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Foreword

We are surrounded by electronic devices: mobile phones, computers, traffic light
regulators, etc. Many of them work automatically with inputs provided by sensors
scrutinizing the environment. Plane trips contain less and less manual drive.
Electrical systems are managed with automatic circuits ensuring stability. Exam-
ples abound, and our technological society will use more and more such automatic
devices under the pressure of various factors. Technological innovation and costs
reduction increase the penetration of so-called ‘‘smart’’ devices. The world
increase in demand for communications technologies and for energy requires more
and more coordination in a global economy. Environmental protection fosters the
need for soberness in the use of resources, hence of an optimized management.
Control Theory is at the heart of Information and Communication Technologies of
complex systems; it can contribute to answer such challenges.

We aim at providing students and engineers with basic tools and methods to
tackle dynamical systems control problems. The book is organized as an engineer
classically proceeds to solve a control problem, that is elaboration of a mathe-
matical model capturing the process behavior, analysis of this model, and design of
a controller to accomplish desired objectives.

Central to Control Theory are the notions of feedback and of closed-loop. In his
autobiography, Eye of the Hurricane (see [29]), the famous applied mathematician
Richard Bellman recalls how he was led from open-loop solutions of control
problems (‘‘functions of time’’) to closed-loop solutions (‘‘policies’’): Again the
intriguing thought: A solution is not merely a set of functions of time, or a set of
numbers, but a rule telling the decision maker what to do; a policy.1 The notion of
feedback, as a rule mapping the state space (and the time) onto the control space, is
developed throughout this text.

As with heat regulation by a thermostat, many systems are regulated by feed-
back and the way to elaborate such feedback controllers needs some appropriate
mathematical tools which are highlighted here. This is why we are particularly

1 To make these notions more concrete, consider traffic regulation. Fixed cycle gears for traffic
lights are examples of open-loop controls, whereas closed-loop traffic lights controls adapt their
timing and phasing according to current traffic conditions identified by means of sensors.
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interested in systems which can be represented by a mathematical model which
embodies the reactions to external inputs.

The book is divided into three Parts.
In Part I, we start by exploring a graded approach of modeling in Chap. 1. We

shine the spotlight on some general principles such as mass and energy conserva-
tion laws, illustrated by many examples coming from various fields (electrical
engineering, mechanics, chemistry, biological processes, etc.). In the process of
elaborating a mathematical model for control purposes, we highlight particular
dynamical structures and related classes of variables, like state, control, and output
variables. The notion of state of a system is emphasized, namely a finite number of
quantities which, being known at a given time instant, allow us to determine the
future evolution of the system. A state is a summary of past history, sufficient for
prediction. From a mathematical point of view, we focus our attention on
dynamical systems whose main properties are highlighted in Chap. 2. Then, we
shift our gaze from internal to external mathematical descriptions. Chapter 3 is
devoted to the frequency-domain approach and the associated input–output rep-
resentation, in which the system is embraced as a sort-of ‘‘black box’’ reacting to a
set of input signals. Graphical representations are used in the case of a scalar system
(one input, one output), highlighting natural definitions of robustness degrees such
as gain or phase margins. Let us emphasize that the input–output approach is well
adapted to the case of systems for which it is difficult, or sometimes impossible, to
obtain mathematical dynamical models from physical laws.

Part II is devoted to system analysis to ensure stability in the neighborhood of a
set point, a classical problem in control science (take off of a rocket, unstable
chemical reactor. . .). An equilibrium point of a dynamical system represents a
steady state of the system’s model, and Chap. 4 is dedicated to their stability
properties. From a practical point of view, the local stability property is expressed
from a simpler model than the original one, namely the linearized or tangent model
around the equilibrium point, which constitutes the first-order approximation. We
will show how control laws can be elaborated from this linear model.

The difference between a knowledge model—devoted to better understanding,
at the price of a detailed description of the ‘‘piece of reality’’ under scrutiny, and
generally nonlinear—and a control model—simpler, often linear and used to
elaborate a control law—is emphasized.2

2 As an illustration of the differences between knowledge and control models, let us consider the
climate change issue. Climatologists develop large models to improve their knowledge of the
climate mechanisms under increases in greenhouse gas emissions. Such models, embodied in
computer codes, integrate a huge number of physical and chemical relations. They are often
obtained from discretizing partial differential equations on a planetary grid: the finer the grid, the
sharper the model. The mythical 1/1 map may be seen as the ultimate form of such knowledge
models. Now, climate change economists also develop models. However, the most basic of these
models have a few lines and are written on a spreadsheet. Such a difference stems from different
perspectives. Economists do not care to understand and embrace the physics of climate change,
but they do care in how to decide about the issue: should we start reducing now (at a sure cost
now, for possible, but uncertain, benefits tomorrow), or should we wait for more information and
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Both knowledge models and control models have their part in Control Theory.
Whereas control laws or policies are designed on the basis of a control model, they
are tried and simulated on the more precise knowledge model.

To solve a local stabilization problem of a system described by a model having
input variables (controls or disturbances) and output variables (measurements), a
useful approach consists in computing first its tangent linearization at the desired
equilibrium set point. Doing so, we reveal the model skeleton tailored for stabil-
ization purpose. In Chap. 5, the structural controllability and observability prop-
erties of this tangent linear system are highlighted. The controllability property
means that the system can be driven from an arbitrary state to another one by
means of the control inputs. The observability property expresses that it is possible
to reconstruct the entire state of the system only from the past history of partial
knowledge of the state vector, that is, the output variables or measurements. We
prove that a controllable and observable system can be locally asymptotically
stabilized by means of a linear feedback control law. This study is done in Chap. 5
for continuous-time dynamical systems and in Chap. 6 for discrete-time systems.
The latter, represented by difference equations, are of great importance from a
practical point of view, since the digital character of computers implies that the
control is fed into the system only at discrete instants. We show how to discretize
continuous-time linear systems at a given sampling period. In Chaps. 5 and 6, we
illuminate the links between state space and input–output representations,
respectively, in continuous and discrete time.

The closed-loop system is characterized by its stability and precision properties
and some sort of compromise must be achieved. The quadratic synthesis casted in
Chap. 7 proposes a benchmark to display the tradeoffs, under the form of a qua-
dratic intertemporal criterion. Moreover, we introduce a probabilistic framework
to take into account perturbations and measurement errors as random variables, so
that the estimation problem can be solved as a linear filtering problem whose
solution is the well-known Kalman-Bucy filter.

At the end of Parts I and II, the local stabilization problem is solved, at least
theoretically. However, some degrees of freedom are left in the control law which
could be used to deal with transient behaviors. Indeed, besides stability, the control
should also guarantee some robustness. In other words, the control should preserve
the stability property in spite of modeling errors or unknown disturbances, such as
bias on sensors or actuators, oldness of components, etc. Some answers have been
given in Chap. 3 in the scalar case and will be developed in Part III.

More precisely, to take into account the effect of disturbances, the state space
approach consists of adding some state variables to estimate the perturbations;

(Footnote 2 continued)
postpone costly decisions? Such a formulation is a caricature of the climate change debate,
discarding details, and emphasizing other traits: economists say their models are fables. Many
‘‘fables models’’ have been developed to try and grasp the key economic features of the climate
change issue, thus shedding light onto decision making: time preferences, discount rate, risk
aversion, uncertainty, learning, etc.
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however, this increases the complexity of the control law. In Chap. 8, we introduce
the polynomial approach enabling us to obtain suitable polynomial representations
which are well adapted to express the links between the outputs and the distur-
bances. In the multivariable case, after stabilization, degrees of freedom are left in
the control law, whereas they could be used for disturbance rejection without
increasing the complexity of the feedback control law.

Throughout the text, different examples are developed, both in the chapters and
in the exercises. The inverted pendulum on a cart deserves special mention. This
toy problem runs throughout the book because it is a prototype of a naturally
unstable system that can be stabilized with the different techniques that we expose
in the book.

We would like to acknowledge our institutions, Mines ParisTech and École des
Ponts ParisTech, respectively, for the confidence and the liberty that they grant us.
This book has benefited from valuable comments from close colleagues, with a
particular mention to Jean-Philippe Chancelier. Thanks to him, we have been able
to elaborate a series of computer practical works http://cermics.enpc.fr/scicoslab
with the free scientific software Scicoslab that he has largely contributed to
develop [16]. We feel honored that Professor Jean-Michel Coron has accepted to
introduce our book, and we warmly thank him.

References

1. S. Dreyfus, Richard Bellman on the birth of dynamic programming. Oper. Res. 50(1), 48–51
2002

2. S. Campbell, J.-P. Chancelier, R. Nikoukhah, Modeling and Simulation in Scilab/Scicos with
ScicosLab 4.4, 2 edn. (Springer-Verlag, New York, 2010)

viii Foreword

http://dx.doi.org/10.1007/978-3-642-34324-7_8
http://cermics.enpc.fr/scicoslab


Preface

Control Theory is one of the most important branches of engineering science. There
are already good books on this theory. But this book is an outstanding one. The
authors, within less than 280 pages, successfully cover the key concepts and results
of the theory. This includes, in particular, the input–output representation, Routh’s
criteria, the PID compensator, gain and phase margins, stability and asymptotic
stability, Lyapunov functions, controllability, linear state feedback, observer, out-
put regulator, quadratic optimization, Kalman—Bucy filter, polynomial represen-
tation, and disturbance rejection. The book deals with linear and nonlinear control
systems and the control systems may be continuous or discrete in time.

I appreciate very much the excellent balance between the state space and the
frequency-domain approaches. These two approaches are very important, but, in
all the books I know in Control Theory, one of the two approaches is always
essentially ignored. Here, one clearly sees the usefulness of each approach and
how they can be used together. A special emphasis is put on modeling, which is
indeed a crucial step for the application of Control Theory to real life. The proofs
of the theorems and propositions are very clearly detailed. The notions and results
are driven from applications. Their importance is illustrated with numerous and
tutorial examples borrowed from various domains of engineering and science, as,
for example, fluid mechanics, thermodynamics, classical mechanics, continuum
mechanics, chemistry, electricity, and biology. The inverted pendulum on a cart,
which is present throughout the whole book, allows the reader to grasp quickly the
big picture on many control issues. At the end of each chapter, there are illumi-
nating exercises. They are also issued from various domains of engineering and
science. They show the power of the concepts, results, and tools described in this
book.

This book is primarily intended for engineers. However, it is also very inter-
esting for many other scientists, including, mathematicians, physicists, chemists,
and biologists.

In conclusion, I cannot praise this book too much. This is a must have text.
It will become soon a classical textbook in Control Theory.

Professor Jean-Michel Coron
Senior member of the Institut universitaire de France
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Part I
Modelling, Dynamical Systems

and Input-Output Representation



Chapter 1
Basics in Dynamical System Modelling

1.1 Introduction

In this chapter, we propose a graded approach to modelling, and we recall some
principles that allow the design of mathematical models for a large class of dynamical
systems. A mathematical model is a first step on the path leading to the design
of a control law. In practice, a control law is an algorithm which is adapted to a
mathematical representation of the system to be controlled. We intend to provide
the readers with tools allowing to obtain such a representation, and we refer them to
specialized literature on the subject for complements [9,48]. Due to their importance,
we first describe mathematical expressions of balance equations in § 1.2, together
with general principles to obtain additional phenomenological laws. Basic laws and
principles of Physics are discussed in § 1.3, and applications in solid mechanics, fluid
mechanics and electricity are provided in § 1.4.

Throughout the text, the time variable is designated by the letter t and, when
not specified, varies in R+ (for continuous-time models, whereas t varies in N for
discrete-time ones).

1.2 Balance Equations and Phenomenological Laws

In Physics, most fundamental laws and principles are formulated as mathematical
equations. This is the case for the principles of mass and of energy conservation
(and more generally the thermodynamics principles), the fundamental principle of
dynamics and the Newton Laws in Mechanics, the Maxwell equations of Electro-
magnetism, etc. We come back to the mathematical expressions of these laws in
§ 1.3, but we stress the point that many of them often express a balance between
quantities.

B. d’Andréa-Novel and M. De Lara, Control Theory for Engineers, 3
DOI: 10.1007/978-3-642-34324-7_1, © Springer-Verlag Berlin Heidelberg 2013



4 1 Basics in Dynamical System Modelling

1.2.1 Balance Equations

To describe the state of a physical system at a given time t , one may use two types
of quantities.

Definition 1.1 A quantity (or variable) characterizing the local state of a system at
a given time is called an extensive quantity (or additive quantity) if it is proportional
to the volume of the local element considered.

Example 1.2 The mass M of a body is proportional to the volume Ω of this body, and
so are the internal energy C, the entropy H, and the quantity of movement

−→
P . These

are all extensive variables, written below as integrals with respect to the infinitesimal
volume dω:

M =
∫

Ω

ρ dω ,

C =
∫

Ω

ρe dω ,

H =
∫

Ω

ρh dω ,

−→
P =

∫
Ω

ρ−→v dω .

In these expressions, ρ denotes the volumic mass of the considered element, e the
specific internal energy (that is, per mass unit), h the specific entropy, and −→v the
velocity vector. �
Dually, we introduce the following notion.

Definition 1.3 A quantity (or variable) characterizing the local state of a system at
a given time is called an intensive quantity if it is independent of the (infinitesimal)
volume of the local element considered.

Example 1.4 The volumic mass ρ, the specific internal energy e, the specific
entropy h, the velocity v̄, the pressure of a gas, and the temperature are intensive
quantities. �

Now, we write the general form of the balance equation that expresses the con-
servation of an extensive quantity. Consider an extensive scalar quantity F written
under the following integral form on a volume Ω:

F =
∫

Ω

ρ f dω .

Here, f is the intensive scalar variable associated with the extensive variable F , by
mass unit.
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If the volume Ω is limited by a surface ∂Ω , assumed to be fixed, with unitary
normal directed towards the outside, three terms appear in the balance equation:

• one for the variation of the quantity F by time unit t in the volume Ω ,

∂

∂t

∫
Ω

ρ f dω ,

• one for the flux of the quantity F through the surface ∂Ω ,

∫
∂Ω

−→
JF .

−→n ds ,

where
−→
JF is the unitary flux by unit of surface and of time,

• one of production of the quantity F ,

∫
Ω

PF dω ,

where PF is the velocity of production of the quantity F by unit of volume.

Thus, the integral formulation of the balance equation is

∂

∂t

∫
Ω

ρ f dω =
∫

Ω

PF dω −
∫

∂Ω

−→
JF .

−→n ds . (1.1)

Under smoothness assumptions on ρ, f ,
−→
JF , −→n , the Ostrogradsky formula can

be applied to (1.1), and this leads to the following balance equation expressed in
differential form:

∂

∂t
(ρ f ) = PF − div

−→
JF . (1.2)

We recall that div denotes the divergence (see [1] for the definition).

� For more details, we refer the reader to [1].

1.2.2 Phenomenological Laws

Once some variables have been fixed, the fundamental laws and principles of Physics
are not sufficient to write a system of equations with as many equations as unknown
variables. Phenomenological laws (constitutive equations or constitutive relations),
appropriate for each discipline, are added to make sure that the number of equations
coincides with the number of variables.
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A source of phenomenological laws is the following principle: in the neighbor-
hood of an equilibrium, the flow of an extensive quantity is proportional to the
gradient of the conjugate intensive quantity.

The term “conjugated” is to be understood in the sense where moments and
velocities are conjugate variables with respect to the Lagrangian, as in Mechanics [1].
Similarly, in Thermodynamics, energy and inverse of the temperature are conjugate
variables.

More generally, we often suppose the existence of nonlinear relations between
quantities that we linearize (linear elasticity approximation, for instance). This is
how many phenomenological laws are established (Ohm’s Law). In general, such
laws are not necessarily linear (law of perfect gases and Van der Waals’ Law in
Thermodynamics).

1.3 Basic Laws and Principles of Physics

Among the basic laws and principles of Physics, we now focus on the law of mass
conservation, the principles of Thermodynamics, the point mechanics and the equa-
tions of Electromagnetism.
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1.3.1 Conservation of Mass

In a general way, this law states:

mass variation rate of a substance in a volume
= input mass flow
− output mass flow
± conversion by unit of time.

(1.3)

As discussed in § 1.2.1, in the case of a substance of density ρ(t, x), where t ∈ R is
the time and x ∈ R

3 the generic point in three-dimensional space, the conservation
of mass takes the form of the following partial differential equation (see Eq. 1.2)

∂ρ

∂t
+ divq = k , (1.4)

where q(t, x) is the flow of matter, and where the additions or substractions of mass
are described by a rate k(t, x) of variation of density of “sources” or of “sinks”.

� We refer the reader to [1, 9].

1.3.2 Principles of Thermodynamics

Let us briefly recall the three principles of Thermodynamics.

The first principle expresses the conservation of energy. For any system, there
exists a function U of the state of the system, the internal energy, such that, during a
transformation of a state 1 towards a state 2, the sum of the work W and of the heat
Q is equal to the variation of U :

U2 − U1 = W + Q . (1.5)

Notice that this last equation is a balance equation.

The second principle expresses the irreversibility of the evolution of macroscopic
systems. On can associate with every system in thermodynamic equilibrium two
functions of the state, the absolute temperature T and the entropy S, such that

• during a quasi-static transformation, we have that d S = δQ
T ;

• or else the transformation is irreversible and we have that S2 − S1 >
∫

δQ
T .

We can note that this last relation is not a balance equation.

The third principle expresses the impossibility to reach the absolute zero. The
entropy of any body tends towards the same absolute zero limit.

� We refer the reader to [32].
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1.3.3 Point Mechanics

The first Newton’s Law (or fundamental principle of dynamics) governs the evolution
of a material point submitted to forces.

Proposition 1.6 The resultant
−→
F of forces applied to a material point of mass m

and velocity −→v causes a variation of its quantity of movement −→p = m−→v . More
precisely, we have that

−→
F = d

dt
(
−→p ) = d

dt
(m−→v ) = m−→γ , (1.6)

where −→γ = d−→v /dt denotes the acceleration vector of the point.

The law of action and reaction specifies the interactions between two particles.

Proposition 1.7 Consider two particles 1 and 2 in interaction, where
−→
F12 is the

force exerted by 1 on 2 and
−→
F21 is the force exerted by 2 on 1. Then, at all times and

whatever the movement of particles, we have that

−→
F12 + −→

F21 = 0 .

The extension of these laws to sets of points leads to new laws (conservation of the
kinetic moment, etc.).

� We refer the reader to [32].

1.3.4 Electromagnetism Equations

There are five fundamental equations of Electromagnetism. The four Maxwell equa-
tions relate the density of electrical load ρ and the density of electrical flow −→

j to
the electrical field

−→
E and magnetic field

−→
B that they generate:

div
−→
B = 0 (1.7a)

rot
−→
E = −∂

−→
B

∂t
(Maxwell-Faraday) (1.7b)

div
−→
E = 1

ε0
ρ (Maxwell-Gauss) (1.7c)

rot
−→
B = μ0(

−→
j + ε0

∂
−→
E

∂t
) (Maxwell-Ampère). (1.7d)
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We recall that rot denotes the rotational (see [1] for the definition). The quantities ε0
and μ0 are, respectively, the vacuum permittivity and the vacuum permeability and
satisfy ε0μ0c2 = 1, where c denotes the velocity of the light in vacuum.

The Lorentz equation describes the action exerted by the fields
−→
E and

−→
B on a

particle of load q and of velocity −→v
−→
F = q(

−→
E + −→v ∧ −→

B ) , (1.8)

where ∧ denotes the vectorial product.
The Maxwell-Gauss equation in (1.7c) is a form of the balance Eq. (1.2) expressing

the conservation of the electrical load.

� We refer the reader to [32].

1.4 Applications in Solid Mechanics, Fluid Mechanics
and Electricity

The general principles discussed above find their applications in many disciplines. We
now cast a glow on illustrations in solid mechanics, fluid mechanics and electricity.

1.4.1 Solid Mechanics

We briefly recall the fundamental principles of mechanics that make it possible to
express the movement of rigid bodies submitted to forces or to external torques. First,
we consider the case of a body without constraints. Then, we turn the spotlight onto
the case of systems submitted to nonholonomic constraints. Robotics constitutes a
privileged field of applications.

1.4.1.1 Translation Movement

Translation movement is generated by the action of external forces. For a set of
material points of a rigid body, the internal forces sum up to zero, by the principle
of action and reaction recalled in Proposition 1.7. By summing the time derivatives
of the quantity of movement over the set of points, we easily obtain the following
result thanks to Proposition 1.6.

Proposition 1.8 The time derivative of the quantity of movement −→p of a system is

equal to the resultant
−→
F of all the external forces applied to the system:
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−→
F = d

dt
(
−→p ) . (1.9)

If M is the total mass of the system and −→v G is the velocity of the center of inertia
G, its quantity of movement writes

−→p = M−→v G .

One deduces the Theorem of the center of inertia.

Theorem 1.9 The movement of the center of inertia G of a system is the same as
that of a material point whose mass would be the total mass of the system and to
which would be applied all the external forces transported in parallel at G.

1.4.1.2 Rotation Movement

Rotation movement is generated by the action of external torques. Let us first recall
the notions of moment of a vector with respect to a point, and the notion of kinetic
moment.

Definition 1.10 Consider a point O and a vector
−→
P pointing from a point A. The

moment of the vector
−→
P with respect to the point O, denoted

−→M(
−→
P )O, is given by

the vectorial product −→M(
−→
P )O = −→

O A ∧ −→
P . (1.10)

Definition 1.11 Let −→p = m−→v be the vector of quantity of movement of a material
point M with mass m. The kinetic moment of the point M with respect to a fixed
point O, denoted −→σO, is given by:

−→σO = −−→
O M ∧ −→p . (1.11)

The kinetic moment is the moment of the vector quantity of movement of M with
respect to the fixed point O.

Let us recall now the theorem of the kinetic momentof a material point.

Theorem 1.12 The moment with respect to a fixed point O of the resultant
−→
F of

the forces applied to a material point is equal to the time derivative of the kinetic
moment of the point with respect to the fixed point O, that is,

−→M(
−→
F )O = d

dt
(−→σO) . (1.12)

If we consider a set of material points or a rigid body, we obtain a similar result.
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Proposition 1.13 The time derivative of the kinetic moment of a system with respect
to a fixed point O is equal to the sum of the moments with respect to O of all the

external forces
−→
F applied to the system:

∑ −→M(
−→
F )O = d

dt
(−→σO) . (1.13)

Let us consider the case of a rigid body K of center of inertia G. Let J be a fixed
frame {O,

−→
j1 ,

−→
j2 ,

−→
j3 } and E be a frame {G,

−→e1 ,
−→e2 ,

−→e3 } attached to the body K .
The frame E is obtained from J by three successive rotations: a rotation of angle θ1
around −→

j1 , of angle θ2 around −→
j2 , and finally of angle θ3 around −→e3 . Denote by −→ω ,

with components ω1, ω2, ω3 in the frame E , the associated instantaneous rotation
vector. If a resultant force

−→
F is applied to a point P of the body K , the equation of

rotation (1.13) is (see [32])

I−̇→ω + −→ω ∧ (I−→ω ) = −→
G P ∧ −→

F , (1.14)

where −̇→ω denotes the vector with components (ω̇1, ω̇2, ω̇3) in the base E (the symbol
˙ denotes the time derivative) and I is the linear operator given in the base E by
the matrix of inertia of the body K (also abusively denoted by I). This matrix is
symmetric and is given by

I =

⎛
⎜⎜⎝

∫
K (y2

2 + y2
3 ) dy1 dy2 dy3 − ∫

K y1 y2 dy1 dy2 dy3 − ∫
K y1 y3 dy1 dy2 dy3

− ∫
K y1 y2 dy1 dy2 dy3

∫
K (y2

1 + y2
3 ) dy1 dy2 dy3 − ∫

K y2 y3 dy1 dy2 dy3

− ∫
K y1 y3 dy1 dy2 dy3 − ∫

K y2 y3 dy1 dy2 dy3
∫

K (y2
1 + y2

2 ) dy1 dy2 dy3

⎞
⎟⎟⎠ , (1.15)

where the yi are the components in the frame E of a generic point of K . The matrix I
is said to be the principal matrix of inertia if the frame E is chosen so that the matrix
of inertia be diagonal, that is, if

∫
K

y1 y2 dy1 dy2 dy3 =
∫

K
y1 y3 dy1 dy2 dy3 =

∫
K

y2 y3 dy1 dy2 dy3 = 0 .

In that case, the Eq. (1.14) becomes

I11ω̇1 − (I22 − I33)ω2ω3 = M1

I22ω̇2 − (I33 − I11)ω3ω1 = M2 (1.16)

I33ω̇3 − (I11 − I22)ω1ω2 = M3 ,

where the Mi are the components of the vector
−→
G P ∧ −→

F in the frame E . The
Eq. (1.16) are known under the name of Euler equations.

For complex systems (robots), it can be advantageous to use the variational for-
malism of Euler-Lagrange to obtain the equations of movement in a systematic way
(we refer the reader to [24, 37, 45, 68] for instance).
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1.4.1.3 Euler-Lagrange Equation

In Lagrangian mechanics, a mechanical system is described by n generalized inde-
pendent coordinates q1, …, qn , called “degrees of freedom” of the system. The
velocity coordinates are denoted by q̇1, …, q̇n . Setting

q = (q1, . . . , qn) and q̇ = (q̇1, . . . , q̇n) , (1.17)

the Lagrangian is

L(q, q̇) = T(q1, . . . , qn, q̇1, . . . , q̇n) − V(q1, . . . , qn) , (1.18)

where T is the kinetic energy and V the potential energy. The kinetic energy T(q, q̇)

is of the form

T(q, q̇) = 1

2
q̇�M(q)q̇ , (1.19)

where M(q) is an n × n symmetric positive matrix and the notation � is for the
transpose of a vector or of a matrix.

The Euler-Lagrange equations are

⎧⎪⎨
⎪⎩

d

dt

( ∂L

∂q̇i

)(
q(t), q̇(t)

) − ∂L

∂qi

(
q(t), q̇(t)

) = Fi , i = 1, . . . , n

dq

dt
(t) = q̇(t) ,

(1.20)

where F1, …, Fn are the generalized forces (forces and torques) external to the system
or not deriving from a potential. The Eq. (1.20) constitute a system of n differential
equations of second-order in (q, q̇) (see for example [22, 45]) of the form

M(q)q̈ + C(q, q̇)q̇ + g(q) = F , (1.21)

where

• M(q) is the matrix of coefficients of inertial terms associated with the kinetic
energy (1.19);

• g(q) represents the n-vector of gravity torques, or of torques and forces deriving
from a potential;

• C(q, q̇)q̇ is the n-vector of centrifugal or Coriolis torques;
• F represents the n-vector of forces and/or external torques.

Remark 1.14 The matrix C(q, q̇) can be chosen in such a way that (Ṁ − 2C) be a
skew-symmetric matrix, especially if C(q, q̇) is defined by the Christoffel symbols,
so that (see for example [62]):
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Ckj = 1

2

n∑
i=1

{
∂ Mkj

∂qi
+ ∂ Mki

∂q j
− ∂ Mi j

∂qk

}
q̇i . (1.22)

�

1.4.1.4 Systems with Nonholonomic Constraints

A mechanical system can be submitted to constraints of the form

φ(q, q̇) = 0 . (1.23)

These constraints are said to be geometric if they only imply position coordinates q,
and kinematic if φ indeed also depends on the velocity coordinates q̇ . Generally, the
kinematic constraints have a linear expression in q̇ , as

A(q)�q̇ = 0 with A(q) = (
a1(q), . . . , am(q)

)
, (1.24)

where a1, . . . , am are m linearly independent vectors of R
n , so that the n × m

matrix A(q) is of full rank m for all q in R
n . The number of degrees of freedom

(d.o. f.) is defined as the difference between the number n of generalized coordi-
nates and the number m of independent constraints (see for example [4, 13]):

d.o. f. = n − m . (1.25)

Definition 1.15 The constraints (1.24) are said to be holonomic if they are “inte-
grable,” that is, if they can be reduced to geometric constraints, and nonholonomic
if they cannot.

Holonomic and nonholonomic constraints are found, for example, in the phenomenon
of rolling without slipping.

Let us discuss now how to take into account holonomic and nonholonomic con-
straints within the Euler-Lagrange formalism, to obtain the dynamical model of a
mechanical system submitted to nonholonomic constraints. First, let us consider an
n × (n − m) matrix S(q) = (

s1(q), . . . , sn−m(q)
)

of full rank, and satisfying

A(q)�S(q) = 0 . (1.26)

By introducing the m-vector λ of Lagrange multipliers associated with the con-
straints, the Euler-Lagrange formalism makes it possible to obtain the dynamic
behavior of a mechanical system submitted to nonholonomic constraints. With the
same notations as above, we write

M(q)q̈ + C(q, q̇)q̇ + g(q) = A(q)λ + B(q)F , (1.27)
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where B(q) is an n × (n − m) matrix of full rank, under the assumption that all the
degrees of freedom are directly controlled by F1, …, Fn−m . Left-multiplying (1.27)
by S(q)� and using (1.26), we eliminate the Lagrange multipliers λ, and we obtain

S(q)� [M(q)q̈ + C(q, q̇)q̇ + g(q)] = S(q)� B(q)F . (1.28)

On the other hand, the constraints (1.24) and (1.26) imply the existence of an
(n − m)-vector η(q, q̇) satisfying

q̇ = S(q)η . (1.29)

After differentiating (1.29), we obtain:

q̈ = S(q)η̇ + R(q, q̇)η with R(q, q̇) = d S(q)

dq
q̇ . (1.30)

By substitution of (1.29)– (1.30) in (1.28), we obtain the following general repre-
sentation of a nonholonomic mechanical system

{
W (q)η̇ = S(q)� (−[M(q)R(q, S(q)η)η + C(q, S(q)η)S(q)η + g(q)] + B(q)F)

q̇ = S(q)η
(1.31)

where W (q) = S(q)�M(q)S(q) is an (n −m)×(n −m) symmetric positive matrix.

� We refer the reader to [4, 68, 17, 13].

1.4.2 Fluid Mechanics

We provide here some elementary principles of fluid mechanics.We recall that ∇
denotes the gradient, and � the Laplacian (see [1] for the definitions).

At any point x of a region of R
3, we make the assumption that a fluid has a volumic

mass ρ(t, x) and a velocity −→v (t, x), both assumed to be smooth functions. The
conservation of mass property, discussed in § 1.3.1, yields the so-called continuity
equation (see 1.4):

∂ρ

∂t
+ div(ρ−→v ) = 0 . (1.32)

This single equation relating two unknown functions ρ and −→v is not sufficient to
determine them. A vectorial equation of mechanical origin is generally added.
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It is assumed that each infinitesimal element of fluid is submitted to two types
of forces: external forces (gravitation, magnetism…) assumed to have a density

−→
b ,

and contact forces exerted at the surface by the rest of the fluid. Such contact forces
are usually represented under the form σ

−→n , where −→n is the normal to the surface
and σ the symmetric deformations Cauchy tensor. A fluid is said to be perfect if the
Cauchy tensor is isotropic, that is, if σ = −p(t, x)I , where I is the identity matrix.
In that case, the conservation of the kinetic moment yields the Euler equation for an
ideal fluid:

∂−→v
∂t

+ (−→v · ∇)−→v = −→
b − 1

ρ
∇ p . (1.33)

To complete the scalar continuity equation (1.32) and the vectorial Euler equa-
tion (1.33), one generally adds energy considerations which lead to two types of
fluids. A fluid is said to be incompressible if

div−→v = 0 .

A fluid is said to be isentropic if its internal energy admits a density w that depends
on the volumic mass:

Einternal =
∫

ρw(ρ) dω .

The conservation of energy leads to a so-called state equation relating the pressure
p to the volumic mass:

p = ρ2w′(ρ) .

To take into account the viscous character of a fluid, one considers that the Cauchy
tensor contains a nonisotropic part called tensor of viscosity constraints.

1.4.2.1 The Case of Liquids

A liquid is generally assumed to be incompressible. If the initial volumic mass is
assumed to be uniform (ρ(0, x) = constant), one shows that ρ is constant (ρ(t, x) =
constant), by using the continuity equation (1.32).

A viscous incompressible fluid satisfies, in addition to the continuity equa-
tion (1.32), the Navier-Stokes equations

⎧⎨
⎩

div−→v = 0
∂−→v
∂t

+ (−→v · ∇)−→v + 1

ρ
∇ p = −→

b + μ�
−→v ,

where μ is a coefficient of viscosity.



16 1 Basics in Dynamical System Modelling

1.4.2.2 The Case of Gases

A gas is compressible and we complete the continuity equation (1.32) and the Euler
equation (1.33) by so-called “state equations” relying upon energy considerations
from Thermodynamics.

� We refer the reader to [1, 20].

1.4.3 Elementary Models of Electrical Circuits

Consider an electrical circuit composed of two-terminal electrical components (resis-
tances, capacities, inductances…) and of connections between them (electrical wires
forming a network with arcs and nodes).

When the circuit has dimensions much smaller than the wavelength associated
with the flow frequency, one considers that such a circuit satisfies the Kirchoff’s
circuit Laws. Each element is crossed by an electrical intensity (instant load flow) and
submitted to an electrical voltage (potential from which the electrical field derives).

• Kirchhoff’s current Law (or nodal rule) results from conservation of the electrical
load and states that the algebraic sum of flows going in and out from a node is zero
at all times.

• Kirchhoff’s voltage Law (or mesh rule) results from the existence of a potential
for the electrical field and states that the directed sum of the electrical potential
differences around any closed network is zero at all times.

These equations are completed by the characteristics of the two-terminal electrical
components, namely the relations between the crossing electrical intensity and the
voltage at both ends.

� We refer the reader to [32].

1.5 Conclusion

This brief survey of basic physical laws and principles, as well as of their mathe-
matical formulations, provides the building blocks to elaborate dynamical models
discussed in the rest of the text.



Chapter 2
Finite Dimensional State-Space Models

2.1 Introduction

Throughout the text, by model or system, we mean a finite set of first-order differential
equations, or of discrete-time induction equations, linking scalar quantities, distrib-
uted between descriptive or internal variables and action or external variables. This
approach is restrictive, but adapted to our purposes. Formal definitions of so-called
(finite dimensional) state-models are given in § 2.2. Several examples are detailed
in § 2.3. Stationary state-models without external variables are called dynamical
systems: they are the object of § 2.4. Linear dynamical systems form an especially
important subclass that deserves its own developments in § 2.5.

In what follows, we denote by �(λ) and �(λ) the real part and the imaginary
part of the complex number λ ∈ C. Thecomplex conjugate of the complex number
λ = �(λ) + i�(λ) is λ = �(λ) − i�(λ).

2.2 Definitions of State-Space Models

Some dynamical systems may be described by a finite number of quantities that
allow us to determine their future evolution. Let us illustrate this with two simple
examples, where we introduce the notions of state, state-space, and state-model.

Example 2.1 Consider the system formed of a mass m linked to a spring of stiffness k
and submitted to the action of a force F as on Fig. 2.1.

If z denotes the algebraic deviation (positive or negative) of the center of gravity
of the mass with respect to its equilibrium position (z = 0 is the abscissa of the
system at rest), the fundamental principle of dynamics (1.6) yields the equation

mz̈ = −kz + F . (2.1)

B. d’Andréa-Novel and M. De Lara, Control Theory for Engineers, 17
DOI: 10.1007/978-3-642-34324-7_2, © Springer-Verlag Berlin Heidelberg 2013

http://dx.doi.org/10.1007/978-3-642-34324-7_1
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Fig. 2.1 Controlled harmonic
oscillator

m

z

F
k

One can solve directly this linear differential equation with constant coefficients,
giving

z(t) = z(t0) cos
(
ω(t − t0)

)+ ż(t0)

ω
sin
(
ω(t − t0)

)+ 1

ω

∫ t

t0
sin
(
ω(t − τ )

)
F(τ ) dτ ,

where ω2 = k/m. We observe that the integration requires us to know the values of z
and of ż at a time t0, and of F(t) for t ≥ t0. Thus, once we know F(t) for t ≥ t0, the
evolution of z(t) for t ≥ t0 is entirely determined by the values z(t0) and ż(t0). The
real variables z and ż are sufficient to determine the evolution of the system, once
external forces are known: z and ż are said to be descriptive or internal variables,
whereas F is an action or external variable.

Although we start with the scalar equation (2.1), notice that two internal variables
are necessary for its resolution. This comes from the fact that (2.1) is a second-
order differential equation which can be written under the equivalent form of two
differential equations of the first order:

d

dt

(
z
ż

)
=
(

ż

−ω2z + F

m

)
. (2.2)

The vector x = (z, ż)� will be called a state of the previous state-model. �
Example 2.2 The free oscillator or pendulum without friction.

Consider a mass m suspended to a rigid thread of length l fixed at the point O ,
submitted to the action of the gravity field as indicated on Fig. 2.2. The fundamental
principle of dynamics (1.12) for solid bodies in rotation, discussed in §1.4.1, makes
it possible to write:

ml2 d2θ

dt2 = −mgl sin θ .

This equation can be put under the form

d

dt

(
θ

θ̇

)
=
(

θ̇

−g

l
sin θ

)
. (2.3)

http://dx.doi.org/10.1007/978-3-642-34324-7_1
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Fig. 2.2 The pendulum

gravitation

θ

m

O

l

−→g

Here again, the evolution of the pendulum can be completely described by the two
variables that constitute the instantaneous position θ and velocity θ̇ of the pendulum.
Notice that θ is an angle, belonging to the unit circle S1, so that the state (θ, θ̇)�
naturally belongs to the cylinder S1 × R. �

The two examples above are special cases of the following general definition.
In the sequel, by smooth function, we mean at least a differentiable function with
continuous derivatives (of class C1). When needed, smooth is understood as implying
the required higher regularity (of class C∞ for instance).

Definition 2.3 Consider a system whose evolution through time t ∈ R+ is described
by n + m scalar quantities, denoted by x1(t), . . . , xn(t), u1(t), . . . , um(t).

A state-model, with state x = (x1, . . . , xn)� ∈ R
n and with control

u = (u1, . . . , um)� ∈ R
m is given by n smooth functions f1, . . . , fn from

[0,+∞[×X×R
m, where X is an open set of R

n, such that the evolution of x1(t), . . . ,
xn(t) satisfies the following system of first-order explicit differential equations:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ẋ1(t) = dx1

dt
(t) = f1

(
t, x1(t), . . . , xn(t), u1(t), . . . , um(t)

)
. . . . . . . . .

ẋn(t) = dxn

dt
(t) = fn

(
t, x1(t), . . . , xn(t), u1(t), . . . , um(t)

)
.

(2.4)

The state-space is the set X (or R
n). This state-model is said to be stationary

if the functions f1, . . . , fn do not explicitly depend on the time variable t . On the
contrary, we speak of a non stationary state-model. In what follows, we also use the
terminology of (continuous-time) state representation to denote a state-model.

Remark 2.4 Here, and throughout the text, the notation x has two interpretations,
depending on the context. On the one hand, x can denote a vector of R

n . On the
other hand, x can denote a trajectory t 	→ x(t) from [0,+∞[ towards R

n . What we
just said about the state x remains valid for the control u. �

A state-model, given by Definition 2.3, indeed makes it possible to represent the
deterministic evolution of a system by the Cauchy-Lipschitz Theorem [5]. Recall that,
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by assumption, the dynamics components f1, . . . , fn in Definition 2.3 are smooth
functions of their arguments.

Theorem 2.5 (Cauchy-Lipschitz) For any initial time t0 ∈ R+, for any initial

state
(
x1(t0), . . . , xn(t0)

)� ∈ X, and for all smooth mapping t ∈ [t0,+∞) 	→(
u1(t), . . . , um(t)

)
, there exists a unique T ∈]t0,+∞] and a unique smooth solution

t ∈ [t0, T ) 	→ (x1(t), . . . , xn(t)
)�

of the system of equations (2.4) defined on the
maximal interval of time [t0, T [.

The division of the n + m scalar quantities in state variables x1(t), . . . , xn(t) and
other variables u1(t), . . . , um(t) corresponds to a division of the system into internal
variables, or state, and external variables, or inputs. In practice, external variables
can be uncontrolled perturbations as well as control variables. To bring to light such
a division, we also call (2.4) a dynamical system driven by u1(t), . . . , um(t), or a
controlled dynamical system.

The choice of the set of variables and of the division between internal/external
ones reflects the level of detail in the description of a real system. For instance, a
mechanical system equipped with electrical motors can include, or not, the internal
dynamical description of the motors, depending on the level of detail expected in the
modelling.

Remark 2.6 The previous Definition 2.3 is contained in the more general definition
of a state as a set of variables—not necessarily scalar or in finite number—which,
being known at an initial time, makes it possible to determine the future evolution
of the system when the external variables are known from the initial time to the
current time. Thus, a state can also be a function solution of a partial differential
equation (see the example of the beam in § 2.3.4), the distribution of a random
vector xt —where (xs)s≥0 is a Markov process—or a vector solution of an induction
equation as in the following case of discrete-time state-models. For the control of
partial differential equations, we refer the reader to [23], and for time-delay systems
to [49]. �
Definition 2.7 Consider a system whose evolution through time t ∈ N is described
by n + m scalar quantities, denoted by x1(t), . . . , xn(t), u1(t), . . . , um(t).

A discrete-time state-model, of state x = (x1, . . . , xn)� ∈ R
n, is given by n

smooth functions F1, . . . , Fn from N × X × R
m, where X is an open set of R

n,
such that the evolution of x1(t), . . . , xn(t) satisfies the following system of induction
equations:

⎧⎨
⎩

x1(t + 1) = F1
(
t, x1(t), . . . , xn(t), u1(t), . . . , um(t)

)
. . . . . .

xn(t + 1) = Fn
(
t, x1(t), . . . , xn(t), u1(t), . . . , um(t)

)
.

(2.5)

The state-space is the set X (or R
n). This state-model is said to be stationary if the

functions F1, . . . , Fn do not explicitly depend on the time variable t . On the contrary,
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we speak of a nonstationary state-model. In what follows, we use also the terminology
of discrete-time state representation to denote a discrete-time state-model.

In this text, we have adopted the finite dimensional state-model approach of Defi-
nitions 2.3 and 2.7. However, this is not the only way to mathematically represent the
time evolution of a system (see Remark 2.6). We refer the reader to [48] for various
examples of dynamical models.

2.3 Examples of Modelling

We now use several examples to illustrate how the modelling principles discussed in
Chap. 1 can lead to state-models of the type discussed in § 2.2.

2.3.1 The Inverted Pendulum

The inverted pendulum with mass m on a moving cart with mass M is the mechanical
system represented in Fig. 2.3. We use the Euler-Lagrange equations discussed
in § 1.4.1 to establish a mathematical description as a state-model.

With the notations of Fig. 2.3, kinetic energy T and potential energy V, we write

T = 1

2
Mż2 + 1

2
m(ż2

2 + ẏ2
2) and V = mgy2 , (2.6)

where, if l is the length of the rod, we have:

M
F

θ

m

y2

z

z2

l

Fig. 2.3 The inverted pendulum on a cart

http://dx.doi.org/10.1007/978-3-642-34324-7_1
http://dx.doi.org/10.1007/978-3-642-34324-7_1
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{
z2 = z + l sin θ ż2 = ż + l θ̇ cos θ
y2 = l cos θ ẏ2 = −l θ̇ sin θ .

The Lagrangian coordinates considered are the position z of the cart and the pendulum
angle θ, and the computation yields the Lagrangian L = T − V:

L = 1

2
(M + m)ż2 + mlżθ̇ cos θ + 1

2
ml2θ̇2 − mgl cos θ . (2.7)

We calculate

⎧⎪⎪⎨
⎪⎪⎩

∂L

∂ ż
= (M + m)ż + ml θ̇ cos θ

∂L

∂z
= 0

∂L

∂θ̇
= mlż cos θ + ml2θ̇

∂L

∂θ
= mgl sin θ − mlżθ̇ sin θ .

If F is the force exerted on the cart, the Euler-Lagrange equations (1.20) then write

{
(M + m)z̈ + ml θ̈ cos θ − ml θ̇2 sin θ = F,

mlz̈ cos θ + ml2θ̈ − mgl sin θ = 0 .
(2.8)

Now, we proceed by expressing the Eq. (2.8) under the form of a state-model with
state variables z, θ, ż, θ̇ and control variable, the force F . For this, we transform the
two second-order differential equations (2.8), coupled and implicit, into a first-order
explicit differential system.

From (2.8), we draw

(
M + m ml cos θ
ml cos θ ml2

)(
z̈
θ̈

)
=
(

F + ml θ̇2 sin θ
mlg sin θ

)
,

so that, after inverting the square matrix, we obtain

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

z̈ = F + ml θ̇2 sin θ − mg cos θ sin θ

M + m sin2 θ

θ̈ = −F cos θ − ml θ̇2 sin θ cos θ + (M + m)g sin θ

l(M + m sin2 θ)
.

This gives the following state-model, with state vector (z, θ, ż, θ̇)� and control F :

http://dx.doi.org/10.1007/978-3-642-34324-7_1
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d

dt

⎛
⎜⎜⎝

z
θ
ż
θ̇

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ż

θ̇

ml θ̇2 sin θ − mg cos θ sin θ

M + m sin2 θ

−ml θ̇2 sin θ cos θ + (M + m)g sin θ

l(M + m sin2 θ)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2.9)

+ 1

l(M + m sin2 θ)

⎛
⎜⎜⎝

0
0
l

− cos θ

⎞
⎟⎟⎠ F.

� We refer the reader to [33, pp. 30–32].

2.3.2 A Model of Wheel on a Plane

We consider the rolling of a wheel of radius r and of mass m on a horizontal plane.
Following [13, 68], we make use of the classical mechanics equations discussed
in §1.4.

Consider a frame (O,
−→
i1 ,

−→
i2 ,

−→
i3 ) as illustrated on Fig. 2.4. We suppose that the

axis of the wheel always remains horizontal. Thus, the center of mass G of the wheel
moves in a plane, passing by the point O ′, parallel to the horizontal plane defined by

the vectors
−→
i1 and

−→
i2 . The vector

−→
R = −−→

O ′G can then be written

−→
R = R1

−→
i1 + R2

−→
i2 .

P

O

→
i1

→
i2

G

C

e 3

φ

→
i3

→

→

→

e 1
θ

e 2

Fig. 2.4 Rolling without slipping on a plane

http://dx.doi.org/10.1007/978-3-642-34324-7_1
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If we introduce an intermediary frame (G,
−→e1 ,

−→e2 ,
−→e3 ), having vertical axis −→e3

and axis −→e1 in the direction of the movement, the passage between the frame
(O,

−→
i1 ,

−→
i2 ,

−→
i3 ) and this intermediary frame is obtained by a rotation of angle φ

around
−→
i3 = −→e3 . The passage of (G,

−→e1 ,
−→e2 ,

−→e3 ) to a frame (G,
−→y1 ,

−→y2 ,
−→y3 ) related

to the body is obtained by a rotation of angle θ around the axis −→e2 . As a consequence,
the velocity vector −→ω of instantaneous rotation of the wheel is given by

−→ω = φ̇−→e3 + θ̇−→e2 , (2.10)

and we have the relations

−̇→yi = ω ∧ −→yi , i = 1, 2, 3. (2.11)

The generalized coordinates of the system are

q = (R1, R2, θ,φ)�.

Now, let us compute the velocity of a material point C on the periphery of the wheel,
that is a point C such that −→

GC = r−→y1 .

The position vector −→y of the point C is given by

−→y = −−→
O ′C = −→

R + r−→y1 ,

and, by (2.11), the velocity vector of C is of the form:

−̇→y = −̇→
R + −→ω ∧ r−→y1 .

The property of rolling without slipping is expressed by the fact that the velocity of
the material point C is zero when this point is at P , that is, when C is in contact with
the base plane. In that case, r−→y1 = −r−→e3 and we obtain:

−̇→y = 0 = −̇→
R − −→ω ∧ r−→e3 = −̇→

R − r θ̇−→e1 .

By decomposing this relation on the axis −→e1 and −→e2 , we obtain:

Ṙ1 cosφ+ Ṙ2 sin φ− r θ̇ = 0 and − Ṙ1 sin φ+ Ṙ2 cosφ = 0 . (2.12)

The reader can check that these two kinematic constraints are independent and non-
holonomic, except when the angle φ is constant. These constraints are expressed
under the general form (1.24):

http://dx.doi.org/10.1007/978-3-642-34324-7_1
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A(q)�q̇ = 0 with A(q)� =
(

cosφ sin φ −r 0
− sin φ cosφ 0 0

)
. (2.13)

As expected, this mechanical system has 2 degrees of freedom (see (1.25)).
To obtain a state-model of the system, we apply the Euler-Lagrange technique

with Lagrange multipliers discussed in § 1.4.1. The 4 × 2 matrix

S(q) =

⎛
⎜⎜⎝

cosφ cosφ
sin φ sin φ
1/r 1/r
1/r 0

⎞
⎟⎟⎠ (2.14)

solves (1.26), namely A(q)�S(q) = 0. By denoting Iθ (respectively Iφ) the inertia
of the wheel with respect to the axis −→e2 (respectively −→e3 ), the matrix of inertia M(q),
given in (1.15), is constant and diagonal, with the expression

M(q) = M =

⎛
⎜⎜⎝

m 0 0 0
0 m 0 0
0 0 Iθ 0
0 0 0 Iφ

⎞
⎟⎟⎠ .

Notice that the nonlinear terms of coupling and of Coriolis are zero, and that the terms
of gravity are exactly compensated by the reaction of the base plane. Denote by F
the 2-vector of possible external torques and by B(q)4×2 the matrix describing the
action of the forces and external torques. By applying the Euler-Lagrange equations
and the technique of multipliers, we obtain a state-model of the form (1.31)

{
q̇ = S(q)η

W (q)η̇ = −S(q)� = M R(q, S(q)η)η + S(q)� B(q)F,

where

W (q) = S(q)�M S(q) =

⎛
⎜⎜⎝

m + Iθ + Iφ

r2 m + Iθ

r2

m + Iθ

r2 m + Iθ

r2

⎞
⎟⎟⎠ .

Since this last matrix is invertible, we obtain a state-model with internal variables q,
η and with control F :

{
q̇ = S(q)η

η̇ = −W (q)−1
{

S(q)�M R(q, S(q)η)η + S(q)� B(q)F
}
.

http://dx.doi.org/10.1007/978-3-642-34324-7_1
http://dx.doi.org/10.1007/978-3-642-34324-7_1
http://dx.doi.org/10.1007/978-3-642-34324-7_1
http://dx.doi.org/10.1007/978-3-642-34324-7_1
http://dx.doi.org/10.1007/978-3-642-34324-7_1
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horizontal

m →g z

θ

α

→
V

δm

G

Fig. 2.5 Aircraft (longitudinal model)

2.3.3 An Aircraft Model

Consider an aircraft as in Fig. 2.5. First, let us write the equations of classical mechan-
ics discussed in § 1.4. At the center of gravity G of the aircraft, we have

• the force equations
mΓ = Fae + Fp + Fm , (2.15)

• the moment equations
Ċ + −→

Ω ∧ C = Mae + Mp , (2.16)

• the kinematic equations

Γ = −̇→
V + −→

Ω ∧ −→
V , (2.17)

where

• m is the mass of the aircraft;
• Γ is the acceleration of the aircraft;
• −→

V is the translation velocity vector of the aircraft;
• −→

Ω is the rotation velocity vector of the aircraft with respect to the center of
gravity G;

• C is the kinetic angular moment defined by C = I
−→
Ω , where I denotes the matrix

of inertia;
• Fm is the vector of mass forces (weight);
• Fae and Mae are the vectors of aerodynamical forces and moments;
• Fp and Mp are the vectors of propulsion forces and moments.

By convention, the previous equations are written according to their projections
on the axis linked to the aircraft. The orientation of these axis with respect to a
fixed frame is defined by the Euler angles θ, ϕ and ψ, called yaw, pitch and roll,

http://dx.doi.org/10.1007/978-3-642-34324-7_1
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respectively. The components of the rotation vector
−→
� are then denoted p, q and r ,

and those of the velocity vector
−→
V are denoted u, v and w.

Now, we use phenomenological laws, as discussed in § 1.2.2, appropriate for
Aerodynamics. The aerodynamical forces and moments can be expressed by means
of dimensionless vectors CF = (Cx , Cy, Cz)

� and CM = (Cl , Cm, Cn)� as follows

Fae = −1

2
ρ(z)SV 2CF and Mae = −1

2
ρ(z)SLV 2CM ,

where

• ρ denotes the air volumic mass which depends on the altitude z;
• S is the reference surface of the aircraft;
• L is the reference length of the aircraft.

The aerodynamical coefficients Cx , Cy , Cz , Cl , Cm , Cn are complicated functions
of the Mach number, and of different angles α, β, p, q, r , δm , δl and δn , that
we do not detail. We refer the reader to [65] for expressions of these aerody-
namical coefficients. In practice, the deflections δm , δl and δn are control vari-
ables. Consider now the acceleration vector J , as measured on the aircraft, with
components Jx , Jy , Jz :

J = Γ − Fm

m
.

If we suppose that the resultant of the forces of propulsion is in the symmetry plane
of the aircraft, following the longitudinal axis, we obtain:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Fp y = Fpz = 0
Mpx = Mp y = Mpz = 0
v = 0
β = 0
p = r = 0
Cy = 0
Cl = Cn = 0
δl = δn = 0
ϕ = 0 .

At last, again by the assumption of longitudinal movements, the matrix of inertia has
the expression:

I =
⎡
⎣Ixx 0 Ixz

0 Iyy 0
Ixz 0 Izz

⎤
⎦ .

By introducing the constant k = ρSV 2/2, the Eqs. (2.15), (2.16) and (2.17) then
become (in projection on the axis Gx and Gz):

http://dx.doi.org/10.1007/978-3-642-34324-7_1
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⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

m Jx = −kCx + Fpx
m Jz = −kCz

Iyyq̇ = kLCm

u̇ = −qw − g sin θ + Jx

ẇ = qu + g cos θ + Jz .

(2.18)

On the other hand, we have the relations:

⎧⎪⎨
⎪⎩
θ̇ = q
V 2 = u2 + w2

tanα = w

u
.

The reader may verify that a state-model may be deduced of the above equations.
When the movements are small around of a flying point, one may linearize the
equations (2.18) in the neighborhood of equilibrium values.

� We refer the reader to [33, 65].

2.3.4 Vibrations of a Beam

Here is an example of a model that is not a state-model, in the restricted sense of
Definition 2.3, because it involves an infinite dimensional state satisfying a partial
differential equation.

We study the behavior of a beam, simply supported at one extremity and controlled
at the other by a point force and a torque. We suppose that the internal forces do not
work, so that, in absence of external forces, energy is conserved (see § 1.3.2).

We make the assumption of small displacements in the plane (y, z) represented
in Fig. 2.6. The curve z = z(t, y) represents, at each time t , the elastic axis of the
beam in flexion. The length of the beam is l, the density is ρ(y) and the energy at
time t is E(t).

The Euler-Bernoulli model is often used for its simplicity. It relies on the assump-
tion that each infinitesimal element of beam is rigid, with a rectangular section, so
that the energy can be written as

E(t) = 1

2

∫ l

0

[
ρ

(
∂z

∂t

)2

+ R f

(
∂2z

∂y2

)2
]

dy , (2.19)

where the function R f (y) is the so-called “rigidity in flexion.” Under the assumption
of energy conservation, we obtain the equation of evolution of Euler-Bernoulli by
differentiation with respect to time t and by two integrations by parts of (2.19):

ρ
∂2z

∂t2 + ∂2

∂y2

(
R f

∂2z

∂y2

)
= 0 . (2.20)

http://dx.doi.org/10.1007/978-3-642-34324-7_1
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z

y

Fig. 2.6 Simply supported beam

The boundary condition expressing the support at the extremity y = 0 gives

z(0, t) = ∂z

∂y
(0, t) = 0 . (2.21)

If F(t) and M(t) denote the lateral force and the moment of flexion, respectively,
applied to the extremity l, we have that:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

R f (l)
∂2z

∂y2 (l, t) = M(t)

− ∂

∂y

(
R f

∂2z

∂y2

)
|y=l

= F(t) .

(2.22)

The equations (2.20), (2.21) and (2.22) constitute a dynamical model of the beam.
� For more information on beam models, we refer the reader to [59].

2.3.5 An RLC Electrical Circuit

Consider an RLC series electrical circuit formed of a resistor, with electrical resis-
tance R, of a capacitor (condenser), with capacitance C , and of an inductor, with
inductance L , submitted to a voltage υ as in Fig. 2.7. We suppose that the Kirchoff’s
Laws discussed in § 1.4.3 apply here.

By the nodal rule, an electrical current, denoted i , passes through the three two-
terminal electrical components of the circuit. On the other hand, these components
are assumed to follow the phenomenological laws

http://dx.doi.org/10.1007/978-3-642-34324-7_1
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CR

υ L

i

Fig. 2.7 RLC electrical circuit

⎧⎪⎪⎨
⎪⎪⎩

resistor terminal voltage = Ri (Ohm’s Law)

capacitor terminal voltage = q

C

inductor terminal voltage = L
di

dt

(2.23)

where q(t) =
∫ t

0
i(s) ds denotes the electrical load of the capacity.

By the mesh rule, the electrical voltages add up and we obtain a dynamical
equation:

L
di

dt
+ Ri + 1

C
q = υ . (2.24)

This last equation is equivalent to the following state-model

d

dt

(
q
i

)
=
(

i

− R

L
i − 1

LC
q + 1

L
υ

)
, (2.25)

with internal variables q, i and with external variable υ. Notice that this model is
linear in all the variables.

2.3.6 An Electrical Motor

An electrical motor consists of several coils of narrow thickness having a common
diameter through which passes the axis of the motor. It is embedded in a uniform
magnetic field orthogonal to this axis, and is supplied by a flow of intensity i under
a voltage υ.

The Ampère’s Law is a consequence of the Maxwell equations discussed in
§ 1.3.4. Ampère’s Law makes it possible to compute the force exerted by the mag-

http://dx.doi.org/10.1007/978-3-642-34324-7_1
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netic field in each coil, and thus the total torque C . This torque is proportional to the
intensity i , with a coefficient almost independent of the angles between the coils and
the field if there are enough coils:

C = K1i .

If the motor entails a mass of moment of inertia J , then this torque transmits to the
mass an angular velocity ω which, by conservation of the kinetic moment, satisfies

J
dω

dt
= C .

But, by the Lenz’s Law, the rotation of the coils in the magnetic field has the effect to
develop an opposed electromotive force e. This force is proportional to the variation
of magnetic flux through the coils, hence to the angular velocity ω, with a coefficient
almost independent of the angles between the coils and the field:

e = K2ω .

At last, if R denotes the electrical resistance of the motor, the Ohm’s Law yields the
relation

υ − e = Ri .

These equations lead to a dynamical relation between the applied voltage υ and the
angular velocity ω

dω

dt
= − K1 K2

J R
ω + K1

J R
υ . (2.26)

This is a state-model, with internal variable ω and external variable υ.
� We refer the reader to [33].

2.3.7 Chemical Kinetics

Consider a reaction between n reactants A1, . . . , Ai , . . . , An , with stoichiometric
coefficients νA,1, . . . , νA,i , . . . , νA,n , and forming p products P1, . . . , Pi , . . . , Pp
with stoichiometric coefficients νP,1, . . . , νP,i , . . . , νP,p:

νA,1 A1 + . . .+νA,i Ai + . . .+νA,n An
k1�

k−1
νP,1 P1 + . . .+νP,i Pi + . . .+νP,p Pp . (2.27)

The reaction speed v is defined as the speed of disappearance of a reactant
or the speed of apparition of a product, taking into account the stoichiometric
coefficients. Indeed, by mass conservation, as discussed in § 1.3.1, the chemical

http://dx.doi.org/10.1007/978-3-642-34324-7_1
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reaction (2.27) yields the following n + p − 1 equations satisfied by the concentra-
tions [A1], . . . , [An], [P1], . . . , [Pp]:

v = − 1

νA,i

d[Ai ]
dt

= 1

νP, j

d[Pj ]
dt

, i = 1, . . . , n, j = 1, . . . , p . (2.28)

The chemical kinetic equation relates the reaction speed v to the concentrations
[A1], . . . , [An], [P1], . . . , [Pp], under the general form:

v = −k1

n∏
i=1

[Ai ]γA,i + k−1

p∏
j=1

[Pj ]γP, j . (2.29)

The partial order of the reaction is the exponent by which a component is raised in
the formulation of the speed, which is not necessarily an integer. The order of the
reaction is defined as the sum of the partial orders of the reaction with respect to
each reactant or product.

Such equations provide a state-model. For example, for the reaction

CO + 1

2
O2

k1�
k−1

CO2 ,

an expression of the kinetics is

v = d[CO2]
dt

= k1[CO][O2] 1
2 − k−1[CO2] .

With x = ([CO], [O2], [CO2])� for state, this gives the model:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

d[CO]
dt

= −k1[CO][O2] 1
2 + k−1[CO2]

d[O2]
dt

= −1

2
k1[CO][O2] 1

2 + 1

2
k−1[CO2]

d[CO2]
dt

= k1[CO][O2] 1
2 − k−1[CO2] .

(2.30)

Notice that, with Z = ([CO] + [CO2], [CO2] + 2[O2], [CO2])� = (Z1, Z2, Z3) for
state, we obtain another state-model, in which the relations of conservation appear
more clearly:
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⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

d Z1

dt
= 0

d Z2

dt
= 0

d Z3

dt
= 1√

2
k1(Z1 − Z3)(Z2 − Z3)

1
2 − k−1 Z3 .

(2.31)

These state-models do not include external variables, but one can represent the influ-
ence of the external temperature T under the form k1 = k1(T ), k−1 = k−1(T ).

� We refer the reader to [7].

2.3.8 Growth of an Age-Structured Population

Consider a population subdivided in n age-classes. This may be an animal popula-
tion (birds, fishes), a vegetal population (trees), or a “population” of cars classified
according to their registration year. We design a generic state-model in discrete-time
as in Definition 2.7.

Let N (t) = (N1(t), . . . , Nn(t)
)� denote the vector of abundances in each age-

class at time t , where t ∈ N is discrete and any period [t, t + 1] coincides with that
used to define a class: N1(t) is the number of individuals of (strictly) less than 1 year
of age, N2(t) is the number of individuals of 1 year, …, Nn−1(t) is the number of
individuals of n − 2 years of age, and Nn(t) is the number of individuals of more
than n − 1 years of age.

The conservation of the number of individuals is expressed in all generality under
the form

Ni (t+1)−Ni (t) = Bi ([t, t+1])−Di ([t, t+1])+Ii ([t, t+1])−Ei ([t, t+1]) (2.32)

where, on the time interval [t, t + 1] and for the age-class i ,

• Bi ([t, t + 1]) denotes the number of births,
• Di ([t, t + 1]) the number of deaths,
• Ii ([t, t + 1]) the number of immigrants,
• Ei ([t, t + 1]) the number of emigrants.

These fairly general equations (2.32) for i = 1, . . . , n are completed with others,
according to additional assumptions on the population growth. For instance, suppose
that, on the time interval [t, t + 1],
1. a fraction of the Ni (t) individuals of each class of age i disappears (death

process), and the remaining fraction qi survives and reaches age i , thus filling
Ni+1(t) (except possibly for the last class);

2. individuals appear in the first age-class (birth process), where each age-class
contributes proportionally to its abundance, with fertility coefficient fi .
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Under these assumptions, one may write the following evolution model:

N (t + 1) =

⎛
⎜⎜⎜⎜⎝

f1 f2 f3 . . . fn−1 fn

q1 0 0 . . . . . . . . .

0 q2 0 0 . . . . . .

. . . . . . . . . . . . . . . . . .

. . . . . . . . . 0 qn−1 0

⎞
⎟⎟⎟⎟⎠ N (t) . (2.33)

� We refer the reader to [19, 27].

2.3.9 A Bioreactor

Consider a bioreactor as in Fig. 2.8. It is constituted of a vessel where biomass (living
cells) and nutriment interact. Moreover, a flow D brings in nutriment and emits the
products.

diluted nutriment biomass

inflow
nutriment

B

D
S

Fig. 2.8 A bioreactor

To write mass balance equations of the form (1.3), we introduce the following
variables:

• B: concentration of biomass in the bioreactor (gl−1);
• S: concentration of nutriment in the bioreactor (gl−1);
• D: inflow of nutriment (l S−1);
• Sin : concentration of nutriment before dilution (gl−1).

The balance equations are

⎧⎪⎪⎨
⎪⎪⎩

d B

dt
= growth − DB

d S

dt
= consumption − DS + DSin .

To complete these equations, we introduce phenomenological laws, expressing the
conversion between biomass and nutriment, of the form

growth ∝ biomass and consumption ∝ biomass,

http://dx.doi.org/10.1007/978-3-642-34324-7_1
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where the proportionality coefficients only depend on the nutriment:

• μ(S): specific growth rate of the biomass (S−1);
• ν(S): specific consumption rate of the nutriment (S−1).

The combination of the balance equations with the conversion equations yields
the following state-model:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

d B

dt
= μ(S)B − DB = growth − output

d S

dt
= −ν(S)B − DS + DSin = consumption − output

+ feed-in.

(2.34)

Generally, the functions μ and ν are assumed to be increasing with zero value
at S = 0. The flow D may be considered as a control variable.

Remark 2.8 We have described a simple model with one type of cell and one nutri-
ment. However, the above formulation may be extended to other situations like, for
example, in a sewage treatment plant (with a higher number of state variables). �

� We refer the reader to [8].

2.4 Dynamical Systems

We now develop theoretical notions about a central class of state models, the so-called
dynamical systems.

Definition 2.9 We call free dynamical system a state-model without external vari-
ables and (classical) dynamical system a stationary state-model without external
variables.

A stationary state-model where the external variables are either constant or are
smooth maps of the state (closed-loop) yields a dynamical system. This abstract
concept of dynamical system will be useful for the study of the closed-loop stability
discussed in Chap. 4. Let us introduce the following definitions.

Definition 2.10 A vector field f on an open set X of R
n is a smooth mapping

f : X → R
n that associates with each point x of X a vector f (x) ∈ R

n having this
point for origin.

A dynamical system on X is a couple (X, f ) where f is a vector field on X. The
open set X is called phase space of the dynamical system.

Remark 2.11 More generally, on a manifold X of class C∞, we mean by vector
field f a vector field of class C∞ [10]. In the system of coordinates x1, . . . , xn , the
field is defined by n C∞ functions f1(x1, . . . , xn), . . . , fn(x1, . . . , xn). In the cases

http://dx.doi.org/10.1007/978-3-642-34324-7_4
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discussed in § 2.2, X = R
2 for the mass-spring system, whereas, for the oscillator,

X is the cylinder S1 × R . �
Definition 2.12 We call integral curves of the vector field f on the open set X the
solutions of the differential equation

ẋ = f (x) , (2.35)

that is, the curves ϕ : I → X, where I ⊂ R is an interval, such that:

dϕ

dt
(t) = f

(
ϕ(t)
)
, ∀t ∈ I . (2.36)

An integral curve is said to be maximal if it is not contained in any other integral
curve.

If, in the system of coordinates x1, . . . , xn , the vector field f is defined by n smooth
functions f1(x1, . . . , xn), . . . , fn(x1, . . . , xn), then the differential equation (2.35)
may be written under the form of the following differential system with solution
x1(t), . . . , xn(t) ⎧⎨

⎩
ẋ1(t) = f1

(
x1(t), . . . , xn(t)

)
· · · = · · ·

ẋn(t) = fn
(
x1(t), . . . , xn(t)

)
,

(2.37)

or, shortly, ⎧⎨
⎩

ẋ1 = f1(x1, . . . , xn)

· · · = · · ·
ẋn = fn(x1, . . . , xn) .

(2.38)

By extension, we also call a dynamical system the differential system (2.35), or (2.37),
or (2.38).

Existence and uniqueness of the integral curves are consequences of the Cauchy-
Lipschitz Theorem [3].

Theorem 2.13 (Cauchy-Lipschitz) For all vector fields and all points x0 in the
open set X, there exists a unique maximal integral curve passing by x0. We denote
by (Φt (x0), t ∈ I (x0)) this maximal integral curve, where I (x0) is an interval con-
taining 0 and where Φ0(x0) = x0. Then, we have that

1. the set
⋃

x0∈X
I (x0) × {x0} is an open set of R × X;

2. the following mapping

(t, x) ∈
⋃

x0∈X

I (x0) × {x0} 	→ Φt (x) ∈ X , (2.39)

called local flow, is smooth and satisfies
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m3m2m10

f (m 1) f (m 2) f (m 3)

f

Fig. 2.9 Radioactive decay velocity f (m) as a function of quantity of matter m

d

dt
Φt (x) = f

(
Φt (x)
) ; (2.40)

3. for all x0 ∈ X and t, s, t + s in I (x0), we have the flow property:

Φt+s(x0) = Φt
(
Φs(x0)

)
. (2.41)

The flow is said to be local because it does not form a priori a family of map-
pings (Φt )t∈R from the open set X to X. Indeed, the interval I on which the maximal
integral curve passing by a point is defined depends of this point (the interval I (x0)

may depend upon x0).

Definition 2.14 A vector field such that all maximal integral curves are parameter-
ized by I = R is said to be complete. In that case, the local flow (2.39) is defined
over R × X, is denoted by (Φt )t∈R and is called a global flow.

Let us now give some examples of vector fields and of integral curves.

Example 2.15 Physics provides examples of fields, such as the gravitation field or
the electromagnetic field created by a magnet. If we sprinkle iron fillings near a
magnet, we materialize the field by its field lines. The existence of these lines is an
illustration of the Cauchy-Lipschitz Theorem: field lines are integral curves. �
Example 2.16 Radioactive decay.

The velocity f (m) of radioactive decay of a radioactive body of mass m is assumed
to be proportional to the quantity of matter m, that is, f (m) = −km. The phase space
is here:

X = {m ∈ R | m > 0} . (2.42)

The law of decay writes:
ṁ = −km, k > 0 . (2.43)

The vector field f on the half-line X is directed towards the point 0 and the velocity
vector of the flow is proportional to m as in Fig. 2.9. �

Definition 2.17 Consider a vector field f on an open set X, and the notations of
Theorem 2.13. The trajectory of a point x of X is the mapping
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t ∈ I (x) 	→ Φt (x) ∈ X . (2.44)

The orbit of a point x of X is the set {Φt (x), t ∈ I (x)}.
A trajectory is a parameterized curve of the phase space, whereas an orbit is a subset
of the phase space.

Remark 2.18 Two orbits cannot cross because of uniqueness of integral curves.
Indeed, if two orbits cross at a point, then they must coincide, because they are both
associated with the unique integral curve passing by this point. We call phase portrait
the partition of the phase space X induced by the orbits. �

A physical system is said to be in stationary state, or in steady state, if this state
does not evolve during time. Mathematically, this is expressed by the following
definition and proposition.

Definition 2.19 We call equilibrium point (or singular point) of the vector field f
on X any point xE ∈ X such that:

f (xE) = 0 . (2.45)

Proposition 2.20 Consider the notations of Theorem 2.13. If the point xE ∈ X is an
equilibrium point of the vector field f , then I (xE) = R and xE is invariant by the
flow Φt , namely Φt (xE) = xE for all t ∈ R.

Proof The trajectory x(t) = xE is such that

dx

dt
(t) = 0 = f (xE) = f

(
x(t)
)

.

By Theorem 2.13 and uniqueness of the trajectory initiating from the point xE, we
deduce that x(t) coincides with Φt (xE), that is, Φt (xE) = xE. ��

From a local perspective, equilibrium points play a particular role, in contrast to
the other points, called regular points (states x such that f (x) �= 0). Indeed, regular
points satisfy the so-called Straightening Theorem, that we introduce without proof
(see [10, 50]) and that we illustrate by Fig. 2.10.

Theorem 2.21 If x0 is a regular point, namely if f (x0) �= 0, there exists a local
diffeomorphism (local smooth bijection) around the point x0 that transforms the
orbits of f into straight lines.

In contrast to regular points, the singular points of a vector field f display a variety
of local phase portraits. In a neighborhood of a singular point, the first nonzero term
of the Taylor expansion of the vector field f is generally linear, and we discuss in
Chap. 4 how this linear term may be sufficient for a local analysis of the original
phase portrait. This is why we now turn to the study of linear dynamical systems.

http://dx.doi.org/10.1007/978-3-642-34324-7_4
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local diffeomorphism

z2 = h2(x 1 , x 2 )
z1 = h1(x 1 , x 2 )

z1

z2

x 2

x 1

h

x 0
z 0 = h(x 0 )

Fig. 2.10 Local straightening of the flow around a regular point

2.5 Linear Dynamical Systems

In what follows, A denotes a square matrix of size n with real coefficients. The
matrix A defines a linear dynamical system on R

n by the vector field f (x) = Ax ,
and by the linear differential system:

ẋ = Ax . (2.46)

The following proposition is classical [5, 18].

Proposition 2.22 The matrix series

eA =
+∞∑
k=0

1

k! Ak = I + A + 1

2! A2 + 1

3! A3 + · · · (2.47)

converges and defines a square matrix of size n. The vector field x ∈ R
n 	→ Ax ∈ R

n

is complete, and the flow of the linear differential system (2.46) is linear and is given
by:

Φt (x) = et Ax . (2.48)

This result extends in any dimension the well known result of one dimensional
linear differential equations, namely that

ẋ = λx ⇐⇒ x(t) = eλt x(0) . (2.49)
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However, if the behavior of the solution x(t) = eλt x(0) is either exponential (λ �= 0)
or constant (λ = 0), the possible behaviors of the solution �t (x) = et Ax display
more variety. The real components of the coefficients of the vector et Ax(0) include
exponential, sinusoidal and polynomial expressions in the time variable t .

Example 2.23 The following computations of exponentials of matrices come either
from computation of the series (2.47), or by direct resolution of the differential
system (2.46) (see Exercises 2.6.5, 2.6.6 and 2.6.7):

A =
(
λ1 0
0 λ2

)
, et A =

(
eλ1t 0

0 eλ2t

)

A =
(

0 1
−1 0

)
, et A =

(
cos t sin t

− sin t cos t

)

A =
(

0 a
0 0

)
, et A =

(
1 at
0 1

)
.

�
By the expression (2.48), the flow of (2.46) is linear. Now, we highlight its

structure, especially the existence of subspaces invariant by the flow, and we dis-
play analytical expressions. For this purpose, we start by recalling a result of linear
algebra.

Definition 2.24 If A is a square matrix of size n, we call characteristic polynomial
the following polynomial of degree n

χA(s) = det(s I − A) , ∀s ∈ C , (2.50)

and S(A) the set of eigenvalues of A, that is, the set of zeros of the polynomial χA,
also called the spectrum of A. We call

• multiplicity of an eigenvalue λ, denoted by m(λ), the multiplicity of the root λ of
the characteristic polynomial χA;

• index of an eigenvalue λ, denoted by ν(λ), the first nonzero integer ν such that
the following increasing sequence of subspaces (Ker(A − λI )ν)ν≥1 is stationary
from ν = ν(λ);

• spectral subspace associated with λ the complex kernel

N (λ) := Ker(A − λI )ν(λ) ⊂ C
n, (2.51)

that is,
x ∈ N (λ) ⇐⇒ ∀ν ≥ ν(λ), (A − λI )νx = 0 .

Remark 2.25 If λ is an eigenvalue of A, one must take care to distinguish not only
the index ν(λ) from the multiplicity m(λ) (we have 1 ≤ ν(λ) ≤ m(λ)), but also the
spectral subspace N (λ) from the eigenspace Ker(A − λI ) ⊂ N (λ). �
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The following proposition is classical [34].

Proposition 2.26 If A is a square matrix of size n, then C
n can be decomposed into

a direct complex sum of the spectral subspaces of A:

C
n =
⊕

λ∈S(A)

N (λ) . (2.52)

The projection pλ onto N (λ) is called the spectral projection of A at the eigenvalueλ.

This result makes it possible to obtain an expression of the flow (2.48) projected
on the complex decomposition (2.52) of the space C

n .

Proposition 2.27 For all x ∈ R
n, we have that

et Ax =
∑

λ∈S(A)

ν(λ)−1∑
k=0

tk

k! exp(�(λ)t)(cos �(λ)t + i sin �(λ)t)(A − λI )k pλ(x) . (2.53)

Proof By linearity of the mapping x 	→ et Ax , it is sufficient to compute

et A pλ(x) = et (A−λI )eλt pλ(x)

=
+∞∑
k=0

(A − λI )k tk

k!eλt pλ(x)

=
ν(λ)−1∑

k=0

(A− λI )k tk

k!eλt pλ(x) by the definition of ν(λ) in Definition 2.24

=
ν(λ)−1∑

k=0

(A − λI )k tk

k!e�(λ)t (cos �(λ)t + i sin �(λ)t)pλ(x) .

This ends the proof. �

We end with the following topological result [28] which will prove useful in
subsequent chapters.

Proposition 2.28 Let m1, . . . , mk be non zero integers summing to n (m1 + · · · +
mk = n), and let O1, . . . ,Ok be open subsets of C. The set of matrices which have,
taking into account their multiplicity, m1 eigenvalues belonging to O1, . . . , mk

eigenvalues belonging to Ok , is an open subset of the space of matrices.
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Fig. 2.11 Mixing process

2.6 Exercises

Exercise 2.6.1 Consider the chemical process consisting of mixing, in a vessel
containing a solvent, two solutions of a same product having respective constant
concentrations c1 and c2 and control flows ϕ1 and ϕ2 (see Fig. 2.11). We denote
by V the volume of solution in the vessel, by c the concentration of output product
and by g the output flow.

1. Under the assumption of incompressible fluids discussed in § 1.4.2, show that
the balance equations of volume and of matter are of the form:

⎧⎪⎪⎨
⎪⎪⎩

d

dt
V = ϕ1 + ϕ2 − g

d

dt
(cV ) = c1ϕ1 + c2ϕ2 − cg .

(2.54)

2. Suppose that g = k
√

V
S , where S is the constant section of the vessel and k is

a parameter. Write the previous equations under the form of a state-model with
state vector x = (V, c)� and control vector u = (ϕ1,ϕ2)

�.

Exercise 2.6.2 Consider the electrical circuit of Fig. 2.12.

1. By choosing as state variables the voltage x1 at the terminals of the capacitor
and the flow x2 in the inductor, write a state-model of the system.

2. Write the temporal solution x(t) = (x1(t), x2(t)
)� of the state-model.

http://dx.doi.org/10.1007/978-3-642-34324-7_1
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Fig. 2.12 Electrical circuit

Fig. 2.13 Ball on a rail

Ο
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σ

Ο

Exercise 2.6.3 We aim to regulate the position of a ball rolling on a rail, the incli-
nation of which can be controlled by an motor (see Fig. 2.13).

We suppose that the ball rolls without slipping and we denote by:

• m the mass of the ball;
• r the radius of the ball;
• F the torque delivered by the motor;
• Jr the inertia of the rail;
• Jb the inertia of the ball.

From the Euler-Lagrange formalism discussed in § 1.4.1, determine the dynamical
equations of the system rail + ball. Choose as state vector x = (σ, θ, σ̇, θ̇)�.

Exercise 2.6.4 Show, by differentiating the expression (2.48) with respect to the
time variable t , that (2.48) is indeed the flow of (2.46).

Exercise 2.6.5 If A =
(
λ1 0
0 λ2

)
, compute et A by the formula (2.47).

Exercise 2.6.6 Let A =
(

0 1
−1 0

)
.

1. Check that A2 = −I and deduce the expression et A =
(

cos t sin t
− sin t cos t

)
by the

formula (2.47).

http://dx.doi.org/10.1007/978-3-642-34324-7_1
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2. Solve the differential system ẋ = Ax , that is,

ẋ1 = x2, ẋ2 = −x1,

by expressing the solution as a function of the initial conditions x1(0) and x2(0).
Deduce the expression of et A.

Exercise 2.6.7 Let A =
(

0 a
0 0

)
.

1. Check that A2 = 0 and deduce the expression et A =
(

1 at
0 1

)
by the

formula (2.47).
2. Solve the differential system ẋ = Ax , that is,

ẋ1 = ax2 , ẋ2 = 0 ,

by expressing the solution as a function of the initial conditions x1(0) and x2(0).
Deduce the expression of et A.



Chapter 3
Input-Output Representation

3.1 Introduction

For some systems, it may be difficult, or sometimes impossible, to obtain a mathe-
matical dynamical model from physical laws. In that case, one can try to describe
the dynamical behavior through so-called input-output relations, where the input sig-
nals correspond to perturbations or actions, and the outputs to system measurements.
This “input-output representation” approach is also called the “frequency-domain”
approach. It was intensively developed during the second World War, using the con-
cept of a “black box" reacting to a set of input signals.

In § 3.2, we introduce input-output representations (a detailed mathematical treat-
ment can be found in [63]). After general considerations, we turn the spotlight onto
linear, causal and stationary representations, called l.c.s. systems. Because of this lin-
earity, the role of the Laplace transform is emphasized (we refer the reader to § B.1 for
recalls), and l.c.s. systems are characterized by transfer matrices whose elements are
rational functions in the Laplace variable s ∈ C. Rational functions being analytical,
we know from Complex Analysis that they are uniquely determined by their values
on the imaginary axis iR = {iω | ω ∈ R}. The quantity f = ω/2π is interpreted as
a frequency and the approach of working with functions of the Laplace variable s
is called the frequency-domain approach. Due to their practical importance, the rest
of the chapter is dedicated to the study of scalar l.c.s. input-output representations,
also called monovariable and presented in § 3.3. Such scalar l.c.s. systems are char-
acterized by rational transfer functions. A notion of stability is introduced in § 3.4,
the so-called bibo-stability, that is, bounded input-bounded output. It is discussed in
terms of poles of the system, that is, the poles of the corresponding rational transfer
function. Whereas the poles of a system are related to its stability, we show in § 3.5
that the zeros of a system are important with respect to disturbance rejection. The
central ideas of closed-loop systems, of controller and of feedback, are introduced
in § 3.6 under the specific form of the famous PID compensator, which stands for
proportional-integral-derivative. Indeed, stabilization of a system is looked after by
feeding the input with the output, thus “closing” the loop. The advantage of the

B. d’Andréa-Novel and M. De Lara, Control Theory for Engineers, 45
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frequency-domain approach described is that it allows the construction of stabilizing
compensators with natural definitions of degrees of robustness such as gain or phase
margins through Nyquist and Bode diagrams. This is explained in § 3.7, and lead and
lag phase compensators are discussed in § 3.8.

3.2 Input-Output Representation

We now give a definition of an input-output representation. A detailed mathematical
treatment can be found in [63].

3.2.1 Definitions and Properties

Let m and p be two positive integers. Denote by C0(R, R
m) the space of continuous

functions on the real line with values in R
m , and by l(Z, R

m) the space of sequences
indexed by Z with values in R

m . We call any element of C0(R, R
m) or l(Z, R

m) an
input trajectory, and any element of C0(R, R

p) or l(Z, R
p) an output trajectory.

A dynamical system (Σ) with m input variables and p output measurements is a
mapping from C0(R, R

m) towards C0(R, R
p) in continuous-time, and from l(Z, R

m)

towards l(Z, R
p) in discrete-time. The input-output behavior is the relation

y = Σ(u). (3.1)

Remark 3.1 In accordance with Remark 2.4, the notations u and y correspond here
to trajectories, that is, elements of C0(R, R

m) and C0(R, R
p) in continuous-time,

and l(Z, R
m) and l(Z, R

p) in discrete-time. However, this does not preclude u and
y to denote vectors in the sequel, depending on the context. ♦

For any input or output trajectory x , we set

x[−∞, t] := (x(τ ), τ ≤ t) and x[−∞, t[:= (x(τ ), τ < t). (3.2)

Dynamical systems deriving from physical laws are causal in the following sense.

Definition 3.2 The dynamical system (Σ) is said to be causal (respectively, strictly
causal), if the values of its output y(t) at time t only depend on the values u[−∞, t]
of its input u at times τ ≤ t (respectively, τ < t).

A time translation of a trajectory t �→ x(t) has the form t �→ x(t − a).

Definition 3.3 The dynamical system (Σ) is said to be stationary or time-invariant
if its input-output behavior is invariant through time translation.
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Linear dynamical systems are of the upmost importance in Control Theory.

Definition 3.4 The dynamical system (Σ) is said to be a linear dynamical system if
its input-output behavior satisfies the following superposition principle: if the output
vector yi (t) corresponds to the input vector ui (t), then each linear combination∑l

i=1 λi ui of input vectors produces the output vector
∑l

i=1 λiyi .

In the rest of this chapter, we consider linear, causal and time-invariant (or sta-
tionary) dynamical systems.

Definition 3.5 The dynamical system (Σ) is said to be l.c.s. if it is linear, causal
and stationary.

Remark 3.6 From now on, in the text, we only consider continuous-time l.c.s. system.
Therefore, when not specified, l.c.s. system should be understood as continuous-time
l.c.s. system. By causality and stationarity, all trajectories can and will be restricted
to the domain [0,+∞[. Appropriate assumption of continuity of the mapping (�)

is also needed in what follows. ♦

3.2.2 Characteristic Responses and Transfer Matrices

Using the linearity property, we now show that every l.c.s. system (Σ) can be char-
acterized by its response to particular classes of input signals.

Definition 3.7 We call Dirac delta function, Dirac distribution or unit impulse
function the distribution δ defined by

〈δ, ϕ〉 = ϕ(0) ,

for every smooth (C∞) test function ϕ : R → R with compact support, where
〈·, ·〉 represents the duality product. We denote δa the distribution defined by
〈δa, ϕ〉 = ϕ(a).

Remark 3.8 The Dirac delta function is a mathematical object which makes it pos-
sible to describe a punctual density (of mass, or electrical…) or “distribution.” In the
engineering world, this impulse is generally introduced as follows:

⎧⎪⎪⎨
⎪⎪⎩

δ(z) = 0 if z 	= 0
δ(z) = +∞ if z = 0∫ +∞

−∞
δ(z) dz = 1 .

This is not mathematically correct if the previous integral is considered in the
Lebesgue sense. However, the Dirac distribution is perfectly defined in the context
of the so-called Theory of Distributions, elaborated by the French mathematician
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Laurent Schwartz (see [60]). Distributions are generalized functions, which include
the usual (locally integrable) functions. Under this theory, it is possible to introduce
the “derivative of a distribution” and the Laplace or Fourier transform of a “tempered”
distribution. Consequently, every distribution is differentiable and, therefore, every
continuous function becomes differentiable. Moreover, the Fourier transform of any
tempered distribution can be defined, which covers a much larger class than inte-
grable or square-integrable functions for which the Fourier transform was originally
defined. ♦

The Dirac delta function is the identity for the convolution operation (see § B.1
for the convolution definition):

u(t) = (u 
 δ)(t) = (δ 
 u)(t) =
∫ +∞

−∞
u(t − τ)δ(τ ) dτ .

Therefore, if h = Σ(δ) denotes the response of the time-invariant linear system (Σ)

to the unit impulse function δ, the superposition principle (and an appropriate
assumption of continuity of the mapping (�)) makes it possible to conclude that
the response y(t) to an arbitrary input trajectory u is given by:

y(t) =
∫ +∞

−∞
u(t − τ)h(τ ) dτ = (h 
 u)(t) .

For an l.c.s. system, causality makes it possible to write

y(t) =
∫ +∞

0
u(t − τ)h(τ ) dτ = (h 
 u)(t) . (3.3)

This motivates the following definition.

Definition 3.9 The impulse response of an l.c.s. system (Σ) is the response
h = Σ(δ) of this system to the unit impulse function δ.

Remark 3.10 By (3.3),The impulse response is a condensed way to represent the
dynamics of an l.c.s. system, since the system response to an arbitrary input u can be
obtained through the convolution product of this input u with the impulse response
h of the system. But impulse signals are difficult to realize. From a practical point of
view, they can be numerically approximated by functions such as Gaussian functions
gσ (z) = e−z2/2σ 2

/σ
√

2π which tend towards δ (in the sense of distributions) when
σ tends towards 0. ♦

Other classical signals are frequently used in Control Theory, such as the unit step
and the ramp as defined below.

Definition 3.11 We call

• Heaviside step function or unit step function the function E defined by
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E(t) = 0 if t < 0 , E(t) = 1 if t ≥ 0 , (3.4)

• ramp the function R defined by

R(t) = 0 if t < 0 , R(t) = t if t ≥ 0 . (3.5)

Definition 3.12 The step response of an l.c.s. system, is the response of this system
to the unit step function input E.

Remark 3.13 In the context of distributions, the Dirac delta function δ is the
derivative of the unit step input E, itself being the derivative of the ramp R
(see [60]). ♦

In general, even if the impulse response is known, the computation of outputs using
convolution products is not easy. This is why operational calculus has been so widely
used in the context of Control Theory: Laplace transform for linear continuous-time
systems and z-transform for linear discrete-time systems. These transforms have the
convenient property of transforming a convolution product into a simple product.
The notion of transfer matrix is then introduced.

Definition 3.14 The transfer matrix of a continuous-time l.c.s. system, with m-input
vector u and p-output vector y, is the p × m matrix H(s) such that

Y (s) = H(s)U (s) , (3.6)

where s denotes the Laplace complex variable, U (s) (respectively, Y (s)) the Laplace
transform of u(t) (if it exists), (respectively, of y(t)).

Remark 3.15 In all rigour, we should speak of the transfer matrix function H (without
the complex argument s), but we will currently speak of H(s). The same holds true
for Y (s) and U (s). ♦

Recall that a rational function is the ratio of two polynomials. It is said to be
proper (respectively, strictly proper) if the degree of the numerator is less or equal
than the degree of the denominator (respectively, strictly less than the degree of the
denominator).

The proof of the following proposition is established in Chap. 5 in the case of
continuous-time l.c.s. systems, and in Chap. 6 for discrete-time l.c.s. systems, using
the state-space representation of linear, causal and time-invariant dynamical systems.

Proposition 3.16 The elements of transfer matrices of l.c.s. systems are proper ratio-
nal functions in the Laplace complex variable s.

Let us point out that causality of an l.c.s. system is linked to the property of its
associated transfer to be proper (cf. § 5.7 for continuous-time l.c.s. systems, § 6.9 for
discrete-time l.c.s. systems and Remark 3.22 below).

http://dx.doi.org/10.1007/978-3-642-34324-7_5
http://dx.doi.org/10.1007/978-3-642-34324-7_6
http://dx.doi.org/10.1007/978-3-642-34324-7_5
http://dx.doi.org/10.1007/978-3-642-34324-7_6
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Definition 3.17 A transfer matrix is proper or causal if its elements are proper
rational functions.

From the definition of the impulse response and the fact that the Laplace trans-
form of a convolution product is a simple product, the following proposition can be
deduced.

Proposition 3.18 The transfer matrix of an l.c.s. system is the Laplace transform of
the impulse response.

3.3 Single-Input Single-Output l.c.s. Systems

Due to their practical importance, the rest of the chapter is dedicated to the study of
scalar systems, also called monovariable systems.

Definition 3.19 A scalar l.c.s. system (or monovariable system) is an l.c.s. dynam-
ical system with one input and one output, also called single-input, single-output
system.

Remark 3.20 In that case, the transfer matrix of Definition 3.14 is reduced to a trans-
fer function which is a proper rational function. ♦

The following definitions are very useful in practice.

Definition 3.21 A scalar l.c.s. system is said to be of first-order if its transfer function
is of the form

H(s) = k

1 + T s
. (3.7)

A scalar l.c.s. system is said to be of second-order if its transfer function is of the
form

H(s) = ω2
n

s2 + 2ζωns + ω2
n

, (3.8)

where ζ is called the damping factor and fn = ωn/2π the natural frequency of the
system.

For positive ζ and ωn , the case ζ > 1 corresponds to a so-called hyperdamped
system (that is, with two real distinct and strictly negative roots), the case ζ = 1 to a
double real root equal to −ωn , and the case ζ < 1 to two complex conjugated roots
−ζωn ± iωn

√
1 − ζ 2.

We now study the form of the impulse response of a scalar l.c.s. system in the time
domain, with a proper transfer function (not necessarily strictly proper). Let H(s)
be such a rational transfer function (see Proposition 3.16):
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H(s) = b0sn + b1sn−1 + · · · + bn

sn + a1sn−1 + · · · + an
.

After dividing the numerator by the denominator, we obtain:

H(s) = b0 + b1sn−1 + · · · + bn

sn + a1sn−1 + · · · + an
. (3.9)

Thus, the transfer function H(s) is the sum of a constant term b0 and of a strictly
proper transfer function H(s) which can be decomposed into a sum of simpler
fractions as follows,

H(s) = H1(s) + · · · + Hr (s) , (3.10)

where

Hi (s) = αi
1

s − si
+ αi

2

(s − si )2 + · · · + αi
νi

(s − si )νi
. (3.11)

The si are the roots of the denominator of H(s), with multiplicity νi , such that∑r
i=1 νi = n. The Laplace transform being injective, it can be deduced from

(3.9)–(3.11) and Table B.1 of Laplace transforms in § B.1—in particular, the relation

L
[
eat tm−1

(m−1)!E(t)
]
(s) = 1/(s −a)m—that the impulse response h of the system can

be written as

h(t) = b0δ(t) + h(t) with h(t) =
r∑

i=1

(
αi

1 + αi
2t + · · · + αi

νi

tνi −1

(νi − 1)!

)
esi t , (3.12)

where we recall that δ(t) denotes the Dirac delta function introduced in Definition 3.7.

Remark 3.22 Let us point out that the constant term b0 in the transfer function H(s)
given by (3.9) corresponds, in the time domain, to the term b0δ(t) which leads to a
direct relation between u(t) and y(t), since y(t) = (h 
 u)(t) = b0u(t) + (h 
 u)(t),
δ(t) being the identity for the convolution operation. Therefore the system is strictly
causal when b0 = 0, that is when the transfer function H(s) is strictly proper. ♦

Definition 3.23 Consider the decomposition (3.11) of the Laplace transform H(s)
of the impulse response h(t). If all the si have a strictly negative real part, we call
time constant of the l.c.s. system with impulse response h(t) given by (3.12), the
quantity σ defined by:

1

σ
= min(λ1, . . . , λr ) . (3.13)
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3.4 Stability and Poles: Routh’s Criteria

Let us now define the notion of bibo-stability, that is, bounded input-bounded output-
stability.

Definition 3.24 An l.c.s. system (Σ) is said to be bibo-stable if, for all bounded
input, the output remains bounded:

sup
t≥0

‖u(t)‖ < +∞ ⇒ sup
t≥0

‖Σ(u)(t)‖ < +∞ . (3.14)

Using similar arguments to those to be developed in § 5.3 and 6.4, the following
proposition can be proven.

Proposition 3.25 If the real parts of the characteristic roots of the transfer function
of an l.c.s. system (Σ) are strictly negative, then (Σ) is bibo-stable.

We now give practical algebraic criteria that allows us to check if the roots of
a polynomial have strictly negative real part (or a modulus strictly less than unity
in discrete-time). The system stability can then be tested without computing the
characteristic roots.

The Routh Criterion

Let P(s) be a polynomial with real coefficients:

P(s) = a1
0sn + a2

0sn−1 + a1
1sn−2 + a2

1sn−3 + a1
2sn−4 + a2

2sn−5 + · · · . (3.15)

The Routh table is constructed recursively

a1
0 a1

1 a1
2 . . .

a2
0 a2

1 a2
2 . . .

a3
0 a3

1 a3
2 . . .

a4
0 a4

1 . . . .

. . . . . .

(3.16)

using the formula

ai+2
j = ai

j+1 − ai
0

ai+1
0

ai+1
j+1 , (3.17)

until no more term can be computed. The following theorem states the Routh crite-
rion [58].

http://dx.doi.org/10.1007/978-3-642-34324-7_5
http://dx.doi.org/10.1007/978-3-642-34324-7_6
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Theorem 3.26 All the characteristic roots of the polynomial P(s) in (3.15) have
strictly negative real part if and only if all the coefficients ai

0 in the first column of the
Routh table (3.16) given by (3.17) are nonzero and display the same sign. If all the ai

0
are nonzero, the number of coefficients in the first column of the Routh table having
sign different from the sign of a1

0 is the number of roots of the polynomial P(s) with
a strictly positive real part.

A necessary condition for the polynomial P(s) to have all its roots with a strictly
negative real part is that all the coefficients a j

i of P(s) are nonzero and with the same
sign. This condition is known as the Hurwitz criterion [40]. The Hurwitz criterion is
only a necessary condition as shown by the following example.

Example 3.27 Consider the polynomial

P(s) = s3 + 0.5s2 + 3s + 3.5 ,

which clearly satisfies the Hurwitz criterion. The corresponding Routh table is
given by:

1 3
0.5 3.5
−4 0
3.5 0 .

From the Routh criterion, P(s) has a real strictly positive root. �

3.5 Zeros of a Transfer Function

Whereas the poles of a system are related to its stability as discussed in § 3.4, we
now discuss the importance of the “zeros” of a system with respect to disturbance
rejection.

Definition 3.25 The zeros of an l.c.s. system with transfer function H(s) are the
roots of the numerator of H(s).

Proposition 3.29 If a bibo-stable l.c.s. system (Σ) is subjected to a sinusoidal input
of pulsation ω, the asymptotic output is a sinusoidal signal with the same pulsation
ω, with amplification |H(iω)| and with phase shift given by the angle Arg (H(iω)).

Proof Let h(t) be the impulse response of the l.c.s. system (Σ) and H(s) be its
transfer function. Suppose that the system is excited by a periodic input of pulsation
ω of the form:

u(t) = eiωt if t ≥ 0, u(t) = 0 else. (3.18)

By (3.3), the expression of the output y(t) is given by
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y(t) =
∫ t

0
h(τ )eiω(t−τ) dτ

= eiωt
∫ t

0
h(τ )e−iωτ dτ

= eiωt
∫ +∞

0
h(τ )e−iωτ dτ − eiωt

∫ +∞

t
h(τ )e−iωτ dτ .

The system being bibo-stable, the integral
∫ +∞

0
h(τ )e−iωτ dτ exists and, by defin-

ition of the Laplace transform (B.1), we can write:

y(t) = eiωt H(iω) − eiωt
∫ +∞

t
h(τ )e−iωτ dτ .

The integral being convergent,
∫ +∞

t
h(τ )e−iωτ dτ tends towards 0 when t tends

towards infinity, which makes it possible to conclude. �

The following corollary is a straightforward consequence.

Corollary 3.30 Consider a continuous-time l.c.s. system with transfer function
H(s). The zeros of ω �→ H(iω) correspond to the frequencies which are asymptoti-
cally rejected.

Remark 3.31 The above ability to transform a periodic input signal into a periodic
output signal with the same frequency, but amplified and dephased, is characteristic
of linear systems. This is why the knowledge of the transfer function at various
frequencies f = ω/2π is representative of the system. More precisely, the transfer
function H(s) being an analytical function, the knowledge of H(s) on the imaginary
axis—that is, of H(iω) for all pulsations ω—is sufficient to determine H(s) for
all s ∈ C. This is the reason why this approach is called the “frequency-domain
analysis”. ♦

Proposition 3.32 Consider a continuous-time l.c.s. system with transfer function H(s).
If the transfer function H(s) has a zero at s = 0, the step functions inputs of the
form bE, where the Heaviside step function E is defined in (3.4), are asymptotically
rejected.

Proof Consider the continuous-time l.c.s. system with transfer function H(s)
excited by a step input signal with amplitude b. By Table B.1 of Laplace transforms
in § B.1—in particular, the relation L [E(t)] (s) = 1/s—the Laplace transform of
the output can be written as

Y (s) = H(s)
b

s
.
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Applying the final value Theorem L7 in § B.1, we have that

lim
t→+∞ y(t) = lim

s→0
sY (s) = lim

s→0
bH(s) = bH(0) ,

which concludes the proof. �

This motivates the following definitions.

Definition 3.33 We call static gain of the continuous-time l.c.s. system with transfer
function H(s) the real number H(0).

In § 3.7, we discuss why it is interesting to know if the zeros of a continuous-time
l.c.s. system are in the left half complex plane (see also Exercise 3.9.5). Let us then
introduce the following definition.

Definition 3.34 A continuous-time l.c.s. system is said to be minimum phase if its
zeros are all in the left half complex plane {s ∈ C | �(s) < 0 }.

3.6 Controller Synthesis: The PID Compensator

Consider an l.c.s. system (Σ) which is not bibo-stable. Our goal here is to transform
the so-called open-loop system (Σ) by introducing a new auxiliary input and by
“closing” the system with a so-called feedback control law, yielding a bibo-stable
closed-loop system.

From the input-output representation of an l.c.s. system discussed in § 3.2, two
main types of controllers can be elaborated in the frequency-domain.

• The precompensator is represented on Fig. 3.1 and can be written, in the frequency-
domain, as

U (s) = G(s)V (s) , (3.19)

where V (s) represents a so-called auxiliary input. Therefore, the transfer function
of the controlled system is of the form

Y (s) = H(s)G(s)V (s) . (3.20)

• The compensator is represented on Fig. 3.2 and can be written as

Fig. 3.1 The precompensator
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Fig. 3.2 The compensator

U (s) = −G(s)Y (s) + V (s) . (3.21)

Combining (3.21) and Y (s) = H(s)U (s), we obtain Y (s) = H(s)V (s) −
H(s)G(s)Y (s), and the transfer function of the closed-loop system is given by

Y (s) = H(s)

1 + H(s)G(s)
V (s) . (3.22)

The control laws (3.20) and (3.21) modify the transfer function of the system.
If the open-loop system with transfer function H(s) has unstable poles, using the
precompensator technique requires that G(s) is zero at the unstable poles of H(s)
to make the closed-loop system stable. This is not so easy since the poles of H(s)
are not known with perfect precision. On the other hand, the compensator technique
is well adapted to stabilization, because it makes possible to place the closed-loop
poles using G(s), without necessarily knowing sharply the poles of H(s).

Proposition 3.35 Consider a continuous-time l.c.s. system with transfer function H(s).
To bibo-stabilize the system with the compensator (3.21), it is necessary and suffi-
cient to choose the coefficients of the compensator such that the characteristic roots
of the polynomial 1 + H(s)G(s) have strictly negative real part.

We now turn the spotlight onto the compensation technique called pid, for
proportional-integral-derivative, which is still today much used in industry, on
account of its simplicity.

Definition 3.36 A pid control law is a compensator (3.21) with transfer function

G(s) = K P + K Ds + K I

s
, (3.23)

where K P is the proportional gain, K D the derivative gain and K I the integral gain.
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3.6.1 First-Order Open-Loop System

Consider a first-order system as in (3.7) with an open-loop transfer function of
the form:

H(s) = 1

s − λ
.

Then, the closed-loop transfer function (3.22) with pid compensator (3.23) is given by:

H(s)

1 + H(s)G(s)
= s

s2(1 + K D) + s(K P − λ) + K I
.

The single proportional feedback term (K D = K I = 0) makes it possible to
place the closed-loop pole using the proportional gain K P and therefore to improve
the stability of the system or to stabilize it, if it was not originally bibo-stable.

Moreover, the integral feedback term (K I 	= 0) makes it possible to place a
root s = 0 at the numerator of the closed-loop transfer function. As already mentioned
in Proposition 3.32, the existence of a zero at s = 0 implies that constant step
perturbations are asymptotically rejected for the closed-loop system.

The derivative feedback term K D is useless in that case.

3.6.2 Open-Loop Second-Order System

Consider a second-order system as in (3.8) with an open-loop transfer function of
the form:

H(s) = 1

s2 .

The reader can easily check that, in the case of such a second-order system, the only
proportional feedback term is not sufficient to stabilize the system, and that it is
necessary to design a proportional-derivative feedback controller to ensure stability.
An integral term would be useful, as for first-order systems, to asymptotically reject
constant step perturbations.

We now turn the spotlight onto graphical representations that are useful to define
robustness notions.

3.7 Graphical Methods: Gain and Phase
Margins—Stability-Precision Dilemma

We now provide the reader with basic robustness notions, using graphical represen-
tations such as so-called Nyquist and Bode diagrams.

� For more details on the subject, we refer the reader to [47, 56, 61].
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Except for some extensions to multivariable systems, presented for example in
[47, 56], all the notions related to graphical representations have been established
for continuous-time scalar l.c.s. systems, and this is the case which is tackled here.

Consider a scalar l.c.s. system with transfer function H(s) on which the following
proportional output feedback with gain K is applied

U (s) = −K
(
Y (s) − Yc(s)

)
, (3.24)

where Yc(s) is the reference output to be followed.

Remark 3.37 Equation (3.24) is a particular case of the compensator Eq. (3.21),
where the compensator’s transfer function is G(s) = K and the auxiliary input
is V (s) = K Yc(s). ♦

The closed-loop transfer function HCL(s) between the desired reference output Yc

and the original output Y is of the form:

HCL(s) = H(s)K

1 + H(s)K
. (3.25)

Recalling that H(s) is a rational function, it can be written as:

H(s) = N (s)

D(s)
. (3.26)

Replacing H(s) by this last expression in (3.25), we obtain:

HCL(s) = N (s)K

D(s) + N (s)K
. (3.27)

Let us now explain qualitatively why the gain K in (3.24) must be chosen with
some constraints to guarantee stability. Actually, if the gain K tends towards zero in
(3.27), the closed-loop poles of the transfer function HCL(s) in (3.25) are given by the
characteristic roots of D(s) in (3.26), that is, by the poles of the closed-loop system.
If the gain K tends towards +∞ in (3.27), the poles of the closed-loop system are
given by the roots of N (s), that is by the zeros of the open-loop system. The interest
of mimimum phase systems is then clear (see Definition 3.34).

However, since H(s) corresponds to the transfer of a system which is generally
strictly proper, the number n p of open-loop poles is strictly greater than the number
nz of open-loop zeros. Therefore, the following question can be asked: when K tends
towards +∞, where are located the d = n p − nz closed-loop poles which do not
tend towards the nz open-loop zeros? In fact, these poles tend towards infinity and
they have an expression of the form1

1 The symbol O corresponds to the Big-O notation: f (z) = O
(
g(z)

)
as z → z0 if and only if there

exist a positive constant α and a neighborhood V of z0 such that | f (z)| ≤ α|g(z)|, ∀z ∈ V .
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|K |1/d zi + O(1) , (3.28)

where zi are the roots of order d of −CN /CD (respectively CN /CD) if K > 0
(respectively K < 0), where CN (respectively CD) is the coefficient of the term of
highest degree of N (s) (respectively D(s)) in (3.26). This result can be obtained
from the graphical asymptotic locus of the roots (see for example [33]) or directly
by calculus (see [21, Annexe B] or Exercise 3.9.7).

Then, when K tends towards infinity, from (3.28), the closed-loop poles of HCL(s)
in (3.25) which do not tend towards the open-loop zeros of H(s) can be located in
the right half complex plane and therefore will be unstable if d is greater than 2.

In practice, the gain K should not be chosen too high. Consequently, there exists a
natural notion of “gain margin”. To ensure the closed-loop stability, one can see from
(3.25) that solutions in the right half complex plane of the equation 1 + H(s)K = 0
should not exist.

Remark 3.38 From the above discussion, it is clear that, to preserve stability, the
gains K must not be chosen too high. On the other hand, if K is too small, some
difficulties with precision can occur, as illustrated by the following example.

Consider a system with transfer function H(s) excited by a unit step signal
Yc(s) = 1/s. From the final value Theorem L7 in § B.1, the asymptotic error e∞
between the output and the step reference input can be written as:

e∞ = lim
s→0

s

(
1

s
− H(s)K

1 + H(s)K

1

s

)
= 1

1 + H(0)K
.

Therefore, to make the asymptotic error e∞ decrease, or equivalently, to increase
the precision of the closed-loop system, the term K should be chosen sufficiently
high. Consequently, there is a dilemma concerning the choice of the gain depend-
ing on whether it is more important to increase stability or precision. This prob-
lem is usually known as the stability-precision dilemma and is also discussed in
§ 5.10. ♦

The Nyquist graphical method to analyze stability is based on the graphical rep-
resentation of transfer functions in the complex plane.

Definition 3.39 The Nyquist diagram of a transfer function H(s) is the curve ω �→
H(iω) represented in the complex plane and graduated with increasing pulsations ω

varying from 0 to +∞.

As discussed in Remark 3.31, the transfer function H(s) is the result of a Laplace
transform, and is therefore an analytical function. Then, the knowledge of H(s) on
the imaginary axis is sufficient to determine H(s) everywhere (see the introductory
discussion in § 3.1).

Example 3.40 In Fig. 3.3, a Nyquist diagram of a first-order system with transfer
function H(s) = 1/(1 + s) is plotted in function of the frequency f = ω/2π .

http://dx.doi.org/10.1007/978-3-642-34324-7_5
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Fig. 3.3 Nyquist diagram of a first-order system

Fig. 3.4 Nyquist diagrams of second-order systems

In Fig. 3.4, Nyquist diagrams of second-order systems with transfer functions
H(s) = 1/(s2 + 2ζ s + 1) are plotted for different values of ζ , in function of the
frequency f = ω/2π .
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Before giving the Nyquist stability result, let us recall a Cauchy theorem about
curves in the plane (see [39, 42]).

Theorem 3.41 (Cauchy) Consider C a simple closed complex curve, oriented in
the clockwise direction and H(s) a rational function with no zero and no poles on C.
Then, the following equality is satisfied

N = P − Z , (3.29)

where, if H(C) denotes the image by H(s) of the curve C,

• N is the number of encirclements (taken in the counterclockwise direction) around
the origin H(C);

• P is the number of poles of H(s) counted with their multiplicity, which are inside C;
• Z is the number of zeros of H(s) counted with their multiplicity, which are inside C.

Consider a scalar l.c.s. system with transfer function H(s), on which we apply
a proportional feedback with unit gain, that is, K = 1. Using (3.25), the closed-
loop poles are nothing but the zeros of 1 + H(s). To test the system stability, we
now consider the closed complex curve B, called Bromwich contour, represented on
Fig. 3.5, where R tends towards +∞.

Definition 3.42 Consider a continuous-time l.c.s. system with transfer function
H(s). When R tends towards +∞, the image by H(s) of the Bromwich contour B is
called the Nyquist locus of the l.c.s. system with transfer function H(s).

Then, from Cauchy Theorem 3.41, the stability of the closed-loop system depends
on the number Z of zeros of 1 + H(s) which are located inside the Bromwich
contour B. Applying Cauchy Theorem 3.41 easily makes it possible to deduce the
following stability result, known as the Nyquist criterion.

Fig. 3.5 Bromwich contour
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Theorem 3.43 The l.c.s. system with open-loop transfer function H(s) is bibo-
stable in closed-loop with a unit proportional feedback (K = 1) if and only if its
Nyquist locus encircles the point −1 in the counterclockwise direction as many times
as the number of unstable open-loop poles.

Remark 3.44 To build the Nyquist locus from the Nyquist diagram, the last one has
to be completed symmetrically from the real axis to obtain the image by H(s) of
the strictly negative part of the imaginary axis iR−, and we have to plot the locus
part corresponding to the image by H(s) of the semi-circle of radius R, where R
tends towards infinity (see Fig. 3.5). Generally, the systems we are considering have
proper rational transfer functions, so that this last part of the image is reduced to a
point in the complex plane. On the other hand, if H(s) has poles at s = 0 or on the
imaginary axis, another closed complex curve which avoids singularities has to be
considered, in place of the Bromwich contour, to apply Cauchy Theorem 3.41 (see
Exercise 3.9.6 or [33, Chap. 6]). ♦

If we had considered a general positive scalar gain K , the closed-loop transfer
would have been given by (3.25). Multiplying by K is equivalent to applying to
the Nyquist locus an homothety with center the origin and with ratio K . Therefore,
if K A is strictly greater than 1, A being the gain corresponding to a dephasing
of 180 degrees, the system becomes unstable as shown by Fig. 3.6.

Following the above discussion, we introduce the following definition.

Definition 3.45 The gain margin of the l.c.s. system with transfer function H(s)
is the quantity Gm = 1/A, where A is the gain corresponding to a dephasing
of 180degrees.

Fig. 3.6 Gain and phase margins

http://dx.doi.org/10.1007/978-3-642-34324-7_6
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Similarly, the system can become unstable if the phase increases. Increasing the
phase of an angle α is equivalent to rotate the Nyquist locus with the same angle α

around the origin. Then, the Nyquist locus can reach the critical point −1 if it rotates
with an angle Φm , corresponding to the angle between the horizontal axis and the
line connecting the origin and the intersection point of the Nyquist locus and the
circle of center the origin and radius 1 (see Fig. 3.6).

Definition 3.46 The phase margin of the l.c.s. system with transfer function H(s) is
the angle Φm defined on Fig.3.6.

These gain and phase margins constitute a measure of the stability and robustness
degree of the control with respect to disturbances on the transfer function, due for
example to modelling errors or neglected dynamics.

The gain and phase margins can also be obtained from Bode diagrams, and we refer
the reader to Appendix D for details concerning the construction of these diagrams.

Remark 3.47 Let us point out that a proportional output feedback is not sufficient to
modify the phase of a system. More general pid compensators such as lead and lag
compensators (presented in the next § 3.8) should also be considered. ♦

3.8 Lead and Lag Phase Compensators

Consider a compensator as in (3.21). If the transfer function G(s) of the compensator
is such that G(iω) has a positive phase in the vicinity of the system’s natural frequency
(and associated pulsation) with transfer function H(s), or in other words the pulsation
for which H(iω) is the closest to the critical point −1, such a compensator clearly
improves stability and takes the following form:

G(s) = K
s + a

s + b
, b > a > 0 . (3.30)

The transfer function G(s) can also be rewritten as

G(s) = K
s + 1/T

s + 1/(αT )
with a = 1

T
, b = 1

αT
, 0 < α < 1 .

The Bode diagram of G(s) is symmetrical with respect to the geometric mean pul-
sation

√
ab, where the lead phase is precisely maximum. The compensator can then

be tuned such that the maximum lead phase is located at the natural or resonance
frequency of the system. The gain margin makes it possible to improve precision
using the gain K while preserving stability (see Fig. 3.7).

Remark 3.48 Notice that, in the case where a takes small values close to 0 and b
takes high values in (3.30), we obtain a “generalized derivator.” ♦
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Fig. 3.7 Lead phase

In the same way, a lag phase compensator can be defined with a transfer function
similar to (3.30), but such that 0 < b < a.

In that case, if G(s) is high for s = 0 (that means a high and b small) and if
it introduces a negligible dephasing in the vicinity of the natural frequency of the
system, the precision of the closed-loop system can be improved while preserving
stability. It can then be interpreted as a “generalized integrator.”

The industrial success of output feedback control laws, and particularly of
pid compensators, is mainly due to their simplicity, because it is not critical to
know sharply a state-space model of the system to tune the compensator’s gains.
Moreover, some multivariable systems can be decomposed in networks of first-
order and second-order systems which can therefore be stabilized using local pid
controllers. Nevertheless, this approach has drawbacks: the multiplication of local
controllers can obscure the problem and be totally inefficient in the case of highly
coupled physical phenomena, possibly leading to instability of the closed-loop sys-
tem. This is the reason why global stabilization methods using state-space approach
and described in the next chapters prove useful and efficient.

Moreover, as already mentioned in § 3.5, the zeros of a transfer function play an
important role with respect to disturbance rejection and the input-output representa-
tion is better adapted to the computation of zeros. In Chap. 8, the notion of zeros is
extended to multivariable systems which can be described by a transfer matrix, and
some results from the theory of polynomial matrices are presented.

The poles being fixed, the interest of “astutely placing zeros” of a multivariable
system by using remaining degrees of freedom in the control is pointed out with
respect to disturbance rejection.

http://dx.doi.org/10.1007/978-3-642-34324-7_8


3.9 Exercises 65

3.9 Exercises

Exercise 3.9.1 We consider and study transfer functions of electrical circuits.

1. Compute the transfer function of an electrical circuit with input voltage υ and
output charge q described in § 2.3.5. Then, do the same if the considered output
is the electrical current i .

2. Compute the transfer function of an electrical circuit with input voltage υ and
output charge q described in Exercise 2.6.2.

Exercise 3.9.2 Consider the following transfer function:

H(s) = 5(s + 3)((s − 2)2 + 9)

(s + 4)((s + 2)2 + 4)((s + 6)2 + 1)
.

1. Determine the poles and zeros of H(s) and draw them in the complex plane.
2. Determine the pole or the pair of complex conjugate poles corresponding to the

time constant of the system (see Definition 3.23). How are they located with
respect to the imaginary axis?

3. Give the form of the impulse response.
4. Plot the asymptotic Bode diagrams (see Appendix D).

Exercise 3.9.3 A continuous-time l.c.s. dynamical system with impulse response
h(t) is excited by a periodic input u(t) = eiωtE(t), where we recall that E(t) denotes
the Heaviside step function (3.4). What is the asymptotic behavior of the output?

Exercise 3.9.4 Plot the Nyquist and asymptotic Bode diagrams (see Appendix D)
of a first-order l.c.s. system (3.7) for different values of T and of a second-order
system (3.8) for different values of ζ and ωn .

Exercise 3.9.5 Consider an l.c.s. system with the transfer function

H(s) = s − s0

(s + λ1)(s + λ2)
, λ1 > 0 , λ2 > 0 .

Compute the step response of this system to a step input with amplitude α. Show that
it tends towards a step signal with sign the one of −s0α. Deduce that, if the system
is minimum phase (see Definition 3.34), its step response tends towards a step signal
having the same sign than the reference one.

Exercise 3.9.6 Applying the Nyquist criterion (see Theorem 3.43), test the closed-
loop stability, by a unit proportional feedback, of the l.c.s. system with transfer
function

H(s) = 1 + s

s(1 − s)
.

http://dx.doi.org/10.1007/978-3-642-34324-7_2
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Fig. 3.8 Stability curve C

For this purpose, the reader can consider the curve C of Fig. 3.8 (see the difference
with Fig. 3.5).

Exercise 3.9.7 Consider the rational transfer function H(s) of an l.c.s. system, given
under the form (3.26). The problem considered here is the asymptotic behavior of
the roots of the polynomial D(s) + K N (s) when the gain K in the output feedback
(3.24) tends towards infinity. This problem is equivalent to the asymptotic study of
the roots of N (s) + εD(s) when ε = 1/K tends towards zero. In what follows, n p

denotes the degree of D(s), nz the degree of N (s) and d = n p − nz .

1. Consider a function F : C × R → C of the form

F(z, η) = F1(z) + ηF2(z, η) ,

where F1(z), F2(z, η) are analytical functions of z and F2 is assumed to be C∞
in (z, η). Applying the implicit function theorem [10], first show that, if z0 is a
simple root of F1(z), then a C∞ function φ exists such that, in a neighborhood
of (z0, 0), we have that

F(z, η) = 0 ⇐⇒ z = z0 + ηφ(η) .

2. Case d = 0. Show that if ε tends towards 0, N (s)+ εD(s) has nz (=n p) bounded
roots which tend towards the roots of N (s). To do this, item 1 and the Rouché
theorem can be applied (see [39, 42]. The case where N (s) has a root s0 with
multiplicity μ ≥ 2 can be considered by introducing the change of variable
s = s0 + ε1/μz to avoid the singularity.

3. Case d > 0. Show that if ε tends towards 0 with ε > 0, the d roots of N (s)+εD(s)
which do not tend towards the nz roots of N (s) are of the form ε−1/dsi + O(1),
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i = 1, . . . , d. The si are the roots of order d of −CN /CD where CN (respectively,
CD) is the highest term’s coefficient of N (s) (respectively, D(s)).
The change of variable s = ε−1/d z can be considered and it can be shown
that N (s) + εD(s) = 0 can be rewritten as

N (s) + εD(s) = F(z, ε1/d) = CN + CDzd + ε1/d R(z, ε1/d) = 0 ,

where R(z, ε1/d) is analytical and is an O(1) when ε tends towards 0.
Finally, the result of item 1 can be applied to F(z, ε1/d).

4. Now, applying the result of item 3, show that, if ε tends towards 0 with ε < 0,
the roots of N (s) + εD(s) not tending towards the nz roots of N (s) are of the
form (−ε)−1/dsi +O(1), i = 1, . . . , d. The si are the roots of order d of CN /CD ,
which proves Eq. (3.28).



Part II
Stabilization by State-Space Approach



Chapter 4
Stability of an Equilibrium Point

4.1 Introduction

Stabilizing a system in a neighborhood of a steady state is one of the first goals of
Control Theory. For this purpose, we cast a glow in § 4.2 on the notions of stability
and of asymptotic stability of an equilibrium point for general dynamical systems as
discussed in § 2.4. The case of linear dynamical systems is treated in § 4.3. For linear
systems in the plane, we provide a detailed classification of the stability of the zero
equilibrium in § 4.4. Then, we turn back to general nonlinear dynamical systems, and
observe that, in an appropriate neighborhood of an equilibrium point, a vector field
coincides with the linear term of its Taylor development up to the first-order. This is
why, in § 4.5, we introduce the tangent linear system and we discuss to what extent
the stability of an equilibrium point can be deduced from the stability properties of
the tangent linear system. Stability theory in the sense of Lyapunov and, especially,
Lyapunov functions are discussed in § 4.6. They provide stability criteria directly
depending on the vector field, and not on the flow as in the general definitions of
stability. Lyapunov functions make it also possible to achieve more global stability.
At last, we consider controlled nonlinear dynamical systems, namely state-models
as defined in § 2.2, and discuss how to stabilize them locally around an equilibrium
point in § 4.7.

4.2 Stability and Asymptotic Stability of an Equilibrium Point

The equilibrium points of a dynamical system can be classified according to their “sta-
bility.” Let us illustrate this concept using the pendulum example described in § 2.2.
The state vector x = (θ, θ̇)� has been introduced and the system’s dynamics are
given by the vector field

B. d’Andréa-Novel and M. De Lara, Control Theory for Engineers, 71
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f (x) = f

(
θ

θ̇

)
=

(
θ̇

−g

l
sin θ

)
. (4.1)

Intuitively, the pendulum’s behavior is different depending on whether the system
is close to the upper equilibrium position xsup = (π, 0)� or close to the lower
one xin f = (0, 0)�. In fact, near the upper xsup, the gravitation tends to make the
pendulum fall and oscillate indefinitely around the lower equilibrium position xin f .

The equilibrium xsup is said to be “unstable” because the trajectories tend to move
away from xsup, whereas xin f is said to be “stable” because the trajectories remain
in a neighborhood of xin f . If we take into account friction effects due, for example,
to air resistance, the pendulum tends to stop at the position xin f which can then be
called an “asymptotically stable equilibrium.”

This example points out the fundamental role of equilibrium points regarding the
evolution of dynamical systems. This evolution differs depending on whether the
trajectories tend to move away from or closer to the equilibrium point which is con-
sidered. This fact characterizes the stability or instability property of an equilibrium
point and these notions are now elaborated on (see [57]).

Consider the dynamical system (2.35). Equilibrium points are defined in (2.45),
and the flow Φt in (2.39) in Theorem 2.13.

Definition 4.1 An equilibrium point xe of the dynamical system (2.35) is said to be

• stable if, for all neighborhood W ′ of xe, a neighborhood W ′′ of xe exists such that,
for all x in W ′′, Φt (x) exists and belongs to W ′ for all t ≥ 0 (an equilibrium is
said to be unstable if it is not stable);

• attractive if a neighborhood W ′ of xe exists such that, for all x in W ′, Φt (x) exists
for all t ≥ 0 and Φt (x) tends to xe when t → +∞;

• asymptotically stable if it is both stable and attractive.

To be stable means that the trajectory remains as close as expected to the equi-
librium point xe, as soon as the initial state is close enough to xe. To be attractive
means that the state trajectory converges to the equilibrium point xe (see Fig. 4.1).
Notice that stability is both a transient and asymptotical property, that considers the
trajectory t �→ Φt (x) for all times t ≥ 0, whereas attractivity is only an asymptotical
property.

Definition 4.2 The basin of attraction of an equilibrium point xe of the dynamical
system (2.35) is the set of points x in the phase space X such that Φt (x) tends to xe
when t → +∞.

Remark 4.3 If the basin of attraction of an asymptotically stable equilibrium point xe
is equal to the whole phase space X, the equilibrium point is said to be globally
asymptotically stable. �

http://dx.doi.org/10.1007/978-3-642-34324-7_2
http://dx.doi.org/10.1007/978-3-642-34324-7_2
http://dx.doi.org/10.1007/978-3-642-34324-7_2
http://dx.doi.org/10.1007/978-3-642-34324-7_2
http://dx.doi.org/10.1007/978-3-642-34324-7_2


4.3 The Case of Linear Dynamical Systems 73

stable equilibrium attractive equilibrium
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Fig. 4.1 Stable equilibrium and attractive equilibrium

4.3 The Case of Linear Dynamical Systems

For linear dynamical systems, the zero (origin) is always an equilibrium. We now
highlight how the trajectories of the linear dynamical system (2.46) depend on the
matrix A, and show that the asymptotic stability of the origin only depends on the
sign of the real part of the eigenvalues of the matrix A. To do this, we use results
of § 2.5, and the notations of Definition 2.24 and of Propositions 2.26 and 2.27.

Proposition 4.4 Let A be a real square matrix of dimension n, with distinct eigenval-
ues λ1, . . . ,λr . Let us consider the equilibrium point xe = 0 of the linear dynamical
system (2.46).

1. If there exists at least one i = 1, . . . , r such that 	(λi ) > 0, the equilibrium
point 0 is unstable.

2. If for all j = 1, . . . , r , one has that 	(λ j ) ≤ 0, then

(a) if ∀ j = 1, . . . , r , 	(λ j ) < 0, then the equilibrium point 0 is asymptotically
stable;

(b) if ∃i = 1, . . . , r , 	(λi ) = 0 and ν(λi ) > 1, the equilibrium point 0 is
unstable;

(c) if ∃i = 1, . . . , r , 	(λi ) = 0 and if ∀ j = 1, . . . , r , (	(λ j ) = 0 ⇒
ν(λ j ) = 1), the equilibrium point 0 is stable but not asymptotically stable.

Proof In each case, the issue is one of comparing an exponential term exp(	(λ)t)
to a polynomial term tk in the expression (2.53).

1. Since Ker(A−λi I )ν(λi )\Ker(A−λi I )ν(λi )−1 is not reduced to the singleton {0}
by definition of the eigenvalue index ν(λi ), we choose a nonzero complex vector
z ∈ N (λi )\Ker(A − λi I )ν(λi )−1. From z, we build a nonzero real vector x =
z + z by using the conjugate mapping recalled in § 2.1. In (2.53) , we have that
pλ(x) = 0 when λ �= λi , so that ‖et Ax‖ exponentially increases to +∞, hence
the equilibrium point 0 is unstable.

2. (a) Let μ be such that max{	(λ1), . . . ,	(λr )} < μ < 0. We deduce from
(2.53) that there exists a constant M such that

http://dx.doi.org/10.1007/978-3-642-34324-7_2
http://dx.doi.org/10.1007/978-3-642-34324-7_2
http://dx.doi.org/10.1007/978-3-642-34324-7_2
http://dx.doi.org/10.1007/978-3-642-34324-7_2
http://dx.doi.org/10.1007/978-3-642-34324-7_2
http://dx.doi.org/10.1007/978-3-642-34324-7_2
http://dx.doi.org/10.1007/978-3-642-34324-7_2
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‖et Ax‖ ≤ Meμt‖x‖, ∀x ∈ R
n . (4.2)

We conclude that the equilibrium point 0 is asymptotically stable.
(b) The vector x is chosen as in item 1. It can then be observed in (2.53) that

‖et Ax‖ grows as a polynomial tν(λ j )−1, where ν(λi )−1 ≥ 1, towards +∞:
hence the equilibrium point 0 is unstable.

(c) We observe in (2.53) that there exists a constant M such that ‖et Ax‖ ≤
M‖x‖, for all x ∈ R

n : the equilibrium point 0 is thus stable. Then, we
choose x as in item 1 and observe that et Ax does no tend to zero when t
goes to +∞. Therefore, the equilibrium point 0 is not asymptotically stable.

This ends the proof. ��
Let us point out that stability, an issue of mathematical analysis—namely, the

asymptotic behavior of the flow of a linear differential equation in Definition 4.1—
has now been turned into an algebraic problem, the evaluation of eigenvalues of a
matrix, thanks to Proposition 4.4. Thus, we are now equipped with a simple criterion
to check the asymptotic stability of the equilibrium point xe = 0 of the linear
system (2.46), as follows.

Theorem 4.5 The equilibrium point xe = 0 of the linear system (2.46) is asymp-
totically stable if and only if the eigenvalues of the matrix A have strictly negative
real part.

Definition 4.6 We call stability half-plane the set {s ∈ C | 	(s) < 0 } of complex
numbers with strictly negative real part. A square matrix is said to be asymptotically
stable if its eigenvalues belong to the stability half-plane.

Remark 4.7 We also define a stable matrix and an unstable matrix in the correspond-
ing cases of Proposition 2.28. �

The following topological result is a corollary of Proposition 2.28.

Proposition 4.8 If a matrix is asymptotically stable, there exists a neighborhood in
which all the matrices are asymptotically stable.

In particular, if (A(p))p∈P is a family of square matrices continuously depending
on a parameter p and if A(p0) is asymptotically stable, it is the same for A(p) where
p belongs to an appropriate neighbourhood of p0.

In Control Theory, one traditionally calls proper modes or poles (see Defini-
tion 5.57) the eigenvalues of the square matrix attached to a linear system.

Definition 4.9 We call proper modes, or poles, of the matrix A the eigenvalues of A.
They are the roots of the characteristic polynomial χA(z) = det(z I − A) introduced
in Definition 2.24.

Let us now recall the Cayley-Hamilton theorem [34].

Theorem 4.10 If A is a square matrix n × n and

http://dx.doi.org/10.1007/978-3-642-34324-7_2
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http://dx.doi.org/10.1007/978-3-642-34324-7_2
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χA(s) = det(s I − A) = sn + a1sn−1 + · · · + an (4.3)

denotes its characteristic polynomial (see Definition 2.24), then we have the following
equality between matrices:

An = −a1 An−1 − · · · − an−1 A − an I . (4.4)

In particular, every matrix Am for m ≥ n is a linear combination of I , A, . . . , An−1 .

Routh’s criteria (see § 3.4) makes it possible to test the sign of the real parts of
the roots by testing the coefficients of a polynomial, which is a simple way to test
the asymptotic stability of a matrix without computing its eigenvalues.

4.4 Stability Classification of the Zero Equilibrium for Linear
Systems in the Plane

In this section, we consider linear dynamical systems of the form

ẋ =
(

a11 a12
a21 a22

)
x = Ax , (4.5)

where A is a nonzero 2 × 2 real matrix. We classify the stability properties of
the zero equilibrium. For this purpose, we need the following result concerning the
diagonalization of 2×2 matrices [34]. When they are distinct, the eigenvalues of the
matrix A are denoted λ1 and λ2.

Proposition 4.11 If the 2 × 2 matrix A has two distinct eigenvalues, it is similar to
a diagonal matrix on C: if v1 and v2 are two (complex) eigenvectors associated with
the eigenvalues λ1 and λ2, and if P = (v1; v2) is the complex matrix corresponding
to the basis transformation, we have that

A = PDiag(λ1,λ2)P−1 where Diag(λ1,λ2) =
(
λ1 0
0 λ2

)
. (4.6)

The reader can check with Theorem 4.5 that, for 2 × 2 matrices, asymptotic
stability is characterized by the signs of the trace and of the determinant, as follows.

Proposition 4.12 A 2 × 2 square matrix A is asymptotically stable if and only if the
trace Tr(A) and the determinant Det(A) satisfy

Tr(A) < 0 and Det(A) > 0 . (4.7)

http://dx.doi.org/10.1007/978-3-642-34324-7_3
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One Eigenvalue is Zero

The matrix A being nonzero, we study the case λ1 = 0 and λ2 = λ �= 0.
In that case, the matrix A has two distinct real eigenvectors v1 and v2. If

P = (v1; v2) denotes the real matrix of basis transformation, we have that
A = PDiag(0,λ)P−1 by (4.6). With the change of coordinates z = P−1x , the
linear differential system (4.5) becomes ż = Diag(0,λ)z and the solutions are:

{
z1(t) = z1(0)

z2(t) = z2(0)eλt .
(4.8)

Then, not only the origin, but all the points belonging to the straight line of
equation z2 = 0 are equilibrium points. This corresponds to a degenerate case (see
Fig. 4.2).

The Eigenvalues are Real, Distinct and with the Same Sign

In that case, the matrix A has two distinct real eigenvectors v1 and v2. If P = (v1; v2)

denotes the real matrix of basis transformation, we have that A = PDiag(λ1,λ2)P−1.
With the change of coordinates z = P−1x , the linear differential system (4.5)
becomes ż = Diag(λ1,λ2)z, and the solutions are:

{
z1(t) = z1(0)eλ1t

z2(t) = z2(0)eλ2t .
(4.9)

The origin z = 0 is said to be a knot, stable or unstable according to the sign of λ1
and λ2. In Fig. 4.3, a stable knot is displayed. To draw an unstable knot it suffices to
reverse the direction of the arrows.

z1

A =
− 2 4
1 − 2

z2

Fig. 4.2 Straight line of equilibrium points
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A =
− 1 2
0 − 2

z1

z2

Fig. 4.3 Stable knot

The Eigenvalues are Real, Distinct and with Opposite Sign

The solutions are of the form (4.9). However, since the eigenvalues have an opposite
sign, the trajectories are going inside in one direction and outside in the other one.
The origin is said to be a saddle point. Figure 4.4 shows a saddle point for which
λ1 < 0 and λ2 > 0.

The Eigenvalues are Complex Conjugates

In that case, the matrix A has two distinct complex conjugates vectors v1 and v2,
associated with the eigenvalues

λ1 = μ+ iθ , λ2 = μ− iθ , θ �= 0 .

If P = (v1; v2) denotes the complex matrix of basis transformation, we have that
A = PDiag(λ1,λ2)P−1. With the change of coordinates z = P−1x , the linear dif-
ferential system (4.5) becomes ż = Diag(λ1,λ2)z. The complex solution is given by

z1(t) = z1(0)eμt eiθt , z2(t) = z2(0)eμt e−iθt , (4.10)
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z2

z1

A =
− 1 2
0 1

Fig. 4.4 A saddle point

A =
− 1 1
− 1 − 1

Fig. 4.5 A stable spiral

so that the real solution to (4.5) is a spiral around the origin. This trajectory is called
an unstable spiral, a center or a stable spiral, according to whether μ is strictly
positive, zero or strictly negative, as shown in Fig. 4.5.
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z 2

z 1

Fig. 4.6 An unstable focus

The Eigenvalues are Equal and A is Diagonalizable

In that case, there is a single real eigenvalue. The solutions have the same form
as (4.9). However, since λ1 and λ2 are equal, the ratio z1(t)/z2(t) remains constant,
equal to z1(0)/z2(0) and the trajectories are straight lines. The origin is said to be a
focus point, stable or unstable according to whether λ1 is strictly negative or strictly
positive. Figure 4.6 represents an unstable focus.

The Eigenvalues are Equal and A is not Diagonalizable

There exists a real matrix P of basis transformation such that, from the Jordan
decomposition [34], we have that:

A = P

(
λ1 0
a λ1

)
P−1. (4.11)

With the change of coordinates z = P−1x , the system (4.5) becomes

ż =
(
λ1 0
a λ1

)
z, and the solutions are:

{
z1(t) = z1(0)eλ1t

z2(t) = z2(0)eλ1t + atz1(0)eλ1t .
(4.12)

The origin is said to be a degenerate knot, stable or unstable according to whether λ1
is strictly negative or strictly positive. Figure 4.7 represents a stable degenerate knot.
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A =
− 1 2
0 − 1

Fig. 4.7 A stable degenerate knot

4.5 Tangent Linear System and Stability

In a proper neighborhood of an equilibrium point, a vector field coincides with the
linear term of its Taylor development up to the first-order (recall that, according to
Definition 2.10, a vector field is a smooth mapping). In this section, we discuss to
what extent the stability of an equilibrium point can be deduced from the stability
properties attached to the linear term of the Taylor development, called the tangent
linear system. For this purpose, we first consider approximation theorems and notions
of topological equivalence between flows.

Consider two global flow maps (Φt )t∈R and (Ψt )t∈R: X → X attached to two
complete dynamical systems defined over the same phase space X (see Theorem 2.13
and Definition 2.14).

Definition 4.13 The flow maps (Φt )t∈R and (Ψt )t∈R are said to be equivalent, if
there exists a bijection� : X → X, transforming the flow map (Φt )t∈R into the flow
map (Ψt )t∈R in the sense that

� ◦ Φt = Ψt ◦� , ∀t ∈ R . (4.13)

This all amounts to say that (Φt )t∈R can be transformed into (Ψt )t∈R when changing
the coordinates as indicated in Fig. 4.8. By specifying the regularity and the algebraic
properties of the transformation �, the following definitions can be introduced.

Definition 4.14 The flow maps (Φt )t∈R and (Ψt )t∈R are said to be:

• linearly equivalent if the transformation� is an isomorphism (a linear bijection);
• topologically equivalent if the transformation � is an homeomorphism

(bi-continuous bijection);
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invertible transformation

Φ t (x )
x

z 1

z 2

x 2

x 1

z 1 = h 1 (x 1 , x 2 )
z 2 = h 2 (x 1 , x 2 )

z = h (x )

Ψt (z ) = h (Φ t(x ))

Fig. 4.8 Equivalent flow maps

• differentially equivalent if the transformation� is a diffeomorphism (differentiable
bijection).

The following results make it possible to obtain a classification of linear dynamical
systems. Proofs can be found in [5, 50].

Theorem 4.15 Let A and F be two real square matrices of dimension n. The linear
vector fields associated with the matrices A and F are differentially equivalent if
and only if they are linearly equivalent.

If the matrices A and F have simple eigenvalues (that is, with multiplicity 1 in
Definition 2.24), the linear dynamical systems

ẋ = Ax, x ∈ R
n and ż = Fz, z ∈ R

n (4.14)

are linearly equivalent if and only if the two matrices A and F have the same
eigenvalues.

The following theorem is very useful to obtain a topological classification of linear
dynamical systems.

Theorem 4.16 Consider two linear dynamical systems given by (4.14), where the
matrices A and F have no eigenvalue with zero real part. These two systems are topo-
logically equivalent if and only if the number of eigenvalues of the matrix A having
a strictly negative real part (respectively, strictly positive) is equal to the number of
eigenvalues of the matrix F having a strictly negative real part (respectively, strictly
positive).

Remark 4.17 Topological equivalence is less restrictive than linear equivalence. �
The following notion is essential in the sequel.
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Definition 4.18 Suppose that the dynamical system (2.35) has an equilibrium
point xe. The tangent linear system, also called first-order approximation, of the
dynamical system (2.35) at the equilibrium point xe is the linear dynamical system

ξ̇ = Aξ , (4.15)

where A = ∂ f

∂x
(xe) is the Jacobian matrix associated with the tangent linear mapping

of f at equilibrium point xe.

Remark 4.19 In the system of local coordinates x1, . . . , xn , the Jacobian matrix
is made of the partial derivatives of f at xe. If the vector field f is defined by n
differentiable functions f1(x1, . . . , xn), . . . , fn(x1, . . . , xn), we have the expression:

∂ f

∂x
(xe) =

⎛
⎜⎜⎜⎜⎝

∂ f1

∂x1
(xe)

∂ f1

∂x2
(xe) · · · ∂ f1

∂xn
(xe)

...
...

. . .
...

∂ fn

∂x1
(xe)

∂ fn

∂x2
(xe) · · · ∂ fn

∂xn
(xe)

⎞
⎟⎟⎟⎟⎠ . (4.16)

�
Example 4.20 Computation of the tangent linear approximation of the dynamical
model (2.3) describing the evolution of a pendulum without friction.

As discussed in § 4.2, the pendulum dynamics is given by (4.1). The tangent linear
approximation in the neighborhood of the equilibrium xin f = (0, 0)� is character-
ized by the matrix

Ain f =

⎛
⎜⎜⎜⎝

∂θ̇

∂θ

∂θ̇

∂θ̇

−g

l

∂ sin θ

∂θ
−g

l

∂ sin θ

∂θ̇

⎞
⎟⎟⎟⎠

| (θ,θ̇)=(0,0)

=
(

0 1

−g

l
0

)
. (4.17)

The tangent linear approximation in the neighborhood of the equilibrium xsup = (π, 0)�
is characterized by the matrix

Asup =
(

0 1
g

l
0

)
. (4.18)

�
Linear systems constitute a particularly simple class of dynamical systems, and

it is interesting to know to what extent the tangent linear system is similar to the
original system in the neighborhood of the origin. From a mathematical point of
view, we discuss the topological equivalence between a dynamical system (2.35) and

http://dx.doi.org/10.1007/978-3-642-34324-7_2
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its tangent linear approximation (4.15) around an equilibrium point. An important
result is given by the Grobman-Hartman Theorem (see [50] for a proof).

Definition 4.21 An equilibrium point of a dynamical system is said to be hyperbolic
if the tangent linear mapping at this point has no eigenvalue with zero real part.

Theorem 4.22 (Grobman et Hartman) A nonlinear dynamical system is topolog-
ically equivalent to its tangent linear approximation (4.15) in the neighborhood of
an hyperbolic equilibrium point.

Therefore, in a sense, the behavior of a nonlinear dynamical system in the neigh-
borhood of an hyperbolic equilibrium point can be deduced from the study of its
tangent linear approximation. Regarding stability, the following perturbation theo-
rem holds true (this is a corollary of Theorem 4.22).

Theorem 4.23 Let xe be an equilibrium point of the dynamical system (2.35).

1. If the equilibrium xe is asymptotically stable for the tangent linear system (4.15),
then it is also asymptotically stable for the original system (2.35).

2. If the equilibrium xe is unstable for the tangent linear system (4.15), then it is
also unstable for the original system (2.35).

If the equilibrium point xe is not hyperbolic, the study of the tangent linear system is
generally not sufficient to characterize the stability of the original dynamical system.

Example 4.24 Stability of the pendulum without friction.
The eigenvalues of the matrix Ain f in (4.17) are purely imaginary, equal to±i

√
g/ l.

By Proposition 4.4, the matrix Ain f is stable, but not asymptotically stable. There-
fore, we cannot conclude about the stability of the equilibrium xin f for the original
system (4.1) from Theorem 4.23. On the other hand, if viscous damping effects
are taken into account by adding an expression of the form −kθ̇, where k > 0, in
the second term of f (x) in (4.1), the reader can check that the matrix Ain f can be
written as

Ain f =
(

0 1

−g

l
−k

)
.

Therefore, the matrix Ain f has two eigenvalues with strictly negative real part. As
a consequence, the matrix Ain f is asymptotically stable. Using Theorem 4.23, we
conclude that the equilibrium xin f is now asymptotically stable.

The eigenvalues of the matrix Asup are real with opposite sign, equal to ±√
g/ l,

hence the matrix Asup is unstable. From Theorem 4.23, we deduce that the equilib-
rium xsup of the original system (4.1) is unstable. �

http://dx.doi.org/10.1007/978-3-642-34324-7_2
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4.6 Lyapunov Functions and Stability

To remove the ambiguity on the stability property in the nonhyperbolic case, or to
evaluate the basin of attraction of an equilibrium point (hence achieving more global
stability, see Definition 4.2), so-called Lyapunov functions prove quite interesting.
Though the stability notions introduced in § 4.2 concern properties of the flow of a
vector field, the trajectories are generally not known (except for special cases, like
the linear case). This is why stability criteria directly depending on the vector field
are especially relevant. This is the purpose of the stability theory in the sense of
Lyapunov. Let us first illustrate its mechanical origin on the example of the harmonic
oscillator with viscous damping.

Example 4.25 The harmonic oscillator with viscous damping (see Fig. 4.9).
If τ (ż) represents the term of viscous damping, assumed to be an odd function of

the velocity ż, the fundamental principle of dynamics (1.6) gives

mz̈ = −kz − τ (ż) . (4.19)

Denoting x = (z, ż)�, we obtain

dx

dt
=

(
ż
z̈

)
=

(
ż

−kz − τ (ż)

m

)
=

(
f z(z, ż)
f ż(z, ż)

)
= f (x) . (4.20)

The total energy E of this physical system is the sum of the kinetic energy and of the
potential energy, and we set

V(z, ż) = 1

2
mż2 + 1

2
kz2 = E . (4.21)

m

z

k

τ

Fig. 4.9 An harmonic oscillator with viscous damping

http://dx.doi.org/10.1007/978-3-642-34324-7_1
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Let us now study the time evolution of the energy. If (zt , żt ) denotes the solution
of the dynamical system (4.20), we have that

dE

dt
= d

dt

(
1

2
mż2 + 1

2
kz2

)
by (4.21)

= mżt z̈t + kzt żt

= żt (mz̈t + kzt ) = −żtτ (żt ) ≤ 0 by (4.19),

since τ is assumed to be odd. Therefore, the energy decreases along the system’s
trajectories. In particular, the trajectories are captured in the domain defined by the
level curve V(z, ż) = E(0), as shown in Fig. 4.10 where the level curves of the
function V encircle the equilibrium point (0, 0)�.

The notion of Lyapunov function naturally appears when the computation of the
time variation of the energy E is made explicit from the relation E(t) = V(zt , żt ):

dE

dt
= d

dt
V(zt , żt ) by (4.21)

= ∂V

∂z
(zt , żt )

dzt

dt
+ ∂V

∂ ż
(zt , żt )

dżt

dt

= ∂V

∂z
(zt , żt ) f z(zt , żt ) + ∂V

∂ ż
(zt , żt ) f ż(zt , żt ) by (4.20)

= ∇V(zt , żt )· f
(
(zt , żt )

�)
= V̇(zt , żt ) ,

where V̇ is defined below in (4.22). The sign of
dE

dt
can then be obtained from the

sign of the function V̇ and from the instantaneous values (zt , żt ). �
This example motivates the following definition.

z

2 < 1
( z ż ) =( z

˙

ż

z

) = 1 > 2, ,

Fig. 4.10 Level curves of the energy function
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Definition 4.26 Let f be a vector field on the phase space X and V : W →
[0,+∞[ be a differentiable function with continuous derivatives. We call directional
derivative of the function V in the direction of the vector field f the function

V̇(x) := ∇V(x)· f (x) . (4.22)

Remark 4.27 If, in the system of coordinates x1, . . . , xn , the vector field f is defined
by n differentiable functions f1(x1, . . . , xn), . . . , fn(x1, . . . , xn), we have the fol-
lowing expression:

V̇(x1, . . . , xn) =
n∑

i=1

∂V

∂xi
(x1, . . . , xn) fi (x1, . . . , xn) .

�
The expression “directional derivative” comes from the following lemma.

Lemma 4.28 For all x ∈ X and all t such that the flow map Φt (x) of the vector
field f is defined, we have that

d

dt
V

(
Φt (x)

) = V̇
(
Φt (x)

)
. (4.23)

Proof If Φt (x) is defined, it is also defined in a neighborhood of t by Theorem 2.13.
We have that

d

dt
V

(
Φt (x)

) = ∇V
(
Φt (x)

)· d

dt
Φt (x) by composition of derivatives

= ∇V
(
Φt (x)

)· f
(
Φt (x)

)
by (2.40)

= V̇
(
Φt (x)

)
by (4.22) ,

which concludes the proof. ��
Definition 4.29 Let xe an equilibrium point of the vector field f . A Lyapunov func-
tion for f in a neighborhood of xe is a differentiable function V with continuous
derivatives, defined in a neighborhood of xe, and such that:

• V(x) > 0, except at x = xe where V(xe) = 0;
• the directional derivative (4.22) of V satisfies the inequality V̇(x) ≤ 0.

The interest of Lyapunov functions comes from the following proposition
[28, 46].

Proposition 4.30 If a Lyapunov function V exists for the vector field f in a neighbor-
hood of the equilibrium point xe, then xe is a stable equilibrium for f . In particular,
for x in a neighborhood of xe, the flow map Φt (x) is defined for all t ≥ 0.
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Moreover, if the vector field f and the Lyapunov function V are defined in a same
neighborhood W of xe and if the set {x ∈ W | V̇(x) = 0} does not contain any other
invariant subset than the singleton {xe} under the half flow map (Φt )t>0 of (2.35),
then xe is an asymptotically stable equilibrium point of f .

Proof The proof is derived from [28]. Let W be a neighborhood of xe on which f
and V are both defined. Let us consider a compact neighborhood K of xe included
in W and, for ε > 0, let us denote Vε = {x ∈ K | V(x) ≤ ε}. We first show that the
family (Vε)ε>0 constitutes a “fundamental system of neighborhoods of xe”, which
makes it possible to consider these neighborhoods in the proofs of stability and of
asymptotic stability.

Let W ′ ⊂ K be an open neighborhood of xe. We show that there exists ε0 > 0
such that Vε0 ⊂ W ′. In fact, since K is a compact neighborhood of xe, then K\W ′ =
K

⋂
W ′c is closed in K , therefore compact, and the function V reaches a minimum

ε0 > 0 on this compact. Therefore, we have that Vε0 ⊂ W ′.
Since the vector field f and the Lyapunov function V are defined on a same

neighborhood W of xe, the function r(t) = V
(
Φt (x)

)
is well defined for x ∈ W

and t small enough (0 ≤ t ≤ t (x)), and it is decreasing since it satisfies ṙ(t) =
V̇

(
Φt (x)

) ≤ 0. Therefore, we have that

0 ≤ V
(
Φt (x)

) ≤ V(x) for 0 ≤ t ≤ t (x) . (4.24)

We deduce that, for all ε > 0,

x ∈ Vε ⇒ Φt (x) ∈ Vε . (4.25)

Therefore, the trajectory Φt (x) is defined for all t ≥ 0 since it remains a priori
in the compact Vε. From (4.25) and the fact that the family (Vε)ε>0 constitutes a
fundamental system of neighborhoods of xe, we can conclude as to the stability
of xe.

Under the second set of assumptions, let us suppose that the equilibrium point xe is
not attractive. Then there exists ε0 > 0 and a point x0 ∈ Vε0 such that Φt (x0) �→ xe,
and then also η > 0 and a sequence (tn)n∈N growing to +∞ such that:

Φtn (x0) �∈ Vη , ∀n ∈ N . (4.26)

From (4.24), we deduce that the sequence of points (Φtn (x0))n∈N belongs to the
compact Vε0 , and therefore admits a sub-sequence (still denoted Φtn (x0)) converging
to a point x . We now show that necessarily x = xe, which is inconsistent with (4.26).
Indeed, the function r(t) = V

(
Φt (x0)

)
is positive and decreasing and therefore tends

to a limit l ≥ 0. For an arbitrary s > 0, the sequences V
(
Φtn (x0)

)
and V

(
Φs+tn (x0)

)
are two subsequences of r(t) which satisfy:

l = limn→+∞ V
(
Φtn (x0)

) = V(x)

l = limn→+∞ V
(
Φs+tn (x0)

) = V
(
Φs(x)

)
,

http://dx.doi.org/10.1007/978-3-642-34324-7_2
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Consequently, V
(
Φs(x)

)
is independent of s and has a zero derivative at s, that is,

V̇
(
Φs(x)

) = 0. Then, the half trajectory
(
Φs(x)

)
s>0 belongs to the set {x ∈ W |

V̇(x) = 0}. Since the corresponding orbit is clearly invariant under the half flow
map (Φt )t≥0, it is, by assumption, necessarily identical to the equilibrium point xe:
x = Φs(x) = xe. ��

A general result about Lyapunov functions is the following LaSalle Theorem (we
refer the reader to [46, 57] for a proof).

Theorem 4.31 (LaSalle) Let f be a vector field on the phase space X, and V :
W → [0,+∞[ be a differentiable function with continuous derivatives, where W is
an open subset of X. Assume that

• the function V is proper, which means that {x ∈ W | V(x) ≤ R} is compact for
all R > 0 (this is the case when V is defined on R

n and V(x) → +∞ when
‖x‖ → +∞);

• the directional derivative (4.22) of the function V in the direction of the vector
field f is negative, that is, V̇(x) = ∇V(x)· f (x) ≤ 0.

If I is the largest subset of
{

x ∈ W
∣∣ V̇(x) = 0

}
invariant under the flow map (or

the half flow map (Φt )t>0) of the dynamical system (2.35), then every trajectory
of (2.35) is

1. included in a compact (and, therefore, bounded);
2. attracted by I in the sense that, for all x in X, we have that Φt (x) →t→+∞ I,

that is, the distance dist (Φt (x), I) between Φt (x) and I goes to zero, when t
goes to +∞.

Example 4.32 Consider the Example 4.25 of the harmonic oscillator with viscous
damping. By Proposition 4.30, the point (0, 0)� is stable since it has been possible
to find a Lyapunov function (4.21) for the dynamical system (4.20). Now, to prove
asymptotic stability by means of Theorem 4.31, we consider the set

{(z, ż) ∈ R
2 | V̇(z, ż) = 0} = R × {0} ,

and look for invariant subsets under the half flow map (Φt )t>0. Setting Φt (z0, 0) =
(zt , żt ), computation shows that

z0 �= 0 ⇒ dżt

dt |t=0
= − k

m
z0 �= 0 .

Thus, every trajectory t �→ Φt (z0, 0) leaves R × {0} for small times T > 0, except
if z0 = 0. The equilibrium (0, 0)� is, of course, invariant. Using LaSalle Theo-
rem 4.31, we conclude that the point (0, 0)� is asymptotically stable, since it is the
only invariant subset included in the z-axis. �

http://dx.doi.org/10.1007/978-3-642-34324-7_2
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Finding a Lyapunov function is generally not easy, and it may be helpful to be
guided by the nature of the system under study. This is how the total energy of a
mechanical system has led to the notion of Lyapunov function.

In the linear case, it is however possible to explicitly compute quadratic Lyapunov
functions. This can be useful for the analysis of nonlinear systems in the neighborhood
of an equilibrium point, since this quadratic term produces a “first term” of a possible
Lyapunov function (see the proof of Proposition 6.17).

Proposition 4.33 The equilibrium point xe = 0 of the linear dynamical sys-
tem (2.46) is asymptotically stable if and only if, for all positive definite matrix
Q, there exists a positive definite matrix P such that:

A� P + P A + Q = 0 . (4.27)

In that case, the function V(x) = x� Px is a Lyapunov function for the origin xe = 0
of the linear dynamical system (2.46).

Proof The condition (4.27) is sufficient. Indeed, applying (4.27) with Q = I , there
exists a positive definite matrix P such that A� P + P A = −I . Then V(x) = x� Px
defines a Lyapunov function since, by (4.22) and (2.46), it satisfies:

V̇(x) = x� A� Px + x� P Ax = −‖x‖2 ≤ 0 .

Therefore, by Proposition 4.30, we conclude that the origin xe = 0 of the linear
dynamical system (2.46) is asymptotically stable.

Conversely, if the origin xe = 0 of the linear dynamical system (2.46) is asymp-
totically stable, we know from Theorem 4.5 that all the eigenvalues of the matrix A
have strictly negative real part. We deduce, using (2.53), that the following integral
is convergent

P =
∫ +∞

0
es A�

Qes A ds ,

and defines a positive definite matrix such that

A� P + P A =
∫ +∞

0

d

ds
(es A�

Qes A) ds =
[
es A�

Qes A
]+∞

0
= −Q .

This concludes the proof. ��

4.7 Sketch of Stabilization by Linear State Feedback

Most of physical engineering systems have a nonlinear behavior which can be more
or less efficiently described through a mathematical model (see Chap. 1). In many
cases of mechanical, thermic or biological systems, the control variables appear

http://dx.doi.org/10.1007/978-3-642-34324-7_2
http://dx.doi.org/10.1007/978-3-642-34324-7_2
http://dx.doi.org/10.1007/978-3-642-34324-7_2
http://dx.doi.org/10.1007/978-3-642-34324-7_2
http://dx.doi.org/10.1007/978-3-642-34324-7_2
http://dx.doi.org/10.1007/978-3-642-34324-7_2
http://dx.doi.org/10.1007/978-3-642-34324-7_1
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affinely, which leads to the following state-space representation:

ẋ = f (x) + g(x)u = f (x) +
m∑

i=1

gi (x)ui . (4.28)

The state vector x = (x1, . . . , xn)� belongs to an open set X ⊂ R
n , and u =

(u1, . . . , um)� ∈ U ⊂ R
m denotes the vector of control variables applied to the

system, f is a smooth vector field called open-loop dynamics vector field and g =
(g1, . . . , gm) is made of the control vector fields gi .

All the results obtained in the sequel could easily be extended to the more general
case where ẋ = f (x, u).

In many practical cases, we are interested in the behavior of a dynamical system
in the neighborhood of an equilibrium point or of a reference trajectory.

Definition 4.34 A state-control couple (xe, ue) ∈ X × U or, shortly, a state point
xe ∈ X, is said to be an equilibrium point of the system (4.28) if it satisfies

f (xe) + g(xe)ue = 0 . (4.29)

We call tangent linear control system of the nonlinear system (4.28) at (xe, ue), the
controlled linear dynamical system

ξ̇ = Aξ + Bυ , (4.30)

where A and B are the following n × n and n × m matrices

A = ∂ f

∂x
(xe) + ∂g

∂x
(xe)ue , B = g(xe) . (4.31)

Remarks

• The terminology of tangent linearized open-loop system is also used.
• In the more general case where ẋ = f (x, u), the equilibrium point xe satis-

fies f (xe, ue) = 0 and the matrices A and B are given by:

A = ∂ f

∂x
(xe, ue) , B = ∂ f

∂u
(xe, ue) . (4.32)

If we denote
Δx = x − xe , Δu = u − ue ,
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then AΔx + BΔu is the first term of the Taylor development of f (x) + g(x)u.
Therefore, the evolution of Δx is governed, at the first-order, by equation (4.30)
because1

Δ̇x = AΔx + BΔu + o(Δx,Δu) .

One of the control objectives is to make Δx asymptotically tend to 0, in particu-
lar if the matrix A is unstable. For that purpose, one can use the control variables
u1, . . . , um by means of a so-called state feedback.

Definition 4.35 A state feedback is a (smooth) mapping ũ : X → R
m that associates

with every state x ∈ X a control u = ũ(x).

Remark 4.36 In accordance with Remark 2.4 (see also Remark 3.1), the notations u
and x in the equality u = ũ(x) correspond here to vectors, and not to trajectories. �

“Closing” the controlled dynamical system (4.28) with the state feedback ũ means
that, at each time instant, the control is a function u = ũ(x) of the state vector. This
procedure yields a classical closed-loop dynamical system

ẋ = f (x) + g(x )̃u(x) . (4.33)

Its first-order approximation in a neighborhood of the equilibrium xe is

ξ̇ = Aξ + B
∂ũ

∂x
(xe)ξ , (4.34)

where we assume smoothness of the feedback. Therefore, the dynamics of Δx is
given by

Δ̇x = (A − BK )Δx + o(Δx) , (4.35)

where

K = −∂ũ

∂x
(xe) (4.36)

is called the gain matrix. In many cases (corresponding to “controllability”, dis-
cussed in § 5.4), a suitable choice of the gain matrix K makes it possible for the
closed-loop matrix A − BK to be asymptotically stable and, therefore, to ensure the
local asymptotic stability of the original system (4.28) in the neighborhood of the
equilibrium point xe, as shown by the perturbation Theorem 4.23.

In Chap. 5, we focus on elaborating, step by step, such a stabilizing control law.
The steps are the following.

• Characterize the stability properties of the open-loop system (4.28).

1 The symbol o corresponds to the Small-o notation: f (z) = o
(
g(z)

)
as z → z0 if and only if

| f (z)|/|g(z)| → 0 as z goes to z0.

http://dx.doi.org/10.1007/978-3-642-34324-7_5
http://dx.doi.org/10.1007/978-3-642-34324-7_5
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• Check if it possible to find a gain matrix K so that the closed-loop matrix A − BK
is asymptotically stable. This property is related to the controllability property of
the linear dynamical system (4.30).

• If the state of the system (4.28) is only partially known, determine if it possible to
reconstitute the whole state at each time from the past outputs. This is linked to an
observability property.

Let us illustrate these notions on the example of the inverted pendulum fixed on
a cart moving on an horizontal bench.

Example 4.37 Computation of a linear state feedback stabilizing the tangent linear
approximation of the dynamical model (2.3) describing the evolution of a pendulum
without friction.

Consider the nonlinear state-space model (2.9) established in § 2.3.1. The tangent
linear system in the neighborhood of the equilibrium point given by z = 0, θ = 0,
ż = 0, θ̇ = 0 can be written as

d

dt

⎛
⎜⎜⎝

z
θ
ż
θ̇

⎞
⎟⎟⎠ = A

⎛
⎜⎜⎝

z
θ
ż
θ̇

⎞
⎟⎟⎠ + Bυ , (4.37)

with ⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

A =

⎛
⎜⎜⎝

0 0 1 0
0 0 0 1
0 a 0 0
0 b 0 0

⎞
⎟⎟⎠ , B =

⎛
⎜⎜⎝

0
0
r1
r2

⎞
⎟⎟⎠ ,

a = − m
M g , b = M+m

Ml g , r1 = 1
M , r2 = − 1

Ml .

(4.38)

The eigenvalues of the open-loop linear dynamical system (4.37), that is, of the
matrix A, form the set

S(A) =
{

0, 0,−
√

M + m

Ml
g,

√
M + m

Ml
g

}
. (4.39)

By Proposition 4.4, the open-loop system matrix A is unstable.
Let us suppose that the whole state x is measured, and that we can elaborate a

state feedback control law of the form:

u = −k1z − k2θ − k3 ż − k4θ̇ .

The closed-loop linear dynamical system is

http://dx.doi.org/10.1007/978-3-642-34324-7_2
http://dx.doi.org/10.1007/978-3-642-34324-7_2
http://dx.doi.org/10.1007/978-3-642-34324-7_2
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ẋ = (A − BK )x =

⎛
⎜⎜⎜⎜⎜⎝

0 0 1 0

0 0 0 1

− 1
M k1 − m

M g − 1
M k2 − 1

M k3 − 1
M k4

1
Ml k1

M+m
Ml g + 1

Ml k2
1

Ml k3
1

Ml k4

⎞
⎟⎟⎟⎟⎟⎠

x .

The eigenvalues of the closed-loop state matrix (A − BK ) are determined by the
ki and can be chosen with a strictly negative real part. Unfortunately, in practice it
is not always possible to measure the whole state of the system. Let us suppose for
example that only the position z and the angle θ are measured. It is then possible, at
least formally, to obtain the velocities ż and θ̇ by time differentiation of the position
and angle trajectories. On the other hand, if only the velocities are measured, it is
not possible to reconstitute the initial values of the positions z(0) and θ(0), in which
case the system is said to be “unobservable”.

In Chap. 5, open-loop criteria are given for linear dynamical systems, making it
possible to determine a priori if a system is controllable or observable. In that case,
it is possible to elaborate a stabilizing regulator and an asymptotic observer of the
state. �

4.8 Exercises

Exercise 4.8.1 The oscillation movement of a bridge can be described, at first
approximation, by the dynamical equation of a spring, that is, by

mz̈ = −kz + F,

where z denotes the elongation of the bridge with respect to its equilibrium position,
and F is the resulting vertical force applied on the bridge. The action of a regiment
falling into step on the bridge is represented by a sinusoidal function F with pulsation
ω0, hence satisfying F̈ = −ω2

0 F .

1. Denoting ω2
1 = k/m, check that the augmented state (z, ż, F, Ḟ)� satisfies

d

dt

⎛
⎜⎜⎝

z
ż
F
Ḟ

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0 1 0 0
−ω2

1 0 1 0
0 0 0 1
0 0 −ω2

0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

z
ż
F
Ḟ

⎞
⎟⎟⎠ . (4.40)

Let us point out that, for this last system, F and Ḟ have become internal variables
(see § 2.2).

2. Analyze the stability of the point 0 in function of ω0, ω1, and comment the
results, in particular when ω0 � ω1.

http://dx.doi.org/10.1007/978-3-642-34324-7_5
http://dx.doi.org/10.1007/978-3-642-34324-7_2


94 4 Stability of an Equilibrium Point

Exercise 4.8.2 Let ε > 0, and consider the dynamical system

{
ẋ1 = x2

ẋ2 = −x1 − ε(1 − x2
1 )x2 .

1. Studying the function V(x) = 1

2
(x2

1 + x2
2 ), show that the equilibrium point

xe = 0 is asymptotically stable.
2. Recover this result by using the perturbation Theorem 4.23.

Exercise 4.8.3 Consider the scalar dynamical system:

ẋ = −x3.

1. Can we use the perturbation Theorem 4.23 to analyze the stability of the equi-
librium point xe = 0?

2. Show that the equilibrium point xe = 0 is asymptotically stable by displaying a
Lyapunov function.

Exercise 4.8.4 We have seen, by using Lagrangian mechanics in § 1.4.1, that a
mechanical system without constraint and with n degrees of freedom could be
described by an equation of the form

M(q)q̈ + C(q, q̇)q̇ + g(q) = Qu . (4.41)

The constant matrix Q is of rank m, expressing the fact that only m degrees of freedom
are directly controlled by an actuator providing a torque or a force u = (u1, . . . , um),
with m ≤ n. The matrix Q can always be chosen of the form:

Q =
(

Im×m

0(n−m)×m

)
.

Let us also recall that C(q, q̇)q̇ contains the Coriolis and centrifugal terms, which
are quadratic in the velocities q̇i .

1. Let xe = (qe, 0)� be an equilibrium point of the system (4.41). Compute the
corresponding equilibrium control ue as in (4.29).

2. Show that the open-loop tangent linear system is of the form:

ξ̇ =
⎛
⎝ 0 I

−M−1(qe)
∂g

∂q
(qe) 0

⎞
⎠ ξ +

(
0

M−1(qe)Q

)
υ .

Exercise 4.8.5 Consider the problem of regulation of the ball rolling on a rail,
described in Exercise 2.6.3.

http://dx.doi.org/10.1007/978-3-642-34324-7_1
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1. Compute the tangent linear system around an equilibrium point xe = (σe,0,0,0)�.
The results of Exercise 4.8.4 may be used.

2. Study the stability of the equilibrium point xe by analyzing the tangent linear
system.

Exercise 4.8.6 Consider the nonlinear dynamical system (4.28), where the state
vector x and the control u belong to R, and the functions f and g are C∞. We suppose
that f (0) = 0, and that the equilibrium point xe = 0 is globally asymptotically
stabilizable, in the sense that there exists a C∞ feedback control law ũ(x) (as in
Definition 4.35) such that ũ(0) = 0, and that the equilibrium point xe = 0 of the
closed-loop system (4.33) is globally asymptotically stable (see Remark 4.3). More
precisely, we suppose that a global Lyapunov function associated with the closed-
loop system exists such that V̇(x) ≤ 0 and V̇(x) < 0 if x �= 0.

We also consider the augmented controlled dynamical system of equation

{
ẋ = f (x) + g(x)z
ż = v ,

(4.42)

where v denotes the new control variable. Introducing the function

Ṽ(x, z) = V(x) + (z − ũ(x))2

2
,

show that the feedback control law

ṽ(x, z) = ∂ũ

∂x
(x)( f (x) + g(x)z) − ∂V

∂x
(x)g(x) − (z − ũ(x))

makes the equilibrium point (x, z)� = (0, 0)� of the controlled dynamical sys-
tem (4.42), in closed-loop with the feedback law v = ṽ(x, z), globally asymptotically
stable.



Chapter 5
Continuous-Time Linear Dynamical Systems

5.1 Introduction

Here we consider observed and controlled linear dynamical systems in continuous-
time. Real systems are rarely linear; they often involve nonlinear behaviors described
by nonlinear terms in the dynamical equations of the model. However, the interest of
linear dynamical systems is emphasized at the end of this chapter. Indeed, we show
that the study of the tangent linear system generally makes it possible to locally
stabilize an equilibrium of the nonlinear original system. In contrast to Chaps. 2
and 4, where only two types of variables were considered, namely the state vector
and the external input variables, we are now going to take into account output or
observed variables which constitute the components of the state directly measured
through sensors. For example, in the case of mechanical systems it is generally easier
to measure positions variables (abscissa, angle) than velocities, for precision and cost
purposes.

Definition of continuous-time observed and controlled linear dynamical systems
and examples are given in § 5.2. The so-called “bounded input-bounded state/output”
stability is discussed in § 5.3 for controlled and observed linear dynamical systems.
Then, we turn to controllability. Intuitively, the controllability property means that
the system can be driven from an arbitrary state to another one by means of an
open-loop control law. Controllability of linear dynamical systems is characterized in
§ 5.4, and a linear regulator is displayed that makes it possible to achieve stability. The
observability property corresponds, intuitively, to the case when partial knowledge of
the state vector makes it possible to reconstruct the entire state. For linear dynamical
systems, we provide in § 5.5 a test for observability and we show how an observer can
be designed to asymptotically reconstruct the state from linear partial observations.
From there, we show in § 5.6 that, for a controllable and observable linear dynamical
system, the estimation-regulation separation principle holds true: that is, designing
a regulator as if the whole state were measured, and then replacing in the regulator
law the state by its asymptotic observer does indeed asymptotically stabilize the
system. The links between the state-space representation of § 5.2 and the external or

B. d’Andréa-Novel and M. De Lara, Control Theory for Engineers, 97
DOI: 10.1007/978-3-642-34324-7_5, © Springer-Verlag Berlin Heidelberg 2013

http://dx.doi.org/10.1007/978-3-642-34324-7_2
http://dx.doi.org/10.1007/978-3-642-34324-7_4


98 5 Continuous-Time Linear Dynamical Systems

input-output representation introduced in Chap. 3 are discussed in § 5.7. The results
established for the (global) estimation and control of linear dynamical systems are
extended to nonlinear dynamical systems in § 5.8, leading to local stabilization of a
nonlinear dynamical system by linear feedback. The extension to trajectories tracking
is discussed in § 5.9. Finally, we sum up in § 5.10 the different steps to elaborate a
continuous-time control law, pointing out the practical difficulties and the possible
solutions to overcome these difficulties. In particular, the question of sensitivity
with respect to parameter uncertainty or control delays is tackled. We conclude by
discussing the stability-precision dilemma.

5.2 Definitions and Examples

In accordance with Remark 2.4 (see also Remark 3.1), the notations u, x and y in the
differential equation (5.1) below correspond to continuous trajectories (t �→ u(t),
t �→ x(t) and t �→ y(t)), and not to vectors. The following differential equation
(5.1) has to be understood as equalities between trajectories, that is, for all times t .
However, this does not exclude u, x and y to denote vectors in the sequel, depending
on the context.

Definition 5.1 An observed and controlled linear dynamical system has the form

{
ẋ = Ax + Bu
y = Cx ,

(5.1)

where u ∈ R
m represents the m-dimensional vector of control inputs, and x ∈ R

n

the n-dimensional state vector. The term y ∈ R
p denotes the p-dimensional vector

of outputs, or observations, or measurements, of the system. The matrix An×n is
called the state matrix, Bn×m the control matrix, and C p×n the observation matrix,
or output matrix. The space R

n is the state-space.

Remark 5.2 The autonomous linear dynamical system

ẋ = Ax (5.2)

is associated with the linear observed and controlled system (5.1). �
Such a system (5.1) is generally obtained through linearization of a controlled

nonlinear dynamical system at an equilibrium point (see § 4.7).
Since the system ẋ = Ax has the flow map Φt (x) = et Ax by (2.48), it can be

easily shown (by the variation of constants method) that the state solution of system
(5.1) is given by:

x(t) = et Ax0 +
∫ t

0
eA(t−τ ) Bu(τ ) dτ . (5.3)

http://dx.doi.org/10.1007/978-3-642-34324-7_3
http://dx.doi.org/10.1007/978-3-642-34324-7_4
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Example 5.3 In the Example 4.37 of the inverted pendulum fixed on a cart moving
on an horizontal bench, the matrices A and B of the tangent linear system in the
neighborhood of the unstable equilibrium are given by (4.38). If only the position z
and the angle θ are measured, we obtain the following triplet (where I denotes the
2 × 2 identity matrix):

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

A =
(

0 I
A1 0

)
where A1 =

(
0 − m

M g

0 M+m
Ml g

)

B =
(

0
B1

)
where B1 =

( 1
M− 1
Ml

)

C = (
I 0

)
.

(5.4)

�
Remark 5.4 In some cases, a “direct link” exists between the input and the output
of the system, and the following more general state-space representation may be
considered {

ẋ = Ax + Bu
y = Cx + Du ,

(5.5)

where the matrix Dp×m represents this input-output link. This type of system has
already been tackled in Remark 3.22. �
Example 5.5 Let us consider the electrical circuit of Fig. 2.12 in Exercise 2.6.2.

The control u is the voltage and the output y is the current intensity. Choosing for
state variables the voltage x1 at the extremities of the capacitor and the current x2 in
the inductor, and applying Kirchhoff’s voltage Law recalled in § 2.3.5 provides:

{
u = x1 + R1Cẋ1
u = Lẋ2 + R2x2 .

The output y is the sum of the current x2 in the inductance and the current i1 = Cẋ1
in the capacitor, that is, y = x2 − x1/R + υ/R. This leads to the state-space model
(5.5) with state vector x = (x1, x2)

� and matrices:

A =
⎛
⎜⎝

− 1

R1C
0

0 − R2

L

⎞
⎟⎠ , B =

⎛
⎜⎜⎝

1

R1C
1

L

⎞
⎟⎟⎠

C =
(

− 1

R1
1

)
, D = 1

R1
.

�
Remark 5.6 The existence of the direct input-output link as in (5.5) does not change
the system’s controllability and observability properties which are developed in the
sequel of this chapter. This is why we are mainly interested in the study of systems
of the form (5.1). �

http://dx.doi.org/10.1007/978-3-642-34324-7_4
http://dx.doi.org/10.1007/978-3-642-34324-7_2
http://dx.doi.org/10.1007/978-3-642-34324-7_2


100 5 Continuous-Time Linear Dynamical Systems

5.3 Stability of Controlled Systems

In Chap. 4, we have provided notions of stability for stationary autonomous systems,
that is, for uncontrolled systems, in the neighborhood of an equilibrium point. We
are now going to turn the spotlight onto the notion of “bounded input-bounded
state/output” stability in the case of controlled systems.

Definition 5.7 The linear dynamical system (5.1) is said to be bibs-stable if, for
all initial condition x0 and for all bounded input trajectory (u(t), t ≥ 0), the state
trajectory (x(t), t ≥ 0) remains bounded:

sup
t≥0

‖u(t)‖ < +∞ ⇒ sup
t≥0

‖x(t)‖ < +∞ . (5.6)

The linear dynamical system (5.1) is said to be bibo-stable if, for all initial con-
dition x0 and for all bounded input trajectory (u(t), t ≥ 0), the output trajectory
(y(t), t ≥ 0) remains bounded:

sup
t≥0

‖u(t)‖ < +∞ ⇒ sup
t≥0

‖y(t)‖ < +∞ . (5.7)

Of course, bibs-stability implies bibo-stability.
We show that bibs-stability is connected, as for linear autonomous dynamical

systems studied in Chap. 4, to the sign of the real part of the eigenvalues of the state
matrix.

Proposition 5.8 If all the eigenvalues of the matrix A have a strictly negative real
part, the linear dynamical system (5.1) is bibs-stable. If at least one eigenvalue of
the matrix A has a strictly positive real part, the linear dynamical system (5.1) is not
bibs-stable.

Proof If all the eigenvalues of the matrix A have a strictly negative real part, is clear
from (5.3) and (2.53) that a bounded control trajectory provides a bounded trajectory
for the system.

If at least one eigenvalue of the matrix A has a strictly positive real part, the
stationary control trajectory u(t) = 0 produces an unbounded state trajectory for a
general initial state x(0) (see the proof of Proposition 4.4). �

Remark 5.9 Let us stress the fact that the previous result is not a necessary and suf-
ficient condition for bibs-stability. Indeed, if λ1, . . . ,λr are the distinct eigenvalues
of the matrix A, the following cases should be considered from Proposition 4.4.

1. If there exists at least one j = 1, . . . , r such that �(λ j ) > 0, the equilibrium
point 0 of the associated autonomous system (5.2) is unstable, and the same
holds true for the observed and controlled original system (5.1).

2. If for all j = 1, . . . , r , one has that �(λ j ) ≤ 0, then

http://dx.doi.org/10.1007/978-3-642-34324-7_4
http://dx.doi.org/10.1007/978-3-642-34324-7_4
http://dx.doi.org/10.1007/978-3-642-34324-7_2
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(a) if ∃ j = 1, . . . , r , �(λ j ) = 0 and ν(λ j ) > 1, the equilibrium point 0 of
the associated autonomous system (5.2), and the same holds true for the
observed and controlled original system (5.1);

(b) if ∀ j = 1, . . . , r , (�(λ j ) = 0 ⇒ ν(λ j ) = 1), it is not possible to conclude
regarding the bibs-stability property without more information about the
matrix B in (5.1).

Therefore, one cannot conclude that a system for which a bounded input provides
an unbounded output necessarily has an unstable state matrix A (see Definition 4.1).
As an illustration, consider the following integrator dynamical system:

ẋ = u .

If u is a nonzero constant u0, the state x is the integral of u, that is, x(t) = tu0.
Therefore, x(t) is not bounded. Nevertheless, the system has 0 as eigenvalue and
each point constitutes a stable equilibrium of the associated autonomous system, in
the sense of Definition 4.1. �
Example 5.10 In the case of the inverted pendulum fixed on a cart moving on an
horizontal bench (Example 4.37), the state matrix A in (4.38) has a double zero
eigenvalue and an eigenvalue with strictly positive real part (see (4.39)). Therefore,
the bibs-stability property is not guaranteed. �

5.4 Controllability. Regulator

Recall that one of the first objectives in Control Theory consists of elaborating control
laws that drive a system towards a fixed target. For that purpose, the system should be
“controllable.” Intuitively, the controllability property means that the system can be
driven from an arbitrary state to another one by means of an open-loop control law.
On the contrary, the uncontrollability property expresses that some states cannot be
reached whatever the control; uncontrollability is often associated with the existence
of symmetries (see [33, p. 194]). For linear dynamical systems, we provide a test
for controllability, the Kalman controllability criterion. We show that a controllable
linear dynamical system can be made equivalent to a canonical form from which it
is easy to build a regulator to achieve asymptotic stability.

5.4.1 Controllability

In the case of linear dynamical systems, controllability can be defined as follows.

Definition 5.11 The linear dynamical system (5.1) is said to be controllable if, for
all couple (xi , x f ) of state vectors, there exist a finite time T ≥ 0 and a control input
u defined on [0, T ] such that, when applying the control u, the solution x(t) of (5.1)
with initial condition x(0) = xi satisfies x(T ) = x f .

http://dx.doi.org/10.1007/978-3-642-34324-7_4
http://dx.doi.org/10.1007/978-3-642-34324-7_4
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A very simple algebraic characterization of controllability exists, which is due to
Kalman, and is called Kalman controllability criterion. The proof of the following
Theorem 5.12 consists in the Lemmas 5.15 and 5.16.

Theorem 5.12 The linear dynamical system (5.1) is controllable if and only if the
rank of the controllability matrix

C := (
B AB · · · An−1 B

)
(5.8)

is equal to n, the order of the system. In that case, the couple (A, B) of matrices is
also said to be controllable.

Remark 5.13 Each matrix Ak B having the same dimension n ×m as B, the matrix C
obtained in (5.8) by concatenation of the matrices B, AB, . . . , An−1 B is of dimension
n × nm. �
Example 5.14 In the case of the inverted pendulum fixed on a cart moving on an
horizontal bench (Example 5.3), the controllability matrix (5.8) can be written, using
the notations of (5.4), as

C =
(

0 B1 0 A1 B1
B1 0 A1 B1 0

)
.

It can be easily checked that its rank is equal to 4, the order of the system. �
Lemma 5.15 The linear dynamical system (5.1) is controllable if and only if the
symmetric positive matrix

Pc(T ) =
∫ T

0
es A B B�es A�

ds (5.9)

is strictly positive, or equivalently, invertible for at least one T > 0.

Proof If the symmetric positive matrix Pc(T ) is invertible for at least one T > 0,
the control law

u(s) = B�e(T −s)A′
Pc(T )−1(x f − eT Axi ) , 0 ≤ s ≤ T (5.10)

drives the initial state x(0) = xi to x(T ) = x f , as shown by the computation of x(T )

using formula (5.3).
Conversely, if the symmetric positive matrix Pc(T ) is not invertible for a certain

T > 0, there exists a nonzero vector v such that v� Pc(T )v = 0. We are going to
show that the set of reachable points from 0 is orthogonal to such a vector v, which
constitutes an obstruction to controllability. If x(0) = 0, we have from (5.3) that

v�x(t) =
∫ t

0
v�e(t−s)A Bu(s) ds . (5.11)
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This last expression is zero because the relation v� Pc(T )v = 0 can also be written as

0 =
∫ T

0
v�es A B B�es A�

v ds =
∫ T

0
‖ v�es A B ‖2 ds .

Therefore, we have that

v�es A B = 0 for 0 ≤ s ≤ T ,

and this remains true beyond T , because s �→ v�es A B is an analytical function. As
a consequence, we have that

∫ t

0
v�e(t−s)A Bu(s) ds = 0 , ∀t ≥ 0 ,

and, from (5.11), that v�x(t) = 0 for all t ≥ 0. Therefore, any couple (0, x f ) of state
vectors such that v�x f �= 0 cannot comply with the requirements of controllability
in Definition 5.11. �

Let us now relate the invertibility property of the symmetric positive matrix Pc(T )

in (5.9) to the rank of the controllability matrix C in (5.8).

Lemma 5.16 Let T > 0. The symmetric positive matrix Pc(T ) is definite or, equiv-
alently, invertible if and only if the controllability matrix C in (5.8) has a rank equal
to n.

Proof The following equivalences are satisfied:

Pc(T ) is not invertible

⇐⇒ ∃v �= 0 ,

∫ T

0
v�es A B B�es A�

v ds = 0

⇐⇒ ∃v �= 0 ,

∫ T

0
‖ v�es A B ‖2 ds = 0

⇐⇒ ∃v �= 0 , v�es A B = 0 , for 0 ≤ s ≤ T

⇐⇒ ∃v �= 0 ,
dm

dsm
(v�es A B)s=0 = 0 , ∀m ∈ N by analyticity of s �→ v�es A B

⇐⇒ ∃v �= 0 , v� Am B = 0 , ∀m ∈ N

⇐⇒ ∃v �= 0 , v� Am B = 0 , ∀m ≤ n − 1 by Cayley-Hamilton theorem 4.10
⇐⇒ ∃v �= 0 , v�(B, AB, . . . , An−1 B) = 0
⇐⇒ rank(B, AB, . . . , An−1 B) < n .

This concludes the proof. �
The proof of the following corollary of Theorem 5.12 is straightforward.
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Corollary 5.17 The following conditions are equivalent.

1. The linear dynamical system (5.1) is controllable.
2. The couple (A, B) is controllable.
3. Every vector x such that x� B = x� AB = · · · = x� An−1 B = 0 is zero.
4. The symmetric positive matrix (5.9) is definite or, equivalently, invertible, for at

least one T > 0.

Remarks

• It can be shown that the set of points reachable from 0 is equal to the vector space
generated by the columns of the matrix (B, AB, . . . , An−1 B) which is also the
vector space orthogonal to the kernel of every symmetric matrix Pc(T ), for any
T > 0. All these properties are part of the so-called theory of canonical forms (see
for example [30, 33]).

• Notice that the definition of controllability, as well as the Kalman controllabil-
ity criterion, are totally independent of the notion of observations or outputs of
the system, and therefore would have been the same if one had considered the
unobserved linear dynamical system in (5.1).

Let us now give a definition of linear dynamical systems equivalence, and intro-
duce the controllable canonical form.

5.4.2 Systems Equivalence. Controllable Canonical Form

We now introduce a canonical structure by means of a change of basis.

Definition 5.18 Let (Σ1) and (Σ2) be two linear dynamical systems in state-space
form having the same number m of inputs and the same number p of outputs:

(Σ1)

{
ẋ = A1x + B1u
y = C1x

, (Σ2)

{
ξ̇ = A2ξ + B2υ
ζ = C2ξ .

(5.12)

The linear dynamical systems (Σ1) and (Σ2) are said to be equivalent (linear dynam-
ical systems) if there exists an invertible square matrix P such that if (u, x, y) is a
solution of (Σ1), then

υ = u , ξ = Px , ζ = y (5.13)

is a solution of (Σ2).

Remark 5.19 The vectors ξ and x in (5.13) have the same dimension, and the fol-
lowing algebraic relations are clearly satisfied:
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⎧⎨
⎩

A2 = P A1 P−1

B2 = P B1

C2 = C1 P−1.

(5.14)

�
Proposition 5.20 If the linear dynamical system (5.1) is not controllable, it is equiv-
alent to a system of the form:

⎧⎨
⎩
ξ̇1 = A1ξ1 + A2ξ2 + B1u
ξ̇2 = A3ξ2
y = C1ξ1 + C2ξ2 .

(5.15)

Proof If the linear dynamical system (5.1) is not controllable, we know by Theorem
5.12 that the rank of the controllability matrix C in (5.8) is strictly less than n. Then
E1 = ImC is a strict subset of R

n stable by A. Let E2 be a supplementary subspace
of E1 in R

n . Choosing a basis of E1 and of E2, the form (5.15) is obtained (see for
example [44, § 2.4.2]). �

In (5.15), the dynamical evolution of ξ2 is independent of the control, which
constitutes a difficulty if A3 is unstable, since then ξ2(t) diverges independently of
the control. Indeed, the state matrix of the representation (5.15) has the following
triangular form: (

A1 A2
0 A3

)
. (5.16)

The eigenvalues of the square matrix (5.16), and consequently of (5.1), are the union
of those of A1 and of A3.

Definition 5.21 The eigenvalues of the matrix A1 in (5.16) are called controllable
modes, and the eigenvalues of the matrix A3 in (5.16) the uncontrollable modes.

Let us now suppose that the linear dynamical system (5.1) is controllable. We
are going to display a suitable vector basis allowing us to establish the link between
controllability and a procedure to design a stabilizing regulator.

To simplify, we consider the case of a scalar input, knowing that all the results
can be extended to the multi-input case.

Proposition 5.22 Let A be an n × n matrix and B an n × 1 matrix. If the couple
(A, B) is controllable, there exists an invertible matrix P such that

Ac = P AP−1 , Bc = P B , (5.17)

http://dx.doi.org/10.1007/978-3-642-34324-7_2
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with Ac and Bc of the form

Ac =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0 0
0 0 1 · · · 0 0
· · · · · · · ·
· · · · · · 1 0
0 0 · · · · 0 1

−an −an−1 · · · · −a2 −a1

⎞
⎟⎟⎟⎟⎟⎟⎠

, Bc =

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0
·
·
0
1

⎞
⎟⎟⎟⎟⎟⎟⎠

, (5.18)

where the coefficients in the last row of the square matrix Ac are those of the char-
acteristic polynomial (4.3) of A.

In other words, the linear dynamical system (5.1) is equivalent to the following
system {

ξ̇ = Acξ + Bcu
y = C P−1ξ ,

(5.19)

called the controllable canonical form of (5.1).

Proof Let L be the last row of the inverse of the controllability matrix C given
in (5.8):

L = (0 0 · · · 0 1) C−1 = (0 0 · · · 0 1)
(

B AB · · · An−1 B
)−1

. (5.20)

The vector L satisfies

L B = L AB = · · · = L An−2 B = 0 and L An−1 B = 1 . (5.21)

Let us define the square matrix

P =

⎛
⎜⎜⎜⎝

L
L A
...

L An−1

⎞
⎟⎟⎟⎠ .

The matrix P is invertible if, and only if, the matrix PC is invertible, which is
equivalent to the property that the rows of PC are independent. Notice that the matrix
PC is made of the rows LC, L AC, …, L An−1C. We have that LC = (0 0 · · · 0 1) by
(5.20). By (5.21) and Cayley-Hamilton theorem 4.10, we deduce that

L AC =
(

L AB, L A2 B, · · · ,−a1L An−1 B − · · · − an L B
)

= (0, 0, · · · , 1,−a1) .

Carrying on in the same way, it can be deduced that the rows of PC are independent.
Introducing ξ(t) = Px(t), where x(t) satisfies (5.1), we have that ξ1 = Lx and

that, from (5.21),

http://dx.doi.org/10.1007/978-3-642-34324-7_4
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ξ̇1 = Lẋ = L Ax + L Bu = L Ax = ξ2

ξ̇2 = L A(Ax + Bu) = L A2x + L ABu = L A2x = ξ3
· · · = · · ·
ξ̇n = L An x + L An−1 Bu = L An x + u .

Since An = −a1 An−1 − · · · − an I by Cayley-Hamilton theorem 4.10, we obtain

ξ̇n = −anξ1 − an−1ξ2 − · · · − a1ξn + u ,

or, in a matrix form,
ξ̇ = Acξ + Bcu , (5.22)

where Ac and Bc are given by (5.18). �

Definition 5.23 The matrices Ac and Bc in (5.18) constitute the controllable canon-
ical form of the matrices A and B, also called the controllable companion form.

Corollary 5.24 The coefficients of the characteristic polynomial (4.3) of the matrix
A are given by the last row of the matrix Ac in (5.18).

5.4.3 Regulator

In the case of a controllable linear dynamical system, we are now going to discuss
how to design a regulator making the zero origin an asymptotically stable equilibrium
point.

Definition 5.25 We call linear state feedback, or linear state regulator, of the linear
dynamical system (5.1) a control law (as in Definition 4.35) of the form

ũ(x) = −K x or u(t) = −K x(t) , (5.23)

where Km×n is called a counter-reaction gain matrix. Such a state feedback is said
to be stabilizing if it ensures the asymptotic stability of the zero equilibrium point of
the linear dynamical system (5.1).

Remark 5.26 In this definition, the aim of the regulator is to stabilize the origin. To
regulate the system around an arbitrary equilibrium or a trajectory, one rather uses
the term controller (see § 5.9). �

Let us now show that every controllable system can be stabilized by a suitable
choice of the regulator gain matrix K in (5.23). More precisely, we can establish the
regulator modes placement theorem.

Theorem 5.27 If the couple (A, B) is controllable, a gain matrix K can be chosen
to arbitrarily place the modes of the closed-loop matrix A − BK . Consequently,

http://dx.doi.org/10.1007/978-3-642-34324-7_4
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every controllable linear dynamical system (5.1) can be stabilized by a linear state
feedback (5.23).

Proof This theorem also applies for a multi-input system (see for example [44]) but
the following proof is restricted to the scalar input case.

Let P be the matrix associated with the change of basis given by Proposition 5.22.
We are looking after a control law of the form:

u = −Kc Px .

Setting ξ = Px , the closed-loop system (5.22) after feedback can then be written as

ξ̇ = Acξ + Bcu = (Ac − Bc Kc)ξ .

If Kc = (kn · · · k1), we have that

Ac − Bc Kc =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0 0
0 0 1 · · · · 0
· · · · · · · ·
· · · · · · 1 0
· · · · · · 0 1

kn − an kn−1 − an−1 · · · · k2 − a2 k1 − a1

⎞
⎟⎟⎟⎟⎟⎟⎠

, (5.24)

and, since the characteristic polynomial (4.3) is invariant by change of basis, we
deduce that χAc−Bc Kc (s) = χA−BK (s), where K = Kc P . Now, from Corollary
5.24, we have that

χAc−Bc Kc (s) = sn + (a1 − k1)s
n−1 + · · · + (an − kn) .

It remains to pick up k1, …, kn such that the eigenvalues of χAc−Bc Kc have a strictly
negative real part (see Routh criterion in § 3.4). �

From the point of view of practical engineering, the issue is one of choosing
where to place these modes in the left half complex plane (see Definition 4.6). The
quadratic optimization method, which is discussed in Chap. 7, makes it possible to
reduce this problem to the minimization of a cost function, and the resulting control
law naturally stabilizes the system.

5.5 Observability. Observer

In § 5.4, we discussed how to stabilize a controllable linear dynamical system by a
state feedback. But it could be too expensive to measure the whole state vector of
the system, for instance, with position and velocity sensors for a mechanical system.
The observability property corresponds, intuitively, to the case when the entire state
can be obtained from past history of partial knowledge of the state vector. For linear

http://dx.doi.org/10.1007/978-3-642-34324-7_4
http://dx.doi.org/10.1007/978-3-642-34324-7_3
http://dx.doi.org/10.1007/978-3-642-34324-7_7
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dynamical systems, we provide a test for observability, the Kalman observability
criterion. In that case, we show how an observer can be designed to asymptotically
reconstruct the state from partial linear observations.

Definition 5.28 The linear dynamical system (5.1) is said to be observable if, for
all vector xi in R

n, there exists a finite time T ≥ 0 and a control trajectory
u = (u(t), t ≥ 0) such that, if x(0) = xi , when applying the input trajectory u,
the knowledge of the output trajectory (y(t), t ∈ [0, T ]) and of the input trajectory
(u(t), t ∈ [0, T ]) on the time interval [0, T ] makes it possible to determine the initial
state xi .

As for the controllability property, a simple algebraic observability criterion due
to Kalman exists, and is called the Kalman observability criterion.

Theorem 5.29 The linear dynamical system (5.1) is observable if and only if the
rank of the observability matrix

O :=

⎛
⎜⎜⎜⎝

C
C A
...

C An−1

⎞
⎟⎟⎟⎠ (5.25)

is equal to n, the order of the system. In that case, the couple (A, C) is said to be
observable.

Example 5.30 Consider the case of the inverted pendulum fixed on a cart moving
on an horizontal bench, discussed in Example 5.3, where only the position z and the
angle θ are measured. Using the notation of (5.4), the observability matrix (5.25) can
be written as

O =

⎛
⎜⎜⎝

I 0
0 I
A1 0
0 A1

⎞
⎟⎟⎠ .

It is easy to check that its rank is equal to 4, so that the controlled linear dynamical
system (4.37)–(4.38), completed with the observation equation

y = (
I 0

)
x

is observable. �
The proof of Theorem 5.29 relies on Lemma 5.16 and on the following lemma.

Lemma 5.31 The linear dynamical system (5.1) is observable if and only if the
symmetric positive matrix

http://dx.doi.org/10.1007/978-3-642-34324-7_4
http://dx.doi.org/10.1007/978-3-642-34324-7_4
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Po(T ) =
∫ T

0
es A�

C�Ces A ds (5.26)

is definite or, equivalently, invertible for at least one T > 0.

Proof Consider xi = x(0) as in Definition 5.11. From (5.1) and (5.3), we have that

Cet Axi = y(t) −
∫ t

0
CeA(t−τ ) Bu(τ ) dτ . (5.27)

Left multiplying (5.27) by eA�
C� and integrating from 0 to T , we obtain:

Po(T )xi = function (y(t), u(t), t ∈ [0, T ]) . (5.28)

If, for at least one T > 0, the symmetric positive matrix Po(T ) is invertible, the
initial state xi can be deduced from the values of u(t) and y(t) on the time interval
[0, T ].

Conversely, if for at least one T > 0, the symmetric positive matrix Po(T ) is not
invertible, it has been proved in Lemma 5.15 that a nonzero vector v exists such that

Cet Av = 0 , ∀t ∈ [0, T ] .

Therefore, we have that

Cet A(xi + v) = Cet Axi , ∀t ∈ [0, T ] ,

and, from (5.27), this means that the states xi + v and xi are indistinguishable.
Therefore, the linear dynamical system (5.1) is not observable. �

Replacing A by A� and B by C� in Lemma 5.16, it is easy to show that the
invertibility of the symmetric positive matrix Po(T ) in (5.26) is equivalent to the fact
that the observability matrix (5.25) has full rank. The proof of the following corollary
of Theorem 5.29 is straightforward.

Corollary 5.32 The following conditions are equivalent.

1. The linear dynamical system (5.1) is observable.
2. The couple (A, C) is observable.
3. Every vector x such that Cx = C Ax = · · · = C An−1x = 0 is zero.
4. The symmetric positive matrix (5.26) is definite or, equivalently, invertible for at

least one T > 0.

Remark 5.33 Adding the term Du in the expression (5.27) of the output y does not
modify the previous proof. Therefore, the definition and the observability criterion
are identical for the linear dynamical systems (5.1) and (5.5). �
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Proposition 5.34 If the linear dynamical system (5.1) is not observable, it is equiv-
alent to a system of the form:

⎧⎨
⎩
ξ̇1 = A1ξ1 + A2ξ2 + B1u
ξ̇2 = A3ξ2 + B2u
y = C2ξ2 .

(5.29)

Proof If the linear dynamical system (5.1) is not observable, the rank of the observ-
ability matrix O in (5.25) is strictly less that n. Then E1 = KerO is a strict subspace
of R

n stable by the matrix operator A. Let E2 be a supplementary subspace of E1 in
R

n . By choosing a suitable basis of E1 and of E2, we obtain the form (5.29) (see for
example [44, § 2.4.2]). �

Notice that, for the linear dynamical system (5.29), it is impossible to determine
ξ1 from the knowledge of y and u.

Definition 5.35 The eigenvalues of the matrix A1 in (5.29) are called unobservable
modes of A, and the eigenvalues of the matrix A3 observable modes of A.

These definitions are intrinsic, in that the equivalence of linear dynamical systems
in Definition 5.18 preserves eigenvalues.

In case the linear dynamical system (5.1) is observable, we now show how we can
design a so-called asymptotic observer, that is, a dynamical system with state vector
x̂ , driven by the observations y and such that x̂(t) − x(t) goes to 0 when t tends
to infinity. The principle of an observer consists in copying the observed system’s
dynamics and adding a term taking into account the error between the actual output
and its estimated value.

Definition 5.36 A linear asymptotic observer, or Luenberger observer, of the linear
dynamical system (5.1) is a state-model of the form

˙̂x = Ax̂ + Bu − L(Cx̂ − y) , (5.30)

with internal variable x̂ and external variables u and y, where the gain matrix
Ln×p is such that the solution

(
x(t), x̂(t)

)
of the closed system (5.1)–(5.30) satisfies

x̂(t) − x(t) →t→+∞ for every initial conditions x(0) and x̂(0).

As done in § 5.4.2 for the controllability issue, we now display a suitable basis
to design a Luenberger observer. To simplify, we tackle the case of a scalar output,
knowing that all the results can be extended to the multi-output case [44].

Proposition 5.37 Let A be an n × n matrix and C a 1 × n matrix. If the couple
(A, C) is observable, there exists an invertible matrix P such that

Ao = P−1 AP , Co = C P , (5.31)

http://dx.doi.org/10.1007/978-3-642-34324-7_2
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with Ao and Co of the form

Ao =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 · · · · 0 −an

1 0 · · · · 0 −an−1
0 1 · · · · · ·
· · · · · · · ·
0 0 · · · 1 0 −a2
0 0 · · · 0 1 −a1

⎞
⎟⎟⎟⎟⎟⎟⎠

, Co = (
0 0 · · · 0 1

)
, (5.32)

where the coefficients in the last column of the square matrix AO are those of the
characteristic polynomial (4.3) of A.

In other words, the linear dynamical system (5.1) is equivalent to the linear
dynamical system {

ξ̇ = Aoξ + P−1 Bu
y = Coξ ,

(5.33)

called the observable canonical form of the linear dynamical system (5.1).

Proof The linear dynamical system (5.1) with p = 1 being observable by assump-
tion, the observability matrix (5.25) is an n × n invertible matrix. Let H be the last
column of the inverse of the observability matrix O in (5.25), that is,

H = O−1

⎛
⎜⎜⎜⎝

0
...

0
1

⎞
⎟⎟⎟⎠ .

Then, the vector H is such that

C H = C AH = · · · = C An−2 H = 0 and C An−1 H = 1 . (5.34)

Introducing the square matrix

P =
(

H AH · · · An−1 H
)

,

it can be shown, as in the proof of Proposition 5.22, that P is invertible. Defining
x = Pξ, we have that

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẋ =
n∑

i=1

ξ̇i Ai−1 H

ẋ = Ax + Bu =
n∑

i=1

ξi Ai H + Bu .

http://dx.doi.org/10.1007/978-3-642-34324-7_4
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Since An = −a1 An−1 − · · · − an I from Cayley-Hamilton theorem 4.10 and (4.3),
the previous equalities give

(ξ̇1 + anξn − b1u)H + (ξ̇2 − ξ1 + an−1ξn − b2u)AH + · · ·
+ (ξ̇n − ξn−1 + a1ξn − bnu)An−1 H = 0 ,

where B has, in the basis (H, AH, · · · , An−1 H), been written as

B = b1 H + · · · + bn An−1 H = P

⎛
⎜⎝

b1
...

bn

⎞
⎟⎠ .

Therefore, we obtain another state-space representation of the linear dynamical sys-
tem (5.1) in the ξi -coordinates

⎧⎪⎪⎨
⎪⎪⎩

ξ̇1 = −anξn + b1u
ξ̇2 = ξ1 − an−1ξn + b2u
· · · · · ·
ξ̇n = ξn−1 − a1ξn + bnu ,

with y = ξn , since C P = (0 · · · 0 1) by (5.34). We conclude that

{
ξ̇ = Aoξ + P−1 Bu
y = Coξ ,

(5.35)

with Ao and Co given by (5.32). �

Definition 5.38 The matrices Ao and Co constitute the observable canonical form
of the matrices A and C, also called observable companion form.

Let us now show that, with a suitable choice of the gain matrix Lo in (5.30), an
asymptotic observer can be built for every observable linear dynamical system. More
precisely, we are going to prove the following observer modes placement theorem.

Theorem 5.39 If the couple (A, C) is observable, a gain matrix L can be chosen to
arbitrarily place the modes of the closed-loop matrix A−LC in (5.30). Consequently,
a linear asymptotic observer can be elaborated for every observable linear dynamical
system (5.1).

Proof Consider the Luenberger observer of Definition 5.36, and let us define the
error vector

e = x̂ − x . (5.36)

In the coordinates ξi of the observable canonical form (5.33), the dynamical equation
of the error e can be written as

http://dx.doi.org/10.1007/978-3-642-34324-7_4
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ė = (Ao − LoCo)e where Lo = P−1L = (ln · · · l1)
�, (5.37)

with

Ao − LoCo =

⎛
⎜⎜⎜⎜⎝

0 0 · · · 0 0 ln − an

1 0 · · · · 0 ln−1 − an−1
· · · · · · · ·
· · · · · 1 0 l2 − a2
0 0 · · · 0 1 l1 − a1

⎞
⎟⎟⎟⎟⎠ . (5.38)

As for the regulator case discussed in § 5.4.3, it can be seen that a suitable choice
of the gain matrix Lo makes it possible to arbitrarily place the modes of the
closed-loop matrix Ao − LoCo, and then to make the error e(t) asymptotically tend
to 0. �

Remark 5.40 This theorem still applies for a multi-output system [44]. �
Controllability and observability are two dual notions, as specified by the follow-

ing proposition.

Definition 5.41 We call dual linear dynamical system of the observed and controlled
linear dynamical system (5.1) the observed and controlled linear dynamical system

{
ẋd = A�xd + C�ud

yd = B�xd ,
(5.39)

where the control ud is a vector of R
p and the observation yd a vector of R

m.

Proposition 5.42 The observed and controlled linear dynamical system (5.1) is
controllable (respectively, observable) if and only if its dual (5.39) is observable
(respectively, controllable).

The proof is straightforward by considering the controllability and observability
matrices (5.8) and (5.25) of the two systems.

5.6 Observer-Regulator Synthesis. The Separation Principle

From the discussions in § 5.4 and 5.5, we are able to construct a regulator for a
controllable linear dynamical system for which the whole state is known, and an
asymptotic observer for an observable linear dynamical system for which only part
of the state is measured. Therefore, it seems appealing to design a regulator as if the
whole state were measured, and then replace in the regulator control law the state by
its asymptotic observer. We are now going to prove that this method indeed stabilizes
the system. The property consisting of placing independently the regulator and the
observer modes is called the estimation-regulation separation principle.
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observerregulator

system

yu

x̂

Fig. 5.1 Observer-regulator

Definition 5.43 We call observer-regulator of the linear dynamical system (5.1) a
system with input y, state vector x̂ and output u of the form

{ ˙̂x = Ax̂ + Bu − L(Cx̂ − y)

u = −K x̂ ,
(5.40)

as displayed in Fig.5.1.

The following theorem states the so-called estimation-regulation separation prin-
ciple.

Theorem 5.44 Assume that the linear dynamical system (5.1) is controllable and
observable, and let Km×n and Ln×p be two gain matrices such that (A − BK ) and
(A − LC) are asymptotically stable matrices. Then, when system (5.1) is closed
with the observer-regulator (5.40), as illustrated in Fig. 5.1, we obtain a closed-loop
system, with state vector (x, e)� = (x, x̂ − x)� and dynamics given by

{
ẋ = (A − BK )x − BK e
ė = (A − LC)e ,

(5.41)

and such that the origin (xe, ee)
� = (0, 0)� is an asymptotically stable equilibrium

point (and this, for all initial condition of the state and of the observer).

Proof Since y = Cx by (5.1) and u = −K x̂ by (5.40), the system with state (x, x̂)�
(made from (5.1) and (5.40)) becomes:

{
ẋ = Ax − BK x̂
˙̂x = LCx + (A − LC − BK )x̂ .

With the following change of coordinates

(
x
x̂

)
→

(
x
e

)
=

(
x

x̂ − x

)
,

we obtain (5.41), which can be written in matrix form as
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(
ẋ
ė

)
=

(
A − BK −BK

0 A − LC

) (
x
e

)
.

The modes of this closed-loop system are constituted by the union of the regulator
modes—namely, the poles of the matrix A − BK —and the observer modes, those of
the matrix A−LC . Therefore, the closed-loop system (5.41) is stabilized: (xe, ee)

� =
(0, 0)� is an asymptotically stable equilibrium point. �

Remark 5.45 The regulator modes are those of the matrix A− BK , and the observer
modes are the modes of the matrix A − LC . �

5.7 Links with the Input-Output Representation

We are now going to shed light on the links between the state-space representation
(5.1) and the external or input-output representation introduced in Chap. 3.

5.7.1 Impulse Response and Transfer Matrix

By (5.3), the output y(t) of the continuous-time system in state-space form (5.1) has
the following expression:

y(t) = Cet Ax(0) +
∫ t

0
CeA(t−τ ) Bu(τ ) dτ .

By considering this relation with zero initial condition (x(0) = 0), the notion
of impulse response introduced in Definition 3.9 makes it possible to deduce the
following proposition.

Proposition 5.46 The impulse response of the time-continuous state-space system
(5.1) with zero initial condition is given by

h(t) = Cet A B if t ≥ 0 , h(t) = 0 else. (5.42)

This makes it possible to recover the well-known convolution property L2 in §B.1:

y(t) = (h � u)(t) , ∀t ≥ 0 . (5.43)

We also obtain the transfer matrix in the frequency domain.

Proposition 5.47 The transfer matrix H(s) of the time-continuous state-space sys-
tem (5.1) is the following p × m matrix:

http://dx.doi.org/10.1007/978-3-642-34324-7_3
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H(s) = C(s I − A)−1 B . (5.44)

Proof Let us denote Y , X and U , the respective Laplace transforms of the output,
the state and the input, if they exist, in the time-continuous state-space system (5.1).
Applying the Laplace transform to Eq. (5.1) and using the linearity property and the
differentiation Theorem L4 in § B.1, we obtain

{
s X (s) = AX (s) + BU (s)
Y (s) = C X (s) .

We deduce that
Y (s) = C(s I − A)−1 BU (s) , (5.45)

and, therefore, that the transfer matrix H(s) is indeed given by (5.44). �

We had stated in Chap. 3, without proof, the Proposition 3.16 which can now be
easily proved.

Proposition 5.48 The elements of the transfer matrix (5.44) are strictly proper ratio-
nal functions of s.

Proof From (5.44), we deduce that H(s) can be written as

H(s) = 1

det(s I − A)
C cof (s I − A)� B , (5.46)

where M(s) = cof(s I − A)� denotes the transpose of the comatrix of (s I − A)

[34]. The elements of M(s) are polynomials in s of degree striclty less than n, the
dimension of the square matrix A. Now, the characteristic polynomial det(s I − A)

is of degree n and C and B are constant matrices. As a consequence, the elements
of H(s) are strictly proper rational functions. �

Remark 5.49 If a direct link exists between the input and the output, namely if we
have that

y = Cx + Du ,

it is straightforward to check that the transfer matrix has the following form:

H(s) = C(s I − A)−1 B + D . (5.47)

In that case, by reduction to the same denominator (viz. the characteristic polynomial
of A), the elements of the transfer matrix are rational functions, the numerator and
denominator of which have the same degree, hence are proper rational functions.
Therefore, the system is causal (though not strictly causal) since

y(t) = Du(t) + Cet Ax(0) +
∫ t

0
CeA(t−τ ) Bu(τ ) dτ ,

http://dx.doi.org/10.1007/978-3-642-34324-7_3
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meaning that the output depends on past and present values of the input (u(τ ), 0 ≤
τ ≤ t). �

From the definition of the impulse response and the fact that the Laplace trans-
form of a convolution product is a simple product, the following proposition can be
deduced.

Proposition 5.50 The transfer matrix (5.44) is the Laplace transform of the impulse
response (5.42) of the time-continuous linear state-space system (5.1).

Remark 5.51 By Table B.1 in § B.1, we have that L [
Cet A B

]
(s) = C(s I − A)−1 B.

By linearity and injectivity of the Laplace transform, we deduce that

et A = L−1
[
(s I − A)−1

]
(t) . (5.48)

�

5.7.2 From Input-Output Representation to State-Space
Representation

When a continuous-time l.c.s. system is described by a transfer matrix H(s) as dis-
cussed in § 3.2.2, the so-called realization issue is one of computing a state-space
model of the form (5.1), given by matrices A, B, C such that:

H(s) = C(s I − A)−1 B . (5.49)

This motivates the following definition.

Definition 5.52 Every triplet A, B, C of matrices satisfying (5.49) is called a
continuous-time realization of the transfer matrix H(s).

As already mentioned in § 5.4.2, the realization of a transfer matrix is not unique.
In particular, if the dimension of the state is increased, one can introduce new matrices
Ã, B̃, C̃ as follows:

Ã =
(

A 0
� �

)
B̃ =

(
B
�

)
C̃ = (

C 0
)
.

It can easily be checked that they constitute a possible realization of the transfer matrix
H(s). This is why we introduce the following notion of realization minimality.

Definition 5.53 A continuous-time state-space linear dynamical system (5.1) is said
to be minimal if its state vector is of minimal dimension in the class of all the systems
having the same transfer matrix.

One can prove the following result (see for example [44, Chap. 6]).

http://dx.doi.org/10.1007/978-3-642-34324-7_3
http://dx.doi.org/10.1007/978-3-642-34324-7_6
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Theorem 5.54 A continuous-time state-space linear dynamical system (5.1) is min-
imal if and only if it is canonical, namely controllable and observable.

A direct computation makes it possible to establish the following result about
realization.

Proposition 5.55 A time-continuous linear scalar system with transfer function

H(s) = b0 + b1sn−1 + · · · + bn

sn + a1sn−1 + · · · + an

has a realization of the following form:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0 0
0 0 1 · · · 0 0
· · · · · · · ·
· · · · · · 1 0
· · · · · · 0 1

−an −an−1 · · · · −a2 −a1

⎞
⎟⎟⎟⎟⎟⎟⎠

, B =

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0
·
·
0
1

⎞
⎟⎟⎟⎟⎟⎟⎠

C = (
bn · · · b1

)
, D = b0 .

(5.50)

Remark 5.56 This form has to be compared to the controllable canonical form intro-
duced in Proposition 5.22. Another possible realization is associated with the observ-
able canonical form. �

5.7.3 Stability and Poles

We now discuss how stability in § 5.3 is related to the so-called poles.

Definition 5.57 We call poles of the state-space linear dynamical system (5.1) the
eigenvalues or modes of the square matrix A.

Remark 5.58 Definition 5.57 is coherent with Definition 4.9. In the scalar case,
from formula (5.46), the poles of the transfer function (5.44)—viz. the roots of its
denominator—are poles of the linear dynamical system (5.1). We prove that they are
exactly the system poles if the system is controllable and observable (see Propositions
5.60 and 5.61). �

Recall Definition 5.7 saying that the continuous-time linear dynamical system
(5.1) is bibs-stable if, for every bounded input, the state remains bounded. With the
same arguments than those developed in § 5.3, one can easily deduce the following
property.

Proposition 5.59 The continuous-time linear dynamical system in state-space form
(5.1) is bibs-stable if its poles have a strictly negative real part.
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Let us emphasize that this is only a sufficient condition: in fact a bibs-stable or
a bibo-stable system can have a state matrix A which is not asymptotically stable.
Indeed, if non stable uncontrollable or unobservable modes exist (see Definitions
5.21 and 5.35), these modes do not appear in the transfer function (see Propositions
5.60 and 5.61).

Proposition 5.60 The transfer function of the continuous-time linear dynamical
system (5.1) only depends on its controllable modes.

Proof From Proposition 5.20, it is known that, in a suitable basis, the system (5.1)
can be written as follows:

⎧⎨
⎩

ẋ1 = A1x1 + A2x2 + B1u
ẋ2 = A3x2
y = C1x1 + C2x2 .

Consequently, the transfer function can be written as

H(s) = (
C1 C2

) (
s I − A1 −A2

0 s I − A3

)−1 (
B1
0

)
,

which gives:

H(s) = (
C1 C2

) (
(s I − A1)

−1 �

0 (s I − A3)
−1

)−1 (
B1
0

)
= C1(s I − A1)

−1 B1 .

This concludes the proof. �

In a similar way, using Proposition 5.34, one can prove the following result.

Proposition 5.61 The transfer function of the continuous-time linear dynamical
system in state-space form (5.1) only depends on its observable modes.

Remark 5.62 Let us recall that the Routh criterion introduced in § 3.4 constitutes a
simple algebraic test to check if all the roots of a polynomial have strictly negative
real part. �

5.8 Local Stabilization of a Nonlinear Dynamical System
by Linear Feedback

So far, we have elaborated in § 5.4 and 5.6 a control law allowing, under proper
conditions, to stabilize a linear controlled system, that is, to make the zero equilibrium
point asymptotically stable. Thanks to the perturbation Theorem 4.23, this process
can be extended to the nonlinear case.

http://dx.doi.org/10.1007/978-3-642-34324-7_3


5.8 Local Stabilization of a Nonlinear Dynamical System by Linear Feedback 121

We now provide conditions for a linear feedback control law to locally stabilize
an equilibrium point (xe, ue) of a nonlinear dynamical system of the form (4.28).

Following the notations of § 4.7, consider the nonlinear controlled and observed
dynamical system

⎧⎪⎨
⎪⎩

ẋ = f (x) + g(x)u = f (x) +
m∑

i=1

gi (x)ui

y = h(x) = (
h1(x), . . . , h p(x)

)�
.

(5.51)

Let (xe, ue) be an equilibrium point, as in Definition 4.34.

Definition 5.63 We call tangent controlled and observed linear dynamical system
of system (5.51) in the neighborhood of the equilibrium point (xe, ue), the controlled
and observed linear dynamical system

{
ξ̇ = Aξ + Bυ
ζ = Cξ ,

(5.52)

where A, B and C are the following n × n, n × m and p × n matrices:

A = ∂ f

∂x
(xe) + ∂g

∂x
(xe)ue , B = g(xe) , C = ∂h

∂x
(xe) . (5.53)

Remark 5.64 In the more general case where ẋ = f (x, u), we refer the reader to
the formulas (4.32). �
Theorem 5.65 Suppose that the tangent controlled and observed linear dynamical
system (5.52) of the nonlinear system (5.51) is controllable and observable. Let Km×n

and Ln×p be two gain matrices such that (A−BK ) and (A−LC) are asymptotically
stable matrices.

Consider the following linear dynamical system having input y, state ξ̂ and out-
put u: ⎧⎨

⎩
d ξ̂

dt
= (A − BK )ξ̂ − L

(
C ξ̂ − (

y − h(xe)
))

u = ue − K ξ̂ .

(5.54)

Then, the equilibrium point (xe, 0) of the closed-loop system (5.51)–(5.54), with

state
(
x, ξ̂ − (x − xe)

)�
, is asymptotically stable.

Proof Let us set Δx = x − xe. From (5.51) and (5.54), we have that

dΔx

dt
= f (xe + Δx) + g(xe + Δx)(ue − K ξ̂)

= AΔx + B(−K ξ̂) + ε1(Δx,−K ξ̂)

http://dx.doi.org/10.1007/978-3-642-34324-7_4
http://dx.doi.org/10.1007/978-3-642-34324-7_4
http://dx.doi.org/10.1007/978-3-642-34324-7_4
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= (A − BK )Δx − BK (ξ̂ − Δx) + ε1(Δx,−K ξ̂) ,

where ε1 is negligible with respect to its arguments in the neighborhood of 0.
If we define Δe(t) = ξ̂(t)−Δx(t), then (Δx(t), Δe(t))� satisfies the differential

equation

d

dt

(
Δx(t)
Δe(t)

)
=

(
A − BK −BK

0 A − LC

) (
Δx(t)
Δe(t)

)

+
(

ε1(Δx,−K (Δe + Δx))

−ε1
(
Δx,−K (Δe + Δx)

) + Lε2(Δx)

)
,

where ε2 is negligible with respect to its arguments in the neighborhood of 0.
The asymptotic stability of the tangent linear dynamical system makes it possible

to conclude the proof, thanks to the perturbation Theorem 4.23. �

In contrast to the case of a controlled and observed linear dynamical system, espe-
cially Theorem 5.44, the linear feedback control law of Theorem 5.65 is stabilizing
only when the initial state x(0) belongs to a neighborhood of the equilibrium point
xe and ξ̂(0) to a neighborhood of the origin.

5.9 Tracking Reference Trajectories

Up to now, we have tackled the problem of stabilizing the origin of a linear dynamical
system in Theorem 5.44 and, locally, an equilibrium point of a nonlinear dynamical
system in Theorem 5.65. We now discuss how the state feedback laws elaborated in
§ 5.4 and 5.6 can be extended to stabilize an equilibrium point of a linear dynamical
system and a reference trajectory of a nonlinear dynamical system.

5.9.1 Stabilization of an Equilibrium Point of a Linear
Dynamical System

Consider the linear dynamical system:

ẋ = Ax + Bu . (5.55)

As discussed in § 5.4.3, if the couple (A, B) is controllable, the origin 0 can be
asymptotically stabilized through a regulator of the form u = −K x where the
counter-reaction gain matrix K can be chosen such that the matrix A − BK is
asymptotically stable.

Now, let us consider an equilibrium point xe different from the origin, namely a
point satisfying

Axe + Bue = 0 ,
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where ue denotes the equilibrium value of the control. If we are now interested in
stabilizing the linear dynamical system (5.55) around the equilibrium point xe, we
can consider the following controller:

u = −K x + v . (5.56)

The control v, called auxiliary control, is chosen as follows

v = ue + K xe , (5.57)

and is such that the dynamics of the closed-loop error Δx = x − xe can be written as

Δ̇x = AΔx + B(u − ue) = (A − BK )Δx .

This implies the asymptotic convergence of Δx towards 0, and therefore the conver-
gence towards xe of the state vector x of the linear dynamical system (5.55).

5.9.2 Stabilization of a Slowly Varying Trajectory

Consider the state-space dynamical system with state vector x and input u:

ẋ = f (x, u) . (5.58)

Let xc(t) be a smooth trajectory solution of

ẋc(t) = f
(
xc(t), uc(t)

)
,

and consider the controller

u = −K x + v with v(t) = uc(t) + K xc(t) . (5.59)

If we denote
f t (x) = f

(
x, uc(t) − K

(
x − xc(t)

))

the vector field of system (5.58) in closed-loop with (5.59), the dynamical equation
of the linear dynamical system tangent to the trajectory can be written as

Δ̇x = F(t)Δx with F(t) = ∂ f t

∂x
(xc(t)) . (5.60)

Let us prove the following proposition.
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Proposition 5.66 Suppose that the following assumptions hold true.

1. The orbit {xc(t) | t ≥ 0 } of the reference trajectory t �→ xc(t) is included in a
compact set.

2. The trajectory t �→ xc(t) is slowly varying, viz. ‖ẋc(t)‖ < ε, where ε > 0 is
sufficiently small.

3. For each “frozen” (t, xc(t)), the origin is an asymptotically stable equilibrium
point of the stationary linear dynamical system obtained by considering (5.60)
at a frozen (t, xc(t)).

Then, the solution x(t) of ẋ = f t (x) asymptotically tends to the slowly varying
reference trajectory xc(t).

Proof Defining the closed-loop error vector Δx = x − xc, we can write:

Δ̇x = F(t)Δx + b(t,Δx) with ‖ b(t,Δx) ‖< k ‖ Δx ‖2 , ∀t ≥ 0 . (5.61)

Let us first consider the time-varying tangent linear dynamical system (5.60). Apply-
ing to this system a stability result for slowly varying systems (see [64, Chap. 5]), it
can be shown that the origin is an asymptotically stable equilibrium point of system
(5.60). In a second step, an approximation result (see for example [38]) makes it pos-
sible to conclude to the asymptotic stability of the origin for the nonlinear dynamical
system (5.61). This concludes the proof. �

Remark 5.67 The feedback control law given by (5.59) is such that the same gain
matrix K is supposed to asymptotically stabilize any frozen equilibrium point xc(t).
By continuity of the eigenvalues of the matrix F(t) in (5.60) with respect to t , this
assumption is quite realistic if the compact where the trajectory xc(t) is defined for
all t is sufficiently small. �

On the other hand, let us point out that, if the trajectory xc(t) is such that the
matrix F(t) is constant (independent of t), a same gain matrix K can clearly sta-
bilize every frozen point xc(t). This is precisely what happens when one wants to
stabilize a mechanical system along reference trajectories for which the inertia matrix
remains invariant. The reader can easily check this property from the general model
of mechanical systems discussed in § 1.4.1.

Example 5.68 Consider the example of the inverted pendulum fixed on a cart moving
on an horizontal bench described in § 2.3.1. We are interested in making the cart
follow a slowly varying reference trajectory, while the pendulum stays at its unstable
vertical position. The reference trajectory is of the form

xc(t) = (zc(t), 0, żc(t), 0)�, (5.62)

with ‖żc(t)‖ small. The equations (2.9) are independent of the position zc of the
cart and the same holds true for the tangent linear dynamical system at any frozen
equilibrium xc(t), so that a same gain matrix stabilizes any equilibrium at a frozen
time t . �

http://dx.doi.org/10.1007/978-3-642-34324-7_1
http://dx.doi.org/10.1007/978-3-642-34324-7_2
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5.9.3 Stabilization of Any State Trajectory

The tangent linear dynamical system of (5.58) along a state trajectory t �→ xc(t) is
given by

ξ̇ = Ac(t)ξ + Bc(t)υ ,

with

Ac(t) = ∂ f

∂x

(
xc(t), uc(t)

)
, Bc(t) = ∂ f

∂u

(
xc(t), uc(t)

)
.

This is a time-varying linear dynamical system for which the controllability and
observability notions may be extended (see for example [44]), but no general stabi-
lization result is available. Nevertheless, one can try to elaborate so-called optimal
feedback laws, which are generally time-varying but not necessarily stabilizing (see
§ 7.2.1). The same kind of difficulty arises in estimation problems around any tra-
jectory (see § 7.3.1).

Remark 5.69 We have tackled the problem of stabilizing trajectories by means of
state feedback laws. However, the results can be extended to the case where the state
is not totally measured, and where it is possible to design an asymptotic observer. �

5.10 Practical Set Up. Stability-Precision Dilemma

We are now going to sum up the different steps to elaborate a continuous-time control
law, pointing out the practical difficulties and the possible solutions to overcome
them. In particular, the question of sensitivity with respect to parameter uncertainty or
control delays is tackled. We conclude by discussing the so-called stability-precision
dilemma.

5.10.1 Steps for the Elaboration of a Control Law

In the rest of the book, the control synthesis or control design consists of the following
steps.

1. Define the system and the set point around which we want the system to be
regulated.

2. Determine the available control inputs and the possible observations or measure-
ments on the system, as well as the disturbances.

3. Elaborate a mathematical model describing the system dynamics.
4. In the case of a state-space model, define the set point as an equilibrium point

and compute the tangent linear dynamical system at this point.
5. Check the controllability property of the tangent linear dynamical system.

http://dx.doi.org/10.1007/978-3-642-34324-7_7
http://dx.doi.org/10.1007/978-3-642-34324-7_7
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6. Choose the outputs (measurements) of the system and check the observability
property of the tangent linear dynamical system.

7. If the algebraic controllability and observability properties are satisfied, compute
the controller and observer gain matrices.

8. Write, implement and test the control algorithm.

Some questions and difficulties arise at each step.

1. Define the system and the set point around which we want the system to be
regulated.
Different systems may be defined according to different precision levels, and
this can lead to different mathematical models.

2. Determine the available control inputs and the possible observations or mea-
surements on the system as well as the disturbances
In some systems, the input and output variables are determined without ambigu-
ity, whereas in others, the situation is more open, in which case various options
to drive the system can be screened, as well as physical limits of the actuators
(saturations, maximal range, etc.). In the same way, different available measure-
ments can be discussed, as well as physical limits of the corresponding sensors
(precision, noise, etc.). Concerning the disturbances, the problem is to identify
their source and try to reduce them.

3. Elaborate a mathematical model describing the system dynamics.
Taking into account the two first steps and the nature of the system, some vari-
ables emerge, allowing to describe the system’s behavior through a mathematical
model. Such a model should combine fidelity to the original system and sim-
plicity. This is a difficult compromise since precision of the model is on a par
with complexity.
Some approximations are generally necessary to obtain a satisfying state-space
model. Since many models are possible candidates to describe a system, the
choice of one of them depend on some control objectives. We refer the reader
to the distinction made between knowledge models and control models in the
Foreword.
From a practical point of view, it is important to take into account in the system’s
equations the physical parameters which are pertinent to describe the system’s
behavior and whose values are approximatively known. The consequence of
parameter uncertainty is studied below.
Concerning the disturbances, a way to take them into account by a probabilistic
approach is casted at Chap. 7. We distinguish between parameter uncertainty,
which are mainly constant (stationary), and disturbances which are generally
time-varying.

4. In the case of a state-space model, define the set point as an equilibrium point
and compute the tangent linear dynamical system at this point.
At this stage, we have elaborated a model of the form

ẋ = f (x, u, p, q) (5.63)

http://dx.doi.org/10.1007/978-3-642-34324-7_7
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where x denotes the state vector, u the input vector, p the vector of disturbances
and q the vector of parameters.
An equilibrium state xe mathematically satisfies the system of equations f (xe, ue,

pe, qe) = 0 where ue is the equilibrium input, and pe and qe are the correspond-
ing disturbances and parameters. If it is possible, the analytical resolution can
be realized using formal languages. If it is not possible, the resolution is done
numerically. The dependency of the equilibrium xe with respect to (ue, pe, qe)

is important in the two cases (analytical and numerical) and is studied below.
The same problems arise for the estimation of the matrices

A = ∂ f

∂x
(xe, ue, pe, qe) and B = ∂ f

∂u
(xe, ue, pe, qe) .

5. Check the controllability property of the tangent linear dynamical system.
The problem is to evaluate analytically or numerically the rank of the n × mn
controllability matrix (B, AB, . . . , An−1 B).

6. Choose the outputs (measurements) of the system and check the observability
property of the tangent linear dynamical system.
The choice of measurements (or output functions) y = h(x) may be guided first

by the aim of having an observable couple (A, C), where C = ∂h

∂x
(xe).

7. If the algebraic controllability and observability properties are satisfied, compute
the controller and observer gain matrices.
Computing a gain matrix K such that A − BK is asymptotically stable using
the method described in the proof of Theorem 5.27 is delicate and not enough
robust from a numerical point of view (matrix inversion). Moreover, how to
choose the modes of the matrix A − BK is a widely open question, and this
choice determines the stability and precision performances of the closed-loop
system, as is shown below. We highlight a robust pole placement method in
Chap. 7.

8. Write, implement and test the control algorithm.
To apply the control algorithm, the digital character of computers forces us to
tackle sampling issues. In fact, measurements are generally obtained at discrete-
time instants and the control is feed into the system also at discrete times and
maintained constant on regular time intervals. This problem is studied in Chap. 6.

5.10.2 Sensitivity to Model Parameter Uncertainty: Precision

Consider a state-space model of the form

ẋ = f (x, u, q) (5.64)

where x denotes the state vector, u the input vector and q the vector of parameters
(the disturbances are not considered here).

http://dx.doi.org/10.1007/978-3-642-34324-7_7
http://dx.doi.org/10.1007/978-3-642-34324-7_6


128 5 Continuous-Time Linear Dynamical Systems

For certain parameters values q = q , the model (5.64) constitutes a good rep-
resentation of the system dynamics. These values are approximately known and all
the computations on the system (5.64) are realized with values q = qe ≈ q . We
are interested here to study the impact of such uncertainties on the control design
described above.

The following proposition is a consequence of the implicit function Theorem [10].

Proposition 5.70 Suppose that the mapping f (x, u, q) is C∞ in its arguments and
that, for a given value qe of the parameter, an equilibrium point (xe, ue) exists,
namely f (xe, ue, qe) = 0. If the matrix

A(xe, ue, qe) = ∂ f

∂x
(xe, ue, qe)

is invertible, then

1. there exist a neighborhood Wxe of xe, a neighborhood Wue of ue and a neigh-
borhood Wqe of qe, such that for all (u, q) in Wue × Wqe , there exists a unique
x in Wxe such that f (x, u, q) = 0;

2. if we denote x = φ(u, q) the solution hereabove, the mapping φ is C∞ and we
have that

∂φ

∂q
(ue, qe) = −(

A(xe, ue, qe)
)−1 ∂ f

∂q
(xe, ue, qe) .

The practical consequences of this proposition are the following.
If the matrix A(xe, ue, qe) is invertible and if the “true” value q = q of the

parameters is sufficiently close to qe, then there exists an equilibrium point x of (5.64)
sufficiently close to xe. Let us point out that other equilibrium points of (5.64) may
exist for q = q , but, in that case, they are necessarily outside the neighborhood Wxe .

For a closed-loop system, the previous remarks make it possible to emphasize
the link between precision and the choice of the counter-reaction gain matrix of the
regulator. Suppose that the tangent linear dynamical system of (5.64) (see Defini-
tion 5.63) is controllable and let K be a matrix such that, with obvious notations,
A(xe, ue, qe) − B(xe, ue, qe)K is asymptotically stable. Let us apply to the system
(5.64), for q = q , the following linear state feedback control law

u = ue − K (x − xe) . (5.65)

The issue of precision is: do the trajectories of the closed-loop system converge or
not towards a state close to xe?

The closed-loop vector-field can be written as

fcl(x, q) = f (x, ue − K (x − xe), q) ,
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and we set

Acl(x, q) = ∂ fcl

∂x
(x, q) = ∂ f

∂x
(x, ue−K (x−xe), q)− ∂ f

∂u
(x, ue−K (x−xe), q)K .

For x = xe and q = qe, the matrix Acl(xe, qe) is the state matrix of the tangent linear
dynamical system to the nonlinear system (5.64) with feedback law (5.65), and it is
equal to

Acl(xe, qe) = A(xe, ue, qe) − B(xe, ue, qe)K ,

which is asymptotically stable, hence invertible. Therefore, if q ≈ qe, there exists
an equilibrium point x of the closed-loop system

ẋ = fcl(x, q) = f (x, ue − K (x − xe), q) (5.66)

sufficiently close to the equilibrium point xe. Moreover, by continuity of all the
terms defining the matrix Acl(x, q), we have that Acl(xe, qe) ≈ Acl(x, q). From
Proposition 2.28, as soon as q is sufficiently close to qe, the eigenvalues of the
matrix Acl(x, q) are sufficiently close to those of the matrix Acl(xe, qe). Then, at
least locally, the state trajectory of the closed-loop system (5.66) converges towards
x and the first-order approximation can be written as

x − xe ≈ −(Acl(xe, qe))
−1 ∂ fcl

∂q
(xe, qe)(q − qe) .

Thus, to have a good precision, the term (Acl
(
xe, qe)

)−1 should be “small”. In the

scalar case, the higher the gain K the smaller the real number (Acl
(
xe, qe)

)−1.

5.10.3 Sensitivity to Input Delay: Stability

Up to now, we have supposed that the state feedback law u = ue − K (x − xe)

is applied instantaneously, in the sense that the control u(t) applied at time t is a
function of the state x(t) at the same time instant. But, in practice, a delay τ may
possibly exist, which can be taken into account in the feedback law as follows:

u(t) = ue − K (x(t − τ ) − xe) .

For q = qe, the closed-loop system (5.66) can be written as

ẋ(t) = f (x(t), ue − K (x(t − τ ) − xe), qe)

= A(xe, ue, qe)(x(t) − xe) + o(x(t) − xe)

− B(xe, ue, qe)K (x(t − τ ) − xe) + o(x(t − τ ) − xe) .
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This last equation cannot be analyzed by means of the mathematical tools developed
up to now. Nevertheless, one can write an expansion x(t − τ ) = x(t)− τ ẋ(t)+ · · · ,
which gives

ẋ(t) = (A(xe, ue, qe) − B(xe, ue, qe)K )(x(t) − xe) + τ B(xe, ue, qe)K ẋ(t) + r(t),

where the r(t) contains all the neglected terms. This last equation can be written as

ẋ(t) = (I −τ B(xe, ue, qe)K )−1(A(xe, ue, qe)− B(xe, ue, qe)K )(x(t)−xe)+r(t),

where it can be seen that, if the gain K is too high, the system dynamics can be
completely disturbed by the term (I − τ B(xe, ue, qe)K )−1. Indeed, in the scalar
case, we can write

ẋ(t) = A(xe, ue, qe) − B(xe, ue, qe)K

1 − τ B(xe, ue, qe)K
(x(t) − xe) + r(t) .

Now, if B(xe, ue, qe)K � 1, we have that A(xe, ue, qe) − B(xe, ue, qe)K < 0, but
also that 1 − τ B(xe, ue, qe)K < 0, which means that the stability property is lost!

Thus, ensuring a good precision requires, on the one hand, that

A(xe, ue, qe) − B(xe, ue, qe)K � −1 ,

as explained in § 5.10.2, whereas, on the other hand, to preserve stability, we need
that

B(xe, ue, qe)K � 1 ,

and these two conditions are inconsistent. This fact is the so-called stability-precision
dilemma, that makes difficult the pole placement of the closed-loop system. In
Chap. 7, we illuminate on a possible way to solve this question. Another illustra-
tion of the stability-precision dilemma has been given in § 3.7, in the context of the
frequency-domain approach.

5.11 Exercises

Exercise 5.11.1 Consider the chemical process studied in Exercise 2.6.1. The objec-
tive of the control is to regulate the concentration of output product at a constant value
c associated with a constant flow ϕ corresponding to an equilibrium point with con-
stant input flows ϕ1, ϕ2 and a constant volume V of solution in the vessel.

We define the state vector

x = (x1, x2)
� , x1(t) = V (t) − V , x2 = c(t) − c ,

http://dx.doi.org/10.1007/978-3-642-34324-7_7
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and the control input vector

u = (u1, u2)
� , u1(t) = ϕ1(t) − ϕ1 , u2(t) = ϕ2(t) − ϕ2 .

1. Determine the steady-state equations, and show that the open-loop tangent linear
dynamical system of (2.54), given in Definition 5.63, is

ẋ =
(−α 0

0 −2α

)
x +

(
1 1
β1 β2

)
u , (5.67)

where

α = ϕ

2V
, β1 = c1 − c

V
, β2 = c2 − c

V
.

2. Determine the stability and the nature of the equilibrium point of the associated
classical dynamical system, that is, (5.67) with u = 0. Plot its trajectories in a
neighborhood of the origin.

3. Study the bibs-stability of system (5.67).
4. Assuming that the output of the system has the expression

y =
(
α 0
0 1

)
x ,

study the observability property of the tangent linear dynamical system.

Exercise 5.11.2 Consider the electrical circuit studied in Exercise 2.6.2, where the
current is assumed to be measured (see Fig. 2.12 of the corresponding exercise).

1. Write the observation equation.
2. For which conditions the system is not controllable? not observable?
3. Give a physical interpretation of these conditions, in terms of the system time

constants.

Exercise 5.11.3 Consider the regulation problem of a ball rolling on a rail discussed
in Exercises 2.6.3 and 4.8.5.
Study the controllability and observability properties of the tangent linear dynamical
system.

Exercise 5.11.4 Consider the state-space linear dynamical system (5.1).

1. Recall the general form of equivalent state-space representations of this system.
2. Show that two state-space equivalent systems have the same transfer matrix.

Exercise 5.11.5 Suppose that the linear dynamical system (5.1) is not observable.
Show that its transfer matrix only depends on the observable modes.

http://dx.doi.org/10.1007/978-3-642-34324-7_2
http://dx.doi.org/10.1007/978-3-642-34324-7_2


Chapter 6
Discrete-Time Linear Dynamical Systems

6.1 Introduction

The digital character of computers incites us now to turn the spotlight onto sampled
control systems, where the control is fed into the system only at discrete times. These
times are often regularly spaced, and the sampling period is the interval between
two consecutive times. This interval is bounded below by the time required by the
processor to compute the new control.

The control structure of a sampled control system can be described as follows
(see Fig. 6.1):

• a microprocessor computes the controls and carries out the sampling;
• D/A (digital/analogical) converters transform digital (discrete) quantities into ana-

logical (continuous) quantities;
• sensors provide measurements, generally analogical;
• A/D converters (analogical/digital) sample at a given frequency the analogical

quantities coming from the sensors to convert them into digital quantities.

Linear dynamical systems in discrete-time have analogies with their counterparts
in continuous-time. However, they possess some specific concepts and properties
that are highlighted in this chapter. In § 6.2, we describe how a continuous-time lin-
ear dynamical system can be sampled, yielding an exact discretized discrete-time
linear dynamical system. Then, we investigate the stability of discrete-time classical
dynamical systems in § 6.3, and that of controlled discrete-time linear dynamical sys-
tems in § 6.4. Controllability and regulator design are tackled in § 6.5, observability
and observer design in § 6.6, making it possible to focus on observer-regulator syn-
thesis and on the separation principle in § 6.7. The choice of the sampling period is
discussed in § 6.8. The links between controlled discrete-time linear dynamical sys-
tems and the input-output representation are the subject of § 6.9. Finally, we show
how a control law in discrete-time can locally stabilize a nonlinear continuous-time
dynamical system in § 6.10.

B. d’Andréa-Novel and M. De Lara, Control Theory for Engineers, 133
DOI: 10.1007/978-3-642-34324-7_6, © Springer-Verlag Berlin Heidelberg 2013
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D/Acomputer
system

continuous−time

sensorsA/D

Fig. 6.1 Digital control process

6.2 Exact Discretization of a Continuous-Time
Linear Dynamical System

Consider a continuous-time linear dynamical system of the form

{
ẋ = Ax + Bu
y = Cx ,

(6.1)

where u represents the m-dimensional vector of control, x the n-dimensional vector
of state and y the p-dimensional vector of output. If x0 is the initial state of (6.1),
we know that

x(t) = eAt x0 +
∫ t

0
eA(t−τ ) Bu(τ ) dτ . (6.2)

Definition 6.1 Let ΔT > 0 denote the sampling period. A D/A converter is called
zero-order hold (denoted by zoh) at period ΔT , or at frequency 1/ΔT , if it trans-
forms a continuous-time signal (u(t), t ∈ R) into the stepwise signal, constant on
the interval [kΔT, (k + 1)ΔT [ having value u(kΔT ), for k ∈ Z.

There are converters of higher order, approximating more finely the signal on the
sampling interval, but they are less used than the zoh.

Sampling the linear dynamical system (6.1) with a zero-order hold amounts
to maintaining the input u constant on the interval [kΔT, (k + 1)ΔT [. Taking
xk = x(kΔT ) as initial state of the continuous-time linear dynamical system (6.1),
and applying the control uk = u(kΔT ), one can, by the formula (6.2), compute the
next state x

(
(k +1)ΔT

)
. This is how we obtain the following discretization Theorem.

Theorem 6.2 The linear exact discretized dynamical system of the continuous-time
linear dynamical system (6.1) sampled by a zoh at frequency 1/ΔT is given by the
discrete-time state representation
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{
xk+1 = Ad xk + Bduk

yk = Cxk ,
(6.3)

for k ∈ N, with

Ad = eAΔT , Bd =
(∫ ΔT

0
eAt dt

)
B . (6.4)

Proof We set
xk = x(kΔT ) , ∀k ∈ N , (6.5)

where t �→ x(t) solves (6.1). By (6.2), the expression of xk+1 = x
(
(k + 1)ΔT

)
is of

the form:

xk+1 = eAΔT xk +
∫ (k+1)ΔT

kΔT
eA

(
(k+1)ΔT −τ

)
Bu(τ ) dτ .

The input u being constant, equal to uk on the interval [kΔT, (k + 1)ΔT [, we
obtain the following expression, after the change of variable τ → −s + (k + 1)ΔT
in the integral:

xk+1 = eAΔT xk +
(∫ ΔT

0
eAt dt

)
Buk .

Setting
yk = y(kΔT ) , ∀k ∈ N , (6.6)

where t �→ y(t) solves (6.1), we easily deduce that yk = Cxk . This ends the
proof. �

The expression of the state xn of the linear dynamical system (6.3) at the discrete
time n is

xn = An
d x0 +

n−1∑
k=0

An−1−k
d Bduk , (6.7)

where x0 denotes the initial state.

Remarks

• If the matrix A in (6.3) is invertible, one can show that the matrix Bd in (6.4) is
given by

Bd = A−1(eAΔT − I )B . (6.8)

• With the continuous-time controlled and observed linear dynamical system (6.3),
we associate the discrete-time classical linear dynamical system

xk+1 = Ad xk . (6.9)
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Example 6.3 Consider the continuous-time linear dynamical system:

⎧⎪⎪⎨
⎪⎪⎩

(
ẋ1
ẋ2

)
=

(
0 1

−1 0

) (
x1
x2

)
+

(
0
1

)
u

y = (
1 0

) (
x1
x2

)
.

(6.10)

The exact discretized with a zoh at sampling period ΔT is given by

⎧⎪⎪⎨
⎪⎪⎩

(
x1k+1
x2k+1

)
=

(
cos ΔT sin ΔT

− sin ΔT cos ΔT

) (
x1k
x2k

)
+

(
1 − cos ΔT

sin ΔT

)
u

y = (
1 0

) (
x1k
x2k

)
.

(6.11)

�
Example 6.4 In the case of the inverted pendulum on a cart, discussed in § 2.3.1 and
in Example 4.37, applying the discretization Theorem 6.2 to (4.38) yields the exact
discretized linear dynamical system characterized by the matrices

Ad =

⎛
⎜⎜⎜⎝

1 a
ω2 (cosh(ωΔT ) − 1) ΔT − a

ω3 (ωΔT − sinh(ωΔT ))

0 cosh(ωΔT ) 0 1
ω sinh(ωΔT )

0 a
ω sinh(ωΔT ) 1 a

ω2 (cosh(ωΔT ) − 1)

0 ω sinh(ωΔT ) 0 cosh(ωΔT )

⎞
⎟⎟⎟⎠ (6.12)

Bd = 1

Ml

⎛
⎜⎜⎜⎜⎝

l ΔT 2

2 + a
ω4

(
1 + ω2 ΔT 2

2 − cosh(ωΔT )
)

1
ω2 (cosh(ωΔT ) − 1)

lΔT + a
ω3

(
ωΔT − sinh(ωΔT )

)
− 1
ω sinh(ωΔT )

⎞
⎟⎟⎟⎟⎠ , (6.13)

where we have set

a = − m

M
g , ω =

√
M + m

Ml
g .

�
Remark 6.5 If, instead of the continuous-time linear dynamical system (6.1), we
consider the more general case where the control u is directly linked to the output y
by y = Cx + Du as in (5.5), the exact discretized is

{
xk+1 = Ad xk + Bduk

yk = Cxk + Duk .
(6.14)

http://dx.doi.org/10.1007/978-3-642-34324-7_2
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As in the continuous-time case, the existence of the direct link Du from the control u
to the output y does not change the properties of controllability and of observability
of the system that we develop. This is why we focus on linear dynamical systems of
the form (6.3). �

6.3 Stability of Discrete-Time Classical Dynamical Systems

Consider a discrete-time classical dynamical system

xk+1 = Φ(xk) , ∀k ∈ N , (6.15)

where Φ : X → X is a smooth transformation from an open set X of R
n into X,

called phase space. The notation Φk stands for the k-iterate of the transformation Φ

in (6.15), that is,
Φk = Φ ◦ · · · ◦ Φ︸ ︷︷ ︸

k times

, (6.16)

The family (Φk)k∈N of transformations of the phase space X is called discrete-time
flow.

Remark 6.6 The discrete-time flow may be deduced by sampling, at period ΔT > 0,
from the continuous flow (2.39) associated with a continuous-time dynamical system
(see Theorem 2.13), hence coinciding with (ΦkΔT )k∈N. �

6.3.1 Stability of an Equilibrium Point

Equilibrium points are steady states of the classical dynamical system (6.15).

Definition 6.7 An equilibrium point xe of the classical dynamical system (6.15) is
a fixed point of the transformation Φ, that is,

Φ(xe) = xe . (6.17)

We now introduce two notions related to stability, counterparts of those introduced
in § 4.2 for continuous-time classical dynamical systems. An equilibrium point xe
is stable if, when starting close enough to xe, all the states xk visited by the trajec-
tory (xk)k∈N generated by (6.15) remain close to xe. It is said to be attractive if the
trajectory converges towards xe. The attractive character of an equilibrium point is
an asymptotic property, whereas stability concerns the whole trajectory for all times
k ∈ N, hence it is both a transient and asymptotical property. An equilibrium point
is asymptotically stable if it is both stable and attractive.

http://dx.doi.org/10.1007/978-3-642-34324-7_2
http://dx.doi.org/10.1007/978-3-642-34324-7_4
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Definition 6.8 An equilibrium point xe of the discrete-time classical dynamical sys-
tem (6.15) is said to be

• stable if, for all neighborhood W ′ of xe, there exists a neighborhood W ′′ of xe such
that, for all state x in W ′′, the k-iterate Φk(x) is defined and belongs to W ′ for all
k ∈ N (an equilibrium is said to be unstable if it is not stable);

• attractive if there exists a neighborhood W ′ of xe having the following property:
for all state x in W ′, the trajectory (Φk(x))k∈N of k-iterates tends towards xe when
k → +∞;

• asymptotically stable if it is both stable and attractive.

The notion of Lyapunov function is shoehorned to characterizing stability without
having to know the trajectories.

Definition 6.9 Let xe be an equilibrium point of the classical dynamical system
(6.15). We call Lyapunov function for the transformation Φ in a neighborhood of xe
a continuous function V, defined in a neighborhood of xe such that:

• V(x) > 0 except at x = xe where V(xe) = 0;
• the function V satisfies the inequality

V̇(x) := V
(
Φ(x)

) − V(x) ≤ 0 . (6.18)

Lyapunov functions are helpful to prove stability as follows.

Proposition 6.10 If there exists a Lyapunov function V for the transformation Φ in
a neighborhood of the equilibrium xe, then xe is a stable equilibrium point of the
classical dynamical system (6.15). In particular, for any state x in a neighborhood
of xe, the k-iterates Φk(x) are defined for all k ∈ N.

Moreover, assume that the function V is defined in a neighborhood W of xe, and
that the set {x ∈ W | V̇(x) = 0} does not contain any subset invariant by the
transformation Φ other than the singleton {xe}. Then xe is an asymptotically stable
equilibrium of (6.15).

Proof The proof is inspired by [28].
Let W be a neighborhood of xe on which V is a Lyapunov function for the trans-

formation Φ. Consider a compact neighborhood K of xe included in W . For ε > 0,
consider Vε = {x ∈ K | V(x) ≤ ε} ⊂ K ⊂ W . We show, as in Proposition 4.30,
that the family (Vε)ε>0 forms a fundamental system of neighborhoods of xe. This
makes it possible to work with these neighborhoods in the proofs of stability and of
asymptotic stability.

For ε > 0 and x ∈ Vε, we have that x ∈ W . Thus, by (6.18), we have that
V(Φ(x)) ≤ V(x) < ε, that is, Φ(x) ∈ Vε ⊂ W . We deduce that Φk(x) is defined
for all k ∈ N. Moreover, by (6.18), we have the inequalities

0 ≤ V(Φk(x)) ≤ V(x) , ∀k ∈ N , (6.19)
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and it is straightforward that, for all ε > 0, one has that

x ∈ Vε ⇒ Φk(x) ∈ Vε , ∀k ∈ N . (6.20)

By (6.20) and the property that the family (Vε)ε>0 forms a fundamental system of
neighborhoods of xe, we conclude that the equilibrium point xe is stable.

Now, suppose that the set {x ∈ W | V̇(x) = 0} does not contain any subset
invariant by the transformation Φ other than the singleton {xe}, and that the equi-
librium xe is not attractive. Then, there exists an ε0 > 0 and a point x0 ∈ Vε0 such
that Φk(x0) �→ xe. That is, there exists η > 0 and a sequence (km)m∈N increasing
towards +∞ such that:

Φkm (x0) �∈ Vη . (6.21)

Now, by (6.19), the sequence of points
(
Φkm (x0)

)
m∈N

belongs to the bounded set
Vε0 , hence admits a subsequence (still denoted

(
Φkm (x0)

)
m∈N

) which converges
towards a point x . We now show that x = xe, which contradicts (6.21) and our
assumption that the equilibrium xe is not attractive. Indeed, the sequence of general
term V

(
Φk(x0)

)
is decreasing and positive, hence has a limit l ≥ 0. Moreover,

for any integer j , the sequences V
(
Φkm (x0)

)
m∈N

and V
(
Φ j+km (x0)

)
m∈N

are two
subsequences of (V

(
Φk(x0)

)
)k∈N which satisfy:

l = limm→+∞ V
(
Φkm (x0)

) = V(x)

l = limm→+∞ V
(
Φ j+km (x0)

) = V
(
Φ j (x)

)
.

Therefore, the scalar V
(
Φ j (x)

)
is independent of j , which implies that

V̇
(
Φ j (x)

) = 0. As a result, all the sequence
(
Φ j (x)

)
j∈N

is contained in the set

{x ∈ W | V̇(x) = 0}. Since the orbit {Φ j (x), j ∈ N} is clearly invariant by the
transformation Φ, it is, by assumption, necessarily equal to the singleton {xe}. Thus
x = Φ j (x) = xe. This contradicts (6.21), and this ends the proof. �

6.3.2 Case of Discrete-Time Linear Dynamical Systems

We associate with an n × n matrix F the discrete-time linear classical dynamical
system

xk+1 = Fxk , k ∈ N . (6.22)

In other words, the phase space is R
n , the transformation Φ in (6.15) is the linear

mapping x �→ Fx , and the discrete-time flow in (6.16) is given by

x �→ Fk x , k ∈ N . (6.23)
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We now discuss how the asymptotic behavior of the trajectories of the linear
dynamical system (6.22) is related to the modulus of the eigenvalues of the matrix
F . Recall that S(F) denotes the set of eigenvalues of F (see Definition 2.24).

Proposition 2.26 makes it possible to obtain an expression of the flow (6.23) in
projection on the complex decomposition (2.52) of the space C

n .

Proposition 6.11 For all x ∈ R
n and k integer large enough, we have that:

Fk x =
∑

λ∈S(F)

ν(λ)−1∑
l=0

Cl
kλ

k−l(F − λI )l pλ(x) . (6.24)

Proof By linearity, it is enough to compute

Fk pλ(x) = (F − λI + λI )k pλ(x) =
ν(λ)−1∑

l=0

Cl
kλ

k−l(F − λI )l pλ(x) ,

as soon as k ≥ ν(λ). �

We now discuss the stability properties of the equilibrium point xe = 0 of the
linear dynamical system (6.22) in function of the eigenvalues of the square matrix F .

Proposition 6.12 Letλ1,…,λr denote the distinct eigenvalues of the square matrix F.
Consider the equilibrium point xe = 0 ∈ R

n of the linear dynamical system (6.22).

1. If there exists at least one i = 1, . . . , r such that |λi | > 1, then the equilibrium
point 0 is unstable.

2. If for all j = 1, . . . , r , one has that |λ j | ≤ 1, then

(a) if ∀ j = 1, . . . , r , |λ j | < 1, then the equilibrium point 0 is asymptotically
stable;

(b) if ∃i = 1, . . . , r , |λi | = 1 and ν(λi ) > 1, then the equilibrium point 0 is
unstable;

(c) if ∃i = 1, . . . , r , |λi | = 1 and if ∀ j = 1, . . . , r , (|λ j | = 1 ⇒ ν(λ j ) = 1),
then the equilibrium point 0 is stable but not asymptotically stable.

Proof The proof boils down to comparing an exponential growth kν(λ j )−1 to a
polynomial growth λk in the asymptotical formula (6.24) when k goes to +∞.

1. Since Ker(F−λ j I )ν(λ j )\Ker(F−λ j I )ν(λ j )−1 is not reduced to the singleton {0},
by definition of the eigenvalue index ν(λ j ) (see Definition 2.24), we can pick up
a nonzero complex vector z ∈ N (λ j )\Ker(F − λ j I )ν(λ j )−1. From z, we build
a nonzero real vector x = z + z by using the conjugate mapping recalled in
§ 2.1. Then, we observe in (6.24) that ‖Fk x‖ grows exponentially towards +∞
(at rate at least λk

j ): the equilibrium point 0 is thus unstable.

http://dx.doi.org/10.1007/978-3-642-34324-7_3
http://dx.doi.org/10.1007/978-3-642-34324-7_2
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2. (a) Let λ be such that max{|λ1|, . . . , |λr |} < λ < 1. We deduce from (6.24)
that there exists a constant M such that

‖Fk x‖ ≤ Mλk‖x‖ , ∀x ∈ R
n . (6.25)

We conclude that the equilibrium point 0 is asymptotically stable.
(b) We pick up x as in item 1. We observe in (6.24) that k �→ ‖Fk x‖ grows as

a polynomial kν(λ j )−1, where ν(λi ) − 1 ≥ 1, towards +∞: the equilibrium
point 0 is thus unstable.

(c) We observe in (6.24) that there exists a constant M such that ‖Fk x‖ ≤
M‖x‖, for all x ∈ R

n : the equilibrium point 0 is thus stable. Then, we
choose x as in item 1 and observe that Fk x does no tend to zero when k
goes to +∞. Therefore, the equilibrium point 0 is not asymptotically stable.

This concludes the proof. �

Thanks to the above result, we now have a simple criterion of asymptotic stability
of the equilibrium point xe = 0 of the linear dynamical system (6.22).

Theorem 6.13 The equilibrium point 0 of the linear dynamical system (6.22) is
asymptotically stable if, and only if, all the eigenvalues of the matrix F have modulus
strictly less than one.

Definition 6.14 We call stability disk the set {s ∈ C | |s| < 1 } of complex numbers
having modulus strictly less than one. We say that a square matrix is asymptotically
stable if all its eigenvalues belong to the stability disk.

Remark 6.15 We also use the terminology stable matrix and unstable matrix in the
corresponding cases of Proposition 6.12. �

As in the continuous-time case, there exists a so-called Jury criterion, which
makes it possible to check the modulus of the roots of the characteric polynomial
of a square matrix, hence to test asymptotic stability without having to compute the
eigenvalues.

Lyapunov functions can be explicitely given in the linear case. This can prove
useful for the study of nonlinear dynamical systems in the neighborhood of an equi-
librium (see the proof of Proposition 6.17).

Proposition 6.16 The equilibrium point xe = 0 of the linear dynamical system
(6.22) is asymptotically stable if, and only if, for all positive definite matrix Q, there
exists a positive definite matrix P such that:

F� P F − P = −Q . (6.26)

In that case, the function V(x) = x� Px is a Lyapunov function for the equilibrium
xe = 0 of (6.22).
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Proof The condition (6.26) is sufficient for V to be a Lyapunov function for the
equilibrium xe = 0 of (6.22). Indeed, consider Q = I , and let P be a positive definite
matrix such that F� P F − F = −I . Then, V(x) = x� Px is a Lyapunov function
for (6.22). Indeed, it satisfies

V̇(x) = x�F� P Fx − x� Px = −x�x ≤ 0 ,

where V̇(x) is defined in (6.18). As a consequence, {x ∈ R
n | V̇(x) = 0} = {0}.

Hence, by Proposition 6.10, the equilibrium point xe = 0 of (6.22) is asymptotically
stable.

On the other hand, suppose that the equilibrium point xe = 0 of (6.22) is asymp-
totically stable. By Theorem 6.13, the matrix F has all its eigenvalues with modulus
strictly less than one. This implies, by (6.24), that the following series converges

P =
+∞∑
i=0

(F�)i QFi .

Moreover, the limit P is a positive definite matrix which satisfies

F� P F − P =
+∞∑
i=1

(F�)i QFi −
+∞∑
i=0

(F�)i QFi = −Q .

This concludes the proof. �

A discrete-time counterpart of the continuous-time perturbation Theorem 4.23
is the following proposition, which makes use of the Jacobian matrix recalled in
Remark 4.19.

Proposition 6.17 If xe is an equilibrium point of the classical dynamical system

(6.15) such that the Jacobian matrix
∂Φ

∂x
(xe) is asymptotically stable, then xe is an

asymptotically stable equilibrium point of the system (6.15).

Proof By Proposition 6.10, it is enough to display a Lyapunov function V for Φ in
a neighborhood W of xe such that the set {x ∈ W | V̇(x) = 0} is reduced to the
singleton {xe}. Set F = ∂Φ

∂x (xe). Let P be a symmetric positive definite matrix such
that F� P F − P = −I (the existence is assured by Proposition 6.16). We now show
that the function V(x) = (x − xe)

� P(x − xe) answers the question. By definition
of the Jacobian matrix F , we can write

Φ(x) = xe + F(x − xe) + ε(x − xe)
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where lim‖x‖→0 ε(x) = 0. Then, we have that

V̇(x) = V
(
Φ(x)

) − V(x)

= V
(
xe + F(x − xe) + ε(x − xe)

) − V(x)

= (
F(x − xe) + ε(x − xe)

)�
P(F(x − xe) + ε(x − xe))

−(x − xe)
� P(x − xe)

= −‖x − xe‖2 + (x − xe)
�F� Pε(x − xe)

+ε(x − xe)
� P F(x − xe) + ε(x − xe)

� Pε(x − xe)

≤ −(1 − η)‖x − xe‖2 ,

for at least one η ∈]0, 1[ and for x in a sufficiently small neighborhood of xe. As a
consequence, the function V is a Lyapunov function for Φ in a neighborhood of xe,
and it is such that the set {x ∈ W | V̇(x) = 0} is reduced to the singleton {xe}.

6.4 Stability of Controlled Discrete-Time
Linear Dynamical Systems

The links between stability for continuous-time and discrete-time systems are strong.
We now shed light onto the bibs-stability of discretized systems of the form (6.3).

Definition 6.18 The linear dynamical system (6.3) is said to be bibs-stable if, for all
initial state x0 and for all bounded input (uk, k ∈ N), the state trajectory (xk, k ∈ N)

generated by (6.3) is bounded, that is, if

sup
k∈N

‖uk‖ < +∞ ⇒ sup
k∈N

‖xk‖ < +∞ . (6.27)

The linear dynamical system (6.3) is said to be bibo-stable if, for all initial state x0
and for all bounded input (uk, k ∈ N), the output trajectory (yk, k ∈ N) generated
by (6.3) is bounded, that is, if

sup
k∈N

‖uk‖ < +∞ ⇒ sup
k∈N

‖yk‖ < +∞ . (6.28)

The following proposition is the discrete-time counterpart of the continuous-time
Proposition 5.8.

Proposition 6.19 If all the eigenvalues of the matrix Ad belong to the stability disk,
then the linear dynamical system (6.3) is bibs-stable. If Ad has at least an eigenvalue
with modulus strictly larger than one, then the linear dynamical system (6.3) is not
bibs-stable.
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Proof By Proposition 6.11, for all x ∈ R
n and k large enough, we have (with the

notations of § 6.3.2):

Ak
d x =

∑
λ∈S(Ad )

ν(λ)−1∑
i=0

Ci
kλ

k−i (Ad − λI )i pλ(x) . (6.29)

If all the eigenvalues of Ad have modulus strictly less than one, then it follows from
(6.7) and (6.29) that a bounded control produces a bounded state trajectory.

If Ad has at least an eigenvalue with modulus strictly larger than one, select any
initial state x0 having nonzero projection on the eigenspace associated with this
eigenvalue (see the proof of Proposition 6.12). Then, the zero control uk ≡ 0 yields
a state trajectory (xk, k ∈ N) which is not bounded. �

Remarks

• Notice that this proposition does not state a necessary and sufficient condition
of bibs-stability. Indeed, we refer the reader to Proposition 6.12, where we have
discussed the many cases associated with having at least one eigenvalue with
modulus 1.

• The parallel between continuous-time and discrete-time linear dynamical systems
stability may be stressed by recalling that, by (6.4), Ad is nothing but the matrix
eΔT A. As every complex matrix is equivalent to a triangular matrix on C, there
exists a complex matrix P such that A = P S P−1, where the diagonal of S carries
the eigenvalues of A, and eAΔT = PeΔT S P−1, where the diagonal of eΔT S carries
the eigenvalues of eΔT A. Thus, if the eigenvalues of A all have strictly negative
real part, the eigenvalues of Ad belong to the interior of the unit circle.

6.5 Controllability. Regulator

Now, as we did for continuous-time linear dynamical systems in § 5.4, we highlight
controllability issues in discrete-time.

Definition 6.20 We say that the linear dynamical system (6.3) is controllable if, for
all couple of vectors (xi , x f ) of R

n, there exist a positive integer k̄ and a control
sequence (uk, k = 0, . . . , k̄) that, when driving the system (6.3) with initial state
x0 = xi , yield xk̄ = x f .

There is a simple algebraic characterization of controllability, the Kalman crite-
rion of controllability.

Theorem 6.21 The linear dynamical system (6.3) is controllable if, and only if, the
controllability matrix

Cd := (
Bd Ad Bd · · · An−1

d Bd
)

(6.30)

http://dx.doi.org/10.1007/978-3-642-34324-7_3
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has rank n. We also say that the couple (Ad , Bd) is controllable.

Proof Suppose that the linear dynamical system (6.3) is controllable. Let us pick
up (xi , x f ) = (0, xa), so that x0 = 0. By (6.7), we have that

xk =
k−1∑
i=0

Ak−1−i
d Bdui .

To reach any xa in R
n , it is necessary that, for k large enough:

R
n = Im(Bd , Ad Bd , · · · , Ak−1

d Bd) .

By the Cayley-Hamilton theorem 4.10, we have the following equality, for all k ≥ n:

Im(Bd , Ad Bd , · · · , Ak−1
d Bd) = Im(Bd , Ad Bd , · · · , An−1

d Bd) .

Thus, it is necessary that the rank of Cd be equal to n for the linear dynamical system
(6.3) to be controllable.

Consider a given couple (xi , x f ), and suppose that Cd has rank n. Therefore, there
exists a sequence of controls u0, …, un such that:

x f − An
d xi = (Bd , Ad Bd , · · · , An−1

d Bd)

⎛
⎜⎜⎜⎝

un−1
un−2

...

u0

⎞
⎟⎟⎟⎠ .

Thus, for this sequence of controls, when x0 = xd , we reach xn = x f by (6.7). �

The proof of the following corollary (the counterpart of Corollary 5.17) is easy.

Corollary 6.22 The following conditions are equivalent.

1. The linear dynamical system (6.3) is controllable.
2. The couple (Ad , Bd) is controllable.
3. Any vector x such that x� Bd = x� Ad Bd = · · · = x� An−1

d Bd = 0 is zero.
4. The symmetric positive matrix

Pc =
n−1∑
j=0

A j
d Bd B�

d (A�
d ) j (6.31)

is definite (or invertible).

In the case where the linear dynamical system (6.3) is not controllable, one
can decompose the state-space R

n in controllable and uncontrollable parts, as for
continuous-time linear dynamical systems.
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If the linear dynamical system (6.3) is controllable, we can define the controllable
companion form and, as for continuous-time linear systems, we show the regulator
modes placement Theorem. The proof is similar to that of Theorem 5.27.

Theorem 6.23 Under the assumption of controllability of the linear dynamical sys-
tem (6.3), there exists a linear state feedback

uk = −K xk , (6.32)

where K is the gain matrix of counter-reaction, such that the state matrix (Ad −Bd K )

of the closed-loop linear dynamical system (6.3)–(6.32) is asymptotically stable.

6.6 Observability. Observer

When the state is only partially observed, one can, as discussed in § 5.5
in continuous-time, reconstitute the whole state under the assumption of
observability.

Definition 6.24 The linear dynamical system (6.3) is observable if, for all vector
xi of R

n, there exists a time k̄ ∈ N and a sequence of controls (ul , l = 0, . . . , k̄)

such that the initial state x0 = xi may be determined from the sequence of outputs
(yl , l = 0, . . . , k̄) given by (6.3).

As for controllability, we have the Kalman observability criterion.

Theorem 6.25 The system (6.3) is observable if, and only if, the observability matrix

Od =

⎛
⎜⎜⎜⎝

C
C Ad

...

C An−1
d

⎞
⎟⎟⎟⎠ (6.33)

has rank n. We also say that the couple (Ad , C) is observable.

Proof The output of the system (6.3) satisfies, for all integer k:

yk = C Ak
d x0 +

k−1∑
i=0

C Ak−1−i
d Bdui . (6.34)

http://dx.doi.org/10.1007/978-3-642-34324-7_5
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Thus, we have that

⎛
⎜⎜⎜⎝

C
C Ad

...

C Ak
d

⎞
⎟⎟⎟⎠ x0 =

⎛
⎜⎜⎜⎝

y0
y1
...

yk

⎞
⎟⎟⎟⎠ −

⎛
⎜⎜⎜⎜⎝

0 . . . 0
C Bd 0 . . 0

. . . . .

. . . . .

C Ak−1
d Bd . . C Bd 0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

u0
u1
...

uk

⎞
⎟⎟⎟⎠ .

The initial state x0 is obtained from y0, …, yk and u0,…, uk if, and only if, the linear

mapping defined by
(
C, C Ad , . . . , C Ak

d

)�
is left-invertible, for given k, thus if, and

only if, the rank of
(
C, C Ad , . . . , C Ak

d

)
is equal to n. Now, by the Cayley-Hamilton

theorem 4.10, if such an integer k exists, it can be taken equal to (n − 1). This ends
the proof. �

The proof of the following corollary (the counterpart of Corollary 5.32) is easy.

Corollary 6.26 The following conditions are equivalent.

1. The linear dynamical system (6.3) is observable.
2. The couple (Ad , C) is observable.
3. Any vector x such that Cx = C Ad x = · · · = C An−1

d x = 0 is zero.
4. The symmetric positive matrix

Po =
n−1∑
j=0

(A�
d ) j C�C A j

d (6.35)

is definite (or invertible).

In the case where the linear dynamical system (6.3) is not observable, one
can decompose the state-space R

n into observable and unobservable parts, as for
continuous-time linear dynamical systems (see Proposition 5.34).

If the linear dynamical system (6.3) is observable, we can define the observable
companion form and, as for continuous-time linear systems, we show the observer
modes placement Theorem. The proof is similar to that of Theorem 5.39.

Theorem 6.27 Under the assumption of observability of the linear dynamical system
(6.3), one can build a linear asymptotic observer of (6.3), or Luenberger observer,
with internal variable x̂ and external variables u and y, as follows:

x̂k+1 = Ad x̂k + Bduk − L(Cx̂k − yk) . (6.36)

The gain matrix L is chosen so that the matrix (Ad − LC) of the dynamics of the
error ek := x̂k − xk of the closed system (6.3)–(6.36) be asymptotically stable.

In the expression (6.36), notice that the state x̂k+1 of the observer at time k + 1
depends upon the measurements y0,…, yk up to time k. We now display an asymptotic
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observer, the state x̂k+1 of which at time k+1 depends upon the measurements y0,…,
yk , yk+1 up to time k+1. Therefore, the last measurement makes it possible to improve
the knowledge of the state at time k + 1.

Theorem 6.28 Under the assumption of observability of the linear dynamical system
(6.3), one can build an asymptotic observer of (6.3), with internal variable x̂ and
external variables u and y, as follows:

x̂k+1 = Ad x̂k + (Bd − LC Bd)uk − L(C Ad x̂k − yk+1) . (6.37)

The gain matrix L is chosen so that the matrix (Ad − LC) of the dynamics of the
error ek = x̂k − xk of the closed system (6.3)–(6.37) be asymptotically stable.

We discuss in Chap. 7 the links between this last observer and the Kalman-Bucy
filter.

6.7 Observer-Regulator Synthesis. Separation Principle

As for controllable and observable linear dynamical systems in
continuous-time, those in discrete-time satisfy the estimation-control separation
principle, yet discussed in § 5.6. On the one hand, a regulator is designed. On the
other hand, an observer is built. Then, though designed separately, their combination
leads to stabilization of the closed system.

Definition 6.29 We call observer-regulator of the linear dynamical system (6.3) a
linear dynamical system with input y, with state x̂ and with output u of the form

{
x̂k+1 = Ad x̂k + Bduk − L(Cx̂k − yk)

uk = −K x̂k ,
(6.38)

as illustrated on Fig.5.1.

Remark 6.30 The observer-regulator (6.38) corresponds to Theorem 6.27. Another
possible form is given below in (6.40), corresponding to Theorem 6.28. �

The following theorem expresses the so-called estimation-control separation
principle.

Theorem 6.31 Suppose that the linear dynamical system (6.3) is controllable and
observable, and let K and L be gain matrices such that the matrices (Ad − Bd K )

and (Ad − LC) are asymptotically stable. Then, the linear dynamical system (6.3)
closed with the observer-regulator (6.38) forms a closed-loop system with state
(x, e)� = (x, x̂ − x)� and dynamics given by

http://dx.doi.org/10.1007/978-3-642-34324-7_7
http://dx.doi.org/10.1007/978-3-642-34324-7_5
http://dx.doi.org/10.1007/978-3-642-34324-7_5
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{
xk+1 = (Ad − Bd K )xk − Bd K ek

ek+1 = (Ad − LC)ek ,
(6.39)

such that the zero equilibrium (x, e)� = (0, 0)� is asymptotically stable (for all
initial condition x0 of the state and x̂0 of the observer).

Proof Using the relations yk = Cxk in (6.3) and uk = −K x̂k in (6.38), the linear
dynamical system (6.3)–(6.38) writes:

{
xk+1 = Ad xk − Bd K x̂k

x̂k+1 = (Ad − LC − Bd K )x̂k + LCxk .

Defining the estimation error vector ek = x̂k − xk , we obtain the following classical
linear dynamical system (closed-loop):

(
xk+1
ek+1

)
=

(
Ad − Bd K −Bd K

0 Ad − LC

) (
xk

ek

)
.

Since the hereabove matrix is block-diagonal, the closed-loop modes of the above sys-
tem are given by the union of the modes of the regulator (eigenvalues of Ad − Bd K )
and of the observer (eigenvalues of Ad − LC). The system is thus stabilized in
closed-loop as soon as the gains K and L are chosen in such a way that the matri-
ces (Ad − Bd K ) and (Ad − LC) have their eigenvalues in the stability disk (see
Theorem 6.13 and Definition 6.28).

The estimation-control separation principle corresponding to the observer given
by Theorem 6.28 is expressed by the following theorem.

Theorem 6.32 Suppose that the linear dynamical system (6.3) is controllable and
observable, and let K and L be gain matrices such that the matrices (Ad − Bd K )

and (Ad − LC Ad) are asymptotically stable. Then, the linear dynamical system (6.3)
closed with the observer-regulator

{
x̂k+1 = Ad x̂k + (Bd − LC Bd)uk − L(C Ad x̂k − yk+1)

uk = −K x̂k
(6.40)

forms a closed-loop system with state (x, e)� = (x, x̂ − x)� and dynamics given by

{
xk+1 = (Ad − Bd K )xk − Bd K ek

ek+1 = (Ad − LC Ad)ek ,
(6.41)

such that the zero equilibrium (x, e)� = (0, 0)� is asymptotically stable (for all
initial condition x0 of the state and x̂0 of the observer).
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6.8 Choice of the Sampling Period

When a controllable and observable linear dynamical system in continuous-time
having conjugated complex modes is sampled, the discretized system can lose the
property of controllability or of observability. More precisely, we have the following
theorem (see for example [2]).

Theorem 6.33 A controllable and observable linear dynamical system in continuous-
time remains controllable and observable after discretization by a zoh at fre-
quency 1/ΔT if, and only if, for each pair of distinct eigenvalues {λi ,λ j } (i �= j ) of
the state matrix of the continuous-time system, we have that

�λi = �λ j ⇒ �(λi − λ j ) �= 2nπ

ΔT
, ∀n ∈ Z

∗ . (6.42)

Example 6.34 One easily shows that the continuous-time linear dynamical system
(6.10) is controllable and observable by computing the controllability and observ-
ability matrices which both have rank 2. Now, let us compute the controllability and
observability matrices of the exact discretized of (6.10), given by (6.11). By (6.30),
we obtain

Cd = (
Bd Ad Bd

) =
(

1 − cos ΔT cos ΔT − cos 2ΔT
sin ΔT − sin ΔT + 2 cos ΔT sin ΔT

)

and, by (6.33),

Od =
(

C
C Ad

)
=

(
1 0

cos ΔT sin ΔT

)
.

These two matrices are of full rank if, and only if:

ΔT �= nπ , ∀n ∈ Z
∗ .

Now, the eigenvalues of the matrix

(
0 1

−1 0

)
in (6.10) are {−i, i}, so that the above

condition is identical to that of the relation (6.42), which indeed writes:

�(λ1 − λ2) = �(
i − (−i)

) = 2 �= 2nπ

ΔT
.

�
Example 6.35 In the case of the inverted pendulum on a cart, discussed at Exam-
ples 4.37 and 6.4, one can check on the expression of the eigenvalues in (4.39)
that, for all ΔT > 0, the discretized system is controllable and observable. The
direct study of the rank of (6.30) with the matrices (6.13) would have been more
difficult. �

http://dx.doi.org/10.1007/978-3-642-34324-7_4
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6.9 Links with the Input-Output Representation

Now, we turn the spotlight onto the relations between state (or internal) representation
and input-output (or external) representation introduced in Chap. 3, in the case of
discrete-time l.c.s. systems. This is the discrete-time counterpart of the discussion in
continuous-time in § 5.7.

6.9.1 Impulse Response, Transfer Matrix and Realization

The notion of unit impulse function introduced in Definition 3.7 and of impulse
response introduced in Definition 3.9 for continuous-time l.c.s. systems are adapted
to discrete-time as follows.

Definition 6.36 The unit impulse sequence is the sequence (δ0,k)k∈N, where δi, j

denotes the Kronecker symbol (δi, j = 0 if i �= j , 1 else). The impulse response of
an l.c.s. discrete-time system is the response to the unit impulse sequence.

The output at time k of the linear dynamical system (6.1), expressed in state
representation, is:

yk = C Ak
d x0 +

k−1∑
l=0

C Ak−1−l
d Bdul .

Considering that the initial state is zero (x0 = 0) makes it possible to deduce the
following proposition.

Proposition 6.37 The impulse response of the linear dynamical system (6.1), with
zero initial state, is given by the sequence of matrices

hk = C Ak−1
d Bd if k ≥ 1 , hk = 0 if k ≤ 0 . (6.43)

We have the property of discrete-time convolution Z2 in §B.2:

yk = (h � u)k = , ∀k ∈ N . (6.44)

Similarly to the continuous-time case, there exists a transformation which maps
a convolution product into a usual product: the z-transform described in § B.2. The
notion of transfer matrix introduced at Definition 3.14 for continuous-time l.c.s. sys-
tems is adapted to discrete-time as follows. The transfer matrix of a discrete-time
l.c.s. system, with m-input vector u and p-output vector y, is the p × m matrix H(z)
such that

Y (z) = H(z)U (z) , (6.45)

http://dx.doi.org/10.1007/978-3-642-34324-7_3
http://dx.doi.org/10.1007/978-3-642-34324-7_5
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where z ∈ C, and U (z) (respectively Y (z)) denotes the z-transform of (uk)k∈N (if it
exists), (respectively of (yk)k∈N).

To obtain the transfer matrix of the linear dynamical system (6.1), we apply to
Eq. (6.1) the properties of linearity Z1 and of shift Z3 in § B.2 of the z-transform,
giving:

Y (z) = C(z I − Ad)−1 BdU (z) . (6.46)

One deduces straightforwardly the following Proposition.

Proposition 6.38 The transfer matrix of the discrete-time linear dynamical system
in state representation (6.1) is the p × m matrix given by:

H(z) = C(z I − Ad)−1 Bd . (6.47)

The transfer matrices being of the same form as in the continuous-time case, we
can state the following proposition, the counterpart of Proposition 5.48.

Proposition 6.39 The elements of the transfer matrix (6.47) are strictly proper ratio-
nal functions in z.

Remarks

• In case there exists a direct link between the input and the output , that is, if

yk = Cxk + Duk ,

it is straightforward to check that the transfer matrix has the expression

H(z) = C(z I − Ad)−1 Bd + D , (6.48)

and the elements of the transfer matrix are rational functions whose numerator and
denominators have the same degree.

• As discussed in Chap. 3, the notions of proper transfer and of causality of the
corresponding linear dynamical system are intimately linked. This can be observed
in the discrete-time case. Indeed, if the transfer matrix in discrete-time is of the
form H(z) = C(z I − Ad)−1 Bd + D, the dynamical relations write:

{
xk+1 = Ad xk + Bduk

yk = Cxk + Duk .

If D = 0, the output at time k only depends on the input values at times strictly
less than k and the system is thus strictly causal. If D �= 0, the output at time k
depends on the input values at times less than or equal to k: the system is only
causal and not strictly causal.

• The relation (5.48) gives a systematic way to compute the state matrix Ad of the
discrete-time system obtained by sampling at period ΔT a continuous-time system

http://dx.doi.org/10.1007/978-3-642-34324-7_3
http://dx.doi.org/10.1007/978-3-642-34324-7_5
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with state matrix A. Indeed, we can write:

Ad = eAΔT = L−1
[
(s I − A)−1

]
(ΔT ) . (6.49)

By the definition of the impulse response and the property that the z-transform of
a convolution product is a usual product, one deduces the following proposition.

Proposition 6.40 The transfer matrix (6.47) is the z-transform of the impulse
response (6.43) of the linear dynamical system given in discrete-time state repre-
sentation (6.3).

Similarly to the continuous-time realization issue discussed in § 5.7.2, when a
transfer matrix H(z) that represents a linear discrete-time system is given, one can
look for the expression of corresponding state-models of the form (6.3), that is look
for matrices Ad , Bd , C such that:

H(z) = C(z I − Ad)−1 Bd . (6.50)

Definition 6.41 Any triple (Ad , Bd , C) of matrices satisfying (6.50) is called a
discrete-time state realization of the transfer matrix H(z).

As in the continuous-time case (see Theorem 5.54), we have the following result.

Theorem 6.42 A linear dynamical system in discrete-time state representation (6.3)
is minimal if and only if it is controllable and observable.

6.9.2 Stability and Poles. Jury Criterion

As in the continuous-time case, the bibs stability discussed in § 6.4 is connected to
the poles of the discrete-time linear dynamical system, that is, to the modes of the
matrix Ad in (6.3).

Proposition 6.43 If the poles are in the stability disk, the discrete-time linear
dynamical system (6.3) is bibs-stable.

Remark 6.44 This is only a sufficient condition: a bibo-stable or a bibs-stable
l.c.s. system can be realized with a state matrix Ad which is not asymptotically
stable. This happens when the system has uncontrollable or unobservable modes. �

As in the continuous-time case (see Proposition 5.60), we have the following
proposition.

Proposition 6.45 The transfer function of the linear dynamical system (6.3) only
depends on the controllable and observable modes.

http://dx.doi.org/10.1007/978-3-642-34324-7_5
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Remark 6.46 For discrete-time systems, the analogue to the Routh test is the Jury
test, which makes it possible to check that a polynomial has all its roots in the stability
disk. �

Considering a polynomial P(z) with real coefficients

P(z) = a0zn + a1zn−1 + a2zn−2 + a3zn−3 + · · · + an−1z + an , (6.51)

we build the following table:
a0 a1 · · · an−1 an

an an−1 · · · a1 a0

an−1
0 an−1

1 · · · an−1
n−1

an−1
n−1 an−1

n−2 · · · an−1
0· · · · · · · · ·

a0
0 .

(6.52)

The first row is made of the coefficients of the polynomial P(z), and the second row
is made of these same coefficients in reverse order. The other rows are obtained by
induction as follows:

ak−1
i = ak

i − αkak
k−i with αk = ak

k

ak
0

and αn = an

a0
. (6.53)

The following theorem is known under the name of Jury criterion ([6, p. 97], [43]).

Theorem 6.47 The polynomial P(z) in (6.51) has all its roots with modulus strictly
less than one if, and only if, all the ak

0 , k = 0, …, n − 1 in the table (6.52) given by
(6.53) are not zero and have the same sign, the sign of a0. When the ak

0 are not zero,
the number of coefficients ak

0 , k = 0, …, n − 1 not having the sign of a0 corresponds
to the number of roots of P(z) outside the stability disk.

6.9.3 Zeros of a Discrete-Time Scalar l.c.s. System

As in the continuous-time case discussed in § 3.5, the zeros of the transfer func-
tion H(z) of a discrete-time scalar l.c.s. system are related to the rejection of some
class of inputs.

Consider a discrete-time scalar l.c.s. system with transfer function H(z), excited
by a sinusoidal input of pulsation ω:

uk = eikωΔT , k ≥ 0 , uk = 0 , k < 0 . (6.54)

The zeros of H(eiωΔT ) correspond to the frequencies asymptotically rejected by the
discrete-time l.c.s. system having transfer function H(z) (see Corollary 3.30).

http://dx.doi.org/10.1007/978-3-642-34324-7_3
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As in the continuous-time context, it is also convenient to define the unit-step
sequence as follows (see Definition 3.4).

Definition 6.48 The unit-step sequence is the sequence defined by En = 1 if n ≥ 0
and by En = 0 if n < 0.

Applying the final value Theorem Z6 in § B.2 in the discrete-time case, we can
prove the following proposition.

Proposition 6.49 If the transfer function H(z) has a zero at z = 1, step function
inputs of the form b (Ek)k∈N, b ∈ R, are asymptotically rejected by the discrete-time
l.c.s. system having transfer function H(z).

This motivates the following definition (see Definition 3.33 for continuous-time
systems).

Definition 6.50 We call static gain of the discrete-time l.c.s. system with transfer
function H(z) the real number H(1).

Finally, we discuss the links between two input-output relations: that of an original
linear dynamical system in continuous-time, and that of the corresponding exact
discretized obtained by sampling at a period ΔT with a zero-order hold.

6.9.4 Relation Between an l.c.s. System in Continuous-Time
and the Exact Discretized

We have established in § 6.2 the link between the state matrix A of a continuous-time
linear dynamical system and the state matrix Ad of its exact discretized sampled to
a period ΔT by a zero-order hold. As discussed in Remark 6.4, the poles νi of the
transfer function of a discretized system are related to the poles λi of the transfer
function of the continuous-time system by the formula νi = eλi ΔT . Recall that the
mapping s �→ z = esΔT is a conformal transformation of C that maps the stability
half-plane {s ∈ C | �(s) < 0 } into the stability disk {z ∈ C | |z| < 1 }.

Regarding the zeros of a transfer function, the link is less simple than for poles.
Before shedding light onto this issue, we first study the process of discretization by
a zero-order hold (zoh) from the input-output point of view.

Consider a continuous-time input trajectory u, and let us introduce the distribution
(see the discussion on the Theory of Distributions in § 3.2.2):

u�(t) :=
+∞∑
k=0

u(kΔT )δkΔT (t) . (6.55)

This distribution corresponds to the sampled signal given by the sequence(
u(kΔT )

)
k∈N

. The action of a zoh consists in maintaining constant on the sam-
pling interval [kΔT, (k + 1)ΔT [ the signal u at the value u(kΔT ). The holded input

http://dx.doi.org/10.1007/978-3-642-34324-7_3
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Fig. 6.2 The impulse
response of a zoh

1

h 0

0 ΔT

t

signal u(t) obtained is given by the convolution of the sampled signal u�(t) with the
impulse response h0(t) of the zoh represented in Fig. 6.2.

By definition of the Laplace transform (B.1), we easily show the following lemma.

Lemma 6.51 The transfer function of a zero-order hold is given by:

H0(s) = 1 − e−sΔT

s
. (6.56)

Let us now consider a discrete-time l.c.s. system with transfer function H(s)
submitted to an input sampled and holded at period ΔT as seen on Fig. 6.3.

We prove the following theorem which links the transfer function of the discretized
system to P(s) given by the product:

P(s) = H(s)H0(s) . (6.57)

Theorem 6.52 The transfer function Hd(z) of the discretized system obtained by
sampling and zero-order holding at period ΔT from a continuous-time l.c.s. system
with transfer function H(s) is given by

Hd(z) =
+∞∑
k=0

p(kΔT )z−k , (6.58)

where p(t) is the inverse Laplace transform of P(s) given by (6.57).

Proof By the property L2 of the Laplace transform in § B.1, if U (s) and U �(s)
denote the respective Laplace transforms of u(t) and u�(t), if they exist, we have

H (s )
u ( t )

zoh
ū ( t ) y ( t ) y ( t )

Fig. 6.3 Sampled and holded system
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that
U (s) = H0(s)U

�(s) ,

where, by (6.55) and Table B.1, U �(s) is given by:

U �(s) =
+∞∑
k=0

u(kΔT )e−kΔT s .

The Laplace transform Y (s) of the output y(t) of the system can therefore be
written as

Y (s) = H(s)u(s) = H(s)H0(s)U
�(s) =

+∞∑
k=0

P(s)u(kΔT )e−kΔT s ,

where P(s) is given by (6.57).
By the time shifting Theorem L3 in § B.1, we can write

y(t) = L−1 [Y (s)] (t) =
+∞∑
k=0

p(t − kΔT )u(kΔT ) ,

where p(t) denotes the inverse Laplace transform of P(s). Thus, after sampling the
output y(t) above, we write

y(nΔT ) =
+∞∑
k=0

p
(
(n − k)ΔT

)
u(kΔT ) ,

that is, the discrete-time convolution of the sequences u(kΔT ) and p(kΔT ). Thus,
p(kΔT ) represents the impulse response of the exact discretized system.

Remark 6.53 The sampling-holding by a zoh corresponds to an extrapolation by
means of a polynomial of degree zero. If we sample and hold with a more complex
converter with transfer function Hi (s), corresponding to an extrapolation by means
of a polynomial of higher degree, the previous theorem remains true when H0(s) is
replaced by Hi (s) in the expression (6.57) of P(s). �

Theorem 6.52 makes it possible to compute directly the transfer function of the
exact discretized of a continuous-time l.c.s. system from the original transfer func-
tion, without passing by a state representation. Of course, both methods yield the
same results as illustrated on the following example.
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Example 6.54 Consider the continuous-time l.c.s. system with transfer function

H(s) = 1

(s + 1)(s + 2)
. (6.59)

We look for the transfer function of its exact discretized at period ΔT . The first
method consists in applying Theorem 6.52. For this, we have to evaluate the inverse
Laplace transform of the product P(s) = H(s)H0(s). After decomposition in simple
elements, we obtain

L−1 [P(s)] (t) = 1

2

(
E(t)−E(t −ΔT )

)− (e−t −e−(t−ΔT ))+ 1

2
(e−2t −e−2(t−ΔT )) ,

where E(t) is the Heaviside step function, introduced in Definition 3.11. Therefore,
after transformation in z (see Table B.2), we obtain

Hd(z) = (e−3ΔT + e−ΔT − 2e−2ΔT ) + z(e−2ΔT − 2e−ΔT + 1)

2(z2 − z(e−ΔT + e−2ΔT ) + e−3ΔT )
. (6.60)

The second method consists in displaying a state representation of the l.c.s. system
with transfer function H(s). We check that the matrices

A =
(

0 1
−2 −3

)
, B =

(
0
1

)
, C = (

1 0
)

constitute a realization of the transfer function H(s), that is, satisfy the relation
H(s) = C(s I − A)−1 B. Now, let us compute the matrices of the state representation
of the corresponding discretized system, by applying the results of Theorem 6.2 and
the formula (6.49):

⎧⎪⎪⎨
⎪⎪⎩

Ad = eAΔT =
(

2e−ΔT − e−2ΔT e−ΔT − e−2ΔT

−2e−ΔT + 2e−2ΔT −e−ΔT + 2e−2ΔT

)

Bd =
∫ ΔT

0
eAt B dt =

(
(e−2ΔT − 2e−ΔT + 1)/2

e−ΔT − e−2ΔT

)
.

It is straightforward to check that the formula (6.47) giving the transfer matrix
of the discrete-time system in state representation provides the expected expres-
sion (6.60). �
Remark 6.55 By (6.60), we observe that the poles of the discretized system are e−ΔT

and e−2ΔT that is, eλ1ΔT and eλ2ΔT , where λ1 = −1 and λ2 = −2 are the poles of
the corresponding continuous-time linear dynamical system. Such a property can be
generalized as mentioned in Remark 6.4. �

Regarding the zeros of the system, it is clear by (6.60) in the previous example
that the discretized system posesses a zero at
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z = −e−3ΔT + e−ΔT − 2e−2ΔT

e−2ΔT − 2e−ΔT + 1
,

whereas the continuous-time linear dynamical system with transfer function given
by (6.59) has no zero. It is a general observation that the process of discretization
adds zeros (see for example [6, Chap. 3]). Thus, a system that is minimum phase in
continuous-time can display unstable zeros after discretization.

6.10 Local Stabilization of a Nonlinear Dynamical System
by a Control Law in Discrete-Time

Till now, we have synthesized in § 6.7 a control law allowing, under proper conditions,
to stabilize a discrete-time controlled and observed linear dynamical system around
the origin. We show that, under proper assumptions, the control law discussed in
§ 6.7, designed for a discrete-time linear controlled and observed dynamical system
can indeed stabilize an original continuous-time controlled and observed nonlinear
dynamical system.

Consider the model (5.51) discussed in § 5.8, namely the controlled-observed
nonlinear dynamical system

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ẋ = f (x) + g(x)u = f (x) +
m∑

i=1

gi (x)ui

y = h(x) = (h1(x), . . . , h p(x))� .

(6.61)

Definition 6.56 Let (xe, ue) be an equilibrium point of the linear dynamical system
(6.61), as in Definition 4.34. We call linear controlled-observed tangent discretized
dynamical system at period ΔT of the nonlinear dynamical system (6.61) in the
neighborhood of the equilibrium point (xe, ue), the controlled-observed discrete
time linear dynamical system

{
ξk+1 = Adξk + Bdυk

ζk = Cξk ,
(6.62)

where Ad , Bd and C are the n × n, n × m and p × n matrices given by the following
expressions:

⎧⎪⎨
⎪⎩

A = ∂ f

∂x
(xe) + ∂g

∂x
(xe)ue , B = g(xe) , C = ∂h

∂x
(xe) ,

Ad = eΔT A , Bd =
(∫ ΔT

0
et A dt

)
B .

(6.63)

http://dx.doi.org/10.1007/978-3-642-34324-7_5
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Remark 6.57 In the more general case where ẋ = f (x, u), we refer the reader to
the formulas (4.32). �
Proposition 6.58 Suppose that the controlled-observed tangent discretized linear
dynamical system (6.62) at period ΔT of the continuous-time nonlinear dynamical
system (6.61) is controllable and observable.

Let K and L be gain matrices such that the matrices (Ad − Bd K ) and (Ad − LC)

are asymptotically stable (see Theorem 6.13 and Definition 6.14).
Then, the closed-loop system

⎧⎪⎪⎨
⎪⎪⎩

ẋ = f (x) + g(x)u
y = h(x)

ξ̂k+1 = (Ad − Bd K )ξ̂k − L
(
C ξ̂k − (y(kΔT ) − h(xe))

)
u(t) = ue − K ξ̂k , ∀t ∈ [kΔT, (k + 1)ΔT [

(6.64)

is such that x(t) →t→+∞ xe for all initial conditions (x(0), ξ̂0) in a neighborhood
of (xe, 0).

Proof Let us denote Δx = x − xe and Δu = u −ue. By definition of the matrices A
and B in Definition 6.56, we have that

f (xe + Δx) + g(xe + Δx)(ue + Δu) = AΔx + BΔu + ε1(Δx,Δu) , (6.65)

where ε1 is negligible with respect to its arguments Δx and Δu in a neighborhood
of 0. In the same way, we have that

h(xe + Δx) = h(xe) + CΔx + ε2(Δx) , (6.66)

where ε2 is negligible with respect to its arguments Δx in a neighborhood of 0.
With these notations, the closed-loop system (6.64) yields, on the time interval
[kΔT, kΔT + ΔT ],

⎧⎪⎨
⎪⎩

dΔx(t)

dt
= AΔx(t) − BK ξ̂k + ε1(Δx(t),−K ξ̂k)

ξ̂k+1 = (Ad − LC − Bd K )ξ̂k + L
(
CΔx(kΔT ) + ε2(Δx(kΔT )

)
,

(6.67)

where we used that y(kΔT ) = h
(
xe + Δx(kΔT )

)
by (6.61).

This hybrid dynamical system (in continuous-time and in discrete-time) is
stationary (no explicit dependence in k or t), and we study it on the time interval
[0,ΔT ]. Denote by Φ(t,Δx0, ξ̂0) the solution of the following nonlinear differential
equation, for t ∈ [0,ΔT ]:

http://dx.doi.org/10.1007/978-3-642-34324-7_4
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dΔx(t)

dt
= AΔx(t) − BK ξ̂0 + ε1(Δx(t),−K ξ̂0) , Δx(0) = Δx0 . (6.68)

The mapping Φ is continuous, following general results about differential equations
[5, 18].

Consider two bounded neighborhoods W1 and Ŵ1 of 0 in R
n . First, we prove the

existence of a constant C1 such that the following inequality holds true:

sup
t∈[0,ΔT ]

‖Φ(t,Δx0, ξ̂0)‖≤ C1(‖Δx0‖ + ‖ξ̂0‖) , ∀Δx0 ∈ W1 , ∀ξ̂0 ∈ Ŵ1 . (6.69)

For this purpose, we define

W2 = {Φ(t,Δx0, ξ̂0) | t ∈ [0,ΔT ] , Δx0 ∈ W1 , ξ̂0 ∈ W1} and Ŵ2 = W2 .

These sets are bounded (because the transformation Φ is continuous) and contain
the point 0. As the function ε1 is negligible with respect to its arguments in a neigh-
borhood of 0, we have that

‖ε1(Δx0,−K ξ̂0)‖ ≤ C2(‖Δx0‖ + ‖ξ̂0‖) , ∀Δx0 ∈ W2 , ∀ξ̂0 ∈ Ŵ2 .

Now, taking Δx0 ∈ W1 and ξ̂0 ∈ Ŵ1, we have that the solution Δx(t) =
Φ(t,Δx0, ξ̂0) of (6.68) belongs to Ŵ2 = W2, by definition of these sets and, there-
fore, the last term in (6.68) satisfies

‖ε1(Δx(t),−K ξ̂0)‖ ≤ C2(‖Δx(t)‖ + ‖ξ̂0‖) . (6.70)

If Δx0 ∈ W1 and ξ̂0 ∈ Ŵ1, we deduce from (6.68) and (6.70) the following
inequality

‖Δx(t)‖ ≤ (‖A‖+C2)

∫ t

0
‖Δx(s)‖+ΔT (‖BK‖+C2)‖̂ξ0‖+‖Δx0‖ , ∀t ∈ [0,ΔT ] ,

and (6.69) is a consequence of the Gronwall Lemma (see [18, p.117]).
Now, let us focus on the transitions between the times kΔT and kΔT + ΔT for

the closed-loop system (6.64). From (6.67), we deduce that

Δx(kΔT + ΔT ) = eΔT AΔx(kΔT )

+
∫ kΔT +ΔT

kΔT
e(kΔT +ΔT −s)A (−BK ξ̂k + ε1(Δx(s),−K ξ̂k)

)
ds

= eΔT AΔx(kΔT )

+
∫ ΔT

0
es A (−BK ξ̂k + ε1(Δx(kΔT + ΔT − s),−K ξ̂k)

)
ds

= AdΔx(kΔT ) − Bd K ξ̂k
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+
∫ ΔT

0
es Aε1(Δx(kΔT + ΔT − s),−K ξ̂k) ds

= (Ad − Bd K )Δx(kΔT ) − Bd K (ξ̂k − Δx(kΔT ))

+
∫ ΔT

0
es Aε1(Δx(kΔT + ΔT − s),−K ξ̂k) ds .

By (6.67) and the previous equation, the vector

ΔXk =
(

Δx(kΔT )

ξ̂k − Δx(kΔT )

)
(6.71)

satisfies the induction

ΔXk+1 =
(

Ad − Bd K −Bd K
0 Ad − LC

)
ΔXk

+

⎛
⎜⎜⎝

∫ ΔT

0
es Aε1(Δx(kΔT + ΔT − s),−K (Δek + Δx(kΔT ))) ds

Lε2(Δx(kΔT )) −
∫ ΔT

0
es Aε1(Δx(kΔT + ΔT − s),−K (Δek + Δx(kΔT ))) ds

⎞
⎟⎟⎠ .

Then, let us introduce the notations

F =
(

Ad − Bd K −Bd K
0 Ad − LC

)
,

for the linear part, and

p

(
η
ρ

)
=

⎛
⎜⎜⎝

∫ ΔT

0
es Aε1

(
Φ(ΔT − s, ρ, η + ρ),−K (η + ρ)

)
ds

Lε2(ρ) −
∫ ΔT

0
es Aε1

(
Φ(ΔT − s, ρ, η + ρ),−K (η + ρ)

)
ds

⎞
⎟⎟⎠ ,

for the perturbation term. By the stationarity of the system (6.67), we check that

ΔXk+1 = FΔXk + p(ΔXk) , ∀k ∈ N . (6.72)

Now, by the estimation (6.69), the perturbation term p is, as ε1 in (6.65) and ε2
in (6.66), negligible with respect to its arguments in a neighborhood of 0. The
matrix F being asymptotically stable by assumption, we deduce from Proposi-
tion 6.17 that ‖ΔXk‖ →k→+∞ 0 for initial conditions (x(0), ξ̂0) in a neighborhood
of (xe, 0).

Now, for t ∈ [kΔT, (k + 1)ΔT [, we have that,

‖Δx(t)‖ ≤ sup
s∈[kΔT,kΔT +ΔT ]

Φ(s,Δx(kΔT ), ξ̂k) ≤ C1(‖Δxk‖ + ‖ξ̂k‖) ,
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because the hybrid dynamical system (6.67) is stationary, and by the estimation
(6.69). By the definition (6.71) of ΔXk , and by ‖ΔXk‖ →k→+∞ 0, we deduce that

‖x(t) − xe‖ = ‖Δx(t)‖ →t→+∞ 0 ,

for initial conditions (x(0), ξ̂0) in a neighborhood of (xe, 0). �
Let us underline that, unlike the case of a controlled-observed linear system, such

a control law is a priori stabilizing only when the state x is in a neighborhood of the
equilibrium point xe.

6.11 Practical Set Up

In this chapter, we have brought an answer to the problem raised by the discrete-time
character of controls and of measurements, and discussed in § 5.10. The question of
the modes placement remains open because of the stability-precision dilemma yet
discussed in § 5.10: the sensitivity analysis with respect to parameters performed
for continuous-time systems remains valid and can be extended without difficulty to
the observer-regulator synthesis case obtained by the separation principle. Also, the
consideration of perturbations has not been tackled in the multivariable case.

In the following chapter, we bring a possible answer to the question of the modes
placement. The same framework also contributes to tackle the issue of how to deal
with perturbations.

6.12 Exercises

Exercise 6.12.1 We proceed with the study of the mixing process begun in Exer-
cises 2.6.1 and 5.11.1.

1. Compute the exact discretized (with a zero-order hold) of the tangent linear
dynamical system, sampled at period ΔT .

2. Study the stability of the discrete-time system obtained, as well as its controlla-
bility and observability properties.

Exercise 6.12.2 Same questions with the system ball + rail discussed in Exer-
cises 2.6.3, 47.8.5 and 5.11.3.

Exercise 6.12.3 Consider the continuous-time linear dynamical system:

⎧⎪⎪⎨
⎪⎪⎩

(
ẋ1
ẋ2

)
=

(
0 1

−1 0

) (
x1
x2

)
+

(
0
1

)
u

y = (
1 0

) (
x1
x2

)
.

http://dx.doi.org/10.1007/978-3-642-34324-7_5
http://dx.doi.org/10.1007/978-3-642-34324-7_5
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1. Show that this system is controllable and observable.
2. Compute its exact discretized with a zoh at sampling period ΔT .
3. What is the condition on ΔT for the exact discretized system to remain observable

and controllable?

Exercise 6.12.4 Calculate the z-transform of the following signals sampled at the
period ΔT : eat , α cosωt , α sinωt (see § B.2).

Exercise 6.12.5 Prove the final value Theorem Z6 in § B.2, that is,

lim
z→1

(1 − z−1)X (z) = lim
k→+∞ xk ,

if X (z) is the z-transform of the sequence (xk).

Exercise 6.12.6 Show that the transfer function

H(z) = 1 − 2z−1 cosωΔT + z−2

asymptotically filters the periodic inputs of pulsation ω.



Chapter 7
Quadratic Optimization and Linear Filtering

7.1 Introduction

Up to now, we have shed light on control methods which require the modes place-
ment of the matrix of the closed-loop system in a stability domain, whether an open
half-space in continuous-time or an open disk in discrete-time. However, no recom-
mendation is given regarding the positioning of these modes: should they be close
to the border? or far away?

We can extend the analysis in § 5.10 for continuous-time dynamical systems, and
deduce that, for a linear dynamical system in discrete-time, a compromise must be
achieved. Indeed, modes close to the unit circle provide stability but poor precision,
whereas when close to the circle center, precision is high but stability is poor. This
compromise can be achieved by tuning the parameters of the control law, namely
the gains of the control and of the observer, and performing numerical simulations.
We can also try to quantify stability and precision and weigh them in a criterion
(objective function) to be minimized with respect to the “best control”. This is the
program that we implement in § 7.2 where we show how the gains of the controller
can be obtained by means of the solution of a quadratic optimization problem.

In a dual way, the issue for the observer is one of quantifying stability—here the
capacity to absorb measurement errors—and precision, the discrepancy between the
estimation of the state and the state itself. This question is tackled in § 7.3 where we
show how the gain of the observer can be obtained by means of the solution of a
linear filtering problem, after introducing a probabilistic framework to account for
perturbations and measurement errors.

We detail the results in the discrete-time case, and we state them more briefly in
the continuous-time case in § 7.4.

B. d’Andréa-Novel and M. De Lara, Control Theory for Engineers, 165
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7.2 Quadratic Optimization and Controller Modes Placement

Consider the controlled linear dynamical system in discrete-time

xk+1 = Ad xk + Bduk , k ∈ N . (7.1)

Our goal is to drive the state towards 0. By the proof of Theorem 6.21, we know that
this can be achieved by a sequence of n controls as soon as the couple (Ad , Bd) is
controllable. However, we favor here another approach that takes into account the
link between the “cost” of a control (the energy to exert it) and its impact on the state
(the distance to the target state 0), independent of any controllability assumption. We
touch on how to quantify this cost and this impact, and we define a benchmark to
compare the performances of different controls. We show the existence of a control
law which is optimal regarding this criterion. This control law is a linear state feed-
back, but with a gain that depends on time. This result is obtained without assumption
of controllability. When controllability holds true, we show that, as time goes on, this
gain converges towards a fixed gain that makes the matrix of the closed-loop dynam-
ics asymptotically stable. Therefore, we now have a method of mode placement of
the regulator, and the linear feedback (6.31) of Theorem 6.23 is thus recovered as
solution of an optimization problem.

We suppose given R, symmetric definite positive matrix of size m (number of
scalar controls), and Q symmetric positive matrix of size n (dimension of the state).

We refer the reader to Appendix A for recalls on symmetric matrices, and for
results on Riccati equations.

7.2.1 Optimization in Finite Horizon

Here, the finite horizon is an integer f ≥ 1. For a sequence of controls u0, …, u f −1
and an initial state x0, we obtain a trajectory x0, x1,…, x f −1, x f by (7.1).

We quantify cost and impact of this sequence of controls in a quadratic way within
an intertemporal criterion as follows.

Definition 7.1 If Qf is a symmetric positive matrix of size n, we define the intertem-
poral criterion (with penalization on the final state) by

J(u) = J(u0, . . . , u f −1) =
f −1∑
k=0

(u�
k Ruk + x�

k Qxk) + x�
f Q f x f , (7.2)

where the state trajectory x0, x1,…, x f −1, x f is given by (7.1). The symmetric positive
matrices Q and R are called ponderation matrices.

http://dx.doi.org/10.1007/978-3-642-34324-7_6
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Notice that the criterion J is nonnegative, and that it weighs both the state and
the control. According to the relative importance of the ponderation matrices Q and
R, more or less weight is attached to the state or to the control in the criterion J .

Then, a sequence of controls u0, …, u f −1 that minimizes the criterion J is looked
after. The following proposition provides a solution.

Proposition 7.2 The following backward induction is well defined:

⎧⎨
⎩

S f = Q f

Sk−1 = Q + A�
d Sk Ad − A�

d Sk Bd(R + B�
d Sk Bd)−1 B�

d Sk Ad

k = f, . . . , 1 .

(7.3)

The solution sequence S f ,…, S0 consists of symmetric positive matrices. The mini-
mum of the criterion (7.2) is

min
u

J (u) = x�
0 S0x0 . (7.4)

Denoting

Kk = (R + B�
d Sk+1 Bd)−1 B�

d Sk+1 Ad , k = 0, . . . , f − 1, (7.5)

this minimum is achieved for the following linear state feedback (optimal control)

u�
k = −Kk x�

k , k = 0, . . . , f − 1, (7.6)

where (x�
k )k=0,..., f −1 is the optimal trajectory corresponding to the application of

the optimal control (7.6) to the dynamics (7.1), namely x�
0 = x0 and

x�
k+1 = Ad x�

k + Bdu�
k = (Ad − Bd Kk)x�

k , k = 0, . . . , f − 1.

Proof For the backward induction (7.3) to be well defined, it suffices to show that
every matrix R + B�

d Sk Bd (k = f , …, 1) is invertible.
Since S f = Q f ≥ 0, then, by assumption on R (positive definite), we have that

R + B�
d S f Bd ≥ R > 0 ,

which implies that the matrix R + B�
d S f Bd is invertible. Therefore, the expres-

sion (7.3) has proper meaning for k = f , and S f −1 is well defined. The backward
induction (7.3) is well defined as soon as we show that

S ≥ 0 ⇒ Q + A�
d S Ad − A�

d SBd(R + B�
d SBd)−1 B�

d S Ad ≥ 0 .

Now, with the notations of Definition A.1 in Appendix A, we write

ψ(S) = Q + A�
d S Ad − A�

d SBd(R + B�
d SBd)−1 B�

d S Ad ,
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as in (A.1), with Q = H�H (H is a square root of Q), F = Ad and G = Bd . By
Lemma A.2, we obtain that ψ(S) ≥ ψ(0) = Q ≥ 0 since S ≥ 0.

Now, we are going to show that the criterion J (u) in (7.2) can be written under
the form

J (u) = x�
0 S0x0 +

f∑
k=1

(uk−1 + Kk−1xk−1)�(R + B�
d Sk Bd )(uk−1 + Kk−1xk−1) , (7.7)

from which the rest of the proposition is immediately deduced.
We write the criterion (7.2) under the form:

J (u) =
f −1∑
k=0

(u�
k Ruk + x�

k Qxk) + x�
f Q f x f

=
f∑

k=1

(
u�

k−1 x�
k−1

) (
R 0
0 Q

) (
uk−1
xk−1

)
+ x�

f Q f x f .

By (7.3), we have that

x�
f Q f x f = x�

f S f x f = x�
0 S0x0 +

f∑
k=1

(x�
k Sk xk − x�

k−1Sk−1xk−1) ,

where, by (7.1), x�
k Sk xk is given by the expression

x�
k Sk xk = (Ad xk−1 + Bduk−1)

�Sk(Ad xk−1 + Bduk−1)

=
(

u�
k−1 x�

k−1

) (
B�

d Sk Bd B�
d Sk Ad

A�
d Sk Bd A�

d Sk Ad

) (
uk−1
xk−1

)
.

Combining the three above expressions, we obtain:

J (u) = x�
0 S0x0 +

f∑
k=1

(
u�

k−1 x�
k−1

)

×
(

R + B�
d Sk Bd B�

d Sk Ad

A�
d Sk Bd Q + A�

d Sk Ad − Sk−1

) (
uk−1
xk−1

)
.

Using the induction (7.3), we observe that the lower right term of the last matrix is

Q + A�
d Sk Ad − Sk−1 = A�

d Sk Bd(R + B�
d Sk Bd)−1 B�

d Sk Ad .
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Computation shows that

J (u) = x�
0 S0x0 +

f∑
k=1

(uk−1 + (R + B�
d Sk Bd)−1 B�

d Sk Ad xk−1)
�(R + B�

d Sk Bd)

(uk−1 + (R + B�
d Sk Bd)−1 B�

d Sk Ad xk−1) ,

and (7.7) is proven thanks to the expression (7.5). �

Remarks

• If the matrices Ad , Bd , Q and R depend on the time k, the result and the pre-
vious formulas remain valid. This makes it possible to compute optimal linear
state feedbacks, not stationary and not necessarily stabilizing, around a trajectory
(see § 5.9.3).

• Notice, however, that even with stationary matrices Ad , Bd , Q and R, the control
that minimizes the criterion J is a linear state feedback (7.6) with time varying
gain matrix Kk given by (7.5).

Now, we show that the solution of an optimization problem in infinite horizon is
a linear state feedback control displaying fixed gain.

7.2.2 Optimization in Infinite Horizon. Links with Controllability

We now show that the stabilizing linear state feedback control (6.31) with stationary
gains discussed in Chap. 6 minimizes an intertemporal criterion.

Definition 7.3 Let U be the set of control sequences u = (uk)k∈N such that the state
trajectory (xk)k∈N given by (7.1) converges towards 0 and that

∑+∞
k=0(u

�
k Ruk +

x�
k Qxk) < +∞. We define an intertemporal criterion J on U as follows:

J (u) =
+∞∑
k=0

(u�
k Ruk + x�

k Qxk) , ∀u ∈ U . (7.8)

Here is a first sufficient condition of existence of an optimal control sequence for
the criterion J .

Proposition 7.4 Suppose that there exists a symmetric positive matrix S such that:

1. S is solution of the algebraic stationary Riccati equation

S = Q + A�
d S Ad − A�

d SBd(R + B�
d SBd)−1 B�

d S Ad ; (7.9)

2. the matrix Ad − Bd(R + B�
d SBd)−1 B�

d S Ad is asymptotically stable.

http://dx.doi.org/10.1007/978-3-642-34324-7_5
http://dx.doi.org/10.1007/978-3-642-34324-7_6
http://dx.doi.org/10.1007/978-3-642-34324-7_6
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Then, the minimum of the criterion (7.8) on U satisfies

min
u∈U

J (u) = x�
0 Sx0 . (7.10)

Denoting
K = (R + B�

d SBd)−1 B�
d S Ad , (7.11)

this minimum is achieved for the following control sequence, given by linear state
feedback,

u�
k = −K x�

k , k ∈ N , (7.12)

where (x�
k )k ∈ N is the optimal trajectory corresponding to the application of the

optimal control (7.12), that is, x�
0 = x0 and

x�
k+1 = Ad x�

k + Bdu�
k = (Ad − Bd K )x�

k , k ∈ N . (7.13)

Proof For all integer f ≥ 1, denote by

J f (u) =
f −1∑
k=0

(u�
k Ruk + x�

k Qxk)

the criterion up to time f , without penalization of the final state, that is, Q f = 0
in (7.2). Using (7.9), a computation similar to that of the proof of Proposition 7.2
makes it possible to write

J f (u) + x�
f Sx f = x�

0 Sx0 +
f∑

k=1

(uk−1 + K xk−1)
�(R + B�

d SBd)(uk−1 + K xk−1) .

We deduce that

J f (u) + x�
f Sx f ≥ x�

0 Sx0 = x�
0
�Sx�

0 = J f (u
�) + x�

f
�Sx�

f , (7.14)

where the control u� is given by (7.12). We have that u� belongs to U because, by
asssumption, the matrix Ad − Bd K is asymptotically stable, so that (7.12) and (7.13)
yield state and control trajectories that converge exponentially to zero (see the proof
of Proposition 6.12).

For u ∈ U , we have that:

J (u) = lim
f →+∞ J f (u) by definition of U

= lim
f →+∞(J f (u) + x�

f Sx f ) because x f → f →+∞ 0 by definition of U
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≥ lim
f →+∞(J f (u

�) + x�
f
�Sx�

f ) by (7.14)

= lim
f →+∞ J f (u

�) because x�
f → f →+∞ 0 since u� ∈ U

= J (u�) .

This ends the proof. �

The existence of a matrix S that satisfies the two assumptions of Proposition 7.4
is assured under the following assumptions on the dynamics matrix Ad , the control
matrix Bd and the state ponderation matrix Q (the proof is given in Proposition A.4).

Proposition 7.5 Suppose that

1. the couple (Ad , Bd) is controllable;
2. there exists a square root H of the matrix Q (Q = H�H) such that the couple

(Ad , H) (or (Ad , H Ad)) is observable.

Then, there exists a unique symmetric positive matrix S which satisfies the two
assumptions of Proposition 7.4. Moreover, the matrix S is positive definite and is the
limit of all the sequences

Sk+1 = Q + A�
d Sk Ad − A�

d Sk Bd(R + B�
d Sk Bd)−1 B�

d Sk Ad , (7.15)

for all initial condition S0 ≥ 0.

7.2.3 Implementation

Propositions 7.4 and 7.5 offer an alternative to the method of modes placement of
Theorem 6.23. Indeed, if the system (7.1) is controllable and if we choose ponderation
matrices of the form Q = H� H and R such that the couple (Ad , H) (or (Ad , H Ad))
is observable, then the unique symmetric positive solution S of the algebraic Riccati
equation (7.9) makes it possible to compute the gain K in (7.11), which makes the
matrix Ad − Bd K asymptotically stable.

From a practical point of view, we approximate S by a matrix Sk given by the
induction (7.15) and, if k is large enough, the gain matrix Kk in (7.5) is close to K .
Therefore, Ad − Bd Kk is asymptotically stable for this fixed k by Proposition 2.28.

We can note that the problem of the modes choice is now an issue of choosing
ponderation matrices Q and R in a quadratic intertemporal criterion.

7.3 Kalman-Bucy Filter and Observer Modes Placement

For a linear controllable system, an appropriate linear state feedback makes the
closed-loop dynamics matrix asymptotically stable (see Theorem 6.23). Now, the
state xk is often only partially known through measurements and we discussed in
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Theorem 6.27 how to build a dynamical system driven by the measurements y1, …,
yk , the output of which is an approximation x̂k of the state xk . In a sense, this
observer performs a compromise between the information about the state brought by
the measurements (more or less corrupted by measurements errors) and the prevision
of the state produced by the dynamics (6.3) (more or less faithful to the theoretical
future state). In what follows, we propose to quantify the quality of measurements
and of the state-model by means of probabilistic notions, and to find the observer as
a conditional expectation, that is, one that minimizes a quadratic criterion, weighting
the random effects.

We suppose that the reader is familiar with basic notions of probability calculus:
random variable, expectation, variance, dispersion, conditional expectation, inde-
pendence [11,31]. Some review of Gaussian vectors is given in Appendix C.

The introduction of a probabilistic, or stochastic framework is a way to handle
measurement errors, rather inevitable due to the nature of sensors. At each time k,
we do not measure yk = h

(
x(kΔT )

)
as in ( 6.60), but rather

yk = h
(
x(kΔT )

) + measurement noise.

The quality of the result supplied by the observers in Theorems 6.27 and 6.28 depends
on the importance of the “measurement noise,” assumed to be additive here, according
to the sensors quality. How to quantify this importance? By nature, this noise is not
known at each measurement instant, but some general information is assumed:

• if the sensor is not biaised, this noise is zero in the mean;
• the amplitude of the noise is an indicator of the precision of the sensor.

We model such a noise as a random variable, or as random vector. Thus, the value
yk of the measurement becomes itself random since

yk = h
(
x(kΔT )

) + random vector.

Moreover, the introduction of random variables is a way to capture other effects, such
as those due to linearization. Indeed, the observer is generally built from a first-order
approximation characterized by C = ∂h

∂x (xe) (see Definition 6.56). We have that

yk = h(xe) + C(x(kΔT ) − xe) + higher order terms + noise,

and it is tempting to gather the two last terms in a random vector. This is why,
rather than the tangent discretized linear dynamical system (6.61), we consider the
representation {

ξk+1 = Adξk + Bdυk

ζk = Cξk + wk

where w0, w1, . . . is a sequence of random vectors (with the same dimension as that of
the observations). Statistical properties of this random sequence capture and quantify
the effets of linearization and of measurement noise. But, before highlighting this

http://dx.doi.org/10.1007/978-3-642-34324-7_6
http://dx.doi.org/10.1007/978-3-642-34324-7_6
http://dx.doi.org/10.1007/978-3-642-34324-7_6
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issue, one may wonder why only the observation is corrupted by noise, whereas the
dynamics would be immune to it. We consider randomness in the dynamics, because
the linear dynamics of the state is also often an approximation due to linearization,
and because of perturbations too. This is why, we now focus on systems defined
as below.

Definition 7.6 We call controlled and observed linear dynamical system in discrete-
time with additive noises the following system

{
xk+1 = Ad xk +Bduk + vk , k ≥ 0

yk = Cxk +wk , k ≥ 1 ,
(7.16)

where the sequence of random vectors (vk)k∈N is called state noise and (wk)k≥1
measurement noise.

Remark 7.7 We also use the terminology of linear system excited by the state noise
(vk)k∈N. 	

For such systems, the problem of the state estimation by means of measurements
is formulated as a problem of filtering and rests upon the probabilistic notions of
distribution and of conditional expectation: characterize, for all time k, the condi-
tional distribution of the state xk knowing the observations y1,…, yk up to time k.
This problem can be solved explicitly in the case of Gaussian linear systems (to be
discussed below, see also [41]).

7.3.1 The Kalman-Bucy Filter

The observer displayed in Theorem 6.28 is an algorithm allowing to recursively
compute x̂k+1 in function of x̂k (state of the dynamical system observer) and of yk+1
(input that drives the observer dynamical system). This recursive structure is also
that of the solution brought by Kalman and Bucy to the problem of estimation of the
state of a linear Gaussian dynamical system.

Definition 7.8 We say that a sequence of random vectors is a (stationary) Gaussian
white noise if it is an independent (and identically distributed) sequence of centered
random vectors having Gaussian distribution.

Remark 7.9 In this definition, “noise” corresponds to centered or of zero mean,
“white” corresponds to decorrelation/independence (“colored noise” corresponds to
correlation), and “stationary” to identically distributed. 	
Definition 7.10 The system (7.16) is said to be linear Gaussian dynamical system
with independent noises if

1. the control uk depends affinely on the observations y1,…, yk up to time k;
2. the initial state x0 is a Gaussian random vector;
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3. the sequence (vk)k∈N of state noises is a stationary Gaussian white noise;
4. the sequence (wk)k≥1 of observation noises is a stationary Gaussian white noise;
5. the random vectors and processes x0, (vk)k∈N and (wk)k≥1 are independent.

Consider the linear Gaussian system (7.16) with independent noises. We set

x̂k := E
[
xk | y1, . . . , yk

]
, (7.17)

the conditional mean x̂k given by the conditional expectation of the state xk knowing
the observations y1, …, yk up to time k. We also set

Pk := D(x̂k − xk) , (7.18)

the dispersion matrix of the error

ek := x̂k − xk . (7.19)

The innovation at time k + 1 is the centered random vector

ik+1 := yk+1 − E
[
yk+1 | y1, . . . , yk

]
. (7.20)

Proposition 7.11 Consider the linear Gaussian system (7.16) with independent
noises. Then, the conditional distribution of the state xk knowing the observations
y1,…, yk up to time k is Gaussian with mean x̂k given by (7.17) and dispersion matrix
Pk given by (7.18). Moreover, the random vector (ik+1, y1, . . . , yk) is Gaussian, and
the innovation ik+1 is independent of the outputs y1,…, yk .

Proof First, we show that, for all integer k, the random vector (xk, yk, . . . , y1),
made of “state-observations” vectors, is Gaussian.

Indeed, the random vector (x0, v0, v1, . . . , vk, w1, . . . , wk) is Gaussian by Propo-
sition C.9. By Proposition C.7, the random vector (xk, yk, . . . , y1) is Gaussian since
it is obtained by an affine transformation from x0, v0, v1,…, vk , w1,…, wk , as can
be seen on the expression (7.16), and by the property 1 in Definition 7.10 that the
control uk depends affinely on the observations y1,…, yk .

At last, thanks to Proposition C.11, we conclude that the conditional distribution
of the state xk knowing the observations y1,…, yk up to time k is Gaussian, with the
parameters x̂k and Pk .

By Proposition C.11, the random vector (ik+1, y1, . . . , yk) is Gaussian and the
innovation ik+1 is independent of the outputs y1,…, yk . �

The following so-called Kalman-Bucy filter makes it possible to recursively com-
pute the parameters x̂k and Pk of the conditional distribution of the state xk by
induction.



7.3 Kalman-Bucy Filter and Observer Modes Placement 175

We set the so-called predicted state

x̂−
k+1 := E

[
xk+1 | y1, . . . , yk

]
, (7.21)

and the following matrices

{
P−

k+1 = D(xk+1 − x̂−
k+1)

Lk+1 = P−
k+1C�(C P−

k+1C� + R)−1 .
(7.22)

Theorem 7.12 Consider the linear Gaussian system (7.16) with independent noises.
Suppose that

• the initial state is Gaussian with mean E
[
x0

] = x0 and dispersion D(x0) = P0;
• the state stationary Gaussian white noise has dispersion D(vk) = Q, ∀k ∈ N;
• the measurement stationary Gaussian white noise has dispersion D(wk) = R,

∀k ≥ 1, where R > 0.

Then, the characteristics of the conditional distribution of the state xk knowing the
observations y1,…, yk , namely the vector x̂k in (7.17) and the dispersion matrix Pk

in (7.18), are given by the following recursive algorithm, called Kalman-Bucy filter:

initialization: x̂0 = x0 , P0 = P0

propagation:

⎧⎨
⎩

x̂−
k+1 = Ad x̂k + Bduk

P−
k+1 = Ad Pk A�

d + Q

updating:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x̂k+1 = x̂−
k+1 + Lk+1(yk+1 − Cx̂−

k+1)

Lk+1 = P−
k+1C�(C P−

k+1C� + R)−1

Pk+1 = (I − Lk+1C)P−
k+1 .

(7.23)

Remark 7.13 The propagation step in the previous induction only makes use of the
observations y1, …, yk :

x̂−
k+1 = E

[
xk+1 | y1, . . . , yk

]
and P−

k+1 = D(xk+1 − x̂−
k+1) .

The updating step takes into account the contribution of the last observation yk+1. 	
The proof of Theorem 7.12 is classical [41]. The sketch of the proof is the

following:

• because (xk+1, y1, . . . , yk+1) is a Gaussian vector, the conditional expectation
E

[
xk+1 | y1, . . . , yk+1

]
of xk+1 knowing y1,…, yk+1 coincides with the orthogonal
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projection of xk+1 on the linear space Yk+1 of random variables generated by
1, y1,…, yk+1;

• this space can be written as a direct orthogonal sum Yk+1 = Yk
⊥⊕ Rik+1 where

ik+1 is the innovation defined in (7.20);
• the orthogonal projection of xk+1 on Yk+1 is expressed as the sum of the orthogonal

projection of xk+1 on Yk and on Rik+1;
• the conditional expectation E

[
xk+1 | y1, . . . , yk+1

]
is a sum, with one term that

only depends on y1,…, yk and the other one only on the innovation ik+1.

In the new observation yk+1 at time k +1, the innovation represents the part which
is decorrelated (even independent) from the previous observations y1,…, yk up to
time k. This term is crucial to obtain a recursive formula.

Now, we skip to the proof of Theorem 7.12.

Proof (Theorem 7.12)
We compute

x̂k+1 = E
[
xk+1 | y1, . . . , yk+1

]
= E

[
xk+1 | y1, . . . , yk, ik+1

]
by (7.20)

= E
[
xk+1 | y1, . . . , yk

] + Lk+1ik+1 by Lemma C.12,

where cov(xk+1, ik+1) = Lk+1D(ik+1).
By (7.21), we have that

x̂−
k+1 = E

[
Ad xk + Bduk + vk | y1, . . . , yk

]
by (7.1)

= AdE
[
xk | y1, . . . , yk

] + Bd E
[
uk | y1, . . . , yk

]
︸ ︷︷ ︸

uk

+ E
[
vk | y1, . . . , yk

]
︸ ︷︷ ︸

E

[
vk

]
=0

= AdE
[
xk | y1, . . . , yk

] + Bduk

= Ad x̂k + Bduk ,

where we have used, on the one hand, that uk only depends, by assumption, on
y1,…, yk (item 1 in Definition 7.10), and, on the other hand, that vk is centered and
independent of y1,…, yk by (7.16).

We now evaluate the matrix Lk+1 solution of cov(xk+1, ik+1) = Lk+1D(ik+1).
First, let us compute D(ik+1) thanks to

ik+1 = yk+1 − E
[
yk+1 | y1, . . . , yk

]
by (7.20)

= Cxk+1 + wk+1 − E
[
Cxk+1 + wk+1 | y1, . . . , yk

]
by (7.16)

= Cxk+1 + wk+1 − CE
[
xk+1 | y1, . . . , yk

] − E
[
wk+1 | y1, . . . , yk

]
︸ ︷︷ ︸

E

[
wk+1

]
=0

= C
(
xk+1 − x̂−

k+1

) + wk+1 .
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By (7.16), wk+1 is independent of xk+1 − x̂−
k+1, so that D(ik+1) is invertible. Indeed,

we have that

D(ik+1) = D(C
(
xk+1 − x̂−

k+1

)
) + D(wk+1)

= CD(xk+1 − x̂−
k+1)C

� + R ≥ R > 0 ,

by assumption on the measurement noises. Then, we compute

cov(xk+1, ik+1) = cov(xk+1 − x̂−
k+1, ik+1) + cov(x−

k+1, ik+1)

= cov(xk+1 − x̂−
k+1, ik+1)

by independence of y1, . . . , yk and ik+1

= cov(xk+1 − x̂−
k+1, C

(
xk+1 − x̂−

k+1

) + wk+1)

by the expression of ik+1 computed above

= D(xk+1 − x̂−
k+1)C

�.

With the notation (7.22), we have, up to now, obtained the expression

x̂k+1 = Ad x̂k + Bduk + Lk+1
(
yk+1 − C(Ad x̂k + Bduk)

)
.

It remains to compute a recursive formula for the matrix Lk+1 by means of

P−
k+1 = D(xk+1 − x̂−

k+1)

= D(Ad xk + Bduk + vk − Ad x̂k − Bduk)

= D
(

Ad(xk − x̂k)
) + D(vk)

= AdD(xk − x̂k)A�
d + Q .

Regarding the dispersion Pk = D(xk − x̂k) of the error (7.19), it satisfies:

Pk+1 = D(xk+1 − x̂k+1)

= D(xk+1 − x̂−
k+1 − Lk+1ik+1)

= D(xk+1 − x̂−
k+1)

−cov(xk+1 − x̂−
k+1, Lk+1ik+1)D(Lk+1ik+1)

−1cov(xk+1 − x̂−
k+1, Lk+1ik+1)

�

by Lemma C.13 (with X = xk+1 − x̂−
k+1 and Y = Lk+1ik+1)

= P−
k+1 − Lk+1C P−

k+1 .

This concludes the proof. �

Remark 7.14 If the matrices Ad , Bd , C , Q and R depend on time k, the previous
result and formulas remain valid. This makes it possible to compute nonstationary
optimal state estimators (in the sense of conditional expectation). 	
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7.3.2 Convergence of the Filter. Links with Observability

Let us write the recursive equations (7.23) of the Kalman-Bucy filter, but skipping
the intermediary variables x̂−

k and Pk :

⎧⎪⎨
⎪⎩

x̂k+1 = Ad x̂k + (Bd − Lk+1C Bd)uk + Lk+1(yk+1 − C Ad x̂k)

P−
k+1 = Q + Ad P−

k A�
d − Ad P−

k C�(R + C P−
k C�)−1C P−

k A�
d

Lk+1 = P−
k+1C�(C P−

k+1C� + R)−1.

Under this last form, the Kalman-Bucy filter (7.23) appears like an observer (dis-
cussed in § 6.6) of equation

x̂k+1 = Ad x̂k + (Bd − Lk+1C Bd)uk + Lk+1(yk+1 − C Ad x̂k) , (7.24)

with time varying gain matrix Lk given by the induction

{
P−

k+1 = Q + Ad P−
k A�

d − Ad P−
k C�(R + C P−

k C�)−1C P−
k A�

d

Lk+1 = P−
k+1C�(C P−

k+1C� + R)−1.

Indeed, it suffices to compare (7.24) to the formula (6.36) of the observer in
Theorem 6.28 (but not the one to be found in Theorem 6.27).

As discussed in § 6.6, an observer has the property that the discrepancy between
the estimate of the state and the state itself converges towards 0. Here, due to random
terms, such a notion of convergence is not adapted. However, we show that, under
proper assumptions, the estimation error (7.19) of the Kalman-Bucy filter converges,
in the sense of convergence in distribution, towards a centered Gaussian distribution,
and the time-varying gain converges towards a fixed stabilizing gain.

Proposition 7.15 Suppose that

1. the couple (Ad , C) (or (Ad , C Ad)) is observable;
2. there exists a square root G of the matrix Q (Q = GG�) such that the couple

(Ad , G) is controllable.

Then, the matrices P−
k , Pk and Lk of the Kalman-Bucy filter (7.23) converge towards

matrices denoted respectively P−, P and L, that do not depend on the initial condi-
tions x0 and P0. The matrix Ad − LC Ad is asymptotically stable and the estimation
error (7.19) converges in distribution towards a centered Gaussian distribution with
dispersion matrix P.

Moreover, the matrix P− is positive definite and is obtained as limit of any
sequence

P−
k+1 = Q + Ad P−

k A�
d − Ad P−

k C�(R + C P−
k C�)−1C P−

k A�
d , (7.25)

http://dx.doi.org/10.1007/978-3-642-34324-7_6
http://dx.doi.org/10.1007/978-3-642-34324-7_6
http://dx.doi.org/10.1007/978-3-642-34324-7_6
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for any initial condition P−
0 ≥ 0. We also have that

L = P−C�(R + C P−C�)−1 and P = (I − LC)P−.

Proof First, let us apply Proposition A.4 to the couple (A�
d , C�) and to the couple

(A�
d , G�). This assures the existence of a positive symmetric matrix P−, stationary

solution of the Riccati equation (7.25).
Regarding the error ek in (7.19), one observes by (7.24) and (7.16) that is satisfies

the induction

ek+1 = Adek + Lk+1C Bduk − Lk+1(Cxk+1 + wk+1 − C Ad x̂k)

= Adek + Lk+1C Bduk − Lk+1(C Ad xk + C Bduk + Cvk + wk+1 − C Ad x̂k)

= Adek − Lk+1(C Adek + Cvk + wk+1)

= (Ad − Lk+1C Ad)ek − Lk+1(Cvk + wk+1) .

Notice that, by the assumptions of Theorem 7.12, the sequence (Cvk + wk+1)k∈N

is made of independent random variables. Moreover, Cvk + wk+1 is Gaussian as a
linear combination of independent Gaussian random variables, by Proposition C.9
and Proposition C.7. Thus, (Cvk + wk+1)k∈N is a Gaussian white noise. Thus, the
sequence e1,…, ek of errors is generated by a linear dynamical system excited by a
Gaussian white noise, with an independent initial condition e0 = x0 − x0. Therefore,
by Proposition C.7 and Proposition C.8, the random variables ek are Gaussian with
zero mean. By Definition C.5 and Proposition C.6, the characteristic function Φek of
the error ek is thus given by:

Φek (θ) = exp(−1

2
θ�D(ek)θ) .

Now, D(ek) = Pk converges towards P = (I − LC)P−, so that Φek (θ) converges
towards exp(− 1

2θ
� Pθ). By Definition C.5, this last term is the characteristic function

of a Gaussian centered distribution with dispersion matrix P . We conclude because
simple convergence of characteristic functions implies convergence in distribution. �

7.4 Formulas in the Continuous-Time Case

We now enounce the continuous-time counterparts of the results of § 7.2 and 7.3.
� We refer the reader to [12,33].
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7.4.1 Optimization in Finite Horizon

Consider the controlled linear dynamical system in continuous-time

ẋ = Ax + Bu , (7.26)

and, for T > 0, the criterion

J (u) =
∫ T

0

(
u(s)� Ru(s) + x(s)�Qx(s)

)
ds + x(T )�QT x(T ) , (7.27)

where QT is a symmetric positive matrix of size n. Here, in accordance with
Remarks 2.4 and 3.1, the notations x and u correspond to continuous trajectories on
the half-line, that is, elements of C0(R+, R

n) and C0(R+, R
m), respectively.

Proposition 7.16 If S0 = S(0) is the terminal value of the Riccati backward differ-
ential equation

Ṡ(t) + A�S(t) + S(t)A − S(t)B R−1 B�S(t) + Q = 0 , S(T ) = QT , (7.28)

the minimum of the criterion (7.2) is

min
u

J (u) = x�
0 S0x0 .

Moreover, this minimum is achieved for the following linear state feedback control

u�(t) = −R−1 B�S(t)x�(t) ,

where x�(t) is the optimal trajectory corresponding to the application of the previous
optimal control, namely, x�

0 = x0 and

ẋ� = Ax� + Bu� = (
A − B R−1 B�S(t)

)
x�.

Proof The proof is inspired from [12].
By Exercise 7.6.3 (changing t in T − t), we have that the matrix S(t) is defined

for all t ≤ T . Moreover, we can write

x(t)�S(T )x(t) − x(0)�S(0)x(0) =∫ T

0

d

dt

(
x(t)�S(t)x(t)

)
dt =

∫ T

0

(
x(t)� Ṡ(t)x(t) + (

Ax(t) + Bu(t)
)�

S(t)x(t)

+ x(t)�S(t)
(

Ax(t) + Bu(t)
))

dt .
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As S(T ) = QT in (7.28), we deduce by (7.27) that

J (u) = x�
0 S(0)x0

+
∫ T

0
(u(t)�; x(t)�)

(
R B�S(t)

S(t)B Ṡ(t) + A�S(t) + S(t)A + Q

) (
u(t)
x(t)

)
dt

= x�
0 S(0)x0

+
∫ T

0
(u(t)�; x(t)�)

(
R B�S(t)

S(t)B S(t)B R−1 B�S(t)

) (
u(t)
x(t)

)
dt

= x�
0 S(0)x0 +

∫ T

0

(
u(t) + R−1 B�S(t)x(t)

)�
R
(
u(t) + R−1 B�S(t)x(t)

)
dt .

This ends the proof. �

Remark 7.17 If the matrices A, B, Q and R depend (continuously) on the time t ,
the previous result and formulas remain valid. 	

7.4.2 Optimization in Infinite Horizon. Links with Controllability

We now show that the linear control with stationary gains discussed in Chap. 5
minimizes an intertemporal criterion.

Let U ⊂ C0(R+, R
m) be the set of control trajectories u such that the state

trajectory x given by (7.26) converges towards 0 and that

∫ +∞

0

(
u(s)� Ru(s) + x(s)�Qx(s)

)
ds < +∞ .

We define an intertemporal criterion J on U by

J (u) =
∫ +∞

0

(
u(s)� Ru(s) + x(s)�Qx(s)

)
ds , ∀u ∈ U . (7.29)

The proof of Proposition 7.16 can easily be adapted to establish the following
result.

Proposition 7.18 Suppose that there exists a symmetric positive matrix S such that

1. the matrix S is solution of the algebraic (or stationary) continuous-time Riccati
equation

A�S + S A − SB R−1 B�S + Q = 0 ; (7.30)

2. the square matrix A − B R−1 B�S is asymptotically stable.

http://dx.doi.org/10.1007/978-3-642-34324-7_5
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Then, the minimum of the criterion (7.29) over the set U of control trajectories is
given by

min
u∈U

J (u) = x�
0 Sx0 . (7.31)

Moreover, this minimum is achieved for the following linear state feedback control

u�(t) = −R−1 B�Sx�(t) , (7.32)

where x�(t) is the optimal trajectory corresponding to the application of the previous
optimal control, namely x�

0 = x0 and

ẋ� = Ax� + Bu� = (A − B R−1 B�S)x�. (7.33)

The existence of a matrix S that satisfies the two assumptions of Proposition 7.18
is assured under the following assumptions on the matrices A of dynamics, B of
control, and Q of state ponderation.

Proposition 7.19 Suppose that

1. the couple (A, B) is controllable;
2. there exists a square root H of the matrix Q (Q = H�H) such that the couple

(A, H) is observable.

Then, there exists a unique symmetric positive matrix S which satisfies the two
assumptions of Proposition 7.18. Moreover, the matrix S is positive definite and
is obtained as the limit, for t → +∞, of any solution of the differential equation

− Ṡ(t) + A�S(t) + S(t)A − S(t)B R−1 B�S(t) + Q = 0 (7.34)

for any initial condition S(0) ≥ 0.

Proof The uniqueness of the symmetric positive matrix S solution of (7.30) comes
from Proposition 7.18, since S is associated with the minimum of the criterion (7.29).
The existence of the matrix S is shown in Exercise 7.6.4. The rest of the proof is
inspired from [66].

Consider Eq. (7.30) where A is replaced by −A. There exists a unique symmetric
matrix S− such that −S− is positive, and that

0 = A�S− + S− A − S− B R−1 B�S− + Q, S− < 0

− A− = −(A − B R−1 B�S−) is asymptotically stable.

Denoting S+ = S the unique symmetric positive matrix solution of (7.30), we have
that:
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0 = A�S+ + S+ A − S+ B R−1 B�S+ + Q , S+ > 0

A+ = A − B R−1 B�S+ is asymptotically stable.

By using Corollary 5.17, we first show that the couple (A−, B) is controllable. Indeed,
suppose there exists a vector x such that

x� B = x� A− B = · · · = x� An−1− B = 0 ,

then, as A− = A−B R−1 B�S−, we deduce that x� A−B = x� AB because x� B = 0
and, step by step, that x� Ak−B = x� Ak B. Thus, we obtain

x� B = x� AB = · · · = x� An−1 B = 0 ,

and we conclude that x = 0 by controllability of the couple (A, B) and by Corol-
lary 5.17.

Now, we show that S(t) →t→+∞ S+. Setting Δ(t) = S(t)− S−, the computation
shows that

−Δ̇(t) + A�−Δ(t) + Δ(t)A− − Δ(t)B R−1 B�Δ(t) = 0 ,

with Δ(0) = S(0) − S− ≥ −S− > 0 since S(0) ≥ 0. Let us introduce

Γ (t) = e−t A�−
(

Δ(0)−1 +
∫ t

0
es A− B R−1 B�es A�− ds

)
e−t A− ,

solution of the linear matrix equation

−Γ̇ (t) + A�−Γ (t) + Γ (t)A− − B R−1 B� = 0 , Γ (0) = Δ(0)−1 .

The matrix Γ (t) is invertible for all t thanks to Lemma 5.16, since the couple (A−, B)

is controllable. As Γ (t)−1 satisfies the same equation as Δ(t) with the same initial
condition, we have the equality Γ (t)−1 = Δ(t), and thus Δ(t) is invertible.

In the same way, we can show that Δ∞ = S+ − S− is invertible, with inverse Γ∞
solution of:

−A�−Γ∞ − Γ∞ A− + B R−1 B� = 0 .

By substraction of the last two equations, we obtain

d

dt
(Γ (t) − Γ∞) = −A�−(Γ (t) − Γ∞) − (Γ (t) − Γ∞)A− .

As −A− is asymptotically stable, we conclude that Γ (t) →t→+∞ Γ∞. By inversion,
this gives Δ(t) →t→+∞ Δ∞, namely S(t) − S− →t→+∞ S+ − S− and thus
S(t) →t→+∞ S+. This ends the proof since S+ = S. �
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7.4.3 Asymptotic Observer

The following proposition is proven along the same lines as Proposition 7.19.

Proposition 7.20 Suppose that

1. the couple (A, C) is observable;
2. there exists a square root G of the matrix Q (Q = GG�) such that the couple

(A, G) is controllable.

Then, there exists a unique symmetric positive matrix S solution of the algebraic
Riccati equation

AS + S A� − SC� R−1C S + Q = 0 (7.35)

such that A− SC� R−1C is asymptotically stable. Moreover, this matrix S is positive
definite and is obtained as the limit of any solution of the differential equation

− Ṡ(t) + AS(t) + S(t)A� − S(t)C� R−1C S(t) + Q = 0 (7.36)

for any initial condition S(0) ≥ 0.

7.5 Practical Set up

As discussed in § 7.2.3, the methods developed in this chapter put the problem of the
choice of the closed-loop system modes onto the choice of the ponderation matrices
Q and R in an intertemporal criterion.

For the regulator, these matrices Q and R, respectively, weigh the state and the
control in the criterion (7.8).

For the observer, or for the Kalman-Bucy filter, these matrices Q and R are the
respective dispersion matrices of state and of measurement noises (assumed white
Gaussian). The knowledge of the precision of the measurement sensors makes it
possible to quantify R: each of the diagonal terms is of the order of the square of
the standard deviation on the measurement (the higher, the less precise). Regarding
the matrix Q, each of the diagonal terms is of the order of the square of the standard
deviation of perturbations affecting the dynamics.

7.6 Exercises

Exercise 7.6.1 (Kalman-Bucy filter with correlated noises)
Consider the controlled and observed linear dynamical system with additive

noises (7.16), where we suppose that

• the control uk depends affinely on the observations y1,…, yk up to time k;
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• the initial state x0 is a Gaussian random vector;
• (vk, wk)k≥1 is a stationary Gaussian white noise with covariance matrix

D

(
vk

wk

)
=

(
Q S
S� R

)
;

• x0 and (vk, wk)k∈N are independent.

Such a system is called Gaussian linear dynamical system with correlated noises.
The two last assumptions above replace the last three of Definition 7.10.

1. Using yk = Cxk + wk in (7.16), write (7.16) under the form

{
xk+1 = Ad xk + Bduk + vk + T (yk − Cxk − wk) , k ≥ 0

yk = Cxk + wk , k ≥ 1 ,

where T is any matrix of appropriate dimensions. Deduce that the model above
can be put under the form (7.16) with a new matrix of dynamics, a new control,
and a new state noise.

2. Show that, if T = S R−1, the new state noise and the measurement noises are
independent white noises.

3. Deduce that, with such a choice of matrix T , the assumptions of Proposition 7.11
are satisfied.

4. Give the equations of the filter in the case of correlated noises.

Exercise 7.6.2 (Estimation of a measurement bias)
Consider a sensor, that displays an unknown bias. We model this under the form

{
xk+1 = Ad xk + Bduk + vk, k ≥ 0

yk = Cxk + b + wk, k≥1 ,

where b is an unknown scalar representing this bias.

1. We set bk = b. Show that the extended vector zk =
(

xk

bk

)
satisfies the dynamical

equation {
zk+1 = Ãd zk + B̃duk + ṽk, k ≥ 0

yk = C̃zk + wk, k ≥ 1

with

Ãd =
(

Ad 0
0 1

)
, B̃d =

(
Bd

0

)
, ṽk =

(
vk

0

)
, C̃ = (C 1) .

2. Provide the recursive formulas giving the estimates x̂k and b̂k .
3. Explain why the definition of ṽk prevents us from applying Proposition 7.15 and

from obtaining asymptotic formulas. In practice, for stability issues, we model
ṽk as a noise with nondegenerate dispersion matrix.
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Exercise 7.6.3 (Riccati equation in continuous-time)
We show that the Riccati differential equation

− Π̇(t) + F�Π(t) + Π(t)F − Π(t)G R−1G�Π(t) + Q = 0 (7.37)

admits a solution for all time t ≥ 0 as soon as R > 0, Q ≥ 0 and Π(0) ≥ 0.

1. Let Π(0) ≥ 0 be given. Consider T > 0 such that Eq. (7.37) admits a solution
on [0, T ] by the Cauchy-Lipschitz Theorem. Moreover, let the vector z(t) be
the solution of the following linear differential equation

ż(t) = ( − F + G R−1G�Π(t)
)
z(t) , 0 ≤ t ≤ T , z(t) = z0 .

Show that t �→ z(t)�Π(t)z(t) is an increasing function. Deduce that z(t)�Π(t)
z(t) ≥ 0 for all t ∈ [0, T ] and, by properly selecting z0 for a fixed t , that
Π(t) ≥ 0.

2. Let P(t) be the solution of the matrix linear differential equation

−Ṗ(t) + F� P(t) + P F(t) + Q = 0, P(0) = Π(0) , 0 ≤ t ,

that is, for all t ,

P(t) = et F�
(

Π(0) +
∫ t

0
e−s F�

Qe−s F ds

)
et F .

Check that Δ(t) = P(t) − Π(t) satisfies

−Δ̇(t) + F�Δ(t) + Δ(t)F = −Π(t)G R−1G�Π(t) ≤ 0 , 0 ≤ t ≤ T .

Deduce that Δ(t) ≥ 0 by evaluating z(t)�Δ(t)z(t) where z(t) solves
ż(t) = −Fz(t).

3. Observe that the inequality 0 ≤ Π(t) ≤ P(t) implies that Π(t) is a priori
bounded above on all bounded time interval, hence is defined for all t ≥ 0.
Conclude.

Exercise 7.6.4 (Stationary Riccati equation in continuous-time)
We are going to show that the stationary Riccati equation in continuous-time

F�Π + Π F − ΠG R−1G�Π + Q = 0 (7.38)

admits a solution such that F − G R−1G�Π is asymptotically stable as soon as the
couple (F, G) is controllable and that there exists a square root H of the matrix
Q (Q = H� H ) such that the couple (F, H) is observable. We refer the reader to
Appendix A.



7.6 Exercises 187

1. If (Π0(t), t ≥ 0) is the solution of (7.37) for Π0(0) = 0, check, thanks to
Proposition 7.16, that

x�
0 Π0(t)x0 = min

u

∫ t

0

(
u(s)� Ru(s) + x(s)�Qx(s)

)
ds ,

where ẋ(t) = Fx(t) + Gu(t). Deduce that t �→ x�
0 Π0(t)x0 is an increasing

function.
2. Show that, thanks to the controllability of the couple (F, G), this last function

is bounded above. Deduce that x�
0 Π0(t)x0 converges towards a limit, denoted

ϕ(x0).
3. Show that ϕ(x0) can be expressed under the form ϕ(x0) = x�

0 Π∞x0.
4. Deduce that Π0(t) → Π∞ and, by (7.37), that Π̇0(t) also admits a limit that

cannot be zero. Thus, Π∞ satisfies (7.38).
5. Show that

x�
0 Π∞x0 = 0 ⇐⇒ min

u

∫ t

0

(
u(s)� Ru(s) + x(s)�Qx(s)

)
ds = 0 , ∀t ≥ 0

for ẋ(t) = Fx(t) + Gu(t) , x(0) = x0

⇐⇒ G�Π0(t)x(t) = 0 and H x(t) = 0 , ∀t ≥ 0

for ẋ(t) = (
F − G R−1G�Π0(t)

)
x(t) , x(0) = x0 .

Deduce that x0 = 0 by observability of the couple (F, H). Thus, Π∞ is definite
positive.

6. Check that (7.38) can be written as

(F − G R−1G�Π)�Π + Π(F − G R−1G�Π) + ΠG R−1G�Π + Q = 0 .

Show that the function V(x) = x�Π∞x satisfies the assumptions of the LaSalle
Theorem 4.31 for the system

ẋ = (F − G R−1G�Π∞)x .

Deduce that the solution x(t) converges towards the largest invariant subset I of
{x | G�Π∞x = 0 and H x = 0}. In the same way as in the previous item, show
that I is reduced to the singleton {0} thanks to the observability of the couple
(F, H). Deduce that the matrix F − G R−1G�Π∞ is asymptotically stable.
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Chapter 8
Polynomial Representation

8.1 Introduction

We have discussed how to stabilize a linear controllable and observable system given,
in Chap. 5, by a continuous-time input-output representation

{
ẋ = Ax + Bu
y = Cx

or, in Chap. 6, by a discrete-time input-output representation

{
xk+1 = Ad xk + Bduk

yk = Cxk

using, for example, a quadratic optimization approach as developed in Chap. 7, with
u denoting the m-input or control vector, y the p-output vector and x the n-state
vector.

The separation principle between estimation and control, discussed in § 5.6 and
6.7, makes it possible to determine a stabilizing control law by fixing n(m + p)

parameters, nm for the gain regulator matrix and np for the gain observer matrix.
But, to stabilize the closed-loop system, it is sufficient to place 2n poles, n “regulator
poles” of the matrix A − BK , or of the matrix Ad − Bd K in discrete-time, and n
“observer poles” of the matrix A − LC , or of the matrix Ad − LC . Therefore, in the
multivariable case, we still have

l = n(m + p − 2) (8.1)

degrees of freedom, l being strictly positive since m + p > 2. Therefore, it is
interesting to use these degrees of freedom to obtain a desired input-output behav-
ior, precisely in the case of perturbations (neglected dynamics, noises of sensors
or actuators, etc.), and then to bring robustness to the closed-loop system. This is
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possible by acting on the zeros of the system, the poles having already been fixed,
for example, by an observer-regulator quadratic synthesis as highlighted in Chap. 7.
In fact, we have already introduced in § 3.5 the definition and properties of the zeros
of a transfer function, relative to the disturbance rejection problem. For example, we
have seen in Proposition 3.32 that, if the transfer function of an l.c.s. system has a
zero at s = 0, constant bias on the input is asymptotically rejected.

Moreover, it is emphasized that the so-called polynomial representation is well
adapted to the computation of closed-loop transfer functions between disturbances
and outputs of the system. In the multivariable case, it remains to parameterize the
controller using the degrees of freedom and to fix them, for example, to place some
zeros at s = 0 in the closed-loop transfer functions between some disturbances
and outputs. This makes it possible to asymptotically reject the effect of constant
perturbations on the system. It must be noticed that this rejection is realized without
needing to build an asymptotic observer for each observable bias, and consequently
without extending the size of the controller, as it is often the case in a classical
state-space context (see Exercise 7.6.2 and the following Example 8.1).

Example 8.1 Consider the inverted pendulum fixed on a cart moving on an horizontal
bench introduced in § 2.3.1. The matrices A, B and C , of the tangent linear system in
the neighborhood of the unstable equilibrium are given in (5.4). Suppose that there is
a constant bias bθ on the measurement of the angle θ (see Fig. 2.3). The observations
in Example 5.3 are now given by:

{
y1 = z
y2 = θ + bθ .

If this bias bθ is neglected, when applying the method of the observer-regulator
described in § 5.6, denoting x̂ an asymptotic observer of the state x = (z, θ, ż, θ̇)�,
it can be easily shown that the asymptotic bias on the observer is of the form

x∞ − x̂∞ = (A − LC)−1Lbo

where bo = (0 bθ)� denotes the vector of measurements bias and L4×2 the observer
gain matrix (see § 5.10.2 for the method).

Then, applying the linear state feedback u = −K x̂ (instead of u = −K x)
introduces an asymptotic bias bu on the control given by

bu = −K (A − LC)−1Lbo ,

where K1×4 denotes the regulator gain matrix. Therefore, the existence of the bias
bu on the control induces an asymptotic bias z∞ on the position z, given by

z∞ = bu

K11
,
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which means that the asymptotic position of the cart is biased. Let us point out that
the position of the pendulum is not biased (we have θ∞ = 0), which is natural since,
without pertubation on the dynamics, the only possible equilibrium for the pendulum
is the vertical position.

To eliminate the bias z∞ on the position z of the cart, we can introduce an observer
for bθ and then increase the size of the state vector by adding the variable bθ assumed
to be constant, namely with the dynamics ḃθ = 0. This leads to the augmented system

{ ˙̃xa = Aa x̃a + Bau
y = Ca x̃a ,

with the augmented state

x̃a = (
bθ, z, θ, ż, θ̇

)�

and

Aa =

⎛
⎜⎜⎜⎜⎝

0 0 0 0 0
0
0 A
0
0

⎞
⎟⎟⎟⎟⎠ , Ba =

(
0
B

)
.

If K is a gain matrix stabilizing A − BK , then, due to the form of the matrices Aa

and Ba , the same gain matrix K gives, for the augmented system,

x̃a → 0 and bθ = constant.

The bias bθ is not controllable, but it can be easily shown that it is observable. An
asymptotic observer of the augmented system can then be built, and one can find a
suitable gain matrix La of dimension 5 × 2 such that the matrix (Aa − LaCa) is
asymptotically stable. Applying the control

u = −Ka ˆ̃xa = − [
0 K

] ˆ̃xa

leads, for the closed-loop system with state x̃a and ea = x̃a − ˆ̃xa , to the dynamics:

{ ˙̃xa = (Aa − Ba Ka )̃xa + Ba Kaea

ėa = (Aa − LaCa)ea .

It is straightforward to observe that ea(t) → 0, which means that the bias on the
observer, and therefore on the asymptotic value of the cart’s position, has been
eliminated.

It can be noticed that the estimate b̂θ of the bias does not directly appear in the
expression of the control, but that it modifies the observer’s dynamics ˆ̃xa and that
the control is proportional to ˆ̃xa . �
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As illustrated above, in a state-space approach, one can construct specific observers
to asymptotically reject observable bias, but this method increases the size of the state
and therefore the complexity of the control law. To obtain a minimal size controller,
one could use geometrical techniques developed by Wonham [70] and Willems [67],
leading to some conditions for global disturbance rejection on the output. However,
even if the global disturbance rejection problem has no solution, one could try, at
least, to eliminate disturbances on some components of the output.

For linear systems, the state-space representation and the polynomial represen-
tation are conceptually equivalent, but the classical state-space representation does
not make it possible to access the partial transfer functions between inputs (control
variables or disturbances) and different components of the output. This is the rea-
son why we use representations that make it easy to compute the different transfer
functions connecting inputs and outputs, called polynomial representations. Then,
it is interesting to use the degrees of freedom in the control to place zeros in suit-
able transfer functions between some disturbances and some outputs. This makes it
possible to reject these disturbances with a minimal size controller.

Definitions are provided in § 8.2, and basic results on polynomial matrices in § 8.3.
Poles and zeros, as well as stability, are discussed in § 8.4. Equivalence between linear
differential systems is defined and characterized in § 8.5. Controllability and observ-
ability notions in the context of polynomial representation are introduced in § 8.6.
In § 8.7, we establish the links between the state-space and the polynomial repre-
sentations and we give a systematic way to compute the polynomial controller and
observer forms from the classical state-space representation. In § 8.8, the closed-loop
transfer functions from the input and the disturbances to the outputs are computed
and, in § 8.9, we elaborate the parameterization of the controller with respect to
the degrees of freedom in order to place some zeros when poles have been placed.
Finally, an application to the inverted pendulum is provided in § 8.10.

• For more details on the theory of polynomial matrices, we refer the reader to
[34–36].

8.2 Definitions

The use of polynomial matrices is an efficient way to represent systems of lin-
ear ordinary differential equations or difference equations in the discrete-time case,
using the Laplace transform for continuous-time l.c.s. systems or the z-transform for
discrete-time l.c.s. systems, as exposed in Appendix B.

Remark 8.2 In what follows, the complex Laplace variable s is also interpreted as
the time differentiation operator s = d/dt for continuous-time l.c.s. systems (see
the differentiation Theorem L4 in B.1, [53]). In the same way, for discrete-time l.c.s.
systems, the complex variable z is also identified with the advance operator (see the
advance Theorem Z4 in § B.2). �
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Let us introduce some definitions.

Definition 8.3 A polynomial matrix (in s) is a matrix, each element of which is a
polynomial in the complex variable s, with real coefficients.

Remark 8.4 The variable s is often omitted, so that P(s), or more simply P , repre-
sents a polynomial matrix. �
Definition 8.5 an l.c.s. dynamical system with input u (of dimension m) and output
y (of dimension p) is said to be in polynomial form if and only if there exist

• a vector ξ called partial state of dimension n;
• polynomial matrices P(s)n×n, Q(s)n×m and R(s)p×n,

such that, in the frequency domain, the input-output relation is of the form:

{
P(s)ξ = Q(s)u

y = R(s)ξ .
(8.2)

Remark 8.6 Here, following Remark 8.2, the complex Laplace variable s is to be
understood as the time differentiation operator s = d/dt . Also, in accordance with
Remarks 2.4 and 3.1, the notations ξ, u, and y correspond to smooth trajectories
on the half-line, that is, elements of C∞(R+, R

n), C∞(R+, R
m) and C∞(R+, R

m),
respectively. �
Example 8.7 In classical mechanics, as discussed in § 1.3.3, a material point with
mass m, position z and submitted to a force F , satisfies the differential equation:

z̈ = F/m . (8.3)

If the position z is assumed to be measured, a polynomial representation with partial
state ξ1 can be written directly as

{
s2ξ1 = F/m

y = ξ1 .
(8.4)

�
Remarks

• Considering the previous example, it can be pointed out that (8.2) is a concise way
to write linear differential equations in continuous-time.

• All the results obtained in this chapter can be easily extended to systems (8.2)
having a direct link between the input and the output, namely

y = R(s)ξ + W (s)u ,

where W (s) is a polynomial p × m matrix.

http://dx.doi.org/10.1007/978-3-642-34324-7_1
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• The variable s denotes the Laplace variable corresponding to a continuous-time
system but could also represent the advance or shift operator z for discrete-time sys-
tems. Therefore, all the results presented in this chapter could be directly extended
to discrete-time systems.

To compute the transfer matrix of the l.c.s. system (8.2), the Laplace transform is
applied to the differential equations (8.2). If U (s), Y (s) and Ξ(s) denote respectively
the Laplace transforms of u(t), y(t) and ξ(t) (if they exist), we obtain:

{
P(s)Ξ(s) = Q(s)U (s)

Y (s) = R(s)Ξ(s) .
(8.5)

These equalities make it possible to define the transfer matrix of the l.c.s. system
(8.2) by

H(s) = R(s)P−1(s)Q(s) . (8.6)

In a classical state-space representation, as explained in Chap. 5, two equivalent
systems have a state vector with same dimension n. This is no more the case for
polynomial representations, and this is why the notion of partial state of dimension
n ≤ n has been introduced in Definition 8.5.

Example 8.8 In the Example 8.7 of the material point in classical mechanics, the
partial state ξ1 is the scalar position z. But, it is clear that the velocity ξ̇1 is also
needed to have a complete representation of the point’s dynamics. The following
polynomial representation can then be introduced

⎧⎨
⎩

(
s −1
0 s

)
ξ2 =

(
0
1/m

)
F

y = (
1 0

)
ξ2 ,

(8.7)

where the partial state ξ2 = (z, ż)� is now two-dimensional. �
Similarly to the classical state-space approach, it is also possible, from the polyno-

mial representation, to define the notions of equivalence, observer polynomial form
and controller polynomial form to test the properties of controllability and observ-
ability of the l.c.s. system (8.2). Before defining these, we introduce some useful
notions about polynomial matrices.

8.3 Results on Polynomial Matrices

Notice that the set of polynomial matrices is a noncommutative ring for the addition
and multiplication of matrices.

http://dx.doi.org/10.1007/978-3-642-34324-7_5
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Definition 8.9 A square polynomial matrix is said to be regular if its determinant is
a non-identically zero polynomial.

In the sequel, the matrix P(s) in (8.2) is assumed to be regular.

Definition 8.10 A square polynomial matrix is said to be unimodular if its determi-
nant is equal to a nonzero constant.

Remark 8.11 The unimodular matrices constitute the invertible elements of the ring
of polynomial matrices. �

The role of unimodular polynomial matrices is important to obtain particular forms
of polynomial matrices and to solve so-called Bezout identities as shown below.

8.3.1 Elementary Operations: Hermite and Smith Matrices

It can be shown that every unimodular polynomial matrix can be decomposed into
a finite product of elementary matrices corresponding to elementary operations on
rows or columns. The rows or columns transformations are classically used in the case
of scalar matrices and are basic tools for triangularization of constant matrices, by
the Gauss method for example. The same methods apply to polynomial matrices and
lead to Hermite and Smith forms. Let us now introduce the elementary unimodular
polynomial matrices.

• For each couple (i, j), the matrix Pi j is defined by:

(Pi j )kl =

⎧⎪⎪⎨
⎪⎪⎩

1 if k = l and k �= i and k �= j
1 if k = i and l = j
1 if k = j and l = i
0 else.

(8.8)

Notice that, left-multiplying a polynomial matrix M(s) (respectively right
-multiplying) by Pi j is equivalent to exchanging the rows i and j (respectively the
columns) of M(s).

• For every polynomial q(s), the polynomial matrix Mi [q] (s) is defined by:

(
Mi [q]

)
kl(s) =

⎧⎨
⎩

1 if k = l and k �= i
q(s) if k = l = i
0 else.

(8.9)

In the same way, left-multiplying a polynomial matrix M(s) (respectively right-
multiplying) by Mi [q] is equivalent to multiplying the i th row of M(s) (respec-
tively column) by q(s).
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• For every polynomial q(s), the matrix polynomial Si j [q] is defined by:

(Si j [q])kl(s) =
⎧⎨
⎩

1 if k = l
q(s) if k = i and l = j
0 else.

(8.10)

Left-multiplying a polynomial matrix M(s) (respectively right-multiplying) by

Si j [q] is equivalent to adding to the i th row of M(s) (respectively to the j th
column) the j th row of M(s) (respectively to the i th column) multiplied by q(s).

We now introduce the so-called Hermite and Smith forms.

Definition 8.12 Let N (s) = (Ni j (s)) be a polynomial m×n matrix. The polynomial
matrix N (s) is said to be in upper Hermite form if:

1. Ni j (s) = 0 if i > j ;
2. deg

(
Ni j (s)

)
< deg

(
N j j (s)

)
if i < j and N j j (s) �= 0, else the Ni j (s) are all

equal to zero;
3. if Nii (s) is nonzero, the coefficient of its highest degree term is equal to 1.

The polynomial matrix N (s) is said to be in lower Hermite form if its transpose
matrix is in Hermite upper form.

Definition 8.13 Let N (s) = (Ni j (s)) be a polynomial m×n matrix. The polynomial
matrix N (s) is said to be in Smith form if:

1. Ni j (s) = 0 for i �= j ;
2. Nii (s) divides Ni+1,i+1(s).

Definition 8.14 Let P1(s) and P2(s) be two polynomial matrices.

• The polynomial matrix P2(s) is said row-equivalent to P1(s) if P2(s)=Um(s)P1(s),
where Um(s) is a unimodular polynomial matrix.

• The polynomial matrix P2(s) is said column-equivalent to P1(s) if P2(s) =
P1(s)Um(s), where Um(s) is a unimodular polynomial matrix.

Since all elementary rows or columns operations correspond to multiplications
by elementary matrices, we obtain the following proposition (see for example [44,
55, 69]).

Proposition 8.15 For every polynomial matrix N (s), the following properties are
satisfied:

1. the polynomial matrix N (s) is row-equivalent to an upper Hermite matrix;
2. the polynomial matrix N (s) is column-equivalent to a lower Hermite matrix;
3. there exist unimodular polynomial matrices Um(s) and Vm(s) and a diagonal

polynomial matrix Γ (s) such that N (s) = Um(s)Γ (s)Vm(s), where Γ (s) is said
to be the Smith form of N (s).
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Example 8.16 Computation of the Smith form of a polynomial matrix.
Let us compute the Smith form of the following polynomial matrix:

N (s) =
(

s − a 1
0 s − a

)
.

The procedure is inspired by Proposition 8.15.
The columns are exchanged, which is equivalent to right-multiplying by P12 in

(8.8), yielding

N1(s) =
(

1 s − a
s − a 0

)
.

The first column of N1(s) multiplied by −(s − a) is added to the second column of
N1, which is equivalent to right-multiplying N1 by S12(−(s − a)) in (8.10), yielding

N2(s) =
(

1 0
s − a −(s − a)2

)
.

The second column of N2 is multiplied by −1, which is equivalent to right-
multiplying N2 by M2(−1) in (8.9), yielding

N3(s) =
(

1 0
s − a (s − a)2

)
.

The first row of N3 multiplied by −(s − a) is added to its second row, which is
equivalent to left-multiplying N3 by S21(−(s − a)), yielding

N4(s) =
(

1 0
0 (s − a)2

)
.

The Smith form of N (s) is then N4(s) and we have that N (s) = Um(s)N4(s)Vm(s)
with: ⎧⎪⎪⎪⎨

⎪⎪⎪⎩

Um(s) = (
S21(−(s − a))

)−1 =
(

1 0
s − a 1

)

Vm(s) = (
P12S12(−(s − a))M2(−1)

)−1 =
(

s − a 1
−1 0

)
.

�
Let us now study the divisibility properties of polynomial matrices.
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8.3.2 Division and Bezout Identities

As for the set of polynomials in one variable, the notion of Euclidean division can
be introduced in the ring of polynomial matrices. However, this ring being noncom-
mutative, it is necessary to distinguish between left and right divisions. Let us recall,
for example, the right divisibility result [34, 35].

Theorem 8.17 Let P(s)m×n and Q(s)n×n be two regular polynomial matrices.
Then, there exist two polynomial matrices D(s) and R(s) of dimension m × n such
that

P(s) = D(s)Q(s) + R(s) wi th R(s)Q−1(s) strictly proper, (8.11)

and these matrices are unique.

Definition 8.18 Let P(s) and Q(s) be two polynomial matrices with the same num-
ber of columns (respectively, of rows). The polynomial matrix D(s) is called right
hcd(P, Q) (highest common divisor) (respectively, left hcd(P, Q)) if every right
divisor (respectively, left) of P and Q right-divides D (respectively, left-divides).

The polynomial matrices P(s) and Q(s) are said to be right-coprime (respectively,
left) if their right hcd (respectively, left hcd) is equal to the identity matrix.

Remark 8.19 A right or left hcd is defined modulo a multiplication by a unimodular
polynomial matrix. �

The following theorem can then be obtained (see for example [34]).

Theorem 8.20 Let P n×n and Q p×n (respectively, Qn×p) be two polynomial matri-
ces. We have that:

1.

(
P
Q

)
is row-equivalent to

(
D
0

)
, where D is a right hcd of P and Q;

2.
(

P Q
)

is column-equivalent to
(

D 0
)
, where D is a left hcd of P and Q.

The following corollary is then straightforward.

Corollary 8.21 Let P and Q be two left-coprime polynomial matrices, P being
regular. There exists a unimodular polynomial matrix Um such that:

(
P Q

)
Um = (

I 0
)
. (8.12)

In particular, the following generalized Bezout identities or direct Bezout identities
are satisfied: there exist polynomial matrices A, B, C, D, S and T such that

⎧⎪⎪⎨
⎪⎪⎩

P A + Q B = I
PC = Q D
S A = T B
SC + T D = I .

(8.13)
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Proof Since P and Q are left-coprime polynomial matrices, from Theorem 8.20
there exists a unimodular matrix Um satisfying (8.12). Let us partition Um as follows:

Um =
(

A C
B −D

)
.

The relation
(

P Q
)

Um = (
I 0

)
then leads to P A + Q B = I and PC = Q D.

Let us set

Vm = U−1
m =

(
P Q
S −T

)
.

By writing VmUm = I , we obtain that

(
P Q
S −T

) (
A C
B −D

)
=

(
I 0
0 I

)
, (8.14)

which are nothing but the generalized direct Bezout identities (8.13) (see for exam-
ple [53]). �

Remark 8.22 Writing Um Vm = I , we obtain the inverse Bezout identities. In the
same way, if P and Q are two right-coprime polynomial matrices, P being regular,

there exists a unimodular polynomial matrix Um such that Um

(
P
Q

)
=

(
I
0

)
. The

relations VmUm = I and Um Vm = I define direct and inverse Bezout identities. �
These direct and inverse Bezout identities are useful to study the equivalence,

controllability, and observability properties. Before we do that, let us introduce the
notions of poles and zeros of a transfer matrix using its Smith form.

8.4 Poles and Zeros. Stability

Consider the l.c.s. system described by the polynomial representation (8.2), whose
transfer matrix is given by (8.6), that is H(s) = R(s)P−1(s)Q(s).

Definition 8.23 The poles of the l.c.s. system (8.2) are the roots of the determinant
of P(s).

This definition has to be related to Definition 5.57.

Proposition 8.24 If the roots of the determinant of P(s) have a strictly negative real
part (or are strictly inside the unit disk in the discrete-time case), the l.c.s. system
(8.2) is bibo-stable.

The poles of an l.c.s. system determine its stability, whereas the zeros, as it
has already been mentioned in § 3.5, play a role with respect to the disturbance

http://dx.doi.org/10.1007/978-3-642-34324-7_3
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rejection problem. Let us define the zeros of the l.c.s. system (8.2) given in
polynomial form.

The transfer matrix H(s) in (8.6) of a controllable and observable system can
always be written in the following form

H(s) = N (s)

d(s)
, (8.15)

where d(s) is a polynomial in s (and not a polynomial matrix), equal to the smallest
common multiple of the denominators of the rational functions elements of H(s)
(d(s) can always be chosen such that the coefficient of its highest degree term is
equal to 1) and N (s) is a polynomial matrix. Now, from Proposition 8.15, we know
that there exist unimodular polynomial matrices Um(s), Vm(s) and a diagonal matrix
Γ (s) such that

N (s) = Um(s)Γ (s)Vm(s) , (8.16)

where Γ (s) is the Smith form of N (s). Consequently, we have that

U−1
m (s)H(s)V −1

m (s) = Γ (s)

d(s)
= Diag(

γi (s)

d(s)
) . (8.17)

If the rational functions γi (s)/d(s) are reduced to irreducible rational functions
εi (s)/ψi (s) for i = 1, . . . , r (r being the generic rank of H(s)), one can then write:

H(s) = Um(s)S(s)Vm(s) with S(s) =
(

Diag(
εi (s)
ψi (s)

, i = 1, . . . , r) 0
0 0

)
. (8.18)

Definition 8.25 The polynomial matrix S(s) in (8.18) is called the Smith-Mac-
Millan form of H(s). The zeros of H(s), also called transmission zeros, are the
roots of the εi (s).

Remarks

• The following properties are satisfied:

– ψi+1(s) divides ψi (s), i = 1, . . . , r − 1;
– εi (s) divides εi+1(s), i = 1, . . . , r − 1;
– d(s) = ψ1(s).

• As εi (s) divides εi+1(s) for i = 1, …, r − 1, it can be deduced that the zeros of
H(s) are the roots of εr (s). It can also be noticed that the transmission zeros are
the complex numbers that make the rank of the matrix H(s) drop.

A dynamical interpretation of the transmission zeros is the following. If s0 is such
a zero, then for an input u(t) = u0 exp(s0t), t ≥ 0, there exists an initial state x0
such that the output y(t) is zero for t ≥ 0 (see [44]).
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Example 8.26 Consider the scalar l.c.s. system with transfer function

H(s) = s − s0

s + a
, a > 0 .

The system has the pole −a < 0 and, therefore, it is bibo-stable by Proposition 8.24.
The system is not strictly causal since the numerator and the denominator have the
same degree: there is a direct link between the input and the output. It can be written
for example in the following state-space form as

{
ẋ = −ax + u
y = −(s0 + a)x + u ,

with the corresponding time solution

x(t) = e−at x0 +
∫ t

0
e−a(t−τ )u(τ ) dτ .

Replacing u(τ ) by u0es0τ in the previous equation, we obtain:

y(t) = e−at (u0 − (s0 + a)x0) .

It can be observed that, for the initial state x0 = u0

s + a
, the output y(t) is identically

zero for t ≥ 0. �

8.5 Equivalence Between Linear Differential Systems

We first enounce without demonstration a technical result which gives a necessary
and sufficient condition for two systems of linear differential equations to have the
“same solutions”, that is the same sets of solutions or isomorphic trajectories (we
refer the reader to [36, part IV, Chap. S1]).

Proposition 8.27 Let A(s) and Ã(s) be two regular polynomial n × n matrices and
B(s) and B̃(s) be two polynomial n × m matrices. The two systems of controlled
linear differential equations

A(s)x = B(s)u , Ã(s)x̃ = B̃(s)u ,

have the same solutions if, and only if, the matrices (A(s), B(s)) and ( Ã(s), B̃(s))
are row-equivalent, namely if and only if there exists a unimodular polynomial n ×n
matrix Um such that: {

Ã(s) = Um(s)A(s)
B̃(s) = Um(s)B(s) .

(8.19)
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Let us now introduce the notion of equivalence of two systems in polynomial
representation.

Definition 8.28 Let (Σ1) and (Σ2) be two input-output l.c.s. systems in polynomial
form with the same input and output vectors u and y:

(Σ1)

{
P1(s)ξ1 = Q1(s)u

y = R1(s)ξ1
(8.20)

and

(Σ2)

{
P2(s)ξ2 = Q2(s)u

y = R2(s)ξ2 .
(8.21)

The partial state ξ1 is of dimension n1 and ξ2 of dimension n2. Then (Σ1) and (Σ2)

are said to be equivalent if there exist polynomial matrices M1(s)n1×n2 , M2(s)n2×n1 ,
N1(s)n1×m and N2(s)n2×m such that the two following systems (S1) and (S2) have
the same solutions:

(S1)

⎧⎨
⎩

P1(s)ξ1 = Q1(s)u
ξ2 = M2(s)ξ1 + N2(s)u

y = R1(s)ξ1

(8.22)

(S2)

⎧⎨
⎩

ξ1 = M1(s)ξ2 + N1(s)u
P2(s)ξ2 = Q2(s)u

y = R2(s)ξ2 .

(8.23)

Remark 8.29 In the classical state-space representation, the equivalence property is
characterized by the transformation of state vectors by simple changes of basis (see
Definition 5.18), whereas here the transformation from ξ1 to ξ2 (respectively from
ξ2 to ξ1) uses polynomial matrices (and no longer constant matrices) as well as the
control input u. �

Denoting A(s) and B(s) the polynomial matrices associated with Eq. (8.22), and
Ã(s) and B̃(s) those associated with Eq. (8.23), we have that:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

A(s) =
⎛
⎝ P1 0 0

−M2 I 0
−R1 0 I

⎞
⎠ , B(s) =

⎛
⎝ Q1

N2
0

⎞
⎠

Ã(s) =
⎛
⎝ I −M1 0

0 P2 0
0 −R2 I

⎞
⎠ , B̃(s) =

⎛
⎝ N1

Q2
0

⎞
⎠ .

(8.24)

By Proposition 8.27, if the l.c.s. systems (S1) and (S2) have the same solutions, there
exists a unimodular polynomial matrix Um(s) satisfying (8.19). From the particular
structures of A(s) and Ã(s), it can be deduced that Um(s) and U−1

m (s) have the
following form:
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Um(s) =
⎛
⎝ S −M1 0

T P2 0
V −R2 I

⎞
⎠ , U−1

m (s) =
⎛
⎝ P1 C 0

−M2 D 0
−R1 E I

⎞
⎠ . (8.25)

Example 8.30 Let us consider again the example of the material point discussed in
§ 8.3. Systems (8.4) and (8.7) are equivalent since we have that

ξ2 =
(

1
s

)
ξ1 , ξ1 = (

1 0
)
ξ2 ,

and, from (8.25), we can write

Um(s) =

⎛
⎜⎜⎝

0 −1 0 0
0 s −1 0
1 0 s 0
0 −1 0 1

⎞
⎟⎟⎠ .

It can be easily checked that polynomial matrices A(s), Ã(s), B(s), B̃(s) given
by (8.24) can be written as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A(s) =

⎛
⎜⎜⎝

s2 0 0 0
−1 1 0 0
−s 0 1 0
−1 0 0 1

⎞
⎟⎟⎠ , B(s) =

⎛
⎜⎜⎝

1/m
0
0
0

⎞
⎟⎟⎠

Ã(s) =

⎛
⎜⎜⎝

1 −1 0 0
0 s −1 0
0 0 s 0
0 −1 0 1

⎞
⎟⎟⎠ , B̃(s) =

⎛
⎜⎜⎝

0
0

1/m
0

⎞
⎟⎟⎠ ,

and readily satisfy equalities (8.19). �

8.6 Observability and Controllability

We can now introduce the controllability and observability notions in the context
of polynomial representation. The links with the state-space representation are also
established.

8.6.1 Controllability

Definition 8.31 The l.c.s. system (Σ), given by (8.2), is said to be controllable if the
polynomial matrices P(s) and Q(s) are left-coprime.
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Let us motivate this definition. By Definition 8.18, if P and Q are not left-coprime,
there exists a polynomial matrix D(s) with deg

(
det(D)

) ≥ 1 such that:

P = D P1 and Q = DQ1 .

The equation Pξ = Qu then becomes D(P1ξ − Q1u) = 0. If we denote ζ =
P1ξ − Q1u, then ζ satisfies the following differential equation

D(s)ζ = 0 ,

and the dynamics of ζ only depends on the initial conditions of the system, and is
therefore independent of the control u: the “kernel” of the operator D represents a
non controllable subspace.

Let us now introduce the notion of polynomial controller form, counterpart of the
canonical controllable form in the classical state-space context (see § 5.4.2).

Definition 8.32 An l.c.s. system is said to be in the polynomial controller form if it
is in the form {

Pc(s)ξ = u
y = Rc(s)ξ ,

(8.26)

or, in other words, if Q(s) = I in (8.2).

This controller form is well adapted to the computation of the closed-loop system’s
behavior. The partial state ξ, which will be used as the argument of a feedback to
make possible a pole placement (as explained below), has the same dimension as the
control u, the matrix Qc(s) being here equal to the identity matrix.

Let us now establish the following theorem justifying the notion of polynomial
controller form.

Theorem 8.33 Let (Σ) be an l.c.s. system in the polynomial form (8.2). The follow-
ing assertions are equivalent:

(i) (Σ) is controllable;
(ii) (Σ) is equivalent to a polynomial controller form.

Proof ii) → i) (Σ) is assumed to be equivalent to the following polynomial con-
troller form: {

Pc(s)ζ = u
y = Rc(s)ζ .

(8.27)

From Definition 8.28, the existence of polynomial matrices M1, N1, M2 and N2 of
suitable dimensions and of a unimodular polynomial matrix Um of the form (8.25)
can be deduced, namely

Um =
⎛
⎝ S −M1 0

T Pc 0
V −Rc I

⎞
⎠ (8.28)

http://dx.doi.org/10.1007/978-3-642-34324-7_5
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such that Um
(

A B
) = (

Ã B̃
)
, which gives:

⎛
⎝ S −M1 0

T Pc 0
V −Rc I

⎞
⎠

⎛
⎝ P 0 0 Q

−M2 I 0 N2
−R 0 I 0

⎞
⎠ =

⎛
⎝ I −M1 0 N1

0 Pc 0 I
0 −Rc I 0

⎞
⎠ .

By the associativity property, we have that

(
I −N1
0 I

)(
S M1
T −Pc

) (
P Q

M2 −N2

)
=

(
I −N1
0 I

) (
I N1
0 I

)
=

(
I 0
0 I

)
.

Computing first the product

(
I −N1
0 I

) (
S M1
T −Pc

)
leads to:

Wm

(
P Q

M2 −N2

)
=

(
I 0
0 I

)
with Wm =

(
S − N1T M1 + N1 Pc

T −Pc

)
. (8.29)

But

(
I −N1
0 I

)
is unimodular and, using the expression (8.28) of Um , the same

holds true for

(
S M1
T −Pc

)
. Consequently, Wm is unimodular as the product of two

unimodular polynomial matrices and, from (8.29), it can be deduced that W −1
m =(

P Q
M2 −N2

)
, viz. (

P Q
M2 −N2

)
Wm =

(
I 0
0 I

)
. (8.30)

Equality (8.29) (respectively, (8.30)) is the direct Bezout identity (respectively,
inverse) of Corollary 8.21, associated with the matrices P and Q which are therefore
left-coprime, which in turn implies the controllability property of system (Σ).

i) → ii) (Σ) is assumed to be controllable. Therefore, by Definition 8.31 and
Corollary 8.21, there exist Bezout relations between P and Q of the form

(
P Q
S −T

) (
A C
B −D

)
=

(
A C
B −D

) (
P Q
S −T

)
=

(
I 0
0 I

)

which implies:

⎛
⎝ A C 0

B −D 0
R A RC I

⎞
⎠

⎛
⎝ P 0 0 Q

S I 0 −T
−R 0 I 0

⎞
⎠ =

⎛
⎝ I C 0 0

0 D 0 I
0 RC I 0

⎞
⎠ .
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Then the following equalities can be deduced:

⎧⎨
⎩

Pξ = Qu
y = Rξ
ζ = −Sξ − T u

⎧⎨
⎩

−Dζ = u
y = −RCζ
ξ = −Cζ .

This means that (Σ) is equivalent to the following system in polynomial controller
form {−Dζ = u

y = −RCζ ,

which concludes the proof. �

Let us now prove that the controllability notions coincide for systems given in
a classical state-space form or in a polynomial form, by first stating the following
technical lemma.

Lemma 8.34 Let A be a real n × n matrix and B a real n × m matrix. The two
following conditions are equivalent:

(i) rank
(
B, AB, . . . , An−1 B

) = n;
(ii) the polynomial matrices (s I − A) and B are left-coprime.

Proof ii) → i) The polynomial matrices (s I − A) and B being left-coprime, there
exists, by Corollary 8.21, a left Bezout relation of the form

(s I − A)P(s) + B Q(s) = I,

where P and Q are polynomial matrices. If these matrices are expressed as

P =
r∑

i=0
Pi si and Q =

r∑
i=0

Qi si , we can write:

(s I − A)P + B Q = Pr sr+1 +
r∑

i=1

(Pi−1 − APi + B Qi ) si + (B Q0 − AP0) .

Then the following equalities can be deduced

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Pr = 0
Pr−1 = −B Qr

Pr−2 = −B Qr−1 − AB Qr

· · · = · · ·
P0 = −B Q1 − AB Q2 − · · · − Ar−1 B Qr ,

as well as

I = B Q0 − AP0 = B Q0 + AB Q1 + · · · + Ar B Qr
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= (
B, AB, · · · , Ar B

)
⎛
⎜⎜⎜⎝

Q0
Q1
...

Qr

⎞
⎟⎟⎟⎠ . (8.31)

Therefore, the matrix
(
B, AB, . . . , Ar−1 B

)
is right-invertible. In particular, it has

rank n and Cayley-Hamilton theorem 4.10 makes it possible to conclude that
rank

(
B, AB, . . . , An−1 B

) = n.
i) → ii) Condition i) implies the existence of constant matrices Q0, …, Qn−1 such

that (8.31) is satisfied with r = n−1. Then the polynomial matrices P =
n−2∑
i=0

Pi si and

Q =
n−1∑
i=0

Qi si make it possible to establish a left Bezout relation between (s I − A)

and B, which gives i) and concludes the proof of the lemma. �

The following theorem is a straightforward consequence of Theorem 5.12.

Theorem 8.35 The l.c.s. system in state-space representation ẋ = Ax + Bu is
controllable if and only if the polynomial matrices (s I − A) and B are left-coprime.

8.6.2 Observability

Let us now turn to the dual property of observability.

Definition 8.36 The l.c.s. system (Σ), given by (8.2), is said to be observable if the
polynomial matrices P(s) and R(s) are right-coprime.

Let us motivate this definition. Saying that P(s) and R(s) are right-coprime means

that, using the inverse Bezout identities (see Remark 8.22), we have that Um

(
P
R

)
=(

I
0

)
with a unimodular polynomial matrix of the form Um =

(
A B
C −D

)
. Then, the

following equalities are satisfied:

AP + B R = I and C P = DR .

Right-multiplying the first equality by ξ, we obtain from (8.2),

AQu + By = ξ ,

and y and u make it possible to reconstitute the partial state ξ, which is nothing but
the mathematical expression of the observability property. Then, if the output is equal
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to the partial state, the observability property is straightforward and this justifies the
following definition.

Definition 8.37 An l.c.s. system is said to be in polynomial observer form if it is in
the form: {

Po(s)ξ = Qo(s)u
y = ξ .

(8.32)

Notice that it means that the output is equal to the partial state.

As for the controllability property, we have the following theorem.

Theorem 8.38 Let (Σ) be a system in polynomial form (8.2). The following propo-
sitions are equivalent:

(i) (Σ) is observable;
(ii) (Σ) is equivalent to the polynomial observer form.

Proof ii) → i) We suppose that (Σ) is equivalent to the following polynomial
observer form

Po y = Qou . (8.33)

From Definition 8.28, there exist polynomial matrices M , N , S and T and a unimod-
ular polynomial matrix Um of the form

Um =
⎛
⎝Um,1 Um,2 0

Um,3 Um,4 0
Um,5 Um,6 I

⎞
⎠

such that:

Um

⎛
⎝ P 0 0 Q

−S I 0 T
−R 0 I 0

⎞
⎠ =

⎛
⎝ I −M 0 N

0 Po 0 Qo

0 −I I 0

⎞
⎠ .

In particular, we deduce that

⎧⎨
⎩

Um,6 = −I
Um,1 P − Um,2S = I
Um,5 P − Um,6S − R = 0 .

These equalities imply that

(Um,1 + Um,2Um,5)P − Um,2 R = I . (8.34)

From (8.34), it can be deduced that P are R are right-coprime and, therefore, that
(Σ) is observable.

i) → ii) Let us now suppose that P and R are right-coprime. Therefore, by
Corollary 8.21, we can write the Bezout relations
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(
A B
C −D

) (
P S
R −T

)
=

(
P S
R −T

) (
A B
C −D

)
=

(
I 0
0 I

)
,

which imply that
AP + B R = I .

Multiplying by ξ and using (8.2) this gives AQu + By = ξ. Therefore, the changes
of partial states {

y = Rξ
ξ = AQu + By

induce an equivalence (in the polynomial sense) between (Σ) and (8.33), which
concludes the proof. �

Similarly to the controllability case, it can be shown that the observability notions
coincide for polynomial systems and systems in classical state-space representation.
The following lemma is satisfied.

Lemma 8.39 Let A be a real n × n matrix and C a real p × n matrix. The two
following conditions are equivalent:

(i) rank

⎛
⎜⎜⎜⎝

C
C A
...

C An−1

⎞
⎟⎟⎟⎠ = n;

(ii) the polynomial matrices (s I − A) and C are right-coprime.

Proof The proof, quite similar to the one of Lemma 8.34, is left as an exercise for
the reader. �

The following theorem can be deduced.

Theorem 8.40 The l.c.s. system in state-space representation ẋ = Ax + Bu with
the output y = Cx is observable if and only if the polynomial matrices (s I − A) and
C are right-coprime.

Remarks

• In the scalar case, the transfer function of system (8.2) can be written as:

h(s) = r(s)q(s)

p(s)
.

The observability property means that the polynomials p(s) and r(s) are coprime
and the controllability means that p(s) are q(s) coprime. If the system is not
observable (respectively, not controllable), the unobservable modes (respectively,
uncontrollable) do not appear in the expression of the transfer function, as we
have seen in Propositions 5.60 and 5.61. A pole/zero simplification necessarily
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has occurred, which means that p(s) and r(s) (respectively p(s) are q(s)) are not
coprime.

• If the system is not controllable, the zeros of the Smith form of (P(s), Q(s))
correspond to the uncontrollable modes, and are called input decoupling zeros
(see for example [44, 55]).

If the system is not observable, the zeros of the Smith form of

(
P(s)
R(s)

)
correspond

to the unobservable modes and are called output decoupling zeros (see [44, 55]).
• In the sequel, we consider controllable and observable systems. Consequently,

when we refer to zeros, we mean transmission zeros , that is, zeros of the transfer
matrix (see Definition 8.25). Finally, this assumption implies that the system’s
poles, equal to the roots of the determinant of P(s), are also given by the roots of
the ψi (s) of the Smith-Mac-Millan form (8.18).

8.7 From the State-Space Representation to the Polynomial
Controller and Observable Forms

We now establish the links between the state-space and the polynomial represen-
tations of l.c.s. systems. More precisely, we give a systematic way to compute the
polynomial controller and observer forms from the classical state-space representa-
tion.

We consider a controllable and observable linear dynamical system (Σ) in state-
space form, with an additive dynamics disturbance w of dimension r :

(Σ)

{
ẋ = Fx + Gu + Gdw

y = Cx .
(8.35)

8.7.1 From the State-Space Representation to the Polynomial
Observer Form

We first state the following proposition giving the polynomial observer form associ-
ated with (8.35).

Proposition 8.41 The polynomial observer form associated with (8.35) is given by

A(s)y = Bc(s)u + Bd(s)w wi th

{
Bc(s) = B(s)G
Bd(s) = B(s)Gd

(8.36)

where A(s) and B(s) satisfy

A(s)C = B(s)(s I − F) .
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Proof The system (Σ) being observable, the polynomial matrices (s I − F) and C
are right-coprime. Let us define

F̃(s) = s I − F .

By Corollary 8.21 and Remark 8.22, we know that there exist left-coprime polynomial
matrices A(s) and B(s) and X (s), Y (s), X1(s), Y1(s) satisfying the direct and inverse
matrix Bezout identities, namely:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
A(s) −B(s)
Y1(s) X1(s)

) (
X (s) C

−Y (s) F̃(s)

)
=

(
I 0
0 I

)

(
X (s) C

−Y (s) F̃(s)

)(
A(s) −B(s)
Y1(s) X1(s)

)
=

(
I 0
0 I

)
.

(8.37)

Equalities (8.37) imply in particular that

Y1(s)C + X1(s)F̃(s) = I,

and, right-multiplying by x this matrix equation, we obtain from (8.35):

Y1(s)y + X1(s)(Gu + Gdw) = x .

This equality is nothing but the mathematical expression of the observability property,
that is, the fact that the state x can be obtained from the knowledge of the output y
and the inputs u and w. From (8.37), we have that:

A(s)C = B(s)F̃(s) .

On the other hand, since y = Cx , we deduce that

A(s)y = B(s)F̃(s)x = B(s)Gu + B(s)Gdw ,

which constitutes the expected polynomial observer form (8.36). �

8.7.2 From the Polynomial Observer form to the Polynomial
Controller Form

The following proposition gives the polynomial controller form associated with
(8.35).

Proposition 8.42 The polynomial controller form associated with (8.35) is given by
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{
A1(s)ξ = u + T1(s)w

y = B1(s)ξ + T2(s)w ,

with T1(s) = F0(s)Bd(s) and T2(s) = E0(s)Bd(s) ,

(8.38)

where A1(s), B1(s) and E0(s), F0(s) satisfy

{
A(s)B1(s) = Bc(s)A1(s)
A(s)E0(s) + Bc(s)F0(s) = I ,

the polynomial matrices A(s) and Bc(s) being associated with the polynomial
observer form (8.36) of (8.35).

Proof We know that (8.36) is equivalent to the l.c.s. system (8.35) which is control-
lable by assumption. Consequently, the matrices A(s) and Bc(s) are left-coprime.
By Corollary 8.21, we can write again the associated matrix Bezout identities and
we know that there exist right-coprime polynomial matrices A1(s) and B1(s) and
E0(s), F0(s), E1(s), F1(s) satisfying:

⎧⎪⎪⎨
⎪⎪⎩

(
A(s) −Bc(s)
F1(s) E1(s)

) (
E0(s) B1(s)

−F0(s) A1(s)

)
=

(
I 0
0 I

)

(
E0(s) B1(s)

−F0(s) A1(s)

) (
A(s) −Bc(s)
F1(s) E1(s)

)
=

(
I 0
0 I

)
.

(8.39)

Let ξ be the vector defined by (the s variable is omitted in the sequel):

ξ = F1(y − E0 Bdw) + E1(u + F0 Bdw) . (8.40)

Then, we have that A1ξ = A1 F1(y − E0 Bdw) + A1 E1(u + F0 Bdw) and, from
(8.39), that

A1ξ = F0 A(y − E0 Bdw) + (I − F0 Bc)(u + F0 Bdw) . (8.41)

From the polynomial observer form (8.36), we have that

F0 A(y − E0 Bdw) = F0 Bcu + F0(I − AE0)Bdw ,

and also, from (8.39),
I − AE0 = Bc F0 . (8.42)

We deduce that
F0 A(y − E0 Bdw) = F0 Bc(u + F0 Bdw) ,

which implies, replacing F0 A(y − E0 Bdw) in (8.41), that:
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A1ξ = u + F0 Bdw . (8.43)

In the same way, from the expression (8.40) of ξ, we obtain

B1ξ = B1 F1(y − E0 Bdw) + B1 E1(u + F0 Bdw) .

Now, using again the Bezout identities (8.39), we obtain

E0 A = I − B1 F1 and E0 Bc = B1 E1 ,

which gives:

B1ξ = (I − E0 A)(y − E0 Bdw) + E0 Bc(u + F0 Bdw) . (8.44)

On the other hand, we can write from (8.36)

E0 A(y − E0 Bdw) = E0 Bcu + E0(I − AE0)Bdw ,

which gives, using equality (8.42),

E0 A(y − E0 Bdw) = E0 Bc(u + F0 Bdw) .

Replacing E0 A(y − E0 Bdw) by its expression in (8.44), we obtain

B1ξ = y − E0 Bdw , (8.45)

and considering (8.43) and (8.45), we finally obtain the expected polynomial
controller form (8.38). This concludes the proof. �

8.8 Closed-Loop Transfer Functions from the Input
and the Disturbances to the Outputs

To be more general, we consider the polynomial controller form (8.38) and we
add a vector dm of measurements disturbances. This form is well adapted to the
computation of the closed-loop transfers, since we show now that a feedback law
can be expressed directly from the partial state.

Consider the system given by:

{
A1(s)ξ = u + F0 Bdw

y = B1(s)ξ + E0 Bdw + dm .
(8.46)

Let us now define what is meant by “controller” in the polynomial context.
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Definition 8.43 We call causal linear dynamic rational controller with input y and
output u, a system of the form

P(s)u + Q(s)y = r , (8.47)

where r(t) is a reference signal, and P(s) and Q(s) are polynomial matrices of
suitable dimensions such that P−1(s)Q(s) is proper.

Let us compute the characteristic polynomial of the closed-loop system (8.46)–
(8.47). The expressions of y and u given by (8.46) are replaced in (8.47), so that the
feedback law can be expressed as follows, using the partial state ξ of the polynomial
controller form (8.38) associated with (8.35):

r = T ξ + (QE0 Bd − P F0 Bd)w + Qdm with T = P A1 + Q B1 . (8.48)

Remark 8.44 The matrix T (s) is invertible since its determinant has for roots the
poles of the closed-loop system which are chosen asymptotically stable. �

Then, from (8.48), ξ can be written as

ξ = T −1(r + (P F0 − QE0)Bdw − Qdm) , (8.49)

which leads to the following proposition giving the expression of the different trans-
fers between r , w, dm and y.

Proposition 8.45 The closed-loop expression of y in function of the reference r , the
dynamics disturbances w and the measurements disturbances dm is of the form:

y = Tr yr + Twyw + Tdm ydm ,

with

⎧⎨
⎩

Tr y = B1T −1

Twy = (B1T −1(P F0 − QE0) + E0)Bd

Tdm y = I − B1T −1 Q .

(8.50)

Remark 8.46 It can be noticed that the zeros of the open-loop system (8.46), that is,
the zeros of the transfer from u to y given by B1(s), are also present after feedback in
the transfer Tr y [51, 52, 54]. The zeros of the transfer Tr y are usually called tracking
zeros. �

Let us now parameterize the controller to make the degrees of freedom appear in
an affine way. They make it possible to act on the zeros of the transfer functions Twy

and Tdm y , which are called regulation zeros.
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8.9 Affine Parameterization of the Controller and Zeros
Placement with Fixed Poles

This kind of parameterization, initially used by Youla et al. [71], is useful to obtain
stabilizing controllers optimizing some criteria. We use the same type of parame-
terization of the controller for a slightly different objective. In fact, the closed-loop
poles having been fixed in § 8.8, we have made good use of the degrees of freedom,
appearing affinely in the controller’s parameterization (8.48), to place some zeros of
suitable transfer functions.

Using the fact that the polynomial matrices A1(s) and B1(s) in (8.46) are right-
coprime, we know that, by Corollary 8.21, there exist polynomial matrices P0(s)
and Q0(s) such that:

P0 A1 + Q0 B1 = I . (8.51)

On the other hand, since AB1 = Bc A1 where A and Bc are associated with the
polynomial observer form (8.36), the general solutions P and Q satisfy T = P A1 +
Q B1, where T (s) is the matrix associated with the closed-loop dynamics, and are
given by {

P = T P0 + K Bc

Q = T Q0 − K A ,
(8.52)

where K (s)here denotes an arbitrary polynomial matrix. Using this parameterization,
the different transfers of (8.50) can be rewritten as:

⎧⎪⎨
⎪⎩

Tr y = B1T −1

Twy =
(

B1
(
P0 F0 − Q0 E0 + T −1 K (Bc F0 + AE0)

) + E0

)
Bd

Tdm y = I − B1 Q0 + B1T −1 K A .

(8.53)

The following proposition is straightforward.

Proposition 8.47 Thanks to the degrees of freedom of the matrix K affinely appear-
ing in the polynomial matrices Twy(s) and Tdm y(s) in (8.53), it is possible to act on the
regulation zeros appearing after feedback, without modifying the poles characterized
by the determinant of T (s).

To conclude, it has been shown that the state-space representation and the poly-
nomial representation are conceptually equivalent. However, the degrees of freedom
potentially existing in the control, in the multivariable case, are not highlighted in the
classical state-space stabilization approach through the observer-regulator synthesis.
The idea is to use these degrees of freedom from the polynomial controller form,
to place some regulation zeros to asymptotically reject some disturbances, with a
controller of minimal dimension. This method is applied in the next section devoted
to the stabilization of the inverted pendulum.
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8.10 The Inverted Pendulum Example

The inverted pendulum on a moving cart with mass has been introduced in § 2.3.1,
and described by the controlled nonlinear dynamical system (2.9). The tangent linear
dynamical system of (2.9) at the unstable equilibrium is given in (4.38) and in (5.4):

{
ẋ = Fx + Gu
y = Cx ,

(8.54)

with

F =

⎛
⎜⎜⎝

0 0 1 0
0 0 0 1
0 a 0 0
0 b 0 0

⎞
⎟⎟⎠ , G =

⎛
⎜⎜⎝

0
0
r1
r2

⎞
⎟⎟⎠ , C =

(
1 0 0 0
0 1 0 0

)
. (8.55)

The coefficients of the matrices F and G are constant and depend on the physical
parameters of the system. System (8.54)–(8.55) is controllable and observable and
therefore the n = 4 poles of F − G K and the n = 4 poles of F − LC can be placed
separately (see Chaps. 5 and 7). Consequently, the number nd of degrees of freedom
of the controller is given by (8.1), viz.:

nd = n(m + p − 2) = 4 .

These degrees of freedom are used to place some regulation zeros.
In fact, many disturbances affect the system: measurements disturbances, unknown

slope of the bench, motors’s dissymmetries, dry friction along the bench, etc. So,
to be more complete, a n-vector w of dynamics disturbances and a p-vector dm of
measurements disturbances have been added:

w = (0 0 w1 w2)
�, dm = (bz bθ)�. (8.56)

8.10.1 Computation of the Polynomial Observer
and Controller Forms

Applying the results of § 8.7, the polynomial observer form can be obtained directly
from (8.54)–(8.55):

A(s) =
(

s2 −a
0 s2 − b

)
, Bc(s) =

(
r1
r2

)
, Bd(s) = I . (8.57)

The matrices A(s) and Bc(s) being left-coprime, the polynomial controller form
is obtained by solving the Bezout identities (8.39), and, more precisely, by finding

http://dx.doi.org/10.1007/978-3-642-34324-7_2
http://dx.doi.org/10.1007/978-3-642-34324-7_2
http://dx.doi.org/10.1007/978-3-642-34324-7_2
http://dx.doi.org/10.1007/978-3-642-34324-7_4
http://dx.doi.org/10.1007/978-3-642-34324-7_5
http://dx.doi.org/10.1007/978-3-642-34324-7_5
http://dx.doi.org/10.1007/978-3-642-34324-7_7
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polynomial matrices E0(s), F0(s), A1(s) and B1(s) satisfying:

{
A(s)E0(s) + Bc(s)F0(s) = I
A(s)B1(s) = Bc(s)A1(s) .

This gives ⎧⎪⎨
⎪⎩

A1(s) = s2(s2 − b)

B1(s) =
(
βz(s)
βθ

)
=

(
r1s2 + ar2 − br1

r2

)
,

(8.58)

and ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

E0(s) =
⎛
⎜⎝

r1

br1 − ar2

r2
1

r2(ar2 − br1)r2

br1 − ar2

r1

ar2 − br1

⎞
⎟⎠

F0(s) =
(

− s2 − b

br1 − ar2

ar2 − r1s2

r2(ar2 − br1)

)
.

(8.59)

8.10.2 Computation of the Closed-Loop Transfer Functions

The more general controller is of the form

p(s)u + qz(s)y1 + qθ(s)y2 = r , (8.60)

where r is a reference signal and qz , qθ are polynomials of degrees strictly less that
the one of p(s), for the controller to be causal. From a practical point of view, it is
important to be able to act on the closed-loop behavior of the real physical variables
of the systems z and θ, and not on their measurements y1 and y2 which are subjected
to noises. If we denote by y the vector (z, θ)�, then from (8.50) and the expression
of the outputs {

y1 = z + bz
y2 = θ + bθ ,

(8.61)

we obtain the different closed-loop transfers from w, dm and r to y:

y = B1T −1r + (B1T −1(P F0 − QE0) + E0)Bdw − B1T −1 Qv . (8.62)

Let us point out that, since u is scalar, T (s) is a polynomial and not a polynomial
matrix. The following transfer functions can then be written as
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⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Tr y(s) = 1
T (s)

(
βz(s)
βθ(s)

)

Tdm y(s) = 1

T (s)

(−qz(s)βz(s) −qθ(s)βz(s)
−qz(s)βθ(s) −qθ(s)βθ(s)

)

Twy(s) = 1

T (s)

(
t11(s) t12(s)
t21(s) t22(s)

)
,

(8.63)

where the polynomials ti j (s) have the following form

⎧⎪⎪⎨
⎪⎪⎩

t11(s) = p(s)h1(s) + qθ(s)h2(s)
t12(s) = p(s)h3(s) + qθ(s)h4(s)
t21(s) = p(s)h5(s) + qz(s)h6(s)
t22(s) = p(s)h7(s) + qz(s)h8(s) ,

(8.64)

the polynomials hi (s) being given by:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h1(s) = (r1 A1(s) − βz(s)(s2 − b))/(br1 − ar2)

h2(s) = (r1βθ(s) − r2βz(s))/(br1 − ar2)

h3(s) = (r2
1 A1(s) + βz(s)(ar2 − r1s2))/r2(ar2 − br1)

h4(s) = (r2
1βθ(s) − r1r2βz(s))/r2(ar2 − br1)

h5(s) = (r2 A1(s) − βθ(s)(s2 − b))/(br1 − ar2)

h6(s) = (r2βz(s) − r1βθ(s))/(br1 − ar2)

h7(s) = (r1r2 A1(s) + βθ(s)(ar2 − r1s2))/r2(ar2 − br1)

h8(s) = (r1r2βz(s) − r2
1βθ(s))/r2(ar2 − br1) .

(8.65)

8.10.3 Affine Parameterization of the Controller

Let us now parameterize the controller (8.60) to use the degrees of freedom. The
closed-loop poles given by the roots of the polynomial T (s) being placed in the
stability half-plane (see Definition 4.6 and Remark 8.44), polynomials p(s), qz(s)
and qθ(s) have to be found satisfying:

p(s)A1(s) + qz(s)βz(s) + qθ(s)βθ(s) = T (s) . (8.66)

If p0, qz0 and qθ0 constitute a particular solution, one can write:

A1(p0 − p) = βz(qz − qz0) + βθ(qθ − qθ0) . (8.67)

Since the polynomials βz(s) and βθ(s) given by (8.58) are coprime, we know by
Corollary 8.21 that there exist polynomials rz and rθ satisfying:

rzβz + rθβθ = −A1 . (8.68)
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A particular solution is given by

rz(s) = 1

r1
s2 and rθ(s) = − a

r1
, (8.69)

with deg(rz) = 2 and deg(rθ) = 0. Multiplying (8.68) by (p − p0), we obtain:

A1(p0 − p) = rzβz(p − p0) + rθβθ(p − p0) . (8.70)

Equations (8.67) and (8.70) are Bezout relations of type (8.13) with solutions
(qz − qz0) and (qθ − qθ0), on the one hand, and rz(p − p0) and rθ(p − p0), on
the other hand. Consequently, there exist polynomials k and l such that:

⎧⎨
⎩

p = p0 + l
qz = qz0 + lrz + kβθ
qθ = qθ0 + lrθ − kβz .

(8.71)

To obtain a particular solution, the division algorithm can be applied:

T = A1 p0 + r0, deg(r0) < deg(A1) = 4 . (8.72)

One has then to solve
r0 = βzqz0 + βθqθ0 . (8.73)

The unique solution must satisfy:

{
deg

(
qz0(s)

)
< deg

(
βθ(s)

) = 2
deg

(
qθ0(s)

)
< deg

(
βz(s)

) = 2 .
(8.74)

Then, from (8.69), (8.71) and (8.72), we have, with n = deg
(
T (s)

)
, that:

⎧⎨
⎩

deg(qz) = max(deg(l) + 2, deg(k) + 2, 1)

deg(qθ) = max(deg(l), deg(k) + 2, 1)

deg(p) = max
(

deg(p0), deg(l)
) = max

(
n − 4, deg(l)

)
.

(8.75)

But the polynomials l and k have also to respect the strict causality constraints of the
controller, given by {

deg(p) > deg(qz)

deg(p) > deg(qθ) .
(8.76)

If the polynomials l and k are chosen independently, the following inequalities can
be deduced from (8.75) and (8.76):

{
deg(l) ≤ n − 7
deg(k) ≤ n − 7 .

(8.77)
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So, if n = 8 poles are placed as expected, we obtain polynomials l and k of degree1
from (8.77), and therefore the 4 expected degrees of freedom: l0, l1, k0, k1 (coeffi-
cients of si in the corresponding polynomials).

8.10.4 Placement of Regulation Zeros with Fixed Poles

We are now going to use the degrees of freedom to asymptotically reject some classes
of disturbances.

Asymptotic Rejection of Constant Perturbations

From (8.63)–(8.64), for the static gains (see Definition 3.33) from the dynamics
noises w1 and w2 to the position z of the cart to be zero, it is sufficient to have:

p(0) = 0 and qθ(0) = 0 . (8.78)

In that case, the static gain from bθ to z is also zero but the one from bz to z is equal
to −1, which means that a measurement bias on the position z cannot be rejected on
the asymptotic value of z. If qz(0) would be zero, all the static gains from the wi to
θ would also be zero, but, from (8.66) and (8.78), we have that:

T (0) = qz(0)βz(0) , βz(0) �= 0 . (8.79)

Consequently, qz(0) must be nonzero to guarantee the asymptotic stability of the
closed-loop system. On the other hand, the fact that βθ(0) is zero implies that the
static gains from bz and bθ to θ are naturally zero. It means that without dynamics
disturbance, the only possible equilibrium of the pendulum is the vertical position,
corresponding to θ = 0. Let us now summarize the conditions of asymptotic rejection
of constant perturbations, denoted arcp:

(arcp)

⎧⎨
⎩

p(0) = 0
qθ(0) = 0
qz(0) �= 0 .

(8.80)

Using the general parameterization (8.71), these arcp are equivalent to choosing

l0 = −p0
0 and k0 = q0

θ0
− p0

0r0
θ

β0
z

. (8.81)

We can check afterwards that qz0(0) is not zero. Two degrees of freedom have been
used to realize these arcp conditions.
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Asymptotic Rejection of Ramp Perturbations

From a dynamical point of view, a slope of the bench introduces a disturbance w1
on the only carts’s dynamics. When satisfying arcp conditions (8.81), one is able to
asymptotically reject on z a constant slope of the bench.

Remark 8.48 One could imagine that this slope is introduced regularly as a ramp
by the public with a button driving a pneumatic jack. This is actually what was
done on the full-size realization of the double inverted pendulum (Cité des sciences
et de l’industrie de la Villette). Using the polynomial techniques developed in this
chapter, we have elaborated a stabilizing control law which can, moreover, reject non
measured disturbances, without increasing the size of the controller (see [25, 26]).
This experiment had to deal with sensors and actuator noises, dry friction along the
bench and the public could introduce a slope γ by driving the pneumatic jack at a
constant velocity. �

This slope γ can then be described as a ramp disturbance (see Definition 3.11),
namely,

w1 = gγ

s2 , (8.82)

where g = 9.81 m s−2 is the constant of gravity. Using (8.63) and denoting Fγz(s)
the transfer function from γ to z, we obtain

Fγz(s) = t11(s)

T (s)
= p(s)h1(s) + qθ(s)h2(s)

T (s)
,

where h1(s) and h2(s) are given by (8.64) and (8.65). If the arcp conditions (8.81)
hold true, p(0) and qθ(0) are zero, and it can be deduced that

t11(0) = 0 = Fγz(0) .

To asymptotically reject the ramp (8.82), the following relation between derivatives
should also be satisfied (the symbol ′ denotes the differentiation operation with
respect to the variable s)

F ′
γz(0) = t ′11(0)T (0) − t11(0)T ′(0)

T 2(0)
= 0 .

Moreover, t11(0) being zero, one has to solve t ′11(0) = 0 = p′(0)h1(0)+q ′
θ(0)h2(0).

A solution can be obtained by ensuring:

p′(0) = q ′
θ(0) = 0 . (8.83)

Noticing that β1
z and r1

θ being zero, Eq. (8.83) implies the following choice for l1 and
k1:
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l1 = −p1
0 and k1 = q1

θ0
− p1

0r0
θ

β0
z

. (8.84)

The two last degrees of freedom are then fixed to solve the asymptotic rejection of
ramp perturbations.

To conclude, the polynomial approach makes it possible to easily parameterize
a controller to make the degrees of freedom appear after the poles placement in
the case of a multivariable system. These degrees of freedom can be used to face
some disturbances. On the full-size realization of the double inverted pendulum, such
stabilizing controllers have been implemented in real time and the results we have
obtained have illustrated the importance of the choice of the regulation zeros.

8.11 Exercises

Exercise 8.11.1 Consider the following scalar l.c.s. system in state-space canonical
controller form {

ẋ = Ax + Bu
y = Cx

(8.85)

with A, B and C of the form:

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0 0
0 0 1 · · · 0 0
· · · · · · · ·
· · · · · · 1 0
0 0 · · · · 0 1

−an −an−1 · · · · −a2 −a1

⎞
⎟⎟⎟⎟⎟⎟⎠

, B =

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0
·
·
0
1

⎞
⎟⎟⎟⎟⎟⎟⎠

, C = (
c1 · · · cn

)
.

Compute the polynomial controller form of this system.

Exercise 8.11.2 Consider the scalar l.c.s. system (8.85) in state-space observer
canonical form:

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 · · · · 0 −an

1 0 · · · · 0 −an−1
0 1 · · · · · ·
· · · · · · · ·
0 0 · · · 1 0 −a2
0 0 · · · 0 1 −a1

⎞
⎟⎟⎟⎟⎟⎟⎠

, B =

⎛
⎜⎜⎜⎜⎜⎜⎝

b1
b2
·
·

bn−1
bn

⎞
⎟⎟⎟⎟⎟⎟⎠

, C = (
0 0 · · · 0 1

)
.

Compute the polynomial observer form of this system.

Exercise 8.11.3 Consider the following l.c.s. system with input u and output y in
polynomial observer form:
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a(s)y = b(s)u + w with deg
(
a(s)

)
> deg

(
b(s)

)
.

The term w is a disturbance with an asymptotically stable dynamics given by:

dw(s)w = 0 .

Let yc be the output reference whose asymptotically stable dynamics is given by:

dc(s)yc = 0 .

We want to elaborate a polynomial controller

p(s)u = −q(s)y + qc(s)yc

with causality conditions

deg
(

p(s)
)

> deg(q(s)
)

and deg
(

p(s)
)

> deg
(
qc(s)

)
, (8.86)

such that the output y asymptotically tracks the reference yc in spite of the
disturbance w.

1. Show that the transfer functions w → y and yc → y can be written as

y = p(s)

a(s)p(s) + b(s)q(s)
w + b(s)qc(s)

a(s)p(s) + b(s)q(s)
yc .

2. Compute the dynamics of the error e = y − yc. Show that, for the error to
asymptotically tend to zero, it is sufficient for the controller to satisfy:

• p(s) is a multiple of the scm (smallest common multiple) of the polynomials
dw and dc;

• (qc(s) − q(s)) is a multiple of dc(s);
• (a(s)p(s)+ b(s)q(s)) is an asymptotically stable polynomial (viz. with roots

having a strictly negative real part in the continuous-time case).

The first condition means that the dynamics p(s) of the controller contains those
of the disturbance and of the set-point. This result is known as the “internal
model principle” (see for example [70]).

3. Show that the following choice of controller is convenient

⎧⎨
⎩

p(s) = p0(s)scm(dw(s), dc(s))
q(s) = q0(s)scm(dw(s), dc(s))
qc(s) = K (s)dc(s) ,

where the polynomials p0(s) and q0(s) satisfy:

a(s)p0(s) + b(s)q0(s) = Δ(s) ,
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Δ(s) being an “asymptotically stable polynomial” with a degree equal to the one
of a(s). Check that the causality condition (8.86) of the controller is satisfied.

Exercise 8.11.4 We consider the following system, describing the dynamics of a
material point of mass m, disturbed by a noise w:

mz̈ = F + w .

The position z of the point is assumed to be measured.

1. Put this system in a polynomial form as in (8.11.4) and give the polynomial
observer and controller forms.

2. We consider the equation of the controller

p(s)u + q(s)y = r ,

r being a reference signal. The polynomial matrices p(s) and q(s) have to be
determined to guarantee the closed-loop stability and also to act on the distur-
bance w. To do this, show that the closed-loop transfer Twy(s) from w to y can
be written as

Twy(s) = p(s)

T (s)
,

where T (s) = p(s)ms2 + q(s) is the polynomial describing the closed-loop
system dynamics.

3. The disturbance w being a constant noise, show that 5 poles have to be placed
to reject asymptotically w in the transfer Twy(s), namely to realize p(0) = 0.

4. Show that if w is a periodic disturbance of frequency 1/2π, 6 poles have to
be placed to reject asymptotically w in the transfer Twy(s), namely to realize
p(i) = p(−i) = 0.



Appendix A
The Discrete-Time Stationary Riccati Equation

We study the stationary version of the induction equation (7.3), namely the Riccati
equation (7.9).

A symmetric matrix S satisfies S = S�. Recall that a symmetric matrix S is said
to be positive (respectively, definite positive) if, for all nonzero vector x, we have
that x�Sx ≥ 0 (respectively, x�Sx > 0). If S1 and S2 are two symmetric matrices,
we denote S1 ≥ S2 if S1 − S2 is a positive matrix, and S1 > S2 if S1 − S2 is a
definite positive matrix. A symmetric matrix S is said to be definite negative if −S
is definite positive.

Definition A.1 Consider F, G and H, three matrices of respective sizes n ×n, n ×m
and p × n, and the mapping

ψ(Π) = H�H+ F�ΠF− F�ΠG(R+ G�ΠG)−1G�ΠF , (A.1)

that maps any symmetric n × n matrix Π into a symmetric n × n matrix ψ(Π). We
call algebraic (or stationary) discrete-time Riccati equation the equation Π = ψ(Π),
namely

Π = H�H+ F�ΠF− F�ΠG(R+ G�ΠG)−1G�ΠF . (A.2)

Let Δ be a matrix of size n × m and Π an n × n symmetric matrix. We set

ψΔ(Π) = H�H+ (F− GΔ)�Π(F− GΔ) + ΔRΔ (A.3a)

Δ̄(Π) = (G�ΠG+ R)−1G�ΠF (A.3b)

F̃(Π) = F− GΔ̄(Π) = F− G(R+ G�ΠG)−1G�ΠF . (A.3c)

The following Lemma A.2 is proven in [14, 15].

Lemma A.2 ([14, 15]) For all symmetric matrix Π , we have that

ψΔ̄(Π)(Π) = ψ(Π) . (A.4)

B. d’Andréa-Novel and M. De Lara, Control Theory for Engineers, 227
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Moreover, the mapping ψ is minimal in the sense that

Π1 ≤ Π2 ⇒ ψ(Π1) ≤ inf
Δ
ψΔ(Π2) ≤ ψ(Π2) . (A.5)

Lemma A.3 There is a unique positive solution Π of the Riccati equation (A.2)
such that the matrix F̃(Π) is asymptotically stable.

Proof By Proposition 7.4, uniqueness is straightforward since x�
0 Πx0 is the mini-

mum (7.10) of the associated optimization problem. �

Proposition A.4 If the couple (F,G) is controllable and if the couple (F,H) (or
(F,HF)) is observable, there exists a unique symmetric positive solution Π to the
algebraic Riccati equation (A.2) such that the matrix F̃(Π) is asymptotically stable.
Moreover, this matrix Π is positive definite and is obtained as the limit of any
sequence

Πk+1 = ψ(Πk) , k ∈ N , (A.6)

for any initial condition Π0 ≥ 0.

The proof consists of two lemmas.

Lemma A.5 Consider the sequence
(
Π0

k

)
k≥0 of symmetric matrices defined by the

induction
Π0

k+1 = ψ(Π0
k ) , k ∈ N , Π0

0 = 0 . (A.7)

1. The sequence
(
Π0

k

)
k≥0 is increasing, and made of symmetric positive matrices.

2. If the couple (F,G) is controllable, the sequence
(
Π0

k

)
k≥0 is bounded above and

converges towards a symmetric positive matrix Π∞.
3. If the couple (F,H) is observable, the sequence

(
Π0

k

)
k≥n is bounded below by

Π0
n > 0.

4. If the couple (F,HF) is observable, the sequence
(
Π0

k

)
k≥n+1 is bounded below

by Π0
n+1 > 0.

Proof It is clear that the sequence
(
Π0

k

)
k≥0 is made of symmetric matrices (and

positive if we prove that the sequence is increasing).

1. Let us consider the sequence of criteria (without final state penalization)

J f (u) = J (u0, . . . ,u f −1) =
f −1∑
k=0

(
u�

k Ruk + x�
k H

�Hxk

)
, f ≥ 1 ,

where xk solves the linear dynamical system

xk+1 = Fxk + Guk , k ∈ N . (A.8)

http://dx.doi.org/10.1007/978-3-642-34324-7_7
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As these criteria are increasing in f , the same property holds true for their
minimal values and thus, by Proposition 7.2 and 7.4, we have that:

x�
0 Π0

f +1x0 ≥ x�
0 Π0

f x0 ≥ · · · ≥ x�
0 Π0

1x0 ≥ 0 .

2. If the couple (F,G) is controllable, there exists, by Theorem 6.23, a matrix K
such that (Fd −GdK) is asymptotically stable. Taking for control sequence u the
one given by the state feedback control (6.31), we have that

J (u) =
+∞∑
k=0

(
u�

k Ruk + x�
k Qxk

)
< +∞ ,

since xk and uk decrease exponentialy towards 0 (see the proof of Proposi-
tion 6.12). This yields the inequality

x�
0 Π0

f x0 ≤ J f (u) ≤ J (u) < +∞ .

The sequence
(
x�

0 Π0
f x0

)
f ≥0

, increasing and bounded above for each x0, con-

verges thus in R. We easily deduce that the sequence of symmetric positive

matrices
(
Π0

f

)
f ≥0

converges towards the symmetric positive matrix Π∞ char-

acterized by the expression

x�
0 Π∞z0 = 1

2
lim

f →+∞

(
(x0 + z0)

�Π0
f (x0 + z0) − x�

0 Π0
f x0 − z�

0 Π0
f z0

)
.

3. If the couple (F,H) is observable, let us show that the symmetric matrix Π0
n is

not only positive, but also definite. Indeed, if x0 is such that x�
0 Π0

nx0 = 0, then,
with the notations of the proof of Proposition 7.4, we have that

0 = Jn(u�) =
n−1∑
k=0

(
u�

k
�Ru�

k + x�
k
�H�Hx�

k

)
.

We deduce that u�
k
�Ru�

k = 0 and x�
k
�H�Hx�

k = ‖Hxk‖2 = 0, namely u�
0 =

· · · = u�
n−1 = 0 and Hx�

0 = · · · = Hx�
f −1 = 0. As the control is zero, the

solution (x�
k)k∈N to (A.8) satisfies x�

k+1 = Fx�
k , and we obtain

Hx�
0 = HFx�

0 = · · · = HFn−1x�
0 = 0 .

http://dx.doi.org/10.1007/978-3-642-34324-7_6
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By observability of the couple (F,H), we deduce that x0 = x�
0 = 0 (see Corol-

lary 6.26).

4. If the couple (F,HF) is observable, let us show that the symmetric matrix Π0
n+1

is not only positive but also definite. Indeed, if x0 is such that x�
0 Π0

n+1x0 = 0,
then, as above, we deduce that

HFx�
0 = · · · = HFn−1x�

0 = HFnx�
0 = 0 .

By observability of the couple (F,HF), we deduce that x0 = x�
0 = 0.

This concludes the proof. �

Lemma A.6 If the couple (F,G) is controllable and if the couple (F,H) (or (F,HF))
is observable, the symmetric positive matrix Π∞ provided by item 2 in Lemma A.5
is such that

1. the matrix Π∞ satisfies the stationary Riccati equation

Π∞ = H�H+ F�Π∞F− F�Π∞G(R + G�Π∞G)−1G�Π∞F ; (A.9)

2. the matrix F̃(Π∞) is asymptotically stable;
3. for all initial condition Π0 ≥ 0, the sequence (A.6) converges towards Π∞.

Proof The proof is inspired from [14, 15]. By Lemma A.5, taking the limit in (A.7)
provides the equality (A.9).

We are going to show that, for k large enough, the matrix F̃(Π∞)k is asymptoti-
cally stable, which implies that F̃(Π∞) is asymptotically stable (by comparing their
eigenvalues). Since Π∞ > 0 by Lemma A.5, it suffices to show that, for k large

enough, the matrix F̃
(
Π�∞

)k
Π∞F̃ (Π∞)k − Π∞ is negative definite by Proposi-

tions 6.16. Now, thanks to (A.3c) and to (A.4), the equality (A.9) can be written as

Π∞ = F̃(Π∞)�Π∞F̃(Π∞) + C�C , (A.10)

where C denotes a square root with the following expression:

C�C = H�H+ Δ̄(Π∞)RΔ̄(Π∞) . (A.11)

Equation (A.10) successively applied yields

Π∞ − F̃
(
Π�∞

)k
Π∞F̃ (Π∞)k =

k−1∑
i=0

F̃
(
Π�∞

)i
C�CF̃ (Π∞)i .

It suffices then to show that the right term is positive definite for k large enough. By
Corollary 6.26, this is the case when the couple (̃F(Π∞),C) (or (̃F(Π∞),CF̃(Π∞)))
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is observable. As a consequence, the couple (F,H) (or (F,HF)) is observable. Indeed,
suppose that there exists a vector x such that

Cx = CF̃(Π∞)x = · · · = CF̃(Π∞)kx = 0 .

We deduce that

Cx = 0 ⇐⇒ Hx = 0 and Δ̄(Π∞)x = 0 by (A.11)

⇒ F̃(Π∞)x = Fx by (A.3c).

Proceeding in the same way, we obtain

CF̃(Π∞)x = 0 ⇐⇒ CFx = 0

⇐⇒ HFx = 0 and Δ̄(Π∞)Fx = 0

⇒ F̃(Π∞)2x = F2x ,

and, step by step, also the following implication

Cx = CF̃(Π∞)x = · · · = CF̃(Π∞)kx = 0 ⇒ Hx = HFx = · · · = HFkx = 0 .

Thus, if the couple (F,H) (respectively, (F,HF)) is observable, then x = 0 and the
couple (̃F(Π∞),C) (respectively, (̃F(Π∞),CF̃(Π∞))) is also observable by Corol-
lary 6.26.

Finally, we show the last item. By the inequality (A.5), the sequence (A.6) satisfies

Πk+1 = ψ(Πk) ≤ ψΔ̄(Π∞)(Πk) = H�H+ F̃(Π∞)�Πk F̃(Π∞) + Δ̄(Π∞)RΔ̄(Π∞)Δ̄ .

By substracting the equality (A.9) from this inequality, we find that

Πk+1 − Π∞ ≤ F̃(Π∞)�(Πk − Π∞)̃F(Π∞) ,

and thus:

Πk − Π∞ ≤ F̃
(
Π�∞

)k
(Π0 − Π∞)̃F(Π∞)k .

For all vector x0, by taking the limit, we obtain

lim sup
k→+∞

x�
0 Πkx0 ≤ x�

0 Π∞x0 (A.12)

since F̃(Π∞) is asymptotically stable. On the other hand, by the inequality (A.5),
the sequences given by the inductions (A.6) and (A.7) satisfy

Π0
k ≤ Πk , ∀k ∈ N ,
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since Π0
0 = 0 ≤ Π0. For all vector x0, by taking the limit, we obtain

x�
0 Π∞x0 = lim

k→+∞x�
0 Π0

k x0 ≤ lim inf
k→+∞ x�

0 Πkx0 . (A.13)

From the inequalities (A.12) and (A.13), we deduce that Πk converges towards
Π∞. �



Appendix B
Laplace Transform and z-Transform

We provide some results on Laplace transform and z-transform. We refer the reader
to [60, Chap. 6] for the proofs and also for details about the Laplace transform of
distributions.

B.1 Laplace Transform

The Laplace transform maps any locally integrable function f of the real variablet ,
zero for t < 0 and satisfying some appropriate restrictive conditions, onto the func-
tion of the complex variable s ∈ C defined by:

L [f] (s) :=
∫ +∞

0
e−stf(t) dt . (B.1)

Lemma B.1 Let f be a locally integrable function defined on [0,+∞[. There exists
an extended real a ∈ R ∪ {−∞,+∞} such that, for all s ∈ C,

• if (s) > a, then
∫ +∞

0
e−st |f(t)| dt < +∞ ;

• if (s) < a, then
∫ +∞

0
e−st |f(t)| dt = +∞.

The extended real a is called the abscissa of convergence and the domain {s ∈ C |
(s) > a} the region of convergence.

Definition B.2 We call Laplace transform of the locally integrable function f the
function L [f] of the complex variable s defined by (B.1) on the region of convergence.
The complex variable s is called the Laplace variable.

Remark B.3 This definition can be extended to distributions as follows. Let T be a
distribution on the real axis of the time variable t , with a support included in [0,+∞[.

B. d’Andréa-Novel and M. De Lara, Control Theory for Engineers, 233
DOI: 10.1007/978-3-642-34324-7, © Springer-Verlag Berlin Heidelberg 2013
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If there exists a scalar ξ0 such that, for ξ > ξ0, e−ξtT is a tempered distribution, then
its Laplace transform can be defined as follows:

L [T] (s) = 〈
T, e−st 〉 for (s) > ξ0 . (B.2)

�
Example B.4 L [δ] (s) = 1, L [

δ(m)
]
(s) = sm , L [δa] (s) = e−as . �

We now give some important properties of the Laplace transform. Since the
Laplace transform is only defined on a region of convergence, one should pay atten-
tion to these regions of convergence when stating the different properties. We show
how to proceed for the first property and then let the reader complete for the other
ones.

L1. The Laplace transform is linear, namely: if f1 and f2 are two locally integrable
functions defined on [0,+∞[ and λ is a real number, the Laplace transform of
the functionλf1+f2 exists on the intersection of the two regions of convergence
and satisfies

L [λf1 + f2] (s) = λL [f1] (s) + L [f2] (s) .

L2. If H(s) denotes the Laplace transform of h(t) and U(s) that of u(t), then the
Laplace transform of the convolution product h � u is given by

L [h � u] (s) = H(s)U(s) , (B.3)

where we recall that

(h � u)(t) =
∫ t

0
h(τ )u(t − τ ) dτ =

∫ t

0
h(t − τ )u(τ ) dτ . (B.4)

L3. Time shifting Theorem. Consider a locally integrable function f. Let us denote
Θaf(t) := f(t − a), for any a ∈ R. We have that

L [Θaf] (s) = e−asL [f] (s) . (B.5)

L4. Differentiation Theorem. Consider a functionf having derivatives up to order m.
If f(m) is locally integrable, then:

L
[
f(m)

]
(s) = smL [f] (s) − sm−1f(0) − · · · − f(m−1)(0) . (B.6)

L5. Integration Theorem. For a locally integrable function f, we have that

L
[∫ ·

0
f(τ ) dτ

]
(s) = 1

s
L [f] (s) . (B.7)
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Table B.1 Laplace transforms

f(t) L [f] (s) Region of convergence

δ 1 C

δa e−sa
C

E(t)
1

s
{s ∈ C | (s) > 0 }

tm−1

(m − 1)!E(t)
1

sm
{s ∈ C | (s) > 0 }

eat tm−1

(m − 1)!E(t)
1

(s − a)m
{s ∈ C | (s) > a }

eat sin(bt)E(t)
b

(s − a)2 + b2
{s ∈ C | (s) > a }

eat cos(bt)E(t)
s − a

(s − a)2 + b2
{s ∈ C | (s) > a }

L6. Initial value Theorem. Consider a locally integrable function f. If the following
limits exist, they are equal:

lim
t→0

f(t) = lim
s→+∞ sL [f] (s) . (B.8)

L7. Final value Theorem. Consider a locally integrable function f. If the following
limits exist, they are equal:

lim
t→+∞f(t) = lim

s→0
sL [f] (s) . (B.9)

The Table B.1 provides a list of usual Laplace transforms.

Here, δa denotes the Dirac delta function at point a (δ0 = δ) and E(t) the Heaviside
step function introduced in Definition 3.11 (E(t) = 1 if t ≥ 0, and E(t) = 0 else).

B.2 The z-Transform

The discrete-time counterpart of the Laplace transform of locally integrable functions
on [0,+∞[ is the z-transform of sequences indexed by N.

Definition B.5 We call z-transform of the sequence x = (xk)k∈N the power series
defined by

Z [x] (z) :=
+∞∑
k=0

xk z−k . (B.10)
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This series is absolutely convergent if |z| > R, where R denotes the radius of con-
vergence.

Let us now recall some important properties of the z-transform. The precautions
taken in continuous-time remain valid here. When not specified,x = (xk)k∈N denotes
a real-valued sequence.

Z1. The z-transform is linear.
Z2. If we denote H(z) the z-transform of the sequence (hk)k∈N and U(z) that of the

sequence (uk)k∈N, then the z-transform of the convolution product h�u is given
by

Z [h � u] (z) = H(z)U(z) , (B.11)

where we recall that

(h � u)k =
∑

l

hluk−l =
∑

l

hk−lul . (B.12)

Z3. Time shifting Theorem. If, for any l ∈ N, the delay operator Θl is defined by
(Θlx)n := xn−l , then

Z [Θlx] = z−lZ [x] (z) . (B.13)

Z4. Advance Theorem. For any l ∈ N, we have that:

Z [
Θ−lx

] = zl

(
Z [x] (z) −

l−1∑
i=0

xi z
−i

)
. (B.14)

Z5. Initial value Theorem. If the limit exists, we have that:

x0 = lim
z→+∞ Z [x] (z) . (B.15)

Z6. Final value Theorem. When the following limits exist, they are equal:

lim
k→+∞xk = lim

z→1
(1 − z−1)Z [x] (z) . (B.16)

The Table B.2 gives a list of usual z-transforms.
Here, δi, j denotes the Kronecker symbol (δi, j = 0 if i �= j , 1 else) and En denotes

the unit-step sequence (En = 1 if n ≥ 0 and En = 0 if n < 0).
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Table B.2 Usual z-transforms

xn Z [x] (z) Radius of convergence

δn,0 1 +∞

δn,k z−k +∞

En
1

1 − z−1 1

nT En
T z−1

(1 − z−1)2 1

e−anT En
1

1 − e−aT z−1 e−aT

rnEn
1

1 − r z−1 r

rn sin(bn)En
(sin b)z−1

1 − 2(cos b)r z−1 + r2z−2 r

rn cos(bn)En
1 − (cos b)z−1

1 − 2(cos b)r z−1 + r2z−2 r



Appendix C
Gaussian Vectors

We suppose that the reader is familiar with basic notions of probability calculus:
random variable, expectation, variance, dispersion, conditional expectation, inde-
pendence. We refer the reader to [11, 31].

C.1 Recalls of Probability Calculus

Let (Ω,F , P) be a probability space. The mathematical expectation with respect to
the probability P is denoted by E.

Definition C.1 The characteristic function of a random vector Z = (Z1,…, Zr ) of
dimension r is the following mapping ΦZ : R

r → C:

ΦZ(θ) = E
[

exp(iθ�Z)
] = E

[
(exp(iθ1Z1 + · · · + iθrZr )

]
, ∀θ ∈ R

r . (C.1)

Proposition C.2 Two random vectors have the same distribution if, and only if, they
have the same characteristic function. Two random vectors X and Y (with respective
dimensions rX and rY) are independent if, and only if,

Φ(X,Y)(θX, θY) = ΦX(θX)ΦY(θY) , ∀(θX, θY) ∈ R
rX × R

rY . (C.2)

A real-valued random variable X is said to be square integrable if X2 is integrable,
that is, E(X2) < +∞. In that case, the mean

X := E
[
X
]

(C.3)

exists, and we call variance the quantity
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var(X) := E
[
(X− X)2] = E(X2) − E(X)2 . (C.4)

A random vectorX is said to be square integrable if the norm ‖X‖ is square integrable,
that is, if E(‖X‖2) < +∞; it is said to have moments of all orders if E(ea‖X‖) < +∞,
for all a > 0.

Definition C.3 LetXandYbe two square integrable random vectors (with respective
dimensions rX and rY). We call covariance of X and Y the matrix of dimension rX×rY
defined by:

cov(X,Y) := E
[
(X− X)(Y− Y)�

] = E(XY�) − E(X)E(Y�) . (C.5)

We say that two random vectors are decorrelated if their covariance is zero.
We call dispersion of X, or covariance matrix, or variance-covariance matrix, and

we note D(X) the symmetric matrix

D(X) := cov(X,X) = E
[
(X− X)(X− X)�

]
. (C.6)

Remark C.4 If X and Y are independent, they are decorrelated since

cov(X,Y) = E
[
(X− X)(Y− Y)�

] = E(X− X)E
[
(Y− Y)�

] = 0 .

�
On the contrary, decorrelation does not generally imply independence. An impor-

tant exception is in the case of Gaussian vectors, discussed below.

C.2 Gaussian Vectors

Definition C.5 A random vector Z of dimension r is a Gaussian vector if the char-
acteristic function of Z is of the form

ΦZ(θ) = exp(iθ�mZ − 1

2
θ��Zθ) , ∀θ ∈ R

r , (C.7)

where mZ is a vector of dimension r and �Z a symmetric positive matrix of dimen-
sion r .

A k-uple of vectors (Z1, . . . ,Zk) (of dimensions r1, …, rk) is Gaussian if the
vector (Z�

1 , . . . ,Z�
k )� (of dimension r1 + · · · + rk) is Gaussian.

Proposition C.6 If Z is a Gaussian vector, then Z has moments of all orders and

• the vector mZ in (C.7) coincides with the expectation of Z,
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mZ = Z = E(Z) ,

• the symmetric positive matrix �Z in (C.7) coincides with the dispersion of Z,

�Z = D(Z) = E
[
(Z− Z)(Z− Z)�

]
.

Proposition C.7 An affine transformation of a Gaussian vector is a Gaussian vector.

Proof Let Z be a Gaussian vector of dimension r , A be an r × r square matrix and
b a vector of dimension r . We have that:

ΦAZ+b(θ) = E
[

exp
(
iθ�(AZ+ b)

)]
= eiθ�b

E
[

exp(i(A�θ)�Z)
]

= eiθ�bΦZ(A
�θ)

= exp(iθ�b+ iθ�AmZ − 1

2
θ�A�ZA

�θ) by (C.7)

= exp

[
iθ�(b+ AmZ) − 1

2
θ�(A�ZA

�)θ

]
.

Therefore, by (C.7) and Proposition C.6, AZ + b is a Gaussian vector with mean
AmZ + b and dispersion matrix A�ZA�. �

Proposition C.8 Let Z = (X,Y) be a Gaussian couple. If X and Y are
decorrelated random vectors, that is, if cov(X,Y) = 0, then X and Y are independent
(Gaussian) random vectors.

Proof As E(Z) =
(
X
Y

)
, and D(Z) =

(
D(X) cov(X,Y)

cov(Y,X) D(Y)

)
, we have that

ΦZ(θ) = Φ(X,Y)(θX, θY)

= exp

(
iθ�Z− 1

2
θ� D(Z)θ

)
by (C.7) and Proposition C.6

= exp

(
iθ�

(
X
Y

)
− 1

2
θ�

(
D(X) cov(X,Y)

cov(Y,X) D(Y)

)
θ

)

= exp

(
iθ�

(
X
Y

)
− 1

2
θ�

(
D(X) 0

0 D(Y)

)
θ

)
by decorrelation

= exp

(
iθ�
X X− 1

2
θ�
X D(X)θX

)
exp

(
iθ�
Y Y− 1

2
θ�
Y D(Y)θY

)

= ΦX(θX)ΦY(θY) ,

and we conclude thanks to Proposition C.2. �
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The previous proof can easily be adapted to establish the following proposition.

Proposition C.9 If X and Y are independent Gaussian vectors, the couple (X,Y) is
a Gaussian couple.

The following lemma is a result of orthogonal projection.

Lemma C.10 Let X and Y two random vectors (with respective dimensions rX and
rY). There exists a unique random vector Z, denoted πY(X), with the same dimension
as that of X, such that

1. the vector Z− X is a linear expression of Y− Y;
2. the random vector X−Z is orthogonal to the random vector Y, in the sense that

cov(X− Z,Y) = 0.

Proposition C.11 Let (X,Y) a Gaussian couple. Then, X − πY(X) is independent
of Y, and the conditional distribution of X knowing Y is Gaussian with mean E

[
X |

Y
] = πY(X) and dispersion D

(
X− πY(X)

)
.

Proof SinceπY(X) is an affine expression inY, the couple (X−πY(X),Y) is Gaussian
by Proposition C.7. As X − πY(X) is decorrelated of Y, it is independent of Y by
Proposition C.8. Moreover, we have that

E

[
exp

(
iθ�
X X+ iθ�

Y Y
)]

= E

[
exp

(
iθ�
X (X− πY(X)) + iθ�

X πY(X) + iθ�
Y Y

)]

= E

[
exp

(
iθ�
X (X− πY(X)

)]
E

[
exp

(
iθ�
X πY(X) + iθ�

Y Y
)]

by independence of X− πY(X) and Y

= exp

(
−1

2
θ�
X D(X− πY(X))θX

)
E

[
exp

(
iθ�
X πY(X) + iθ�

Y Y
)]

because X− πY(X) is centered Gaussian

= E

[(
exp(−1

2
θ�
X D(X− πY(X))θX

)
exp

(
iθ�
X πY(X)

)
exp

(
iθ�
Y Y

)]
.

By definition of the conditional expectation, we obtain:

E
[

exp
(

iθ�
X X

)
| Y] = exp

(
−1

2
θ�
X D(X− πY(X))θX

)
exp

(
iθ�
X πY(X)

)
.

By comparison with (C.7), and by Proposition C.2, we deduce that the conditional
distribution ofX knowingY is Gaussian, with mean E

[
X | Y] = πY(X) and dispersion

D
(
X− πY(X)

)
. �

The following lemmas are direct applications of Proposition C.11 and of properties
of the orthogonal projection.
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Lemma C.12 Let (X,Y,Z) be a Gaussian triple such that Y and Z are decorrelated.
Then, we have that

E
[
X | Y,Z

] = E
[
X | Y] + L(Z− Z) , (C.8)

where the matrix L satisfies cov(X,Z) = LD(Z).

Lemma C.13 Let (X,Y) be a Gaussian couple such that D(Y) is a nondegenerate
matrix. We have that:

{
E

[
X | Y] = X+ cov(X,Y) D(Y)−1(Y− Y)

D
(
X− E

[
X | Y]) = D(X) − cov(X,Y) D(Y)−1 cov(X,Y)� .

(C.9)



Appendix D
Bode Diagrams

This appendix completes § 3.7.

The Nyquist diagram of a transfer function H(s) is the curve ω �→ H(iω) rep-
resented in the complex plane and parameterized by the increasing pulsations, ω
varying from 0 to +∞. It can also be represented by two curves parameterized by
ω, the amplitude curve |H(iω)| and the phase curve Arg

(
H(iω)

)
.

Remark D.1 The amplitude curve generally displays the amplitude in dB (decibels),
that is, as 20 log10 |H(iω)|, whereas the abscissa axis ω is graduated in logarithmic
coordinates.

Definition D.2 The amplitude and phase curves of H(iω) are respectively called
amplitude Bode diagram or amplitude Bode plot of H(iω) and phase Bode diagram
or phase Bode plot of H(iω).

Example D.3

• Figure D.1 displays (in the case T = 1 in (D.1) below) the amplitude and phase
diagrams of a first-order system with transfer function:

H(s) = 1

1 + T s
, T > 0 . (D.1)

• Figure D.2 displays (in the case ωn = 1 in (D.2) below) the amplitude and phase
diagrams of a second-order system with transfer function:

H(s) = ω2
n

s2 + 2ζωns + ω2
n

. (D.2)

�
More often, we are interested in asymptotic Bode diagrams displayed in Figs. D.3

and D.4. Their interest stems from the fact that it is rather easy to obtain the asymptotic

B. d’Andréa-Novel and M. De Lara, Control Theory for Engineers, 245
DOI: 10.1007/978-3-642-34324-7, © Springer-Verlag Berlin Heidelberg 2013

http://dx.doi.org/10.1007/978-3-642-34324-7_3


246 Appendix D: Bode Diagrams

0

10

−10

−20

−30

−40

−50

−90

−70

−60

−50

−30

−20

−10

0

−40

−80

10−2 10−1 1 101 102

10−2 10−1 1 101 102

ω

ω

20 log( |H ( i ) |)

H ( i )ω

ω

Fig. D.1 Amplitude and phase bode diagrams of a first-order system (D.1) (with T = 1)

Bode diagrams of any transfer function H(s), knowing the asymptotic Bode diagrams
of first and second-order systems. In fact,H(s) can be written as the product of transfer
functions Hi (s) of first and second order:

H(s) = H1(s) × · · · × Hr (s) .

But, since log H = logH1 + · · · + logHr , the logarithmic diagrams of H(s) can be
obtained by a simple addition of the asymptotic diagrams of the Hi (s) with break-
points at each pulsation ωn corresponding to a change of slope in the amplitude
curve:

• −20 dB/decade for a real pole, viz. Hi (s) = 1

1 + s/ωn
;

• +20 dB/decade for a real zero, viz. Hi (s) = 1 + s/ωn ;
• −40 dB/decade for complex conjugate poles, viz.

Hi (s) = 1

1 + 2ζs/ωn + s2/ω2
n

;
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ω ω n
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Fig. D.2 Amplitude and phase bode diagrams of a second-order system (D.2) (with ωn = 1)
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Fig. D.3 Asymptotic amplitude bode diagram of a first-order system (D.1) (with T = 1)

• +40 dB/decade for complex conjugate zeros, viz.

Hi (s) = 1 + 2ζs/ωn + s2/ω2
n .
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Fig. D.4 Asymptotic amplitude bode diagram of a second-order system (D.2) (with ωn = 1)

From Bode diagrams, one can also define the gain and phase margins, as illustrated
in Figure D.5.

The gain margin γ is equal to (1 − γ0), γ0 being the gain corresponding to the
phase of 180o, namely 20 log10 γ (dB). The phase margin φ is equal to (180o −φ1),
where φ1 is the phase corresponding to the unit gain (namely 0 dB).

−2 −1 0 1 2
−270

−180

−90

−2 −1 0 1 2
−40
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0

20

phase margin 

gain margin 

dB

ω

ω

20 log γ

Fig. D.5 Gain and phase margins
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Index

Symbols
D. See Dispersion
E. See Expectation
r. See Gradient
I. See Identity matrix
D. See Laplacian
T. See Transpose

A
Abscissa of convergence, 233
Approximation

first-order, 82
Asymptotically stable

equilibrium, 72
matrix, 74, 141

B
Basin of attraction, 72
Bezout identities

direct, 200
generalized, 200
inverse, 201

BIBO-stable, 52, 100, 143, 201
BIBS-stable, 100, 119, 143, 153
Big-O, 58
Bode

amplitude diagram, 245
asymptotic diagram, 245
diagram, 63
phase diagram, 245

Bromwich contour, 61

C
Cauchy theorem, 60
Causal, 46, 49, 152

strictly, 152
Cayley–Hamilton theorem, 75
Center point, 78
Characteristic function, 239
Characteristic polynomial, 40
Closed-loop, 55, 91, 115, 121, 216
Closed-loop system, 146, 148, 149, 160
Column-equivalent, 198
Compensator, 55
Complex conjugate, 17
Contollable

companian
form, 107

canoncial
form, 106, 107

couple, 102, 145
system, 101, 144, 205

Control, 19, 90
auxiliary, 123
design, 125
inputs, 98
matrix, 98

Controllability, 101, 144
criterion, 102, 144
matrix, 102, 144

Controller, 107, 123
rational casual, 216

Cov. See Covariance
Convolution, 234, 236
Covariance, 240

matrix, 240
Criterion, 166

D
D. See Dispersion
Damping factor, 50
Decorrelation, 240
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Derivative
directional, 86
time, 11

Dirac
delta function, 47
distribution, 47

Discretization theorem, 134
Dispersion, 240
Div. See Divergence
Divergence, 5
Dynamical system, 35, 36, 46

classical, 35
discrete-time, 137

controlled, 20
free, 35
integrator, 101
linear, 39, 47

canonical, 119
causal stationary, 47
dual, 114
exact discretized, 134
Gaussian, 173
minimal, 118, 119, 153
observed and controlled, 98

tangent discretized system, 159
tangent linear, 82

controlled and observed, 121
tangent linear control, 90
tangent linearized open-loop, 91

E
E. See Expectation
Eigenspace, 40
Eigenvalue, 40

index, 40
multiplicity, 40

Equilibrium, 38, 90, 137
asymptotically stable, 72, 138

globally, 72
attractive, 72, 138
hyperbolic, 83
stable, 72, 138
unstable, 72, 138

Equivalent
flow maps, 80

differentially, 81
linearly, 81
topologically, 81

linear dynamical systems, 104, 204
Euler equations, 11
Euler–Lagrange equations, 12
Expectation, 239

F
Feedback

derivative, 57
integral, 57
linear state, 107, 146
output, 57
proportional, 57
stabilizing, 107
state, 91

Flow
discrete-time, 137
global, 37
local, 36
property, 37

Focus, 78
Frequency, 45

domain, 45
natural, 50

G
Gain

derivative, 56
integral, 56
margin, 62
matrix, 92, 146

counter-reaction, 107
proportional, 56
static, 55, 155

Gaussian
k-uple, 240
linear dynamical system, 185
vector, 240

Generalized functions, 47
Gradient, 14
Grobman and Hartman theorem, 83

H
HCD. See Highest common divisor
Heaviside step function, 48
Hermite form

lower, 198
upper, 198

Highest common divisor, 200
Holonomic, 13
Hurwitz criterion, 53

I
Identity matrix, 15
Impulse response, 48, 116, 151
Innovation, 174

254 Index



Input, 20, 98
auxiliary, 55

Integral curve, 36
Intertemporal criterion, 166

J
Jacobian matrix, 82
Jury criterion, 154

K
Kalman

controllability criterion, 102, 144
observability criterion, 109, 146

Kalman–Bucy filter, 175
Kinetic moment, 10
Kirchoff’s circuit laws, 16
Knot, 77
Knot point

degenerate, 80
Kronecker symbol, 151

L
Lag phase, 63
Lagrangian, 12
Laplace

transform, 233
variable, 233

Laplacian, 14
LaSalle theorem, 88
L.c.s., 47
L.c.s. system

first-order, 50
monovariable, 50
scalar, 50
second-order, 50

Lead phase, 63
Luenberger observer, 147
Lyapunov function, 87, 138

M
Matrix

asymptotically stable, 74
of inertia, 11
stable, 74, 141
transfer, 116
unstable, 74, 141

Minimum phase, 55
Modes, 119

controllable, 105
observable, 111

observer, 116
placement, 107, 113
proper, 75
regulator, 116
uncontrollable, 105
unobservables, 111

N
Noise

independence, 173
measurement, 173
white, 173

Noises
additive, 173

Nyquist
criterion, 61
diagram, 60, 245
locus, 61

O
Observability, 108, 146

criterion, 109, 146
matrix, 109, 146

Observable
companion

form, 113
canonical

form, 112, 113
couple, 109, 146
system, 109, 146, 209

Observation, 98
matrix, 98

Observer
linear asymptotic, 111, 147
of Luenberger, 111, 147
modes placement, 113, 147
regulator, 115, 148

Open-loop, 55
dynamics, 90

Operational calculus, 49
Optimal

control, 167, 170
trajectory, 167, 170

Orbit, 38
Output, 98

matrix, 98

P
Part

imaginary, 17
real, 17
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Penalization, 166
Perturbation theorem, 83
Phase margin, 62
Phase portrait, 38
Phase space, 35, 137
PID. See Proportional-integral-derivative
Point

regular, 38
singular, 38

Poles, 75, 119, 201
Polynomial

asymptotically stable, 225
controller

form, 206
form, 195
matrix, 195
observer

form, 210
Polynomial matrices

coprime, 200
Polynomial matrix

regular, 197
unimodular, 197

Ponderation matrices, 166
Precompensator, 55
Proper, 49

strictly, 49
Proportional-integral-derivative, 56

R
Radius

of convergence, 235
Ramp, 49
Realization, 118

continuous-time, 118
discrete-time, 153

Region of convergence, 233
Regulator

linear state, 107
modes placement, 107, 146

Riccati equation
algebraic, 181, 227
algebraic stationary, 169
differential, 180, 186
stationary, 186

Robustness, 46, 63
Rot. See Rotational
Rotational, 9
Routh

criterion, 52
table, 52

Row-equivalent, 198

S
Saddle point, 77
Sampling period, 133, 134
Separation principle, 114, 115, 148
Small-o, 91
Smith form, 198
Smith-Mac-Millan form, 202
Smooth, 19
Spectral

projection, 41
subspace, 40

Spectrum, 40
Spiral, 78
Square integrable, 239, 240
Stability, 71, 72

asymptotical, 72
disk, 141
half-plane, 74
input-output, 51, 100
precision dilemma, 59, 130

State, 19, 20, 90
feedback, 91
matrix, 98
model

continuous-time, 19
discrete-time, 20
stationary, 19, 20

noise, 173
partial, 195
representation

continuous-time, 19
discrete-time, 21, 134

space, 19, 20, 98
stationary, 38
steady, 38
vector, 98

Stationary, 46
Step response, 49
Symmetric

definite negative matrix, 227
definite positive matrix, 227
matrix, 227
positive matrix, 227

Synthesis
control, 125

System
hyperdamped, 50

T
Tangent linear mapping, 82
Time constant, 51
Trajectory, 37
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input, 46
output, 46

Transfer
function, 50
matrix, 49, 151, 152

Transfer matrix, 196
Transform

Laplace, 233
z, 235

Transpose, 12

U
Unit

impulse function, 47
impulse sequence, 151
step function, 48
step sequence, 155, 236

V
Var. See Variance
Variable

external, 20
internal, 20

Variance, 239
Vector field, 35

complete, 37
control, 90
open-loop dynamics, 90

W
White noise, 173

Z
Zero-order hold, 134
Zeros, 53, 192, 202

regulation, 216
tracking, 216
transmission, 202
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