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Supervisor’s Foreword

The understanding of today’s large and complex universe is impossible without
understanding the ‘initial conditions’ that led to the large-scale structures. The
initial data were set in the very early universe when the quantum effects were
profound. This fascinating relation between microscopic quantum laws of nature
and the observable features of the universe is the topic of Neil Barrie’s Ph.D.
Thesis.

The introductory chapter of the thesis provides a concise description to the
standard model of particle physics—up to now, the most accurate microscopic
theory of physics at smallest scales—and to the standard model of hot Big Bang
cosmology—the most credible theory of physics at largest scales. It also contains a
critical overview of unexplained phenomena, such as horizon and flatness prob-
lems, the origin of the matter–antimatter asymmetry and mass hierarchy problem,
together with a description of paradigm of cosmic inflation. The original research is
presented in the remaining chapters.

In Chap. 2, the author proposes a new model of inflation based on nonlinearly
realised scale invariance. The salient feature of the model is the existence of a flat
direction in a generic scalar potential, which is lifted quantum mechanically, due to
the quantum scale anomaly and lead to a successful inflationary era in the early
universe. In Chaps. 3 and 4, two distinct scenarios for the dynamical generation of
matter–antimatter asymmetry during inflation are proposed. The first is based on the
dynamics of a new gauge boson with quantum anomaly, while the second utilises
the ratchet mechanism. In Chap. 5, it is argued that homogeneous cosmic neutrino
background, which is one of the unambiguous predictions of the standard Big Bang
cosmology, develops instability in the presence of nonzero Lepton number, due to
the mixed gravity-lepton number quantum anomaly. Chapter 6 is reserved for
conclusions, while useful formulae and further technical details are collected in
appendices.
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The topics studied in Neil Barrie’s thesis cover some of the most profound
questions about our universe. I believe this work will be useful for students and
experienced researchers interested in this area of fundamental science.

Sydney, Australia
May 2018

Asst. Prof. Archil Kobakhidze
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Abstract

The aim of this thesis is to investigate the possible implications of quantum
anomalies in the early universe. We first consider a new class of natural inflation
models based on scale invariance, imposed by the dilaton. In the classical limit, the
general scalar potential necessarily contains a flat direction; this is lifted by
quantum corrections. The effective potential is found to be linear in the inflaton
field, yielding inflationary predictions consistent with observation.

A new mechanism for cogenesis during inflation is presented, in which a new
anomalous Uð1ÞX gauge group is introduced. Anomaly terms source CP and X
violating processes during inflation, producing a nonzero Chern-Simons number
density that is distributed into baryonic and dark matter. The two Uð1ÞX extensions
considered in this general framework, gauged B and B� L each containing an
additional dark matter candidate, successfully reproduce the observed parameters.

We propose a reheating Baryogenesis scenario that utilises the ratchet
mechanism. The model contains two scalars that interact via a derivative coupling,
an inflaton consistent with the Starobinsky model, and a complex scalar baryon
with a symmetric potential. The inflaton-scalar baryon system is found to act
analogously to a forced pendulum, with driven motion near the end of reheating
generating an gB consistent with observation.

Finally, we argue that a lepton asymmetric cosmic neutrino background devel-
ops gravitational instabilities related to the mixed gravity-lepton number anomaly.
In the presence of this background, an effective Chern Simons term is induced
which we investigate through two possible effects, namely birefringent propagation
of gravitational waves and the inducement of negative energy graviton modes in the
high-frequency regime. These lead to constraints on the allowed size of the lepton
asymmetry.

These models demonstrate that a concerted approach in cosmology and particle
physics is the way forward in exploring the mysteries of our universe.
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Chapter 1
Introduction

The StandardModels of Particle Physics andCosmology have been highly successful
at describing and reproducing the observed dynamics and properties of the Universe,
but they are incomplete. Many mysteries regarding the workings of nature are yet
to be resolved, for which new physics beyond the standard paradigms is required.
Examples of these are the properties of neutrinos, the identity and origin of dark
matter anddark energy, the origin of thematter-antimatter asymmetry, the inflationary
mechanism, the quantum nature of gravity, the hierarchy problem, and more; each
of which are indications that physics beyond the Standard Model exists. In the past
few decades, many extensions to the Standard Model have been postulated in an
attempt to explain and provide solutions to these problems. Many of these models
have tried to solve the various problems of the Standard Model simultaneously.
Any such extensions normally have many phenomenological implications, which
can allow for the utilisation of a variety of tools to constrain the models. As of yet,
none of these extensions have been accepted because they either are ruled out by
experimental searches or current experiments are not sensitive enough to exclude
their predictions.

It is no coincidence that the mysteries of the Standard Model of Particle Physics
are predominantly associated with the very early universe and its evolution, rather
this is the result of a strong intertwining of cosmological and particle dynamics.
Despite the apparent divide between the cosmological and particle scales today, they
are intimately connected, with potential discoveries in either field having large ram-
ifications on the other. Therefore, to gain a deeper understanding of the primordial
evolution of the universe it is imperative to understand the properties of the funda-
mental particles of nature, given that at very early times the microscopic dynamics
of these particles directly dictated this evolution. The interconnectedness of these
two fields is particularly relevant to modern day theoretical explorations given the
current lack of strong evidence of beyond the Standard Model physics at the Large
Hadron Collider LHC Run 2 and other terrestrial colliders. The ability for the LHC
and near future terrestrial colliders to discover new phenomena is limited by the
energy scales that they can reach, while on the other hand cosmological observables
have the potential to probe energies well beyond these experiments. Imprints and

© Springer International Publishing AG, part of Springer Nature 2018
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2 1 Introduction

remnants of the dynamics of primordial high energy scale periods can potentially
be seen in cosmological observables. An example of this is the Cosmic Microwave
Background, which has illuminated many of the cosmological properties of our uni-
verse that we know today. Through considering a combination of observables from
terrestrial collider searches and cosmological observables it may be possible to piece
together the answers to many of the open questions of our universe.

This thesis will be structured, chronologically, as follows. In the remainder of
this chapter we will briefly describe the Standard Models of Particle Physics and
Cosmology before outlining the major questions facing these paradigms that will be
addressed in this work, and the properties of anomalous symmetries in the Standard
Model of Particle Physics. In Chap. 2, we will examine the inflationary epoch and
a possible mechanism for inflation which also solves the hierarchy problem [1].
Chapters 3 and 4 present two possible models to explain the origin of the matter-
antimatter asymmetry, the first acting during the inflationary epoch involving the
introduction of a new gauge boson to the Standard Model [2, 3], and the other is a
mechanism driven by the inflaton during reheating utilising the Ratchet Mechanism
[4]. In Chap. 5, a novel way to utilise gravitational waves to illuminate the properties
of the illusive Cosmic Neutrino Background will be considered [5]. Finally, in Chap.
6, we conclude with a discussion of the implications of each of these works and
possible future paths for exploration. The focus of this thesis is on the cosmological
implications of particle physics phenomena, but throughout my candidature we also
conducted research into LHC Phenomenology that will not be discussed here [6–8].

1.1 The Standard Model of Particle Physics

The construction of the Standard Model of Particle Physics (SM) is one of the great-
est achievements in modern science, the culmination of decades of theoretical and
experimental endeavour by scientists from around the world with the goal of under-
standing the fundamental building blocks of nature; some of the foundational works
and a review are listed [9–40]. The SM describes all of the known fundamental parti-
cles in nature and the interactions between them [41], apart from gravity which is still
without a consistent quantum description. This includes all the fermions, comprising
of quarks and leptons, and the gauge bosons which are the force carrying particles, as
depicted in Fig. 1.1. The SM is now complete, with the last piece of the puzzle being
recently discovered, the Higgs boson. The Higgs particle was theoretically predicted
decades ago to explain the origin of the masses of the SM particles [42–45], and was
discovered at the Large Hadron Collider (LHC) [46] by the ATLAS [47, 48] and
CMS [49, 50] collaborations.
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Fig. 1.1 The SM particle content, including masses, charges, and spins of each of the fermions and
bosons

1.1.1 Formulation and Structure of the Standard Model

The SM is a mathematical formulation that describes all the known fundamental
particles of our universe, and their interactions which are mediated by the known
forces—the strong, weak, and electromagnetic forces. It combines the half-integer
spin fermions, including the leptons and quarks, and the integer spin gauge bosons,
consisting of the photon, weak bosons, gluons, and Higgs particle. These are each
described by fields, which are mathematical objects defined at every point in space-
time. It is built on the ideas of Quantum Field Theory, and the structure is funda-
mentally rooted in the ideas of symmetries and gauge invariance [51–58].

The SM is defined by the following direct product of groups SU (3)C × SU (2)L ×
U (1)Y , with each group representing a gauge symmetry. The structure of the group
determines the number and properties of the force carrying gauge bosons that couple
to the associated charges. The SM is expressed in the form of a Lagrangian with all
terms invariant under the gauge transformations described by these groups, which
are local, spacetime dependent transformations. If the action is invariant under a
given symmetry, then the physics derived from it will not change under such a
transformation and the symmetry will have a corresponding conserved quantity. The
SM gauge groups represent the following gauge bosons and forces,
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• SU (3)C : defines the strong force which is mediated by the gluons. These couple to
fields that carry colour charge, which include the quarks and the gluons—known
as Quantum Chromodynamics (QCD).

• SU (2)L : the W 1, W 2 and W 3 bosons mediate the weak force, with a linear com-
bination of W 1 and W 2 forming the W±, while W 3 makes up part of the Z boson
and photon alongwith the hypercharge boson. Apart from self-couplings, theweak
bosons couple only to the left-handed fermions, and as such maximally violate the
C and P symmetry.

• U (1)Y : the hypercharge boson is a linear combination of the Z boson, and the
photon. The strength of the coupling to a given particle is defined by the hyper-
charge Y = I 3 + Q, where I3 is the weak isospin and Q is the electric charge of
the particle.

Each gauge group has a corresponding gauge field strength, Ga
μν ,W

b
μν and Bμν , with

their respective gauge fieldsGa
μ,W

b
μ and Bμ, which define the dynamics of the gauge

bosons. The gauge field strength tensor for a non-Abelian gauge group is given by,

Fμν = ∂μAν − ∂ν Aμ + ig[Aμ, Aν] . (1.1)

The Higgs mechanism was proposed as a way for generating the masses of the
SM particles, which involves spontaneous symmetry breaking [42–45, 59–62]. For
an arbitrary scalar field its potential may contain a minimum at which the field
value is non-zero, if the scalar was to rest in this minima this would be known as
a vacuum expectation value. This is made more interesting by the possibility that
there are many degenerate such minima that are related by a continuous symmetry,
which is broken by the scalar taking a vacuum expectation value. This is what the
Higgs field undergoes in the Higgs mechanism. Applying the Higgs mechanism to
the SU (2)L ×U (1)Y portion of the SM leads to spontaneous symmetry breaking,
that is, SU (2)L ×U (1)Y is broken to a single U (1) gauge group, which can be
identified with the photon of electromagnetism. Given that the U (1) symmetry is
unbroken it represents a massless boson, the photon, and indicates that the other
three bosons associated with the degrees of freedom of the original gauge group
structure must now be massive. The photon is associated with generators from both
groups of the unbroken electroweak part of the original SM gauge group structure,
which contain linear combinations of the photon and Z boson generators that are
resolved after spontaneous symmetry breaking. This illustrates the unification of
the weak and electromagnetic forces. In the cosmological setting, this spontaneous
symmetry breaking is related to the Electroweak Phase Transition (EWPT). Once the
temperature gets below a certain critical point, the Higgs boson will take a non-zero
vacuum expectation value, triggering spontaneous symmetry breaking in the SM;
this occurred when the temperature of the universe was about 100 GeV [63–66].
Above the EWPT, the weak gauge bosons are massless and the SMwill be described
by the unbroken gauge group structure.

The fermions are described in singlet or doublet representations depending on
whether they have a right or left chirality, respectively. Each generation of lepton
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Table 1.1 The representations of the fermions, in reference to the SM gauge groups, including
corresponding baryon and lepton numbers

Fermions SU (3)C SU (2)L U (1)Y B L

Qi
L =

(
u

d

)i

L

3 2 1
6

1
3 0

uiR 3 1 2
3

1
3 0

diR 3 1 − 1
3

1
3 0

Li =

(
ν

e

)i

L

1 2 − 1
2 0 1

eiR 1 1 −1 0 1

and quark is represented by spinors, as defined by the Dirac equation. In Table1.1,
it is shown how the representation of each particle couples to each of the SM gauge
groups SU (3)C , SU (2)L and U (1)Y .

The right-handed fermions are singlet fermions and do not couple to the weak
bosons, unlike the left-handed fermion doublets. This defines the SU (2)L gauge
symmetry as a chiral group. Only the quarks and gluons are charged under the
SU (3)C group, with a triplet representation which corresponds to the three possible
colours states. The U (1)Y gauge group of the SM describes a combination of the
electromagnetic andweak Z gauge bosons. The coupling of this group to the fermions
is defined as the hypercharge which is given by Y = I 3 + Q, where I 3 = 1

2τ
3 is

known as the weak isospin and is the third generator of the SU (2) gauge group,
giving the connection to the Z boson. The hypercharge of each fermion is given in
Table1.1.

The SM is defined by a Lagrangian density, which contains all the renormalis-
able terms that represent the possible field interactions, kinetic and mass terms. The
Lagrangian describes the dynamics and evolution of each of the fundamental parti-
cles. The allowed terms in the Lagrangian are determined by the symmetries of the
model, and how the fields transform under them, with the requirement that the action
must be left unchanged under any transformations associated with the SM gauge
symmetries, or assumed global symmetries. Imposing renormalisability requires the
dimension of the operators in each term of the Lagrangian density to be ≤4, such
that the coefficients are dimensionless or have positive mass dimension. In any case,
higher dimensional terms are generally suppressed at low energies by the mass scale
of the coefficients. The SM Lagrangian density is given by,

LSM = LGauge + LDirac + LScalar + LYukawa , (1.2)

where

LGauge = −1

4
Ga

μνG
aμν − 1

4
Wb

μνW
bμν − 1

4
BμνB

μν , (1.3)
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describes the gauge fields and their related bosons,

LDirac = iψ̄Dμψ , (1.4)

describes the free fermions, where ψ is any of the fermion representations within
the theory,

LScalar = (Dμφ)†(Dμφ) + m2φ†φ − λ

2
(φ†φ)2 , (1.5)

describes the Higgs kinetic term and potential,

LYukawa = −yqR Q̄LφqR − yeR L̄φeR + h.c. (1.6)

describes each of the fermion interactions between the left-handed particles and their
right-handed counterparts, via the Higgs boson. These terms generate the masses of
the fermions, while the first term in Eq. (1.5) generates those for the W± and Z
bosons, once the Higgs particle takes a non-zero vacuum expectation value. The
covariant derivatives Dμ incorporate the interactions between the gauge fields and
the SM fields.

It is possible the SM may not extend to high energies and is instead a low energy
Effective Field Theory [67], which would indicate why it is unable to explain early
universe phenomena. Meaning that it is valid below some energy scale, but breaks
down above it, with newphysics required; analogously to the divide between classical
and quantum mechanics.

1.1.2 Symmetries in the Standard Model

The SM is built on the principles of gauge invariance through the description of the
force carrying particles as vector bosons. This identification naturally leads to the
requirement of gauge invariance associated with these vector fields, because without
it the theory would be non-unitary and Lorentz violating, with the associated gauge
bosons potentially having tachyonic degrees of freedom. These things would lead
to an inconsistent and non-predictive theory. This means that the gauge symmetries
are redundant, in that, the theory would not exist without their imposition. As such,
these symmetries dictate what the allowed interactions are within the theory, or rather
what terms can be contained within the Lagrangian. Gauge symmetries must also be
protected fromquantumanomalies—breakdowns in gauge invariance due to radiative
corrections. They must be conserved at all orders of perturbation. Although, this is
not necessarily required for global symmetries.

Classical global symmetries are characteristic symmetries of a theory at the tree
level, and can be retained at all orders of perturbation. They can be present due to
all the interactions allowed by the gauge symmetries respecting the symmetry acci-
dentally, or they can be explicitly imposed on the theory. Each global symmetry in
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a theory has a corresponding charge which is conserved by the classical interac-
tions. Although, global symmetries do not have to necessarily hold once quantum
corrections are included. Symmetries broken by radiative corrections are known as
anomalous symmetries. Gauge symmetries cannot be broken in this way because
that would lead to a breakdown in the consistency of the theory through violations
of gauge invariance.

Renormalisability requires that the mass dimension of each operator adds up to
four or less, meaning that all coefficients must be dimensionless or have positive
mass dimension. An accidental symmetry of the SM is one which is only present due
to the requirement that the Lagrangian terms are renormalisable. Imposing this con-
dition causes the removal of higher order terms from the Lagrangian that would have
otherwise broken certain symmetries, subsequently retaining them as symmetries.
Some examples of accidental symmetries of the SM Lagrangian are those associated
with the global baryon number, and generational lepton numbers.

Global Baryon and Lepton Numbers

Baryonnumber is an accidental global symmetry of theSM. In the tree level SM, there
are six possibleU (1) quark symmetries that correspond to each quark flavour, but are
broken once the Cabbibo-Kobayashi-Maskawa (CKM) interactions are considered.
This leads to there being only a single global U (1) symmetry associated with the
quarks, the total quark number, which can be identified with the baryon number
symmetry of the SM. Each quark is assigned a baryon number charge of 1

3 under
this symmetry, as given in Table1.1. The corresponding transformation is given by
the following unitary transformations q → ei

1
3 βq, where β is a real number and q

represents a quark field.
The generational lepton numbers are also accidental global symmetries of the SM.

These are U (1) symmetries given by the unitary transformations li → eiαi li , where
αi is a real number and i denotes the lepton generation. Although, the discovery
of neutrino oscillations proved that these symmetries are violated. Instead the SM
contains a single U (1) associated with the total lepton number, as the oscillations
still leave the total lepton number conserved [56]. Each of the leptons is assigned a
lepton number equal to 1, as given in Table1.1.

The corresponding Noether currents for the continuous global baryonic and lep-
tonic symmetries are given by [68],

jμB ∝ ūiγ
μui + d̄iγ

μdiand jμL ∝ l̄iγ
μli + ν̄iγ

μνi , (1.7)

where these lead to conservation of B and L at the tree level, ∂μ jμ=0, and i denotes
the fermion generation.

TheU (1)B andU (1)L symmetries are present in the SM due to the imposition of
renormalisability. There are non-renormalisable operatorswhich can bewritten down
that are consistent with the SM gauge symmetries, but explicitly break the baryon
and lepton number symmetries. The lowest dimension operators that are examples
of these are QQQL

�2
B

and LLHH
�L

, respectively. These terms are strongly suppressed by
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their dimensional coefficients. For example, the first term gives a path for proton
decay which, from experiment, has a decay time of τp > 1032−34 years, implying
�B > 1015 GeV [69]. The high energy scales associated with these terms, �B and
�L , leads to the suppression of these interactions at lower energies, but they could
be indicative of new physics at those scales.

In this thesis, we are interested in symmetry violation by quantum anomalies, that
is, induced by radiative corrections.

1.1.3 Radiative Corrections and Quantum Anomaly
Cancellation

Anomalous symmetries are symmetries of the tree level SM that are violated once
quantum corrections are included [70–72]. The SM requires radiative corrections
of the tree level interactions so that precise predictions can be made, and so all the
possible interactions can be determined and be taken into account. This can be done
by perturbatively expanding the tree level vertices associated with interactions, in
Feynman diagrams, into loops of a higher and higher order, where each subsequent
expansion is suppressed relative to the previous one. These loop calculations give the
quantum corrections to the corresponding interactions, and may even introduce new
interactions that are not present at the tree level. Some examples of loop diagrams are
presented in Fig. 1.2, where in the cases presented, there is no tree level vertex with
the same initial and final states, and hence such interactions are only possible with
radiative corrections. These diagrams are also special, in that they may correspond
to anomalous contributions to the associated baryon number symmetry, depending
on the fermionic content of the theory.

Quantumanomalies can be induced for global symmetries, violating the conserved
charges to which they correspond. The anomalies of a given symmetry are produced
by radiative corrections, the magnitude of which are found by considering what
particles couple to the vertices of the expanded loop. This is determined by taking
the trace of the vertex generators, doing so considers all the possible fermions that
could traverse the loop, with the resultant coefficient defining the magnitude. If zero,
there is no anomaly present and the associated symmetries are preserved at that
order of expansion. If non-zero, this gives you a correction to the Noether current
of the corresponding global symmetry, which causes it to no longer be conserved,
∂μ jμ �= 0. An example of this is shown in Fig. 1.2, for the global baryon number
current in the SM.

The gauge fields that couple to each vertex determine the possible fermions that
can traverse the loop. For example, only left-handed fermions couple to the SU (2)
gauge field, so only qL and lL make up the possible constituents of the fermionic cur-
rent in the corresponding loop corrections. There are similar constraints for SU (3),
that is, only the quarks QL , uR and dR are considered—while all SM fermions cou-
ple to the hypercharge gauge groupU (1)Y . Refer to Appendix A, for calculations of
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Fig. 1.2 The 1-loop anomalous radiative corrections involving a gauge boson associated with
the U (1)B symmetry, a SU (2)2U (1)B , where the loop contains only left-handed quarks, and b
U (1)2YU (1)B where the loop contains only quarks

each of the 1-loop contributions for the baryon number and lepton number currents,
as well as in the case that they are promoted to gauge symmetries.

Examples of anomalous symmetries in the SM are the global baryon and lepton
number symmetries. In calculating the radiative corrections, the inclusion of a baryon
number current means that only the quarks are considered in the fermionic loops.
If one was to consider these as gauged symmetries, for example a gauged baryon
number, then upon calculating the first order loop diagrams non-zero anomalies are
found to be present for the SU (2)2U (1)B andU (1)2YU (1)B interactions. These vertex
expansions are shown in Fig. 1.2. This means that the baryon number symmetry has
the following non-zero triangle anomalies:

For SU (2)2U (1)B , where only left-handed quarks are considered,

A2(SU (2)2U (1)B) = Tr [τ aτ bB] = ng
2

= 3

2
. (1.8)

For U (1)2YU (1)B , where all quarks contribute,

A3(U (1)2YU (1)B) = Tr [YY B] = −ng
2

= −3

2
. (1.9)

where ng is the number of quark generations, which is taken to be three.
It is found that the global baryon and lepton number symmetries have the same

quantum anomalies when right-handed neutrinos are included in the SM, but with
U (1)L replacing U (1)B in Eqs. (1.8) and (1.9). This indicates that B − L is still a
conserved global symmetry of the SM after quantum corrections are included.

The anomalous currents associated with the U (1)B and U (1)L currents source B
and L violating processes, namely electroweak instanton transitions and sphaleron
processes. These shall be discussed in Chap. 3, in the context of how this violation of
B and L is utilised in Electroweak Baryogenesis, and how it can also be responsible
for the washout of asymmetries generated early in the universes evolution.
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The anomaly calculations of each of the quantum corrections for the U (1)B and
U (1)L symmetries are given in Appendix A. These anomalies provide avenues for
baryon and lepton number violation, as they are not strictly conserved quantities at
the quantum level. If theU (1)B andU (1)L symmetries are introduced as local gauge
symmetries these anomalies become gauge anomalies. This is a major issue for the
validity of the theory and they must be cancelled, the methods of which we shall now
discuss.

Gauge Anomaly Cancellation and the Green-Schwarz Mechanism

Quantum anomalies associatedwith a gauge symmetrymust be cancelled tomaintain
the consistency of the theory. The reasons for this are two fold, firstly, they lead to
a loss of unitarity of the S matrix and violation of Lorentz invariance, and secondly,
they cause a breakdown in renormalisability. Each of which is required for a gauge
invariant theory [73]. Such gauge anomalies can be cancelled in variousways through
the inclusion of new degrees of freedom. Two examples of ways in which this can
be done are the addition of new fermions, and the Green-Schwarz mechanism [74].

The inclusion of extra fermions can be used to cancel the anomalies induced by
radiative corrections, as their inclusion leads to additional terms being present in the
trace of the vertex generators. The quantum numbers of these new fermions can then
be chosen such that the anomalies disappear. These can create new problems as they
could mediate interactions which have not been observed at terrestrial colliders, or
could form charged stable fields that could be detrimental to cosmological observ-
ables. Experimental investigations provide restrictions on the possible masses and
couplings of any introduced particles, and the requirement of complete cancellation
of the anomalies means that they can only carry certain quantum numbers.

The Green-Schwarz mechanism was first proposed in the context of string theory,
due to the appearance of unwanted gauge anomalies in such theories. To resolve this
issue Green and Schwarz developed a method of restoring gauge invariance via the
addition of new terms to the effective action [74]. This leads to an effective field
theory in which a new degree of freedom has been introduced to the theory. These
new terms remove the anomalies by cancelling the non-invariance of the fermion
measure in the action, leading to a gauge invariant theory that effectively describes
the dynamics of the full theory at energies lower than a characteristic scale.

As an example of how this mechanism works, consider the inclusion of a new
U (1)X symmetry to the SM, which has gauge anomalies. In this case, the Green-
Schwarz terms added to the effective action contribute a new longitudinal degree
of freedom to the introduced gauge field Xμ, which corresponds to the gauge field
acquiring a mass. In doing so, we obtain an effective field theory, meaning that it
can only sufficiently describe the interactions of the theory well below some new
physics scale, which we shall denote fX . This parametrises our ignorance of the full
theory, which one could imagine contains heavy fermions that cancel the anomaly
at scales well above fX . For example, the full theory may involve the inclusion of
leptoquarks at high energies, which can cancel the gauge anomalies present in the
theory [75–77].
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The new counter-terms added to the effective action are included in theLagrangian
density as follows,

Lcounter = − g2X
16π2

AθXμν X̃
μν , (1.10)

where gX is the coupling for the gauge field related to the anomaly, Xμν is the field
strength tensor, and A is the associated anomaly coefficient. The θ component is
pure gauge and is the longitudinal degree of freedom of the new gauge field Xμ.
It is found that the tree level SM Lagrangian appears to not be gauge invariant
once these counter-terms are added, although their variance cancels out against the
gauge variation of the functional measure of fermion fields within the path integral
quantization framework, leading to a gauge invariant theory. This term is reminiscent
of the term for a massive gauge boson in the Stuekelberg formalism [78].

Examples of mixed gauge anomalies are those that result from promoting the
global baryon number symmetry to a gauge symmetry, for which multiple anomalies
are present. The following counter-terms must be included,

Lcounter = − 3g22
32π2

θ(x)WμνW̃
μν + 3g21

32π2
θ(x)Bμν B̃

μν . (1.11)

In this thesis, we shall be considering the cosmological implications of quantum
anomalies such as these, andwhether they can be utilised to explain variousmysteries
of the SM and Standard Model of Cosmology (SMC).

1.2 The Standard Model of Cosmology and the Evolution
of the Universe

The Lambda Cold Dark Matter (�CDM) model is the current best model we have
for describing the evolution of the universe from its beginning to the present day, and
is considered the SMC [79–82]. The SMC incorporates all known luminous matter,
cold dark matter, and a cosmological constant to describe the dark energy density.
The present day total energy content of the universe is split between these three
main components—ordinary matter (∼5%), dark matter (∼27%), and dark energy
(∼68%).Observations of theCosmicMicrowaveBackground (CMB) in combination
with other observational surveys provide data on the cosmological parameters of this
model.

The measurement of the CMB has provided us a window into the early history
of the universe [83–93]. Much of what we know about the universe comes from
analysing the CMB and the temperature fluctuations that can be found within it.
Knowledge of the properties of the universe prior to the formation of the CMB is
difficult to glean due to the opaque nature of the primordial plasma prior to recom-
bination. Despite this, the CMB can carry information from earlier times, such as
inflation, allowing constraints to be placed on the properties of these prior epochs.
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Fig. 1.3 The Cosmic Microwave Background as measured by the PLANCK satellite [94]

In the case of inflation, this can be done through the spectral index and tensor to scalar
ratio of the CMB perturbations for which inflation makes predictions (Fig. 1.3).

The CMB is found to be highly isotropic and homogeneous on large scales, and
as such, in the SMC the universe is considered to be static in conformal coordinates.
Meaning that the universe evolves homogeneously and isotropically defined by a
global scale factor a(t). The gravitational metric associated with these evolution-
ary properties is known as the flat Friedmann-Robertson-Walker (FRW) universe,
which is strongly supported by observations of the CMB. This is the basis of our
understanding of the evolution of the universe, and shall be discussed below.

1.2.1 The Friedmann-Robertson-Walker Metric

One of the simplest models used to describe the evolution of the universe is the set
of FRW cosmological models, which are a particular set of solutions of the Einstein
equation that describe isotropic and homogeneous universes [95]. Isotropymeans that
they are spherically symmetric around a point in space and hence have no preferred
direction, while homogeneitymeans that every point in space is equivalent, and hence
there is no preferred position. This is supported by the remarkable uniformity of the
CMB, observed by theWMAP [90] and PLANCK satellites [94]. Exact homogeneity
would imply that there must also be no boundary or centre of the universe. For
simplicity the universe is modelled as an isotropic and homogeneous spacetime.

This class of models includes three possible spatial geometries—closed, flat and
open; each with constant curvature. A closed geometry is analogous to a sphere,
which has constant positive curvature, flat to a plane, which has zero curvature, and
open to a hyperbolic plane, which has constant negative curvature. For a general
FRW universe, the metric in polar coordinates is given by,
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ds2 = dt2 − a2(t)

(
dr2

1 − kr2
+ r2(dθ2 + sin2 θdφ2)

)
, (1.12)

where k defines the spatial curvature of the metric, and takes the values k = 1, 0, or
−1 which correspond to closed, flat and open spaces, respectively. The scale factor
a(t) embodies the rate of expansion or contraction of the universe.

From observation, we will be assuming that the universe is a simple flat FRW
universe as the SMC considers, which has the following metric in Cartesian coordi-
nates,

ds2 = dt2 − a2(t)(dx2 + dy2 + dz2) , (1.13)

or in conformal coordinates, which is defined by the following transformation of the
time coordinate dt = a(τ )dτ ,

ds2 = a2(t)(dτ 2 − dx2 + dy2 + dz2) , (1.14)

and hence the metric can now be written as gμν = a(τ )2ημν , which is conformally
flat. Therefore, this flat FRW metric is a suitable model for the spacetime of our
universe and provides a simple framework in which to describe its evolution.

From the FRWmetric can be derived the well-known Friedmann Equations, util-
ising the Einstein equation. They relate the nature of the expansion of the universe
to the energy densities and curvature that is present, as described in Table1.2. The
Friedmann equations are as follows,

H 2 =
(
ȧ

a

)2

= 8πρ

3M2
p

+ �

3
+ k

a2
, (1.15)

ä

a
= − 4π

3M2
p

(ρ + 3p) + �

3
. (1.16)

where ρ and p are the mass density and pressure of the perfect fluid, respectively,
k is the Gaussian curvature defined above, Mp is the Planck mass, H is the Hubble
rate [96], and � is the cosmological constant.

The evolution of the universe is defined by the properties of the scale factor, which
is determined by the form of energy that is dominating. This is illustrated in the time
evolution of the scale factors shown in Table1.2, which are epoch dependent. In this
table we use the dimensionless parameterw, known as the equation of state, to define
each epoch. This parameter is related to the energy density by,

ρ ∝ a−3(1+w) . (1.17)
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Table 1.2 Scale factors corresponding to each form of energy in a flat FRW universe

Type of energy w ρ(a) a(t) a(τ )

Matter dominated 0 ∝ a−3 ∝ t2/3 ∝ τ 2

Radiation
dominated

1
3 ∝ a−4 ∝ t1/2 ∝ τ

Vacuum
dominated

−1 Constant ∝ eHt ∝ −1
Hτ

1.2.2 The History of the Universe

Themain epochs and events in the history of the universe, whichwewill be interested
in, are as follows:

Inflation: Shortly after the Big Bang, or pre-inflationary state, the universe under-
went a rapid period of expansion within a short period of time. This expansion is able
to explain the homogeneity and flatness observed in the CMB, as well as the tempera-
ture fluctuations found in it. The exact nature of the mechanism leading to inflation is
yet unknown, but it is thought to be caused by a particle known as the inflaton which
dominates the energy density of the early universe. The induced period of inflation
is an approximate vacuum dominated era, during which the Hubble parameter is
approximately constant and the scale factor is accelerating.

Reheating: After inflation the universe begins the transition to a radiation domi-
nated epoch through a period known as reheating. The characteristics of the reheating
epoch and the temperature of the resultant radiation dominated universe is determined
by the properties of the inflationary mechanism and its interactions with the SM or
mediator particles. The reheating temperature can be as high as ∼1015 GeV, for a
high inflationary scale, and as low as ∼1 MeV to not conflict with predictions from
Big Bang Nucleosynthesis (BBN). The exact properties of reheating are inherently
complicated and are still not fully understood.

Baryogenesis: The universe has been observed to have an asymmetry between
matter and antimatter, with minimal antimatter found to be present. The dynamics
which lead to the origin of this asymmetry are generally assumed to occur at or above
the electroweak scale, T ∼ 100 GeV. This is highly dependent on the production
mechanism, and could potentially happen as late as T ∼ 1 MeV; once again, to not
conflict with BBN.

DarkMatter Freeze-out: It is thought that the darkmatter content of our universe
was produced sometime during the radiation epoch. After being produced it would
have thermally decoupled from the hot SM plasma once the temperature of it became
low enough to suppress thermal production; assuming the coupling of the darkmatter
to the thermal plasma is small. As the interactions between the SM particles and dark
matter are assumed to be fairlyweak, this freeze out can occur fairly early on,meaning
that the density is only affected by dilution due to the spatial expansion if the dark
matter is stable relative to the age of the universe.
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Electroweak Phase Transition: At T ∼ 100 GeV the Higgs potential becomes
such that the Higgs field takes a non-zero vacuum expectation value, leading to
spontaneous symmetry breaking. As the temperature lowers, thermal fluctuations
will cause certain regions to take a vacuum expectation value before others, leading
to the formation of bubbles of true and false vacuum. This phenomenon has been
considered as the origin of the observed baryon asymmetry, with this mechanism
being known as Electroweak Baryogenesis.

Neutrino Decoupling: As the neutrinos only couple via the weak interaction to
the SM, they decouple from the plasma relatively early in the history of the universe,
T ∼ 1 MeV. The decoupled neutrinos make up the contents of the Cosmic Neutrino
Background (CνB), which like the CMB, permeates the universe today.

Electron Positron Annihilation: At T ∼ 500 keV the thermal production of
e+ − e− pairs freezes out, and the annihilation of these pairs, in the plasma, into
photons will leave only the asymmetric part remaining. This annihilation increases
the photon energy density of the universe.

Big Bang Nucleosynthesis: This is the period in which the nuclei observed in the
universe today have their origin, through a series of well understood nuclear fusion
reactions. This is well modelled by current nuclear physics models, and as such is
very sensitive to new physics [97–107].

Recombination and Photon Decoupling: At a certain point in the evolution
of the universe its temperature will be low enough that the electrons, and the nuclei
generated in BBN,will begin to form atoms such as neutral hydrogen. Asmore nuclei
form the universe becomes transparent to photons, which allows them to decouple
from the plasma. This leads to the formation of the CMB, at the end of recombination,
which we observe today.

Dark Energy-Matter Equality: In more recent universal history, the dark energy
density became larger than the matter energy density of the universe. This vacuum
domination produces an accelerated expansion, which may be associated with a
cosmological constant, and is the current state of the universe (Table1.3).

1.3 Mysteries to be Solved

Despite the successes of the SM and SMC in describing the nature and evolution
of the universe, there are still many unsolved mysteries. In this thesis, we hope to
illuminate some of the following open problems.

1.3.1 The Inflationary Mechanism

The existence of an inflationary epoch was first postulated to solve unexplained
observed phenomena and theoretical issues in cosmology [109–121]; namely, the
flatness, horizon, and monopole problems [81, 122]. Since this time, significant
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Table 1.3 The key events in cosmological history [108]

Event Time t Redshift z Temperature T

Inflation 10−34 s (?) – –

Baryogenesis ? ? ?

Dark matter freeze-out ? ? ?

Electroweak phase
transition

20 ps 1015 100 GeV

QCD phase transition 20 µs 1012 150 MeV

Neutrino decoupling 1 s 6 · 109 1 MeV

Electron positron
annihilation

6 s 2 · 109 500 keV

Big Bang
Nucleosynthesis

3 min 4 · 108 100 keV

Matter-radiation
equality

60 kyr 3400 0.75 eV

Recombination 260–380 kyr 1100–1400 0.26–0.33 eV

Photon decoupling 380 kyr 1000–1200 0.23–0.28 eV

Re-ionisation 100–400 Myr 11–30 2.4–7.0 meV

Dark energy-matter
equality

9 Gyr 0.4 0.33 meV

Present 13.8 Gyr 0 0.24 meV

amounts of evidence supporting a period of cosmic inflation has been obtained from
a number of astrophysical observations [92], leading to it being a generally accepted
part of the early universe evolution.

The flatness problem stems from the observed flatness of the universe, known to
a very high precision, which appears to be fine-tuned. Rather than flatness being a
special initial condition, inflation provides a natural way for such a lack of curvature
to be the observed state of the universe. If one was to consider an initially curved
spacetime, it would be approximately flat at very small scales. The rapid expansion of
the universe produced by inflation will make these locally flat regions much larger,
such that on large scales the universe will begin to appear flat. That is, the rapid
spatial expansion quickly dilutes spatial curvature, pushing it towards zero. Hence
the observable universe appearing flat is a natural consequence of inflation, if enough
e-folds of expansion have occurred, resolving the problem.

A major mystery that inflation provides a solution for is the so-called horizon
problem. This is the observation that the universe is very homogeneous and appears
to have been in thermal equilibrium, although if one is to trace back the evolution
of the universe to the Big Bang it is found that all of today’s causally disconnected
regions would not have been in causal contact. This is because the universe has
existed only for a finite period of time, so information can only have travelled a
finite distance. This raises the question of why these causally disconnected regions
are so well correlated. An inflationary epoch can provide the answer to this question
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Fig. 1.4 Illustration of the solution of the horizon problem provided by inflation [122]

by allowing the universe to have been in thermal equilibrium at very early times,
prior to the onset of inflation. If the very early universe, just after the big bang, was
in thermal equilibrium and then an inflationary epoch began, the resultant universe
would be broken into many causally disconnected regions, after enough e-foldings,
explaining what we observe today. This idea is depicted in Fig. 1.4.

A generic prediction of many Grand Unified Theories is the production of topo-
logical defects, such as monopoles, at phase transitions which occur as the universe
cools from the very high temperatures at the end of reheating. The dynamics of the
early universe would lead to the thermal production of a high density of monopoles.
Unfortunately, it is found that the energy density of these monopoles in the universe
would be too large to be consistent with current observations. This is known as the
monopole problem [123–125]. Now if one is to postulate an inflationary epoch, this
would lead to the significant dilution of the density of these relics, removing them as
a potential issue, assuming the reheating temperature is low enough to prevent their
overproduction after inflation.

Another attractive property of the inflationary scenario is that it can generate the
density perturbations observed via the inhomogeneities of the CMB. These density
perturbations provided the seeds for large scale structure formation, and hence led
to the formation of the galaxies we see today. As inflation proceeds, quantum fluctu-
ations of the inflaton field, the scalar field which induces the inflationary epoch, are
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enlarged by the rapid spatial expansion, producing the temperature anisotropies we
see in the CMB [126].

Once inflation ends the initial energy densities of matter have been diluted to neg-
ligible quantities, so the universe must be reheated. This is also taken into account in
the inflationarymechanism, through the decay of the inflaton after inflation ends; this
period is known as the reheating epoch. The product of the reheating epoch, is a radi-
ation dominated universe with a thermalised plasma with characteristic temperature
Trh , after which the standard big bang cosmology proceeds.

Unfortunately, despite themany successes of the inflationary paradigm at explain-
ing cosmological evolution, the exact mechanism for inflation is still not known. It
is usually assumed that this epoch is the result of a scalar field, named the inflaton,
which slowly rolls towards the minimum of its potential [122, 127–132]. The poten-
tial energy of this scalar field dominates the energy density of the universe, as long as
the inflaton only rolls slowly in its potential. This almost constant potential energy,
dominating at early times, leads to an effective vacuum energy dominated universe;
a de Sitter spacetime. Such a vacuum energy dominated universe is characterised
by exponential expansion, as discussed above. It should be noted that cosmological
models other than inflation have been proposed to solve the issues described above,
such as String gas and bounce cosmologies, with varying success [133–135].

Many inflaton candidates have been proposed since inflation was first postulated,
withmost involving the introduction of a scalar(s), but as of yet none have been exper-
imentally verified [115, 126, 136–157]. Due to this, many attempts to constrain and
test inflationary mechanisms have been considered [158–166]. One reason this is
difficult is that with the current experimental sensitivity to inflationary observables,
many models give degenerate solutions and hence are indistinguishable. This has led
to recent work into identifying classes of inflationary models [167–170]. Another
issue is that the inflaton itself is unlikely to be produced terrestrially due to it generi-
cally having a very high mass, well beyond the range of any current or future collider
experiments. In Chap. 2, we will consider a new class of scale invariant inflationary
scenarios which may have interesting implications for particle physics.

1.3.2 The Origin of the Matter-Antimatter Asymmetry

One of the major questions in modern physics is how the observed matter-antimatter
asymmetry of the universe developed [171–184]. Antimatter was first predicted to
be on equal footing with matter [185], but observational and experimental results
suggest that this is incorrect. Terrestrial experimental investigations confirmed this
in decays of K 0 (ds̄) [186, 187], D0 (cū) [188] and B0 (sb̄) [189, 190] mesons,
which have provided evidence for C and CP violation. As an asymmetry is observed,
astronomical observations provide strong contradictory evidence to the equivalence
of matter and antimatter [90, 94, 191, 192].

Observations indicate that the visible universe is dominated bymatter and not anti-
matter. This baryon number density is determined by analysing the Baryon Acoustic
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Fig. 1.5 The baryon acoustic oscillations observed in the CMB power spectrum, as measured by
the PLANCK satellite [193]

Oscillations (BAO) measured from the CMB power spectrum, depicted in Fig. 1.5,
and the temperature fluctuations in the CMB [90, 92, 193]. BBN theory also accu-
rately predicts the abundances of the primordial light elements and is sensitive to
the size of the baryon asymmetry; providing constraints on it [104, 194–197]. The
observed value of the matter-antimatter asymmetry of our Universe is determined
from the combination of these measurements, and is parametrised by the baryon to
entropy density ratio,

ηB = nB − nB̄

s
� nB

s
� 8.5 · 10−11 , (1.18)

where nB (nB̄) is the baryon (antibaryon) number density, and s is the entropy density
of the universe. It is possible that the universe may have begun with a net baryon
number prior to inflation, but any baryon number density would be diluted away
by the rapid expansion of inflation, hence it is assumed that it must be produced
dynamically. The process of dynamical generation of the observed matter-antimatter
asymmetry is known as Baryogenesis.

It has been proposed that the net baryon number of the universe is indeed zero and
that many unmixed islands of matter and antimatter exist [198–200]. If separate sec-
tors do exist it would be possible to observe annihilations at the boundaries between
the regions. Electron-positron pairs involved in annihilation processes would pro-
duce high energy photons, which if in significant numbers can cause a skewing of
the CMB spectrum. These processes can also heat the ambient plasma leading to



20 1 Introduction

an additional indirect spectral distortion. This would be observable as dilutions or
perturbations in the CMB [201]. These gamma ray sources are not observed, and the
CMB is found to be highly uniform, so to be consistent with observation the voids
between these matter and antimatter sectors would be required to be large. However,
the size of the possible voids between these sectors is also constrained by the CMB.
Regions large enough to survive recombination would be observable in the CMB,
but these have not been found; excluding the idea that there are sectors of matter
and antimatter separated by voids within the observable universe. It is possible that
we live in a matter island that is larger than the observable universe, but this is not
supported experimentally [202–204].

Seeing as there is overwhelming evidence for the existence of the baryon asym-
metry in the universe, we must consider how such an asymmetry could be produced.

The Sakharov Conditions

The Sakharov conditions [205], formulated by A.D. Sakharov in 1967, are the
requirements for successful Baryogenesis in the early universe. The conditions are,

• Baryon number violation If immediately after the Big Bang there was zero net
baryon number (B) and B is strictly conserved, then the net baryon number density
of the universe would remain zero for all time. Therefore, B number violating
processes are needed.

• C and CP violation The baryon number violating processes are required to violate
the C and CP symmetries, such that either the matter or antimatter process is
favoured.

• A period of non-equilibrium The processes that violate B, C and CP must occur
in a period of non-equilibrium, so that the reverse reactions do not washout any
generated asymmetry.

Any mechanism that wishes to produce a charge asymmetry in the early universe
must satisfy these criteria, unless the theory violates CPT .

Baryogenesis in the Standard Model

One of the most studied mechanisms for the generation of the baryon asymmetry
is Electroweak Baryogenesis. The reason for this is that the first model discovered
in this class of Baryogenesis mechanisms was the SM itself, which contains all the
ingredients for satisfying the Sakharov conditions [206–217]. They are satisfied in
the following ways:

• Baryon number violation The quantum anomalies associated with the global
baryon number symmetry and the electroweak gauge group indicate that it is
not a strictly conserved quantity within the SM. Through these anomalies, baryon
number violation can occur via non-perturbative electroweak sphaleron transitions
[72], which shall be discussed further in Chap. 3.

• C and CP violation The C and P symmetries are maximally violated in the SM
by the chiral nature of the weak interactions. There is also CP violation provided
by a complex phase present in the CKM matrix.
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Fig. 1.6 A schematic of the
Electroweak Baryogenesis
mechanism [220]

• A period of non-equilibrium The electroweak phase transition (EWPT) is the
push out-of-equilibrium utilised in SM Baryogenesis [65, 218, 219]. Once the
universe cools, thermal fluctuations in the primordial plasma can lead to regions
falling below the EWPT earlier than others; the EWPT occurs at a characteristic
temperature T ∼ 100 GeV. This leads to the formation of ‘bubbles’, or regions, of
broken phase, where the Higgs boson has acquired a vacuum expectation value.
The expansion of the walls of these bubbles creates the non-equilibrium conditions
required for Baryogenesis. This process is depicted in Fig. 1.6, where the CP
and B violating processes associated with the left-handed fermions lead to the
accumulation of a net baryon number in the interior of the expanding bubble.

Although the SM satisfies the Sakharov conditions, the resulting prediction for the
baryon asymmetry generated is found to be ηsm

B � 10−18, approximately eight orders
of magnitude lower than the observed value [221]. One reason for this discrepancy is
that the strength of theCP violation is too small to produce a large enough asymmetry.
Also, the Higgs mass is too high, mh ∼ 125 GeV, for the EWPT to be strongly first
order, so the departure from equilibrium is too weak [48, 217, 222, 223]. Therefore,
the SM is not sufficient to explain the observed baryon asymmetry of the universe,
and the existence of new physics is required.

Other Proposed Scenarios

Many models have been proposed to solve the issue of the baryon asymmetry of the
universe (a selection of reviews are given here Ref. [224–235]), many of which are
simple extensions of theSM[236–239]. Someof thesemodels also try to resolve other
unexplained physical phenomena alongside the generation of the baryon asymmetry,



22 1 Introduction

such as dark matter [240–242]. As of yet most of these models remain unproven
because the related phenomena are beyond the reach of current experiments.

A very attractive paradigm for the generation of the matter-antimatter asymmetry
is Leptogenesis [243–249]. In these models the asymmetry is initially generated in
the neutrino sector, through extensions to the SM that also explain the origin of the
neutrino masses. Once the asymmetry is generated the B + L violating electroweak
sphalerons redistribute some of the net lepton number into the baryonic sector, pro-
ducing what we see today. The interest in this form of scenario is driven by the lack
of a complete understanding of the neutrino sector, which could potentially be hiding
key information to solving this and other mysteries in particle physics.

Extensions that have the baryon asymmetry of the universe generated before the
inflationary epoch risk having the accumulated baryon number being completely
diluted. Also, the difficulty with producing the asymmetry during inflation [250–
252] is the requirement that the rate of asymmetry production must be greater than
the rate of dilution. If not, the generated asymmetry will be quickly diluted away.
For this reason the majority of postulated mechanisms occur after reheating. In this
work we will be considering two possible extensions of the SM that can explain the
baryon asymmetry of the universe; one acting during inflation [2, 3] and the other
during reheating [4].

1.3.3 Dark Matter

The existence of dark matter, an abundant form of non-luminous matter in the uni-
verse, was first proposed by Zwicky, in 1933, to explain the discrepancy between
the expected and observed luminosity of galaxies, given their measured gravitational
masses [253]. Further evidence for dark matter was provided by the observation of
anomalous galactic rotation curves [254–260], which to be resolved with theoretical
predictions of the rotation profile required the existence ofmore luminousmatter than
could be seen [261, 262]. Since this time the existence of dark matter has been gen-
erally accepted as many more pieces of observational evidence have been gathered;
these include gravitational lensing, the BAO, and its importance for cosmological
evolution and structure formation, seeing as it is a key component of the �CDM
cosmological model. Despite this, the true identity and nature of the constituents of
dark matter are not known.

One of the most researched candidates for dark matter are Weakly Interacting
Massive Particles (WIMPs) [263–265]. Originally, this model was very strongly
favoured because of the so-called WIMP miracle; a coincidence in which, if the
dark matter candidate has a mass of 100 GeV and couples via the weak force to the
SM, then its interaction cross section would be consistent with the observed dark
matter abundance. The interaction cross section was also below the direct detection
measurements at that time. The simplest WIMP miracle paradigm has now been
ruled out by direct detection experiments such as those currently being undertaken
at XENON [266] and LUX [267], which means other candidates must be explored.
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Many possibilities for the identity and properties of dark matter have been proposed
[268–272], but as of yet none have been found. Neutrinos were once considered
possible candidates for darkmatter [273], but theirmasses anddensity are too low, and
their relativistic nature early in the universe would have hindered structure formation.
Non-particle explanations for darkmatter, which constitute alternate gravity theories,
have also been proposed, themost well-known beingModified Newtonian Dynamics
[274], but these have been mostly unsuccessful in explaining all of the observational
phenomena.

The darkmatter particles are considered to be stable, to the extent that their lifetime
is longer than the age of the universe, because if they decay too quickly they will
fail to facilitate successful structure formation. It is also possible that there could
be various stable particles present in non-zero densities in the universe, making up
components of the dark matter density [275]. A current issue with the cold dark
matter model is that simulations predict more satellite galaxies to be present than
are observed, which could be a result of small structure formation suppression by
dark matter which is warm, rather than cold as usually defined. If the dark matter
carries more kinetic energy it can more easily escape gravitational potentials, and
hence contribute to the washing out of small scale structures.

One of the most attractive paradigms for describing dark matter is asymmetric
dark matter, that is there is a matter-antimatter asymmetry in the dark matter sector
too, which may have a similar origin to that in the baryonic sector. This is motivated
by themeasurement of the ratio of the energy densities of luminous and non-luminous
matter,

ρDM � 5.5ρB . (1.19)

The similarity in these observed densities could indicate a connection between the
dynamics and cosmological evolution of visible and dark matter. Many models
attempting to explain this ratio have been proposed, and it is an active area of research
[237–239, 276–299]. We will consider the possibility of an inflationary cogenesis
scenario in Chap. 3.

1.3.4 Neutrino Properties and the Cosmic Neutrino
Background

The true nature of neutrinos has been an intriguing mystery since they were first
postulated, due to their weakly interacting nature. There have been major advances
in our understanding of the properties of neutrinos in the last couple of decades
due to the ever improving sensitivity of experiments [300]. The Super-Kamiokande
[301–306], Sudbury Neutrino Observatory (SNO) [307–309] and other experiments
[310–312], provided the first experimental evidence of neutrino mass and fur-
thered our knowledge of their interaction properties. More recent experiments have
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begun determining the neutrino mixing angles, and are getting closer to obtaining a
measurement of the neutrino CP violating phase.

One of the main questions regarding neutrinos at present is what are and is the
origin of their masses; the mass hierarchy of the neutrino generations is also still
unknown. Neutrinos can have either a Dirac mass term mν ν̄LνR or a Majorana mass
term mνν

c
LνL , each of which have interesting phenomenological implications. Par-

ticularly the Majorana case, because of the lepton violating nature of the mass term,
which can not only induce double beta decay, but can have consequences for Baryo-
genesis. It is possible that there is also other neutrino species, such as sterile neutrinos
which do not couple to any of the SM gauge fields, that can have interesting cosmo-
logical implications [313].

Another feature of neutrinos which makes them important for early universe cos-
mology is that, much like photons and the production of the CMB, there is an analo-
gous relic neutrino background; the CνB. This background is produced much earlier
than the CMB, and as such could have information encoded within that could unlock
many of the current mysteries in particle physics and cosmology. The information
could help us gain a greater understanding of the neutrino sector and its role in the
early universe. Unfortunately, the low temperature and density of this background
today means it is unlikely we will ever be able to directly observe it. There is still
hope that it could be indirectly observed, and this is what we shall be exploring in
Chap. 5, through the possible effects the CνB could have on gravitational waves.

1.3.5 Gravitational Waves

A determination of the fundamental description of gravity would be revolutionary in
physics and have many wide reaching implications. The recent observation of grav-
itational waves by the LIGO collaboration [314] signals the beginning of the new
era of gravitational wave astronomy, allowing the opening of a new window into the
fundamental workings of gravity and the universe. To date, the LIGO collaboration
has reported the measurement of gravitational waves from several binary black hole
merger events [315, 316]. These observations have allowed constraints to be put
on potential extensions to general relativity [317–320], and possibly in future, other
areas of astrophysics through combined analyses, for example with ANTARES and
IceCube [321]. This is a major step towards gaining a greater understanding of the
workings of gravity. Future gravitational wave detectors, such as eLISA [322, 323],
will also be able to differentiate the polarisations of incoming signals. This will pro-
vide information beyond the amplitude and waveform of the waves, and will enable
a deeper analysis of the gravitational wave source as well as the fundamental work-
ings of gravity itself. This could be achieved through identification of birefringent
propagation effects, which could be smoking guns for certain extensions of General
Relativity.

An exciting aspect of such searches is the possible implications for particle physics
and early cosmological evolution. Unlike light, for which the early universe plasma
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was opaque prior to the CMB, it is possible that the gravitational wave remnants from
events prior to the formation of the CMB could be observable by future detectors.
These observations could provide constraints on early cosmology, and the particle
dynamics at that time, that are not achievable with current measurement tools. An
example of this shall be discussed in this work with reference to the Cosmic Neutrino
Background [5], which could shed light on the true nature of neutrinos and also
provide information concerning the origin of the matter-antimatter asymmetry.

1.3.6 Hierarchy Problem in the Standard Model

The hierarchy problem is associated with the unnaturalness of the difference between
the apparent fundamental scales of nature, with regards to the SMand gravity, namely
the weak and Planck scales [324–331]. This has led to much theoretical anxiety due
to the level of fine tuning required to replicate observables if there are no new fun-
damental scales between the weak and Planck scales. This issue is illustrated by
the predicted mass of the Higgs boson, for which the quantum corrections contain
quadratic divergences dependent on the scale of new physics. The, recently discov-
ered, Higgsmass has been found to bemuch lighter than the Planck scale, confirming
this disparity in scales.

Supersymmetry has been one of the most studied beyond the SM theories because
it can provide a potentially natural solution to the hierarchy problem [332]. The
lack of discovery of the Supersymmetry partners has led to the consideration of
increasingly complicated Supersymmetry models, which themselves contain issues
with fine tuning.

Another solution to the hierarchy problem, which has gained increased interest in
recent times, is the introduction of a conformal symmetry into the SM [333]. This
model postulates a theory which has no fundamental scales, and that any observed
scale is generated dynamically by the spontaneous breaking of the conformal sym-
metry. The Lagrangian of such a theory contains no dimensionful couplings, and as
such has no mass terms. Seeing as the conformal symmetry removes fundamental
scales it is a novel way of solving the hierarchy problem. Scale invariant theories
have been studied extensively in the past, and have experienced a recent resurgence
in interest, and have various interesting implications for the cosmological evolution
of the universe [334–364]. In this work we shall consider the application of scale
invariance to the inflationary epoch [1].

1.4 Cosmological Implications of Quantum Anomalies

In the following chapters we shall explore the implications of quantum anomalies
in the evolutionary history of the universe. Firstly, in Chap. 2, we consider an infla-
tionary mechanism within the setting of a scale invariant theory, providing both a
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mechanism for inflation and a solution to the hierarchy problem [1]. In Chap. 3, we
formulate a generalised version of the inflationary mechanism for Baryogenesis we
introduced in [2], which can now produce the correct baryon number density as well
as dark matter; through the addition of an anomalousU (1)X and dark matter fermion
to the SM [3]. Chapter 4, considers a new mechanism for Baryogenesis during the
reheating epoch, in which we introduce a scalar inflaton and complex scalar baryon
which are derivatively coupled [4]. In Chap. 5, we consider a new way to illuminate
the properties of the neutrino sector through attempting to constrain the lepton asym-
metry carried by the CνB due to effects it can induce with respect to gravitational
wave propagation and gravitational instabilities [5].
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Chapter 2
Scale Invariant Inflation

The period of inflation in the early universe is awell-established paradigm in standard
cosmology due to its success at solving various observational problems, as well as
providingmeasurable predictions. It was first introduced to solve observational prob-
lems associated with the standard big bang cosmology, and is now a well-established
theory with many models having been proposed and significant effort expended in
the pursuit of experimental verification. Although it is generally agreed that there
was an epoch of inflation prior to BBN, the exact mechanism that led to the accel-
erated expansion is still unknown. A problem which makes this more difficult is
the degeneracy of the predictions of many models, and the insufficient sensitivity in
current measurements of inflationary scenario observables.

The most common approach to inducing this inflationary scenario is the intro-
duction of a scalar field which acts as the inflaton, whose domination of the early
universe’s energy density, and traversal of its almost flat potential, leads to the expo-
nential expansion. In this chapter we explore a new class of natural inflation mecha-
nisms which exhibit scale invariance via the dilaton, and involve an arbitrary number
of scalar fields that are non-minimally coupled to gravity. The scale invariance of
the theory assures the flatness of the inflationary potential, which is then lifted by
small quantum corrections that violate the conformal symmetry. The breaking of the
associated scale symmetry can also provide an origin for the apparent hierarchy of
scales observed in nature [1].

2.1 The Inflationary Epoch

Cosmic inflation is an attractive paradigm that resolves some outstanding puzzles of
the standard hot Big Bang cosmology, such as the horizon, flatness, and monopole
problems [2–14]. In addition, it provides a natural mechanism for the generation
of nearly scale-invariant inhomogeneities through the quantum fluctuations of the
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Fig. 2.1 The CMB as measured by the PLANCK satellite [17]

inflaton field, that at later stages result in the observed large scale structure of the
universe [15]. Observations of the CMB and large scale structure provide strong
support for cosmic inflation [16] (Fig. 2.1).

Many mechanisms for the inducement of the inflationary epoch have been pro-
posed since the paradigms inception. The majority of these ideas centre on the exis-
tence of a scalar field that is homogeneous and isotropic, and dominates the energy
density of the universe, thus causing exponential expansion [8, 15, 18–38]. Given
the rapid increase in the number of models proposed, work has recently gone into
identifying classes of inflationary models [39–42]. This is in part due to the degen-
eracy of the simplest predictions of observable parameters between different models
[43–52].

There are also issues relating to the consistency of the inflationary theory, due to
manymodels requiring the inflaton to take superplanckian values during its evolution
[46, 53, 54]. Higher order operators, which are suppressed by the Planck scale, start
to contribute significantly for large variations of the inflaton field during inflation.
The effective field theory approximation, which favours |ϕ| � Mp, breaks down in
such cases, and inflationary predictions may become unreliable [55, 56].

2.2 Modelling the Inflationary Epoch

The simplest mechanisms of inflation are proposed to be related to the evolution of
a scalar field, known as the inflaton field [57–63]. As an illustrative example, we
consider a simple version of this mechanism known as chaotic slow roll inflation,
which is depicted in Fig. 2.2. Thismodel assumes that at the beginning of the universe
the inflaton field is in an unstable vacuum state. Due to the quantumfluctuations of the
inflaton field, it will eventually begin to roll down the potential well towards the true
vacuum. As the inflaton field rolls slowly down the potential, inflation is occurring;
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Fig. 2.2 Illustration of the
features of the chaotic
slow roll inflationary
mechanism [65]

this requires that the field is rolling slower than the rate of expansion. This ensures
that as the inflaton rolls down the potential, the potential energy density remains
approximately constant leading to a vacuum dominated epoch. Therefore, from the
Friedman equations, the scale factor during the inflationary period, expressed in
conformal coordinates, is,

a(τ ) ∝ − 1

Hτ
, (2.1)

where τ ∈ [−∞, 0] is the conformal time, with τ → 0 as inflation proceeds. During
this epoch the density of the other forms of energy quickly dilute away. At the end of
inflation there is a period knownas reheating, prior to the radiation epoch, inwhich the
initial potential energy of the inflaton field is converted into SM particles, producing
the matter energy densities we see today [64]. The properties of the reheating epoch
will be discussed further in Chap.4.

We now want to describe the evolution of the inflaton field, so that we can deter-
mine the conditions required for inflation to occur, and the possible observable pre-
dictionswe can obtain from such amechanism. The inflaton is a scalar field described
by the following Lagrangian,

L = −∂μφ∂μφ − V (φ), (2.2)

where φ is the inflaton field, and V (φ) is the inflationary potential, which could be
of the following form,

V (φ) = m2φ2 + φ4
∞∑

n=0

λn

(
φ

MP

)n

. (2.3)

We shall now consider the inflaton in a flat FRW universe. In this spacetime
background the inflaton has the following equation of motion [66],

φ̈ + 3H φ̇ + V ′(φ) = 0 , (2.4)

where H is the Hubble parameter which defines the expansion rate, and V ′(φ) is
the first derivative with respect to φ of the general inflaton potential. This has the
corresponding Friedmann equation,
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H 2 = 3

M2
p

(
1

2
φ̇2 + V (φ)

)
, (2.5)

where Mp = 1/
√
8πG is the reduced Planck mass, in which G is the gravitational

constant. The inflaton field must slowly rolling down its potential for long enough
such that the required amount of spatial expansion is achieved to solve the known
cosmological problems. In order for this to happen the following conditions need to
be satisfied. Firstly, the inflaton’s potential energy must dominate the kinetic energy
of the field, such that its evolution is gradual, which means,

φ̇2 � V (φ) , (2.6)

The other condition, is that the field’s acceleration should be small, allowing a
sufficient length of time for slow rolling and hence the inflationary setting to progress.
That is,

φ̈ � |3H φ̇|, |V ′(φ)| . (2.7)

These requirements allow the definition of the well-known slow-roll parameters,
whichmust bemuch less than one to ensure the inflaton is slowly rolling and inflation
is occurring. The slow roll parameters are as follows,

ε = M2
p

2

(
V ′(φ)

V (φ)

)2

= 1

2M2
P

φ̇2

H 2
, (2.8)

η = M2
p

V ′′(φ)

V (φ)
= − φ̈

H φ̇
. (2.9)

where these are the leading order slow roll parameters. The ability of a given sce-
nario to successfully lead to an inflationary epoch requires the smallness of the
slow-roll parameters, which is equivalent to flatness in the inflaton potential. These
constraints ensure that we have an epoch of effective vacuum domination, acting like
a cosmological constant. The smaller ε and η are, the longer the possible duration
of inflation; with the end of inflation, and onset of reheating, occurring when these
slow roll parameters are violated. The potential of the φ field can now be chosen to
see whether it is consistent with an inflationary setting.

During the period of inflation, quantum fluctuations of the inflaton are inflated
to produce the temperature anisotropies observed in the CMB today. The level of
inhomogeneity produced in the inflationary epoch is related to the properties of the
inflationary potential through the slow roll parameters. From the slow roll parameters
the power spectrumof the observed scalar perturbations, Ps , the tensor-to-scalar ratio,
r , and the spectral index ns can be determined, and comparedwith observation. These
measurable model predictions are given by,
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Ps = 1

24π2M4
p

V (φ�)

ε�

, (2.10)

r = 16ε� , (2.11)

ns = 1 − 6ε� + 2η� . (2.12)

All the quantities with subscript ‘�’ in the above equations are evaluated at a field
value φ = φ� that corresponds to the field value after a number of e-folds of inflation,
N�. The number of inflationary e-folds can be calculated approximately using the
following relation,

N� 	 1

Mp

∫ ϕ�

0

dϕ√
2ε

. (2.13)

In this analysis we have considered a single scalar field, but it is also possible to
consider inflationary scenarios which contain multiple scalar fields, each of which
could potentially contribute to the inflationary expansion [67–80]. In multifield infla-
tion, the number of e-folds is a function of each of the scalar fields in the theory. One
scalar may dominate and hence lead to an effective single field inflationary scenario,
or you may get a mixture of the scalars contributing to produce a flat direction. Anal-
ogously, slow roll parameters and inflationary predictions of a similar form can be
derived. In this chapter, we will be considering such a possibility.

The inflationary epoch has also been postulated to solve various other problems
in particle physics, this shall be explored in Chap.3 in relation to Baryogenesis and
dark matter. These models can utilise the de Sitter nature of the inflationary setting,
the associated reheating epoch, or the inflaton and its decay [81–84]. The possibility
of using the reheating epoch for Baryogenesis will be considered in Chap.4.

A class of natural inflation models has been suggested as a symmetry-motivated
solution to the hierarchy problem in particle physics [19]. The inflaton in this class
of models is a pseudo-Goldstone boson of a spontaneously broken anomalous global
symmetry. The flatness of the inflaton’s potential is guaranteed by an approximate
shift symmetry in the Lagrangian, meaning that the inflationary potential can easily
satisfy the slow roll parameters, and hence can support an inflationary setting. How-
ever, the most recent observational results suggest that the simplest models of natural
inflation are now disfavoured at 95% confidence level [16]. This type of model is of
interest to the work considered in the rest of this chapter.

2.3 Scale Invariance, Weyl Transformations,
and Non-minimal Couplings

Before considering the new inflationary mechanism that we will discuss in this
chapter, we must first introduce the concept of scale invariance within the context
of a scalar Lagrangian including gravity, and the associated Weyl transformation. In
some earlier works the existence of a symmetry associated with scale invariance was
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advocated as a possible explanation for the hierarchy problem without fine-tuning
[85, 86]. This idea has received renewed attention in recent times due to the non-
observation of Supersymmetry [87, 88]. The existence of a scale invariance symmetry
in nature would have many ramifications for particle physics and cosmology. One
of the interesting applications of the scale invariance symmetry is to the inflationary
scenario, which has been considered more recently in the literature [89–104].

A scale invariant theory is one where there are no physical scales, which is man-
ifest in the classical action through the absence of dimensionful couplings. In this
scenario any scales we observe must be dynamically generated, such as through a
scalar taking a vacuum expectation value. This would be induced through quan-
tum corrections, which break the scale invariance symmetry explicitly, as the scale
invariance symmetry is typically anomalous.

An example of a scale invariant action that includes gravity is,

S =
∫

dx4
√−g

(
ξs2R − 1

2
∂μs∂

μs − V (s)

)
, (2.14)

where we have a SM singlet scalar field s with a scale invariant potential V (s), and
ξ is the coupling of s to gravity.

Non-minimal coupling of a scalar field to gravity has been widely discussed in
the literature [105, 106]. This idea can lead to many interesting implications for
cosmology, particularly for inflation [107–110] and cosmological evolution [111].
The idea of a non-minimal coupling to gravity has been utilised to salvage the idea
of Higgs inflation, reconciling the known properties of the Higgs boson with the
observational constraints of the associated inflationary scenario. Although such a
solution requires the Higgs to have a large non-minimal coupling to gravity, namely
ξ ∼ O(105) [112].

The Einstein frame, that containing the usual Einstein-Hilbert term, can be trans-
formed to the Jordan frame through the consideration of an extra scalar degree of
freedom [113]. In the Jordan frame, the Einstein-Hilbert term is not present, and is
replaced by a ξs2R term, as in the action in Eq. (2.14). The coefficient in front of
this new term defines the nature of the scalar’s coupling to gravity. In the case that
ξ = −1/12, this is known as the conformal coupling, meaning that the gravitational
coupling is of the usual form.Whenmaking theWeyl transformation from this frame
to the Einstein frame, this scalar is found to not have physical implications and is
a fictitious degree of freedom. If instead ξ �= −1/12, then this is known as a non-
minimal coupling, and corresponds to an alteration to the gravitational-matter field
interactions in the Einstein frame. The advantage of transforming to the Einstein
frame from the Jordan frame, in our model, is the added simplicity of inflationary
calculations in the Einstein frame.

We shall now exhibit the properties of the Weyl rescaling utilising the action
given in Eq. (2.14). This action is expressed in the Jordan frame, in which there
is no Einstein-Hilbert term. In order to obtain the Einstein frame we must make a
conformal transformation, or Weyl rescaling, which is defined as,



2.3 Scale Invariance, Weyl Transformations, and Non-minimal Couplings 49

gE
μν = �(s)2gμν , where �(s)2 = ξs2

M̄p
2 , (2.15)

where gE
μν is the metric in the Einstein frame, and M̄p is the reduced Planck mass.

In order for the action to remain invariant under the Weyl rescaling, the scalar and
fermion fields must also be transformed as follows,

σE = σ

�(s)
and ψE = ψ

�(s)3/2
, (2.16)

while gauge vector fields are invariant under the transformation.
After undertaking this transformation the usual Einstein-Hilbert term is obtained,

and the scalar potential is now,

VE (s) = VJ (s)

�(s)4
. (2.17)

The scale invariance symmetry can be introduced into a theory through the intro-
duction of a dilaton χ, which is the scalar field associated with the dilatation current.

By scaling any coupling with dimension n by
(

χ
f

)n
we can remove all the scales in

a theory leaving only dimensionless couplings, where f is identified as the dilaton
decay constant. The scales we see today would then be generated dynamically by the
dilaton when it takes a vacuum expectation value, which breaks the scale invariance
symmetry spontaneously. This is how the scale invariance symmetry shall be realised
in our inflationary mechanism.

2.4 Natural Inflation with Hidden Scale Invariance

The main focus of this chapter is on a new class of natural inflation models that
we have proposed, which are based on a hidden scale invariance. This is realised
through the introduction of a spontaneously broken anomalous scaling symmetry
with a corresponding pseudo-Goldstone boson, that we identify as the dilaton. We
begin by considering a very generic scale-invariant model, with an arbitrary number
of scalar fields and all allowed scalar interaction operators in the scalar potential, with
dimensionful couplings removed through appropriate rescaling by the dilaton. In this
scenario there is found to always exist a direction in the field space that is absolutely
flat in the classical limit. This bodes well for successful inflation given the ease with
which the slow roll parameters can be satisfied by thismodel. Inflation proceeds along
this direction, while the other fields in this parametrisation reside in their respective
(meta)stable minima. Although, the flat direction must have a non-negligible slope
such that the inflation epoch is not eternal. Upon quantum corrections, the scale
invariance of the model is broken, leading to the flat direction being lifted. Now we
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shall have a more detailed discussion of the workings of this model, and derive the
observational predictions it produces.

2.4.1 Description of the Model

Consider a multifield inflationary scenario in which we have N scalar fields, {φi }
(where i = 1, 2, . . . , N ), each with a general non-minimal coupling to gravity,
denoted ξi . Now take a Wilsonian effective field theory that describes the SM, or
its extension, that is coupled to gravity at an ultraviolet scale we shall call �,

S� =
∫

dx4
√−g

[(
M2

p

2
+

N∑

i=1

ξi (�)φ2
i

)
R − 1

2

N∑

i=1

∂μφi∂
μφi − V (φi ) + . . .

]
, (2.18)

whereMp ≈ 2.4 × 1018 GeV andwe use the mostly positive signature for the metric
tensor. Here we have displayed only the scalar sector, which includes the SM Higgs
boson. The scalar potential V (φi ) is a generic polynomial of the scalar fields {φi }
respecting the relevant symmetries of the theory,

V (φi ) =
∑

{in}
λi1,...,in (�)φi1 . . . φin , (2.19)

where λi1,...,in (�) is a coupling of mass dimension (4 − n) defined at the Wilsonian
cut-off�, while ξi (�) is a dimensionless non-minimal coupling of the scalar field φi

to gravity. The scale invariance is explicitly broken in Eq. (2.18) by the ultraviolet cut-
off�, the Einstein-Hilbert term∼M2

p R and dimensionful couplings λi1,...,in (n �= 4).
Now we propose that the underlying theory exhibits a scale invariance, which in

the effective low-energy theory is implemented via a (non-linear) pseudo-Goldstone
boson, that is the dilaton χ. A simple way to incorporate the dilaton field χ is to
rescale all of the dimensionful parameters in Eq. (2.18) by the respective powers
of χ/ f , where f is the dilaton “decay constant”. More specifically, the following
transformations are taken in the action given above,

� → �
χ

f
≡ λχ , M2

p → M2
p

(
χ

f

)2

≡ ξχ2 , (2.20)

λi1,...,in (�) → λi1,...,in (�χ/ f )

(
χ

f

)4−n

≡ σi1,...,in (λχ)χ4−n . (2.21)

Thus, instead of Eq. (2.18), we consider the transformed action,
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Sλχ =
∫

dx4
√−g

[ (
ξχ2 +

N∑

i=1

ξi (λχ)φ2
i

)
R

− 1

2
∂μχ∂μχ − 1

2

N∑

i=1

∂μφi∂
μφi − V (φi ,χ) + . . .

]
, (2.22)

where the scalar potential is now given by,

V (φi ,χ) =
∑

{in}
σi1,...,in (λχ) χ(4−n)φi1 . . . φin . (2.23)

This action is manifestly scale invariant in the classical limit. As we shall see, this
scale invariance is broken at the quantum level through the renormalisation group
(RG) running of the dimensionless couplings, i.e.,

∂σi1 ,...,in

∂χ
�= 0, etc.

In the calculations that follow, it is convenient to use a ‘hyperspherical’ represen-
tation for the set of scalar fields {φi ,χ},

φi = ρ cos (θi )

i−1∏

k=1

sin (θk) , (i = 1, 2, . . . , N ) ,

χ = ρ

N∏

k=1

sin (θk) . (2.24)

Expressing the action in Eq. (2.22) through the ‘hyperspherical’ representation of
the fields, we observe that the modulus field ρ factors out. That is, the first term in the
action and the scalar potential presented in Eq. (2.22) can be written as ∼ρ2ζ(θi )R
and ∼ρ4U (θi ), respectively, in which,

ζ(θi ) = ξ(λχ)

N∏

k=1

sin2 (θk ) +
N∑

i=1

ξi (λχ) cos2 (θi )

i−1∏

k=1

sin2 (θk ) , (2.25)

U (θi ) =
N∏

k=1

sin4−n (θk )
∑

{in }
σi1,...,in (λχ) cos

(
θi1

) i1−1∏

k=1

sin (θk ) . . . cos
(
θin

) in−1∏

k=1

sin (θk ) .(2.26)

We further assume that the θi fields are relaxed in their stable or sufficiently long-
lived (with lifetimes longer than the duration of the observable inflation) minima
〈θi 〉 = θci at very early stages in the evolution of the universe. Hence, their dynamics
are of no interest to us in what follows, and we can consider the following reduced
form of Eq. (2.22),

S̄ρ =
∫

dx4
√−g

[
ζ(ρ)ρ2R − 1

2
∂μρ∂μρ − V (ρ)

]
, (2.27)

V (ρ) = σ(ρ)ρ4 , (2.28)
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where ζ ≡ ζ(θci ) and σ ≡ U (θci ). Hence, we arrive at an effective single-field model
with a quartic potential and non-minimal coupling to gravity [114], but without the
standard Einstein-Hilbert term. It also resembles the large field limit of the Higgs
inflation model [112].

In order to reproduce the Einstein-Hilbert term in Eq. (2.27), the modulus field
ρ has to develop a non-zero vacuum expectation value, 〈ρ〉 ≡ ρ0. If the vacuum
configuration {ρ0, θci } describes the current vacuum state of the universe, then ρ0 =

Mp√
2ζ(ρ0)

with ζ(ρ0) ≡ ζ0 > 0. Furthermore, the vacuum energy density,
σ(ρ0)M4

p

4ζ20
, in

this case must be vanishingly small to satisfy the observational measurements of
the dark energy density. That is, the scalar potential must be tuned so that σ(ρ0) ≡
σ0 ∼ 12ζ20H

2
0 /M2

p ≈ 0, where H0 is the present value of the Hubble parameter.
However, inflation may end in a metastable state, which subsequently decays into
the current vacuum state, alleviating this possible issue. Hence, we keep ρ0 and σ0

as free parameters.
Thefieldρ represents aflat directionof the potential inEq. (2.28),which is constant

for any value of ρ when considering the Einstein frame. Furthermore, for the special
value of the coupling to gravity ζ0 = −1/12, the conformal coupling, ρ is a fictitious
degree of freedomwhich is not manifest in the Einstein frame. In this case, the action
in Eq. (2.27) in fact describes pure Einstein gravity with a cosmological constant.

2.5 Quantum Corrected Potential in Curved Spacetime

The ρ-dependence of the dimensionless couplings σ and ζ in Eqs. (2.27) and (2.28) is
determined by computing the quantum-corrected effective potential. At the classical
level these couplings are constant and independent of ρ, and hence the action in
Eq. (2.27) is classically scale invariant. In our analysis we wish to consider the 1-loop
quantum corrections to the scalar potential of ρ, which are generated by the ρ2 and ρ4

interaction terms. In the case of these two interaction terms, the possible interactions
induced via the radiative corrections will also be of the form ρ2 and ρ4 at 1-loop,
but also with a logarithmic dependence on ρ analogous to the Colemann Weinberg
potential. These corrections can be interpreted as contributions to the running of the
two dimensionless couplings σ and ζ.

Seeing as we wish to consider the inflationary setting we calculate the correction
to the scalar potential in an FRW spacetime background. We use the closed form
effective potential computed in Ref. [115] to obtain the 1-loop approximation of the
couplings ζ and σ. The running of the couplings ζ and σ induced by the corrections
is described by the β functions, βσ and βζ , which encapsulate the dependence of
the couplings on the energy scale. The loop corrected couplings are given by the
following,

ζ(ρ) = ζ0 + 1

2
βζ ln

(
ρ2

ρ20

)
and σ(ρ) = σ0 + 1

2
βσ ln

(
ρ2

ρ20

)
. (2.29)
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In our model the corresponding β functions are given by,

βζ

ζ
= 1

4π2

σ

ζ
(1 + 12ζ) and

βσ

σ
= 9

π2
σ . (2.30)

Thus, the 1-loop approximations of the ζ and σ couplings are,

ζ(ρ) = ζ0 + (12ζ0 + 1)σ0

16π2
ln

(
ρ2

ρ20

)
, (2.31)

σ(ρ) = σ0 + 9σ2
0

4π2
ln

(
ρ2

ρ20

)
. (2.32)

It is clear to see that the classical scale invariance of the theory is broken by
these radiative corrections, which is illustrated by the ρ dependence of the couplings
found in the 1-loop corrections in Eqs. (2.31) and (2.32). Note that σ0 → 0 is a
conformal fixed-point of the theory, since the ρ dependence disappears in Eqs. (2.31)
and (2.32) in this limit. The conformal coupling ζ0 = −1/12 is also a fixed-point
as ζ(ρ) = ζ0. Hence, having σ small or ζ close to −1/12, near the respective fixed
points, is natural in the technical sense. All these attractive features motivate us to
consider scale invariance as an essential symmetry for natural inflation, with ρ being
the inflaton field.

2.6 Observational Signatures and Model Predictions

To compute the inflationary observables we first wish to take the action in Eq. (2.27)
and perform aWeyl rescaling to obtain the action in the Einstein frame. The rescaling
is as follows,

gμν → �2gμν , �2 = 2ζρ2

M2
p

. (2.33)

We also must make a field redefinition of the inflaton field ρ in order to obtain the
canonical form of the kinetic term. The field redefinition is,

ρ = ρ0 exp

⎛

⎝

√
ζ̃

Mp
ϕ

⎞

⎠ , (2.34)

where ζ̃ = 2ζ
1+12ζ with ζ > 0 or ζ < −1/12. Therefore, in the Einstein frame the

action in Eq. (2.27) reads,
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S̄ϕ =
∫

dx4
√−g

[
M2

p

2
R − 1

2
∂μϕ∂μϕ − V (ϕ)

]
, (2.35)

V (ρ(ϕ)) = M4
p

4

σ(ρ(ϕ))

ζ2(ρ(ϕ))
. (2.36)

In order to proceed with the actual calculations of the above observables, we
substitute Eqs. (2.31) and (2.32) into Eq. (2.36), and using Eq. (2.34) we can then
express the effective potential in terms of the inflaton field ϕ in the Einstein frame.
Next, let us consider the conformal limit where σ0 → 0 and ζ0 → −1/12. The latter

limit implies that ζ evolves slowly, ζ ≈ ζ0. If we assume further that σ2
0

√
2ζ0

1+12ζ0
approaches to some constant C , the potential in Eq. (2.36) can be well approximated
by a potential which is linear in the inflaton field ϕ. It should be noted, a linear
potential was obtained in another limit of the non-minimally coupling in Ref. [116].
Therefore, in our scenario the potential takes the following form,

V (ϕ) ≈ 162C

π2
M3

pϕ . (2.37)

This linear potential can now be used to compute the slow roll parameters and
inflationary observables given in Eqs. (2.8–2.13). These immediately imply that η =
0 and hence we find the relation for spectral index to be,

ns ≈ 1 − 3

8
r . (2.38)

In terms of the number of observable e-folds N�, the model predictions are,

ns − 1 ≈ −0.025

(
N�

60

)−1

, (2.39)

r = 0.0667

(
N�

60

)−1

. (2.40)

If we take the observed value of the scalar perturbations (Ps 	 10−9) we require

that C ≈ 5.5 · 10−12
( N�

60

)−3/2
. The predictions found in Eq. (2.39) are in reasonable

agreement with the most recent analysis of the cosmological data [117], which sug-
gest that,

ns = 0.9669 ± 0040 (68%C.L.) , (2.41)

r0.01 < 0.0685 (95%C.L.) , (2.42)
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Fig. 2.3 Constraints on Inflationary observables from the PLANCK satellite, including predictions
of various inflationary potentials [16]

for the �CDM+r model. As can also be seen in Fig. 2.3, the predicted values fit
well with observation. Further improvement of the accuracy of cosmological mea-
surements will be critical for this scenario.

Note that, for large (ξ → ∞) and small (ξ → 0) non-minimal couplings, ns � 1,
and thus the model is excluded by observation in these limiting cases.

2.7 Conclusions and Future Prospects

In this chapter, we have explored a new class of natural inflation models that exhibit
hidden scale invariance, which is realised through the dilaton field. A very generic
Wilsonian potentialwas considered, consisting of an arbitrary number of scalar fields,
that was found to contain a flat direction in the classical limit, which was lifted by
quantum corrections. Thus inflation can naturally, without fine-tuning, proceed as the
inflatonfield evolves along this direction.Wefind that in the conformal coupling limit,
within the leading perturbative approximation, the generic model is reduced to a one-
field model with a linear potential, V (ϕ) ∼ ϕ, with the linear term being radiatively
induced. Such a scenario leads to the specific predictions of the spectral index and the

tensor-to-scalar ratio: ns − 1 ≈ −0.025
( N�

60

)−1
and r ≈ 0.0667

( N�

60

)−1
, respectively.

These predictions are in reasonable agreement with observation, but more accurate
cosmological measurements are required.
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Chapter 3
An Asymmetric Universe from Inflation

It is generally considered that the generation of the observedmatter-antimatter asym-
metry must have occurred after the inflationary epoch, as otherwise it would have
been diluted away by the rapid spacetime expansion. In order to produce a signifi-
cant asymmetry during inflation, the production rate of baryonic charge must exceed
its dilution rate. Despite this challenge, it has been found that inflationary dynam-
ics may be able to support such a scenario. By utilising the observation that, if a
large baryonic charge density is created due to small-scale quantum fluctuations, it
will typically be stretched out over large scales due to inflation. In the last decade
mechanisms have been proposed to explore this idea, but with varying success.

In this chapter, we argue that the inflationary setting can support the generation of
both the matter-antimatter asymmetry and dark matter through the extension of the
SM by an anomalous gauge symmetry [1, 2]. This is achieved through the addition
of a general anomalous U (1)X and a dark matter fermion candidate ψ , carrying
an X charge, to the SM. The associated anomaly terms source CP and X charge
violating processes, leading to the generation of a non-zero Chern-Simons number
during inflation and subsequently a non-zero baryon number density, depending on
the choice of X charge. This model is also motivated by, and able to explain, the
observation that the dark matter energy density of the universe is of the same order
of magnitude as that observed in the baryonic sector.

3.1 The Matter-Antimatter Asymmetry

The observed matter-antimatter asymmetry is one of the major mysteries of cosmol-
ogy and particle physics. The SM predicts the existence of an asymmetry but it is
many orders of magnitude smaller than that observed [3]. This asymmetry, whose
energy density is believed to encompass approximately all the visible matter seen
today, is quantified by the baryon asymmetry parameter,
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ηB = nB − nB̄

s
� nB

s
� 8.5 · 10−11 , (3.1)

where nB (nB̄) is the baryon (antibaryon) number density and s is the entropy density
of the universe. The observed value of the baryon-to-entropy ratio of our Universe is
determined from the observations of the temperature fluctuations in the CMB [4–6]
and from BBN predictions of the light element abundances [7–11].

The possibility of this asymmetry being an initial condition of the universe has
been explored in the past, but has been found to be inconsistent with a success-
ful inflationary epoch, other than in highly unnatural circumstances [12]. This is
because the required initial energy density of the baryon asymmetry may dominate
over the inflaton energy density, and hence inflation could not begin. This makes it
very difficult to construct a model in which one can have an initial baryon number
big enough to survive the dilution caused by inflation, and hence a dynamic gener-
ating mechanism during or after inflation is required. The compelling nature of this
mystery has led to the proposal of many models for Baryogenesis; for some reviews
see Refs. [13–22]. A possible connection between the inflationary setting and the
dynamical generation of the observed baryon asymmetry has been considered in the
past, but due to the large dilution associated with inflation it is difficult to accumu-
late a large enough asymmetry. Due to this, most mechanisms of Baryogenesis are
assumed to have occurred after inflation; during the reheating epoch [23] or the radia-
tion epoch, prior to BBN. In this chapter, we will consider an unorthodoxmechanism
which acts during inflation, utilising an anomalous gauge symmetry extension to the
SM.

In order to explain the observed baryon asymmetry of the universe, any proposed
mechanism must satisfy a set of criteria known as the Sakharov conditions [24].

3.1.1 The Sakharov Conditions

The Sakharov conditions [24], formulated byA.D. Sakharov in 1967, are the require-
ments for successful Baryogenesis in the early universe, assumingCPT is conserved.
They are as follows:

• B violation If immediately after the Big Bang there was zero net baryon number
and B is strictly conserved, then the net baryon number density of the universe
would remain zero. Furthermore, if B is strictly conserved and there was a large
initial net B this would be almost completely diluted by the end of the inflationary
epoch. This is in conflictwith observational evidence, hence requiring the existence
of B violating interactions or mechanisms [25]. Examples of possible B violating
processes are perturbative proton decay [26, 27], and non-perturbative sphaleron
transitions [15].

• C andCP violationThe above baryonnumber violating processes are also required
to violate the C and CP symmetries. Consider that there are interactions that
do violate baryon number e.g. X → a + b , with the antimatter equivalent
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X̄ → ā + b̄. If there is no C and CP violation then �(X → a + b) =
�(X̄ → ā + b̄) , where� is the decay rate, and similarly for the reverse reactions.
This means that the matter and antimatter decays will add and subtract baryon
number at the same rate, leading to no net change. Therefore, C and CP violation
is required for a net baryon number to be generated.

• Aperiodof non-equilibriumTheprocesses that violate B,C andCPmust occur in
a periodof non-equilibrium. In thermal equilibrium, the corresponding forward and
reverse reactions occur at the same rate, for both matter and antimatter processes.
This means that even if C and CP are violated, the B violating reverse and forward
reaction rates of each of the matter and antimatter processes will cancel out. The
expected production of B in thermal equilibrium, at a temperature T = 1

β
, is given

by,

〈B〉T = Tr(e−βH B) = Tr((CPT )(CPT )−1e−βH B)

= Tr(e−βH (CPT )−1B(CPT ))

= −Tr(e−βH B) = −〈B〉T , (3.2)

where CPT is the composition of the three discrete transformations C, P , and
T [15]. The CPT operator commutes with H and anti-commutes with B. This
implies that in thermal equilibrium the average baryon number production is zero.
Hence a period of non-equilibrium is a requirement for a net baryon number to
be produced. If the forward reactions were to become favoured, and the processes
satisfy �(X → a + b) �= �(X̄ → ā + b̄), meaning C and CP violation, the
baryon number each reaction produces will not cancel, with their reverse reac-
tions or each other. Therefore, the inequality of the reaction rates for the forward
processes will lead to an abundance of baryons over antibaryons, or vice-versa, in
non-equilibrium conditions.

In fact, these criteria apply to not only the generation of a baryon asymmetry, but
also any other particle asymmetry present in the universe. This is of interest with
respect to dark matter, which may constitute an asymmetry produced in the dark
matter sector. Such a possibility has interesting cosmological and phenomenological
implications, and is an active area of research.

3.1.2 Asymmetric Dark Matter

The idea of a common origin of luminous and dark matter traces back to the 90s
[28–30], but has received renewed interest in recent years; see a review in [31]
and references therein. The major motivation to this hypothesis comes from the
observation that the present-day mass density of dark matter is of the same order of
magnitude as the density of visible matter [5],
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ρDM � 5.5ρB . (3.3)

The similarity in these observed densities is perhaps an indication of a strong
connection between the physics and cosmological evolution of visible and dark mat-
ter. Hence, within this picture an asymmetry of similar size may be expected to be
generated among dark matter particles and antiparticles. In the model considered in
this chapter, visible and dark matter are connected by a common anomalous gauged
U (1)X , which we introduce in addition to the gauge group of the SM. It is proposed
that this anomalous gauge symmetry is responsible for the observed particle asym-
metries, with the ratio of dark to luminous mass density related to how the X charge
asymmetry is distributed between these two sectors.

3.2 Topological Vacuum States and the Chern-Simons
Number

Aconcept thatwill be important in the cogenesis scenario,we consider in this chapter,
is theChern-Simons (CS) number. TheCS number is an integer related to thewinding
number, which quantifies the topological non-triviality of a given vacuum state. The
topological nature of the vacuum state arises due to non-trivial boundary conditions
in the associated gauge theory. Full derivatives normally integrate to zero in the
action integral because of the assumed boundary conditions. Although, due to the
internal structure of the gauge theories involved this may not always be the case.
These gauge field configurations can lead to non-trivial topology at the boundaries
which are dependent on the choice of gauge, analogous to the boundary conditions
in a kink solution. The vacua are each denoted with winding numbers that define
certain homotopy classes, or gauge classes. It is not possible to smoothly deform an
element of one homotopy class into an element of another class due to topological
obstruction [32–34].

These topologically distinct vacua are degenerate, and are separated by potential
barriers, analogous to a set of degenerate potential wells. Each are denoted by a
CS number, which is proportional to the winding number, as depicted in Fig. 3.1.
As these vacuum states are related to the boundary conditions of the full derivative
terms, they do not contribute to perturbation theory, but they can provide interesting
non-perturbative effects through transitions between them, which we shall discuss
below.

The CS number of a given gauge field configuration, in terms of the associated
gauge field Aa

μ, is defined as [35],

nCS := ng
g2

32π2

∫
d3xεi jkT r(Ai∂ j Ak + 2ig

3
Ai A j Ak) , (3.4)
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NCS

E

Fig. 3.1 A sphaleron transition between degenerate vacua with different CS numbers

where Aμ = Aa
μT

a , with T a the generators of the applicable gauge group, and g is
the corresponding coupling constant.

Such topologically non-equivalent vacua are of particular relevance to the SU (2)
gauge group in the SM, where at infinity there is a set of mappings to the number
of windings around the S3 symmetry of the internal SU (2) space. The number of
windings is related to the CS number. In the SM, the SU (2) theory has anomalies
associated with the B and L global symmetries. This topological structure is related
to these anomalies, and as we shall see, transitions between the vacua violate the
associated global charges.

3.2.1 Instanton and Sphaleron Transistions

An instanton is a semi-classical solution of the gauge field equations of motion in
Euclidean space, that describes a topologically non-trivial vacuumgaugefield config-
uration [36–43]. The instanton transitions are non-perturbative processes, meaning
that they cannot be described in the Lagrangian by a renormalisable operator, and
as such the interaction cannot be represented by a Feynman diagram. However, an
effective operator, or vertex, can be constructed. In the SM, instanton solutions are
present for the weak and strong gauge groups (SU (2) and SU (3)), and have anoma-
lous global currents through which such transitions can be mediated.

In Electroweak Baryogenesis scenarios, the source of B violation comes from
so called sphaleron transitions. These are vacuum to vacuum transitions induced
by thermal excitations that result in a change in the CS number, which is depicted
in Fig. 3.1. The SU (2) gauge field vacuum configurations lead to the manifestation
of these topological vacua, and as such the transitions between vacuum states are
mediated via the B and L global anomalous currents. Each transition event results in

B = 
L = ng , meaning that B − L is conserved; ng is the number of generations.
An example of such a process is given in Fig. 3.2.
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Fig. 3.2 An example of a
sphaleron transition, three
antileptons are converted
into nine quarks, conserving
B − L

As described above, instanton quantum tunnelling processes or thermal excita-
tions can change the topological number of a vacuum state. During such a transition,
the fermion fields must also evolve as the gauge field configuration changes between
topologically distinct vacuum states. This leads to the generation of particles depend-
ing on the associated anomalous symmetries.

Seeing as sphalerons correspond to thermal excitations over the potential barriers,
rather than quantum tunnelling, they are highly suppressed at low temperatures, and
are only important at temperatures above the characteristic energy of the potential
barrier. In the case of the electroweak vacuum, the sphaleron processes become
important at temperatures above the EWPT (T ∼ 100 GeV). The thermal rate of
sphaleron processes in the broken phase, below the temperature of the EWPT, is
[44],

�sph(T ) = μ

(
MW

αWT

)3

M4
We

Esph (T )

T , (3.5)

where MW is the mass of theW boson, T is the temperature,μ is a constant, Esph(T )

is the sphaleron energy, and αW = g22
4π � 1

29 with g2 being the gauge coupling of
SU (2). This illustrates why these baryon and lepton number violating processes are
not observed today. An estimate of the rate of sphaleron transitions per unit volume,
in which κ is a dimensionless constant, is given by,

�sph(T ) � κα4
WT 4 . (3.6)

This rate is strongly dependent on the temperature of the state, and are in thermal
equilibrium when the temperatures are between the EWPT (T ∼ 100 GeV) and
1012 GeV the sphalerons [45, 46]. Therefore, these processes are of interest when
investigating early universe particle dynamics, due to the high temperatures that may
be present.

Although not integral to our scenario, electroweak sphaleron transitions need to
be taken into account. They can act in thermal equilibrium after reheating, leading to
B and L redistribution. Depending on the reheating temperature, the B − L number
contained within the X charge asymmetry generated by our mechanism will be
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redistributed between the SM fermionic degrees of freedomby equilibrium sphaleron
transitions during the radiation era. The resultant baryon number density distributed
from the initial B − L number density is given by the following [47],

nB = 28

79
nB−L , (3.7)

where this relation is applicable when the temperature of the primordial plasma is
above T ∼ 100 GeV.

The time variation of the vacuum state in an inflationary setting can lead to the
accumulation ofCSnumber in the presence of the X charge anomalies. In the scenario
we propose in this work, the accumulated topological charge in the vacuum will thus
correspond to a net X charge.

3.3 A Model of Inflationary Cogenesis

In what follows, we consider an application of these ideas in an inflationary setting
to construct a new mechanism for generating both luminous and dark matter during
cosmic inflation. It has been suggested that inflation may play an even more promi-
nent role in cosmology than solving the mysteries discussed in Chap.1, but by also
generating the observed matter-antimatter asymmetry in the universe [1, 48–52].
Namely, in [1] we argued that a successful Baryogenesis scenario can be realised
during inflation within models containing anomalous gauge symmetries [53]. One of
the first uses of anomalies for the generation of the baryon asymmetry is in amodel of
inflationary leptogenesis [49], in which a lepton asymmetry is produced during infla-
tion due to the gravitational birefringence induced through the gravitational lepton
number anomaly coupled to a new pseudoscalar field.

In the model we consider in this chapter, ordinary and dark matter both carry
charges associated with an anomalous U (1)X group. Anomaly terms in the model
Lagrangian source CP and U (1)X charge violating processes during inflation, pro-
ducing corresponding non-zero CS numbers which are subsequently reprocessed
into baryon and dark matter densities. Other recent works have considered relating
the generation of the luminous matter-antimatter asymmetry with an asymmetry in
the dark sector within a gauged U (1)X extension of the SM [54–60]. In the early
universe, when the expansion rate is faster than processes with fermion chirality flip,
the gauged anomalies may effectively appear within the SM [61]. Indeed, it has been
argued that anomalous production of the right-handed electron number is possible
through the hypercharge anomaly in the SM [62].An inflationary version of the above
scenario is discussed in [50]. The anomalous gauge theory we consider can also be
viewed as an effective low-energy theory, which admits a fundamental completion
free of gauge anomalies. The obvious candidates for such an anomalous gauge theory
are gauged baryon and lepton numbers, or any linear combination thereof.
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As with any CPT invariant model attempting to explain the dynamical genera-
tion of a charge asymmetry, it must satisfy the Sakharov’s conditions as discussed
above, and ours does so as follows. The anomalies present upon introduction of
the U (1)X gauge boson provide our X charge violation. On top of this, the gauge
invariance of the U (1)X requires a pseudoscalar field to couple to these anomalies,
which describes the longitudinal polarization of the X boson. In the cosmological
setting these interactions spontaneously violate CP invariance, and the inflationary
epoch provides the push out-of-equilibrium that is required for the accumulation of
the asymmetry. This will be discussed in more detail below. Note that this mecha-
nism differs from the one presented in [63], in which a non-zero CS number in the
hypercharge field is generated during inflation. In their case, the conversion of this to
baryon number happens at the electroweak scale through altering the right-handed
electron chemical potential, while also requiring a strongly first order electroweak
phase transition which is not achieved within the SM.

3.3.1 Models with an Anomalous U(1)X

In this general mechanism, we consider an extension of the SM that is based
on the SU (3) × SU (2) ×U (1)Y ×U (1)X gauge group and contains an additional
fermion(s) that shall act as a dark matter candidate. The introduction of a scalar to
play the role of the inflaton is also required, but the detailed dynamics of the infla-
tionary epoch is not important for our analysis. The new U (1)X gauge symmetry is
assumed to be anomalous, and hence the corresponding gauge boson will be neces-
sarily massive with gauge invariance realised non-linearly. The longitudinal degree
of freedom of this U (1)X gauge field is then described by a scalar field θ(x), which
allows anomaly cancellation through the introduction of appropriate counter-terms
[53], through the Green-Schwarz mechanism as discussed in Chap. 1. This theory
can be viewed as a low energy limit of an anomaly-free theory, either within ordi-
nary QFT or string theory. In the presence of a cubic anomalyU (1)3X , the additional
Lagrangian terms important to our analysis are,

1√−g
LX = − 1

4
gμαgνβXμνXαβ + 1

2
f 2Xg

μν
(
gX Xμ − ∂μθ

)
(gX Xν − ∂νθ)

− A1
g2X

16π2
θ(x)Xμν X̃

μν , (3.8)

where Xμν denotes the field strength of the U (1)X gauge boson with corresponding
coupling constant gX = mX/ fX , fX is a parameter that defines themass of theU (1)X
boson (mX ), and X̃μν = 1

2
√−g

εμνρσ Xρσ is the dual field strength, in which εμνρσ is
the Levi-Civita tensor. We have omitted fermion interactions and the charged current
jX terms. The final term in Eq. (3.8) is responsible for maintaining gauge invariance
of the full quantum theory description under U (1)X transformations, as discussed
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Table 3.1 The representations of the SM fermions and dark fermion ψ in reference to the gauge
symmetries of the theory

Fermion
field

SU (3) SU (2) U (1)Y Case 1: U (1)B−L Case 2:
U (1)B

Qi
L =

(
u

d

)i

L

3 2 1/6 1/3 1/3

uiR 3 1 2/3 1/3 1/3

diR 3 1 −1/3 1/3 1/3

Li =

(
ν

e

)i

L

1 2 −1/2 −1 0

eiR 1 1 −1 −1 0

ψ 1 1 0 qψ qψ

above. In the proceeding analysis any associated gravitational anomaly is ignored as
its contribution is considered to be negligible with respect to the other anomalous
contributions.

We shall consider two example applications of this general model for cogene-
sis. Namely, we consider the gauged B − L and B extensions both of which are
anomalous [64–74]. The examples we discuss shall also contain a fermionic field(s)
ψ , which carries a chiral charge under the anomalous gauge symmetry and is sterile
under the SM gauge symmetry. The charges of each of the fermions under these addi-
tional gauge symmetries are given in Table3.1. The mass mψ is an extra parameter
which can be directly introduced within the non-linear realisation of the anoma-
lous gauge symmetry. Typically, such a mass is also generated radiatively within
the low-energy effective theory, reflecting a more conventional mechanism for mass
generation within an ultraviolet anomaly-free completion.

The stability of the dark matter candidate ψ is ensured as the Lagrangian in
Eq. (3.8) has no interaction vertices which allow violation of the global ψ number
locally. Violation of X charge, and hence also the dark X charge, only occurs in
this model through the non-perturbative generation of CS number in an expanding
spacetime. This production is only of significance during inflation, as contributions
during subsequent matter and radiation dominated epochs are negligible due to mini-
mal CP violation and push out-of-equilibrium. This means that after the inflationary
epoch ends, the dark matter density to entropy density ratio is fixed, assuming no
significant additional sources of entropy.

Case 1: U (1)B−L and a sterile fermion ψ

In the SM, theU (1)B−L symmetry is anomalous unless three right handed neutrinos
are introduced. The associated anomalies are trace and cubic: A0(U (1)B−L) = −3
and A1(U (1)3B−L) = −3. We introduce Nψ new right-handed (for definiteness)
Weyl fermions ψ , some of which act as dark matter candidates in our model.
For simplicity we assume that they carry the same B − L charge qψ and inter-
act only via exchange of the B − L gauge boson. The addition of these states
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alters the B − L anomalies as follows: A0 := A0(U (1)B−L) = −Nψqψ − 3 and
A1 := A1(U (1)3B−L) = −Nψq3

ψ − 3. In this case, the dark matter fermion does not
introduce any new anomalies. We will ignore the gravitational anomaly A0 in our
analysis, but it should be noted that taking qψ = −3 or −1 and Nψ = 1 or 3, respec-
tively, eliminates A0. Obviously, Nψ = 3, qψ = −1 removes all anomalies, so we
are not interested in such a charge assignment in this paper.

The addition of the B − L gauge symmetry and dark matter candidate to the SM
leads to a Lagrangian density of the same form given for the general case presented
in Eq. (3.8).

Case 2: U (1)B and a sterile baryon ψ

Gauging the baryon number symmetry of the SM results in the inclusion of two
mixed anomalies involving the weak and hypercharge gauge groups: A2(SU (2)2 ×
U (1)B) = 3/2 andA3(U (1)2Y ×U (1)B) = −3/2. The addition of a new sterile state
ψ leaves thesemixed anomalies unchanged, but introduces two new unmixed anoma-
lies:A0 := A0(U (1)B) = −Nψqψ andA1 := A1(U (1)3B) = −Nψq3

ψ . Hence, there
are four anomalies, each of which will contribute to baryonic charge generation dur-
ing the inflationary epoch, but only two of which will include generation of fermions
in the dark matter sector, namely, A0 and A1.

The presence of additional mixed anomalies means that extra anomaly cancelling
terms are required with respect to the gauged B − L case considered above, that is,

1√−g
LX = − 1

4
gμαgνβXμνXαβ + 1

2
f 2Xg

μν
(
gX Xμ − ∂μθ

)
(gX Xν − ∂νθ)

− A1
g2Xθ(x)

16π2
Xμν X̃

μν − A2
g21θ(x)

16π2
Bμν B̃

μν − A3
g22θ(x)

16π2
Wa

μνW̃
aμν ,

(3.9)

where Bμν and Wμν denote the hypercharge and weak field strengths respectively,
with corresponding coupling constants g1 and g2.

3.4 Dynamics of an Anomalous Gauge Field During
Inflation

For a model to successfully produce a charge asymmetry in the early universe it must
satisfy thewell-known Sakharov conditions [24].Wewill now discuss the framework
of our newmechanism for cogenesis and how it satisfies these criteria in more detail.

Firstly, we wish to describe the universe using the Friedmann-Robertson-Walker
metric tensor, which represents a homogeneous, isotropic and spatially flat cos-
mological spacetime. In conformal coordinates the metric can be expressed as:
gμν = a2(τ )ημν . During inflation the scale factor a(τ ) is given by the following,

a(τ ) = −1/Hinfτ , (3.10)
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where Hinf is the expansion rate during inflation (Hinf
∼= constant). The conformal

time is given in the range τ ∈ [− 1
H ,− 1

H e
−Ninf ] during inflation, where Ninf is the

number of e-folds during the inflationary epoch, such that the scale factor is a(τ0) = 1
at the beginning of inflation.

To allowanalytical treatment, the analysis that follows requires certain simplifying
assumptions. For the θ field we only consider a classical homogeneous background
configuration, θ(τ, 
x) = θ(τ ), and ignore quantumfluctuations over it.We takegX �
1 such that the θ(x) and Xμ(x) fields essentially decouple from each other. This also
implies that theU (1)X boson is light relative to the scale fX ,mX/ fX � 1, and hence
we will not be interested in its dynamics during inflation. With these assumptions
the Lagrangian in Eq. (3.8) becomes,

LX = − 1

4
ημαηνβXμνXαβ + 1

2
a(τ )2ημν

(
mX Xμ − ∂μφ(τ)

)
(mX Xν − ∂νφ(τ))

− A1
g2Xφ(τ)

32π2 fX
εμναβXμνXαβ , (3.11)

where φ(τ) ≡ fXθ(τ ). From this Lagrangian follows the equation of motion for
φ(τ), (

a2φ′)′ = 0 , (3.12)

where φ′ ≡ dφ/dτ and we have ignored any terms quadratic in Xμ. Solving for
φ′(τ ) we obtain,

φ′(τ ) = a2(τ0)φ′
0

a2(τ )
, (3.13)

where φ′
0 is an integration constant associated with the ‘field velocity’ at the start of

inflation, which is defined at τ = τ0, where a(τ0) = 1. An upper limit on the value
of φ′

0 is provided by the requirement that the initial energy density of the φ field
be less than that of the inflaton field. This upper limit is thus φ′

0 � HinfMp, where
Mp = 1/

√
G is the Planck mass. Substituting Eq. (3.13) into the linearised equation

of motion for the Xμ gauge field gives,

(
∂2
τ − 
�2 +

(
a(τ0)mX

Hinfτ

)2
)
Xi + κXτ 2εi jk∂ j Xk = 0 , (3.14)

where

κX = |A1|a
2(τ0)g

2
Xφ′

0H
2
inf

4π2 fX
, (3.15)

and the gauge X0 = ∂i Xi = 0 has been chosen. The source of CP violation in our
model is apparent in Eq. (3.14) where the two terms have opposite P , and hence, CP
transformations.



72 3 An Asymmetric Universe from Inflation

In the discussion that follows we treat the U (1)X gauge boson as a massless
particle, as we have assumed mX � Hinf . To then quantize this model we promote
the X gauge boson fields to operators and assume that the boson has two possible
circular polarisation states,

Xi =
∫

d3
k
(2π)3/2

∑
α

[
Gα(τ, k)εiα âαe

i 
k·
x + G∗
α(τ, k)ε∗

iα â
†
αe

−i 
k·
x
]

, (3.16)

where 
ε± denotes the two possible helicity states of the U (1)X gauge boson (
ε∗+ =

ε−) and the creation, â†α(
k), and annihilation, âα(
k), operators satisfy the canonical
commutation relations,

[
âα(
k), â†β(
k ′)

]
= δαβδ3(
k − 
k ′) , (3.17)

and
âaα(
k)|0〉τ = 0 , (3.18)

where |0〉τ is an instantaneous vacuum state at time τ .
The mode functions in Eq. (3.16) are described by the following equations, from

Eq. (3.14),

G ′′
± +

(
k2 + λ2

τ 2
∓ κXτ 2k

)
G± = 0 , (3.19)

where λ = mX
Hinf

, which is assumed to be small as stated above.
Solving for the mode functions G± in Eq. (3.19) gives,

G+(τ, k) = 2
1+ν
2 e−z2τ

1
2+ν

[
C1U

(
1 + ν

2
− �k

4
, 1 + ν, z

)
+ C2M

(
1 + ν

2
− �k

4
, 1 + ν, z

)]

(3.20)
and

G−(τ, k) = 2
1+ν
2 ezτ

1
2+ν

[
C3U

(
1 + ν

2
− i�k

4
, 1 + ν,

z

i

)
+ C4M

(
1 + ν

2
− i�k

4
, 1 + ν,

z

i

)]

(3.21)

where z = k2τ 2

�k
, �k =

√
k3
κX
, ν = 1

2

√
1 − 4λ2 ∼ 1

2 − λ2, U (a, b, z) is a confluent

hypergeometric function of the second kind, and M(a, b, z) is a confluent hyperge-
ometric function of the first kind (Kummer Function).

In the limit |τ | → 0 (or k2 + λ2

τ 2 � κXτ 2k), CP-invariant wave modes are
obtained. These are described by,

Xi =
∫

d3
k
(2π)3/2

∑
α

[
Fα(τ, k)εiα b̂αe

i 
k·
x + F∗
α (τ, k)ε∗

iα b̂
†
αe

−i 
k·
x
]

, (3.22)

where the wave mode functions F± are found to be,
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F+(τ, k) =
√

πτ

2
H (2)

ν (kτ)e−i π
2 ( 1

2 +ν) and F−(τ, k) =
√

πτ

2
H (1)

ν (kτ)ei
π
2 ( 1

2 +ν) .

(3.23)
By matching the modes in Eqs. (3.20) and (3.21) to those in Eq. (3.23) and using

the known Wronskian normalisation we can determine the coefficients C1−4. For
more details on this calculation and the form of the coefficients see Appendix B.

Particle Creation during Inflation and Bogolyubov Transformations
In an expanding spacetime it is difficult to define a time independent vacuum state
because the Hamiltonian becomes time dependent. In a flat spacetime, the vacuum
is defined with reference to plane wave solutions, such that excitations from the
vacuum state correspond to plane waves. In an expanding spacetime background the
form of the annihilation and creation operators will change with time, and thus the
canonical vacuum state can only be defined at any given instant in time. Thus, the
Hamiltonian’s instantaneous energy eigenstates will not be the same at all times, and
hence the vacuum state will not be as well. That is, the vacuum state at one time will
correspond to an excited state of the vacuum at another time, which means that on
comparing the vacua, a relative particle number with reference to one another may be
found. This is how the expansion of the universe during inflation can lead to particle
production [75–78]. It is possible to relate the particle number of two vacuum states
by a so called Bogolyubov transformation. This type of transformation allows the
determination of the particle content of an evolving vacuum state with respect to
another vacuum state.

If we define two different annihilation operators â and b̂ we in turn define the
corresponding a and b vacua; |0a〉 and |0b〉, respectively. It is possible to express the
b-vacuum as a superposition of a particle states and vice versa. The a-vacuum will
contain no a particles, but may have a b-particle density. A Bogolyubov transforma-
tion performed between the a-vacuum and b-vacuum can allow the calculation of
this relative particle density, and is defined as [79],

b̂γ = αγ âγ + β∗
γ â

†
γ and b̂†γ = α∗

γ â
†
γ + βγ âγ , (3.24)

where α and β are k dependent complex numbers. In order to determine α and β the
modes corresponding to each vacuum state must be matched at some point in their
evolution. This is done as follows,

v∗(t0) = αγ u
∗
γ (t0) + βγ uγ (t0) , (3.25)

v∗′(t0) = αγ u
∗′
γ (t0) + βγ u

′
γ (t0) , (3.26)

where v and u are the modes defined for the a and b vacuum states, respectively.
In our model, a Bogolyubov transformation will be utilised to match the evolving

inflationary vacuum and the vacuum state for super horizon modes. This is because,
at scales smaller than the Hubble rate the effects of spacetime curvature become neg-
ligible, and solutions must converge to plane waves. Rather than matching the vacua
to calculate the net particle density accumulated, we shall determine the accumulated
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CS number density that is induced by the X charge violating anomalous interactions
during the inflationary epoch.

In our scenario, we compare the birefringent and CP-invariant modes to derive the
Bogolyubov coefficients relating the two sets of creation and annihilation operators,
{âaα, âa†α } and {b̂aα, b̂a†α }, in Eqs. (3.16) and (3.22). The Bogolyubov transformations
in this case are defined by,

b̂aα(
k) = ααa
a†
α (
k) + β∗

α â
a
α(
k) , (3.27)

b̂a†α (
k) = α∗
αa

a
α(
k) + βα â

a†
α (
k) . (3.28)

The relevant Bogolyubov coefficients are found to be,

α± = 1 − 1

21−ν

(
1 ± iλ2

(kτ)1−2λ2

(
1 − π(kτ)1−2λ2

2ν

)
∓ i21−ν(kτ)λ

2

√
k

e∓iπλ2/2G′∗±|
κτ2
k ,k|τ |→0

)
,

(3.29)
and,

β± = e∓iπλ2

21−ν

(
1 ∓ iλ2

(kτ)1−2λ2

(
1 − π(kτ)1−2λ2

2ν

)
± i21−ν(kτ)λ

2

√
k

e±iπλ2/2G′∗∓|
κτ2
k ,k|τ |→0

)
,

(3.30)
where we have considered the superhorizon modes (k|τ | ≈ 0).

3.5 Simultaneous Generation of Luminous and Dark
Matter During Inflation

Now that we have determined the dynamics of the Xμ gauge fieldwe can calculate the
general X charge density generated during inflation. It is known that the anomalous
non-conservation of the X charge current is given by,

∂μ

(√−g jμX
) = A1

g2X
32π2

εμνρσ XμνXρσ ≡ A1
g2X
8π2

∂μ

(√−gKμ
)

, (3.31)

where Kμ = 1
2
√−g

εμνρσ XνρXσ is a topological current. This implies that the net X

charge density nX = nx − nx̄ ≡ a−1(τ )〈0| j0X |0〉 is related to the CS number density
of the U (1)X gauge boson by the following equation,

nX = |A1| g
2
X

8π2
a(τend)nCS , (3.32)

where τ = τend is the conformal time at the end of inflation, and nX (τ0) = nCS(τ0) =
0 at the start of inflation. The form of the CS number is given below, in which we
wish to consider only large scale superhorizon modes (k|τ | � 0),
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nCS = 1

a4(τend)
εi jk lim

k|τ |→0
〈0|Xi∂ j Xk |0〉

� 1

4π2a4(τend)

∫ �

μ

kdk
[∣∣G ′

+
∣∣2

κτ2
k ,k|τ |→0 − ∣∣G ′

−
∣∣2

κτ2
k ,k|τ |→0

]
− O(λ2) ,

(3.33)

where we ignore small terms with quadratic or higher orders of λ. Note that the
upper limit in the integral in Eq. (3.33) simply cuts out sub-horizon modes for which
our approximate calculations are not applicable. The ultraviolet modes do not give
a significant contribution anyway, since they act as CP-invariant planewaves, which
expectantly lead to a cancellation between the positive and negative frequencymodes.
The dominant contribution to nCS is given by infrared modes, and in fact the integral
is divergent. This divergence is reminiscent of the well-known infrared divergence of
de Sitter-invariant two-point functions, which possibly signals that the pure de Sitter
approximation of the inflationary phase becomes inadequate in our case. There is no
commonly accepted prescription for regularization of these types of divergences in
the literature and we simply introduce an infrared cut-off μ.

We assume that the only non-negligible source of entropy density is the process
of reheating after inflation, for which the entropy density produced is s � 2π2

45 g∗T 3
rh,

where Trh is the associated reheating temperature and g∗(Trh) � 106.75. Upon taking
a first order expansion around �k = 0 in Eq. (3.33), we obtain the following expres-
sion for the X charge asymmetry parameter generated by the unmixed anomaly,

ηX =nX

s
≈ |A1| 30g

2
X

π10g∗
�

(
3

4

)4

e−3Ne

(
κX

μT 2
rh

) 3
2

≈ 8.5 · 10−11|A1|5/2
( mX

1012 GeV

)5
(

φ′
0

1032 GeV2

) 3
2
(

H

1014 GeV

)

×
(

Trh
2 · 1011 GeV

)−2 (
fX

1014 GeV

)− 13
2 ( μ

10−42 GeV

)− 3
2

,

(3.34)

where Ne denotes the minimum number of e-folds required to solve the horizon and
flatness problems, and includes the additional dilution that occurs if the reheating
period is not instantaneous. The number of e-folds that contribute to the dilution of
nX is,

Ne = Ninf + Nrh � 27.5 + 2

3
ln

(
HinfMp

(1 GeV)2

)
− 1

3
ln

(
Trh

1 GeV

)
, (3.35)

where

Ninf � 34 + ln

(
Trh

100 GeV

)
and Nrh � 2

3
ln

(
HinfMp

T 2
rh

)
− 1.89 . (3.36)
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In Eq. (3.34), it can be seen that taking the parameter κX to be large increases the
asymmetry. Also, the infrared cut-off μ must be sufficiently small. In what follows
we consider two possible cut-offs - the minimal box cut-off [80], μ = H0 ≈ 10−42

GeV, which accounts for all the modes that are within the present Hubble horizon,
and μ = HBBN ≈ 10−25 GeV which includes all of the modes within the Hubble
horizon at the beginning of the period of BBN; assuming TBBN ∼ 1 MeV.

A similar relation to Eq. (3.34) can be derived for the mixed anomalies. In partic-
ular, these can be present in the case of gauged baryon numberU (1)B , as considered
in [1]. In the case of the electroweak and hypercharge mixed anomalies the extra
contribution to the total X charge asymmetry is,

ηmixed
X = nmixed

X

s
≈ (|A2|5/2g51 + 3|A3|5/2g52)

15

4π13g∗
�

(
3

4

)4

e−3Ne

(
κ

μT 2
rh

) 3
2

,

(3.37)
where κ = φ′

0H
2
inf

fX
, and we have assumed that they have the same IR cut-off μ.

In the derivation of the asymmetry parameters above, Eqs. (3.34) and (3.37), we
have assumed that the only non-negligible contribution to the generated charge asym-
metry is produced during the inflationary epoch. The conditions for the mechanism
considered here may still be active during the radiation epoch, but the overall effect
will be negligible as the push out-of-equilibrium is considered to be too small in
later epochs; hence the total X charge is assumed to be conserved once inflation
ends. One exception to this is the possibility of sphaleron redistribution which will
violate both the SM B and L charges equally. The mutual dilution of the charge
and the entropy densities, after reheating, ensures there is no further dilution of the
asymmetry parameter. No additional washout processes have been considered in the
above derivation.

In the following section we utilise the known properties of sphaleron transitions to
determine the distribution of X charges amongst fermionic species after the EWPT,
if the reheating temperature is greater than the critical temperature (Tc ∼ 100 GeV).
How the sphaleron processes redistribute the X charge is dependent on the specific
model being considered—the type of charge gauged, the associated anomalies, and
the properties of the new fermion(s) introduced.

3.6 Replicating the Observed ρDM/ρB and ηB

Now that the X charge asymmetry parameter has been calculated we can determine
under what conditions this model will replicate simultaneously the observed dark
to luminous matter mass density ratio and the baryon asymmetry parameter. The
generated X charge density can be decomposed into SM and darkmatter components
as follows,

nX = nSM
X + nD , (3.38)
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The SM component will have an associated B − L charge which will be repro-
cessed by the action of sphaleron transitions, before or at the EWPT, into a known
fermionic distribution. The dark matter candidate considered here will be unaffected
by the sphaleron transitions as it is assumed here to be a singlet under the electroweak
interactions, although this does not have to be the case.

After the EWPT the B − L charge will be distributed between B and L charges as
follows; (B − L)SM = 79

28 B and (B − L)SM = − 79
51 L . We require that the resultant

SM baryon number asymmetry is consistent with that which is observed, given in
Eq. (3.1). The baryon asymmetry parameter will be given by the following relation,

ηB = ε(ηmixed−SM
X + ηunmixed−SM

X ) , (3.39)

where ε is a step function defined by,

ε := ε(Trh) =
{

28
79 Trh > Tc
1 Trh < Tc

, (3.40)

Henceforth we will assume that the mixed anomalies only contribute to the SM
sector, ηmixed

X = ηmixed−SM
X , as our darkmatter candidate is sterile under the SMgauge

groups.
It is assumed that the X charge density generated is initially uniformly distributed

between each of the applicable fermion degrees of freedom, that is,

ηSM
X = ηmixed

X +
∑

i N
i
SM |qi

SM |∑
i N

i
SM |qi

SM | + ∑
i N

i
D|qi

D|η
unmixed
X , (3.41)

ηD =
∑

i N
i
D|qi

D|∑
i N

i
SM |qi

SM | + ∑
i N

i
D|qi

D|η
unmixed
X , (3.42)

where the index i corresponds to the particle species, Ni is the corresponding number
of degrees of freedom, and qi is the associated X charge. Therefore, the baryon
asymmetry parameter defined above is given by,

ηB = εηSM
X = ε

(
ηmixed
X +

∑
i N

i
SM |qi

SM |∑
i N

i
SM |qi

SM | + ∑
i N

i
D|qi

D|η
unmixed
X

)
. (3.43)

The dark matter to luminous matter mass density ratio is given by,

ρD

ρB
= mψ

mB

qBηD

qψηB
= ηD

qψηB

( mψ

1 GeV

)
, (3.44)

where we have assumed mB = 1 GeV and qB = 1. In the following analysis we will
assume that this ratio is fixed to the observed value given in Eq. (3.3). Hence upon
considering parameters that give the correct ηB wewill also obtain the observed relic
darkmatter abundance. Nowwewish to consider this framework in the two scenarios
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introduced earlier; namely, a gauged B − L and a gauged B number, each including
a single sterile fermion charged under the given group.

Case 1: U (1)B−L and a sterile fermion
In this scenario we must sum over all the SM fermions,

∑
i N

i
SM |qi

SM | = 21, assum-
ing no RH neutrinos have been added. Only the unmixed cubic anomaly contributes
to the B − L charge generation. Using these facts and Eq. (3.44) we derive the
following dark matter to luminous matter mass density ratio,

ρD

ρB
≈ 1

21ε

( mψ

1 GeV

)
, (3.45)

where we have chosen Nψ = 1.
In the following analysis we wish to consider our mechanism as the only source

of both the dark matter and baryon asymmetry in the universe, and as such require
that both Eqs. (3.1) and (3.3) are satisfied. This immediately leads to the following
prediction for the dark matter mass in this scenario,

mψ ≈ 116ε GeV . (3.46)

Hence the darkmatter candidateψ must have amassmψ ≈ 41GeV, ormψ ≈ 116
GeV; for Trh > Tc and Trh < Tc respectively. For consistency with the initial assump-
tion that mψ � Hinf , the inflationary Hubble rate must be greater than ∼103 GeV.
Interestingly, the fixing of the ratio ρD/ρB sets the mass of the associated dark
fermion, and is independent of the B − L charge of the dark matter candidate. If the
mass of the dark matter candidate is lower than 116ε GeV, then it cannot be the only
component of the dark matter energy density of the universe and an additional com-
ponent to the dark matter must be introduced, but we do not consider that scenario
here. It should be noted that this mass relation assumes the correct baryon asymmetry
parameter is generated, and hence the other parameters of the model are constrained,
which we consider now.

The required replication of the observed baryon asymmetry and dark to luminous
mass density ratio results in the following condition on the model parameters, for
μ = H0,

ηB ≈ ε|A1|5/2 101

21 + |qψ |
1

π13g∗
m5

X

f 5X
e−3Ne

(
κ

μT 2
rh

) 3
2

(3.47)

≈ 3.5 × 10−18 GeV−1/2 ε
|A1|5/2

21 + |qψ |
m5

X

f 5X

Hinf

T 2
rh

(
φ′
0

fX

) 3
2

. (3.48)

It is found that this can satisfy Eq. (3.1) for a wide range of parameter values.
To see this we shall consider an example. Let us first assume φ′

0 takes its maximal
value, HinfMp, to ensure maximal CP violation. We will also identify the scale fX
with the inflationary Hubble rate, ∼ Hinf , and the B − L charge of the dark matter
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fermion to be qψ = −1. Under these assumptions we derive the following relation
on the model parameters from Eqs. (3.1) and (3.48),

ηB ≈ 7 × 109 GeV εg5X
Hinf

T 2
rh

⇒ εg5X
Hinf

T 2
rh

≈ 10−20 GeV−1 , (3.49)

which reduces to:

gX ∼ 10−4 GeV−1/5 T
2/5
rh

H 1/5
inf

or mX ∼ 10−4 GeV−1/5T 2/5
rh H 4/5

inf . (3.50)

In this example, the satisfaction of this relation guarantees the correct baryon
asymmetry and hence relic dark matter density. This relation leads to interesting
constraints on the allowed parameter space. We find that for instantaneous reheating,

Hinf ∼ (Tmax
rh )2

Mp
, we require gX ∼ 0.4. This is likely larger than that assumed in the

model (gX � 1), and means that this relation can be satisfied for almost all allowed
reheating temperatures for a given inflationary Hubble rate. Hence, the reheating
epoch must not be instantaneous and the reheating temperature cannot conflict with
BBN constraints (Trh > O(1) MeV). From the mass of the dark matter candidate
and constraints on the inflationary potential we require that the inflationary Hubble
rate is in the range 1014 GeV > Hinf > 103 GeV. Taking this into account, we see
that the size of the coupling gX that can satisfy this relation lies in the range 10−8 �
gX � 0.4, with the lowest value corresponding to the input parameters Hinf = 1014

GeV and Trh = O(1) MeV. Interestingly, the mass of the gauge boson can be as low
as mX ∼ O(1) MeV, when taking Hinf = 103 GeV and Trh = O(1) MeV, leading to
a coupling of order 10−6.

It could be possible to probe experimentally the areas of parameter space in which
the X boson mass is lowest, although this is made difficult by the associated tiny
coupling constant. The generically small couplings would also make it difficult to
detect the predicted dark matter candidate.

If we now consider the IR cut-off to be the Hubble rate at the beginning of BBN,
HBBN ≈ 10−25 GeV, the condition becomes,

ηB ≈ ε|A1|5/2 101

21 + |qψ |
1

π13g∗
m5

X

f 5X
e−3Ne

(
κ

μT 2
rh

) 3
2

(3.51)

≈ 10−43 GeV−1/2 ε
|A1|5/2

21 + |qψ |
m5

X

f 5X

Hinf

T 2
rh

(
φ′
0

fX

) 3
2

. (3.52)

This choice of cut-off provides a significantlymore constrained result, but can still
be satisfied with an appropriate choice of parameters. Considering the same example
model discussed above,

ηB ≈ 2 × 10−16 GeV εg5X
Hinf

T 2
rh

⇒ εg5X
Hinf

T 2
rh

≈ 4 · 105 GeV−1 , (3.53)
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which reduces to,

gX ∼ 10 GeV−1/5 T
2/5
rh

H 1/5
inf

or mX ∼ 10 GeV−1/5T 2/5
rh H 4/5

inf . (3.54)

Considering instantaneous reheating requires a coupling of gX ∼ 400, this means
that an extended reheating epoch is needed for consistency with our assumption
that gX � 1. The size of the couplings that can satisfy this relation lie in the range
10−3 � gX � 1, where the lower bound is for Hinf = 1014 GeV and Trh = O(1)
MeV. This allowed window is much smaller than found in the previous case. The
minimum mass of the boson is much higher with mX ∼ 160 GeV, when Hinf = 103

GeV and Trh = O(1) MeV. Due to the higher couplings in this case, the model is
likely much easier to constrain with experiments in the lower mX regime, hence a
very large Hinf and low Trh would be required.

Case 2: U (1)B and a sterile baryon
If we now consider a gauged baryon number extension to the SM we must sum
over all of the baryonic degrees of freedom,

∑
i N

i
SM |qi

SM | = 12. In this scenario the
contributions of the mixed anomalies SU (2)2 ×U (1)B andU (1)2Y ×U (1)B must be
included, which generate a net charge only in the form of luminous matter. Hence,
we find that the dark matter to luminous matter mass density ratio is given by,

ρD

ρB
= 1

ε

Nψ

12 + Nψ |qψ |
|A1|5/2

12|A1|5/2
Nψ |qψ |+12

m5
X

f 5X
+ |A2|5/2g51 + 3|A3|5/2g52

m5
X

f 5X

( mψ

1 GeV

)

(3.55)

≈ 1

ε

|qψ |15/2
12|qψ |15/2 m5

X

f 5X
+ |qψ | + 12

m5
X

f 5X

( mψ

1 GeV

)
, (3.56)

where mB = 1 GeV and qB = 1 have been set. In the second line we have taken
g21 � 4π

60 and g
2
2 � 4π

29 , and used the anomaly values given above:A2 = 3/2 andA3 =
−3/2. Upon rearranging, and requiring Eq. (3.3), we find the following expression
for the mass of the dark matter candidate,

mψ ≈ ε
f 5X
m5

X

11(12|qψ |15/2 m5
X

f 5X
+ |qψ | + 12)

2|qψ |15/2 GeV , (3.57)

which simplifies to,

mψ ≈ 70

εg5X
GeV , (3.58)

when taking |qψ | = 1 and gX � 1. Therefore, in this scenario we require that Hinf �
107 GeV, which implies that the mass of the dark matter candidate lies in the range
106 GeV � mψ � Hinf . The required dark matter mass is greater than that found in
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the previous case due to the additional contributions to the luminous sector from the
mixed anomalies, and the interplay of this with the mass density ratio.

The associated constraint imposed by the observed baryon asymmetry is given
by,

ηB ≈ ε
A

π13g∗
e−3Ne

(
κ

μT 2
rh

) 3
2

(3.59)

≈ 3 × 10−19 GeV−1/2 εAHinf

T 2
rh

(
φ′
0

fX

) 3
2

, (3.60)

where A =
(
12|qψ |15/2
|qψ |+12

m5
X

f 5X
+ |A2|5/2g51 + 3|A3|5/2g52

)
. As we assume g2X � 1 this

reduces to A ∼ 1, except when considering very large qψ , which we do not here.
Similar to the U (1)B−L scenario, we assume φ′

0 takes its maximal value, HinfMp,
and identify the scale fX with the inflationary Hubble rate, Hinf . Here the B charge
of the dark matter fermion is chosen to be qψ = 1. Under these assumptions, we
derive the following relation on the model parameters from Eqs. (3.1) and (3.48),

ηB ≈ 4 × 108 GeV ε
Hinf

T 2
rh

→ ε
Hinf

T 2
rh

≈ 2 · 10−19GeV−1 → Hinf ≈ 2 · 10−19 GeV−1

ε
T 2
rh . (3.61)

Interestingly, this relation is only dependent on the inflationaryHubble rate and the
reheating temperature.Upon further inspection it appears to be almost consistentwith
instantaneous reheating, or a very efficient reheating process, hence in this scenario a
close to maximal reheating temperature is required for any given inflationary Hubble
rate.

From the analysis of the allowed dark matter mass range above, we find that
the inflationary rate must be in the window 1014 GeV � Hinf � 107 GeV. The
corresponding allowed range of reheating temperatures is then 1016 GeV � Trh �
7 · 1012 GeV. The Eq. (3.58) and allowed mass range also give us a lower bound on
the allowed coupling, which we find is g2X ∼ 10−5, although this can be relaxed for
larger dark matter charge values. These constraints also imply that the mass of the
new X gauge boson must be at least greater than ∼50 TeV, which suppresses the
ability to detect the new boson and dark matter fermion. These values of the gauge
coupling and boson mass range are well out of the range of any current collider
experiments [81].

The constraint obtained when taking the IR cut-off to beμ = HBBN ≈ 10−25 GeV
is,

ηB ≈ 10−44 GeV−1/2 εAHinf

T 2
rh

(
φ′
0

fX

) 3
2

. (3.62)

Considering the same assumptions as for the previous cut-off we find,
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ηB ≈ 10−17 GeV ε
Hinf

T 2
rh

→ ε
Hinf

T 2
rh

≈ 6 · 106 GeV−1 → Hinf ≈ 6 · 106 GeV−1

ε
T 2
rh .

(3.63)
The constraints on the mass of the dark matter particle and coupling are the same

for this case, but now the relation between the inflationary Hubble rate and reheat-
ing temperature has changed. Now we require an extended reheating epoch, with
a maximum reheating temperature of Trh ∼ 4 TeV for Hinf ∼ 1014 GeV and mini-
mum of Trh ∼ 1 GeV when Hinf ∼ 107 GeV. This change in the allowed reheating
temperatures is the only alteration caused by the use of the other cut-off.

In summary, the ability to detect the introduced gauge boson appears likely to be
difficult due to the generic requirement of a high mass and small coupling, except
in special cases. The dark matter candidate would be more easily detectable in the
case of the gauged B − L compared to the gauged B scenario due to it having a
significantly smaller mass, which is of order 10 − 100 GeV. Although as the dark
matter candidate can only interact with the SM particles via theU (1)X gauge boson,
the ability to detect it is highly dependent on the gauge boson mass and coupling, for
which there is a wide range of possibilities. It may be possible to obtain constraints
on the parameter space from Z ′ searches [68, 81–93].

3.7 Conclusions and Future Prospects

In this chapter, we have investigated amodel for simultaneous generation of luminous
and dark matter during the inflationary epoch, achieved through the introduction of
an anomalous gauge interaction and sterile fermion to the SM. It has been found
that this scenario for cogenesis can successfully reproduce observations for the two
possible cases considered—a gauged B and a gauged B − L charge.

In each scenario, we considered the parameter spaces that correctly predict both
the dark matter to baryonic matter density ratio and baryon asymmetry. Interestingly,
for the U (1)B−L extension we obtain a prediction for the mass of the dark matter
candidate which is independent of the other choice of parameters, assuming a given
relation between gX , Trh and Hinf . While in the U (1)B case, we find the model
replicates the observed ηB as long as a relation between the reheating temperature
and inflationary Hubble rate is adhered to, and the coupling satisfies g2X > 10−5.

The general mechanism for cogenesis developed here can be applied to more
complex models involving other or extra anomalous gauge symmetries, as well as
additional sterile or non-sterile fermionic states. It is possible that these additions
could lead to a loosening of the constraints on the allowed parameters imposed by the
observed matter-antimatter asymmetry, through extra contributions to the generation
of luminous matter or dark matter. This would likely lead to altered requirements on
the mass of the dark matter candidate.

Our general framework could also provide a mechanism for magnetogenesis,
through the production of universal hypermagnetic fields via theUY (1)CS term [94].
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One could craft a model that not only generates this but also the particle asymmetries,
providing an extra route for constraining the allowed parameter space.

Further to this, the study of the associated collider phenomenology of thesemodels
is of interest.Although, this ismade difficult by the possibility of very small couplings
and high masses. Despite this, there are certain areas of the parameter space that can
already be constrained by results from collider experiments.
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Chapter 4
Baryogenesis During Reheating
via the Ratchet Mechanism

Another interesting and relatively unorthodox approach to generating the baryon
asymmetry of the universe is via the inflaton during the reheating epoch. Unlike
the dilution problems associated with inflationary cogenesis considered above, the
difficulties with a reheating scenario are related to the high level of uncertainty
and complexity of the dynamics associated with the reheating phase. The exact
nature of the reheating epoch is mostly unknown, but it is a period dominated by the
inflaton dynamics, and as such is strongly related to the properties of the inflaton
and inflationary potential. To try to alleviate this issue and for simplicity, we will
consider a Starobinsky inflationary scenario, which converges to the usual μ2�2

potential during reheating.
We propose a new scenario for Baryogenesis during the reheating epoch that

utilises the Ratchet mechanism, a model inspired by molecular motors in biological
systems, and their ability to generate directed motion. This is achieved through the
correlated behaviour between the inflaton and a complex scalar baryon. If the inflaton
and the scalar baryon couple via a derivative coupling, the behaviour of the scalar
baryon phase θ is found to be analogous to that of the forced pendulum, potentially
producing a non-vanishing value of θ̇ which is necessary to generate a non-zero
baryon number density [1].

4.1 The Reheating Epoch and Starobinsky Inflation

A consequence of the rapid expansion that occurs during inflation is that the energy
densities of SM particles are diluted to negligible quantities, so in order to explain
the observed matter energy densities today they must be produced dynamically some
time after inflation ends. This phenomena is known as reheating, and involves the
conversion of the energy density stored in the inflationary potential into matter,
through the decay of the inflaton [2–12]. This process begins once the slow roll
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conditions are violated, that is, when the inflationary potential is no longer flat enough
to support the inflationary scenario. In the canonical model, the almost homogeneous
inflatonfield oscillates coherently in its potential, being damped byHubble expansion
and a frictional term associated with the decay of the inflaton into matter particles
and radiation. These processes are occurring in an out-of-equilibrium setting that
continues until the decay rate becomes the dominant source of damping. For a m2φ2

like inflaton potential during reheating, the coherent oscillations of the inflaton field
induce an approximate matter dominated epoch [6]. Once the decay rate becomes
the main source of damping, the universe will be dominated by relativistic particles
produced from the distribution of the inflaton energy density into SM particles, and
possibly other exotic species, and will begin to thermalise.

Once reheating is completed the universe thermalises and enters a radiation dom-
inated epoch, with an initial temperature, also known as the reheating temperature,
which is related to the initial energy in the inflationary potential and the decay rate
of the inflaton. Faster inflaton decay leads to a more efficient transfer of energy
from the inflationary sector to the radiation sector, and hence produces a higher
reheating temperature. The exact details of the reheating epoch are complicated and
mostly unknown, and as such it is an active area of scientific exploration, with pos-
sible probes of its properties considered [13–15]. We can constrain the maximal and
minimal reheating temperatures using the maximum allowed inflationary scale and
successful BBN, respectively, although this still permits a large range of reheating
temperatures [16]. The uncertainty associated with this epoch lends itself to being an
interesting source of answers to the mysteries surrounding cosmology and particle
physics, particularly Baryogenesis [17], which we shall discuss in this chapter.

It is possible to determine a naive upper limit on the reheating temperature for
a given inflationary mechanism by considering the Friedmann equations, and the
approximate energy density contained within the inflaton potential,

ρinf � U (�i ) � 3M2
pH

2
inf , (4.1)

where �i is the initial value of the inflaton, U (�) is the inflaton potential, and
Mp = 1/

√
8πG is the reduced Planck mass. This energy density can then be equated

to that associatedwith a radiation epochwith characteristic temperature Trh, assuming
efficient thermalisation [18], which is given by,

ρrh = π2

30
g∗T 4

rh . (4.2)

This gives a maximum reheating temperature of,

Trh �
(

90

π2g∗

)1/4 √
MpHinf . (4.3)

For this temperature to be achieved, one must assume instantaneous and lossless
decay of the inflaton into SM particles. The inflaton decay can be parametrised in the
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inflaton’s equations of motion through the introduction of the decay width �, acting
as an additional damping term,

�̈ + 3H�̇ + ��̇ + V ′(�) = 0 . (4.4)

The value taken by � is dependent on the fields that the inflaton decays into
and the strength of the associated interactions. The physical implications of the
magnitude of � is that once H ∼ �, the inflaton decays will dominate and reheating
will end, leading to a radiation epoch with the characteristic temperature dictated by
the properties of �. The length of the reheating epoch will be approximately �−1.
The associated reheating energy density can be found using the Born approximation,

ρrh � 3�2M2
p , (4.5)

which upon comparing to the energy density at the end of reheating, we find,

Trh �
(

90

π2g∗

)1/4 √
�Mp . (4.6)

The number of e-folds of expansion that occur during reheating are,

Nrh = 1

3
ln

(
ρinf

ρrh

)
� 2

3
ln

(
Hinf

�

)
. (4.7)

It should be noted that the Trh given in Eq. (4.6) is themaximum temperature of the
radiation dominated universe, but it may not necessarily be the hottest temperature
achieved after inflation has ended, rather, temperatures during reheating could be
higher. This can have interesting implications for phase transitions and production
of relics.

4.1.1 Starobinsky Inflation

Manymodels for themechanism of inflation have been proposed, each of whichmust
produce observational predictions consistent with the constraints depicted in Fig. 4.1.
One model which is in good agreement with these constraints is the Starobinsky, or
R2, type models [19–21]. Given this agreement with the data, we shall consider this
as the inflationary scenario in our investigation.

The Starobinsky action is the following,

S =
∫

dx4
√−g

M2
p

2

(
R − R2

6μ2

)
, (4.8)
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Fig. 4.1 Constraints on Inflationary observables from the PLANCK satellite, including predictions
of various inflationary potentials [22]

where in the Einstein frame of the scalar parametrisation we have the following
inflationary potential,

U (�) = 3μ2M2
p

4

(
1 − e−√

2/3�/Mp

)2
, (4.9)

whereμ = (1.3 × 10−5)Mp is the inflatonmass [23]. From this potential the slow roll
parameters and corresponding predictions can be found. Using the tools presented
in Chap.2, the Starobinsky model produces the following inflationary predictions,

ns � 1 − 2

N
and r � 12

N 2
, (4.10)

where N is the number of inflationary e-folds.
The reheating period in the Starobinsky model approaches the usual 1

2μ
2�2, lead-

ing to this epoch being characterised as an approximate matter dominated epoch [6,
23, 24]. This can be seen in the expansion of the inflationary potential around �,

U (�) = 1

2
μ2�2 − μ2

√
6Mp

�3 + · · · (4.11)

where the first term dominates for � < Mp. From numerical calculations it is found
that in the Starobinsky model the value the inflaton field takes at the beginning of
the reheating epoch is [24],

�i = �(ti ) = 0.62 Mp , (4.12)
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with a corresponding Hubble parameter of,

Hi = H(ti ) = 6.2 × 1012 GeV . (4.13)

In the proceeding analysis, we will assume that the inflaton velocity �̇(ti ) at this
point in time is approximately zero for simplicity.

4.2 Baryogenesis During Reheating via the Ratchet
Mechanism

Baryogenesis during reheating has been an area of interest in the literature for some
time, given the complicated and uncertain nature of the epoch. In what follows we
shall outline a newmechanism for Baryogenesis in which baryon number generation
is driven by the oscillations of the inflaton field. As with any successful model of
Baryogenesis that conserves CPT , the Sakharov conditionsmust be satisfied in order
to reproduce the observed value of the baryon asymmetry parameter,

ηB =� 8.5 · 10−11 . (4.14)

Of the many Baryogenesis models that have been proposed, there is a class that
generates the baryon asymmetry via the coherent time-evolution of a complex scalar
field that carries a baryon number charge [5, 17, 25–30]. In this work we consider a
similar scenario in the setting of reheating, with a new scalar baryon coupled to the
coherently oscillating inflaton field.

4.2.1 The Ratchet Mechanism

The new Baryogenesis mechanism we propose here acts during the reheating epoch,
and is inspired by the ratchet models that describe molecular motors in biological
systems [31, 32]. An example of this is the directed motion of myosin molecules
along actin filaments which is achieved through cyclic chemical reactions that act as a
driving force. The model we propose here utilises an analogous ratchet mechanism,
in which the reflection symmetry of a scalar potential is broken by its interaction
with the inflaton, with the inflaton’s coherent oscillations providing a driving force.
This driving force is supplied by the oscillation of the inflaton in its potential during
reheating, while the position of the motor is embodied in the phase θ of the complex
scalar baryon field. These two scalar fields interact via a derivative coupling which
violates CP , breaking the reflection symmetry of the scalar baryon’s potential. The
form of the interaction between the two scalars is similar to that in the Baryogenesis
mechanism considered in Ref. [33], although in their case CPT violation is required.
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4.2.2 Description of the Model

We construct a model consisting of two scalar fields—a real scalar field � that we
identify as the inflaton, and a complex scalar baryon φ. In the ensuing analysis we
assume that the dynamics during reheating are dominated by these two scalars and
only consider interactions of the inflaton with SMfields via an effective friction term.
Our model is described by the following action,

S =
∫

d4x
√−g

[
gμν ∂μφ∗∂νφ − V0(φ,φ∗)

+ 1

2
gμν ∂μ� ∂ν� − U (�) + i

�
gμν

(
φ∗←→∂μ φ

)
∂ν�

]
,

(4.15)

whereU (�) is the inflationary potential, which we take to be the Starobinsky poten-
tial given in Eq. (4.9). The scalar baryon potential, V0(φ,φ∗), is defined as,

V0(φ,φ∗) = λφ∗φ(φ − φ∗)(φ∗ − φ) + · · · , (4.16)

where the ellipses denote terms that depend only on the product φ∗φ, which are not
relevant to the dynamics in this mechanism.

The coupling between the inflaton and the scalar baryon is introduced as,

Lint = − 1
�
jμB∂μ� = −φ2

r
�

∂μθ∂μ�. This is a dimension five operator, and as such
is suppressed by the mass scale � which is the energy cut-off at which the effective
description of this scalar coupling breaks down. This interaction term also violates
C and CP , which is a necessary ingredient for successful Baryogenesis.

Upon observation it can be seen that if λ = 0, the action will be invariant under
the global U (1) symmetry defined by the transformation (φ,φ∗) → (eiαφ, e−iαφ∗),
where α is a constant. We identify the charge associated with this U (1) symmetry
as the baryon number B, where the complex scalar field φ is a baryon to which we
assign unit baryonic charge. From the action we can calculate the corresponding
baryon number current, or Noether current for the baryon symmetry, which is found
to be,

jμB = i(φ∂μφ∗ − φ∗∂μφ) . (4.17)

We now consider the following polar coordinate parametrisation of the φ field,

φ = 1√
2
φr e

iθ . (4.18)

Under the global baryon number transformation, the phase θ transforms as θ →
θ + α, whileφr is invariant. In this parametrisation the baryon number density, which
corresponds to the time component of Eq. (4.17), is given by,
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nB = j0 = φ2
r θ̇ . (4.19)

This implies that within the framework of our mechanism we must produce a
non-zero θ̇, driven motion, to have a net baryon asymmetry generated. Rewriting the
scalar baryon potential in terms of this reparametrisation, φr and θ, we obtain the
following,

V (φr , θ) = V0(φ,φ∗) = λφ4
r sin

2 θ + · · · (4.20)

where the ellipses nowdenote terms that depend only onφr . In the rest of our analysis,
we assume that the terms that only depend on φr in V (φr , θ) are such that they keep
φr approximately fixed to a constant non-zero value, and that only the dynamics
of the phase θ need be considered. The charge conjugation symmetry C is given by
C : φ → φ∗, or θ → −θ, so C is conserved in this potential. B invariance is related to
the translational invariance of the phase θ, which is clearly violated by this potential,
assuming λ 	= 0.

Therefore, in the new parametrisation of the scalar baryon the action takes the
form,

S =
∫

d4x
√−g

[
φ2
r

2
gμν∂

μθ∂νθ − λφ4
r sin

2 θ

+ 1

2
gμν∂

μ�∂ν� −U (�) − φ2
r

�
gμν∂

μθ∂ν�

]
. (4.21)

Seeing as we wish to consider the cosmological setting of reheating we take the
gravitational metric gμν to be the flat FRW metric,

ds2 = gμνdx
μdxν = dt2 − a2(t)dx2 . (4.22)

Given this isotropic and homogeneous background, we extend this assumption to
the properties of the scalar baryon and inflaton, for which spatial variation will be
ignored in our analysis. In this background, the action of our model reads,

S =
∫

dt a(t)3
[
φ2
r

2
θ̇2 − λφ4

r sin
2 θ + 1

2
�̇2 −U (�) − φ2

r

�
θ̇�̇

]
. (4.23)

Therefore, in our model, the Sakharov conditions are satisfied in the following
ways. Firstly, B violation is achieved by the scalar baryon potential V (φr , θ). Sec-
ondly, the derivative coupling changes sign under both C and CP . We have ignored
the spatial dependence of the scalar fields, so the parity symmetry P is always con-
served by this derivative coupling term. The required push out-of-equilibriumwill be
provided by the reheating epoch, induced by the coherent oscillation of the inflaton
field. During reheating the derivative coupling between the scalar baryon and inflaton
can lead to a kind of resonance effect when the respective potentials are of a similar
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order. As we shall see, when this is the case we can observe directed motion in the
scalar baryon phase, and hence a non-zero baryon number density.

Now, we can carry out the calculations required to determine the baryon number
density generated in this framework. In our analysis we will take the initial phase of
the scalar baryon to be zero, placing the scalar baryon initially in the minimum of its
potential. To ensure there is no initial bias between matter and antimatter we assume
that the initial phase velocity θ̇ is zero.

4.3 Analytical Evaluation

We shall now find an analytical solution for the scalar baryon phase equation of
motion so that we can determine the region of parameter space where we obtain
driven motion, and hence have a non-zero baryon number density. Firstly, we find
the equations of motion for θ and �, using the action presented in Eq. (4.23),

(�̈ + 3H�̇) +
(

��̇ + dU (�)

d�

)
− φ2

r

�

(
θ̈ + 3H θ̇

) = 0 , (4.24)

(
θ̈ + 3H θ̇

) − 1

�

(
�̈ + 3H�̇

) = 0 , (4.25)

where ��̇ is the inflaton friction term, added in by hand, which encapsulates the
decay of the inflaton into SM or mediator particles during reheating, and H is the
Hubble parameter. After some rearrangement, the above equations read,

(
1 − φ2

r

�2

)
(�̈ + 3H�̇) +

(
��̇ + dU (�)

d�

)
+ λφ4

r

�
sin(2θ) = 0 , (4.26)

(
1 − φ2

r

�2

) (
θ̈ + 3H θ̇

) + 1

�

(
��̇ + dU (�)

d�

)
+ λφ2

r sin(2θ) = 0 . (4.27)

The

(
1 − φ2

r

�2

)
factor can be absorbed through rescaling of the parameters �, μ2

in U (�), and λ, as follows,

�̃ ≡ �

1 − φ2
r /�

2
, μ̃2 ≡ μ2

1 − φ2
r /�

2
, λ̃ ≡ λ

1 − φ2
r /�

2
, (4.28)

and hence the equations simplify to,
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(�̈ + 3H�̇) +
(

�̃�̇ + dŨ (�)

d�

)
+ λ̃φ4

r

�
sin(2θ) = 0 , (4.29)

(
θ̈ + 3H θ̇

) + 1

�

(
�̃�̇ + dŨ (�)

d�

)
+ λ̃φ2

r sin(2θ) = 0 . (4.30)

During reheating in the Starobinsky inflationary model, the oscillation of the
massive inflaton gives rise to an approximate matter dominated epoch, during which
the Hubble parameter H is approximately given by,

H = ȧ

a
≈ 2

3t
. (4.31)

We shall also assume that during reheating the Starobinsky potential can be
expressed approximately as,

Ũ (�) ≈ 1

2
μ̃2�2 → dŨ (�)

d�
≈ μ̃2� , (4.32)

as found in the expansion given in Eq. (4.11). Note that early on in the reheating
epoch the full potential should be used. This approximation is valid towards the
end of the epoch, when the inflaton is oscillating near the potential minimum. The
equations of motion are now,

(
�̈ + 2

t
�̇

)
+

(
�̃�̇ + μ̃2�

)
+ λ̃φ4

r

�
sin(2θ) = 0 , (4.33)

(
θ̈ + 2

t
θ̇

)
+ 1

�

(
�̃�̇ + μ̃2�

)
+ λ̃φ2

r sin(2θ) = 0 . (4.34)

In this form we can now begin solving these equations.

Behaviour of the Inflaton
Wewish for the inflaton’s motion to be unaffected by the dynamics of θ. This ensures
that the properties of the reheating epoch are retained and the approximation given
in Eq. (4.31) remains valid. To do so, we assume that the sin(2θ) term in Eq. (4.33)
can be neglected—the condition for this assumption shall be provided below. The
equation of motion of the inflaton � then becomes,

�̈ +
(
2

t
+ �̃

)
�̇ + μ̃2� = 0 . (4.35)

This equation can be easily solved in the case when �̃ � μ̃, which is a valid
assumption in our scenario. The approximate solution to this equation is,
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�(t) = �i

(
ti
t

)
e−�̃(t−ti )/2 cos

[
μ̃(t − ti )

]
, (4.36)

where ti is the time at which the reheating epoch begins, and �i = �(ti ). This
solution indicates that the motion of �(t) is oscillatory, with an angular frequency
μ̃, and is damped by e−�̃t/2, coming from the �̃ term in the equation of motion, while
the amplitude is also attenuated as a function of 1/t from the Hubble damping term.

Now that we have this solution it is possible to find a simple relation describing
the assumption that the sin(2θ) term can be neglected in the equation of motion of
�. This requires the following relation be satisfied,

λ̃φ4
r

�
� amplitude of μ̃2�(t) . (4.37)

This should be true throughout the reheating epoch, but is sufficient to be true at
the end of reheating due to the damping of the inflaton’s amplitude, predominantly
by Hubble damping,

λ̃φ4
r

�
� μ̃2�i

(
Hf

Hi

)
, (4.38)

where t f is the time at the end of the reheating epoch, and Hi and Hf are respectively
the values of the Hubble parameter at ti and t f .

Behaviour of the Scalar Baryon
Now that we have determined the dynamics of the inflaton during reheating, we can
utilise the solution to find an analytical solution for the phase of the scalar baryon.
As found above, the equation of motion for θ is,

(
θ̈ + 2

t
θ̇

)
+ λ̃φ2

r sin(2θ) + 1

�

[
�̃�̇(t) + μ̃2�(t)

]
= 0 . (4.39)

Since the amplitude of �̃�̇(t) is suppressed compared to the amplitude of μ̃2�(t) by
a factor of approximately �̃/μ̃, we can drop the �̃�̇(t) term. Doing this, and defining
some new parameters the equation of motion for θ becomes,

(
θ̈ + 2

t
θ̇

)
+ p sin(2θ) + q(t) cos

[
μ̃(t − ti )

] = 0 , (4.40)

where we have defined,

p = λ̃φ2
r , q(t) = μ̃2�i

�̃

(
ti
t

)
e−�̃(t−ti )/2 . (4.41)

This equation is not simple to solve, so we shall first consider a few possible
scenarios to determine some of its properties. First, consider the casewhen p � q(t),
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we now have,

(
θ̈ + 2

t
θ̇

)
= 1

t2
d

dt

(
t2θ̇

) = −q(t) cos
[
μ̃(t − ti )

]
, (4.42)

which can be integrated to yield,

θ̇(t) =
(

μ̃2�i

�̃

)
ti
t2

[
1 − e−�̃(t−ti )/2

{
cos

[
μ̃(t − ti )

] + μ̃t sin
[
μ̃(t − ti )

]}]
+ · · · (4.43)

where the ellipses includes terms subleading in �̃/μ̃, which we have dropped for
consistency with our approximations above. Upon observation we find that there is
no dependence on θ, specifically the sin(2θ) term is absent. Thus, we can see that, in
this limit the motion of θ̇ is driven solely by the oscillation of the inflaton and simply
oscillates around zero, not maintaining any finite value. This is to be expected since
this limit is equivalent to removing the B violating term, associated with the scalar
baryon potential, from the equation.

Now consider the limit p 
 q(t), for which the equation of motion becomes,

θ̈ + 2

t
θ̇ + p sin(2θ) = 0 . (4.44)

In this case, if we start from a state with finite energy, the friction term will damp
the motion of the phase θ until it settles into one of its potential minima, and again
there will be no non-zero θ̇ which persists and can lead to a non-zero baryon number
density. Of course, this is to be expected since in this limit the C and CP breaking
term has been removed.

Therefore, we can conclude that for successful Baryogenesis, we require p � q(t)
so that both the B breaking and theC andCP terms can contribute to the time evolution
of θ. In particular, we need the condition p � q(t) to be satisfied towards the end of
the reheating epoch, since if it is satisfied too early, q(t) will evolve to be smaller
than p by the end of the epoch and any directed motion of θ will come to a stop.
Thus, we require p � q(t f ), which we shall name the Sweet Spot Condition (SSC),

λ̃φ2
r � μ̃2�i

�

(
Hf

Hi

)
. (4.45)

The SSC must be compatible with the prior assumptions we have made, such as
that derived inEq. (4.38).Upon combining these two conditionswefind the following
requirement, φ2

r /�
2 � 1, This can easily be satisfied, and has the flow on effect that

we can drop the tilde notation from this point on, that is, λ̃ ≈ λ, μ̃ ≈ μ, and �̃ ≈ �.
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4.3.1 Approximate Analytical Solution

Considering the SSC found in the previous section, the equation of motion is still
difficult to solve, so we will first attempt to find an approximate analytical solution.
We shall then compare this with numerical calculations to test for consistency.

The requirement for non-zero driven motion near the end of reheating is defined
by the SSC, which can be written as follows,

λφ2
r � Hf

Hi

μ2�i

�
≈ 7 × 1014 GeV

T 2
rh

�
, (4.46)

where we have used Eqs. (4.3), (4.12), (4.13) and (4.45). If we substitute the SSC
into the equation of motion for θ we get,

9

4
H 4θ′′ − 3

2�
H 2��′ + μ2

�

H

Hi
�0 cos

[
2μ

3H

]
− λφ2

r sin(2θ) ≈ 0 , (4.47)

where the primes denote derivatives with respect to the Hubble rate. We obtain the
following simplified equation,

9

4
H 4θ′′ ≈ p

(
sin(2θ) − cos

[
2μ

3H

])
, (4.48)

where we have fixed p = λφ2
r � Hf

Hi

�0μ
2

�
near the end of reheating, the damping

term has been assumed to be suppressed, and the reheating epoch has been taken
to be sufficiently long such that Hf � Hi . In order to aid finding an approximate
analytical solution we have neglected the Hubble damping term. In doing this we find
the following simplified expression for the dynamics of θ near the end of reheating,

θ̈ ≈ p (sin(2θ) − cos(μt)) . (4.49)

If we now assume the two oscillatory parts have different frequencies, with the
inflaton oscillation rate μ being slower, we find that the average value of θ̇ is of order,

|θ̇| ≈ p

μ
= λφ2

r

μ
. (4.50)

Therefore, the baryon number density generated at the end of reheating is given
by,

nB ≈ λφ4
r

μ
. (4.51)

Combining the entropy density at the end of reheating and the approximate ana-
lytical expression for nB derived in Eq. (4.51), we obtain the following expression
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for the asymmetry parameter,

ηrehB ≈ 0.02
λφ4

r

μT 3
rh

≈ 0.1
φ2
r

�Trh
, (4.52)

where we have used the SSC in Eq. (4.46). This result assumes certain constraints on

the parameters, namely the SSC, φ2
r

�2 � 1, and that the energy density of the scalar
baryon must be less than that of the radiation epoch at the end of reheating, which
corresponds to,

λφ4
r <

π2

30
g∗T 4

rh . (4.53)

It is found that a wide range of parameter choices can be used that satisfy the
observed baryon asymmetry. We also find that when undertaking numerical calcula-
tions of Eq. (4.39), they are in reasonable agreement with this solution, with results
being consistent to within an order of magnitude for most parameter choices where
driven motion is observed. It is generically found that high reheating temperatures
are required, that is Trh > 1013 GeV.

4.3.2 Phase Locked States

A more rigorous solution for θ can be found by drawing an analogy between our
mechanism and a forced pendulum. The equation ofmotion for θ can be parametrised
as follows,

θ̈ + f (t)θ̇ + p sin(2θ) = −q(t) cos
[
μ(t − ti )

]
, (4.54)

where

p = λφ2
r , f (t) = 2

t
, q(t) = μ2�i

�

(
ti
t

)
e−�(t−ti )/2 . (4.55)

Nowwe can observe that the motion of θ is identical to that of a forced pendulum.
The term proportional to sin(2θ) can be viewed as the gravitational force on the
pendulum, when it is at an angle 2θ from the vertical, q the external pushing force,
and f the friction term. There is an added complexity in our case, in that the strength
of the external force q(t) and the friction f (t) on the pendulum depend on t .

As discussed above, Baryogenesis is realised in this scenario when the solution
of the equations of motion is found to give θ̇(t f ) 	= 0, at the end of reheating t f . This
means we must adjust the timing and intensity of the external pushing to match the
motion of the pendulum, which is the idea embodied by the SSC, corresponding to
p ≈ q(t f ). If this is satisfied, the rotational motion of the pendulum around the fixed
point arises with an almost constant angular velocity θ̇. This is the solution we wish
to determine.



102 4 Baryogenesis During Reheating via the Ratchet Mechanism

The time evolution of q(t) toward the end of the reheating epoch can be expected
to be slow, so to analyse the dynamics of θ within that time frame, it is sufficient
to replace it with the constant q(t f ). The same can be said of the coefficient of
the θ̇ term, which we replace with (2/t f ). Thus, we obtain the following simplified
equation,

θ̈ + 2

t f
θ̇ + p sin(2θ) = −q(t f ) cos

[
μ(t − ti )

]
, (4.56)

where the coefficients of θ̇ and cos[μ(t − ti )] are now constants, p = λφ2
r and

q(t f ) = e− 1
3
Hend
Hini

�0μ
2

�
, the damping term has been taken to be suppressed, and

Hend � Hi has been assumed.
The relevant solutions to the above equation in our Baryogenesis scenario are

those that increase or decrease monotonously in time with only small amplitude
modulations. Such solutions exist and are known as phase-locked states, which are
found in the study of the chaotic behaviour of the forced pendulum. The conditions
for phase-locked states to exist were considered in the study of chaotic behaviour of
electric current passing through a Josephson junction [34]. Since it is convenient to
follow the notation adopted in these studies [35], we change the variables as follows,

� ≡ 2θ, τ ≡ √
2p

[
(t − ti ) − π

μ

]
, ω ≡ μ√

2p
, Q ≡

√
p

2
t f , γ ≡ q(t f )

p
.

(4.57)
Thus, the equation of motion becomes,

�̈ + 1

Q
�̇ + sin� = γ cos(ωτ ) . (4.58)

Our equation coincides exactly with that of the forced pendulum or Josephson
junctions. The generic phase-locked state solution to the above equation has the
following form, when γ ≈ 1,

�(τ ) = �0 + nωτ −
∞∑

m=1

αm sin(mωτ − φm) , (4.59)

where n and m are integers. In the numerical calculations we performed only the
phase-locked states withm = 1 appear. In such solutions the period of the amplitude
modulation is equal to that of inflaton’s oscillation. Hence the solution to our equation
of motion is of the form,

� = �n + n(ωτ − φ) − α sin(ωτ − φ) . (4.60)

For these solutions, we can calculate the baryon number density nB as the time
average of �̇. From this we arrive at the following,
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nB = φ2
r 〈θ̇〉 =

√
p

2
φ2
r 〈�̇〉 =

√
p

2
φ2
r nω = (

μφ2
r

) n
2

. (4.61)

Interestingly, this result depends on the integer n, where n/2 is the number of
rotations of the phase θ per oscillation of the inflaton. The value of n depends on
the validity of the phase-locked state and its stability. This is not a number which is
predicted by the theory and hence wemust determine it using numerical simulations.
Although, the approximate solution derived in the previous section can provide an
approximate value for n, which is found to be surprisingly consistent with numerical
calculations.

4.4 The Generated Asymmetry Parameter

Combining the entropy density at the end of reheating and the analytical expression
for nB derived in Eq. (4.61), we obtain the following relation for the asymmetry
parameter,

ηreh
B = nB

s
≈ 0.01n ×

(
μφ2

r

T 3
rh

)
. (4.62)

This relation needs to be consistent with the observational constraint presented in
Eq. (4.14). At the end of reheating, there is no further generation of baryon number,
but for reheating temperatures greater than∼100 GeV, sphaleron redistribution must
be considered [36–38]. This redistribution leads to a dilution factor of 28

79 , and hence
the required asymmetry parameter at the end of reheating is,

ηreh
B = 79

28
ηB � 2.4 × 10−10 . (4.63)

The rough analytical expression that we derived, is found to be a good approx-
imation for large values of n. By comparing these two solutions we can get an
approximation of the parameter n. Combining Eqs. (4.52) and (4.62) we obtain,

n ≈ 2
λφ2

r

μ2
, (4.64)

which must be greater than one if driven motion is to be observed. For values of n
ofO(10) and greater, the approximate solution is in good agreement with numerical
simulations, which is likely due to the consistency of these n values with the assump-
tions used. In this mechanism, large values of λ are naturally required to produce
driven motion, which we shall address in future work.We also require high reheating
temperatures for the numerical simulations to be valid, although this can also be seen
when substituting the SSC into Eq. (4.64),
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n ≈ 2 × 10−12 GeV−1 T 2
rh

�
, (4.65)

where a large reheating temperature is required for driven motion. It would generally
be expected that the cutoff scale � would be of order of the Planck scale, such that
the derivative coupling interaction term is valid near the beginning of reheating.

4.4.1 Conversion to Standard Model Particles

So far we have identified the baryon number density nB with that of the scalar
baryon, implying nB(scalar) = φ2

r θ̇. However, the actual baryon number density in
our universe is made up of fermionic matter. Therefore, the baryon number density of
the scalar baryon must be converted to that of fermionic baryons. There are multiple
ways to accomplish this conversion.

If we insist on using SM fields directly for the scalar-fermion conversion, we
require SU (3)C × SU (2)L ×U (1)Y × B invariant interactions.

The simplest and most realistic model may be to reinterpret the baryon num-
ber associated with the scalar as lepton number, and introduce the lepton-number
preserving dimension four interaction,

�Lint = yLφ
∗ν̄c

RνR + h.c. (4.66)

which describes the decay of the complex scalar lepton into a νRνR pair. This same
interaction can be used to generate a large Majorana mass for νR , when φ obtains the
vacuumexpectation value, 〈φ〉 = φr/

√
2,with this leptonic scalar being a component

of the neutrinomass generatingmodel known as the seesawmechanism [39–41]. The
lepton number generated via the decay of the complex scalar can then be converted
to baryon number through redistribution by B − L conserving sphaleron processes
[42, 43], as in the usual Leptogenesis scenarios [44].

Alternatively, one could introduce the followingdimension six interactionbetween
the scalar and fermionic baryon number currents,

�Lint = i

�2

(
φ∗ ↔

∂μ φ
) 1

3

(
ūγμu + d̄γμd

)
, (4.67)

where u and d are four component Dirac fields. Identifying the charges carried by
the scalar and fermionic currents requires the existence of a term in the interaction
Lagrangian which would lead to both the φ and the quark fields transforming at the
same time, which we will not show explicitly here. Rewriting the scalar baryon in the

polar coordinate parametrisation,φ = 1√
2
φr eiθ, and ignoring the spatial dependence

of θ we obtain,

�Lint = − φ2
r

�2
θ̇
1

3

(
u†u + d†d

)
, (4.68)
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such an interaction term has been utilised in previously considered Baryogenesis
scenarios [33]. This term is analogous to a chemical potential coupling to the baryonic

current, shifting in favour of matter or antimatter, where μB = − φ2
r

�2 .

4.5 Conclusions and Future Prospects

In this chapter, we have considered a new Baryogenesis mechanism that acts during
reheating, which takes its inspiration from the ratchet models of molecular motors
in biological systems. The mechanism we propose here is found to produce driven
motion in an analogous framework to that found for a forced pendulum, in which
the driving force is supplied by the oscillation of the inflaton, the position of the
motor is embodied in the phase θ of a complex scalar baryon field, and the required
breaking of the reflection symmetry is realised via the coupling of the inflaton to the
scalar baryon. The push out-of-equilibrium comes from the reheating epoch itself.
In our analysis, we find a rigorous solution which is dependent on an indeterminable
parameter n,

ηreh
B ≈ 0.01n ×

(
μφ2

r

T 3
rh

)
, (4.69)

The issue with this solution is that the parameter n must be determined using
numerical calculations. This can be bypassed by considering the approximate solu-
tion we derived,

ηrehB ≈ 0.02
λφ4

r

μT 3
rh

≈ 0.1
φ2
r

�Trh
, (4.70)

which is in good agreement with numerical simulations for n > 10. Using these
relations we found that it is possible to replicate the observed baryon asymmetry.
We were also able to find an estimate of the parameter n through comparing the
approximate and rigorous solutions, which allows amore targeted approach at testing
the allowed parameter space with the numerical methods.

Although, in order for this to be achieved a very unnatural choice of the coupling
λ must be chosen. This issue can be alleviated by a change in the scalar baryon
potential we have been exploring, which shall be discussed in future work.

High reheating temperatures are a generic requirement of our model, which can
be seen in the SSC, but is also a result of difficulties with the numerical calculations
when considering reheating temperatures less than approximately 5 × 1013 GeV.
Reheating temperatures greater than 1014 GeV could be a possible issue due to the
over production of gravitinos, if one considers a supersymmetric theory [45–49], but
we do not consider this an issue in our non-supersymmetric scenario.

We have made the simplifying assumption of a uniform isotropic universe and
as such have ignored the spatial dependence of the scalar fields � and φ, and con-
sequently that of the phase θ, in our analysis. In reality, as the universe expands,
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different parts of the universe will lose causal contact with each other, possibly lead-
ing to the evolutions of � and θ obtaining spatial dependencies. More work needs to
be done to see how much of an impact, if any, this can have on the baryon number
density generated.

More analysis needs to be done on the possible chaotic nature of this mechanism,
given its parallels with the forced pendulum. Preliminary work into the Poincare
maps associated with the nature of this scenario have been conducted, and will be
discussed in future work. Also, a further refinement of the numerical procedure
needs to be considered to see whether lower reheating temperatures, corresponding
to longer integration times, can be calculable.

Hopefully, through further investigation of this mechanism we can get a better
understanding of the allowed regions of the parameter space. We also plan to explore
the application of the ratchet mechanism in other cosmological settings, for example
during the radiation epoch following the end of reheating.
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Chapter 5
Gravitational Waves and the Cosmic
Neutrino Background

The Cosmic Neutrino Background (CνB) contains information from very early times
whichmay help illuminate both the properties of the neutrino sector and the evolution
of the universe. Unfortunately, the weakly interacting nature of neutrinos combined
with the low temperature of the background today, makes the prospect for detection
near impossible in the foreseeable future. Despite this, the dynamics of theCνBcould
have had significant effects on the evolution of the early universe. The prospect of
gleaning indirect evidence of the CνB is to be explored in this chapter, through
considering the possible implications for gravitational wave propagation. Given the
dawn of the new era of gravitational wave astronomy, this is an exciting possibility.

We argue that a CνB that carries a non-zero lepton charge develops gravitational
instabilities, which are fundamentally related to the mixed gravity-lepton number
anomaly. In the presence of this background, we find that a gravitational Chern-
Simons (CS) term is induced, which leads to interesting physical effects. Firstly,
gravitational waves propagating in such a neutrino background exhibit birefringent
behaviour leading to an enhancement or suppression of the gravitational wave ampli-
tudes, depending on the polarisation, with the magnitude of this effect related to the
size of the lepton asymmetry. Secondly, this modification can lead to negative energy
graviton modes in the high frequency regime, which induce very fast vacuum decays
that produce, for example, positive energy photons and negative energy gravitons.
Both of these effects can provide bounds on the lepton asymmetry of the universe,
and hence probe the dynamics of the early universe [1].

5.1 The Cosmic Neutrino Background

Along with the CMB, the existence of the CνB is an inescapable prediction of the
standard hot big bang cosmology [2]. At early times in the universe, the neutrinos
are in thermal equilibrium with the SM plasma through the weak interactions alone.
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As the cross sections for these interactions are small compared to electromagnetic
processes, the neutrinos will fall out of equilibriumwell before the first generation of
charged SM species. As given in Table1.3, this occurs just prior to BBN, at around
2–3MeV—with there being a temperature range due to the different decoupling times
for each neutrino species. This is due to the additional weak interactions between
electron neutrinos and the electrons and positrons present in the primordial plasma,
which are not present for themuon and tau neutrinos because at these temperatures the
population of charged muons and taus is thermally suppressed. The CνB is assumed
to be a highly homogeneous and isotropic distribution of relic neutrinos with the
characteristic temperature,

Tν =
(

4

11

) 1
3

Tγ ≈ 1.945K , (5.1)

where Tγ = 2.725 K is the temperature of the CMB today. Unlike the CMB though,
the CνB is extremely hard to detect and its properties are largely unknown. The
reason for the difference between the temperatures of the CνB and CMB, despite
both sectors evolving as radiation for most of the cosmological history, is the extra
entropy injectionproducedby electron-positron annihilationdominantly into photons
after neutrino decoupling.

The physics of the generation and evolution of the CνB has been a closely stud-
ied area due to the window it could provide to early universe physics [3–5]. One
interesting characteristic of the CνB is that it may exhibit a neutrino-antineutrino
asymmetry. Unlike the baryon asymmetry which is strongly constrained, the CνB
asymmetry can be relatively large. The associated lepton asymmetry is defined as
follows,

ηνα
= nνα

− n̄να

nγ
� π2

12ζ(3)

(
ξα + ξ3α

π2

)
, (5.2)

for each neutrino flavour α = e, μ, τ . Here ξα = μα/T is the degeneracy param-
eter, μα being the chemical potential for α-neutrinos. In fact, such an asymmetry
is generically expected to be of the order of the observed baryon-antibaryon asym-
metry, ηB = (nB − n̄B)/nγ ∼ 10−10, due to the equilibration by sphalerons of the
lepton and baryon asymmetries in the very early universe, which conserve B − L .
However, there are also models [6, 7] which predict an asymmetry in the neutrino
sector that is many orders of magnitude larger than ηB . If so, this would have inter-
esting cosmological implications for the QCD phase transition [8] and large-scale
magnetic fields [9]. There have been attempts to circumvent the sphaleron redistri-
bution constraints in such scenarios [6], which include the possible suppression of
the equilibrium sphaleron processes when the lepton asymmetry is very large, ξ � 1
[10]. The presence of a large asymmetry can alter the cosmological expansion history,
as it changes the effective number of relativistic species Neff , due to the increased
energy density in the neutrino sector associated with a non-zero neutrino chemical
potential. That is,
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�Neff � 30

7

(
ξν

π

)2

+ 15

7

(
ξν

π

)4

, (5.3)

which can be constrained by measurements of the CMB.
The most stringent bound on the relic lepton asymmetry comes from the success-

ful theory of BBN. The BBN observables primarily constrain the electron neutrino
asymmetry, due to the implications of a large electron neutrino asymmetry on the
helium abundance [2, 11–24]. However, this bound applies to all flavours, since
neutrino oscillations below ∼10MeV are sizeable enough to lead to an approxi-
mate flavour equilibrium before BBN, μe ≈ μμ ≈ μτ (≡ μν) [25–27]. Although it
has been found in a recent analysis that larger ηνμ,ντ

asymmetries may be allowed
[28]. In any case, the updated analysis in [22] leads to the following bound on the
common degeneracy parameter,

|ξν | � 0.049 . (5.4)

The lack of strong constraints on the size of the relic lepton asymmetry has led to the
postulation of many ideas associated with the prospect of having a large asymmetry,
andmechanisms that can generate it, while not being in conflict with BBNconstraints
[28]. If it would become possible to observe the size of the asymmetry this would
then be a potential smoking gun for these unorthodox neutrino physics models [7,
29–42].

The experimental observation of neutrino oscillations demonstrates that the neu-
trinos must carry mass, but the mechanism for the origin of these masses is not
explained within the SM, and is still unknown. An interesting possibility is that the
SM neutrinos have Majorana mass terms,

Lm = 1

2
mν ν̄

c
LνL , (5.5)

where no right-handed neutrinos are present. In this scenario, the SM exhibits a
mixed gravity-lepton number quantum anomaly.

If the neutrinos have Majorana masses, as we assume in this chapter, then the
cosmological leptonic asymmetry carried by the CνB is defined as the difference
between the left-handed neutrinos and right-handed antineutrinos [30, 43]. Due to
thisMajoranamass term,which violates lepton number, the relic neutrino asymmetry
would be expected to bewashed out once themixing process becomes important. This
would occur when the mixing timescale becomes smaller than that associated with
the spatial expansion 1

H . Thismeans that at very early times a largeMajorana neutrino
asymmetry could be present and consistent with current observations, assuming that
the rate of lepton number violation is such that it is sufficiently washed out before
the freeze-out of equilibrium sphaleron processes.
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5.2 Gravitational Waves and the Graviton Propagator

The recent observation of gravitational waves from black hole merger events by the
LIGO collaboration [44], signals the beginning of the new era of gravitational wave
astronomy [45, 46]. An important feature of upcoming gravitational wave astron-
omy experiments will be the ability to differentiate polarisations, hence allowing the
exploration of possible astrophysical and cosmological birefringent effects. These
can be the results or signs of very interesting physics [47–50], including CSmodified
gravity theories [51, 52]. Future gravitational wave detectors, such as eLISA [53,
54], will be able to probe the polarisations of incoming signals from astrophysical
sources.

5.2.1 Linearised Gravitational Waves

In order to obtain predictions associated with gravitational wave production and
propagation we utilise the linearised gravity approach. Gravitational waves can
be described as small perturbations around a general spacetime background. The
assumption of a small amplitude allows the higher order terms in h, the metric per-
turbations, to be neglected, removing non-linear interaction terms—producing the
linearised gravity description. The metric perturbations are defined as follows,

gμν � ḡμν + 1

Mp
hμν , (5.6)

where hμν is the metric perturbation and satisfies |hμν | � Mp , and Mp = 1/
√
8πG

is the reduced Planck mass. In the linearised approximation, the Einstein-Hilbert
action becomes,

S� =
∫

dx4
√−g

M2
p

2
R

=
∫

dx4
√−g

(
1

2
hμν�hμν − hμν∂

μ∂αh
να + h∂μ∂νh

μν − 1

2
h�h

)
(5.7)

= 1

2

∫
dx4

√−g h̄μν�h̄μν , (5.8)

where in Eq. (5.8) we have taken h̄μν = hμν − 1
2hημν and assumed the harmonic

gauge, ∂μh̄μ
ν = 1

2∂ν h̄. The graviton coupling to matter is of the form Lint ∝ hμνTμν .
From this action we can derive the propagator for the graviton. In this chapter,

we wish to consider the alteration to the graviton propagator in the presence of an
asymmetric CνB. We shall do this by calculating the graviton polarisation tensor,
which is connected to the graviton action in the following way,
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S� = 1

2

∫
dx4

√−g h̄μν�μνρσ h̄
ρσ , (5.9)

where �μνρσ is the graviton polarisation tensor.
The graviton h can be split into circularly polarised planewaves—hR and hL—

in an isotropic and homogeneous universe, similarly to the quantised U (1)X gauge
boson in Chap.3. This shall be useful for our analysis of birefringent effects in this
chapter.

Gravitational waves can havemany sources, with both present-day and primordial
origins being of interest. The recentmeasurement of black holemergers is an example
of present-day sources that correspond to very high energy scenarios. Cosmological
sources may include phase transitions in the early universe, which can produce a
stochastic gravitational wave background. Also, inflation generates tensor modes
that can be imprinted in the B-mode polarisation of the CMB photons.

5.3 Graviton Polarisation Tensor in a Lepton Asymmetric
CνB

In what follows we wish to consider the possible observational implications of a lep-
ton asymmetricCνBon theproperties of gravitationalwaves, and the possible induce-
ment of gravitational instabilities. A non-zero lepton asymmetry for active neutrinos
implies an imbalance between neutrinos of left-handed chirality and antineutrinos
of right-handed chirality, and as we shall demonstrate, leads to the inducement of
the gravitational CS term in the effective gravitational action. The possible effects of
a large lepton asymmetry on primordial gravitational radiation has been considered
in other contexts [55], and gravity has also been utilised to produce a relic neutrino
asymmetry [56].

To determine the implications of a universal lepton asymmetry on gravity, we
want to consider the effects on the graviton propagator. To do this we shall consider
the presence of a chiral chemical potential μν , which parametrises this asymmetry,
and the gravity-lepton number chiral quantum anomaly. This anomaly is present in
the SM when considering Majorana neutrinos; due to the absence of right-handed
neutrinos. In this scenario we can expect an induced parity violating contribution to
the gravitational action, which can be found through calculating the contribution of
the chiral chemical potential to the graviton polarisation tensor.

We calculate the inducement of the CS like term to the effective graviton
Lagrangian through the 1-loop graviton polarization diagram depicted in Fig. 5.1,
which is influenced by the chemical potential μν . The lepton asymmetry is enforced
in the Lagrangian through the chiral chemical potential by the following term,
Lμν

= ν̄/bγ5ν = μνν̄γ0γ
5ν, where we have considered the frame in which the CνB

is at rest (/b = μνγ0). The neutrino propagator is altered as follows,
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Fig. 5.1 The 1-loop correction to the graviton propagator that is relevant in the parity violating
background, with chemical potential μν

S(p) = i

/p − m − /bγ5
= i

/p − m

∞∑
n=0

(
−i/bγ5 i

/p − m

)n

≡ S0(p) +
∞∑
n=1

Sn(p) ,

(5.10)
where S0(p) is the usual fermion propagator in vacuum.

In the calculation that follows, we shall use the standard Feynman rules [57, 58],
with the above modified neutrino propagator to first-order in μν , S(p) ≈ S0(p) −
iμν

i
/p−m γ0γ

5 i
/p−m . The higher order terms in bμ, or μν , are neglected because we are

only interested in the linear terms in bμ, which give the CS like term. Thus we find
that the induced parity odd part of the graviton polarization tensor is,

�μνρσ = −
∫

d4 p

(2π)4
(2p + k)ν(2p + k)σ

[
Tr(γμS0(p + k)γρS1(p)) (5.11)

+ Tr(γρS0(p)γμS1(p + k))

]
. (5.12)

To evaluate the divergent loop integral in Eq. (5.12) we employ the dimensional
regularizationmethod (d = 4 − ε, ε → 0) and use the relations provided inAppendix
C. This gives,

�μνρσ = μν

8π2
kαεμρα0

∫ 1

0
dx

[
4π2λ2

M2

]ε [
8x2(1 − x)2(1 − 2x)2

k2

M2
�(1 + ε)kνkσ

+ (24x2 − 44x + 18)�(ε − 1)M2ηνσ − 16x2(1 − x)2�(ε)k2ηνσ

− (80x4 − 192x3 + 156x2 − 50x + 5)�(ε)kνkσ

]
, (5.13)

where M2 = m2 − x(1 − x)k2 and the limit ε → 0 is assumed. In simplifying this
result we find a divergent quantity that is of the following form,

�(div)
μνρσ = −1

ε

μν

2π2
kαεμρα0m

2ηνσ , (5.14)
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where γ is Euler’s constant. A straightforward inspection reveals that this divergent
termdoes not satisfy the gravitationalWard identity, kν�(div)

μνρσ �= 0, and hence violates
the gauge invariance of the effective gravitational action. This has also been observed
previously in related calculations [59, 60]. The origin of this violation is rooted in
the method of dimensional regularization, which violates local Lorentz invariance
explicitly through the extrapolation to a non-integer number of spacetime dimen-
sions d = 4 − ε. Therefore, following the standard lore, we introduce non-invariant
counter-terms to renormalise away this unphysical divergent term. The polarisation
tensor then takes the following simple form,

�μνρσ = μνεμρα0k
α[kνkσ − k2ηνσ]C(k2) , (5.15)

where

C(k2) = 1

192π2
− m2

16π2(k2)3/2

[√
k2 −

√
4m2 − k2 tan−1

( √
k2√

4m2 − k2

)]
.

(5.16)
This further reduces to,

C(k2) =
{

− 1
1920π2

k2

m2 , if k2/m2 � 1
1

192π2 , if k2/m2 � 1
. (5.17)

From this polarization tensor we can determine the induced parity violating term
in the effective action. We shall now investigate the two possible limiting cases
separately.

In the limit k2/m2
ν � 1, this term reads,

Sef f ∝ μν

m2
ν

∫
d4xεμρα0h

μν∂α�(�hρσηνσ − ∂ν∂σh
ρσ) . (5.18)

In the case of the harmonic gauge, taking h̄μν = hμν − 1
2η

μνh, for which ∂μh̄μν = 0,
the action reduces to,

S ∝ μν

m2
ν

∫
d4xεμρα0h̄

μν∂α�2h̄ρσηνσ . (5.19)

Note that this induced term contains more than two derivatives and thus is significant
only in the ultraviolet regime. Indeed, taking the harmonic gauge we derive the
modified equation of motion for the linearised graviton field,

�h̄i j = 1

1920π2
εilk∂

l μν

m2
νM

2
p

�2h̄kj . (5.20)
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The dispersion relations for left (−) and right (+) graviton polarisation modes then
readily follow from Eq. (5.20),

(ω2 − |k|2) ∓ μν

1920π2m2
νM

2
p

|k|(ω2 − |k|2)2 = 0 . (5.21)

One can then see that for large enough momenta |k| there are modes with imaginary
frequencies,

(ω2 − |k|2) = −1920π2m2
νM

2
p

μν |k| , (5.22)

which are unstable. Such potentially unstable modes, however, have extremely small
wavelengths,

|k| �
1920π2M2

p

μν
. (5.23)

In this trans-Planckian regime, the Einstein’s theory itself is believed to be untrust-
worthy, so we do not consider this limit any further.

It is more interesting to consider the opposite limit, k2/m2
ν � 1. In this limit we

obtain the following contribution to the graviton action,

Sef f = − μν

192π2

∫
d4xεμρα0h

μν∂α(�hρσηνσ − ∂ν∂σh
ρσ)

= μν

48π2

∫
d4x K 0 , (5.24)

which contains the same number of derivatives as the standard kinetic term in the
weak field approximation. In fact, K 0 is the linearised 0th component of the four
dimensional CS topological current,

K β = εβαμν(�σ
αρ∂μ�

ρ
νσ − 2

3
�σ

αρ�
ρ
μλ�

λ
νσ) . (5.25)

Therefore, the presence of an asymmetry in the CνB replicates CS modified gravity,

SCS =
∫

d4x (∂μθ)K
μ =

∫
d4x θ(∗RR) , (5.26)

where we can make the identification ∂0θ = μν

48π2 and,

∗RR := RR̃ = ∗Rμ
ν
ρσRν

μρσ , (5.27)

where the dual tensor is given by ∗Rμ
ν
ρσ := 1

2ε
ρσαβRν

μαβ .
This is the expected result in a parity violating background, and is found in both

gravitational and electromagnetic cases [58–69].
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5.4 Chern-Simons Modified Gravity and Observational
Implications

CS modified gravity is an area of active research due to it naturally appearing in
the context of anomaly cancellation in String Theory, via the Green-Schwarz mech-
anism [70], and in Loop Quantum Gravity, as well as providing many interesting
phenomenological implications [51, 52]. It is also a useful model independent way
of parametrising parity violating effects in the cosmological setting. This modifi-
cation to the gravitational action is analogous to the CS terms associated with the
Green-Schwarz mechanism utilised in Chap.3, but with the Riemann tensor replac-
ing the field strength tensor. There are many potential observational consequences
of this extension that have been explored, from which limits have been imposed on
the CS coupling parameter.

The terms added to the gravitational action for CS modified gravity are given
below,

SCS ∝
∫

d4x
√−gθ∗RR , (5.28)

where κ = 1/8πG, and θ denotes the CS coupling, which we have assumed to be
associated with a non-dynamical CS extension. In the case of a dynamical CS exten-
sion, a kinetic and potential term for θ are required,

Sθ ∝
∫

d4x
√−g[gμν(∇θμ)(∇θν) + 2V (θ)] . (5.29)

Although, experimental tests of CSmodified gravity have beenmostly confined to the
non-dynamical scenario [71–74]. This is due to the increased complexity associated
with the dynamical case, which has not been explored as extensively in the literature.
Fortunately, the case we consider in our work is of the non-dynamical type, and
hence we can consider the effects that have been explored in this simpler scenario.

An interesting phenomenon associatedwithCSgravity is birefringent propagation
of gravitational waves. The CS correction leads to an exponential enhancement and
suppression of the left and right circularly polarised waves, which depend on the
wave number, CS coupling and the integrated history of the propagation [52].

5.4.1 Birefringent Propagation Through an Asymmetric CνB

Planned gravitational wave detectors, such as eLISA, DECIGO and BBO, can poten-
tially measure the polarization of observed gravitational waves, and hence poten-
tially this birefringence effect. We now wish to consider the magnitude of the
birefringent effect induced by the CS term in Eq. (5.24), and determine the pos-
sible sources that could be constrained by this effect. To this end, we parametrise
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the gravitational waves as, hi j = Ai j

a(η)
exp[−i(φ(η) − k · x)], which can be decom-

posed into the two circularly polarised states—eRi j and eLi j . The two possible circu-
larly polarised states are, eRi j = 1√

2
(e+

i j + ie×
i j ) and e

L
i j = 1√

2
(e+

i j − ie×
i j ), which satisfy

niεi jke
R,L
kl = iλR,L(e

j
l )

R,L , where λR,L = ±1. The phase factor λR,L leads to expo-
nential suppression or enhancement of the left and right circular polarisations of the
the propagating gravitational waves, the magnitude of which we shall now calculate.
From the equations of motion for the action S = SEH + Sef f we obtain, for a general
θ [75],

(iφR,L
,ηη + (φR,L

,η )2 + H,η + H2 − |k|2)
(
1 − λR,Lκθ,η

a2

)

= iλR,L |k|
a2

(θ,ηη − 2Hθ,η)(φ
R,L
,η − iH) . (5.30)

We first solve the above equation assuming propagation in the matter dominated
epoch,a(η) = a0η2 = a0

1+z , aswe are considering sourceswithin the range of possible
near future observatories−z < 30. The accumulated phase over propagation, to first
order in θ, is given by,

�φR,L
mat = iλR,L |k|H0

∫ 1

η

[
1

4
θ,ηη − 1

η
θ,η

]
dη

η4
. (5.31)

In the case considered in this work, we make the following identification θ,η =(
a(η0)
a(η)

)2
μ0

48π2M2
p
, where μ0 = a(η)μν is the chemical potential at present. Thus, for

the asymmetric CνB,

�φR,L
mat = −i

1

288π2

μνH0

M2
p

( |k|
1 GeV

)
(1 + z)4 . (5.32)

Hence the ratio of the wave amplitudes of the two polarisation states is given by,

hR

hL
∝ e−2|�φR,L

mat | . (5.33)

Taking into account the current bounds on the CνB asymmetry parameter, ξ <

0.049, we find |i�φR,L | � 10−87
(

|k|
1 GeV

)
, for z ∼ 30. This accumulated phase

difference is too small to be observable by any conceivable gravitational wave
detector.

This leads us to shift to the more interesting scenario, which is the propagation
of gravitational waves from sources in the very early universe. The effect would
be thought to be of a higher magnitude because both the chemical potential would
have been larger and the waves would have a longer propagation time over which a
phase difference can be accumulated. Conceivably, any early universe sources could
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provide constraints, if the two polarisations of the signal are differentiable. Some
examples of this would be the inflationary gravitational waves, and those produced
by collisions of bubbles formed during phase transitions. Therefore, we now consider
gravitational waves produced at very early times, during the radiation dominated
epoch. The accumulated phase now reads,

�φR,L
rad = iλR,L

|k|
�r,0H 2

0

∫ 1

η

[
1

2
θ,ηη − 1

η
θ,η

]
dη

η2
, (5.34)

where �r,0 ∼ 9.2 · 10−5 is the radiation density parameter today. After taking the
integral we find,

�φR,L
rad � −iλR,Lξν

( |k|
1 GeV

) (
Ts

1 TeV

)4

, (5.35)

where we have redefined the redshift in terms of the temperature at which the gravi-
tational waves are produced, Ts , or when the asymmetry is generated, whichever is
lowest.

From Eq. (5.35), it can be seen that if an asymmetry is present in the CνB, which
equilibrium sphalerons transitions may assure, then it is possible to get significant
birefringent behaviour in the propagation of gravitational waves from primordial
sources, depending on the momenta |k| of the gravitational waves and size of the
asymmetry.

If one is to assume that the characteristic momenta of the gravitational waves is of
the order of theHubble rate at the time of production (|k| ∼ H ), and the asymmetry is
already present, then we get the following interesting constraint on the gravitational
waves produced from the source, at a temperature Ts ,

�φR,L
rad � −iλR,Lξν

(
Ts

106 GeV

)5

, (5.36)

hence very early sources and a large asymmetry are required, if a relative enhance-
ment or suppression of order one is to be observed.

5.5 Induced Ghost-Like Modes and Vacuum Decay

Another interesting consequence of the induced CS term in Eq. (5.24) is that short-
scale gravitational fluctuations exhibit negative energy modes, which if present lead
to a rapid decay of a vacuum state, for example, into negative energy graviton and
photons [74]. Since in this setting the graviton energy would not be bounded from
below, the phase space for this process is formally infinite [76, 77], and as such will
develop very rapidly. We investigate the production of two photons and a negative
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energy graviton via this process, to provide constraints on the neutrino asymmetry
at early times. The relevant effective interaction is of the form,

Sint ∼ 1

m∗

∫
d4xhcanμν T μν

= 1

m∗

∫
d4x

1

2
hcan FμνF

μν − hcanμν FμαFν
α , (5.37)

where the canonically normalised graviton field is hcanμν = mcanhcanμν , with the defini-
tion,

mcan = Mp

√
1 + λR,L

|k|
amCS

, (5.38)

where mCS is the analogous CS mass scale,

mCS(t) = M2
p

μν
= M2

p

ξT
= a(t)M2

p

μ0
. (5.39)

5.5.1 Photon Energy Spectrum from Induced Vacuum Decay

To obtain a finite result for the decay rate we need to constrain the phase space. In the
absence of a fundamental physical reason for such a truncation, we follow [76, 77],
and simply cut-off the three momenta at |k|max = �. In the analysis that follows, we
consider decays into this mode as it will have the largest contribution to the energy
density of the generated photons. In addition, we take the reasonable approximation,

mcan �
√ |k|μν

a
, (5.40)

and consider the dynamics of our scenario prior to BBN and after reheating, when
the universe is radiation dominated and evolves as follows,

a(t) = a0
√
t =

√
2�1/2

r,0 H0t , (5.41)

where �r,0 ∼ 9.2 · 10−5 is the radiation density parameter today.
The time at which this ghost term is no longer present will be defined as t∗ and is

found in terms of the scale factor as,

1 � �

a(t∗)mCS(t∗)
⇒ a(t∗) �

√
μ0�

M2
p

or a(t∗) � ξνT∗�
M2

p

, (5.42)
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where T∗ is the temperature at which the ghost terms stop contributing.
This fixes the time at which the ghost modes no longer exist, and decay of the

vacuum ceases. We can reinterpret this as a temperature, so that it is possible to
associate this with the maximal reheating temperature, and also ensure it does not
have adverse implications on BBN. If we assume that the asymmetry is produced
during or after the reheating epoch, and prior to BBN, the scale factor has a 1

T
dependence if we ignore the decoupling of radiation degrees of freedom. The scale
factor takes the following form,

a(t) �
(
90�r,0

g∗π2

) 1
4

√
H0Mp

T
, (5.43)

where g∗ � 106.75. Equating Eqs. (5.42) and (5.43) to find the temperature at which
this effect ends, we find,

T∗ =
(√

90�r,0

g∗π2

H0M3
p

ξ2ν

) 1
4 √

Mp

�

� 440√
ξν

GeV

√
Mp

�
. (5.44)

Given that the maximum reheating temperature is Trh ∼ 1015 GeV, Eq. (5.44) implies
we can constrain the production temperature of neutrino asymmetries satisfying
ξν � 2 · 10−25 Mp

�
, with smaller ξ’s not generating ghost like modes after reheating.

We also assume here that ξ is approximately constant, and hence is the same param-
eter currently constrained by BBN measurements, in the calculation of the lepton
asymmetry stored in the CνB.

Nextwe compute the spectrumof photons generated by the inducedvacuumdecay,
and then subsequently the energy density, which can be constrained by experiment.
It is given by,

1

a3
d

dt
(a3n(k, t)) = �δ

( |k|
�

− 1

)
, (5.45)

where n(k, t) is the number of photons per unit logarithmic wave number |k| and �

is the total decay width, which we take to approximately be,

� ∼ �6

m2
can

= a(t)�6

|k|μν
= a(t)2�5

μ0
. (5.46)

Since the above decay rate is much faster than the expansion rate of the universe,
we may safely assume that the decay is approximately instantaneous. Therefore, we
fix the scale factor in Eq. (5.46) at time ta , when the asymmetric background is first
produced. We then integrate Eq. (5.45) between the time ta and when the ghost terms
are no longer present, t∗,
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|k|n∗(|k|) ∼ a(t∗)2��a

5�1/2
r,0 H0

. (5.47)

Taking into account the dilution factor due to the expansion of the universe from the

end of photon production to today,
(
a(t∗)
a0

)3 = a(t∗)3, we obtain,

|k|n0(|k|) ∼ a(t∗)5��a

5�1/2
r,0 H0

. (5.48)

Therefore, the energy density for a given momenta |k| is,

dE

d3xd ln |k| ∼ |k|n0(|k|) ∼ ξ4T 5∗
10T 2

a

√
M3

p

H0

(
�

Mp

)11

. (5.49)

We can now obtain a conservative bound on the energy density in the produced
photons, through the observation that the universe is not radiation dominated today,

dE

d3xd ln |k| � M2
pH

2
0 . (5.50)

From thiswe get the following constraint on ξν , assuming the asymmetry is generated
above the characteristic temperature T∗, when requiring consistency with observa-
tion,

ξν � 2 · 10−41

(
Ta

1015 GeV

)4/3 (
Mp

�

)17/3

, (5.51)

for which it is assumed Ta � 440√
ξν
GeV

√
Mp

�
. Equivalently,

T∗ � 1023 GeV

(
Ta

1015 GeV

)−2/3 (
�

Mp

)17/6

. (5.52)

Thus we arrive at the conclusion that, unless � � Mp, the resulting photon energy
density from the induced vacuum decay can hardly be accommodated with observa-
tion. Substituting the constraint in Eq. (5.51) into that for the asymmetry stored in
the CνB as a function of ξν , in Eq. (5.2), we find the following bound,

ην � 10−41

(
Ta

1015 GeV

)4/3 (
Mp

�

)17/3

. (5.53)

If we instead assume that Ta � 440√
ξν
GeV

√
Mp

�
, and hence vacuum decay does not

occur, then we get the following constraint on ην ,
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ην � 0.033

(
2000GeV

Ta

)2 Mp

�
, (5.54)

where ην � 0.033 is the current upper limit from BBN constraints.

5.6 Conclusions and Future Prospects

In this chapter, we have argued that a relic neutrino background with non-zero lepton
number can lead to gravitationally observable effects [1]. We have explicitly calcu-
lated the parity odd part of the graviton polarization tensor in a lepton asymmetric
CνB, which induces a gravitational CS term in the effective action. The observable
implications of thiswere then explored, wherein the derived gravitational instabilities
are related to the gravity-lepton number mixed anomaly.

The induced CS term leads to birefringent behaviour, causing an enhancement
or suppression of the gravitational wave amplitudes depending on the polarisation.
While this effect is negligible for local sources, we demonstrate that it could be
sizeable for gravitational waves produced in the very early universe,

�φR,L
rad � −iλR,Lξν

( |k|
1 GeV

) (
Ts

1 TeV

)4

, (5.55)

which when considering a source produced with momenta |k| ∼ H , with H being
the Hubble rate at the time of production,

�φR,L
rad � −iλR,Lξν

(
Ts

106 GeV

)5

, (5.56)

which immediately indicates the need for very early sources, if interesting constraints
are to be obtained.

In addition to the above, we have also argued that short-scale gravitational fluctu-
ations in the presence of an asymmetric CνB exhibit negative energy modes, which
can lead to the rapid decay of the vacuum state into negative energy graviton and
positive energy photons. Since the graviton energy is not bounded from below, the
phase space for this process is formally infinite, that is the instability is expected
to develop very rapidly. Conservatively, we introduced a comoving cut-off � and
computed the spectrum of produced photons as a function of the neutrino chemi-
cal potential. From the constraints on the radiation energy density today, we have
obtained an interesting bound on the neutrino degeneracy parameter,

ξν � 2 · 10−41

(
Ta

1015 GeV

)4/3 (
Mp

�

)17/3

, (5.57)



124 5 Gravitational Waves and the Cosmic Neutrino Background

which unless � � Mp, would effectively rule out the existence of an asymmetric
CνB that is produced early enough for ghost modes to be present. If we assume there
are no ghost modes associated with the CνB at any point in the early universe we
obtain the following constraint,

ην � 0.033

(
2000GeV

Ta

)2 Mp

�
. (5.58)

We believe that the findings reported in this chapter will prove to be useful for gaining
a greater understanding of the properties of the CνB, and possibly allow constraints
to be placed on particle physics models containing a lepton asymmetry. Being able
to constrain or obtain indirect measurements of the size of the lepton asymmetry
would help illuminate the properties of the neutrinos and possibly the mechanism
for Baryogenesis.

This paper [1] explores the exciting new possibility of using gravitational wave
phenomena to uncover information about the properties of the fundamental particles
of nature. It will be interesting to consider these CνB effects further, and also if
similar phenomena could be induced by dark matter or other potential relics.
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Chapter 6
Concluding Remarks and Outlook

The StandardModels of Particle Physics andCosmology have been highly successful
at describing and reproducing the observed dynamics and properties of the Universe,
but they are incomplete. There are still many mysteries of nature yet to be solved, for
which new physics beyond the standard paradigms is required. In this thesis we have
tried to propose solutions for some of these problems by considering particle physics
ideas, specifically in relation to quantum anomalies, to early universe cosmology.
This was motivated by the knowledge of the strong intertwining of cosmological and
particle dynamics at very early times, when the microscopic dynamics of the funda-
mental particles directly dictated the evolution of the universe. Through considering
a combination of observables from terrestrial collider searches and cosmological
observables it may be possible to piece together the answers to many of the open
questions of our universe.

In Chap.2, we proposed a new class of natural inflation models which provided a
solution to the hierarchy problem through a hidden scale invariance realised through
the introduction of a dilaton field [1]. Given the scale invariant symmetry of the
theory, the inflationary potential naturally contains a flat direction in the classical
limit, which is lifted by quantum corrections. Thus inflation can naturally, without
fine-tuning, proceed when the inflaton field evolves along this direction. We find
that in the conformal limit, the inflaton potential is linear, which gives predictions in
agreementwith observations. Therefore, thismodel provides a successful inflationary
scenario within which a solution to the hierarchy problem of the StandardModel can
be found.

Chapter 3 presented an unorthodox mechanism for the origin of the matter-
antimatter asymmetry as well as dark matter; one that acts during the inflationary
epoch [2, 3]. This mechanism for cogenesis involved the introduction of an anoma-
lous gauge interaction and sterile fermion to the Standard Model. The anomalies
associated with the new gauge field provided the X charge violation, and the corre-
sponding counter terms violatedC andCP in the cosmological setting,while the infla-
tionary epoch provided the push out-of-equilibrium. It was found that this scenario
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for cogenesis can successfully reproduce the observed values of the baryon asymme-
try and dark matter abundance for the two possible cases considered—gauged B and
gauged B − L charge—for certain parameter spaces. The general mechanism for
cogenesis developed here could be applied to more complex models involving other
or extra anomalous gauge symmetries and additional sterile or non-sterile fermionic
states. It is possible that these additions could lead to a lessening of the parame-
ter constraints imposed by the observed matter-antimatter asymmetry, through extra
contributions to the luminous matter generation. Given that this model involves the
introduction of new gauge bosons and a dark sector to the Standard Model, this
mechanism could have potential avenues for experimental investigation at terrestrial
collider searches and direct detection experiments. Therefore, it may be possible to
utilise both terrestrial and cosmological measurements to constrain this mechanism.

In Chap.4, we presented a model for Baryogenesis during reheating that utilises
the Ratchet Mechanism [4]. We introduced a theory containing two fundamental
scalars, an inflaton consistent with the Starobinsky inflationary mechanism, and a
complex scalar baryon with a symmetric potential; with the two scalars interacting
via a derivative coupling. The scalar baryon potential violates B, and the violation
of C and CP is introduced by the derivative coupling interaction. The push out-of-
equilibrium in thismechanism is provided by the reheating epoch, which is caused by
the coherent oscillation of the inflaton in its potential. In order for a non-zero baryon
number density to be produced, driven motion must be induced in the phase of the
complex scalar baryon. The inflaton-scalar baryon system was found to act analo-
gously to a forced pendulum, with driven motion achieved near the end of reheating
for parameters consistent with the Sweet Spot Condition. This result implied a high
reheating temperature as a generic requirement of our model. Further analysis of
this mechanism could provide interesting cosmological phenomenology beyond the
reheating epoch through the decays and interactions of the baryonic scalar.

Chapter 5 discussed a novel way to utilise gravitational waves to illuminate the
properties of the illusive Cosmic Neutrino Background [5]. We explicitly calculated
the parity odd part of the graviton polarization tensor in the presence of a lepton asym-
metric Cosmic Neutrino Background, which generates a gravitational Chern-Simons
term in the effective action, in the vanishing neutrino mass limit. The induced Chern-
Simons term causes birefringent behaviour in gravitational wave propagation leading
to an enhancement or suppression of the gravitational wave amplitude depending on
the polarisation. While this effect is negligibly small for local sources, we demon-
strated that it could be sizeable for gravitational waves produced in the very early
universe with a momenta |k| ∼ H . We also argued that a relic neutrino background
with non-zero lepton number exhibits gravitational instabilities that are related to the
gravity-lepton number mixed anomaly. The induced negative energymodes, lead to a
rapid decay of a vacuum state into photons and gravitons, fromwhichwe could derive
observational bounds. From the constraints on the radiation energy density today, we
were able to obtain an interesting bound on the neutrino degeneracy parameter. We
believe that the findings reported in this Chapter will prove to be useful for further
understanding of the properties of the Cosmic Neutrino Background and allow con-
straints to be placed on particle physics models that generate a lepton asymmetry.
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Being able to constrain or obtain indirect measurements of the size of the lepton
asymmetry would help illuminate the properties of the neutrinos and possibly the
mechanism for Baryogenesis. This work explored the exciting new possibility of
using gravitational wave phenomena to uncover information about the properties of
the fundamental particles of nature.

In this thesis, we sought to demonstrate the importance of particle physics in the
evolution of the early universe, and someof the interestingways inwhich this could be
explored; predominantly through the consideration of quantum anomalies. Increased
investigation into such phenomena, as well as other particle physics applications to
cosmology, will undoubtedly further increase our understanding of nature. It is clear
that this approach, in concert with terrestrial particle physics phenomenology and
experimental searches, is the clear way forward in our endeavour to understand the
fundamental nature of the world around us.
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Appendix A
Baryon and Lepton Number Anomalies
in the Standard Model

A.1 Baryon Number Anomalies

The introduction of a gauged baryon number leads to the inclusion of quantum
anomalies in the theory, refer to Fig. 1.2. The anomalies, for the baryonic current,
are given by the following,

For SU (3)2U (1)B ,

A1(SU (3)2U (1)B) = Tr [λaλbB] = 3 × 3

2

⎛
⎝∑

le f t

Bi −
∑
right

Bi

⎞
⎠ = 0. (A.1)

For SU (2)2U (1)B ,

A2(SU (2)2U (1)B) = Tr [τ aτ bB] = 3 × 3

2
BQ = 3

2
. (A.2)

For U (1)2YU (1)B ,

A3(U (1)2YU (1)B) = Tr [YY B] = 3 × 3(2Y 2
QBQ − Y 2

u Bu − Y 2
d Bd) = −3

2
. (A.3)

For U (1)2BU (1)Y ,

A4(U (1)2BU (1)Y ) = Tr [BBY ] = 3 × 3(2B2
QYQ − B2

uYu − B2
dYd) = 0. (A.4)

For U (1)3B ,

A5(U (1)3B) = Tr [BBB] = 3 × 3(2B3
Q − B3

u − B3
d ) = 0. (A.5)
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Fig. A.1 1-Loop corrections to a SU (2)2U (1)B , where the loop contains only left-handed quarks,
and b U (1)2YU (1)B where the loop contains only quarks

For U (1)B ,

A6(U (1)B) = Tr [B] = 3 × 3(2BQ − Bu − Bd) = 0, (A.6)

where the factor of 3 × 3 is a result of there being three generations of quarks and three
colours for each quark. The δab terms are not included in the anomalies (Fig.A.1).

A.2 Lepton Number Anomalies

When introducing right handed neutrinos into the SM the quantum anomalies for a
gauged lepton number, or leptonic current, are the following,

For SU (3)2U (1)L ,

A1(SU (3)2U (1)L) = Tr [λaλbL] = 3

2

⎛
⎝∑

le f t

Li −
∑
right

Li

⎞
⎠ = 0. (A.7)

For SU (2)2U (1)L ,

A2(SU (2)2U (1)L) = Tr [τ aτ bL] = 3

2
LL = 3

2
. (A.8)

For U (1)2YU (1)L ,

A3(U (1)2YU (1)L) = Tr [YY L] = 3(2Y 2
L LL − Y 2

e Le − Y 2
ν Lν) = −3

2
. (A.9)
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For U (1)2LU (1)Y ,

A4(U (1)2LU (1)Y ) = Tr [LLY ] = 3(2L2
LYL − L2

eYe − L2
νYν) = 0. (A.10)

For U (1)3L ,

A5(U (1)3L) = Tr [LLL] = 3(2L3
L − L3

e − L3
ν) = 0. (A.11)

For U (1)L ,

A6(U (1)L) = Tr [L] = 3(2LL − Le − Lν) = 0. (A.12)

If the right handed neutrinos are not included in the SM,A5 andA6 will be non-zero.
That is, A5 = 3 and A6 = 3, where A6 is to the graviton-lepton anomaly.

A.3 Mixed Gauged Baryon and Lepton Number Anomalies

If these two gauge groups are introduced then the interactions between the leptonic
and baryonic currents must also be anomaly free,

For U (1)2BU (1)L ,

A(U (1)2BU (1)L) = Tr [BBL] = 0. (A.13)

For U (1)BU (1)2L ,

A(U (1)2LU (1)B) = Tr [LLB] = 0. (A.14)

For U (1)BU (1)LU (1)Y ,

A(U (1)BU (1)LU (1)L) = Tr [BLY ] = 0. (A.15)

These will only be non-zero if fermions such as leptoquarks are added to the SM.
There are no fermions in the SMwhich can couple to both a leptophobic gauge boson
and a leptophillic gauge boson.

Some recent models have introduced leptoquarks along with gauged baryon and
lepton number symmetries into the SM [1, 2]. To ensure that these mixed interactions
don’t lead to new gauge anomalies, the number of types of leptoquarks and the
quantum numbers they carry are such that these quantum corrections remain zero.
They can also be used to cancel the gauge anomalies that are also present with these
gauge bosons in combination with the SM gauge fields.
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Appendix B
Further Details of Chap. 3 Calculations

B.1 F+ Coefficients, Eq. (3.20)

Matching superhorizonmodeswith the planewaves,we obtain the following relation,

C1 = �
( 3−�k

4

)

2
−1
4 (1−�k )

√
π

(
1√
2k

− C2
2

−1
4 (1+�k )

√
π

�
( 3+�k

4

)
)

. (B.1)

The Wronskian normalisation implies:

√
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4
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. (B.2)

Solving the above conditions we find that the coefficients for the F+ modes are,
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and
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( 1+�k
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√
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. (B.4)

B.2 F− Coefficients, Eq. (3.21)

Similarly as above, we obtain the following relations from the matching,

C4 = �
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and the Wronskian normalisation,

C2
3 + |C4|2 + 2C3e
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These two equations determine the coefficients for the F− modes,
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where

P(k) = 23/4√
π

(
2πe− π�k

4 Im

[ √
i

2
i�k
4 �

( 1+i�k
4

)
]

− Re

[
�

( 3−i�k
4

)

2
i�k
4

])
. (B.9)



Appendix C
Further Details of Chap. 5 Calculations

C.1 Dimensional Regularisation Integrals and Useful
Relations

The following dimensional regularisation integrals were utilised in Chap. 5,

i
∫

dN p

(2π)N

1

(p2 − m2)2
= − 1

16π2

[
4π2λ2
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�(ε), (C.1)
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Some other useful relations are,

Tr(γμγαγργβγ5) = −4iεμαρβ, (C.6)
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Tr(γμ(/p + /k + m)γρσαβγ5(/p + m)) =
4{εμραβ[m2 − p2 − (kp)] − kλ[εαβρλ pμ − εαβμλ pρ]}, (C.7)

Tr(γρ(/p − /k + m)γμσαβγ5(/p + m)) =
4{εμραβ[p2 − m2 − (kp)] − kλ[εαβρλ pμ − εαβμλ pρ]}. (C.8)

Upon taking ε → 0 the following are obtained,
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ε
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ε
+ γ − 1, (C.9)

ημνη
μν � 4 − 2ε, (C.10)
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