaches to Scaling 

As the previous chapters have shown, scaling has become an increasingly important 
element of ecological research. While ecologists are among those who are most 
aware of scale issues, most scaling theories and methods have originated in physics, 
meteorology, and hydrology, and some of these methods have remained 
underutilized in ecology. Chapters 1 and 2 have reviewed the full range of scaling 
methods, breaking them into two complementary general approaches according to 
their conceptual foundations: the similarity-based scaling approach, widely used in 
geophysical and biological sciences, is rooted in the idea of similitude or self-
similarity, whereas the dynamic model-based approach includes scaling methods 
that emphasize processes and mechanisms. Similarity-based scaling methods may 
start with first principles and proceed deductively with mathematical analysis (the 
analytical approach), or seek scaling relations inductively with statistical regressions 
(the empirical approach).  

For similarity-based scaling, methods available from current literature and the 
earlier chapters include dimensional analysis, similarity analysis, biological 
allometry, and spatial allometry, all of which draw on the principles of similarity 
(geometric, physical, and functional) and self-similarity (fractal scaling). 
Dimensional and similarity analysis are fundamental to modeling and scaling in 
general, but we have not yet seen how effective these methods are for complex 
ecological and socioeconomic processes that are not explained well by physical laws 
alone. Biological allometry, where the techniques of dimensional and similarity 
analysis are invoked often, has dominated the literature in “ecological scaling” for 
many years. However, organism-based allometric scaling may have little relevance 
for spatial scaling problems, unless space can be incorporated into the scaling 
relation through, for example, population density or home range. In contrast, spatial 
allometry relates ecological variables directly to spatial scale, facilitating cross-scale 
predictions when the domains of applicability can be determined. While this book is 
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not focused on the similarity-based methods, a review of them, as used in biology 
and geophysical sciences, has been provided by Wu and Li in Chapter 2.  

Dynamic model-based scaling includes explicit upscaling and downscaling 
methods. Wu and Li (Chapter 2) review several upscaling methods used in ecology 
and geophysical sciences, including extrapolation by lumping, extrapolation by 
effective parameters, direct extrapolation, extrapolation by expected value, explicit 
integration, spatially interactive modeling, and hierarchical scaling. A major 
difference among these methods lies in how spatial heterogeneity is treated in the 
model-based scaling procedure. Extrapolation by lumping essentially ignores spatial 
heterogeneity, and is more likely to produce results with high uncertainty. 
Extrapolation by effective parameters treats spatial heterogeneity in an aggregated 
way, and has had success in hydrology and meteorology. It may be equally useful in 
scaling up population and ecosystem processes in situations where the procedures 
for deriving effective parameters are applicable. Both direct extrapolation and 
extrapolation by expected value treat spatial heterogeneity in explicit ways, and are 
widely used methods in ecology and earth sciences. Explicit integration, although 
probably the most elegant and accurate, is not generally practical. When horizontal 
flows, time delays, and feedbacks become significant and when spatial heterogeneity 
can no longer be decomposed discretely or characterized statistically, spatially 
interactive modeling may be the only sensible alternative.  

The discussion by Peters et al. (Chapter 7) treats several upscaling methods in 
terms of their degrees of spatial explicitness (also see Peters et al. 2004). In their 
view upscaling methods are of three kinds: non-spatial, spatially implicit, and 
spatially explicit. The non-spatial method refers mainly to extrapolation by lumping; 
the spatially implicit method to direct extrapolation, and the spatially explicit 
method to spatially interactive modeling. These authors also illustrate how and when 
the different scaling methods should be used through an example of the 
extrapolation of net primary production in a desert landscape. We should note that 
the definition of “spatially implicit” in Chapter 7 (and also Peters et al. 2004) is 
different from that commonly used in ecology and earth sciences. Spatial explicit 
models usually refer to those that consider spatial interactions of processes of 
interest explicitly, or represent the spatial locations of model variables or parameters 
explicitly. Thus, extrapolation by lumping and extrapolation by effective parameters 
both are spatially implicit methods. Extrapolation by expected value incorporates 
spatial heterogeneity in terms of probability density functions and thus is quasi-spatial; 
direct extrapolation, explicit integration, and spatially interactive modeling are all 
spatially explicit methods. With rapidly increasing computational capabilities and 
available remote sensing data, direct extrapolation and similar methods are 
becoming the most widely used approach in landscape and regional case studies. 

Although most of the chapters in this book deal with upscaling, Wu and Li 
(Chapter 2) reviewed the two major downscaling approaches: empirically-based 
statistical downscaling and downward nested modeling. In contrast with upscaling, 
downscaling seeks to derive detailed patterns within a spatial domain by 
disaggregating coarse-grained information. A number of sophisticated statistical and 
modeling techniques have been developed for downscaling the outputs of General 
Circulation Models (GCMs) from regions to local landscapes or ecosystems and for 
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estimating fine-scale patterns of hydrological and soil properties from coarse-
grained information (see Chapter 2 and references therein). While many 
downscaling studies have been carried out in the context of global climate, 
hydrological, and soil sciences, He and Reed (Chapter 5) present a new downscaling 
method for a time-honored ecological problem–linking species distribution to 
abundance. Their statistical models, based on the combinatorial theory of 
occupancy, allow for estimation of the number of organisms (abundance) from 
species presence-absence maps (distribution). Not surprisingly, the accuracy of these 
models was found to decrease with decreasing map resolution, a manifestation of 
scale effects and a source of uncertainty. This method is similar to the statistical 
downscaling methods reviewed by Wu and Li (Chapter 2) in that they all assume 
some statistical distribution of the variable to be downscaled and then seek model 
parameters that satisfy the assumption. However, He and Reed’s method (Chapter 5) 
is suited for discrete variables, whereas most other downscaling methods deal with 
continuous variables associated with hydrological, soil, and climatic processes. 

Which of these scaling methods should be chosen for specific research problems 
in ecology? In practice, it is frequently the case that several different scaling 
methods are used together in a single study. This has been true of complex scaling 
projects that either cover a wide range of scales or consider a diversity of processes 
(Reynolds and Wu 1999, Wu 1999, Law et al., Chapter 9). Also, models that are 
spatially more realistic tend to have higher explanatory potential, but not necessarily 
higher predictive accuracy. For a particular scaling problem, therefore, one cannot 
expect a single best method or approach; some methods may be more effective and 
accurate for certain goals than others. Therefore, the choice of scaling methods 
should be resolved in relation to the purpose of the study, the acceptable level of 
uncertainty, and data availability. Multiple methods are usually preferred for 
purposes of comparison and confirmation. 

18.3.4 Approaches to Uncertainty 

No matter what scaling methods are used, uncertainty in scaling is inevitable due to 
spatial heterogeneity, nonlinear relationships, lack of reliable data, and problems in 
scaling techniques. All of these are illustrated by Peters et al. (Chapter 7) and Urban 
et al. (Chapter 13). However, uncertainty analysis, or accuracy assessment, has not 

 

consistently been a part of ecological scaling. In Chapter 3, Li and Wu have pro-
vided an overview of uncertainty analysis, focusing on the sources of uncertainty, 
evaluation of scaling algorithms, error propagation, and presentation of prediction 
accuracy. Uncertainty analysis should be regarded as an essential part of the scaling 
process because it provides critical information about confidence in the results and 
the adequacy of the models and algorithms used. The main purposes of uncertainty 
analysis, therefore, are to quantify the various sources, assess the effects of 
uncertainty on scaling results, and identify critical factors in models (see He and 
Reed, Chapter 5, Peters et al., Chapter 7, Law et al., Chapter 9, Urban et al., Chapter 
13). The methods used for uncertainty analysis include probability theory, Taylor 
series expansion, Monte Carlo simulation, generalized likelihood uncertainty 
estimation, Bayesian statistics, and sequential partitioning.  
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Several of the earlier chapters provide examples of how to deal with scaling 
uncertainty. In particular, Peters et al. (Chapter 7) advocate a general approach to 
reducing scaling uncertainty by dividing a complex landscape into a number of 
regions for which different scaling methods are selected. The idea behind this 
approach is a spatial extension of the decomposability principle of hierarchy theory, 
and consistent with the hierarchical patch dynamics paradigm (Wu and Loucks 
1995, Wu 1999). While Law et al. (Chapter 9), Groffman et al. (Chapter 10), Jones 
et al. (Chapter 11), Wickham et al. (Chapter 12), Lloyd et al. (Chapter 14), and 
Hollenhorst et al. (Chapter 15) estimate uncertainty using conventional measures 
such as standard deviations and variances, Urban et al. (Chapter 13) has explored 
new methods for estimating error propagation and communicating scaling 
uncertainty to scientists as well as landscape managers and planners. Given the 
increasing role of large-scale modeling and scaling in ecological research and 
environmental decision-making (e.g., Johnston and Shmagin, Chapter 16, Loucks  
et al., Chapter 17), the obligation to understand, report, and reduce uncertainties in 
scaling are becoming increasingly important.  

18.4 TOWARDS A PLURALISTIC SCALING PARADIGM 

Inevitably, one must ask now whether some overarching pattern is evident in the 
material just summarized. The reviews in Chapters 1 and 2 by Wu and Li show that 
scaling has often been associated with power laws, fractals, and self-organized 
criticality. Such scaling laws would be elegant and powerful for ecosystems and 
landscapes if they could be validated through empirical evidence. The recent 
resurgence of interest in biological allometry is epitomized by the development of a 
“metabolic theory of ecology” (Brown et al. 2004), which attempts to use 
organismal allometry with a temperature correction to predict “ecological processes 
at all levels of organization from individuals to the biosphere.” Such grand theory 
based on first principles in physics, chemistry, and biology, would be eminently 
useful in ecological scaling, but skepticism and sharp criticisms are rooted in the 
dearth of empirical support, mathematical limitations, diminishing rigor at 
organizational levels beyond whole organisms, and an inability to deal with 
heterogeneous structures and transient dynamics (Dodds et al. 2001, Bokma 2004, 
Cyr and Walker 2004, Kozlowski and Konarzewski 2004). Can a pluralistic 
approach be an alternative? 

Not all ecosystems and landscapes, or their properties, exhibit fractal 
characteristics, and “self-organized criticality is not likely to be a universal feature” 
(Levin 1999). In ecological systems, scale invariance may be common, but scale-
dependence is ubiquitous. The previous chapters illustrate the complexity of scaling 
problems in ecology, and explain why holistic approaches have had limited 
scientific success, despite often appearing to be of high ecological relevance. At the 
same time, extreme reductionist approaches, although mechanistically appealing, 
often fail to resolve ecological problems that hinge on emergent properties, self-
organization, and other nonlinear interactions. Ecologists have long called for an 
integration between the two kinds of approaches, and such an integration could be 
accomplished in the context of a pluralistic approach (McIntosh 1987, Wu and 
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Loucks 1995). A pluralistic scaling paradigm would be able to deal with the diverse 
problems of transferring information across the various kinds of scale. Such a 
paradigm is implied in the previous chapters as well as in other recent publications. 

Pluralism does not mean an anarchic development of views and approaches free 
of an underlying common framework. As a scaling paradigm, pluralism accepts the 
organized diversity of scaling problems seen in the previous paragraphs, and 
discourages exaggeration of a monistic theory or methodology. It allows promoting 
of alternative but complementary perspectives arising out of interdisciplinary 
sources. A pluralistic scaling paradigm should start with the clearly defined concepts 
of scale and scaling that we have sought to provide here. It also reconciles their 
different connotations within and among disciplines.  

The definitional hierarchy outlined in Chapter 1 can serve as a point of 
departure. Because human influences have become pervasive in all ecological 
systems, scaling over large areas requires considering explicitly how biophysical 
and socioeconomic processes interact at different but hierarchically inked scales. 
Thus, the pluralistic scaling paradigm is inherently interdisciplinary, integrating 
natural and social sciences. In it the two general scaling methodologies, the 
similarity-based and dynamic model-based approaches, can be brought together 
through a complementary, rather than an adversarial, conceptual  framework. 
Hierarchy theory may provide such a scaling framework for both the natural and the 
social sciences (Wagenet 1998, Marceau 1999, Wu 1999, Haila 2002). 

Because all environments have a hierarchical structure (MacArthur 1972), and 
because “space is inherently hierarchical” (Meentemeyer 1989), a hierarchical frame
work for pluralistic scaling is not only intuitive but also captures the essential scale-
dependent complexity of biophysical and socioeconomic systems. As a general 
strategy, the “scaling ladder approach” (sensu Wu 1999) provides general guidelines 
for decomposing heterogeneous landscapes or regions into nested spatial  hierarchies, 
along which information can be transferred. The scaling ladder approach is based on 
the hierarchical patch dynamics paradigm (Wu and Loucks 1995) that integrates 
hierarchy theory with the patch dynamics perspective. The approach has proven 
useful in scaling landscape patterns and processes (Hay et al. 2001, 2002, Poole 
2002, Wu and David 2002, Burnett and Blaschke 2003, Hall et al. 2004, Poole et al. 
2004). 

While scale-invariance may exist over broad geographic regions in some 
circumstances, most ecological patterns and processes show scaling thresholds at 
which abrupt changes in scaling relationships occur, corresponding to shifts in 
underlying mechanisms. In the hierarchical context of the scaling ladder approach, 
both similarity-based and dynamic model-based scaling methods are useful for 
transferring information between adjacent hierarchical levels (or scaling thresholds). 
To transfer information across a broad range of scales along the scaling ladder (e.g., 
from single leaves, canopies, ecosystems, landscapes, to regions or the entire 
biosphere), there may be more scientific justification and technical feasibility 
through use of a hierarchy of scale-specific models rather than single monolithic 
models with several hierarchical levels built in (Wu 1999). Such multiple-step pro-
cedures require novel model-linking techniques, including nested modeling and meta-
modeling (e.g., Reynolds et al. 1993, Wu and David 2002, Urban et al., Chapter 13),  
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and combine both bottom-up and top-down conceptualizations. Because both 
ecological and socioeconomic systems are complex adaptive systems (Levin 1999), 
their structure and function can change in response to changing environments. Such 
responses need to be accommodated through pluralistic scaling. Accordingly, the 
structure of scaling ladders–patch hierarchies used for scaling particular ecological 
patterns and processes–may also change when the time horizon involved is much 
longer than the characteristic spatial and temporal scales of the phenomenon of 
interest. 

18.5 CONCLUSIONS 

Throughout this volume we have tried to view scaling consistently as the process of 
translating information across space, time, and organizational levels. Scaling is 
ubiquitous and of paramount importance in ecology. Although ecologists are acutely 
aware of such issues as characteristic scale and scale effects, the commonly used 
scaling methods have tended to be inadequate for dealing quantitatively with the 
spatial heterogeneity and nonlinearity embedded in ecological systems. While the 
availability of accurate multiple-scale data sets are, and will always be, crucial to 
successful scaling, we argue that a key impediment to be overcome now derives 
from the limited scaling methodologies currently in wide use in ecology. The field 
can benefit significantly from, and contribute to, the development of a coherent 
science of scaling by embracing a number of theories and methods from the physical 
and geophysical sciences, and moving forward with an ecologically comprehensive, 
pluralistic scaling paradigm.  

We would fall short of a reader’s expectations for a book on scaling if no 
guidelines for further development of scaling were offered. However, it is still 
difficult to provide a general “recipe” for scaling considering the idiosyncrasies of 
many specific scaling problems and the diversity of scaling methods available. Still, 
the following general guidelines, although by no means inclusive, should be useful 
for the practice of spatial scaling. 

18.5.1 Some general principles for scaling 

• The most effective scaling strategies are those that integrate bottom-up and 
top-down approaches through combining field observations, experimentation, 
with mathematical modeling. In developing models for scaling, bottom-up 
approaches supply mechanistic details, whereas top-down approaches 
provide constraints and boundary conditions.  

• The relationships between pattern and process, be they physical, biological, 
or social, are multifaceted and scale-dependent. Only when pattern and 
process operate at similar time scales within the same geographic region, 
can they possibly have interactive relationships. If spatial patterns change 
much more slowly than the processes that influence them, then the 
relationship between pattern and process can be reduced to the one-
directional effect of pattern on process. This general principle can be used as 
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a guide for simplifying ecological complexity during study design, and for 
coupling biophysical and socioeconomic patterns, processes and outcomes 
from scaling. 

• The feasibility and accuracy of translating information across scales depend 
greatly on properly identifying scaling thresholds. Thus, scale analysis using 
landscape metrics and spatial statistics should be a first step in scaling. Key 
processes or variables with similar scales of variation should then be 
grouped, and examined for potential interactions within each group and for 
hierarchical linkages between different groups.  

• Ecological systems can be considered spatially nested hierarchies a priori, 
or based on cross-scale analyses, which provide the context necessary for 
scale invariance to be properly interpreted. Nested hierarchies also facilitate 
mechanistically transferring information across multiple domains of scales.  

18.5.2 Selecting appropriate methods for scaling 

• Spatial heterogeneity is the most pervasive and critical factor to influence 
the process of scaling. Accordingly, quantifying spatial heterogeneity at 
multiple scales, whenever feasible, should be a priority in the early stage of 
a scaling study. This analysis may provide critical information for selecting 
appropriate scaling methods and reducing overall scaling uncertainty. 

• Scaling methods have to be selected with sensitivity to particular study goals 
because they differ in efficiency and accuracy. Each is constrained by a 
different set of assumptions, data requirements, capabilities, and acceptable 
levels of uncertainty.  

• Similarity-based methods, often relying on relatively simple statistics such 
as regression and correlation, can be quite useful for prediction and for 
suggesting possible underlying explanations for observed patterns. 
However, only dynamic modeling methods, based on processes and 
mechanisms, have the potential to achieve reliable predictions for evolving 
systems in changing environments. 

• Most existing scaling methods operate only by not crossing scaling 
thresholds or organizational levels. Scaling across multiple levels of 
organization often requires a hierarchical approach. In particular, most 
models are scale-specific and should be used only within the domain of 
scales for which they are designed. Applying models outside their intended 
scale domains is expected to result in high uncertainties.  

18.5.3 Scaling with known uncertainty 

• Errors are bound to occur in scaling, and uncertainty analysis must be 
considered as an integral part of scaling because it provides critical 
information on the adequacy of models or algorithms used in the scaling 
process. Thus, it is not adequate simply to ask how to scale; rather, one 
needs to ask how to scale with known uncertainty.  
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• Scaling uncertainty comes from the model structure, parameters, driving 
variables, and scaling algorithms. Errors from these different sources may 
propagate to produce nonlinear effects on the accuracy of scaling results. 
Some uncertainties can be quantified and reduced (e.g., measurement and 
sampling errors); others can be quantified but are hard to reduce (e.g., 
natural variability in data); and still others may not even be quantifiable 
(e.g., model uncertainty). Wherever possible, one should identify and reduce 
the critical sources of errors.  

• Scaling results should be presented along with uncertainty measures such as 
probability distributions, variance, coefficient of variation (CV), confidence 
levels, and root mean square error (RMSE). Predictions without accuracy 
information are of little value, and may even be misleading no matter how 
impressive the numbers appear to be.  

The importance of scaling can hardly be overemphasized. Every time an average 
of some property is derived across space, time, or organizational levels, scaling is at 
work. The accumulation of our experience and knowledge is essentially a product of 
scaling. As ecologists, we must be more conscious about scaling and associated 
uncertainties. To better understand and manage the diversity and complexity of 
ecological systems, we need to make more efforts to develop a coherent science of 
ecological scaling. We certainly hope that this book will be able to help, in some 
ways, to achieve this goal.  
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