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Foreword

Everybody has observed how a piece of sugar dissolves in a cup of coffee or has
experienced the spreading of a rumor. Both processes propagate without external
influence, even if they may be accelerated, e.g., by stirring or telecommunication.
The underlying principal phenomena are called diffusion whose mechanism was
theoretically explored more than 100 years ago, mainly by Fick and Einstein.
Although frequently ignored in detail, diffusion is of fundamental importance for
distribution of matter and information. Even the formation of structures in living
systems is considered to be the result of interplay between chemical reaction and
diffusion. A series of conferences entitled “Diffusion Fundamentals” was started in
Leipzig in 2005. The present volume originated from the contributions presented at
the sixth meeting of this series in 2015 and contains a unique overview on our
knowledge ranging from the natural sciences to the humanities. It should therefore
be of interest to a broad audience.

Berlin, Germany Gerhard Ertl
Fritz-Haber-Institute, Max-Planck-Society

Nobel Prize in Chemistry 2007
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Preface

Spreading phenomena are encountered almost everywhere in our world. They may
concern ideas and conceptions as well as real objects and range from
sub-microscopic up to galactic distances, with timescales in the blink of an eye to
geological time. With the existence of atoms and molecules, nature has provided us
with a miraculous playground for experiencing the fascination of spreading phe-
nomena which, in this context, are generally referred to as diffusion. Theoretical
concepts developed in the study of diffusion of atoms and molecules have proved to
be of great benefit for exploring spreading phenomena with a large spectrum of
objects, irrespective of the diversity of their properties and of the underlying
mechanisms. Treatises and reviews of spreading phenomena therefore frequently
exploit the common ground offered by the similarities in their mathematical treat-
ment. Such concepts are well suited for developing skills in analyzing and modeling
spreading data, but they often fail to provide detailed understanding at a more
fundamental level.

By aiming at an insightful introduction into the fascinating diversity of spreading
phenomena in nature, technology and society, the present textbook attempts to fill
this gap in the existing literature.

The roots of this book may be traced back to the breakdown of the Berlin Wall
and the option of a workshop series, sponsored by the Wilhelm and Else Heraeus
Foundation under the auspices of the Physical Society of reunited Germany, which
brought together scientists from both parts of Germany as well as from other
countries. One of these workshops, organized in Leipzig in autumn 1996, was
dedicated to “Diffusion in Condensed Matter.” It dealt with that topic in unprece-
dented width and depth. Two textbooks (J. Kärger, P. Heitjans, R. Haberlandt
“Diffusion in Condensed Matter,” Vieweg 1998, and P. Heitjans, J. Kärger “Dif-
fusion in Condensed Matter: Methods, Materials, Models”, Springer 2005) emerged
from this initiative and are still regarded as follow-ups to Wilhelm Jost’s famous
textbook on “Diffusion in Solids, Liquids and Gases,” Academic Press 1960.

The idea of intensifying scientific exchange across the boundaries of the individual
disciplines gave rise to the establishment of the “Diffusion Fundamentals” conference
series, accompanied by an open-access online journal (diffusion-fundamentals.org).
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Given the relevance of physical sciences for the development in the field, it was
certainly not by chance that the first conference in this series was held in Leipzig in
2005 to celebrate the centenary of Albert Einstein’s annus mirabilis. Subsequent
meetings in L’Aquila 2007, Athens 2009, Troy 2011 and Leipzig 2013 strove to cover
with increasing concern the large spectrum of diffusion and spreading phenomena
until, in 2015, the Diffusion Fundamentals activities were assigned to the Saxon
Academy of Sciences. As one of Germany’s regional Academies of Sciences (with
members of the three Central German Federal States Sachsen, Sachsen-Anhalt und
Thüringen), it stands in a great tradition (with, e.g., Werner Heisenberg as one of its
secretaries) and offers, with Classes of Mathematical-Natural, Philological-Historical
and Engineering Sciences, ideal conditions for cross-disciplinary scientific exchange.
The participants of the 6th Diffusion Fundamentals Conference in Dresden 2015 no
doubt benefited from this new level of interdisciplinary contact, and we hope that,
with the contributions to the present volume which largely follow the contributions to
the conference, this benefit may now be passed on to the readers of the book.

With informative illustrations, we did our best to follow the saying that a single
picture tells more than a thousand words. This may also be true for a single
mathematical formula—provided that the actual situation does indeed allow such a
description and that the underlying mathematics remains within certain limits of
comfort.

In our contact with the authors of the different chapters, we became aware of the
criticality of both these issues. In some types of systems, such as human societies,
the available information is not sufficient to provide meaningful predictions of
future developments. In such cases, the chapters have to be presented without
precise mathematical formulations. Other systems, notably those accessible by
investigation with the highly sophisticated techniques of measurement provided by
modern physics and chemistry, offer a multitude of information so that data pro-
cessing may become quite ambitious. While all our chapters start their mathematical
treatment with nothing more (but, notably, with also nothing less) than school
mathematics, a few of the chapters progress to more advanced topics requiring more
sophisticated mathematics. We have intentionally chosen problems from the fron-
tiers of research, i.e., beyond the “diffusion main stream.” Topics such as “Phase
Transitions in Biased Diffusion” and “Hot Brownian Motion” might thus appear to
be somewhat challenging. We trust, however, that the interested reader will take
this as an invitation to browse some of the more specialized literature.

With all chapters now in our hands, we have first to thank the authors for a most
agreeable cooperation. Looking back at the genesis of the book, we have to thank
all who have contributed to the development of the “Diffusion Fundamentals”
activities, including Leipzig University as the venue of the first conference, Dresden
Technical University as the location of the sixth conference from which this book is
derived, and the many colleagues all over the world who have cooperated with us as
members of the Diffusion Fundamentals Editorial Board. We appreciate generous
support by the Saxon Academy of Sciences and, over the course of the whole
Diffusion Fundamentals Conference series, by the German Research Foundation,
the Alexander von Humboldt Foundation and the Fonds der Chemischen Industrie.
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It has been a pleasure to collaborate with the staff of Springer-Verlag, notably with
Dr. Claus Ascheron and Britta Rao, who handled the editing and publication with
commendable efficiency. Finally, we would like to thank our wives Eva, Marion,
Birge and Senta for their continued patience, tolerance and support.

Giessen, Germany Armin Bunde
Hanover, Germany Jürgen Caro
Leipzig, Germany Jörg Kärger
Vienna, Austria Gero Vogl
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Part I
Introduction



Chapter 1
What the Book Is Dealing With

Armin Bunde, Jürgen Caro, Jörg Kärger and Gero Vogl

Early in the 19th century, Robert Brown, a British botanist, found that pollen
immersed in a liquid performed an unceasing motion [1]. As a careful scientist he
conducted experiments under varying conditions and hence could exclude that this
motion was “vitality”, as argued in the beginning, and suspected that it was physics.
About thirty years after Brown’s observation Adolf Fick, a German physiologist,
dissolved salt in water, studied the change of salt distribution in time and wrote
down the equations governing the phenomenon of diffusion along a concentration
gradient [2]. It was not until 1905 that Albert Einstein found an ingenious
description of the “Brownian motion” and was able to connect it to Fick’s equations
of diffusion [3].

In this book we bring together scientists from disciplines as different as arche-
ology, ecology, epidemics, linguistics and sociology with natural scientists from
biology, chemistry, physics and technology. What is common to all these scientists
is that all are interested in the motion of a certain object or phenomenon in space
and time. This motion is named diffusion by physicists and chemists and sometimes
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called spread by ecologists and linguists. Brown and Fick were both neither
mathematician nor physicist. So why should the phenomena of endless motion and
diffusion be a domain of mathematics or physics?

The moving objects can be very different: they can be particles, e.g. atoms, they
can be living beings, humans, animals, plants, bacteria. But they can also be
abstract terms: ideas, rumors, information, innovations or linguistic features. In the
case of the spread or diffusion of abstract objects, the space wherein the objects
spread may not be local, it may rather be an abstract “space”, e.g. a group of people,
the entity of words, the sum of preoccupations or the bulk of technological
environment.

It appears daring to treat all these phenomena with related methods, to force
them into the same corset, but we are definitely not the first to attempt a synopsis. In
1951, Skellam [4] who was not a physicist but rather what was called a biometrist at
that time wrote: “It is apparent that many ecological problems have a physical
analogue and that the solution of these problems will require treatment with which
we are already very familiar.” For more than thirty years there have been textbooks
written mostly by mathematicians, reporting on the work on spread and diffusion
not performed by themselves but rather by scientists from disciplines as different
from physics as biology and ecology. The authors of these textbooks amply
describe that the same analytical approaches as have been developed for the dif-
fusion of particles in physics and chemistry can operate for treating the migration
and spread of animals and plants. To the best of our knowledge the present book is,
however, the first where scientists from the different very disparate disciplines
report on their work on diffusion and spread in the fields of their professions. What
is contained in the book you have at hand should therefore be first-hand
information.

Before we enter the multifaceted world of spreading and diffusion, with
numerous examples from nature, technology and society, the theoretical founda-
tions are summarized in Chap. 2. All subsequent chapters make use of the presented
formalism so that references to this chapter are “spread” throughout the book. The
mathematical formalism remains within the common framework known from
school and is, in addition, supported by numerous informative figures.

Already here we have to ask which framework serves best for reflecting
spreading phenomena within a given system. While classical diffusion—as occur-
ring, e.g., during dissolving a piece of sugar in a cup of coffee—is easily understood
to be adequately described by using a Cartesian coordinate system, problems are
immediately seen to arise if such complicated situations as the spreading of inno-
vations over a continent (as during the transition from hunting-gathering to farming
and stockbreeding in Europe) are considered.

In fact, also in such cases, complemented by “gain” and “loss” rates (associated
with birth and death of the considered species), one may make use of essentially the
same mathematical formalism as applicable to the spreading of sugar. The options
of approaching reality along these lines are further improved by considering dif-
fusivities and gain and birth rates as functions of space and time including, notably,

4 A. Bunde et al.



their dependence on the given “concentration”, i.e. the population density, rather
than as by taking them as mere constants.

Alternatively, the complexity of the system may be taken into account by sub-
dividing the system into various “regions” and by considering the entity of the
population numbers of each individual region. Further evolution can then be pre-
dicted by considering birth and death rates within and exchange rates between the
individual regions. This latter approach (with the populations of the individual
regions operating as “agents”) offers ideal conditions for taking account of the
system’s complexity by increasing the graticule subtlety. The establishment of
parameter sets for reliably reflecting the internal dynamics, however, is a chal-
lenging task, with the risk of unjustified biasing.

While it is probably beyond debate that spreading phenomena occur in nature
just as in technology and society, the attribution of a particular phenomenon to one
of these fields is not always easy. Our attempt to sub-structure the book by
attributing, in the subsequent parts, the various spreading phenomena considered to
one of these fields is, therefore, not without ambiguity. In fact, for essentially any of
the subsequent chapters there would be good reasons to include them in at least one
of the other two parts. We assume that, on reading the different chapters, you will
become aware of this issue and will take it as one of the many indications of the
benefit of a comprehensive consideration of spreading phenomena!

We start our journey through spreading phenomena in Nature by following
Michael Leitner and Ingolf Kühn in their report about the evolution of ecosystems,
with special emphasis on the dispersal of newly arrived plants and animals, and an
illuminating comparison of diffusive dynamics in physical sciences and ecology. It
is essentially the climatic habitat which is recognized as a driving agent of
advancement and invasion. Examples include the particular case of Ambrosia
artemisiifolia or ragweed as an allergenic plant which, since its arrival from North
America, has led to a substantial increase in medical costs for allergenic treatment.
The spatio-temporal dynamics of animals is also in the focus of Rainer Klages when
he describes how one is able to simulate—by analytical methods—the outcome of
sophisticated experiments dealing with foraging flights of bumblebees to collect
nectar and how, in the presence of predators, the dynamics are modified.

Still within the field of biology, but on a much smaller scale, Wilfried Konrad,
Anita Roth-Nebelsick and Christoph Neinhuis consider transport phenomena on
plant surfaces. Evolution over hundreds of millions of years gave rise to the for-
mation of a multifunctional, self-repairing surface layer which—in parallel with
ensuring proper metabolic exchange with the surroundings—protects the plant
against uncontrolled evaporation. Also with Charles Nicholson we remain within
microscopic dimensions—this time within the human brain. We are, in particular,
invited to share the fascination of analogies in the functionality of our brain tissue
with the organization of transport in a big city like New York.

The scale of observation is enhanced by more than five orders of magnitude
when, in their chapter, Manfred Wendisch and Armin Raabe consider mass transfer
in our atmosphere. They introduce into the complexity of the relevant phenomena,
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notably during turbulent motions, from which it becomes immediately under-
standable that weather forecast is still associated with significant uncertainties.

Complicated physical situations are likewise considered in the last two chapters
of this second part of the book dedicated to spreading in nature. In fact, both
phenomena considered bring us back to biology. They deal with the question how
irregular thermal motion may give rise to directed transport phenomena since the
occurrence of directed motions is among the prerequisites for the functionality of
living organisms. Klaus Kroy and Frank Cichos consider how local heating influ-
ences the movement of particles suspended in a fluid. Such heating is immediately
seen to give rise to a bias in molecular motion if it is initiated by the use of the
so-called Janus particles, i.e. of particles where, by covering only one half of the
surface by a gold layer, only this half of the surface gives rise to temperature
enhancement.

Philipp Maas, Marcel Dierl and Matthias Wolff model the bias in motion by
implying asymmetric jump probabilities, in the extreme case with jump attempts
into only one direction and the (obvious) requirement that jumps are only possible if
a jump attempt is directed to a site which is still unoccupied. Models of this type
introduce the principles that can explain how sudden standstills on a highway may
disappear suddenly, for no obvious reason, to yield regular traffic flow. The chapter
provides an impression of how complicated the whole matter becomes if mutual
interactions between the various particles are considered.

Part 3, scheduled for highlighting the various aspects of spreading phenomena of
relevance in Technology, starts with an introduction by Christian Chmelik and
co-authors into the relevance of diffusion for the performance of many technologies
based on the application of nanoporous materials. The annual benefit worldwide by
the exploitation of these technologies in petroleum refining has been estimated to at
least 10 billion US dollars—and the gain in value-added products by performance
can, obviously, never be faster than allowed by the rate of diffusion from the
catalytically active sites in the interior of these materials to the surroundings.

Marc-Olivier Coppens and Guanghua Ye illustrate in the subsequent chapter
how, on their search for optimum technologies, process engineers may gain
inspiration from nature. Here, through billions of years of evolution, plants and
animals have acquired highly effective transport systems, crucial to their survival.
Although a chemical engineering application is different from a biological one in
terms of materials and operating conditions, they share fundamental features in,
notably, connecting the action at microscopic scales with those in the overall
system.

There is scarcely another measuring technique that offers such a wealth of
information on transport phenomena and, hence, on the key process in many
technologies, as nuclear magnetic resonance (NMR). After introducing the funda-
mental principles of this almost universal analytical tool, William S. Price and his
colleagues present an impressive array of applications, ranging from diffusion
measurement in porous media to magnetic resonance imaging (MRI), currently the
most powerful of the imaging techniques in medical diagnosis.
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A survey over the many systems of technological relevance where mass transfer
occurs under solid-state conditions is provided in their chapter by Boris S. Bokstein
and Boris B. Straumal. They cover metals, amorphous alloys and polymers and
include, as an attractive topic of current material research, the investigation of
severe plastic deformation brought about by material straining under spatial
confinement.

Spreading phenomena in technology are considered from a much more global
perspective in the final two chapters of this part. Albrecht Fritzsche pursues the
question how novel technologies are becoming part of the knowledge of human-
kind. Here technologies are understood as an embodiment of any instrumental
action that occurs repetitively in our world. This rather broad definition creates the
need for different operational measures for the diffusion of innovations, including
the impact of both the innovating institution and public acceptance. In the subse-
quent chapter, Armin Grunwald takes us a step further ahead by investigating the
role of visions as an established part of scientific and technological communications
and by asking for the conditions under which they may indeed fulfil their potential
as a major driver of scientific and technological advance. He reminds us that robots,
e.g., entered society in this very way long before they came to exist in reality, where
they now may be found with many of the anticipated functions and meanings. The
contributions by Fritzsche and Grunwald mark the borderline with part 4 of our
book, dealing with spreading phenomena in Society.

Here, into humanities and, notably, into archeology, analytical diffusion equa-
tions have been introduced in already the early seventies of the last century through
the famous work by Ammerman and Cavalli-Sforza [5]. Standing, mathematically,
on the shoulders of Fisher [6] and Skellam [4] they described the invasion of
farmers, the people of the Neolithic, between 8000 and 6000 years ago, from the
Near East by a one-dimensional “wave of advance” from south-east towards the
north-west of Europe. But was it really people or just technology that advances
—“demic” or “cultural” diffusion? Still a hot topic! At that time the authors had no
more genetics at their hand than blood groups and archeological indications for
adapting their diffusion equations.

The tremendous progress of genetics has recently accelerated that field. In this
book the diffusion of the Neolithic is dealt with by Joaquim Fort with more and
more refined diffusion equations. Already Skellam had stressed “Unlike most of the
particles considered by physicists, living organisms reproduce and interact. As a
result, the equations of mathematical ecology are often of a new and unusual kind.”
Fort has amply expanded the field of “reaction diffusion” being able to now
incorporate cohabitation, cultural transmission and anisotropic expansion. Fort
stresses that all models considered by him operate with a minimum of parameters.
The demic model, for instance, needs only three parameters which have been
estimated from ethnographic or archeological data. He mentions further on that,
with such constraints, one is able largely to avoid any unjustified bias in modeling
which may easily occur by the use of more parameters.

In the subsequent chapter, Carsten Lemmen and Detlef Gronenborn deal once again
with the spread of Neolithic culture and the question for demic or cultural diffusion.
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However, rather than applying analytical methods as done by Fort, they treat the
problem with a technique, sometimes referred to as the method of cellular
automaton. Here the system under study is subdivided into different regions
(“cells”), with the interaction between the populations of the different cells via trade
and migration taken account of by suitable mathematical expressions. Simulating
the dynamics of local human populations’ density and sociocultural features
(“traits”) needs more parameters than Fort’s model, in particular a couple of habitat
parameters, which—with hopefully more data from archeology—in future will have
to be reconsidered

Back to modern times, Anne Kandler and Roman Unger consider the variation in
the use of languages, with the focus on the retreat of the Gaelic language in
North-Western Scotland. They combine their analysis with the search for reason-
able measures enabling the preservation of linguistic diversity in our world [7] and
with estimating the expenses and probability of success of such efforts.

Dirk Brockmann describes the spread of diseases with reaction-diffusion equa-
tions by introducing effective distances and effective times thus considering the
distance for a contagion not purely geographically but rather by considering the
probability for overcoming the given distances. He shows that, for a contagion on
the global scale, Frankfurt may be effectively closer to New York than a village in
New Jersey only 150 km away. Here we encounter the probabilistic capabilities of
the use of diffusion equations and their “descendants” and, jointly with it, an
impressive example of how medical sciences are already successfully applying this
unconventional approach for mitigating or even preventing epidemics.

While in most contributions collected here the spreading phenomena considered
refer to the movement of “objects” in space, in the concluding chapter of our book
Louis M. Shekhtman, Michael M. Danziger and Shlomo Havlin talk about a totally
different situation when they consider the spreading of failures in complex systems
such as power grids, communication networks and financial networks. Here one
failure is seen to easily trigger further ones, giving rise to cascades wherein the
failure may spread over also other parts of the system. Failure spreading, finally,
ends up in blackouts, economic collapses and other catastrophic events. Exploration
for the underlying “physical” mechanisms is, once again, illustrated as an important
issue in searching for suitable means for mitigating such disastrous developments.

Some of you might regard our endeavor as too daring and ask “cui bono?” if
phenomena far away from physics have been treated by methods of clear prove-
nience in physical sciences. We are aware of the risk of oversimplified approaches
and the danger of reductionism is pending. But, please, have also in mind that, for
science, it should be allowed if not even required as an imperative, to transgress the
limits of one’s own discipline. That is what we have attempted.

Throughout the book we have attempted to keep explanations simple, with as
little mathematics as possible. We therefore hope that the book will appeal not only
to specialists, but to anyone interested in looking for the many impressive analogies
of spreading and diffusion throughout many different disciplines. We trust that,
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with the book in your hands, you will find plenty of motivation for enjoying the
fascinating world of spreading phenomena and, notably, to track and to deeper
explore them in your own disciplines.
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Chapter 2
Spreading Fundamentals

Armin Bunde, Christian Chmelik, Jörg Kärger and Gero Vogl

2.1 Diffusion Step by Step

Stimulated by their thermal energy, atoms and molecules are subject to an irregular
movement which, in the course of history, has become known under the term
diffusion. Today, in a more generalized sense, essentially any type of stochastic
movement may be referred to as diffusion.

Diffusion sensu stricto is the motion of individual objects by way of a “random
walk”. For simplicity we start with the one-dimensional problem: our random
walker is assumed to move along only one direction (the x coordinate) and to
perform steps of identical length l in either forward or backward direction. Both
directions are equally probable and the direction of a given step should in no way
affect the direction of a subsequent one (Fig. 2.1).

Such sequences of events are called uncorrelated. The mean time between
subsequent steps is denoted by τ. Obviously, nobody can predict where exactly this
random walker will have got to after n steps, this means, at time t = n τ.
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The randomness of the process allows predicting probabilities only. Let us
consider a large number of random walks, all beginning at the same point. The
probability that at time t a random walker shall have got to position x is then simply
the ratio between the number of random walks leading to this point and the total
number of walks.

We are going to derive the “mean square displacement” ⟨x2ðt= nτÞ⟩ as a char-
acteristic quantity of such a distribution. It denotes the mean value of the square of
the net displacement after n steps, corresponding to time t = nτ. Mean values are
determined by summing over all values and division by the number of values
considered. For our simple model we obviously have

⟨x2ðt= nτÞ⟩= ⟨ x1 + x2 + x3 +⋯+ xnð Þ2⟩
= ⟨x21 + x22 + x23 +⋯x2n +2x1x2 + 2x1x3 +⋯+2xn− 1xn⟩

ð2:1Þ

where xi denotes the length of the i-th step. The magnitude of xi can be either
+l (step in (+x) direction, i.e. step ahead) or −l (step in (−x) direction), so that all of
the first n terms in the second line become equal to l2. Let us now consider the mean
value of each of the subsequent “cross” terms xixj, with i ≠ j. For a given value of
xi, according to our starting assumption, the second factor xj shall be equal to +l and
to −l with equal probability. Hence, the resulting values xixj, with i ≠ j, will be
equally often +l2 and −l2, leading to a mean value of zero.

Equation (2.1) is thus seen to simply become

⟨x2ðtÞ⟩= nl2 =
l2

τ
t, ð2:2Þ

with the most important message that a diffusant departs from its origin not in
proportion with time as it would be the case with directed motion. It is rather the
square of the displacement which increases with time, so that the (mean) distance
often called xrms (rms meaning root of the mean square) increases with only the
square root of time.

Quite formally, we may introduce an “abbreviation”

-3 -2 -1 0 1 2 3

x [l]

1/21/2

(a)

-1 0 1 2 3 4 5 6
t

0

1

2

3

x 
[

-1

0

l]

(b)

Fig. 2.1 Random walk in one dimension. a Step to the left and step to the right equally probable.
b Possible displacement after five steps
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D=
l2

2τ
ð2:3Þ

so that now Eq. (2.2) may be noted in the form

⟨x2ðtÞ⟩=2Dt. ð2:4Þ

We shall find in the subsequent section that the thus introduced parameter D is a
key quantity for quantifying the rate of the random movement which we have
referred to as diffusion. We may rearrange Eq. (2.4), leading to its general
definition,

D=
⟨x2ðtÞ⟩
2t

. ð2:5Þ

D is referred to as the self-diffusivity (or coefficient of self-diffusion or
self-diffusion constant). The considerations may be extended to two and three
dimensions, where the factor 2 on the right-hand side of Eq. (2.3) (and, corre-
spondingly, in Eqs. (2.4) and (2.5)) has to be replaced by 4 and 6, respectively.

Abandoning the simplifying condition of equal step lengths, with essentially the
same reasoning as exemplified with Eq. (2.1), Eq. (2.3) may be shown to be still
valid, now with l2 as the mean squared step length.

2.2 From Random Walk to Fluxes

Though today it is possible to follow the diffusion path (“trajectory”) of an indi-
vidual molecule [1], the relevance of diffusion becomes more obvious if ensembles
of diffusing particles are considered. This situation is schematically presented in
Fig. 2.2. In the following we shall explain that it illustrates the situation typical of
the three most important ways to measure and characterize diffusion. The circles
represent the diffusing particles and the lattice indicates that the process occurs
within some “framework” formed by, e.g. open spaces (vacancies) in a solid state
lattice, interconnected pores or territorial areas, which may serve as a reference
system. Correspondingly, the scheme has to be modified (see, e.g., Chap. 13 and
Fig. 13.1) when diffusion of the lattice constituents (as in solid-state diffusion) is
considered.

Let us start our discourse with Fig. 2.2a, with the concentration of diffusants
deliberately chosen to decay from left to right. This gradient in concentrations
effects that, irrespective of the random (and, notably, undirected!) movement of
each individual particle, their superposition leads to a directed flux. Macroscopi-
cally, this particle flux abolishes existing concentration gradients, following the
general tendency towards equilibration in nature.
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Doubling the concentration gradient will obviously effect a doubling of the
difference between the numbers of particles passing from left to right and from right
to left and, hence, a doubling of the flux. This leads to the famous Fick’s 1st law

jx = −DT
∂c
∂x

. ð2:6Þ

jx denotes the flux density in x direction, where the x coordinate is chosen to
indicate the direction of falling concentration and the index T indicates “transport”.
The flux density jx =ΔN ̸ ΔA ⋅Δt is defined by the number ΔN of particles passing
an area ΔA (perpendicular to the flux direction) during a time interval Δt, divided
by ΔA and Δt. In Eq. (2.6), the concentration gradient is represented as a so-called
partial derivative, which has to be introduced whenever a quantity (here the particle
concentration c, i.e. the particle number per volume) is a function of various
parameters, such as location (x) and time (t) in our case. This twofold dependence is
expressed by the notation c(x,t). Partial derivation means that one considers
derivation with respect to one parameter (here x) while the other one(s) is (are) kept
constant. The minus sign in Eq. (2.6) indicates that the particle flux is directed
towards decreasing concentration. The factor of proportionality, DT, is referred to as
the coefficient of transport diffusion (as indicated by suffix T). Alternatively also the
terms chemical or collective diffusion are used.

Let us return to Fig. 2.2, where we will now look for an option to quantify
diffusion under equilibrium conditions, i.e. for uniform concentration. In this case,
obviously, the irregular particle movement does not lead to any net flux. As
illustrated by Fig. 2.2b, however, again a macroscopically observable effect may be

c 
(x

)

c 
(x

)

c 
(x

)

x x x 

(a) (b) (c)

Fig. 2.2 Microscopic situation corresponding to the measurement of the transport (chemical)
diffusivity (a) and of the self- (tracer) diffusivity (b, c) by either observing the flux of a labeled
fraction (see e.g. [2] and Chap. 13) (b), or by recording the individual displacements, e.g. by
methods as PFG NMR ([3] and Chap. 12), quasi-elastic neutron scattering [4, 5], Mössbauer
spectroscopy [5] or X-ray photon correlation spectroscopy XPCS [6] (c). Examples of typical
particle distributions on top and corresponding spatial dependencies of concentration below.
Reproduced with permission from Ref. [7], copyright (2013) Wiley-VCH Verlag GmbH & Co.
KGaA
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generated if we are able to effect a distinction between the particles of the system
without affecting their microdynamic properties. In Fig. 2.2b it is simply achieved
by considering spheres in two different shades of red, with both of them assumed to
behave identical and the respective concentrations given below in the figure. With
this distinction, again fluxes become macroscopically observable. In complete
analogy to Eq. (2.6) we may note

j*x = −D
∂c*

∂x
ð2:7Þ

where the asterisk (*) indicates that only one sort of the differently labelled particles
(i.e. either the red or the pink spheres) is considered. In experiments, such a situ-
ation may be realized by using (two) different isotopes as diffusing particles. With
reference to the use of labelled molecules (“tracers”), the thus defined quantity D is
referred to as the tracer diffusivity. It might come as a surprise that, at the end of this
section, the thus defined tracer diffusivity will be found to coincide with the
self-diffusivity introduced in the previous section.

A macroscopically existing concentration gradient (Fig. 2.2a) will generally give
rise to an additional bias, as a consequence in the difference in the “surroundings”
depending on whether the diffusant is moving into the direction of higher or smaller
concentration. The rate of propagation of the diffusants depends on the existence of
“free sites” in the range where they try to get to. While in “highly diluted” systems
this should not be a problem since “free sites” can be assumed to be anywhere
easily (and, hence, with equal probability) available, the situation becomes more
complicated with increasing density of the diffusants. This is true, e.g., for diffusing
molecules if the cavities in a porous material are occupied already by other guest
molecules, for diffusion in solids where generally the concentration of free sites
(vacancies) is very low, or if a new generation of farmers is forced to leave their
home ground in search for new farming areas, getting into even more densely
populated districts.

Such type of bias does not exist in the absence of macroscopic concentration
gradients (Fig. 2.2b). Hence, reflecting two different microdynamic situations, the
coefficients of tracer and transport diffusion cannot be expected to coincide quite in
general. We shall return to some general rules for correlating these two types of
diffusivities in Sect. 2.3. Before, however, we are going to illustrate why the
coefficients of self-diffusion (as introduced by Eq. (2.5) and as resulting with a
measuring procedure as illustrated by Fig. 2.2c) and of tracer diffusion (Eq. (2.7)
and Fig. 2.2b) are one and the same quantity.

Figure 2.2c takes us back to Sect. 2.1 with Fig. 2.1 and Eq. (2.2) illustrating the
evolution of the probability distribution of diffusing particles. Now we are going to
show that this very problem may as well be treated within the frame of Fick’s first
law (Eq. (2.6)). For this purpose, we consider the change of the number of particles
within a volume element due to diffusion. The way of reasoning is sketched in
Fig. 2.3, where again we have made use of the simplifying assumption that the flux
is uniformly directed into x direction (which implies uniform concentration in any
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y-z plane). For an extension to three dimensions, with the option of also
orientation-dependent diffusivities, we refer to Chap. 12 and, notably, Sect. 12.5.2.

As is evident: particles entering (flux j) into a given volume must leave again or—
if they do not leave again—will increase the density (c) in the volume:

∂j
∂x

= −
∂c
∂t

ð2:8Þ

This relation is termed the continuity equation.
Inserting Eq. (2.8) into Eq. (2.6) yields

∂c
∂t

=D
∂
2c
∂x2

ð2:9Þ

where, for simplicity, the diffusivity is assumed to be uniform anywhere in the
system. Equation (2.9) represents Fick’s 2nd law, stating simple proportionality
between the change in concentration with time and the “gradient of the concen-
tration gradient”, i.e. the curvature of the concentration profile. We do, moreover,
disregard the suffix T having in mind that our reasoning applies to both transport
and tracer diffusion.

The mathematics to treat the evolution of such a system is provided by Eq. (2.9).
The reader with some background in differential calculus will easily convince
himself that the function

cðx, tÞ≡Pðx, tÞ= 1ffiffiffiffiffiffiffiffiffiffi
4πDt

p exp −
x2

4Dt

� �
, ð2:10Þ

namely a so-called Gaussian, obeys this equation (Fig. 2.4). It may be shown that,
as a consequence of the central limit theorem of statistics, a Gaussian results quite
generally for the distribution function of particle displacements after a sufficiently

Fig. 2.3 Particle balance in a volume element ΔV = Δx ⋅ A for diffusion in x-direction. The
change in the number of particles within this volume element per time is equal to the differences of
the fluxes leaving and entering. Reproduced with permission from Ref. [9], copyright (2014)
Leipziger Universitätsverlag
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large series of uncorrelated “elementary” displacements (“steps”) if they are of
identical distribution, symmetric and of finite variance, i.e. of finite mean squared
“step length” (see also Sects. 3.5.1 and 4.1 and Chap. 2 in [8]). Figure 2.1 illus-
trated a most simple example of such a series.

With the probability distribution given by Eq. (2.10), the mean displacement can
be noted as

⟨x2ðtÞ⟩=
Zx=∞

x= −∞

Pðx, tÞx2dx=
Zx=∞

x= −∞

1ffiffiffiffiffiffiffiffiffiffi
4πDt

p exp −
x2

4Dt

� �
x2dx=2Dt, ð2:11Þ

which leads to a standard integral. The analytical solution yields the expression
which has been given already by Eq. (2.4) where, via Eq. (2.3), D has been
introduced as a “short-hand expression” for l2/(2τ) and, by Eq. (2.5), has been
defined as the self-diffusivity. This expression is now in fact seen to coincide with
the tracer diffusivity as introduced by Fick’s 1st law. It was in one of his seminal
papers of 1905 [10] that Albert Einstein did find this bridge between Fick’s law and
random particle movement. Thus Eq. (2.5) is often referred to as Einstein’s diffu-
sion equation. For a more profound appreciation of this achievement we refer to the
presentation of “hot” Brownian motion in Chap. 8.

Diffusive fluxes in our real world are, as a matter of course, often accompanied
by fluxes emerging from directed rather than from random motion. Such situations
do occur in also the examples considered in our book when, e.g., diffusive fluxes in
plants (Chap. 5) and turbulences in our atmosphere (Chap. 7) have to be considered
in superposition with phenomena of bulk motion, referred to as advection. The
combination of mass transfer by advection and diffusive fluxes is commonly
referred to as convection.

Throughout the book we shall be wondering about the “driving forces” giving
rise to the various types of fluxes occurring within the systems under consideration.

Fig. 2.4 Evolution of the
probability distribution for the
end points of a “random
walk” starting at t = 0 at
x = 0. The curves represent
the so-called probability
density P(x,t). Reproduced
with permission from Ref. [9],
copyright (2014) Leipziger
Universitätsverlag
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With Fig. 2.2. we have seen already that, under the existence of concentration
gradients, diffusive fluxes emerge already as a simple consequence of random
movement. In multicomponent systems of interacting particles the situation
becomes more intricate. Chapter 10 gives an example that illustrates how then the
gradient of the “chemical potential” may most conveniently be applied as a “driving
force” of diffusion. Borrowing a conception in common use in hydrogeology,
Chap. 5 deals with directed water fluxes in plants by means of Darcy’s law, with the
gradient in water potential as the driving force. While thus, in physical sciences and
engineering, the search for the driving forces and the quantitation of fluxes is among
the tasks of today, equivalent efforts on considering spreading phenomena in e.g.
humanities appear to be still far before maturity.

In problems of ecology and alike and in many problems in cultural science,
spreading phenomena occur in two rather than in only one dimension as considered
in our introductory example. For diffusion now ⟨rðtÞ2⟩=4Dt and again the most
probable place to find a “random walker” is at the origin. As Pearson [11] put it
already in 1905: “The most probable place to find a drunken man who is at all
capable of keeping on his feet is somewhere near his starting point.” That is what
can be seen from the cartoon Fig. 2.5 and has already been the message of Fig. 2.4
(which preserves its pattern in also two- and more-dimensional presentation): the
maximum in the probability distribution of the location of a random walker remains
in his starting point.

In two dimensions it is appropriate to use polar coordinates and Fick’s 2nd law is
written

∂c r, tð Þ
∂t

=
D
r
∂

∂r
r
∂c r, tð Þ
∂r

� �
ð2:12Þ

with r=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 + y2

p
denoting the distance between the origin of the spreading process

and the considered area. Just as Eq. (2.10) resulted from Eq. (2.9), the solution of
Eq. (2.12) is found to be

cðr, tÞ= n
4πDt

exp −
r2

4Dt

� �
. ð2:13Þ

n is the number of representatives of a certain species at the origin.

Fig. 2.5 The most probable
place to find a drunken man
who is at all capable of
keeping on his feet is
somewhere near his starting
point
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2.3 Interaction, Growth and Conversion

So far all our considerations were based on the simplifying assumption that the
propagation probability of our diffusants is uniform all over the system under study.
This implies uniformity of the medium in which the process of diffusion (spreading)
occurs, as well as the absence of any interaction between the diffusants. With the
lack of interaction, a distinction between equilibrium and non-equilibrium phe-
nomena becomes meaningless [12]. The coefficients of self- and transport diffusion
as considered so far do, therefore, coincide (given by Eq. (2.3) for the considered
step model) and Eq. (2.9) does hold for both self- (=tracer) and transport diffusion.
Due to this coincidence there was, up to this point, no real need for distinguishing
between the two different types of diffusivities. On considering such interactions,
however, this distinction will become necessary.

On considering molecular interactions, the diffusivity D = D(c) becomes a
function of the diffusant concentration c so that Fick’s 2nd law is not correct
anymore in the form of Eq. (2.9). Inserting Eq. (2.6) into Eq. (2.8) does now rather
yield (again for the simple one-dimensional problem)

∂c
∂t

=
∂

∂x
D cð Þ ∂c

∂x

� �
=D cð Þ ∂

2c
∂x2

+
∂D cð Þ
∂c

∂c
∂x

� �2

. ð2:14Þ

The particular dependence D(c) of the diffusivity is determined by the system
under study. Considering a variety of different types of random movement in
nature, technology and society, the book presents a rich spectrum of possibilities for
this dependence.

Starting with Eq. (2.8) we considered, so far, only the change in concentration of
the diffusants in a certain range as resulting from in- and outgoing fluxes. On
considering in particular biological species, however, we do have to consider a
second mechanism, namely the generation of new species. In first order approxi-
mation this growth may be assumed to be proportional to the amount of species
already present at a given instant of time. By correspondingly completing
Eq. (2.12) we arrive at

∂cðr, tÞ
∂t

=
D
r
∂

∂r
r
∂cðr, tÞ
∂r

� �
+ αcðr, tÞ ð2:15Þ

with the newly introduced parameter α referred to as the growth rate. By insertion
into Eq. (2.15), the expression

cðr, tÞ= n
4πDt

exp −
r2

4Dt
+ αt

� �
ð2:16Þ

is easily seen to be its solution. We note that Eq. (2.16) differs from Eq. (2.13) in
only the additional term αt in the exponential on the right hand side of Eq. (2.16).
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This term gives rise to an increase in concentration with increasing time. For
quantifying the speed of spreading we may now consider a distance R from the
origin which we define by the requirement that there is a well-defined number of
spreading species outside of a circle of this radius R, which is assumed to be
negligibly small in comparison with their total amount. This radius R can now, as a
second peculiarity, be shown to linearly increase with time [13, 14]. One finds
RðtÞ=2

ffiffiffiffiffiffiffi
Dα

p
t, from which the speed of spreading following what Fisher called a

“wave of advance” may be noted immediately as

v=2
ffiffiffiffiffiffiffi
Dα

p
. ð2:17Þ

Nature does clearly forbid unlimited growth as would occur as a consequence of
Eq. (2.16) as discussed above. Most remarkably, a simple correction of the term
added to Fick’s 2nd law does allow a reasonable first-order description of many
phenomena occurring in nature:

∂cðr, tÞ
∂t

=
D
r
∂

∂r
r
∂cðr, tÞ
∂r

� �
+ α 1−

cðr, tÞ
c∞ðr, tÞ

� �
cðr, tÞ. ð2:18Þ

That type of growth, eventually reaching the limiting concentration c∞ðr, tÞ
(saturation), is termed “logistic growth”. Spreading does, correspondingly, occur
with concentrations eventually arriving at the limiting concentration c∞ðr, tÞ as
schematically shown by Fig. 2.6. The propagation rate of the concentration front
(speed of spreading) is still given by Eq. (2.17). A more detailed introduction into
the formalism around the “logistic growth” is provided by Sect. 3.4.

If the spreading species (as e.g. molecules during a catalytic reaction) are subject
to chemical conversions or reactions, these conversions as well contribute to
changes in local concentration, in addition to the influence of diffusion. Equa-
tion (2.19) gives an example of the corresponding extension of Fick’s 2nd law,
Eq. (2.9), so-called reaction-diffusion equations, for sake of simplicity in the
one-dimensional scenario:
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Fig. 2.6 Scheme of
propagation (“wave of
advance”) of the
concentration (number per
area) of a species on
spreading according to
Eq. (2.17) at subsequent
instants of time (t1 < t2 < t3)
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∂c1
∂t

=D1
∂
2c1
∂x2

− k21c1 + k12c2

∂c2
∂t

=D2
∂
2c2
∂x2

− k12c2 + k21c1

ð2:19Þ

for a monomolecular reaction between species 1 and 2 (of local concentrations ci(x, t)
with i = 1, 2) with the reaction rate constants kij for conversion from j to i. For
simplification, the diffusivities Di of the two species are assumed to be independent
of either concentration and the diffusive fluxes on the concentration gradient of the
other component. These are coupled partial differential equations which can easily
be solved by computer programmes.

The idea to use coupled reaction diffusion equations and to consider interactions
in addition to growth was soon applied to the spread of living beings and even to
the spread of abstract objects, in particular languages (see, e.g., Chap. 18). Already
more than 30 years ago Okubo [15] and a little later Murray [16] have reported on
such applications. From the considerable number of more recent applications we
mention the description of diffusion (demic vs. cultural) of the Neolithic transition
(see e.g. [17]) and of the spread and retreat of language [18] by coupled
reaction-diffusion equations.

It is obvious, however, that one reaches limits in the analytical treatment. The
subsequent sections introduce into the options how these limitations may be
overcome. Now spread needs not to follow the dispersal logics of the random walk,
i.e. it is not necessarily of Gaussian type.

2.4 Extending the Tools

With increasing complexity of the system, in particular of the platform on which
spread occurs (network or “habitat”), it becomes increasingly complicated to obtain
analytical solutions as those given by Eqs. (2.10), (2.13) and (2.16), and simple
reaction-diffusion models are inadequate for the description of complex, spatially
incoherent spreading patterns. The global spread of epidemics, innovations etc. are
processes on a complex network. In such cases it is common praxis to rely on
numerical solutions of the given equations.

When a network of starting points and destinations is the basis for the spread, for
the travel of individuals between nodes n and m of the network the continuity
equation ∂c/∂t = −∂j/∂x (Eq. (2.8)) is replaced by a rate equation

∂cn
∂t

= ∑
m≠ n

pnmcm − pmncnð Þ ð2:20Þ

where pnmcm stands for the outgoing flux from node m to node n and pmncn for the
flux in opposite direction. Exactly this type of analysis we shall encounter in
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Chap. 19 where Brockmann applies such network logics for demonstrating the
spread of diseases [19].

Another set of interesting but complex problems are the diffusional movements
of animals on search for food. For randomly distributed food sources, the Lévy
flight hypothesis predicts that a random search with jump lengths following a power
law minimizes the search time. Such patterns end up with relations deviating from
simple proportionality between the mean square displacement and the observation
time. Examples of this type of motion referred to as “anomalous diffusion” may be
found in Chaps. 4 (“Levy flights”), 6 (diffusion in brain “interstitials”) and 10
(“single-file” diffusion).

However, Lenz et al. [20] find for bumblebees that the crucial quantity to
understand changes in the bumblebee dynamics under predation risk, when the
insects obviously try to avoid meeting predators, is the correlation of velocities
v. These correlations correspond exactly to the sums of cross-terms in Eq. (2.1),
which for the bumblebees do not cancel out. The authors reproduce these changes
by a Langevin equation in one dimension adding a repulsive interaction U of
bumblebee and predator:

∂vðtÞ
∂t

= − ηvðtÞ− dU
dx

xðtÞ+ ξðtÞ ð2:21Þ

where ƞ is a friction coefficient and ξðtÞ a fluctuating force (Gaussian white noise).

2.5 Agent-Based Models of Spread

An alternative possibility of modelling and eventually predicting spreading under
complex conditions is Monte Carlo simulation on the basis of cells occupied by
diffusants, so-called agents, which can be men, animals, plants, bacteria or even
abstract concepts as e.g. innovations and ideas. The method is sometimes called
cellular automaton. This has e.g. been done in ethnology for the spread of agri-
culturalists in the neolithicum [21], in ecology for the spread of neobiota [22] and in
linguistics [23] for language competition, just to give a few examples.

The idea of Monte Carlo simulations is as follows: One reserves, in the com-
puter, a sufficiently large number of memory cells designated i. These cells refer to
the possible positions of the random walker introduced in Sect. 2.1. One considers a
set of numbers mi,j which indicate the occupation number of cell i after time step j.

In the introductory example (Fig. 2.1), after each time step (of duration τ) the
random walker was required to definitely step to one of the adjacent sites. Thus, one
half of the given population of a certain cell (of number i) would have to be passed,
after one step, to the next one (to cell number i + 1), the other to the previous one
(cell number i − 1). In our computer simulation this would correspond to the
relation
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mi, j+1 =
1
2
mi− 1, j +

1
2
mi+1, j ð2:22Þ

correlating the cell populations after subsequent steps. After 100, 300 and 1000
steps one would arrive at the occupation distributions as shown in Fig. 2.4 (where
the values given in Fig. 2.4 have to be additionally multiplied by the number of
agents starting at the origin).

We may come closer to the reality of the elementary steps of propagation by a
modification of the simulation procedure. Rather than rigorously requiring that,
after each time step τ, the agents have to definitely jump to one of the adjacent sites,
one may introduce the probability pi,k that, during one time step, an agent gets from
site k to i. This probability may include the suitability of the cell. In this case,
Eq. (2.22) is replaced by a relation of the type

mi, j+1 =mi, j + ∑
k
mk, j pi, k −mi, j ∑

k
pk, i ð2:23Þ

where the terms appearing on the right hand side, in addition to the given occu-
pation number mi,j, are easily recognized as population increase of cell i by agents
entering from other cells k and population decrease by agent transfer from cell i to
other ones.

With k equal to i − 1 and i + 1 and pi,k = Δt/2τ, during a time interval Δt, an
agent will leave the cell with the probability Δt ̸τ, with equal probabilities for both
directions. This probability definition serves as a meaningful definition of a mean
residence time τ.

The need for computer simulations is illustrated with the representation in
Fig. 2.7, which refers to the spreading of a biological species, namely ragweed
(Ambrosia artemisiifolia), a plant which has “invaded” from North America and
continues to enhance its density of occurrence in Europe [22].

In the top of the figure cells populated by ragweed are shown in black. The
number of cells in black will continuously increase with spread of ragweed. The
simulations aim at determining the probability by which, at further instants of time,
so far unpopulated areas shall become populated (“infested”). In the starting
assumption that infested cells remain infested, one notably deviates from the sit-
uation considered with the introductory random walker example. In fact, by con-
sidering infestation spreading, one is already following the situation typical of
growing populations as considered in Sect. 2.3.

A successful step of “spreading” (the probability of which has been just con-
sidered) is not automatically assumed to warrant infestation. In fact, environmental
conditions (“habitat suitabilities”) might be quite different leading to different
survival probabilities. The grid on bottom left provides the numbers considered to
be relevant for the given example. The products of both probabilities, representing
the “total infestation probabilitys” are given on top in the middle. Whether
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infestation will indeed occur depends on the relation between the random numbers
(between 0 and 1) produced by the computer and the total infestation probabilities.
Correspondingly, in the top right grid do all these cells appear in black for which
the random number is exceeded by the total infestation probability.

Figure 2.8 shows as example the predicted infestation of grid cells (about 5 ×
5 km) by the spread of ragweed over Austria and Bavaria.
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Fig. 2.7 Algorithm for determining the occurrence of a species in space at subsequent instants of
time. The 4× 4 squares (“grid cells”) symbolize the different areas into which the space is
subdivided. Redrawn from [22]
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Fig. 2.8 Left: Distribution of ragweed in Austria and Bavaria in 2005. Red squares symbolize
infested grid cells. Right: Predicted infestation probability indicated by colors from red (highest
probability) down to blue (lowest probability) in 2050, if no action against ragweed spread is
taken. Redrawn from [24]
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Chapter 3
Dispersal in Plants and Animals

Michael Leitner and Ingolf Kühn

3.1 Introduction

The biogeographical patterns of ecosystems and species distributions we know today

are, apart from other effects such as evolution or ecological interactions, the result of

a continuous progression of spatial processes since different species emerged. These

spatial processes accelerated tremendously with the advent of modern humans and

their effects on species and ecosystems, such as via trade, traffic, or habitat modifi-

cation. Here we discuss general aspects of the resulting spatio-temporal population

dynamics and review pertinent models.

Dispersal refers to the movement of individuals, either from the site of birth to

the site of reproduction, or the movement between successive sites of reproduction

[1]. This pertains to any group of organisms (animals, plants, fungi, bacteria) and

can occur in several stages, including adult individuals as well as propagules such

as spores, seeds, fruits or vegetative fragments of an individual. It is the primary

mechanism of spatial gene flow, maintaining populations and fitness. These dispersal

movements usually occur within the range of a species, i.e. within the geographical

area where the individuals of a species are commonly encountered.

Dispersal phenomena can happen at almost any temporal and spatial scale. At

evolutionary time scales, species evolve into new species and need to colonize a new

range distinct from their area of origin. Further, dispersal can be tied to geological

events. Consider for instance the Great American Interchange, bringing the conti-

nents of North and South America into contact, c. 10 Mio. years ago. Once both
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continents got connected, migration across the new continents was instantaneous

compared to the time scales of continental drift. The results of these processes are

the biogeographic patterns we know today with specific floristic or zoological king-

doms or realms, made up of regions with a similar composition of species, e.g. the

Holarctis (temperate and cool regions surrounding the North pole), Paleotropis (Old

World Tropics) or Neotropis (New World Tropics).

In our context more relevant, though, are much shorter time scales, specifically

those at which demographic processes such as birth, death, colonization and extinc-

tion determine population dynamics. They happen within the life-span of an organ-

ism or within a few generations. Movement of individuals beyond their current range

(that is, the region in which species successfully reproduce) and subsequent estab-

lishment will lead to range expansion. On the other hand, unfavorable conditions,

for instance at range margins, can lead to range contraction. In this chapter, we will

hence consider questions of how spatial patterns of populations temporally evolve on

these time scales. Specifically, we will not treat evolution in the Darwinian sense. As

indicated above, dispersal and the resulting range shifts are a natural aspect of pop-

ulation dynamics. In the face of stochastic local extinctions due to natural disasters,

diseases, changing environmental conditions, increased competition or predation, it

is vital for the survival of a species to be able to (re-)colonize suitable habitats as

fast as possible, before the specific populations become extinct themselves.

The dominant mode of dispersal is specific to species. Many animals disperse

actively, while most plant species as well as sedentary and floating aquatic animal

species are dispersed passively in specific life-stages, which with regard to modeling

necessitates to explicitly consider aspects such as river currents, marine currents (e.g.

gulf stream/North Atlantic Drift), air currents (e.g. the jet stream) or the movement

of dispersal vectors (such as animals dispersing plant seeds).

In addition, dispersal patterns depend on the properties (i.e. permeability) of the

ranges (large scale) and landscapes (smaller scale) to be traversed. At large scales,

climate matching [2] is crucial, i.e. the climatic conditions have to suit the individual

species’ preferences. Landscapes need to provide the habitat needed by a species (e.g.

forest or grassland in general, or specific forests and meadows). How well these habi-

tats are interconnected or whether there are barriers determines how fast a species

can disperse and which shape the resulting range will have. All biotic and environ-

mental conditions and resources needed by a species are jointly called “ecological

niche”. This niche is typically considered to be a high-dimensional region in parame-

ter space, where each dimension is characterized by a specific condition or resource

a species needs or uses [3]. Nevertheless, methods exist to account for these habitat

properties in models, as well.

Already since neolithic times, when humans have started to modify land cover,

but especially since the beginning of long-distance trade and travel in the Age of Dis-

covery, range dynamics on unprecedented velocity have been happening. On the one

hand, the dispersal opportunities afforded by human innovations such as interconti-

nental shipping traffic (on an ever-increasing volume especially in the last decades

with progressing globalization [4]) result in translocations of species. This is a spe-

cial case of colonization, facilitated by humans. The species in the new range are
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called “alien” or “exotic”, and in case the species spread rapidly and/or cause a neg-

ative impact they are called “invasive” [5, 6]. On the other hand, the historically

drastic rate of climate change, witnessed in the last decades and likely to persist [7],

entails corresponding shifts in the habitable regions for many given species [8]. This

leads to a special case in which native as well as alien species undergo range shifts

and the distinction becomes partially ambiguous. Especially this aspect of dispers-

ing species due to global change is of special interest to ecologists: firstly to improve

the understanding of ecological processes by modeling dynamics that can currently

be observed, and secondly because such models can be the basis for management

applications in nature conservation.

The issues listed above hence motivate the large amount of attention questions of

animal and plant dispersal have been receiving within the last years. As detailed

above, this pertains primarily to dispersal on macroscopic scales which has the

potential to lead to range shifts or expansions. Our contribution will focus on these

aspects, and we will understand “dispersal” in this sense. To this end, we will follow

an order of sequential increase of model complexity, from models assuming “equi-

librium conditions” to complex dynamic systems considering ecological processes

in more detail.

3.2 Comparing Diffusive Dynamics in Physics and Ecology

Random walks in their purest form belong to the realm of physics. Paradoxically,

Robert Brown, who first observed the ceaseless random motion of suspended par-

ticles in a liquid and known as Brownian motion, which we now know to be due

to stochastic collisions with the fluid’s molecules, was a botanist. However, starting

with Einstein’s and Smoluchowski’s explanation of the phenomenon, it was primar-

ily physicists who have studied random walks and the consequent spreading-out of

concentration gradients, which is known as diffusion. When related phenomena first

came into the focus of other fields of science, it was therefore natural to adopt the

physical concepts. However, we feel that the analogy is useful only up to a certain

point, and in this section we discuss specific aspects of diffusive dynamics in physics

and ecology and point out the differences. Note that most of the statements regarding

the ecological case hold equally also for other non-physical examples treated in this

book, be it the spreading of cultural techniques and people (Chaps. 14, 16 and 17),

languages (Chap. 18) or diseases (Chap. 19).

Mass conservation versus reactions: In physics, on the one hand, the diffusing

entities, be it atoms, molecules, or more abstract quantities such as heat, comply with

a conservation law. This means that concentration changes with time are purely due

to incoming and outgoing fluxes. Even in the case of chemistry’s diffusion-reaction

phenomena, where substances that have been brought together by diffusion react,

there is a clear distinction between diffusion and reaction (for examples see Chaps.

10 and 11). Specifically in ecology of plants or sedentary animals such as corals, on

http://dx.doi.org/10.1007/978-3-319-67798-9_14
http://dx.doi.org/10.1007/978-3-319-67798-9_16
http://dx.doi.org/10.1007/978-3-319-67798-9_17
http://dx.doi.org/10.1007/978-3-319-67798-9_18
http://dx.doi.org/10.1007/978-3-319-67798-9_19
http://dx.doi.org/10.1007/978-3-319-67798-9_10
http://dx.doi.org/10.1007/978-3-319-67798-9_11
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the other hand, such a distinction is not meaningful. Here spatial transfers happen by

means of propagules (seeds or vegetative dispersal unit), without affecting the pop-

ulation density at the source. Therefore the on-site aspect of dynamics (reproduction

and death) is intrinsically linked to the spatial aspect (dispersal).

Homogeneity: In physical diffusion, the governing relations in most cases do

not depend explicitly on time. In contrast, the activity of living organisms is typ-

ically strongly structured by the diurnal or seasonal cycles, which naturally affects

the spreading behavior. The same holds for the spatial scale, where the habitats acces-

sible to plants or animals often display pronounced inhomogeneities, while for the

physical case of diffusion in a gas, liquid, or solid, space is homogeneous. Of course

there are important counter-examples, such as the case of grain-boundary diffusion

in solid diffusion (Chap. 13).

Isotropy: An analogous statement can be made with regard to the directional

symmetry of the governing relations: The diffusion equation of physics is invariant

with respect to spatial inversion, and often it is even isotropic, which means that there

are no special directions. In contrast, the non-uniformity of the wind directions leads

to a bias in the transport of wind-dispersed seeds (see Chap. 7 for a discussion of the

aspects specific to this problem), and the same applies for the distinction between

upstream and downstream dispersal in and along rivers or upslope and downslope

dispersal in steep terrain.

Linearity: In physics, the diffusion equations can often be linearized, specifically

when dealing with very diluted diffusants. Only for interacting diffusants at sizable

concentrations non-linear effects come into play (see Chap. 2). Ecology, on the other

hand, is inconceivable without interactions. They can come in many forms: Intra-

specific interaction, for instance higher reproduction success at higher densities due

to increased mate-finding probabilities or increasing diffusivities at higher densities

due to decreasing foraging successes corresponding to competition, or inter-species

interactions as in predator-prey, host-parasite or plant-pollinator relationships. As a

consequence, the governing relations in ecology are non-linear as a rule.

Continuity versus discretization: An important distinction lies in the scale of

the fundamental translocations. While it is true that also in the physical case of ran-

dom walks, be it the Brownian motion of suspended particles in a gas or a liquid or

the jumps between neighboring sites of atoms in a crystal, there is a fundamental

discretization, on length- and time-scales observable to the unaided eye the move-

ment appears continuous. Again plant ecology provides the most striking difference,

where there is apart from a few exceptions only one translocation event per gen-

eration, which can be considered to happen instantaneously. Also for animals, the

granularity of the translocations leads to non-Gaussian spread kernels, as will be

discussed in more detail below.

Determinism versus stochasticity: Due to the fact that in physical cases the num-

ber of considered diffusing particles is typically extremely large (a cubic meter of air

holds more than 1025 molecules) it is neither possible nor would it be useful to track

http://dx.doi.org/10.1007/978-3-319-67798-9_13
http://dx.doi.org/10.1007/978-3-319-67798-9_7
http://dx.doi.org/10.1007/978-3-319-67798-9_2
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the position of every particle. Rather, the state of the system at any given time is

described by particle densities. Further, the fundamental displacements’ large num-

ber and microscopical scale as discussed above completely averages out their ran-

domness. As a consequence, the particle densities follow deterministic partial dif-

ferential equations. This does not hold for most ecological cases, where any detailed

model has to treat the stochasticity of the fundamental processes. Specifically very

rare events can have a stochastic effect on the resulting species distributions, such

as long-range displacements of seeds or individuals coupled with non-linear growth

leading to colonizations of hitherto unreached areas, or the introduction of diseases

or predatory species, which can result in (local) extinction.

The above points can be summarized in the statement that the models that have

to be used to adequately describe dispersal processes in ecology are typically more

complex than those used in physics. This shall not claim that the physical problems

are in any way trivial or not interesting, and in fact the physical cases treated in

various chapters in this book often are counter-examples to the simplified distinctions

given above. However, in this they are exceptions that capture the scientists’ interest,

while the complexity in the ecological cases is rather a rule.

3.3 Static Spatial Distributions

Frequently, dynamical systems are in equilibrium at the temporal or spatial scale

considered. This is the case for animal species moving in order to forage or mate

or for plant species where seed dispersal will not necessarily result in average range

changes nor in average changes of population densities. Such stable conditions can

result for species that are in equilibrium with the given environmental conditions;

i.e. those that occur everywhere where environmental conditions are suitable [9]. In

other cases, species are not in equilibrium with their environmental conditions but

cannot realize range increases due to dispersal limitation. For instance, Svenning

and Skov [10] showed that many species hardly changed their range after the last

glaciation due to dispersal limitation. For the sake of modeling, though, systems

are often assumed to be in equilibrium. In such cases the microscopic workings,

i.e. the underlying processes, are subsumed in phenomenological dependencies, and

the interest lies rather in describing the pattern. The model parameters are hence

typically determined from observed population dynamics by methods of statistical

inference, as will be treated below.

Nevertheless, even under equilibrium conditions, process knowledge can be rather

detailed, with the resulting model covering all these details and considering all

processes on a microscopic basis, so that the corresponding parameters can be deter-

mined independently. This is then called a mechanistic model. For modeling sto-

chastic dynamics (Sect. 3.5.2), mechanistic models are often preferred.
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3.3.1 Species Distribution Models (SDMs)

In principle, Species Distribution Models (also called ecological niche models, bio-

climatic envelope models or habitat suitability models) describe the occurrence of

species under static conditions, allowing to derive their range under specific assump-

tions. In their simplest form, they build on the linear predictor

𝜂 = 𝐗𝛽 (3.1)

understood as matrix-vector multiplication, where 𝐗 is a matrix of environmental

conditions sampled at a number of locations and 𝛽 is the parameter vector of the

model. These conditions can be climatic factors such as temperature or precipitation,

land use or land cover such as arable land, grassland, forests, geological substrates,

or anything that determines where a species can thrive, and the variation of 𝜂 with a

change in a given environmental condition is quantified by the respective entry in 𝛽.

Sometimes species abundance is known (such as counts of individuals, cover or

biomass), but in most cases the information on species occurrences is only known

in a binary way (species presence or absence). To link the linear predictor 𝜂 to the

expected value of the occurrences the link function g is introduced

g
(
E(y)

)
= 𝜂 = 𝐗𝛽, (3.2)

where y denotes the species occurrences. The expression for the link function g
depends on the distribution model of the species occurrence data (e.g. binomial,

Poisson, or Gamma-distributed). Technically, parameter estimation is done by any

method of statistical inference (see Sect. 3.5.2). While Generalized Linear Mod-

els as introduced above are the most frequently used SDMs, there are many other

approaches used.

These SDMs are frequently employed for modeling spread in cases where the

environmental conditions that determine the species distribution are not static or

species are not in equilibrium with environmental conditions. In the former scenario,

temporally varying layers of environmental conditions (such as climate change sce-

nario projections) are used to predict future species ranges, inherently assuming that

spread (or retraction) takes place. SDMs are hence believed to predict the potential

range of a species correctly and the difference of observed versus modeled range

can then be used to infer spread processes. Strictly speaking, though, this is not a

valid approach [9]. Non-native species have mostly not (yet) colonized all poten-

tially possible environmental conditions [11]. Hence their ecological niche (i.e. the

n-dimensional hypervolume describing all conditions they need) is frequently largely

underestimated, when suitable conditions are neglected because the species has not

yet colonized locations with such conditions (e.g. [12]).

As an example, the use of an SDM for predicting range shifts of a species under

varying climate conditions is illustrated for the case of the common walnut (Juglans
regia), which is native to mountain ranges of central Asia and has been introduced
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Fig. 3.1 Modeled expected value for the presence of the common walnut today (left panel) and

predicted under climate change (right panel) in gray-level coding

to the Mediterranean in Antiquity. For both 38 bioclimatic parameters and 11 soil

characteristics the six most important principal components were combined with

four land-use parameters to produce the matrix of environmental conditions 𝐗, hav-

ing 2995 rows (corresponding to the number of cells) and 16 columns. Given the

currently realized binary distribution data, the corresponding 16-entry parameter

vector 𝛽 is inferred. Under the A1FI scenario [13], which assumes that future pol-

icy is concerned with stimulating economic growth as opposed to reducing carbon

dioxide emissions, a temperature increase of approx. 4 ◦
C until the end of the cen-

tury is projected for Germany. The cell-wise expected value for occupation E(Y) for

the modified environmental condition matrix is presented in Fig. 3.1 along with the

model predictions for the present conditions. It is seen that the plant will increase

its naturalized range from south-western Germany to most of southern and central

Germany [14].

3.4 Spread Processes: Classical Approaches

The pioneering works on the spatio-temporal dynamics of plants and animals were

done before the advent of electronic computers. As a consequence, typically the

aim was to capture only qualitative aspects, and modeling was done by (partial)

differential equations, disregarding aspects such as spatial inhomogeneities. Here

we will briefly recapitulate those concepts. As mentioned already above, in ecology
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reproduction and death are often integral aspects of dispersal. Therefore, we will start

here with a treatment of on-site population dynamics and in a second step augment

them by considering spatial dynamics.

3.4.1 On-site Dynamics

In agreement with the nomenclature of Chap. 2, we denote the local population den-

sity at time t as c(t). We model the temporal evolution of the population density, that

is how the number of individuals of a given species changes with time, as

dc(t)
dt

= 𝛼

(
c(t)

)
c(t), (3.3)

where we allow for a density-dependent growth rate 𝛼(c). In this formulation, the

temporal change of the population density goes to zero as the population goes to

zero (provided 𝛼(c) is bounded), which is a sensible choice, as naturally both birth

and death incidence rate will go to zero in this case.

Unbounded Growth: The most simple model of population dynamics results

from choosing 𝛼(c) = 𝛼. For positive 𝛼, this has a simple exponential function as

solution

c(t) = c(0)e𝛼t
, (3.4)

corresponding to unbounded growth. After Thomas Robert Malthus, who introduced

this model and pointed out its consequences [15], it is called the Malthusian Growth

model. Note, however, that its main idea goes back at least to Leonardo Fibonacci’s

modeling of the population dynamics of rabbits [16], who, with differential calculus

still five hundred years away, formulated it as a difference equation giving rise to the

Fibonacci sequence.

Bounded capacities: As a rule, plants and animals produce more, sometimes

much more offspring than one individuum per parent. If conditions are favorable, a

large part of those survives to fertility, corresponding to potentially large population

growth rates. However, at higher population densities the survival rates will decrease,

due to factors such as competition for limited feeding or sunlight resources, higher

incidences of diseases, or increased predation (for an explicit treatment of this effect

see below). In ecological systems in equilibrium, it is indeed necessarily the case

that the average number of surviving offspring is just one individuum per parent, or

a growth rate of zero. The simplest model to capture this issue is due to Verhulst

[17], who assumed a linearly decreasing growth rate

𝛼(c) = 𝛼0(1 − c∕K), (3.5)

http://dx.doi.org/10.1007/978-3-319-67798-9_2
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going to zero when the population density reaches the carrying capacity K. Accord-

ingly, the solution of the model

c(t) = c(0)K
c(0) +

(
K − c(0)

)
e−𝛼0t

, (3.6)

known as a logistic function, asymptotically approaches K (see also Fig. 16.3 and

the example given in Sect. 14.2.2 for the use of the logistic function for predicting

the spreading of innovations).

Inverse density effects: In addition to diminishing growth rates at high densities,

this can also be the case for low densities, for instance due to difficulties of finding

mating partners, if the species uses cooperative defence, hunting, or child-rearing

strategies, or if it is the preferred food for a species that can sustain high numbers

also when the species in focus diminishes, because it is not the only possible prey

of a more generalist predator. Such an effect has first been described by Allee [18]

and is therefore known as the Allee effect. The simplest corresponding expression

for the growth rate is

𝛼(c) = 𝛼0(1 − c∕K)(c − c′), (3.7)

with a parameter c′ that has the dimension of a population density. Here the sign of

c′ distinguishes two regimes: For c′ < 0, the resulting qualitative features agree with

the Verhulst model, only with decreased growth rates at small densities. This is called

the weak Allee effect. However, a positive c′ corresponds to a critical population

density below which the species would die out spontaneously. This constitutes the

strong Allee effect and has important implications: For instance, it suppresses the

establishment of colonization foci by small founder populations, as well as severely

reduces the speed of the invasion front (which will be defined below). Note that for

instance also the conversion towards the locally dominating languages, leading to a

decline of minority languages in linguistics (Chap. 18) can be seen as an example of

the Allee effect.

Explicit interactions: Finally, the explicit interaction between the densities of

different species can be considered. In the simplest case of a two-species predator-

prey system, this can lead to the Lotka-Volterra model (due to Alfred James Lotka

and Vito Volterra), where the population densities of a prey c1 and a predator c2
species are described by coupled differential equations. Specifically, the growth rate

of the prey decreases linearly with the predator concentration, while the predators’

growth rate grows linearly with the prey concentration [19, 20]. Under these condi-

tions, the ecological system performs an oscillatory motion through two-dimensional

phase space, where the predators multiply during periods of high prey populations,

leading to their decline and a subsequent decline of the predators. Under these

http://dx.doi.org/10.1007/978-3-319-67798-9_16
http://dx.doi.org/10.1007/978-3-319-67798-9_14
http://dx.doi.org/10.1007/978-3-319-67798-9_18


38 M. Leitner and I. Kühn

low-predator conditions the prey population will recover, starting the next oscilla-

tion. Of course, in actual ecosystems species typically will interact with a number

of other species, either in a predator-prey relationship or competing for the same

resources. This can give rise to very non-linear effects, for instance when a predator

species specializes on a specific prey due to their increasing numbers. Note that for

many-species ecosystems, which indeed are the typical case, simulations show that

generic model parameters lead to chaotic dynamics, and stable situations likely arise

only due to natural selection [21].

3.4.2 Reaction-Diffusion Approaches

In the case of spatially inhomogeneous population densities, such as during the colo-

nization of hitherto unoccupied areas (or, equivalently, range contractions), the clas-

sical approach is to augment the on-site dynamical term as discussed in the previous

section by a diffusive term, describing the fluxes due to concentration gradients via

second derivatives. This is treated in more detail in Chaps. 2 and 16, so we will state

here only the fact that the resulting equations of the form

𝜕c(x, t)
𝜕t

= 𝛼

(
c(x, t)

)
c(x, t) + D𝜕

2c(x, t)
𝜕x2

, (3.8)

where x is the spatial variable to account for variations in the population density, have

solutions that at long times take the form of travelling fronts. Specifically, along the

direction of propagation they can be written as

c(x, t) = c∗(x − vt), (3.9)

with a constant propagation velocity v [22].

J. G. Skellam was the first to compare this model to an actual case of species

invasion: His iconic illustration of the spread of muskrats after having been imported

from Northern America and released in central Bohemia in 1905 is reproduced in

Fig. 3.2 [23]. He showed that their range grows quadratically in time, correspond-

ing to a propagation velocity of about 11 km/year. However, a closer look reveals

already in this prototypical example deficiencies of the model. Specifically, inho-

mogeneities in the landscape lead to deviations from the ideally expected circular

shapes, where for instance the hill and forest chains around Bohemia retarded the

propagation, while rivers in lower Bavaria and Saxony seem to have favored the dis-

persal of the waterbound muskrats.

http://dx.doi.org/10.1007/978-3-319-67798-9_2
http://dx.doi.org/10.1007/978-3-319-67798-9_16
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Fig. 3.2 Range populated

by muskrats as function of

time during their invasion of

central Europe drawn after

[23]. Today’s political

borders are dashed

3.5 Spatio-temporal Population Modeling: State of the Art

After briefly reviewing in the previous section how classically the spatio-temporal

dynamics of population densities have been modeled by (partial) differential equa-

tions, here we will indicate some directions of recent improvements. Interestingly,

these modern developments can be traced back to some of the differences between

the physical and the ecological cases of dispersal as already discussed in Sect. 3.2.

Specifically, in the following we consider finite lengths of displacement, spatial inho-

mogeneities, and stochasticity.

3.5.1 Spread Kernels

In Chap. 2 it was derived in some detail how the probability density of a particle

performing a random walk is given by a Gaussian distribution of increasing width.

Mathematically, this result is just the central limit theorem, which in its simplest

form states that the probability density after a large number of uncorrelated dis-

placements, drawn from some fixed but arbitrary distribution with finite variance,

converges towards a Gaussian distribution. However, if those preconditions are not

fulfilled, specifically if the macroscopic displacement is not the sum of a large num-

ber of uncorrelated microscopic displacements, there is no reason for the probability

densities to have Gaussian shapes.

This is often the case in ecology (and also in the case of human mobility, as con-

sidered by way of equivalent models in Chaps. 16 and 18): When animals move, they

normally do so in order to cover distance to, for instance, find genetically different

mates or new feeding grounds as opposed to movement for its own sake (cp. sharks

http://dx.doi.org/10.1007/978-3-319-67798-9_2
http://dx.doi.org/10.1007/978-3-319-67798-9_16
http://dx.doi.org/10.1007/978-3-319-67798-9_18
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swimming to keep up the waterflow through their gills). Of course, with respect to

this goal it is most efficient to move in a straight line, for which even the least devel-

oped animal lifeforms have evolved abilities. For example, nocturnal insects navigate

by bright lights and some motile bacteria can move along chemical gradients (chemo-

taxis). In other words, their movement is correlated over time. A detailed discussion

of these effects and their consequences for the statistical properties of animal motion

is given in Chap. 4.

The main dispersal modes of plant seeds are either within or attached to animals,

in which case the discussion above applies, or by way of wind or water, which again

corresponds to correlated movement. Also dispersal mediated by human activities,

be it intentionally or unintentionally, e.g. as load in shipments (for quite a number

of species this is the dominating mode of long-distance transport [24, 25]) is clearly

not composed of many small independent displacements.

To account for this complication on the level of the reaction-diffusion approaches,

one can replace the partial differential equation (3.8) by an integro-differential equa-

tion

𝜕c(x, t)
𝜕t

= 𝛼

(
c(x, t)

)
c(x, t) + ∫ dyK(y)c(x − y, t) − c(x, t)∫ dyK(y), (3.10)

where K(y) is the probability density per unit time that an individual is translocated

by y. Note that the last term due to the outflux of individuals can formally also be

subsumed in the reaction term. Mathematically, in this equation K(y) has the role of

a convolution kernel. It is therefore called the spread kernel, also in frameworks that

go beyond deterministic reaction-diffusion approaches as will be discussed below.

Due to the correlated movement as discussed above, in ecology spread kernels

typically have positive excess kurtosis, that means, for a given standard deviation

the distribution has more weight in the extreme values than a normal (or Gaussian)

distribution. Such kernels are called leptokurtic or fat-tailed. Specifically the Lévy

flight hypothesis would constitute a microscopic motivation for fat-tailed kernels, but

its validity has recently been questioned (see Chap. 4). A different scenario result-

ing in non-Gaussian kernels has been proposed to explain for instance the spread

of the horse chestnut leafminer moth over Germany [26, 27], with the spread ker-

nel being composed of a small-scale contribution corresponding to dispersal of the

airborne individuals by wind and a large-scale contribution due to human-mediated

transportation.

3.5.2 Stochastic Dynamics

The (partial) differential equations as used in Sect. 3.4 imply a deterministic evo-

lution of the population densities. Of course, when fitting the resulting models to

observed data the agreement will not be perfect, but in a deterministic framework

these deviations are understood to be due to fluctuations around some inherent “true”

http://dx.doi.org/10.1007/978-3-319-67798-9_4
http://dx.doi.org/10.1007/978-3-319-67798-9_4
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value, which is indeed assumed to strictly follow the governing equations. Note that

this is always the implicit assumption when fitting curves to time-resolved data.

This has to be contrasted with a stochastic approach. Here one does not assume

the observable data to be noisy representatives of hidden quantities that evolve deter-

ministically, rather one admits stochasticity as an inherent property of the process.

What distinguishes between the validity of either point of view are the scales of the

problem: If many individuals participate and displacement happens only over small

distances, a deterministic description via densities can be adequate. However, when

the consequences of individual stochastic events are visible on the scales of interest,

a stochastic treatment is needed. Note that even for the invasion of central Europe by

the muskrat as considered above a deterministic treatment is only appropriate for the

later stages: The initial release of the five individuals could equally have happened

at a different location or decades earlier or later, shifting the subsequent process in

space and time. Trying to model also this initial event by deterministic equations

would obviously not afford much insight into the process.

3.5.2.1 Stochastic Model Formulations

To fill these concepts with life, we will now first formulate the general model and

then consider a specific example: Let 𝜎(., t) be the state of the system at time t,
specifically let 𝜎(x, t) be the occupancy of site x at time t. This “occupancy” shall

include all information that is relevant for the considered problem, such as population

densities for the considered species, optionally resolved with respect to additional

state variables such as age. The model is then represented by a probability density

P
(
𝜎(., t + 1)|𝜎(., t)

)
. (3.11)

In words, this expression corresponds to the probability for a system in state 𝜎(., t)
to evolve to the state 𝜎(., t + 1) during one timestep. Note that the arguments to P
are functions varying over space, not their point-wise evaluations. This makes the

occupancy at some specific site x depend not only on the previous occupancy at

this site, but also on all other sites. For simplicity, time is here discretized, which

can be either the natural choice, for instance for annual plants, or an approximation

to a temporally continuous evolution. Also the spatial variable x can be continuous

or discretized, optionally with an explicit dependence of the transition probabili-

ties on x. It can also be adequate to discretize space non-regularly, for instance in

the so-called metapopulation models, where the study range decomposes naturally

into patches within which movement for the species is easy, while dispersal between

patches happens only rarely [28], e.g. for an aquatic species in disconnected water

bodies [29] or grassland butterflies in forest-dominated regions [30]. Note finally

that the random process defined by Eq. (3.11) is a Markov process, which means the
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transition probabilities to the next state depend only on the present state and not on

earlier states. This, however, is no restriction, as any dependence on earlier states can

be captured by extending the considered state variables to explicitly include those

earlier states.

The degrees of freedom in modeling are on the one hand qualitative features,

i.e. the mathematical form of the expressions, and on the other hand quantitative

parameters.

For an exemplary realization of this general setting we consider a model of the

spread of the North American weed Ambrosia artemisiifolia (common ragweed)

across central Europe [31, 32]: Here space is discretized along lines of constant lati-

tude or longitude into a regular grid, time is discretized into annual steps, the system

state 𝜎 is the simplest conceivable, namely a given cell x at time t is either occupied

(𝜎(x, t) = 1) or unoccupied (𝜎(x, t) = 0), and only cell transitions from unoccupied

to occupied are considered, which furthermore are independent of each other. The

transition probability density P depends on two auxiliary functions, which are the

seed influx I(x, t) in a given year t into cell x, and the spatially varying habitat suit-

ability function H(x), which can be seen as the probability that incoming seeds find

favorable conditions and establish a stable population. The seed influx follows from

the current occupancies via the spread kernel S(y). All these functions depend on the

model parameter vector 𝛽, which describes the width and area of the spread kernel

as well as the quantitative effect of, for instance, mean precipitation, temperature or

land use on the habitat suitability.

Specifically, the seed influx has the form

I
𝛽
(x, t) =

∑

y
S
𝛽
(y)𝜎(x + y, t), (3.12)

giving a probability for a given unoccupied cell x to stay unoccupied during one

timestep of

p0→0
𝛽

(x, t; 𝜎) = exp
(
−H

𝛽
(x)I

𝛽
(x, t)

)
(3.13)

and to become occupied of

p0→1
𝛽

(x, t; 𝜎) = 1 − p0→0
𝛽

(x, t; 𝜎). (3.14)

This corresponds to transition probabilities

P
𝛽

(
𝜎(., t + 1)|𝜎(., t)

)
=
∏

x∈𝛬t+1⧵𝛬t

p0→1
𝛽

(x, t; 𝜎)
∏

x∉𝛬t+1

p0→0
𝛽

(x, t; 𝜎), (3.15)

where 𝛬t = {x ∶ 𝜎(x, t) = 1} is the set of all cells occupied at step t.
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3.5.2.2 Stochastic Simulations

Given a model and an initial state, a representative sequence of future states can

be generated by iteratively drawing random occupancies according to the probabil-

ity density defined by Eq. (3.11). For instance, this can be used to assess how the

system will evolve in the long term or to test the effect that specific variations of

anthropogenic parameters have [32].

As was already briefly treated in Chap. 2, performing a stochastic simulation for

a model as the one considered above is conceptually quite easy, with Fig. 2.8 as an

informative example of the outcome of such investigations. This is due to the fact that

the probabilities for any cell becoming occupied at a given timestep are independent

of whether any other cell becomes occupied at the same timestep. Therefore, in this

case the problem of finding a new high-dimensional occupancy conforming to the

general probability density defined by Eq. (3.11) separates into finding a number

of Bernoulli random variables. Numerically, this is done by computing a pseudo-

random number rx with uniform distribution in the range [0, 1] for any unoccupied

cell x and comparing it to p0→1
𝛽

(x, t; 𝜎). If rx is smaller than this probability, 𝜎(x, t+1)
is set to occupied, otherwise it is left unoccupied.

3.5.2.3 Statistical Inference

In phenomenological models, one typically has observational data about the process

and some idea about the qualitative form of the governing stochastic equations, and

one wants to deduce information about the parameters of the model. This problem is

called statistical inference, which conceptually can be done either in the frequentist

or Bayesian framework. These two schools differ in the way the notion of probability

is interpreted, which with respect to statistical inference leads to two ways the model

parameters are treated.

Specifically, in the frequentist approach the observation 𝜎 is considered as a ran-

dom variable whose distribution is determined by an unknown but deterministic

parameter vector 𝛽. The value of this unknown parameter vector is to be estimated

in some way, with the most popular method being Maximum Likelihood Estimation

(MLE). On the other hand, in the Bayesian approach one considers also the parame-

ter vector 𝛽 as a random variable. Here the goal is to derive a probability density for

this parameter vector.

Consider a stochastic model determined by some parameter vector 𝛽. The proba-

bility for the random process to give some specific outcome 𝜎 is called the likelihood

of 𝜎 with respect to 𝛽. In our setting we have

P(𝜎|𝛽) =
∏

t
P
𝛽

(
𝜎(., t + 1)|𝜎(., t)

)
. (3.16)

The Maximum Likelihood estimator of 𝛽 is then the value that maximizes P(𝜎|𝛽) for

the fixed observed occupancy 𝜎, which is an intuitive choice and numerically often

http://dx.doi.org/10.1007/978-3-319-67798-9_2
http://dx.doi.org/10.1007/978-3-319-67798-9_2
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quite easy. For instance, the common technique of least-squares fitting of curves to

data points is justified as maximum-likelihood estimation of the curve parameters

assuming Gaussian errors on the data points.

To see the potential issues with this approach, consider the problem of estimat-

ing the frequency of some rare event. If the distinct events are independent, their

number within some observation interval is given by a Poissonian distribution. If it

should now be the case that in a given experiment not a single event is observed, the

Maximum Likelihood estimator of the Poissonian distribution’s parameter would be

equal to zero. However, this is not meaningful as it was known beforehand that the

considered event has some finite probability.

The Bayesian framework provides a consistent way to include such prior knowl-

edge. Here one assumes the model parameters 𝛽 themselves to be realizations of a

random variable, which allows to incorporate any information about the parameters

via their associated probability densities. Specifically, any information on the para-

meters available before analyzing the experiment, such as the results of previous

experiments, is conceptually encoded in the prior probability density P
prior

(𝛽). This

prior information is updated by the results of the considered random experiment (i.e.

by the observation 𝜎) according to Bayes’ formula

P(𝛽|𝜎) =
P

prior
(𝛽)P(𝜎|𝛽)
P(𝜎)

. (3.17)

This quantity P(𝛽|𝜎), that means the probability density of 𝛽 given the outcome of

the random experiment being the observation 𝜎, is called the posterior distribution.

Turning back to the didactical example of estimating the frequency of a rare event,

we see that in the Bayesian approach an observation of zero events would only shift

the posterior distribution to smaller values compared to the prior distribution (as the

likelihood in this case is an exponentially decaying function), which is much more

in line with common sense.

In the case of the above-mentioned study of Ambrosia artemisiifolia’s invasion of

Europe [31] the model parameter vector 𝛽 was determined by MLE. In this case MLE

was preferred over Bayesian inference as the latter method’s advantages are only sig-

nificant when the information content of the observation is low, so that the posterior

distribution is strongly influenced by the prior distribution. For high information

content the posterior distribution will be very narrow and concentrated around the

maximum in the likelihood, rendering it equivalent to the MLE result. On the other

hand, Bayesian inference is typically computationally much more expensive: In any

non-trivial case, the likelihood and in turn the posterior distribution are complicated

functions, necessitating them to be sampled for further interpretation, for instance by

the Metropolis-Hastings algorithm [33, 34]. In contrast, for MLE only its maximum

has to be found, which for the case reported above takes a few seconds.
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3.6 Conclusions

Historically, the study of processes of spread and dispersal has often been initiated

from the point of view of the life sciences such as ecology and biology. However, over

the course of the last century it was foremost in mathematics and physics under the

subjects of random walk and diffusion, respectively, that the theoretical groundworks

have been laid and experimentally verified in a quantitative manner. Only within the

last decades these concepts have been transferred back to ecology for describing

processes of species dispersal, which are of increasing relevance.

It is the aim of this book to bring together scientists from all disciplines where

such issues are relevant, and to promote interdisciplinary transfer of ideas and con-

cepts. The chapter at hand was written in this spirit, with the intention to present the

essential aspects of dispersal in ecology, the arising problems, and the methods the

community has come up with to solve them.

We have started with a point-by-point discussion of generic features of dispersal

processes in ecology and compared them to the physical case. Our main message

was that quite generally the ecological case is more complex, so that it typically

cannot be described by simple, linear equations, let alone that explicit solutions to

them could be given. We then have developed ecological models in rising degrees of

sophistication, considering either only spatial variations, only temporal variations, or

the full spatio-temporal problem. Further, we have treated the problem of statistical

inference in some detail, as due to the scarcity of dispersal events and spatial and

temporal inhomogeneities the observable data are related to the model parameters

only in a stochastic sense.

We want to close with a final comment on the timely relevance of ecological

spread processes. A priori, these processes have been happening naturally since the

dawn of time, as we have argued in the introduction, and therefore are neither good

nor bad. However, the time scales of dispersal processes have accelerated drastically

during the Holocene, both due to direct human impact such as intercontinental trans-

port as well as promoted indirectly by, e.g. land use or climate change. Formerly, dis-

persal events were so rare that evolutionary species differentiation was able to keep

up and maintain a rich regional variation within and among ecosystems. Today, the

situation is different: perhaps contrary to intuition, the introduction of alien species

can lead to a loss of species diversity. Most of the introduced species will not be

able to establish viable populations, but those that are able to can easily have much

higher reproduction successes than established species, for instance because they

have no natural enemies present, and thereby disrupt the whole native ecosystem. It

is true that, if only species transport were increased under constant environmental

conditions, adaptation and the introduction of additional species over time would

again lead to differentiated ecosystems. However, the regional variation would still

be lost [35]. In physical parlance, this corresponds to a loss of entropy, which, as the

physicists know, cannot be recovered without investment of effort.
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Chapter 4
Search for Food of Birds, Fish and Insects

Rainer Klages

4.1 Introduction

When you are out in a forest searching for mushrooms you wish to fill your basket

with these delicacies as quickly as possible. But how do you search efficiently for

them if you have no clue where they grow (Fig. 4.1)? The answer to this question is

not only relevant for finding mushrooms [1, 2]. It also helps to understand how white

blood cells kill efficiently intruding pathogens [3], how monkeys search for food in

a tropical forest [4], and how to optimize the hunt for submarines [5].

In society the problem to develop efficient search strategies belongs to the realm

of operations research, the mathematical optimization of organizational problems

in order to aid human decision-making [6]. Examples are the search for landmines,

castaways or victims of avalanches. Over the past two decades search research [5]

attracted particular attention within the fields of ecology and biology. The new disci-

pline of movement ecology [7, 8] studies foraging strategies of biological organisms:

Prominent examples are wandering albatrosses searching for food [9–11], marine

predators diving for prey [12, 13], and bees collecting nectar [14, 15]. Within this

context the Lévy Flight Hypothesis (LFH) became especially popular: It predicts

that under certain mathematical conditions on the type of food sources long Lévy
flights [16] minimize the search time [9, 10, 17]. This implies that for a bumble-

bee searching for rare flowers the flight lengths should be distributed according to

a power law. Remarkably, the prediction by the LFH is completely different from

the paradigm put forward by Karl Pearson more than a century ago [18], who pro-

posed to model the movements of biological organisms by simple random walks as
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Fig. 4.1 Illustration of a

typical search problem [1,

2]: a human searcher

endeavours to find

mushrooms that are

randomly distributed in a

certain area. It would help to

have an optimal search
strategy that enables one to

find as many mushrooms as

possible by minimizing the

search time

introduced in Chap. 2 of this book. His suggestion entails that the movement lengths

are distributed exponentially according to a Gaussian distribution, see Eq. (2.10) in

this section. Lévy and Gaussian processes represent fundamental but different classes

of diffusive spreading. Both are justified by a rigorous mathematical underpinning.

More than 60 years ago Gnedenko and Kolmogorov proved mathematically that

specific types of power laws, called Lévy stable distributions [19, 20], obey a cen-

tral limit theorem. Their result generalizes the conventional central limit theorem

for Gaussian distributions, which explains why Brownian motion is observed in a

huge variety of physical phenomena. But exponential tails decay faster than power

laws, which implies that for Lévy-distributed flight lengths there is a larger proba-

bility to yield long flights than for flight lengths obeying Gaussian statistics. Conse-

quently, Lévy flights should be better suited to detect sparsely, randomly distributed

targets than Brownian motion, which in turn should outperform Lévy motion when

the targets are dense. This is the basic idea underlying the LFH. Empirical tests of it,

however, are hotly debated [11, 21–24]: Not only are there problems with a sound

statistical analysis of experimental data sets when checking for power laws; their

biological interpretation is also often unclear: For example, for monkeys living in a

tropical forest who feed on specific types of fruit it is not clear whether the observed

Lévy flights of the monkeys are due to the distribution of the trees on which their

preferred fruit grows, or whether the monkeys’ Lévy motion represents an evolu-

tionary adapted optimal search strategy helping them to survive [4]. Theoretically

the LFH was motivated by random walk models with Lévy-distributed step lengths

that were solved in computer simulations [10]. A rigorous mathematical proof of the

LFH remains elusive.

This chapter introduces to the following fundamental question cross-linking the

fields of ecology, biology, physics and mathematics: Can search for food by biolog-
ical organisms be understood by mathematical modeling? [8, 17, 20, 25] It consists

of three main parts: Sect. 4.2 reviews the LFH. Section 4.3 outlines the controversial

discussion about its verification by including basics about the theory of Lévy motion.

Section 4.4 illustrates the need to go beyond the LFH by elaborating on bumblebee

flights. We summarize our discussion in Sect. 4.5.

http://dx.doi.org/10.1007/978-3-319-67798-9_2
http://dx.doi.org/10.1007/978-3-319-67798-9_2
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4.2 Lévy Motion and the Lévy Flight Hypothesis

4.2.1 Lévy Flights of Wandering Albatrosses

In 1996 Gandhimohan Viswanathan and collaborators published a pioneering article

in the journal Nature [9]. For albatrosses foraging in the South Atlantic the flight

times were recorded by putting sensors at their feet. The sensors got wet when the

birds were diving for food, see the inset of Fig. 4.2. The duration of a flight was

thus defined by the period of time when a sensor remained dry, terminated by a dive

for catching food. The main part of Fig. 4.2 shows a histogram of the flight time

intervals of some albatrosses. The straight line represents a Lévy stable distribution

proportional to ∼ t−𝜇 with an exponent of 𝜇 = 2. By assuming that the albatrosses

move with an on average constant speed one can associate these flight times with a

respective power law distribution of flight lengths. This suggests that the albatrosses

were searching for food by performing Lévy flights.

For more than a decade albatrosses were considered to be the most prominent

example of an animal performing Lévy flights. This work triggered a large number

of related studies suggesting that many other animals like deer, bumblebees, spider

monkeys and fishes also perform Lévy motion [4, 10, 12, 13, 17].

ti

Fig. 4.2 Histogram where ‘scaled frequencies’ holds for the number of flight time intervals of

length ti (in hours) normalized by their respective bin widths. The data is for five albatrosses during

19 foraging bouts (double-logarithmic scale). Blue open circles show the data from Ref. [9]. The

straight line indicates a power law ∼ t−𝜇 with exponent 𝜇 = 2. The red filled circles are adjusted

flight durations using the same data set by eliminating times that the birds spent on an island [11].

The histogram is reprinted by permission from Macmillan Publishers Ltd: Nature Ref. [11], copy-
right 2007. The inset shows an albatross catching food; reprinted by permission from Macmillan
Publishers Ltd: Nature Ref. [5], copyright 2006
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4.2.2 The Lévy Flight Hypothesis

In 1999 the group around Gandhimohan Viswanathan published another impor-

tant article in Nature [10]. Here the approach was more theoretical by posing, and

addressing, the following general question:

“What is the best statistical strategy to adapt in order to search efficiently for

randomly located objects?”

To answer this question they introduced a special type of what is called a Lévy
walk [20] in two dimensions and studied it both by computer simulations and by

analytical approximations. Their model consists of point targets randomly distrib-

uted in a plane and a (point) forager moving with constant speed. If the forager spots

a target within a pre-defined finite vision distance, it moves to the target directly.

Otherwise the forager chooses a direction at random with a jump length 𝓁 randomly

drawn from a Lévy stable distribution ∼ 𝓁−𝜇
, 1 ≤ 𝜇 ≤ 3. While the forager is mov-

ing it constantly looks out for targets within the given vision distance. If no target is

detected, the forager stops after the given distance and repeats the process.

Although these rules look simple enough, there are some subtleties that exemplify

the problem of mathematically modeling a biological foraging problem:

1. Here we have chosen what is called a cruise forager, i.e., a forager that senses

targets whenever it is moving. In contrast, a saltaltory forager would not sense

a target while moving. It needs to land close to a target within a given radius of

perception in order to find it [26].

2. For a cruise forager a jump is terminated when it hits a target, hence this model

defines a truncated Lévy walk [13].

3. One has to decide whether a forager eliminates targets when it finds them or not,

i.e., whether it performs destructive or non-destructive search [10]. As we will

see below, whether a monkey eats a fruit thus effectively eliminating it, at least

for a long time, or whether a bee collects nectar from a flower that replenishes

quickly defines mathematically different foraging problems.

4. We have not yet said anything about the density of the targets.

5. We have deliberately assumed that the targets are immobile, which may not

always be realistic for a biological foraging problem (e.g., marine predators [12,

13]).

6. If we ask about the best strategy to search efficiently, how do we define optimal-
ity?

These few points illustrate the difficulty to relate abstract mathematical random

walk models to biological foraging reality. Interestingly, the motion generated by

these models often sensitively depends on right such details: In Ref. [10] forag-

ing efficiency was defined as the ratio of the number of targets found divided by

the total distance traveled by a forager. Different definitions are possible, depend on

the type of forager and may yield different results [26]. The foraging efficiency was

then computed in Ref. [10] under variation of the exponent 𝜇 of the above Lévy
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Fig. 4.3 Brownian motion (left) versus Lévy motion (right) in the plane, illustrated by typical

trajectories

distribution generating the jump length. The results led to what was coined the Lévy
Flight Hypothesis (LFH), which we formulate as follows:

Lévy motion provides an optimal search strategy for sparse, randomly distrib-
uted, immobile, revisitable targets in unbounded domains.

Intuitively this result can be understood as follows: Fig. 4.3 (left) displays a typi-

cal trajectory of a Brownian walker. One can see that this dynamics is ‘more local-

ized’ while Lévy motion shown in Fig. 4.3 (right) depicts clusters interrupted by long

jumps. It thus makes sense that Brownian motion is better suited to find targets that

are densely distributed while Lévy motion outperforms Brownian motion when tar-

gets are sparse, since it avoids oversampling due to long jumps. The reason why the

targets need to be revisitable is that the exponent 𝜇 of the Lévy distribution depends

on whether the search is destructive or not, cf. the third point on the list of foraging

conditions above: For non-destructive foraging 𝜇 = 2 was found to be optimal while

for destructive foraging 𝜇 = 1maximized the foraging efficiency, which corresponds

to the special case of ballistic flights [20]. The reason for these different exponents is

that destructive foraging changes the distribution and the density of the targets thus

selecting a different foraging strategy to be optimal.
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4.3 Lévy or Not Lévy?

4.3.1 Revisiting Lévy Flights of Wandering Albatrosses

Several years passed before the results by Viswanathan et al. were revisited in another

Nature article led by Andrew Edwards [11]: When analyzing new, larger and more

precise data for foraging albatrosses the old results of Ref. [9] could not be recovered,

see Fig. 1 in Ref. [11]. This led the researchers to reconsider the old albatross data.

A correction of these data sets yielded the result shown in Fig. 4.2 as the red filled

circles: One can see that the Lévy stable law with an exponent of 𝜇 = 2 for the flight

times is gone. Instead the data now seems to be fit best with a gamma distribution.

What happened is explained in Ref. [21]: For all measurements the sensors were

put onto the feet of the albatrosses when the birds were sitting on an island, and at this

point the measurement process was started. However, to this time the sensors were

dry; and in Ref. [9] these times were interpreted as Lévy flights. The same applied to

the end of a foraging bout when the birds were back on the island. Subtracting these

erroneous time intervals from the data sets eliminated the Lévy flights.

However, in Ref. [27] yet new albatross data was analyzed, and the old data from

Refs. [9, 11] was again reanalyzed: This time truncated power laws were used for

the analysis, and furthermore data sets for individual birds were tested instead of

pooling together the data for all birds. In this reference it was concluded that some

individual albatross indeed do perform Lévy flights while others do not.

4.3.2 The Lévy Flight Paradigm

The debate about the LFH created a surge of publications testing it both theoreti-

cally and experimentally; see Refs. [8, 17, 20, 25] for reviews. But experimentally

it is difficult to verify the mathematical conditions on which the LFH formulated

in Sect. 4.2.2 is based. Often the LFH was thus interpreted in a much looser sense

by ignoring any mathematical assumptions in terms of what one may call the Lévy
Flight Paradigm (LFP):

Look for power laws in the probability distributions of step lengths of foraging

animals.

We illustrate virtues and pitfalls related to the LFP by data from Ref. [13] on

the diving depths of free-ranging marine predators. Impressively, in this work over

12 million movement displacements were recorded and analyzed for 14 different

species. As an example, Fig. 4.4 shows results for a blue shark: Plotted at the bottom

are probability distributions of its diving depths, called move step length frequency

distribution, where a step length is defined as the distance moved by the shark per

unit time. Included are fits to a truncated power law and to an exponential distrib-

ution. Since here Lévy distributions were used whose longest step lengths were cut

off, the fits do not consist of straight lines but are bent off, in contrast to Fig. 4.2.
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Fig. 4.4 Top: time series of the diving depth of a blue shark. The red lines split the data into

different sections (a–e), where the shark dives deep or the diving depth is more constrained. These

sections match to the shark being off-shelf or on the shelf, respectively. Bottom: double-logarithmic

plots of the move step length frequency distribution (‘rank’) as a function of the step length, which

is the vertical distance moved by the shark per unit time, with the notation (f–j) corresponding to

the primary data shown in sections (a–e). Black circles correspond to data, red lines to fits with

truncated power laws of exponent 𝜇, blue lines to exponential fits. This figure is reprinted by

permission from Macmillan Publishers Ltd: Nature Ref. [13], copyright 2010

The top of this figure depicts the corresponding time series from which the data

was extracted, split into five different sections. Each section is characterized by pro-

foundly different average diving depths. These different sections correspond to the

shark being in different regions of the ocean, i.e., either on-shelf or off-shelf. It was

argued that on-shelf, where the diving depth of the shark is very limited, the data

can be better fitted with an exponential distribution (sections f and h) while off-shelf

the data displays power-law behavior with an exponent close to two (sections g, i

and j). Figure 4.4 thus suggests a strong dependence of the foraging dynamics on the

environment in which it takes place, where the latter defines the food distribution.

Related switching behavior between power law-like Lévy and exponential Brownian

motion search strategies was reported for microzooplankton, jellyfish and mussels.

The power law matching to the data in the off-shelf regions was interpreted in

support of the LFH. However, note the periodic oscillations displayed by the time

series at the top of Fig. 4.4. Upon closer inspection they reveal a 24 h day-night cycle:

During the night the shark hovers close to the surface of the sea while over the day

it dives for food. For the move step length distributions shown in Fig. 4.4 the data

was averaged over all these periodic oscillations. But the distributions in sections g,

i and j all show a ‘wiggle’ on a finer scale. This suggests to better fit the data by

a superposition of two different distributions [14] taking into account that day and
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night define two very different phases of motion, instead of using only one function

by averaging over all times. Apart from this, one may argue that this analysis does

not test for the original LFH put forward in Ref. [9]. But this requires a bit more

knowledge about the theory of Lévy motion; we will come back to this point in

Sect. 4.3.5.

4.3.3 Two Different Lévy Flight Hypotheses

Our discussion in the previous sections suggests to distinguish between two different
LFHs:

1. The first is the ‘conventional’ one that we formulated in Sect. 4.2.2, originally

put forward in Ref. [9]: It may now be further specified as the Lévy Search
Hypothesis (LSH), because it suggests that under certain conditions Lévy flights

represent an optimal search strategy. Here optimality needs to be defined rig-

orously mathematically. This can be done in different ways given the specific

biological situation at hand that one wishes to model [26]. Typically optimal-

ity within this context aims at minimizing the search time for finding targets.

The interesting biological interpretation of the LSH is that it has been evolved

in biological organisms as an evolutionary adaptive strategy that maximizes the

success for survival. The LSH version of the LFH became most popular.

2. In parallel there is a second type of LFH, which may be called the Lévy Envi-
ronmental Hypothesis (LEH): It suggests that Lévy flights emerge from the

interaction between a forager and a food source distribution. The latter may be

scale-free thus directly inducing the Lévy flights. This is in sharp contrast to

the LSH, which suggests that under certain conditions a forager performs Lévy

flights irrespective of the actual food source distribution. Emergence of novel

patterns and dynamics due to the interaction of the single parts of a complex

system with each other, on the other hand, is at the heart of the theory of com-

plex systems. The LEH is the hypothesis that to some extent was formulated in

Ref. [9], but it became more popular rather later on [4, 12, 13].

Both the LSH and the LEH are bound together by what we called the Lévy Flight

Paradigm (LFP) in Sect. 4.3.2. The LFP extracts the formal essence from both these

different hypotheses by proposing to look for power laws in the probability distri-

butions of foraging dynamics by ignoring any conditions of validity of these two

hypotheses. Consequently, in contrast to the LSH and LEH the mathematical, physi-

cal and biological origin and meaning of power laws obtained by following the LFP

is typically not clear. On the other hand, the LFP motivated to take a fresh look at for-

aging data sets by not only testing for exponential distributions. It widened the scope

by emphasizing that one should also check for power laws in animal movement data.
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4.3.4 Intermittent Search Strategies as an Alternative
to Lévy Motion

Simple random walks as introduced in Sect. 2.1 represent examples of unimodal
types of motion if the random step lengths are sampled from only one specific distri-

bution. For example, choosing a Gaussian distribution we obtain Brownian motion

while a Lévy-stable distribution produces Lévy flights. Combining two different

types of motion like Brownian and Lévy yields bimodal motion. A simple exam-

ple is shown in Fig. 4.5: Imagine you have lost your keys at home, but you have a

vague idea where to find them. Hence, you are running straightforwardly to the loca-

tion where you expect them to be. This may be modeled as a ballistic flight during

which you quickly relocate, say, from the kitchen to the study room. However, when

you arrive in your study room you should switch to a different type of motion, which

is suitably adapted to locally search the environment. For this mode you may choose,

e.g., Brownian motion. The resulting dynamics is called intermittent [25]: It consists

of two different phases of motion mixed randomly, which in our example are ballistic

relocation events and local Brownian motion.

This type of motion can be exploited to search efficiently in the following way:

You may not bother to look for your keys while you are walking from the kitchen to

the study room. You are more interested to get from point A to point B as quickly as

possible, and while doing so your search mode is switched off. This is called a non
reactive phase in Fig. 4.5. But as you expect the keys to be in your study room, while

switching to Brownian motion therein you simultaneously switch on your scanning

abilities. This defines your local search mode called reactive in Fig. 4.5. Correspond-

ingly, for animals one may imagine that during a fast relocation event, or flight, they

are unable to detect any targets while their sensory mechanisms become active during

slow local search. This is close to what was called a saltaltory forager in Sect. 4.2.2,

but this forager did not feature any local search dynamics.

Intermittent search dynamics can be modeled by writing down a set of two

coupled equations, one that generates ballistic flights and another one that yields

Brownian motion. The coupling captures the switching between both modes.

Fig. 4.5 Illustration of an intermittent search strategy: A human searcher looks for a target (key)

by alternating between two different modes of motion. During fast, ballistic relocation phases the

searcher is not able to detect any target (non reactive). These phases are interrupted by slow phases

of Brownian motion during which a searcher is able to detect a target (reactive) [25]

http://dx.doi.org/10.1007/978-3-319-67798-9_2
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One furthermore needs to model that search is only performed during the Brownian

motion mode. By analyzing a respective ballistic-Brownian system of equations it

was found that this dynamics yields a minimum of a suitably defined search time

under parameter variation if a target is non-revisitable, i.e., it is destroyed once it is

found. Note that for targets that are non-replenishing the Lévy walks of Ref. [10] did

not yield any non-trivial optimization of the search time. Instead, they converged to

pure ballistic flights as being optimal. The LSH, in turn, only applies to revisitable,

i.e., replenishing targets. Hence intermittent motion poses no contradiction. A popu-

lar account of this result was given by Michael Shlesinger in his Nature article ‘How

to hunt a submarine?’ [5].

4.3.5 Theory of Lévy Flights in a Nutshell

We now briefly elaborate on the theory of Lévy motion. This section may be skipped

by a reader who is not so interested in theoretical foundations. We recommend

Ref. [16] for an outline of this topic from a physics point of view and Chap. 5 in

Ref. [19] for a more mathematical introduction. We start from the simple random

walk on the line introduced in Chap. 2 of this book,

xn+1 = xn + 𝓁n , (4.1)

where xn is the position of a random walker at discrete time n ∈ ℕ moving in one

dimension, and 𝓁n = xn+1 − xn defines the jump of length |𝓁n| between two posi-

tions. In Chap. 2 the special case of constant jump length |𝓁n| = 𝓁 was considered,

where the sign of the jump was randomly determined by tossing a coin with, say, plus

for heads and minus for tails. The coin was furthermore supposed to be fair in the

sense of yielding equal probabilities for heads and tails. This simple random walk

can be generalized by considering a bigger variety of jumps. Mathematically this

is modeled by drawing the random variable 𝓁n from some more general probability

distribution than featuring only probability one half for each of two outcomes. For

example, instead we could draw 𝓁n at each time step n randomly from a uniform dis-

tribution, where each jump between −L and L is equally possible given by the prob-

ability density 𝜌(𝓁n) = 1∕(2L) , −L ≤ 𝓁n ≤ L and zero otherwise. Alternatively, we

could allow arbitrarily large jumps by drawing 𝓁n from an unbounded Gaussian dis-

tribution, see Eq. (2.10) in Chap. 2 (by replacing x therein with 𝓁n and setting t con-

stant). For both generalized random walks Eq. (4.1) would still reproduce in the long

time limit the fundamental diffusive properties Eq. (4) discussed in Chap. 2, i.e., the

linear growth in time of the mean square displacement, and Eq. (2.10) in Chap. 2,

the Gaussian probability distribution for the position xn of a walker at time step n.

This follows mathematically from the conventional central limit theorem.

We now further generalize the random walk Eq. (4.1) in a more non-trivial way

by randomly drawing 𝓁n from a Lévy 𝛼-stable distribution [19],

http://dx.doi.org/10.1007/978-3-319-67798-9_2
http://dx.doi.org/10.1007/978-3-319-67798-9_2
http://dx.doi.org/10.1007/978-3-319-67798-9_2
http://dx.doi.org/10.1007/978-3-319-67798-9_2
http://dx.doi.org/10.1007/978-3-319-67798-9_2
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𝜌(𝓁n) ∼ |𝓁n|
−1−𝛼 (|𝓁n| ≫ 1) , 0 < 𝛼 < 2 , (4.2)

characterized by power law tails in the limit of large |𝓁n|. This functional form is

in sharp contrast to the exponential tails of Gaussian distributions and has impor-

tant consequences, as it violates one of the assumptions on which the conventional

central limit theorem rests. However, for the range of exponents 𝛼 stated above it

can be shown that these distributions obey a generalized central limit theorem: The

proof employs the fact that these distributions are stable, in the sense that a linear

combination of two random variables sampled independently from the same distri-

bution reproduces the very same distribution, up to some scale factors [16]. This in

turn implies that Lévy stable distributions are scale invariant and thus self-similar.

Physically one speaks of 𝓁n sampled independently and identically distributed from

Eq. (4.2) as white Lévy noise. As by definition there are no correlations between the

random variables 𝓁n the stochastic process generated by Eq. (4.1) is memoryless,

meaning at time step (n + 1) the particle has no memory where it came from at any

previous time step n. In mathematics this is called a Markov processes, and Lévy

flights belong to this important class of stochastic processes.

What we presented here is only a very rough, mathematically rather imprecise

outline of how to define an 𝛼-stable Lévy process generating Lévy flights. Especially,

the function in Eq. (4.2) is not defined for small 𝓁n, as the given power law diverges

for 𝓁n → 0. A rigorous definition of Lévy stable distributions is obtained by using

the characteristic function of this process, i.e., the Fourier transform of its probability

distribution, which is well-defined analytically. The full probability distribution can

then be generated from it [16, 19]. For 𝛼 = 2 this approach reproduces Gaussian

distributions, hence Lévy dynamics suitably generalizes Brownian motion [16, 19].

Another important property of Lévy stable distributions is that the mean squared

flight length of a Lévy walker does not exist,

⟨𝓁2
n⟩ = ∫

∞

−∞
d𝓁n 𝜌(𝓁n)𝓁2

n = ∞ . (4.3)

The above equation defines what is called the second moment of the probability

distribution 𝜌(𝓁n). Higher moments are defined analogously by ⟨𝓁k⟩ , k ∈ ℕ, and

for Lévy distributions they are also infinite. This means that in contrast to simple

random walks generating Brownian motion, see again Chap. 2, Lévy motion does

not have any characteristic length scale. However, since moments are rather easily

obtained from experimental data this poses a problem to Lévy flights as a viable

physical model to be validated by experiments.

This problem can be solved by using the very related concept of Lévy walks [20]:

These are random walks where again jumps are drawn randomly from the Lévy sta-

ble distribution Eq. (4.2). But as a penalty for long jumps the walker spends a time

tn proportional to the length of the jump to complete it, tn = v𝓁n, where the propor-

tionality factor v, typically chosen as |v| = const., defines the velocity of the Lévy

walker. This implies that both jump lengths 𝓁n and flight times tn are distributed

according to the same power law. In contrast, for the Lévy flights introduced above a

http://dx.doi.org/10.1007/978-3-319-67798-9_2
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walker makes a jump of length |𝓁n| during an integer time step of duration Δn = 1,

which implies that contrary to a Lévy walker a Lévy flyer can jump instantaneously

over arbitrarily long distances with arbitrarily large velocities.

Lévy walks belong to the broad and important class of continuous time random
walks [19, 28, 29], which further generalize ordinary random walks by allowing

a walker to move by non-integer time steps. We do not discuss all the similarities

and differences between Lévy walks and Lévy flights, see Ref. [20] for details, but

instead highlight only one important fact: While for Lévy flights the mean square

displacement ⟨x2⟩, see Eq. (1) in Chap. 2, does not exist, which follows from our

discussion above, for Lévy walks it does. This is due to the finite velocities, which

truncate the power law tails in the probability distributions for the positions of a Lévy

walker. However, in contrast to Brownian motion where it grows linearly in time as

shown in Chap. 2, see Eq. (2), for Lévy walks it grows faster than linear,

⟨x2⟩ ∼ t𝛾 (t → ∞) , (4.4)

with 𝛾 > 1. If 𝛾 ≠ 1 one speaks of anomalous diffusion [19, 28]. The case 𝛾 > 1
is called superdiffusion, since a particle diffuses faster than Brownian motion, cor-

respondingly 𝛾 < 1 refers to subdiffusion. There is a wealth of different stochastic

models exhibiting anomalous diffusion, and while superdiffusion appears to be more

common among foraging biological organisms than subdiffusion the whole spectrum

of anomalous diffusion is found in a variety of different processes in the natural sci-

ences, and even in the human world [19, 28, 30].

Often the difference between Lévy walks and flights is not quite appreciated in the

experimental literature, see, e.g., Fig. 4.4, where move step length frequency distrib-

utions were plotted. By definition a move step length x per unit time corresponds to

what we defined as a jump length 𝓁n by Eq. (4.1) above, x = 𝓁n. Hence, a truncated

power law fit ∼ x−𝜇 to the distributions plotted in Fig. 4.4 corresponds to a fit with

a truncated form of the jump length distribution Eq. (4.2) with exponent 𝜇 = 1 + 𝛼

testing for truncated Lévy flights [20]. The truncation cures the problem of infi-

nite moments exhibited by random walks based on ordinary Lévy flights mentioned

above. However, this analysis does not test the LFH put forward in Ref. [10], which

was derived from Lévy walks. But checking for Lévy walks requires an entirely

different data analysis [3, 20].

4.4 Beyond the Lévy Flight Hypothesis: Foraging
Bumblebees

The LFH and its variants illustrated the problem to which extent biologically rele-

vant search strategies may be identified by mathematical modeling. What we then

formulated as the LFP in Sect. 4.3.2 motivated to generally look for power laws in

the probability distributions of step lengths of foraging animals. Inspired by the long

http://dx.doi.org/10.1007/978-3-319-67798-9_2
http://dx.doi.org/10.1007/978-3-319-67798-9_2
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debate about the different functional forms of move step lengths probability distrib-

utions, and by further diluting the LFP, an even weaker guiding principle would be

to assume that the foraging dynamics of biological organisms can be understood by

analyzing such probability distributions alone. In the following we discuss an exper-

iment, and its theoretical analysis, which illustrate that one may miss crucial infor-

mation by studying only probability distributions. In that respect, this last section

provides a look beyond the LFH that focuses on such distributions.

4.4.1 Bumblebees Foraging Under Predation Risk

In Ref. [31] Thomas Ings and Lars Chittka reported a laboratory experiment in which

environmental foraging conditions were varied in a fully controlled manner. The

question they addressed with this experiment was whether changes of environmental

conditions, in this case exposing bumblebees to predation threat or not, led to changes

in their foraging dynamics. This question was answered by a statistical analysis of

the bumblebee flights recorded in this experiment on both spatial and temporal scales

[14].

The experiment is sketched in Fig. 4.6: Bumblebees (Bombus terrestris) were fly-

ing in a cubic arena of ≈75 cm side length by foraging on a 4× 4 vertical grid of arti-

ficial yellow flowers on one wall. The 3D flight trajectories of 30 bumblebees, tested

sequentially and individually, were tracked by two high frame rate cameras. On the

landing platform of each flower nectar was given to the bumblebees and replenished

Fig. 4.6 Illustration of a laboratory experiment investigating the dynamics of bumblebees foraging

under predation risk: a Sketch of the cubic foraging arena together with part of the flight trajectory

of a single bumblebee. The bumblebees forage on a grid of artificial flowers on one side of the box.

While being on the landing platforms, they have access to nectar. All flowers can be equipped with

spider models and trapping mechanisms simulating predation attempts as shown in (b), (c) [14, 31]
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after consumption. To analyze differences in the foraging behavior of the bumble-

bees under threat of predation, artificial spiders were introduced. The experiment

was staged into several different phases of which, however, only the following three

are relevant to our analysis:

1. spider-free foraging

2. foraging under predation risk

3. a memory test one day later

Before and directly after stage 2 the bumblebees were trained to forage in the pres-

ence of artificial spiders, which were randomly placed on 25% of the flowers. A spi-

der was emulated by a spider model on the flower and a trapping mechanism, which

briefly held the bumblebee to simulate a predation attempt. In stages 2 and 3 the spi-

der models were present but the traps were inactive in order to analyze the influence

of previous experience with predation risk on the bumblebees’ flight dynamics; see

Ref. [31] for full details of the experimental setup and staging.

It is important to observe that neither the LSH nor the LEH can be tested by this

experiment, as the flight arena is too small: The bumblebees always sense the walls

and may adjust their flight behavior accordingly. However, there is a cross-link to the

LEH in that this experiment studies the interaction of a forager with the environment,

and its consequences for the dynamics of the forager, in a very controlled way. The

weaker guiding principle derived from the LFP that we discussed above furthermore

suggests that the main information to understand the foraging dynamics may be con-

tained in the probability distributions of flight step lengths only. On this basis one

may naively expect to see different step lengths probability distributions emerging

by changing the environmental conditions, which here is the predation risk.

4.4.2 Velocity Distributions Versus Velocity Correlations:
Experimental Results

Figure 4.7 shows a typical probability distribution of the horizontal velocities par-

allel to the flower wall (cf. the y-direction in Fig. 4.6a) for a single bumblebee. This

distribution is in analogy to the move step length frequency distributions of the shark

shown in Fig. 4.4, which also represent velocity distributions if the depicted step

lengths are divided by the corresponding constant time intervals of their measure-

ments as discussed in Sect. 4.3.5. The distribution of bumblebee flights per unit time

is characterized by a peak at low velocities. Only a power law and a Gaussian dis-

tribution can immediately be ruled out by visual inspection as matching functional

forms. However, a mixture of two Gaussian distributions and an exponential function

appear to be equally possible. Maximum likelihood fits supplemented by respective

information criteria yielded the former as the most likely functional form match-

ing the data. This result can be understood biologically as representing two different

flight modes near a flower versus far away from it, which is confirmed by spatially

separated data analysis [14]. That the bumblebee switches to a specific distribution



4 Search for Food of Birds, Fish and Insects 63

Fig. 4.7 Semi-logarithmic

plot of the distribution of

velocities vy parallel to the

y-axis in Fig. 4.6a (black

crosses) for a single

bumblebee in the spider-free

stage 1. The different lines

represent maximum

likelihood fits with a

Gaussian mixture (red line),

exponential (blue dotted),

power law (green dashed),

and single Gaussian

distribution (violet dotted)

[14]
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of lower velocities when approaching a flower reflects a spatially adapted flight mode

to accessing the food sources. As a result, here we encounter another version of inter-

mittent motion: In contrast to the temporal switching between different flight modes

discussed in Sect. 4.3.4 this one is due to switching in different regions of space.

Surprisingly, when extracting the velocity distributions of single bumblebees at

the three different stages of the experiment and comparing their best fits with each

other, qualitatively and quantitatively no differences could be found in these distri-

butions between the spider-free stage and the stages where artificial spider models

were present [14]. This means that the bumblebees fly with the very same statistical

distribution of velocities irrespective of whether predators are present or not. The

answer about possible changes in the bumblebee flights due to changes in the envi-

ronmental conditions is thus not given by analyzing the probability distributions of

move step lengths, as one may infer from our diluted LFP guiding principle. We will

now see that it is provided by examining the correlations of horizontal velocities vy(t)
parallel to the wall for all bumblebee flights. They can be measured by the velocity
autocorrelation function

vac
y (𝜏) =

⟨(vy(t) − 𝜇)(vy(t + 𝜏) − 𝜇)⟩
𝜎2 . (4.5)

Here 𝜇 and 𝜎
2

denote the mean and the variance of the corresponding velocity dis-

tribution of vy, respectively, and the angular brackets define an average over all bum-

blebees and over time. This quantity is a special case of what is called a covariance
in statistics. Note that velocity correlations are intimately related to the mean square

displacement introduced in Chap. 2 of this book: While the above equation defines

velocity correlations that are normalized by subtracting the mean and dividing by

the variance, unnormalized velocity correlations emerge straightforwardly from the

right hand side of Eq. (2.1) in Chap. 2 by rewriting it as products of velocities. This

yields the (Taylor-)Green-Kubo formula expressing the mean square displacement

exactly in terms of velocity correlations [32]. Note that the velocity autocorrelation

http://dx.doi.org/10.1007/978-3-319-67798-9_2
http://dx.doi.org/10.1007/978-3-319-67798-9_2
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Fig. 4.8 Velocity autocorrelation function Eq. (4.5) for bumblebee velocities vy parallel to the

wall at three different stages of the experiment shown in Fig. 4.6: a Experimental results for stage

1 without spiders (red), 2 under predation threat (green), and 3 under threat a day after the last

encounter with the spiders (blue). The data show the effect of the presence of spiders on the bum-

blebee flights. The inset presents the resampled autocorrelation for the spider-free stage in the region

where the correlation differs from the stages with spider models, which confirms that the positive

autocorrelations are not a numerical artifact. b Theoretical results for the same quantity obtained

from numerically solving the Langevin equation (4.6) by switching off (red triangles, upper line)/on

(green circles, lower line) a repulsive force modeling the interaction of a bumblebee with a spider.

These results qualitatively reproduce the experimental findings in (a)

function is defined by an average over the product between the initial velocity at time

𝜏 = 0 and the velocity at time lag 𝜏 along a trajectory: By definition it is maximal

and normalized to one at 𝜏 = 0, because the initial velocity is maximally correlated

with itself. It will decay to zero if on average all velocities at time 𝜏 are randomly dis-

tributed with respect to the initial velocities. Physically this quantity thus measures

the correlation decay in the dynamics over time 𝜏 by giving an indication to which

extent a dynamics loses memory. For example, for a simple random walk as defined

in Chap. 2 and by Eq. (4.1) in our section the velocity correlations would immedi-

ately jump to zero from 𝜏 = 0 to 𝜏 ≠ 0, which reflects that these random walks are

completely memory-free. This property was used in Chap. 2 to derive Eq. (2.2) from

Eq. (2.1) by canceling all cross-correlation terms.

Figure 4.8a shows the bumblebee velocity autocorrelations defined by Eq. (4.5)

for all three stages of the experiment. While for the spider-free stage the correla-

tions remain positive for rather long times, in the presence of spiders they quickly

become negative. This means that the velocities are on average anti-parallel to each

other, or anti-correlated. In terms of flights, when predators are not present the bum-

blebees thus fly on average more often in the same direction for short times while

in the presence of predators on average they often reverse their flight directions for

shorter times. This result can be biologically understood as reflecting a more care-

ful search under predation threat: When no predators are present, the bumblebees

forage with more or less direct flights from flower to flower. However, under threat

the bumblebees change their direction more often in their search for food sources,

rejecting flowers with spiders. Mathematically this means that the distributions of

http://dx.doi.org/10.1007/978-3-319-67798-9_2
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velocities remain the same, irrespective of whether predators are present or not, while

the topology, i.e., the shape of the bumblebee trajectories changes profoundly being

on average more ‘curved’.

In order to theoretically reproduce these changes we model the dynamics of vy
by a Langevin equation [33]. It may be called Newton’s Law of stochastic physics,

as it is based on Newton’s Second Law: F = m ⋅ a, where m is the mass of a tracer

particle in a fluid moving with acceleration a = d2x∕dt2 at position x(t) (for sake of

simplicity we restrict ourselves to one dimension). To model the interaction of the

tracer particle with the surrounding fluid, the force F on the left hand side is written

as a sum of two different forces, F = FS + Fb: a friction term FS = −𝜂v = −𝜂 dx∕dt
with Stokes friction coefficient 𝜂, which models the damping by the surrounding

fluid; and another term Fb that mimicks the microscopic collisions of the tracer par-

ticle with the surrounding fluid particles, which are supposed to be much smaller

than the tracer particle. The latter interaction is modeled by a stochastic force 𝜉(t) of

the same type as we have described in Sect. 4.3.5 for which here one takes Gaussian

white noise. Interestingly, the stochastic Langevin equation can be derived from first

principles starting from Newton’s microscopic equations of motion for the full deter-

ministic dynamical system of a tracer particle interacting with a fluid consisting of

many particles [32].

At first view it may look strange to apply such an equation for modeling the motion

of a biological organism. However, for a bumblebee the force terms may simply be

reinterpreted: While the friction term still models the loss of velocity due to the sur-

rounding air during a flight, the stochastic force term now mimicks both the force

actively exerted by the bumblebee to perform a flight and the randomness of these

flights due to the surrounding air, and to sudden changes of direction by the bum-

blebee itself. In addition, for our experiment we need to model the interaction with

predators by a third force term. This leads to Eq. (2.21) stated in Chap. 2, which for

bumblebee velocities vy we rewrite as

dvy(t)
dt

= −𝜂vy(t) −
dU(y(t))

dy
+ 𝜉(t) . (4.6)

Here we have combined the mass m with the other terms on the right hand side. The

term Fi = −dU(y(t))∕dy with potential U mimics an interaction between bumblebee

and spider, which can be switched on or off depending on whether a spider is present

or not. Data analysis shows that this force is strongly repulsive [14]. Computing the

velocity autocorrelation function Eq. (4.5) by solving the above equation numerically

for a suitable choice of a repulsive force qualitatively reproduces a change from pos-

itive to negative correlations when switching on the repulsive force, see Fig. 4.8b.

These results demonstrate that velocity correlations can contain crucial informa-

tion for understanding foraging dynamics, here in the form of highly non-trivial

correlation decay emerging from the interaction of a forager with predators. This

experiment could not test the LSH, as the mathematical assumptions on its valid-

ity were not fulfilled. However, conceptually these results are in line with the idea

http://dx.doi.org/10.1007/978-3-319-67798-9_2
http://dx.doi.org/10.1007/978-3-319-67798-9_2
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underlying the LEH: Theoretically the interaction between forager and environment

was modeled by a repulsive force, to be switched on in the presence of predators,

which qualitatively reproduced the experimental results. Together with the spatially

intermittent dynamics when approaching the food sources as discussed before, these

findings illustrate a complex spatio-temporal adjustment of the bumblebees both to

the presence of food sources and predators. This is in sharp contrast to the scale-free

dynamics singled out by the LFH.

Of course, modeling bumblebee flights by a Langevin equation like Eq. (4.6)

ignores many fine details. A more sophisticated model that reproduces bumblebee

flights far away from the flowers more appropriately has been constructed in Ref. [15]

based on the same data as discussed above.

4.5 Lévy Flights Embedded in Movement Ecology

The main theme of our chapter was the question posed to the end of the introduction:

Can search for food by biological organisms be understood by mathematical model-
ing? While about a century ago this question was answered by Karl Pearson in terms

of simple random walks yielding Brownian motion, about two decades ago the LFH

gave a different answer by proposing Lévy motion to be optimal for foraging success,

under certain conditions. Discussing experimental results testing it, we arrived at a

finer distinction between two different types of LFHs: The LSH captured the essence

of the original LFH by stating that under certain conditions Lévy flights represent an

optimal search strategy for finding targets. In contrast the LEH stipulates that Lévy

flights may emerge from the interaction between a forager and possibly scale-free

food source distributions. A weaker version of these different hypotheses we coined

the LFP, which suggests to look for power laws in the probability distributions of

move step lengths of foraging organisms. An even weaker guiding principle derived

from it is to assume that the foraging dynamics of biological organisms can generally

be understood by analyzing step length probability distributions alone. We thus have

a hierarchy of different LFHs that have all been tested in the literature, in one way or

the other.

By elaborating on experimental results, exemplified by selected publications, we

outlined a number of problems when testing the different LFHs: miscommunication

between theorists and experimentalists leading to incorrect data analysis; the difficul-

ties to mathematically model a specific foraging situation by giving proper credit to

all relevant biological details; and problems with an adequate statistical data analy-

sis that really tests for the theory by which it was motivated. We highlighted that

there are alternative stochastic processes, such as intermittent search strategies, that

may outperform Lévy strategies under certain conditions, or at least lead to similar

results, such that it may be hard to clearly distinguish them from Lévy motion. We

also discussed an experiment on foraging bumblebees, which showed that relevant

information to understand a biological foraging process may not always be contained
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Fig. 4.9 Sketch of the Movement Ecology Paradigm: It cross-links four other existing paradigms

representing different scientific disciplines, which describe specific aspects of the movements of

biological organisms. The aim is to mathematically model the dynamics emerging from the inter-

play between these different fields by an equation like Eq. (4.7); from [7], copyright (2008) National
Academy of Sciences, U.S.A.

in the probability distributions that are at the heart of all versions of the LFH. These

experimental results suggested that biological organisms may rather perform a com-

plex spatio-temporal adjustment to optimize their search for food sources, which

results in different dynamics on different spatio-temporal scales. This is at variance

to Lévy motion, which by definition is scale-free.

However, these results are well in line with another, more general approach to

understand the movements of biological organisms, called the Movement Ecology
Paradigm [7]: This theory aims at more properly embedding the movements of bio-

logical organisms into their biological context as shown in Fig. 4.9. In this figure,

the theory centered around the LFH is rather represented by the region labeled ‘ran-

dom’, which focuses on analyzing movement paths only. However, movement paths

of organisms cannot properly be understood without embedding them into their bio-

logical context: They are to quite some extent determined by the cognitive abilities

of the organisms and their biomechanical abilities, see the respective two further

regions in this diagram. Indeed, only on this basis the question about optimality may

be asked, cf. the fourth region in this diagram, which here is rather understood in a

biological sense than as purely mathematical efficiency. Physicists and mathemati-

cians are used to think of diffusive spreading, which underlies foraging, primarily in
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terms of moving point particles; however, living biological organisms are not point

particles but interact with the surrounding world in a very different manner. The aim

of this approach is to model the interaction between the four core fields sketched in

this diagram by a state space approach. This requires to identify relevant variables,

cf. the diagram, by establishing functional relationships between them in form of an

equation

𝐮t+1 = F(𝜴,𝜱, 𝐫t,𝐰t,𝐮t) , (4.7)

where 𝐮t is the location of an organism at time t. A simple, boiled-down example

of such an equation is the Langevin equation Eq. (4.6) that we proposed to describe

bumblebee flights under predation threat. Here dut+1∕dt = vy(t) and the potential

term is related to the variable rt above while all the other variables are ignored.

4.6 Conclusions

The discussion about the LFH is still very much ongoing. As an example we refer

to research on movements of mussels, where experimental measurements seemed

to suggest that Lévy movement accelerates pattern formation [22]; however, see the

discussion that emerged about these findings as comments and replies to the above

paper, which mirrors our discussion in the previous sections. A second example is

the debate about a recent review by Andy Reynolds [24], in which yet another new

version of a LFH was suggested; again, see all the respective comments and the

authors’ reply to them. While these two articles are in support of the LFH, we refer

to a recent review by Graham Pyke [23] as an example of a more critical appreciation

of it.

We conclude that one needs to be rather careful with following power law hypothe-

ses, or paradigms, for data analysis, here applied to the problem of understanding the

search for food by biological organisms. These laws are very attractive because of

their simplicity, and because in certain physical situations they represent underlying

universalities. While they clearly have their justification in specific settings, these

are rather simplistic concepts that ignore many details of the biological situation at

hand. This can cause problems when biological processes are more complex. What

we have outlined represents not an entirely new scientific lesson; see, e.g., the discus-

sion about power laws in self-organized criticality. On the other hand, the LFH did

pioneer a new way of thinking that goes beyond applying simple traditional random

walk schemes to understand biological foraging.

Financial support of this research by the MPIPKS Dresden and the Office of Naval

Research Global is gratefully acknowledged.
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Chapter 5
Epicuticular Wax Formation and
Regeneration—A Remarkable Diffusion
Phenomenon for Maintaining Surface
Integrity and Functionality in Plant Surfaces

Wilfried Konrad, Anita Roth-Nebelsick and Christoph Neinhuis

5.1 Introduction

Diffusion processes are ubiquitous in organisms, varying from being essential short-

distance transport phenomena to posing threats, such as uncontrolled leakages of

substances. A membrane, consisting of a phospholipid double layer with integrated

proteins and other additional functional molecules envelops all cells, the smallest

units of life. This membrane represents the device to reconcile the need of pro-

tecting the cell interior from its environment while maintaining intracellular condi-

tions with the necessary exchange of substances with the surroundings (see Fig. 5.1).

This exchange occurs—apart from processes such as endo-/exocytosis where whole

membrane patches are used as transport vehicles—often via “controlled diffusion”,

involving pores or channels formed by proteins. In this manner, the membrane is

semipermeable allowing diffusion of water and uncharged small molecules whereas

other substances are hindered from passing through.

Controlled diffusion processes are thus central for managing cell metabolism

and—in the end—the metabolism of multicellular plants and animals. Originally,

water was the only immediate surroundings of single- and multi-cellular organisms,

since there is general agreement that life evolved within the oceans and therefore

within an aquatic environment. During evolution, however, life moved on land and

was confronted with the problem of a strong humidity gradient, namely the differ-

ence between water-saturated cells and tissues and the much drier air [2]. The water
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(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 5.1 Schematic summary of the most prominent functions of the cuticle as represented by a

hydrophobic microstructured plant surface. a Transport barrier: limitation of uncontrolled water

loss or leaching from the interior and b against foliar uptake. c Water repellency: control of sur-

face water status. Anti-adhesive, self-cleaning properties: d reduction of contamination, e pathogen

attack and f control of attachment and locomotion of insects. g Spectral properties: protection

against harmful radiation. h Mechanical properties: resistance against mechanical stress and main-

tenance of physiological integrity (modified after [1])

vapor deficit even at high relative humidity is huge and results in desiccation within

a short time, lest there are any means to prevent this from happening. In fact, plants

and animals are enveloped by desiccation barriers, which hinder water from rapid and

uncontrolled loss into the atmosphere. There are, however, some exceptions, notably

desiccation-tolerant organisms, such as mosses, some ferns and a few seed plants,

which can dry out and recover upon wetting without damage. All other organisms

are necessarily equipped with a kind of “skin” preventing rapid desiccation.

To conserve water by suppressing water vapor diffusion into the atmosphere, the

envelope has to be hydrophobic. Terrestrial plants developed a hydrophobic layer

covering the outermost cells called epidermis [3]. This hydrophobic layer consists

of two main components, the polymer cutin and soluble waxes, described further

below, and is termed “cuticle” [4, 5] (see Figs. 5.1 and 5.2).

Due to its key importance for maintaining the hydrated state, the cuticle evolved

during early stages of land plant evolution [7]. Cuticles are already present in 400

million year old plant fossils from the Lower Devonian, a time during which the

vegetation consisted of quite small and leafless axes (Fig. 5.3). In fact, cuticle-like

remains can be found in much older fossil material, dating back to the earliest times

of land plant evolution from which only microfossil fragments are preserved [8].

Also terrestrial animals need a protective cover against uncontrolled evaporation.

In this respect, arthropods are interesting since they show a hydrophobic cover sim-

ilar in many aspects to the plant cuticle. This is particularly the case for insects,

since both plants and insects exchange gases with the atmosphere via their body

surface. Land plants cannot be completely isolated from the atmosphere since they

have to absorb CO2 for photosynthesis and to evaporate water to maintain internal
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Fig. 5.2 Simplified scheme of the structural features of the plant cuticle and their major compo-

nents (modified after [6])

Fig. 5.3 A section through a piece of Rhynie Chert sediment (Scotland, near Aberdeen), containing

axes of early land plants from the Lower Devonian, approximately 400 million years old. On the

right, two plant axes in cross-section are shown in detail. They belong to so-called “rhyniophytic”

plants thriving during that time on land. These plants were up to 20 cm high and consisted of leafless

axes already covered by a cuticle
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Fig. 5.4 A scanning

electron microscope image

of the lower leaf surface of

Helleborus niger, showing

stomata (bar: 100 μm).

These micropores can be

closed to control the

exchange of CO2 and water

vapor between atmosphere

and plant interior

transport processes. Plants are therefore forced to allow for a limited and controlled

gas exchange and transpiration, facilitated by micropores, called stomata, which can

be closed, according to the environmental conditions (Fig. 5.4). How micropore-

based technologies in chemical engineering have, quite generally, been inspired by

nature is referred to in great detail in Chap. 11.

The cuticle thus reconciles two conflicting tasks, namely suppression of outward

diffusion of water vapor and uptake of CO2. The solution is to pierce the isolating

cover, the cuticle, with pores whose aperture can be regulated.

Terrestrial insects are very much under the same constraint, and consequently

also developed a hydrophobic cuticle, which simultaneously serves as gateway for

respiration by being equipped with openings, the spiracles, leading to an internal

tubing system, the tracheae. In fact, plants and terrestrial arthropods share many

similarities with respect to evolutionary solutions against desiccation [9].

Conspicuous for both groups is the occurrence of wax blooms deposited upon the

cuticles [1, 10, 11] (see Fig. 5.5). For both, essential functional roles are indicated.

For different plant species, cuticles can show quite different thicknesses, with

plants from arid environments often showing considerably thicker cuticles than

plants from humid habitats. The reason for that is not fully understood since the

suppression of water vapor loss appears to be not dependent on cuticle thickness but

on its chemical composition [12]. A thick cuticle can also contribute to mechanical

stabilization [13] whereas wax crystals on plant cuticles are often associated with the

famous Lotus effect, forming structured hydrophobic surfaces resulting in vigorous

water-repellency (contact angle ⪆ 150◦) [14].

http://dx.doi.org/10.1007/978-3-319-67798-9_11
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Fig. 5.5 Scanning electron microscopic images of epicuticular waxes from plants. a Nonacosanol-

based tubules (bar: 1 μm). b Irregularly shaped wax crystals (bar: 2 μm). c Transversely rigid rodlets

based on palmitone (bar: 1 μm). d Membraneous platelets (bar: 1 μm). e Irregularly shaped platelets

(bar: 2 μm). f Tubules based on β-diketones (bar: 2 μm). Photographs: Institut für Botanik, TU

Dresden
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5.2 Qualitative Explanation of Self-repairing Wax Layers

5.2.1 Chemical Properties of the Cuticle

The cuticle may be regarded as a natural composite comprising two major hydropho-

bic components: an insoluble polymer fraction composed of cutin and, in some

species, cutan as well as soluble lipids of diverse chemistry, collectively called

waxes. In addition, a certain amount of polysaccharides is present (overview in [15,

16]). The outer very thin region (usually less than 100 nm), called cuticle proper,

contributes for 99% of the barrier efficiency [17], while the region determining the

thickness of up to 20 μm, is called the cuticle layer [18, 19]. Chemical composi-

tion and internal structure of the cuticle seems to show a high degree of variabil-

ity during ontogeny and among different plant species and organs. Whereas intra-

cuticular waxes may be either amorphous or crystalline, epicuticular waxes (Fig. 5.5)

are assumed to be of crystalline nature [20–22].

5.2.2 Wax Transport and Cuticle Self-repair

The crystal nature of epicuticular waxes implies self-assembly as the driving force for

the formation of such structures. This has been proven after extraction and recrystal-

lization of waxes from organic solvents revealing morphologically similar structures

as compared to the plant surface [20, 21, 23–29]. To allow selfassembly of com-

plex three-dimensional structures, the individual molecules must be mobile within

a suitable matrix or solvent in which they are free to find an energetically favorable

position, which also includes phase separation of different components or component

classes found in wax mixtures. Recrystallisation of extracted waxes from a solution

is considerably influenced by temperature, chemical nature of the solvent and the

underlying substrate resulting in a large structural variability [20, 22].

The most intriguing problem, however, was the process of wax deposition onto

the surface, as the molecules have to move from inside the cell through a hydrophilic

cell wall and the hydrophobic cuticle and finally onto the ridges and edges of the

growing crystals. Several hypotheses have been published from ectodesmata to the

involvement of transport proteins [30–32]. One obvious hypothesis is the existence of

some kind of channels or pathways, but no evidence of trans-cuticular structures that

could serve as pathways for wax molecules have yet been found in the plant cuticle by

Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM)

or Atomic Force Microscopy (AFM) investigations [28, 33].

While studying the various phenomena related to water-repellency and self-

cleaning of natural and artificial surfaces, one particular interest was the ability of

plants to reestablish these properties after damaging of the surface. Wax crystals

are weak structures very susceptible to mechanical influences and therefore easily

altered or completely removed. Since plants are able to maintain the functionality of
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Fig. 5.6 Exposed cuticular

surface after applying and

peeling off the glue prior to

regeneration of wax layers

the surface over quite a considerable period of time, the question turned up whether at

all and if, how quick and to which extent wax layers and structures are re-established.

To address this question, we performed a number of experiments with different plant

species, from bud break to senescence, i.e. when the leaves are shed. The experi-

mental setup was rather simple: during one vegetation period we applied glue, not

containing organic solvents to the leaves, let it dry and peeled it off (Fig. 5.6). Sub-

sequently samples were taken on a regular basis to check for regeneration of wax

layers and crystals.

Generally, a wide range of species was able to regenerate waxes after removal

within a few days or up to 2 weeks. Many species could achieve that only in young

stages of leaf development, while others maintained this capability during the whole

lifespan. Only very few species showed wax regeneration confined to later stages

of development. Interestingly the regeneration was confined to the area from which

the wax layer has been removed, independently of cell borders, meaning that the

reestablishment of a wax cover happened within the area of one cell (Fig. 5.7).

During these experiments we faced the problem that very young and delicate

leaves were destroyed during the attempt to peel of the glue. So we waited for the

leaves to expand expecting that the glue would fall of by itself. However, since the

material was highly elastic, the polymer film expanded together with the expanding

leaf without being dropped. So we waited even longer expecting that the glue would

be separated by the emerging wax cover that should act like a separating agent.

However, to our biggest surprise, this did not happen as well but now the wax

cover emerged on the surface of the glue (Fig. 5.8).

This accidental and unexpected result of our experiment allowed only one conclu-

sion: the transport of wax molecules must be independent of the living cell, since no

transporters, channels or other cellular components can be involved in the movement

through the polymer (i.e. the glue).

As a consequence we isolated the cuticle enzymatically to remove every compo-

nent of the living protoplast, covered it with a pure polyurethane film and span the

resulting specimen over a diffusion chamber filled with water (Fig. 5.9).
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Fig. 5.7 Upper: Glue applied to the leaf surface. Centre: Leaf surface after removing wax by

peeling off the glue. Lower: Wax regeneration occurring in the areas only where wax has been

removed, independently of cell borders

Fig. 5.8 Wax regeneration—the observation on young leaves. Waxes move through the glue and

crystallize similar in size and distribution as on the leaf surface

The result was basically the same as were observed on leaves. The wax moved

through the polymer membrane following the transpiration gradient built up by evap-

orating water. The structures formed on the polymer surface again were virtually

identical with those found on leaves in situ. In a final approach we also removed the

cuticle and replaced the latter by a polymer membrane alone that was applied to a

filter paper, replacing the cell wall. The latter was loaded with wax and the sandwich

again placed on top of a diffusion chamber (Fig. 5.10).

The experiment again revealed the same result. Waxes moved through the poly-

mer and crystallized on the surface. These results were independent of the type of

polymer (e.g. PU, PP, PE, PC) or the used wax (e.g. plant waxes, montan waxes, arti-

ficial waxes). In case of plant waxes the size, individual morphology and distribution

was virtually the same as on the leaf surface (Fig. 5.11).
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Fig. 5.9 In vitro experiments with isolated cuticles in a diffusion chamber

Fig. 5.10 Completely artificial approach in which a filter paper was loaded with wax of different

origin that moved through a polyurethane membrane together with water

Neinhuis et al. [34] consequently proposed a co-transport of wax components with

water that constantly is lost via the cuticle, although in very small amounts. Assum-

ing such a process is appealing since no pathways, carrier molecules or sensors are

needed. Since cuticular waxes are the main permeability barriers, the transport to

the outside slows down while more wax is deposited on the surface, so it is self-

regulating. In addition it easily explains the intriguing phenomenon of wax regener-

ation. Since removal of epicuticular wax also partly removes the water barrier, more

wax is able to move through the cuticle in this particular spot and builds up a new

layer without affecting neighbouring area. AFM in situ demonstrated the rather quick
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Fig. 5.11 Waxes tubules, based on 𝛽-dicetones recrystallized after movement through artificial

polyurethane membranes. Size and distribution are not distinguishable from plant surfaces (left),

while a higher density is achieved by a longer diffusion time (right)

reassembly of new wax layers after their removal under environmental conditions in

vivo. AFM time-series pictured the formation of mono- and bi-molecular wax films

and the growth of three-dimensional platelets, either directly on the cuticle or on

already existing wax layers within minutes [28, 35].

5.2.3 Summary of Sect. 5.2

The qualitative explanation of cuticle self-repair and wax transport to the plant sur-

face can be summarized as follows:

∙ Intact cuticles are very efficient barriers against evaporation of water from the

plant interior. Hence, if the wax layer is degraded, evaporation from this zone

increases, generating a current of liquid water from the plant interior.

∙ This water current transports the wax molecules from the epidermal cells (where

they are presumably produced) towards the outer fringe of the cuticle. There the

water evaporates. Being much heavier than the water molecules, the wax mole-

cules do not evaporate, they rather form wax crystals rebuilding hereby the dam-

aged cuticle layer by layer.

∙ As this repair process proceeds, both evaporation and the evaporation driven water

current decrease and smaller amounts of wax molecules are transported to the

damaged cuticle. Finally, the cuticle attains its original thickness and the repair

process comes to a halt.

The advantages of this self-regulating model over other hypotheses are:

∙ Neither distinct pathways (such as micro-channels or ectodesmata) nor the exis-

tence of lipid transfer proteins have to be postulated. The waxes move through the

cuticle due to the presence of the water flow, hence neither organic solvents nor

special receptors are necessary.
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∙ It explains almost all phenomena we have observed, including some which were

hitherto hard to explain, such as the wax regeneration and the appearance and the

distribution patterns of epicuticular wax in distinct leaf areas.

5.3 Quantitive Explanation of Self-repairing Wax Layers

In this section we present a condensed version of a quantitive model of cuticle repair,

i.e. notably of the movement of the wax molecules deployed for this purpose. It

emerged from the qualitative scenario outlined in the previous section. A detailed

account can be found in [36].

5.3.1 Equation of Mass Transfer Through the Cuticle

We make use of a few assumptions which keep the mathematics manageable, hereby

providing insight into the model structure: We employ the porous medium approx-

imation, allowing to restrict the mathematics to one dimension (the z-direction in

Fig. 5.12), thus largely following the introductory remarks on diffusive movement in

Chap. 2, Eqs. (2.6)–(2.11); we assume that the properties of the biological structures

along the z-axis are (approximately) constant within each of the four different lay-

ers depicted in Fig. 5.12; and we assume stationary conditions, that is, none of the

transport processes involved depends explicitly on time.

z

0

zc

zi

zw

ze                      

hc

he

hi

hw

Fig. 5.12 Plant cuticle structure. Schematic diagram highlighting the major structural features

of the cuticle and underlying epidermal cell layer. he, hi, hw and hc denote the thicknesses of the

various layers, ze, zi, zw and zc the z-coordinates of their outer fringes. (Typical) numerical values

of these quantities are given in Table 5.1. (Not drawn to scale, modified after [3]). For photographs

of epicuticular waxes see Fig. 5.5

http://dx.doi.org/10.1007/978-3-319-67798-9_2
http://dx.doi.org/10.1007/978-3-319-67798-9_2
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Table 5.1 List of variables and numerical values. Subscripts c,w, i, e refer to the different struc-

tural layers depicted in Fig. 5.12. Numerical data for diffusion coefficients and thicknesses of cutin

layer and wax film layer are partly based on Tables 2 and 3 in [37] for cultivar “Elstar” and partly

derived by educated guessing. Similarly, the value of Kc is based on [38]. The diffusion coefficient

of the polysaccharide layer has been set arbitrarily to one tenth of the diffusion coefficient of the

cutin layer

Quantity Value Quantity Value

hc 16 μm R 8.314 J/mol/K

hw 0.5 μm T 20
◦
C

hi 11.93 μm g 9.81 m/s
2

he 4.14 μm Vw 18.07 × 10−6 m
3
/mol

Sc 4.33 × 10−12 m
2
/s Vwax 404 × 10−6 m

3
/mol

Sw 7.16 × 10−11 m
2
/s 𝜌w 18.07 × 10−6 m

3
/mol

Si 7.16 × 10−10 m
2
/s wrel 0.6

Se 3.03 × 10−10 m
2
/s 𝜓leaf −204 m

Kc 1 × 10−14 m/s 𝜉 4 /s

Kw 1.69 × 10−15 m/s cs 10 mol/m
3

Ki 1.69 × 10−14 m/s ct 5.53 mol/m
3

Ke 7.18 × 10−15 m/s

In the framework described in Sect. 5.2, the wax molecules are transported from

the places where they are formed (presumably the epidermal cells depicted in

Fig. 5.12) to the epicuticular wax layer where they are deployed by “swimming” pas-

sively in the midst of (liquid) water molecules. These vaporize at the plant surface

into the atmosphere, causing hereby the flow of the liquid water molecules which

is ultimately fed by soil water ascending through the plant’s vascular water system.

In addition to “swimming” with the flux of water, wax molecules are also subject

to the transport mechanism emerging from their Brownian motion, i.e. to a diffusive

flux in the direction of decreasing wax concentrations (see Fig. 2.2a). With Fig. 5.12,

wax concentration is easily understood to assume its maximum value, namely its sat-

uration concentration cs, at z = ze, given the immediate vicinity of the epicuticular

wax crystals. Wax concentration is thus expected to decrease from the leaf surface

into its interior, giving rise to a diffusive flux just opposite to the flux of the water

molecules. As it turned out, both transport mechanisms are equally important and

indispensable in order to formulate a coherent mathematical model.

Considering both transport mechanisms, the flux j(z) of wax molecules of con-

centration c(z) is given by the expression (see e.g. [39, 40])

j = −S dc
dz

+ cJ. (5.1)

The first term on the right hand side describes diffusion. S = Dn∕𝜏 denotes the (effec-

tive) diffusion coefficient in a porous medium, n and 𝜏 are porosity and tortuosity

http://dx.doi.org/10.1007/978-3-319-67798-9_2
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of that medium, respectively, and D is the diffusion coefficient in bulk liquid. The

second term refers to the movement of the wax molecules within the flux J(z) of

(liquid) water, referred to (see also Sect. 2.2) as advection.

We assume that the wax molecules originate only within the epidermal cells, i.e.

within the interval 0 < z < zc (cf. Fig. 5.12). We further assume that the wax pro-

duction rate can be described by the function

q = 𝜉
[
ct − c(z)

]
(5.2)

where ct denotes a threshold concentration of the wax molecules and 𝜉 is a rate

constant. Depending on whether ct > c(z) or ct < c(z) is realised, q acts as source

term (i.e. producing wax molecules, q > 0) in the first case and as sink term (remov-

ing wax molecules, q < 0) in the second case. Outside the interval 0 < z < zc we

set q = 0. Obviously, the maximum production rate of wax molecules amounts to

qmax = 𝜉ct.

Transport equation (5.1) and wax production rate (5.2) are connected by the con-

tinuity equation (see also Eq. (2.8)) which is simply the mathematical version of

molecular bookkeeping: any change in the number of wax molecules within any

(fictitious) volume of space is caused by inflowing molecules, outflowing molecules

and—possibly—generation (or destruction) of wax molecules within the volume.

Due to the simplifying assumptions, stationarity and one-dimensionality, the conti-

nuity equation reads in our case

0 = −
dj
dz

+ q. (5.3)

Since we know already wax flux (5.1) and wax production rate (5.2), we can insert

these expressions into (5.3) and obtain

0 = S d2c
dz2

− d(cJ)
dz

+ 𝜉
(
ct − c

)
if 0 < z < zc (5.4a)

0 = S d2c
dz2

− d(cJ)
dz

if zc < z < ze. (5.4b)

The first line applies within the epidermal cells (where the wax is presumably pro-

duced) whereas the second line is valid outside the epidermal cells (no wax produc-

tion, thus q = 0 in the continuity equation (5.3)). Both lines represent linear differ-

ential equations of second order for the wax concentration c(z).
As noted above, we assume that the properties of the plant tissue—represented by

the variables D, n and 𝜏, which are amalgamated to the effective diffusion coefficient

S = Dn∕𝜏—are approximately constant within each of the four different layers of

Fig. 5.12. They may, however, vary from one layer to the next. This implies that

Eq. (5.4a) has to be solved with S equated with Sc while (5.4b) has to be solved

separately for the three layers between z = zc and z = ze, with S adopting the values

Sw, Si and Se. Since the differential equation (5.4) is of second order, each of these

http://dx.doi.org/10.1007/978-3-319-67798-9_2
http://dx.doi.org/10.1007/978-3-319-67798-9_2
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piecewise solutions comes with two so called “integration constants”, adding up to

altogether 4 × 2 = 8 arbitrary constants, which can (and must) be fixed according

to the boundary conditions which specify the definite system (for details see below).

Once Eq. (5.4) have been solved for c(z) in this way, the wax flux j(z) follows by

inserting the result into (5.1).

However, before solving Eq. (5.4), the still unknown water flux J(z) between the

epidermal cell and the outer fringe of the cuticle must be determined.

5.3.2 Solution of the Water Flux Equation

Because the plant tissues we deal with can be treated as porous media and because

the fluid velocities inside these are low it is reasonable to describe J(z) by means of

Darcy’s Law (see Sects. 2.3 and 11.3.2 and, e.g. [39–41]). In one dimension it reads

J = −K
d𝜓
dz

. (5.5)

K(z), the hydraulic conductivity, contains information about the flowing liquid

(which is in our case water loaded with wax crystals) and the conductivity of the

structures through which the liquid flows. Similarly as before, we assume that K(z)
is constant within each of the four tissue layers of Fig. 5.12 but may vary from layer

to layer.

𝜓(z) denotes the water potential whose gradient d𝜓∕dz is the driving force of the

water current. Water potential is closely related to the chemical potential of water

(see also Sect. 10.4): it represents the work needed within a given system to move

one mole of pure water at atmospheric pressure to some other point (at the same

temperature and pressure). In the fields of hydrogeology and plant physiology it is

a very useful concept because it allows to treat certain aspects of liquid water and

water vapor within the same formalism (see e.g. [41]).

Within epidermal cells (i.e. for liquid water), typical values of 𝜓 are around

𝜓leaf ≈ −2MPa. The water potential of atmospheric water vapor depends strongly

on temperature T and relative humidity wrel; for T = 20 ◦C and wrel = 0.5 it amounts

to 𝜓wv ≈ −93.5MPa, for instance. In soil research and hydrological research, water

potential is usually expressed in units of pressure head. In these units the equivalent

values are 𝜓leaf ≈ −204m and 𝜓wv ≈ −7028m. The latter value is obtained from the

expression [41]

𝜓wv =
RT

Vw𝜌wg
logwrel, (5.6)

where R, g, 𝜌w and Vw denote the gas constant, the gravitational acceleration, and the

density and molar volume of liquid(!) water, respectively. In what follows, we will

express water potential in units of pressure head (Pressure units (Pa = kg/m/s
2
) are

http://dx.doi.org/10.1007/978-3-319-67798-9_2
http://dx.doi.org/10.1007/978-3-319-67798-9_11
http://dx.doi.org/10.1007/978-3-319-67798-9_2
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obtained by multiplying pressure head (units m) by 𝜌wg ≈ 9.81 × 103 kg∕m2∕s2, as

can be seen from (5.6)).

The water flux equation is derived from the continuity equation for liquid water

which reduces due to our assumptions to 0 = dJ∕dz. Insertion of (5.5)—while keep-

ing in mind the assumption that K(z) is constant within each layer—yields the dif-

ferential equation

0 = d2𝜓

dz2
. (5.7)

Similarly as in the case of (5.4), this equation has to be solved separately for each

layer. Each of the four solutions of equation (5.7) contains two arbitrary constants.

These are determined from the condition of continuity for the water potential 𝜓(z)
and the water flux J(z) at the layer margins at zc, zw and zi and from two boundary

conditions for 𝜓(z): We require 𝜓(0) = 𝜓leaf and 𝜓(ze) = 𝜓wv with 𝜓wv as given in

(5.6).

Application of this procedure is straightforward. It results, however, in lengthy

expressions for 𝜓(z); since we do not need them in what follows we give here only

what results if we insert 𝜓(z) into expression (5.5) for J(z):

J =
𝜓leaf − 𝜓wv

hc

Kc
+ hw

Kw
+ hi

Ki
+ h

Ke

. (5.8)

he, hi, hw and hc denote the thicknesses of the various layers, as indicated in Fig. 5.12,

and Ke, Ki, Kw and Kc are the respective water conductivities. J > 0 indicates a water

flux towards positive z-values, i.e. towards the plant surface. In what follows, he
denotes the thickness of the intact epicuticular wax film while h denotes its actual

thickness during any stage of the repair process (thus, 0 ≤ h ≤ he).

Several features of expression (5.8) are noteworthy:

∙ It shows a close analogy to Ohm’s law in electrodynamics: if water flux J is iden-

tified with electric current and water potential difference 𝜓leaf − 𝜓wv (the driving

force of water flux) with voltage, then the four terms in the denominator of the

right hand side of (5.8) represent four resistances connected in series.

∙ J is independent of z, simplifying the solution of the differential equation (5.4) for

the wax flux j considerably. (This property was to be expected from the physics of

the situation: no water sources or sinks are present).

∙ The water flux J depends roughly reciprocally on the thickness h of the epicuticular

wax film. This corroborates the qualitative conception developed in Sect. 5.2: the

water flux decreases while the repair process proceeds (i.e. h → he) and the wax

layer regains its original thickness he.
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5.3.3 Solution of the Transport Equation

By inserting the expression (5.5) determined for the water flux J into Eq. (5.4), we

are now able to determine the concentration c(z) of the wax molecules and, sub-

sequently, by inserting into Eq. (5.1), their flux j. Solving a differential equation of

second order in four adjacent layers gives rise to eight integration constants which

may be determined by taking account of the respective boundary conditions, ending

up in a number of quite lengthy expressions. All these relations and how they have

been determined may be found in [36]. Here we confine ourselves to the graphical

representation of the solution in three characteristic situations as resulting with the

parameters summarized in Table 5.1

Figure 5.13 displays the wax concentration c(z) and the wax flux j(z) along the

pathway of wax molecules between epidermal cell and epicuticular wax film (cf.

Fig. 5.12) and the wax production rate q = 𝜉
[
ct − c(z)

]
within the epidermal cells as

resulting as a solution of equations (5.4) and (5.1).

Subfigure (c) shows the (net) wax flux j(z). It is the sum of the diffusive component

(represented by the first term in expression (5.1)) and of the advective component

(the second term in (5.1)). These two are displayed in subfigure (d); the upper three

curves represent advective components, cJ, the lower three curves depict the dif-

fusional parts, −S dc∕dz. Positive fluxes are directed towards the cuticle, negative

fluxes point to the leaf interior. Blue curves are related to a damaged cuticle (the

outer fringe is located at z = zi), green curves represent an intact cuticle (the outer

fringe is at z = ze), and red curves represent the fictitious case of an epicuticular wax

film which is twice as thick as it ought to be (the outer fringe is at z = ze + he).

Comparison between the blue and green curves allows to visualise the repair sce-

nario:

∙ As long as the cuticle is undamaged, the green curves in subfigures (a), (c) and

(d) terminate at z = ze, and the green curves representing advection and diffusion

(subfigure (d)) have for all points with z > zw the same distance to the z-axis, thus

adding up to a vanishing net wax flux (green curve in subfigure (c)).

∙ When the cuticle is damaged the repair process begins. This is illustrated by the

blue curves which terminate at z = zi: the absolute values of both advection and

diffusion flux have increased, compared to the intact cuticle (see subfigure (d)),

but now results a net flux towards the cuticle (see subfigure (c)).

∙ During cuticle regrowth all blue curves “migrate” towards the green curves, that is,

the absolute values of advection and diffusion flux decrease and converge slowly

until they have merged with the green curves; then the net flux ceases and the

repair process is completed.

Notice, that the model predicts also what happens to (fictitious) protrusions of height

h > he, extending from the epicuticular wax film: This case is represented by the red

curves. The one representing the net flux (subfigure (c)) runs for z > zw below the

z-axis, indicating a negative net flux directed towards the plant interior; this means

that the protrusions are dissolved and transported to the leaf interior. This process
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Fig. 5.13 Wax concentration (a) and wax fluxes (c, d) along the pathway of wax molecules between

epidermal cell and epicuticular wax film (cf. Fig. 5.12). The (net) wax flux j(z) in subfigure (c) is the

sum of the diffusive component (lower three curves in subfigure (d)) and of the advective component

(upper three curves in subfigure (d)). Positive fluxes are directed towards the cuticle, negative fluxes

point to the leaf interior. (For detailed explanation see text.) Vertical lines delineate the tissue layers

defined in Fig. 5.12; the horizontal lines in subfigure (a) denoted cs and ct mark the saturation and

the threshold wax concentrations. Subfigure (b) depicts the wax insertion (or removal) rate q =
𝜉
[
ct − c(z)

]
within the epidermal cells. Positive values indicate insertion, negative values indicate

removal of wax molecules. Notice that the graph depicts three nearly identical curves. Blue curves

are related to a damaged cuticle (the outer fringe is located at z = zi), green curves represent an intact

cuticle (the outer fringe is at z = ze), and red curves represent the fictitious case of an epicuticular

wax film which is twice as thick as it ought to be. Numerical values are as in Table 5.1
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stops when the cuticle has been eroded to thickness he and the red curve has migrated

to and merged with the green curve.

Comparison of subfigures (b) and (c) of Fig. 5.13 illustrates the continuity equa-

tion (5.3) which states that the gradient of the net wax flux equals the injection (or

removal) of wax molecules: The region 0 < z ⪅ 8μm acts as a wax source (indicated

by q > 0). Wax molecules that are generated in the region z ⪅ 2μm flow towards

the plant interior (indicated by j < 0, subfigure (c)), those produced in the interval

2μm ⪅ z ⪅ 8μm flow a short distance towards the cuticle (indicated by j > 0). In

the case of an intact cuticle (green curves), all of them are removed from the cell

liquid in the region 8μm ⪅ z < zc which acts as wax sink (q < 0). If the cuticle is

damaged (blue curves), however, a certain fraction of the injected wax molecules

reaches and repairs the cuticle.

5.3.4 Restoration of the Wax Layer as a Function of Time

Provided the restoration proceeds slowly, compared to the travel time 𝜏 of a wax

molecule between epidermal cell and epicuticular wax layer, the solution of the

wax transport equation (5.1) can be exploited to derive the temporal development

of the wax layer repair, although it has been derived under the assumption of sta-

tionarity. The values given in Table 5.1 imply for the velocity of the water cur-

rent J ≈ 2.17μm∕s and thus 𝜏 = ze∕J ≈ 15 s for the travel time of a wax particle

between epidermal cell and cuticle. Hence, if the repair process lasts perhaps 1 h,

this approach is certainly justified.

In order to calculate the temporal development of the epicuticular wax layer

restoration we assume that it has been eroded completely before the restoration

process begins. That is, at the starting point t = 0 of the restoration process the outer

fringe of the cuticle is located at z = zi, equivalent to h = 0 (h denotes the actual

thickness of the wax layer, he its thickness when it is intact, cf. Fig. 5.12).

The water brought there by the water flux J evaporates from the eroded area,

leaving behind the much heavier wax molecules that came by the wax flux j. The

wax molecules organize themselves as crystals, thus restoring the wax layer until it

reaches its original thickness he whereupon the wax flux j ceases.

If Vwax denotes the molar volume of the wax molecules, the thickness h of the

wax layer regrows with the velocity dh∕dt = Vwax j(h). In view of the structure of the

expressions for j(z) and J(z) (cf. (5.8)), this is an ordinary but non-linear differential

equation for h(t).
Its non-linearity precludes a straightforward solution but an approximation

approach (for details see [36]) allows to calculate the thickness of the wax layer

h as a function of time, resulting in

h(t) = he

[
1 − e

(
j1Vwax t

)]
, (5.9)
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Fig. 5.14 Growth of the wax layer with time according to expression (5.9). The intersections with

the grey, horizontal line indicate the time it takes to rebuild the wax layer to 95% of its original

thickness of he = 4.14μm. a Temperature is kept constant at T = 293K = 20
◦C while the relative

atmospheric humidity wrel and the threshold concentration ct of wax molecules in epidermal cell

assume the values (wrel, ct) = (0.8, 7.78mol∕m3) (blue, dotted line), (wrel, ct) = (0.6, 5.53mol∕m3)
(green, broken line) and (wrel, ct) = (0.4, 3.48mol∕m3) (red, continuous line). The related time

spans are t95 = 8.13 h (blue line), t95 = 4.20 h (green line) and t95 = 3.19 h (red line). b wrel = 0.6
is kept constant, T and ct assume the values (T , ct) = (30 ◦C, 5.65mol∕m3) (blue line), (T , ct) =
(20 ◦C, 5.53mol∕m3) (green line) and (T , ct) = (10C, 5.42mol∕m3) (red line). The three curves

are nearly indistinguishable; their common t95 time amounts to t95 = 4.20 h. Other numerical val-

ues are as in Table 5.1. t95 is defined in the text

with j1 ∶= (𝜕j∕𝜕h) |h=he
. Notice the implication h(0) = 0, that is, the cuticle layer

started to (re-)grow at time t = 0. Its original thickness he approaches the wax crys-

tal layer asymptotically, as t → ∞. Thus, the repair process lasts—in principle—

infinitely long; the time which is necessary to rebuild for instance 95% of the layer

is, however, finite and amounts to the value t95 ∶= ln(20)∕(−j1Vwax).
Figure 5.14 illustrates the result (5.9) for two different cases:

∙ In subfigure (a), temperature is kept constant and the relative atmospheric humid-

ity wrel adopts three different values. The time spans t95 increase with increas-

ing wrel: this is to be expected because the water potential difference
|||𝜓leaf − 𝜓wv

|||
which is the driving force of evaporation decreases if wrel is increased, according

to (5.6). Accordingly, the wax supply for restoration decelerates.

∙ In subfigure (b), relative atmospheric humidity is kept constant and temperature

is varied (T = 10, 20 and 30 ◦C). The related curves are nearly indistinguishable.

5.4 Conclusions

The model presented here corroborates, extends and quantifies the conjecture of

Neinhuis et al. [34] which explains almost all phenomena observed in connection

with cuticle repair.
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They proposed the co-transport of wax components with water which relies on

comparatively simple physics instead of postulating sophisticated living structures

such as carrier molecules or specialised pathways for wax molecules; they were also

able to confirm their hypothesis qualitatively by carrying out experiments with iso-

lated cuticles and artificial membranes.

Adding diffusion as a transport mechanism which counteracts water transport of

the wax components leads to a further clarification of the observations: the presence

of two antagonistic transport mechanisms allows for the scenario that the two driving

forces are balanced in the case of intact cuticles and that a damaged cuticle causes

an imbalance resulting in net wax transport and cuticle self-repair which lasts until

balance is readjusted.

The model explains these findings in detail: its mathematical structure allows, for

instance, to conclude that the thickness of the epicuticular wax layer and the typical

restoration time after degradation (which are the result of two physical processes that

are independent of living structures) are nonetheless controlled by living structures,

namely the epidermal cells which generate the wax molecules. In the framework of

the model the cells have two degrees of freedom at their disposal to regulate the wax

production: they can predefine both the thickness he and the restoration time t95 of

the epicuticular wax layer by fine-tuning the parameters ct and 𝜉 of expression (5.2).
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Chapter 6
Brain Interstitial Structure Revealed
Through Diffusive Spread of Molecules

Charles Nicholson

6.1 Introduction

Freshly removed from the skull, the human brain looks like a cauliflower with the
consistency of a crème caramel flan (Fig. 6.1a). This mundane object conceals the
most complex structure ever discovered. When the interior of the brain is examined
with a resolution of a few micrometers, using appropriate staining techniques and
light microscopy, it is seen to be composed of a vast number of cells (Fig. 6.1b),
although the apparent space between the cells in this illustration is misleading. The
full complexity of the ensemble of cells is only finally revealed at the submicron
level using electron microscopy (Fig. 6.1c). This chapter will show how the
application of methods and models based on diffusion can lead to an understanding
of how brain cells pack together and some of the remarkable properties of the
narrow spaces that separate them.

Brain cells comprise two types: neurons and glia; some examples of neurons are
shown in Fig. 6.1b. The neurons form vast networks that convey and process
electrical signals. The connections in the network mostly take place at junctions
called synapses that provide a separation of about 20 nm. At these junctions the
electrical signals are converted into packets of chemicals that diffuse across the
narrow space. The diffusion properties of the synapse could be the basis for the
whole chapter but will not be discussed further, except to note that this physical
separation of neurons ensures the structural isolation of each cell.

Glia cells lack electrical signaling capability and are something of an enigma.
They appear to support neurons in several ways and new properties are being
revealed at a rapid pace. Neurons and glia are intermingled in the brain; they are
present in roughly equal numbers and both cell types have many different forms in
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different brain regions. All this complexity will be ignored here where the focus will
be on the spaces between the cells. This space is called the interstitial space
(IS) while the entire space that lies outside the cell and includes the IS as well as
blood vessels and ventricles is the extracellular space. Often the distinction between
the terms is ignored and ‘extracellular space’ is used even when ‘interstitial space’
would be more accurate.

The IS is filled with a salt solution that closely resembles the cerebrospinal fluid
(CSF) that is found in the cavities in the center of the brain and the narrow canal
that runs down the middle of the spinal cord. In human CSF, the predominant ion is
Na+ (∼150 mM); other critical ions include K+ (∼3 mM) and Ca2+ and Mg2+

(∼1.2 mM each). Theses cations are largely balanced by the anions Cl−

(∼120 mM) and bicarbonate (∼20 mM). There are many other compounds, often in
very small amounts but which nonetheless serve important functions as neuro-
modulators and signals. In addition to the salt solution there is an extensive ex-
tracellular matrix of long-chain glycosaminoglycan and proteoglycan molecules.
Many are anchored in cell membranes and among the predominant molecular
species are chondroitin sulfate and heparan sulfate, both of which carry numerous

Fig. 6.1 a The human cortex exposed in a drawing by Versalius published in his book De Fabrica
in 1543. b Nerve cells (neurons) of the cortex taken from layers 1–3 of the precentral gyrus of a
1-month-old human infant. The cells and their extensions have dimensions that range from about
50–300 µm. Cells stained with the Golgi method and drawn by S. Ramón y Cajal; published in his
two-volume work Histologie du Systéme Nerveux in 1909. c Electron micrograph of a small
region of the cerebral cortex of a rat with a prominent synapse. The black areas between cells
indicate the interstitial space (IS), which may have been reduced in size as a consequence of the
histological processing. The scale bar under the figure represents a distance of about 1 µm.
Electron micrograph kindly supplied by Dr. C. B. Jaeger. Figures reproduced from [1]
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negative charges. A third major component of the matrix is hyaluronan, which is
often linked to other components of the matrix. The distribution and the function of
the matrix are still uncertain but it resembles a hydrogel insofar as it does not seem
to greatly impede the movement of molecules, although components of the matrix
may interact with specific substances (see Sect. 6.7).

There are several reasons why there is a significant IS in the brain. Neurons
require a reservoir of Na+, K+ and Ca2+ on the outside of their membranes to
maintain a resting potential across the membrane and enable action potentials and
synaptic transmission. The IS also functions as a communication channel where the
signals are mediated by neuroactive substances; this communication mode is often
known as volume transmission. More controversially, it has been suggested that the
IS is a conduit for the removal of waste products from the brain [2, 3].

6.2 Biophysical Properties of Interstitial Space

Imagine looking down on a large city in the late afternoon when people are leaving
their offices and workplaces (Fig. 6.2). The streets become crowded because the
volume available for movement is limited to the spaces between the buildings.
These spaces have been engineered to be sufficient to allow a reasonable density of
people and other forms of traffic, such as cars and buses but the travelers still may
become quite concentrated. Suppose the buildings were replaced by an open plaza
and the same people were introduced, then the concentration would be less—it
would be reduced in proportion to the volume fraction defined as the ratio of the
area occupied by the streets to the area of an open plaza with the same perimeter.

Now think about the destination of the people leaving work. Many head to rail
stations, bus terminals, car parks or some may be close enough to walk home. They
cannot walk directly the way they might in the open plaza but must follow the

Fig. 6.2 North-facing view
of New York City from the
observation deck of the
Empire State Building. Photo:
C. Nicholson
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streets and so they walk further and take more time to reach their destination than if
they moved in a straight line. Sometimes they may encounter an obstruction and
have to retrace their steps. Thus the motion of the people is hindered by the
structure of the city. This hindrance can be measured by a parameter called tor-
tuosity that will be defined below.

Other fates may befall our travelers. After a hard day they may stray into a bar
and relax with a drink or two before continuing to their destination. This introduces
an additional delay in their passage. To an external observer they appear to be held
for a short time in the bar before being released. So long as the time in the bar is
brief compared to the overall journey this process may be likened to fast equilib-
rium binding. If the sojourn in the bar accounts for most of the traveler’s journey
time then the journey will be dominated by the binding kinetics and the rest of the
trajectory will be less important.

In all the cases described so far, the number of travelers in play remains constant.
This may not always hold true, however. Returning to the bar scenario, if the person
enters but does not leave or if some other fate befalls them that removes them from
the moving population, then there will be irreversible loss and the traveler will
never arrive home.

These metaphors may be translated into concrete terms for brain tissue. To begin
we define a Representative Elementary Volume (REV) that contains a sufficient
number of cellular elements and IS to allow the average properties to be repro-
ducible (Fig. 6.3a).

We start with volume fraction, represented by α in the discipline of brain bio-
physics (more often called porosity and represented by ϕ in porous media research):

α=VIS ̸VTotal ð6:1Þ

where VTotal is the volume of the whole REV and VIS is the volume of the IS
contained in the REV. It follows that 0≤ α≤ 1. Typically α is about 0.2; in other
words 20% of the brain volume is found in the gaps between cells. How this is
measured will be explained later.

Tortuosity is a more complex parameter than volume fraction. The operational
definition is simple; take a small ‘probe’ molecule with a hydrodynamic diameter
that is much less than the typical width of the IS and measure the effective diffusion
coefficient, D*, of the molecule in brain tissue. Measure the free diffusion coeffi-
cient, D, of the same molecule in water or a very dilute gel. Then the tortuosity,
denoted by λ, is given by:

λ=
ffiffiffiffiffiffiffiffiffiffiffiffi
D ̸D*

p
. ð6:2Þ

Note that in porous media theory, tortuosity may be represented by a different
symbol and may simply be the ratio of the two diffusion coefficients, not the square
root. The volume fraction may also enter the definition, depending on how con-
centration is measured (see, e.g., Chap. 11 and Eq. (11.9)). Sometimes use of the
diffusion permeability, θ=D* ̸D, is preferable [4].
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The subtlety in the tortuosity arises from the fact that more than just geometry
may contribute to this parameter. As an example, fast equilibrium binding will be
indistinguishable from an increase in tortuosity (Sect. 6.7) provided that the binding
and unbinding kinetics (typically a bimolecular reaction) are much faster than the
local diffusion process. Obviously this requires a more rigorous definition but the
concept is clear.

Irreversible loss is a separate process, often represented by a first order kinetic
process, with constant k′ where the loss is proportional to the concentration of a

Fig. 6.3 a1–3 Volume averaging in brain tissue. a1 Depicts the intracellular phase (no shading)
and the IS phase (dots). A line, aa′, drawn in the medium alternately intersects the two phases. a2
For a substance that only distributes in the IS phase (dots), the profile is discontinuous. To remove
the problem, a REV (VTotal, Panel a1) is selected and the IS concentration averaged over the IS
volume (VIS, Panel a1). a3 As the averaging volume moves along the line, the average
concentration ⟨Caa′ ⟩ now varies continuously. The volume averaging process also yields the
macroscopic parameters α and λ. Reproduced from [1]. b Plot of concentration of TMA+

(tetramethylammonium ions) in brain (solid line) and agarose (a polysaccharide polymer material
in common use as a low concentration gel to provide an anti-convection medium, dotted line)
computed for a location r = 100 µm from a micropipette that initiates an instantaneous source at
10 s and computed using Eqs. (6.5), (6.6). Here U = 25 pL and Cf = 100 mM. c Similar plots of
TMA+ concentration using iontophoresis and Eqs. (6.7), (6.8). Here I = 50 nA, nt = 0.5 and
duration of current is 50 s, commencing at 10 s. Common parameters for plots in (b) and (c) are as
follows. D = 1.31 × 10−5 cm2 s−1 for TMA+ at 37 °C. For agarose α = 1, λ = 1, k′ = 0; for
brain α = 0.2, λ = 1.6, k′ = 0.005 s−1. Panels b and c, unpublished data from C. Nicholson
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molecule in the IS. A well-known example is loss of molecules into the numerous
blood vessels that run through the brain [5]. This loss occurs across the so-called
blood-brain barrier that surrounds each blood vessel in the brain and only allows
certain classes of molecules to cross. Other types of loss may occur: irreversible
binding to cell surfaces or extracellular matrix, enzymatic degradation or active
transport into cells. These processes may be subject to complex kinetics, sometimes
involving a Michaelis-Menten formulation [6].

Finally there is another transport process that might affect the behavior of probe
molecules in brain tissue: bulk flow. Returning to the metaphor of the city, if the
city lies close to water and the water rises excessively because of heavy rain, a
hurricane or a tsunami, flooding will occur. As the water rushes down the streets it
may carry the people with it. It has been postulated for many years that bulk flow
may occur in the IS [7]. Recently there has been renewed interest in the topic
leading to the concept that waste product may be removed from the brain by bulk
flow based on the so-called glymphatic pathway [2, 3]. Here, the rate of flow versus
the rate of diffusion will be important; this may be assessed to a first approximation
using the appropriate Péclet number [8] (see also Sect. 11.4). Over periods of tens
of minutes diffusion is likely to dominate. If the molecule is very large, so that
diffusion is slow, or the period of observation involves a timescale of hours, then
flow may have a significant role [9]. The glymphatic hypothesis has been subject to
critical discussion and modeling [8, 10, 11].

6.3 Diffusion Analysis Reveals Properties of Interstitial
Space

These considerations lead us to the central question: how can a study of the dif-
fusion of small probe molecules in the brain reveal the properties described in
Sect. 6.2? To answer this requires an appropriate diffusion equation. The grounds
for this equation will not be discussed here. Suffice to say that the use of volume
averaging justifies its use (Fig. 6.3a1–a3; [1, 12]). One important definition is that
of C, which is the volume-averaged concentration of the probe molecule referenced
to the IS. In other contexts, the concentration may be referenced to the whole tissue.
These two definitions differ by a factor α. The reason for using the concentration in
the IS is that this is the concentration actually experienced by a molecular receptor
or transporter in the cell membrane or at the blood-brain barrier.

The modified diffusion equation is:

∂C
∂t

=
D
λ2

∇2C+
Q
α
− k′C−

f ðCÞ
α

+ v ⋅ ∇C ð6:3Þ

The symbol ∇2 represents the three-dimensional second spatial derivative in
whatever coordinate system is being used. The new variables appearing in Eq. (6.3)
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are a source term Q, representing the release of molecules into the IS, a function
f(C) that accounts for reversible binding or other kinetics and which, under some
conditions, may be absorbed into λ. The bulk flow velocity vector is v and forms a
scalar product with the concentration gradient, if bulk flow is deemed significant.

If several terms are set to zero, namely Q (which often may be accounted for via
suitable boundary conditions), f(C), k′ and v, Eq. (6.3) becomes

∂C
∂t

=D*∇2C ð6:4Þ

where D* =D ̸λ2, the effective diffusion coefficient in the tissue. This is the dif-
fusion equation (Chap. 2 and Eq. (2.9)) otherwise known as Fick’s Second Law.

The solutions to Eq. (6.3) are well-known for a variety of situations [1, 12, 13].
Here only two will be illustrated; the first is for a source consisting of molecules
released instantaneously at a point in the tissue. It is assumed that f(C) = 0 and
v = 0 but there is loss (k′ > 0). Then the molecules diffuse in a spherically sym-
metric cloud so the solution may be written in terms of the radial distance from the
source, r, and time, t:

Cðr, tÞ= Q
α

λ3

4Dtπð Þ3 ̸2 exp −
λ2r2

4Dt
− k′t

� �
. ð6:5Þ

The source term Q may be written as:

Q=UCf , ð6:6Þ

where U is the volume of molecules injected and Cf is the concentration. This
implies that a finite volume of molecules is released from an infinitesimal point. In
practice, for small spherical release volumes of radius rf there is little error in the
concentration predicted by Eq. (6.5) so long as r≥ 2rf . For precise work or closer
distances, an extension of Eq. (6.5) is available that takes into account the finite
radius of the injected volume [1, 14].

The plot of this equation for realistic parameters is shown in Fig. 6.3b. Equa-
tion (6.5) is essentially a Gaussian curve (see Eq. (2.10) for the one-dimensional
version) reminding us that the diffusion equation considered here may be thought of
as being generated by molecules leaving the source and executing random walks in
three dimensions in the IS subject to occasional destruction represented by k′. Note
how much smaller the curve in a free medium (agarose, a polysaccharide polymer
material in common use as a low concentration gel to provide an anti-convection
medium) is compared to that in the brain. This mainly reflects the difference in
volume fraction although the shape of the curve is also altered by the difference in
tortuosity in the two media.

If the point source is switched on at time zero and emits molecules at a constant
rate thereafter, then the solution to Eq. (6.3) is arrived at by integrating Eq. (6.5)
from time zero up to t, yielding:
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Cðr, tÞ= Q
α

λ2

8πDr
erfc

rλ

2
ffiffiffiffiffi
Dt

p +
ffiffiffiffiffi
k′t

p� �
exp rλ

ffiffiffiffi
k′

D

r !
+erfc

rλ

2
ffiffiffiffiffi
Dt

p −
ffiffiffiffiffi
k′t

p� �
exp − rλ

ffiffiffiffi
k′

D

r !" #
.

ð6:7Þ

In Eq. (6.7) ‘erfc’ refers to the complementary error function, which relates to
the area under a Gaussian curve. Equation (6.7) represents the results of a source
that is activated at time zero and continues indefinitely. In reality, the source is
terminated after some time (typically 50 s) and the falling phase of the diffusion
curve is arrived at by subtracting a delayed version Eq. (6.7) after 50 s (see [1, 13])
because the principle of linear superposition applies to solutions to the diffusion
equation. This may be thought of as activating a delayed 'virtual sink' to terminate
the real source. A plot of this equation, with both rising and falling phases, is
shown in Fig. 6.3c. Again there is a striking difference between agarose and brain.

The source termQ in Eq. (6.7) is usually generated by iontophoretic release from a
micropipette. A current I is applied to the ionic solution in the micropipette but only a
fraction nt of the current expels the ion of interest (the rest of the current moves the
counter-ion in the opposite direction); nt is called the transport number. Then:

Q= Int ̸zF ð6:8Þ

Table 6.1 Selected values of α and λ obtained with radiolabel, RTI, RTP and IOI methods

Molecule Mr dH
(nm)

D ×106

(cm2 s−1)
°C Species Region α λ Method Refs.

Sucrose 342 1 7.0 37 Rabbit Caudate 0.21 1.60 Radio [15]

TMA+ 74 <1 11.1 37 Rat Cortex 0.18–
0.22

1.54–
1.65

RTI [13]

TMA+ 74 <1 11.1 37 Mouse Cortex 0.23 1.67 RTI [18]

TMA+ 74 <1 9.82 22 Turtle cb. ml 0.31 1.44,
1.95,
1.58

RTI [19]

α-NS− 174 <1 7.60 37 Rat cb. ml 0.18 1.54 RTI [12]

Ca2+ 40 <1 9.4 34 Rat Cortex n/a 2.05* RTP [20]

AF488 547 <1 5.19 34 Rat Cortex n/a 1.54 IOI [20]

Dex3 3000 3 2.2 37 Rat Cortex n/a 2.04 IOI [21]

Dex70 70,000 14 0.47 37 Rat Cortex n/a 2.69 IOI [21]

EGF 6600 3.7 1.7 34 Rat cortex n/a 1.79 IOI [22]

BSA 66,000 7.4 0.83 34 Rat Cortex n/a 2.26 IOI [23]

Lactoferrin 80,000 9.3 0.71 37 Rat Cortex n/a 3.50* IOI [24]

IgG 150,000 10.2 0.65 37 Rat Cortex n/a 3.11 IOI [25]

Mr, relative molecular weight; dH hydrodynamic diameter; D, free diffusion coefficient. Molecules: TMA+,
tetramethylammonium; α-NS,− α-naphthalenesulfonate; AF488, Alexa Fluor 488 hydrazide (Molecular Probes,
Invitrogen, Carlsbad, California, USA); Dex3, dextran 3000 Mr; Dex70, dextran 70,000 Mr; EGF, epidermal
growth factor; BSA, bovine serum albumin; IgG, immunoglobulin G. Brain regions: caudate, caudate nucleus;
cortex, various areas of neocortex; cb. ml. cerebellum, molecular layer. Methods: Radio, radiolabel; RTI,
real-time iontophoresis; RTP, real-time pressure; IOI, integrative optical imaging. n/a, not available with this
method. *Ca2+ and lactoferrin interact with the extracellular matrix and this increases their effective tortuosity
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where z is the valency of the ion, and F is Faraday’s Electrochemical Equivalent
that relates mass to charge. Equations (6.3), (6.5) and (6.7) are readily generalized
to accommodate anisotropic diffusion [1, 13].

Equations (6.5) and (6.7) both represent the consequences of the spread of
molecules from a point source. This ‘point-source paradigm’ has led to the
development of experimental methods that will be described in Sects. 6.4 and 6.6.

In an earlier phase of research into diffusion in the brain, use was made of
radiolabeled compounds that were perfused into the ventriculocisternal spaces of
the brain [1, 5, 15]. Animals were sacrificed after various periods and the pene-
tration of the tracer determined. Both the volume fraction and tortuosity were
obtained (the latter from the one-dimensional solution to the diffusion equation).
Sucrose gave the best results (Table 6.1) and the data are in good agreement with
the more recent studies. The primary advantage of the radiotracer method is that it
may be used to study the diffusion of a wide variety of substances, so long as they
can be radiolabeled. The main shortcomings are that there is only one time point per
animal and the method has low spatial resolution.

6.4 Measuring Volume Fraction and Tortuosity with Real
Time Iontophoresis

The solutions to Eq. (6.3) may be put to good use to provide a means to measure α, λ
and k′. Equations (6.7), (6.8) form the basis of the Real-Time Iontophoresis
(RTI) method. This method was introduced in detail in 1981 by Nicholson and
Phillips [12] and has evolved over the years (Fig. 6.4), however the concept has
remained the same. Two micropipettes are inserted into brain tissue. The first is filled
with a solution containing a suitable small ion, typically tetramethylammonium
(TMA), a cation with about twice the molecular weight of K+. The TMA+ is released
by passing a current through the micropipette according to Eq. (6.8) and the
counter-ion is usually Cl−. The second micropipette is placed about 100 µm from the
first and contains an ion-exchanger that makes it an ion-selective microelectrode
(ISM).With an appropriate choice of exchanger this micropipette can be made highly
selective to TMA+ versus other major ions in the IS of the brain (Na+, K+, Ca2+,
Mg2+ and Cl−). The TMA+ ions emitted from the first micropipette diffuse
throughout the IS and a few arrive at the second micropipette where they are sensed
and, providing the ISM has been properly calibrated, the local IS concentration of
TMA, C, is measured as a function of time. Although TMA is the most commonly
used probe ion with the RTI method, other cations and anions may be employed [12].

Using non-linear curve fitting, Eq. (6.7) may be fitted to the concentration versus
time curves and the three parameters α, λ, and k′ extracted. The first two parameters
are the ones of interest and some representative values are shown in Table 6.1. The
table lists a variety of molecules along with their relative molecular weight (Mr) and
hydrodynamic diameter (calculated from D, the free diffusion coefficient, using the
Stokes-Einstein-Sutherland Equation—see Eq. (6) in Ref. [13] and Chap. 12,
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Eq. (12.3)). Table 6.1 goes on to show values of α and λ measured in different brain
regions and in different species. Earlier radiotracer measurements favored large
brain regions next to the ventricular cavities, such as the caudate nucleus of the
rabbit. Most measurements, however, have been made in the cerebral cortex of rats
using a point-source paradigm (e.g. RTI, RTP or IOI methods; see later for further
descriptions). Measurements demonstrating diffusion anisotropy were made in the
molecular layer of the turtle cerebellum.

Fig. 6.4 Evolution of the RTI-TMA Method. a Original design showing iontophoresis
micropipette on left and TMA ion-selective microelectrode (ISM) on the right lowered into
cerebellar cortex of the rat. In practice the two micropipettes were glued together with a known
spacing between tips. A trough of dilute agarose sits above the brain with known α = 1, λ = 1 to
enable D and nt to be measured. Reproduced from [12]. b Implementation by Syková and
co-workers in rat cerebral cortex showing RTI micropipettes on the right and an ISM measuring
K+ or pH on the left. Reproduced from [16]. Reprinted by permission of SAGE Publications, Ltd.
c Adaptation to brain slices. Micropipettes introduced independently with robotic manipulators
under a microscope and water-immersion objective enabling precise measurement of spacing
between micropipette tips. Use of the microscope also permitted the IOI Method to be
simultaneously employed (see Sect. 6.6). Reproduced from [17]. Reprinted with permission from
Elsevier. d RTI-TMA method employed in awake mouse cortex. Micropipettes inserted
independently and tip spacing measured with a two-photon light microscope (2PLM). Reproduced
from [3]. Reprinted with permission from AAAS

102 C. Nicholson



Table 6.1 shows that small molecules, such as sucrose (uncharged), TMA+

(monovalent cation) and α-NS− (monovalent anion) all reveal tortuosities of 1.54 –

1.67 in isotropic brain regions. Small molecules in strongly anisotropic brain
regions deviate from this range (TMA+ in turtle cerebellar molecular layer).
Molecules with much larger hydrodynamic diameters (e.g. Dex70, BSA and IgG)
show larger tortuosities, most likely because of significant interaction with the cell
walls that form the boundaries of the IS. The divalent cation Ca2+ and the protein
lactoferrin both interact with the extracellular matrix and this increases their
effective tortuosity (see later). The small molecules also reveal that the volume
fraction of the IS ranges between 0.18–0.23; the value in the anisotropic brain
region is higher, although we do not have an explanation for this. The parameter k′
is only measured with RTI to account for the small loss of TMA+ from the IS
during the measurement; this increases the accuracy of the method. Typically for
TMA+ in the rodent brain k′ = 5× 10−3 s−1 (Table 5 in [1]).

The IS probably varies in width but in many parts it may be very narrow
(∼40 nm—see Sect. 6.6) and the tip of an iontophoresis micropipette or ISM is 1–
5 µm in diameter. Hence, it may be asked why the measured value of C represents
the concentration in the IS. The answer is that the tip of each micropipette creates a
small cavity in the tissue, of the same order of magnitude as the tip, that very
rapidly equilibrates with the local IS [12].

Although the basic RTI method has remained unchanged, the supporting soft-
ware has evolved considerably as the power of personal computers has increased.
The present software consists of two custom programs written in MATLAB [26,
27]. The first is called Wanda and is responsible for controlling the experiment and
acquiring and storing the data. The second program is called Walter and performs
the curve-fitting and parameter extraction. The RTI-TMA method is visualized and
described in detail elsewhere [28].

The RTI-TMA method has been used extensively to interrogate the IS structure
in various brain regions and species under normal and pathophysiological condi-
tions (see [13] for a comprehensive review). In the anesthetized animal and in brain
slices the typical parameter values are α ∼ 0.2 (20% volume fraction) and λ ∼ 1.6
(Table 6.1). This means that 20% of brain tissue resides in the IS and that the
diffusion coefficient of a small molecule will be reduced to about 40% of its value in
water. A recent study suggests that the volume fraction in the cortex of the awake
mouse is about 14% and expands to around 23% when the animal sleeps, possibly
facilitating the clearance of waste products from the brain [3]. It is thought that
brain pathways involving adrenergic inputs are responsible for the changes in α
between sleep and wakefulness [3] and support for this conjecture has been
obtained in brain slices [29]. The finding that there is an appreciable IS in all brain
regions and species so far studied (including invertebrates with sufficiently large
brain mass—see [30]) implies that the IS is essential for brain function.

There are at least two examples of systematic deviation from the parameters
listed in the last paragraph. Just after birth, the rat cortex has a volume fraction of
40%, which declines to the adult value of 20% by postnatal day 21 [31]. Interest-
ingly, during this developmental period the tortuosity has already reached the adult
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value (∼1.6). The second example is when the brain undergoes ischemia (loss of
blood flow) or severe hypoxia (loss of oxygen supply). Under these circumstances
volume fraction falls to about 5% and tortuosity measured with TMA increases to
about 2.0 [13].

Equations (6.5), (6.6) may also be employed with TMA+ or another ion, such as
Ca2+ (see Sect. 6.7) using the Real-Time Pressure (RTP) method. In this technique
a brief pulse of nitrogen or other inert gas is used to expel the ion from the
micropipette. Because the volume released is difficult to quantify only the tortuosity
is obtained by the curve-fitting method. The RTP method is useful, however, when
iontophoresis is not reliable or when there is reason to expel more than one sub-
stance from the micropipette (e.g. [32]).

6.5 Modeling with MCell to Test Hypotheses About
Structure

The finding of widespread similarities in the values of volume fraction and tortu-
osity has led to attempts to construct models of brain cell aggregates that would
yield these values. Unfortunately the results have not been always consistent and
some models have been overly simplistic (see [13] for a brief survey of models).
One approach to resolving these issues is to use Monte Carlo simulation methods to
estimate the value of λ for a given α based on ensembles of cells with shapes that
are capable of packing three-dimensional space while maintaining a uniform IS
width. This packing property ensures that α can be varied in the range 0≤ α≤ 1.
The simplest cell type that meets these requirements is the cubic cell (Fig. 6.5) and
Tao and Nicholson [33] used the MCell program (www.mcell.org) to perform this
type of simulation. This software was originally developed by Stiles and Bartol [34]
for modeling diffusion of transmitter molecules at the neuromuscular junction
where nerve fibers connect to muscles. Surprisingly, modeling brain tissue it was
found that the tortuosity never exceeded λ = 1.225 even when α→ 0. The simu-
lations were repeated with cells in the shape of truncated octahedra and with
mixtures of rhombicuboctahedra, cubes and tetrahedra [33]. Both of these choices
pack three-dimensional space, however the results were always the same and could
be well-represented by the equation:

λ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3− αð Þ ̸2

p
. ð6:9Þ

This is related to the result obtained by James Clerk Maxwell in 1873 for the
resistivity of a dilute suspension of non-conducting spheres in a conducting med-
ium (see [33]).

In light of these findings there had to be another explanation of the higher
tortuosity routinely seen in the brain. On the basis of experiments involving
ischemic tissue [35] it was postulated that brain tissue harbored dead-space
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microdomains that transiently trapped diffusing molecules as they diffused through
the brain so delaying them [4, 36] and leading to a lower effective diffusion
coefficient. This was duly tested using MCell with models that incorporated cavities
or invaginations in the cell wall, meaning that cells were no longer convex. Other
models featured local enlargements of the IS, meaning that the IS no longer had a
uniform width [4, 36]. It was shown that such dead-spaces could indeed generate
the tortuosity seen in brain tissue (Fig. 6.5). These studies resulted in a
semi-empirical extension of Eq. (6.9) that estimated λ in the presence of
dead-spaces [36]:

Fig. 6.5 Monte Carlo simulations using MCell. a1 Basic cell represented by a cube of side
1.9 µm with an ‘atmosphere’ of IS (red dashed line). a2 These pack together with uniform
separation of 147 nm to give a volume fraction α = 0.2. TMA molecules are released from a point
location in the IS and diffuse randomly between cells. a3 After t = 0.1 s the distribution of
molecules is measured and the mean square distance of all the molecules calculated. Using
Eq. (6.11) the effective diffusion coefficient, D*, is calculated and the appropriate distribution
curve generated. This is seen to accurately fit the histogram of particle position confirming that it is
a Gaussian, however λ, calculated from Eq. (6.9) is smaller than the value measured
experimentally. b1 By introducing dead spaces by creating cavities at each corner of every
cube, while reducing the separation between cubes to 50 nm, it is possible to keep α = 0.2. b2 The
simulation is run with an ensemble of modified cubes. b3 Again, a Gaussian fit is obtained but now
λ = 1.6, in conformity with experimental data. Unpublished data from C. Nicholson
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λ=
3− α

2

� �1 ̸2 α

α− αc

� �1 ̸β

. ð6:10Þ

where αc is the volume fraction of the cavity or void space and β is an empirical
‘exit factor’ that informally captures the probability that molecules leave the cavity.
Usually, 2 < β < 3 (see Table 1 in [36]). To calculate αc, α0 is defined as the
volume fraction in the absence of dead-spaces, then α= α0 + αc.

In the initial studies of λ using Monte Carlo simulations and the MCell software
[33, 36], this parameter was estimated by counting all the molecules in a series of
concentric boxes that included many cubic cells, at a sequence of times. A simple
integration of Eq. (6.5) with k′ = 0 provided the required estimate of D* [27, 33,
36] and hence λ. This approach was also used by Kinney et al. [37] in their study of
a reconstruction of a block of brain tissue visualized with electron microscopy.
Later work [27] utilized the mean square position, 〈r2〉, of all diffusing molecules at
different times and used this to estimate D* from the well-known equation for an
ensemble of molecules undergoing a random walk (Chap. 2, Eq. (2.5)):

⟨r2⟩=2nD*t ð6:11Þ

where n is the dimension of the space (typically n = 3). This approach easily lends
itself to computing the tensor form of D* in an anisotropic medium and also appears
more accurate than the integral method.

Further work from Hrabětová and co-workers has suggested that glial cells in the
part of the brain called the cerebellum may wrap around neurons also producing an
IS geometry that delays the movement of molecules [38]. This study combined
experimental measurements using the IOI technique that will be detailed in
Sect. 6.6 together with MCell modeling and showed that over short times and
distances the diffusion of molecules was anomalous. Anomalous diffusion is
described by the equation:

⟨r2⟩=2nDt
2
dw ð6:12Þ

where dw is the anomalous diffusion exponent. When dw > 2, the phenomenon is
classified as anomalous subdiffusion; when dw = 2 the process is classical diffusion
as described in Eq. (6.11). Xiao et al. [37] found that dw was as high as 4.8 in the
granule cell layer of the rat cerebellum. This was likely because of the unusual
glomerular anatomy of this brain region [38, 39].
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6.6 Measuring Tortuosity with Macromolecules Using
Integrative Optical Imaging

The RTI method may be used with a few small ions other than TMA, including
some anions (Table 6.1; [12]) but is restricted to compounds for which an ISM may
be fabricated. Many biologically important molecules are much larger than TMA
and yet still move through the IS. Consequently it was important to devise a method
of measuring the diffusion properties of macromolecules. This was achieved when
Nicholson and Tao introduced the Integrative Optical Imaging (IOI) method [39].
The concept is to take a macromolecule to which has been attached a fluorescent
dye, release it from a micropipette by using a brief pressure pulse (because many
macromolecules are not charged) and then image the diffusing cloud of molecules
as they spread through the IS, using an epifluorescent microscope (Fig. 6.6). The
three-dimensional image is projected onto the two-dimensional sensor of a suitable
digital camera and it was shown that fitting a solution of the diffusion equation
based on Eq. (6.5) to this projected image would accurately extract the effective
diffusion coefficient and hence λ [40, 41]. The IOI data are acquired and analyzed
with custom MATLAB programs [26, 27]. As with the RTP method, the volume
fraction α cannot be obtained because pressure injection is used.

The IOI method has been employed to measure λ for dextran molecules with Mr

ranging from 3000–525,000 [13, 42] and for a variety of albumins, including
bovine serum albumin (BSA) with Mr = 66,000 [23]. Recently Thorne and
co-workers [25] measured the diffusion of Immunoglobulin G (IgG) antibody
(Mr = ∼150,000) in rat cortex. For molecules with an approximately spherical
shape the value of λ increases with size (Table 6.1) suggesting that interaction with
the ‘walls’ of the IS may become a factor. This conjecture was tested in a study of
the anesthetized rat cortex that included quantum dots with a hydrodynamic
diameter of 35 nm. Using the theory of restricted diffusion in pores [43] it was
shown that the typical width of the IS was between 38 and 64 nm, depending on
whether the IS was modeled as a set of intersecting planes or intersecting tubes [21].
As the MCell simulations (Sect. 6.5) and many electron micrographs suggest, the
spaces are probably not uniform. Some support for the non-uniformity of the IS has
come from simulating molecular diffusion in a three-dimensional reconstruction of
electron micrographs [37]. Previously, electron micrographs had been interpreted to
imply that the IS was about 20 nm wide but it is now recognized that the IS is
almost always greatly reduced in the preparation of such material [21, 44, 45].
Based on the quantum dot data mentioned above and restricted diffusion theory
together with data suggesting reptation of dextrans [42], a consensus is beginning to
emerge that the typical width of the IS is about 40 nm [46], although the pre-
cise meaning of this value is not clear because some regions of the IS are likely to
be expanded into dead-spaces.

Attempts have been made to apply two-photon microscopy for IOI imaging [47]
but the small volume sampled by this technique seems to lead to a poor
signal-to-noise ratio so the results have been disappointing to date.
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6.7 Probing the Extracellular Matrix

The interstitial space contains not only a salt solution but also an extracellular
matrix of glycosaminoglycans and proteoglycans. Typical constituents are chon-
droitin sulfate, heparan sulfate and hyaluronan along with numerous proteins that
may link elements of the matrix together or anchor them to cell membranes. An
important feature of the extracellular matrix is that it has many negative charges

Fig. 6.6 a1,2 Experimental setup for IOI diffusion measurements. Images of fluorescent probe
diffusion were captured by a cooled charge-coupled device (CCD) camera through a microscope
with a × 10 water-immersion objective after pressure ejection from a micropipette into either dilute
agarose (a1) or somatosensory cortex (a2). b Dextran diffusion in rat cortex. Representative
pseudo-color images (red indicates high concentration, blue low) after 3 kDa dextran labelled with
Texas Red (TR-dex3) ejection into agarose or cortex. Scale bars 200 µm. c Fluorescence intensity
profiles and theoretical fits for the images yielding D = 2.3 × 10−6 cm2 s−1 and D* = 4.5 × 10−7

cm2 s−1. Reproduced from [21]
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associated with the sulfate groups and an obvious question is whether these affect
the diffusion of ions or charged molecules.

In a study that used the Real-Time Pressure (RTP) method, divalent Ca2+ ions
were pressure ejected from a micropipette and their diffusion measured with Ca2+-
selective ISMS (Fig. 6.7; [20]). The analysis was based on Eqs. (6.5), (6.6)
(Fig. 6.7a). It was found that D* was unusually low (i.e. tortuosity was unusually
high) but was increased when the charged sites on the chondroitin sulfate molecules
were removed with a suitable enzyme (Fig. 6.7b, c). In contrast, application of the
enzyme did not affect the diffusion of the monovalent TMA+. This suggested that
the negative sites on the matrix normally may be screened by the high concentration
of Na+ in the IS (∼150 mM), but the higher charge density of divalent Ca2+ is able
to displace the Na+ and transiently bind to the chondroitin sulfate component of the
matrix.

In another set of experiments using the IOI technique with fluorescently labeled
lactoferrin, a molecule with Mr = 80,000, there was reason to think that this
molecule transiently bound to the heparan sulfate component of the matrix [24].
The evidence was that when lactoferrin was complexed with heparin, for which
lactoferrin had a higher affinity than with heparan sulfate, the larger complex dif-
fused faster than the uncomplexed molecule. This suggested that when the

Fig. 6.7 Diffusion of Ca2+ before and after chondroitin sulfate had been cleaved with enzyme.
a Control record of Ca2+ diffusion curves in brain slice from neocortex using RTP method (blue
line data, black line fit with Eq. (6.5)) under normal conditions. b Comparison of measurements of
D* in control conditions and after the enzyme chondroitinase ABC had been applied to the brain
slice. Diffusion in treated slice is significantly faster. c Immunohistochemical staining of
oligosaccharide stubs confirms the cleavage of chondroitin sulfate component of extracellular
matrix with chondroitinase ABC. Reproduced from [20]
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lactoferrin was complexed it no longer transiently bound to the heparan groups in
the extracellular matrix.

These results lend themselves to simulations using MCell, which incorporates
bimolecular reactions. Because the experimental data may be fitted to the diffusion
equation, it may be assumed that interaction of either Ca2+ or lactoferrin with
components of the extracellular matrix should be represented by a fast-equilibrium
reaction scheme (see Chap. 14 in [48]).

The development of this argument may be sketched as follows (see also [27]).
Let C represent the concentration of the diffusing substance in IS, B, concentration
of binding sites of the matrix and S, concentration of complex between substance
and matrix, then the binding and unbinding processes can be described by a
second-order (bimolecular) reaction scheme:

C+B⟶
kf

S, ð6:13aÞ

S⟶
kb C+B, ð6:13bÞ

and kf is the forward rate constant associated with Eq. (6.13a) and kb the backward
rate constant associated with Eq. (6.13b). Omitting the source, loss and flow terms,
and following [48], the diffusion equation may be written as:

∂C
∂t

=D*∇2C− kfC B− Sð Þ+ kbS ð6:14Þ

and the kinetics described by:

∂S
∂t

= kfC B− Sð Þ− kbS. ð6:15Þ

Locally, the reaction process is assumed to be much faster than the diffusion
process and there is equilibrium between the mobile and complexed molecules, so
the derivative on the left hand side of Eq. (6.15) is zero; it is also assumed that
B≫C so:

S=RC, ð6:16Þ

where R is the dimensionless parameter R = kf B/kb. Note that this may be written
R = B/KD where KD = kb/kf is the equilibrium dissociation constant. This is
essentially the Law of Mass Action applied to an appropriate local region.

Comparing Eq. (6.14) and Eq. (6.15) it is clear that the diffusion equation with
the reaction process may be written as:
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∂C
∂t

=D*∇2C−
∂S
∂t

, ð6:17Þ

then substituting for S in Eq. (6.17) using Eq. (6.16) results in

∂C
∂t

=
D*

1 +R
∇2C, ð6:18Þ

and the basic diffusion equation is recovered with a new effective diffusion coef-
ficient D*

mat =D* ̸ 1+Rð Þ. There is a lack of consistency in this argument because
the time derivative of S is regarded as zero in Eq. (6.15) but non-zero when the
substitution is made in Eq. (6.17). The result may be derived more rigorously,
taking into account appropriate time and length scales and the approach to local
equilibrium [49, 50]. The result is also quoted by Crank (Chap. 14 in [48]) who
simply assumes the validity of Eqs. (6.16) and (6.17).

The forgoing may be interpreted as saying that the final tortuosity is the product
of the tortuosity arising from the geometry (λg) multiplied by the tortuosity arising
from the interaction with the matrix (λm) (see [27] for some preliminary verification
using MCell):

λ=

ffiffiffiffiffiffi
D
D*

r ffiffiffiffiffiffiffiffiffiffiffi
1+R

p
= λg × λm. ð6:19Þ

6.8 Conclusions

A molecule executing random walks in a structured environment will, over time,
explore the entire connected space. If its progress can be tracked then the structure
will be revealed. Modern single-particle tracking methods do just that but neces-
sitate the observance of a great many trajectories to arrive at meaningful infor-
mation [51]. A recent study with single-walled carbon nanotubes (SWCNT) hints
that it may be possible to measure the nanoscale organization of the ECS with
single-particle tracking [52]. In the ‘point-source paradigm’ approach, outlined
here, a vast number of molecules are released from a single location and the
resulting concentration sampled in space and time. This effectively reveals the
structure, embodied in the two parameters, volume fraction (α) and tortuosity (λ),
because there is a rigorous relationship through the diffusion equation between the
microscopic behavior of a wandering molecule and the macroscopic concentration.
The most informative parameter revealed by diffusion is the tortuosity, which
measures the hindrance imposed on a diffusing molecule by the obstacles,
dead-spaces, reversible binding reactions and other factors (Fig. 6.8). The volume
fraction is a simpler parameter but often of great interest to a biologist. Deviations
from a pure diffusion process may also demonstrate loss or clearance of molecules
from the IS, which is also valuable information.
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An underlying assumption involved in the interpretation of data and modeling
the IS is that a molecule within the IS that is not in contact with the bounding cell
walls or with the extracellular matrix, moves in an essentially free medium. A re-
cent study [53] used Time-Resolved Fluorescence Anisotropy Imaging (TR-FAIM)
to measure the local viscosity in the ECS and suggested that the diffusion coefficient
of a small probe molecule (Alexa Fluor 360, Mr = 349) was reduced to 70% of that
in a true free medium. Along with the SWCNT study mentioned above, this is
another example of the increasing ability to resolve the IS on a nanometer scale.

Apart from revealing structure of the IS, these parameters arrived at through
analysis of diffusion have great utility in designing techniques for drug delivery to
the brain [54]. Unfortunately, getting drugs into the brain is difficult. The
blood-brain barrier (BBB) around the penetrating blood vessels keeps out most
substances unless the BBB has specific transporters (e.g. for glucose). Relatively
small lipophilic molecules can cross the membranes of the cells forming the BBB
but the factors that govern permeability are complex [55]. Methods of drug delivery
such as convection-enhanced delivery, which is based on introducing a cannula into
the brain and pressure injecting the drug, rely on a combination of induced bulk

Fig. 6.8 Several factors influence the diffusion of a molecule in the IS: a geometry of the spaces,
which imposes a delay on a diffusing molecule compared with its behavior in a free medium;
b dead-space microdomain where molecules lose time exploring a dead-end (such a microdomain
may resemble a “pocket” as shown, but it may also take the form of local enlargement of the IS or
glial wrapping of a neuron); c obstruction by extracellular matrix molecules such as hyaluronan;
d binding sites for the diffusing molecule either on cell membranes or extracellular matrix; and
e fixed negative charges, also on the extracellular matrix, that may affect the diffusion of charged
molecules. Reproduced from [13]
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flow and drug diffusion and have some utility, especially when combined with
magnetic resonance imaging (MRI—see also the introduction to MRI given in
Sect. 12.5, notably Fig. 12.14) [56].

Studying the spreading of molecules in the interstitial (or extracellular) space of
the brain is revealing much new information about this hitherto inaccessible region
that suggests it is not just a ‘space’ but a complex and essential microenvironment.
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Chapter 7
Turbulent Diffusion in the Atmosphere

Manfred Wendisch and Armin Raabe

7.1 Introduction

For good reasons, meteorology is often referred to as physics of the atmosphere.
The motions of air parcels (called wind) and several other atmospheric processes,
such as photon transport through the atmosphere, phase transitions during cloud
evolution (water vapour diffusion growth of cloud droplets and ice crystals), and
many others are of stochastic nature. They can often be considered and quantita-
tively be described as diffusion phenomena.

In this context, the term ‘turbulent diffusion’ is commonly used in meteoro-
logical applications. It refers to the fact that, in addition to the mean motion of air
parcels (mean wind), they are subject to irregular (stochastic) fluctuating move-
ments, which takes the air parcel both in wind direction and perpendicular to it.
Since more than a century, meteorologists have attempted to quantify this problem.
However, even today, using powerful computers and sophisticated measurement
techniques, the atmospheric turbulent system is too complicated to allow a stringent
description and prediction of turbulent atmospheric motions. This is one of the
major reasons why weather forecast is still associated with significant uncertainties.

This chapter deals with an approach towards a physical description of the
spreading of pollution in a turbulent atmosphere. We may witness this phenomenon
quite commonly by, e.g., following the smoke of a chimney or the steam emerging
from a power plant. It is remarkable that the equations to quantify atmospheric
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turbulence reveal close similarities with the formalism provided by the Fick’s
diffusion laws, Eqs. (2.6) and (2.9).

7.2 Fick’s Laws Applied for Turbulent Diffusion

The key problem is the prediction of the temporal changes of the concentration
distribution c of a pollutant as a function of time and space. In our considerations
we follow Reynolds [1] who was one of the first describing the mass transfer in a
turbulent atmosphere.

The pollution is represented by its concentration c r ⃗, tð Þ (in kg m−3), which is a
function of space (represented by the position vector r ⃗) and time (indicated by the
symbol t). For the components of the position the two equivalent notations are
applied in the following: xi, with i = 1, 2, 3, and x, y, zf g. The components of the
wind vector (air velocity) v ⃗ r ⃗, tð Þ will be denoted by the two following notations: vi,
with i = 1, 2, 3, and u, v,wf g.

Local changes of the concentration of a pollutant are caused by sources and sinks
P r ⃗, tð Þ as well as by movements of air for non-uniformly distributed pollution:

∂c
∂t

=P− ∑
3

k=1
uk r ⃗ð Þ ∂c

∂xk
. ð7:1Þ

The latter influence is represented by the second term on the right-hand side of
Eq. (7.1), from where flux in, e.g., +x direction is seen to give rise to increasing
local concentration (∂c

∂t >0Þ for decaying concentration in x direction (i.e. for
∂c
∂x <0). This second term in Eq. (7.1) is the scalar product of the wind vector and
the gradient of the pollutant concentration representing the advection/convection of
the pollutant. For further treatment, Reynolds considered the stochastic character of
turbulence by decomposing the physical variables

c= c ̄+ c′

uk = uk̄ + u′k
P= P̄+P′

ð7:2Þ

into their averaged values c ̄, uk̄, P̄ and the deviations c′, u′k,P
′ from the average due

to turbulence.
With these relations, Eq. (7.1) is rearranged to:

∂c
∂t

=P− ∑
3

k=1
uk

∂c
∂xk

− ∑
3

k=1

∂ u′kc′
� �
∂xk

ð7:3Þ
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Derivation of Eq. (7.3) assumes the following premises:

(i) Though the time dependence of the respective quantities can be measured
with high precision, it is still their average value one is generally interested
in.

(ii) After inserting Eqs. (7.2) into Eq. (7.1), deviations from the average disap-

pear due to the averaging (c′ =0, u′k =0,P′ =0Þ. This, however, does not

hold for non-linear products such as u′k r ⃗ð Þ ∂c′
∂xk

since the two factors are,
mutually, correlated.

(iii) For attaining the third term on the right-hand side of Eq. (7.3) the equation of
continuity (Eq. 2.8) has to be applied for velocities within an incompressible

fluid,∑3
k=1

∂u′k
∂xk

=0. This relation indicates that the wind divergence vanishes.
This relation is equivalent with the reasonable requirement that there are
neither sinks nor sources in the movement of air in the atmosphere.

The last term of Eq. (7.3) describes the temporal changes of the averaged field of

concentration c ̄ by the divergence ∑3
k=1

∂ u′k ⋅ c
′

� �
∂xk

of a quantity u′k ⋅ c′
� �

, which is

referred to as a turbulent flux (density) of the pollutant with physical unit of
(kg m−2 s−1). The turbulence causes a spreading of the various air parcels including
the pollutant. Adapting the scheme of Fig. 2.2a to the present situation, the tur-
bulent fluxes may immediately be assumed to be proportional to the spatial con-
centration gradient (see the second term on the right-hand side of Eq. (7.3)). In
analogy with Fick’s 1st law (Eq. 2.6) the following relation is obtained:

u′k ⋅ c′ = −Kc, k
∂c
∂xk

ð7:4Þ

with Kc, k referred to as the turbulent diffusion coefficient in units of m2 s−1.
In Sect. 7.3 the mechanisms of turbulent diffusion will be considered in more

detail. It should already be noted, however, that the resulting diffusivities vary with
both the height z and the space direction considered.

With Eq. (7.4), the explicit notation of Eq. (7.3) becomes:

∂c
∂t

=P− u
∂c
∂x

− v
∂c
∂y

−w
∂c
∂z

+
∂

∂x
Kc, x

∂c
∂x

� �
+

∂

∂y
Kc, y

∂c
∂y

� �
+

∂

∂z
Kc, z

∂c
∂z

� �
ð7:5Þ

This equation represents the diffusion equation of an atmospheric constituent
with concentration c in a turbulent atmosphere. It will be used, in the remainder of
this chapter, to introduce into some diffusion-related atmospheric phenomena.

First, a coordinate system is chosen, which drifts with the mean wind vector, i.e.
u ̄= v ̄= w̄=0. An initial, instantaneous source emitting an amount Q* (in kg) of
pollution at position rQ⃗ is assumed. It is represented by the initial condition
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c x, y, z, t=0ð Þ=Q*δ r ⃗− r ⃗Qð Þ, with δ r ⃗− r ⃗Qð Þ denoting the Dirac delta function (withR
δ r ⃗− rQ⃗ð Þ ⋅ dxdydz=1). The turbulent diffusion coefficients Kc, k are assumed

constant over the considered space scale so that ∂

∂x Kc, x = ∂

∂y Kc, y = ∂

∂z Kc, z =0. In this
way, following e.g. Etling [2], Eq. (7.5) is transferred into the well-known diffusion
equation, Fick’s 2nd law, Eq. (2.9):

∂c ̄
∂t

=Kc, x
∂
2c ̄
∂x2

+Kc, y
∂
2c ̄
∂y2

+Kc, z
∂
2c ̄
∂z2

, ð7:6Þ

with the solution, see also Eq. (2.10):

c ̄ r ⃗, tð Þ= Q*

4 ⋅ π ⋅ tð Þ3 ̸2 ⋅ Kc, x ⋅Kc, y ⋅Kc, z
� �1 ̸2 ⋅ exp −

x− xq
� �2
4 ⋅Kc, x ⋅ t

−
y− yq
� �2
4 ⋅Kc, y ⋅ t

−
z− zq
� �2
4 ⋅Kc, z ⋅ t

" #

ð7:7Þ

Equation (7.7) describes the distribution of the pollutant by turbulence over an
enlarging volume. The range of pollution scales with the Einstein law of diffusion,

Eq. (2.11), following the relation ⟨ xk − xkq
� �2

⟩=
ffiffiffiffiffiffiffiffiffiffiffiffi
2Kc, kt

p
. The concentration at the

position of the source is diluted in proportion with t − 3 ̸2.
As a next step the more realistic scenario of a continuous chimney emission with

a stationary point source is considered, where the resulting concentration has to
obey the condition of stationarity ∂c ̄

∂t =0. Transport is assumed to occur in x direc-
tion only, so that v=w=0. The flow in x direction is assumed to exceed turbulent

diffusion ( Kc, x
∂
2 c̄
∂x2

			 			≪ u ̄ ∂c ̄
∂x

		 		) so that, starting with Eq. (7.5), one ends up with:

u ̄
∂c ̄
∂x

=Kc, y
∂
2c ̄
∂y2

+Kc, z
∂
2c ̄
∂z2

. ð7:8Þ

The structure of Eq. (7.8) is easily reestablished from Eq. (7.6), considering that
differentiation with respect to the x coordinate disappears on the right-hand side,
and that differentiation with respect to time t is replaced by that with respect to x,
with an additional factor u appearing on the left-hand side. Correspondingly, in the
solution of Eq. (7.8),

c ̄ x, y, zð Þ= Q ̇

4 ⋅ π ⋅ x ⋅ Kc, y ⋅Kc, z
� �1 ̸2 ⋅ exp −

u ̄
4x

⋅
y2

Kc, y
+

z− hð Þ2
Kc.z

 !" #
ð7:9Þ

the structure of Eq. (7.7) is also maintained. Instead of the quantity zq the height h is
introduced, which could represent, e.g., the height of a smoke-emitting chimney. t is
replaced by x ̸u which constitutes the time needed for covering the distance x at
travelling speed u. The value Q ̇ (in kg s−1) quantifies the efficiency of the source of
pollution, which is positioned at x = 0, y = 0 and z = h (the height of the pollution
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source). Equation (7.9) is widely used in applied meteorology to assess the con-
centrations of pollutants in the surroundings of a continuous point source. Two
ways for illustrating its significance are shown in Fig. 7.1.

Figure 7.1a shows the simplest pattern where the turbulent diffusivities in hor-
izontal and vertical directions are equal. A more detailed illustration is provided in
(Fig. 7.1b). Here it is taken into account that the centerline of the plume does not
start with the mouth of the chimney. Immediately after emission, smoke rather
continues to be shifted upwards by buoyancy, till final temperature equilibration
with the surroundings. Turbulent spreading differs notably in vertical and horizontal
directions and is, moreover, a function of height z. It is, in particular, considered
that the pollution will eventually reach the surface with all the negative conse-
quences known from regions suffering under negligence of environmental
protection.

Figure 7.2 illustrates some of the scenarios resulting from turbulence under the
various atmospheric conditions. These scenarios are mainly controlled by the
vertical gradient of the temperature in the atmosphere, which determines the at-
mospheric stratification (i.e. the temperature profile in vertical direction). These
gradients are related to the change in temperature of a rising air parcel as compared
to the respective ambient temperature of the environment. During ascent of an air
parcel in the atmosphere, the parcel is adiabatically cooled (adiabatic refers to a
process with negligible heat exchange between the air parcel and its surrounding
air, which is well met for rising air parcels in the atmosphere due to the low thermal
conductivity of air). The energy needed for the expansion of the air parcel during
the ascent is consumed on the expense of the internal energy of this parcel, leading
to a decrease in its temperature. This is the situation illustrated in Fig. 7.2 with the
lines in red. The actual scenario depends on the stratification.

(a)  Etling [2] (b) Stockie [3]

Fig. 7.1 Spatial distribution of pollution originating from a continuous source of emission,
predicted by Eq. (7.9) for turbulent diffusion (“Gaussian Plume”): Schematic overview (a after
Etling [2]) and detailed representation (b after Stockie [3]), which also demonstrates the
overshooting (H) of the emission height (h) and the contact of the plume with the Earth surface.
This allows to describe the deposition of emitted substance in the surroundings of a continuous
source
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In the case of the uppermost example shown in Fig. 7.2, the temperature change
in the surrounding ambient air exceeds that of the rising air parcel. A rising air
parcel will thus be surrounded by air, which (as compared to the air parcel) will
become progressively colder during ascent. This results in a continuous increase of
the buoyancy of the rising air parcel, just as in a continuous decrease of buoyancy
for downward movement, with the effect of an essentially unlimited movement of
the air parcel both up- and downwards.

This unrestricted movement in either direction is, obviously, inhibited in the
opposite case shown further below. Now, with the temperature gradient in atmo-
sphere below that of the rising air, the plume is stabilized in vertical direction. Fume
confinement to a certain range becomes more stringent with further decreasing of
the atmospheric temperature gradient (third representation), resulting in fan-like
distributed plumes.

Temperature profiles in the atmosphere may exhibit a vertical inversion as
exemplified in the bottom of Fig. 7.2. Such situations may result from different
winds (shear) in different heights. As an example, the wind may carry warmer air on
top of colder air. Under these conditions, smoke is kept below a certain altitude.
Such situations are well known for enabling beautiful views over the tops of the
mountains, with a sea of fog in the valleys in between.

Fig. 7.2 Differently shaped plumes for visualizing the different conditions in stratification
(vertical thermal structure of atmosphere) causing turbulent diffusion (schemes from Bierly and
Hewson [13] see Hupfer and Kuttler [4])
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7.3 Quantification of Turbulent Diffusion

So far the stochastic character of movement in the atmosphere was discussed
without worrying about its origin. To establish a quantitative correlation between
the fluctuating velocities in air, the law of continuity is applied to the density of the
mechanic momentum flux in space:

ρ ⋅ v ⃗= ρ ̄ ⋅ v ⃗+ v ⃗′
� � kg m

s
m3


 �
, ð7:10Þ

rather than to the spatial density of particles, i.e. concentration c, as considered in
Eq. (7.1). By replacing the concentration c by the momentum flux and assuming
incompressibility ρ= ρ ̄= const.ð Þ, analogous reasoning (see Eq. (7.3) and items
(i) to (iii) following this equation) leads to:

ρ
∂u ̄
∂t

=P ̄u − ρ ⋅ u ̄ ⋅
∂u ̄
∂x

− ρ ⋅ w̄ ⋅
∂u ̄
∂z

− ρ ⋅
∂ u′ ⋅ u′
� �
∂x

− ρ ⋅
∂ w′ ⋅ u′
� �

∂z
ð7:11Þ

To simplify the situation, a two-dimensional wind v ⃗ u, 0,wð Þ with a horizontal
component in x- and a vertical component in z-direction is assumed, which varies
with altitude z. We furthermore consider the idealized conditions of horizontal
homogeneity and of stationarity. The latter condition implies that the averaged
momentum flux ρu does not change with time (the wind has a constant velocity).
There should be neither sources nor sinks and, finally, it is taken into account that
the averaged vertical velocity w̄ near the Earth surface must be zero. Then
Eq. (7.11) is easily seen to reduce to:

ρ ⋅
∂ w′ ⋅ u′
� �

∂z
=0 ð7:12Þ

This means that under such conditions the quantity τ= ρ ⋅w′u′, referred to as the
vertical flux of turbulent momentum, remains invariant with both time (due to the
required stationarity) and altitude z.

Since the vertical gradient ∂u
∂z is easily recognized as the driving force for the

generation of turbulent momentum fluxes one may note (see also Boussinesq [5])

τ= ρ ⋅ w′u′
			 			= ρ ⋅Ku, z ⋅

∂u ̄
∂z

ð7:13Þ

where the factor of proportionality Ku,z has the dimension of a diffusivity and may,
moreover, be understood to assume the role of the turbulent diffusion coefficient,
similar that introduced with Eq. (7.4).
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Following Prandtl [6], velocity fluctuations may be understood as being caused
by the ascent or decline of air masses over a certain length l referred to as the
Prandtl mixing length. The magnitude u′ of velocity fluctuation may thus be esti-
mated as

u′ = u z+ lð Þ− u zð Þ= u zð Þ+ l ⋅
∂u
∂z

+⋯− u zð Þ≈ l ⋅
∂u
∂z

ð7:14Þ

where, in the second equation, we have made use of a Taylor expansion. With the
approach given by Eq. (7.14), fluctuations in velocity are seen to become the larger,
the larger the gradient in mean velocity is. Taking into account that, as a conse-
quence of continuity, u′ =w′, Eq. (7.13) is transformed into:

τ= ρ ⋅ w′u′
			 			= ρ ⋅ l2 ⋅

∂u ̄
∂z

� �2

ð7:15Þ

By comparison with Eq. (7.13) the expression for the turbulent diffusivity is
obtained:

Ku = l2 ⋅
∂u
∂z

ð7:16Þ

Since turbulent mixing is commonly diminished approaching the surface,
Prandtl implied, as a first-order estimate, a direct proportionality between the
mixing length l and the height z above the surface. In flow-dynamic experiments v.
Karman [7] determined a value of 0.4 for the factor of proportionality. The factor is
referred to as the v. Karman constant κ:

l= κ ⋅ z ð7:17Þ

It is common to abbreviate the ratio τ ̸ρ= u2* m2 ̸s2½ �. The parameter u* is the
so-called friction or shear stress velocity:

u* =
ffiffiffi
τ

ρ

r
=

ffiffiffiffiffiffiffiffiffiffiffi
jw′u′j

q
= l ⋅

∂u
∂z

= κ ⋅ z ⋅
∂u
∂z

. ð7:18Þ

By inserting u* into Eq. (7.16), the turbulent diffusivity appears in the form:

Ku = l ⋅ u* = κ ⋅ z ⋅ u*. ð7:19Þ

By comparing Eq. (7.19) with the corresponding gas diffusion, as provided by
conventional gas-kinetic theory, the positions of the mean free path and of the mean
thermal velocity are represented by the mixing length and the shear stress velocity
(representing a measure of the velocity fluctuations).
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Assuming that the dependence of the mean velocity u zð Þ on height z above the
ground exceeds that of the shear stress velocity and the v. Karman constant,
Eq. (7.18) can be transferred into the following integral relation:

u*
κ
∫
z

z0

dz
z
= ∫

u zð Þ

u=0
du, ð7:20Þ

which is solved yielding:

u zð Þ= u*
κ

⋅ ln
z
z0

� �
. ð7:21Þ

z0 is referred to as the aerodynamic roughness of the ground; it denotes the
height above the ground (i.e. above z = 0) where the mean velocity of wind may be
considered to be zero. It is a function of surface texture and may vary with the
conditions, such as the roughness over sea surface, which increases with increasing
wind velocity (as a consequence of increasing turbulences of the water waves),
while the opposite could be true with a meadow of high grass when—at stormy
weather—the leaves/grass haulms are bent to the ground, which decreases surface
roughness.

Equation (7.21) constitutes a so-called logarithmic wind profile (Prandtl [6])
under near neutral stratification. Extensions of this theory to stable and unstable
stratification conditions (see discussion of Fig. 7.2) are described using the
Monin-Obukhov-similarity theory (Monin and Obukhov [12]).

As a prerequisite of the dependence given by Eq. (7.21), u* (and thus the flux of
mechanic momentum) is assumed constant over the considered layer in the atmo-
sphere. Via Eq. (7.21), a measurement of the increase of wind velocity, u zð Þ, with
increasing height z provides a direct measure of both u* and z0. Furthermore, by
inserting the resulting value of u* into Eq. (7.19), the turbulent diffusivity is
derived, which increases linearly with height z.

Figure 7.3 illustrates an example of such measurements and the subsequent data
analysis, which comply with the formalism developed above. The measurement
results confirm, in particular, the predicted logarithmic wind profile. The aerody-
namic roughness z0 of the ground is determined to be 1 mm, based on the two
measured profiles. The surface of the sandy ground in the considered example is
essentially unaffected by the considered wind velocities. The turbulent diffusivities
increase with increasing wind velocity (comparing the two profiles P2 with P1) and
with increasing height z. The latter dependence is in close agreement with the
prediction given by Eq. (7.19). The turbulent diffusivities, moreover, exceed the gas
diffusivities (which are, in the atmosphere, of the order of 10−5 m2 s−1) by several
orders of magnitude. As a consequence of the turbulences, atmospheric mixing is
thus seen to occur at much higher rates than it would be expected due to mere gas
phase diffusion (Table 7.1).
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7.4 Conclusions

The formalism presented in this chapter to quantify stochastic mass transfer in the
atmosphere by turbulent diffusion is based on the mixing theory introduced by
Prandtl almost a century ago. It implies the definition of a mixing path length.
Reasonable agreement between observations and theory was attained by assuming
that the mixing path length is proportional to the height above ground, with a factor
of proportionality (referred to as the v. Karman constant) κ = 0.4. There are
numerous attempts to determine the v. Karman constant on the basis of theoretical
estimates, which contributes to a stringent theory of turbulent diffusion. Baumert
[8], e.g., succeeded in developing a self-consistent system of differential equations

Fig. 7.3 Measurement of wind profiles over sandy ground. Wind velocity is measured by five
sensors (U1–U5) at five different altitudes (z1–z5). At two times of measurement (P1, P2), the
recorded gradients in wind velocities are exploited for determining the shear stress velocity u* and
the aerodynamic roughness z0. All data are summarized in Table 7.1, jointly with the coefficients
of turbulent diffusion determined via Eq. (7.19)

Table 7.1 Primary data of the measurement of wind velocity illustrated by Fig. 7.3 and values of
shear stress velocity u* and turbulent diffusivity Ku derived from these data on the basis of
Eqs. (7.18) and (7.19) at different altitudes z (with the aerodynamic roughness z0 in both cases
determined to be 1 mm)

U(z = 10 m) u* z: 0.5 m 1 m 2 m 4 m 10 m 20 m

P1 4.8 m/s 0.21 m/s Ku (m2/s) 0.042 0.084 0.168 0.336 0.84 1.68
P2 15.7 m/s 0.68 m/s Ku (m2/s) 0.136 0.272 0.544 1.088 2.72 5.44
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for describing turbulent diffusion in the atmosphere, yielding a value of
κ= 2πð Þ− 1 ̸2 = 0.399, in remarkable agreement with the observations. However,
irrespective of a time period of more than a century between Reynolds [1], Prandtl
[6], Monin and Obukhov [12] and Baumert [8], even today a generally accepted
theory to describe atmospheric turbulence is still missing.

Other atmospheric turbulence models are based on approaches where turbulent
fluxes are described by the superposition of turbulent eddies of different size.
Conceptions of this type were promoted by Richardson [9] and Kolmogorov [10];
they conclude with spectral turbulent diffusivities, which take into account that a
turbulent flow consists of different whirls of different size—a so called spectrum of
turbulent eddies. Models of spectral turbulent diffusion are nowadays exploited for
the analysis and interpretation of turbulence measurements of high spatial and
temporal resolution. They are, thus, an important constituent of weather prediction
models considering turbulence in the atmosphere (large eddy simulation, Sagaut
[14]).

By the conceptions of Reynolds/Prandtl and of Richardson/Kolmogorov, the
same phenomenon is described from different perspectives. A unified view on
turbulent diffusion might be based on either of them. The development of such an
all-embracing view, however (see, e.g., Kraus [11]), will continue to remain a
challenging task for both observational measurement and theoretical modelling for
the next decades.
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Chapter 8
Hot Brownian Motion

Klaus Kroy and Frank Cichos

8.1 Introduction

Brownian motion, as characterized by Albert Einstein in 1905 [1], is the thermal

motion of suspended particles that are small enough to jiggle perceptibly, but large

enough to be visible in the microscope. This sort of “motion from heat” is not for-

bidden by the second law of thermodynamics, as incorrectly suggested by Wilhelm

Röntgen in a letter to Einstein, but rather reveals its atomistic origin. Indeed, Jean

Perrin received the Nobel prize in 1926 “for proving atoms real”, on this basis, so

that even the “Energetiker” group around Wilhelm Ostwald no longer openly denied

their existence. And some 35 years later, Richard Feynman started his famous lec-

tures [2] with the words: “If, in some cataclysm, all of scientific knowledge were to

be destroyed, and only one sentence passed on to the next generation of creatures,

what statement would contain the most information in the fewest words? I believe it

is [. . . ] that all things are made of atoms—little particles that move around in perpet-

ual motion, attracting each other when they are a little distance apart, but repelling

upon being squeezed into one another”.

In the following, we give a non-technical introduction
1

to recent developments

that extend Einstein’s work and the notion of Brownian motion to conditions very

far from equilibrium. In particular, we consider colloidal particles in non-isothermal

solvents, i.e., under conditions arising whenever either the particles themselves,

1
For further introductory reading see Refs. [3–6]. The names of our collaborators (partly funded

by the Deutsche Forschungsgemeinschaft and the Humboldt foundation), who did much of the

original work reviewed here, can be found in the references, at the end.
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selected container walls, or any other embedded (nano-)structures are locally heated

above the ambient temperature. Such “hot” conditions invalidate, in one stroke, all

of our conventional statistical mechanics tools, such as equilibrium ensembles and

Boltzmann factors. The latter are the main tools used to leapfrog over the forbid-

dingly complicated microscopic dynamics of many-body systems, yet to still achieve

quantitative control on an atomistic basis. But they generally cease to work far from

equilibrium. So it seems as if hot Brownian motion destroys all the nice concepts that

Brownian motion once helped to establish. It is not quite that bad, in the end. Below,

we explain how to deal with such complicated non-isothermal situations, even if they

involve directed autonomous particle motion, viz., active swimming.

Although there is no lack of motivation for studying the physics of swimmers

[7], hot Brownian motion provides compelling intrinsic reasons to do so. Namely, in

absence of special symmetries, any nanoparticle in a non-isothermal solvent is auto-

matically a “hot Brownian swimmer” and thereby a realization of a most promising

swimmer design in terms of potential (scalable, biocompatible, sustainable, steer-

able, . . . ) applications [8]. Vice versa, all so-called active Brownian particles or

microswimmers (heated or not) are “hot” in the sense that their diffusion is strongly

enhanced by their non-equilibrium self-propulsion [9]. Swimming moreover gives

rise to unconventional inelastic interactions with other particles and container walls.

These may cause unusual effects akin to those observed in agitated granular gases

[10] or even cell colonies [11], and they seriously undermine apparently unimpeach-

able thermodynamic notions such as pressure and surface tension [12]. In general,

hot Brownian particles and swimmers are thus not easily treated along the same lines

as conventional colloids. And a world made of such objects as its “atoms” may seem

infinitely more complicated than our actual physical world. Yet, it actually is a very

good toy model for living matter, which relies on a most delicate interplay between

nonequilibrium (“active”) and equilibrium (“passive”) Brownian motion to fulfill its

complex tasks (see e.g., [5, 13–15]). Such models should thus bring us a good step

closer to linking the notions of Brownian motion and diffusion to fluctuation phe-

nomena studied in other disciplines, some of which are addressed in this volume.

8.2 Brownian Motion

To understand hot Brownian motion, it is useful to first recall a few facts about ordi-

nary equilibrium Brownian motion. A qualitative understanding on the level of Ein-

stein’s pioneering work [1] will suffice for the remainder. Einstein looks at small

particles suspended at low concentration in an isothermal solvent, which could for

example be pollen grains in water or aerosols in still air. Assuming the particles

themselves to be made out of a somewhat denser material than the surrounding sol-

vent, gravity always pulls them downwards. As a consequence, if you follow a par-

ticle over time, you will always find it drifting downwards, on average. Yet, random

Brownian fluctuations prevent the particle ensemble from settling completely to the

ground. They give rise to an osmotic pressure p proportional to temperature T and
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particle number concentration c, very much as for a dilute gas.
2

This pressure thus

increases near the ground such as to exactly balance the gravitational force density.

Replicating the conventional arguments for the atmospheric pressure and density as

a function of altitude, one finds the very same result, namely that pressure p and

particle concentration c both decrease exponentially as a function of height h,

p(h) ∝ c(h) = c(h′)e−[U(h)−U(h′)]∕kBT
. (8.1)

The potential energy difference U(h) − U(h′) between heights h and h′ could explic-

itly be written as particle mass times gravitational acceleration times height differ-

ence. Boltzmann’s constant kB (historically the gas constant over Loschmidt’s num-

ber) in the exponent actually made this “Brownian barometer equation” so exciting

for Einstein and Perrin, since it implicitly refers to the number of atoms per mole

and therefore bears witness of the atomic structure of all matter.

Now, in a second ingenious step, Einstein suggests to revisit the classical argu-

ment leading to Eq. (8.1) from a different perspective. Consider, so he says, the same

situation not in terms of a static force balance (gravity versus osmotic pressure) but

in terms of the corresponding balancing particle fluxes. According to Stokes’ law,

gravity excites a downward drift flux −c∇U∕𝜁 (concentration × velocity), inversely

proportional to the friction 𝜁 of the particles with the solvent. This is the flux wit-

nessed by an observer concentrating on the average motion of an individual particle.

According to Fick’s law, Brownian fluctuations give rise to an opposing diffusion

flux −D∇c
(8.1)
= Dc∇U∕kBT , quantified in strength by the diffusion coefficient D,

and directed from high to low solute concentrations c. As for the static forces, the

dynamic fluxes have to be precisely balanced everywhere, in equilibrium. This con-

dition of detailed balance allows Einstein to infer a most remarkable relation, first

obtained by William Sutherland, namely

D = kBT∕𝜁. (8.2)

It constitutes a universal link between a measure of the fluctuations (the diffusivity)

and a dissipative transport coefficient (the friction) of a dilute solute, and can there-

fore be called the mother of all fluctuation-dissipation relations. Again, the remark-

able thing for Einstein and Perrin was that two transport coefficients appearing in

two mesoscopic equations, namely the diffusion equation for the solutes and Stokes’

equation for a particle dragged through a fluid, are somehow linked to Loschmidt’s

number, and hence to the notion of atoms. In the joints between some unsuspi-

cious smooth macroscopic continuum equations lurked, much to the dismay of Ost-

wald, the grotesque face of the atomic world. In this sense, Eq. (8.2) is compara-

ble to another famous equation put forward by Einstein at about the same time,

namely E = ℏ𝜔, which relates the two classical notions of energy and frequency

via the microscopic Planck constant. In a more practical reading, Eq. (8.2) allows a

2
The analogy might seem compelling, but the opponents of the atomistic world view would have

objected to the application of thermodynamic notions to colloidal particles.
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Brownian particle to be used as a thermometer, if its friction coefficient 𝜁 is known,

or as a rheometer for the fluid viscosity 𝜂, if the functional form of 𝜁 (𝜂) is known.

Finally, towards the end of his paper [1], Einstein pushes his analysis of Brow-

nian motion one step further, proposing a microscopic model (in modern language

“a random walk”) to argue that the dynamics of a Brownian particle of mass m is

indeed diffusive at late times t ≫ m∕𝜁 (in modern language “in the Markov limit”),

where inertial effects have been damped out. Thereby, he underpins the interpreta-

tion of Eq. (8.2) as a fluctuation-dissipation relation by demonstrating that D indeed

characterizes the particle fluctuations. He first shows that the particle concentration,

which he identifies with the probability for finding a single particle released at the

origin at position 𝐫 after time t, obeys the diffusion equation (see also the notations

in Eqs. (2.9) and (2.12) for diffusion in one and two dimensions)

𝜕

𝜕t
c(𝐫, t) = D∇2c(𝐫, t). (8.3)

As an important consequence, the particle velocity, which is the central observable

in Newtonian mechanics, turns out to be ill-defined (formally divergent) for the com-

monly accessible times t ≫ m∕𝜁 (Fig. 8.1, left panel). It is therefore not a good idea

to try and measure a Brownian particle’s velocity, as experimentalists commonly did

in many futile attempts throughout the late 19th century. Instead, as Einstein finds,

the mean-square displacement and the diffusivity,

Δ𝐫2(t) ≡
∫

d𝐫 𝐫2c(𝐫, t) and D ≡

1
6
𝜕Δ𝐫2(t)

𝜕t
, (8.4)

are well-behaved (good observables) over a wide range of time scales.

Fig. 8.1 Principle of hot Brownian motion. Left: the trajectory of a hot Brownian particle (at

late times t ≫ m∕𝜁) is a “diffusive” fractal (see, e.g., Sect. 11.4 for a more general introduction to

fractals), as for ordinary Brownian motion, just traversed faster; it is nowhere differentiable, hence

the velocity is ill-defined. Center: snapshot of an atomistic non-equilibrium molecular dynamics

simulation featuring a hot nanoparticle in a Lennard–Jones fluid (particles color-coded for their

kinetic energy or “molecular temperature”). Right: coarse-grained co-moving molecular tempera-

ture and viscosity fields, T(r) and 𝜂(r), around a uniformly heated spherical nanoparticle of radius

R (courtesy of M. Selmke)

http://dx.doi.org/10.1007/978-3-319-67798-9_2
http://dx.doi.org/10.1007/978-3-319-67798-9_2
http://dx.doi.org/10.1007/978-3-319-67798-9_11
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8.3 Hot Brownian Motion

Hot Brownian motion is simply the Brownian motion of colloidal particles that are

hotter than their solvent. More generally, one may speak of non-isothermal Brow-

nian motion, if any spatially varying temperature profile is somehow maintained in

the solvent around the particle. The recent advances in measuring, manipulating,

and theoretically characterizing the motion of hot Brownian things heavily exploit

that “Brownian” means “small enough to jiggle perceptibly, but large enough to be

visible in the microscope”. Even more importantly, they exploit that it means “large
enough to admit some systematic coarse-graining”, or, briefly, that Brownian parti-

cles belong to a mesoscopic “middle-world” [5].

This crucial property allows some universal (i.e., independent of microscopic

details) and practically useful (as opposed to merely formal) exact mathematical

statements about Brownian motion to be formulated, without tinkering with atoms.

And it is the main reason why Einstein’s paper from 1905 has started an unfinished

“slower revolution” [3] that makes it very popular
3

and relevant till today [4]. As a

consequence, the theoretical arguments put forward by Einstein in 1905 only need

very little amendment to generalize the laws of Brownian motion from the important

(but conceptually very special) class of equilibrium conditions to situations very far

from equilibrium. Moreover, much like their equilibrium counterparts, the resulting

predictions are still of a universal character, although less than in equilibrium. And

they may also still serve as a paradigm for fluctuations in many other, apparently

unrelated mesoscopic devices, e.g., in electrical engineering and nanophotonics [16,

17], and even for living matter [6, 18]. The ability to coarse-grain is the key to make

progress in all these directions, and, quite generally, our most important tool to bring

an infinitely complicated world within reach of analysis and comprehension [19].

The heat emanating from a hot particle rapidly diffuses into the surrounding sol-

vent and thereby establishes a comoving temperature gradient around the compara-

tively slowly moving particle, as sketched in Fig. 8.1 (center and right). This inval-

idates the conventional discussion of isothermal Brownian motion, which predicts

the particle dynamics directly from equilibrium thermodynamics, i.e., on a coarse-

grained level, without ever referring to the complicated dynamics of interacting

atoms. We cannot directly copy this elegant trick, here, since the fluid viscosity

and thermal fluctuations vary spatially in the vicinity of the particle, so that it is

not a priori clear which temperature or viscosity should be relevant for the particle

motion, and whether we can apply conventional thermodynamic arguments, at all.

How can we then know how much the translational and rotational Brownian motion

are enhanced by heating? Does Eq. (8.2) still hold? And what is then meant by T
and 𝜁?

Universal answers (independent of molecular details) to these questions are pro-

vided by the theory of hot Brownian motion [20, 21]. In order to avoid the complexity

of the general results, we focus on the Markov limit (t ≫ m∕𝜁 ), here. In other words,

as Einstein, we consider only late times, where we can neglect memory effects aris-

3
At the time of writing, Google Scholar lists more than 6000 citations.
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ing from the slow solvent hydrodynamics [22, 23]. It can be shown that the non-

equilibrium effects can then actually be subsumed into a small number of effective

transport coefficients, chiefly an effective reduced friction coefficient 𝜁
HBM

and an

effective Brownian temperature T
HBM

. These two quantities together determine the

effective diffusivity D
HBM

according to a generalized Einstein relation [20, 24]

D
HBM

= kBTHBM
∕𝜁

HBM
. (8.5)

In the Markov limit, hot Brownian motion can thus be mapped onto equilibrium

Brownian motion in a solvent with an effective temperature and viscosity. This is

reminiscent of a classical trick in thermodynamics, where a nonequilibrium process

is replaced by an equivalent equilibrium process effecting the same state change,

except that there is no state change, here. The generalized Einstein relation implies,

in particular, that a hot Brownian particle can still be employed as a thermometer or

as a rheometer, in the Markov limit, if one is aware of the fact that it measures an

effective temperature or viscosity, respectively. In general, the effective quantities are

complicated functions of the local “molecular” temperature and viscosity fields, T(𝐫)
and 𝜂(𝐫), throughout the whole fluid, but they can be calculated to good precision,

for many practical purposes.

For example, to estimate the effective friction of a hot sphere, one needs to gen-

eralize the classical calculation by Stokes for the friction coefficient 𝜁 to a radially

varying temperature T(r) and viscosity 𝜂(r). If the equation of state 𝜂(T) is known,

explicit predictions for the effective translational (t) and rotational (r) friction coef-

ficients 𝜁
t,r

HBM
of a hot sphere can then be computed [24–26].

It is conceptually (and also practically) more interesting to understand the effec-

tive temperature that characterizes the thermal agitation of a hot Brownian particle.

By virtue of the Brownian scale separation, a local thermal equilibrium can still be

assumed to hold, even when the molecular temperature T(𝐫) varies appreciably over

distances comparable to the particle diameter but long compared to the molecule

size. This allows a consistent linear theory of non-isothermal fluctuating hydrody-

namics to be constructed, based on the non-isothermal Stokes equation for the sol-

vent dynamics [21]. The theory determines how the local solvent fluctuations dic-

tated by the spatially varying molecular temperature field T(𝐫) throughout the whole

solvent volume are propagated by hydrodynamic interactions to the Brownian parti-

cle and contribute to its apparent Brownian temperature T
HBM

. For a hot Brownian

sphere,
4

the result can be written as the weighted average [24]

T
HBM

=
∫ 𝜙(𝐫)T(𝐫) d𝐫
∫ 𝜙(𝐫) d𝐫

. (8.6)

The weight 𝜙(𝐫) is the so-called dissipation function—essentially the product of

the viscosity and the squared velocity gradient. Due to the different flow fields for

4
The general expression for a non-spherical particle in an arbitrary temperature field is slightly

more complex than Eq. (8.6), but its basic structure is the same [20].
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translational (t) and rotational (r) motion of the particle, this prescription leads to

different effective temperatures for translation and rotation, namely [24, 25]

T t

HBM
≈ T0

(
1 + 5

12
ΔT

)
, T r

HBM
≈ T0

(
1 + 3

4
ΔT

)
. (8.7)

Here ΔT is the difference between the solvent temperature at the particle surface

and the ambient temperature T0 (cf. Fig. 8.1), and higher order terms in ΔT are usu-

ally small in actual applications. The effective temperatures can in turn be related to

effective diffusivities Dt,r
HBM

for translation and rotation, via Eq. (8.5).

In hot Brownian thermometry, one thus measures different effective temperatures

for different degrees of freedom, which can provide hints at the spatial structure

of the molecular temperature field T(𝐫). Note that these effective temperatures are

not merely postulated, as in some other areas of non-equilibrium statistical mechan-

ics, but can systematically be calculated from the underlying non-isothermal fluc-

tuating hydrodynamic theory [21]. Along the same lines, it is even possible to deal

with Brownian memory effects, and to show that the effective temperature Eq. (8.6)

is merely the low-frequency limit of an equivalent formula in which all terms are

frequency dependent [20]. The corresponding temperature spectrum replaces T
HBM

outside the Markov limit. One then finds that the translational and rotational veloc-
ities are systematically hotter than the corresponding position- and orientation-

coordinate degrees of freedom, respectively. All this eventually leads to the fancy

notion of hot Brownian thermospectrometry [27], which means that one can, in prin-

ciple, indirectly infer the molecular temperature field T(𝐫) in a non-isothermal sol-

vent from observations of the Brownian fluctuations of a suspended particle, over a

large frequency range.

So far, a number of predictions of the theory of hot Brownian motion could be val-

idated experimentally and in numerical simulations [24, 28, 30, 31]. We specifically

mention the experimental verification of the translational effective temperature from

Eq. (8.7). Interestingly, the experiment can take advantage of the solvent heating

due to the hot particle to achieve a highly sensitive and background-free detection

of its Brownian motion, as described in Sect. 8.5. Figure 8.2 (left panel) provides

a parameter-free comparison of the average diffusion time 𝜏D of a Brownian parti-

cle heated within a laser focus, which has been obtained by this method, with the

prediction from T t

HBM
in Eq. (8.7). An even more comprehensive analysis of the var-

ious temperatures, i.e., the conventional local molecular solvent temperature and the

effective temperatures characterizing the Brownian dynamics of various degrees of

freedom (rotational, translational positions and velocities) of the particle is in prin-

ciple possible in atomistic simulations (Fig. 8.2, right panel). But the high compress-

ibility of the Lennard–Jones solvent causes technical difficulties that currently still

impede the validation of several aspects of the theory by computer simulations.
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Fig. 8.2 Practice of hot Brownian motion (plots adapted from Ref. [8], with kind permission of

The European Physical Journal (EPJ)). Left: parameter-free experimental test of Eq. (8.7) employing

the Twin-PhoCS method (Sect. 8.5) to measure the average time 𝜏D for crossing the laser focus

[28]. Right: non-equilibrium molecular dynamics simulations [29] deduce the effective temperature

T
HBM

from the particle diffusion via Eq. (8.5); lines indicate the predictions for the rotational (solid)

and translational (dot-dashed) effective Brownian temperatures from Eq. (8.7)

8.4 Hot Brownian Swimming

The study of microswimmers has a long history dating back to the 17th century,

when they were first studied under the microscope by the Dutch draper Antoni van

Leeuwenhoek. Only much later, starting with systematic investigations as those by

Robert Brown and Adolphe Brogniard in the early 19th century, researchers slowly

became aware of the interference of Brownian motion with micro-scale swimming,

and much of the pioneering work was devoted to disentangling both effects. So the

study of so-called “animalcules” and their self-propulsion predated that of molecules

and their thermal motion, and what started as an investigation of the former eventu-

ally furnished proof of the existence of the latter.

As pointed out in the introduction, there are compelling intrinsic reasons to

retrace the historic path backwards and extend the (by now established) analysis of

Brownian motion to swimming. Non-isothermal conditions automatically turn all

thermally asymmetric particles into hot swimmers. An archetypal example for a hot

microswimmer is provided by a Janus sphere half covered with gold [32], as illus-

trated in Fig. 8.3 (left). Such a particle heats up asymmetrically and therefore excites

an asymmetric temperature gradient in the surrounding solvent, when illuminated

by a green laser. The temperature gradient, in turn, excites a boundary-layer flow

along the particle surface [8, 33], which gives rise to a net drift motion of the parti-

cle along its symmetry axis. The same mechanism is responsible for thermophoretic

motion in an external temperature gradient, but here the gradient is caused by the

hot particle itself. This is why one also speaks of self-phoresis [34]. A very con-

venient coarse-grained description condenses the boundary-layer flow into a simple

slip boundary condition for the hydrodynamic solvent velocity on the particle sur-
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face. This acknowledges that phoresis, as any kind of swimming, is a force-free type

of motion or self-propulsion, and it allows for a good analytical control over mutual

hydrodynamic interactions of swimmers and related interesting behavior near walls

and obstacles [35].

Swimming thus contributes a systematic “ballistic” drift along the instantaneous

particle axis �̂�(t) to the random Brownian motion. As any systematic drift, it is out-

paced by the diffusive translational Brownian motion at short times but prevails over

it at late times. However, the particle axis �̂�(t) is itself subject to rotational Brownian

motion, which randomizes the motion again, at very late times, so that it becomes

once more diffusive. The particle dynamics for t ≫ m∕𝜁 is therefore well-captured

by the two Langevin equations

d𝐫
dt

= vp�̂� +
√

2Dt
HBM

𝜉t ,
d�̂�
dt

=
√

2Dr
HBM

𝜉r × �̂� , (8.8)

for the position 𝐫(t) and orientation �̂�(t) of the swimmer. Here 𝜉t (t) and 𝜉r (t) repre-

sent the translational and rotational thermal noise. More precisely, the values at any

time are independently drawn from Gaussian distributions of vanishing mean and

unit variance. Langevin equations are simply an alternative formalism to describe

diffusive dynamics. In fact, the first Eq. (8.8) is equivalent to a diffusion equation

with a drift given by the swim velocity of magnitude vp and direction �̂�. Similarly,

the second equation is equivalent to a diffusion equation for the particle axis, which

is a unit vector and thus diffuses on a unit sphere.

In the Markov limit, hot Brownian motion thus merely enters the discussion of

the swimmer’s motion through the effective translational and rotational diffusivi-

ties, Dt
HBM

and Dr
HBM

. In unbiased hot Brownian motion (for a homogeneous hot

sphere), one usually only notices the former. But for the swimmer, Dr
HBM

is more

easily noticeable via the randomization of the swim direction. Accordingly, Eq. (8.8)

predicts a crossover in the mean-square displacement

Δ𝐫2(t) = 6Dt

HBM
t +

2v2
p

(Dr
HBM

)2
[
Dr

HBM
t + e−Dr

HBM
t − 1

]
∼

{
v2pt

2

2v2
p
t∕Dr

HBM

(8.9)

The motion is “ballistic” at short times t ≪ 1∕Dr
HBM

(upper line) and diffusive at

late times t ≫ 1∕Dr
HBM

(lower line), corresponding to distances shorter/longer than

the persistence length v
p
∕Dr

HBM
. The particle trajectories thus resemble conforma-

tions of semiflexible polymers. An experimental confirmation is provided in Fig. 8.3

(right). The late-time diffusivity v2
p
∕3Dr

HBM
≫ Dt

HBM
is strongly enhanced by the

propulsion and therefore increases strongly upon heating.
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Fig. 8.3 Principle of hot Brownian swimming. Left: electron microscopy image of a 1 𝜇m
polystyrene Janus particle covered with a 50 nm gold film on one hemisphere. Center: the stream-

lines around a realistically modeled (force-free) hot Janus swimmer with a heated gold cap, calcu-

lated in the boundary-layer approximation, exhibit a pronounced near-field structure that is respon-

sible for its directed self-propulsion (adapted from Ref. [8], with kind permission of The European

Physical Journal (EPJ)). Right: the trajectories of hot Brownian swimmers are persistent random

walks, resembling semiflexible-polymer conformations; rotational hot Brownian motion limits their

persistence, giving rise to a crossover from a “ballistic” to a diffusive form of the mean-square dis-

placement (msd), Eq. (8.9), at lag times t ≃ 1∕Dr
HBM

(near dotted line)

8.5 Detecting and Steering Hot Brownian Particles

A well controlled and well defined model system for studies of hot Brownian motion

is provided by a gold nanoparticle suspended in water. Gold nanoparticles strongly

absorb visible light due to a surface plasmon resonance, a collective excitation of

their conduction band electrons. It is this effect, which gives gold suspensions their

distinct reddish color. The excited electrons thermalize within femtoseconds and

release their energy within picoseconds to the metal ions, from where it spreads

further via thermal vibrations. The heat conductivity of gold exceeds that of typi-

cal solvents by more than two orders of magnitude, so that a gold sphere that has

a radius R of some tens or hundreds of nanometers can be represented as an essen-

tially isothermal nano heat source in an infinite heat bath of ambient temperature T0.

If the temperature increment of the solvent at the particle surface is denoted by ΔT ,

Fourier’s law
5

yields the stationary temperature profile

T(r) = T0 + ΔTR∕r. (8.10)

This solution is practically attained within hundreds of nanoseconds. As heat diffu-

sion is several orders of magnitude faster than Brownian diffusion, the temperature

profile around a hot Brownian particle can be treated as a comoving field. The asso-

ciated radial heat flow is responsible for the nonequilibrium character of hot Brow-

nian motion. But it also allows for a very efficient detection of its motion by optical

microscopy, which would otherwise be difficult to achieve because of the faint opti-

cal contrast. The scattered intensity scales with the square of the volume for small

5
Joseph Fourier assumed heat to diffuse, an idea adapted to particles by Adolf Fick in 1855.
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scattering sources, so that non-fluorescent nanometer-sized objects are optically very

hard to detect. The absorbed heat scales linearly in the particle volume and moreover

modifies the density and refractive index n(r) of the surrounding medium,

n(r) = n0 + (𝜕n∕𝜕T) ΔTR∕r (8.11)

The long-ranged temperature profile of Eq. (8.10) thus gives rise to an associated

long-ranged “mirage” or “thermal lens” around a small heat source. The refrac-

tive index changes are quite small (−𝜕n∕𝜕T ≃ 10−3 − 10−4 K−1
, with n commonly

decreasing upon thermal expansion) but can be probed very sensitively by optical

means. The deflection of a laser beam by such a thermal lens is the principle behind

the methods of photothermal microscopy and photothermal spectroscopy (PhoCS).

Such photothermal techniques have first been developed in the 1960s [36, 37] but

have only more recently been refined to achieve single-particle and single-molecule

sensitivity [38–41].

Light scattering from the thermal lens created by a point-like heat source has a

perfect microscopic analogue that is very familiar from atomic physics and quantum

mechanics, namely Rutherford or Coulomb scattering. As such it sparked much of

our current understanding of the inner structure of atoms [43]. In its photothermal

variant, the dielectric permittivity profile 𝜖(𝐫) = n2(𝐫) plays the role of the Coulomb

potential. Since the second terms on the right-hand sides of Eqs. (8.10) and (8.11)

are small compared to the first (n0), 𝜖(𝐫) also decays with the inverse distance from

the heat source. The alternative mathematical descriptions of the phenomenon by

Fermat’s principle (ray-optics) and by Helmholtz’s equation (wave optics) find their

perfect analogues in the classical (as adopted by Rutherford) and the full quan-

tum mechanical (using Schrödinger’s equation) treatments of the Coulomb scatter-

ing problem. Photons are deflected by the photonic potential 𝜖(𝐫) in the very same

manner as Rutherford’s 𝛼-particles were deflected by Coulomb interaction with the

atomic nuclei.

The left panel of Fig. 8.4 shows a macroscopic setup for a demonstration experi-

ment of photonic Rutherford scattering. A green laser beam entering the cube from

the left heats a small metal sphere embedded in an acrylamide block. The emerg-

ing refractive index profile around the metal sphere is probed by a red laser beam

passing at a distance b from the scattering center, corresponding to the impact param-

eter in Rutherford’s analysis of his experiment. The beam is deflected by an angle

𝜃 related to the scattering parameter by cot(𝜃∕2) ∝ b. Photonic Rutherford scatter-

ing thus probes the refractive index profile in the same way as Rutherford probed

Coulomb’s law (and possible deviations from it) [42], except that there is no siz-

able backscattering, as the refractive index changes relative to the vacuum value are

typically very weak.

The role of the mirage as a diverging lens is easily demonstrated in the macro-

scopic experiment, as well, as seen from Fig. 8.4 (center), which shows a photo of

the distorted image of a rectangular grid positioned behind the acrylamide block. In

the same manner, a tightly focused probe laser beam, which does not itself excite

surface plasmons, is defocussed by the thermal lens around a hot nanoparticle. This
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Fig. 8.4 Principle of photothermal detection (Partly adapted from Ref. [42]). Left: a macro-

scopic experiment demonstrating the photothermal version of Rutherford scattering: a metal sphere

of 1 cm diameter, embedded in an acrylamide cube with edge length of 10 cm, is heated by a green

laser beam from the left; the emerging “mirage” is detected by a red laser. Center: it distorts a rect-

angular grid photographed through the acrylamide block (courtesy of M. Selmke and M. Braun).

Right: by the same principle, photothermal scanning microscopy images tiny gold nanoparticles

(10 nm) embedded in a polymer via their defocusing of a probe beam

defocussing is the actual signal measured in photothermal microscopy by a lock-in

detection scheme [42, 44]. The long-range character of the refractive-index profile

allows very small absorbers such as quantum dots [45] or even single molecules [40]

to be detected with high contrast.

The time-scale separation between heat diffusion and Brownian motion allows

a perfect detection of the latter by photothermal microscopy. In particular, one can

record and analyze the fluctuations of the photothermal signal caused by particles

traversing the focal volume of a photothermal microscope. Each particle crossing

the focal volume causes a photothermal burst much like the fluorescence bursts in

fluorescence correlation spectroscopy (FCS) [46]. The length of these bursts corre-

sponds to the time spent by the hot Brownian particles within the focal volume (see

Fig. 8.5 left). Its average determines the decay of the autocorrelation function of the

photothermal signal. Based on this principle, photothermal correlation spectroscopy

(PhoCS) was independently developed and applied to single gold nanoparticle diffu-

sion by diverse groups [47–49]. A refined version, called twin-PhoCS [28], exploits

the peculiarities of the lensing mechanism in a more sophisticated way. It is based on

the insight that a lens placed exactly in the focal plane of the focussed probe beam

leaves the divergence of the probe beam unchanged, whereas a positioning slightly

below or above the focal plane changes the divergence of the probe beam in opposite

directions. In other words, the effective photothermal detection volume splits up into

two sharply separated lobes giving a positive/negative photothermal signal S+∕S−
corresponding to diminished/enhanced beam divergence, as exemplified by Fig. 8.5.

(The twin-focus splitting naturally occurs in axial direction, but can be created in

the focal plane, as well [44].) Importantly, the statistics of the sign changes of the

photothermal signal are independent of the precise size and shape of the two lobes,

allowing for considerably improved quantitative control. As an additional benefit,

drift components in the particle motion, as e.g., due to swimming or radiation pres-

sure, are readily revealed by an analysis of the sign changes. Figure 8.5 displays the
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Fig. 8.5 Principle of twin-PhoCS. Left: a particle diffusing through the focal volume of a pho-

tothermal microscope and heated by an intensity-modulated laser (typically at 200 kHz), generates

a photothermal lens probed by a second laser. Center: the lensing mechanism creates a splitting of

the focal volume into two parts (“twin-focus”). Right: time trace of the photothermal signal from a

hot gold nanoparticle; negative/positive signals S−∕S+ correspond to enhanced/diminished probe-

beam divergence by its surrounding thermal lens

signal from a single particle entering the lower lobe and briefly visiting the upper

lobe before eventually escaping. A detailed analysis of such photothermal microscopy

time traces by auto-correlation and cross-correlation methods allows for very pre-

cise tests of the theory of hot Brownian motion, as shown in Fig. 8.2. What requires

more experimental effort is to test the more complex dynamics at short times, and

to test the rich theoretical predictions for hot Brownian motion beyond the Markov

limit, alluded to in Sect. 8.3. Even ordinary Brownian motion in isothermal fluids is

not easily studied on such short timescales. It has only recently become possible to

push the resolution down to a few nanoseconds, so that a quantitative experimental

characterization of its complex hydrodynamic memory and inertial effects could be

achieved for the first time [23, 50].

Completely new experimental opportunities arise for the self-propelling (i.e.,

asymmetric) hot particles, discussed in the preceding section. Single-particle track-

ing can be used to detect the position and orientation of Janus particles. Advanced

real-time detection and feedback techniques put the modern experimenter in the posi-

tion of a Maxwell demon, who literally knows the positions and orientations of all

his “atoms”. This knowledge can be exploited to switch the laser light that fuels

the swimmers’ engines on and off at the right time, in order to impose complex

swimming patterns and force-free particle steering onto hot Brownian particles by

so-called photon-nudging techniques [51, 52].
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8.6 Exact Symmetry of Hot Brownian Swimming

As recalled in Sect. 8.2, Einstein invoked the condition of detailed balance for

the thermodynamic forces and fluxes in order to arrive at the Brownian barome-

ter formula and the fluctuation-dissipation relation, Eqs. (8.1) and (8.2), respectively.

Thereby, he imposed strong symmetries on the motion of the Brownian particle. One

may ask what survives of all this in situations far from equilibrium, when the meso-

scopic physics is still stationary, but the underlying dynamics is not time-symmetric

any more, so that detailed balance is broken. (Time symmetry may for instance be

broken by persistently shearing a colloidal suspension or, more severely, by shining

a laser on it to turn the suspended particles into self-propelled hot Brownian swim-

mers.) The answer to this question is provided by the so-called fluctuation theorem,

which is a generalization of the second law of thermodynamics and the fluctuation-

dissipation theorem, contained in Eqs. (8.2) and (8.12). Like them, it comes in several

closely related formulations [53]. Its essence is that the entropy production provides

an objective metric for the “distance from equilibrium” (the degree of time-reversal

symmetry breaking) of nonequilibrium processes. However, “hard to compute, and

even harder to measure experimentally, it has been little studied in active systems”

[54]. Luckily, for a hot Brownian swimmer in the Markov limit, a fully quantita-

tive analytical formulation of the fluctuation theorem can be worked out. Moreover,

with dedicated experimental techniques, such as described in Sect. 8.5, the theory

can be tested with high precision, as demonstrated in Ref. [31], and outlined in the

remainder.

The key to generalizing the equilibrium detailed-balance relation to a nonequilib-

rium fluctuation theorem is its reformulation in terms of the mesoscopic thermody-

namic energy, heat, and entropy changes associated with fluctuating particle paths

and their probabilities [55]. Consider the probabilities P(h → h′) and P(h′ ← h) for

particle paths starting at height h > h′ and ending at height h′ and their time-reversed

paths, respectively. In equilibrium, they must be identical:

1 = P(h → h′)
P(h ← h′)

= P(h → h′|h)c(h)
P(h ← h′|h′)c(h′) (detailed balance). (8.12)

This amounts to the time-reversal symmetry of all particle currents between any two

positions h and h′. The second equality provides an alternative formulation employ-

ing the conditional probabilities P(h → h′|h) and P(h ← h′|h′) for the particle to

go from height h to h′ and vice versa, given that it started in either of these two

heights. Now, one notices that the ratio of the probabilities for the starting positions

is nothing but the ratio c(h)∕c(h′) = e[U(h′)−U(h)]∕kBT of the local particle concentra-

tions. And that, since no external work 𝛿W is performed on or by the suspended

particle, energy conservation
6

allows the potential energy difference to be rephrased

as the heat ΔQ(rev) = −ΔQ(rev)

R = U(h′) − U(h) < 0 transferred from the particle to

the heat reservoir R (i.e., the solvent) when falling from h to h′. For equilibrium

6
We count incoming energies as positive in the first law of thermodynamics: dU = 𝛿Q + 𝛿W.
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Brownian motion, this heat exchange is fully reversible and therefore amounts to the

reversible entropy reduction/increase

ΔS(rev) = −ΔS(rev)

R = [U(h′) − U(h)]∕T = kB ln[c(h)∕c(h′)], (8.13)

for the particle and its solvent, respectively. Accordingly, Eq. (8.12) implies

P(h → h′|h)
P(h ← h′|h′) = eΔQ

(rev)

R ∕kBT (in equilibrium). (8.14)

Out of equilibrium, detailed balance is broken, so that the ratio in Eq. (8.12) will

no longer be unity for all h, h′. While a stationary probability ratio, such as Eq. (8.1),

will still obtain under stationary conditions, the detailed pairwise symmetry of the

individual particle trajectories between heights h and h′ will be replaced by more

complicated flux patterns. How is Eq. (8.14) then to be modified? If the barometer

distribution in Eq. (8.1) is unchanged and the solvent is isothermal, the answer is

obviously that the reversible entropy change has to be replaced by the total entropy

change, including the spontaneous entropy production that breaks the mesoscopic

reversibility or time-reversal invariance. In other words, the total heat ΔQR added

to the solvent contains some reversible contribution ΔQ(rev)

R and some “irreversible”

or dissipative contribution ΔQ(irr)

R . Thereby, we obtain P(h → h′|h)∕P(h ← h′|h′) =
eΔQR∕kBT and from this the steady-state fluctuation theorem

P(h → h′)
P(h ← h′)

= eΔQ
(irr)

R ∕kBT ⇒ ⟨e−ΔQ(irr)

R ∕kBT⟩ = 1. (8.15)

The last formulation follows by reshuffling the terms, such as to isolate the forward

path probability P(h → h′) and its associated dissipation ΔQ(irr)

R on the same side

of the equality. One then sums over all possible forward paths with the appropriate

boundary conditions and exploits the normalization of P(h ← h′). Note that the heat

ΔQ(irr)

R added irreversibly to the bath is nothing but the dissipated heat, also briefly

called “the dissipation”. The corresponding net entropy production associated with

the particle path is ΔQ(irr)

R ∕T . On average non-negative by virtue of the second law,

which is incidentally recovered from Eq. (8.15) by a first order Taylor expansion, it

fluctuates as a function of the path taken by the particle, such as to conform with

Eq. (8.15).

To eventually make Eq. (8.15) useful for a hot Brownian swimmer, we appeal

to the above mapping of the corresponding non-isothermal Brownian motion to an

equivalent equilibrium problem. In the Markov limit, it allows us to take over all of

the above formulas for a hot Brownian particle in a non-isothermal solvent by sim-

ply writing T
HBM

in place of the equilibrium bath temperature T (and similarly for

the friction, if we want to explicitly write out the dissipated heat). With this mod-

ification, Eq. (8.15) expresses an exact symmetry in the motion of a hot Brownian

swimmer. It reveals what is left over of the perfect symmetry imposed onto the space
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Fig. 8.6 Fluctuation theorem for a hot Brownian swimmer (adapted from Ref. [31]). Left:
statistics of longitudinal particle currents J‖ (formula in panel c) measured in simulation (a) and

experiment (b); average propulsion is along (‖) the swimmer’s axis �̂�, but Brownian fluctuations

(↔) can displace it against the mean drift current ⟨J‖⟩ (→). Right: test of the fluctuation theorem,

Eq. (8.15), using histograms (a), b as proxies for path probabilities P(J‖); the logarithm of their ratio

P(J‖)∕P(−J‖) for forward/backward motion is linear in J‖t, irrespective of the (different) conditions

prevailing in experiment/simulation

of path probabilities by the strict time-reversal invariance of normal diffusion, when

the particle becomes an active swimmer. In Ref. [31], we have tested this prediction

with high precision. Illuminating a large region of space by green laser light, which is

strongly absorbed by the gold cap of our Janus particles, we achieved a good degree

of stationarity for the swimming. As the data points lying on a straight line in Fig. 8.6

demonstrate, the logarithm of the probability ratioP(h → h′|h)∕P(h ← h′|h′) is a lin-

ear function of the Markovian particle velocity along its axis (here expressed in terms

of the longitudinal particle current J‖). To show that this is exactly what is predicted

by Eq. (8.15), the dissipation rate ̇Q(irr)

R = v
p
𝜁

HBM
J‖ was explicitly calculated from

the analytically known path weight for Eq. (8.8), in Ref. [31]. The result is however

easily deduced directly from thermodynamic arguments, as it has the plainly obvi-

ous form “particle current J‖ times thermophoretic force 𝜁

HBM
v

p
” (both along the

particle axis �̂�). Although the “thermophoretic force” enters in the same way as an

external driving force, it should of course not be mistaken for one, since the free

swimmer moves by self-propulsion, entirely without the action of external forces.

Also note that the dissipation rate ̇Q(irr)

R and its associated “hot Brownian entropy

production rate” ̇Q(irr)

R ∕kBTHBM
are virtual quantities, referring to a virtual equilib-

rium bath defined by the theory of hot Brownian motion, while the actual bath is

non-isothermal and bears a substantial housekeeping heat flux (from the hot swim-

mer into the cool ambient solvent), not included in ̇Q(irr)

R .
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8.7 Conclusions

We have discussed hot Brownian particles and swimmers, two examples for Brown-

ian motion very far from equilibrium. Thanks to the strong scale separation between

the Brownian particles and their atoms, substantial theoretical progress could be

made along the lines first laid out by Einstein, yielding exact analytical predictions

for the hot Brownian dynamics by systematic coarse graining. Wherever these pre-

dictions were tested so far, they were found to be in excellent agreement with exper-

imental observations and simulation data. In fact, the basic ideas are readily gen-

eralized to situations where the colloidal particles are cooled with respect to the

solvent (so-called “cold Brownian motion” [56]) or dissolved in gases instead of liq-

uids, and even to situations in ultra-high vacuum (the so-called Knudsen regime)

[57, 58]. There remains the experimental challenge to explore the more intriguing

features of hot Brownian motion at shorter times, where hydrodynamic memory and

inertia come into play and give rise to the frequency-dependent noise temperature

[20, 27, 31], alluded to in Sect. 8.3.

Good progress has already been made with another modification of equilib-

rium Brownian motion that is hard to avoid under general non-isothermal condi-

tions, namely self-propulsion. We have mentioned the steering of hot swimmers by

Maxwell-demon type methods summarily known as photon nudging. These meth-

ods could in the future be harnessed for studying micron-sized artificial swarms of

active particles that mimic the interactions and behavior of schools of fish and flocks

of birds, thereby creating a microscopic laboratory for controlled studies of some

most amazing large-scale biological phenomena.

As we have discussed, such swimming (or flying) motion is subject to exact

symmetries that arise from the time-reversal symmetry breaking caused by the net

entropy production associated with the swimmer’s directed motion (not with the

operation of its engine). It is worthwhile to point out that the same mechanism also

applies to other broken symmetries, in particular spatial ones [59], as was also—

to the best of our knowledge for the first time—experimentally demonstrated in

Ref. [31]. This observation hints at a quite general underlying pattern governing

the nonequilibrium dynamics of any driven mesoscopic degrees of freedom. Indeed,

the symmetry breaking associated with the violation of detailed balance can be for-

mulated in a language familiar from quantum field theory. In this language, the net

entropy production takes the role of a gauge field [60, 61]. If integrated around a

loop in state space, reversible entropy changes will add up to zero, and only the dis-

sipative heat or irreversible entropy production will contribute, so that the subscript

(irr) can be omitted from expressions like those in Eq. (8.15), e.g.,

⟨e− ∮ dt ̇QR∕kBT⟩ = 1. (8.16)

Although the entropy of a state is only defined up to an additive gauge constant,

and although the reversible entropy change ΔS(rev)
during a state change will change

sign upon time (or path) reversal, the dissipation and the associated net entropy
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production are both gauge invariant and independent of symmetry transformations,

such as time reversal, hence “objective”. The closed line integrals over the entropy

change in the heat bath thus play a role akin to Berry’s phase in quantum mechan-

ics or holonomies (essentially, how much the sum of angles in a triangle deviates

from 180◦) in differential geometry. The symmetry breaking due to thermodynamic

irreversibility can thereby be quantified objectively, in an analogous way as Wilson

loops can help to detect space-time curvature in relativistic quantum field theory. The

symmetry relation (8.16) that constrains nonequilibrium processes is in this context

also interpreted as the consequence of a partial breaking of a supersymmetry that

comprises time-reversal invariance [62, 63]. How far this structure can be extended

to short-time hot Brownian motion is currently an open question [64, 65].
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Chapter 9
On Phase Transitions in Biased Diffusion
of Interacting Particles

Philipp Maass, Marcel Dierl and Matthias Wolff

9.1 Introduction

When traveling on a highway, we can make the unpleasant experience of getting

trapped in a jam like the one shown in Fig. 9.1. Or we see that a queue of cars comes

to a standstill and gets a bit later again into motion, without any apparent reason for

this strange behavior. This behavior may remind us of a liquid freezing and melting,

i.e. a phase transition between its liquid and solid states. In the case of the liquid, we

know that the transition is commonly initiated by the variation of the temperature or

pressure, or, more generally speaking, by the variation of parameters that control the

state of the system. In this chapter we will see that jamming phenomena like that of

vehicles on a road can be understood quite similarly as a phase transition between

two non-equilibrium steady states (NESS) under variation of control parameters.

As a typical feature of the situation under consideration we recognize that there

is a bias in motion and some sort of interaction. Cars are moving in one direction

and they change their speed in relation to the cars in front of them. This combina-

tion of biased motion and interaction is not restricted to vehicular traffic, but can

appear under quite different conditions [1]. Amazingly, it in particular arises on a

molecular level in a number of biophysical processes. A prominent example is the

biased motion of motor proteins, like kinesin and dynein, along filamentary tracks

in eucaryotic cells, the so-called microtubules [2], as illustrated in Fig. 9.1. Dyneins
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Fig. 9.1 Left: Cars moving along a highway with a jam in one direction (photography: Th. Rein-

hardt/pixelio.de). Right: Illustration of the directed motion of motor proteins along a microtubule.

Dynesin motors move in the retrograde direction toward the minus ends of microtubules whereas

kinesin motors transport cargo in the anterograde direction toward the plus ends

are important for propelling sperm, bacteria and other cells, and kinesins support

intracellular transport [3]. Other translocating motor proteins are myosins that move

along actin filaments in the cytoskeleton and are responsible for muscle contraction

[4]. Interactions between these motors become important, when many of them move

simultaneously along a single filament. Similarly as for a traffic jam of cars, it may

be possible that a domain wall appears, which separates two phases of protein motors

on the microtubule, one, where the densities of motors is low (like in a gas), and one,

where the density of motors is high (like in a liquid) [5, 6]. In fact, an experimental

realization of such state of coexisting phases has been realized in vitro with a fluores-

cently labeled single-headed kinesin motor [7]. Further examples of biased motion

of interacting particles in biophysical applications include biopolymerization [8] and

the directed motion of ions through channels in cell membranes [9–11].

The origin of phase transitions in equilibrium systems, as the liquid-gas or liquid-

solid transition of a fluid, can be traced back to an interplay of energy and entropy,

when the system settles down to its equilibrium state of minimum free energy. Can

certain generic mechanisms be identified also for the occurrence of phase transi-

tions in biased diffusion systems out of equilibrium? And is it really conceivable that

analogous underlying mechanisms lead to jamming of cars and molecular motors?

For answering such questions, physicists usually search for some kind of “minimal

model”, where the basic features, that means a biased transport and the presence of

interactions here, are introduced in a most simple way. It has turned out that already

a slight modification of the simple jump model of Fig. 9.2 helps in understanding

and predicting the phase transitions. This is referred to as the asymmetric simple

exclusion process (ASEP) and corresponds to a driven lattice gas, where a biased

stochastic hopping of particles between nearest-neighbor sites on a one-dimensional

lattice is considered. Originally the ASEP has been introduced to describe protein

synthesis by ribosomes [8] and it now appears as a basic building block in various

applications. In addition to the vehicular traffic and the biophysical processes men-
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β
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ρ =αL
ρ =1−βR

L Rα ν

(a) (b)

Fig. 9.2 Illustration of the totally asymmetric simple exclusion process (TASEP) in one dimension

for a a ring system (periodic boundary conditions) and b an open channel coupled to two particle

reservoirs L and R to the left and right, from and to which particles are injected and ejected with

rates 𝛼 and 𝛽. If 𝛼, 𝛽 ≤ 𝜈 one can assign the particle densities 𝜌L = 𝛼∕𝜈 and 𝜌R = 1 − 𝛽∕𝜈 to the

left and right reservoirs, respectively (see Eq. (9.5) and text for details)

tioned above, this includes, for example, charge transfer in photovoltaic devices [12,

13] and surface growth phenomena [14, 15].

Moreover, the ASEP is of fundamental interest also for studying general proper-

ties of NESS [16–19], including fluctuation theorems for thermodynamic quantities

defined on a microscopic level (cf. Chap. 8). Generalizations of the ASEP have given

rise recently to the discovery of an intriguing set of universality classes in nonlinear

hydrodynamics [20]. In this set, which includes ordinary diffusions as one case, the

temporal spreading of particles, or density fluctuations, is characterized by dynami-

cal exponents that agree with the Kepler ratios 1/1, 2/1, 3/2, 5/3, 8/5, …, a sequence

that converges towards the golden mean (1 +
√
5)∕2 ≅ 1.618. The Kepler ratios fol-

low from taking ratios of consecutive numbers in the famous Fibonacci sequence

1, 1, 2, 3, 5, 8, …, where an element is constructed by taking the sum of the two

preceding ones.

In the following we will discuss how phase transitions in driven diffusion systems

arise and will review recent work on the implications of repulsive nearest-neighbor

interactions in driven lattice gases, with a focus on open systems coupled to particle

reservoirs. Results for these models form a basis to explain the occurrence of recently

discovered phase transitions in more complicated periodically driven systems [21,

22] and to understand their consequences for Brownian pumps and motors, which

provide useful models for molecular machines [3].

Though starting with the most simple assumptions for the elementary steps of

motion, the methods applied will be shown to lead to remarkable insights enlight-

ening the peculiarities of such systems. It is noteworthy that there is no need for

the application of any advanced mathematical calculus. Probability considerations

turn out to be, as a rule, completely sufficient. The way of reasoning will, however,

sometimes deviate from conventional routes.

http://dx.doi.org/10.1007/978-3-319-67798-9_8
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9.2 The Asymmetric Simple Exclusion Process (ASEP)

9.2.1 ASEP Along a Ring

Let us first consider the ASEP for particles that are driven along a ring of sites by

performing jumps to vacant nearest-neighbor sites, as illustrated in Fig. 9.2a. A par-

ticle occupying a site hinders the other particles to occupy the same site, imply-

ing that each site can be occupied by at most one particle. In general, jumps occur

in both clockwise and counter-clockwise direction with rates 𝜈+ and 𝜈−, where

𝜈 ≡ (𝜈+ − 𝜈−) > 0 for a bias in clockwise direction. In this very simple setup, the

ASEP already includes the key features of biased motion and interaction. In Fig. 9.2a,

we have, for simplicity, considered the extreme case of the totally asymmetric sim-

ple exclusion process (TASEP), where particles jump solely in clockwise direction

(𝜈− = 0). Actually, as we will see below, what is decisive is the presence of a bias,

while its strength (𝜈+ − 𝜈−)∕(𝜈+ + 𝜈−) is not essential for the occurrence of phase

transitions. The reason is that the functional form of the particle current on the den-

sity matters, but not the magnitude of the current.

To derive how the current depends on the particle density, let us specify the pos-

sible particle configurations  = {ni} on the ring by introducing the site occupa-

tion numbers ni, where ni = 1 if site i is occupied and zero otherwise. In the NESS,

the current must be constant along the ring. We thus need to consider the current

between the sites i and (i + 1) only. It can be decomposed into a partial current in

clockwise and a partial current in counter-clockwise direction. A particle is able to

jump in clockwise direction from site i to (i + 1), if site i is occupied and site (i + 1)
empty. For the corresponding joint probability of the two occupation numbers we

write p2(ni = 1, ni+1 = 0). Because the rate for a jump from i to (i + 1) is 𝜈+, the par-

tial current in clockwise direction is p2(ni = 1, ni+1 = 0) 𝜈+. Analogously, the partial

current in counter-clockwise direction is p2(ni = 0, ni+1 = 1) 𝜈−. Hence we can write

for the bulk current in the stationary state

jB = p2(ni = 1, ni+1 = 0) 𝜈+ − p2(ni = 0, ni+1 = 1) 𝜈−
= ⟨ni(1 − ni+1)⟩ 𝜈+ − ⟨ni+1(1 − ni)⟩ 𝜈− . (9.1)

In going from the first to the second line we have used that ⟨ni(1 − ni+1)⟩ =
∑

ni=0,1∑
ni+1=0,1 p2(ni, ni+1)ni(1 − ni+1) = p2(ni = 1, ni+1 = 0), and analogously ⟨ni+1

(1 − ni)⟩ = p2(ni = 0, ni+1 = 1). This identification of joint probabilities for specific

sets of occupation numbers with averages over products of occupation numbers is

always possible because the ni are either zero or one. Here and in the following ⟨…⟩
refers to an average in the NESS.
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Intuitively, one may expect that in the NESS none of the particle configurations

on the ring is preferred over the other. This is indeed the case and can be rationalized

as follows, where, for the sake of simplicity, we consider a totally asymmetric simple

exclusion process (TASEP). Under stationary-state conditions, the probability P()
for all configurations  must not vary with time. When introducing the transition rate

W( → ′) for a configuration  to change into another ′
by one particle jump, this

implies

P()
∑

′′

W( → 
′′) =

∑

′

P(′)W(′ → ) , (9.2)

because constancy of P() requires that the total rate
∑

′ P(′)W(′ → ) of jumps

transferring configurations ′
into  (gain terms) must be balanced by the total rate

P()
∑

′′ W( → ′′) of jumps transferring  into configurations ′′
(loss terms).

We now show that Eq. (9.2) indeed holds if all probabilities P(C) are equal. In

this case P() = P(′), and Eq. (9.2) simplifies to [19]

∑

′′

W( → 
′′) =

∑

′

W(′ → ) . (9.3)

Now, for proving the validity of this equation, we first realize that any configura-

tion  may be thought to be built up by chains (“clusters”) of particles occupying

nearest-neighbor sites, including the case where such a cluster consists of only a

single particle. The number of clusters in a configuration  is denoted as Ncl().
For the configuration  shown in Fig. 9.2a, for example, Ncl() = 6. There are six

new configurations ′′
which can emerge from  by jumps of particles from the

clockwise ends of the clusters in the configuration . Because these jumps have the

same rate 𝜈, we find
∑

′′ W( → ′′) = 6𝜈 for the configuration in Fig. 9.2a, and∑
′′ W( → ′′) = 𝜈Ncl() in general. Correspondingly, there are as well six differ-

ent configurations ′
, which could have generated the configuration  in Fig. 9.2a

via jumps of particles that joined the counter-clockwise ends of the clusters in .

This also gives
∑

′ W(′ → ) = 6𝜈, or
∑

′ W(′ → ) = 𝜈Ncl() in general.

It is straightforward to generalize this line of reasoning to the ASEP with jumps

to both clockwise and counter-clockwise direction. We thus showed that if all con-

figurations  are equally probable, the ASEP is in a steady state. One may expect

also that the ASEP actually approaches this steady state in the long-time limit. This

indeed can be proven by resorting to the complete mathematical description of the

ASEP dynamics, which is given by a master equation [23].

Because all configurations  are equally probable, we can replace the averages

over products of occupation numbers by the product of their averages. Applied

to the products appearing in Eq. (9.1), this yields ⟨ni(1 − ni+1)⟩ = ⟨ni+1(1 − ni)⟩
= 𝜌(1 − 𝜌) where 𝜌 = ⟨ni⟩ is the mean occupation number or particle number den-

sity. Hence we obtain
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jB(𝜌) = (𝜈+ − 𝜈−)𝜌(1 − 𝜌) = 𝜈𝜌(1 − 𝜌) (9.4)

for the bulk current as a function of the density.

Strictly speaking, Eq. (9.4) is exactly true only if we neglect the constraint and

associated correlation implied by the fixed particle number Np on the ring. The

joint probability of finding a site occupied and a neighboring (or any other) site

empty is given by the probability of finding one site occupied times the condi-

tional probability of finding a site to be empty if one site is occupied. The prob-

ability of finding one site occupied is Np∕N, where N is the number of sites. The

probability that the (Np − 1) other particles leave one of the remaining (N − 1)
sites empty is [1 − (Np − 1)∕(N − 1)]. Hence, in this exact treatment one obtains

⟨ni(1 − ni+1)⟩ = ⟨ni+1(1 − ni)⟩ = (Np∕N)[1 − (Np − 1)∕(N − 1)]. In the “thermody-

namic limit” (N → ∞, Np∕N fixed), this reduces to Eq. (9.4). Let us note that the

replacement of averages over products of occupation numbers by the corresponding

products of their averages, is commonly referred to as the “mean-field approxima-

tion”.

In summary, we can say then that the mean-field expression for the current, in

which correlations between occupation numbers are factorized, is exact in a bulk

system and gives the parabola (9.4) plotted in Fig. 9.3a for the bulk current-density

relation in the NESS. The current vanishes in the limit of zero and complete occu-

pation of the ring since then one of the two factors 𝜌 or (1 − 𝜌) in Eq. (9.4) becomes

zero. It attains its maximum at half filling, when the two factors are equal to each

other. Let us remark that the current is symmetric with respect to a transformation

𝜌 → (1 − 𝜌), i.e. jB(𝜌) = jB(1 − 𝜌). This is a consequence of particle-hole symme-

try, which means that one can equivalently view the process as driving “mutually

excluding” vacancies with concentration (1 − 𝜌) in counter-clockwise direction with

effective rate 𝜈.

9.2.2 ASEP Coupled to Particle Reservoirs

Cars or motor proteins are not driven along a ring, but they are entering and leaving a

road or filament from some region. This motivates the study of an open ASEP along

a channel of sites, where the particles are injected from a reservoir L coupled to the

channel at its left boundary, and ejected to a reservoir R at its right boundary, as illus-

trated in Fig. 9.2b. If the site next to the left reservoir (left boundary site) is empty,

injection takes place with a rate 𝛼, and if the site next to the right reservoir (right

boundary site) is occupied, ejection takes place with a rate 𝛽. After some transient

time, a NESS evolves that depends on the injection and ejection rates, which act as

control parameters. Here and in the following we will always consider corresponding

stationary states.

The open ASEP coupled to reservoirs is much more interesting than the closed

ASEP along a ring, because it leads to phase transitions between NESS, where the
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Fig. 9.3 a Bulk current as a function of density in the ASEP according to Eq. (9.4). b Phase

diagram of the ASEP with the low-density (LD), maximum current (MC), and high-density (HD)

phases. The solid line separating the LD and HD phases marks a first-order transition (jump in 𝜌B

when crossing the line), and the dashed lines separating the MC phase from the LD and HD phases

mark second-order transitions (jump in the derivative of 𝜌B as a function of the varying control

parameters when crossing the line). To demonstrate the application of the minimum and maximum

current principles given in Eq. (9.6), three densities 𝜌1 = 0.25, 𝜌2 = 0.6, and 𝜌3 = 0.9 are indicated

by the dotted lines in (a). If (𝜌L, 𝜌R) = (𝜌1, 𝜌2) or (𝜌L, 𝜌R) = (𝜌1, 𝜌3), the minimum current principle

applies and the ASEP is in the LD phase with 𝜌B = 𝜌1 or in the HD phase with 𝜌B = 𝜌3, respectively.

For (𝜌L, 𝜌R) = (𝜌2, 𝜌1) or (𝜌L, 𝜌R) = (𝜌3, 𝜌1), the maximum current principle applies and the ASEP

is in the MC phase with 𝜌B = 1∕2

particle density can change abruptly with the variation of 𝛼 and 𝛽, in analogy to the

abrupt change of the density of a liquid upon crystallization when varying the tem-

perature. Nevertheless, as will be discussed in connection with Eq. (9.6) below, the

result derived for the bulk current in Eq. (9.4) turns out to be useful for understanding

the origin of the phase transitions and for deriving the corresponding phase diagram.

For values not exceeding 𝜈, the injection and ejection rates can be associated with

particle number densities 𝜌L and 𝜌R in the left and right reservoirs as follows:

𝜌L = 𝛼∕𝜈 , (9.5a)

𝜌R = 1 − 𝛽∕𝜈 . (9.5b)

While these relations may be intuitively clear, it is instructive for our later analysis to

give a reasoning. To this end, let us note that the rate for filling of an empty site in the

bulk is given by 𝜌𝜈, i.e. by the probability 𝜌 of finding the site next to the empty site to

be occupied times the rate 𝜈 for a jump. Consider now the corresponding rate 𝜈𝜌L for

the filling of the left boundary site from a reservoir site with mean occupation number

𝜌L. By setting this rate equal to the injection rate 𝛼, we obtain 𝛼 = 𝜈𝜌L, or 𝜌L = 𝛼∕𝜈, in

agreement with Eq. (9.5a). Analogously, the rate of emptying an occupied site in the

bulk is 𝜈(1 − 𝜌), and we can consider the corresponding rate 𝜈(1 − 𝜌R) of emptying
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the right boundary site, where (1 − 𝜌R) refers to the mean hole occupation number

in the respective reservoir. Setting this rate equal to the ejection rate 𝛽 gives 𝛽 =
𝜈(1 − 𝜌R), or 𝜌R = 1 − 𝛽∕𝜈 in accordance with Eq. (9.5b). This method of associating

injection and ejection rates with reservoir densities by resorting to the dynamics

in the bulk, will be referred to as the “bulk-adapted” way. Because the reservoir

densities in Eq. (9.5) cannot exceed one, the association is limited to the regime

𝛼, 𝛽 ≤ 𝜈 here.

In contrast to the ring, the probabilities of the particle configurations  in the

open ASEP (or TASEP) are no longer all the same. Recalling the line of reasoning

for Eq. (9.3) based on the clusters, this can be understood from the fact that near the

boundaries, the rates for feeding and decay of clusters become different, as a con-

sequence of the differences in the values of 𝛼 and 𝛽. It was, however, exactly the

equality of the feeding and decaying rates from which, with Eq. (9.3), all configura-

tions could be concluded to be equally probable. The difference in the feeding and

decaying rate therefore implies that the distribution P() becomes non-uniform.

While in equilibrium systems, the probabilities Peq(C) of configurations are given

by Boltzmann weights, no general concept is yet available for predicting the P()
in NESS, as discussed also in Chap. 8 in connection with colloidal particles in non-

isothermal solvents. In statistical physics it is thus of fundamental importance to find

examples of non-trivial NESS, where the P() can be exactly derived. The ASEP

indeed constitutes one of these examples. For the reader interested in this challeng-

ing topic, we mention that P() can be expressed by a matrix product form [16, 19],

and that it can be calculated also from recursion relations [24, 25] or the Bethe ansatz

[16, 18].

Here our focus is on the occurrence of phase transitions of the bulk density 𝜌B in

the channel’s interior as a function of the controlling reservoir densities, which were

first reported in Ref. [26]. The corresponding phase diagram is displayed in Fig. 9.3b.

There appears a low-density (LD) phase for 0 ≤ 𝜌L < min(1∕2, 1 − 𝜌R) where 𝜌B =
𝜌L, a high-density (HD) phase for max(1∕2, 1 − 𝜌L) < 𝜌R ≤ 1, where 𝜌B = 𝜌R, and a

maximum current (MC) phase for 𝜌L > 1∕2 ∧ 𝜌R < 1∕2, where 𝜌B = 1∕2 irrespec-

tive of 𝜌L and 𝜌R. Note that jB from Eq. (9.4) assumes its maximum at 𝜌B = 1∕2.

How can we understand the origin of these different phases and the transitions

between them? For answering this question, it is helpful to reformulate the conditions

for the occurrence of the different phases, given above in terms of the densities 𝜌L

and 𝜌R, in terms of the rates 𝛼 and 𝛽 with the help of Eqs. (9.5). The condition

𝜌R < (1 − 𝜌L) for the LD phase corresponds to 𝛼 < 𝛽, the condition 𝜌R > (1 − 𝜌L)
for the HD phase to 𝛼 > 𝛽, and for the MC phase to occur, both 𝛼 and 𝛽 must be

larger than 1∕2 (see also Fig. 9.3b). Thus, with respect to the LD and HD phases, a

“hand-waving” argument would be to view the open ASEP as an assembly line, and

to argue that the throughput of goods (particles) is governed by the slowest worker.

This would give us an idea why the LD phase is realized for 𝛼 < 𝛽 [𝜌R < (1 − 𝜌L)]
and the HD phase for 𝛽 < 𝛼 [𝜌R > (1 − 𝜌L)] in Fig. 9.3b, but it cannot help us to

understand why there is the MC phase if 𝛼 and 𝛽 are both larger than 1/2.

http://dx.doi.org/10.1007/978-3-319-67798-9_8
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Fig. 9.4 Representative density profiles for a the LD, b the MC, and c the HD phase of the open

ASEP with N = 200 sites. The profiles were calculated from the exact recursion relations given in

[25]. In the MC phase, a bulk regime with nearly constant 𝜌B = 1∕2 is not seen, because of the slow

power law decay ∼ 1∕
√

r of the profile towards the bulk regime (strictly valid in the asymptotic

limit of infinite N). The bulk value 𝜌B = 1∕2 can nevertheless be read off from the saddle point in

the profile

A better approach for understanding the phase diagram is to look at density pro-

files in the different phases, for which representative examples are shown in Fig. 9.4

for a channel with N = 200 sites. These profiles were calculated from exact recur-

sion relations formerly derived in [25]. Looking at these profiles, we see that there

are bent parts because of boundary conditions to be fulfilled with respect to the reser-

voirs (see below). In this situation the particle flux is no longer solely generated by

the bias. In addition to the bias-induced drift (bulk) current jB, there is a diffusion

current caused by the concentration gradient, which, as in the situation of diffusion

considered, e.g., in Chap. 2, is directed towards decreasing concentration. The total

flux jtot is the sum of the drift and diffusion currents, and in the NESS, jtot must be

the same everywhere along the channel.

In the LD phase (Fig. 9.4a), the profile is flat except for a small region close to

the right boundary, and the bulk density in the flat part matches the reservoir density

𝜌L. In the region close to the right boundary, the density rapidly increases, but there

is no matching of the density 𝜌N at the site i = N next to the right reservoir with 𝜌R,

as one might first guess. In the example in Fig. 9.4a, we see that 𝜌N ≅ 0.27, while

𝜌R = 0.4. What determines 𝜌N is the requirement of constant total current. Because

jtot is constant, it can be calculated from the flat regime 𝜌i = 𝜌L, where the diffu-

sion current vanishes. Accordingly, jtot = jB(𝜌L) = 𝜈𝜌L(1 − 𝜌L) (cf. Eq. (9.4)). The

ejection current from site i = N is simply given by 𝛽𝜌N = 𝜈(1 − 𝜌R)𝜌N and this must

equal jtot also, giving 𝜈(1 − 𝜌R)𝜌N = 𝜈𝜌L(1 − 𝜌L), or 𝜌N = 𝜌L(1 − 𝜌L)∕(1 − 𝜌R). For

the parameters 𝜌L = 0.2 and 𝜌R = 0.4 in Fig. 9.4a this yields 𝜌N = 4∕15 ≅ 0.27 in

agreement with the data.

Similarly, in the HD phase (Fig. 9.4c), the profile is flat except for a small region

close to the left boundary, and the bulk density in the flat part matches the reservoir

http://dx.doi.org/10.1007/978-3-319-67798-9_2
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density 𝜌R. When approaching the left boundary, the density rapidly decreases. Its

value 𝜌1 at the site i = 1 next to the left reservoir follows from equating the total

current jtot = 𝜈𝜌R(1 − 𝜌R) with the injection current 𝛼(1 − 𝜌1) = 𝜈𝜌L(1 − 𝜌1). This

gives 𝜌1 = 1 − 𝜌R(1 − 𝜌R)∕𝜌L. For the parameters 𝜌L = 0.6 and 𝜌R = 0.8 in Fig. 9.4c

we obtain 𝜌1 = 11∕15 ≅ 0.73, in agreement with the data.

In the MC phase (Fig. 9.4b), the current is at its maximum, jtot = 𝜈∕4. The

boundary conditions at the left boundary [𝜈𝜌L(1 − 𝜌1) = 𝜈∕4] and right bound-

ary [𝜈(1 − 𝜌R)𝜌N) = 𝜈∕4] then give 𝜌1 = 1 − 1∕(4𝜌L) and 𝜌N = 1∕[4(1 − 𝜌R)]. The

corresponding values 𝜌1 = 2∕3 ≃ 0.67 and 𝜌N = 1∕3 ≃ 0.33 for the parameters in

Fig. 9.4b again agree with the data.

It can be further shown [25] that the bent profile parts in the LD and HD phases

decay exponentially towards the bulk value 𝜌B (with possible power law correc-

tions in sub-phases), while in the MC phase the profile decays very slowly as 1∕
√

r
towards 𝜌B, meaning that |𝜌N∕2±r − 𝜌B| ∼ r−1∕2. These different behaviors are clearly

reflected by the profiles shown in Fig. 9.4.

How can this insight into the behavior of the density profiles help us to understand

the occurrence of the phase transitions? Despite of the missing matching with the

reservoir densities for the bent parts of the profiles, we can infer from our evaluation

that the density increases from the left to the right side of the channel for 𝜌L < 𝜌R,

while it decreases for 𝜌L > 𝜌R. The diffusion current thus is negative (flowing from

right to left) for 𝜌L < 𝜌R and positive (flowing from left to right) for 𝜌R < 𝜌L, and it is

zero in the flat region of the interior channel part (which extends to the left or right

boundary in the LD and HD phases, respectively).

When the density starts to deviate from its constant value 𝜌B in the interior part,

where jtot = jB, the concentration gradients give rise to a diffusion flux. This addi-

tional flux must be compensated by a change of the drift current jB to keep jtot con-

stant everywhere along the channel. For 𝜌L < 𝜌R the diffusion current must be com-

pensated by an increase of jB, and for 𝜌L > 𝜌R it must be compensated by a decrease of

jB. This implies that for 𝜌L < 𝜌R, jB = jB(𝜌)must assume its minimal value in the inter-

val 𝜌1 ≤ 𝜌 ≤ 𝜌N , while for 𝜌R < 𝜌L, it must assume its maximal value in the interval

𝜌N ≤ 𝜌 ≤ 𝜌1. The density corresponding to this minimal or maximal jB is the bulk

value 𝜌B appearing in the channel’s interior. It is important to emphasize that this

reasoning requires monotonically varying profiles.

With the known 𝜌1 and 𝜌N as a function of 𝜌L and 𝜌R from above, one can check

that 𝜌1 and 𝜌N can actually be replaced by 𝜌L and 𝜌R in the reasoning, so as if the

profiles would monotonically decrease or increase between 𝜌L and 𝜌R. The reasoning

allows us to formulate the following rules for the determination of the phase diagram

[26, 27]:

𝜌B =
⎧
⎪
⎨
⎪
⎩

argmin
𝜌L≤𝜌≤𝜌R

{jB(𝜌)} , 𝜌L ≤ 𝜌R ,

argmax
𝜌R≤𝜌≤𝜌L

{jB(𝜌)} , 𝜌R ≤ 𝜌L .

(9.6)

Here, argmin
𝜌L≤𝜌≤𝜌R

{jB(𝜌)} and argmax
𝜌R≤𝜌≤𝜌L

{jB(𝜌)} return that values of the (func-

tion argument) 𝜌, where, in the indicated interval, jB(𝜌) assumes its minimum and
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maximum, respectively. The rules in Eq. (9.6) are referred to as the minimum and

maximum current principles. Only jB as a function of 𝜌 is needed for their applica-

tion. The application is demonstrated in Fig. 9.3 for three densities marked by the

dotted lines in Fig. 9.3a, which serve as possible values for the reservoir densities

(see the description in the figure caption for details).

Note that for 𝜌L > 𝜌R the particle density decreases in the direction of the bias,

implying that the diffusion current adds positively to the drift current. As a conse-

quence, the maximum current principle applies. In the MC phase, where 𝜌L > 1∕2 >

𝜌R, the value 𝜌 = 1∕2 at which jB has its maximum, always lies in the interval [𝜌R, 𝜌L].
Accordingly, the current in this phase attains the largest possible value 𝜈∕4 and the

bulk density in this phase is 𝜌B = 1∕2 irrespective of the reservoir densities.

For a more detailed characterization of the situation displayed in Fig. 9.3b and

the conditions giving rise to switches between different phases we recollect that,

in thermodynamics, one distinguishes between phase transitions of first and second

order. Well known examples of first-order phase transitions are the freezing-melting

and boiling-condensing transitions of matter upon a variation of, e.g., the tempera-

ture. First-order phase transitions are characterized by a discontinuity of the quantity

characterizing the different phases, commonly referred to as the “order parameter”.

Second-order phase transitions are characterized by a discontinuity of the derivative

of the order parameter with respect to a control parameter (e.g., the temperature),

while the respective quantity itself exhibits no discontinuity.

In our case, the bulk density 𝜌B is the order parameter characterizing the dif-

ferent phases in Fig. 9.3b, and 𝜌L and 𝜌R are the control parameters. Transitions to

the maximum current phase are of second order, which means that 𝜌B continuously

varies when passing the corresponding transition lines, while the derivative of 𝜌B

with respect to 𝜌L and 𝜌R exhibits a discontinuity. For example, when increasing 𝜌L

for fixed 𝜌R = 0.2, the phase diagram in Fig. 9.3b tells us that 𝜌B = 𝜌L for 𝜌L ≤ 1∕2,

and that 𝜌B = 1∕2 for 𝜌L ≥ 1∕2. Hence d𝜌B∕d𝜌L jumps from one to zero when pass-

ing the transition line at 𝜌L = 1∕2. By contrast, transitions between the low- and

high-density phase are of first order, meaning that there is a discontinuity in 𝜌B when

passing the transition line: 𝜌B jumps from 𝜌B = 𝜌L to 𝜌B = 𝜌R when crossing the line

on a path from the LD to the HD phase (e.g., for 𝜌R = 0.7 and 𝜌L increasing).

Let us dwell for a minute to consider the situation when the reservoir densities

have values corresponding to points on the first-order transition line, i.e. 𝜌L = 1 − 𝜌R,

𝜌L ∈ [0, 1∕2[. In this case two phases with different 𝜌B, namely 𝜌B = 𝜌L and 𝜌B =
𝜌R can coexist. This may remind us of the situation of a liquid in equilibrium with

its vapor phase within a closed vessel. They are separated from each other by an

interface, i.e. the surface of the liquid. Thus, in analogy, we may in the ASEP as well

expect the occurrence of interfaces or “domain walls”, i.e. of boundaries between

different phases. Indeed these domain walls separating different phases appear for

reservoir densities on the first-order transition line. An example of a corresponding

density profile with a domain wall is shown in Fig. 9.5a. This profile was obtained

from a kinetic Monte Carlo (KMC) simulation, where the fluctuating occupation

numbers ni in the stationary state were averaged over a suitable time window. The
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Fig. 9.5 a Snaphot of the time-dependent density profile for reservoir densities 𝜌L = 0.1 and 𝜌R =
0.9 on the first-order transition line between the LD and HD phases (see Fig. 9.3b). The profile was

obtained from a KMC simulation of a TASEP with N = 200 sites by an averaging of occupation

numbers in a time window 𝜏 with 𝜈
−1

≪ 𝜏 ≪ N2∕D
w

. It is plotted here as a function of the quasi-

continuous variable x = i∕N (i: lattice site number). b Snapshot of the occupation numbers in a two-

dimensional TASEP with N × N⟂ = 150 × 40 sites for reservoir densities 𝜌L = 0.2 and 𝜌R = 0.8 on

the first-order transition line. The configuration was obtained from a KMC simulation with periodic

boundary conditions in the direction perpendicular to the bias (see text for further details)

domain walls in the ASEP resemble shock fronts in Burger’s turbulence [28] and

traffic jam models.

Obviously, there is no reason why the sudden step in the mean site occupancy

(density) should occur at a certain position as, for example, the one shown in Fig. 9.5a

around the site 0.5N ≃ 100. In fact, the domain wall position is not fixed but fluc-

tuates in time. These fluctuations have been analyzed in detail using a Boltzmann-

Langevin approach [29]. Except for very small times, the domain wall position fol-

lows a random walk (see Chap. 2) process with a diffusion constant D
w

. Hence, by

exploiting the Einstein relation (Eq. (2.5)), the typical time for the domain wall

position to visit all sites of the channel with approximately equal probability is of

the order N2∕D
w

. This implies that after an averaging of the occupation numbers

over time scales larger than N2∕D
w

, the corresponding profile in Fig. 9.5a would

appear as a linearly increasing function from 𝜌L to 𝜌R.

http://dx.doi.org/10.1007/978-3-319-67798-9_2
http://dx.doi.org/10.1007/978-3-319-67798-9_2
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The phase transitions are not a peculiar feature of one-dimensional systems.

Figure 9.5b shows a snapshot of the site occupancies (particle configuration) from a

KMC simulation of a TASEP in two dimensions. As in the one-dimensional channel

sketched in Fig. 9.2b, the bias was applied in the x-direction from left to right, and

particles were injected from a reservoir L at the left system boundary and ejected to a

reservoir R at the right boundary. In the orthogonal y-direction no bias was applied,

i.e. the rates for jump upwards (positive y-direction) and downwards (negative y-

direction) were equal. Periodic boundary condition with respect to the y-direction

were used, meaning that a particle attempting to leave the upper boundary by a jump

in positive y-direction, is inserted at the opposing site at the lower boundary, if that

site is empty. This amounts to a TASEP on an open channel forming a torus. By tak-

ing averages over the mean occupation numbers of sites along the y-direction, it is

easy to show that the phase diagram in Fig. 9.3b is valid also for this two-dimensional

system. In the example shown in Fig. 9.5b, the reservoir densities were chosen as

𝜌L = 0.2 and 𝜌R = 0.8, corresponding to a point on the transition line as in Fig. 9.5a.

In Fig. 9.5b, however, we can visualize the transition directly in the snapshot of the

particle configuration because the domain wall is much slower fluctuating. One can

show that the diffusion coefficient D
w

of its position decreases as 1∕N⟂ with the

width (number of sites) in the y-direction [30].

9.3 Driven Lattice Gases with Repulsive Interactions

What happens if particle interactions beyond site exclusions are present in the driven

lattice gas? This question was first addressed in a specific model [31] and later studied

in a more general context for repulsive interactions V > 0 between nearest-neighbor

particles [32–34]. In this case, a particle configuration  = {ni} has an energy

E() = V
∑

i
ni ni+1 . (9.7)

It was shown that one can again restrict the analysis to the extreme case of unidirec-

tional jumps in order to capture the essential features with respect to phase transition

between NESS [34].

In the presence of the nearest-neighbor interactions, the rates 𝛤i for a jump from

site i to a vacant neighboring site (i + 1) depend on the occupation numbers left to

the initial and right to the target site, as illustrated in Fig. 9.6a, i.e. 𝛤i = 𝛤 (ni−1, ni+2).
For example, if ni−1 = 1 and ni+2 = 0, a particle on site i is pushed by its neighboring

particle on site (i − 1), leading to an increased jump rate. To the contrary, if ni−1 = 0
and ni+2 = 1, a particle on site i has to jump against the repulsive interaction with the

particle at site (i + 2), leading to a decreased jump rate. Considering the four different

possibilities of the occupation of the sites (i − 1) and (i + 2), and introducing the hole

occupation numbers ñi = 1 − ni for shorter notation, the current flowing from site i
to site (i + 1) can, in generalization of Eq. (9.1), be written as
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Fig. 9.6 a Illustration of the dependence of the jump rates on the occupation numbers in a one-

dimensional driven lattice gas with nearest-neighbor interactions. b Current-density relation for

three different strengths V = 0, V = Vc, and V = 2Vc of the repulsive nearest-neighbor interaction

in case where the jump rates are given by the Glauber rates in Eq. (9.9); Vc is the critical value,

where the current-density relation develops a double-hump structure

ji =
∑

l=0,1

∑

m=0,1
p4(ni−1 = l, ni = 1, ni+1 = 0, ni+2 = m)𝛤 (l,m)

= ⟨ñi−1niñi+1ñi+2⟩𝛤 (0, 0) + ⟨ni−1niñi+1ñi+2⟩𝛤 (1, 0)
+ ⟨ñi−1niñi+1ni+2⟩𝛤 (0, 1) + ⟨ni−1niñi+1ni+2⟩𝛤 (1, 1) . (9.8)

Here p4(ni−1 = l, ni = 1, ni+1 = 0, ni+2 = m) is the joint probability of finding site

i to be occupied, site (i + 1) to be empty and the sites (i − 1) and (i + 2) to have

occupations according to the values l and m, respectively. As in Eq. (9.1), we have

replaced these joint probabilities in Eq. (9.8) with the corresponding averages over

products of occupation numbers in the NESS.

The system is considered to be in contact with a heat reservoir at temperature

T and we use the thermal energy k
B

T , where k
B

is the Boltzmann constant, as our

energy unit (k
B

T = 1, V∕k
B

T = V). The Glauber rates [35]

𝛤 (ni−1, ni+2) =
2𝜈

exp[(ni+2 − ni−1)V] + 1
(9.9)

are taken as jump rates, which, in the absence of the interaction (V = 0), reduce to

𝛤 (ni−1, ni+2) = 𝜈.
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9.3.1 Current-Density Relation in the Bulk

In a bulk (ring) system correlations and densities are translationally invariant (mod-

ulo N) in the NESS. To derive the relation between the density and the current, we

need to express the correlations between occupation numbers in Eq. (9.8) by the den-

sity 𝜌 = ⟨ni⟩. As mentioned above, this in general is a difficult task, because there

are no universal laws providing the probabilities for the particle configurations  (or

microstates) in NESS. However, we can take advantage here of a remarkable fact

that is valid in one dimension, namely that for rates satisfying the relations

𝛤 (0, 1) = 𝛤 (1, 0) e−V
, (9.10a)

𝛤 (0, 0) + 𝛤 (1, 1) − 𝛤 (0, 1) − 𝛤 (1, 0) = 0 , (9.10b)

the probability distribution for the configurations in the NESS becomes the equilib-

rium Boltzmann distribution [34, 36, 37], i.e. P() ∝ exp[−E()] with E() from

Eq. (9.7). Since the Glauber rates in Eq. (9.9) satisfy Eqs. (9.10a) and (9.10b), the

correlations between occupation numbers in Eq. (9.8) equal the equilibrium correla-

tions in the corresponding one-dimensional Ising model, which can be calculated by

various means, as, for example, the transfer matrix technique [38]. As a result, one

finds [34]

jB(𝜌) = 2𝜈
[(
𝜌 − C(1))2 2f − 1

2𝜌(1 − 𝜌)
+
(
𝜌 − C(1)) (1 − f )

]
, (9.11)

where f = 1∕[exp(V) + 1] = 𝛤 (0, 1)∕2𝜈, and

C(1) = ⟨nini+1⟩eq

= 1
2(1 − e−V )

[
2𝜌(1 − e−V ) − 1 +

√
1 − 4𝜌(1 − 𝜌)(1 − e−V )

]
(9.12)

is the average of the product of two occupation numbers at neighboring sites in equi-

librium.

Figure 9.6b shows the current-density relation for three different interaction

strengths V . Because the bulk dynamics is particle-hole symmetric, jB(𝜌) = jB(1 − 𝜌).
For V → 0, jB(𝜌) approaches the parabola jB = 𝜈𝜌(1 − 𝜌) from Eq. (9.4) for particles

with site exclusion only. For large V , a minimum in the current must occur at half

filling 𝜌 = 1∕2, because the preferred particle configurations then correspond to stag-

gered arrangements of occupied sites and holes (antiferromagnetic ordering). In such

configurations, jumps have a very small rate ∝ exp(−V) that vanishes in the limit

V → ∞. Moreover, because jB(𝜌) → 0 for 𝜌 → 0 (or 𝜌 → 1) and jB(𝜌) = jB(1 − 𝜌), the

appearance of a minimum at 𝜌 = 1∕2must go along with the appearance of two max-

ima at densities 𝜌
⋆

1,2 with 𝜌
⋆

2 = 1 − 𝜌
⋆

1 . An analysis of Eqs. (9.11) and (9.12) yields

that the corresponding double hump structure in the current occurs for V exceeding

the critical value
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Vc = 2 ln 3 ≅ 2.20 , (9.13)

and that the two maxima for V > Vc occur at

𝜌
∗
1,2(V) = 1

2
∓

√
3
4
− 1

2

√
2eV

eV − 1
. (9.14)

In Fig. 9.6b, the current-density relation is displayed for V = 0, V = Vc, and V = 2Vc.

9.3.2 Phase Diagram for Bulk-Adapted Couplings

How do the interactions influence the phase transitions between NESS if the driven

lattice gas is brought into contact with two particle reservoirs L and R at the left

and right boundary? One answer to this question is readily provided by applying the

minimum and maximum current principles, Eq. (9.6), to the current-density relation

(9.11). In the strong interaction regime V > Vc, this yields a phase diagram with

in total seven phases, where two of them are “left-boundary phase” with 𝜌B = 𝜌L,

two are “right-boundary phase” with 𝜌B = 𝜌R, two are maximum current phases with

either 𝜌B = 𝜌
⋆

1 or 𝜌B = 𝜌
⋆

2 , and one is a minimum current phase with 𝜌B = 1∕2. The

diagram for V = 2Vc, corresponding to the curve with the double hump in Fig. 9.6b,

is shown in Fig. 9.7a. Solid lines separating phases in this figure mark transitions of

first order, and dashed lines indicate transitions of second order. As a consequence

of the particle-hole symmetry in the bulk dynamics, the phase diagram, as the one

in Fig. 9.3b, exhibits a symmetry with respect to the off-diagonal.

However, as discussed in Sect. 9.2.2, application of the minimum and maximum

current principles requires the density profiles to be monotonically varying. In gen-

eral this condition is not fulfilled for the system-reservoir couplings in the presence

of interactions. Analogous to the case of equilibrium systems, density oscillations

typically occur at the system boundaries [32, 33] due to the effects of modified inter-

actions close to the boundaries, as, e.g., caused by missing neighbors. The modified

interactions change the rates involved in the injection and ejection of particles com-

pared to the rates for jumps in the bulk, as illustrated in Fig. 9.8. At the left boundary,

these rates are the injection rate 𝛤L(n2) that, for nearest-neighbor interaction should

depend on the occupation at site i = 2 and the rate 𝛤1(n3) that depends only on the

occupation at site i = 3 due to the missing neighbor to the left. Analogously, at the

right boundary the modified rates are 𝛤N−1(nN−2) and 𝛤R(nN−1). A physical choice

of these rates is discussed in the next Sect. 9.3.3. It leads to another phase diagram

with 𝜌L and 𝜌R as control parameters, as exemplified in Fig. 9.7b.

An interesting question is whether it is possible to define the rates at the system

boundaries in such a manner that the phase diagram predicted by the minimum and

maximum current principles becomes valid. This is indeed possible as will be shown

now. The guiding principle is to adapt the dynamics near the reservoirs with density
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Fig. 9.7 NESS phase diagrams of driven lattice gases with nearest-neighbor interactions for a
bulk-adapted couplings and b equilibrated-bath couplings to the particle reservoirs. The interaction

strength is V = 2Vc. Solid lines indicate first-order transitions and dashed lines second-order tran-

sitions. The shaded area in a marks a region, where the two maximum current phases coexist. The

lines in b refer to analytical calculations based on the time-dependent density functional theory of

lattice fluids [34] and the circles mark the results from kinetic Monte Carlo simulations

Fig. 9.8 Illustration of the rates involved in the injection and ejection of particles in the driven

lattice gas with nearest-neighbor interactions and unidirectional bias

𝜌L,R to the bulk dynamics of a system with density 𝜌 = 𝜌L,R. To be specific, let us

consider the left reservoir with density 𝜌L and the injection rate 𝛤L(n2) to a vacant

site n1 = 0, where the occupation n2 corresponds to the site right of the target site

of a jump. To adapt this rate to the bulk dynamics, we consider a bulk system of

density 𝜌 = 𝜌L and a jump in the system’s interior from a site i to a vacant site (i + 1)
(ni+1 = 0) with neighbor occupation ni+2. Such a jump can occur only if the site i is

occupied. Its rate is either 𝛤 (0, ni+2) for ni−1 = 0 or 𝛤 (1, ni+2) for ni−1 = 1. For given

occupancies (ni+1=0, ni+2), the occupancies (ni−1=0, ni=1) and (ni−1=1, ni=1)
occur with the conditional probabilities p2|2(ni−1=0, ni=1|ni+1=0, ni+2; 𝜌L,V) and

p2|2(ni−1=1, ni=1|ni+1=0, ni+2; 𝜌L,V), respectively, where the explicit designation

of 𝜌L and V reminds us that the conditional probabilities are for a bulk system with

density 𝜌 = 𝜌L and particle interactions V . Because these probabilities are transla-

tionally invariant in the bulk, we can write them simply as p2|2(01|0n2; 𝜌L,V) and

p2|2(11|0n2; 𝜌L,V), where we set ni+2 = n2. Accordingly, we obtain
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𝛤L(n2) = p2|2(01|0n2; 𝜌L,V)𝛤 (0, n2) + p2|2(11|0n2; 𝜌L,V)𝛤 (1, n2) . (9.15a)

With the same type of reasoning we find

𝛤1(n3) = p1|3(0|10n3; 𝜌L,V)𝛤 (0, n3) + p1|3(1|10n3; 𝜌L,V)𝛤 (1, n3) , (9.15b)

where p1|3(m1|m2 m3 m4) is the probability in a bulk system of finding an occupation

m1 at site (i + 1) for given occupations (m2 m3 m4) at sites (i + 2), (i + 3), and (i + 4).
Analogously, bulk-adapted rates 𝛤R(nN−1) and 𝛤N−1(nN−2) can be defined.

The specification of the bulk-adapted rates here extends the preliminary consid-

erations in Sect. 9.2.2. Its underlying concept can be generalized to even more com-

plicated situations including interactions of longer range and periodically driven dif-

fusion in time-dependent potentials [21]. In all these cases, KMC simulations with

the bulk-adapted rates have shown that phase diagrams of NESS agree with the pre-

dictions of the minimum and maximum current principles.

Since the bulk-adapted couplings to the reservoirs are in general not physical

(except for the simplest case of the ASEP for 𝛼, 𝛽 ≤ 𝜈), one may ask, why these

couplings should be useful. The reason is as follows. Having a bulk region of con-

stant (or nearly constant) density 𝜌B in the system’s interior, a slightly enlarged region

may be defined, where the density profile approaches the bulk region monotonically.

The densities at the boundaries of this enlarged region can be used as effective densi-

ties [31]. Application of the minimum and maximum current principles with respect

to these effective densities as “boundary densities” then will consistently provide

the correct NESS phase with the order parameter 𝜌B. This reasoning shows that all

possible phases are predicted by applying the minimum and maximum current prin-

ciples to the bulk current-density relation. The bulk-adapted specification of the rates

involved in the injection and ejection of particles then provides a means to actually

generate all these possible NESS phases in a systematic and controlled manner.

We conclude this section by noting that a study of the density profiles in the var-

ious phases of the diagram shown in Fig. 9.7a yielded characteristic features that

agree with that found in the phases of the ASEP for V = 0 [39]. In the boundary

phases, the profiles decay exponentially towards the bulk value 𝜌B, with possible

power-law corrections, and in the minimum or maximum current phases the decay

follows power laws.

A new phenomenon occurs in the parameter region 𝜌L > 𝜌
⋆

2 ∧ 𝜌R < 𝜌
⋆

1 marked

by the shaded area in Fig. 9.7a. In this region, the maximum current phases with

𝜌B = 𝜌
⋆

1 and 𝜌B = 𝜌
⋆

2 coexist. Similar to the density profile for the case of the two

coexisting boundary LD and HD phases in Fig. 9.5a, a domain wall appears in the

system, but its mean position appears to be pinned at a location that depends on 𝜌L

and 𝜌R. Also the width of the fluctuations around the mean position depends on the

value of the reservoir densities. A detailed analysis of this coexistence of two self-

organized phases, in particular of the mean positions and fluctuations of the domain

wall is lacking yet and shall be pursued in the future [40].
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9.3.3 Phase Diagram for Equilibrated-Bath Couplings

As discussed above, in the NESS of driven lattice gases with interactions, there typ-

ically appear oscillations in the density profiles in regions close to the particle reser-

voirs, if the rates at the system boundaries are different from the particular bulk-

adapted ones. For example, when the particle reservoirs are represented by equili-

brated ideal Fermi gases with chemical potentials 𝜇L and 𝜇R, giving the reservoir

densities

𝜌L,R =
1

exp(−𝜇L,R) + 1
, (9.16)

a natural form of the rates at the boundaries is [34]

𝛤L(n2) = 𝜌L
2𝜈

exp(n2V − 𝜇L) + 1
, (9.17a)

𝛤R(nN−1) = (1 − 𝜌R)
2𝜈

exp(−nN−1V + 𝜇R) + 1
, (9.17b)

𝛤1(n3) =
2𝜈

exp(n3V) + 1
= 𝛤 (0, n3) , (9.17c)

𝛤N−1(nN−2) =
2𝜈

exp(−nN−2V) + 1
= 𝛤 (nN−2, 0) . (9.17d)

The rates in Eqs. (9.17c) and (9.17d) have the same form as the bulk rates given

in Eq. (9.9), where the missing neighbors are accounted for by vanishing occupa-

tion numbers. The injection and ejection rates in Eqs. (9.17a) and (9.17b) corre-

spond to Eq. (9.9), if to the particles in the reservoirs are assigned the “site energies”

𝜇L,R. The additional factors 𝜌L and (1 − 𝜌R) in Eqs. (9.17a) and Eq. (9.17b) take into

account the filling of the baths. Overall, Eq.(9.17) gives transition rates that resem-

ble forms resulting from Fermi’s golden rule [41]. In the following we will refer to

these system-reservoir couplings as the “equilibrated-bath rates”.

The phase diagram for equilibrated-bath rates looks quite different from that for

the bulk-adapted rates. As an example we show in Fig. 9.7b the diagram for the same

interaction strength V = 2Vc as in Fig. 9.7a. Compared to Fig. 9.7a, five instead of

seven phases appear, where one is a minimum current phase with 𝜌B = 1∕2, one

is a maximum current phase with 𝜌B = 𝜌
⋆

1 , one is a left-boundary phase, and two

are right-boundary phases. Because of the mismatch between boundary and bulk

dynamics for the equilibrated-bath couplings, the bulk density 𝜌B in the boundary

phases no longer equals one of the reservoir densities, but rather is a function of

either 𝜌L and 𝜌R, as indicated in Fig. 9.7b. Note also that the diagram in Fig. 9.7b is

not symmetric with respect to the off-diagonal, which seems to violate the particle-

hole symmetry in the system.

Although the phase diagram in Fig. 9.7b looks quite different from that in

Fig. 9.7a, there is in fact a general connection between all phase diagrams plotted
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in dependence of the control parameters 𝜌L and 𝜌R. This is because from a theoreti-

cal point of view, the NESS phases are in fact controlled by the complete set of rates

𝛤
𝜂

(𝜂 = L,R, 1 or N − 1, cf. Fig. 9.8) governing the dynamics at the boundaries. In

this higher dimensional space of theoretical control parameters 𝛤
𝜂
, the phase dia-

gram is unique, and for nearest-neighbor interactions exhibits a symmetry reflecting

the particle-hole symmetry in the overall dynamics [34].

In applications, as, e.g., a molecular wire attached to some metal electrodes, the

system-reservoir couplings will be given by some setup, and the experimentalist most

likely will be able to influence the boundary dynamics in a controlled manner by

changing 𝜌L or 𝜌R (or 𝜇L and 𝜇R). One thus can regard 𝜌L and 𝜌R as the experimen-

tal control variables. The connection between the unique phase diagram in the 𝛤
𝜂
-

space and the non-unique diagrams in the (𝜌L, 𝜌R)-space is given by the functional

dependence of the rates 𝛤
𝜂

on the reservoir densities. For example, in the case of the

bulk-adapted couplings we have 𝛤L = hba
L
(𝜌L) and 𝛤1 = hba

1 (𝜌L) with functions hba
L
(𝜌L)

and hba
1 (𝜌L) defined by Eqs. (9.15) (note the conditional probabilities in these equa-

tions are fixed once 𝜌L and V are given), while in the case of the equilibrated-bath

couplings, we have 𝛤L = heb
L
(𝜌L) and 𝛤1 = heb

1 (𝜌L) with functions heb
L
(𝜌L) and heb

1 (𝜌L)
defined by Eqs. (9.16) and (9.17). Analogously, 𝛤R and 𝛤N−1 are parameterized by

𝜌R. This means that reservoir densities (𝜌L, 𝜌R) correspond to unique points in the

𝛤
𝜂
-space, but these points are in general different for different system-reservoir cou-

plings. The distinct phase diagrams in Fig. 9.7a, b are thus originating from different

projections of submanifolds in the 𝛤
𝜂
-space onto the (𝜌L, 𝜌R)-plane. For the bulk-

adapted couplings, all phases in the 𝛤
𝜂
-space appear in this projection.

The foregoing discussion explains why the phase diagrams in dependence of 𝜌L

and 𝜌R can be quite different for different system-reservoir couplings. It remains to

develop a theory, which can predict the (unique) phase diagram in the 𝛤
𝜂
-space.

To tackle this problem, a kinetic theory was developed [32, 34] based on the time-

dependent density functional theory of lattice fluids [42, 43] and exact results for

density functionals in one dimension [44]. The key assumption in this theory is that

relations between correlation functions and densities in the NESS can be represented

on a local scale by the corresponding relations in equilibrium systems (for details, see

Ref. [34]). Representative results of this theory are marked by the lines in Fig. 9.7b

and agree well with the results from kinetic Monte Carlo simulations that are repre-

sented by the circles.

9.4 Conclusions

Non-equilibrium steady states generated by driven diffusion show a rich variety

of self-organized structures. In this chapter we have reviewed recent findings on

the phase structure of NESS in driven lattice gases coupled to particle reservoirs.

After giving an introduction to the phase transitions between NESS in the asym-

metric simple exclusion process, we discussed the physics of these transitions if
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repulsive nearest-neighbor interactions between the particles beyond site exclusions

are included in the process.

Our key findings can be summarizes as follows: Due to the effect of modified

particle interactions at the system-reservoir boundaries, the minimum and maximum

current principles are no longer sufficient to predict phase diagrams of NESS based

solely on the current-density relation in the bulk. These principles are nevertheless

useful to predict all possible NESS phases that can appear in the driven diffusion

system. A systematic procedure exists to define bulk-adapted system-reservoir cou-

plings such that the phase diagram predicted by the minimum and maximum current

becomes valid. In this way one can generate all possible NESS phases and investi-

gate their properties. In applications there will be other system-reservoir couplings

present and the phase diagrams for these couplings, plotted as a function of the exper-

imentally controllable parameters, generally differ from that predicted by the min-

imum and maximum current principles. From a theoretical point of view, one can

consider these differing phase diagrams as projections of submanifolds in one unique

phase diagram in a high-dimensional space onto a lower dimensional space of the

experimentally controllable variables. The high-dimensional space is spanned by all

parameters needed for the complete specification of the system-reservoir couplings.

To calculate the phase diagram for the repulsive nearest-neighbor interactions, good

results were obtained by using a kinetic approach based on time-dependent density

functional theory of lattice fluids.

These findings and the underlying methods of analysis were recently shown to

be relevant also for understanding the occurrence of phase transitions in periodi-

cally driven NESS [21, 22]. This in particular has important consequences for the

physics of Brownian motors that have found widespread applications ranging from

cellular ion pumps to quantum ratchets [45, 46]. For Brownian motors operating on

interacting particles, it was argued that the occurrence of phase transition between

NESS is a generic feature irrespective of their type. The knowledge of the phase

structure is important to determine control parameters for optimal motor efficien-

cies, and extremal current phases can be utilized to make the motor-generated parti-

cle flow robust against fluctuations of the control parameters. Further developments

include the application to multiple-phase structures in traffic flows [47], to the linear-

response behavior of NESS [48], as well as future studies on the connection between

the non-equilibrium physics of classical driven diffusion systems and the equilibrium

quantum physics of strongly correlated spinless fermions [17, 49, 50].

References

1. A. Schadschneider, D. Chowdhury, K. Nishinari, Stochastic Transport in Complex Systems:
From Molecules to Vehicles, 3rd edn. (Elsevier Science, Amsterdam, 2010)

2. J. Howard, Mechanics of Motor Proteins and the Cytoskeleton (Sinauer Associates, Sunder-

land, 2001)

3. A.B. Kolomeisky, J. Phys. Condens. Matter 25, 463101 (2013)



168 P. Maass et al.

4. A.F. Huxley, in Progress, in Biophysics and Biophysical Chemistry, vol. 7, ed. by J.A.V. Butler,

B. Katz (Pergamon Press, New York, 1957), pp. 255–538

5. R. Lipowsky, S. Klumpp, T.M. Nieuwenhuizen, Phys. Rev. Lett. 87, 108101 (2001)

6. E. Frey, K. Kroy, Ann. Phys. 14, 20 (2005)

7. K. Nishinari, Y. Okada, A. Schadschneider, D. Chowdhury, Phys. Rev. Lett. 95, 118101 (2005)

8. C.T. MacDonald, J.H. Gibbs, A.C. Pipkin, Biopolymers 6, 1 (1968)

9. T. Chou, D. Lohse, Phys. Rev. Lett. 82, 3552 (1999)

10. B. Hille, Ionic Channels of Excitable Membranes, 3rd edn. (Sinauer Associates, Sunderland,

2001)

11. P. Graf, M.G. Kurnikova, R.D. Coalson, A. Nitzan, J. Phys. Chem. B 108, 2006 (2004)

12. K.O. Sylvester-Hvid, S. Rettrup, M.A. Ratner, J. Phys. Chem. B 108, 4296 (2004)

13. M. Einax, M. Dierl, A. Nitzan, J. Phys. Chem. C 115, 21396 (2011)

14. T. Halpin-Healy, Y.C. Zhang, Phys. Rep. 254, 215 (1995)

15. J. Krug, Adv. Phys. 46, 139 (1997)

16. B. Derrida, Phys. Rep. 301, 65 (1998)

17. G.M. Schütz, in Phase Transitions and Critical Phenomena, ed. by C. Domb, J.L. Lebowitz ,

vol. 19 (Academic Press, San Diego, 2001)

18. O. Golinelli, K. Mallick, J. Phys. A 39, 12679 (2006)

19. R.A. Blythe, M.R. Evans, J. Phys. A 40, R333 (2007)

20. V. Popkov, A. Schadschneider, J. Schmidt, G.M. Schütz, Proc. Nat. Acad. Sci. 112, 12645

(2015)

21. M. Dierl, W. Dieterich, M. Einax, P. Maass, Phys. Rev. Lett. 112, 150601 (2014)

22. M. Dierl, P. Maass. Preprint (2016)

23. J.F. Gouyet, M. Plapp, W. Dieterich, P. Maass, Adv. Phys. 52, 523 (2003)

24. B. Derrida, E. Domany, D. Mukamel, J. Stat. Phys. 69, 667 (1992)

25. G.M. Schütz, E. Domany, J. Stat. Phys. 72, 277 (1993)

26. J. Krug, Phys. Rev. Lett. 67, 1882 (1991)

27. V. Popkov, G.M. Schütz, Europhys. Lett. 48, 257 (1999)

28. J. Bec, K. Khanin, Phys. Rep. 447, 1 (2007)

29. P. Pierobon, A. Parmeggiani, F. von Oppen, E. Frey, Phys. Rev. E 72, 036123 (2005)

30. G.D. Lam, Collective effects and phase transitions in simple Brownian motors. Master thesis,

University of Osnabrück, 2016

31. J.S. Hager, J. Krug, V. Popkov, G.M. Schütz, Phys. Rev. E 63, 056110 (2001)

32. M. Dierl, P. Maass, M. Einax, Europhys. Lett. 93, 50003 (2011)

33. M. Dierl, P. Maass, M. Einax, Phys. Rev. Lett. 108, 060603 (2012)

34. M. Dierl, M. Einax, P. Maass, Phys. Rev. E 87, 062126 (2013)

35. R.J. Glauber, J. Math. Phys. 4, 294 (1963)

36. H. Singer, I. Peschel, Z. Phys. B 39, 333 (1980)

37. S. Katz, J.L. Lebowitz, H. Spohn, J. Stat. Phys. 34, 497 (1984)

38. M. Takahashi, Thermodynamics of One-Dimensional Solvable Models (Cambridge University

Press, 1999)

39. M. Wolff. Untersuchung stationärer Dichteprofile in getriebenen Diffusionssystemen (in Ger-

man). Bachelor thesis, Universität Osnabrück, 2014

40. M. Wolff, M. Dierl, P. Maass (To be published)

41. A. Nitzan, Chemical Dynamics in Condensed Phases (Oxford University Press, Oxford, 2006)

42. D. Reinel, W. Dieterich, J. Chem. Phys. 104, 5234 (1996)

43. S. Heinrichs, W. Dieterich, P. Maass, H.L. Frisch, J. Stat. Phys. 114, 1115 (2004)

44. J. Buschle, P. Maass, W. Dieterich, J. Phys. A 33, L41 (2000)

45. P. Reimann, Phys. Rep. 361, 57 (2002)

46. E.R. Kay, D.A. Leigh, F. Zerbetto, Angew. Chem. Int. Ed. 46, 72 (2007)

47. M.E. Foulaadvand, P. Maass, Phys. Rev. E 94, 012304 (2016)

48. U. Seifert, T. Speck, EPL 89, 10007 (2010)

49. F.C. Alcaraz, M. Droz, M. Henkel, V. Rittenberg, Ann. Phys. 230, 250 (1994)

50. R. Stinchcombe, Adv. Phys. 50, 431 (2001)



Part III
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Chapter 10
Diffusive Spreading of Molecules
in Nanoporous Materials

Christian Chmelik, Jürgen Caro, Dieter Freude, Jürgen Haase,
Rustem Valiullin and Jörg Kärger

10.1 Introduction

Materials with pore diameters in the range of 1–100 nm are referred to as “nano-
porous” [1]. They are found in nature and may be fabricated artificially with both
inorganic and organic frameworks. Their ability to interact with molecules and ions
on their large inner surface offers ideal prospects for their application in matter
upgrading, including catalysis, separation, purification and ion exchange (see
Fig. 10.1) [2, 3]. The purposeful design of such materials has given rise to
tremendous productivity enhancement. This is in particular true with zeolites, an
inorganic nanoporous material distinguished by its regular pore structure with
extensions in the range of molecular sizes. The annual benefit worldwide by their
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exploitation in only petroleum refining has, e.g., been estimated to at least 10 billion
US dollars [4].

The gain in value-added products by the use of such materials can clearly never
be higher than allowed by the diffusion rate of the involved molecules. The
intracrystalline diffusivity (i.e. the rate of molecular migration within the individual
particles of the material) does thus become a key number for the efficiency of the
given process.

Simultaneously, however, within the context of the book, guest molecules in
nanoporous materials offer ideal opportunities for illustrating and quantitating
spreading phenomena. In what follows we shall be able to refer to quite a number of
items which have been mentioned already in Chap. 2 on introducing into the
theoretical foundation of spreading phenomena: Completely different from the
situation with human societies or ecological systems, molecules in nanoporous
materials offer the unique opportunity of observing spreading phenomena under
“initial” and “boundary” conditions which are largely controlled by the investigator.
This includes, in particular, the option of repeating experiments under essentially
identical starting conditions as well as a thoughtful variation of the spreading
conditions. Such variations may quite easily be achieved by changes in temperature
or molecular concentration (“loading”), with the latter caused by a variation of the
partial pressure of the guest molecules in the surrounding atmosphere. Similarly,
also variations in the type of guest molecules (by considering, e.g., molecules of

Fig. 10.1 Nanoporous materials (bottom right), available as crystallites (bottom middle), often in
compressed form (bottom left), are key elements in refineries and other chemical plants for matter
upgrading (top). The top picture was cut from an image by Walter Siegmund, licensed under
CC BY 2.5 [5]. Bottom pictures reproduced with permission from Ref. [6], copyright (2013)
Chemiewerk Bad Köstritz GmbH and Wiley-VCH Verlag GmbH & Co. KGaA

172 C. Chmelik et al.



different diameter, chain length or polarity) and of the host material (in particular by
surface modification) leads to a variation in the spreading conditions. The option of
such variations facilitates the search for fundamental laws and, eventually, their
final proof.

As a consequence of their thermal energy, atoms and molecules are subject to a
continuous irregular movement, referred to as diffusion, in all states of matter. Thus,
in addition to nanoporous host-guest systems, the book does as well deal with
diffusion and spreading phenomena in, e.g., solution and suspension (Chap. 8),
solids (Chap. 13), biological systems (Chaps. 5 and 6) and our atmosphere
(Chap. 7). As a common feature of condensed matter, it is often the structure of the
system itself which is affected by mass transfer. Nanoporous host-guest systems are
distinguished also in this respect since the host framework generally turns out to
remain, in a very good approach, unaffected by amount and nature of the guest
molecules.

All what has been said so far necessitates, as a matter of course, the possibility to
obtain reliable and unambiguous information on mass transfer in such systems.
Diffusion measurements with molecules in nanoporous materials have been con-
ventionally performed by a (macroscopic) recording of mass gain or release upon
pressure variation in the surrounding atmosphere. Statements on diffusion had to be
based therefore on model assumption. The more recent application of microscopic
measuring techniques has shown that these assumption have been unjustified in
numerous cases, giving rise to a paradigm shift in our understanding of molecular
spreading and diffusion in nanoporous materials [1, 7]. Sections 10.2 and 10.3
introduce into the fundamentals of these novel techniques. The examples given in
the further sections of this chapter have in particular been chosen for exemplifying
some of the fundamental laws of spreading and diffusion which have been intro-
duced in Chap. 2. They are, moreover, thought to introduce into the more specific
cases considered in the Chap. 11 which deals, among others, with different
strategies for technology improvement by transport enhancement in nanoporous
materials.

10.2 Monitoring Molecular Spreading by Pulsed Field
Gradient NMR

Here, we confine ourselves to a short introduction into the principles of diffusion
measurement by the pulsed field gradient (PFG) technique of NMR (also known as
pulsed gradient spin-echo (PGSE) NMR, NMR diffusometry and q-space imaging)
and refer, for a more extensive treatise, to Chap. 12. For illustrating the principle of
measurement it is sufficient to adopt the classical view on nuclear magnetic reso-
nance (NMR) [1, 7, 8]. At exactly the same result one would also arrive by a
rigorous treatment on considering the expectation values of the quantum mechan-
ical operators corresponding to the relevant physical quantities. Most atoms,
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notably hydrogen which is mainly considered in PFG NMR diffusion studies,
possess a nuclear spin. It bears both a magnetic dipolar moment (like the needle of a
compass) and a mechanic momentum (like a gyroscope). Thus, similarly as a
spinning gyroscope under the influence of gravity, nuclear spins perform a rota-
tional (“processional”) motion as soon as they are placed in a magnetic field. The
rotational frequency is given by the relation

ω= γB. ð10:1Þ

B and γ denote, respectively, the intensity of the magnetic field and a factor of
proportionality characteristic of the given nucleus, referred to as the gyromagnetic
ratio. The superposition of many rotating nuclear spins gives rise to a rotating
macroscopic magnetization. This rotating magnetization induces a voltage in a
surrounding coil, known as the physical principle of an electric generator. It is
recorded as the NMR signal.

In PFG NMR diffusion measurements, a constant magnetic field B0 is super-
imposed, over a short time interval δ, by an additional, inhomogeneous field

Badd = gx, ð10:2Þ

the “field gradient pulses”. By combining Eqs. (10.1) and (10.2), the resonance
frequency is seen to become, during this time interval, a well-defined function of
the spatial coordinate x

ω xð Þ= γ B0 + gxð Þ= γ B0 + γ gx. ð10:3Þ

With the second equation, the rotational frequencies of the spins are seen to vary
with their location x within the sample, with values above and below the average
value γ B0 if the zero point (x = 0) of the space scale is placed in the center of the
sample. These differences lead to a spreading of the direction of the individual
spins. The macroscopic magnetization resulting as a superposition of the magne-
tizations of the individual spins does, correspondingly, decrease. It vanishes totally
when, eventually, the spins show into all directions.

In combination with an appropriately chosen sequence of high-frequency pulses
(with the frequency as given by Eq. (10.1)), however, one is able to re-establish the
macroscopic magnetization by applying an identical second field gradient pulse.
This re-establishment is caused by refocusing the individual spins. As a prerequisite
of complete refocusing, each spin has to remain fixed in space. Otherwise there
remains a phase difference γgxδ, with x now denoting the difference in the positions
which the given nuclear spin (and, hence, the atom/molecule, to which it belongs)
occupies during the first and second gradient pulses. The thus displaced spin does
contribute to the macroscopic magnetization with only its projection on the mean
direction of all spins, i.e. with cos(γgxδ). The attenuation of the NMR signal, i.e. the
ratio between the signals with and without gradient pulses applied, is thus imme-
diately seen to be given by the relation
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S gδ, tð Þ
S 0ð Þ = ∫

∞

−∞
P x, tð Þcos γgxδð Þdx. ð10:4Þ

P x, tð Þ denotes the probability that an arbitrarily selected molecule within the
sample is shifted (during t, given by the separation between the two gradient pulses)
over a distance x (in the direction of the field gradient applied). We recollect that
exactly this probability has been considered already in Fig. 2.4 of Chap. 2 where,
for homogenous systems, it has been calculated to be (Eq. 2.10)

P x, tð Þ= 1
ffiffiffiffiffiffiffiffiffiffi

4πDt
p exp −

x2

4Dt

� �

. ð10:5Þ

Inserting Eq. (10.5) into Eq. (10.4) yields

S gδ, tð Þ
S 0ð Þ = exp − γ2g2δ2Dt

� �

. ð10:6Þ

The diffusivity D is thus seen to immediately result from the signal attenuation in
PFG NMR experiments.

In the context of PFG NMR, P x, tð Þ is referred to as the mean propagator [8–10].
With Eq. (10.4) it is seen to be nothing else than the Fourier transform of the
PFG NMR signal attenuation. In this way, it becomes directly experimentally
accessible. Figure 10.2 illustrates the various facets of information on molecular
spreading thus attainable with beds of nanoporous particles.

Though nanoporous materials, i.e. holes in a framework, are not homogeneous
in the strict sense of the word, Fig. 10.2a is seen to reveal the pattern as introduced
already with Fig. 2.4 in Chap. 2 for spreading in homogeneous systems. This,
however, is an immediate consequence of the given experimental conditions
ensuring that the molecular displacements are large enough in comparison with the
pore diameters and sufficiently small in comparison with the extension of the
nanoporous particles/crystals [12].

It is no problem, therefore, to discuss mass transfer in terms of concentrations
and fluxes (as appearing in Eqs. 2.6–2.13) by considering unit volumes and areas
which notably exceed the pore sizes, but are small enough in comparison with the
crystal sizes. The situation becomes completely different in Fig. 10.2b, where
molecular displacements are confined to the crystal sizes. Here, the PFG NMR is
seen to provide information on structural parameters (like the size of the crystals/
compartments which the diffusants are confined to), operating not unlike a
microscope. Hence, this type of analysis has become popular under the term dy-
namic imaging [8, 10].

At sufficiently high temperatures, in Fig. 10.2d, the guest molecules are shown
to leave, during the covered observation times, the individual crystals. Now, a
sufficiently large amount of them is able to get, from the lower level of potential
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energy within the nanoporous crystals, to the higher one in the surrounding
atmosphere. Correspondingly, one is following molecular spreading over the whole
batch of crystals rather than within only the interior of each individual crystals as
considered in Fig. 10.2a, b. With the larger crystals considered in Fig. 10.2c, one is
even able to distinguish between two constituents of the distribution curves, namely
a narrow one referring to those molecules which, during the observation time, did
not exchange their positions between different crystals, and a broad one, referring to
the other ones. Their fraction (given by the area under the broad constituent) is,
expectedly, seen to increase with increasing time.

10.3 Recording the Evolution of Concentration Profiles
by Microimaging

Knowledge of the molecular propagation probabilities as accessible by PFG NMR
does not automatically allow the prediction of the evolution of molecular distri-
butions within nanoporous materials. This type of information has most recently
become available by the introduction of microimaging by interference microscopy
(IFM) and IR microscopy (IRM) [1, 7, 13]. Figure 10.3 introduces their measuring
principles.

IRM is based on the operation of a set of detectors arranged in a plane (“focal
plane array detector”) allowing the determination of the IR signal from areas of
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Fig. 10.2 Propagator representation of PFG NMR for visualizing diffusive molecular spreading
(ethane) in beds of nanoporous crystals (zeolites of type NaCaA) of two different sizes (radius R).
The plots show the increase in spreading with increasing time. Due to symmetry, only one half of
the distribution curves are shown (after [9]). Ethane concentration in the gas phase between the
crystals is negligibly small in comparison with the intracrystalline concentration. Gas and adsorbed
phase are in equilibrium (measurement with fused sample tubes). Reproduced with permission
from Ref. [11], copyright (2010) The Royal Society of Chemistry
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ideally as small as 2.7 µm × 2.7 µm. Unavoidable disturbance by sample thickness
reduce spatial resolution, in reality, often to values around 5–10 µm. Characteristic
vibrational frequencies are employed for finger-printing the molecules under study
so that the intensity of the respective band in the spectra (figure top right) may
immediately be transferred into the corresponding concentrations (for more details
see [11, 14]).

The determination of guest concentrations by IFM is based on their propor-
tionality with the refractive index of the material. Changes in guest concentrations
do, therefore, immediately appear in changes of the difference between the optical
pathways through the crystal and the surroundings which are determined, as the
primary quantity, by the images of interference microscopy. Note that, as a con-
sequence of both measuring principles, it is in either technique the integral over the
local concentration in the observation direction rather than the local concentration
itself which is recorded. Both coincide, however, as soon as guest fluxes in
observation direction are negligibly small in comparison with the perpendicular
ones, since in such cases (implying the quite common case of parallel crystal faces
on top and bottom) the concentration remains uniform in observation direction and
the concentration integral is simply the product of the local concentrations with
particle thickness. Absolute values of the concentrations need anyway comparison
with the data of measurements of adsorption equilibria or theoretical predictions [3,
15]. Fluxes in observation direction may be excluded for nanoporous materials with
channels arranged in only one or two direction(s) or, in 3d pore systems, by sealing
top and bottom faces.

IFM
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Fig. 10.3 Measuring principles of the techniques of microimaging: IR microscopy (IRM) and
Interference microscopy (IFM). Having placed the crystal under study (bottom center) under the
microscope (left) information about intracrystalline concentration is deduced in IFM (top center)
by comparing optical path lengths through the crystal and the surroundings and in IRM (top right)
from the intensity of the IR bands. As a result, one obtains a map of the concentration integrals in
z direction in the (x, y) observation plane (bottom right)
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For illustrating the wealth of information thus attainable, we refer to Fig. 10.4. It
shows, with different examples, the evolution of the distribution of guest molecules
within a nanoporous material. The situation in the chosen system is particularly
simple since molecules get into or leave this material mainly via a set of parallel

(a) (b)

(c) (d)

(e) (f)

Fig. 10.4 Relative molecular uptake and release of methanol in ferrierite-type zeolites along the
8-ring channels: Comparison of simulated and experimental profiles for pressure steps a 5–
10 mbar, b 10–5 mbar, c 0–40 mbar and d 40–0 mbar (after [16] and [17]). The points refer to
experimental measurements, the lines are numerical solutions of Fick’s 2nd law with
concentration-dependent transport diffusivities and surface permeabilities. By plotting the
concentrations from top to bottom for adsorption, in plots e and f profiles after selected times
during ad- and desorption are shown in a unified representation. Here, for simplicity, only one half
of the profiles (starting with x = 23.8 µm in the crystal centre) is shown. Reprinted with
permission from Ref. [18], licensed under CC BY 3.0
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channels (referred to as 8-ring channels since their circumference is formed by 8
silicon (aluminum, phosphorous) atoms connected by oxygen bridges). Molecular
spreading may thus be represented in the simple 1d representations of Fick’s 1st and
2nd laws as given by Eqs. (2.6) and (2.9) or (2.14), respectively. The cases con-
sidered are molecular uptake (i.e. filling of the material by increasing gas pressure
in the outer atmosphere: (a, c) and release (i.e. emptying by reducing the external
pressure): (b, d). The pressure steps applied are between 5 and 10 mbar (a, b) and 0
and 40 mbar, respectively. The final concentrations of uptake are those established
in dynamic equilibrium with the outside atmospheres at the respective pressure.
Equilibrium concentrations in the given case are, at 40 mbar, notably higher than at
5 mbar. At the boundary between the nanoporous material and the surrounding
atmosphere, in addition, we have to take account of the possible existence of an
additional transport resistance. Such resistances prevent the guest concentration
close to the boundary from instantaneously assuming the equilibrium value. It is
quantified by the relation

jx = α ceq − c x=0ð Þ� � ð10:7Þ

for guest fluxes leaving or entering the material, with c x=0ð Þ and ceq denoting,
respectively, the actual concentration close to the boundary and the concentration in
equilibrium with the external atmosphere. We note that infinitely high surface
permeabilities (α=∞) automatically require boundary concentrations coinciding
with the equilibrium values (c x=0ð Þ− ceq = 0). Only then fluxes through the sur-
faces (resulting, with Eq. (10.7), as 0 ×∞) remain finite which, for a physically
reasonable quantity, has to be required.

In the representations shown in Fig. 10.4, the boundary concentrations are in
fact seen to notably deviate from the equilibrium values. Since the equilibrium and
boundary concentrations appear immediately from the profiles and since the flux
entering the system results by dividing the area between two subsequent profiles by
the respective time interval, surface permeabilities become immediately accessible
via Eq. (10.7) by direct measurement. The rate of molecular uptake and release was
in numerous nanoporous host-guest systems found to be affected by both the finite
rate of permeation through the external surface and intracrystalline diffusion [19].
The existence of “surface barriers” did thus turn out to be the rule rather than the
exception.

Transient concentration profiles as shown in Fig. 10.4 are well-known from
standard diffusion textbooks [20] where they are used for visualizing the solutions
of the diffusion equation, Fick’s 2nd law (Eqs. (2.9) and (2.14)) (coinciding, in its
mathematical form, with Fourier’s law of heat conduction). Their direct measure-
ment with guest molecules within nanoporous materials, however, has become
possible during only the last few years, owing to the potentials of microimaging [1,
7, 13]. Depending on the uptake and release times of the host-guest systems under
study, such sets of profiles may be recorded in the timespan of minutes to hours.
This means, in comparison with, e.g., the serial sectioning techniques applied in
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solid-state diffusion studies [21], a dramatic enhancement in the speed of mea-
surement and, thus, in also the wealth of information.

In the context of our book it might be allowed trying to transfer the phenomena
displayed in Fig. 10.4 into a totally different field. Specialists may forgive us our
audacity. Let us consider, in a thought experiment, large woodland crossed by two
parallel rivers. The woodland is populated by a certain species (either animal or
plant) with an essentially constant population density (measured in species per unit
area) everywhere, except for the area between the two rivers (our “mesopotamia”,
which assumes the role of the zeolite crystallites in Fig. 10.4). The species are
unable to cross these rivers. Moreover, the population density in the range beyond
the two rivers (equivalent to the surrounding atmosphere in the uptake and release
experiments) is ensured to remain—by whatever mechanism—constant. Starting
with time 0, the species under consideration are able to cross the river via suitably
constructed “bridges” and, thus, to penetrate into “mesopotamia” where they, so far,
did not occur. Under such conditions the distribution of the new species may be
expected to follow the patterns shown in Fig. 10.4a, c. The reverse phenomenon of
molecular release might be simulated, in our hypothetical “habitat”, by replacing
the mechanism we had just implied for ensuring population constancy by another
one ensuring complete extinguishing of the species outside of “mesopotamia”. Now
species distribution within “mesopotamia” should evolve similarly to the desorption
patterns shown in Fig. 10.4b, d.

As a main message of this comparison, spreading phenomena outside physics
and chemistry are immediately seen to be much more complicated. It is worthwhile
emphasizing therefore that, after efforts of research over more than a century [22], it
was only owing to the quite recent advent of the microscopic techniques of dif-
fusion measurement that our modern view on molecular spreading in nanoporous
materials was established.

The evidence of information thus accessible becomes particularly obvious in the
3d plots shown in Fig. 10.4 e, f. Here, opposite for Fig. 10.4a, c, the increase
(c – c0) in concentration is plotted from top to bottom, resulting in plotting of
(c∞– c0) – (c – c0) ≡ c∞ – c. Thus, relative changes in concentration during
adsorption, (c∞ – c)/(c∞ – c0) appear with exactly the same notation as applied for
desorption in Fig. 10.4b, d. Plotted in this way, the curves with the small pressure
steps (Fig. 10.4e) are seen to essentially coincide or, in other words, the amounts
adsorbed and desorbed are similar. This is the situation well-known from tracer
exchange experiments where one observes the exchange of labelled with unlabeled
molecules (which might be different isotopes with, essentially, identical diffusion
properties). Here, the total concentration (being the sum of the concentrations of
both isotopes) remains constant anywhere in the sample. The observation may be
correlated with the fact that Fick’s second law in the form of Eq. (2.9) is a linear
differential equation. For this type of equations, the sum of solutions is a solution
again. Therefore, adding adsorption and desorption profiles initiated by reversed
pressure steps must be expected to also lead to a solution, i.e. a physically rea-
sonable scenario. In the given case, superposition reflects the simple case of
invariance in surroundings and, hence, in guest concentration.
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Reciprocity in uptake and release does not appear anymore with the large
pressure step considered in Fig. 10.4c, d, f. Since the guest concentration, at
equilibrium, must be expected to increase with increasing pressure in the sur-
roundings, the range of concentrations considered in Fig. 10.4c, d, f does notably
exceed that of Fig. 10.4a, b, e. For our further discussion we have to recollect that
the diffusivity may, quite generally, be a function of the concentration of the
diffusants. With the diffusion model considered in Sect. 2.1, Eq. (2.3), this con-
centration dependence might be brought about by the dependence of the mean time
between successive steps and/or of the step length on the “density” of the diffusants.
The effect of any concentration dependence on the diffusivity (and, similarly, on the
permeability) shall clearly be the smaller, the smaller the covered concentration
range. Thus, for the small pressure step between 5 and 10 mbar, assuming a con-
stant diffusivity may in fact be expected being a good approximation. This is not the
case anymore with the larger pressure step from 0 to 40 mbar, so that Fick’s 2nd
law must be applied in the form of Eq. (2.14). In comparison with the smaller
pressure step from 5 to 10 mbar, molecular uptake is seen to be accelerated by
about one order of magnitude while, most astonishingly, the desorption rate remains
essentially unchanged. The remarkable impact of concentrations on diffusivity will
concern us in more detail when, in the subsequent section, we are going to ask for
the “driving forces” of diffusion.

10.4 The Driving Force of Diffusion

With Fick’s 1st law, Eq. (2.6), diffusion fluxes are seen to be caused by a gradient
in the concentration of the diffusing species under study. One might, therefore,
consider gradients in concentration quite generally as the “driving forces” for dif-
fusive fluxes. Though this is clearly true for homogeneous systems, just as a pre-
requisite for final equilibration of the diffusing species all over the system, it is not
the case anymore in heterogeneous systems. As a most illustrative example, we may
think of a liquid in equilibrium with its vapor phase. Here, dramatic differences in
concentrations between the liquid and gaseous phases do, obviously, not give rise to
diffusive fluxes in the direction of decreasing concentration. The situation is thus
seen to be different from that considered by the Fourier’s laws of heat conduction.
Here, under equilibrium conditions, the temperature is known to be uniform all over
the system so that gradients in temperature may in fact be considered as the “driving
forces” for heat fluxes.

In our search for the driving force of diffusion we may adopt this reasoning by
starting with a quantity which—similarly as the local temperature with respect to
thermal equilibration—indicates equilibrium in composition. This quantity is
known as the chemical potential μ. From elementary thermodynamics the chemical
potential of a molecular species in an ideal gas phase at partial pressure p and
temperature T is known to be given by the relation
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μg pð Þ= μg0 +RT ln p ̸p0ð Þ ð10:8Þ

with μg0 denoting a standard (coinciding with the chemical potential for pressure
p0). Being equal in all phases under equilibrium condition, the chemical potential
μ cð Þ of the guest molecules at guest concentration c in the adsorbed phase, i.e.
within the nanoporous host material, may thus—via Eq. (10.8)—be immediately
noted as

μ cð Þ= μ0 +RT ln p cð Þ ̸p0½ �. ð10:9Þ

Here, p cð Þ stands for the (partial) pressure of the guest molecules in the sur-
rounding atmosphere in equilibrium with the actual guest concentration c. The
correlations p cð Þ—or, vice versa, c pð Þ, referred to as the adsorption isotherm—are
experimentally accessible, e.g. by gravimetric measurement. We may now follow
the concept of diffusion as introduced by Maxwell [23], Stefan [24] and Einstein
[25] and put, later on, into the formalism of irreversible thermodynamics [15, 26–
28] and note the steady-state requirement for the flow velocity uA of component A
(see, e.g. Chap. 1 of Ref. [1])

fuA = −
∂μA
∂x

ð10:10Þ

as resulting by implying equality between the gradient of the chemical potential as
the driving force and an opposing frictional force. μA and f stand for the chemical
potential of component A and a friction coefficient. Inserting Eq. (10.9) into (10.10)
and noting the flux as the product of concentration and velocity yields

jAx = uAcA = −
RT
f

dlnpA
dlncA

dcA
dx

. ð10:11Þ

The logarithmic derivative dlnpA
dlncA

≡ dpA ̸dcA
pA ̸cA appearing in this relation is referred to

as the thermodynamic factor. Having noted the spatial derivative of the partial
pressure pA as the product of its derivative with respect to concentration and the
concentration gradient, Eq. (10.11) is seen to be of the structure of Fick’s first law,
Eq. (2.6). Comparing Eqs. (2.6) and (10.11) yields, for the transport diffusivity,

DT =
RT
f

dlnp
dlnc

ð10:12Þ

where the subscript A has been omitted since, in the given case, only a single
component is considered.

For self-diffusion (i.e. for tracer exchange between microdynamically com-
pletely identical species A and A′ under uniform overall concentration
c xð Þ= cA xð Þ+ cA′ xð Þ) we have cA∝pA all over the sample, so that the relevant
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thermodynamic factor dlnpA
dlncA

becomes 1. Now comparison with Fick’s 1st law for
self-diffusion, Eq. (2.7), yields

D=
RT
f
. ð10:13Þ

Comparing Eqs. (10.12) and (10.13), the transport and self-diffusivities are seen
to be correlated by the relation

DT =D
dlnp
dlnc

. ð10:14Þ

This relation has been introduced in Ref. [27] and was, subsequently, often
referred to as the Darken relation [29], owing to its similarity with a relation used by
Darken [30] in his study of interdiffusion in binary metal alloys. With Eq. (10.13),
the self-diffusivity is explicitly seen to be nothing else than a measure of mobility,
i.e. of the reciprocal value of the friction which the diffusants overcome on their
trajectory. Most importantly, with Eq. (10.14) the transport diffusivity (also referred
to, in other context, as collective, chemical or Fickian diffusivity) may be consid-
ered being subject to essentially two influences, namely the mobility of the diffu-
sants (represented by D) and an extra driving force (above referred to as the
thermodynamic factor) which, in the present context, is seen to emerge for a
non-linear interdependence between (partial) pressure and guest concentration. In a
more general context, one would consider the fugacity fA rather than the partial
pressure pA (which only for an ideal gas coincides with the fugacity). With the
activity coefficient γA introduced by the relation fA = γAcA, the thermodynamic
factor would then assume the form (1 + dlnγA

dlncA
).

Coming back to Eq. (10.14), we have to mention that this simple relation is only
correct if the “friction” between the individual molecules on their trajectories is
negligibly small. Within the frame of irreversible thermodynamics, this requirement
is equivalent with the absence of any cross correlations between the fluxes and the
gradients of the chemical potential of different types of molecules (or of differently
labelled ones).

Exactly such a situation is given with the host-guest system considered in
Fig. 10.5. Here, molecular passages through the “windows” between adjacent cages
are, as a consequence of their small size, the rate-controlling steps in the trajecto-
ries. Simultaneously, passages through the individual windows may be considered
to be such rare events that the possibility of mutual molecular encounters within
these windows may be neglected. Exactly this had to be required as a prerequisite
for the validity of Eq. (10.14).

With the reciprocal values of the thermodynamic factor (broken line in
Fig. 10.5a) as determined from the plots of the guest concentrations c as a function
of the equilibrium pressure p in the surrounding gas phase (Fig. 10.5b), Eq. (10.14)
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is in fact found to provide an excellent means for correlating self- and transport
diffusion.

In complete agreement with our expectation, self- and transport diffusivities are
seen to coincide at sufficiently low loadings, since any significant interaction
between the diffusants may in fact be neglected. With increasing loading, the
transport diffusivities are seen to drop even below the self-diffusivity. With the
schematics of transport and self-diffusion as provided by Fig. 2.2 in mind, this
finding appears, at a first glance, counter-intuitive: It is scarcely imaginable that
molecular fluxes (from left to right in Fig. 2.2a, b) are enhanced by a counter-flux
(self-diffusion, situation of Fig. 2.2b) rather than mitigated. We must have in mind,
however, that within our formalism the “friction” between the diffusants was
anyway assumed to be negligibly small—brought about by the dominating role of
window passages in molecular propagation. Molecular behavior is thus dominated

0.0 0.2 0.4 0.6 0.8 1.0
10-14

10-13

10-12

10-11

 transport diffusion, D
T

 self-diffusion, D
D

T
 · d ln c / d lnp

D T
, D

 / 
m

2 s-1

degree of pore filling, 

0.1

1

10

100

d
ln
c/

d
ln
p

d lnc /d lnp

negligible guest-guest-interac on: 
DT D

influence of guest-guest-
interac on dominates: DT < D

influence of finite pore 
volume dominates: DT > D 0.0 0.2 0.4 0.6 0.8 1.0

0

5

10

15

20

EtOH in ZIF-8, 298 K

p  
/ m

ba
r

0 2 4 6 8

c  / molecules/cage

θ

θ

≈

(a) (b)

Fig. 10.5 Ethanol in a nanoporous host (metal-organic framework (MOF) of type ZIF-8):
a Experimental data of self-diffusivity (D) and transport diffusivity (DT) and self-diffusivities
predicted via Eq. (10.14) from the transport diffusivities and the inverse dlnc/dlnp of the
thermodynamic factor, plotted as a function of fractional loading Θ= c

cmax
and b the adsorption

isotherm used for the determination of the thermodynamic factor. The cartoon illustrates the
mechanism of interaction by which, over the respective concentration range, molecular
propagation is dominated. The transition point between the two mechanisms appears in (b) as
the point of coincidence in the slope of the isotherm with that of the connecting line towards the
origin. After Refs. [6, 14], Fig. 10.5a translated and reproduced with permission from Ref. [6],
copyright (2013) Wiley-VCH Verlag GmbH & Co. KGaA
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by the attractive forces between the diffusants (caused by their dipolar moment) by
which they “prefer” sticking together (see left cartoon on bottom of Fig. 10.5)
rather than exploring the less populated part of space. This situation is, obviously,
changed at sufficiently high loadings where (within the frame of thermodynamics
one would say by entropic reasons) the molecules, given the lack in free space,
“prefer” passing into the region of lower guest concentration. In complete agree-
ment with this view, at high concentrations the transport diffusivities are in fact
found—both by experimental evidence and in the more rigorous theoretical pre-
diction via Eq. (10.14)—to notably exceed the self-diffusivities.

For these larger concentrations, moreover, a significant increase in the transport
diffusivities with increasing loadings may be noted. This behavior is a quite general
feature of transport diffusivities since the factor dlnp

dlnc ≡
dp ̸dc
p ̸c as appearing in

Eq. (10.14) increases dramatically when, on approaching complete pore filling
(Θ→ 1), the slope dp ̸dc of p cð Þ is progressively exceeding the slope of the con-
necting line towards the origin, p ̸c.

With this result in mind we may easily rationalize the pronounced difference in
also the shape of transient concentration profiles during uptake and release as
shown in Fig. 10.4: Diffusivities increasing with loading do automatically lead to
steeper decays in the diffusion front during uptake, given the notably higher dif-
fusivities on its top (namely at high concentration) in comparison with those of the
very first molecules of the front, at lowest concentrations. Exactly the reverse is true
on desorption where the efflux rate from the crystal center towards the boundary is
continuously reduced by the decreasing diffusivities, tending to an equilibration.
Correspondingly, in comparison with uptake and release with essentially constant
diffusivities (Fig. 10.4a, b), the profiles with concentration-dependent diffusivities
are found to be notably steeper for uptake (Fig. 10.4c) and shallower for release
(Fig. 10.4d).

Though, owing to the emerging potentials of microimaging [13], these mea-
surements had become possible quite recently, the theoretical framework applied
for their analysis is well established for decades already, with the introduction of the
formalism of irreversible thermodynamics [26, 31]. It is important to emphasize,
however, that already such apparently simple objects like nanoporous
host-guest systems are full of challenges from also the view point of their theo-
retical interpretation. This includes, in particular, the influence of the guest mole-
cules on the structure of the host material if it cannot be assumed to be inert
anymore. Such a situation may indeed be found with nanoporous host-guest sys-
tems [13, 32] and is the situation, quite in general, on considering the mutual
diffusion of the various compounds in solids since here—apart from the observation
of pure tracer exchange—diffusion is by its very nature always accompanied by a
structural variation of the whole system.
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10.5 Multicomponent Diffusion

In their main technological applications, notably including separation, purification
and chemical conversion, nanoporous materials are accommodating mixtures rather
than single components. Both microscopic measuring techniques presented in this
chapter may be exploited for selective diffusion measurements with the individual
components of such mixtures.

The option of selective diffusion measurement via PFG NMR is based on the
resonance condition, Eq. (10.1). Distinction between different molecular species is
particularly easy if the measurements may be based on different nuclei, besides
protons (1H) notably on deuterium (2H) and the “NMR active” isotopes of carbon
(13C), nitrogen (15N), fluorine (19F), phosphorous (34P) and xenon (129Xe) [33].
Moreover, in recent PFG NMR studies with hydrated LSX zeolites (zeolites of type
X of low silicon content, containing exchangeable lithium cations) by using both 1H
and 7Li NMR [34] even cation diffusion has become accessible by direct mea-
surement. Most interestingly, spreading of both the water molecules and the cations
as appearing in the PFG NMR diffusion data (i.e., in the evolution of the respective
propagators—see Fig. 10.2) was observed to be retarded by transport resistances
existing in also the interior of the individual particles. This is illustrated in a
cartoon-like manner by Fig. 10.6b. 1H and 7Li PFG NMR yielded similar spatial
dimensions for the spacing between the internal barriers which, moreover, were of
the order of the sizes of the individual crystallites which the zeolite particles
(Fig. 10.6a) consist of.

The principle of mass separation of a binary mixture by permeation through
nanoporous membranes may be easily rationalized on the basis of Fick’s 1st law,

Fig. 10.6 a Scanning electron micrograph of a sample of zeolite LSX and b scheme of an
individual zeolite particle with typical diffusion paths covered by lithium cations and the water
molecules during comparable time intervals. Reprinted with permission from Ref. [35], copyright
(2013) Elsevier (a) and from Ref. [34], copyright (2013) American Chemical Society (b)
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Eq. (2.6). The partial pressures of the gas mixture at the “feed” side of the mem-
brane are, respectively, pA and pB. The flow of a “carrier” gas ensures partial
pressures of essentially zero on the “permeate” side. With the simplifying
assumptions that, over the considered range of concentrations, the diffusivities DA

and DB within the membrane are independent of concentration (and composition)
and that there is a linear relation cA(B) = KA(B)pA(B) between the partial pressures
and the concentration, Eq. (2.6) yields for the ratio of the fluxes of the two com-
ponents through the membrane under steady-state conditions

jA
jB

=
DAcA
DBcB

=
DAKApA
DBKBpB

. ð10:15Þ

As a prerequisite of the validity of this relation, we have moreover implied the
absence of any surface resistance on both the feed and permeate sides.

As a reasonable measure of the separation capability of the membrane with
respect to components A and B, we may consider the enhancement in the ratio of
the permeating fluxes (which is nothing else than the ratio of the concentrations of
the two components “behind” the membrane, i.e. in the “permeate”) in comparison
with the concentration ratio (and, hence, the ratio of the partial pressures) on the
feed side:

jA ̸jB
pA ̸pB

=
DA

DB
×
KA

KB
. ð10:16Þ

“Membrane separation selectivity” is thus found to be the product of “diffusion
selectivity” DA

DB
and “adsorption selectivity” KA

KB
[1, 15]. We note in parentheses that

the separation efficiency does, clearly, as well depend on the rate of separation, i.e.
on the amount of “separated” gas passing the membrane. With reference to Fick’s
1st law, Eq. (2.6), this amount is easily seen to be inversely proportional to the
membrane thickness. Though not explicitly appearing in Eq. (10.16), membrane
thickness is thus among the key parameter of membrane efficiency. Ensuring
simultaneously small thicknesses and mechanical stability is the great challenge of
membrane production [36, 37].

Both adsorption selectivity (by adsorption measurement or molecular modelling)
and diffusion selectivity (by IRM or PFG NMR) on the one hand and membrane
permeation selectivity, by flux measurement, on the other, have become experi-
mentally accessible. The results of such a comparison presented in Fig. 10.7 show
an order-of-magnitude agreement. Remaining differences may be easily referred to
the influence of surface resistances and guest-guest interaction which both are
neglected in Eq. (10.16).

While PFG NMR allows access to such interactions by selective two-component
self-diffusion measurement under equilibrium conditions [38], microimaging is able
to selectively follow molecular diffusion of the various mixture components under
non-equilibrium conditions. These potentials are illustrated in Fig. 10.8 showing
the results of two-component uptake measurements with zeolite DDR [39].
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Fig. 10.7 a ZIF-8 membrane and b comparison of the membrane permeation selectivity for CO2/
CH4 mixture (asterisks) with an estimate (squares) based on the adsorption (circles, data by
molecular modelling) and diffusion (triangles) selectivities resulting from IRM measurements with
(c) a “giant” ZIF-8 crystal. Reproduced with permission from Ref. [37], copyright (2010)
Wiley-VCH Verlag GmbH & Co. KGaA
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Fig. 10.8 Evolution of intracrystalline concentration profiles during guest overshooting in zeolite
DDR: b Recording of buildup with ethane as the “driven” component initiated by a pressure step
from 0 to 200 mbar in the surrounding atmosphere. a Before, the “driving” component propene
was presorbed for 7 h at a pressure of 10 mbar. The propene profile (shown in the plot) remained
essentially unaffected during ethane uptake. c Equilibration after overshooting with ethane as the
“driving” and d CO2 as the “driven” component during two-component adsorption with a step
from 0 to 200 mbar in the partial pressures of either component in the surrounding atmosphere.
Reprinted with permission from Ref. [39], licensed under CC BY 4.0
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For rationalizing the outcome of these studies we have to return to Sect. 10.4
where the gradient of the chemical potential rather than the (mere) gradient of the
concentration was identified as the “driving force of diffusion”. Starting with
Eq. (10.10), consideration of the spatial dependence of the chemical potential
(known via Eq. (10.9) as a function of the spatial dependence of the concentration)
leads—in the case of single-component adsorption—to Eq. (10.11). Now, however,
on considering two-component diffusion, the chemical potential of a certain species
(A) must be considered to be a function of the concentration of both components A
and B! This new situation is immediately rationalized by having in mind that the
chemical potential of A is related, via Eq. (10.9), to the pressure of A in the
surrounding atmosphere which is necessary for keeping the concentration of A at
the given value. Under the conditions of two-component adsorption, however, this
pressure does, obviously, depend not only on the given concentration A. It does as
well depend on the local concentration B. Quite intuitively, the partial gas pressure
A in the surrounding atmosphere required to maintain the local guest concentration
cA will be expected to be the higher, the higher the local concentration cB. This
means, in other words, that the chemical potential of guest component A at a given
concentration cA tends to increase with increasing concentration cB. In this rea-
soning we easily recognize a confirmation of also the validity of our assumption of
simple additivity at sufficiently small concentrations (as exploited, as a first
approximation, on considering membrane permeation) since there is, clearly, no
interaction between the different guests so that the behaviour of A does in fact
remain unaffected by the presence of B.

Following the procedure having led from Eqs. (10.9) and (10.10) to Eq. (10.11),
for two-component adsorption we arrive at

jAx = uAcA = −
RT
f

∂lnpA
∂lncA

dcA
dx

+
∂lnpA
∂lncB

dcB
dx

� �

= −DAA
dcA
dx

−DAB
dcB
dx

. ð10:17Þ

where, with the last equation, Fick’s 1st law is now presented in matrix notation.
With this notation, molecular fluxes of a given component (A) are seen to be—at
least potentially—driven by the gradients of both concentrations. The “driving
efficiency” depends on the magnitudes of the elements DAA and DAB of the diffusion
matrix which, with Eq. (10.17), are given by the logarithmic partial derivatives of
the pressure of the component under consideration with respect to either guest
concentration.

With Eq. (10.17) we do, in particular, note that diffusion fluxes of a certain
species may even occur “uphill”, i.e. into the direction of increasing concentration.
This shall become possible as soon as the first term on the right of Eq. (10.17)
(which, in such cases, is negative) is exceeded by the second one. Exactly such a
situation may be recognized in Fig. 10.8. Figure 10.8b shows the evolution of the
concentration of ethane in a crystal of zeolite DDR during adsorption within an
external ethane atmosphere, following a pre-positioning of the crystal over 7 h in a
propene atmosphere with the final propene distribution shown in Fig. 10.8a. As a
consequence of the vast difference in the diffusivities of the two components in
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zeolite DDR, propene concentration may be assumed to remain invariant during the
whole process of ethane uptake.

As an, at first sight, rather astonishing result we note that, after about 600 s (or
10 min), ethane concentration in the interior of the zeolite crystal continues to
increase, irrespective of the fact that this increase necessitates an “uphill” diffusion
flux, namely ethane fluxes into the direction of increasing ethane concentration.
With Eq. (10.17), however, exactly such a behavior is predicted by the influence of
the propene concentration gradient (Fig. 10.8a, second term on the right-hand side
of Eq. (10.17)).

For an intuitive appreciation of this remarkable situation we refer to Fig. 10.9:
Irrespective of an increase in ethane concentration, the equilibrium pressure and
thus, via Eq. (10.9), the chemical potential is seen to decrease towards the crystal

Fig. 10.9 Rationalizing “uphill diffusion” of ethane: Cartoon showing the distribution of propene
(bulky and, hence, less mobile molecules represented by large bullets in grey) and ethane (small
yellow bullets) close to the crystal boundary (center right), corresponding to the concentration
profiles shown on bottom right. Top right shows the ethane pressure required for establishing, at
equilibrium, the ethane concentrations shown on bottom right. Similarly as, by the influence of
propene, the ethane molecules are driven to diffuse into the direction of increasing ethane
concentration, the presence of the voracious big animals (bottom left) might be imagined to make
the smaller (and more mobile) ones (top left) preferentially move into the direction of increasing
populations of their conspecifics. Reprinted with permission from Ref. [40], copyright (2016)
GDCh, Frankfurt am Main
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interior, driving the ethane diffusion flux in “uphill” direction. As a consequence of
the low propene diffusivities in the given type of zeolites, final equilibration (i.e.
attainment of uniform concentration in propene and, thus, in also ethane) would
require too large time spans. With the choice of the other “pair”, namely with
ethane now as the “slow” and CO2 as the “fast” molecule, exactly this process of
equilibration could be recorded. Thus, with their very first profile, the representa-
tions in Figs. 10.8c and d begin with the situation shown with the last one in
Fig. 10.8b. With the subsequent profiles in Fig. 10.8c it is shown how the slower
component continues to equilibrate over the crystal and how, correspondingly, the
concentration of the faster component (CO2) decreases. This decrease is the con-
sequence of normal “downhill” fluxes into the direction of decreasing CO2 con-
centration since, together with ethane equilibration, also the ethane concentration
gradients are fading and, thus, also the second term on the right side of Eq. (10.17).
The phenomenon of “overshooting”, i.e. the observation of transient molecular
uptake where individual components may, intermediately, exceed their equilibrium,
has well-known predecessors with, e.g., methane-nitrogen mixtures in zeolite 4A
[41], heptane/benzene mixtures in zeolite NaX [42] and, quite recently, n-alkane/
iso-alkane mixtures in MFI [43]. However only quite recently, with the advent of
microimaging, could the relevant profiles be directly recorded.

10.6 Diffusion and Conversion

Since their use as highly selective, environmentally benign catalysts is among the
most important technological applications of nanoporous materials, the investiga-
tion of both diffusion and conversion and the search for transport optimized
materials is a challenging task of both fundamental and applied research. In fact,
with the options of microimaging by IRM, catalysis research today disposes of a
most powerful technique for the in situ investigation of diffusion and conversion
[44].

Figure 10.10 introduces into the scheme of measurement, exemplified with the
hydrogenation of benzene to cyclohexane, i.e. the transformation of an unsaturated
hydrocarbon into the corresponding saturated one within a nanoporous host
material (porous glass), serving as a support of metallic nickel (the catalyst). The
process is initiated by bringing a mixture of benzene and hydrogen in contact with
the initially empty host material. Diffusive spreading of benzene as the reactant
molecule is accompanied by conversion to cyclohexane, following Eq. (2.19) with
1 and 2 referred to as benzene and cyclohexane, respectively. Hydrogen is offered
in excess and may, owing to its high mobility, be assumed to be anywhere
instantaneously present. The backward reaction rate is negligibly small, whence
k12 = 0.

Figure 10.11 shows, together with the experimental data, also the solution of the
diffusion-reaction equation as given by Eq. (2.19), with the simplifying assumption
that the diffusivities of both components are independent of concentration and
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Fig. 10.10 Schematics of monitoring reactant and product profiles during the conversion of
benzene (red) into cyclohexane (blue) in nanoporous materials by microimaging, with the arrows
in green indicating the spatial extensions relevant for the experiments. Bottom and top faces are
covered by an IR-transparent layer, impermeable for the reactant and product molecules.
Reproduced with permission from Ref. [44], copyright (2015) Wiley-VCH Verlag GmbH & Co.
KGaA

Fig. 10.11 Transient concentration profiles during hydrogenation of benzene to cyclohexane at
75 °C. The experiments are started by contacting an initially empty catalyst with a
benzene-hydrogen atmosphere (pbenzene = 27 mbar; phydrogen = 977 mbar). Data points represent
the experimental results obtained by IR microimaging (circles: benzene (A), diamonds:
cyclohexane (B)), reflecting meaningful concentrations for x ≥ 50 μm). The solid (benzene
(A)) and dashed (cyclohexane (B)) lines are results of the analytical solution of Eq. (2.19) with the
relevant initial and boundary conditions. Reproduced with permission from Ref. [44], copyright
(2015) Wiley-VCH Verlag GmbH & Co. KGaA
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composition and coincide. Initial and boundary conditions to be obeyed due to the
chosen experimental conditions are, respectively, c1 x, t=0ð Þ= c2 x, t=0ð Þ=0 and
c1 x=±L, tð Þ=1, c2 x=±L, tð Þ=0, with 2L denoting the distance between the
two faces (platelet edges opposing each other), which are in contact with the
surrounding atmosphere. With the given boundary condition it is, further on,
assumed that the total amount of benzene in the gas phase (and its diffusivity) is
high enough so that, during the whole of the reaction, the concentration of cyclo-
hexane—though emerging, during the reaction, within the nanoporous material—
remains negligibly small in the gas phase.

Together with reasonable agreement between measurement and prediction, the
data in Fig. 10.11 show the expected trend. Reactant benzene penetrates into the
host material, following the direction of decreasing concentration. Simultaneously,
a fraction is converted into cyclohexane. The emerging flux of cyclohexane, fol-
lowing the direction of its decaying concentration, is directed towards the external
surface. The cyclohexane molecules leaving the catalyst spread sufficiently fast in
the surrounding atmosphere so that, also during the course of the experiment, their
concentration in the gas phase may be assumed to remain negligibly small in
comparison with that of benzene. The boundary conditions do thus coincide with
those usually met in flow reactors as conventionally used in catalysis research.
Steady state is attained when benzene influx is compensated by cyclohexane efflux,
with the latter being identical with the total amount of cyclohexane (i.e. of product
molecules) within the catalyst host particle “produced” per unit time. This amount
is the key quantity of the process and, in technical applications, pursued to be as
large as possible.

The highest overall reaction rate is obviously achieved if the reactant molecules
attain highest concentrations all over the catalyst. This implies the absence of any
diffusion resistance so that the product molecules can instantaneously disappear out
of the catalyst, leaving space for new reactant molecules. The ratio between the
actual overall reaction rate and the maximum possible one is referred to as the
effectiveness factor. Though this factor is crucial for catalytic conversion, its direct
measurement was so far impossible. This appears already in the given definition
since it refers to conditions—namely the absence of any transport resistance—
which cannot be fulfilled in reality. Rather than by comparison with reaction rates
under total exclusion of transport resistances, effectiveness factors are conven-
tionally determined by measurements with varied transport resistances. From the
effect of such variations on the reaction rate, the effectiveness factor may in fact be
estimated [1, 2]. As a prerequisite of such measurements, all other parameters must
be kept constant. In addition to the need of performing several measurements rather
than only a single one, data analysis is thus based on assumptions which are
scarcely to be confirmed.

Both these constraints do not exist with the options of microimaging as
demonstrated with Fig. 10.11. Here, the effectiveness factor of the chemical reac-
tion results immediately as the area under the (normalized) concentration profile of
the product molecule under steady-state conditions. It becomes, in this way,
accessible by a one-shot experiment in a most direct way. It reminds of the
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expression “Poren-Nutzungsgrad” (degree of pore space exploitation) used as the
German translation of “effectiveness factor”. This term nicely recollects the way
how microimaging is able to determine effectiveness factors, namely by recording
exactly this part of the pore space which is occupied by the reactant molecules and
which is, thus, exploited for the reaction.

The solution of the rather simple Eq. (2.19) nicely reflects the experimentally
observed behaviour, irrespective of all inherent approaches. Slight deviations may
easily be referred to a feature discussed already on analysing the shape of the
concentration profiles shown in Fig. 10.4c: Diffusivities increasing with concen-
tration lead to a sharpening of the diffusion front. And exactly such an (even if only
slight) increase of the diffusivities with increasing loading may be also expected for
benzene in porous glass. It is important to emphasize, however, that agreement
between measurement and prediction is in no way a prerequisite for the determi-
nation of effectiveness factors by microimaging. It is rather the great advantage of
IR microimaging that effectiveness factors result directly from experimental evi-
dence, without need of any modelling!

10.7 Transport Enhancement in Pore Hierarchies

In the examples of technological application for matter upgrading by separation and
conversion, process efficiency was found to be affected by the rate of exchange
between intracrystalline pore space and the surroundings. Transport enhancement is
thus among the key options of efficiency enhancement. Transport enhancement may
be clearly achieved by operating with larger pores and, correspondingly, with
reduced diffusional resistances. However, this option is in general not applicable
since it is—in both separation and (selective) conversion—the intimate contact
between the inner surface of the porous material and the molecules, on which
performance is based. This contact would get lost with increasing pore radii.

Alternatively one might consider applying the nanoporous material as suffi-
ciently small crystals/particles, with correspondingly small uptake and release times
of the guest molecules. For spherical particles, e.g., the time constant of
diffusion-controlled uptake and release is known to be [1]

τuptake, release =
R2

15D
ð10:18Þ

with R denoting the particle radius. Except for the factor 1/15, the validity of
Eq. (10.18) may immediately be rationalized as the only option for combining
D and R to yield a quantity with the dimension of time. Equation (10.18) yields a
good approach for even particles of arbitrary shape if R is understood as an
“equivalent” radius
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Req =
3V
A

, ð10:19Þ

with A and V denoting the (external) surface area and the volume of the particle.
With this relation, Req is immediately seen to be the radius of a sphere with the
same surface-to-volume ratio. There are, however, narrow limits to transport
enhancement through particle size reduction since too small particles enhance the
risk of pipe plugging, with influx and efflux impediment.

Processes with hierarchically organized pore spaces have therefore, over the past
few years, attained particular concern [45, 46]. In such arrangements, the space of
micropores (with pore diameters in the range of the diameters of the molecules) is
traversed by larger pores. Following the ingenious examples given by nature (see
Ref. [47] and Chap. 11) these large pores serve as “highways”, ensuring fast matter
exchange between micropores and surroundings.

The complexity of such systems prohibits, in general, the treatment of mass
transfer with analytical expressions as introduced in Sects. 2.1–2.3 and used, so far,
also in this chapter. As an alternative one may adopt the option of simulating spread
on cellular grids as introduced in Sects. 2.4 and 2.5. A scheme of such simulations
is presented in Fig. 10.12. Here, the diffusivities Dmicro and Dmeso in the space of
micro- and mesopores are quantitated by Eq. (2.3) (with 2 replaced by 6, corre-
sponding with the 3 dimensions considered). The difference in the magnitudes
(Dmicro ≪ Dmeso) is taken account of by corresponding differences in the mean life
times τmicro ≫ τmesoð Þ between subsequent “jumps”. Spacing (“jump length”
lmicro = lmeso = lÞ is assumed to be uniform throughout the simulation grid. Differ-
ences in life times correspond to the differences in the energetic barriers between
adjacent sites shown bottom right. The difference in the energy levels in micro- and
mesopore space corresponds to the heat of adsorption which the guest molecules
have to afford on leaving the intracrystalline space. Concentration in micropores is,
correspondingly, much larger than in mesopores. This is ensured, in our model, by a
corresponding choice of the exchange probabilities between the respective grid
nodes ðPmicro→meso ≪Pmeso→microÞ at the interface between micro- and mesopores.

Molecular spreading in such systems is, in general, a rather complex process. In
addition to the pore architecture, it depends on the diffusivities (Dmicro and Dmeso)
and the relative populations (pmicro and pmeso ≡ 1 − pmicro). As a first-order esti-
mate, it is often possible to consider one of the two limiting cases of “fast
exchange” and “slow exchange” between the two pore spaces [46, 48]. Estimates
are in either case based on Eq. (10.18), however, with different meanings.

For exchange rates sufficiently fast in comparison with overall uptake and
release, R (=Rcryst) is the crystal radius and D (=pmeso Dmeso + pmicroDmicro) is the
mean value of the diffusivities in the two pore spaces. With propane in zeolite
NaCaA, e.g., transport enhancement in the limiting case of fast exchange was found
to give rise to transport enhancement over more than 2 orders of magnitude in
comparison with the purely microporous zeolite [49]. Further increase in the
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contribution pmeso Dmeso to overall diffusion (e.g. by temperature increase and
corresponding increase in pmeso) is thus seen to lead to further transport
enhancement.

During uptake in the opposite extreme, guest molecules are assumed to be
essentially instantaneously spread over the whole of the internal surface of the
mesopores, with uptake by the micropores occurring as a second step. This means,
in terms of Eq. (10.18), a dramatic reduction in the extension (R) of the range over
which, in the course of uptake, the guest molecules are now going to be distributed,
whilst D maintains its meaning as the micropore diffusivity. Equation (10.19), with
A and V now denoting the total area of the interface between the two pore spaces
(=inner mesopore surface) and the crystal volume occupied by the space of
mesopores (=crystal volume minus total mesopore volume), once again, yields a

Fig. 10.12 Scheme for simulating molecular uptake by a hierarchically organized, regular pore
network. A continuos microporous phase (top right) is penetrated by mesoprous channels
(outermost right). Corresponding with the potential landscape on bottom right, the micropores
(shaded area bottom left) are distinguished from the mesopores by a higher population density and
reduced jump rates. For visual convenience, only 5 (rather than the actually considered 18)
channels in parallel are considered. Reproduced with permission from Ref. [48], copyright (2015)
Wiley-VCH Verlag GmbH & Co. KGaA
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reasonable estimate [48]. Opposite to fast exchange, transport enhancement is a
function of only the pore space geometry and remains unaffected by any further
enhancement of mesopore mass transfer.

10.8 Anomalous Diffusion

With Sect. 2.4 we have introduced into the reasons which may lead to spreading
mechanisms deviating from the simple logic of random walk and, thus, of normal
diffusion, as introduced in Sect. 2.1. As an important feature leading to the
occurrence of anomalous diffusion we did recognize the diffusant’s “memory” [50].
Though mass transfer in nanoporous materials is in general subject to normal
diffusion, in the broad context of this book a celebrated deviation, referred to as
single-file diffusion [51, 52], should be mentioned. Mass transfer under single-file
conditions is subject to the restriction that the diffusants keep their sequential
arrangement, just like pearls on a neckless (or geese in “single file”). In nanoporous
host-guest systems single-file diffusion occurs as soon as within channel pores
adjacent molecules are unable to mutually exchange their positions [53]. Fig-
ure 10.13a illustrates such a situation. A rather unconventional way of simulating
single-file diffusion is shown in Fig. 10.13b.

Let us start with considering an infinitely large single-file, with known particle
positions at a certain instant of time. Since the particles are not allowed to change
their order, displacement of an arbitrarily selected molecule into one direction
requires a corresponding shift of all particles “in front of it”. As a consequence,
particle density in front of the particle (i.e. in the direction where it is shifted to)
will, in general, be higher than “behind”. Hence, for a particle shifted in one
direction further shifts are more likely to occur in backward direction than into the
direction to which it has been shifted already since the presumably higher particle
densities in front of it will more likely impede further particle propagation into this
direction than shifts backwards. This tendency increases with increasing shifts
(corresponding with the increase in density “in front” of a particle with increasing
shifts). Subsequent shifts are therefore not uncorrelated anymore. The starting
assumption of random walk and, hence, of normal diffusion with mean square
displacements increasing linearly with time, must thus be dropped. It rather turns
out that the mean square displacement increases with only the square root of time.
The distribution function remains a Gaussian (Eq. (2.10), now, however, with Dt
replaced by F

ffiffi

t
p

and F referred to as the single-file mobility [51, 54]).
A totally different reasoning is necessary on considering mass transfer in single

files of finite extension. This is the common situation with nanoporous particles of
single-file structure. Though being still subject to the confinement just described in
the channel interior, molecules at the file ends are allowed to leave and new
molecules to enter. Such events occur essentially uncorrelated, with equal proba-
bilities on either side. On considering the molecules initially in the file as labelled
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and all the other ones, entering later, as unlabelled, the process of molecular
entering and leaving is easily seen to give rise to a random movement of the centre
of mass of the labelled molecules. This movement is, moreover, seen to be subject
to the same statistics as a random walker. For the corresponding (the
“centre-of-mass”) diffusivity one finds [55]

Fig. 10.13 “Particle” transport under the constraint of single-file diffusion: a As soon as guest
molecules in channels are too bulky to pass each other, mass transfer is subject to the requirement
of invariable order in “particle” arrangement. b Unconventional way of simulating single-file
diffusion in the tiers of the physics lecture hall of Leipzig University: “Particle jump attempts”,
with the direction determined by throwing coins, are only successful if directed to a vacant seat.
Reproduced with permission from Ref. [56], copyright (1998) Wiley-VCH Verlag GmbH & Co.
KGaA
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Dcm =D
1−Θ
n

=D
1−Θ
Θ

λ

L
. ð10:20Þ

D is the diffusivity of an isolated particle in a file of length L with site distance
(determining the jump length) λ. Θ denotes the site occupation probability and n the
number of particles in the file. D(1−Θ) results as the so-called mean-field approach
of the diffusivity where, by the factor 1−Θ, it is taken into account that only jump
attempts to vacant sites (occurring with just this probability) are successful. We
note with Eq. (10.20) that, for taking account of the confinement under single-file
conditions, this value must, in addition, be divided by the total number of particles
in the file.

As a most remarkable result, the cross-over from mean-square displacements
scaling with the square-root of time (typical of genuine single-file diffusion) to
displacements following the normal diffusion of the centre of mass (Eq. (10.20))
may be estimated to be

⟨Δx2⟩sf ↔ cmdiff =
2
π

1−Θ
Θ

λL. ð10:21Þ

With Eq. (10.21), displacements over distances already much smaller than the
crystal extensions L are seen to be controlled by normal diffusion, with the (ef-
fective) diffusivity given by Eq. (10.20). Exchange dynamics with nanoporous
particles subject to single-file confinement is thus seen to follow normal diffusion
conditions with, however, the “intrinsic” diffusivities replaced by the
centre-of-mass diffusivity given by Eq. (10.20). Combining Eqs. (10.18) and
(10.20) yields the important result that, under single-file constraint, molecular
exchange rates (and, thus, processing efficiency in separation and conversion) are
reduced with even the third power of the particle size [57] and not only their square
as appearing from Eq. (10.18)! Since quite a number of zeolite catalysts do in fact
operate under single-file conditions, efforts for reducing the extensions of the purely
microporous ranges in nanoporous materials as motivated in the previous section
are thus seen to be of even larger relevance!

10.9 Conclusions

Advent of the techniques of microscopic measurement has enabled insight into an
impressive wealth of transport phenomena accompanying and controlling molecular
spreading in nanoporous materials. The new options thus provided allow illus-
trating quite a number of mechanisms relevant for diffusive mass transfer quite in
general. The presentations were mainly based on the possibility to record the
evolution of transient guest profiles with microscopic resolution provided by the
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techniques of microimaging [13] and on the potentials of PFG NMR for exploring
the propagation patterns of molecular spreading by monitoring the probability
distribution of molecular displacements (the “mean propagator” [9]). In addition to
these options, progress in our knowledge of diffusion in nanoporous materials is
based on the fascinating developments in molecular modelling over the past few
decades [1, 58, 59] as well as on the input by manifold variants and innovations of
conventional measurements based on recording uptake and release [60] and,
notably, by quasi-elastic neutron scattering (QENS [59]) and single-particle
tracking [61]. Complementing the information of PFG NMR, QENS is able to trace
spreading phenomena over nano- rather than micrometers, while single-particle
observation, notably in combination with the novel options of microspectroscopy
[62], is able to focus on individual molecules rather than on molecular ensembles.

Thus, by the simultaneous application of PFG NMR and single-particle tracking,
a very fundamental hypothesis of statistical physics has become, in the field of
diffusion, accessible by direct experimental investigation. As the very first equation
of the book, Eq. (2.1) considered the mean value of the squared particle dis-
placement. There exist, however, two ways for determining such values: one may
take the average of the displacements of either all particles during one and the same
interval of time, or of only one particle over several, subsequent intervals of time.
It is required by the theorem of ergodicity [63] that, under equilibrium, both
averages have to coincide. Applying both techniques to one and the same system,
namely a suitably selected fluorescing molecule as guest and the porous glass
considered in already Sect. 10.6 as the host, the agreement of both types of aver-
ages could in fact be confirmed [64].

Concerted applications of various measuring techniques are doubtlessly among
the primary prerequisite of further progress in diffusion research with nanoporous
materials in both theory and application. This is mainly due to challenges rising
with the increasing complexity of the systems of interest and, hence, of the phe-
nomena inherent to such systems. With the hierarchical pore spaces, a most
prominent example has been introduced in Sect. 10.7, which shall be dealt with
further on in Chap. 11.

The increase in pore diameters is accompanied by a phenomenon which we have
completely left out in our presentation. It concerns the occurrence of phase tran-
sitions in pore spaces, both between the solid and liquid and the liquid and gaseous
states and the preservation of such states outside of their thermodynamic equilib-
rium over essentially infinitely long time spans [65]. Under such conditions,
equilibration turns out to necessitate the shift of molecular aggregates rather than of
only individual molecules as so far generally considered. Investigating the
spreading and diffusion of such aggregates [66] is among the great challenges of
future research with nanoporous materials.
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Chapter 11
Nature-Inspired Optimization
of Transport in Porous Media

Marc-Olivier Coppens and Guanghua Ye

11.1 Introduction

Transport of molecules across multiple length scales is of great practical impor-
tance, from food products and building materials to the recovery, production and
distribution of chemicals and energy. Many relevant processes involve porous
media; these include catalytic and separation processes, oil and gas recovery, and
the delivery of pharmaceuticals. An effective transport system should be scalable,
efficient and robust. These properties depend on the multiscale architecture of the
transport system, that is, its morphology (shape) and topology (connectivity) at
multiple length scales. An optimized transport system boosts production, saves time
and cost, and reduces waste. This holds true for the infrastructure for transporting
goods and information, as much as for the transport of molecules in porous media.
To be optimal, the transport system needs to be suited to serve the other processes
in the system, where production or consumption occurs. If these are not properly
matched, transport limitations occur. This includes processes involving porous
catalysts in chemical engineering, which we focus on in this chapter, although much
of the discussion can be translated to other processes involving porous media as
well.

The optimized transport system for such technical applications is not easy to
obtain, but we can seek inspiration from biology. Indeed, through billions of years
of evolution, plants and animals have acquired highly effective transport systems,
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crucial to their survival. Although a chemical engineering application is different
from a biological one in terms of materials (which could be inorganic instead of
organic) and operating conditions (which could involve high temperatures and
pressures instead of mild, ambient conditions), they share fundamental features. All
rely on effectively connecting the action at microscopic scales (of cells, in the case
of biology, or active sites, in the case of catalysts) with the overall system (the
organism in biology or the reactor in a catalytic process). Robustness and scale
independence are important in both instances. For this, they both rely on multiscale
architectures, an example of which is illustrated in Fig. 11.1, while the dominant
transport mechanism at each scale is governed by physics that are length scale
dependent. Based on these common features, it is desirable to seek guidance from
nature, to help improve the transport architectures of porous media for engineering
applications. Another reason is the ability to design and optimize porous materials
for these applications from scratch. This is possible in certain applications, like
catalysis or fuel cells, as opposed to applications where transport networks would
have to be adapted from existing plans, and are thus more difficult to change, as in
city planning or in resource exploration in porous rocks.

Unlike transport architectures in nature, which were introduced in Part II of this
book, transport pathways in artificial porous media are currently not the product of
organic evolution. However, they can be optimized by mathematical modeling and
computation, which could, for that matter, employ genetic algorithms inspired by
evolution. Incredible progress in materials synthesis and manufacturing methods,
with increasing control over structure extending down to ever-smaller scales,
provides the opportunity to boost the performance of processes employing these
materials. To do so effectively, requires guidance from theoretical insights and
computational optimization.

In this chapter, some fundamental features of transport networks in porous media
are introduced, and the structure-function relationships in these systems are briefly
reviewed to introduce the available “handles” that can be used to manipulate
molecular transport and improve the performance of processes that depend on it,

Fig. 11.1 The multiscale architecture of trees. Cells, 10–100 µm in size [1], are the basic building
blocks (microscale) containing “active sites” for photosynthesis (nanoscale), converting CO2 and
water into carbohydrates; leaves, 1–100 cm in size, function as “porous photo-catalysts” with a
veinal architecture for transport (mesoscale); the tree itself, with its water- and
nutrient-transporting tree-crown, 1–100 m in size, functions as a living “reactor”, providing
mechanical strength and scalability during growth
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like catalysis and molecular separations. These two sections are presented first,
because a good understanding is essential to optimize transport phenomena in
engineered systems. Subsequently, the nature-inspired chemical engineering
(NICE) approach for transport optimization is introduced, and applications to
heterogeneous catalysis and proton exchange membrane (PEM) fuel cells are given
to illustrate this methodology.

11.2 Fundamental Features of Mass Transport
Phenomena in Porous Media

Mass transport in porous media occurs primarily by two mechanisms, namely
convective flow and diffusion. In wide pore channels, convective, pressure-driven
flow is often the principal transport mechanism [2]. In narrower channels, diffusion
is the dominant transport mechanism. Self-diffusion is a result of the thermal
motion of molecules, while transport diffusion results from a chemical potential
gradient; for non-interacting molecules, at sufficiently low pressure, self- and
transport diffusivities are the same [3, 4]. For many processes in chemical engi-
neering and beyond, involving porous catalysts, membranes, building materials and
pharmaceutical tablets, for example, diffusion takes place in porous materials
containing a hierarchical pore network, and diffusion can be subdivided into
molecular diffusion, Knudsen diffusion, surface diffusion, and configurational dif-
fusion, according to the interactions between the molecules and the pore walls [5–
7]. Molecular diffusion dominates when the mean free path of a molecule is much
smaller than the local pore size, so that the frequency of intermolecular collisions
exceeds that of molecule-wall collisions. Knudsen diffusion becomes dominant
when molecule-wall collisions are important. Surface diffusion describes the
movement of adsorbed molecules along pore wall surfaces, and becomes important
for very narrow pores and strongly adsorbed molecules [8]. Configurational dif-
fusion dominates in zeolites and other microporous materials [7, 9], in which the
effect of pore walls on the movement of molecules is so strong that diffusion is
typically an activated process and, therefore, can be well described in terms of a
succession of hops. Some state-of-the-art technologies, like interference microscopy
(IFM) and IR microscopy (IRM), are now available to record such transport pro-
cesses experimentally, even in single particles, which is introduced in Chap. 10. In
addition, viscous flow plays an important role for transport in porous materials with
wide pores, such as porous membranes for microfiltration and ultrafiltration [6].

Depending on the length scale, different transport mechanisms are involved.
These different transport mechanisms often take place simultaneously, which
complicates the optimization of the transport network. Let us take mass transport
and reactions in a fixed-bed reactor packed with catalyst pellets as an example to
illustrate this multiscale transport, shown in Fig. 11.2. Reactions take place on the
so-called “active sites”, which are of atomic or nanoscale dimensions, and dispersed
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on the internal surface of the porous pellets. The geometric and electronic properties
of the active sites determine how some species are bound and converted on the
catalyst surface. The local physicochemical conditions around these active sites,
like the local species concentrations and temperature, affect the local reaction rates
and, thus, the catalytic activity and selectivity. This local environment is influenced
by the multiscale transport of reactant and product molecules toward and away from
these sites, which frequently leads to spatially non-uniform distributions of reac-
tants and products:

(1) Reactants are transported into catalyst pellets from the bulk phase by over-
coming external film mass transfer resistance, and subsequently diffuse into the
macropore (>50 nm diameter) and mesopore (2–50 nm) network, where
molecular diffusion and Knudsen diffusion dominate. In, for example, the case
of zeolites, molecules further diffuse into the micropore network (pores < 2 nm
diameter), where surface diffusion and configurational diffusion become dom-
inant. Simultaneously, molecules adsorb and react on active sites on the pore
walls. Products desorbed from the active sites are transported out of the catalyst
pellets in the opposite direction. Intrinsically fast reactions may lead to trans-
port limitations, meaning that the resistance to molecular transport dominates
the overall rate of the combined process.

(2) The flow of molecules in the fixed-bed reactor removes products that have been
transported out of the catalyst pellets, and brings in reactants that enter the
catalyst pellets. This leads to a decrease in reactant concentrations and an
increase in product concentrations in the direction of the flow. Due to this, the
boundary conditions at the interface between the catalyst pellets and the bulk
flow in the reactor change from reactor inlet to outlet.

Fig. 11.2 Multiscale structure of a fixed bed reactor packed with zeolitic catalyst pellets and the
dominant mass transfer mechanisms on different length scales. Reproduced from [10], with
permission
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This multiscale transport of molecules is one of the most important, fundamental
features for various engineering processes, beyond the example of fixed-bed reac-
tors. In Sect. 11.6, the example of multiscale transport in PEM fuel cells is also
depicted. Already, we can see a parallel with the tree shown in Fig. 11.1, something
we will come back to in Sect. 11.4.

11.3 Basic Description of Transport in Porous Media

The effective transport properties (permeability for viscous flow and diffusivity for
diffusion) depend on the structure of the porous medium, especially the pore size
distribution. This provides abundant room for designing porous media with opti-
mized transport properties. To do so, it is necessary to formulate relationships
between material structure and transport properties. There is a huge literature on this
subject, which will not be discussed here in detail. A brief introduction is given in
order to aid the understanding of the following sections in this chapter. Readers can
refer to a number of review articles for more details [5, 7, 11, 12].

11.3.1 Geometrical Description of Porous Media

Molecular transport networks can be ordered or disordered at different length scales.
For example, at the macroscale, fixed bed reactors typically consist of random
packings of catalyst particles, in between which the various species flow through a
disordered void space. Other reactors employ structured packings, the most com-
mon type of which are monolithic structures with parallel channels; the catalytic
converter to clean up car exhaust is an example of such a structured packing. In
these monoliths, the walls of the channels are porous themselves, or are covered by
a catalytic washcoat. At smaller scales, within porous catalysts and other porous
materials, molecules diffuse through a network of macro-, meso- and/or micropores.
In most amorphous catalyst supports and adsorbents, this pore network is disor-
dered. However, pores can also form a regular network, such as in crystalline
zeolites, metal-organic frameworks, and amorphous materials with ordered meso-
pores [13]. It is easier to model ordered systems and investigate the effects of the
regular pore network properties on transport than to model disordered transport
networks.

To describe transport in disordered porous media, two types of models are used:
continuum models, which treat the porous medium as an effective continuum of
reduced permeability or diffusivity, and discrete models, which explicitly account
for the pores. Both have been extensively reviewed by Sahimi et al. [14] and Keil
[5]. One of the earliest pore models is the parallel pore model proposed by Wheeler
[15]. In his model, the pore space is represented by parallel pores with mean radius
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r and length L. The sum of the surface areas of all the parallel pores is set equal to
the BET surface area of the particle, and the sum of the pore volumes is set equal to
the experimentally determined pore volume of the particle:

r=
2Vg

Sg
σð1− εÞ ð11:1Þ

L=
ffiffiffi
2

p
Vp ̸Sx ð11:2Þ

where: Vg and Vp are the specific pore volume and the total volume of the porous
particle, respectively; Sg and Sx are the BET specific internal surface area and the
external surface area of the porous particle, respectively; σ is the pore wall
roughness factor; ε is the particle porosity. After that, numerous other pore models
(including the cylindrical pore model [16], the tortuous pore model [17], the model
of Wakao and Smith [18, 19], the model of Foster and Butt [20], the grain model
[21], and the micro/macropore model [22]) have been proposed to account for more
features of real porous materials, such as the tortuosity of the pores or a bidisperse
pore size distribution.

Although these early models can describe certain morphological features and, in
some cases, account for the pore size distribution, they do not account for the pore
network connectivity (topology) and the spatial distribution of the pores. This
becomes possible by using pore network models, in which equations for diffusion,
adsorption and reaction are explicitly solved, kinetic Monte-Carlo simulations are
employed, or various approximations based on statistical physics, like the effective
medium approximation or renormalization group theory, are used [23–26].

However, even most pore network representations are still an abstraction of the
real porous structure, based on macroscopic data, such as the measured pore size
distribution, the porosity and the BET surface area. Recently, with the advent of
powerful computers and more sophisticated experimental tools, it is becoming
possible to digitally reconstruct a real porous structure with increasing accuracy.
Some computational methods, including statistical methods (e.g., Monte Carlo
method) and process-based methods (e.g., discrete element method) [27, 28], have
been developed to digitally reconstruct porous materials with high accuracy, as
shown in Fig. 11.3a. Cutting-edge experimental technologies, such as X-ray
microtomography, directly provide us with three-dimensional (3D) images of
porous materials, without even destroying the samples [29, 30], as shown in
Fig. 11.3b. X-ray nanotomography and electron tomography allow to push the
boundaries even further, to unprecedented resolution, although sample sizes are still
limited, and care needs to be taken for samples that are anisotropic or macro-
scopically heterogeneous. In each case, the digitally reconstructed porous structure
can be represented by the phase function f(x), which takes the form of a 3D matrix,
containing the information of the phase state in each voxel:
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f ðxÞ= 1 if x belongs to pore space
0 otherwise

�
ð11:3Þ

where x is the position vector of a voxel from an arbitrary origin. The digitally
reconstructed pore structures can be successfully used to represent rocks [31],
membranes [32], fuel cell electrodes [33], porous catalysts [30], fixed beds [29],
and many other porous media. Furthermore, these digitally reconstructed pore
structures can be reduced to pore networks, using network extraction algorithms,
such as the thinning algorithm [34], the medial axis based algorithm [35, 36], and
the maximal ball algorithm [37, 38]. Such digital reconstruction techniques have
become a powerful tool for investigating various processes in porous media,
especially mass transport.

11.3.2 Influence of the Structure of Porous Media
on Transport Properties

Using the geometrical models briefly introduced in Sect. 11.3.1, we are able to
describe transport in porous media, no matter whether they are ordered or disor-
dered. As a prelude to the optimization studies discussed further on, it is important
to understand how the structure of the pore network changes the transport prop-
erties. The effects of the geometry of a porous medium on viscous flow and dif-
fusion are briefly recalled. Viscous flow of simple fluids through a single channel
or, by extension, a porous medium can be described by Darcy’s law, which has
been derived from the Navier-Stokes equations via homogenization.

Fig. 11.3 Porous media generated by a virtual particle packing and b X-ray microtomography
scans. From Refs. [30] and [29], with permission
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v= −
k
η
∇p ð11:4Þ

Here, v is the so-called Darcy velocity (the average velocity over a volume
element containing both fluid and solid matrix), η is the viscosity of the fluid, ∇p is
the pressure gradient, and k is the permeability of the (part of a) porous medium
under consideration. The permeability for a cylindrical capillary can be calculated
using Poiseuille’s law [39]:

k= d2 ̸32 ð11:5Þ

where d is the diameter of the capillary. For a suspension of spheres with diameter
d0, the permeability can be obtained from the Richardson-Zaki correlation [40]:

k= ðd20 ̸18Þε2.7 ð11:6Þ

For an aggregated bed of spheres with diameter d0, the Carman-Kozeny relation
can be used to calculate the permeability [6]:

k= ðd20 ̸180Þ ε2 ̸ð1− εÞ2
h i

ð11:7Þ

These are approximations; if more is known about the geometry of the porous
medium, the permeability can be estimated more accurately. Structures in which
viscous flow occurs, vary in morphology, topology, and randomness, resulting in
different equations for the permeability. With advances in techniques to reconstruct
the pore space, such as X-ray tomography, and to model flow in porous media, such
as Lattice Boltzmann modelling, mesoscopic structural information can be
employed to estimate macroscopic viscous flow, including that of complex fluids
that can no longer be represented by Darcy’s law [29].

Transport diffusion in porous materials, such as porous catalysts and adsorbents,
is phenomenologically described by Fick’s first law:

J = −De∇c ð11:8Þ

De = εDm ̸τ ð11:9Þ

where: J is the diffusion flux; ∇c is the concentration gradient; De is the effective
diffusivity in the porous medium; Dm is the bulk diffusivity; and τ is the tortuosity,
lumping various geometrical (and, possibly, also non-geometrical) factors that
affect diffusion in porous materials. Pore size affects the diffusivity through
molecule-wall interactions. In micropores, this influence can be so significant that
(11.9) is no longer valid and the diffusivity is typically 4–10 orders of magnitude
smaller than the one in the bulk phase. The statistical and spatial distributions of
pore size also affect the effective diffusivity and tortuosity. Diffusion of molecules
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tends to be slower when the pore size distribution is wider [41, 42]. Tortuosity
values as high as 138 have been calculated for a pore network with a connectivity of
3 [43], when the wide and narrow pores of a bimodal pore-size distribution are
spatially randomly distributed within the same network; however, this value would
be much smaller if a connected network of wide pores surrounds particles with
narrow pores, as is more typical in catalyst pellets [43]. The effective diffusivity
decreases with decreasing connectivity, but is less dependent on the pore network
topology when the connectivity is high enough [42]. The randomness of pore
networks also affects the effective diffusivity, especially when the connectivity is
low [43–45]. The effective diffusivity of a regular pore network is larger than the
one of an irregular pore network, because the diffusion path in the irregular pore
network is more tortuous [44].

Amorphous porous materials have a disordered framework, so that their pore
walls are not smooth, as is assumed in common cylindrical and spherical pore
models, but rough. For many amorphous materials used as catalyst supports and
adsorbents, the surface roughness can be described by fractal geometry, similar to
natural coastlines [46–52]. Fractals possess scale invariance, that is, they look
similar at multiple length scales: magnifying certain parts reveals a structure similar
to the whole.

Benoit Mandelbrot coined the word “fractal,” when he discovered that there is a
common mathematical language describing such rugged objects, which are infi-
nitely fragmented (like the Cantor set), are lines that are almost nowhere differ-
entiable (like the Koch curve) or are nets with an infinite power law distribution of
holes (like the Sierpinski gasket or the Menger sponge) [46]. Each of these objects
is strictly self-similar, whatever the magnification. Most importantly, however,
what seemed esoteric examples by mathematicians are, in fact, prototypes for
similar shapes in nature, like those shown in Fig. 11.5 further on; examples of
natural fractals are as diverse as ore distributions, broccoli, clouds, trees, bread,
turbulent flow, mountains, or natural coastlines. These are statistically self-similar
or self-affine, within a finite range of magnification (self-affine meaning that the
similarity under magnification is different along perpendicular directions). Man-
delbrot introduced the concept of fractal dimension, D; without going into detail,
this number conveys, for example, for fractal lines (like the Koch curve or a
coastline) the property that such lines have a length that depends on the resolution
following a power law, because magnification of parts reveals similar features to the
whole. Thus, in the limit of infinite magnification, fractal lines in a plane tend to
become infinitely long, yet they still fill less than the plane; thus, they have a
dimension that is generally larger than 1 but less than 2: a fractal dimension is
usually a broken number. Some fractal lines, like the Peano curve or Brownian
motion, are so twisted that they ultimately fill the plane, and have a dimension
D = 2. Fractal surfaces have a dimension larger than 2, but always lower than 3, the
dimension of the space the surface is contained in.

Many amorphous porous materials have such a fractal, self-similar surface.
Hence, the accessible surface area for a molecule depends on its molecular
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diameter, δ (effectively, the resolution of observation), following a power law, ∼
, where D is the fractal dimension of the surface, a number between 2 (for a smooth
surface—here the surface is seen to be independent of the size δ of the molecules
used as a measure) and 3 (for a space-filling surface). Clearly, for D > 2, the
surface area becomes larger for smaller probe molecules, indicating that smaller and
smaller irregularities alongside the pore walls become accessible, like fjords upon
fjords along the Norwegian coastline are accessible to a small boat. The fractal
scaling range, within which self-similarity holds, is too narrow to significantly
affect molecular diffusion, but it has a considerable influence on Knudsen diffusion,
because molecule-wall interactions dominate the diffusion behavior. The effect of
surface roughness on the Knudsen diffusivity, DK, can be approximated by:

DK =DK0δ
D− 2 ð11:10Þ

where DK0 is the Knudsen diffusivity when the pore wall is smooth; a more detailed
expression is presented in [51].

11.4 Nature-Inspired Engineering Approach

Some of the challenges faced by biological organisms are similar to those we seek
to solve for manmade systems. This includes the problem of maintaining efficient
operation across length scales, and the related need to efficiently transport mole-
cules across a wide range of length scales. Through billions of years of evolution,
biological organisms have developed traits that are particularly effective, especially
where these are related to functions essential for survival. Unraveling the funda-
mental mechanisms underpinning these traits not only helps us to better understand
life, and, in medicine, to discover ways to combat disease, but it can also serve as a
source of inspiration to solve parallel challenges in technology.

To do the latter in the most effective manner, it is essential to appreciate both the
context and the constraints of the biological model and the engineering application.
Properties like remarkable efficiency, adaptability, scalability and resilience in
nature may give us pause, when compared to the same properties of manmade
systems. Blind imitation of natural features will, however, be highly ineffective.
One reason is that the environment of living organisms is often not the same as that
of engineering applications, whether it be temperature, pressure or chemical envi-
ronment. Natural systems are immensely complicated, but not all biological com-
ponents are necessary in a technical application, because the boundary conditions
(available resources, ways to grow or build the system) differ. Also, most solutions
need to satisfy multiple objectives simultaneously, while, again, these frequently
differ between a biological and a manmade construct. The sources of complexity
differ, where constraints of manufacturability, desired time scales, chemical
building blocks and scale of operation are often vastly different. Therefore, while
the remarkable efficiency of a cell membrane, the agility of a bird or the incredible
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selectivity of an enzyme may hold valuable information on improving the perfor-
mance of artificial membranes, aircrafts or catalysts, respectively, purely imitating
shape or other all-to-obvious features will rarely lead to a workable, let alone better
solution than existing ones.

It is this combination of learning lessons from nature, by seeking to understand
the fundamental mechanisms behind desirable features, and applying these mech-
anisms within the context of a technical application, cognizant of differences in
boundary conditions, that we call “nature-inspired engineering” or, for chemical
engineering applications, nature-inspired chemical engineering (NICE). It differs
from biomimicry in its narrow sense, eschewing direct translation of biological
features, seeking a deeper understanding of mechanisms and applying these to build
a workable technical solution that is acceptable within the constraints that the
product or process demands (economics, safety, practical applicability, manufac-
turability, etc.). Thus, our NICE methodology is very much rooted in fundamental
physics and chemistry, and combines a holistic approach looking at natural systems
with the solution-oriented reductionism and pragmatism of engineering. Our NICE
methodology is discussed in a few recent papers [12, 53–56], and aims to be a
resource for innovation, guiding solutions to challenging problems related to
energy, water, health and sustainability in human society.

The complexity of nature is daunting. Its diversity is a fascinating source of
beauty, but can also be overwhelming to those seeking to build solutions inspired
by nature. Biologists tend to embrace this complexity in all its forms, cataloguing
and categorizing it with increasing detail, aiming to be comprehensive. There is
value in seeking exceptional behavior that can help us understand evolution as well
as reveal rare mechanisms, exceptions to the rule, pushing the boundaries of the
biologically achievable—the miracle of the platypus or the bombardier beetle. Such
outliers can also inspire out-of-the-box ideas for engineering solutions to technical
problems. However, in our NICE approach, in first instance, we look for universal
mechanisms that are highly common, and, while biological organisms and systems
come in different forms and shapes, the abstraction of physics and mathematical
modeling reveals striking similarities.

One of those most striking, universal features in biology is hierarchically
structuring, which is also crucial in technology, yet nature is vastly superior in how
hierarchical structures are organized, bridging scales from atoms and molecules to
organs and organisms, in a way that is essential to their functioning. For example,
bone has a hierarchical structure containing seven levels of organization with dis-
tinct chemical properties. This allows bone to have unique mechanical properties
and transport properties to sustain physiologically important cells, while keeping
the overall weight of the bone low [57, 58]. Fratzl and Weinkamer [59] illustrate the
structure-function relation of biological tissues, such as bone, tendon, and wood, at
various hierarchical levels, and the importance of this adaptation to fracture healing.
Such hierarchical biological structures are a great source of inspiration to materials
scientists, seeking to emulate similar properties.

Inspired by the hierarchical structure of the femur, Gustave Eiffel designed the
eponymous tower with a minimum amount of iron, but strong enough to rise 324 m
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into the air. It is important to emphasize that Eiffel, quite obviously, did not copy
the entire structure of the bone, but understood that it is the multi-scale balancing of
forces in its trabecular structure that holds the secret to combining high strength,
flexibility and low weight, as illustrated in Fig. 11.4. The size, shape, and materials
used in the construction of the Eiffel tower are different from those of a bone, but it
is the hierarchical design with balanced forces at each scale that lends the tower its
unique mechanical properties. Scores of similar architectural examples could be
cited that are nature-inspired in their design, in the engineering sense, from the
work of Gaudí to Buckminster-Fuller and Calatrava. The most successful ones
marry a nature-inspired design to other properties desired in their application, from
functional in the technical sense, to esthetics.

Insights into hierarchical structures in biology provide us with a lot of ideas for
the optimal design of hierarchically structured materials for processes that rely on
efficient mass transport. A hierarchical network is widely adopted in biology to
meet the challenge of transporting nutrients toward cells and products, including
waste, away from cells through multiple length scales. At macroscopic scales, many
of these networks have a fractal, self-similar branching structure, which interpolates
between the scale of the organ or entire organism and a minimum length scale, the
inner cutoff of the fractal scaling range. Examples are tree crowns (see Fig. 11.5a),
the upper respiratory tract of the lungs (see Fig. 11.5b), and the vascular network

Fig. 11.4 The hierarchical structure of the femur (left [60]) and its inspiration to design of the
Eiffel tower (right)
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(see Fig. 11.5c). Crucially, the lower bound or inner cutoff of the fractal scaling
range also defines a cross-over in the dominant transport mechanism, from flow at
large (macroscopic) scales, to diffusion at small (mesoscopic to microscopic) scales.

This is well illustrated by human and other mammalian lungs. The airway tree of
a human adult lung repeatedly branches over approximately 23 generations. The
upper airway tree is fractal; it consists of 14–16 levels of self-similar branching,
counting from the trachea via the bronchi to the terminal bronchioles [64, 65]. The
walls of these upper generations of bronchi are impermeable, and air through the
bronchial tree is mainly transported via convective flow. As air flows through the
bronchial tree, it gradually slows down from the trachea to the terminal bronchioles.
This is because the radius of each branch only gradually decreases from generation
to generation. More specifically, at each generation, (rp)

Δ = m(rd)
Δ, where rp is the

radius of the parent branch and rd is the radius of one of the m daughters; in many
cases, m = 2. The length of the branches decreases similarly from parent to

Fig. 11.5 Examples of fractal structures in the nature. a Tree crown; b lung [61]; c a vascular
network of the human liver [62]; d Lena river delta [63]
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daughter: (lp)
D = m(ld)

D. Thus, the upper airway tree is a space-filling, self-similar
fractal with fractal dimension D = 3, which also has a diameter exponent Δ = 3
[46, 66, 67]. If this diameter exponent, Δ, had been 2, as it is in most botanical trees
(something da Vinci already showed), the flux and the transport velocity would
remain constant, because the total cross-sectional area of all daughters remains
constant, throughout all branching generations of the tree. However, for the lung,
this cross-sectional area progresses with a factor 24/3 from generation to generation,
while the velocity decreases, correspondingly, by a factor 2−1/3. Ultimately, after
about 14 generations, air has slowed down so much that diffusional transport, by the
random motion of molecules, is as fast as convective transport; any further
restriction in channel diameter would make diffusion more rapid than convection.
At that point, the Péclet number, Pe, comparing convective with diffusive transport,
crosses over from a value above 1 to one below 1. It is around this branching
generation that the structure of the airway tree changes to one that is very compact,
as shown in Fig. 11.5b: air enters the acinar airways, lined by alveoli, where
exchange of oxygen and carbon dioxide with the bloodstream occurs. Throughout
these lower 7–9 space-filling generations of acini, the channel diameter no longer
changes much; there would be no advantage to such change, given that, unlike
convective flow, diffusive transport by Brownian motion is not affected by the local
channel diameter.

In summary, the airway tree acts as a fractal distributor and collector with a
self-similar architecture between the macroscopic scale of the trachea to the
mesoscopic scale of the bronchioles [68], while the channel size within the acini
remains almost constant and the alveoli are uniformly distributed at mesoscopic
length scales. A transition in dominant transport mechanism from convection to
diffusion, corresponding to Pe ∼ 1, occurs in parallel to this radical change in
geometry, and the lower cutoff of the fractal scaling regime defines the cross-over
between macroscopic and the mesoscopic length scales. This is a key insight that
appears widely valid in biology, where characteristic length scales are tied to
cross-overs in function, here exemplified by transport properties. Fractal interpo-
lation between cross-over points bridging the mesoscopic and the macroscopic is
common, because it enables preservation of function [56].

Trees show a similar cross-over in hierarchical structure to lungs (Fig. 11.1). The
tree crown has a fractal, self-similar branching structure, which distributes water
and nutrients, with leaves supported by its branch tips [46]. This self-similar
structure is so advantageous in adaptability and scalability that it enables tree
crowns to spread tall and wide, without change in structure at the micro- to
mesoscale. The branches thicken and the number of branching generations
advances with the age of the tree, while the size of the twigs and leaves does not
change very much. In deciduous trees, the veinal architecture of leaves transitions
from fractal to uniform, again corresponding to a change in dominant transport
mechanism from flow to diffusion, where Pe ∼ 1, similar to the case of lungs.

Thus, a key nature-inspired design principle emerges for artificial hierarchical
transport networks in chemical reaction engineering applications and separation
processes involving porous materials, namely to combine a fractal geometry at
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macroscopic scales, and a uniform one at mesoscopic scales, with the reaction,
adsorption or exchange process occurring at microscopic scales. This particular
hierarchical structure leads to inherent scalability, as the operation is scale inde-
pendent, but, in addition, the system is also particularly efficient, if not optimal, as
we will now discuss.

The ubiquity of transport networks that combine a fractal geometry at larger
scales with uniformity at small scales, suggests the importance of understanding the
physical reason behind a particular geometry before mimicking it to attempt opti-
mization. Almost a century ago, it was already pointed out by Murray that there is,
what he called a “physiological principle of minimum work” [69, 70]. He proposed
to use the concept of “fitness” as a premise for physiological deductions, and
hypothesized that physiological organization is such that the energetic cost of
operation is minimized. More specifically, he showed that the hierarchical structure
of the human vascular network is such that oxygen transport is most efficient. If the
blood vessels are too narrow, too much work is needed for blood to flow through,
due to high friction. If the vessels are too broad, however, the blood volume is
similarly large, which is difficult to sustain as well. Efficiency is a compromise
between the factors of work against friction, and the “cost” of upkeep of blood
itself, which also requires metabolic energy. Minimizing the total amount of work
(per unit of time and per unit of blood volume) as a function of the radius of the
blood vessels led Murray to a similar value for the “cost” of blood (energy per unit
time and per unit volume) for all arteries and capillaries. Although Murray does not
use this term, it is very interesting to note that this implies equipartition of energy
over the entire system of the vascular network, which is a thermodynamic principle.

We have shown a similar result for the architecture of the lung, and derived it in
a different way, using irreversible thermodynamics, that is, second-law energy
efficiency or minimization of entropy production [66]. In full agreement with
physiological data for the respiratory network, the architecture of the lung is such
that the pressure drop over each of the bronchi is the same, and the concentration
drop over the acini is the same as well. This implies equipartition of thermodynamic
forces over all constituting channels of the respiratory network. The space-filling
architecture of the lung, D = 3, hence, (lp)

3 = 2(ld)
3, with also Δ = 3, hence

(rp)
3 = 2(rd)

3, throughout the bronchial tree, leads to minimum power dissipation,
given a desired membrane surface area in the acini for exchange with the blood
stream. This is a very important principle, which we will use in Sect. 11.6, when
discussing nature-inspired fuel cells.

Underlying this analysis is the observation that we should be very cautious when
learning from nature, and blind biomimetics should be avoided. Manmade designs
that copy features of biological structures visually or intuitively to achieve similar
properties are often referred to as biomimetics or biomimicry. The examples of the
lung and the vascular network demonstrate that a physical analysis is necessary to
understand the structural features leading to high efficiency and scalability.
Straightforward biomimicry might, for example, assume that an infinitely
self-similar fractal network is best, while our study showed a marked cutoff cor-
responding to Pe ∼ 1. This adds to the different boundary conditions and context in
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technological applications, which must be accounted for when using the NICE
approach to design and optimize artificial transport systems. We will now illustrate
the NICE approach to optimizing transport in porous media, in the case of catalysts
and fuel cells.

11.5 Nature-Inspired Optimization of Porous Catalysts

Desired properties of porous catalysts include high activity, selectivity, and sta-
bility. The geometric and electronic structure of the active sites determines the
intrinsic kinetics (microscale), but the pore network structure significantly affects
the apparent, effective kinetics (mesoscale), which, in turn, affects overall reactor
yields and product distributions (macroscale), via the multiscale hierarchy illus-
trated in Fig. 11.2. Rational design at the mesoscale has not nearly received as
much attention as the microscale, where spectroscopy, quantum chemistry and
statistical mechanics have allowed for significant progress. Nevertheless, in a cat-
alyst pellet, the concentrations of certain components might not be uniform, due to
their long diffusion path, leading to considerable diffusion resistance. This, in turn,
leads to a decreased volume-averaged reaction rate, compared to if the concentra-
tions were uniform throughout the pellet and, therefore, the same to those at the
outer surface. The effectiveness factor is defined to quantify the utilization of active
sites in a catalyst pellet:

η=
rate of reaction with diffusion limitation

rate of reaction at outer surface conditions
ð11:11Þ

η=

R
r Cð ÞdV
r CSð ÞVt

ð11:12Þ

where r(C) is the reaction rate per unit volume at a (key) reactant concentration C at
any position in the catalyst pellet, r(CS) is the reaction rate per unit volume at
reactant concentration CS at the external surface of the catalyst pellet, and Vt is the
total volume of the catalyst pellet. A method to determine effectiveness factors by
direct experimental inspection via IR imaging was given in Sect. 10.6.

Rational design at the microscale must be complemented by similar attention at
the mesoscale. Indeed, an important objective is to maximize the effectiveness
factor of a desired reaction, without changing the active sites themselves, thus
preserving the intrinsic properties. A straightforward method is to shrink the size of
the pellet. However, this method is rarely feasible in the chemical industry, because
pellet size is typically dictated by reactor engineering requirements, such as pres-
sure drop for fixed-bed reactors (increased for smaller pellets) and the minimum
fluidization velocity in fluidized beds (controlled by particle size). Optimal design
of the pore network, without affecting the pellet size, is, therefore, necessary to
boost the effectiveness factor [71, 72].

218 M.-O. Coppens and G. Ye



Here, we can turn to nature for guidance. As illustrated in Fig. 11.2, a leaf bears
similarities to a catalyst pellet, catalyzing carbon dioxide and water to sugar and
oxygen, for which it is crucial to efficiently transport reactants and products in the
leaf. To achieve fast transport, leaves have developed a hierarchical channel system,
which we can use as a source of inspiration for the design of hierarchical pore
networks in catalysts, as illustrated in Fig. 11.6. A hierarchical pore network in a
nanoporous catalyst, like a zeolite, is generated by introducing macro- and meso-
pores, which act as “highways” for fast transport (see also Sect. 10.7). However,
important questions for the optimal design of these “highways” require an answer:
Should they be distributed in a uniform or in a nonuniform way? Should they be of
the same size or distributed in size according to an optimal distribution? What
should the optimal macro- and mesoporosity be? How sensitive is the design to
variations in these textural parameters? Should the optimal pore network be dif-
ferent if deactivation by fouling occurs at the same time? To address these ques-
tions, which guide the synthesis of improved catalysts, general features of the
optimal pore network in porous catalysts were studied, using computational
methods [73–79]. In a leaf, as in the lower airway of the lung, the transport network
changes from fractal at large scale to uniform at small scales, where diffusion limits
transport. The cells are strikingly uniformly distributed amongst the veins in a leaf.
The theoretical and computational analysis that now follows does not prove that the
leaf has an optimized structure, but we will see that similar features emerge from
optimizing a hierarchical porous catalyst.

Fig. 11.6 Applying the NICE approach to optimal catalyst pellet design. a A leaf has a
hierarchical network of veins to quickly transport reactants and products. b Inspired by the
hierarchical transport network, a ZSM-5 zeolite catalyst was transformed into a hierarchically
structured composite with microporous ZSM-5 nanocrystals embedded in a well-connected
mesoporous matrix, thus facilitating diffusion. The zeolite composite was synthesized using the
route reported in [80, 81]
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Gheorghiu and Coppens [73] used a two-dimensional model to computationally
explore diffusion with first-order, isothermal reaction (A → B) in hierarchically
structured catalysts, in which a wide-pore network is introduced into a nanoporous
catalyst. They found that the catalyst with a fractal-like wide-pore network and
broad pore size distribution operates very near optimality, in the sense that the
effectiveness factor is maximized. However, the optimum is shallow, and, in these
simulations, a constant number of large pores was assumed. This also does not
guarantee that the total yield in the pellet is maximized.

Wang et al. [74] relaxed this constraint and compared monodisperse, bidisperse,
and bimodal pore networks in a nanostructured catalyst for a first-order, isothermal
reaction. For the bidisperse pore network, the large pores all have the same size; in
the bimodal pore network, large pores vary in size throughout the pellet, as shown
in Fig. 11.7. The computations showed that an optimized bidisperse catalyst could
have a yield at least an order of magnitude higher than the one of the monodisperse
catalyst (see Fig. 11.7), but also that local variations in pore diameter and porosity
of the large pore network, as in general bimodal networks, do not appreciably
increase the yield. Transport of molecules results from two diffusion processes,
partly in series, partly parallel: (1) diffusion in the large pores penetrating the whole
catalyst pellet, (2) local diffusion in the nanoporous “islands” surrounded by the
large pores. In the optimal catalysts, the slowest, rate determining process is dif-
fusion in the large pores, because the diffusion path in large pores is orders of
magnitude longer than the one in narrow pores. Kärger and Vasenkov [82] reached
a similar conclusion experimentally, based on PFG NMR, for catalysts used in
fluidized bed catalytic cracking (FCC), namely that diffusion at the (high) reaction
temperature in composite faujasite zeolite-containing particles is governed by dif-
fusion in the large pores, rather than in the intracrystalline micropores, despite the
intrinsically much smaller diffusivity in the latter. This is because the crystals are so
small. Wang et al. [74] also found that the value of the total macro- and meso-
porosity is essential, while the distribution of the wide (macro-/meso-)pore size is of
secondary importance in determining the yield for the optimized hierarchical cat-
alyst. In other words, a spatially uniform, wide pore distribution with uniform pore
size (schematically represented by the bidisperse structure in Fig. 11.7) is preferred
if the number of wide pores is large enough, while a fractal-like wide pore network
may lead to higher yield and effectiveness factor if the number of wide pores is
limited. This conclusion is also valid for the optimization of porous adsorbents [83].

Introducing macroporosity facilitates molecular transport, on the one hand, and
reduces the amount of active catalytic material per unit volume, on the other hand.
Hence, there is an optimal macroporosity when the objective is to maximize yield.
Johannessen et al. [77] optimized the macroporosity analytically for a periodic
bimodal porous catalyst (see Fig. 11.8) using optimal control theory and an
effective one-dimensional model, with the assumptions of pure molecular diffusion
in the large pore channels and first-order, isothermal reaction in the catalyst. For this
model catalyst, the macroporosity (εmacro) can be calculated by:
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εmacro =
d

d+w
ð11:13Þ

where d is the diameter of large channels and w is the channel wall thickness, as
shown in the right part of Fig. 11.8. The simulations show that the optimal
macroporosity should always be less than 0.5. When channel diameter and channel
wall thickness are optimized, concentration gradients are indistinguishable in the
y (vertical) direction, which is consistent with the conclusion reached by Wang
et al. [74]. Based on this result, a one-dimensional effective (continuum) model was
developed; it was shown that this model is almost as accurate as the
two-dimensional pore network model when optimizing the macroporosity of a
bimodal catalyst.

Fig. 11.7 Monodisperse (left), bidisperse (center), and bimodal (right) structures (nanoporous
catalytic material: black; large diffusion channels: white). The monodisperse structure has a pore
network with only narrow pores. The bidisperse structure has a hierarchical pore network, with
narrow nanopores only in the black “islands” of the same size and wide pores of the same size
surrounding these “islands”. The bimodal structures are assemblies of N × N bidisperse
substructures; in the illustration, N is 3. From [74], with permission

Fig. 11.8 Illustration of the bimodal catalyst (left) and one of its subunits (right). This bimodal
catalyst is formed by repeating the subunit in the y direction. The white parts are nanoporous
catalytic material; the black parts are large diffusion channels. L is half of the thickness of the
catalyst, w is the thickness of the channel wall (i.e., the catalytic material), d is the diameter of the
large channels. From [76], with permission
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The Thiele modulus method can be used to optimize the hierarchically structured
porous catalysts. Wang and Coppens [76] defined a generalized distributor (i.e.,
macropore-based) Thiele modulus (Φ0):

Φ0 =
V
S
rðC0Þffiffiffi

2
p

ZC0

Cc

DmrðCÞdC

2
64

3
75

− 1 ̸2

ð11:14Þ

and related Φ0 with the optimal effectiveness factor (ηopt) of the catalyst for a single
reaction with general kinetics. In (11.14), V is the volume (3D) or area (2D) of the
catalyst pellet; S is the external surface area (3D) or perimeter (2D) of the catalyst
pellet; r is the reaction rate; C0 is the concentration of a key reactant in the bulk
phase; Cc is typically assumed to be zero for an irreversible reaction or the con-
centration in equilibrium for a reversible reaction; Dm is the diffusivity in macro-
pores, rather than the effective diffusivity used in the conventional generalized
Thiele modulus (Φ). They found that the ηopt −Φ0 relationship (see Fig. 11.9a) is
analogous to the classical, universal η−Φ relationship (see Fig. 11.9b), that is, the
effectiveness factor η is seen to decrease from 1 for a small Thiele modulus (cor-
responding to high diffusivities and low intrinsic reaction rates) to an inverse
proportionality to Φ at high Thiele modulus. This yields a back-of-envelope
approach to design a bimodal catalyst, because ηopt can be estimated solely from the
value of Φ0 without the need for case-by-case optimizations.

This ηopt −Φ0 relation was applied to optimize a mesoporous deNOx catalyst for
the pseudo-first-order, isothermal reaction, 4NO + 4NH3 + O2 → 4N2 + 6H2O,
which is used to reduce NOx pollutants from power plant emissions [76].

Fig. 11.9 a Effectiveness factor of a porous catalyst (η) as a function of the generalized Thiele
modulus (Φ) for a single reaction with different reaction kinetics and in catalyst pellets of different
shapes. b Optimal effectiveness factor of a porous catalyst (ηopt) as a function of the generalized
distributor Thiele modulus (Φ0) for a single reaction with different reaction kinetics and in catalyst
pellets of different shapes. From Ref. [76], with permission
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By introducing an optimal macropore network (occupying 20–40% of the total
volume of the catalyst) into the washcoat consisting of the mesoporous deNOx

catalyst, its overall activity can be increased by a factor of 1.8–2.8. Wang and
Coppens [75] also optimized a commercial, mesoporous Ni/Al2O3 catalyst for the
autothermal reforming of methane by introducing a macropore network. This
process produces syngas (a mixture of, mostly, CO and H2), which is the precursor
to methanol, ammonia, artificial fuels and more, so it is one of the most important
chemical processes. The computations show that the overall activity can be
increased by a factor of 1.4–4 by only adjusting macroporosity and macropore size
of the bimodal (or macro-mesoporous) catalyst. In addition, a larger macroporosity
typically favors a lower CO/H2 ratio (or a higher selectivity toward hydrogen),
which indicates that the macroporosity can be used as a handle to control the CO/H2

ratio.
When optimizing porous catalysts, the sensitivity of the catalyst performance to

the structural parameters matters, as this shows how tightly the pore structure
should be controlled during synthesis. Wang et al. [74] found that the optimal value
of the macroporosity matters the most, while the distribution of large pore size
around the optimal large pore size is less important than the size itself. Coppens and
Wang [12] investigated how the effectiveness factor reacts to changes in channel
diameter d and channel wall thickness w around the optimal values; Fig. 11.10
shows that the loss in effectiveness factor is less than about 5% within a rather broad
region around the optimum. These results are important for the preparation of
industrial catalysts, because it is much easier to precisely control the macroporosity,
rather than the large pore size.

The performance of a catalyst often changes with time on stream, due to the
deactivation of the catalyst by fouling, which covers active sites and blocks pore

Fig. 11.10 Sensitivity of the
effectiveness factor to the
variations of channel diameter
d (0.5dopt–1.5dopt) and
channel wall thickness
w (0.5wopt–1.5wopt), as
labeled in Fig. 11.8. The
colors indicate the loss in the
effectiveness factor (i.e., a
percentage of the optimal
effectiveness factor). From
Ref. [12], with permission
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channels. Deactivation can be mitigated by optimizing the pore network of the
catalyst, as suggested by Keil and his colleagues [84, 85]. Rao and Coppens [78,
79] computationally optimized a mesoporous hydrodemetalation catalyst by
introducing an optimal hierarchical pore network, to maximize overall catalytic
activity and robustness to deactivation over a given time on stream. This hierar-
chical pore network structure is illustrated in Fig. 11.11. A random sphere model
was used to describe diffusion and reaction in the catalyst pellet. The results show
that the lifetime of the hierarchically structured catalyst could be extended by 40%,
while using 29% less catalyst than a non-optimized, purely mesoporous catalyst.
Local variations in macroporosity and large pore size only negligibly change the
overall yields, which is consistent with the optimization results of the porous cat-
alysts without deactivation [74, 77]. Catalytic performance may also be affected by
phase change, caused by capillary condensation in the pores. Ye et al. [86] proposed
a pore network model to investigate diffusion, phase change, and reaction in a
porous catalyst pellet. Hydrogenation of benzene to cyclohexane in the Pd/Al2O3

catalyst pellet was selected as a model reaction. Their results show that pore
blocking by liquid can significantly affect the performance of the multiphase cat-
alyst, indicating that pore blocking must be accounted for when modelling multi-
phase reactions. Ye et al. [87] also investigated the influence of pore network
structure on the performance of the multiphase catalyst. These structural parameters
include pore size distribution, connectivity, pellet size, spatial distribution of pores,
and bimodal pore structure. The results show that the performance of the multiphase
catalyst is very sensitive to these structural parameters, which indicates that the pore
network structure should be well controlled to achieve a desired performance of the
porous catalyst for multiphase reactions.

These studies demonstrate that an appropriate hierarchical catalyst pore network
structure can substantially increase catalytic performance, whether it is in terms of
activity, selectivity or stability. Within the context of NICE, our conclusions are in
striking agreement with models in nature, such as leaves and the alveolar sacs of the

Fig. 11.11 Illustration of the pore structure of the catalyst before and after deactivation. a The
hierarchically structured catalyst before deactivation is composed of overlapping mesoporous
grains separated by a macropore network. Each grain consists of overlapping solid catalyst spheres
separated by mesopores. b The catalyst after deactivation has a similar hierarchical structure as the
one in Fig. 11.11a, but metal sulfide deposits (black spheres) cover the internal surface of the
catalyst and can block pores. From [78], with permission
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lower airways of the lung: A uniform distribution and constant size of “cells”
(translated to, e.g., zeolite crystal size) and wide pore channels (translated to
macro-/mesopores) leads to maximum performance. The optimal porosity and pore
channel size matters, as does the cell/crystal size, avoiding undesired further dif-
fusion limitations within the crystals that would affect the (intrinsic) product dis-
tributions and prevent scalability, so important in nature and technology. The
benefits are significant and should guide synthesis efforts. From a practical view-
point, the optimum is shallow enough to allow for robust results, as some distri-
bution around the optimum size distribution can be tolerated.

11.6 Nature-Inspired Optimization of PEM Fuel Cells

Proton exchange membrane (PEM) fuel cells are devices that convert chemical
energy into electricity by electro-catalytic oxidation, at the anode, of hydrogen to
protons, which diffuse through a membrane and electro-catalytically reduce, at the
cathode, oxygen to water. Electrons produced at the anode move through an
external circuit (where they are used to power a device) to the cathode, where they
are consumed. Rather than direct combustion of hydrogen, the electro-catalytic
route avoids Carnot’s thermodynamic efficiency limit, thus, while more compli-
cated, is potentially much more efficient, even at low temperatures. A PEM fuel cell
consists of electrodes (anode and cathode), catalysts, proton exchange membrane,
and gas diffusion layers for gas distribution on both sides of the electrodes. Since
the average electric power from a single PEM fuel cell is limited to around 0.5 W/
cm2 [88], several cells must be stacked and bipolar plates are used to connect these
cells, in order to achieve the desired power output in applications. During dis-
charge, hydrogen (oxygen) are distributed over the anode (cathode) of the PEM fuel
cell through the flow channels on bipolar plates, and then diffuse through the anode
(cathode) gas diffusion layer and porous catalyst layer (often, Pt/carbon) before
reaching the Pt active sites, where the reactions occur. At the same time, the
product, water, is transported through the cathode catalyst and gas diffusion layer,
to be collected and removed through the flow channels on the bipolar plates. Severe
mass transfer limitations can cause rapid loss of voltage under high loads and
significantly reduce power output [89]. Condensed water can clog the pores, but
sufficient humidity of the membrane is necessary for the proton exchange to occur.
Water management and alleviating, in particular, oxygen mass transfer limitations
at the cathode is of great importance in PEM fuel cell design. Such problems have
persisted over many decades. Can we turn to nature for inspiration in tackling them
and redesign PEM fuel cells? We will discuss one aspect of this problem, taking the
lung as a source of inspiration.

The required transport systems in PEM fuel cells and in lungs share some
fundamental features: a hierarchy of transport channels is used, and dominant
transport mechanisms include flow and diffusion. Hence, it is worthwhile to learn
from lungs to guide the optimization of transport in PEM fuel cells, which is
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illustrated in Fig. 11.12. As mentioned in Sect. 11.4, the upper respiratory tract
(from trachea to bronchioles) has a self-similar, fractal architecture in which flow
dominates. This fractal architecture connects the microscopic elements (i.e., the
acini of the lung) to a single macroscopic element (i.e., the trachea of the lung) via
equal hydraulic path lengths, leading to equal transport rates and minimized entropy
production while breathing. Besides, this fractal architecture can be extended by
simply adding a branching generation, without changing the microscopic building
units (i.e., the acini). In the acini of the lung, transport of molecules is dominated by
diffusion via the cell walls. Cell size is remarkably constant across mammals, in
spite of considerable differences in size between organisms. As discussed, these
fundamental properties of the hierarchical structure of the lung are tied to scalability
and efficiency of the lung as a gas distributor and collector [66], and so can be
utilized to design PEM fuel cells.

Inspired by the lung, a design was proposed to improve the energy efficiency and
save the amount of expensive catalytic material in a PEM fuel cell [90]. In this
design, the flow channels of a bipolar plate and the pore network architecture of a
catalyst layer are optimized. The two parts can be decoupled and subsequently
combined. To optimize the flow channel, criteria for minimum entropy production
should be satisfied; to optimize the pore network structure, an optimized macrop-
orosity should be introduced; both parts are ideally matched when Pe ∼ 1 at the
interface, as in the lung.

In the rest of this section, some examples of biomimetic and nature-inspired
designs of flow channels of a bipolar channel are given and compared. An extension

Fig. 11.12 Applying the NICE approach to the optimal design of PEM fuel cells. The hierarchical
transport network of the lung, transitioning from fractal to uniform (left) inspired the design of a
fractal distributor as bipolar plate (right top) and hierarchically structured nanoporous catalyst with
uniformly distributed macropores (right bottom). From [55], with permission
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to electro-catalysis of the methodology discussed in Sect. 11.5 is used to optimize
the design of the catalyst layer.

Some biomimetic designs of the flow channel pattern have been proposed to
improve the flow of reactants and water in a PEM fuel cell [91–93]. Some designs
combine the typically used serpentine (snake-like) and interdigitated patterns to
form a “leaf-inspired” or “lung-inspired” channel pattern [91, 92], as shown in
Fig. 11.13. The computations show that the leaf and lung flow channel patterns
have a lower pressure drop and a more uniform pressure distribution, compared to
the commercial serpentine and interdigitated designs. Experimental studies [91, 92]
of these biomimetic designs show that the overall fuel cell performance can be
increased by 30%. These biomimetic designs are important contributions to the
improved design of PEM fuel cells, however, they only mimic certain natural
features, without using the rigorous criteria behind the effectiveness of transport in
leaves and lungs. Hence, they are essentially empirical, similarities with biology are
superficial, and there is no reason for them to be optimal.

On the contrary, nature-inspired designs of the flow channels rely on funda-
mental properties of pulmonary architecture and theories, such as Murray’s law [69,
70]. A first step is to build flow channels into a fractal-like structure, just like the
upper respiratory tract of the lung. Figure 11.14 shows a two-dimensional fractal
distributor as bipolar plate, which can be built by rapid prototyping (Fig. 11.12).
Reactants enter this distributor through a single inlet, flow through the branching
channels, and eventually exit the distributor through a square array of outlets, which
have the same hydraulic distance from the inlet. The diameter of the channels
gradually changes, following a power law with exponent, Δ, as discussed in
Sect. 11.4. In fractal distributor networks in nature, this exponent is different for

Fig. 11.13 a Leaf-inspired and b lung-inspired, biomimetic flow channel patterns. The inlet is at
the top and the outlet is at the bottom. From [91], with permission
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botanical trees (Δ=2) [46, 94, 95], arteries (Δ=2.7) [46, 96] and lungs (Δ=3) [46,
96], because the function and transport mechanism in these natural distribution
systems differ. Murray’s law, where Δ=3, leads to the extraordinary efficiency of
the lung. Ramos-Alvarado et al. [97] computationally compared the designs of
fractal distributors with 16, 64, and 256 outlets. The fractal distributor with 256
outlets enhanced power generation by 200 and 50% over the ones with 16 and 64
outlets, respectively, because flow distribution was more uniform and the pressure
drop was lower. Our own work [98] has used Δ=3 in a design that includes a
number of branching generations guided by the boundary condition, Pe ∼ 1, thus
convective transport out of the last generation matches diffusion in the gas diffusion
layer and the catalyst layer adjoining the bipolar plates—similar to the lung
(Fig. 11.12).

The inefficient usage of expensive platinum catalyst caused by diffusion limi-
tations not only adds to the total cost, but also decreases the power output. Marquis
and Coppens [99] computationally optimized the microstructure by adjusting the
platinum loading, platinum-to-carbon ratio, and catalyst layer void fraction. The
results show that the optimization of catalyst microstructure can increase platinum
utilization 30-fold over existing catalyst layer designs while maintaining power
densities over 0.35 W/cm2. An optimal large pore network should thus be intro-
duced into the catalyst layer to further increase performance, similar to the results
obtained in Sect. 11.5.

Fig. 11.14 Fractal flow distributors with single inlet and a 16 and b 64 outlets. c Polarization
curves (that is, voltage as a function of current density) and power density (product of voltage and
current density) of PEM fuel cells for three fractal (here, called constructal) distributors as bipolar
plates. The legend “Constructal N” refers to a distributor with N outlets. From [97], with
permission
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11.7 Conclusions

This chapter discussed a nature-inspired (chemical) engineering (NICE) approach
to optimize mass transport, and illustrated it via a few examples relevant to
chemical engineering, for catalytic systems employing porous media. In technol-
ogy, as well as in nature, efficiently transporting molecules over multiple length
scales, while maintaining scale-independent results, is of great importance. In each
case, the performance of the transport systems is significantly affected by their
structure over different length scales, which provides abundant room to optimize
transport through manipulating the multiscale structure, such as transport channel
size and distribution. Meanwhile, a fundamentally rooted methodology is still
required to rationally design these transport systems for technological applications.
Trees and mammalian lungs have evolved a hierarchical channel network for
transport, which is efficient, robust, and scalable. At the macroscale, where flow
dominates, the channel network is a self-similar fractal; at meso- to microscales,
where diffusion dominates, the channel size becomes almost uniform. That these
structural features are intertwined with functional optimality is a powerful basis for
rational, nature-inspired design, beyond biomimicry by superficial imitation. We
illustrated this for porous catalysts and PEM fuel cells.

Inspired by hierarchical diffusion networks in biology, an optimal large pore
network can be introduced into nanoporous catalysts to maximize the usage of the
catalyst, as well as overall yield. Computational and analytical studies indicate that
an optimal hierarchically structured catalyst contains uniformly distributed wide
pores in between nanoporous catalyst grains; the optimal macro/mesoporosity
matters more than the optimal macro/mesopore size, and some distribution around
the optimum is allowed, hence the result is robust. The same conclusions hold,
irrespective of the reaction kinetics, and such a structure mitigates effects of
deactivation by fouling. Learning from the fractal architecture of lungs and trees for
fast transport across length scales where transport occurs by flow, bipolar plates
with a fractal geometry and employing Murray’s law were designed to improve the
performance of PEM fuel cells, boosting their power output.

Rapid progress in synthesis and manufacturing technologies, from nanomaterials
synthesis and microtemplating methods to additive manufacturing and
micro-machining, increasingly allow to put theoretically optimized,
three-dimensional, hierarchical architectures of porous materials and flow distri-
bution networks into practice. Practical implementation of optimal transport net-
works, guided by the nature-inspired engineering, NICE, approach, is no longer a
distant dream.
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Chapter 12
NMR Versatility

Scott A. Willis, Tim Stait-Gardner, Allan M. Torres, Gang Zheng
and William S. Price

12.1 Introduction

Whether molecules (or ions) are in free solution or in some sort of composed porous
system, translational diffusion (i.e., random thermal or Brownian motion) can be
viewed as the most fundamental form of motion—Nature and Technology depend
on it. In the presence or absence of other forms of motion (e.g., flow, convection,
mutual diffusion …) diffusion is always occurring. It is the background level of
dispersion at the molecular level. Consequently, translational motion is funda-
mentally involved in most chemical reactions from the gas phase to those in con-
densed matter including those involved in metabolism. In general, diffusion brings
reactants together and/or to the active site in the case of a catalyst or enzyme, and
similarly moves the reactants away. Indeed, in very rapidly reacting systems it may
even be that the kinetics are limited by the diffusion of the reactants to or the
products from the point of reaction (see, e.g., the discussions in Sects. 10.6 and
11.5.) Thus, to understand reaction kinetics it is necessary to be able to probe the
diffusive properties of the various species.
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In addition to the direct role of diffusion in chemically based processes there are
other very important reasons for wishing to be able to probe diffusion and much of
the following considerations assumes knowledge of Chap. 2 Spreading Funda-
mentals. In particular, it is possible to obtain enormous information on the inter-
actions of the diffusing species with each other (e.g., self-association, hydrogen
bonding,…) and other species (binding, hydrogen bonding,…), and their interac-
tions with the boundaries that such species may be diffusing within (e.g., cell walls).
Naturally, the sort of information that can be obtained depends on the nature of the
system, for example, whether it is a pure substance or diffusing within some kind of
porous material.

Conceptual diagrams of diffusion in three systems of increasing complexity are
shown in Fig. 12.1. In a pure liquid the measured diffusion coefficient D0 corre-
sponds to the so-called bulk diffusion coefficient. Diffusion coefficients range from
∼10−6 m2 s−1 in the gas phase to <10−15 m2 s−1 in large polymers. Diffusion in
solids (see Chap. 13) is thus very slow although even in crystals, albeit over
enormous timescales, it is not completely zero [1]. More generally real systems are
mixtures of different species (e.g., biological milieu and polymer systems) and the
diffusion coefficient of a species will be reduced due to interparticle interactions,
including binding, and obstruction. We can think of systems of interest in
increasing order of complexity going from a pure substance (i.e., gas, liquid or
solid), an essentially homogeneous mixture (e.g., ethanol and water), a structurally
heterogeneous mixture (e.g., an emulsion) to ultimately some sort of composed

Fig. 12.1 Conceptual diagrams of three different diffusing systems. a The free solution system is
representative of a pure liquid or a gas, except that in the case of a gas the distance between the
species and their diffusion coefficients will be far greater. b A solute dissolved in a solvent. The
diffusive behavior of the solute is more complicated as it depends on both its interaction with the
solvent (i.e., solvation and charge) and the relative sizes and shapes of the solute to the solvent
species. Further, depending on the concentration of the solute and the size and diffusion coefficient,
it is possible that the diffusive paths of the solute molecules will be self-obstructed. c Small species
diffusing in a porous medium. When the mean squared displacement is of similar order to the
characteristic distances of the porous media (pores and throats) the interpretation of the diffusion
coefficient can be strongly observation time dependent. Further, if the throats are narrow ‘single
file’ diffusion can occur (see, e.g., Sect. 10.8 and Fig. 10.13)
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system containing both diffusing and non-diffusing species (e.g., a porous medium
such as biological tissue or zeolite).

To be able to extract information from the diffusion of a species requires both a
means of measuring diffusion and a pertinent model to the specific environment so
as to extract the information from the diffusion data. A detailed consideration on the
information obtainable from diffusion measurements can be initiated from a few
simple equations as largely introduced in Chap. 2. Firstly, the mean squared dis-
placement (MSD) of a species diffusing isotropically with a diffusion coefficient
D in three dimensions over a time t, is given by

⟨R2⟩=6Dt. ð12:1Þ

In essence, this equation tells us the volume a diffusing species samples over
t. Thus, for the same t the MSD of a gas is vastly greater than that of a liquid by
virtue of its diffusion coefficient being orders of magnitude larger. Importantly, as
shown by Eq. (12.1), the MSD scales linearly with t. For Eq. (12.1) to hold there
are some underlying assumptions: (i) any inter-particle interactions are completely
averaged at a timescale much shorter than t and (ii) the diffusing particles are
diffusing in an infinite medium (i.e., no interactions with boundaries). In the
absence of these two assumptions there will be a non-linear dependence of the MSD
on t. Obstruction of the diffusive path of a small molecule by a large molecule will
lead to a decrease in the MSD over a time t, and in turn the measured diffusion
coefficient (D(t)). The decrease in the measured diffusion coefficient can be char-
acterized by an obstruction factor,

OD =DðtÞ ̸D0. ð12:2Þ

Obstruction can be thought of as diffusion in a complex time-dependent
geometry. Relatedly if diffusion is occurring in a porous medium it is possible to
observe a time-dependence of the measured diffusion coefficient of the diffusing
species which depends in a complicated way on the geometry and connectivity of
the voids (Fig. 12.2).

Another means of interpreting diffusion coefficients is through the
Stokes-Einstein-Sutherland equation [2–5] (see also Sect. 8.2) which provides a
link between molecular size and diffusion, viz.

D=
kT
6πηr

ð12:3Þ

where k is the Boltzmann constant and T is temperature (i.e., the numerator is the
thermal energy). The denominator of Eq. (12.3) is the friction coefficient of a
sphere where r is the Stokes (or effective hydrodynamic) radius of the diffusing
species and η is the solvent viscosity. Although widely used to interpret diffusion of
species at finite concentrations, Eq. (12.3) strictly only holds at infinite dilution,
hence η refers to the solvent viscosity and not the solution viscosity. Further, it is
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assumed that a solute is sufficiently large that the solvent can be seen as a
continuum.

Equations (12.1)–(12.3) provide the conceptual basis of what can be probed with
diffusion. For a particle diffusing in a finite medium (e.g., a ‘pore‘, like water
diffusing in a biological cell) then as t increases more and more particles would
have the possibility of colliding with the boundaries (this occurs when the root
mean square (RMS) displacement approaches the characteristic length scale of the
bounding geometry). As a consequence the MSD would no longer scale linearly
with t as specified by Eq. (12.1). As will be discussed below it is often experi-
mentally difficult to probe D at sufficiently short t and thus RMS displacement to
probe inter-particle interactions. Equation (12.3) states that in the case of a pure
substance (gas, liquid, solid) diffusion reports on molecular size (and thus binding
and exchange) and the solvent viscosity.

As can be understood from the above discussion, providing there is an appli-
cable, accurate, non-invasive method for measuring diffusion then structural data
may be extracted. However, there must be a defined measurement timescale (i.e., t)
such that the RMS displacement probed is known. Diffusion measurements can
provide a wealth of information including:

• The size of the diffusing species
• Activation energies of diffusion
• The environment that the species is diffusing in
• Ordering of the environment
• Geometry that a molecule is moving within

Fig. 12.2 Apparent time-dependence of the mean square displacement (MSD) for a species
undergoing diffusion in a pore (i.e., a restricted geometry—in this case a sphere). The MSD can
then be correlated to the diffusion coefficient through Eq. (12.1). At very short timescales the
diffusion is unaffected by the pore boundaries and so analysis of the MSD will give the bulk
diffusion coefficient. When collisions with the boundary become significant the MSD increases
less than linearly with t resulting in a time-dependent diffusion coefficient. At long time the MSD
is described solely by the pore dimensions
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• Information on porous systems (e.g., characteristic distances, tortuosity, volume
fraction and obstruction…)

• Macromolecular crowding and confinement

In the next section we will discuss methods of measuring diffusion and the NMR
method in particular. Then, in order of increasing complexity, we explore the
versatility and richness of information that can be obtained from NMR diffusion
measurements (also known as NMR diffusometry and pulsed gradient spin-echo
(PGSE) NMR or pulsed field gradient (PFG) NMR).

Diffusion measurement is far from straightforward and presents particular
challenges. Due to the generally small size of diffusing species and low energies
involved only methods that do not perturb the generally delicate thermodynamics of
the system being studied are useful. Many methods exist for measuring diffusion
including light scattering, centrifuge and capillary methods (see Table 4.1 in Ref.
[6]). And it should be noted that there is some confusion in the literature between
those that measure translational (or self-) diffusion and mutual (or concentration)
diffusion in which the driving force is a chemical potential gradient. But most of
these methods have limited applicability and this is even more pronounced when
applied to biological systems and clinical studies. In essence, we require a tech-
nique that is non-invasive and chemically selective. For example, many systems are
not easily amenable to be radio-labelled or others are only applicable over a limited
concentration range or are capable of being measured over a certain timescale or
within a limited range of diffusion coefficients.

As will be seen below NMR provides a powerful technique for rapidly mea-
suring diffusion which obviates most of the problems associated with other tech-
niques and can, in general, be applied directly to samples (i.e., without labelling)
and under a range of conditions (e.g., temperature and pressure). Further, the
necessary equipment is widely available as almost any recent NMR spectrometer
includes the requisite hardware for performing basic NMR diffusion experiments. It
is this combination of properties which makes NMR diffusion measurements so
versatile.

12.2 NMR Diffusion Measurements

12.2.1 Basics of Diffusion NMR Measurements

NMR provides a particularly elegant and convenient approach to measuring
translation diffusion [7]. Detailed accounts of the technique are given elsewhere
including [8–10]. Traditional (i.e., non-diffusion) NMR experiments are conducted
in a homogeneous static magnetic field (B0)—thence all spins of the same type
resonate at the same frequency (i.e., the Larmor frequency ω0) irrespective of their
position (r) in the sample. In an NMR diffusion measurement, in addition to the
homogeneous static field, a magnetic field gradient is applied in pulses of duration δ
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during the pulse sequence. In the presence of the pulsed field gradients the Larmor
precession frequency of a nuclear spin is given by

ω rð Þ=ω0 + γg ⋅ r ð12:4Þ

where γ is the gyromagnetic ratio and g is the applied magnetic field gradient. In
future discussion the ω0 is ignored as it is common to all spins. What is important is
the second term in Eq. (12.4). It indicates that the precession frequency changes
both with respect to the position of the spin and the direction of the applied gradient
(NB a vector quantity). This term ultimately not only gives NMR the ability to
measure diffusion, but it also provides it the ability to measure diffusion in a certain
direction. The basic concept of the diffusion measurement is easily visualized in the
short gradient pulse approximation, where it is assumed that the gradient pulses are
so short that diffusive motion during the pulses can be ignored. Although the
direction of the gradient pulse can, hardware permitting (e.g., a triple axes gradient
or imaging probe), arbitrarily be set to any direction, for the purpose of our present
discussion it will be assumed that g = gzk (where k is the unit vector along z). Thus,
initially coherent transverse magnetization is wound into a helix by the first gradient
pulse and at a time t = Δ later a gradient pulse of equal magnitude but opposite
direction is applied. If there has been no diffusive motion along the direction of the
gradient pulse then the winding effect of the first gradient pulse is exactly coun-
teracted by the second gradient pulse. Thus, the initial coherent transverse mag-
netization less any loss due to the spin-spin relaxation—as detected—constitutes a
maximum echo signal, S0. Diffusive motion during the diffusion time Δ causes
irreversible attenuation of the magnetization helix resulting in an attenuated echo
signal, S. The simplest PGSE NMR pulse sequence is depicted in Fig. 12.3.
Analysis of the NMR data is facilitated by using the spin-echo attenuation E (=S/S0)
since the attenuation due to spin relaxation is normalized out leaving only the
attenuation due to diffusion. In the case of free diffusion it is possible to arrive at an
analytical result, even including the effects of finite length gradient pulses, con-
necting the experimental parameters, D and the signal attenuation,

E=
S
S0

= exp − γ2g2Dδ2 Δ− δ ̸3ð Þ� �
. ð12:5Þ

The dephasing effect of the gradient pulse, essentially the area of the gradient
pulse scaled by γ, is sometimes referred to as q, viz.

q=
γδg
2π

m− 1� �
. ð12:6Þ

Further analysis reveals that in the short gradient pulse limit the PGSE NMR
experiment is sensitive to the MSD averaged over all of the measured species
〈Z2(Δ)〉,
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E≈ exp − 2πqð Þ2⟨Z
2 Δð Þ⟩
2

� �
. ð12:7Þ

Note, Eq. (12.7) is most accurate in the limit of small q values. Thus, if the
diffusion is measured in a restricted system and the timescale of the measurement,
Δ, is such that boundary effects become important then the attenuation will no
longer be given by a simple single exponential. In such a case the shape and
characteristic distance(s) of the restricting geometry will impart particular signa-
tures to the echo attenuation profile. Further, if the data is (naively) analyzed using
the equation for free diffusion (cf. Fig. 12.2) the measured diffusion coefficient will
be in reality an apparent diffusion coefficient (ADC) and its value will be a function
of Δ.

Consideration of Eq. (12.5) in conjunction with the spectroscopic properties of
NMR reveals why NMR has become such a dominant force in diffusion mea-
surements. To begin with, most species naturally contain an NMR sensitive isotope
and thus do not require labelling that may not only be difficult to do but also may
change the system being measured. Thus, sample preparation may be as simple as
loading the sample into the NMR spectrometer. As the various isotopes resonate
within distinct frequency ranges there is no ambiguity as to which nucleus is being
detected. The NMR isotopes suited for use in NMR diffusion measurements include
many of biological and industrial significance (e.g., 1H, 2H, 7Li, 13C, 17O, 19F, 23Na,
31P). Further only very small energies are used in NMR measurements that are

Fig. 12.3 The simplest PGSE NMR pulse sequence—the modified Hahn spin-echo. This
sequence is often referred to as the Stejskal and Tanner sequence [7]. The π/2 radio frequency
pulse transforms the initial magnetization into coherent transverse magnetization which is then
wound into a helix by the first gradient pulse of duration δ and amplitude g. The π rf (radio
frequency) pulse negates the spin phase acquired up until t = τ, as a consequence the second
gradient pulse is effectively of opposite sign to the first. Thus, in the absence of diffusion the helix
created by the first gradient pulse is perfectly unwound by the second gradient pulse to give a
spin-echo signal S0 of maximum intensity which is acquired at t = 2τ. In the presence of diffusion
the magnitude of the acquired echo signal is reduced (i.e., S < S0). The mechanism of the diffusion
measurement is most easily visualized and modelled in the short-gradient approximation where the
gradient pulses are infinitely short (i.e., δ → 0) but with finite area (i.e., δg is finite) since then
diffusion during the gradient pulses can be ignored. The delay Δ defines the timescale of the
diffusion measurement
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unlikely to have any significant effects on the delicate thermodynamics of the
system. Modern NMR spectrometers are capable of accurate temperature control.
NMR has also two other extraordinary abilities that set it apart from all competing
techniques: (i) in general full chemical shift information is acquired and so it is
possible to probe the diffusive motion of more than one and sometimes all species
present and (ii) it is possible to combine diffusion measurements with imaging. This
is particularly relevant to spatially heterogeneous samples. And thus, it is possible
to obtain information from specific areas. There are some caveats with respect to
concentration and relaxation behavior—that is on a sample by sample basis. NMR
measurements are ultimately limited by sensitivity and the relaxation properties of
the measured species. However, the advances in NMR technology (esp. static
magnetic field strength, hyperpolarization, and applied magnetic field gradient
performance) means that more nuclei or measurements in less favorable samples
become more practicable for almost solid samples to those in the gas phase.

The power of NMR for measuring diffusion and probing various composed
samples is illustrated in the following sections.

12.2.2 Advancing Capability

Before around 1990 NMR diffusion measurements were only possible through the
addition of home-made accessories (i.e., gradient coils, current amplifier and con-
trolling hardware) to an NMR spectrometer. An example of a home-made PGSE
system is shown in Fig. 12.4.

The last two and a half decades have seen enormous progress in the hardware for
conducting diffusion measurements especially with respect to gradient coil design.
Now virtually all modern NMR spectrometers come as standard with some ability
to perform NMR diffusion measurements. A typical high resolution probe will
come equipped with a gradient coil capable of generating a gradient of around 50 G
cm−1 with excellent settling times after a gradient pulse. Such a system will be
capable of measuring diffusion of molecules up to something like 50 kDa. Spe-
cial NMR probe/amplifier combinations capable of producing gradients up to about
3000 G cm−1 are now commercially available and afford the possibility of mea-
suring extremely slowly diffusing systems and/or rapidly relaxing systems or sys-
tems where the observed nucleus has a very low γ.
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12.3 Applications to Gases, Liquids and Gels

12.3.1 Diffusion in Pure Substances, Mixtures
and Solutions

12.3.1.1 Gases, Pure Liquids and Simple Mixtures

Diffusion in pure gases has been widely studied using NMR diffusion measure-
ments. For instance, the diffusion of neat CO2 has been measured at pressures up to
200 MPa between 223 and 450 K [11]. The diffusion of noble gases [12] in water
and as well as diffusion in supercritical mixtures [13] have also been measured.
A particular problem with gas diffusion measurements is the low spin-density and
thus low signal-to-noise ratio. The rapidly emerging field of hyperpolarized gas
NMR significantly obviates this problem and opens the possibility for measure-
ments performed under clinical conditions (e.g., [14]).

Diffusion in pure liquids is still far from understood in many cases. A case in
point is the diffusion of liquid water due to its complicated transient hydrogen
bonds. Diffusion measurements provide an incisive means of studying the changing
dynamics in liquids with temperature. Due to NMR’s non-invasive nature it pre-
sents one of the rare means of studying diffusion in metastable states. 1H and 2H
have been used to measure the diffusion of 1H2O and 2H2O down to 238 K and

Fig. 12.4 Home-made additions to allow the performance of PGSE NMR experiments on a
Varian XL400 spectrometer ca 1988. a A first attempt at a gradient generator—a car battery
connected to a gradient coil via field effect transistors to provide current switching. b A modified
heteronuclear NMR probe. The top part of the probe casing was replaced with Perspex in an
attempt to remove conducting surfaces from the vicinity of the gradient coil and, thereby, reduce
the chance of eddy currents being generated by the gradient pulses. c The top of the NMR probe
with the casing removed. The gradient coil is positioned around the rf (radio frequency) coil and
sample—note the NMR tube inserted into the top of the probe. d A series of 31P PGSE NMR
spectra showing attenuation of the echo signal with increasing gradient pulse duration. The
spectrum acquired with δ = 3.5 ms is particularly badly affected by RF interference to which this
modified probe was especially susceptible. From W. S. Price Ph.D. thesis Univ. Sydney 1990
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244 K, respectively [15, 16]. Later work looked at the diffusion of water in brine
[17].

Equation (12.3) can be extended to other shapes and thus a diffusion measure-
ment can report on both the size and shape of a diffusing species. In fact this was
put to good effect in a pioneering work by Moll in 1968 in which the helix to
random coil transition of poly-L-glutamic acid was studied [18]. The literature now
contains many studies of using diffusion to investigate protein folding and denat-
uration (e.g., [19, 20]), protein association and crowding (e.g., [21, 22]) and
self-stacking and nanorod formation of platinum(II) intercalators [23].

12.3.1.2 Solution Structuring and NMR Diffusography

Diffusion is a powerful probe of solution structure. It might be naively assumed that
something like a water-alcohol mixture is homogeneous at the molecular level. Yet,
NMR diffusion measurements, with their ability to probe multiple components
simultaneously, reveal that in such a hydrogen bonded environment the solution is
far from homogeneous with concentration-dependent clustering of species. Further,
the differences in hydrogen bonding ability of isomers in such systems can in turn
be used to spectroscopically separate the isomers on the basis of diffusion coeffi-
cients as shown in Fig. 12.5 (i.e., to partition the spectrum into groups of equivalent
diffusion coefficients).

Fig. 12.5 ‘NMR Diffusography’—separation of hydroxybenzene isomers on the basis of
diffusion. A plot of the diffusion coefficients of resorcinol (■), catechol (red ●), and
hydroxyquinone (blue ▲) at ∼ 15 mM and t-BuOH (purple left-facing ▲) in samples containing
various tert-butanol mole fractions (xt‑BuOH) in D2O measured at 298 K. The data for t-BuOH
(green left-facing △) from the H2O−alcohol system taken from Ref. [24] are shown for
comparison. Reprinted with permission from Codling et al. [25] copyright (2013) American
Chemical Society
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12.3.2 Gels and Macroscopically Aligned
Lyotropic Liquid Crystals

12.3.2.1 Liquid Crystals and Alignment

Molecules in liquid crystals are free to move but are ordered about an axis (the
director), in contrast to in a liquid where there is neither positional nor orientational
order. Liquid crystals are typically classified as thermotropic or lyotropic liquid
crystals (LLC), the former has phase structures that depend on temperature (but also
pressure or applied forces/fields) while the later contains solvent/second component
as well as the liquid crystal molecules, and phases are additionally dependent on
concentration. The molecule responsible for order/structure in LLCs is typically a
surfactant (i.e., amphiphile) molecule where one end of the molecule is solvophillic
(solvent-loving) and the other solvophobic (solvent-hating). Note an additional
distinction between the thermotropic and lyotropic cases lies in the molecules and
phase structures, where the molecules of thermotropic liquid crystals achieve order/
display phases through molecular shape while in LLCs the phases are based on
aggregate structures formed from the surfactant molecules. Nevertheless, whether it
is diffusion of the ordered thermotropic liquid crystal molecules, the surfactant
molecules in the LLC aggregates, a probe molecule diffusing among the ordered
thermotropic liquid crystal molecules or a probe molecule diffusing around or in the
LLC aggregates, the diffusion will now be direction dependent (i.e., anisotropic; see
Sects. 12.3.2.2, 12.4.1 and 12.5.2).

For LLCs, different phase structures form as the concentration of surfactant is
increased. For example, at low concentrations the surfactant molecules exist as
monomers, but form micelles, in the simplest case these are spherical aggregates of
surfactant molecules (whether the solvophillic or solvophobic faces outwards
depends on the conditions), as the concentration is increased with the transition
occurring at the critical micelle concentration. The most common phase structures
are the lamellar and hexagonal phases. The lamellar phase is anisotropic and
consists of stacked bilayers with water in-between. The surfactant bilayers cover
large distances (>μm) and ideally the bilayers are planar and parallel but realisti-
cally there are defects present. The hexagonal phase is also anisotropic and consists
ideally of infinitely long circular rods of the surfactant molecules in a hexagonal
packing. Macroscopically aligned lamellar or hexagonal LLC samples can be made
by stacking glass plates with films of the LLCs in between them. Samples may be
aligned by a magnetic field (e.g., Ref. [26]) too (Fig. 12.6).

12.3.2.2 Diffusion NMR as a Tool to Monitor the Alignment
and Transport in LLCs

Deuterium NMR spectra have long been used to study the phase transitions in LLCs
[27–29] and diffusion NMR can be used to determine the critical micelle
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concentration [30]. If the spectrometer comes equipped with triple axis gradients,
such as with an imaging probe, then it is possible to measure diffusion in arbitrary
directions. This capability allows the determination of diffusion tensors and
direction (and time) dependent diffusion coefficients. These can then be analyzed by
comparison with predictions with models that account for any structural/geometric
obstruction and obstruction due to the matrix surrounding the obstacles and
knowledge of D0. Note the term geometric obstruction here refers to an obstruction
due to the shape of boundaries/obstacles that the molecules diffuse around (e.g.,
suspended solid spheres or cylinders) and the matrix obstruction refers to that
arising from, for example, a gel network surrounding solid spheres where there is
obstruction due to the polymer chains in addition to the geometric obstruction.

Consider the example of a macroscopically aligned lyotropic hexagonal phase in
the presence of a secondary polymer gel network (e.g., [26]), where the obstruction
from the aligned cylindrical aggregates of the hexagonal phase is OD, Hex (e.g., [31])

Fig. 12.6 The alignment of the LLC aggregate in a magnetic field depends on the sign of the
anisotropic magnetic susceptibility, Δχ = χ | − χ⊥ of the surfactant molecules making up the
aggregate (i.e., the response of the molecule in a magnetic field—attracted or repelled—may be
different depending on the orientation of the molecule in a magnetic field). Normally the thermal
energy of the molecules outweighs the magnetic energy and so they are free to tumble but as the
size of an aggregate increases its overall magnetic energy results in a preferential alignment of the
aggregates (and hence constituent molecules) by the magnetic field. a If Δχ > 0 then the aggregate
tends to align so that the long axis of the surfactant molecules aligns parallel to the magnetic field,
in this case the lamellar phase would be the most aligned as the direction of the long axis of the
cylinder in the hexagonal phase (i.e., the director) is undetermined in the plane perpendicular to
the magnetic field while normal to the bilayer of the lamellar phase (i.e., the director) is parallel to
the magnetic field. b If Δχ < 0 then the aggregate tends to align so that the long axis of the
surfactant molecules aligns perpendicular to the magnetic field, in this case the hexagonal phase
would be the most aligned as the director of the lamellar phase is undetermined in the plane
perpendicular to the magnetic field while the director of the hexagonal phase is parallel to the
magnetic field
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and the obstruction from the chains in the polymer gel network is OD, Matrix (e.g.,
[32–34]) and the probe molecule diffuses in the spaces around the cylinders. The
diffusion coefficients expected for an off-axis direction in the principal frame (here
the principal axis frame and the gradient/laboratory frame are identical), can be
calculated using the corresponding principal diffusivities (i.e., Dx, Dy and Dz; NB
diffusion perpendicular to the cylinder axes in a macroscopically aligned hexagonal
phase would be D┴ = Dx = Dy and diffusivity parallel to the cylinder axes would be
DII = Dz) and direction cosines [8, 35] converted to spherical coordinates (i.e., the
diffusion ‘peanut’ [36–38]),

Dθ,ϕ =Dx cos2 ϕ sin2 θ+Dy sin2 ϕ sin2 θ+Dz cos2 θ, ð12:8Þ

where θ and ϕ are the polar angle (0° along the principal frame z-axis), and
azimuthal angle (0° along the principal frame x-axis), respectively. The angular
dependency between any two principal axes n and m, i.e., x, y, or z, is [35, 36]

Dθ =Dn sin2 θ+Dm cos2 θ, ð12:9Þ

where θ is defined as the angle from m. Note an equation similar to this can be
obtained for the MSD [39]. The appearance of the two-dimensional polar plot, or
similarly a three-dimensional plot, is that of a ‘peanut’ shape depending on the
anisotropy of the diffusion (e.g., see [36–38]). Compare this to the diffusion
ellipsoid (see Sect. 12.5.2) which shows the expected displacement for a given time
in three dimensions—for this reason the ‘diffusion’ ellipsoid is actually the root
mean-squared displacement (RMSD) ellipsoid. Hence, the equation to calculate the
diffusion at any angle (i.e., from Eq. (12.9)) using D0, OD, Matrix and OD, Hex may be
written as

Dθ D0,OD, Matrix,OD, Hex, θ
� �

=D⊥ sin2 θ+D∥ cos2 θ

=D∥OD, Hex sin2 θ+D∥ cos2 θ

=D0OD, Matrix OD, Hex sin2 θ+ cos2 θ
� � ð12:10Þ

where θ is defined as the angle from the cylinder axes as usual (but this can be
applied to any LLC system provided the structural obstruction and obstruction/
binding from the matrix is modelled). Note, OD, Hex is the ratio of D┴/DII since DII

is the ‘free’ diffusion (the diffusion in the absence of geometric obstruction) in this
instance, and OD, Matrix is the ratio of D/D0 where D is equivalent DII and is the
diffusion coefficient reduced from D0 due to the matrix obstruction—with the
assumption that the gel network obstructs the diffusion of the probe molecule in all
directions equally. The obstruction from the matrix may also be modelled to include
binding to the matrix. Among several assumptions for Eq. (12.10) is that the effects
of defects in the LLC structure and averaging at the microdomain boundaries are
not significant for the timescale the diffusion is measured over. Further, the
obstruction factors are likely to be solute dependent [40].
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12.3.3 Binding and Exchange

The measured diffusion coefficient of a species is sensitive to a change in the
physical environment of a species such that it binds to another or exchanges into a
region subject to different restriction of its motion as depicted in Fig. 12.7.

In the case of two-site exchange, the signals from the free, Sf, and the bound, Sf,
sites can be modelled using the coupled differential equations [8, 41, 42],

dSf
dt

= − 2πqð Þ2DfSf −
Sf
τf

−
Sf
T2f

+
Sb
τb

ð12:11Þ

and

dSb
dt

= − 2πqð Þ2DbSb −
Sb
τb

−
Sb
T2b

+
Sf
τf

ð12:12Þ

where Df and Db are the (true) diffusivities in the two domains. Similarly T2f and
T2b denote the spin-spin relaxation times in the two domains. The initial conditions
are given by Sf t=0j =Pf = 1−Pbð Þ and Sb t=0j =Pb where Pf and Pb are the free and
bound populations, respectively. Ignoring relaxation differences between the two
domains, the solutions to these equations are well-known albeit complex
multi-exponential functions. Often the signals from the two sites (domains) cannot
be separated and thus the solution is of the form

Fig. 12.7 Binding and exchange. Diffusion of a species between a a free (f) and a bound (b) state
as in ligand binding or b between the exterior (e) and interior (i) of a pore, can result in differences
in the observed diffusion coefficient. In the former case the ligand will have a different diffusion
coefficient (D), population (P), reorientational correlation time (τ) and spin-lattice (T1) and
spin-spin relaxation (T2) times depending on whether it is in the free or bound state. Similarly a
particle in the interior of a pore will likely have a different diffusion coefficient inside the pore—for
example the viscosity inside a biological cell might be higher than in the exterior. Further, the pore
boundaries can contribute to a lower observed diffusion coefficient
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E q,Δð Þ= Sb + Sf =P1 exp − 2πqð Þ2D1Δ
� �

+P2 exp − 2πqð Þ2D2Δ
� �

ð12:13Þ

with well-defined mathematical expressions correlating the population fractions
(relative signal intensities) P1 and P2 and the “apparent” self-diffusion coefficients
D1 and D2 with the “true” populations (Pf and Pb) and diffusivities (Df and Db).
Under fast exchange conditions (i.e., τf, τb → 0 and thus D2 →∞) Eq. (12.13)
reduces to

E q,Δð Þ= Sb + Sf = exp − 2πqð Þ2⟨D⟩PΔ
� �

, ð12:14Þ

where

⟨D⟩P = 1−Pbð ÞDf +PbDb ð12:15Þ

is the population-weighted average diffusion coefficient.
The emergence of this formalism, today generally referred to as the Kärger

equations was as early as the late 1960s [43] and these equations provide the means
for studying an extraordinary range of binding and exchanging systems including
estimation of molecular exchange in beds of nanoporous particles between the
particles and the surrounding atmosphere [41, 44] (see also Chap. 10), binding of
salicylate to albumin [45], dextran in polyelectrolyte capsule dispersions [46], water
in brain tissue [47] and with a simple modification to account for restricted diffusion
in one domain, transport through biological cells [48].

12.3.4 Electrophoretic NMR and Flow

The possibility of electrophoretic NMR (ENMR) in which ionic velocities are
measured in the presence of electric fields using NMR was recognized by Packer in
1969 [49] and experimentally realized in 1982 [50, 51]. It opens up the possibility
of resolving NMR spectra according to the individual electrophoretic mobilities (or
drift velocities; μ) of the ionic species in the sample and has been widely reviewed
[52, 53].

An ENMR experiment is in effect a PGSE sequence modified to include a pulsed
electric field (Edc). μ is related to the measured velocity (i.e., v) by

μ± = v± ̸Edc ð12:16Þ

where the subscripts ‘+’ and ‘−’ related to the cationic and anionic species,
respectively. A simple ENMR pulse sequence is depicted in Fig. 12.8.
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The complex attenuation (i.e., attenuation and phase shift) of the echo signal for
a particular species is given by [54]

E Edcð Þ= exp − γ2δ2g2D Δ− δ ̸3ð Þ� �zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Attenuation

exp iγδgEdcΔeμð Þ
zfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflffl{Phase− shift

. ð12:17Þ

Thus, diffusion results in echo signal attenuation as before and the elec-
trophoretic mobility (and direction) is then determined from the complex phase
modulation of the echo signal (Fig. 12.9).

Given that only charged species are affected by the pulsed electric field, it is
possible to use ENMR as a mobility filter such that in a complex NMR spectrum of
a multicomponent liquid mixture the resonances of the electrically charged species
can be selectively filtered [55, 56]. Similar to PGSE measurements being displayed
as DOSY plots (i.e., diffusion ordered spectroscopy plots in which one dimension is
the usual chemical shift and the second dimension is the diffusion coefficient), it is
possible to process the ENMR data to give a 2D plot (i.e., one dimension is the
usual chemical shift and the second dimension is intensity versus Δ or Edc) [57, 58].
Recently, ENMR was used to study ion association in aqueous and non-aqueous
solutions [59]. Slice selection ENMR was used to investigate transport processes
(e.g., electro-osmotic drag) in a fuel cell, consisting of several layers of Nafion [60].
Ion migration in bulk ionic liquid was measured by ENMR under the influence of
small electric fields similar to those used in electric devices [61].

Fig. 12.8 A basic ENMR pulse sequence. The spins are first encoded spatially by the first
magnetic gradient pulse, then the encoded spins experience diffusion and more importantly
induced flow due to the electric field pulses. The dephasing effect due to diffusion, coherent phase
shift due to flow, and phase modulation due to thermal convection are all accumulated after the
application of the second pulsed gradient
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12.4 Porous Systems

12.4.1 Anisotropic Geometries

Diffusion in restricted environments is expected to be slower than that in unre-
stricted environments as the translational movements of diffusing molecules are
hindered by the walls of the confining geometry or obstructions. The difference in
diffusion between two types of environment is more pronounced when the diffusion
time is set to values that are sufficiently long to allow the diffusing molecules to
traverse the length of the confining geometry. In NMR, restricted diffusion can be
observed for cavity dimensions in the order of tens to hundreds of micrometers. The
shape and dimension of the confining geometry or pore and the type of surface wall
all affect diffusion so that the equation describing the signal attenuation in the
restricted geometry is much more complex than in free diffusion. For example, in
restricted diffusion between two planes separated by length 2a and with surface
relaxivity n, the diffusion propagator is given by [9, 62],

Pðz0, z1, tÞ= 1
2a

+
1
a
∑
∞

n=1
cos

nπz0
2a

� �
cos

nπz1
2a

� �
exp −

n2π2Dt

2að Þ2
 !

. ð12:18Þ

This propagator represents an eigenfunction expansion and is composed of a
time-independent first term (from the zero eigenvalue) equal to the inverse of the

Fig. 12.9 1H (left) and 19F
(right) ENMR spectra
showing, as expected, phase
shifts of opposite signs for the
cation and anion peaks in
10 mM aqueous solution of
tetramethylammonium
hexafluorophosphate.
Reprinted from Bielejewski
et al. [56] copyright (2014)
with permission from Elsevier
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characteristic distance of the pore whereas all of the latter terms are time dependent.
The echo signal attenuation based on this propagator is

Eðq,ΔÞ= 2½1− cos 2πqð2aÞð Þ�
ð2πqð2aÞÞ2 + 4ð2πqð2aÞÞ2 ∑

∞

n=1
exp −

n2π2DΔ
2að Þ2

 !
1− ð− 1Þn cos 2πqð2aÞð Þ
ð2πqð2aÞÞ2 − ðnπÞ2
h i2 .

ð12:19Þ

The first term results from the time-independent part of the propagator
(Eq. (12.18)) whereas the contribution of the second term, by virtue of containing a
negative exponential, eventually disappears leaving only the profile from the first
term in which one may, most impressively, recognize the pattern of the signals
observed with radiation diffraction. This is in distinct contrast to the single expo-
nential attenuation observed for free diffusion (Eq. (12.5))—and an immediate
consequence of the similarity of the expressions resulting from the respective
mathematical analyses. Such diffraction patterns, for various idealized geometries
such spheres, cylinders, and annular geometries under a variety of boundary con-
ditions (e.g., reflecting or absorbing), have been obtained either by direct derivation
(analytically or numerically) or by simulation (e.g., [9, 10, 63–65]).

An experimentally derived ‘diffusive diffraction’ echo attenuation for diffusion
between planes is shown in Fig. 12.10 for the model system of water in a
Shigemi NMR tube. This tube consists of an outer tube and inner piston-like insert
which was positioned to give a separation of ∼140 μm. To be able to observe
interesting features in the NMR signal attenuation profile, a long diffusion time was
required so that the echo attenuation profile would be sensitive to the planar
boundaries. The gradient was directed perpendicular to the planes.

The observed echo attenuation profile is interesting as it shows repetitive
maxima and minima whose position is related to the interplanar separation and is
well-described by the theoretical prediction. This NMR diffusion phenomenon is
analogous to optical single slit diffraction patterns and is predicted by the cosine
modulated terms in Eq. (12.19). It is easy to see that this NMR
“diffusive-diffraction” pattern can provide useful information about the nature and
dimensions of the restricting geometry. In fact such repetitive NMR diffusion
patterns have already been observed experimentally in liquids containing samples
of polystyrene beads, red blood cells, and capillaries [67–69]. This is possible in
these particular cases because in that they incorporate a large number of restricting
geometries which are regular or homogenous in size, shape and orientation. For
non-ideal systems such as cells in tissues which are heterogeneous (e.g. they
contain cells with various sizes and shapes), the diffusion diffraction pattern may
not be observed. For such systems the ‘apparent’ diffusion coefficient (ADC) can be
obtained; this is also very useful as it provides information about the mean
dimensions of the cells in a given sample.
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12.5 Diffusion and Magnetic Resonance Imaging (MRI)

If the sample being investigated is relatively small and homogenous then the regular
NMR diffusion method can be used for characterization. However in general most
matter, including interesting and relevant samples ranging from Biology, Medicine
to Chemical Engineering, are of a porous composition and are often heterogeneous
systems so that it is desirable to be able to obtain diffusion information for a
localized volume (or voxel) of a given sample and at the same time use diffusion as
a form of contrast in imaging. Diffusion (esp. mutual diffusion and kinetics of
adsorption) can be gauged by measuring concentration profiles and this can be done
directly using NMR as an imaging method, referred to as MRI (magnetic resonance
imaging, e.g., see [70–73] and Fig. 12.3 in [74] as early examples of its application
in chemical engineering) although it is also noted that other methods can be used to
complement MRI measurements to obtain information such as concentration pro-
files especially at shorter length and timescales such as IR Microscopy and Inter-
ference Microscopy (see Fig. 10.3). Fortunately, the NMR diffusion method can be
readily incorporated into the MRI pulse methods as these two methods are

Fig. 12.10 Experimental verification of ‘diffusive diffraction’ spin-echo attenuation (■) for water
diffusing between parallel planes separated by distance 2a plotted as a function of applied
magnetic field gradient q. The sample consists of water in a Shigemi NMR tube. The data were
acquired with Δ = 2 s and δ = 2 ms, which is very close to short gradient pulse conditions. The
data were simulated (solid line) using Eq. (12.19) using D = 3.69 × 10−9 m2 s−1 and a separation
of 2a of 128.4 μm. As the diffractive effects are only evident at high attenuations (i.e., E < 0.1) the
ordinate is plotted logarithmically. Modified from Price et al. [66] copyright (2003) with
permission from Elsevier

12 NMR Versatility 251



somewhat related in that both utilize magnetic field gradients, radio frequency
pulses and delays (see Fig. 12.11).

To date two important diffusion-based MRI methods are now commonly used in
many facilities, namely Diffusion Weighted Imaging (DWI) [75, 76] and Diffusion
Tensor Imaging (DTI) [77, 78].

12.5.1 DWI and Isotropic Diffusion

Together with T2 and T1-weighted imaging, DWI has been used as an MRI contrast
method to differentiate various regions in a given sample. The DWI method has
been useful by itself and a complementary method in differentiating various tissue
samples by providing ADC (apparent diffusion coefficient) maps. It is known as the
isotropic diffusion map as the measured diffusion values are assumed equal in all
directions within the sample.

12.5.2 DTI and Anisotropic Diffusion

DTI, on the other hand, is found to be a very versatile tool used for Fiber Tracking
Mapping or Tractography in MRI. This is possible in fibrous samples because of the
anisotropy of the ADC meaning that the measured diffusion is dependent on the

Fig. 12.11 Incorporation of the diffusion sequence into the MRI sequence. The diffusion
sequence gradient pulses are combined into the spin echo imaging sequence
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orientation of the fiber. The diffusion anisotropy is a result of the restricted elon-
gated geometry where the ADC in the long section is greater than that in the short
section as exemplified by diffusion in a cylinder, presented in Fig. 12.12.

For taking account of diffusion anisotropy we have to realize that now the
probability of molecular propagation (see Eq. (2.10) for unidirectional diffusion
and/or diffusion in an isotropic system) has become a function of the direction. As a
most important consequence of this situation, deviating from Fick’s 1st law in the
simple notation of Eqs. (2.6) and (2.7), diffusive fluxes are not anymore necessarily
directed in parallel with the concentration gradient. The position of D in Fick’s law
must now rather be assumed to be occupied by a diffusion tensor D yielding,

j= −D∇c ð12:20Þ

or, in explicit notation with the individual components in the x, y and z directions
and the diffusion tensor appearing in matrix notation,

jx
jy
jz

0
@

1
A= −

Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

0
@

1
A ∂c

∂x
∂c
∂y
∂c
∂z

0
@

1
A. ð12:21Þ

Note that in Eq. (12.21) the coordinate system is for an arbitrary frame of
reference. However, it is always possible to find a coordinate system in which the
diffusion matrix assumes diagonal form, i.e., with all off-diagonal elements equal to
zero (i.e., a principal axis system). Concentration gradients in the x, y, and z di-
rections of the principal frame/coordinate system are easily seen to give rise to
diffusive fluxes in exactly these directions as required by Fick’s 1st law in the
notations of Eqs. (2.6) and (2.7), now, however, with different parameters, i.e.,
principal diffusivities, Dx, Dy, Dz, in general. They are referred to as the main or
principal tensor elements, attributed to the principal tensor axes x, y and z (for more

Fig. 12.12 Restricted
diffusion in a cylinder. The
apparent diffusion coefficient
(ADC) depends on the
orientation. Diffusion
measured across the cylinder
will appear to be slower
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on diffusion tensors see also [37, 38, 79, 80]). For Fig. 12.12, the z′ axis represents
an example laboratory frame of reference while the cylinder axis would be the
principal axis for the major element of the principal diffusion tensor. In this case,
the diffusion tensor is of rotational symmetry, i.e., with coinciding principal tensor
elements in the radial direction which, moreover, are subject to restriction.

We are now going to determine the probability density of molecular shifts over a
distance r = {x; y; z} (with reference to a coordinate system given by the principal
axes of the diffusion tensor). This (combined) probability is simply given by the
product of the respective probabilities of displacements in the principal x, y and
z directions. With Eq. (2.10) and the principal tensor elements Dx, Dy and Dz in
place of the diffusivity D we thus obtain,

P r, tð Þ= 4πt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DxDyDz

3
p� �− 3 ̸2

exp −
1
4t

x2

Dx
+

y2

Dy
+

z2

Dz


 �� 
. ð12:22Þ

By adopting the procedure practiced already with Eq. (2.11), with Eq. (12.22)
the mean square displacement in the directions of each of the principal axes of the
diffusion tensor is easily found to follow the Einstein relation, now with the main
elements of the diffusion tensor in place of the diffusion coefficient. This gives rise
to a representation known as the ‘diffusion ellipsoid’—actually the RMSD ellipsoid
—and in the principal reference frame is represented by [37, 38],

xffiffiffiffiffiffiffiffiffiffi
2Dxt

p
� �2

+
yffiffiffiffiffiffiffiffiffiffi
2Dyt

p
 !2

+
zffiffiffiffiffiffiffiffiffi
2Dzt

p
� �2

= 1, ð12:23Þ

and an example diffusion ellipsoid is shown in Fig. 12.13. Note that in Fig. 12.13
the laboratory frame of reference does not coincide with the principal frame of
reference. For the special case where the time for diffusion, t, equals 0.5 s it can be
seen that the major axes of the ellipsoid are given by the square root of the
corresponding main elements of the diffusion tensor. If t = 0.5 s, the effective
diffusivity along an arbitrary direction (i.e., in particular in the direction of the
pulsed field gradient) can be determined from the square of the value of the
ellipsoid along that direction. The ‘diffusion’ ellipsoid may also be constructed
using the diffusion tensor obtained in an arbitrary reference frame (i.e., where the
laboratory or gradient frame of reference does not coincide with the principal frame
of reference) but in this case all tensor elements, Dxx, Dyy, Dzz, Dxy, Dxz and Dyz, are
required to plot the ellipsoid so that orientation information is preserved/shown [78,
81]. The “diffusion ellipsoid” (i.e., the RMSD ellipsoid) can be plotted for a given
MRI voxel size to easily visualize the magnitude and direction of anisotropic
diffusion. Recall that the effective diffusivity along an arbitrary direction may also
be determined via the diffusion ‘peanut’ (e.g., Eqs. (12.8) and (12.9)) (NB:
derivations of the PGSE attenuations for anisotropic diffusion, i.e., with
Eq. (12.22), can be found in [8])
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Fiber Tracking maps of the brain can show its long range white matter con-
nectivity as the maps created from data acquired in the DTI experiment shown in
Fig. 12.14 illustrate.

Fig. 12.13 The ‘diffusion’ or RMSD ellipsoid deduced from a diffusion tensor. The major axes of
the ellipsoid are proportional to the square root of the corresponding main elements of the principal
diffusion tensor, Dx Dy and Dz, and length of time diffusion occurs, t. Here the principal axes are x,
y and z, and the laboratory axes are x’, y’ or z’. The effective RMSD in any arbitrary direction can
easily be seen from the ellipsoid

Fig. 12.14 One of the many applications of DTI is fiber-tracking in the brain. The fiber tracks are
calculated from the principle eigenvector orientation (which is obtained from the diffusion tensor)
in each voxel. Reprinted from Kubicki et al. [82] copyright (2007) with permission from Elsevier
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The application of diffusion in the form of DWI and DTI (or Fiber Track
Mapping) has gained popularity in MRI in Medicine in the last decade or so as it
provides useful information on the nature and structure of tissues which cannot be
obtained by other means.

12.5.3 Localized Diffusion

The applications of diffusion tensor imaging and diffusion MRI extend beyond
medicine. One such interesting application is to the study of grape berry mor-
phology and pathologies. Grape berries are particularly suited to MRI due to their
high water content and intricate internal structure.

Two studies of grape berries using DTI are described briefly here [83, 84]. The
first examined developmental changes in the Semillon grape tissue structure using
DTI. Twenty-one grape berries at different stages of development were scanned
with a standard PGSE echo-planar DTI sequence (see Fig. 12.15 where the diffu-
sion preference along the radial direction is quite evident). Also evident is the high
degree of anisotropy within the grape seed. The anisotropy patterns correlate with
the known microstructure of the grapes at the various stages of development
including an increase in diffusion vector coherence at 28–41 days after flowering
when the mesocarp cells transition to a radially elongated state. The other study
used MRI and DWI to track the progression of berry splitting.

Fruit split or berry split is a particularly important grape pathology due to its
economic costs. During fruit split an excess uptake of water causes an increase in

Fig. 12.15 Diffusion tensor images of Semillon grape berries at seven different stages of berry
development (pre-véraison—prior to ripening—in (a) to post-harvest in (g). Scale bar: 3 mm. The
color in the axial slices indicates the preferred diffusion direction where the ‘color sphere’ beside
grape (g) correlates direction with color (from Dean et al. [83])
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turgor pressure within the grape berry eventually causing the skin to split. The berry
is then susceptible to pathogen infections and, in dryer conditions, to desiccation.
Splitting adversely affects berry quality and yield and is a significant cost to the
viticulture industry. Climate change is expected to exacerbate the conditions under
which fruit splitting occurs in Australia.

Part of this study analyzed the development of a single split in the skin of a ripe
table grape (Thompson Seedless) and the effect of this split on the mesocarp tissue
using a sequence of ADC maps spaced over a period of 8 h. The ADC increased
near the split and this splitting was linked to cell death.

Diffusion MRI can also be, and has been, applied to many other botanical
species (for example olives, maize stems, barley seeds, carrot roots, celery and
asparagus stems) [85–88].

12.6 Conclusions

The growth and range of application of NMR-based diffusion studies has been
phenomenal with applications spanning a vast range of sciences, engineering and
clinical medicine. The advancements in both hardware and method development
have indeed propelled NMR/MRI as a popular analytical or clinical tool. No other
diffusion measuring technique can come close to NMR in its versatility and prac-
ticality. Thus, the versatility of NMR means that its range of applications encom-
passes much of nature and technology.

Not only is NMR a powerful method for chemical identification, it is able to
study binding events and kinetics that are important for biochemical systems.
Recent advances in combining NMR/MRI with electrophoretic measurements
allows visualization of dynamics processes which underpin battery and electrolyte
development. NMR diffusion measurements not only provide information neces-
sary to characterize binding but also provide structural information of the envi-
ronment the molecules are diffusing within. NMR could therefore play a crucial role
in advancing battery technology. This could have many benefits especially on the
way society uses renewable energy leading to a better future for mankind and the
environment.

For most of the history of NMR the push has been to higher static field strengths
as this naturally gives greater sensitivity and affords greater resolution from an
imaging perspective. However, the last decade has also seen increasing interest in
low field equipment and the realization that in some cases not all of the information
that is obtainable from a high field machine is required. Naturally modern low field
equipment has far greater sensitivity and function than low field equipment from the
past and comes with advanced permanent magnets. This resurgence in low field
equipment has important consequences for the future of NMR. In particular, low
field equipment is in general cheaper and more portable making it easier to adapt
and use directly in agricultural and industrial practices and advanced models now
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have diffusion measuring capability. Thus portable “benchtop” NMR will become
widespread not only in education but in industry as well.
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Chapter 13
Diffusion in Materials Science
and Technology

Boris S. Bokstein and Boris B. Straumal

13.1 Introduction

Diffusion in materials (i.e. the random movement of molecules or atoms activated
by thermal fluctuations) is an extremely important process. Macroscopically it
appears in changes in the concentration profiles. Diffusion processes can be
observed in gases and liquids, just as also in amorphous or crystalline metals,
ceramics, polymers, semiconductors etc. [1, 2]. The concentration profiles caused
by the diffusion contain important information about the atomic structure of
materials as well as about defects within them. It is of particular relevance that
diffusion can control the kinetics of the synthesis of materials and their modifica-
tion, just as the processes by which these materials may fail.

The driving force of thermal diffusion in simple systems emerges from the
random distribution of its components, which by physicists is referred to as the
“entropy of mixing”. Diffusion takes place due to the thermal motion of atoms and
molecules. Therefore, its rate increases with increasing temperature. The mecha-
nisms of thermal motion in gases and liquids do, notably, lead to a mixing of the
constituent components. We refer here to the random collisions of atoms and
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molecules in gases (see, e.g., Chap. 10) or to the Brownian motion in liquids (see,
e.g., Chaps. 8 and 12). To the contrary, mixing mechanisms of atoms in a solid are
much more complicated and by far not as obvious [2]. Thermal motion in solids is
driven by the vibrations of atoms around their equilibrium positions in a crystalline
lattice. However, the amplitude of such vibrations is usually very small, in com-
parison with the nearest-neighbor distances. One would expect, therefore, that such
thermal motions cannot lead to interatomic mixing. Answering the question ‘‘how
can atoms migrate in solids’’ is thus by far not as simple as it might appear on first
sight. It is the aim of this chapter to introduce into the main approaches suggested
and exploited for describing atomic motion under such conditions.

13.2 Mathematical Description of Diffusion

The equations describing diffusion (see also Sects. 2.1 and 2.2 in Chap. 2) were
proposed by Adolf Fick in 1855 [3]. They originate from the equations of heat
transfer as suggested by Joseph Fourier in 1824 [4]. Fick replaced, in the Fourier
equations, (i) the amount of heat by the number of atoms, (ii) the thermal con-
ductivity by the diffusivity and (iii) the temperature by concentration.

First Fick’s law predicts the relationship between molecular or atomic fluxes and
concentration gradients. One can understand this relation by using the analogy
between diffusion and thermal or electrical conduction. Recollect that the heat flux
(in the simple one-dimensional case) is proportional to the temperature difference in
the same area, just like the electric flux is proportional to the difference in electric
potentials. Since fluxes are vectors, they are more generally noted as being (in the
given case) proportional to the gradients of temperature and electric potential. As a
main effect of diffusive motion and mixing, concentrations within a system become
homogeneous.

In solids one generally distinguishes between three types of diffusivity. They
correspond to three possible, physically different situations (Fig. 13.1). In the first
case, we follow the diffusion of “labeled” atoms. It is true that, generally, atoms are
undistinguishable. However, we can use a certain isotope (stable or radioactive) and
follow its spreading in a material, which is composed of a natural isotope mixture.
Typically, in such an experiment one deposits a film of radioactive isotopes on the
surface of a sample composed of the natural isotope mixture. Then one follows the
penetration of the radioactive isotope into the depth of a sample by measuring its
radiation. The nuclei of stable and radioactive isotopes have almost the same mass.
Therefore, they possess nearly the same physical and chemical properties and we
can call this case self-diffusion. The respective coefficient in Fick’s law is, corre-
spondingly, referred to as the self-diffusion coefficient. The second case shown in
Fig. 13.1 is the diffusion of one species in another, for example the diffusion of
copper in nickel. For following this kind of diffusion one may coat a large nickel
sample with a copper film, followed by monitoring the succession of the
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concentration profiles of copper in the nickel sample. This process is called
hetero-diffusion, it can be described by a hetero-diffusion coefficient. The third type
of diffusion considers the mutual diffusion of two different species into one another.
For monitoring diffusion in this case, one has to join, e.g., two large pieces of nickel
and copper and to monitor, subsequently, the evolution of the concentration profile
on either side of the interface. Such processes are commonly referred to as mutual
diffusion and they are quantitated by introducing a coefficient of mutual diffusion.

The presentations of Fig. 13.1 may be easily correlated with the scheme pro-
vided by Fig. 2.2 in Chap. 2 for a quite general introduction of diffusivities. While
Fig. 2.2b is seen to reproduce the situation of self-diffusion as illustrated by
Fig. 13.1(1), Fig. 2.2c refers to a second possibility to determine self-diffusivities,
namely by measuring the mean square displacement of the individual diffusants.
The situation shown in Fig. 2.2a corresponds, in some way, with Fig. 13.1(2), since
in both cases diffusive mass transfer is seen to emerge from a non-uniform particle
distribution. However, while diffusion in solids implies the existence of another
atomic species in, e.g., nanoporous materials (see Chap. 10) diffusion experiments
driven by a concentration gradient may be performed with only a single molecular
species (with the “second species” being nothing else than the “holes” left by the
guest molecules in the pore space). As a matter of course, diffusive motion in pore
spaces can also be observed under the conditions of counter diffusion, yielding the
exact counterpart of the situation shown in Fig. 13.1(3).

It has been demonstrated in Sect. 2.2 of Chap. 2 that, by combination with the
continuity equation, i.e. with the law of matter conservation, Fick’s 1st law is
converted into Fick’s 2nd law (Eqs. (2.9) or (2.14)). While Fick’s 1st law correlates
diffusive fluxes with existing concentration gradients, Fick’s 2nd law goes a step
further and allows predicting the evolution of concentration profiles based on
knowledge of their present stage.

Fig. 13.1 The three
situations under which
diffusion in solids is generally
considered
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13.3 Diffusion as a Random Walk Process

Section 2.2 of Chap. 2 did refer to the model developed by Einstein in 1905 for
molecular diffusion [5]. One year later, in 1906, Smoluchowski [6] extended this
model in such a way that it allowed the inclusion of atomic diffusion in crystalline
metals. According to Smoluchowski, diffusion is the result of random hops of
atoms. “Random” means that hops of different atoms as well as subsequent hops of
the same atom occur without any mutual correlation. A series of such random hops
is called a “random walk”. Figure 13.2 shows three examples of such “random
walks”.

Atoms do, clearly, also hop in complete absence of concentration gradients. In
such cases the average displacement becomes zero (see Fig. 13.3) and there is no
net flux of mass observable anymore. The mean value of the squares of the dis-
placements, however, assumes a value different from zero. As a most important
result of the random walk model (see Sect. 2.1 of Chap. 2), the mean square
displacement is found to increase linearly with time, following the Einstein relation
in one dimension (Eq. (2.4))

⟨x2 tð Þ⟩=2Dt ð13:1Þ

The diffusion length, i.e. the square root of the mean square displacement, is thus
seen to increase with only the square root of time. The “rate of diffusion”, defined as
the derivative of the “diffusion length” with respect to the “diffusion time” does,
correspondingly, decreases with time!

Fig. 13.2 Three examples of sequences of random hops illustrating a “random walk”
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The random walk model cannot, as a matter of course, specify the mechanism by
which the atoms hop. From detailed experiments, however, one has learned that
self-diffusion and hetero-diffusion in substitutional solutions are commonly pro-
moted by the existence and formation of “vacancies”, i.e. by holes in the scaffold
constituting the solid. The “vacancy mechanism” has thus become key for under-
standing diffusion in solids quite in general and, thus, for the exploration of such
important processes as diffusion creep, sintering, pore formation and annihilation,
grain boundary migration, grain growth, phase transitions and precipitation.

On considering one-dimensional mass transfer with steps of length l and time
intervals τ between subsequent steps, the diffusivity is easily shown (see Sect. 2.1)
to be given by the relation

D= l2 ̸2τ. ð13:2Þ

The temperature dependence of the diffusivity follows, in most cases, the
Arrhenius law [7]

dlnD
dT

=E ̸RT2 or

D=D0exp −E ̸RTð Þ.
ð13:3Þ

D0 and E denote, respectively, a pre-exponential factor and the activation
enthalpy and do not vary, as a rule, with varying temperature. The diffusivity is
known to increases with increasing temperature so that E (just like D0) has to be
positive, quite in general. For the majority of solid metals the self-diffusion

Fig. 13.3 Scheme of a diffusion experiment within a lattice of spacing l showing an example of
particle distribution after n time steps of duration τ (right) when these particles are known to be
initially (at t = 0) positioned at the origin (x = 0, left). The location (x) of such particles does,
obviously, coincide with their displacement
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coefficient close to the melting temperature is approximately D = 10−12 m2/s. It is
interesting to compare this value with the diffusivities in liquid metals (DL = 10−9

m2/s) and in gases (approximately Dg = 10−5 m2/s under “normal” conditions)
which, significantly deviating from the diffusivities in solids, are almost tempera-
ture independent. The activation enthalpy of self-diffusion in solid metals is, as
another remarkable common feature, roughly (i.e. with deviations of about ±20%)
proportional to the melting temperature, following the relation E = 18RTmelt. With
the melting temperatures of aluminum (Tmelt = 933 K), copper (Tmelt = 1356 K)
and nickel (Tmelt = 1728 K) one thus obtains, as an estimate of the respective
activation energies, values of, respectively, 140, 203 and 259 kJ/mole, in amazingly
good agreement with the experimental data of 142, 197, and 275 kJ/mole.

For estimating diffusivities we may use, for most solid metals, a value of
D0 = 10−5 m2/s. From this and with the above given estimate of the activation
enthalpy we obtain, at temperatures T = 0.4Tmelt and 0.7Tmelt, self-diffusion coef-
ficients of, respectively, D = 10−23 m2/s and D = 10−16 m2/s.

The diffusion length, i.e. the square root of the mean square displacement as a
reasonable measure of the mean diffusion path length of the atoms under study, is,
with Eq. (13.1), seen to be given by the relation (2Dt)0.5. Using the above estimates
of the diffusivities at T = 0.4Tmelt, 0.7Tmelt, and Tmelt the diffusion lengths attained
in an experiment over 100 (!) hours amount to, respectively, 10 nm (which is just
about 30 interatomic distances!), 10 μm, and 1 mm. We have to conclude that
diffusion in solids is, indeed, very slow, even at high temperatures!

13.4 Diffusion Mechanisms in Metals

We remember that at non-zero temperature atoms usually vibrate around their
equilibrium position with quite small amplitudes. They are much smaller than the
distance between nearest neighbors in a lattice. Thus, vibrations alone cannot give
rise to the diffusional motion of the atoms. There are several mechanisms which
have been proposed to ensure the elementary steps of diffusion in solids. The most
important ones are shown in Fig. 13.4.

Experiments show that self-diffusion and hetero-diffusion in substitutional
solutions commonly occur via the vacancy mechanism. The main hetero-diffusion
mechanism in interstitial solutions is, obviously, the interstitial mechanism. Note
that, in a binary substitutional solution, sites are occupied by atoms of both types.
The vacancy mechanism was proposed by Frenkel [8]. He was the first to recognize
that, in a solid under equilibrium conditions, there have to exist vacancies or, in
other words, that the free energy assumes its minimum with a finite number of
vacancies incorporated in the system.

In the vacancy mechanism of diffusion, obviously, an atom can only jump if one
of the nearest-neighbor lattice sites is empty. The hopping frequency of an atom is
thus given by the relation

266 B. S. Bokstein and B. B. Straumal



Γ = ZωXv, ð13:4Þ

where Z is the coordination number, ω is the frequency with which an atom may
jump into an adjacent vacancy (coinciding with the “jump of a vacancy”) and Xv is
the vacancy concentration. The jump rate Г appearing in Eq. (13.4) is easily seen to
be much less than the frequency ω of vacancy jumps, since Xv ≪ 1 (otherwise a
crystal could not exist).

Experiments show that in most metals at the melting point there is, among 1000
occupied sites, about one vacancy, i.e. Xv = 10−3. This value decreases rapidly with
decreasing temperature. For copper at T = 300 K, e.g., one has Xv = 10−19. With
Eqs. (13.4) and (13.2)), the diffusion activation enthalpy in the case of the vacancy
mechanism is the sum of the enthalpy of vacancy formation and the activation
enthalpy of “vacancy migration” (i.e. for the jump of an atom into an adjacent
vacancy).

Let us now discuss the mechanism of interstitial diffusion. An interstitial atom is
shown in Fig. 13.4 under number (4). For self-diffusion, we may follow the

Fig. 13.4 Main atomic mechanisms of diffusion in a crystal, including (1) simple exchange (a
couple of neighboring atoms exchange their positions), (2) cyclic exchange (several atoms change
their positions one after another in a four- or six-member ring), (3) exchange with a vacancy
(vacancy is an empty lattice site), (4) interstitial jump (an atom in an off-lattice site between the
lattice atoms jumps to a neighboring, empty off-lattice site), (5) concerted movement by which an
atom on an interstitial site assumes the position of an atom sitting on a regular site which, in turn, is
shifted into an adjacent interstice, (6) atoms in a row are brought in closer contact due to an
inserted (“crowded in”) extra atom (to appear at the beginning of the row of arrows)
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reasoning applied already with the vacancy mechanism, with the concentration and
jump rate of vacancies now replaced by the equilibrium concentration of interstitials
and their migration rate. The physical picture for the diffusion of solved atoms in
interstitial solid solutions, however, is quite different. Such atoms are small and
they are already in interstitial sites (number 4 in Fig. 13.4). For the diffusion of such
solved atoms there is no need for creating additional interstitials. Thus, the inter-
stitial diffusion has only a contribution of interstitial migration, since one does not
need to create the interstitial. In this case, the diffusivity of the small solved atoms
can be much larger than the diffusivity of the (big) matrix atoms.

13.5 Diffusion in Amorphous Alloys

The most important difference between amorphous alloys and crystalline materials
is that amorphous alloys do not have a regular crystalline lattice. The spatial dis-
tribution of atoms in amorphous bodies is more similar to that in liquids than in
solids. Nevertheless, diffusivities in amorphous materials are much smaller than in
liquids and, rather, comparable with those in corresponding solids [9, 10]. Amor-
phous materials are usually metastable. Thus, upon heating, they will crystallize at a
certain temperature, referred to as the crystallization temperature, Tcr. In principle,
as a consequence of their metastability, amorphous materials could crystallize at
any temperature. At low temperatures, however, the rate of crystallization may
become extremely small. The Tc value and the stability of amorphous alloys are
thus largely controlled by their kinetics, i.e. by atomic diffusion.

We will now discuss the diffusion in classical amorphous metallic alloys.
Usually, such alloys consist of noble and/or transition metals (like iron, cobalt,
nickel, palladium or gold) and non-metals (like boron, carbon, phosphorus, silicon
or germanium).Since amorphous materials do not have a unique structure as known
from crystalline materials, their actual texture—and hence their intrinsic diffusivi-
ties—may most significantly depend on the manufacturing method materials. There
may exist, as a consequence, many different amorphous atomic arrangements for
one and the same alloy. Since some of them are, as a matter of course, more stable
than others amorphous materials tend to change, upon heating, their structure
toward a more stable (though still amorphous) one. Given the possibility of such
phenomena of structural relaxation, it is frequently not easy to discriminate between
effects of structural relaxation and genuine diffusion. Such disturbing influences can
be largely excluded by prevenient annealing, e.g. at 0.96–0.98 Tcr, with subsequent
diffusion experiments at temperatures below 0.9 Tcr.

Also in amorphous alloys the temperature dependence of the diffusivity is
usually found to follow the Arrhenius law, Eq. 13.3. It is, indeed, a quite surprising
observation! Recollect that the formation and migration of point defects has been
identified as a prerequisite for diffusional motion in solids. From this one may
immediately conclude that the activation energies of point defect formation and
migration—and thus also the enthalpy of diffusion—have certain exact values
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because all positions in a crystalline lattice are equivalent! Amorphous materials,
however, have an irregular structure. We would have to expect, therefore, a wide
distribution of energies of defect formation and migration. Thus, it appears to be
very paradoxical that the temperature dependence of the diffusivity in an amor-
phous alloy may be properly described by just one activation enthalpy. One should
have in mind, however, that the observation of an Arrhenius dependence for dif-
fusion in amorphous alloys may have another, simple explanation. Most diffusion
studies in these materials have been performed in a relatively narrow temperature
interval (of typically not more than 100 K). This restriction in the temperature range
results from the conflict that the temperature, on the one hand side, must be high
enough to allow the proper measurement of diffusion phenomena while, on the
other hand, it must avoid getting too close to the crystallization temperature.

For diffusion in amorphous alloys several mechanisms have been proposed, with
no consensus about the dominant mechanism. According to one suggestion,
referred to as the quasi-vacancy mechanism, diffusion in amorphous alloys is
assumed to follow a mechanism which is similar to the vacancy mechanism in
crystals [11, 12]. One has, however, no real vacancies in an amorphous material. It
accommodates instead an excess free volume, giving rise to the formation of a
continuous spectrum of sizes of these free volume “clusters”. They can be either
smaller or larger than the atoms in an alloy. The density of an amorphous alloy is
usually smaller than that of the respective crystalline alloy. The quasi-vacancy
mechanism suggests that atoms can jump into such holes, just as they may jump
into a vacancy in a crystalline lattice. We have to recollect, however, that in an
amorphous structure each hole has to be associated with its own, specific activation
energy of formation and migration!

A further suggestion is based on the assumption that the elementary process of
diffusion in an amorphous structure is a cooperative displacement of a group of
neighboring atoms. Such a step does, obviously, involve the movement of many
atoms. The resulting activation enthalpy represents, thus, an averaged value over
the entire group. This idea smoothly explains why there appears one single value
for the activation enthalpy and why the activation energies for diffusion in
non-metallic compounds and metals are comparable.

Diffusion of metal atoms within amorphous semi-conducting alloys is even more
complicated. Thus several metals (including lithium, nickel, iron, copper and pal-
ladium) diffuse in amorphous silicon even slower than in crystalline silicon. We can
explain this fact as follows. All these atoms diffuse in crystalline silicon via an
interstitial mechanism. To the contrary, in amorphous silicon they can be trapped in
quasi-vacancies. We remember that interstitial diffusion proceeds usually much
faster than substitutional diffusion.

On the other hand, several metals (like gold, platinum or zirconium) diffuse in
amorphous silicon faster than in crystalline silicon. For rationalizing such a
behavior we have to recall that the atoms of gold, platinum or zirconium can occupy
either lattice or interstitial sites in crystalline silicon. Diffusion of these atoms does
include, therefore, periods of fast migration through the interstitials and of trapping.
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Diffusion enhancement in amorphous silicon is thus a simple consequence of the
fact that trapping in amorphous silicon occurs much less frequently than in crys-
talline silicon.

13.6 Diffusion in Polymers

The use of polymeric materials has really exploded during the last few decades. The
world production per anno for polymers (equally, by volume or mass) has recently
even overtaken that of metals! Diffusion in polymers may thus be regarded as even
more important than diffusion in metals [13].

On penetrating into a polymer, “alien” small molecules can give rise to a con-
formational change of the polymer chains around them. Thus, the diffusion process
includes both penetration of “alien” molecules and the conformational relaxation of
the polymer chains. For a quantification of these two phenomena, the so-called
Deborah number De has been introduced. It is defined as the ratio tc/tp between the
time constants of conformational changes and particle propagation over the
extension of the individual polymer molecules. If the Deborah number is small
(De < 0.1) the characteristic time tc of conformational relaxation is much shorter
than the characteristic diffusion time tp while for large Deborah numbers (De > 10),
molecular structures remain essentially nearly unchanged during diffusive dis-
placements along the extension of the individual polymeric chains. It is important to
emphasize that in both cases guest penetration can be described by Fick’s laws. In
the intermediate case, i.e. for values tc and tp of similar orders of magnitude
(0.1 < De < 10), the situation becomes much more complicated. Under such
conditions, relaxation has to be in particular expected to facilitate the trapping of
penetrating “alien” molecules. The total number of penetrating molecules has thus
become a variable quantity which excludes the direct, unrestricted application of the
Fick’s laws.

Summing up, there is so far no generally accepted understanding of the mech-
anisms of metal diffusion in polymers. As an example of the still unsolved ques-
tions we refer to the remarkable observation that noble metals, which are frequently
used for contacts in microelectronics, are found to diffuse slower than the gas
molecules, irrespective of the fact that their sizes are comparable with or even
smaller than the sizes of the molecules [14]. Two explanations of this phenomenon
are under discussion. One is based on the assumption that the metal atoms diffuse as
clusters which are considerably larger than single atoms. The second one implies
that there exists a particularly strong interaction between the noble metals and the
polymer molecules.
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13.7 Diffusion During Severe Plastic Deformation

Over the last few decades, material sciences have emerged as an own, extremely
promising field. Its development has most decisively been promoted by the
invention of the so-called severe plastic deformation (SPD) methods [15–17]. SPD
permits to strain a material in a confined space without giving it the possibility to
fail. Figure 13.5 illustrates the operation principle of one of the most frequently
used techniques for this purpose, the method of high pressure torsion (HPT). Here,
a disk of the material to be strained is pressed between two anvils with a pressure of
4 up to 12 GPa. One anvil starts to rotate, so that the sample is strained by pure
shear. Though the number of rotations can be very high (sometimes up to 100), the
sample, obviously, cannot break. Torsion gives rise to the establishment of dynamic
equilibrium between defect production and sample relaxation. Steady state is
usually attained after 2 rotations so that the properties of the material do not change
any more.

Under the given stress, an enormous amount of defects is produced in a material.
Quite logically, the concentration of defects (vacancies, dislocations, interfaces etc.)
cannot increase infinitely. It is due to this reason that relaxation sets in, giving rise
to the formation of a steady state. This dynamic relaxation (or recovery) involves

Fig. 13.5 Scheme of the
arrangement for high pressure
torsion (HPT) experiments

13 Diffusion in Materials Science and Technology 271



(sometimes very speedy) diffusion fluxes. The phases formed under steady-state
conditions are, as a matter of course, different from those, which were present in the
material before SPD treatment [18, 19]. In fact, composition and crystallographic
structure of these phases can serve as a probe describing the (very quick and
intensive) mass-transfer processes during SPD. The diffusion processes during SPD
differ from those which take place in traditional materials technologies and are close
to the equilibrium. The SPD-driven diffusion and diffusion-controlled phase tran-
sitions take place far from equilibrium. Their description and explanation is a real
challenge for materials science.

SPD can drive different phase transitions in the materials under treatment [18,
19]. They include such diverse phenomena like the dissolution of phases, the
synthesis of different allotropic modifications of elements (Fig. 13.6), the amor-
phization of crystalline phases, the decomposition of supersaturated solid solutions
or dissolution of precipitates, the disordering of ordered phases and the nanocrys-
tallization in amorphous matrices. The exploration of the manifold possibilities for
the exploitation of these phenomena for the fabrication of materials with optimized
performance characteristics is a hot topic of current research.

It can be observed that, after SPD, phases can be formed which usually appear
after annealing at a certain (in general notably elevated) temperature. Such a
temperature can be referred to as an effective temperature Teff. The concept of
effective temperatures has been originally suggested by George Martin for materials
after severe neutron irradiation [19]. It does now appear that this concept is useful

Fig. 13.6 HREM micrograph of an alloy of titanium containing 2 weight % of iron which had
been annealed at 800 °C for 270 h, quenched and subjected to HPT under a pressure of 7 GPa and
a total rotation of 36° (i.e. of around 1/10 of a full circle) with a rotational speed of 6° per second
(a). Titanium is seen to occur in three different phases (α-, β- and ω-Ti), with ω-Ti resulting as the
product of phase transformation during the HPT deformation. Evidence of the presence of these
phases (and of even the relationship of their mutual orientation [20, 21]) is provided by Fast
Fourier Transforms (FFT) (b–d) of the corresponding areas in the high resolution image (a)
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and applicable also for the phenomenon of severe plastic deformation (SPD) [22,
23]. In both cases, the atomic movements driven by external actions (i.e. by irra-
diation or deformation) are accelerated in comparison with atomic movements
during conventional thermal diffusion. The material has, obviously, been shifted
into a state with a mobility which is otherwise only attained at a correspondingly
increased (the “effective”) temperature Teff.

Severe plastic deformation at room temperature TSPD can drive the phase tran-
sitions. This behavior is, obviously, caused by the high density of defects, namely a
density of defects comparable with that at a notably increased temperature, Teff.
Some of the SPD-driven phase transformations require the long-range mass
transfer, for other transitions only a small shift of constituent atoms is required.
Usually, the sequence of these SPD-driven phase transformations is not easy to
explain by the conventional bulk or even grain boundary diffusion at TSPD, since
TSPD usually remains only slightly above room temperature.

For the phase transformations under SPD (like precipitation and dissolution of
precipitates, amorphization, transitions between various “Hume-Rothery” phases
etc. [24]) one usually requires a redistribution of components and, therefore, a
certain mass transfer. Such SPD-driven redistribution of components proceeds
extremely quickly, irrespective of the fact that it occurs at room temperature,
without notable temperature increase. Thus, steady-state conditions during HPT are
usually attained after not more than 2–5 min. As a measure of the SPD-driven
mass-transfer one may use the concept of the effective temperature, defined by the
requirement that, at this very temperature, the diffusivity under “normal” conditions
(i.e. without SPD) would coincide with the diffusivity under HPT conditions. As a
matter of course, this effective temperature usually exceeds the temperature of HPT
treatment and measurement (TSPD) [17, 24].

Thus, one can conclude that George Martin’s idea [19], in its extended form, can
be also applied for SPD-driven phase transitions. George Martin supposed [19] that
the atomic displacements driven by the irradiation are similar to those which take
place by thermal diffusion (like the jumps into a neighboring vacancy). In case of
SPD such a suggestion is no longer valid. We suppose instead that, under similar
SPD conditions, SPD-driven atomic movements are comparable in all alloys. The
“natural” atomic movement, however, is quite different because the melting tem-
peratures Tm of the considered materials are quite different. If TSPD is almost the
same (∼300 K) and the diffusion coefficients for “natural” diffusion are low for
alloys with high Tm atomic movements driven by SPD can be much larger than
diffusion by atomic jumps, corresponding with large values of Teff as predicted by
G. Martin. If the melting temperature Tm of the considered material is low (as in the
case of aluminum alloys), Teff would be low. It can be even close to TSPD, i.e. to
room temperature [16].
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13.8 Conclusions

Diffusion can control the rate of a wide range of important technological processes
in materials manufacturing. These are also processes of materials modification,
resulting in properties by which the materials may work properly—or fail. Exam-
ples include diffusion creep, sintering, pore formation and annihilation, grain
boundary migration, grain growth, phase transformations, and precipitation. The
present chapter introduces into the variety of phenomena associated with these
processes. Though all of them, consistently, are based on thermal motion, i.e. on the
random walk of the individual atoms of the material under study, the conditions
under which movement occurs are manifold. As manifold are also the elementary
steps by which, eventually, the overall rate of mass transfer is controlled. The
spectrum of phenomena and processes thus considered ranges from the classical
view on diffusion in metals up to such comparatively new topics as diffusion in
amorphous alloys, polymers and during severe plastic deformation.
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Chapter 14
Spreading Innovations: Models, Designs
and Research Directions

Albrecht Fritzsche

14.1 Introduction

Diffusion models describe local change processes that lead over time to a spread of
particles or information in a topological space. Metric spaces are the most common
examples of topological spaces, but there are other examples, too. Any kind of
space in which the notion of proximity can be formed, mathematically addressed by
the term ‘neighbourhood’, allows the application of diffusion models. This does not
only include standard Euclidean spaces as they are frequently used in physics or
geography, but also formal networks describing interconnected social or technical
entities (see e.g. the contribution by Shekhtman et al. in this volume). Diffusion
models have therefore not only proven to be quite useful in the natural sciences, but
also in research on the connections between individual human behavior and the
economic, cultural or technical development of a society as a whole. For example,
they have helped to gain a better understanding of the way how the effects of
technical inventions, scientific discoveries and artistic genius evolve in time and
space and how society and economy are able to take advantage of it.

One of the first scientists who addressed this issue systematically was the French
sociologist and psychologist Gabriel Tarde at the turn to the twentieth century [1].
Tarde, a contemporary and competitor of Émile Durkheim, subsumed the adoption
of novelty among humans under the term imitation and looked specifically at the
effects of blind obedience, explanation and training and their sequential combina-
tion. He made clear that the spread of innovations in society cannot be left to
themselves. They have to be actively managed and require a lot of effort, which is
widely neglected in simple histories that focus exclusively on the dates of discovery
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and invention, implicitly assuming that the results will spread more or less auto-
matically in society.

Inspired by Tarde, the thesis of this contribution is that such management
activities go further than the search for the most important factors of influence of the
diffusion process. They can more likely be described as design efforts which
organize the spread of novelty in a way that makes it possible to conceptualize it as
a predictable diffusion process and exploit it accordingly. At the same time, the
subject matter of the diffusion process must be considered by itself as a designed
artefact, too (see also Chap. 15.4.1 on social construction). The notion of an
innovation is a social construct that can be gained in different ways, adding further
complexity to the discussion.

Every scientific discipline has its idiosyncrasies, and a book that discusses diffu-
sion across many disciplinary boundaries therefore provides many opportunities for
misunderstandings, caused by different ontological assumptions, epistemological
interests or deviating nomenclature. In this chapter, for example, an artefact is
understood in its literal sense as an object made byman, whereas physics uses the term
to address systematic errors due to deficiencies in experimental procedure. Further
problems arise from the limited comparability of the subject matter to which the
diffusion models are applied. The intuition of a natural scientist is rather guided by
phenomena like the diffusion ofmolecules in porous solids (Chap. 10) or the diffusion
of plants and animals in their habitats (Chap. 3), which can be describedwith reference
to conventional metric spaces by the Eqs. (2.1)–(2.18) in the chapter on “Spreading
Fundamentals”. Social scientists are confronted with a different kind of reality, in
which proximity is not exclusively depending on physical distance, but also on per-
sonal acquaintance and technical connectedness. Individuals can accordingly feel
closer to family members on a different continent than strangers in the next building.

The chapters by Brockmann and by Shekhtman et al. in this book discuss the
notions of distance and network which provide the foundation for the understanding
of space and proximity used in diffusion studies by the social sciences. It illustrates
the wealth of information attainable from solely the topological structure of such
networks: the paths existing between its entities. As it will be explained, society is
built on numerous overlaying networks that connect individuals with one another,
provided by different technologies, roles and relationships. The fact that these
networks can be actively changed contributes largely to the specific way diffusion is
treated on the following pages.

14.2 Diffusion Models in Innovation Research

14.2.1 Conceptual Approaches

The term technology does not describe a homogeneous entity. Technology rather
has to be understood as an embodiment of any kind of instrumental action that
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occurs repetitively in the world [2, 3]. This definition of technology makes it
possible to treat any kind of innovation as technical. At the same time, however, it
creates the need for numerous different operational measures for the diffusion of
innovations, depending on the given context. In many cases, such measures can be
gained through sales figures for technical artefacts. This, for example, is the case in
Griliches’ seminal work on the economics of technical change [4]. For Gort and
Klepper [5], “diffusion is defined as the spread in the number of producers engaged
in manufacturing a new product” which would economically be described as the net
entry rate in the market for a new product. Rogers, on the other hand, describes
diffusion as “the process in which an innovation is communicated through certain
channels over time among the members of a social system” [6], independently from
any business operation. The spread of the internet requires yet another approach that
takes the availability and, ideally, also the bandwidth of internet access into con-
sideration [7]. In order to measure the actual adoption of a technology in daily
routines, it is furthermore necessary to collect data on the frequency or intensity of
usage.

In any case, innovations need a carrier medium to spread. This medium is
provided by society, in terms of interrelated individuals, groups, corporations or
other institutions that can be described as actors who hold certain information, are
in possession of certain material goods, show certain behavior or have certain
attitudes that entail certain decisions, which can then be empirically accessed.
Regarding these actors, two important questions have to be asked: how are they
connected and what resources do they have available to act? The connectedness
determines the paths on which innovations can spread and thus induces a spatial
structure on which diffusion can be observed. The availability of resources deter-
mines if and in what way the actors can make use of a technology, describing the
capacity of the actors in their function as carriers of innovation.

The role of connectedness and resource availability for the diffusion of inno-
vations is illustrated by the following examples:

• Innovative data processing algorithms can spread very quickly over the internet,
if there is no further effort necessary for their installation. This effect is very well
known from computer viruses. Their distribution is to a large extent a question
of connectedness. One of the most popular ways of securing sensitive data is
therefore to keep them isolated from the internet. Knowledge about new
mathematical algorithms or construction methods in engineering spreads among
sufficiently trained experts in a similar way.

• Expensive product innovations spread very slowly, even if many dealers keep
them in stock. For example, this is currently the case for cars with electric
engines, which need to be strongly subsidised to be sold. Connectedness does
not matter, if people do not have the resources at their disposal to adopt them.
Such resources do not only include financial means, but also qualification, time,
space and the ability for habitual change.
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As a general rule, one can say that connectedness matters most when innovations
add novelty to an existing repertoire and are in this sense complementary to
whatever is there already, whereas resource availability has to be considered
whenever innovations entail a substitution process.

Inasmuch as the connections between the actors determine the paths on which
innovations can travel and the available resources determine the potential for the
adoption of an innovation, connectedness and resource availability both have to be
considered in the design of a topology on which the diffusion of innovation is
depicted as a formal process (illustrated by Brockmann in Chap. 19). Even if the
transport infrastructure between the actors constitutes a small or an ultra-small
network (see the contribution by Shekhtman et al. in Chap. 20), the actual travel
times of innovations can be quite long, if their adoption requires an intensive
substitution process. Furthermore, it is often necessary to take path dependencies
during communication into account. Depending on the source of an innovation,
actors can be more or less inclined to adopt it. Similar effects also have to be
considered in the comparison of different communication channels such as internet
blogs, e-mails, telephone calls, business gatherings or private meetings. Innova-
tions, one can say, travel on very rough terrain and multi-dimensional surfaces.

Due to the increasing dynamics of technical, social and political development,
the question of the durability of the change caused by the diffusion of innovations
currently emerges as a new research topic for innovation studies. The switch to a
new technology does not necessarily have to be permanent. Innovations often
require a continuous flow of energy supply, consumer goods or regular expert
maintenance. If the surrounding infrastructure breaks down, innovations can
therefore disappear again. With the current discussion on the protection of critical
social infrastructures against disruptive events, questions of technical robustness
and resilience receive increased attention (e.g. [8]), and they are likely to become
more important for innovation research in the future as well.

What can be learned for all this is that formal models to describe the diffusion of
innovations have to be very specific about the subject matter they are concerned
with and the social, technical and economic conditions under which the diffusion
process is assumed to take place.

14.2.2 Mathematical Models

As a quantitative measure with reference to the diffusion of innovation, it stands to
reason to consider the percentage of the target group who has adopted the inno-
vation. Figure 14.1 shows this (in terms of the “fraction of the carrier medium that
has adopted the innovation”, f) schematically as a function of time.

Early studies found that the increase in innovations as shown in Fig. 14.1 fol-
lowed the typical pattern of constrained exponential growth [4, 9], visualized by an
S-shaped curve with asymptotic behavior at the outer limits and a central infliction
point (see arrow in figure). The curve shown in Fig. 14.1 corresponds with the
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so-called uptake curve indicating the relative number of molecules entering a
nanoporous particle upon pressure increase in the surrounding atmosphere. It is
illustrated in Chap. 10 that it is this type of information which over decades served
as the main source of experimental evidence for the prediction of the diffusion
characteristics in porous media, with all deficiencies of an “indirect” technique of
measurement since evidence of such type of experiments concerns the effect of
diffusion rather than the process of diffusion itself.

As this curve is characteristic for the logistic function (see Chap. 3, Sect. 3.4.1),
Griliches [4] proposes that the diffusion of innovations be described by the
according differential equation of the type

df
dt

= af 1− fð Þ ð14:1Þ

where f is the fraction of the carrier medium that has adopted the innovation, t is
time, and a is a growth parameter.

This equation was introduced by Verhulst [10] in the discussion of limited
population growth, without any data on the maximal population size that can
actually be reached [11]. Innovation researchers are usually in a more comfortable
situation, since they can estimate the maximal distribution of an innovation by the
size of the current population or by referring to an older technology that is expected
to be substituted by the innovation [12]. This approach is frequently used to forecast
the progress of the diffusion of innovations, illustrated by the example of smart-
phones in Fig. 14.2.

Due to the conceptual challenges mentioned before, satisfactory explanations of
this behaviour are hard to give. A common assumption is that differences in con-
nectivity and resource availability cause adoption times t for innovations in society
to follow a normal distribution p(t). For each innovation, there are accordingly a
few early adopters and laggards with exceptionally short or long adoption times,
while the majority of the population stays within a smaller interval around the
average adoption time (Fig. 14.3).

Fig. 14.1 Sample plot of
constrained growth over time
in a logistic function
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Over the years, various modifications of this model have been suggested, in
particular regarding the parameter a, which is not any more treated like a constant,
but rather depending on changes in manufacturing and marketing [14]. In the course

Fig. 14.2 Actual figures and forecast with logistic function for cell phone diffusion worldwide
[13]

Fig. 14.3 Normal distribution of adoption characteristics in a population
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of the diffusion process, technology producers are expected to become more effi-
cient, reduce prices and connect better to their audience, which accelerates the
spread of the innovation.

While some data sets support this model, others raise questions about the general
applicability of the logistics function to the diffusion of innovations. In a large
survey on data sets about the diffusion of various technologies in different countries,
Comin et al. [15] identify numerous cases in which logistic functions approximate
the actual data very poorly and calculate unrealistic saturation times. While some of
these findings may be caused by disruptive changes in the general setting (political
change, economic crisis etc.), there is good reason to assume that there are also
other internal dynamics at work which affect the diffusion process, in particular with
respect to individual adoption behavior. These dynamics have become one of the
major fields of study in innovation research.

14.3 Individual Adoption Behavior

14.3.1 Acceptance Models

Innovation research uses various different approaches to capture the causal rela-
tionships regarding the adoption behavior among social actors. A particularly high
number of studies are based on the technology acceptance model, which looks at
two different factors that influence the intention of an actor to use a technology [16]:

• the perceived ease of use refers to the complexity experienced by users in
operating a technology and directing it to the outcome which they intend to
achieve

• the perceived usefulness refers to the advantages that the users expect to result
from applying the technology

These two factors reflect a distinction between costs and benefits of a technology
in the ease of use expressing the effort necessary to handle it and the usefulness
expressing the value generated by it. The perceived usefulness is by itself subject to
various different influences, such as the quality of the output and its quality or the
image of a technology in public and the social treatment of its users. Empirical
evidence suggests that the perceived usefulness has a higher relevance for decision
making process than the perceived ease of use [17]. As it seems, potential adopters
expect a learning process over time that will make the technology easier to use in
the future, while the perceived usefulness is considered as an attribute of the
technology which cannot be influenced by them.

Another finding that has attracted a lot of attention during the last years is the
contrast between personal acceptance and social acceptability of a technology.
Public transportation may be taken as an example for a technology with higher
social acceptability than personal acceptance: although most people agree that
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busses, subways and railroads are valuable means of transportation, many of them
nevertheless prefer to drive by car for themselves. Smoking is an example of the
opposite: despite all public concerns about it that they may share, many people still
think that it is okay to have a cigarette for themselves.

In order to capture these differences, it is necessary to distinguish other factors
influencing human behavior according to psychological theories [18, 19]:

• the personal attitude toward a certain act
• the social norms referring to its performance and outcome
• the perceived level of control over its execution

These factors evolve differently over time. They also react differently to specific
forms of external interference.

The adoption behavior of individuals that provides the foundation for the spread
of innovations must accordingly be considered as a result of a superposition of
different cognitive processes. These processes are subjected to various influences
which are unlikely to affect every person in society in the same way. With
increasing social diversity, the carrier medium for the diffusion of innovations
therefore becomes highly inhomogeneous. Even if the overall diffusion process
indicates a high adoption rate, special focus groups might actually react differently.
The automotive industry, for example, is lately confronted with the phenomenon
that young people show significant differences in their adoption behavior from
others. This fact remains invisible in general sales figures, since they only account
for a small fraction of the market. Nevertheless, this phenomenon raises concerns
about future sales opportunities [20, 21].

This is a rather unsatisfactory development for the manufacturer, since it indi-
cates that the product does not find acceptance in an important part of society, no
matter how successful it is elsewhere. As a consequence, the manufacturer is
advised to action against this development. This, however, must be considered
highly dangerous. Growth processes are known to react very sensitively to
parameter change. In a diverse society, manufacturers have to expect chaotic
reactions to change which are hard to predict or control. Many companies have
therefore turned to strategies that relate innovation to specific target groups in the
overall population which can be expected to show a more homogeneous behavior.

14.3.2 The Shifting Locus of Innovation

Figure 14.4 illustrates the development of product strategies in the automotive
industry over the past decades, leading away from the idea of a single product that
fits everyone’s need towards a highly diversified family of different models which
are designed according to specific application patterns that can be expected to meet
the needs of certain social groups. In this example, the diversification is described in
terms of the body shapes of the car. Diversification also proceeds with respect to
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such different aspects as engines, colors etc. Larger corporations such as General
Motors or Volkswagen also diversify by differentiating brands according to specific
lifestyles and personal values, from practicality over sports to comfort and luxury.

Product diversification allows companies to pursue different strategies to support
the adoption of their products, depending on the respective target group. In addition
to the technical features of the products, these strategies also address other aspects
of business activity, including the pricing methods, the distribution network, and
the communication channels to approach potential or existing customers. Compa-
nies can thus circumvent a large part of the complexity which they would have to
face if they had to look at diffusion processes in the whole population. The sepa-
ration of different target groups and the selection of different ways to approach them
make it possible to differentiate separate diffusion processes on parts of the pop-
ulation which are, as carrier media of innovation, once again, largely more
homogenous.

As a result, however, innovation also takes on a different quality. Although a
larger notion of the term technology allows us to still think of innovation as
technical change, this change is not focused on engineering solutions any more.
Innovation now concerns the whole set of business operations that generate value
for the customer. This is addressed in the current discussion on business model
innovation [23, 24].

Fig. 14.4 Increasing diversification in German automotive industry based on body shape [22]
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The shift towards value generation has various implications for the practice of
modelling diffusion processes. There are now two different kinds of items which
can be considered to spread: the overall business model and the offerings of the
company that it contains. Business models spread among companies as a carrier
medium; popular examples are leasing models, mobility packages, or flat rates in
telecommunication. Offerings in the company remain more closely connected to the
intuition of technical change; with the focus on value generation, however, the
attention is drawn away from quantities of sales as means to make profit. What
becomes more important is the control of the diffusion process that allows com-
panies to plan the revenue and optimize the workload on their resources over time.
In many respects, this also applies for larger attempts to spread innovations as they
are undertaken by governments or other political institutions who want to ensure
steady development.

Figure 14.5 provides a simplified visualization of this idea for a sequence of
diffusion processes for single innovations appearing regularly over time, such as
new model series that are produced.

Ideally, the diffusion of innovations should happen in a way that the capacities in
manufacturing and logistics continue to have the same workload over time. Such
conditions simplify the planning process and the operation of a company’s facilities
and reduce volatility in pricing. A company would accordingly use its influence on
the diffusion of innovations through pricing, communication and distribution to
ensure that the accumulated spread of subsequent innovations can be described by
the simple and therefore easily manageable equation

df
dt

= a ð14:2Þ

where a is constant or at least increasing in rare steps or very slowly in comparison
to f, if the production capacities are expanded. More likely than this expansion,
however, is an increase in the prices for which innovations are sold, based on the

Fig. 14.5 Idealized sequence of innovations for optimal resource planning (see Fig. 14.1)
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assumption that each new innovation will better meet the requirements of its target
group and generate more value.

It seems reasonable to assume that innovation by value follows the pattern of
novelty (at least inasmuch as the economic notion of value is concerned). In this
sense, one could talk about a spread in terms of value which, excluding seasonality
effects, follows the pattern of exponential growth, as many pricing schemes in
innovation-driven industries illustrate. Monetary developments, however, lead back
to the field of global phenomena in the whole population with all their complexity
and require a wider investigation that goes beyond the boundaries of diffusion
studies.

14.4 Diffusion and Co-creation

14.4.1 Platform Technology

So far, the adoption of innovations has been understood as a reactive process in
which a new technology triggers certain behavior among actors according to their
personal dispositions. This corresponds with the image of innovation as a rational
problem-solving process (consisting of different stages with subsequent “control
gates” to evaluate the success) in which the diffusion of innovations forms the last
step. At this point, artefacts with a determinate function are already created and can
now be introduced to the public (Fig. 14.6).

The shift towards individualized offerings can in many respects be interpreted as
an expansion of the range that early process phases cover, because decisions about
individual application patterns are already anticipated in the design phase and thus
taken out of the hands of the adopters. With increasing data about usage behaviors,
companies can further expand their reach into the personal lives of the adopters. At
the same time, however, it can also be observed that the reach of the adopters also
expands into the opposite direction with more opportunities to contribute to the
design process.

Fig. 14.6 Standardized “stage-gate”-innovation process with final diffusion [25]
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Figure 14.7 shows a classification of different contribution options that are
offered during innovation processes. Popular examples include product configura-
tors in which customers can choose from large lists of different options, contests in
which participants can submit their own functional or aesthetic design, and
numerous voting options and discussion groups on different aspects of innovation.

To allow such contributions from the user perspective, the technical architecture
of the offerings in question must be modularized, so that different combinations and
extensions become possible. In such cases, it seems doubtful whether the offerings
that are brought to the market already constitute innovations or whether they just
provide building blocks for further innovation activities which are executed by
customers. In the latter sense, companies must be considered only to mediate
innovation without accomplishing it themselves.

This is very prominently the case for many offerings in the field of information
technology, such as smartphones or tablets, but also community platforms on the
internet when they are stripped from further functions. They are widely celebrated
as innovations, although they only provide operational platforms which, in order to
generate value, have to be complemented through the installation of application
software. When looking at the spread of such items in the population, one therefore
has to ask to what extent this can be accounted for as a diffusion of innovation by
itself and to what extent it rather has to be addressed as a spreading infrastructure
for innovation.

Considering all this, there are apparently two different types of protagonists
which nowadays have to be considered in the context of innovation: the
engineer-innovator and the user-innovator. Both decide together about the meaning
of an innovation in a communicative process (cf. [6]). While this process has
previously been approached as a unidirectional transfer of matter and information,

Fig. 14.7 Two-dimensional classification of contributions by participants in open innovation
processes according to Piller and Ihl [26]
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many researchers are nowadays interested in the bilateral exchange between
engineer-innovators and user-innovators during the design and manufacturing
processes. Since this exchange means that institutional boundaries are frequently
crossed, it is customarily described as open innovation [27]. In an extreme form of
open innovation, users might be able to propel the development of new technical
solutions on their own, without any further involvement of companies [28].

Open innovation requires a fundamental change of perspective in the study of
diffusion processes. Instead of assuming that there are predetermined points of
origin from which innovations start to spread across the population, any kind of
exchange between different actors in a societal network must now be expected to be
a potential initiation point for innovations. While there is so far no systematic
research agenda in this field, current research on open innovation can give a first
impression of the directions that might be taken.

14.4.2 Innovation Incubators

While previous research on the diffusion of innovation allowed allusions to particle
movement in various dimensions, open innovation rather seems to call for refer-
ences in biology in order to give account of the continuous change of diffusion
subjects and their carrier media, a general problem that is also addressed in
Chap. 10 where in Sect. 10.6 guest molecules in porous materials are considered to
undergo chemical reactions and where the last paragraph of Sect. 10.4 deals with
guest-induced changes of the host material.

In that sense, a population and its practices of technology usage would be
subjected to continuous change, caused by the replacement of its individual
members over time with the possibility of mutation and recombination in every
single case. Innovations could accordingly be assumed to originate and spread like
successful genetic patterns, or, following a virological approach, like infectious
diseases.

Similar to these references, it is interesting for research on diffusion from the
perspective of open innovation to look for ways to anticipate, recognize and control
“outbreaks” of innovation. Instead of fighting such “outbreaks”, however, the
ultimate goal of innovation research from a managerial perspective is obviously to
provoke them and guide them into promising directions. In order to gain more
transparency about the overall situation, innovation research requires scouting and
scanning techniques which are able to identify occurrences of innovation. Such
techniques have already been discussed for a long time in trend research. Currently,
big data analysis adds further sophistication with advanced algorithms for pattern
recognition.

Regarding the management of diffusion from the perspective of open innovation,
research has been specifically attracted by the question how so-called incubators for
open innovation can be set up and how they perform. Generally speaking, any kind
of infrastructure that supports boundary-crossing interaction among innovators with
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a positive effect on its outcome can be considered as an incubator for open inno-
vation. This includes innovation communities and other platforms on the internet,
but also physical spaces in which people come together. The types of interaction
that are supported by the incubators can be quite diverse (Fig. 14.8). In particular,
physical meeting spaces allow exchange in a large variety of ways. Among these
spaces, two different kinds of incubators have lately been studied quite extensively:
science parks and open innovation laboratories.

Science or technology parks are areas in which research institutions and com-
panies with a strong focus on innovation are assembled to foster exchange and joint
activities. Silicon Valley is usually considered as the archetype of such a park,
although it exceeds most parks in size. In addition, most parks are intentionally
planned by governmental organizations and strongly supported by different meth-
ods of financing: Science parks can thus be considered as public investments;
research on science parks focusses on their performance on fostering innovation
and the exchange between its inhabitants [30, 31]. Implicitly, science parks are
assumed to be sources for innovation that can subsequently spread to other loca-
tions. However, this spread is expected to follow institutional structure. In that
sense, innovation activities within the parks may be considered open, but the results
are then redirected to conventional economic players.

Open innovation laboratories follow a different logic. They provide spaces for
different people to come together for the purpose of problem solving and exploring
novelty [32]. Such laboratories are usually established in central areas of larger
cities or in the vicinity of universities or industrial districts where many people with
higher education pass through. In order to use the equipment in the laboratories,
visitor may have to pay a fee. Otherwise, there is no general entrance restriction.
People join the activities in the laboratories whenever they want. Afterwards, they
leave again and take their experiences with them to other places. Institutional actors
can be involved in open innovation laboratories in different ways: as hosts of the

Fig. 14.8 Forms of collaboration in open innovation incubators, adapted from [29]
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facilities, organizer of events, or counterpart in the collaboration with other visitors
[33]. Nevertheless, the interaction in the laboratories must be considered as a public
exchange on innovation, since the visitors from the outside remain independent
from internal company regulations and specifically designed contractual
agreements.

While incubators in a biological or medical sense mainly serve the purpose of
providing a hospitable environment for growth or reproduction, incubators for
innovation can also influence the quality of the processes that are taking place by
attracting certain people and providing special tools for innovation [34]. Some
laboratories, for example Tech Shops, Fab Labs or Lego Stores, rely strongly on
machinery to support the physical construction of new devices on site; others, like
the Living Labs, the Fraunhofer Open Lab JOSEPHS or the Maker Faires focus
their attention rather on the mode of social interaction [33]. Furthermore, the ratio
between diverging, explorative activities and converging, exploitative activities is
also different for each single laboratory concept. While some emphasize the con-
struction of fully operative solutions, others give precedence to the clarification of
goals and strategies in an open debate.

Each open laboratory accordingly defines its own constructive pattern of inno-
vation. This does not only determine the possible outcomes; it also anticipates the
path of the diffusion process, since it allows some persons or institutions to relate
more easily to the innovations than others. First experiences during the last years
suggest that explorative, discourse-oriented laboratories play an important role in
social innovation that needs a high grade to public acceptance to spread;
exploitative, engineering-oriented laboratories rather seem to serve as incubators for
innovations that convince adopters by their technical function. These findings,
however, have to be called preliminary. Until now, research has not had much time
to study the impact of open innovation laboratories on broad range and there is still
a lot to be learned in the future.

14.5 Conclusions

Diffusion models play an important role in innovation research—not only because
of their descriptive capacity for the analysis of the processes that are taking place,
but also because they provide the basis for the economic exploitation of the spread
of novelty in society. Similar to different energetic potentials that initiate electric
currents, an intentional design of the diffusion process of innovations to manage
demand and supply can be used to gain revenue. Natural scientists create laboratory
conditions to isolate certain effects from the environment; economic decision
makers use the normative means of social organization to customize innovations
with specific attributes for certain groups of people. This increases their control
over the events that are taking place and enables them to focus their interferences on
the effects that they intend to provoke. The design activities in the context of the
diffusion of innovation therefore mostly take place on a detailed level, regarding
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individualized offerings for smaller groups of people, opposed to grand stories
about technical progress that capture the long-term development of societies.

Grand stories on innovation rely on vague notions of objects: cars, planes,
telephones—assuming that they remain the same during all the time that it takes for
them to spread through society. With increasing detail, it becomes clear that
technical devices and the conditions under which they are used change quite fre-
quently; and in many respects, each of these changes can be referred to in terms of a
small innovation, because it brings a new practice of using technology with it. For a
long time, institutional centralization and formal standardization have made it
possible to focus on the grand stories and neglect the details. Today, however, the
situation has changed. Grand stories of innovation only continue to make sense
where they refer to a platform technology: a solution that is by itself only an empty
shell and requires further input to become meaningful in practice. As it turns out,
this input is highly individual. Technology is customized with personal information
which makes each single instance of a device different from all others. The study of
diffusion processes for innovation consequentially become highly difficult.

Most companies have reacted to this difficulty by turning the focus towards the
adoption of innovations among social groups with similar practices of technology
usage and towards the design of solutions that are customized specifically for their
needs and communicated accordingly. Comprehensive diffusion models for the
whole population are traded in for a multitude of extremely simple diffusion models
for many different artefacts and target groups, which avoid the effort necessary to
address the complexity of general social dynamics. Mathematical models of dif-
fusion as they are applied in industry remain accordingly comparably simple. At the
same time, additional effort is created elsewhere. In order to cluster society in
sufficiently homogeneous user groups that can then be addresses separately, it is
necessary to collect more and more information about the users. Where companies
are not able to do this, they integrate the users themselves in the design process in
ways that allow them to organize themselves autonomously according to their
interests. Users thus take over an active part in the creation of innovations, before it
has reached maturity.

There is still a lot to learn about the consequences of opening up innovation
procedures for user participation. Nevertheless, it seems clear that they will require
a revision of the current diffusion models in innovation research. Inspiration can be
drawn, for example, from biology. The image of a continuously changing popu-
lation of individuals in which novelty can occur everywhere seems to provide a
suitable background for research on open innovation, in particular where incubators
are concerned that bring different people together under suitable conditions to foster
innovation. Although first attempts into this direction have already been started,
further conceptual and empirical work will be necessary to find out how much can
actually be gained from it.
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Chapter 15
The Spreading of Techno-visionary
Futures

Armin Grunwald

15.1 Introduction

Visions are an established and perhaps, in some respect, necessary part of the
scientific and technological communication. In general, they aim to create fasci-
nation and motivation among the public but also in science, increase public
awareness on specific research fields, help motivating young people to choose
science and technology as fields of education and career, and help gaining accep-
tance in the political system and in society for public funding. Visions are thus a
major driver of the scientific and technological advance, as may be seen in the fields
of spaceflight, nanotechnology, or synthetic biology. However, the spreading of
scientific visions and their role in innovation processes is not well understood yet.

We have been witnessing a new wave of visionary and futuristic communication
around science and technology in the last 15 years at the occasion of the so-called
new and emerging sciences and technologies (NEST). Typical NEST areas are
nanotechnology, converging technologies, synthetic biology, human enhancement,
autonomous technologies, the different “omics” technologies, and climate engi-
neering. The visions disseminated and debated in these fields show some specific
characteristics which justifies speaking of them as techno-visionary futures [1]:

• techno-visionary futures refer to a more distant future, some decades ahead, and
exhibit revolutionary aspects in terms of technology and in terms of culture,
human behaviour, individual and social issues

• scientific and technological advances are regarded in a renewed
techno-determinist fashion as by far the most important driving force in modern
society (technology push perspective)
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• the authors and promotors of techno-visionary futures are mostly scientists,
science writers and science managers such as Eric Drexler and Ray Kurzweil;
but also philosophers, non-governmental organizations and industry are devel-
oping and communicating techno-visionary futures

• high degrees of uncertainty are involved. As a rule, little if any knowledge is
available about how the respective technology is likely to develop, about the
products which such development may spawn and about the potential impact of
using such products

The point of departure of this chapter is the observation that techno-visionary
futures play a major role in the early stages of innovation (Sect. 15.2). In spite of
only little if any knowledge about their feasibility, implications, and consequences
being available in those early stages of research and development they might have a
major impact on the course of the scientific research and technological development
(Sect. 15.3). For example, they could heavily influence public debates and can
possibly be crucial to public perception and attitudes by highlighting either chances
or risks or by framing what is regarded chance and what is regarded risk. The
possibly high impact of techno-visionary futures motivates the postulate to shed
more light on the influential processes of their creation and spreading.

Techno-visionary futures are created and obviously have authors whose work
initiates a process of spreading by communication and dissemination. While the
spreading of these visions into scientific and societal debates and their impacts upon
them can considerably influence the course of research and innovation, little is
known about the processes and mechanisms of spreading of techno-visionary
futures. We only can diagnose desiderates for future research and propose some
ideas how this could be done. Answers to the question for the mechanisms of
spreading and for the factors influencing or determining the impacts of
techno-visionary futures are still not available (Sect. 15.4).

The analysis given in this Chapter makes use of some previous work of the
author [2, 3] and builds on the highly reflected knowledge acquired in the previous
decade about the role of technology futures and visions (e.g. [4–7]).

15.2 Techno-visionary Futures as Origins
of Innovation Stories

In the past about 15 years, there has been a considerable increase in visionary
communication on future technologies and their impacts on society. In particular,
this has been and still is the case in the fields of nanotechnology [5, 8], human
enhancement and the converging technologies [4, 9], synthetic biology and climate
engineering. Visionary scientists and science managers have put forward
far-ranging visions which have been disseminated by mass media and discussed in
science and the humanities. These observations allow us to speak of an emergence
of techno-visionary sciences in the past decades at the occasion of the occurrence of
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NEST. NEST developments aim at providing enabling technologies. Their target is
not to directly create products and innovations in specific areas of application.
Rather they are open for a multitude of applications in greatly differing fields. It is
this enabling character which opens up a huge space for techno-visionary ideas.
This can be illustrated best at the occasion of nanotechnology.

Nanotechnology was early regarded an enabling technology [10]. Though there
are some original nanotechnology products such as nanoparticles for medical
applications, in most cases a nanotechnology component will be a small but
decisive part of a much more complex product in a number of fields, such as energy
technology, information and communication technology, or biotechnology. This
mechanism that small devices from nanotechnology could lead to major, even
disruptive innovation in certain application fields, makes predictions or valid sce-
narios of innovation pathways and product lines more or less impossible or restricts
them to be speculative. This situation then opens up huge spaces for visionary
innovation stories. A similar case is synthetic biology. In spite of the fact that it is
predominantly laboratory research which raises fundamental questions far away
from concrete application, there are great promises of some protagonists of syn-
thetic biology to create artificial organisms, to produce biomass or novel materials.
However, the feasibility and realization period of these techno-visionary futures are
difficult if not impossible to assess. This is a general property of NEST: their
“enabling” character is linked with a wealth of possible futures that are more or less
speculative and very difficult to assess epistemologically.

As a thought experiment we imagine that in the year 2025 many nano-enabled
products will be available at the marketplace. If a historian then would be interested
in writing the history of nanotechnology he or she would go back to the origins of
that debate and probably would be irritated. At the very beginning of nanotech-
nology there was a visionary statement of Nobel Laureate Feynman [11], followed
by ideas of the futurist Drexler [12]. Spreading of these ideas led to an extensive
global debate on a high diversity of techno-visionary futures related with nan-
otechnology. The prefix “nano” was frequently used as a synonym for good science
and technology related with positive futures. The far-reaching expectations on
nanotechnology were based on its potential to generate materials for completely
new applications and to realize novel processes and systems as well as on the ability
to target and fine-tune its properties by controlling its composition and structure
down to molecular and atomic levels. Because of this, nanotechnology as an
enabling technology was expected to trigger innovations in many areas of appli-
cation and almost all branches of industry.

This situation changed completely in 2000. The initially positive visions of
nanotechnology were transformed into horror scenarios based on precisely the same
miniaturized technologies [13]—and these dystopian futures also spread quickly.
The ambivalence of techno-visionary futures of nanotechnology became dramati-
cally obvious [3, Chap. 5] and resulted in a scientific and public debate about its
risks and chances. Both risks as well as chances were, at that stage of the debate in
the early 2000s, related with visionary and more speculative expectations of fears
around nanotechnology. It was Joy’s [13] warnings about a post-human future
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world ruled by out-of-control nanotechnology which opened up this risk debate.
Though it might look a bit crazy from today’s perspective (perhaps even more from
the perspective of the imagined historian) it spread quickly at the global level.
Within months, people all over the world became familiar with concepts such as
“grey goo”, “nanobots”, “cyborgs”, and the dream of cybernetic immortality [3,
Chap. 5].

Our imagined historian will probably find out that some years later such futur-
istic elements in public debate disappeared in favor of a more down to Earth risk
debate [14]. Synthetic nanoparticles could spread, e.g., via emissions from pro-
duction facilities or by the release of particles from everyday use of nano-based
products, and they could end up in human bodies or in the environment and lead to
adverse effects. This shift led to the debate on possible health and environmental
risks of synthetic nanomaterials which is still ongoing [15]—and in contrast to the
former debates on techno-visionary futures of nanotechnology this type of debate
will probably maintain because the possibility of non-intended side-effects belongs
to almost any technology [16].

This interesting history of nanotechnology appears typical for a so-called “hope,
hype and fear” technology. Nanotechnology was believed to have the potential to
solve global problems (hope), was associated with far-reaching visions of the future
and with over-reaching expectations (hype), and because of its possible impacts that
are difficult to foresee and even less to control they raise concerns no matter
whether they are well founded or not (fear). At the beginning there was a powerful
but speculative debate based on techno-visionary futures [3, Chap. 5] that were
difficult to assess and led to a specific form of communication: high to extremely
high expectations, on the one hand, but just as dramatic anxieties, on the other.
After some years of intensive debates, however, the debate moved more and more
down to Earth, and the techno-visionary futures as objects of debate were replaced
by statements on toxicity. This story tells a lot about increasing understanding and
thus of “appropriation” or “normalization” of nanotechnology [17]. It has become
normality, like many other areas of technology, where we speak soberly about
opportunities and risks without lapsing into the dramatics of salvation or apoca-
lypse. This normalization is ultimately the result of the speculative debates in the
early phase [3, Chap. 5.4] which gives some evidence to regard this more irritating
debate part of the overall innovation process around nanotechnology. It started with
the early visions by Feynman and Drexler mentioned above, passed the hope, hype
& fear stadium and shifted then to a quite familiar type of debate on chances and
risks concerning human health and the environment.

Our imagined historian of nanotechnology would uncover a lively and dynamic
development at the early stage—and he or she obviously would ask for the
mechanisms of this dynamics. It is a normalisation and appropriation story which
includes the strong role of the early techno-visionary futures—and the fact that they
lost relevance later on. The appropriation of nanotechnology, its transformation
from a “fuzzy” and irritating field of development to a more or less normal one,
would not be happened without those futures which might seem ridiculous from a
today’s perspective. The quick spreading of techno-visionary futures of
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nanotechnology among the relevant communities worldwide would probably be
interesting to him or her, but also the disappearance of those visionary futures after
some years of heavy debate. The lesson to be learned from this case is that
techno-visionary futures shall be taken seriously even if they seem to be merely
speculative.

15.3 The Power of Visionary Ideas

There are also systematic reasons for taking techno-visionary futures seriously.
However, at a first glance this might be questioned. NEST developments are in
early stages of development and still strongly rooted in basic research. It is not
obvious that it makes sense at all to discuss the related techno-visionary futures
with respect to stories of innovation. Should we not instead let scientists do their
basic research until more consequential knowledge about innovation paths and
possible product lines will be available? Aren’t the positive and negative visions
linked to them (see the example of nanotechnology introduced above) anything
more than arbitrary and simple speculation? One could argue that many NEST
debates are so speculative that they are hardly of any practical consequence. This
exactly was the main criticism against the so-called speculative nanoethics [18]. It
might accordingly be perhaps interesting in an only abstract philosophical and
merely academic sense to discuss some obviously speculative questions related
with techno-visionary futures (see Sect. 15.2 above for the field of nanotechnol-
ogy). There might be some interest in circles of intellectuals or in the feuilletons of
magazines. Yet, in view of the speculative nature of those questions, serious con-
cern was expressed that the intellectual effort and the resources spent might be
completely irrelevant in a practical sense. However, this argumentation has been
proven misleading [19].

While techno-visionary futures ranging from high expectations to apocalyptic
fears indeed are often more or less fictitious in content, such stories about possible
futures can and often do have a real impact on scientific and public discussions [5].
Even pictures of the future lacking all facticity, being merely speculative, and
probably never becoming reality, can influence debates, the formation of opinion,
acceptance, and even decision making [4] with consequences in the real world in
two ways at least [1]:

• Techno-visionary stories and images can change the way we perceive current
and future developments of science and technology, just as they can change our
picture of future societal constellations. Frequently, the societal and public
debate about the opportunities and risks associated with new technology
revolves around those stories, as has been the case in the field of nanotech-
nology and as is still the case in human enhancement and other NEST areas [3].
Visions and expectations motivate and fuel public debate because of the impact
the related narratives may hold for everyday life and for the future of important
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areas of society, such as military, work, and health care—and this figure works
independent of how realistic or speculative the futures under discussion are.
Positive visions can contribute to fascination and public acceptance and also can
attract creative young scientists to engage themselves there, just as negative
visions and dystopias can cause concern and even mobilize resistance as was
feared in particular in the early debate on nanotechnology [17].

• Techno-futures exert a particularly great influence on the scientific agenda
which, as a consequence, partly determines what knowledge will be available
and applicable in the future [20]. Directly or indirectly, they influence the views
of researchers and, thus, ultimately also exert influence on political support and
research funding. For example, even the speculative stories about improving
human performance [9] quickly aroused great interest among policy makers and
research funders [21]. Projections of future developments based on NEST
expectations therefore might heavily influence decisions about the support and
prioritization of scientific progress and the allocation of research funds, which
then will have a real impact on further developments. The history of spaceflight
is an impressive example for the power of visionary ideas from its origins in the
1920s on.

The common rationale behind both arguments is that the communication and
dissemination of techno-visionary futures are interventions into ongoing commu-
nication, action, and decision-making. The spreading of those futures changes
mindsets, convictions, beliefs and perceptions—and thus often has real impacts.
The communication involving more or less speculative and visionary futures can
exert real power.

Some practical experience gained in recent years support the diagnosis that
policy makers are well aware of the factual power of techno-visionary communi-
cation. As an early example: A chapter about techno-visionary communication on
human enhancement, converging technologies (nano-bio-info-cogno convergence;
[9]), and other far-reaching visions compiled by the Office of Technology
Assessment at the German Bundestag (TAB) was very well received by the Bun-
destag as part of a study on nanotechnology [22]. The authors came to the con-
clusion that this techno-visionary discourse played an important and to some extent
new role in the governance of science and technology. Several policy makers and
also experts in nanoscience and nanotechnologies communicated to the TAB team
that they found the study’s discussion of futuristic visions and description of the
networks promoting them very useful. The TAB team’s initial concerns that dis-
cussing these often far-fetched visions in a study which would become an official
document of the parliament and an influential early publication on nanotechnology
could cause irritations thus proved to be unfounded. Subsequently, TAB was
requested to conduct several other projects on NEST fields: studies on the politics
of converging technologies at the international level, on brain research, on phar-
macological and technical interventions for improving performance, and on syn-
thetic biology. Recently, the ceremony of the 25th anniversary of the foundation of
TAB in 1990 was—upon request of members of parliament—dedicated to the issue
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of blurring the borderlines between humans and technology, e.g., by developments
towards human enhancement and autonomous robots which also has a clear
techno-visionary side.

This interest of policy makers in techno-visionary futures is also evident at the
European level. NEST developments have been addressed by a fairly large number
of projects as well as by other advisory activities such as the reflections on nan-
otechnology, synthetic biology, and ICT (information and communications tech-
nology) implants conducted by the European Group on Ethics in Science and New
Technologies. The situation is much the same in the US which can be seen, for
example, by considering the agenda of the Presidential Commission for the Study
of Bioethical Issues which indicates indeed the factual power of techno-visionary
narratives of possible futures and the high significance assigned to them by
policy-makers. The factual significance and power of techno-visionary futures for
the governance of science and in public debates are a strong argument in favor of
the necessity of researching these futures and providing public and policy advice.
Policy makers and society should know more about these positive or negative
visions, their genesis and their spreading. The postulate to open up the “black box”
of the creation and spreading of those futures is supported by calls for a more
democratic governance of science and technology [23]. Its realization requires
uncovering meanings, values, and interests hidden in the techno-visionary futures
and enlightening the mechanisms of their spreading.

15.4 Creation and Spreading of Techno-visionary Futures

Techno-visionary futures are a phenomenon of communication in different areas
such as science, science fiction, philosophy, literature, the arts, movies and public
debate. My focus in this Chapter is on the lifetime of those futures: how do they
come into being, what do they tell, how do they spread and which impacts do they
have. Unfortunately, because of lack of knowledge about the underlying mecha-
nisms the chapter remains at the stage of rising questions, offering patterns and
identifying research directions to learn more about these issues.

15.4.1 The Social Construction of Futures

Obviously techno-visionary futures are socially constructed (following [1]). Their
authors can be individual persons, such as the authors of science fiction novels, or
collectives such as research institutes or participatory foresight processes. They
always pursue specific purposes, for example, entertainment, supporting political
decisions, sensitizing the public for problematic developments, mobilizing support
for research, creating a vision for regional development, warning at an early stage
about potential problems, creating fascination in the public etc. Constructing futures
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serves as a means in order to reach these goals. Creation and dissemination of
techno-visionary futures are interventions into the real world and may have some
impact—the intended ones but possibly also others.

Establishing statements about the future such as making predictions, simulating
future developments, creating scenarios, formulating expectations and fears, setting
goals and considering plans for their realization takes place in the medium of
language. We need language for constructing futures which obviously always
happens in a respective present time. Forecasters and visionary writers cannot break
out of the present either, always making their predictions on the basis of present
knowledge and present assessments involving also a lot of present assumptions.
Societal futures can be neither logically deduced nor empirically investigated [1]
but must rather be based on present knowledge, assessments, values, assumptions
etc. Therefore, we must talk about possible futures in the plural, about alternative
possibilities for imagining the future, and about the justification with which we can
expect something to become real in the future. These are always present futures and
not future presents [24]. If we talk, for instance, about cyborgs or far-reaching
human enhancement which might become possible in the future, we are not talking
about whether and how these developments will really occur but how we imagine
them today—and these images differ greatly. Futures are thus something always
contemporary and change with the changes in each present. In particular,
techno-visionary futures are similar to living organisms having an origin but
changing their shape during their lifetime and their spreading (see below).

Futures, regardless of whether they are forecasts, scenarios, plans, programs,
visions, or speculative fears or expectations, are designed by authors following
specific purposes, having certain interests and values in mind, based on specific
diagnoses and pieces of knowledge. By creating techno-visionary futures their
authors use a broad range of ingredients such as available knowledge, value
judgments, suppositions and assumptions, some of them being explicit while others
remain implicit. They also may include mere speculation and counterfactual
assumptions (e.g. in the field of Science fiction literature and movies) but also
visionary and utopian elements which do not contradict current knowledge (e.g.
about natural laws) but are highly speculative and may serve as orientation, either to
act towards their realization in case of positive futures or in order to prevent their
occurrence in case of undesired, negative or dystopian views.

15.4.2 Providing Orientation by Assessing Futures

Scientific and technological progress leads to an increase of the options for human
action. Whatever had been inaccessible to human intervention, whatever had to be
accepted as not influenceable nature or as fate, becomes an object of technical
manipulation or design. Emancipation from nature, from the traditions of the past,
and from fate shows, however, another side of the coin: uncertainty, loss of ori-
entation, and the necessity to be able to cope with the new freedoms by conscious
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decisions. In this situation, which is characteristic for Modernity, the orientation
needed for opinion formation and decision-making is drawn increasingly from
debates about future developments, and less and less from existing traditions and
values. The discourses on sustainable development, on the precautionary principle,
on migration and the demographic change but also on NEST give evidence of this
fact.

Within the familiar consequentialist approach pictures of the future (e.g. sce-
narios) are established in a foresight mode and assessed, e.g. with respect to their
desirability or acceptability. Then conclusions are drawn in a back-casting mode for
today’s decision-making options taking into account the results of the assessment of
the futures (see Fig. 15.1) which can be used to provide orientation,
decision-support, and policy advice. Processing this loop shall add value to its input
data. This expectation, however, is not realizable in case of completely diverging,
arbitrary, speculative or heavily contested futures—that exactly is our case of the
NEST debates involving the techno-visionary futures mentioned. But what can be
done if there are no well-argued corridors of the envisaged future development or if
proposed corridors are heavily contested as is in the case of NEST?

The hermeneutic approach developed for this constellation [1, 2], offers a
completely different mechanism of providing orientation compared to what we
normally expect from futures studies. In this approach the origins of the various
futures must be considered. Visions of the future are social constructs, created and
designed by people, groups, and organizations (see above). The variety or even
divergence of visions of the future results from the consideration of controversial
and divergent knowledge bases and disputed values during their creation: the

Present (challenges, 
decisions to be made, 
problems etc.)

Futures (possible 
consequences and 
impact of new 
technology)

Consequences and impact of new technology: predictions, 
scenarios, expectations, fears, visions etc.

Orientations, modified problem perception, ideas
about desirable and undesirable future societies, 
consequences for decisions to be made today, 
action strategies, measures, etc.

(better)
decisions

forecasting

backcasting

Fig. 15.1 The consequentialist mode of extracting orientation by processing a loop of forecasting
and backcasting (Source [3], modified)
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divergence of futures mirrors the differences of contemporary positions, the
diversity of attitudes, and reflects today’s moral pluralism. Thus, uncovering these
sources of diverging futures could tell us something about ourselves and today’s
society. Hermeneutic orientation implies a shift in perspective: instead of consid-
ering far futures and trying to extract orientation out of them, these stories of the
future now are regarded as “social texts” of the present including potentially
important content for today’s debates. Thus, better understanding techno-visionary
futures with respect to their content, diagnoses behind, values involved and ways of
dissemination and spreading would be part of a self-enlightenment of contemporary
debates. Instead of a senseless attempt to predict the future there is an opportunity to
view the lively and controversial debates about NEST and other fields of science or
technology not as anticipatory, prophetic, or quasi-prognostic talks of the future but
as expressions of our present time. Therefore, there is a need to understand also the
spreading of techno-visionary futures and their mechanisms.

15.4.3 The Spreading of Visions

In order to learn more about the spreading of visions we have to observe a specific
property of this type of spreading. In contrast to the spreading of inert chemicals or
electro-magnetic waves in vacuum the techno-visionary futures are in close
exchange with their environment in two directions:

• The techno-visionary futures will have some impact on the real world as has
been described in Sect. 15.3 above because they are interventions into ongoing
communication and action. As interventions they might or could change the
course of communication or mindsets of people. Interventions in diffusion from
a corporate business perspective are also discussed in Chap. 14.

• Vice versa, the exchange of ideas on techno-visionary futures in related debates
and controversies will usually not leave the content and meaning of those
futures untouched. In contrary, this meaning will often be modified, it might
take up new aspects or might be subject to changed accentuations. A dramatic
example is the turnaround of the mostly positive ideas related with the so called
“Molecular Assembler” proposed by Drexler [12] into a dystopian view on the
future which might “no longer need us” [13].

Consequently, we see a co-evolution of the techno-visionary futures and their
communicative and decision-making environment. It is a task of a continuous
tracing and asking for better understanding to uncover the mechanisms of these
co-evolutionary processes during the spreading of the visions. Techno-visionary
futures do not just “travel” during spreading but will themselves be transformed.
The hermeneutic circle (Fig. 15.2) provides a simple model of this type of
spreading which affects and modifies the entities spreading.
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First ideas of relating visionary futures with ongoing research and development
constitute the initial stimulus which starts processing this circle [3]. Processing this
circle constitutes of a series of communicative events by which the techno-visionary
futures proposed are communicated, controversially discussed, supplemented or
modified. Places like the innovation incubators described in Chap. 14.4.2 can play a
role in this. The debate on nanotechnology [3, Chap. 5] is an excellent example for
illustrating such a hermeneutic circle and its development over 10–15 years. For
nanotechnology, Richard Feynman’s famous lecture [12] or the book Engines of
Creation [13] might have been such first steps or at least very early steps in starting
the respective hermeneutic circle.

Figure 15.2 illustrates the high influence of the initializing stimulus. At the very
beginning of the NEST debates the first facts are created for further communication
and guidance. The meaning and framing given in the stimulus can decisively mold
the ensuing debate (see Sect. 15.3) while the first framing can only be gradually
modified by proposing alternative techno-visionary futures in subsequently pro-
cessing the hermeneutic circle. This process can be self-reinforcing and lead, for
example, to research funding being initiated, to massive investments being made in
the affected field, and in this way to important real consequences for the agenda and
the research process of science. Or the framework that was initially chosen might be
challenged, strongly modified, or even changed into its opposite, leading to social
resistance and rejection. Self-fulfilling as well as self-destroying narratives [25]
about techno-visionary futures are the extremes of possible developments which
could emerge out of the hermeneutic circle.

Hermeneu c circle
of techno-visionary
futures of NEST

Output: Impacts 
on the real world
(Sect. 3)

Input from ongoing
debate on techno-
visionary futures)

First steps to ini ate the circle: assignment of techno-visionary futures to NEST 
developments (e.g. Feynman on nanotechnology)

Fig. 15.2 The co-evolution of techno-visionary futures in NEST in a hermeneutic circle,
including its stimulus (Source [3], modified)
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In processing the hermeneutic circle, techno-visionary futures are communicated
via different channels, journals, networks, mass media, research applications, expert
groups, ELSI (ethical, legal, and social implications) or TA (technology assessment,
see [16]) projects on policy advice, etc. Some of them, finding no resonance, will
“die” within these communication processes and quickly disappear again, while
others will “survive” and motivate actors and groups to subscribe to or oppose the
visions—in either case the story will continue. Only a few of the techno-visionary
futures proposed will find an audience via the mass media and will therefore be able
to achieve real impact for public debate and social perception or attitudes. Others
may enter the political arena and result in political decisions, e.g. about research
funding, and may disappear after having had big impact only. The history of
spaceflight, for instance, is full of techno-visionary promises which regularly fail
but nevertheless survive and attract further interest. The narratives of human set-
tlements on the Mars or on artificial space stations belong to those persistent stories
having impact without being realized or without even having a serious chance of
realization.

Thus, it is evident that there are extremely different experiences with
techno-visionary futures, with their spreading and impact. The vision of the
molecular assembler [13] was among the motivating voices for the national nan-
otechnology initiative “Shaping the World Atom by Atom” [26] which was the first
big funding program on nanotechnology. The narratives around climate engineering
[3, Chap. 8], including some proposals being breath-taking with respect to the
magnitude of human intervention into the global atmospheric system, did not reach
a larger audience yet—neither in form of funding for research and development nor
in public debates. Another interesting case is the revival of specific understandings
after some time. In the 1970s there was a lively debate on artificial intelligence with
high expectations and far-ranging techno-visionary futures following the estab-
lishment of computer sciences and cybernetics. These futures disappeared in sub-
sequent decades but have been re-entering public and scientific debates over the last
years. The normalization of today’s or tomorrow’s robots obviously has been
prepared for by earlier debates on artificial intelligence and robots—and also by
science fiction movies and literature which early took up ideas from that field.
Stanley Kubrick’s movie “2001: A Space Odyssey” (1968) thematizing the issue of
power distribution between man and an intelligent machine is among the famous
early examples which are still up-to date.

Thus we see different dynamics in different NEST fields with different
techno-visionary futures influencing social debates and political decision-making.
My conviction is that it would be worthwhile to better understand these dynamics
including the biographies of the techno-visionary futures including the mechanisms
of their spreading for ongoing and coming debates on NEST. Understanding must
go beyond a mere description what happened but rather uncover the underlying
mechanisms and dependencies.

The dynamic biographies of techno-visionary futures can be analyzed taking
recent NEST developments as cases of study. This research could contribute to a
deepened understanding of the dynamics of spreading dealing with issues of
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meaning of NEST but also of the creation and emergence of those future narratives.
These could also be analyzed in an extended manner by examining their cultural
and historical roots and philosophical backgrounds. Thus we can regard con-
structions of NEST techno-visionary futures as part of an ongoing communication
process in science and at the interface of science and society in which specific
assignments of meaning, e.g., the nanobots [12] or the chip in the brain, act as the
necessary catalysts with their own individual biography or life cycle showing
certain dynamics over time (see Fig. 15.2).

Biographies of techno-visionary futures as well as their dynamics are not well
understood as yet [5]. The entire “life cycle” of techno-visionary futures, from their
construction to dissemination, assessment, deliberation, and impact, thus raises a
huge variety of research questions which can only be answered by giving inter-
disciplinary consideration to these aspects of spreading and impact. After some time
usually some of the futures debated are sorted out, others might merge while only
few “winners” remain and constitute a dominant understanding of the NEST under
consideration. Again and again those developments happen in completely different
fields such as nanotechnology, synthetic biology, care robots, or cyber-physical
systems. A comparative analysis of the mechanisms of spreading and the conditions
of “surviving” and having impact in the real world would probably shed some light
on these processes and their dynamics. Investigating the emergence and dissemi-
nation of techno-visionary futures via different communication channels and its
possible impact on decision-making in the policy arena and other arenas of public
communication and debate involves empirical research and reconstructive under-
standing as well.

To answer these questions an interdisciplinary procedure employing various
types of methods appears necessary. The empirical social sciences can contribute to
clarifying the communication of techno-visionary futures by using media analyses
or sociological discourse analysis and generate, for example, maps or models of the
respective constellations of actors being involved in processing the hermeneutic
circle (Fig. 15.2). Political science, especially the study of governance, can analyze
the way in which techno-visionary futures can exert influence on political
decision-making processes, such as via providing policy advice. In this way, a
complete picture of the biography of the different techno-visionary future proposed
including the mechanisms of their spreading can be created. It should include, for
example, diffusion processes into different spheres of society, migrations of the
techno-futures, related shifts in meaning and perception, consequences on, for
example, social perception and political decision-making processes, and, if appli-
cable, processes of the disappearance of the respective techno-future from the
debate.

In view of the experience of the last 15 years it can be expected that in particular
comparative research approaches to mechanisms of spreading hold the promise of
new knowledge. These can, for example, compare the stories about the spreading of
techno-visionary futures in specific NEST fields with one another, determine the
common features and the differences, and ask about the causes and underlying
mechanisms. For example, there seems to be an evident structural difference
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between the histories of nanotechnology [3, Chap. 5] and robotics [3, Chap. 6].
While nanotechnology initially appeared to be the disruptive technology par
excellence causing many irritations in the initial stage of debate (Sect. 15.2) which
had to be normalized through high effort, robots were normalized practically in
advance by science fiction literature and films. Robots entered society in this way
even before they came to exist in reality with the anticipated functions and
meanings.

15.5 Conclusions

Techno-visionary futures have an important place in early stages of development, in
particular in NEST fields. They can have major impact on the course of research
and development, on public perception, research funding, and political
decision-making. In spite of this high significance in the innovation process from
early stages to later innovation paths, products, and services, only little is known
about the ways and mechanisms of their spreading, about promoting factors and
obstacles with regard to creating impacts in the real world. Thus, it seems desirable
if not necessary to spend effort on shedding light on these processes of spreading
and to conduct research aiming at enlightening these processes.
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Part IV
Society



Chapter 16
The Neolithic Transition: Diffusion
of People or Diffusion of Culture?

Joaquim Fort

16.1 Introduction

The Neolithic transition is defined as the shift from hunting-gathering (Mesolithic)
into farming and stockbreeding (Neolithic). The Neolithic arrived at about
8000 years Before Present (yr BP) from the Near East into Southeastern Europe.
From there, it spread gradually westwards and northwards across Europe, until
about 5000 yr BP. We know this from the radiocarbon dates of remains related to
farming and stockbreeding that have been found in archeological sites. Europe is
the continent for which more Neolithic sites per unit area have been dated so far
than anywhere else in the world, and this is the reason why most models of the
Neolithic transition have been applied to Europe. This spread of farming can be
seen in Fig. 16.1, which is a recent interpolation of 918 early Neolithic sites [1].

Figure 16.1 shows at once that we are dealing with a gradual spread. Of course,
there are some anomalously old/young regions (e.g., the patch inside the black
rectangle in Fig. 16.1). Different interpolation methods yield some differences for
small anomalous regions, but those of the size of that inside the rectangle in
Fig. 16.1 and larger usually appear independently of the interpolation method used.
Lemmen and Gronenborn (Chap. 17, this volume) rightly point out that some of
such anomalous regions may be due to radiocarbon dating errors and/or other
problems with the databases supplied by archeologists. This is certainly possible.
However, in spite of the fact that most of such anomalously old/young regions are
rather small and contain only a few sites, Lemmen and Gronenborn (Chap. 17, this
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volume) regard their presence as a ‘pitfall’ of the quantitative map in Fig. 16.1.
They offer, instead, the qualitative map in their Fig. 17.1, which has no anomalous
regions simply because it is just a drawing, not the result of any statistical inter-
polation. It is also important to note that, in order to totally avoid the presence of
such anomalous regions in interpolation maps, several strong conditions would
have to hold. A crucial one is that local geography should not have any effect, in the
sense that all land should be equally attractive to farmers. Otherwise, it is rea-
sonable to expect that farmers will sometimes move to more distant land even if
there is nearer, less attractive land (which will not be settled by farmers until later
on). The presence of rivers, mountains, different types of soils, etc., probably makes
some areas more attractive for farmers than others. For this reason, the presence of
anomalously old or young regions (such as the patch inside the black rectangle in
Fig. 16.1) is probably unavoidable (even if we had a database totally free of errors
and with all dates corresponding exactly to the earliest farming activity at each site).
A very clear example are the Alps. These mountains cause an anomalously young
region (as compared to its surroundings) in Fig. 16.1. It is observed independently
not only of the interpolation method but also of the database used. Thus anomalous
regions are not necessarily artifacts arising from limitations of the database and/or
the interpolation technique. Nevertheless, some of them may certainly be artifacts,
especially if they contain few or no sites and their presence depends on the

Fig. 16.1 Interpolation of 918 early Neolithic sites (circles). Each color corresponds to a 250-year
interval. We see that the oldest sites are located in the southeast. Note also that farming propagated
faster westwards than northwards. Moreover, slowdowns in the Alps and Northern continental
Europe are clearly displayed. The patch inside the black rectangle is an example of an anomalously
old region, as compared to its surroundings. Due to the paucity of sites, the contours are less
detailed in some regions (e.g., upper right and lower left). This map was obtained by means of
universal linear kriging interpolation. Adapted from Ref. [1]

314 J. Fort



interpolation method and/or database used. In practice, some such regions always
seem to appear (i.e., whatever the database and the interpolation method that we
use). But this should not be a problem after all. Smoothing techniques are well
established in geographic analysis. They yield, with increasing coarse graining,
maps with decreasing subtleness, where sufficiently small anomalous regions
gradually disappear without substantially modifying the overall spread pattern
(Fig. 16.2). This seems one reasonable solution to estimate local speed magnitudes
(in kilometers per year) on a map based on quantitative, geostatistical methods [1],
as we explain below. This is obviously impossible from drawings such as Fig. 17.1.
Similarly to other researchers [2–4], the authors of Chap. 17 have compared the
average speed implied by linear regressions according to the observed dates and to
their mathematical model [5] (that model is briefly discussed at the end of this
chapter).

Qualitative maps (such as that in Fig. 17.1) are certainly useful and interesting if
we want to display the main features of the Neolithic spread. However, if we also
want compare quantitatively the archaeological dates to the predictions of mathe-
matical models we need quantitative maps, which are usually based on interpolation
techniques (see, e.g., Fig. 16.1). An advantage of quantitative maps is that they are
statistically justified. Another crucial advantage is that they make quantitative
comparison to mathematical models possible [1]. This allows us to discuss a very
important point, namely the implications concerning the mechanisms driving the
spread of the Neolithic (diffusion of people versus diffusion of culture). Again, this
seems impossible from drawings such as Fig. 17.1.

The spread of the Neolithic in Europe was clearly gradual, because as we move
westwards and northwards, we find more and more recent dates (Figs. 16.1 and
17.1). This suggests that it may make sense to apply diffusive models to the spread
of the Neolithic. A quantitative justification is the following. We know from
Chap. 2 that diffusion equations provide large-scale descriptions of systems where
there are, at the small scale, molecules or individuals following random walks (see
Fig. 2.5). Does this scenario apply to the spread of the Neolithic? For the moment,
assume a very simple model in which agriculture would have spread only due to the
dispersal of farmers. Then each random walk is the trajectory obtained by joining,
e.g., the birthplaces of an individual’s parent, the individual in question, one of his/
her children, and so on. Looking at Fig. 16.1, we can easily estimate that agriculture
spread from Greece to the Balkans and Central Europe at a speed of roughly 1 km/
year. Thus, assuming a generation time of about 32 year [6], farming spread about
32 km per generation. This is much less than the scale of Fig. 16.1 (3000 km or
more). This comparison provides a quantitative justification for the use of diffusion
equations in models of the Neolithic spread.

Ammerman and Cavalli-Sforza [7] were the first to apply a diffusive model to
the spread of the Neolithic. They used Fisher’s wave-of-advance model. In this
model, the speed of the Neolithic front is given by Eq. (2.17),
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Fig. 16.2 Isochrones obtained by smoothing (“coarse graining”) the map in Fig. 16.1 a single
time (a), 10 times (b) and 20 times (c) (i.e. with 1, 10 and 20 iteration steps, where each step
consists in replacing the date of each individual point of the map by the average of that date and
those of the 8 surrounding points in a square grid). Note that anomalous regions (such as that
inside the black rectangle in Fig. 16.1) gradually disappear. This is useful to perform quantitative
estimates of local speed vectors and magnitudes (see Fig. 16.4b for the latter). Adapted from Ref.
[1], Supp. Info. Appendix, Sect. S1
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vFisher =2
ffiffiffiffiffiffiffi
Dα

p
, ð16:1Þ

where D is the diffusion coefficient and α the initial growth rate (i.e., the net
reproduction rate at low population densities). This relation has already been
introduced as Eq. (2.17) in Chap. 2. Following Ref. [2] we sketch, for the interested
reader, the line of reasoning leading, eventually, to this relation.

Let Nðx, y, tÞ stand for the population density of Neolithic individuals (i.e.,
farmers), where x and y are Cartesian coordinates and t is the time. We assume that
a well-defined time scale T between two successive migrations occurs. This model
(to be improved in Sect. 16.3) is based on the assumption (see Ref. [8], Sect. 11.2)
that, between the values t and t+ T , we can add up the changes in the number of
individuals in an area differential ds= dx dy due to migrations (sub index m) and to
population growth (sub index g),

Nðx, y, t+ TÞ−Nðx, y, tÞ½ �ds= N x, y, t+Tð Þ−N x, y, tð Þ½ �mds
+ N x, y, t+ Tð Þ−N x, y, tð Þ½ �gds.

ð16:2Þ

Let Δx and Δy stand for the coordinate variations of a given individual during
T. We introduce the dispersal kernel ϕNðΔx,ΔyÞ, defined such that ϕNðΔx,ΔyÞ is
the probability per unit area to move from ðx+Δx, y+ΔyÞ at time t to ðx, yÞ at time
t+ T . We can rewrite the parentheses in the first term on the right as

Fig. 16.2 (continued)
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Nðx, y, t+ TÞ−Nðx, y, tÞ½ �m =
Z∞

−∞

Z∞

−∞

NΔϕNdΔxdΔy−Nðx, y, tÞ≈ ⟨Δ2⟩

4
∂
2N
∂x2

+
∂
2N
∂y2

� �
,

ð16:3Þ

where NΔ stands for Nðx+Δx, y+Δy, tÞ, and ϕN for ϕNðΔx,ΔyÞ. In the last line in
Eq. (16.3) we have performed a second-order Taylor expansion in Δx and Δy, and
taken into account that

R∞
−∞

R∞
−∞ ϕNdΔxdΔy =1. We have also assumed that the

kernel is isotropic, i.e.,

ϕNðΔx,ΔyÞ=ϕNð−Δx,ΔyÞ=ϕNðΔx, −ΔyÞ, ð16:4Þ

and introduced the mean-squared displacement as

⟨Δ2⟩=
Z∞

−∞

Z∞

−∞

Δ2ϕNðΔx,ΔyÞdΔxdΔy, ð16:5Þ

where Δ2 =Δ2
x +Δ2

y . Note that Eq. (16.4) implies that ⟨Δx⟩=0, ⟨Δy⟩=0,

⟨ΔxΔy⟩=0 and ⟨Δ2
x⟩= ⟨Δ2

y⟩, which has been applied in the last step in
Eq. (16.3). This is Einstein’s approach to diffusion [9].

Finally we rewrite the parentheses in the last term in Eq. (16.2) as a Taylor
expansion,

Nðx, y, t+ TÞ−Nðx, y, tÞ½ �g = TFðx, y, tÞ+ T2

2
∂F
∂t

+ . . .

� �
ð16:6Þ

where Fðx, y, tÞ is the change in population density per unit time, due to births and
deaths.

Expanding the left-hand side of Eq. (16.2) up to first order and collecting terms,
we arrive at Fisher’s reaction-diffusion equation,

∂N
∂t

=D
∂
2N
∂x2

+
∂
2N
∂y2

� �
+Fðx, y, tÞ, ð16:7Þ

where we have introduced the diffusion coefficient,

D=
⟨Δ2⟩

4T
. ð16:8Þ

which is the two-dimensional analogue of the one-dimensional Eq. (2.3). Con-
cerning the net reproduction function Fðx, y, tÞ, in Chap. 2 an example is presented
such that
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F x, y, tð Þ= αN x, y, tð Þ ð16:9Þ

(see the last term in Eq. (2.15)). This reproduction function corresponds to
exponential growth, because without diffusion ðD=0Þ Eq. (16.7) yields N =N0 exp
αt½ �, with N0 =Nðt=0Þ. Thus Eq. (16.9) is an example of interest, but the popu-
lation density would never stop growing. A biologically more realistic case is the
so-called logistic growth function,

Fðx, y, tÞ= αNðx, y, tÞ 1−
Nðx, y, tÞ
Nmax

� �
, ð16:10Þ

were Nmax is the saturation density, i.e. the population density at which net
reproduction vanishes (note that Fðx, y, tÞ=0 if Nðx, y, tÞ=Nmax). The functions of
exponential and logistic growth are compared in Fig. 16.3. A more detailed
introduction into the formalism of logistic growth is provided by Sect. 3.4.1 of
Chap. 3, with an example of the benefit of this reasoning on predicting the
spreading of technological innovations given in Sect. 14.2.2 of Chap. 14.

Equation (16.7) with the logistic growth function (16.10) is called Fisher’s
equation. For our purposes here, we can consider the simple case in which all
parameters (D, α and Nmax) are independent of x, y and t. Travelling wave solutions
(also called fronts or waves of advance) are defined as constant-shape solutions, i.e.
those depending not on x, y and t separately but only on z= r− vt, where v is the
front speed and r=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 + y2

p
the radial coordinate.

Kolmogorov et al. [10] showed that in Fisher’s model, a front is formed and its
speed is given by Eq. (16.1), assuming that initially the population density Nðx, y, tÞ
has compact support. In practice, this assumption means that Nðx, y, t=0Þ=0
everywhere except in a finite region. This is biologically realistic, in contrast to

po
pu

la
tio

n 
de

ns
ity

time 

Nmax

Fig. 16.3 Plots of population density N versus time t. The dashed line corresponds to exponential
growth, N =N0eαt (see the text below Eq. (16.9)), and the full line to logistic growth,
N =N0Nmaxeαt ̸ðNmax +N0ðeαt − 1ÞÞ (see Eq. (16.12))
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solutions such that Nðx, y, t=0Þ≠ 0 for all values of x, y (−∞< x<∞,
−∞< y<∞). The latter solutions are not biologically realistic, because in practical
applications we always want to analyze the spread of organisms that are initially
present in a finite region of space.

Using variational methods, Aronson and Weinberger [11] also showed that the
speed of front solutions to Fisher’s equation is given by Eq. (16.1) (see Sect. IV.A
in Ref. [12] for a simple derivation based on variational principles).

Importantly, Fisher’s wave-of-advance speed (16.1) does not depend on Nmax.
Moreover, this speed is the same as for exponential growth (Eq. (16.9)), see
Eq. (2.17). Thus the wave-of-advance speed is the same in both the logistic and the
exponential models. However, their shape is different, because for exponential
growth the population density keeps growing in time, whereas for logistic growth it
stops growing at N =Nmax (see Fig. 16.3). Thus the waves of advance under logistic
growth have the profile shown in Fig. 2.6, where we can see that the population
density stops growing once N =Nmax. In contrast, for exponential growth the
population density keeps growing forever everywhere (see Ref. [13], Figs. 3.3 and
3.6).

Returning to the spread of the farming, Ammerman and Cavalli-Sforza [7] noted
from archaeological dates that the speed of the Neolithic wave of advance was
about 1 km/year. They next asked the following interesting question: what speed
does Fisher’s model [Eq. (16.1)] predict? In order to answer this, empirical values
for ⟨Δ2⟩ and T are needed to estimate D using Eq. (16.8). Additionally, an
empirical value for α is needed to estimate the speed from Eq. (16.1). Ethnographic
observations of preindustrial populations have measured the displacement of
individuals and found the average for the mean-squared displacement per genera-
tion ⟨Δ2⟩=1288 km2 [1, 14] and the mean generation time (defined as the age
difference between a parent and his/her children) T =32 year [6]. Thus we obtain
from Eq. (16.8) D=10 km2/year. On the other hand, for populations which settle in
empty space, N≪Nmax and Eq. (16.10) reduces to (16.9), so that we can fit
exponential curves (graphically, we can understand this because both curves in
Fig. 3 overlap in the left-hand side). Ethnographic data yield the average exponent
α=0.028 year−1 [14]. Using these values into Eq. (16.1) we estimate a front speed
of about 1 km/year, which is similar to the speed obtained from the archeological
observations. Indeed, as mentioned above, looking at Fig. 16.1 we can easily
estimate that agriculture spread from Greece to the Balkans and Central Europe at a
speed of roughly 1 km/year (more precise estimations with recent data, based on
regression analysis [3] and geostatistical techniques [1], agree with this average).
This agreement was first noted by Ammerman and Cavalli-Sforza [7, 4]. In this
way, Ammerman and Cavalli-Sforza noted that diffusive models are useful not only
because they make it possible to describe mathematically a major event in pre-
history (the spread of agriculture), but also because they indicate a possible
mechanism for it, namely the spread of people (i.e., of populations of farmers).
They called this demic diffusion (from the Greek word demos, which means peo-
ple). In contrast, most authors at the time advocated for the learning of farming by
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hunter-gatherers (i.e., for the spread of agriculture without substantial spread of
people) [15]. The latter mechanism is called cultural diffusion.

16.2 First Improvement: Beyond the Second-Order
Approximation

In the derivation of Eq. (16.7) we have performed Taylor expansions up to first
order in time and second order in space. Without those approximations we obtain,
instead of Eq. (16.7),

Nðx, y, t+ TÞ−Nðx, y, tÞ=
Z∞

−∞

Z∞

−∞

NΔϕNdΔxdΔy−Nðx, y, tÞ+RT Nðx, y, tÞ½ �Þ,

ð16:11Þ

where the joint effects of reproduction and survival are, again, well-described by the
solution to a logistic growth function, namely [8]

RT Nðx, y, tÞ½ �= eαTNmaxNðx, y, tÞ
Nmax + ðeαT − 1ÞNðx, y, tÞ . ð16:12Þ

When observed dispersal data are used, the kernel per unit length φN Δð Þ is
defined as the probability to disperse into a ring of radius Δ and width dΔ, divided
by dΔ. If individuals of the population N have probabilities pj to disperse at
distances rj (j = 1 ,2, …, M), we can write

φNðΔÞ= ∑
M

j=1
pjδð1ÞðrjÞ, ð16:13Þ

where δð1ÞðrjÞ is the 1D Dirac delta centered at rj (i.e., a function that vanishes
everywhere except at Δ= rj). Since the total probability must be one,

1 = ∫
∞

0
φNðΔÞdΔ, ð16:14Þ

and φNðΔÞ is clearly a probability per unit length. In contrast, the kernel
ϕN Δx,Δy

� �
in Eq. (16.11) is a probability per unit area (because it is multiplied by

dΔxdΔy, which has units of area). The normalization condition for ϕN Δx,Δy
� �

is
therefore
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1=
Z∞

−∞

Z∞

−∞

ϕNðΔx,ΔyÞdΔxdΔy=2π
Z∞

0

ϕNðΔÞΔdΔ, ð16:15Þ

where we have used polar coordinates Δ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2

x +Δ2
y

q
, θ= tan− 1 Δy

Δx
and assumed

the kernel is isotropic, ϕNðΔx,ΔyÞ=ϕNðΔÞ. Comparing Eqs. (16.14) and (16.15),
we see that the dispersal probability per unit length (i.e., into a ring of area 2πΔdΔ)
φNðΔÞ is related to that per unit area ϕNðΔÞ as [16]

φNðΔÞ=2πΔϕNðΔÞ ð16:16Þ

and Eq. (16.13) yields

ϕNðΔÞ= ∑
M

j=1
pj
δð1ÞðrjÞ
2πΔ

. ð16:17Þ

For homogeneous parameter values, the speed will not depend on direction and
can thus be more easily computed along the x-axis ðy=0Þ. Consider a coordinate
frame z= x− vt moving with the wave of advance (v is the front speed). The
population density of farmers will be equal to its saturation density in regions where
the Neolithic transition is over, and it will decay to zero in regions where few
farmers have arrived. Thus we assume as usual the ansatz [16]
Nðx, y, tÞ≈N0exp[− λz�→ 0 for z→∞ (with λ>0). Then, assuming that the min-
imum speed is that of the front (which has been verified by numerical simulations),
we obtain for the speed v of front solutions to Eq. (16.11) [14]

vNCohab = min
λ>0

ln ðeαT − 1Þ∑M
j=1 pjI0ðλrjÞ

h i
Tλ

, ð16:18Þ

where the sub index NCohab indicates that this is not a cohabitation model (see the
next section), and I0ðλrjÞ is the modified Bessel function of the first kind and order
zero. In this model, the speed can be found by plotting the fraction in Eq. (16.18) as
a function of λ and finding its minimum.

In Ref. [14] it has been shown that the differences in the front speed obtained
from Eq. (16.13) and Fisher’s approximation, Eq. (16.1), are up to 49% for human
populations. So the effect of higher-order terms is not negligible.
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16.3 Second Improvement: Cohabitation Equations

For human populations, newborn children cannot survive on their own. However,
when they come on age they can move away from their parents. This point has led
some authors to use an equation of the so-called cohabitation type, namely

Nðx, y, t+ TÞ=
Z∞

−∞

Z∞

−∞

RT ½NΔ�ϕNdΔxdΔy, ð16:19Þ

where RT N½ � is again given by Eq. (16.12). Then the speed of front solutions is [14,
17]

vCohab = min
λ>0

αT + ln ∑M
j=1 pjI0ðλrjÞ

h i
Tλ

. ð16:20Þ

The reason why Eq. (16.19) is more reasonable than Eq. (16.11) is that, clearly,
Eq. (16.11) assumes that individuals born at ðx, yÞ at time t (last-but-one term) will
not move at all, i.e. they will all still be at ðx, yÞ on coming of age (time t+T ,
left-hand side). Thus, for example, in the simple case in which all parents move,
they will leave all of their children alone. Such an anthropologically unrealistic
feature makes it clear that Eq. (16.11) is less accurate than Eq. (16.19). For addi-
tional derivations and figures showing that Eq. (16.11) is less realistic than the
cohabitation Eq. (16.19), see especially Fig. 1 in Ref. [14], Fig. 17 in Ref. [16], and
Ref. [17].

A more direct way to see the limitations of Fisher’s speed (16.1) is to note that it
yields vFisher →∞ for α→∞. In contrast, numerical simulations have shown that
the cohabitation speed (16.20) yields for α→∞ the value vCohab = rmax ̸T , i.e. the
maximum dispersal distance divided by the generation time [14, 18], which is
physically reasonable. Moreover, the error of Fisher’s speed (16.1) relative to
Eq. (16.20) reaches 30% for realistic human kernels and parameter values [14]. This
error is still larger when cultural diffusion is included [1] (next section).

16.4 Demic-Cultural Model

Up to now we have only considered equations with a single mechanism for the
spread of the Neolithic, namely the dispersal of farmers (demic diffusion). But
agriculture can be also learnt by hunter-gatherers (cultural diffusion). When this
conversion of hunter-gatherers into farmers (cultural transmission) is taken into
account, we might be tempted to generalize Eq. (16.19) into
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Nðx, y, t+ TÞ=
Z∞

−∞

Z∞

−∞

RT NΔ½ �ϕNdΔxdΔy+
Z∞

−∞

Z∞

−∞

c NΔ,PΔ½ �ϕconverts
N dΔxdΔy,

ð16:21Þ

where PΔ =Pðx+Δx, y+ΔyÞ is the population density of hunter-gatherers at
ðx+Δx, y+ΔyÞ. The cultural transmission function c . . .½ � in Eq. (16.21) is due to
the conversion of hunter-gatherers into farmers. Thus a similar equation for the
population density of hunter-gatherers P ðx, y, t+ TÞ could be proposed, with a
minus sign in the last term. A recent derivation has found for the cultural trans-
mission function c . . .½ � (see Ref. [19], Eq. (1))

c Nðx, y, tÞ,Pðx, y, tÞ½ �= f
Nðx, y, tÞPðx, y, tÞ

Nðx, y, tÞ+ γPðx, y, tÞ , ð16:22Þ

where f and γ are cultural transmission parameters. The kernel ϕconverts
N Δx,Δy

� �
in

Eq. (16.22) is the dispersal kernel of hunter-gatherers that have been converted into
farmers. Since they now behave as farmers, let us assume that this kernel is the
same as ϕN Δx,Δy

� �
. Then Eq. (16.22) becomes

N x, y, t+Tð Þ=
Z∞

−∞

Z∞

−∞

RT NΔ½ �ϕNdΔxdΔy+
Z∞

−∞

Z∞

−∞

f
NΔPΔ

NΔ + γPΔ
ϕNdΔxdΔy.

ð16:23Þ

A model of this kind was applied recently (see Eq. 5 in Ref. [19]). It is an
approximation that may be valid in some regions (with mainly demic diffusion) but
it cannot lead to a purely cultural model of Neolithic spread (because according to
Eq. (16.23) there is no front propagation in the absence of demic diffusion, i.e. if
ϕN Δx,Δy

� �
≠ 0 only at vanishing distance, i.e. for Δ= ðΔ2

x +Δ2
yÞ1 ̸2 = 0). Thus we

will here consider a more realistic model in two ways. Firstly we take into account
that, according to ethnographic observations, hunter-gatherers can learn agriculture
from farmers located some distance away [1]. Then Eq. (16.23) is generalized into

Nðx, y, t+TÞ=
Z∞

−∞

Z∞

−∞

RT NΔ½ �ϕNdΔxdΔy

+
Z∞

−∞

Z∞

−∞

ϕNdΔxdΔy

Z∞

−∞

Z∞

−∞

ϕ
0
PdΔ

′

xdΔ
′

yf
NΔ+Δ′PΔ

NΔ+Δ′ + γPΔ
,

ð16:24Þ

where NΔ+Δ′ stands for N x+Δx +Δ
0
x, y+Δy +Δ

0
y, t

	 

.
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In practice, the cultural kernel ϕ
0
PðΔ′

x,Δ
′

yÞ (which is abbreviated as ϕ
0
P in

Eq. (16.24)) is a set of probabilities Pk for hunter-gatherers to learn agriculture from
farmers living at distances Rk = ðΔ′ 2

x +Δ′ 2
y Þ1 ̸2, during a generation time T . This is

similar to the fact, mentioned above Eq. (16.13), that in practice the demic kernel
ϕN Δx,Δy

� �
is a set of probabilities pj for farmers to disperse at distances

rj = ðΔ2
x +Δ2

yÞ1 ̸2, also during a generation time T .
Secondly we note that after a generation time T , reproduction will have led to

new individuals not only in the population of farmers (first line in Eq. (16.24)) but
also in the population of hunter-gatherers converted into farmers (second line in
Eq. (16.24)). Thus we finally generalize Eq. (16.24) into

Nðx, y, t+ TÞ=
Z∞

−∞

Z∞

−∞

RT NΔ½ �ϕNdΔxdΔy

+
Z∞

−∞

Z∞

−∞

ϕNdΔxdΔy

Z∞

−∞

Z∞

−∞

ϕ
0
P dΔ

′

xdΔ
′

yRT f
NΔ+Δ′PΔ

NΔ+Δ′ + γPΔ

� �
.

ð16:25Þ

The speed of front solutions to Eq. (16.25) is [1]

v= min
λ>0

αT + ln ∑M
j=1 pjI0ðλrjÞ

	 

1+C ∑Q

k=1 PkI0ðλRkÞ
h i	 
h i

Tλ
, ð16:26Þ

with C= f ̸γ. This reduced parameter C was called the intensity of cultural trans-
mission [19] because, according to Eq. (16.22), C= f ̸γ is the number of
hunter-gatherers converted per farmer at the front leading edge (i.e. in regions such
that N≪P). Without cultural transmission ðC=0Þ, the demic-cultural front speed,
given by Eq. (16.26), reduces to the purely-demic speed, Eq. (16.20), as it should.
With frequency-dependent cultural transmission, Eq. (16.22) is more complicated
and the equations are longer, but the final results are exactly the same [1].

It is important to note that cultural transmission (the factor in brackets f . . .½ � at
the end of the second line in Eq. (16.25)) is applied in a term that also contains the
effects of net reproduction ðRTÞ and dispersal (the kernel of farmers ϕNðΔx,ΔyÞ).
Thus some hunter-gatherers will learn agriculture from farmers located a distance
ðΔ′

x,Δ
′

yÞ, and the children of those converted hunter-gatherers will possibly move a
distance ðΔx,ΔyÞ (similarly to the children of farmers, first line). Therefore, some
hunter-gatherers can learn agriculture from farmers and the next generation (i.e., the
children) of those hunter-gatherers will be farmers. Such a conversion during a
generation time is reported by ethnographic data [20] and implies that the individual
acculturation process is not instantaneous but takes place within one generation
time, which seems reasonable for a complex cultural trait as farming.
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Finally, a purely cultural model means no demic diffusion. In this model, the
front speed can be obtained from Eq. (16.26) without demic diffusion (r1 = 0 and
p1 = 1), namely

vC = min
λ>0

αT + ln 1+C ∑Q
k=1 PkI0ðλRkÞ

	 
h i
Tλ

, ð16:27Þ

where the sub index C stands for purely cultural diffusion. This is the purely
cultural analogue to the purely demic speed given by Eq. (16.20). Both of them are,
of course, cohabitation models.

16.5 Demic Versus Cultural Diffusion in the Spread
of the Neolithic in Europe

What do the models above imply for the relative importance of demic and cultural
diffusion in the spread of the Neolithic in different regions of Europe? Let us
summarize a recent proposal [1], which is based on using the following realistic
ranges for the parameters appearing in our equations.

The ranges for aN and T that have been measured for preindustrial farming
populations are 0.023 year− 1 ≤ aN ≤ 0.033 year− 1 and 29 year≤ T ≤ 35 year (see
the SI Appendix to Ref. [19] for details).

The following 5 dispersal kernels ϕN Δx,Δy
� �

have been measured for prein-
dustrial farming populations [14]. For each kernel we also give its purely demic
speed range, as predicted by the cohabitation model, Eq. (16.20), with
aN =0.023 year− 1 and T =35 year (slowest speed) or aN =0.033 year− 1 and
T =29 year (fastest speed).

Population A (Gilishi 15): purely demic speed range 0.87–1.15 km/year.
Population B (Gilishi 25): purely demic speed range 0.92–1.21 km/year.
Population C (Shiri 15): purely demic speed range 1.14–1.48 km/year.
Population D (Yanomamö): purely demic speed range 1.12–1.48 km/year.
Population E (Issongos): purely demic speed range 0.68–0.92 km/year.

We see that demic diffusion predicts Neolithic front speeds of at least 0.68 km/
year. Demic-cultural diffusion will be still faster. Thus it has been suggested that
cultural diffusion is responsible for the Neolithic spread in regions with speeds
below 0.68 km/year [1]. For simplicity, let us consider purely cultural diffusion,
Eq. (16.27), although a short-range demic kernel can be also included (Sect. S6 in
Ref. [1]). In order to estimate the speeds predicted by purely cultural diffusion, we
need the following cultural parameters.

The cultural transmission intensity C from hunter-gathering to farming has been
estimated from several case studies in Ref. [19] and the overall range is
1.0≤C≤ 10.9.

326 J. Fort



The following 5 cultural kernels have been estimated from distances from
hunter-gatherers camp locations to the villages of farmers, where the
hunter-gatherers practice agriculture [1]. For each kernel, we also report the
purely-cultural speed range obtained from Eq. (16.27) with aN =0.023 year− 1,
T =35 year and C=1 (slowest speed) or aN =0.033 year− 1, T =29 year and
C=10.9 (fastest speed).

Population 1 (Mbuti, band I): speed range 0.17–0.36 km/year.
Population 2 (Mbuti, band II): speed range 0.30–0.57 km/year.
Population 3 (Mbuti, band III): speed range 0.32–0.66 km/year.
Population 4 (Aka): speed range 0.09–0.19 km/year.
Population 5 (Baka): speed range 0.03–0.07 km/year.

Thus the purely cultural model yields 0.03–0.66 km/year. Note that this is
slower than the purely demic speed range found above (0.68–0.92 km/year):

Finally, for the demic-cultural model, Eq. (16.26), the slowest speed is obvi-
ously 0.68 km/year (see the purely demic model above). The relevant result of the
demic-cultural model is its fastest speed. This obviously corresponds to the
strongest value observed for the intensity of cultural transmission (C=10.9), the
fastest cultural kernel (population 3), the fastest demic kernel (population C or D),
the highest observed value of aN ð0.033 year− 1Þ and the lowest observed value of T
ð29 yearÞ. Using these data in Eq. (16.25) we find that the fastest speed is obtained
for the demic kernel of population D yielding 3.04 km/year.

In Fig. 16.4b, the color scale has been chosen so that the red color corresponds
to the regions of purely cultural diffusion (0.03–0.66 km/year, from the purely
cultural model above). The demic and demic-cultural models predict speeds above
0.68 km/year, and are thus too fast to be consistent with the archeological data in
the red regions in Fig. 16.4b. This suggests that cultural diffusion explains the
Neolithic transition in Northern Europe, as well as in the Alps and west of the Black
Sea. The analysis of the areas where demic diffusion played a role is less
straightforward, but it is possible to determine the regions where the speed was
mainly demic (i.e. where the cultural effect was < 50%) [1]. They correspond to the
yellow regions in Fig. 16.4b. The regions where either demic or cultural diffusion
could have dominated are the blue regions in Fig. 16.4b. The blue regions appear
because we have used parameter ranges and several kernels (they would not appear
if we had used a single value for each parameter, a single demic kernel, and a single
cultural kernel). Finally, in the green regions in Fig. 16.4 the speed is too fast to
agree with any of the three models in the present chapter, but in continental Europe
those regions contain very few sites and will probably disappear using more
complete databases (i.e., with more archeological sites).

16 The Neolithic Transition: Diffusion of People … 327



Fig. 16.4 Isochrones obtained by smoothing 40 times the map in Fig. 16.1 (a). Note that most
anomalously old/recent areas have been disappeared. Smoothing 60 times yields almost the same
map. (b) Displays the speed ranges obtained from (a). Closer isochrones correspond to slower
speeds. Adapted from Ref. [1], Supp. Info. Appendix, Fig. S4
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16.6 Conclusions

The models reviewed in this chapter suggest that the spread of the Neolithic in
Europe was: (i) fast and mainly demic in the Balkans and Central Europe; (ii) slow
and mainly cultural in Northern Europe, the Alpine region and west of the Black
Sea (Fig. 16.4b) [1].

As seen in Fig. 16.4b, the process was fast (speeds above 0.68 km/year) in
Greece, Italy, the Balkans, Hungary, Slovakia, Czechia and central Germany. This
wide region includes a substantial part of the Linearbandkermic (LBK) culture in
Central Europe. This is in agreement with the fact that the LBK is widely regarded
as demic by archeologists. Also in agreement with our results, some archeologists
have argued for the importance of demic diffusion in the Neolithic spread from the
Aegean northwards and across the Balkans. On the other hand, our models suggest
that farming populations did not spread much into Northern Europe, the Alps and
West of the Black Sea (red color in Fig. 16.4b). In such regions, the transition was
slow (speeds below 0.66 km/year) and, according to our models, not driven by
demic or demic-cultural diffusion. Some archeologists have previously suggested
that cultural diffusion played a strong role in the spread of the Neolithic in Northern
Europe, the Alps and West of the Black sea. Note that these are precisely the mainly
cultural diffusion regions according to our models (red color in Fig. 16.4b). For
detailed archeological references on the importance of demic and cultural diffusion
in different regions of Europe see, e.g., Sect. 3 in Ref. [1]. Ancient genetics also
indicates that cultural diffusion was more important in Northern Europe [21], in
agreement with our conclusions.

The slowness of cultural diffusion (as compared to demic diffusion) is due to the
fact that, according to ethnographic observations, the distances appearing in the
cultural kernel ϕ

0
PðΔ′

x,Δ
′

yÞ are substantially shorter than those appearing in the
demic kernel ϕNðΔx,ΔyÞ [1]. The intuitive reason may be that that agriculture is a
difficult cultural trait to learn, and this leads to shorter cultural than demic diffusion
distances. Note that the cultural distances are defined as those separating
hunter-gatherers from the farmers who teach them how to farm. Indeed, according
to ethnographic data, in the spread of farming cultural diffusion distances were short
as compared to demic diffusion distances [1]. The latter are those along which the
children of farmers disperse away from their parents. Such demic distances can
obviously be larger than cultural distances, because the children of farmers have
already learnt agriculture before leaving their parents.

Models similar to those summarized here have been applied to Paleolithic waves
of advance [22], the extremely fast spread of the Neolithic in the Western
Mediterranean [23], language substitution fronts [24], etc.

All models considered in this chapter operate with a minimum of parameters.
Parameters in the demic model are, for instance, only the initial growth rate α, the
generation T and the dispersal kernel which, in addition, have been estimated from
ethnographic or archeological data. With such constraints one is able to largely
avoid any unjustified bias in modeling which may easily occur by the use of too
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many parameters which, finally, degenerate to simple fitting parameters. For
example, in some models of virus infection fronts, it was possible to reproduce the
experimental front speeds if choosing several parameter values [25, 26]. However,
this was not possible for realistic parameter values [26, 27]. Later, more refined
models reproduced the data without choosing any parameter values [28]. We have
to be aware, however, that one may quite reasonably introduce much larger
parameter sets as demonstrated in Chap. 17. However, their values (see the caption
to Table 17.2) become questionable with the lack of possibilities for their deter-
mination from reliable, independent sources (see also p. 3462 in Ref. [5], where 8
parameter values are chosen to replicate the observed spread rate, etc., rather than
from independent data). Optimum strategies will notably change with changes in
data accessibility and in the course of exchange between the scientists in the various
disciplines involved in the problem.
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Chapter 17
The Diffusion of Humans and Cultures
in the Course of the Spread of Farming

Carsten Lemmen and Detlef Gronenborn

17.1 Introduction

The most profound change in the relationship between humans and their environment

was the introduction of agriculture and pastoralism. With this millennia-lasting eco-

nomic shift from simple food acquisition to complex food production humankind

paved the way for its grand transitional process from mobile groups to sedentary

villages, towns and ultimately cities, and from egalitarian bands to chiefdoms and

lastly states. Given this enormous historic impetus, Gordon Childe coined the term

“Neolithic Revolution” [1] almost a hundred years ago.

The first experiments towards agriculture began with the end of the Glacial period

about 10,000 years ago in the so called Fertile Crescent [2]. They were followed by

other endeavors in various locations both in the Americas and in Afroeurasia. Today

farming has spread to all but the most secluded or marginal environments of the

planet [3]. Cultivation of plants and animals on the global scale appears to have

changed energy and material flows—like greenhouse gas emissions—so fundamen-

tally, that the term “early anthropocene” has been proposed for the era following the

Mid-Holocene [4].

Possible reasons for the emergence of farming during the relatively confined

period between the Early and Mid-Holocene in locations independent of each other

are continuously being debated [2]. Once these inventions were in place, how-

ever, they immediately become visible in the archeological and paleoenvironmental

records. From then on we can trace the spatial expansion of the newly domesticated

plants and animals, the spatial expansion of a life style based on these domesticates,
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Fig. 17.1 Overview of the study area and the archeologically visible expansion of farming. Figure

by Detlef Gronenborn (Romano-German Central Museum, Mainz, Germany). Reprinted with per-

mission, licensed under CC BY 4.0

and the induced changes in land cover [5, 6]. From such empirically derived data

the characteristic condensed map of the spread of farming into Western Eurasia is

produced (Fig. 17.1).

The local changes introduced spatial differences in knowledge, labor, technology,

materials, population density, and—more indirectly—social structure and political

organization, amongst others [7, 8]. Consequently, the dynamics occurring along

such spatial gradients may be modeled as a diffusive process. In Chap. 2, Fick’s first

law was introduced, which describes that the average flux across a spatial bound-

ary is proportional to the difference of concentration across this boundary (Chap. 2,

Eq. (2.6)). Each of the local inventions would then spread outward from its respec-

tive point of origin. Indeed, these spatiotemporal gradients have been observed in

ceramics [1], radiocarbon dates [5, 9], domesticates [10, 11], land use change [12,

13], and the genetic composition of paleopopulations [14–17].

For an understanding of the expansion process, it appears appropriate to apply a

diffusive model. Broadly, these numerical modeling approaches can be categorized

in correlative, continuous and discrete, as specified further below. Common to all

approaches is the comparison to collections of radiocarbon data that show the appar-

ent wave of advance [18] of the transition to farming. However, these data sets differ

in entry density and data quality. Often they disregard local and regional specifics

and research gaps, or dating uncertainties. Thus, most of these data bases may only

be used on a very general, broad scale. One of the pitfalls of using irregularly

spaced or irregularly documented radiocarbon data becomes evident from the map

https://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1007/978-3-319-67798-9_2
http://dx.doi.org/10.1007/978-3-319-67798-9_2
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generated by Fort (this volume, Chap. 16): while the general east-west and

south-north trends are well represented, some areas appear as having undergone

anomalously early transitions to farming.

Correlative models compare the timing of the transition (or other archeologically

visible frontiers) with the distance from one or more points of origin. These are

among the earliest models proposed, such as those by Clark [5] or by Ammerman

and Cavalli Sforza [18]. These models have been used to roughly estimate the front

propagation speed of the introduction of agriculture into Europe, and the original

speed of around 1 km per year has not been substantially refined until today.

Continuous models predict at each location within the specified domain the transi-

tion time as the solution of a differential equation, mostly of a Fisher–Skellam type,

in relation to the distance from one or more points of origin. Often, this distance is

not only the geometric distance but also factors in geography and topography, includ-

ing ease of migration. The prediction from the continuous model is compared to the

archeologically visible frontier [19]. This is the approach taken by Fort (this volume,

Chap. 16) who compares the wave-front propagation of different models for the tran-

sition from a hunting and gathering economy to a farming economy in Europe with

the spatiotemporal pattern of the earliest radiocarbon dates locally associated with

farming.

Discrete models are often realized as agent-based models (see also Sect. 2.5 of

Chap. 2), with geographic areas (or their populations) representing the “agents”, and

rules that describe the interaction, especially the diffusion properties, between them.

They also predict for each geographic area the transition time, but not as an analytic,

but rather as an emergent property of the system. We here introduce, as an example,

a discrete agent-based and gradient-adaptive model, referred to as the “Global Land

Use and technological Evolution Simulator” (GLUES).

The chapter starts with introducing into the special features of this simulation

model, notably into the set of local characteristic variables (“traits”, see Sect. 17.2.1).

They are exploited for characterizing the given state of the “agent” (i.e. of the popula-

tion under consideration) and decide, simultaneously, about the further development

of the system. Section 17.2.2 introduces into the general formalism of evolution. Cor-

relations between the different traits, their evolution and local population growth are

considered in Sect. 17.2.3, with a summarizing discussion of the various types of

flux and diffusion provided in Sects. 17.2.4 and 17.2.5. Section 17.3 illustrates the

surplus of information attainable by data analysis via GLUES, including clear quan-

titative assessment between demic and cultural diffusion (i.e. between the movement

of people or ideas) as a function of time and space.

17.2 The Agent-Based Gradient-Adaptive Model GLUES

We employ the Global Land Use and technological Evolution Simulator

(GLUES [20, 21])—a numerical model of prehistoric innovation, demography, and

subsistence economy based on interacting geographic populations as agents and

http://dx.doi.org/10.1007/978-3-319-67798-9_16
http://dx.doi.org/10.1007/978-3-319-67798-9_16
http://dx.doi.org/10.1007/978-3-319-67798-9_2
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Fig. 17.2 Regions

constituting the set of agents

in the simulation (shown for

Western Eurasia and North

Africa) in 685 globally

distributed regions)

64oN

  12oW    0o   12oE   24oE   36oE   48oE
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40oN

48oN

56oN

gradient adaptive trait dynamics to describe local evolution. There are currently

685 regions representing the “cells” of agent-based models (Fig. 17.2), together

with interaction rules that describe diffusion of people, material and information

between these regions. The “agent” is the population living within a region. Its state

is described by its density and by a number of characteristic features, referred to

as traits. They result as averages over the considered population. Such averages are

referred to as “aggregated traits”. GLUES operates with three different traits which

shall be described in more detail below.

The “numerical model” is able to hindcast the regional transitions to agropas-

toralism and the diffusion of people and innovations across the world for the time

span between approximately 8000 BCE (before the common era) and 1500 CE. It

has been successfully compared to radiocarbon data for Europe [21], Eastern North

America [22], and South Asia [23].

Regions are generated from ecozone clusters that have been derived to represent

homogeneous net primary productivity (E
NPP

) based on a 3000 BCE 1◦ × 1◦ paleo-

productivity estimate; this estimate was derived from a climatologically downscaled

dynamic paleovegetation simulation [20]. By using E
NPP

, many of the environmental

factors taken into account by other expansion or predictive models, such as altitude,

latitude, rainfall, or temperature [10, 24] are implicitly considered.

17.2.1 Local Characteristic Variables

The model as displayed in Fig. 17.2 is, at any instant of time, completely described by

knowledge of (i) population (B), (ii) associated traits (X) and (iii) environmental con-

ditions (E) of each individual region. In a series of different applications (covering a

time span of close to 10,000 years in Europe, America and Asia, it has turned out that
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Table 17.1 Characteristic traits used in the Gradient Adaptive Dynamics formulation of GLUES;

a full table of symbols used is available as Table 17.2

Characteristic trait Symbol Quantification Typical range

Technology efficiency T Factor of efficiency

gain over Mesolithic

0.9–15

Economic diversity N Richness of economic

agropastoral strategies

0.1–8

Agropastoral share C Fraction of activities

in agropastoralism

0–1

overall developments could be satisfactorily described by introducing three different

types of “traits”, i.e. of characteristic features characterizing the productivity-related

intellectual level of the population. They all result as sociocultural averages and may,

in short, be referred to as “technological efficiency” (T), “share of agropastoral activ-

ities” (C) and “economic diversity” (N), as summarized by Table 17.1. In detail, the

various traits can be characterized as follows:

1. Technology T is a trait which describes the efficiency for enhancing biologi-

cal growth rates, or diminishing mortality. It is represented by the efficiency of

food procurement—related to both foraging and farming—and improvements in

health care. In particular, technology as a model describes the availability of tools,

weapons, and transport or storage facilities, and includes institutional aspects

related to work organization and knowledge management. These are often syn-

ergistic: the technical and societal skill of writing as a means for cultural storage

and administration, with the latter acting as an organizational lubricant for food

procurement and its optimal allocation in space and among social groups. Quanti-

tative measure of T is the (estimated) efficiency gain over Mesolithic technology.

2. Economic diversity N resolves the number of different agropastoral economies

available to a regional population. This trait is closely tied to regional vegetation

resources and climate constraints. A larger economic diversity offering different

niches for agricultural or pastoral practices enhances the reliability of subsistence

and the efficacy in exploiting heterogeneous landscapes.

3. The third model variable C represents the share of farming and herding activi-

ties, encompassing both animal husbandry and plant cultivation. It describes the

allocation of energy, time, or manpower to agropastoralism with respect to the

total food sector; this is the only variable that is directly comparable to data from

the archeological record.
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17.2.2 Adaptive Dynamics

The entities of the “local characteristic variables” as introduced in Sect. 17.2.1 are

subject to continuous variation. This process is controlled by the current state of these

variables. Dynamics of evolution is thus immediately recognized as a function of the

given evolutionary stage (represented by the set T ,N,C) of traits (also referred to as

the “food production system”) and the population density. This concept of “adaptive

dynamics” is related to E. Boserup’s observation that “The close relationship which

exists today between population density and food production system is the result of

two long-existing processes of adaptation. On the one hand, population density has

adapted to the natural conditions for food production [. . . ]; on the other hand, food

supply systems have adapted to changes in population density.” [25, 26].

Mathematically, this conceptual model is implemented in the so-called Gradi-

ent Adaptive Dynamics (GAD) approach: Whenever traits can be related to growth

rate, then an approach known as adaptive dynamics can be applied to generate the

equations for the temporal change of traits, the so-called evolution equations. This

adaptive dynamics goes back to earlier work by Fisher in the 1930s [27] and the

field of genetics. When genetically encoded traits influence the fitness of individu-

als, the prevalence of the genes encoding this phenotype changes. Adaptive dynamics

describes the change of the probability of the trait in the population by considering

its mutation rate and its fitness gradient, i.e., the marginal benefit of changes in the

trait for the (reproductive) fitness of the individual.

To ecological systems, this metaphor was first applied by Wirtz and Eckhardt in

1996 [28], and to cultural traits by Wirtz and Lemmen in 2003 [20]. In this trans-

lation, the genetically motivated term mutation rate was replaced by the ecologi-

cally observable variability of a trait. Because many traits are usually involved in

(socio)ecological applications (here T ,N,C), the term Gradient Adaptive Dynamics

was introduced to emphasize the usage of the growth-rate gradient of the vector of

traits. Here, we explain the published equations in an updated and consistent form.

In a local population B composed of n sub-population members 𝜄 ∈ {1… n}, each

member with relative contribution B
𝜄

∕B, characteristic traits X
𝜄

, and time-dependent

environmental condition E
𝜄

(t), has a relative growth rate r
𝜄

r
𝜄

= 1
B
𝜄

⋅
dB

𝜄

dt
= r

𝜄

(
X
𝜄

,E
𝜄

(t)
)
. (17.1)

This equation is often formulated in terms of the population density P = B∕A, where

A is the area populated by B:

r
𝜄

= 1
P
𝜄

⋅
dP

𝜄

dt
= r

𝜄

(
X
𝜄

,E
𝜄

(t)
)

(17.2)

and

n∑

𝜄

(P
𝜄

∕P) = 1.
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Fig. 17.3 The adaptive

dynamics of a characteristic

trait X in a fitness landscape

r(X,E(t)) is described by the

width of the trait distribution

(𝜎X) and the marginal benefit

that a small change in X has

on the growth rate r.

Modified from [29]

The mean of a quantity X over all individuals 𝜄 is calculated as

⟨X⟩ =
n∑

𝜄=1

X
𝜄

P
𝜄

P
. (17.3)

The adaptive dynamics rooted in genetics assumes that mutation errors are only

relevant at cell duplication, and not during cell growth. Translated to the ecological

entity population this restriction enforces that all traits X
𝜄

of a member of this popu-

lation are stable during the lifetime of this member:
d

dt
X
𝜄

= 0 for all X
𝜄

. Changes in

the aggregated traits ⟨X⟩ are a result of frequency selection (the number of members

carrying a specific characteristic trait increases or decreases as a result of selection)

only. Differentiating Eq. (17.3) with respect to time and considering
d

dt
X
𝜄

= 0, gives

d ⟨X⟩
dt

=
n∑

𝜄=1

𝜕

X
𝜄

P
𝜄

P

𝜕t
, (17.4)

which can be further simplified to

dX
dt

= 𝜎

2
X ⋅

𝜕r(X)
𝜕X

, (17.5)

where 𝜎

2
X =

⟨
(X − ⟨X⟩)2

⟩
denotes the variance of X. The angular brackets around

⟨X⟩ have been left out for better readability. Figure 17.3 is provided for illustrating

the essence of Eq. (17.5): A given distribution in trait (curve around ⟨X⟩ of width 𝜎X)

is seen to evolve by being shifted into the direction of increasing “fitness landscape”,

i.e. into the direction giving rise to higher growth rates.
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17.2.3 Local Population Growth

Key to adaptive dynamics is the formulation of the growth rate as a function of all

characteristic traits. Once this dependence is specified, the evolution equations for X
are generated automatically from Eq. (17.5).

The relative growth rate r of an agent population may obviously be noted as the

difference of gain and loss rates for which we use the shorthand notation

r = r
gain

− r
loss

. (17.6)

We are now going to illustrate how gain and loss is reasonably correlated with

the characteristic traits and environmental conditions. Corresponding with the high

degree of complexity of the system under consideration, gain and loss are subject

to quite a substantial number of parameters. Following the introduction in the vari-

ous “traits” by Table 17.1, a complete overview of these parameters is provided by

Table 17.2.

On the way towards quantitating the gain r
gain

it is useful to introduce a quan-

tity which describes a community’s effectiveness in generating consumable food

and secondary products. This quantity is referred to as the “subsistence intensity”.

It is dimensionless and scaled such that a value of unity expresses the mean subsis-

tence intensity of a hunter-gatherer society equipped with tools typical for the mature

Mesolithic. With Table 17.1, mature Mesolithic is seen to be characterized by traits

T = 1 and C ≈ 0. We note that the first term on the right-hand side of Eq. (17.7),

used for quantifying the subsistence intensity s

s = (1 − C) ⋅
√

T + C ⋅ N ⋅ T ⋅ E
TLI

, (17.7)

does exactly reflect this condition by becoming equal to unity, with the second term

disappearing for a hunter-gatherer society. The second term, the “agropastoral part”,

is assumed to increase linearly with N and T: The more economies (N) there are,

the better are sub-regional scaled niches utilized and the more reliable returns are

generated when annual weather conditions are variable; the higher the technology

level (T), the better the efficiency of using natural resources (by definition of T).

While a variety of techniques can steeply increase harvests of domesticated species,

analogous benefits for foraging productivity are less pronounced, giving rise to a less

than linear dependence of the hunting-gathering calorie procurement on T , which is

taken into account by considering, in the first term on the right of Eq. (17.7), only

the square root of T .

With the parameter E
TLI

we have introduced an additional temperature constraint

on agricultural productivity which considers that cold temperature could only mod-

erately be overcome by Neolithic technologies. While E
TLI

is thus set unity at low

latitudes, it approaches zero at permafrost conditions. The domestication process

is represented by N, which is the number of realized agropastoral economies. We

link N to natural resources by expressing it as the fraction f of potentially available
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Table 17.2 Symbols and variables used in the text and equations. A useful parameter set (see e.g.

[23]) is 𝜇 = 𝜌 = 0.004 a
−1

, 𝜔 = 0.04, 𝛾 = 0.12, 𝛿T = 0.025, 𝜍
demic

= 0.002, 𝜍
info

= 0.2, 𝛿N = 0.9;

and initial values for P0 = 0.01, T0 = 1.0, N0 = 0.8, and C0 = 0.04
Symbol Description Unit Typical range

P Population density km
−2

>0
X Growth-influencing

trait

>0

T Technology trait >0
N Economic trait >0
C Labor allocation trait 0–1

t Time a 9500–1000 BCE

r Specific growth rate a
−1

f Economy availability 0–1

E Environmental

constraints

E
TLI

Temperature limitation 0–1

EPAE Potentially available

economies

0–1

E
FEP

Food extraction

potential

0–1

⟨⋅⟩ Mean/first moment of ⋅

𝜎

2
Variance >0

𝜍 Diffusion parameter >0
s Subsistence intensity

𝜔 Administration

parameter

𝛾 Exploitation parameter

𝜇 Fertility rate a
−1

𝜌 Mortality rate a
−1

economies (E
PAE

) by specifying N = f ⋅ E
PAE

, where the latter corresponds to the

richness in domesticable animal or plant species within a specific region.

The increase in s may be accompanied by processes which tend to mitigate rather

than to enhance fertility. This concerns, in particular, the overexploitation of natural

resources which is taken account of by multiplying s by a factor (E
FEP

− 𝛾

√
TP),

where E
FEP

is introduced as a measure of the multitude of natural resources and

𝛾 stands for a suitably chosen scaling parameter. With a second factor (1 − 𝜔T)
one takes account of the so-called organizational losses, which emerge when people

neither farm nor hunt: Construction, maintenance, and administration draw a small

fraction of the workforce away from food production.

Summing up, the overall gain may be noted as
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rgain = 𝜇 ⋅ (E
FEP

− 𝛾

√
TP) ⋅ (1 − 𝜔T) ⋅ s (17.8)

where 𝜇 has been introduced as a scaling parameter referred to as the gain coefficient

or fertility rate. For the loss term one applies the standard ecological form

rloss = 𝜌 ⋅ P ⋅ e
−T∕T

lit
, (17.9)

modeled on the crowding effect (also known as ecological capacity), implying pro-

portionality between loss and population density. It is mediated by technologies (T)

which mitigate, for example, losses due to disease, where T
lit
= 12 proved to serve

as a good health standard. The scaling parameter 𝜌 is the equivalent of the fertility

rate 𝜇 in Eq. (17.8) and referred to as the loss coefficient or mortality rate.

17.2.4 Spatial Diffusion Model

Information, material and people are implied to exchange between the various regions

by fluxes which may be modeled by the Fickian diffusion equation (Chap. 2, Eqs.

(2.6–2.9)), where the discrete region arrangement and the locally varying diffusivity

coefficient Dik have to be taken account of. By adopting the notation of the continu-

ity equation, Eq. (2.8) the change of any characteristic trait Xi in a region i due to

diffusion from/to all regions k ∈ i in its neighborhood i with neighbor distance

Δxik may, thus, be noted as

ΔXi

Δt
=

∑

k∈i

−jik∕Δxik, (17.10)

with jik = −DikΔXik∕Δxik constituting the diffusive flux between i and k (Fig. 17.4).

In this formulation of the diffusive flux we easily recognize the structure of Fick‘s

Fig. 17.4 Schematic representation of interregional exchange in GLUES

http://dx.doi.org/10.1007/978-3-319-67798-9_2
http://dx.doi.org/10.1007/978-3-319-67798-9_2
http://dx.doi.org/10.1007/978-3-319-67798-9_2
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first law, Eq. (2.6), with the concentration c replaced by the characteristic trait Xi
under study and, correspondingly, the particle flux j replaced by the flux of traits,

driven by their “gradient” ΔXik∕Δxik between regions i and k. Insertion into Eq.

(17.10) yields

ΔXi

Δt
=

∑

k∈i

DikΔXikΔx−2ik . (17.11)

This equation can be reformulated [30] as

ΔXi

Δt
= 𝜍

∑

k∈i

fikΔXik (17.12)

with fik = DikΔx−2ik 𝜍

−1
, where 𝜍 is a global diffusion property characterizing the

underlying process (see below) and fik collects all regionally varying spatial and

social diffusive aspects.

The social factor in the formulation of fik is the difference between two regions’

influences, where influence is defined as the product of population density P and

technology T , scaled by the average influence of regions i, k. The geographic factor

is the conductance between the two regions, which is constructed from the common

boundary length Lik divided by the mean area of the regions

√
AiAk. Non-neighbor

regions have no common boundary, and hence have zero conductance. To connect

across the Strait of Gibraltar, the English Channel, and the Bosporus, the respective

conductances were calculated as if narrow land bridges connected them. No addi-

tional account is made for increased conductivity along rivers [31].

17.2.5 Three Types of Diffusion

Three types of diffusion are distinguished: (1) demic diffusion, i.e. the migration of

people, (2) the hitchhiking of traits with migrants, and (3) cultural diffusion, i.e. the

information exchange of characteristic traits.

Demic diffusion is the mass-balanced migration of people between different regions.

The diffusion equation (17.12) is applied to the number of inhabitants Bi = PiAi in

each region i.

dBi

dt
||||demic

=

{
𝜍

demic

∑
j∈i

fij(Bj − Bi), r ≥ 0
0 otherwise

(17.13)

The free parameter 𝜍
demic

has to be determined from comparison to data. The para-

meter estimation based on the European dataset by Pinhasi [30] and the typical

front speed extracted from this dataset yields 𝜍
demic

= 0.002 (see [32] for parameter

http://dx.doi.org/10.1007/978-3-319-67798-9_2
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estimation). We impose an additional restriction to migration by requiring positive

growth rate ri ≥ 0, i.e. favorable living conditions, in the receiving region i.
Hitchhiking traits: Whenever people move in a demic process, they carry along

their traits to the receiving region. Changes in trait are proportional to the number of

immigrants (proportional to Bj) and inversely proportional to the number of original

inhabitants Bi

dXi

dt
||||demic

=

{
𝜍

demic

∑
j∈i

fijXj
Bj

Bi
, ri ≥ 0

0 otherwise

(17.14)

Information exchange: Traits do not decrease when they are exported. Thus, only

the positive contribution from the diffusion equation Eq. (17.12) is considered:

dXi

dt
||||info

= 𝜍
info

∑

j∈i,fij>0
fij ⋅ (Xj − Xi) (17.15)

The diffusion parameter was estimated to be 𝜍
info

= 0.2 in a reference scenario [21].

Despite the formal similarity of Eqs. (17.14) and (17.15) suggesting a mere factor

𝜍
demic

∕𝜍
info

as the difference, the processes are rather different: migration is mass-

conserving, information exchange is not (note the summation of only positive fij for

information exchange) and migration is hindered by bad living conditions, informa-

tion exchange is not.

17.3 Model Applications to Diffusion Questions

Two questions have been addressed with GLUES that are specific to diffusion. First

and foremost, the wave front propagation speed was diagnosed from the model with

respect to both demic and cultural diffusion [21]. For a mixed demic and cultural

diffusion scenario, the authors found a wave front propagation speed of 0.81 km

a
−1

radiating outward of an assumed center near Beirut (Lebanon) in the European

dataset, somewhat faster than the speed diagnosed from radiocarbon data (0.72 km

a
−1

[30]). Both in the radiocarbon data and the model simulation, however, there is

large scatter from the linear time-distance relationship, with a lower than average

propagation speed in the Levante before 7000 BCE, and with higher than average

propagation speed with the expansion of the Linearbandkeramik (LBK) in the sixth

millennium BCE.

It was also found, that there is a regionally heterogeneous contribution of demic

and cultural diffusion, and of local innovation in the simulated transition to agropas-

toralism. While either diffusion mechanism is necessary for a good reconstruction of

the emergence of farming, the major contribution to local increases in T or C is local
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innovation. Diffusion (its contribution is in many regions around 20% to the change

in an effective variable) seems to have been a necessary trigger to local invention.

Not only is the contribution of diffusive processes heterogeneous in space, but it

also varies in time. This was shown by studying the interregional exchange fluxes

in the transition to farming for Eurasia with GLUES [32]. Most Eurasian regions

exhibited an equal proportion of demic and cultural diffusion events when integrated

over time, with the exception of some mountainous regions (Alps, Himalayas), where

demic diffusion is probably overestimated by the model: the higher populations in

the surrounding regions may lead to a constant influx of people into the enclosed

and sparsely inhabited mountain region.

When time is considered, however, it appears that diffusion from the Fertile Cres-

cent is predominantly demic before 4900 BCE, and cultural thereafter; that east of

the Black Sea, diffusion is demic until 4200 BCE, and cultural from 4000 BCE. The

expansion of Southeastern and Anatolian agropastoralism northward is predomi-

nantly cultural at 5500 BCE, and predominantly demic 500 years later. At 5000 BCE,

it is demic west of the Black Sea and cultural east of the Black Sea; at 4500 BCE,

demic processes again take over part of the eastern Black Sea northward expansion.

This underlines that “Previous attempts to prove either demic or cultural diffusion

processes as solely responsible [. . . ] seem too short-fetched, when the spatial and

temporal interference of cultural and diffusive processes might have left a complex

imprint on the genetic, linguistic and artefactual record” [32].

Unlike in many other models, the diffusion coefficient D here is an emergent prop-

erty, that varies in space and time, and that varies among all neighbors of each region.

The diffusion coefficient varies between zero and 7 km
2

a
−1

; Fig. 17.5 shows the

topology of the interregional connections in Europe and their maximum diffusion

coefficients. Maximum diffusion is highest on the Balkan and within Italy (up to 4

km
2

a
−1

), it is one order of magnitude lower for all of Northern Europe. This shows

the importance of the Balkans as a central hub for the diffusion of Neolithic technol-

ogy, people, and ideas; there seem to have been main routes for Neolithic diffusion

across the Central Balkan, along Adriatic coastlines, or, to a lesser extent, up the

Rhône valley.

The diffusion coefficient D seems first and foremost to match the migration rate of

populations of ultimately Anatolian/Near Eastern ancestry into and within Europe.

On a continental scale this rate should have been higher in Southeastern Europe

and possibly in Italy, equally along the Rhône. This is supported by recent arche-

ological and archeogenetic data, at least for Southeastern and Central Europe [16,

17]. Therefore, it is to be assumed that the proportion of non-indigenous popu-

lations should have been highest in these areas. Towards the north the spread of

these immigrant Neolithic populations was halted until about 4000 BCE, after which

farming spread further across the northern and northwestern European continent as

well as to the British Isles. This stagnation pattern is visible from archeological evi-

dence [13, 33] and represented in model simulations [34]. Towards the continental

west the evidence for a lesser proportion of allochtonous cultural traits in the arche-

ological record of farming societies has continuously been interpreted as an increase

in indigenous populations within these societies; therefore the rate of immigrants
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Fig. 17.5 Topology of European regional connections and maximum diffusion coefficient for each

region. Circles represent geographic centers of regions, red circles highlight regions with large

maximum influence; the size of the highlighted connections represents the maximum diffusion

coefficient between two adjacent region. Shading indicates the three regions analysed in Fig. 17.6,

labelled Bulgaria, Serbia, Hungary (from south to north)

should have been lower. This has at least been suggested by archeology [35]; recent

genetic studies have shown, however, that the influx of a population of ultimately

Balkanic/Anatolian origin seems also to have been strong in the Paris Basin and

Eastern France [36].

While the simulated Neolithic transition is reasonably well reflected on the con-

tinental scale, the model skill in representing the individual regional spatial expan-

sions varies. For example, the particular geographic expansion of the LBK in Central

Europe occurs too late and is too small in extent towards the Paris Basin. On the other

hand, the timing of the arrival of the Neolithic in the Balkans, in Southern Spain, or

in Northern Europe is well represented [34].

For three selected regions along the Central Balkan diffusion main route (high-

lighted in Fig. 17.5) we analysed the temporal evolution of their diffusion coeffi-

cients (Fig. 17.6). A similar pattern is visible in all three regions and all diffusion

coefficients: D starts at zero, then rapidly rises to a marked peak and slowly decays

asymptotically to an intermediate value. This behavior is a consequence of the local

influence and its difference to adjacent regions. Initially the influence difference is

zero, because all regions have similar technology and population. As soon as one
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Fig. 17.6 Time evolution of the diffusion coefficient for three selected regions of Central Europe

(Bulgaria, Serbia, Hungary; shown in black, red, and blue, respectively). For each of these three

regions, the family of trajectories represents the region’s diffusion coefficients with respect to each

of its adjacent regions. The shaded bars indicate the time interval of a regional transition to agropas-

toralism in the simulation (10–90% of C)

region innovates (or receives via diffusion technology and population from one of

its neighbors), population and technology increase, and so does the influence differ-

ence to all other neighbors. With an increase in influence and diffusion coefficient,

demic and cultural diffusion to neighbors decrease the influence differences. Rela-

tive proportions among the diffusion coefficients of one region to all its neighbors

are constant and attributed to the geographical setting.

The time evolution of the diffusion coefficient plotted in Fig. 17.6 reflects the

population statistics for advancing Neolithic technology: Early farming appears to

be associated to a rapid increase in population, this on a supra-regional scale [37, 38].

At the regional level, the diffusion coefficient lags the onset of farming by several

hundred years. This lag is also empirically reflected in the data set of the Western

LBK [39]. Any pioneering farming society seems to have followed more or less the

same general population trajectory with a gradual increase over several centuries,

followed by a sudden rise-and-decline. The causes for this general pattern are yet

unclear, but may have to be sought more in social behavior patterns rather than purely

economic or environmental determinants [40].

17.4 Conclusions

It has been long evident, that the Neolithic “Revolution” is not a single event, but

heterogeneous in space and time. Statistical models for understanding the diffusion

processes, however, have so far assumed that a physical model of Fickian diffu-

sion can be applied to the pattern of the emergence of farming and pastoralism

using constant diffusion coefficients. Relaxing this constraint, and reformulating the
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diffusivity as a function of influence differences between regions, demonstrates how

diffusivity varies in space and time.

When results using this variable correlation coefficient (D) are compared to

empirical archeological data, they represent the dynamics on a continental scale

and on the regional scale for many regions well, but not for all: The impetus of the

Neolithic in Greece and the Balkans is well represented, also in Southeastern Cen-

tral Europe. The emergence and the expansion of the Central European LBK shows,

however, a too early expansion in the model, whereas the stagnation following the

initial expansion is again very well represented.

Divergence between the mathematical model and the empirical findings provided

by archeology is unsurprising and expected, because human societies behave in

much more complex ways than are described in the highly aggregated and simplified

model. Individuals may have chosen to act independent of the social and environ-

mental context and against rational maximization of benefits. Rather than perfectly

capturing each regional diffusion event, the mathematical model serves as a null

hypothesis which is broadly consistent with the archeologically reconstructed pic-

ture, and against which individual decisions can be assessed. In this respect, the

simple model helps to disentangle in complex histories general forcing agents and

individual choices.

The numerical model and necessary datasets have been publicly released under an

open source license. The code is available from SourceForge (https://sf.net/p/glues/).
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Chapter 18
Modeling Language Shift

Anne Kandler and Roman Unger

18.1 Introduction

Languages behave similarly to living species [1, 2] (see also Chap. 3). They display
diversity, differentiate in space and time, emerge and disappear. While processes of
differentiation happen at a relatively slow rate with a typical timescale of the order
of 1,000 years to evolve into different languages (e.g. [3, 4]) language extinction
takes place at a substantially faster rate [5]. Language birth and extinction are
natural processes that have taken place ever since language came into existence but
the current linguistic extinction rate is immense; it even exceeds the rate of loss of
biodiversity (e.g. [6–8]). It is estimated that half of the world’s languages existing
today will disappear in the 21st century [7]. Serious concerns over the loss of
linguistic diversity, seen as a benchmark for overall cultural diversity, have driven
governments and international organizations to actively engage in the conservation
of endangered languages [6, 9, 10].

Most recent language extinction events are caused by language shift rather than
the extinction of the population speaking this language [5]. Language shift is
defined as the process where members of a community in which more than one
language is spoken abandon their original vernacular language in favor of another.
Knowledge of a language can selectively facilitate and inhibit interaction, enable
social contracts and cooperative exchange and give access to accumulated and
linguistically encoded knowledge [11]. Therefore in language contact situations
people are confronted with choices about which language to speak. Now in the
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course of globalization and of recent trends for urbanization and long-distance
economic migration, interactions between groups speaking different languages have
increased and so has the need for a common language of communication. Language
shift is initiated by the decision to abandon a more local or less prestigious lan-
guage, typically because the target of the shift is a language seen as more modern,
useful or giving access to greater social mobility and economic opportunities [1, 5,
12]. But crucially language shift is not caused by cultural selection acting on
particular features of a language but by people shifting between two languages
because of their perceived benefits [13].

A language dies with its last speaker. In other words, a language is not a
self-sustaining entity; it can only exist when there is a community to speak and
transmit it [14]. The number of speakers can therefore be interpreted as a measure
of the ‘health’ of the language. In mathematical terms we can consider the process
of language shift as a competition where two or more languages compete for
speakers. Modeling the competition dynamics between interacting species has a
long tradition in the ecological literature (see e.g. [15]) and based on the similarity
between the ecological and linguistic situations a number of mathematical
approaches have been proposed to describe the temporal and spatial dynamics of
language shift. These approaches can potentially contribute to a better under-
standing of the process of language shift by identifying the demographic,
socio-economic, cultural and/or linguistic processes that are needed to explain
observed patterns of real-world language shift scenarios. The formal analysis of
those mathematical models can then inform about the long-term outcome of lan-
guage shift provided the competition environment stays unchanged or changes
according to the scenario assumed in the model. We stress that even if a model can
replicate past demographic trajectories accurately the validity of prediction about
the future course of language shift depends on the validity of the assumptions about
the future state of the competition environment. Additionally, mathematical models
can be used as an artificial experiment. They can give an indication about what
needs to be changed in order to alter the language shift dynamics. In this context,
models can provide useful information about the potential success of different
intervention strategies, in particular they can inform about the total intervention
strength that is needed to achieve a desired goal, e.g. the stabilization of the
bilingual population group.

In this chapter we provide a brief overview of the recent literature on modeling
language shift with special emphasis on spatial dynamics. Further, we introduce a
diffusion-reaction approach and illustrate its usefulness for questions related to
revitalization efforts. Further, we apply this framework to the English-Gaelic lan-
guage shift situation in Western Scotland and demonstrate what kind of information
can be obtained from mathematical modeling efforts.
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18.2 Modeling Approaches

Research into mathematical modeling of the dynamics of language shift has gained
momentum with the seminal paper by Abrams and Strogatz [16]. However, already
before its publication a number of modeling approaches had been published on this
subject (e.g. [17, 18]). In this section we briefly introduce the Abrams and Strogatz
model [16] and some of its generalization with particular focus on spatial dynamics.
We stress that we do not provide an exhaustive literature review but concentrate on
diffusion-reaction approaches to language shift.

18.2.1 Abrams and Strogatz Model

The modeling framework proposed by Abrams and Strogatz [16] assumes that two
mutually unintelligible languages A and B compete for a fixed number of potential
speakers. The time-dependent variables ni, i=1, 2 describe the relative frequencies
of monolingual speakers of languages A and B, respectively (each individual
speaks either language A or B). In other words, the variables ni describe the
fractions of speakers of either language in the population. Further, population size is
assumed to be constant and therefore it holds n1 + n2 = 1. The dynamics of lan-
guage shift is governed by the following differential equation

dn1
dt

= n2P12ðn1, sÞ− n1P21ðn2, 1− sÞ. ð18:1Þ

The variable s describes the perceived relative status of language A on a scale
from 0 to 1 and reflects the social and economic opportunities afforded to its
speakers. The status of language B is given by 1− s. The term P12 denotes the
probability that an individual speaking language B converts to speaking language
A. (For consistency purposes we assume in the remainder of this chapter that the
first index of shift probabilities and coefficients indicates the target of the shift
process while the second index describes the source. Further, index 1 stands for
language A and index 2 for language B.) This probability is assumed to be fre-
quency- and status-dependent and is given by the power law

P12 n1, sð Þ=mna1s. ð18:2Þ

The exponent a models the level of resistance of monolingual speakers to change
their language [19], and the coefficient m controls the peak rate at which speakers of
language B shift to language A. Similarly, P21 denotes the probability that an
individual speaking language A converts to speaking language B
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P21ðn2, 1− sÞ=mna2ð1− sÞ. ð18:3Þ

Consequently, the higher the status of a language and the higher the number of
its speakers, the more speakers the language will recruit per time unit.

Model (18.1) predicts that one language (depending on status and initial fre-
quencies) will always go extinct over time. Abrams and Strogatz [16] fitted their
model to time series data describing several language shift situations (including the
English-Gaelic shift in the county Sutherland and the Spanish-Quechua shift in
Huanuco) and were able to accurately describe the observed temporal language
shift dynamics.

Based on these results model (18.1) appeared to be a promising approach to
model language shift. Nevertheless, the framework rests on assumptions which
have been deemed unrealistic. In particular, model (18.1) assumes that (i) languages
are fixed, (ii) the population is highly connected with no spatial or social structure,
(iii) all speakers are considered monolingual, (iv) population size is assumed to be
constant and (v) the use and usefulness of both competing languages is the same in
all social contexts. Subsequent modeling approaches generalized the Abrams and
Strogatz model (18.1) by addressing one or more of these shortcomings.

18.2.2 Generalizations

Generalizations of the modeling idea by Abrams and Strogatz [16] can be broadly
divided into differential equation-based approaches and simulation-based approa-
ches (for a review of this literature see e.g. [20–22]). While some approaches
focused on a more detailed description of the demographic properties of the
interacting population groups others focused on a more realistic description of the
process of language shift. In the following we concentrate on equation-based
modeling frameworks with a particular emphasis on spatial dynamics. Nevertheless,
we note that a large amount of research has been devoted to simulation-based
approaches and produced crucial insights into the process of language shift (e.g.
[23–28]).

It is widely known that the introduction of spatial dynamics can lead to the
emergence of qualitative changes in dynamical patterns, in particular it can change
the interaction dynamics between populations (e.g. [15, 29, 30]). To explore this
fact, Patriarca and Leppänen [31] introduced spatial dependence into model (18.1)
by formulating a diffusion-reaction system of the form (see also Eq. (2.19) in
Chap. 2)

∂c1
∂t

=D1Δc1 + c2P12ðn1, sÞ− c1P21ðn2, 1− sÞ
∂c2
∂t

=D2Δc2 + c1P21ðn2, 1− sÞ− c2P12ðn1, sÞ.
ð18:4Þ
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The space- and time-dependent variables ci describe the absolute frequencies of
the two population groups speaking language A or B at location x and time t, i.e. the
variables ci stand for the total number of speakers of both languages in the popu-
lation. As above, the time-dependent variables ni denote the relative frequencies of
both languages in the population. Spatial dispersal is modeled by the diffusion
components DiΔci. The diffusion coefficients Di are measures of the spatial
mobility of both population groups. The shift probabilities P12 and P21 are given by
Eqs. (18.2) and (18.3).

The analysis of model (18.4) revealed that if two languages of different status
exist initially in the same spatial domain, only extinction states are stable equilibria.
But if the initial “home ranges” of the two language groups speaking languages A
and B are spatially separated and if the shift probabilities P12 and P21 in those home
ranges depend only on the relative frequencies of languages A and B in the local
populations then the two languages will exclude each other in their home ranges but
coexist globally (see also [21] for additional analyses). Summarizing, competition
under spatial structure can generate novel results: since competitive exclusion
depends on initial conditions, both equilbria are (locally) possible.

Kandler and Steele [32] expanded model (18.4) by allowing for population
growth (see also Chap. 2, Eqs. (2.15) and (2.18) for an introduction to logistic
growth processes). They analyzed the system

∂c1
∂t

=D1Δc1 + α1 1−
c1

K − c2

� �
+ kc1c2

∂c2
∂t

=D2Δc2 + α2 1−
c2

K − c1

� �
− kc1c2

ð18:5Þ

where population growth is model by the logistic growth terms αi 1− ci
K − cj

� �
, i≠ j.

The coefficients αi express the internal growth rates of both population groups and
K defines the carrying capacity, i.e. the upper limit of the population size regardless
of the language spoken at location x any time t. This naturally leads to the condition
c1 + c2 ≤K,∀t, x. The coefficient k represents the shift coefficient and, analogously
to model (18.1), expresses the difference of social and economic opportunities
afforded to the speakers of both languages. Model (18.5) predicts that coexistence
between two languages of different status is not possible, even when initially
spatially separated. For k>0 language A will always prevail in competition (and
similarly language B for k<0) and the spatial dynamics of the extinction process
shows a travelling wave-like pattern. Coexistence between the two languages,
however, is possible when their status differences change between spatial regions.
This can be implemented in model (18.5) by allowing the shift coefficient k= kðxÞ
to be space-dependent.

Walters [33] considered a system similar to (18.5) but assumed separate carrying
capacities for both population groups. Global stability analysis indicated that,
subject to appropriate parameter constraints, extinction and coexistence states might
be stable, depending on the initial number of speakers of both languages.
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Patriarca and Heinsalu [34] presented a diffusion-reaction framework with an
additional advection term and analyzed the influence of external factors not related
to the cultural transmission process on the language shift dynamics. They showed
that the initial distribution of the population groups speaking languages A and B,
geographic boundaries as well as spatial inhomogeneities strongly affect the
dynamics of language shift.

Fort and Perez-Losada [19] used an integral formulation and described popu-
lation dispersal through a dispersal kernel ansatz, which also accounted for a
cohabitation effect (defined as joint dispersal of new-borns with their parents). The
diffusion kernel describes the probability distribution of different migration dis-
tances and allows for the analysis of non-local dispersal patterns. Based on this
model they estimated the speed with which a novel language spreads into a region.
They applied their model to the English-Welsh language shift in Wales and showed
that the predicted front speed coincided reasonably well with the observed speed.
Further, Fort and Perez-Losada [19] concluded that the dynamics of language shift
is more sensitive to linguistic parameters (i.e. the model parameters controlling the
strength of the shift process) than to reproductive and dispersal parameters.

Isern and Fort [35] described the dynamics of language shift by the following
one-dimensional diffusion-reaction approach

∂c1
∂t

=D
∂
2c1
∂x2

+ αc1 1−
c1 + c2
K

� �
+

k

ðc1 + c2Þη+ λ− 1 c
η
1c

λ
2

∂c2
∂t

=D
∂
2c2
∂x2

+ αc2 1−
c1 + c2
K

� �
−

k

ðc1 + c2Þη+ λ− 1 c
η
1c

λ
2.

ð18:6Þ

Spatial dispersal is again modeled by a diffusion process and D denotes the
diffusion coefficient. The coefficient α describes the growth rate, kð>0Þ is a
time-scaling parameter and the coefficients η, λ≥ 1 control the status differences of
both languages. In model (18.6) extinction of the language B is inevitable. As in
[20] the spatial extinction dynamics showed a travelling wave-like pattern. Isern
and Fort [35] derived estimations of the front speeds and applied the model to a
number of historical case studies of language shift. They showed that the fit of
model (18.6) is comparable to the fit of the original Abrams and Strogatz model
(18.1).

Zhang and Gong [36] pointed out that all modeling approaches mentioned above
rely on model fitting procedures, especially for determining the status s of a lan-
guage and the shift coefficients, when applied to real world data. This implies that
the temporal (and spatial) resolution of the observed frequency data needs to be
sufficiently high so that reliable estimates of the model parameters can be obtained.
To circumvent this problem they proposed a more mechanistic approach. They
assumed that the temporal language shift dynamics can be described by the fol-
lowing system
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dc1
dt

= α1c1 1−
c1
K1

− k1
c2
K2

� �

dc2
dt

= α2c2 1−
c2
K2

− k2
c2
K1

� � ð18:7Þ

where Ki describes the maximum population sizes of the monolingual population
groups speaking languages A or B. Crucially, Zhang and Gong [36] determined the
values of αi and ki externally through the so called language diffusion principle
(based on Fourier’s law of heat conduction) and the language inheritance principle.
They applied model (18.7) to a number of case studies and concluded that historical
shift trajectories could be well replicated.

All modeling approaches discussed so far have been mainly concerned with a
more realistic description of reproduction and dispersal properties of the population
groups speaking different languages but assumed that language shift happens
instantaneously. Monolingual speakers of one language convert directly to be
monolingual speakers of another language. Below we briefly introduce how the
concept of bilingualism can be incorporated in models of language shift.

Mira and Paredes [37] generalized the original Abrams and Strogatz model
(18.1) by adding a third, bilingual population group whose frequency is denoted by
n3. This means individuals can be either monolingual in language A or B, or
bilingual in both languages. Population size is still assumed to be constant and
therefore it holds n1 + n2 + n3 = 1. Further, they introduced the parameter κ, which
measures the likelihood that two monolingual speakers of the languages A and B
can communicate with each other (κ=0 means that both languages are mutually
unintelligible and therefore no communication is possible; an increase in κ signals
increasing similarities between the languages) and proposed the following system
of differential equations

dn1
dt

= ðn2 + n3ÞP12ðn1, sÞ− n1ðP21ðn2, 1− sÞ+P31ðn2, 1− sÞÞ
dn2
dt

= ðn1 + n3ÞP21ðn2, 1− sÞ− n2ðP12ðn1, sÞ+P32ðn1, sÞÞ.
ð18:8Þ

Similarly to the relations (18.2) and (18.3) of the Abrams and Strogatz approach
(18.1) the shift probabilities are defined by

P21ðn2, 1− sÞ=mð1− κÞð1− n1Það1− sÞ,P31ðn2, 1− sÞ=mκð1− n1Það1− sÞ,
P12ðn1, sÞ=mð1− κÞð1− n2Þas,P32ðn1, sÞ=mκð1− n2Þas,
P13ðn1, sÞ=P12ðn1, sÞ andP23ðn2, 1− sÞ=P21ðn2, 1− sÞ.

This implies that the probability for speakers of, for example, language A to
adopt language B is divided between the probability of becoming bilingual, P31,
and the probability of becoming monolingual in language B, P21. The more similar
the languages, i.e. the closer κ is to 1, the more likely individuals become bilingual
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(instead of abandoning their mother tongue) [37]. Mira and Paredes [37] showed
that coexistence between languages of different status is possible given they are
sufficiently similar to each other. Importantly, the low-status language is maintained
in the bilingual population. Model (18.8) predicts that in the long term only the
bilingual and monolingual population group speaking the high-status language can
coexist. They fitted their model to time series data collected for the language shift
between Castillian Spanish and Galician and found a good coincidence.

Minett and Wang [38] also analyzed the effect of a bilingual strategy on the
language shift dynamics but considered mutually unintelligible languages A and B.
They introduced a bilingual population group, as above its frequency is denoted by
n3, and assumed that language shift cannot happen directly but must involve a
transitional bilingual state, i.e. once individuals have acquired a language they
cannot lose it over their life time. Further, they assumed a constant population size
(which implies n1 + n2 + n3 = 1) and formulated the following system of differential
equations

dn1
dt

= μm13sð1− n1 − n2Þna1 − ð1− μÞm31ð1− sÞn1na2
dn2
dt

= μm23ð1− sÞð1− n1 − n2Þna2 − ð1− μÞm32sn2na1.
ð18:9Þ

The variables mij define the peak attractiveness of state i on individuals in state
j (As before state 1 stands for monolingual language A, state 2 for monolingual in
language B and state 3 for bilingual). The coefficient μ describes the mortality rate
at which adults are replaced by children. The first terms in both equations of model
(18.9) describe the dynamics of vertical transmission. It is assumed that children of
monolingual parents necessarily acquire the language of their parents but children
to bilingual parents can adopt either or both of the competing language [38]. In
contrast, the second terms describe the dynamics of horizontal transmission and
therefore the process of becoming bilingual. Model (18.9) predicts the extinction of
one language: the possibility of bilingualism alone cannot produce coexistence.
Minett and Wang [38] went on and explored how coexistence could be engineered
externally. They found that raising the status of the endangered language whenever
its frequency falls below a certain threshold together with isolations of the two
languages by encouraging monolingual education of children can result in coex-
istence between all three population groups.

Parshad et al. [39] investigated the effect of a hybrid Hinglish code-switching
population group on the competition between English and Hindi in India using a
three-population diffusion-reaction system (Hinglish stands for the macaronic
hybrid use of English and South Asian languages.). They found that coexistence
between a Hindi-English bilingual group, a Hindi monolingual group and a
Hinglish group is possible and argued that this might be the most realistic outcome.
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18.3 Diffusion-Reaction Models with Bilingual Transition
State

In this section we describe the modeling approaches taken in [11, 20]. We assume
the existence of two mutually unintelligible languages A and B in a bounded,
two-dimensional domain G, which compete for speakers. The time- and
space-dependent variables c1ðt, xÞ and c2ðt, xÞ describes the frequencies of the two
monolingual population groups (speaking languages A and B, respectively) and
c3ðt, xÞ the frequency of the bilingual population group at time t and location x∈G.
Being bilingual in this context simply means being proficient in both languages.

18.3.1 Basic Model

We start our analysis by describing the properties of the process of language shift
when its temporal and spatial dynamics is solely driven by the frequencies of the
three population groups, the demographic and cultural attributes of these groups
and the benefits both languages convey to their speakers. In the following, we
assume that the temporal changes of the frequencies ci of the three population
groups are determined by

• Spatial spread processes, DiΔci with i=1, 2, 3,

• Processes of biological and cultural reproduction, αici 1− ci
K − cj − ck

� �
with

i, j, k=1, 2, 3 and i≠ j≠ k and
• Processes of language shift, kijcicj with i, j=1, 2, 3 and i≠ j.

In more detail, the spatial mobility of individuals of each population group is
modeled by the diffusion terms DiΔci. The diffusion coefficients Di are a measure of
the scale of spatial interactions within the different groups. Spatial dispersal
therefore has only a local dimension (for a comprehensive review of the application
of diffusion processes to human dispersal see [22]).

The logistic growth terms αicið1− ci ̸ðK − cj − ckÞÞ model biological and cul-
tural reproduction in each population group whereby the coefficients αi express the
growth rates. The variable K defines the upper limit of the population size
regardless of the language spoken at any time t and location x. This naturally leads
to the condition c1 + c2 + c3 ≤K, ∀t, x.

Language shift is modeled by frequency-dependent shift terms kijcicj. The
coefficients kij, i, j=1, 2, i≠ j quantify the pressure one language puts on mono-
lingual speakers of the other language. But it is assumed that language shift cannot
happen by directly shifting from speaking one language only to speaking another
language only but must involve a bilingual transition state. Therefore the conse-
quences of the exerted pressure are that monolingual speakers become bilingual,
and the coefficients k12 and k21 can be interpreted as the rate at which monolingual
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speakers become bilingual due to the attractiveness or status of the other language.
Similarly to [38], we define k12 = k1̃2s and k21 = k2̃1ð1− sÞ where the variable s
describes the status difference between the two languages ranging from 0 to 1. The
status of a language, very simplistically, quantifies the social, cultural, economic or
political opportunities afforded to its speakers [16]. The coefficients k1̃2 and k2̃1
indicate how strong monolinguals respond to those status differences. Similarly, the
coefficients k13 and k23 quantify the rate at which bilinguals become monolinguals.
This transition back to monolingualism can e.g. be associated with bilingual parents
who choose to raise their children in one language only. Again we assume
k13 = k1̃3s and k23 = k2̃3ð1− sÞ and the coefficients k1̃3 and k2̃3 indicate how strong
bilinguals respond to the status differences of the two competing languages.

These assumptions lead to the following diffusion-reaction system (where, as
mentioned above, c1ðt, xÞ and c2ðt, xÞ describes the frequencies of the two mono-
lingual population groups speaking languages A and B, respectively and c3ðt, xÞ the
frequency of the bilingual population group at time t and location x∈G)

∂c1
∂t

=D1Δc1 + α1c1 1−
c1

K − c2 − c3

� �
− k21c2c1 + k13c3c1

∂c2
∂t

=D2Δc2 + α2c2 1−
c2

K − c1 − c3

� �
− k12c1c2 + k23c3c2

∂c3
∂t

=D3Δc3 + α3c3 1−
c3

K − c1 − c2

� �
+ ðk21 + k12Þc2c1 − ðk13c1 + k23c2Þc3

ð18:10Þ

with the boundary conditions ∂ci ̸∂n=0, x∈ ∂G, i=1, 2, 3 (where ∂ ̸∂n describes
the outer normal derivation). These conditions imply that no spatial spread is
possible beyond the boundary ∂G.

Summarizing, the outflow of speakers from the two monolingual population
groups is governed by the status difference of the two competing languages, the
propensity of the groups to respond to those differences and the frequency of the
other monolingual population group (see Fig. 18.1 for an illustration). It holds: the
higher the status of a language the lower is the shift towards the bilingual group but
the higher the frequency of the other monolingual population group the higher is the
shift towards the bilingual group.

In the following we investigate the dynamics of language shift between a
high-status and a low-status language, i.e. it has to hold k21 < k12 and k13 > k23. In
this situation language A is considered more advantageous or high-status as
monolinguals of language A are less likely to become bilinguals and bilinguals are
more likely to become monolingual in language A.
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18.3.1.1 Role of Spatial Dispersal

The only stable equilibria of model (18.10) are the extinction states (K, 0, 0) and (0,
K, 0). Depending on the status difference between the two competing languages and
the demographic and cultural attributes of the three population groups, especially
their initial frequency distributions, one language will acquire all speakers over
time. Importantly, that does not have to be the high-status language.

To illustrate this point in more detail we consider the following situation. Ini-
tially the low-status language B is spoken by the vast majority of the population
situated in a two-dimensional domain G but the high-status language A has entered
the population in a small region G′ where both languages are in direct contact. For
simplicity we assume a uniform initial frequency distribution of monolingual
speakers of language A in G′. Now the shift dynamics of model (18.10) results in
the emergence of the bilingual population group in the language contact zone. If all
population groups show similar demographic properties (i.e. possess similar growth
rates αi and sufficiently small diffusion coefficients Di) the monolingual population
group speaking the high-status language A and the bilingual group grow in fre-
quency in the region G′ causing in turn the frequency monolingual population
group speaking the low-status language B to decline in this region. Crucially, model
(18.10) assumes that bilingualism facilitates the communication between two
monolingual population groups and therefore the bilingual group will disappear in a
local area soon after languages B has disappeared from there. Local diffusion causes
a steady expansion of language A in a travelling wave-like manner. With time the
contact and mixing zone between the two languages is shifted toward the edges of
the domain with extinction of the population group speaking language B followed
by bilingual group as the long-term outcome.

Monolingual in language A   c1

Bilingual   c3

Monolingual in language B   c2

k21c1c2

k12c1c2

k13c1c3

k23c2c3

Fig. 18.1 Schematic illustration of the shift dynamics assumed in model (18.10). The dynamic
depends on the frequencies ci of the different population groups and the benefits both languages
convey to their speakers. The coefficients kij, i, j=1, 2, i≠ j quantify the pressure one language puts
on monolingual speakers of the other language and can be interpreted as the rate at which
monolingual speakers become bilingual. Similarly, the coefficients k13 and k23 quantify the rate at
which bilinguals become monolinguals
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However, if the ‘invading’ population group speaking language A shows a high
spatial mobility (i.e. high diffusion coefficient D1) the shift dynamics can be
reversed. The greater mobility of speakers of language A causes a dramatic dilution
of the initial frequency of speakers in the domain G′. If the intrinsic growth rate α1
is not able to compensate for this loss the frequency-dependent dynamics pre-
dominate, leading to the extinction of the population group speaking language A
and subsequently of the bilingual group.

Figure 18.2 illustrates the basins of attraction of the extinction states ðK, 0, 0Þ
(all parameter combinations above the curves) and ð0,K, 0Þ (all parameter combi-
nations below the curves) for the parameter s and the initial frequency of the high
status language in the domain G′ for different values of D1 = 10− 5, 10− 4, 10− 3. We
observe a nonlinear relationship and as expected the outcome of language shift is
strongly influenced by the status difference of the two competing language. If the
monolingual population group speaking language A shows a larger mobility then
language A need to have a higher status or the ‘invading’ population group must be
more frequent to nevertheless attract all speakers in the domain G.

Summarizing, as expected the difference in status between the competing lan-
guages influences the dynamics of language shift greatly: the higher the status of a
language the higher its chances to dominate the shift scenario. But also the dispersal
behavior and the initial distribution of the different population groups play an
important role. If the low-status language is sufficiently established in the popu-
lation, it can prevail in competition with a higher-status language.

Fig. 18.2 Long-term outcome of language shift in region G, initially populated by monolingual
speakers of language B with a certain number of monolingual speakers of language A concentrated
in a sub-region G′, as a function of the initial size (‘frequency’) of the population group speaking
language A situated in G′, the value of the status variable s and the spatial mobility of the speakers
(denoted by Di). The parameter combinations below the curves lead to populations speaking
language A only (K, 0, 0) while the combinations below the curves lead to populations speaking
language B only (0, K, 0). Despite the status disadvantage, language B can outcompete language A
in situations where there are not enough speakers of language A initially and they disperse too
quickly
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Model (18.10) describes spatial dispersal by the locally acting Laplace operator
Δ. This implies that speakers interact only with their local neighborhood. This
however, might not be realistic for all episodes of human dispersal and it has been
argued that dispersal distances are better approximated by long-range dispersal
kernels (e.g. [40, 41]). This can be included in model (18.10) by replacing the
diffusion terms DiΔci with the integral formulation

λi

Z
G

ciðt, x+ δÞϕiðδÞdδ− ciðt, xÞ
2
4

3
5 ð18:11Þ

where the kernel functions ϕiðδÞ define the probability distributions of the dispersal
length δ for each population group and the coefficients λi are a measure of the
dispersal rates (see e.g. [42, 43]) for a detailed analysis of such dispersal models and
[19] for an application to language shift). If researchers possess data to estimate the
kernel functions ϕiðδÞ describing the dispersal distances of the different population
groups reliably then the integral formulation (18.11) should be preferred to the
diffusion formulation of model (18.10) as we have seen that the spatial dispersal
behavior can qualitatively and quantitatively change the dynamics of language shift
(see [20] for a more detailed analysis of the effects on different diffusion kernels on
the language shift dynamics).

18.3.1.2 Role of Bilingualism

As already mentioned, model (18.10) assumes that bilingualism facilitates the
communication between two monolingual (and spatially separated) population
groups. Now if one monolingual group has gone extinct and there are no cultural or
external reasons to still use this language then the bilingual strategy is not needed
anymore for communication purposes and goes extinct as a consequence. Therefore
the bilingual strategy cannot be maintained in the population in homogeneous
environments (expressed by constant model parameters).

Nevertheless the existence of the bilingual population group influences the
dynamics of language shift greatly. Firstly (and not surprisingly) it slows down the
process of language extinction. Secondly, it can allow the low-status language to
successfully prevent the spread of the high-status language if it is sufficiently
established in the considered domain. To see this we analyze model (18.10) under
the assumption that there is no bilingual population, i.e. c3ðt, xÞ=0, ∀t, x. In this
situation only the extinction state ðK, 0, 0Þ is stable, or in other words, the
low-status language will always go extinct over time [32].
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18.3.1.3 Coexistence

Coexistence between two different languages can be achieved in model (18.10)
when their status differences vary in different spatial regions. In other words, if the
status variable s, and consequently the shift coefficients k12, k21, k13 and k23 are
space-dependent with each language being the preferred medium of communication
in its own ‘home range’ then the two languages still outcompete each other in their
‘home ranges’ but coexist globally.

18.3.2 Diglossia Model

Model (18.10) describes language shift in a single social domain, and assumes that
the shift dynamics is solely governed by the frequencies of the three population
groups, the demographic and cultural attributes of these groups and the status
difference of the two competing languages. We have seen that in this situation the
loss of linguistic diversity is inevitable: the extinction of a monolingual population
group is followed by the extinction of the bilingual group. But reality is likely to be
more complex. For instance, the benefit a language conveys to its speakers might be
different in different social domains. Additionally, the aim of intervention strategies
is usually not to reverse the outcome of language shift as the high-status language
provides its speakers with additional benefits compared to the low-status language
(e.g. participation in higher education or ‘global’ business) but to strengthen the
survival chances of the endangered language by creating social and cultural
domains where the low-status language is still used and potentially even the pre-
ferred medium of communication [44].

To consider the effects of the existences of segregated and complementary
sociolinguistic domains, in each of which both languages are differentially preferred
as medium of communication, model (18.10) has been generalized based on a
simplified concept of diglossia [11]. Diglossia, in the strict sense, refers to situations
where the mother tongue of the community is used in everyday (low status) set-
tings, but another language (or another form of the vernacular language) is used in
certain high status domains [45, 46]. We assume that in the majority of social
domains the shift mechanisms of model (18.10) apply but there exist some
restricted social domains in which the balance of competitive advantage between
the two languages differs from that which drives the main shift process. The
temporal and spatial dynamics of the process of language shift is now determined
by
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∂c1
∂t

=D1Δc1 + α1c1 1−
c1

K − c2 − c3

� �
− k21c2c1 + k13c3c1 −w1c1

∂c2
∂t

=D2Δc2 + α2c2 1−
c2

K − c1 − c3

� �
− k12c1c2 + k23c3c2 −w2c2

∂c3
∂t

=D3Δc3 + α3c3 1−
c3

K − c1 − c2

� �
+ ðk21 + k12Þc2c1 − ðk13c1 + k23c2Þc3 +w1c1 +w2c2

ð18:12Þ

where the coefficients w1 and w2 quantify the pressure to participate in social
domains where the other language is the preferred medium of communication. The
main shift dynamics is still frequency- and status-dependent as described in model
(18.10) but additionally we assume that if monolinguals of the low-status language
want to participate in domains where the high-status language is required (such as
higher education or ‘global’ businesses), they need to learn that language and
become bilingual as a consequence. This is modeled by the term w2c2. Similarly, if
monolinguals of the high-status language want to participate in domains where the
low-status language is required (such as small ‘local’ businesses or administra-
tions), they also need to learn that language. This dynamics is modeled by the term
w1c1. Importantly, the strengths of both shift terms w1c1 and w2c2 do not depend on
the frequencies of the other language but only on the (social, cultural, economic or
political) pressure to participate in the associated domains. As long as w1 > 0,
meaning as long as there is a need for speaking the low-status language in at least
some (relevant) domains, the bilingual population will persist, however, the
monolingual population group speaking language B will go extinct nevertheless.
Consequently, the language shift dynamics described by model (18.12) is charac-
terized by the extinction of the monolingual population group speaking the
endangered language and the maintenance of the bilingual strategy in the popula-
tion. But this result is conditioned on the existence of domains where the low-status
language is the preferred medium of communication (e.g. w1 > 0). Therefore
intervention strategies aimed at creating those domains (e.g. through legislation that
requires the use of the endangered local language in a specific set of contexts) affect
the magnitude of the coefficient w1.

Summarizing, the existence of social domains of competition, which differ in the
competitive advantage between the two languages may allow for coexistence.
Importantly, however, the endangered language is only maintained through the
bilingual population group.

18.4 The Gaelic-English Language Shift

In this section we illustrate the results of the analysis of the language shift scenario
between English and Scottish Gaelic in Scotland (see [11] for an additional analysis
of the Welsh situation). By late mediaeval times, Gaelic was the main language of
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the Scottish Highlands and western islands, with Scots (descended from the Old
Northumbrian dialect of Old English) and English prevailing in the Lowlands. This
division appears to have been reinforced by a contrast between these two regions in
their social structure, marriage and migration patterns. The breakdown of the
geographical ‘niche’ for Scottish Gaelic is closely linked to the English political and
economic dominance (and the subsequent interference with the Highlands’ political
and economic systems). Drastic demographic changes (the eighteenth-nineteenth
century ‘Highland clearances’) and the establishment of English as the language of
education and advancement were associated with increasing rates of
Gaelic-to-English language shift [47]. The late stages of this shift process can be
reconstructed from census records (see electronic supplementary material in [11]). It
must be noted that historical census data on language use will include ‘noise’ owing
to inaccurate answers (for instance, owing to the perceived social status implica-
tions of self-classification into a particular category), and to changes in the phrasing
of the questions in successive censuses. The first census to enumerate Gaelic
speakers was that of 1881, but only from 1891 were data gathered separately on
numbers of Gaelic monolinguals and Gaelic-English bilinguals (in all cases, among
those aged 3 years or older). After 1961, no data were collected for Gaelic
monolinguals, as these were assumed to be approaching extinction. From 1891 until
1971, the census enumerations were collated and analyzed on the basis of the old
county divisions. The Highland counties Argyll, Inverness, Ross and Cromarty, and
Sutherland are seen as the ‘core land’ of the Gaelic language (‘Gaidhealtachd’): in
1891, 73 per cent of all Scotland’s Gaelic speakers were located among the 8 per
cent of Scotland’s population that lived in these ‘Highland Counties’, covering the
mainland Highlands and the Western Isles. From 1981 onwards, these counties
were subsumed into new administrative units.

Generally, we observe a sharp decline of the number of monolingual Gaelic and
bilingual speakers in the period between 1891–2001. Areas where Gaelic is still
spoken by at least 50% of the population are pushed towards the Western Islands
over time (see Fig. 18.3) and these empirical travelling wave-like patterns partly
motivated the application of the diffusion-reaction framework. The absolute num-
bers of Gaelic speakers in Scotland have declined through this period, from about
250,000 in the 1891 census of Scotland to about 65,000 in the 2001 census. Of
these, the majority has always been bilingual in Gaelic and English, with the last
census record of Gaelic monolinguals finding fewer than 1000 still alive in 1961.

18.4.1 Basic Model

We start by applying the basic model (18.10) to this shift scenario. In particular, we
are interested in exploring how well our model can describe the observed trajec-
tories of the three population groups over time and in different spatial location.
Figure 18.4 (solid lines) shows the change in the proportions of monolingual
English and Gaelic speakers and bilinguals for the counties of Argyll, Inverness,
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Ross and Cromarty, and Sutherland during the time period 1891–1971 (as men-
tioned above due to changes to the county division data for these four counties is
only available within this time frame).

We fitted model (18.10) to these census data whereby the growth rates αi and the
diffusion coefficients Di are estimated from demographic data and only the shift
coefficients k12, k21, k13 and k23 are free to vary. To avoid over-fitting we firstly
restrict ourselves to the parameter constellations k21 = k23 and k12 = k13, i.e. we
assume that, for example, language A exerts the same pressure on the population
group speaking language B and on the bilingual population group (see Fig. 18.1).
Figure 18.4 (dotted lines) illustrate that model (18.10) with k21 = k23 and k12 = k13
and values as shown in Table 18.1 captures the general shift dynamics well. It is
obvious that Gaelic is not able to attract speakers; the outflow from the English
monolingual population group to the bilingual group is zero for all counties.
However, we also observe a systematic overestimation of the monolingual Gaelic
population group and underestimation of the bilingual group.

In the next step we allow for parameter constellations with k21 ≠ k23 and
k12 ≠ k13. With these additional degrees of freedom we (unsurprisingly) obtain a
better fit between model (18.10) and the data (Fig. 18.4, dashed lines). Interest-
ingly, the improved fit is almost entirely generated by an increase in the coefficient
k12, and consequently by an increased shift from the Gaelic monolingual population
to the bilingual population. This can be interpreted as evidence that the shift is
mainly driven be the desire to learn English and not by the desire to abandon
Gaelic. However, we have shown in Sect. 18.3 that the extinction of the Gaelic
monolingual population group and the bilingual group is inevitable over time.

Fig. 18.3 Percentages of Gaelic speakers (mono- and bilingual) in Western Scotland in
successive census years, 1891–2001. Data for civil parishes: 1891–1971 from Withers ([48],
pp. 227–234); 1981 from Withers ([49], p. 40); 1991–2001 from General Register Office for
Scotland ([50], Table 3). Redrawn from [11]
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18.4.2 Diglossia Model

The prediction of model (18.10) about the future of Scottish Gaelic is of course only
valid if the ‘competition environment’ stays unchanged. However, the Scottish
government has started to implement a number of revitalization measures. Recent
efforts have included the establishing of Gaelic-medium pre-school and primary

Fig. 18.4 Frequencies of the three population groups (monolingual Gaelic: red, bilingual: green,
monolingual English: blue) in the four Scottish Highland counties (a Argyll, b Inverness, c Ross
and Cromarty, d Sutherland). Empirical data (solid lines) and theoretical predictions of model
(18.10) with k21 = k23 and k12 = k13 (dotted lines) and k21 ≠ k23 and k12 ≠ k13 (dashed lines). Shift
parameters are given in Table 18.1 and describe rates per year. Redrawn from [11]

Table 18.1 Fitted shift coefficients of model (18.1) under the assumptions k12 = k13 and k21 = k23
(top two lines) and k12 ≠ k13 and k21 ≠ k23 (bottom four lines). All coefficients indicate rates per
year

Scottish Highlands Argyll Inverness Ross and Cromarty Sutherland

k12 = k13 0.03 0.03 0.035 0.03 0.035
k21 = k23 0 0 0 0 0
k12 0.07 0.115 0.1 0.12 0.075
k13 0.025 0.03 0.03 0.025 0.035
k21 0 0.005 0 0.005 0
k23 0 0 0 0.005 0
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school units [51] and the development of Gaelic-medium broadcasting [47]. In
2005, the Gaelic Language (Scotland) Act was passed by the Scottish Parliament,
providing a planning framework for a number of additional shift-reversal measures,
while Comhairle nan Eilean Siar, the Western Isles Council, has adopted Gaelic as
its primary language.

In this section we use the diglossia model (18.12) and ask the question of how
strong do those intervention strategies need to be in order to at least maintain the
overall bilingual population group at the level of year 2001. To do so we fitted
model (18.10) to the accumulated numbers of monolingual Gaelic, monolingual
English and bilingual speakers of the Scottish highlands in the time interval 1891–
2001. Based on the estimated coefficients k12, k21, k13 and k23 (see Table 18.1,
second column for their values) we then applied model (18.12) and asked how large
the coefficient w1 needs to be so that the frequency of the bilingual population, c3,
stays constant over time. We note that by 2009 the frequency of the monolingual
Gaelic population group has already approached zero and therefore the shift term
w2c2 can be neglected.

The results of this analysis are summarized in Fig. 18.5. Firstly, we observe that
model (18.10) replicates the language shift dynamics very well (cf. solid lines for
the empirical data and dashed lines for the model prediction). The estimated values
of the shift coefficients are shown in the second column of Table 18.1. Now
w1 = 0.0031 (whereby w1 is a rate per year) is sufficient to prevent the further
decline of the bilingual population group. This implies that roughly 860 English
speakers have to become bilingual every year based on a Highland population of
about 315,000 individuals. However, the coexistence between the bilingual and the

Fig. 18.5 Frequencies of the three population groups (monolingual Gaelic: red, bilingual: green,
monolingual English: blue) in the Scottish Highlands. Empirical data (solid lines) and theoretical
predictions of model (18.10) until 2009 and model (18.12) after 2009 (dotted lines). Shift
parameters for model (18.10) are given in Table 18.1, model (18.12) is parameterized with the
same parameters and w1 = 0.0031 and w2 = 0. All coefficients describe rates per year. Redrawn
from [11]
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English-speaking population groups depends in this case entirely on the existence
of (potentially externally engineered) sociolinguistic domains where Gaelic is the
preferred medium of communication. Intervention strategies may prove much more
successful if the rate of intergenerational transmission of the bilingual strategy
could be increased as well. Thus, for example, the number of English monolinguals
required to learn Gaelic each year could drop down to roughly 440 if the rate of
intergenerational transmission of Gaelic at home could be increased (i.e. k12
changes from 0.025 to 0.0125). This means that beside the 440 English speakers
who become bilingual, roughly 340 more children who live in bilingual households
would have to be raised in both languages to prevent a further decline of the
bilingual population group. These numbers indicate that an increase in the rate of
intergenerational transmission is a highly effective language maintenance strategy,
although one that is also harder to achieve in practice.

18.5 Discussion

The rapid increase in the rate of language extinction, witnessed over the last
100 years, is mainly caused by the process of language shift. From a phylogenetic
point of view language shift can be seen as a process of shifting between different
branches of the phylogenetic tree (or in other words, as a process of selective
cultural migration, see e.g. [52]). Frequent instances of language shift potentially
result in divergences between linguistic and genetic trees and therefore cast some
doubt on the demographic assumption of tree building approaches that the linguistic
tree is also representative of the bifurcating population history (see [53] for a
discussion). Consequently understanding the process of language shift and identi-
fying its main drivers is a crucial step towards understanding the general process of
language extinction.

In this chapter we discussed how mathematical modeling can contribute to this
task. Considering language shift as competition between two languages (of possibly
different status) for speakers allows us to make use of a well-developed theory
describing the interactions between different species under limited resources (e.g.
[15]). However, it is crucial to note that despite the similarities between ecological
and linguistic competition dynamics there are linguistic phenomena, which have no
equivalent in the ecological situation. Consequently existing modeling frameworks
have to be adopted to include important cultural concepts such as e.g. bilingualism.

We have demonstrated that if two languages of different status compete in a
single social domain and the shift dynamics is solely governed by the frequencies of
the three population groups (i.e. the two monolingual and one bilingual groups), the
demographic and cultural attributes of these groups and the status difference of the
two languages, then the extinction of one language and therefore the loss of lin-
guistic diversity is the only long-term outcome. In this situation bilingualism is a
temporary transition state and not a stable long-term outcome securing the main-
tenance of the endangered (i.e. low-frequency) language.
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Our analyses of the basic language shift model (18.10) showed that demographic
and cultural factors influence the dynamics of language shift greatly. For instance, a
change in the dispersal behavior of a population group alone can change the out-
come of language shift (see Sect. 18.3.1.1). Consequently, in order to realistically
describe and predict the spatial and temporal dynamics of language change, the
demographic properties of the different population groups have to be summarized
appropriately.

But how well does this model reflect linguistic reality? And given the increasing
conservation effort by governments and international organization how can lin-
guistic diversity be maintained? So far the analysis has been on the assumption that
both languages compete in a single social domain (or equivalently both languages
possess the same properties in all social domains). However, this does not have to
be the case. In order to allow for the differential use of both languages in different
social context the concept of diglossia was included into the modeling framework.
This means, superimposed on the basic shift dynamics described in model (18.10),
there is an additional demand for the endangered language as the preferred medium
of communication in some restricted sociolinguistic domain. This additional
dynamics creates a flow from the monolingual population groups speaking the
high-status language to the bilingual group whereby the strength of this flow is
controlled by the model parameter w1. The demand for both languages, each in its
own preferred domain allows bilingualism to be a stable final state and we find a
wider range of possible stable extinction and coexistence states depending on the
strength of the various in- and out-flows between the three population groups.

We applied the modeling frameworks to the English-Gaelic shift situation in
Western Scotland. Firstly, Fig. 18.4 revealed that the basic shift dynamics as
described in model (18.10) is able to replicate the past demographic trajectories of
the language shift scenario. We then used the values of the parameters, which
produced this close fit between model and data in the diglossia model (18.12). The
model predicted that roughly 860 English monolingual have to become bilingual
each year, is needed to maintain the bilingual population group at the level of the
year 2009. This number could, however, drop down to roughly 440 if 340 more
children who live in bilingual households would be raised in both languages, which
points to the crucial importance of the intergenerational transmission of the bilin-
gual strategy in conservation efforts.

18.6 Conclusions

We believe that mathematical modeling can provide meaningful indicators for the
potential success or failure of certain language intervention strategies. Those
strategies usually do not attempt to reverse language shift completely as there are
good reasons why speakers abandon a language in favor of another (mainly because
speakers receive an economic gain from switching). But they do aim at creating
stable bilingualism by developing or preserving essential social domains in which
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the endangered language is the preferred or only acceptable medium of commu-
nication. In our modeling framework this means that successful intervention
strategies affect the strength of the flow between the monolingual population group
speaking the high-status language and the bilingual group and therefore the mag-
nitude of the model parameter w1. This in turn allows us to ask the question of how
strong intervention strategies needs to be, or in other words, how strong the outflow
from the monolingual population speaking the high-status language needs to be in
order to maintain the bilingual population group at a certain level. Consequently,
frameworks of the kinds described in this chapter provide a population-level view
of the temporal and spatial dynamics of language shift and therefore allow for the
inference of the average ‘general’ strength of the intervention strategies that is
needed to obtain a certain outcome. However, language planners might additionally
be interested in understanding which of two possible intervention strategies could
prove most effective. In order to answer these kinds of questions a simulation
framework which is able to mechanistically incorporate those different strategies
might be more appropriate. Even though we focused here on differential equation
based approaches we argue that different modeling approaches will add additional
insights to the puzzle of language shift and there is no one ‘right’ model to describe
the dynamics.
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Chapter 19
Human Mobility, Networks and Disease
Dynamics on a Global Scale

Dirk Brockmann

19.1 Introduction

In early 2009, news accumulated in major media outlets about a novel strain of

influenza circulating in major cities in Mexico [1]. This novel H1N1 strain was

quickly termed “swine flu”, in reference to its alleged origin in pig populations before

jumping the species border to humans. Very quickly public health institutions were

alerted and saw the risk of this local influenza epidemic becoming a major public

health problem globally. The concerns were serious because this influenza strain

was of the H1N1 subtype, the same virus family that caused one of the biggest pan-

demics in history, the Spanish flu that killed up to 40 million people in the beginning

of the 20th century [2]. The swine flu epidemic did indeed develop into a pandemic,

spreading across the globe in matters of months. Luckily, the strain turned out to

be comparatively mild in terms of symptoms and as a health hazard. Nevertheless,

the concept of emergent infectious diseases, novel diseases that may have dramatic

public health, societal and economic consequences reached a new level of public

awareness. Even Hollywood picked up the topic in a number of blockbuster movies

in the following years [3]. Only a few years later, MERS hit the news, the Middle

East Respiratory Syndrome, a new type of virus that infected people in the Middle

East [4]. MERS was caused by a new species of corona virus of the same family

of viruses that the 2003 SARS virus belonged to. And finally, the 2013 Ebola crisis

in West African countries Liberia, Sierra Leone and Guinea that although it did not

develop into a global crisis killed more than 10000 people in West Africa [5].
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Emergent infectious diseases have always been part of human societies, and also

animal populations for that matter [6]. Humanity, however, underwent major changes

along many dimensions during the last century. The world population has increased

from approx. 1.6 billion in 1900 to 7.5 billion in 2016 [7]. The majority of people

now live in so-called mega-cities, large scale urban conglomerations of more than

10 million inhabitants that live in high population densities [8] often in close con-

tact with animals, pigs and fowl in particular, especially in Asia. These conditions

amplify not only the transmission of novel pathogens from animal populations to

human, high frequency human-to-human contacts yield a potential for rapid out-

breaks of new pathogens.

Population density is only one side of the coin. In addition to increasing face-

to-face contacts within populations we also witness a change of global connectiv-

ity [9]. Most large cities are connected by means of an intricate, multi-scale web

of transportation links, see Fig. 19.1. On a global scale worldwide air-transportation

dominates this connectivity. Approx. 4,000 airports and 50,000 direct connections

span the globe. More than three billion passengers travel on this network each year.

Every day the passengers that travel this network accumulate a total of more than

14 billion kilometers, which is three times the radius of our solar system [10, 11].

Clearly this amount of global traffic shapes the way emergent infectious diseases can

spread across the globe. One of the key challenges in epidemiology is preparing for

eventual outbreaks and designing effective control measures. Evidence based con-

trol measures, however, require a good understanding of the fundamental features

and characteristics of spreading behavior that all emergent infectious diseases share.

In this context this means addressing questions such as: If there is an outbreak at

Fig. 19.1 The global air-transportation network. Each node represents one of approx. 4000 air-

ports, each link one of approx. 50000 direct connections between airports. More than 3 billion pas-

sengers travel on this network each year. All in all every day more than 16 billion km are traversed

on this network, three times the radius of our solar system



19 Human Mobility, Networks and Disease Dynamics on a Global Scale 377

location X when should one expect the first case at a distant location Y? How many

cases should one expect there? Given a local outbreak, what is the risk that a case

will be imported in some distant country. How does this risk change over time? Also,

emergent infectious diseases often spread in a covert fashion during the onset of an

epidemic. Only after a certain number of cases are reported, public health scientists,

epidemiologist and other professionals are confronted with cases that are scattered

across a map and it is difficult to determine the actual outbreak origin. Therefore, a

key question is also: Where is the geographic epicenter of an ongoing epidemic?

Disease dynamics is a complex phenomenon and in order to address these ques-

tions expertises from many disciplines need to be integrated, such as epidemiolgy,

spatial statistics, mobility and medical research in this context. One method that has

become particularly important during the past few years is the development of com-

putational models and computer simulations that help address these questions. These

are often derived and developed using techniques from theoretical physics and more

recently complex network science.

19.2 Modeling Disease Dynamics

Modeling the dynamics of diseases using methods from mathematics and dynami-

cal systems theory has a long history. In 1927 Kermack and McKenrick [12] intro-

duced and analyzed the “Suceptible-Infected-Recovered” (SIR) model, a parsimo-

neous model for the description of a large class of infectious diseases that is also

still in use today [13]. The SIR model considers a host population in which indi-

viduals can be susceptible (S), infectious (I) or recovered (R). Susceptible individ-

uals can aquire a disease and become infectious themselves and transmit the dis-

ease to other susceptible individuals. After an infectious period individuals recover,

acquire immunity, and no longer infect others. The SIR model is an abstract model

that reduces a real world situation to the basic dynamic ingredients that are believed

to shape the time course of a typical epidemic. Structurally, the SIR model treats

individuals in a population in much the same way as chemicals that react in a well-

mixed container. Chemical reactions between reactants occur at rates that depend on

what chemicals are involved. It is assumed that all individuals can be represented

only by their infectious state and are otherwise identical. Each pair of individuals

has the same likelihood of interacting. Schematically, the SIR model is described by

the following reactions

S + I
𝛼

←←←←←←→ 2I I
𝛽

←←←←←←→ R (19.1)

where 𝛼 and 𝛽 are transmission and recovery rates per individual, respectively. The

expected duration of being infected, the infectious period is given by T = 𝛽
−1

which
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can range from a few days to a few weeks for generic diseases. The ratio of rates

R0 = 𝛼∕𝛽 is known as the basic reproduction ratio, i.e. the expected number of sec-

ondary infections caused by a single infected individual in a fully susceptible popu-

lation. R0 is the most important epidemiological parameter because the value of R0
determines whether an infectious disease has the potential for causing an epidemic or

not. When R0 > 1 a small fraction of infected individuals in a susceptible population

will cause an exponential growth of the number of infections. This epidemic rise will

continue until the supply of susceptibles decreases to a level at which the epidemic

can no longer be sustained. The increase in recovered and thus immune individuals

dilutes the population and the epidemic dies out. Mathematically, one can translate

the reaction scheme (19.1) into a set of ordinary differential equations. Say the pop-

ulation has N ≫ 1 individuals. For a small time interval Δt and a chosen susceptible

individual the probability of that individual interacting with an infected is propor-

tional to the fraction I∕N of infected individuals. Because we have S susceptibles the

expected change of the number susceptibles due to infection is

ΔS ≈ −Δt × 𝛼 × S × I
N

(19.2)

where the rate 𝛼 is the same as in (19.1) and the negative sign accounts for the fact that

the number of susceptibles decreases. Likewise the number of infected individuals

is increased by the same amount ΔI = +Δt × 𝛼 × S × I∕N. The number of infecteds

can also decrease due to the second reaction in (19.1). Because each infected can

spontaneouly recover the expected change due to recovery is

ΔI ≈ −Δt × 𝛽 × I. (19.3)

Based on these assumptions Eqs. (19.2) and (19.3) become a set of differential equa-

tions that describe the dynamics of the SIR model in the limit Δt → 0:

ds∕dt = −𝛼sj (19.4)

dj∕dt = 𝛼sj − 𝛽j
r = 1 − s − j

where s(t) = S(t)∕N, j(t) = I(t)∕N and r(t) = R(t)∕N are the fractions of suscepti-

bles, infecteds and recovereds in the population as a function of time. The last equa-

tion in (19.4) is a consequence of the conservation of individuals, S(t)+ I(t)+R(t) =
N. Solutions to this set of equations for a small initial fraction of infecteds j(0) = j0,
r(0) = 0, and s(0) = 1 − j0 exhibit a typical epi-curve, i.e. an initial exponen-

tial increase of infecteds with a subsequent decline if the basic reproduction ratio

R0 > 1. Typical solutions of the SIR model are shown in Fig. 19.2. A more realistic

approach accounts for fluctuations that are caused by the intrinsic randomness of the
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Fig. 19.2 The SIR model. The curves depict the generic time course of the fraction of infected

individuals j(t) generated by the SIR model defined by reactions (19.1, colored trajectories) and

Eq. (19.4, black line). Initially only a small fraction of 1% of the population is infected. When R0 > 1
(here R0 = 2.5 and 𝛽

−1 = 1week) an exponential growth is followed by an exponential decay,

leading to the generic epidemic curve. The fluctuations in the colored trajectories are generated by

a stochastic generalization of the deterministic system defined by Eq. (19.4) in which in a finite

population of N = 1000 individuals transmission and recovery events (reactions (19.1)) occur

randomly

probabilistic reactions (19.1) and the finite number N of individuals in a population.

Depending on the magnitude of N a model in which reactions occur randomly at

rates 𝛼 and 𝛽 a stochastic system generally exhibits solutions that fluctuate around

the solutions to the deterministic system of Eq. (19.4).

Both, the deterministic SIR model and the more general particle kinetic stochastic

model are designed to model disease dynamics in a single population, spatial dynam-

ics or movement patterns of the host population are not accounted for. These systems

are thus known as well-mixed systems in which the analogy is one of chemical reac-

tants that are well-stirred in a chemical reaction container as mentioned above.

19.2.1 Spatial Models

When a spatial component is expected to be important in natural scenario, several

methodological approaches exist to account for space. Essentially the inclusion of a
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spatial component is required when the host is mobile and can transport the state of

infection from one location to another. The combination of local proliferation of an

infection and the disperal of infected host individuals then yields a spread along the

spatial dimension [13, 14].

One of the most basic ways of incorporating a spatial dimension and host dispersal

is by assuming that all quantities in the SIR model are also functions of a location

𝐱, so the state of the system is defined by s(𝐱, t), j(𝐱, t) and r(𝐱, t). Most frequently

two spatial dimensions are considered. The simplest way of incorporating dispersal

is by an ansatz following Eq. (2.19) in Chap. 2 which assumes that individuals move

diffusively in space which yields the reaction-diffusion dynamical system

𝜕s∕𝜕t = −𝛼js + D∇2s (19.5)

𝜕j∕𝜕t = 𝛼js − 𝛽j + D∇2j (19.6)

𝜕r∕𝜕t = 𝛽j + D∇2r (19.7)

where e.g. in a two-dimensional system with 𝐱 = (x, y) the Laplacian is ∇2 =
𝜕
2∕𝜕2x +𝜕

2∕𝜕2y and the parameter D is the diffusion coefficient. The reasoning behind

this approach is that the net flux of individuals of one type from one location to a

neighboring location is proportional to the gradient or the difference in concentra-

tion of that type of individuals between neighboring locations. The key feature of

diffusive dispersal is that it is local, in a discretized version the Laplacian permits

movements only within a limited distance.

In reaction diffusion systems of this type the combination of initial exponential

growth (if R0 = 𝛼∕𝛽 > 1) and diffusion (D > 0) yields the emergence of an epidemic

wavefront that progresses at a constant speed if initially the system is seeded with a

small patch of infected individuals [15]. The advantage of parsimoneous models like

the one defined by Eq. (19.7) is that properties of the emergent epidemic wavefront

can be computed analytically, e.g. the speed of the wave in the above system is related

to the basic reproduction number and diffusion coefficient by

v ∼
√(

R0 − 1
)

D (19.8)

in which we recognize the relation of Eq. (2.17). Another class of models considers

the reaction of Eq. (19.1) to occur on two-dimensional (mostly square) lattices. In

these models each lattice site is in one of the states S, I or R and reactions occur only

with nearest neighbors on the lattice. These models account for stochasticity and

spatial extent. Given a state of the system, defined by the state of each lattice site,

and a small time interval Δt, infected sites can transmit the disease to neighboring

sites that are susceptible with a probability rate 𝛼. Infected sites also recover to the

http://dx.doi.org/10.1007/978-3-319-67798-9
http://dx.doi.org/10.1007/978-3-319-67798-9_2
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Fig. 19.3 Stochastic lattice SIR models. a From left to right the images are temporal snapshots of

a stochastic SIR model in which an infected lattice site (red) can transmit an infection to a suscep-

tible (white) neighboring site with probability rate 𝛼. At rate 𝛽 infected sites recover and become

immune (grey). Initially a single site in the center is infected. Asmyptotically a concentric pattern

emerges. The infection front spreads at a constant speed. Stochastic effects at the wavefront caused

the ragged structure of the interface. b The system is identical to the system depicted in (a). How-

ever, in addition to the generic next neighbor transmission, with a small but significant probability

a transmission to a distant site can occur. This probability also decreases with distance as an inverse

power-law, e.g. p(d) ∼ d−(1+𝜇)
where the exponent is in the range 0 < 𝜇 < 2. Because the rare but

significant occurance of long-range transmissions, a more complex pattern emerges, the concentric

nature observed in system a is gone. Instead, a fractal, multiscale pattern emerges

R state and become immune with probability 𝛽Δt. Figure 19.3a illustrates the time

course of the lattice-SIR model. Seeded with a localized patch of infected sites, the

system exhibits an asymptotic concentric wave front that progresses at an overall

constant speed if the ratio of transmission and recovery rate is sufficiently large.

Without the stochastic effects that yield the irregular interface at the infection front,

this system exhibits similar properties to the reaction diffusion system of Eq. (19.7).

In both systems transmission of the disease in space is spatially restricted per unit

time.

19.2.2 The Impact of Long-Distance Transmissions

The stochastic lattice model is particularly useful for investigating the impact of per-

mitting long-distance transmissions. Figure 19.3b depicts temporal snapshots of a

simulation that is identical to the system of Fig. 19.3a apart from a small but signif-

icant difference. In addition for infected sites to transmit the disease to neighboring

susceptible lattice sites, every now and then (with a probability of 1%) they can also
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Fig. 19.4 Arrival time and geographic distance. Each panel depicts the relation of epidemic arrival

time and geographic distance to the initial outbreak location (country of origin) for two different

recent epidemics, the H1N1 pandemic 2009 (left) and the SARS epidemic 2003 (right). Because

of the complexity of connectivity of the worldwide air-transportation network (see Fig. 19.1) geo-

graphic distance to the initial outbreak location is no longer a good predictor of arrival time, unlike

in systems with local or spatially limited host mobility

infect randomly chosen lattice sites anywhere in the system. The propensity of infect-

ing a lattice site at distance r decreases as an inverse power-law as explained in the

caption to Fig. 19.3. The possibility of transmitting to distant locations yields new

epidemic seeds far away that subsequently turn into new outbreak waves and that in

turn seed second, third, etc. generation outbreaks, even if the overall rate at which

long-distance transmission occur is very small. The consequence of this is that the

spatially coherent, concerntric pattern observed in the reaction diffusion system is

lost, and a complex spatially incoherent, fractal pattern emerges [16–18]. Practically,

this implies that the distance from an initial outbreak location can no longer be used

as a measure for estimating or computing the time that it takes for an epidemic to

arrive at a certain location. Also, given a snapshot of a spreading pattern, it is much

more difficult to reconstruct the outbreak location from the geometry of the pattern

alone, unlike in the concentric system where the outbreak location is typically near

the center of mass of the pattern.

A visual inspection of the air-transportation system depicted in Fig. 19.1 is suf-

ficiently convincing that the significant fraction of long-range connections in global

mobility will not only increase the speed at which infectious diseases spread but,

more importantly, also cause the patterns of spread to exhibit high spatial incoher-

ence and complexity caused by the intricate connectivity of the air-transportation
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network. As a consequence we can no longer use geographic distance to an emer-

gent epidemic epicenter as an indicator or measure of “how far away” that epicenter

is and how long it will take to travel to a given location on the globe. This type of

decorrelation is shown in Fig. 19.4 for two examples: The 2003 SARS epidemic and

the 2009 influenza H1N1 pandemic. On a spatial resolution of countries, the figure

depicts scatter plots of the epidemic arrival time as a function of geodesic (shortest

distance on the surface of the Earth) distance from the initial outbreak location. As

expected, the correlation between distance and arrival time is weak.

19.3 Modeling Disease Dynamics on a Global Scale

Given that models based on local or spatially limited mobility are inadequate,

improved models must be developed that account for both, the strong heterogene-

ity in population density, e.g. that human populations accumulate in cities that vary

substantially in size, and the connectivity structure between them that is provided

by data on air traffic. In a sense one needs to establish a model that captures that the

entire population is a so-called meta-population, a system of m = 1,… ,M subpop-

ulation, each of size Nm and traffic between them, e.g. specifying a matrix Fnm that

quantifies the amount of host individuals that travel from population m to population

n in a given unit of time [19, 20]. For example Nn could correspond to the size of city

n and Fnm the amount of passengers the travel by air from m to n. One of earliest and

most employed models for disease dynamics using the meta-population approach is

a generalization of Eq. (19.4) in which each population’s dynamics is governed by

the ordinary SIR model, e.g.

dSn∕dt = −𝛼SnIn∕Nn (19.9)

dIn∕dt = 𝛼SnIn∕Nn − 𝛽In

dRn∕dt = 𝛽In

where the size Nn = Rn + In + Sn of population n is a parameter. In addition to this,

the exchange of individuals between populations is modeled in such a way that hosts

of each class move from location m to location n with a probability rate 𝜔nm which

yields

dUn∕dt =
∑

m

(
𝜔nmUm − 𝜔mnUn

)
(19.10)

where Um is a placeholder for Sm, Im and Rm. The first term corresponds to the flux

into location n from all other locations, the second term the flux in the opposite

direction. Combining Eqs. (19.9) and (19.10) yields:
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dSn∕dt = −𝛼SnIn∕Nn +
∑

m

(
𝜔nmSm − 𝜔mnSn

)
(19.11)

dIn∕dt = 𝛼SnIn∕Nn − 𝛽In +
∑

m

(
𝜔nmIm − 𝜔mnIn

)

dRn∕dt = 𝛽In +
∑

m

(
𝜔nmRm − 𝜔mnRn.

)

which is a generic metapopulation SIR model. In principle one is required to fix

the infection-related parameters 𝛼 and 𝛽 and the population sizes Nm as well as the

mobility rates 𝜔nm, i.e. the number of transitions from m to n per unit time. However,

based on very plausible assumptions [11], the system can be simplified in such a

way that all parameters can be gauged against data that is readily available, e.g. the

actual passenger flux Fnm (the amount of passengers that travel from m to n per day)

that defines the air-transportation network, without having to specify the absolute

population sizes Nn.

First the general rates 𝜔nm have to fulfill the condition

𝜔nmNm = 𝜔mnNn

if we assume that the Nn remain constant. If we assume, additionally, that the total

air traffic flowing out of a population n obeys

Fn =
∑

m
Fmn ∼ Nn,

i.e. it is proportional to the size of the population (e.g. the supply is proportional to

the demand), the model defined by Eq. (19.11) can be recast into

dsn∕dt = −𝛼sn jn + 𝛾

∑
m

Pmn
(
sm − sn

)
(19.12)

djn∕dt = 𝛼snjn − 𝛽jn + 𝛾

∑
m

Pmn
(
jm − jn

)

rn = 1 − sn − jn.

where the dynamic variables are, again, fractions of the population in each class:

sn = Sn∕Nn, jn = In∕Nn, and rn = Rn∕Nn. In this system the new matrix Pmn and the

new rate parameter 𝛾 can be directly computed from the traffic matrix Fnm and the

total population involved N =
∑

m Nm according to

Pnm =
Fnm∑
k Fkm
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and

𝛾 = F∕N

where F =
∑

n,m Fmn is the total traffic in the network. The matrix Pnm is there-

fore the fraction of passengers that are leaving node m with destination n. Because

passengers must arrive somewhere we have
∑

n Pnm = 1.

An important first question is concerning the different time scales, i.e. the para-

meters 𝛼, 𝛽 and 𝛾 that appear in system (19.12). The inverse 𝛽
−1 = T is the infectious

period, that is the time individuals remain infectious. If we assume T ≈ 4–6 days

and R0 = 𝛼∕𝛽 ≈ 2 both rates are of the same order of magnitude. How about 𝛾? The

total number of passengers F is approximately 8 × 106 per day. If we assume that

N ≈ 7 × 109 people we find that

𝛾 ≈ 0.0015 d
−1
.

It is instructive to consider the inverse T
travel

= 𝛾
−1 ≈ 800 days. On average a typical

person boards a plane every 2–3 years or so. Keep in mind though that this is an aver-

age that accounts for both a small fraction of the population with a high frequency of

flying and a large fraction that almost never boards a plane. The overall mobility rate

𝛾 is thus a few orders of magnitude smaller than those rates related to transmissions

and recoveries. This has important consequences for being able to replace the full

dynamic model by a simpler model discussed below.

Figure 19.5 depicts a numerical solution to the model defined by Eq. (19.12) for a

set of initial outbreak locations. At each location a small seed of infected individuals

initializes the epidemic. Global aspects of an epidemic can be assessed by the total

fraction of infected individuals jG(t) =
∑

n cnjn(t) where cn is the relative size pop-

ulation n with respect to the entire population size N . As expected the time course

of a global epidemic in terms of the epicurve and duration depends substantially on

the initial outbreak location.

A more important aspect is the spatiotemporal pattern generated by the model.

Figure 19.6 depicts temporal snapshots of simulations initialized in London and

Chicago, respectively. Analogous to the qualitative patterns observed in Fig. 19.3b,

we see that the presence of long-range connections in the worldwide air-transportation

network yields incoherent spatial patterns much unlike the regular, concentric wave-

fronts observed in systems without long-range mobility. Figure 19.7 shows that also

the model epidemic depicts only a weak correlation between geographic distance

to the outbreak location and arrival time. For a fixed geographic distance arrival

times at different airports can vary substantially and thus the traditional geographic

distance is useless as a predictor.
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Fig. 19.5 Global epi-curves. Each curve depicts the global fraction of infected individuals as a

function of time for different outbreak locations as predicted by the metapopulation model defined

by Eq. (19.12). Depending on the initial outbreak location curves differ in epidemic maximum,

curve shape and epidemic duration

Fig. 19.6 Properties of spatiotemporal patterns of global disease dynamics. Each panel from left to

right depicts temporal snapshots of the spread of a computer-simulated hypothetical pandemic. Red

nodes denote locations with a high fraction of infecteds. Each row corresponds to a different initial

outbreak location (London (LHR), top and Chicago (ORD), bottom). The patterns are spatially

incoherent, especially for larger times. It is thus difficult to assess which locations are affected next

in the sequence of locations
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Fig. 19.7 Arrival time and geographic distance. For a simulated pandemic based on the dynamical

system of Eq. (19.12) and the worldwide air-transportation network (top) the bottom panel depicts

the arrival time at each location as a function of the geographic distance to the initial outbreak

location Hong Kong. Airports are colored according to geographic location. Only a weak correla-

tion between arrival time and geographic distance exists (dashed line). For a fixed small range of

geographic distances a wide range of arrival times exists, geographic distance is thus not a good

predictor
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19.4 Issues with Computational Models

The system defined by Eq. (19.12) is one of the most parsimoneous models that

accounts for strongly heterogeneous population distributions that are coupled by traf-

fic flux between them and that can be gauged against actual population size distribu-

tions and traffic data. Surprisingly, despite its structural simplicity this type of model

has been quite successful in accounting for actual spatial spreads of past epi- and pan-

demics [19]. Based on early models of this type and aided by the exponential increase

of computational power, very sophisticated models have been developed that account

for factors that are ignored by the deterministic metapopulation SIR model. In the

most sophisticated approaches, e.g. GLEAM [21], the global epidemic and mobil-

ity computational tool, not only traffic by air but other means of transportation are

considered, more complex infectious dynamics is considered and in hybrid dynam-

ical systems stochastic effects caused by random reactions and mobility events are

taken into account. Household structure, available hospital beds, seasonality have

been incorporated as well as disease specific features, all in order to make predic-

tions more and more precise. The philosophy of this type of research line heavily

relies on the increasing advancement of both computational power as well as more

accurate and pervasive data often collected in natural experiments and webbased

techniques [21–25].

Despite the success of these quantitative approaches, this strategy bears a num-

ber of problems some of which are fundamental. First, with increasing computa-

tional methods it has become possible to implement extremely complex dynamical

systems with decreasing effort and also without substantial knowledge of the dynam-

ical properties that often nonlinear dynamical systems can possess. Implementing a

lot of dynamical detail, it is difficult to identify which factors are essential for an

observed phenomenon and which factors are marginal. Because of the complexity

that is often incorporated even at the beginning of the design of a sophisticated model

in combination with the lack of data modelers often have to make assumptions about

the numerical values of parameters that are required for running a computer simula-

tion [26]. Generically many dozens of unknown parameters exist for which plausible

and often not evidence-based values have to be assumed. Because complex computa-

tional models, especially those that account for stochasticity, have to be run multiple

times in order to make statistical assessments, systematic parameter scans are impos-

sible even with the most sophisticated supercomputers.

Finally, all dynamical models, irrespective of their complexity, require two

ingredients to be numerically integrated: (1) fixed values for parameters and (2) ini-

tial conditions. Although some computational models have been quite successful in

describing and reproducing the spreading behavior of past epidemics and in situa-

tions where disease specific parameters and outbreak locations have been assessed,

they are difficult to apply in situations when novel pathogens emerge. In these situ-

ations, when computational models from a practical point of view are needed most,

little is known about these parameters and running even the most sophisticated mod-

els “in the dark” is problematic. The same is true for fixing the right initial con-
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ditions. In many cases, an emergent infectious disease initially spreads unnoticed

and the public becomes aware of a new event after numerous cases occur in clusters

at different locations. Reconstructing the correct initial condition often takes time,

more time than is usually available for making accurate and valueable predictions

that can be used by public health workers and policy makers to devise containment

strategies.

19.5 Effective Distance

Given the issues discussed above one can ask if alternative approaches exist that

can inform about the spread without having to rely on the most sophisticated highly

detailed computer models. In this context one may ask whether the complexity of the

observed patterns that are solutions to models like the SIR metapopulation model

of Eq. (19.12) are genuinely complex because of the underlying complexity of the

mobility network that intricately spans the globe, or whether a simple pattern is really

underlying the dynamics that is masked by this complexity and our traditional ways

of using conventional maps for displaying dynamical features and our traditional

ways of thinking in terms of geographic distances.

In a recent approach Brockmann and Helbing [11] developed the idea of replacing

the traditional geographic distance by the notion of an effective distance derived from

the topological structure of the global air-transportation network. In essence the idea

is very simple: If two locations in the air-transportation network exchange a large

number of passengers they should be effectively close because a larger number of

passengers implies that the probability of an infectious disease to be transmitted from

A to B is comparatively larger than if these two locations were coupled only by a small

number of traveling passengers. Effective distance should therefore decrease with

traffic flux. What is the appropriate mathematical relation and a plausible ansatz to

relate traffic flux to effective distance? To answer this question one can go back to the

metapopulation SIR model, i.e. Eq. (19.12). Dispersal in this equation is governed

by the flux fraction Pnm. Recall that this quantity is the fraction of all passengers that

leave node m and arrive at node n. Therefore Pnm can be operationally defined as the

probability of a randomly chosen passenger departing node m arriving at node n. If,

in a thought experiment, we assume that the randomly selected person is infectious,

Pnm is proportional to the probability of transmitting a disease from airport m to

airport n. We can now make the following ansatz for the effective distance:

dnm = d0 − logPnm (19.13)

where d0 ≥ 0 is a non-negative constant to be specified later. This definition of

effective distance implies that if all traffic from m arrives at n and thus Pnm = 1 the

effective distance is dnm = d0 which is the smallest possible value. If, on the other

hand Pnm becomes very small, dnm becomes larger as required. The definition (19.13)

applies to nodes m and n that are connected by a link in the network. What about pairs
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of nodes that are not directly connected but only by paths that require intermediate

steps? Given two arbitrary nodes, an origin m and a destination n, an infinite amount

of paths (sequence of steps) exist that connect the two nodes. We can define the

shortest effective route as the one for which the accumulation of effective distances

along the legs is minimal. So for any path we sum the effective distance along the

legs according to Eq. (19.13) adding up to an effective distance Dnm. This approach

also explains the use of the logarithm in the definition of effective distance. Adding

effective distances along a route implies the multiplication of the probabilities Pnm
along the involved steps. Therefore the shortest effective distance Dnm is equivalent

to the most probable path that connect origin and destination. The parameter d0 is a

free parameter in the definition and quantifies the influence of the number of steps

involved in a path. Typically it is chosen to be either 0 or 1 depending on the appli-

cation.

One important property of effective distance is its asymetry. Generally we have

dnm ≠ dmn.

This may seem surprising at first sight, yet it is plausible. Consider for example

two airports A and B. Let’s assume A is a large hub that is strongly connected to

many other airports in the network, including B. Airport B, however, is only a small

airport with only as a single connection leading to A. The effective distance B →
A is much smaller (equal to d0) than the effective distance from the hub A to the

small airport B. This accounts for the fact that if, again in a thought experiment,

a randomly chosen passenger at airport B is most definitely going to A whereas a

randomly chosen passenger at the hub A is arriving at B only with a small probability.

Given the definition of effective distance one can compute the shortest effective

paths to every other node from a chosen and fixed reference location. Each airport m
thus has a set of shortest paths Pm that connect m to all other airports. This set forms

the shortest path tree Tm of airport m. Together with the effective distance matrix

Dnm the tree defines the perspective of node m. This is illustrated qualitatively in the

Fig. 19.8 that depicts a planar random triangular weighted network.

One can now employ these principles and compute the shortest path trees and

effective distances from the perspective of actual airports in the worldwide air-

transportation network based on actual traffic data, i.e. the flux matrix Fnm.

Figure 19.9 depicts the shortest path tree of one of the Berlin airports (Tegel, TXL).

The radial distance of all the other airports in the network is proportional to their

effective distance from TXL. One can see that large European hubs are effectively

close to TXL as expected. However, also large Asian and American airports are effec-

tively close to TXL. For example the airports of Chicago (ORD), Beijing (PEK),

Miami (MIA) and New York (JFK) are comparatively close to TXL. We can also

see that from the perspective of TXL, Germany’s largest airport FRA serves as a

gateway to a considerable fraction of the rest of the world. Because the shortest path

tree also represents the most probable spreading routes one can use this method to

identify airports that are particularly important in terms of distributing an infectious

disease throughout the network.
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Fig. 19.8 Shortest paths and shortest path trees in complex networks. Left: A random planar

weighted network consisting of 100 nodes and 283 links. Links vary in strength. The size of the

nodes quantifies the total link weight per node. Center: For a chosen node (no. 76) the shortest

path tree is shown. Color depicts effective distance. Right: The shortest path tree of node no. 36.

The shortest path trees are also those paths that correspond to the most probable paths of a random

walker that starts at the reference location and terminates at the respective target node

19.6 Recovery of Concentric Patterns

The use of effective distance and representing the air-transportation network from

the perspective of chosen reference nodes and making use of the more plausible

notion of distance that better reflects how strongly different locations are coupled

in a networked system is helpful for “looking at” the world. Yet, this representa-

tion is more than a mere intuitive and plausible spatial representation. What are the

dynamic consequences of effective distance? The true advantage of effective dis-

tance is illustrated in Fig. 19.10. This figure depicts the identical computer-simulated

hypothetical pandemic diseases as Fig. 19.6. Unlike the latter, that is based on the

traditional geographic representation, Fig. 19.10 employs the effective distance and

shortest path tree representation from the perspective of the outbreak location as dis-

cussed above. Using this method, the spatially incoherent patterns in the traditional

representation are transformed into concentric spreading patterns, similar to those

expected for simple reaction diffusion systems.

This shows that the complexity of observed spreading patterns is actually

equivalent to simple spreading patterns that are just convoluted and masked by the

underlying network’s complexity. This has important consequences. Because only

the topological features of the network are used for computing the effective distance

and no dynamic features are required, the concentricy of the emergent patterns are a

generic feature and independent of dynamical properties of the underlying model. It

also means that in effective distance, contagion processes spread at a constant speed,

and just like in the simple reaction diffusion model one can much better predict the

arrival time of an epidemic wavefront, knowing the speed and effective distance. For

example if shortly after an epidemic outbreak the spreading commences and the ini-

tial spreading speed is assessed, one can forecast arrival times without having to run

computationally expensive simulations. Even if the spreading speed is unknown, the
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Fig. 19.9 Shortest path trees and effective distance from the perspective of airport Tegel (TXL) in

Berlin. TXL is the central node. Radial distance in the tree quantifies the effective distance to the

reference node TXL. As expected large European hubs like Frankfurt (FRA), Munich (MUC) and

London Heathrow (LHR) are effective close to TXL. However, also hubs that are geographically

distant such as Chicago (ORD) and Beijing (PEK) are effectively closer than smaller European

airports. Note also that the tree structure indicates that FRA is a gateway to a large fraction of other

airports as reflected by the size of the tree branch at FRA. The illustration is a screenshot of an

interactive effective distance tool available online [27]

effective distance which is independent of dynamics can inform about the sequence

of arrival times, or relative arrival times.

The benefit of the effective distance approach can also be seen in Fig. 19.11 in

which arrival times of the 2003 SARS epidemic and the 2009 H1N1 pandemic in

affected countries are shown as a function of effective distance to the outbreak origin.

Comparing this figure to Fig. 19.7 we see that effective distance is a much better

predictor of arrival time, a clear linear relationship exists between effective distance
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ORD

LHR

Fig. 19.10 Simulations and effective distance. The panels depict the same temporal snapshots of

computer simulated hypothetical pandemic scenarios as in Fig. 19.6. The top row corresponds to

a pandemic initially seeded at LHR (London) the bottom row at ORD (Chicago). The networks

depict the shortest path tree effective distance representation of the corresponding seed airports as

in Fig. 19.9. The simulated pandemics that exhibit spatially incoherent complex patterns in the tra-

ditional representation (Fig. 19.6) are equivalent to concentric wave fronts that progress at constant

speeds in effective distance space. This method thus substantially simplifies the complexity seen in

conventional approaches and improves quantitative predictions

and epidemic arrival. Thus, effective distance is a promising tool and concept for

application in realistic scenarios, being able to provide a first quantitative assessment

of an epidemic outbreak and its potential consequences on a global scale.

19.7 Reconstruction of Outbreaks

In a number of situation epidemiologists are confronted with the task of reconstruct-

ing the outbreak origin of an epidemic. When a novel pathogen emerges in some

cases the infection spreads covertly until a substantial case count attracts attention

and public health officials and experts become aware of the situation. Quite often

cases occur much like the patterns depicted in Fig. 19.3b in a spatially incoherent

way because of the complexity of underlying human mobility networks. When cases

emerge at apparently randomly distributed locations it is a difficult task to assess

where the event initially started. The computational method based on effective dis-

tance can also be employed in these situations provided that one knows the underly-

ing mobility network. This is because the concentric pattern depicted in Fig. 19.10 is
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Fig. 19.11 Correlation of arrival time with effective distance. Left: the relationship of epidemic

arrival time and effective distance for the H1N1 pandemic 2009. Compared to the conventional

use of geographic distance effective distance is a much better predictor of epidemic arrival time as

is reflected by the linear relationship between arrival time and effective distance, e.g. compare to

Fig. 19.7. Right: The same analysis for the 2003 SARS epidemic. Also in this case effective distance

is much more strongly correlated with arrival time than geographic distance

only observed if and only if the actual outbreak location is chosen as the center per-

spective node. In other words, if the temporal snapshots are depicted using a different

reference node the concentric pattern is scrambled and irregular. Therefore, one can

use the effective distance method to identify the outbreak location of a spreading

process based on a single temporal snapshot. This method is illustrated in a proof-

of-concept example depicted in Fig. 19.12. Assume that we are given a temporal

snapshot of a spreading process as depicted in Fig. 19.12a and the goal is to recon-

struct the outbreak origin from the data. Conventional geometric considerations are

not sucessful because the network-driven processes generically do not yields sim-

ple geometric patterns. Using effective distance, we can now investigate the pattern

from the perspective of every single potential outbreak location. We could for exam-

ple pick a set of candidate outbreak locations (panel (b) in the figure). If this is done

we will find that only for one candidate outbreak location the temporal snapshot has

the shape of a concentric circle. This must be the original outbreak location. This

process, qualitatively depicted in the figure, can be applied in a quantitative way

and has been applied to actual epidemic data such as the 2011 EHEC outbreak in

Germany [28].
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Fig. 19.12 Outbreak reconstruction using effective distance. a The panel depicts a temporal snap-

shot of a computer simulated hypothetical pandemic, red dots denote airports with a high prevalence

of cases. From the snapshot alone it is difficult to assess the outbreak origin which in this case is

ORD (Chicago). b A choice of 12 potential outbreak locations as candidates. c For these candidate

locations the pattern is depicted in the effective distance perspective. Only for the correct outbreak

location the pattern is concentric. This method can be used quantitatively to identify outbreaks of

epidemics that initially spread in a covert way

19.8 Conclusions

Emergent infectious diseases that bear the potential of spreading across the globe

are an illustrative example of how connectivity in a globalized world has changed

the way human mediated processes evolve in the 21st century. We are connected by

complex networks of interaction, mobility being only one of them. With the onset of

social media, the internet and mobile devices we share information that proliferates

and spreads on information networks in much the same way (see also Chap. 20). In all

of these systems the scientific challenge is understanding what topological and statis-

tical features of the underlying network shape particular dynamic features observed

in natural systems. The examples addressed above focus on a particular scale, defined

by a single mobility network, the air-transportation network that is relevant for this

scale. As more and more data accumulates, computational models developed in the

future will be able to integrate mobility patterns at an individual resolution, poten-

tially making use of pervasive data collected on mobile devices and paving the way

towards predictive models that can account very accurately for observed contagion

patterns. The examples above also illustrate that just feeding better and faster com-

puters with more and more data may not necessarily help understanding the fun-

damental processes and properties of the processes that underly a specific dynamic

phenomenon. Sometimes we only need to change the conventional and traditional

ways of looking at patterns and adapt our viewpoint appropriately.

http://dx.doi.org/10.1007/978-3-319-67798-9_20
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Chapter 20
Spreading of Failures in Interdependent
Networks

Louis M. Shekhtman, Michael M. Danziger and Shlomo Havlin

20.1 Introduction

Most studies of spreading focus on how some physical objects move in space, yet

spreading can also involve other phenomenon. Recent research has explored the

spreading of failures in various complex systems like power grids, communications

networks, financial networks and others. In these systems, when one failure occurs it

can trigger a cascade wherein that failure spreads to other parts of the system. Failure

spreading can have dramatic results leading to blackouts, economic collapses, and

other catastrophic events.

In order to combat this problem, it is often useful to model and understand the

physical mechanisms of failure spreading. While it would be ideal if failures could

be prevented entirely, this is unlikely since every system will experience failure at

one time or another. Rather, the approach and models reviewed in this chapter focus

on the mechanisms of how initial failures spread and how this information can be

used to mitigate the spreading. It is also noteworthy that many of the same models

used here in the context of failures in infrastructure networks can also be used to

identify influential individuals who are capable of spreading a message to a large

audience in social networks.

A specific focus here will be on the mechanism involved in the realistic situ-

ation where two systems are interdependent such that components of one system

cannot function without components of the other. This could be for example, the

case in the context of a communication tower that needs to receive power from a
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nearby power station. If the power station fails, that failure immediately spreads to

the communication tower. The failure of the communication tower can then lead to

additional failures that also impact the power grid (either directly or indirectly) and

so on. Understanding how these failures spread in both time and space is critical in

order to ensure that large-scale complex systems remain functional.

A further challenge examined here involves the question of how to optimally

repair and recover a system after it has experienced some failures. While it may seem

simple to repair failed components of a system, it will be ineffective if the spreading

of the failures has not first been contained. Making repairs is useless if the failures

quickly spread to the repaired components once again. Instead, repairs must be made

in a clear and purposeful way in order to restore the system to a functional state.

Many complex systems such as power grids, communication systems, the inter-

net, and biological systems have recently been modeled as complex networks. This

representation of the system involves defining sets of nodes that are connected to one

another through links. Precisely what constitutes a node and/or link will depend on

the exact system being analyzed. For example, in power grids the nodes are typically

defined as the power stations and the links are powerlines that connect the power sta-

tions. In communication networks, nodes could be antenna towers and towers that are

in range of one another are linked. Many different systems can be modeled in such

a manner and researchers have discovered that while different systems have unique

properties, many global network properties remain true across multiple systems.

Most of the properties discovered in complex networks relate to the structure of

the connections between the nodes. The number of connections of a particular node

is known as its degree, k. Networks where connections are assigned purely randomly

(Erdős-Rényi networks) have a degree distribution that is Poisson. The most impor-

tant feature of Poisson distributions, at least in the context of complex networks, is

that they have a typical mean degree, < k > and it is highly unlikely for any node

to have a degree that is substantially larger or smaller than < k >. Explicitly the

likelihood of a node to have degree k, is given by P(k) = < k >
k e−k∕k!. (Note also,

that in the text we will simply refer to the mean degree of an Erdős-Rényi network as

k rather than < k > and that it is common to do so in the literature). Early research

found that the distribution of the degree in real networks often takes the form of a

power law. This means that the likelihood of a node to have degree k is proportional

to k−𝛾 , i.e. P(k) ∼ k−𝛾 . Notably, if 𝛾 < 3, then some nodes end up with far more

connections than others and the variance tends to infinity. Networks with this prop-

erty are known as scale-free networks [1]. Another unique feature present in many

networks is the existence of tightly connected communities that have many links to

other nodes in the same community (module), but few links to nodes outside of the

community [2]. This property is often referred to as modularity and it is highly ubiq-

uitous in many networks. Lastly, many networks, like power grids, are embedded in

physical space (spatial networks) and the expense of creating long-range links forces

most links to be of short length [3]. There are many other significant structures that

exist in networks which are more fully reviewed in one of the recent books on the

subject [4, 5]. More information on diffusion in complex networks can be found in

[6] or in [7, 8].
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Fig. 20.1 Interdependence in modern infrastructure causes failures to spread between systems.

This is the result of multiple systems needing power for switches, supervisory control and data

acquisition (SCADA), fuel transport, and other resources. After [20]

Further research has led to the recognition that many networks do not exist

in isolation, but rather a network is often only one of several interdependent net-

works [9–14]. This situation refers to the case where a node in one network, say a

communication antenna tower, depends on a node in another network, say a power

station. This relationship can be described through the existence of a new type of

link known as a dependency link [15–17]. Whereas connectivity links represent the

idea that some sort of flow occurs between the two connected nodes (e.g. flow of

electricity in power grids, flow of information in communication networks), depen-

dency links mean that if the node being depended upon fails then the dependent node

also fails. Such situations are especially common in infrastructure, but they can also

arise in biological systems [18] and financial networks [19]. An example detailing the

interdependence between different infrastructure networks can be found in Fig. 20.1.
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Fig. 20.2 Different types of interdependent networks are shown in the figure. In this case, each

node shown above actually represents an entire network and the links in the figure represent the

existence of dependency links between two networks. The path through which failure spreading in

interdependent networks occurs is determined according to which networks have dependency links

between them. (a) The top structures are various treelike networks of networks (NON) structures

and (b) the bottom structures are NONs with loops. On the left is a lattice and on the right is a

random-regular NON structure. After [21, 22]

As seen in Fig. 20.1, interdependencies can take complex forms. This has led

researchers to refer to interdependent networks as ‘networks of networks’ (NON).

Dependency links exist between specific pairs of networks and the structure of

the network of networks is defined according to which pairs of networks have

dependency links. A few examples of networks of networks are shown in Fig. 20.2.

Simple examples include cases where the NON dependencies form a tree, a single

loop, and a random-regular configuration where all networks depend on the same

number of networks.

One of the most important properties of many networks and systems in general is

their robustness to failures. As discussed briefly above, power stations can become

overloaded or fail for other reasons and communication antenna towers can have

problems due to bad weather or other issues. While efforts are always made to min-

imize the frequency of these failures, they are bound to occur. When analyzing the

system as a whole, it is desirable to optimize the network such that it can still con-

tinue functioning even if some of the nodes fail. In many cases the functioning of the

system can be quantified by asking how many nodes remain connected after some

nodes fail. For example, for communications networks it is often most relevant to

ask, “How many nodes can communicate after some others fail?” or in the context

of power grids, “How many power stations are still linked to the grid after some sta-

tions fail?” The failure of one node can cause other nodes to become disconnected

from the network as a whole and fail as well, thus the initial failures are magnified

and can spread throughout the network.
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The question of what fraction of a system remains connected after some set of

failures can be answered through percolation theory from physics. Percolation theory

essentially determines clusters of nodes that are connected to one another such that

flow can occur between them. The largest cluster, which contains the largest number

of nodes, is referred to as the giant connected component and is described by P∞ [4,

5, 23, 24]. Explicitly, P∞ is defined as the fraction of nodes remaining in the largest

connected component (or equivalently, the likelihood of a node to be in the largest

component) at some point in a percolation process. For our purposes, only nodes that

are part of this largest cluster are considered functional whereas all other nodes are

considered to have failed. The goal in designing resilient systems is to maximize the

size of the giant component for any case of failures.

Percolation theory was able to discover that scale-free networks (i.e. those whose

degree distribution follows a power-law) are far more resilient to random failures

than random networks. In other words, if the same number of failures occur in both

random and scale-free networks, a larger fraction of a scale-free network will remain

connected. More precisely, in contrast to random networks where only a finite frac-

tion of nodes must be removed, for scale-free networks only if nearly all of the nodes

are randomly removed, will the network become totally fragmented [25]. In any case,

for both isolated random and isolated scale-free networks, slightly increasing the

number of initial failures only slightly increases the number of total failures. In other

words, the transition from a functioning to non-functioning state is continuous.

Failures in interdependent networks occur and spread through two different mech-

anisms. The first is the same as in single networks, i.e. failures of nodes lead further

nodes to become disconnected from the giant component. The second mechanism is

through failures spreading due to the dependency links. As mentioned previously, a

node at one end of a dependency link relies on the node at the other end of the link

to function. If a node on one end of a dependency link fails, the node on the other

end of the link also fails. As we will see in the next section, such mechanisms can

lead to abrupt collapse.

20.2 Robustness of Interdependent Networks

Percolation methods were widely applied to solve problems in single networks [4,

5, 25–27] and recent research has expanded these methods to interdependent net-

works [15, 16, 21, 28, 29]. In interdependent networks, when some nodes fail, they

cause other dependent nodes to fail [15]. The failure of these dependent nodes then

disconnects other nodes from the giant component and leads to the failure of more

dependent nodes. In this manner, failures spread through the system until a steady

state is reached. It is noteworthy that because of the cascade, removing a single addi-

tional node can cause the system to collapse entirely, i.e. the transition is abrupt and

first-order [15, 16, 28, 30]. This is significantly different from isolated networks

where the transition is continuous.
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In the initial work on interdependent networks, Buldyrev et al. [15] calculated

the final fraction of functional nodes after the cascade analytically. They also car-

ried out numerical simulations to verify their results. In explaining the results from

[15], it is important to note the result for percolation of a single Erdős-Rényi net-

work, namely P∞ = p(1 − e−kP∞), where p is the fraction of the network that sur-

vives the initial failures and k is the average degree of the network [31–33]. It is

also noteworthy that since P∞ appears on both sides of the equation and no addi-

tional simplification is possible, the equation is transcendental and can only be solved

numerically. If p nodes survive the initial failures in a system of two interdependent

Erdős-Rényi networks, the size of the giant component is described by [15, 28],

P∞ = p(1 − e−kP∞)2. (20.1)

While the difference between the formulas for P∞ for single and interdependent net-

works may seem small, namely a power of 2 instead of 1 on the right side of the

equation, this small change has dramatic consequences leading to the long cascades

and abrupt failures described throughout this review. Essentially, the power of 2 can

be understood by recognizing that nodes now must be both in the giant component

of their own network and have their dependent node be in the giant component of the

second network. Gao et al. [21, 22, 28, 34] later solved several cases that involved

more than two networks. In the case of n interdependent Erdős-Rényinetworks with

full dependency such that they form a tree (Fig. 20.2a), the size of the giant compo-

nent is given by [28]

P∞ = p(1 − e−kP∞)n. (20.2)

Gao et al. [21, 28] also solved several other simple structures of networks of networks

analytically.

Other papers by Bianconi et al. [35, 36], Baxter et al. [30, 37], Hu et al. [38], Kim

et al. [39], Lee et al. [40] and Cellai et al. [41] have also obtained further analytic

results for interdependent networks.

20.3 Interdependent Networks with Realistic Features

In this section we will provide a brief review on more realistic models of failure

spreading in interdependent networks. The internet and power-grids, as well as other

networks, are not purely random and instead contain non-random structure. This

structure influences the spreading of failures.

One common feature is a degree distribution that is scale-free. It was found for

interdependent scale-free networks, that a broader degree distribution makes the net-

works more vulnerable to the spreading of failures [15, 42].

Another realistic feature that has recently been found to influence failure spread-

ing in single and interdependent networks is modularity [43, 44]. Both of those stud-

ies [43, 44] examined the case of attacks on interconnected nodes, i.e. nodes that
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(a)

(b)

Fig. 20.3 Here we show examples of modular structure in interdependent networks. In this case,

each of the interdependent networks has a modular structure, i.e. they are segregated into distinct

tightly connected communities. This is seen by the fact that inside each black circle in (a) there is

a network with modular structure. Further, each of the communities is highlighted with a different

color. The specific structure shown in (a) is a treelike network of modular networks. The dependency

links are restricted such that a node in a particular module in one network will depend on a node

that is in the same module in the second network (i.e. dependency links are between nodes of the

same color). This is illustrated clearly in (b). After [43]

connect between two communities. Another study using a similar model, showed that

attacks on interconnected nodes lead to very fast spreading of failures, especially in

the Western U.S. power grid [45]. Shekhtman et al. [43] solved analytically the case

where there are several networks each of which has the same number of modules of

the same size. Dependency links were also restricted to be between corresponding

modules in different layers. An example of where this model is realistic is the case

of infrastructure within and between cities. Each city has its own infrastructure and

the interdependence occurs within the city. At the same time, different infrastructure

networks will connect both within and across several cities. Consider the example of

a coupled system of a power grid and a communications system. Most likely, a power

station and a communication tower that depend on one another will be in the same

city. This is true even though both the communication tower and the power station

have connections to other cities. The model is visualized in Fig. 20.3. Failures can

lead to collapse that occurs in one or two stages, i.e. there can be two transitions.

When two transitions occur, the first is the result of modules separating but continu-

ing to function independently. After additional failures, the modules themselves also

collapse.

Failure spreading is also influenced by spatial features. It is well accepted that

many infrastructures are embedded in space, including power grids and many com-

munication networks [3, 46]. This embeddedness has significant influence on how

failures spread. To simplify studies of spatial networks, 2D lattices are often used

as models and it is noted that any other embedded network is in the same universal-

ity class [24, 47]. An early study on spatially embedded networks found that they
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r=0

r=2

(a)

(b)

Fig. 20.4 a Dependency links can be restricted such that only pairs of nodes within some distance

r are allowed to be interdependent. In the figure the cases of r = 0 and r = 2, where the pairs

are zero and two lattice spaces apart are shown. After [51]. b The radial spreading at criticality is

shown. The redder regions end up failing at later times (as shown in the colorbar on the right) in

comparison to the central regions. After [50]

are extremely vulnerable in the sense that two interdependent networks can collapse

abruptly even if only a few of the nodes in each network are interdependent [48].

Another study examined a case where the dependency links are restricted to

a maximal length, r (demonstrated in Fig. 20.4a). This accounts for the fact that

dependencies are most likely to be short range and that it is highly unlikely for exam-

ple that a communication tower in the Eastern United States is dependent on a power

grid in the Western United States. For short range dependency lengths, i.e. low r, the

percolation transition is continuous, but for larger r, the transition is abrupt. The shift

between the behaviors occurs when r reaches a critical value, rc ≈ 8 [49]. Above this

critical dependency length, the percolation transition occurs in such a way that fail-

ures spread radially outward from an initial damage site until they end up finally

consuming the entire network [50], see Fig. 20.4b.

Later works incorporated additional spatial features in order to move towards even

more realistic models of interdependent spatial infrastructure including considering

the case of NON formed of more than just two networks [50–53].

The cascade in interdependent networks can be mapped to other cascades like

blackouts in power grids [54, 55]. Most blackouts and other failures spread in a pre-

dictable manner. Understanding the spatio-temporal spreading is crucial in order to

understand and contain such failure spreading. Specifically, it has been found that the

spatio-temporal dynamics of the cascade can be used to identify a specific depen-

dency correlation distance that determines how failures spread [56]. This depen-

dency correlation distance defines how far the failures are likely to spread. In that

work, Zhao et al. [56] studied the case of overload failures in spatially embedded net-

works and examined how failures propagate in space and time. The authors defined

load according to the well-known betweenness centrality, which measures how many
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Fig. 20.5 The propagation of failures in a synthetic overloaded system are shown. The red nodes in

the center represent the initial failures. At each time step, additional nodes that fail due to overloads

are shown in blue. Nodes that have already failed are shown in black. As seen, the spread occurs

almost radially outward from the location of the initial failures. After [56]

shortest paths go through a particular link [54]. The initial load depends on the struc-

ture of the network and nodes that have more shortest paths going through them have

a higher load. After an initial set of localized failures, the paths between nodes change

and load becomes redistributed, especially around the failed nodes. However, due

to this redistribution, some other nodes will also become overloaded and fail. This

process will continue either until the load manages to rebalance or until the entire

network collapses. The dependency correlation distance describes how far the direct

effects of the initial redistribution are felt. Zhao et al. [56] studied how the failures

spread as a function of the tolerance, 𝛼. The quantity 𝛼 is defined such that 1+𝛼 times

the original load is the maximal load above which the node becomes overloaded and

fails. They found that for all values of 𝛼 the spreading of failures occurs radially from

the initial failures and spreads at approximately constant velocity. As 𝛼 increases, the

velocity of the spreading of failures decreases. This is intuitive as it means that the

system is able to accept a higher increased load without failing. An example of the

spreading in a synthetic power grid can be seen in Fig. 20.5. These results support

the model of interdependent spatial networks studied in previous works [49, 57,

58] where now the velocities can be mapped to the length of the dependency links

[56]. As explained earlier, the length of the dependency links represents the distance

between two nodes that rely on one another. The velocity of the failure spreading in

the model from [56] has the similar meaning of how quickly failures from a node in

one location reach a node in another location. The specific procedure for mapping

between these two quantities is described in [56].

Other aspects relating to more realistic models of interdependent networks have

also been analyzed in many further works which consider many types of network

structures and conditions on dependency links [38, 41, 59–72].

20.4 Localized Attacks on Interdependent Networks

Another realistic feature that has recently been incorporated into understanding the

resilience of both single and interdependent networks is localized attack [57, 73,

74]. For localized attack on a pair of spatially embedded networks it was found that
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Fig. 20.6 a Depending on the initial size of the hole, it may either spread through a system of

interdependent networks (the hole on the right) or not (the hole on the left). Whether the hole

spreads, depends only on the degree of the networks and not on the number of total nodes in the

system. b Here a localized attack is shown to spread on an interdependent system with a layout

according to the European Power grid, whereas a random attack does not spread. After [57]

a ‘hole’ above a certain critical size must be made in one of the networks in order for

the failures to spread throughout the entire system (see Fig. 20.6). The researchers

in [57] found that even though a network may be robust to random attacks, it can be

vulnerable to localized attacks. In addition, the critical size of the ‘hole,’ denoted rc
h,

that must be made to collapse the system is independent of the size of the system

and instead depends only on the degree. This behavior is vastly different from the

case of a single spatially embedded network where the size of the hole necessary for

total system failure scales with the size of the system. Localized attacks are particu-

larly relevant in the realistic case of an Electromagnetic Pulse (EMP) detonation, i.e.

a short burst of electromagnetic energy that damages all electronic devices within

some radius.

20.5 Recovery in Single Networks and Interdependent
Networks

In order to understand the spreading of failures, it is also important to consider how to

repair failures as they spread throughout a system. This question is of course highly

relevant since while the goal is always to prevent failures from occurring, all sys-

tems will experience failure at some point. To address this question, researchers have

begun studying how to optimally repair and recover a system like a power grid or

the internet. It was found in [75] that when node recoveries are introduced in a sim-

ple dynamic cascade model [76], the system can spontaneously recover. The model

contains three key parameters: one describes the fraction of internally failed nodes

(p∗
), a second governs the time for recovery to occur (𝜏), and the third describes the

probability of failure due to lack of support from external nodes (r). For the case of

small networks, r and p∗
in the system, due to stochasticity will not be fixed, but will

instead wander in phase space near their average values. This exploration of phase
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Fig. 20.7 a Here we show the phase space describing the state of the system according to the

number of internally failed nodes (p∗
) and the likelihood of external failure (r). The white line shows

the trajectory of the system as it diffuses in phase space between failed (Phase II) and functional

states (Phase I). When the system crosses the red line (points 1 and 3) it transits to a recovered state

and when it crosses the blue line (points 2 and 4) it moves to a failed state. b Here we show the time

evolution of the system in accordance with the diffusion in phase space according to the trajectory

shown in (a) where the y-axis, z represents the fraction of active nodes at a given time t. As seen in

the figure there are two clear states, either a failed or recovered state. The system changes between

these two states, but never exists in an intermediate state. After [75]

space causes the system to dynamically recover or fail over time. In Fig. 20.7a, when

the system crosses the blue line it reaches a failed state and when it crosses the red line

it recovers. The crossing of these points can also be observed in Fig. 20.7b according

to the corresponding numbered transitions. When the goal is to repair the system, a

global planner will make repairs such that they reduce the likelihood of external fail-

ure, r, and help the system to pass the red line which represents the transition to a

repaired state.

One example of a real system where this model was applied is stock-market net-

works. In such networks, each stock represents a node and it is connected to other

stocks based on correlations between their stock prices. Stocks that are going up can

be considered to be in a functional state and stocks that are falling can be consid-

ered in a failed state. Each stock (company) has an internal probability of failure (p∗
)

which could occur due to internal problems that are inherent to the company. Next

there is a time (𝜏) it takes the company to fix the problems that caused the stock price

drop, i.e. to recover. Lastly, because stocks are connected to one another they require

support from one another and thus there is a probability (r) for a stock to drop if

other stocks in the same or related sectors are falling. Naturally, the probability of

a stock to fail, p∗
, and the probability for failure due to the collapse of other stocks,

r, will change based on overall market conditions, recent shocks to the markets, and

for other reasons as well. The explicit application of this model to stock-market net-

works and a comparison to real data for the S&P500 can be found in Majdandzic et

al. [75].
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It was recently shown that a similar but much richer phenomenon occurs in inter-

dependent networks [77]. The study in [77] found an optimal repairing strategy,

which describes how many repairs should be made in each network in order to move

the system towards a functional state.

In addition there have been several other studies on restoration of interdependent

networks [78, 79].

20.6 Conclusions

Modern systems are becoming more and more interdependent especially through the

use of SMART technologies, which require information from both their own system

and from other systems. This information is then used to optimize the performance

of each system based on the functioning of the other systems. Examples are SMART

grids, SMART cities, and the internet of things (IOT). Understanding how failures

spread both within and between the different systems that form SMART cities is cru-

cial in order to ensure the stability of these highly interdependent systems. Methods

from diffusion, percolation and physics in general can serve as useful tools to contain

and predict the spreading of failures in these systems. Furthermore, models of inter-

dependent networks have also explained the spreading of failures in other areas like

finance [19, 80]. Continuing to study how failures spread in real-world systems is a

crucial area of research and will likely provide many additional interesting results.
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