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“New topics constantly appear, bringing
researchers away from old problems.
Mastering the latter, precisely because they
have been so much studied, requires an ever
increasing, unpleasing effort of
understanding. It turns out that most
researchers prefer considering new, less
developed problems, that require less
knowledge, even if they are not challenging.
Nothing can be done against it, but
formatting old topics with good references…
so that later developments may follow, if
destiny decides so.”

Felix Klein,
translation from German by the author
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Abstract

Ultracold atom gases are a versatile platform to simulate condensed matter physics
phenomena, as virtually any parameter is experimentally tunable with a high
accuracy. In particular, highly anisotropic traps allow the realization of
low-dimensional systems, where the role of quantum fluctuations is enhanced. This
thesis investigates the paradigmatic model of a one-dimensional Bose gas with
contact interactions, a.k.a the Lieb–Liniger model. Its theoretical study involves
powerful analytical tools such as Bethe ansatz, conformal field theory and the
Tomonaga–Luttinger liquid formalism, as well as the Bose–Fermi mapping. These
exact and approximate methods allow to investigate with high accuracy its
ground-state energy and thermodynamics, excitation spectra and correlation func-
tions, from k-body local correlations to the momentum distribution and dynamical
structure factor. These quantities yield useful information on the coherence and
superfluidity of a gas, encoded in the drag force exerted by a Gaussian laser beam
stirred into the gas, as computed in linear response theory. Then, releasing a
transverse trapping provokes the appearance of a multimode structure and a
dimensional crossover. All along, the effect of a harmonic trap in the longitudinal
direction is studied within the local density approximation.
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Chapter 1
Introduction: This Thesis

This theoretical thesis summarizes the research activity I have performed during
the three years of my PhD studies at Laboratoire de Physique et Modélisation des
Milieux Condensés (LPMMC) in Grenoble, as a student of the École doctorale de
Physique of Université Grenoble Alpes, under the supervision of Dr. AnnaMinguzzi,
and late Prof. Frank Hekking.

My work deals with ultracold atom physics [1, 2], where the high versatility
of current experiments allows to probe phase diagrams of various systems in detail.
I put the emphasis on low-dimensional setups, in particular degenerate quantumgases
kinetically confined to one spatial dimension (1D gases), that became available in
the early years of the twenty-first century [3, 4], but had already been studied as toy
models since the early days of quantum physics.

I have focused on analytical methods and techniques, sometimes at the verge
of mathematical physics, and left aside advanced numerical tools in spite of their
increasing importance in modern theoretical physics. Experimental aspects are sec-
ondary in this manuscript, but have been a guideline to my investigations, as I have
taken part to a joint programmwith an experimental group at Laboratoire de Physique
et des Lasers (LPL) in Villetaneuse, the SuperRing project.

The key notion of this thesis is the one of strongly-correlated systems, that can
not be described in terms of weakly-interacting parts. Solving models that feature
strong correlations is among the most challenging problems encountered in theo-
retical physics, since the strong-coupling regime is not amenable to perturbative
techniques. In this respect, reduction of dimensionality is of great help as it makes
some problems analytically amenable, thanks to powerful tools such as Bethe Ansatz
(BA) [5], bosonization [6] or conformal field theory (CFT) [7]. Another interesting
point is that parallels between high-energy, condensed-matter and statistical physics
are especially strong nowadays, since the theoretical tools involved are of the same
nature [8–10]. I focus on the low-energy sector and use a condensed-matter language,
but readers from other communities may find interest in the techniques all the same.

I tackle various aspects of themany-body problem,with auto-correlation functions
of the many-body wavefunction as a common denominator, seens as a means to

© Springer Nature Switzerland AG 2018
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2 1 Introduction: This Thesis

characterize low-dimensional ultracold gases. This thesis is composed of four main
parts, whose outline follows:

Chapter2 is a general introduction to various experimental and theoretical aspects
of the many-body problem in reduced dimension. I give a brief account of the main
specificities of one-dimensional gases, and introduce correlation functions as suit-
able observables to characterize such fluids. Experimental and theoretical studies that
allowed this reduction of dimensionality are summarized. I present powerful theoret-
ical tools that are commonly used to solve integrable models, such as Bethe Ansatz,
bosonization in the framework of Luttinger liquid theory, and Conformal Field
Theory. Their common features are put into light and simple illustrations are given.
To finish with, I present the main known methods to increase the effective dimension
of a system, as an introduction to the vast topic of dimensional crossovers.

Chapter3 deals with local and non-local, equal-time, equilibrium correlations
of the Lieb-Liniger model. The latter is the paradigmatic model to describe one-
dimensional Bose gases, and has the property of being integrable. It has a long
history, and this chapter may serve as an introduction to the topic, but deals with
advanced aspects as well. In particular, I have made a few contributions towards the
analytical exact ground-state energy, based on the analysis ofmathematical structures
that emerge in weak- and strong-coupling expansions. Then, I delve into the issue
of correlation functions and the means to construct them from integrability in a
systematic way. I introduce the notion of connection, that binds together in a single
formalism all known relationships between correlation functions and integrals of
motion.Keeping inmind thatmost experiments involve a trap that confines the atoms,
I then show how the Bethe Ansatz formalism can be combined to the local density
approximation (LDA) to describe trapped interacting gases in the non-integrable
regime of inhomogeneous density, through the so-called BALDA (Bethe Ansatz
LDA) formalism.

Chapter4 is devoted to the dynamical correlations of the Lieb-Liniger model.
They are investigated in order to discuss the notion of superfluidity, through the
concept of drag force induced by a potential barrier stirred in the fluid. The drag force
criterion states that a superfluid flow is linked to the absence of a drag force below a
critical velocity, generaling Landau’s criterion for superfluidity. Computing the drag
force in linear response theory requires a good knowledge of the dynamical structure
factor, an observable worth studying for itself as well since it is experimentally
accessible by Bragg scattering and quite sensitive to interactions and dimensionality.
This gives me an opportunity to investigate the validity range of the Tomonaga-
Luttinger liquid theory in the dynamical regime, and tackle a few finite-temperature
aspects. I also study the effect of a finite barrier width on the drag force, putting
into light a decrease of the drag force that hints at the existence of a quasi-superfluid
regime at supersonic flows.

In Chapter5, I study the dimensional crossover from one to higher dimensions.
A conceptually simple case, provided by noninteracting fermions in a box trap, is
treated exactly and in detail. The effect of dimensionality on the dynamical structure
factor and drag force is investigated directly and through multi-mode structures, the
effect of a harmonic trap is treated in the local density approximation.
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After a general conclusion, a few appendices provide details of calculations and
introduce transverse issues.
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Chapter 2
From 3D to 1D and Back to 2D

2.1 Introduction

We perceive the world as what mathematicians call a three-dimensional (3D)
Euclidian space, providing a firm natural framework for geometry and physics until
themodern times.Higher-dimensional real and abstract spaces have pervadedphysics
in the course of the twentieth century, through statistical physics where the number of
degrees of freedom is comparable to the Avogadro number, quantum physics where
hugeHilbert spaces are often involved, general relativity where in addition to a fourth
spacetime dimension one considers curvature of a Riemannian manifold, or string
theory where more dimensions are considered before compactification.

Visualizing a higher-dimensional space requires huge efforts of imagination, for a
pedagogical illustration the reader is encouraged to read the visionary novel Flatland
[1]. As a general rule, adding dimensions has dramatic effects due to concommitant
increase in degrees of freedom, that we do not necessarily apprehend intuitively. The
unit ball has maximum volume in 5D, for instance.

This is not the point I would like to emphasize however, but rather ask this seem-
ingly innocent, less debated question: we are obviously able to figure out lower-
dimensional spaces, ranging from 0D to 3D, but do we really have a good intuition
of them and of the qualitative differences involved? As an example, a randomwalker
comes back to its starting point in finite time in 1D and 2D even if space is infinite,
but in 3D this is not always the case. One of the aims of this thesis is to point out such
qualitative differences in ultracold gases, that should manifest themselves in their
correlation functions. To put specific phenomena into light, I will come back and
forth from the three-dimensional Euclidian space, to a one-dimensional line-world.

As far as dimension is concerned, there is a deep dichotomy between the experi-
mental point of view, where reaching a low-dimensional regime is quite challenging,
and the theoretical side, where 1D models are far easier to deal with, while power-
ful techniques are scarce in 3D. Current convergence of experimental and theoreti-
cal physics in this field concerns multi-mode, quasi-one dimensional systems, and
dimensional crossovers from 1D to 2D or vice-versa.

© Springer Nature Switzerland AG 2018
G. Lang, Correlations in Low-Dimensional Quantum Gases,
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This introductory, general chapter is organized as follows: first, I stress a few
peculiarities of 1D quantum systems and introduce the concept of correlation func-
tions as an appropriate tool to characterize them, then I present a few experimental
breakthroughs involving low-dimensional gases, and the main analytical tools cur-
rently used to investigate such systems. To finish with, I evoke a few approaches to
the issue of dimensional crossovers to higher dimension.

2.2 Welcome to Lineland

2.2.1 Generalities on One-Dimensional Systems

It is quite intuitive that many-particle physics in one dimension must be qualitatively
different from any higher dimension whatsoever, since particles are deprived of the
possibility of passing each other without colliding. This topological constraint has
exceptionally strong effects on systems of non-ideal particles, however weakly they
may interact. The resulting collectivization of motion holds in both classical and
quantum theories.

An additional effect of this crossing constraint is specific to the degenerate regime,
as it concerns quantumstatistics.While in three dimensions particles are either bosons
or fermions, in lower dimension the situation is more intricate. To understand why,
we shall bear in mind that statistics is defined through the symmetry of the many-
body wavefunction under two-particle exchange: the latter is symmetric for bosons
and antisymmetric for fermions. Such a characterization at the most elementary level
is experimentally challenging [2], but quite appropriate for a Gedankenexperiment.
In order to directly probe the symmetry of the many-body wavefunction, one shall
engineer a physical process responsible for the interchange of two particles, that
would not otherwise disturb the system. A necessary condition is that the particles
be kept apart enough to avoid the influence of interaction effects.

In two dimensions, this operation is possible provided that interactions are short-
ranged, although performing the exchange clockwise or counter-clockwise is not
equivalent, leading to the (theoretical) possibility of intermediate particle statistics
[3–5]. The corresponding particles are called anyons, as they can have any statistics
between fermionic and bosonic, and are defined through the symmetry of their many-
body wavefunction under exchange as

ψ(. . . xi , . . . , x j , . . . ) = eiχψ(. . . x j , . . . , xi , . . . ), (2.1)

where χ is real and {xi }i=1,...N denote the positions of the N particles.
In one dimension, such an exchange process is utterly forbidden by the crossing

constraint, making particle statistics and interactions deeply intertwined: the phase
shifts due to scattering and statistics merge, arguably removing all meaning from the
very concept of statistics. I will nonetheless, in what follows, consider particles as



2.2 Welcome to Lineland 7

fermions or bosons, retaining by convention their classification in 3D (for instance,
87Rb atoms are bosons and 40K atoms are fermions). The concept of 1D anyons is
more tricky and at the core of recent theoretical investigations [6–10], but I leave this
issue aside in what follows.

The origin of the conceptual difficulty associated with statistics in 1D is the fact
that we are too accustomed to dealing with noninteracting particles in 3D. Many
properties that are fully equivalent in the three-dimensional Euclidian space, andmay
unconsciously be put on equal footing, are not equivalent anymore in lower dimen-
sion. For instance, in 3D, bosons and fermions are associated to Bose-Einstein and
Fermi-Dirac statistics respectively. Fermions obey thePauli principle (stating that two
or more identical fermions can not occupy the same quantum state simultaneously),
and the spin-statistics theorem implies that bosons have integer spin while fermions
have an half-integer one [11]. In three dimensions, any of these properties may look
as fundamental as any other. In one dimension however, strongly-interacting bosons
possess a Fermi sea structure and can experience a kind of Pauli principle due to
interactions. These manifestations of a statistical transmutation compel us to revise,
or at least revisit, our conception of statistics in arbitrary dimension.

As far as fermions with spin are concerned, the collision constraint has an even
more dramatic effect. A single fermionic excitation has to split into a collective
excitation carrying charge (a ‘chargon’, the analog of a sound wave) and another
one carrying spin (called spin wave, or ‘spinon’). They have different velocities,
meaning that electrons, that are fundamental objects in 3D, break into two elementary
excitations when transferred to the 1D realm. As a consequence, in one dimension
there is a complete separation between charge and spin degrees of freedom. Stated
more formally, the Hilbert space is represented as a product of charge and spin
sectors, whose parameters are different. This phenomenon is known as ‘spin-charge
separation’ [12], and is expected in bosonic systems as well [13].

These basic facts should be sufficient to get a feeling that 1D is quite special. We
will seemany other concrete illustrations in the following inmuchmore details, but to
make physical predictions that illustrate peculiarities of 1D systems and characterize
them, it is first necessary to select a framework and a set of observables. Actually, the
intertwined effect of interactions and reduced dimensionality is especially manifest
on correlation functions.

2.2.2 Correlation Functions as a Universal Probe
For Many-Body Quantum Systems

Theoretical study of condensed-matter physics in three dimensions took off after the
laws of many-body quantum mechanics were established on firm enough grounds to
give birth to powerful paradigms. A major achievement in this respect is Landau’s
theory of phase transitions. In this framework, information on a system is encoded in
its phase diagram, obtained by identifying order parameters that take a zero value in
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one phase and are finite in the other phase, and studying their response to variations
of external parameters such as temperature or a magnetic field in the thermodynamic
limit. Laudau’s theory is a versatile paradigm, that has been revisited over the years
to encompass notions linked to symmetry described through the theory of linear
Lie groups. It turns out that symmetry breaking is the key notion underneath, as in
particle physics, where the Higgs mechanism plays a significant role.

In one dimension, however, far fewer finite-temperature phase transitions are
expected, and none in systems with short-range interactions. This is a consequence
of the celebrated Mermin-Wagner-Hohenberg theorem, that states the impossibility
of spontaneous breakdown of a continuous symmetry in 1D quantum systems with
short-range interactions at finite temperature [14], thus forbidding formation of off-
diagonal long-range order.

In particular, according to the definition proposed by Yang [15], this prevents
Bose-Einstein condensation in uniform systems, while this phenomenon is stable to
weak interactions in higher dimensions. This example hints at the fact that Landau’s
theory of phase transitionsmay not be relevant inmost cases of interest involving low-
dimensional systems, and that a shift of paradigm should be operated to characterize
them efficiently.

An interesting, complementary viewpoint relies on the study of correlation func-
tions of the many-body wavefunction in space-time and momentum-energy space. In
mathematics, the notion of correlation plays a key role in the fields of statistics and
probabilities, as a tool to characterize stochastic processes. It comes as no surprise
that correlations have become central in physics as well, since quantum processes
are random, and extremely huge numbers of particles are dealt with in statistical
physics.

The paradigm of correlation functions first pervaded astrophysics with the
Hanbury Brown and Twiss experiment [16], and has taken a central position in
optics, with Michelson, Mach-Zehnder and Sagnac interferometers as fundamental
setups. Typically, electric field or intensity temporal correlations are measured to
quantify the coherence between two light-beams and probe the statistics of intensity
fluctuations respectively.

In parallel, this formalism has been successfully transposed and developed to
characterize condensed-matter systems. Its modern form partly relies on the for-
malism of linear response theory, whose underlying idea is the following: in many
experimental configurations, the system is probed with light or neutrons, that put
it slightly out of equilibrium. Analyzing the response to such external excitations
allows to reconstruct equilibrium correlations [17].

Actually, the paradigm of correlation functions allows a full and efficient charac-
terization of 1D quantum gases. In particular, it is quite usual to probe insofar the
many-bodywavefunction is correlatedwith itself. For instance, onemay be interested
in density-density correlations, or their Fourier transform known as the dynamical
structure factor. It is natural to figure out, and calculations confirm it, that the structure
of correlation functions in 1D is actually much different fromwhat one would expect
in higher dimensions. At zero temperature, in critical systems correlation functions
decay algebraically in space instead of tending to a finite value or even of decay-
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ing exponentially. In energy-momentum space low-energy regions can be kinetically
forbidden, and power-law divergences can occur at their thresholds. These hall-
marks of 1D systems are an efficient way to probe their effective dimension, and
will be investigated much in detail throughout this thesis. However, recent devel-
opments such as far from equilibrium dynamics [18], thermalization or its absence
after a quench [19–24] and periodic driving to a non-equilibrium steady state [25] are
beyond its scope. More recent paradigms, such as topological matter and informa-
tion theory (with entanglement entropy as a central notion [26]), will not be tackled
neither.

I proceed to describe dimensional reduction in ultracold atom systems and the
possibilities offered by the crossover from 3D to 1D.

2.3 From 3D to 1D in Experiments

While low-dimensional models have had the status of toymodels in the early decades
of quantum physics, they are currently realized to a good approximation in a wide
variety of condensed-matter experimental setups. The main classes of known 1D
systems are spin chains, some electronic wires, ultracold atoms in a tight waveguide,
edge states (for instance in the Quantum Hall Effect), and magnetic insulators. Their
first representatives have been experimentally investigated in the 1980s, when the
so-called Bechgaard salts have provided examples of one-dimensional conductors
and superconductors [27]. As far as 2Dmaterials are concerned, the most remarkable
realizations are high-temperature superconductors [28], graphene [29] and topolog-
ical insulators [30].

A revolution came later on from the field of ultracold atoms, starting in the 1990s.
The main advantage of ultracold atom gases over traditional condensed-matter sys-
tems is that, thanks to an exceptional control over all parameters of the gaseous state,
they offer new observables and tunable parameters. They thus allow for exhaustive
exploration of phase diagrams, to investigate macroscopic manifestations of quan-
tum effects such as superfluidity, and clean realizations of quantum phase transitions
(such transitions between quantum phases occur at zero temperature by varying a
parameter in the Hamiltonian, and are driven by quantum fluctuations, contrary to
‘thermal’ ones where thermal fluctuations play a major role [31]). Ultracold gases
are a wonderful platform for the simulation of condensed-matter systems [32] and
theoretical toy-models, opening the field of quantum simulation [33]. In the latter,
experiments are designed to realize models, thus reversing the standard hierarchy
between theory and experiment [34].

With ultracold atoms, the number of particles and their density are under control,
allowing for instance to construct a Fermi sea atom per atom [35]. The strength and
nature of interactions can be modified as well: tuning the power of the lasers gives
direct control over the hopping parameters in each direction of an optical lattice,
whereas Feshbach resonance allows to tune the interaction strength [36, 37]. Neutral
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atoms interact through a short-ranged potential, while dipolar atoms and molecules
feature long-range interactions [38].

Particles are either bosons or fermions, but any mixture of different species is
a priory feasible. Recently, a mixture of degenerate bosons and fermions has been
realized using the lithium-6 and lithium-7 isotopes of Li atoms [39], and in lower
dimensions, anyons may become experimentally relevant. Internal atomic degrees
of freedom can be used to produce multicomponent systems in optical traps, the
so-called spinor gases, where a total spin F leads to 2F+1 components [40, 41].

Current trapping techniques allow to modify the geometry of the gas through
lattices, i.e. artificial periodic potentials similar to the ones created by ions in real
solids, or rings and nearly-square boxes that reproduce ideal theoretical situations
associated to periodic and open boundary conditions respectively [42]. Although
(nearly) harmonic traps prevail, double-well potentials and more exotic configura-
tions yield all kinds of inhomogeneous density profiles. On top of that, disorder can
be taylored, from a single impurity [43] to many ones [44], to explore Anderson
localization [45, 46] or many-body localization [47, 48].

As far as thermal effects are concerned, in condensed-matter systems room tem-
perature is usually one or two orders of magnitude lower than the Fermi temperature,
so one can consider T =0 as a very good approximation. In ultracold atom systems,
however, temperature scales are much lower and span several decades, so that one
can either probe thermal fluctuations, or nearly suppress them at will to investigate
purely quantum fluctuations [49, 50].

Recently, artificial gauge fields similar to real magnetic fields for electrons could
be applied to these systems [51, 52], giving access to the physics of ladders [53],
quantum Hall effect [54] and spin-orbit coupling [55].

The most famous experimental breakthrough in the field of ultracold atoms is the
demonstrationofBose-Einstein condensation, a phenomenon linked toBose statistics
where the lowest energy state is macroscopically occupied [56–58], 70 years after its
prediction [59, 60]. This tour de force has been allowed by continuous progress in
cooling techniques (essentially by laser and evaporation [61]) and confinement.Other
significant advances are the observation of the superfluid-Mott insulator transition in
an optical lattice [62], degenerate fermions [63], the BEC-BCS crossover [64], and
of topological defects such as quantized vortices [65, 66] or solitons [67].

Interesting correlated phases appear both in two-dimensional and in one-
dimensional systems, where the most celebrated achievements are the observation of
the Berezinskii-Kosterlitz-Thouless (BKT) transition [68], an unconventional phase
transition in 2D that does not break any continuous symmetry [69], and the realiza-
tion of the fermionized, strongly-correlated regime of impenetrable bosons in one
dimension [70, 71], the so-called Tonks-Girardeau gas [72].

Such low-dimensional gases are obtained through a strong confinement along one
(2D gas) or two (1D gas) directions, in situations where all energy scales of the prob-
lem are smaller than the transverse confinement energy, thus limiting the transverse
motion of atoms to zero point oscillations. This tight confinement is experimentally
realized through very anisotropic trapping potentials.
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The crossover from a 2D trapped gas to a 1D one has been theoretically investi-
gated in [73], under the following assumptions: the waveguide potential is replaced
by an axially symmetric two-dimensional harmonic potential of frequency ω⊥, and
the forces created by the potential act along the x−y plane. The atomic motion
along the z-axis is free, in other words no longitudinal trapping is considered. As
usual with ultracold atoms, interactions between the atoms are modeled by Huang’s
pseudopotential [74]

U (r) = g δ(r)
∂

∂r
(r ·), (2.2)

where g=4π�
2as/m, as being the s-wave scattering length for the true interaction

potential, δ the dirac function andm the mass of an atom. The regularization operator
∂
∂r (r ·), that removes the 1/r divergence from the scattered wave, plays an impor-
tant role in the derivation. The atomic motion is cooled down below the transverse
vibrational energy �ω⊥. Then, at low velocities the atoms collide in the presence of
the waveguide and the system is equivalent to a 1D gas subject to the interaction
potential U1D(z)=g1Dδ(z), whose interaction strength is given by [73]

g1D = 2�
2

ma⊥
as/a⊥

1 − Cas/a⊥
. (2.3)

In this equation, a⊥ =
√

�

mω⊥ represents the size of the ground state of the transverse

Hamiltonian and C=−ζ(1/2) � 1.46, where ζ is the Riemann zeta function.
In subsequent studies, the more technical issue of the crossover from 3D to 1D

for a trapped Bose gas has also been discussed [75, 76]. Recently, the dimensional
crossover from 3D to 2D in a bosonic gas through strengthening of the transverse
confinement, has been studied using renormalization group techniques [77].

The experimental realization of the necessary strongly-anisotropic confinement
potentials is most commonly achieved via two schemes. In the first one, atoms are
trapped in 2D optical lattices that are created by two orthogonal standing waves of
light, each of them obtained by superimposing two counter-propagating laser beams.
The dipole force acting on the atoms localizes them in the intensity extrema of the
light wave, yielding an array of tightly-confining 1D potential tubes [78].

In the second scheme, atoms aremagnetically trapped on an atom chip [79], where
magnetic fields are created via a current flowing in microscopic wires and electrodes,
that are micro-fabricated on a carrier substrate. The precision in the fabrication of
such structures allows for a very good control of the generated magnetic field, that
designs the potential landscape via the Zeeman force acting on the atoms. In this
configuration, a single 1D sample is produced, instead of an array of several copies
as in the case of an optical lattice.

Both techniques are used all around the world. The wire configuration thereby
obtained corresponds to open boundary conditions, but there is also current interest
and huge progress in the ring geometry, associated to periodic boundary conditions.
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This difference can have a dramatic impact on observables at the mesoscopic scale,
especially if only a few particles are involved. However, the effect of boundary
conditions is expected to vanish in the thermodynamic limit.

The ring geometry has already attracted interest in condensed-matter physics in
the course of last decades: supercurrents in superconducting coils are used on a
daily basis to produce strong magnetic fields (reaching several teslas), and supercon-
ducting quantum interference devices (SQUIDs), based on two parallel Josephson
junctions in a loop, allow tomeasuremagnetic flux quanta [80]. In normal (as opposed
to superconducting) systems, mesoscopic rings have been used to demonstrate the
Aharonov-Bohm effect [81] (a quantum phenomenon where a charged particle is
affected by an electromagnetic potential despite being confined to a space region
where both magnetic and electric fields are null [82]), and persistent currents [83].

Ring geometries are now investigated in ultracold gases as well. Construction of
ring-shaped traps to study the superfluid properties of an annular gas is receiving
increasing attention from various groups worldwide. The driving force behind this
development is its potential for future applications in the fields of quantum metrol-
ogy and quantum information technology, with the goal of realising high-precision
atom interferometry [84] and quantum simulators based on quantum engineering of
persistent current states [85], opening the field of ‘atomtronics’ [86].

Among the ring traps proposed or realized so far, two main categories can be
distinguished. In a first kind of setup, an atomic cloud is trapped in a circularmagnetic
guide of a few centimeters [87], or millimeters in diameter [88, 89]. Such large rings
can be described as annular wave-guides. They can be used as storage rings, and
are preferred when it comes to developing guided-atom, large-area interferometers
designed to measure rotations angles or velocities.

The second kind of ring trap, designed to study quantum fluid dynamics, has
a more recent history. Associated experiments started with the first observation of
a persistent atomic flow [90]. To maintain well-defined phase coherence over the
whole cloud, the explored radii are much smaller than in the previous configuration.
A magnetic trap is pierced by a laser beam, resulting in a radius of typically 10–
20µm [91–93]. The most advanced experiments of this category rely mostly on
purely optical traps, combining a vertical confinement due to a first laser beam,
independent of the radial confinement realized with another beam propagating in the
vertical direction, in a hollow mode [94, 95].

Other traps make use of a combination of magnetic, optical and radio-frequency
fields [96–101]. They can explore radii between 20 and 500µm, bridging the gap
between optical traps and circular waveguides. In the following, I shall always con-
sider a ring geometry, though in most cases it will be of no importance whatsoever
once the thermodynamic limit is taken. In the next section, I present the main ana-
lytical tools currently used to study 1D gases on a ring.
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2.4 Analytical Methods to Solve 1D Quantum Models

Condensed-matter theorists are confronted to the tremendously challenging issue
of the description of many-body interacting systems. In three dimensions, in some
cases one may eliminate the main complicated terms in a many-electron problem
by incorporating the effect of interactions into parameters (such as the mass) of
new excitations called quasiparticles, that are otherwise similar to noninteracting
fermions. This adiabatic mapping is the essence of Landau’s Fermi liquid theory
[102–104], that has been the cornerstone of theoretical solid-state physics for a good
part of the 20th century. This approach provides the basis for understanding metals in
terms of weakly-interacting electron-like particles, describes superconductivity and
superfluidity, but is restricted to fermions and breaks down in 1D [105]. For these
reasons, other tools are needed to study low-dimensional strongly-correlated gases,
a fortiori bosonic ones.

Currently, there are threemain theoretical approaches to one-dimensional strongly-
correlated systems. As far as analytical techniques are concerned, either one tries
and find exact solutions of many-body theories, typically using Bethe Ansatz tech-
niques, or reformulate complicated interactingmodels in such away that they become
weakly-interacting, which is the idea at the basis of bosonization. These techniques
are complementary, both will be used throughout this thesis. The third approach is
the use of powerful numerical tools and will not be tackled here. Let me onlymention
that a major breakthrough in this field over the recent years has been the spectacular
development of the density matrix renormalization group (DMRG) method [106].
It is an iterative, variational method within the space of matrix product states, that
reduces effective degrees of freedom to those most important for a target state, giving
access to the ground state of 1D models, see e.g. [107]. To study finite-temperature
properties and large systems, quantum Monte Carlo (QMC) remains at the forefront
of available numerical methods.

This section provides a brief introduction to the notion of (quantum) integra-
bility, a feature shared by many low-dimensional models, including some 1D spin
chains and quantum field theories in the continuum, as well as classical statistical
physics models in 2D. There are basically two levels of understanding for these sys-
tems, associated to coordinate Bethe Ansatz and algebraic Bethe Ansatz techniques,
that yield the exact thermodynamics and correlation functions respectively. Then, I
consider noninteracting systems separately, as trivial examples of integrable mod-
els. They are especially relevant in 1D due to an exact mapping between the Bose
gas with infinitely strong repulsive interactions and a gas of noninteracting fermions.
I also give a short introduction to the non-perturbative theory of Tomonaga-Luttinger
liquids, an integrable effective field theory that yields the universal asymptotics of
correlation functions of gapless models at large distances and low energies. To finish
with, I present conformal field theories as another generic class of integrable models,
providing a complementary viewpoint to the Tomonaga-Luttinger liquid theory, and
put the emphasis on parallels between these formalisms.
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2.4.1 Quantum Integrability and Bethe Ansatz Techniques

One can ask, what is good in 1+1-dimensional models, when our spacetime is
3+1-dimensional. There are several particular answers to this question.

(a) The toy models in 1+1 dimension can teach us about the realistic
field-theoretical models in a nonperturbative way. Indeed such phenomena as renor-
malisation, asymptotic freedom, dimensional transmutation (i.e. the appearance
of mass via the regularisation parameters) hold in integrable models and can be
described exactly.

(b) There are numerous physical applications of the 1+1 dimensional models in
condensed-matter physics.

(c) […] conformal field theory models are special massless limits of integrable
models.

(d) The theory of integrable models teaches us about new phenomena, which were
not appreciated in the previous developments of Quantum Field Theory, especially
in connection with the mass spectrum.

(e) […] working with the integrable models is a delightful pastime. They proved
also to be very successful tool for educational purposes.

Ludwig Fadeev

Quantum field theory (QFT) is a generic denomination for theories based on the
application of quantum mechanics to fields, and is a cornerstone of modern particle
and condensed-matter physics. Such theories describe systems of several particles
and possess a huge (often infinite) number of degrees of freedom. For this reason,
in general they can not be treated exactly, but are amenable to perturbative methods,
based on expansions in the coupling constant. Paradigmatic examples are provided by
quantum electrodynamics, the relativistic quantum field theory of electrodynamics
that describes how light and matter interact, where expansions are made in the fine
structure constant, and quantum chromodynamics, the theory of strong interaction,
a fundamental force describing the interactions between quarks and gluons, where
high-energy asymptotics are obtained by expansions in the strong coupling constant.

One of the main challenges offered by QFT is the quest of exact - thus non-
perturbative - methods, to circumvent the limitations of perturbation theory, such as
difficulty to obtain high-order corrections (renormalization tools are needed beyond
the lowest orders, and the number of processes to take into account increases dra-
matically at each step) or to control approximations, restricting its validity range. In
this respect, integrability turns out to be extremely welcome. If a model is integrable,
then it is a priori possible to calculate exactly quantities like the energy spectrum,
the scattering matrix that relates initial and final states of a scattering process, or the
partition function and critical exponents in the case of a statistical model.

The theoreticalmachinary that allows to solve quantum integrablemodels is called
Bethe Ansatz, that could be translated as ‘Bethe’s educated guess’. Its discovery
coincides with the early days of quantum field theory, when Bethe came out with
the exact eigenspectrum of the 1D Heisenberg model (i.e., the isotropic quantum
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spin-1/2 chain with nearest-neighbor interactions, a.k.a. the XXX spin chain), using
an Ansatz for the wavefunction [108]. This solution, provided analytically in closed
form, is highly impressive if one bears in mind that the Hamiltonian of a chain of size
N is a 2N ×2N matrix, technically impossible to diagonalize by brute force if N is
large. Bethe’s breakthrough was followed by a multitude of exact solutions to other
1D models, especially flourishing in the golden age of the 1960s. Most of them enter
the threemain aforementioned categories: quantum 1D spin chains, low-dimensional
QFTs in the continuum or on a lattice, and classical 2D statistical models.

The typical form for the Hamiltonian of spin chains with nearest-neighbor inter-
actions is

Ĥ SC = −
N∑
i=1

(
Jx Ŝ

x
i Ŝ

x
i+1 + Jy Ŝ

y
i Ŝ

y
i+1 + Jz Ŝ

z
i Ŝ

z
i+1

)
, (2.4)

where the spin operators satisfy local commutations

[Ŝak , Ŝbl ] = i�δk,lεa,b,c Ŝ
c
k , (2.5)

with δ and ε the Kronecker and Levi-Civita symbols respectively (εa,b,c takes the
value 0 if there are repeated indices, 1 if (a, b, c) is obtained by an even permutation
of (1, 2, 3) and −1 if the permutation is odd).

In the case of a spin-1/2 chain, spin operators are usually represented by the
Pauli matrices. The XXX spin chain solved by Bethe corresponds to the special
case where Jx = Jy = Jz in Eq. (2.4), and the anisotropic XXZ model, solved later
on by Yang and Yang [109, 110], to Jx = Jy . A separate thread of development
beganwithOnsager’s celebrated solution of the two-dimensional, square-lattice Ising
model [111]. Actually, this solution consists of a Jordan-Wigner transformation to
convert Pauli matrices into fermionic operators, followed by a Bogoliubov rotation
to diagonalize the quadratic form thereby obtained [112]. Similar techniques allow
to diagonalize the XY spin chain Hamiltonian, where Jz =0 [113].

As far as QFT models in the continuum are concerned, the most general Hamil-
tonian for spinless bosons interacting through a two-body potential is

Ĥ SB =
N∑
i=1

[
p̂2i
2m

+ Vext (x̂i )

]
+
∑
{i �= j}

Vint (x̂i − x̂ j ), (2.6)

where p̂i and x̂i are the momentum and position operators, Vext is an external poten-
tial, while Vint represents inter-particle interactions. The most famous integrable
models of this class are the Lieb-Liniger model [114], defined by

V LL
ext (x) = 0, V LL

int (x) = g1D δ(x), (2.7)
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with δ the dirac function and g1D the interaction strength, and the Calogero-Moser
model [115, 116], associated to the problem of particles interacting pairwise through
inverse cube forces (‘centrifugal potential’) in addition to linear forces (‘harmonic
potential’), i.e. such that

VCM
ext (x) = 1

2
mω2x2, VCM

int (x) = g

x2
. (2.8)

The Lieb-Liniger model has been further investigated soon after its introduction,
by McGuire [117] and Berezin et al. [118]. Its spin-1/2 fermionic analog has been
studied in terms of the number M of spins flipped from the ferromagnetic state, in
which they are all aligned. The case M=1 was solved by McGuire [119], M=2 by
Flicker and Lieb [120], and the arbitrary M case by Gaudin [121] and Yang [122,
123], which is the reason why spin-1/2 fermions with contact interactions in 1D
are often referred to as the Yang-Gaudin model. Higher-spin Fermi gases have been
investigated by Sutherland [124].

The models presented so far in the continuum are Galilean-invariant, but Bethe
Ansatz techniques can be adapted to models featuring a Lorentz symmetry, thus
allowing to treat certain relativistic field theories, such as the massive Thirring model
[125] and its equivalent quantum sine-Gordon model [126], as well as the Gross-
Neveu [127] (a toy-model for quantumchromodynamics) andSU(2)-Thirringmodels
[128]. A recent study of their non-relativistic limit shows the ubiquity of the Lieb-
Liniger like models for non-relativistic particles with local interactions [129, 130].

The last category, i.e. classical statistical physics models in 2D, is essentially
composed of classical 2D spin chains and of ice-type models. When water freezes,
each oxygen atom is surrounded by four hydrogen ions. Each of them is closer to
one of its neighboring oxygens, but always in such a way that each oxygen has
two hydrogens closer to it and two further away. This condition is known as the
ice rule, and allows to model the system as a 2D square lattice, where each vertex
hosts an oxygen atom and each bond between two vertices is depicted with an arrow,
indicating to which of the two oxygens the hydrogen ion is closer, as illustrated in
Fig. 2.1.

Due to the ice rule, each vertex is surrounded by two arrows pointing towards it,
and two away: this constraint limits the number of possible vertex configurations to
six, thus the model is known as the 6-vertex model. Its solution has been obtained
stepwise [131, 132]. Baxter’s solution to the 8-vertex model includes most of these
results [133] and also solves the XYZ spin chain, that belongs to the first category.

Fig. 2.1 The six configurations allowed by the ice rule in the 6-vertex model
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The general approach introduced by Hans Bethe and refined in the many works
cited above is known as the coordinate Bethe Ansatz. It provides the excitation
spectrum of integrable models, as well as some elements of thermodynamics. The
non-trivial fact that Bethe Ansatz provides solutions to both 1D quantum and 2D
classical models is due to an exact, general mapping between dD quantum models at
zero temperature and (d+1)D classical models with infinitely many sites, since the
imaginary time τ that appears in the path integral description of quantum systems
plays the role of an extra dimension [134]. This quantum-classical mapping implies
that studying quantum fluctuations in 1D quantum systems amounts to studying
thermal fluctuations in 2D classical ones. It is especially useful as it allows to solve
quantum models with numerical methods designed for classical ones.

Computing the exact correlation functions of quantum-integrable models is an
even more complex challenge, and the next step towards solving them completely.
Unfortunately, coordinate Bethe Ansatz does not provide a simple answer to this
issue, as the many-body wavefunction becomes extremely complicated when the
number of particles increases, due to summations over all possible permutations.

The problem of the construction of correlation functions from integrability actu-
ally opened a new area in the field in the 1970s, based on algebraic Bethe Ansatz,
that is essentially a second-quantized form of the coordinate one. A major step in
the mathematical discussion of quantum integrability was the introduction of the
quantum inverse scattering method (QISM) [135] by the Leningrad group of Fadeev
[136]. Roughly, this method relies on a spectrum-generating algebra, i.e. operators
that generate the eigenvectors of the Hamiltonian by successive action on a pseudo-
vacuum state, and provides an algebraic framework for quantum-integrable models.
Its development has been fostered by an advanced understanding of classical inte-
grability (for an introduction to this topic, see e.g. [137]), soliton theory (see e.g.
[138]), and a will to transpose them to quantum systems.

The original work of Gardner, Greene, Kruskal and Miura [139] has shown that
the initial value problem for the nonlinear Korteweg-de Vries equation of hydrody-
namics (describing a wave profile in shallow water) can be reduced to a sequence
of linear problems. The relationship between integrability, conservation laws and
soliton behavior was clearly exhibited by this technique. Subsequent works revealed
that the inverse scattering method is applicable to a variety of non-linear equations,
including the classical versions of the non-linear Schrödinger [140] and sine-Gordon
[141] equations. The fact that the quantum non-linear Schrödinger equation could
also be exactly solvedbyBetheAnsatz suggested a deep connection between the latter
and inverse scattering. This domain of research soon became an extraordinary arena
of interactions between various branches of theoretical physics, and has strong links
with several fields of mathematics as well, such as knot invariants [142], topology of
low-dimensional manifolds, quantum groups [143] and non-commutative geometry.

I will only try and give a glimpse of this incredibly vast and complicated topic,
without entering its technical details. To do so, following [144], I will focus on
integrable models that belong to the class of continuum quantum field theories in
1D.
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Fig. 2.2 A space-time
picture of a two-body elastic
scattering in 1D

Figure 2.2 shows a spacetime diagram, where a particle of constant velocity is
represented by a straight line. It shows the immediate vicinity of a collision process
involving two particles. Due to energy and momentum conservation, after scattering
the outgoing particles go off at the same velocities as the incoming ones. In a typical
relativistic quantum field theory (such theories are sometimes relevant to condensed
matter), particle production processes may be allowed by these symmetries. In a
N =2→N =3 scattering event (where N represents the number of particles), the
incoming and outgoing lines can be assumed to all end or begin at a common point in
spacetime.However, integrablemodels have extra conserved quantities that commute
with the velocity, but move a particle in space by an amount that depends on its
velocity.

Starting with a spacetime history in which the incoming and outgoing lines meet
at a common point in space-time, a symmetry that moves the incoming and outgo-
ing lines by a velocity-dependent amount creates an history in which the outgoing
particles could have had no common origin in spacetime, leading to a contradiction.
This means that particle production is not allowed in integrable models. By contrast,
two-particle scattering events happen even in integrable systems, but are purely elas-
tic, in the sense that the initial and final particles have the same masses. Otherwise,
the initial and final velocities would be different, and considering a symmetry that
moves particles in a velocity-dependent way would again lead to a contradiction. In
other words, the nature of particles is also unchanged during scattering processes in
integrable models.

The situation becomesmore interesting when one considers three particles in both
the initial and final state. Since they can be moved relative to each other, leaving their
slopes fixed, the scattering process is only composed of pairwise collisions. There are
two ways to do this, as shown in Fig. 2.3, and both must yield the same result. More
formally, the equivalence of these pictures is encoded in the celebrated Yang-Baxter
equation [133], that schematically reads

S(1, 2, 3) = S(1, 2)S(1, 3)S(2, 3) = S(2, 3)S(1, 3)S(1, 2), (2.9)

in terms of scattering matrices, where S(1, 2, . . . ) is the coefficient relating the final-
and inital-state wavefunctions in the collision process involving particles 1, 2 . . .
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Fig. 2.3 There are two ways to express a N =3→N =3 scattering event as a succession of three
N =2→N =2 scattering events. Both situations are equivalent, according to the Yang-Baxter
equation (2.9)

The Yang-Baxter equation (2.9) guarantees that a generic multi-body scatter-
ing process can be factorized as a product of two-body scattering events, in other
words, that scattering is not diffractive. Two-body reducible dynamics (i.e. absence
of diffraction for models in the continuum) is a key point to quantum integrability,
and may actually be the most appropriate definition of this concept [145].

To sum up with, a N -particle model is quantum-integrable if the number and
nature of particles are unchanged after a scattering event, i.e. if its S-matrix can
be factorized into a product of

(N
2

)
two-body scattering matrices, and satisfies the

Yang-Baxter equation (2.9).
I proceed to consider the most trivial example of integrable model: a gas of non-

interating particles, whose relevance in 1D stems from an exact mapping involving
a strongly-interacting gas.

2.4.2 Exact Solution of the Tonks-Girardeau Model
and Bose-Fermi Mapping

In the introduction to this section devoted to analytical tools, I mentioned that a
possible strategy to solve a strongly-interacting model is to try and transform it into
a noninteracting problem. Actually, there is a case where such a transformation is
exact, knownas theBose-Fermimapping [72]. Itwas put into light byGirardeau in the
case of a one-dimensional gas of hard-core bosons, the so-calledTonks-Girardeau gas
(prior to Girardeau, Lewi Tonks had studied the classical gas of hard spheres [146]).
Hard-core bosons can not pass each other in 1D, and a fortiori can not exchange
places. The resulting motion can be compared to a traffic jam, or rather to a set of
1D adjacent billiards whose sizes vary with time, containing one boson each.

The infinitely strong contact repulsion between these bosons imposes a constraint
to the many-body wave function ψTG of the Tonks-Girardeau gas, that must vanish
whenever two particles meet. As pointed out by Girardeau, this constraint can be
implemented by writing the many-body wavefunction as follows:
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ψTG(x1, . . . , xN ) = A(x1, . . . , xN )ψF (x1, . . . , xN ), (2.10)

where

A(x1, . . . , xN ) =
∏
{i> j}

sign(xi −x j ) (2.11)

and ψF is the many-body wavefunction of a fictitious gas of noninteracting, spinless
fermions. The antisymmetric function A takes values in {−1, 1} and compensates the
sign change of ψF whenever two particles are exchanged, yielding a wavefunction
that obeys Bose permutation symmetry, as expected. Furthermore, eigenstates of the
Tonks-Girardeau Hamiltonian must satisfy the same Schrödinger equation as the
ones of a noninteracting spinless Fermi gas whenever all coordinates are different
from each others. The ground-state wavefunction of the free Fermi gas is a Slater
determinant of plane waves, leading to a Vandermonde determinant in 1D, hence the
pair-product, Bijl-Jastrow form [72]

ψTG(x1, . . . , xN ) =
√
2N (N−1)

N !LN

∏
{i> j}

∣∣∣sin
[π

L
(xi −x j )

]∣∣∣ , (2.12)

where L is the size of the system. This form is actually generic of various 1Dmodels
in the limit of infinitely strong repulsion, such as the Lieb-Liniger model [114].

The ground-state energy of the Tonks-Girardeau gas in the thermodynamic limit
is then [72]

ETG
0 =N

(π�n0)2

6m
=EF

0 , (2.13)

thus it coincides with the one of N noninteracting spinless fermions, which is another
important feature of the Bose-Fermimapping.More generally, their thermodynamics
are utterly equivalent. Even the excitation spectrum of the Tonks-Girardeau gas,
i.e. the set of its excitations above the ground state, coincides with the one of a
noninteracting spinless Fermi gas. The total momentum P and energy E of the
model are given by P = �

∑N
j=1 k j and E = �

2

2m

∑N
j=1 k

2
j respectively, where the set

of quasi-momenta {k j } j=1,...,N satisfies

k j = 2π

L
I j . (2.14)

The Bethe numbers {I j } j=1,...,N are integers for odd values of N and half-odds if N is
even. The quasi-momenta can be ordered in such a way that k1 < k2 < · · · < kN , or
equivalently I1 < I2 < · · · < IN . The ground state corresponds to I j = − N+1

2 + j ,
and its total momentum is PGS = 0. I use the notations p= P−PGS and ε=E−EGS

to denote the total momentum and energy of an excitation with respect to the ground
state, so that the excitation spectrum is given by ε(p). For symmetry reasons, I only
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consider excitations such that p ≥ 0, those with −p having the same energies by
parity.

The Tonks-Girardeau gas features two extremal excitation branches, traditionally
called type I and type II. Type-I excitations occur when the highest-energy particle
with j=(N−1)/2 gains a momentum pn =�2πn/L and an energy εIn = �

2π2

2mL2 [(N −
1 + 2n)2 − (N − 1)2]. The corresponding continuous dispersion relation is [147]

εI (p) = 1

2m

[
2pF p

(
1 − 1

N

)
+ p2

]
, (2.15)

where pF =π�N/L is the Fermi momentum.
Type-II excitations correspond to the case where a particle inside the Fermi

sphere is excited to occupy the lowest energy state available, carrying a momen-
tum pn =2π�n/L . This type of excitation amounts to shifting all the quasi-momenta
with j>n by 2π�/L , thus leaving a hole in the Fermi sea. This corresponds to an
excitation energy εI In = �

2π2

2mL2 [(N + 1)2 − (N + 1 − 2n)2], yielding the type-II exci-
tation branch [147]

εI I (p) = 1

2m

[
2pF p

(
1 + 1

N

)
− p2

]
, (2.16)

that acquires the symmetry p ↔ 2pF− p at large number of bosons. Any combi-
nation of one-particle and one-hole excitations is also possible, giving rise to inter-
mediate excitation energies between εI (p) and εI I (p), that form a continuum in the
thermodynamic limit, known as the particle-hole continuum. Figure 2.4 shows the
type-I and type-II excitation spectra of the Tonks-Girardeau gas. Below εI I , excita-
tions are kinematically forbidden, which is another peculiarity of dimension one.

The Bose-Fermi mapping offers the possibility of investigating exactly and rela-
tively easily a peculiar point of the phase diagram of 1D models, and in particular
of calculating even-order auto-correlation functions of the wavefunction. I illustrate

Fig. 2.4 Excitation energy
of the Tonks-Girardeau gas
in units of the Fermi energy
in the thermodynamic limit,
as a function of the excitation
momentum in units of the
Fermi momentum, for N =4
(squares), N =10 (triangles)
and N =100 hard-core
bosons (dots). The last case
is quasi-indistinguishable
from the thermodynamic
limit (solid)
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this point on the example of the density-density correlation function of the Tonks-
Girardeau gas, using the mapping onto noninteracting fermions in the form

ψTG = |ψF |. (2.17)

In particular,

(nTG)k = |ψTG |2k = |ψF |2k = (nF )k, (2.18)

where n is the density. As a consequence of Wick’s theorem [148], the quantum-
statistical average of the equal-time density correlations of a Tonks-Girardeau gas at
zero temperature is

〈n(x)n(0)〉TG = n20 + 1

L2

∑
k,k ′

e−i(k−k ′)x�(kF − |k|)�(|k ′| − kF ), (2.19)

where x is the distance between the two probed points, k and k ′ are the quantized
momenta, i.e. integer multiples of 2π/L , � is the Heaviside step function, n0=
N/L is the density of the homogeneous gas, and kF =πn0 the norm of the Fermi
wavevector.

In the thermodynamic limit, Eq. (2.19) transforms into

〈n(x)n(0)〉TG
n20

=1+ 1

(2kF )2

∫ kF

−kF
dk e−ikx

[∫ −kF

−∞
+
∫ +∞
kF

]
dk′ eik′x = 1− sin2(kF x)

(kF x)2
.

(2.20)

This quantity represents the density probability of observing simultaneously two
atoms separated by a distance x . The fact that it vanishes at x=0 is a consequence
of Pauli’s principle, known as the Pauli hole, and the oscillating structure is typical
of Friedel oscillations.

Actually, one can even go a step further and treat time-dependent correlations,
since the Bose-Fermi mapping remains exact even in the time-dependent problem
[149, 150]. It yields

〈n(x, t)n(0, 0)〉TG = n20 + 1

L2

∑
k,k ′

e−i(k−k ′)xei
�

2m t (k2−k ′2)�(kF − |k|)�(|k ′| − kF ),

(2.21)
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and in the thermodynamic limit

〈n(x, t)n(0, 0)〉TG
n20

=

1+ 1

4k2F

∫ kF

−kF

dk e
i
(

�k2 t
2m −kx

)[∫ +∞

−∞
dk ′e−i

(
�k′2 t
2m −k ′x

)
−
∫ kF

−kF

dk ′e−i
(

�k′2 t
2m −k ′x

)]
.

(2.22)

To evaluate it, I define

I (x, t)=
∫ +∞

−∞
dk e

−i
(

�
2k2

2m t−kx
)
, J (x, t) =

∫ kF

−kF

dk e
i
(

�
2k2

2m t−kx
)
. (2.23)

Then, doing natural changes of variables and using the property

∫ +∞

0
dx sin(x2) =

∫ +∞

0
dx cos(x2) = 1

2

√
π

2
, (2.24)

I find

I (x, t) = e
imx2

2�t

√
2mπ

�t
e−iπ/4. (2.25)

This term represents a decaying wave packet, and is equal, up to a multiplicative 2π
factor, to the propagator of free fermions.

The total correlation function can then be split into two parts, one ‘regular’ and
real-valued, the other complex and associated to the wave packet, such that

〈n(x, t)n(0, 0)〉TG = 〈n(x, t)n(0, 0)〉TGreg + 〈n(x, t)n(0, 0)〉TGwp . (2.26)

Then, defining the Fresnel integrals as

S(x) = 2√
2π

∫ x

0
dt sin(t2), C(x) = 2√

2π

∫ x

0
dt cos(t2), (2.27)

focusing on the regular part I find

〈n(x, t)n(0, 0)〉TGreg

n20
= 1 − 1

4k2F
|J (x, t)|2

=1− π

8

1

ωF t

{
C

[√
m

2�t
(x+vF t)

]
−C

[√
m

2�t
(x−vF t)

]}2

−π

8

1

ωF t

{
S

[√
m

2�t
(x+vF t)

]
−S

[√
m

2�t
(x−vF t)

]}2
(2.28)

where vF = �kF
m is the Fermi velocity, and ωF = �k2F

2m .
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The Tonks-Girardeau case will serve as a comparison point several times in the
following, as a limit of the Lieb-Liniger model where an exact closed-form solution
is available. One should keep in mind, however, that any observable involving the
phase of the wavefunction, although it remains considerably less involved than the
general finitely-interacting case, is not as easy to obtain.

Another advantage of the Bose-Fermimapping is that it holds even in the presence
of any kind of trapping, in particular if the hard-core bosons are harmonically trapped,
a situation that will be encountered in Chaps. 3 and 5. It has also been extended to
spinor fermions [151] and Bose-Fermi mixtures [152], and another generalization
maps interacting bosons with a two-body δ-function interaction onto interacting
fermions, except that the roles of strong and weak couplings are reversed [153]. An
extension to anyons has also been considered [154].

To sum up with, the hard-core Bose gas, also known as the Tonks-Girardeau gas,
is partially equivalent to the noninteracting spinless Fermi gas thanks to the Bose-
Fermi mapping, in the sense that their ground-state wavefunctions differ only by
a multiplicative function that assumes two values, ±1. Their energies, excitation
spectra and density correlation functions are identical as well.

Along with this exact mapping, another technique exists, where the mapping
from an interacting to a noninteracting problem is only approximate, and is called
bosonization. I proceed to study its application to interacting fermions and bosons
in 1D, within the formalism of Tomonaga-Luttinger liquids.

2.4.3 Bosonization and Tomonaga-Luttinger Liquids

The first attempts to solve many-body, strongly-correlated problems in one dimen-
sion have focused on fermions. It turns out that a non-perturbative solution can
be obtained by summing an infinite number of diverging Feynman diagrams, that
correspond to particle-hole and particle-particle scattering [155], in the so-called
Parquet approximation. This tour de force, supplemented by renormalization group
techniques [156], is known as the Dzyaloshinskii-Larkin solution.

There is, actually, a much simpler approach to this problem. It is based on a proce-
dure called bosonization, introduced independently in condensed-matter [157] and
particle physics [158] in the course of the 1970s. In a nutshell, bosonization con-
sists in a reformulation of the Hamiltonian in a more convenient basis involving free
bosonic operators (hence the name of the method), that keeps an equivalent physical
content in a given range of energies. To understand the utility of bosonization, one
should bear in mind that interaction terms in the fermionic problem are difficult to
treat as they involve four fermionic operators. The product of two fermionic opera-
tors reducing to a single bosonic one, it seems interesting to expand fermions on a
bosonic basis to obtain a quadratic, and thus diagonalizable, Hamiltonian.

The main reason for bosonization’s popularity is that some problems that look
intractable when formulated in terms of fermions become easy, and sometimes even
trivial, when formulated in terms of bosonic fields. The importance and depth of
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this change of viewpoint in the field of low-dimensional condensed-matter physics
is such, that it has been compared to the Copernician revolution [159]. To date,
bosonization remains one of the most powerful non-perturbative approches to many-
body quantum systems.

Contrary to the exact methods discussed above, bosonization is only an effective
theory, but has non-negligible advantages as a bosonized model is often far easier to
solve than the original one when the latter is integrable. Moreover, the bosonization
technique yields valuable, complementary information to Bethe Ansatz, about its
universal features (i.e., those that do not depend on microscopic details), and allows
to describe a wide class of non-integrable models as well.

Tomonaga was the first to identify boson-like behavior of certain elementary
excitations in a 1D theory of interacting fermions [160]. A precise definition of these
bosonic excitations in terms of bare fermions was given by Mattis and Lieb [161],
who took the first step towards the full solution of a model of interacting 1D fermions
proposed by Luttinger [162]. The completion of this formalism was realized later
on by Haldane [163], who coined the expression ‘Luttinger liquid’ to describe the
model introduced by Luttinger, exactly solved by bosonization thanks to its linear
dispersion relation.

Actually, 1D systems with a Luttinger liquid structure range from interacting
spinless fermions to fermions with spin, and interacting Bose fluids. Condensed-
matter experiments have confirmed its wide range of applicability, from Bechgaard
salts [164] to atomic chains and spin ladders [165–167], edge states in the frac-
tional quantum Hall effect [168, 169], carbon [170] and metallic [171] nanotubes,
nanowires [172], organic conductors [173, 174] and magnetic insulators [175].

The harmonic fluid approach to bosonic Luttinger liquids, following Cazalilla
[176], is adapted to any statistics at the price of tiny modifications in the fermionic
case. This approach operates a change of viewpoint compared to the abovementioned
historical developments, as it defines a Tomonaga-Luttinger liquid as a 1D model
described by the generic Hamiltonian

HT L = �vs

2π

∫ L

0
dx

[
K (∂x�)2 + 1

K
(∂xθ)

2

]
, (2.29)

where θ and � are scalar fields that satisfy the commutation relation

[∂xθ(x),�(x ′)] = iπδ(x−x ′). (2.30)

Note that this commutation relation is anomalous, as it involves a partial derivative
of one of the fields.

The motivation behind this definition is that the Tomonaga-Luttinger Hamilto-
nian is the simplest that can be obtained by expanding an interaction energy in the
deviations from constant density and zero current. The cross-term ∂xθ∂xφ does not
arise, as it could be removed by Galilean transformation. Usually, the fields ∂xθ and
� correspond to local density fluctuations around the mean value,
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1

π
∂xθ(x)=n(x)−n0, (2.31)

and to the quantumphase respectively. The positive coefficients K and vs in Eq. (2.29)
are phenomenological, model-dependent parameters. To be more specific, K is a
dimensionless stiffness and vs represents the sound velocity in the homogeneous
gas.

Qualitatively, two limiting regimes are expected. If K is large, density fluctuations
are important and phase fluctuations are reduced. This case corresponds to a classical
regime that looks like a BEC phase, but can not be so due to the impossibility of
symmetry breaking [14]. If K is small, the system looks like a crystal to some extent.
Note also the � ↔ θ and K ↔ 1/K duality, suggesting that the value K =1 has
a special meaning. Actually, it corresponds to noninteracting fermions, as will be
shown below.

Since the Tomonaga-Luttinger Hamiltonian (2.29) is a bilinear form, it can be
diagonalized. A convenient basis is provided by bosonic creation and annihilation
operatorswith standard commutation relations, [bq , b†q ′ ] = δq,q ′ . Neglecting topolog-
ical terms that are crucial at themesoscopic scale but irrelevant in the thermodynamic
limit [176], and using periodic boundary conditions, the original fields are expressed
in this basis as

θ(x) = 1

2

∑
q �=0

∣∣∣∣
2πK

qL

∣∣∣∣
1/2

(eiqxbq + e−iqxb†q) (2.32)

and

�(x) = 1

2

∑
q �=0

∣∣∣∣
2π

qLK

∣∣∣∣
1/2

sign(q)(eiqxbq + e−iqxb†q). (2.33)

Inserting these mode expansions into Eq. (2.29) and using the bosonic commuta-
tion relations yields the diagonalized form of the Hamiltonian,

HT L =
∑
q �=0

�ω(q)b†qbq , (2.34)

where

ω(q) = vs |q| (2.35)

is a sound-like spectrum associated to density waves, justifying a posteriori the nota-
tion vs . Equations (2.34) and (2.35) describe gapless, linear-dispersing (i.e. collective
phonon-like) excitations, sealing the absence of individual (i.e. particle-like) excita-
tion in the low-energy spectrum, and the breakdown of the Fermi liquid picture in
1D. Actually, Eqs. (2.34) and (2.35) could as well serve as definition of a homoge-
neous Tomonaga-Luttinger liquid, thus emphasizing that Luttinger liquid theory is
based on linearization of the dispersion relation. This is indeed the procedure used
to construct the field theory from a given microscopic model.
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Another striking point in Eq. (2.35) is that it does not explictly depend on the
parameter K , suggesting that vs and K are linked together. This property can be
checked using the density-phase approach. Writing the wavefunction as

ψ(x) = √
n(x)ei�(x), (2.36)

and inserting this identity into the kinetic part of the microscopic Hamiltonian, that
reads

Hkin = �
2

2m

∫
dx ∂xψ

†∂xψ, (2.37)

yields by identification with Eq. (2.29) the relation

vs K = vF , (2.38)

as derivatives of the operator ψ are absent from the interaction term. Equation (2.38)
holds for translation-invariant models. The Luttinger parameters are also linked
together by the relation, valid for any model,

K

vs
= πn20κ, (2.39)

where

κ = − 1

L

(
∂L

∂P

)

N

(2.40)

is the compressibility, accessible to experiments. The density-phase picture of
Eq. (2.36), pioneered by Schotte and Schotte [177], is a key ingredient of bosoniza-
tion. In principle, it allows to justify the form of Eq. (2.29) for quantum field theories
in the continuum, starting at the microscopic level.

To illustrate the predictive power of the Tomonaga-Luttinger liquid formalism on
a concrete example, I proceed to study its density correlations. It is well-known (I
refer to Appendix A.1 for a detailed derivation) that the density-density correlations
of a Tomonaga-Luttinger liquid have the following structure in the thermodynamic
limit [178, 179]:

〈n(x)n(0)〉T L

n20
= 1 − K

2

1

(kF x)2
+

+∞∑
m=1

Am(K )
cos(2mkFx)

(kF x)2Km2 , (2.41)

where {Am(K )}m>0 is an infinite set of model-dependent functions of K , called
form factors. Equation (2.41) is one of the greatest successes of the Tomonaga-
Luttinger liquid theory, as it explicitly yields the large-distance structure of a non-
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local correlation function, that would otherwise be difficult to obtain by BetheAnsatz
techniques.

Since Eq. (2.29) is an effectiveHamiltonian, its validity range is not a priori known
when it comes to describing a specific model, such as the Lieb-Liniger model. A
good starting point to investigate this crucial issue is to check whether Eq. (2.41)
is compatible with the known exact result in the Tonks-Girardeau regime. Although
Eq. (2.41) looks far more complicated than Eq. (2.20), setting K =1, A1(1)= 1

2 , and
Am(1)=0, ∀m>1, yields

〈n(x)n(0)〉T L
K=1

n20
=1− 1

k2F x
2

[
1−cos(2kF x)

2

]
= 1 − sin2(kF x)

(kF x)2
= 〈n(x)n(0)〉TG

n20
.

(2.42)

Therefore, the Tomonaga-Luttinger liquid theory reproduces the exact static den-
sity correlations of a Tonks-Girardeau gas, or equivalently a gas of noninteracting
fermions, albeit at the price of fine-tuning an infinite set of coefficients. Note that the
value of the Luttinger parameter K associated to noninteracting fermions could be
obtained by deriving the Luttinger Hamiltonian for the latter. Another possibility is
to use Eq. (2.38) and bear in mind that vs =vF , which is even more straightforward.
None of these approaches, however, yields the values of {Am}.

This fine-tuning is assuredly a considerable shortcoming, unless it is possible to
find the whole, infinite set of form factors in non-trivial cases (i.e. at finite interaction
strength), by a systematic procedure that does not require thorough knowledge of the
exact solution. Fortunately, the large-distance decay of the power law contributions in
Eq. (2.41) becomes faster with increasing order m, and coefficients {Am(K )}m>1 are
known to be negligible compared to A1(K ) in the thermodynamic limit for the Lieb-
Liniger model with repulsive interactions [180, 181]. Thus, only two coefficients are
actually needed to describe the statics at large distances: the Luttinger parameter K ,
and the first form factor A1(K ).

The explicit expression of K in the effective Hamiltonian in terms of the micro-
scopic parameters of the model it is derived from is sometimes found constructively,
e.g. for noninteracting fermions [163] or interacting fermions in the g-ology context
[182], where Eq. (2.29) can be obtained from a more fundamental analysis, starting
from the microscopic Hamiltonian. It has also been derived in particular from the
hydrodynamic Hamiltonian of a one-dimensional liquid in the weakly-interacting
case [104, 183]. In most other contexts, a constructive derivation is lacking, but is
not required to make quantitative predictions, as long as the two necessary param-
eters can be obtained from external considerations, stemming from Bethe Ansatz,
DMRG or experiments. As an example, in the case of the Lieb-Liniger model, K can
be extracted by coordinate Bethe Ansatz using thermodynamic relations [114]. For
this model, it varies between K =1 in the infinitely-interacting regime and K →+∞
for vanishing interactions. The form factor A1(K ) has been obtained in the repulsive
regime, solving numerically a set of equations obtained with algebraic Bethe Ansatz
techniques [180, 181].



2.4 Analytical Methods to Solve 1D Quantum Models 29

I have shown above that the Tomonaga-Luttinger liquid formalism reproduces
exactly the static density correlations of the Tonks-Girardeau gas. However, formany
purposes, one may be interested in time-dependent correlations as well. Time depen-
dence is taken into account in the Schrödinger picture by A(x, t) = eiHt A(x)e−i Ht ,
where A is any observable and H is the Hamiltonian. Using the equations of motion
or the Baker-Campbell-Haussdorff lemma, from Eqs. (2.32), (2.34) and (2.35), one
finds

θ(x, t)= 1

2

∑
q �=0

∣∣∣∣
2πK

qL

∣∣∣∣
1/2 (

ei[qx−ω(q)t]bq + e−i[qx−ω(q)t]b†q
)
, (2.43)

and after some algebra (details can be found again in Appendix A.1),

〈n(x, t)n(0, 0)〉T L

n20
=1− K

4k2F

[
1

(x−vs t)2
+ 1

(x+vs t)2

]
+

+∞∑
m=1

Am (K )
cos(2mkF x)

k2Km2
F (x2−v2s t2)Km2

.

(2.44)
When truncated to any finite order, Eq. (2.44) is divergent on the mass shell, defined
by x=±vs t , and is usually regularized as x=±(vs t − iε)where ε is a short-distance
cut-off, that mimics a lattice regularization. Sometimes, the term light-cone is also
used instead of mass shell, in analogy with special relativity. Indeed, the bosons
describing the dispersion are massless, since they verify the relativistic dispersion
ε(p)=c

√
M2c2+ p2, where ε(q)=�ω(q) = �vs |q|, with a mass term M=0, p =

�q, and vs plays the same role as c, the speed of light.
In the Tonks-Girardeau regime, that corresponds to K =1, the whole set of coeffi-

cients {Am}m≥1 has already been obtained from the static treatment. Equation (2.44)
then reduces to

〈n(x, t)n(0, 0)〉T L
K=1

n20
= 1 − 1

4k2F

[
1

(x − vF t)2
+ 1

(x + vF t)2

]
+ 1

2

cos(2kF x)

k2F (x2 − v2
F t

2)
.

(2.45)

A natural question is to what extent this expression captures the exact dynamics of
the Tonks-Girardeau gas. Since Eq. (2.28) involves special functions, it is not obvious
whether it is consistent with Eq. (2.45). However, considering a specific point far
from the mass shell, i.e. such that kF |x ± vF t | � 1, using the expansions S(z) �z�1
1
2 − 1√

2πz
cos(z2) and C(z) �z�1

1
2 + 1√

2πz
sin(z2), keeping only the lowest orders

in |x ± vF t |, I finally recover Eq. (2.45). Had I not previously used the Galilean
invariance argument, the condition vs =vF would have been imposed at this stage
for consistency.

The conclusion of this first-order study is that the Tomonaga-Luttinger liquid
theory captures the short-time, long-distance dynamics of the Tonks-Girardeau gas,
i.e. far from the ‘light-cone’, except for the contribution of the decaying wave packet,
that vanishes at large times. A quantitative validity criterion is thus kF |x | � ωF |t | �
1, and in a relativistic language, Eq. (2.45) holds deep inside the space-like region.
Recalling the splitting of the Tonks-Girardeau correlation function into regular and
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wavepacket part in Eq. (2.26), I find that the Tomonaga-Luttinger liquid fails to
describe the regular part of the time-dependent density-density correlations of the
Tonks-Girardeau gas at larger time scales, as can be seen at next order already. Using
expansions of the Fresnel integrals S andC to higher orders around t=0 inEq. (2.28),
keeping terms in the light-cone variables u= x−vF t and v= x+vF t to same order,
I find

〈n(x, t)n(0, 0)〉TGreg

n20
= 〈n(x, t)n(0, 0)〉T L ,TG

n20
+ ωF t

k4F

sin(2kF x)

x2 − v2
F t

2

[
1

v2
− 1

u2

]

+2(ωF t)2

k6F

{
5

2

[
1

v6
+ 1

u6

]
+ cos(2kF x)

(x2 − v2
F t

2)3
− 3 cos(2kF x)

x2 − v2
F t

2

[
1

v4
+ 1

u4

]}

+12(ωF t)3

k8F

{
−5 sin(2kF x)

x2 − v2
F t

2

[
1

v6
− 1

u6

]
+ sin(2kF x)

(x2 − v2
F t

2)3

[
1

v2
− 1

u2

]}
+ . . . ,

(2.46)

which turns out to be equivalent to the series expansion obtained in [184]. The
new terms in the density-density correlations compared to the first-order expansion
described by the Tomonaga-Luttinger theory are all proportional to a power of ωF t .
As such, they vanish at equal times as expected. None of them is reproduced by the
effective field theory.

To obtain better agreementwith the exact expansion, a generalized effective theory
should predict higher-order terms as well. To do so, at first glance it seems natural to
include non-linearities in the Tomonaga-Luttinger Hamiltonian, that correspond to
curvature of the dispersion relation. However, the expression Eq. (2.46) diverges at all
orders on the mass shell, except when they are all resummed, plaguing this approach
at the perturbative level in the vicinity of the mass shell [185]. Similar conclusions
have been drawn from the comparison of the Tomonaga-Luttinger liquid theory and
exact Tonks-Girardeau results, focusing on other observables, such as the Green
function [186].

TheTomonaga-Luttinger result Eq. (2.45) alsomisses the part of the exact density-
density correlation function associated to the wave packet, whose expansion reads

〈n(x, t)n(0, 0)〉TGwp

n20

= π

4

e−iπ/4

√
2

1

ωF t

{
C

(√
m

2�t
v

)
−C

(√
m

2�t
u

)
+i

[
S

(√
m

2�t
v

)
−S

(√
m

2�t
u

)]}

� i

√
π

4
e−iπ/4 1√

ωF t
e−i (kF x)2

4ωF t

[
ei(kF x−ωF t)

kFu
− e−i(kF x+ωF t)

kFv

]
+ . . . (2.47)
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It has been shown in [187] that in the general case (i.e. for arbitrary interaction
strengths in the microscopic model), the wave packet term coincides with the saddle
point.

The unpleasant conclusion is that, as far as dynamics of density-density correla-
tions is concerned, the standard Tomonaga-Luttinger liquid approach presented here
misses on the one hand an infinite number of regular terms, and on the other hand
the wave packet term. Thus, it is not adapted to investigate long-time dynamics.

To sum upwith, in this section I have presented the Tomonaga-Luttinger Hamilto-
nian, its diagonalization via the bosonization procedure, and given the structure of its
density-density correlation function. Even at zero temperature, correlators decay as
power laws, indicating the lack of a characteristic length scale. The tendency towards
certain ordering is defined by the most weakly-decaying term, which is determined
by the sole Luttinger parameter K , renormalized by interactions as would be the
case for a Fermi liquid. However, the Tomonaga-Luttinger liquid is a paradigmatic
example of a non-Fermi liquid [188], and unlike the latter applies to bosons and
insulating magnetic materials as well.

The main conundrums of bosonization are the built-in ultraviolet cut-off, that
calls for external form-factor calculations, and its limitation to low energy due
to the linear spectrum assumption. These points will be investigated in detail in
Chap. 4, partly devoted to the dynamical correlations of Tomonaga-Luttinger liq-
uids in momentum-energy space.

To circumvent limitation to low energies, an intuitive approach would be to try
and include terms describing curvature of the dispersion relation. However, upon
closer inspection, such terms would break Lorentzian invariance and doom this tech-
nique at the perturbative level. The extended Tomonaga-Luttinger model that has
emerged as the mainstream paradigm in the first decade of the twenty-first century
is the Imambekov-Glazman formalism of ‘beyond Luttinger liquids’ (see [189] for
a review), that is based on a multiband structure and an impurity formalism, instead
of including curvature. In particle physics, bosonization has also been extended to
new formalisms where the bosons of the new basis are interacting, and non-abelian
bosonization has been developed [190].

Another major problem of the Tomonaga-Luttinger liquid theory in its standard
form is that proving the validity of the bosonization formalism in explicit detail
and ironing out its subtleties is considerably harder than merely applying it. This
issue has been widely ignored and may look even more obsolete nowadays regard-
ing the success of the Imambekov-Glazman paradigm, but denotes a lack of deep
understanding, in my opinion. In the next chapters, I shall come back to this issue
regularly and try and fill a few gaps in the previous literature.

The lack of obvious generalization to higher dimensions is also often deplored.
Despite numerous efforts and reflexions in this direction [191, 192], a general con-
struction of an efficient Tomonaga-Luttinger liquid formalism in higher dimensions
is still lacking. I shall come back to this issue in Chap.5, where I construct a higher-
dimensional Tomonaga-Luttinger model in a peculiar case.
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2.4.4 Conformal Field Theory

To conclude this introductory section devoted to theoretical tools, I recall the basic
ideas behind conformal field theory (CFT). This research topic is extremely wide
and active, so I will not attempt to introduce all of its (even elementary) aspects, but
rather select those, that are useful to my purpose, i.e. essentially the ones linked to
finite-size and temperature thermodynamics and correlation functions.

My first motivation is that conformal invariant systems form a subclass of inte-
grable models, the second is that CFT provides an alternative to bosonization when it
comes to evaluate finite-size and finite-temperature effects on correlation functions.
Conformal field theory has also become essential as a complementary tool to numer-
ical methods, since it enables to extrapolate results obtained at finite particle number
(typically from exact diagonalization) to the thermodynamic limit.

As a starting point, let me introduce the notion of conformal transformation. Since
it has a geometric nature, the tensorial approach to differential geometry, also used
in general relativity, provides compact notations for a general discussion [193]. In
arbitrary dimension, the space-time interval is written in terms of the metric tensor
gμν as

ds2 = gμνdx
μdxν, (2.48)

where I use Einstein’s convention that a pair of identical covariant and contravari-
ant indices represents a summation over all values of the index. The metric tensor
is assumed to be symmetric, gμν =gνμ, and non-degenerate, det(gμν) �=0, thus the
pointwise metric tensor has an inverse, gμν(x), such that

gμν(x)gνλ(x) = δ
μ
λ , (2.49)

where δ
μ
λ represents the identity tensor. A coordinate transformation x → x ′ yields

a covariant transformation of the metric tensor,

g′
μν(x

′) = ∂xα

∂x ′μ
∂xβ

∂x ′ν gαβ(x). (2.50)

An infinitesimal transformation of the coordinates xμ → x ′μ = xμ + εμ(x) can be
inverted as xμ = x ′μ − εμ(x ′) + O(ε2), hence

∂xρ

∂x ′μ = δρ
μ − ∂με

ρ, (2.51)

transforming the metric according to

gμν → g′
μν = gμν + δgμν = gμν − (∂μεν + ∂νεμ). (2.52)
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By definition, a conformal transformation preserves the angle between two vectors,
thus it must leave the metric invariant up to a local scale factor:

g′
μν(x

′) = �(x)gμν(x). (2.53)

For this condition to be realized, the transformation described by Eq. (2.52) must
be such, that the variation of the metric is proportional to the original metric itself.
A more explicit expression of this constraint is obtained by taking the trace, that
corresponds to a contraction in the tensorial formalism:

gμνgμν = D, (2.54)

where D=d+1 is the space-time dimension, yielding

gμν(∂μεν + ∂νεμ) = 2∂νεν . (2.55)

In the end, the constraint Eq. (2.53) has been transformed into

∂μεν + ∂νεμ = 2

D
∂ρε

ρgμν, (2.56)

the so-called conformal Killing equation. Its solutions in Euclidian space, the con-
formal Killing vectors, are of the form

εμ = aμ + ωμνx
ν + λxμ + bμ�x2 − 2(�b · �x)xμ, (2.57)

where ωμν is antisymmetric. It can be shown that if the space-time dimension is
strictly larger than two, the allowed conformal transformations, found by exponen-
tiation of infinitesimal ones described by Eq. (2.57), are of four types.

They correspond to translations, such that

x ′μ = xμ + aμ, (2.58)

dilations such that

x ′μ = λxμ, (2.59)

where λ is a non-negative number, rotations

x ′μ = (δμ
ν + ωμ

ν)x
ν = Mμ

νx
ν (2.60)

and the less intuitive ‘special conformal transformations’ that correspond to a con-
catenation of inversion, translation and inversion:
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x ′μ = xμ − bμ�x2
1 − 2�b · �x + b2 �x2 . (2.61)

The conclusion is that the group of conformal transformations is finite in this case.
Space-time dimension two, however, appears to be special, as the constaint (2.53)

reduces to

∂1ε1 = ∂2ε2, ∂1ε2 = −∂2ε1. (2.62)

Equation (2.62) is nothing else than the well-known Cauchy-Riemann condition
that appears in complex analysis, and characterizes holomorphic functions. In other
words, since any holomorphic function generates a conformal transformation in a
(1+1)DQFT, the dimension of the conformal group is infinite. Actually, this property
is of considerable help to solve models that feature conformal invariance.

In field theory, the interest started in 1984 when Belavin, Polyakov and
Zamolodchikov introduced CFT as a unified approach to models featuring gapless
linear spectrum in (1+1)D [194]. This property implies that this formalism shares its
validity range with the Tomonaga-Luttinger liquid theory, hinting at an intimate link
between CFT and bosonization, as first noticed in [195]. The infinite-dimensional
conformal symmetry actually stems from the spectrum linearity. From the point of
view of integrability, the most important result of CFT is that correlation functions of
critical systems obey an infinite number of so-called Ward identities. Their solution
uniquely determines all correlation functions, and in this respect CFT is a substitute
to the Hamiltonian formalism to exactly solve a gapless model.

Let us follow for a while the analogy with bosonization. Within the CFT formal-
ism, correlation functions are represented in terms of correlators of bosonic fields.
The two-point correlation function is defined from the action S within the path-
integral formalism as

〈φ1(x1)φ2(x2)〉 = 1

Z

∫
D[φ] φ1(x1)φ2(x2)e

−S[φ], (2.63)

where Z =∫ D[φ] e−S[φ] is the partition function of the model. Equation (2.63) is
then simplified, using the properties of the conformal transformations listed above
[196].

Enforcing rotational and translational invariance imposes that the two-point cor-
relation function depends only on |x1−x2|. Scale invariance in turn yields

〈φ1(x1)φ2(x2)〉 = λ�1+�2〈φ1(λx1)φ2(λx2)〉, (2.64)

where �1/2 are the dimensions of the fields φ1/2, and combining these invariances
yields

〈φ1(x1)φ2(x2)〉 = C12

|x1−x2|�1+�2
. (2.65)
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Applying also conformal invariance, one obtains

〈φ1(x1)φ2(x2)〉 = δ(�1 − �2)
C12

|x1−x2|2�1
. (2.66)

More generally, all correlation functions of a model described by CFT decay with
an inverse power law at large distance, as in the Tomonaga-Luttinger framework, as
a consequence of the operator product expansion.

Equation (2.66) would be of little importance for our purpose, however, if it were
not supplemented by an extremely useful result. There is a deep connection between
finite-size scaling effects and conformal invariance [197, 198], allowing to investigate
mesoscopic effects from the knowledge of the thermodynamic limit. For instance,
the first-order finite-size correction to the energy with respect to the thermodynamic
limit is

δE = −πcvs
6L

, (2.67)

where c is another key concept of CFT known as the conformal charge, interpreted
in this context as the model-dependent proportionality constant in the Casimir effect.

Actually, conformal field theories are classified through the conformal dimensions
of their primary fields, {�i }, and their conformal charge. When 0 < c < 1, critical
exponents of the correlation functions are known exactly, and due to unitarity con-
formal charge can only take quantized, rational values [199],

c = 1 − 6

m(m + 1)
, m ≥ 3. (2.68)

When c≥1, however, exponents of the large-distance asymptotics of the correlation
functions may depend on the parameters of the model. This implies that Tomonaga-
Luttinger liquids must enter this category. As central charge also corresponds to the
effective number of gapless degrees of freedom, Tomonaga-Luttinger liquids have a
central charge c=1, and lie in the universality class of free fermions and bosons.

As far as correlation functions are concerned, primary fields are defined by their
transformation

φ(z, z) →
(

∂w

∂z

)� (∂w

∂z

)�

φ′ [w(z), w(z)] , (2.69)

under conformal transformations of the complex variablew=vsτ + i x . For instance,
finite-size effects are obtained through the transformation from the infinite punctured
z-plane to the w-cylinder:

w(z) = L

2π
ln(z) ↔ z = e

2πw
L . (2.70)
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Mesoscopic physics is, however, not always far from macroscopic one. More inter-
estingly, so, this correspondence also yields finite-temperature corrections. In par-
ticular, CFT allows to evaluate finite-size and finite-temperature correlations of a
Tomonaga-Luttinger liquid. The most relevant terms read [176]

〈n(x, t)n(0, 0)〉T L
L<+∞

n20
= 1 − K

4

(
π

kF L

)2
⎧
⎨
⎩

1

sin2
[

π(x−vs t)
L

] + 1

sin2
[

π(x+vs t)
L

]
⎫
⎬
⎭

+A1(K )

(
π

kF L

)2K cos(2kF x)

sinK
[

π(x−vs t)
L

]
sinK

[
π(x+vs t)

L

]

(2.71)

at finite size, and at finite temperature, [200]

〈n(x, t)n(0, 0)〉T L
T>0

n20
= 1 − K

4

(
π

kF LT

)2
⎧
⎨
⎩

1

sinh2
[

π(x−vs t)
LT

] + 1

sinh2
[

π(x+vs t)
LT

]
⎫
⎬
⎭

+A1(K )

(
π

kF LT

)2K cos(2kF x)

sinhK
[

π(x−vs t)
LT

]
sinhK

[
π(x+vs t)

LT

] ,

(2.72)

where LT =β�vs plays the role of a thermal length, with β=1/(kBT ) the inverse
temperature.

Equations (2.71) and (2.72) are written in a way that puts the emphasis on their
similar structure,with the correspondence L ↔ LT and sin ↔ sinh, as expected from
the mirror principle, illustrated in Fig. 2.5. In both cases a stripe in the complex plane
is mapped onto a cylinder, the introduction of an imaginary time and the property
sin(i x) = i sinh(x) are the reasons for the similitudes and the slight differences
between the two expressions.

I have also recovered Eqs. (2.71) and (2.72) by generalizations of the bosonization
procedure to finite system size and temperature [201] (elements of derivation are
given in Appendix A.2). These equations are valid in the scaling limit, i.e. for x � ε,
L (T ) − x � ε, where ε is the short-distance cut-off, of the order of 1/n0, and L(T ) �
x . Far from the light-cone, Eq. (2.72) scales exponentially, but in both cases, the
thermodynamic limit result is recovered at short distance and time.

Actually, CFT even allows to go a step further, and investigate the intertwined
effects of finite temperature and system size. This topic is far more advanced, how-
ever. The underlying idea consists in folding one of the cylinders at finite size or
temperature into a torus, as illustrated in Fig. 2.5. One can anticipate that the struc-
ture of the density-density correlation function will be similar to Eq. (2.71), with the
sine function replaced by a doubly-periodic function. This double periodicity is at
the heart of the field of elliptic functions, a wide class of special functions.
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Fig. 2.5 Illustration of the
complex coordinate
conformal transformations to
obtain the finite-size,
finite-temperature (cylinder
geometries), as well as finite
size and temperature
correlations (torus geometry)
from the zero temperature
correlations in the
thermodynamic limit (plane)

The final result reads (cf Appendix A.3 for elements of derivation)
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where u= x−vs t and v= x+vs t are the light-cone coordinates,

θ1(z, q) = 2q1/4
+∞∑
k=0

(−1)kqk(k+1) sin[(2k+1)z], |q| < 1, (2.74)

is the first elliptic theta function, and ′ denotes derivation with respect to the variable
z. The first two terms in Eq. (2.73) agree with the result of [202] as can be checked
by easy algebraic manipulations. Note that all the expressions above have been
obtained assuming periodic boundary conditions, i.e. a ring geometry, but space-
time correlations depend on boundary conditions at finite size [176].

To conclude, in this section I have presented conformal field theory as a formalism
that allows to deal with critical 2D classical or 1D quantummodels featuring a scale-
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invariant physics. It can be viewed as an alternative to the bosonization procedure
to derive the correlation functions of Luttinger liquids at finite size and tempera-
ture. Beyond this basic aspect, CFT remains central to the current understanding
of fundamental physics. In recent years, attention has switched to conformal field
theories in higher dimensions. The conformal bootstrap provides the most accurate
evaluations of the critical exponents of the 3D Ising model [203], and the discovery
of the AdS/CFT duality has provoked a revolution in theoretical high-energy physics
[204, 205], now pervading condensed-matter physics as well [206].

2.5 From Lineland to Flatland: Multi-component Systems
and Dimensional Crossovers

To finish the dimensional roundabout, let us come back to higher dimensions. Actu-
ally, in the aforementioned issue of bridging 1D and 2D, theory and experiment face
opposite difficulties. In an experimental context, reducing the effective dimension
of a system of ultracold atoms by lowering temperature and strengthening confine-
ment is quite challenging. In theoretical physics, both analytically and numerically,
one-dimensional models are considerably easier to deal with, as the number of avail-
able tools is far greater. These techniques can often be adapted to multi-component
systems, obtained by adding a degree of freedom, at the price of much more efforts
and cumbersome manipulations of summation indices. However, multi-component
models are often better suited to describe experiments than strictly-1D models.

Two deep questions are in order: first, can this new degree of freedom realize
or simulate an additional space dimension? Second, is it possible to deal with the
limit where the parameter associated to this degree of freedom allows to approximate
a higher-dimensional system? This phenomenon is generically called dimensional
crossover, and from a theoretical perspective, it could hopefully give access to a
regime where no efficient analytical tool is available to tackle the problem in a direct
way.

Studying dimensional crossovers allows to gain insight into dimensional-
dependent phenomena. Two concrete and relevant examples that may come to mind
are the following: one-dimensional waveguides are not a priviledged place to observe
Bose-Einstein condensation, but the latter is allowed in 3D. If one-dimensional
atomic wires are created so that they are dense enough in space, then Bose-Einstein
condensation occurs [207, 208]. As a second illustration, in two and three dimen-
sions, interacting fermions are often described by the Fermi liquid theory. The latter
fails in 1D, where low-energy physics is described by Luttinger liquid theory, which
in turn fails in higher dimensions. Dimensional crossovers may shed light on the
subtleties of the Luttinger-Fermi liquid crossover. I will give a simple, qualitative
explanation of this transition in Chap. 5.

There are actually many approaches and tools to treat the problem of dimensional
crossovers, and not all of them are equivalent. One can think of gradually changing
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the dimension of the system, in such a way that its dimension d takes non-integer
values. This tomographic approach is taken formally within renormalization group
techniques, but in this context non-integer values do not really have a physical mean-
ing. This approach has been used to investigate the Luttinger-Fermi liquid transition
[209, 210]. One can also imagine that the fractal dimension of the system is tunable.
Although fractal systems are being devoted attention to [211, 212], this possibility
does not sound realistic with current experimental techniques.

More promising is the idea of coupling one-dimensional gases, and paving space
to obtain a higher-dimensional system in the limit where the number of components
becomes infinite. This seductive idea, perhaps themost suited to explore the Luttinger
to Fermi liquid crossover [213–215], is actually quite difficult to formalize, but this
interaction-driven scenario has been implemented experimentally [216, 217].

The most attractive trend in recent years is to use an internal degree of freedom,
such as spin or orbital angular momentum, to simulate higher-dimensional systems
through a so-called synthetic dimensions [218–222]. A variant relies on the use a
dynamical process to simulate an additional dimension [223].

The approach Iwill use inChap.5 is different, and consists in releasing a transverse
confinement to generate new degrees of freedom [224], associated to a multi-mode
structure in energy space [225].

2.6 Summary of This Chapter

In this introductory chapter, I have tried to give a glimpse of the conceptual difficulties
associated to the notion of space dimension in physics. While dimensions larger than
three are obviously difficult to apprehend, the lower number of degrees of freedom in
a 1Dworld also leads to fascinating effects on ultracold gases, such as collectivization
ofmotion, fermionization of bosons, or spin-charge separation. TheMermin-Wagner
theorem prevents thermal phase transitions from occuring in 1D, urging for a shift
of paradigm to describe low-dimensional gases, better characterized through their
correlation functions.

Ultracold atoms are a versatile tool to simulate condensed-matter physics, as
virtually every parameter is tunable, from particle number and density, to the strength
and type of interactions, geometry of the gas and internal degrees of freedom. More-
over, temperature scales span several decades, allowing to probe thermal or purely
quantum fluctuations and their intertwined effects. Their effects are enhanced in low-
dimensional gases, obtained through highly-anisotropic trapping potentials, and the
ring geometry is at the core of current attention.

I have presented the main analytical tools that allow to study this experimental
configuration. A fair number of low-dimension models are integrable, from quantum
one-dimensional spin chains and quantumfield theories, to two-dimensional classical
spin chains and ice-type models, allowing to obtain their exact thermodynamics and
excitation spectrum by coordinate Bethe Ansatz, or their correlation functions by
algebraic Bethe Ansatz.
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A trivial peculiar case of integrable model is provided by a gas of
noninteracting spinless fermions. The latter is in a one-to-one correspondence to
the Tonks-Girardeau gas of hard-core bosons according to Girardeau’s Bose-Fermi
mapping, allowing to obtain the exact energy, even-order correlation functions and
excitation spectrum of this strongly-interacting model, even in the non-integrable
case where it is confined by a harmonic trap.

At finite interaction strength, bosonization provides a means to obtain the exact
large-distance asymptotics of correlation functions of gapless models. I have applied
it to the Tomonaga-Luttinger liquid, an effective model that universally describes
many gapless microscopic models in 1D, and have discussed its validity range on the
example of time-dependent density-density correlations of the Tonks-Girardeau gas.
For this observable, the Tomonaga-Luttinger prediction is exact in the static case,
and quite accurate at first order far from the mass shell in the dynamical case.

I have also given a brief introduction to conformal field theory, as a peculiar
case of integrable theory, and an alternative formalism to obtain the finite-size and
finite-temperature correlation functions of Tomonaga-Luttinger liquids.

To finish with, I have introduced the problematics of dimensional crossovers to
higher dimensions, and themain knownways to realize them in ultracold atom setups,
often based on multi-mode structures.
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Chapter 3
Ground-State Static Correlation
Functions of the Lieb–Liniger Model

3.1 Introduction

In this chapter, I characterize a strongly-correlated, ultracold one-dimensional Bose
gas on a ring through its equilibrium, static correlation functions. The gas is described
by the Lieb–Liniger model, that corresponds to contact interactions. This model
is arguably the most conceptually simple in the class of continuum quantum field
theories, and the most studied as well. It is integrable, equivalent to the Tonks–
Girardeau gas in the strongly-interacting regime, its low-energy sector lies in the
universality class of Tomonaga–Luttinger liquids, and it can be seen as a conformal
field theory with unit central charge. These properties allow for a quite thorough
theoretical investigation, involving the analytical tools presented in Chap.2.

This chapter is organized as follows: first, I present the Lieb–Liniger model, and
explain the main steps of its solution by the coordinate Bethe Ansatz technique at
finite number of bosons. This method yields the exact many-body wavefunction, and
a set of coupled equations (called Bethe Ansatz equations), whose solution yields the
exact ground-state energy. The Bethe Ansatz equations can be solved numerically
up to a few hundreds of bosons. In the thermodynamic limit, the infinite set of cou-
pled equations can be recast in closed form as a set of three integral equations. Not
only are they amenable to numerical techniques, but approximate analytical solu-
tions can be obtained in a systematic way in the weak- and strong-coupling regimes.
However, finding the exact ground-state energy at arbitrary interaction strength is a
long-standing open problem. More pragmatically, my aim is to bridge the weak- and
strong-coupling expansions at intermediate interaction strengths, with an accuracy
that competes with state-of-the-art numerical methods. I summarize the main histor-
ical breakthroughs in both regimes, and my own contributions to the problem. Once
the energy is known with satisfying accuracy, various thermodynamic quantities can
be extracted through thermodynamic relations.

In a second time, I delve into the issue of correlation functions. The most simple
ones are the local auto-correlations of the many-body wavefunction. Actually, one
does not need to know the many-body wavefunction explicitly to evaluate them, as
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they are related to the moments of the density of pseudo-momenta, a quantity already
evaluated to obtain the ground-state energy. This allows me to investigate the local
first-, second- and third-order correlation functions, that are experimentally relevant
with current methods.

Adding one level of complexity, I address the issue of non-local correlations at
short and large distance. I focus on the one-body correlation function, whose exact
asymptotics are known to relatively high orders in the Tonks–Girardeau regime. In
the general case of finite interaction strength, Tomonaga–Luttinger liquid theory
allows to tackle the large-distance regime. As far as short-distance expansions are
concerned, I construct them using Bethe Ansatz techniques, through relations that I
have called ‘connections’.

The Fourier transform of the one-body correlation function, known as themomen-
tum distribution, is also amenable to ultracold atom experiments, through ballistic
expansion. Once again, its asymptotics can be calculated exactly, and the dominant
term of the large-momentum tail is universal as it is an inverse quartic power law
at any finite interaction strength. Its numerical coefficient, however, depends on the
interaction strength and is known as Tan’s contact. I use this observable to illustrate
an extension of the Bethe Ansatz technique to the inhomogeneous, harmonically-
trapped Tonks–Girardeau gas, whose integrability is then broken, by combining it to
the local-density approximation scheme.

All along the discussion, several technical details, transverse issues and interesting
alternative approaches are left aside, but a few of them are evoked in a series of
appendices.

3.2 Exact Ground-State Energy of the Lieb–Liniger Model

I start by reviewing a few known results concerning the Lieb–Liniger model. For
introductory texts and reviews, I refer to [1–3].

3.2.1 Ground-State Energy in the Finite-N Problem

The Lieb–Liniger model describes a given number N of identical bosons, confined
to one spatial dimension. It assumes that they are point-like and interact through
a two-body, zero-range, time- and velocity-independent potential. If m denotes the
mass of each boson, and {xi }i=1,...,N label their positions, then the dynamics of the
system is encoded in the Lieb–Liniger Hamiltonian, that reads [4]

HLL =
N∑

i=1

⎡

⎣− �
2

2m

∂2

∂x2i
+ g1D

∑

{ j �=i}
δ(xi −x j )

⎤

⎦ . (3.1)
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The first term in the sum is associated to the kinetic energy, the second one represents
the contact interactions, where g1D is the interaction strength or coupling constant.
Its sign is positive if interactions are repulsive, as in the case considered by Lieb and
Liniger, and negative otherwise.

I will not consider this opportunity in the following, so let me give a brief account
of themain known results before I proceed. The attractive regime is unstable, owing to
its negative ground-state energy, and does not possess a proper thermodynamic limit
[5]. However, the first excited state, known as the super Tonks–Girardeau (sTG) gas
[6, 7], has been realized experimentally [8]. In the cold atom context, this metastable
state is mainly studied in quench protocols, where thermalization is the question at
stake. The sTG gas also maps onto the ground state of attractive fermions, which is
stable [9], and signatures of a sTG regime are expected in dipolar gases [10, 11].
More generally, the attractive regime of the Lieb–Linigermodel is the seat of a variety
of mappings, onto a Bardeen-Cooper-Schrieffer (BCS) model [12–14], the Kardar–
Parisi–Zhang (KPZ) model [15], directed polymers [16] or three-dimensional black
holes [17]. Moreover, in a peculiar limit, the attractive Bose gas becomes stable and
features the Douglas–Kazakov, third-order phase transition [18, 19].

Let us come back to the case of repulsive interactions. I use units where
�
2/(2m) = 1, and the mathematical physics notation c for the interaction strength,

instead of g1D. The Schrödinger time-independent equation associated to the Hamil-
tonian Eq. (3.1) is

HLLψN (x) = E0 ψN (x), (3.2)

where E0 is the ground-state energy, and ψN the many-body wavefunction for coor-
dinates x=(x1, . . . , xN ). As an eigenvalue problem, Eq. (3.2) can be solved exactly
by explicit construction of ψN . To do so, Lieb and Liniger applied, for the first time
to a model defined in the continuum, the coordinate Bethe Ansatz [4].

According to Eq. (3.1), interactions only occur when two bosons are at contact.
Outside this case, one can split the support of the N -body wavefunction into N !
sectors, that correspond to all possible spatial orderings of N particles along a line.
Since the wavefunction is symmetric with respect to any permutation of the bosons,
let us arbitrarily consider the fundamental simplex R, such that 0 < x1 < x2 < · · · <

xN < L , where L is the length of the atomic waveguide.
In R, the original Schrödinger equation (3.2) is replaced by a Helmoltz equation

for the wavefunction ψN |R restricted to the fundamental simplex, namely

−
N∑

i=1

∂2ψN |R
∂x2i

= E0ψN |R, (3.3)

together with the Bethe–Peierls boundary conditions,

(
∂

∂x j+1
− ∂

∂x j

)
ψN |x j+1=x j = cψN |x j+1=x j . (3.4)
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The latter are mixed boundary conditions, whose role is to keep track of the interac-
tions at the internal boundaries of R. They are obtained by integration of Eq. (3.2)
over an infinitesimal interval around a contact [20].

Boundary conditions, assumed to be periodic here due to the ring geometry, are
taken into account through

ψN (0, x2, . . . , xN ) = ψN (L , x2, . . . , xN ) = ψN (x2, . . . , xN , L), (3.5)

where the exchange of coordinates is performed to stay in the simplex R. There is
also a continuity condition on the derivatives:

∂

∂x
ψN (x, x2, . . . , xN )|x=0 = ∂

∂x
ψN (x2, . . . , xN , x)|x=L . (3.6)

Equations (3.4, 3.5, 3.6) represent the full set of boundary conditions associated to
the differential equation (3.3), so that the problem is well defined by now, and simpler
than the original Schrödinger equation (3.2).

To solve it, the starting point (Ansatz) consists in guessing the structure of the
wavefunction inside the fundamental simplex:

ψN |R =
∑

P∈SN
a(P)ei

∑N
j=1kP( j)x j , (3.7)

where P are elements of the symmetric group SN , i.e. permutations of N elements,
{ki }i=1,...,N are the pseudo-momenta carried by the individual bosons (called so
because they are not observable and should not be confusedwith the physicalmomen-
tum), and a(P) are scalar coefficients that take interactions into account. In other
words, one postulates that the wavefunction can be written as a weighted sum of
plane waves (in analogy to the noninteracting problem), and {a(P)} and {ki } are then
determined so as to verify Eqs. (3.3), (3.4), (3.5) and (3.6).

The two-body scattering matrix S is defined through

a(P ′) = Sa(P), (3.8)

where P ′ is a permutation obtained by exchanging P( j) and P( j+1), i.e.

P ′ = {P(1), . . . , P( j−1), P( j+1), P( j), P( j+2), . . . , P(N )}. (3.9)

The cusp condition Eq. (3.4) is satisfied provided

a(P ′) = kP( j) − kP( j+1) + ic

kP( j) − kP( j+1) − ic
a(P). (3.10)

Thus, this peculiar scattering process leads to an antisymmetric phase shift, and the
scattering matrix, that has unit modulus according to Eq. (3.10), can be written as a
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pure phase. It reads

S = e−iθ[kP( j)−kP( j+1);c], (3.11)

where

θ(k; c) = 2 arctan

(
k

c

)
(3.12)

is the function associated to the phase shift due to a contact interaction. In the limit
c→+∞, the scattering phase is the same as the one of noninteracting fermions,
which is a signature of the Bose–Fermi mapping, and of a Tonks–Girardeau regime.
Furthermore, as a consequence of Eq. (3.11), the Yang–Baxter equation (2.9) is
satisfied. Thus, the Lieb–Liniger model is integrable.

Actually, the pseudo-momenta {ki }i=1,...,N satisfy the following set of equations
[21]:

eiki L =
∏

{ j �=i}

ki − k j + ic

ki − k j − ic
= −

N∏

j=1

ki − k j + ic

ki − k j − ic
, (3.13)

where the global minus sign in the right-hand side is a signature of the periodic
boundary condition, and would become a plus for an anti-periodic one. Using the
property arctan(x)= i

2 ln
(
i+x
i−x

)
and a few algebraic transformations, Eq. (3.13) is

then recast in logarithmic form in terms of the phase-shift function θ as

2π

L
Ii = ki + 1

L

N∑

j=1

θ
(
ki − k j ; c

)
. (3.14)

The N coupled equations (3.14), where the unknowns are the pseudo-momenta, are
known as the Bethe Ansatz equations. The Bethe numbers {Ii }i=1,...,N are integers if
the number of bosons is odd and half-odd integers if N is even. They play the role
of quantum numbers, and characterize the state uniquely.

The Bethe Ansatz equations (3.14) are physically interpreted as follows [22]: a
particle i moving along the circle of circumference L to which the gas is confined
acquires, during one turn, a phase determined by its momentum ki , as well as a
scattering phase from interactions with the N − 1 other bosons on the ring. Since
scattering is diffractionless, as a consequence of theYang–Baxter equation, thewhole
scattering phase is a sum of two-body phase shifts. Rephrased once more, in order
to satisfy the periodicity condition, the phase associated to the momentum plus the
total scattering phase shall add up to 2π times an (half-odd) integer.

In the limit c→+∞, Eq. (3.14) simplifies dramatically and it becomes obvious
that if two quantum numbers are equal, say Ii = I j , then their corresponding quasi-
momenta coincide as well, i.e. ki =k j . Since in such a case the Bethe wavefunction
vanishes, all Bethe numbersmust be distinct to avoid it. As a consequence, the ground
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state, that minimizes energy andmomentum, corresponds to a symmetric distribution
of quantum numbers without holes, i.e. a Fermi sea distribution, and then

Ii = −N + 1

2
+ i, (3.15)

as already obtained in the previous chapter for the Tonks–Girardeau gas.
If the coupling c becomes finite, a scattering phase is turned on so that, for fixed

Bethe numbers {Ii }, the solution {ki }i=1,...,N to the Bethe Ansatz equations (3.14)
moves away from the regular distribution. However, since level crossings are forbid-
den (there is no symmetry to protect a degeneracy and accidental ones can not happen
in an integrable model), the state defined by (3.15) remains the lowest-energy one at
arbitrary interaction strength. Changing c modifies the quasi-momenta, but has no
effect on the quantum numbers, that are quantized. Each choice of quantum numbers
yields an eigenstate, provided that all Bethe numbers are different. This rule confers
a fermionic nature to the Bethe Ansatz solution in quasi-momentum space whenever
c>0, although the system is purely bosonic in real space.

The momentum and energy of the Lieb–Liniger model in the ground state are
obtained by summing over pseudo-momenta, or equivalently over Bethe numbers:

P0 =
N∑

i=1

ki = 2π

L

N∑

i=1

Ii = 0. (3.16)

The second equality follows from theBetheAnsatz Equations (3.14) and the property
θ(−k)=−θ(k), showing that momentum is quantized, and independent of the inter-
action strength. The last equality is a direct consequence of Eq. (3.15). Analogously,
according to Eq. (3.3) the ground-state energy is given by

E0 =
N∑

i=1

k2i , (3.17)

and the eigenvalue problem is solved, after extension of the wavefunction to the full
domain x ∈ [0, L]N , obtained by symmetrization of ψN |R :

ψN (x) =
∏

j>i (k j − ki )√
N !∏ j>i [(k j − ki )2 + c2]

∑

P∈SN

∏

j>i

[
1 − i c sign(x j −xi )

kP( j)−kP(i)

] N∏

j=1

eik j x j .

(3.18)

Note that the derivation, as presented here, does not prove that the Bethe Ansatz
form of the wavefunction, Eq. (3.7), minimizes the energy. This important point has
been checked in [23], where the construction of Lieb and Liniger has been rigorously
justified.
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Equations (3.14) and (3.17) yield the exact ground state properties of the finite
N problem. The equations are transcendent (i.e., not equivalent to the problem of
finding roots of polynomials with integer coefficients), but can be solved numerically
at arbitrary interaction strength up to the order of a hundred bosons [21, 24]. Actually,
the thermodynamic limit is directly amenable to BetheAnsatz. The construction, also
due to Lieb and Liniger, is the object of next section.

Before proceeding, I shall summarize a few arguments and interpret them in
the more general context of integrable systems. In a one-dimensional setting, when
two particles scatter, conservation of energy and momentum constrain the outgoing
momenta to be equal to the incoming ones. Thus, the effect of interaction is reduced
to adding a phase shift to the wavefunction.

The first step of the resolution consists in identifying the two-particle phase-shift,
given here by Eq. (3.12). Having determined the two-particle scattering phase, one
checks that theYang–Baxter equation holds, by verifying that an ansatzwavefunction
constructed as a superposition of plane-wavemodeswith unknownquasi-momenta as
inEq. (3.7), is an eigenstate of theHamiltonian. TheYang–Baxter equation constrains
the coefficients of the superposition, so that the eigenstate depends uniquely on the
quasi-momenta.

One also needs to specify boundary conditions. For a system of N particles, the
choice of periodic boundary conditions generates a series of consistency conditions
for the quasi-momenta of the eigenstate, known as the BetheAnsatz equations (3.14).
This set of N algebraic equations depends on asmany quantum numbers, that specify
uniquely the quantum state of the system. For each choice of these quantum numbers,
one solves the set of Bethe Ansatz equations (since they are algebraic, this constitutes
a much lighter task than solving the original, partial derivative Schrödinger equation)
to obtain the quasi-momenta, and thus the eigenstate wavefunction. These states have
a fermionic nature, in that all quantum numbers have to be distinct, which is a general
feature of the Bethe Ansatz solution.

Further simplifications are obtained by considering the thermodynamic limit.
Then, one is interested in the density of quasi-momenta and the set of algebraic
equations (3.14) can be recast into the form of an integral equation for this dis-
tribution. The problem looks deceptively simpler, then, as I will argue in the next
paragraph.

3.2.2 Ground-State Energy in the Thermodynamic Limit

In second-quantized form,which ismore appropriate to deal with the thermodynamic
limit, the Lieb–Liniger Hamiltonian Eq. (3.1) becomes:

HLL [ψ̂] = �
2

2m

∫ L

0
dx

∂ψ̂†

∂x

∂ψ̂

∂x
+ g1D

2

∫ L

0
dx ψ̂†ψ̂†ψ̂ψ̂, (3.19)
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where ψ̂ is a bosonic field operator that satisfies the canonical equal-time commuta-
tion relations with its Hermitian conjugate:

[ψ̂(x), ψ̂†(x ′)] = δ(x−x ′), [ψ̂(x), ψ̂(x ′)] = [ψ̂†(x), ψ̂†(x ′)] = 0. (3.20)

The ground-state properties of the Lieb–Liniger model depend on a sole dimen-
sionless parameter, that quantifies the interaction strength. It is usual, following Lieb
and Liniger, to define this coupling as

γ = mg1D

�2n0
, (3.21)

where n0 represents the linear density of the homogeneous gas. It appears at the
denominator, which is rather counter-intuitive compared to bosons in higher dimen-
sions. In particular, this means that diluting the gas increases the coupling, which is
a key aspect to approach the Tonks–Girardeau regime, that corresponds to the limit
γ→+∞.

In the regime of weak interactions, the bosons do not undergo Bose-Einstein
condensation, since long-range order is prevented by fluctuations. Nonetheless, one
can expect that a large proportion of them lies in the zero momentum state, and
forms a quasi-condensate. Under this assumption, the problem can be treated semi-
classically. The operator ψ̂ is replaced by a complex scalar field ψ(x), and the Euler-
Lagrange equation stemming from Eq. (3.19) is the 1D Gross-Pitaevskii equation
[25, 26],

i
∂ψ

∂t
=−∂2ψ

∂x2
+2cψ∗ψψ. (3.22)

However, this method being of mean field type, one can expect that its validity range
is quite limited in low dimension. The exact solution by Bethe Ansatz shall provide
a rare opportunity to study this validity range quantitatively.

To obtain the exact ground-state energy, let us consider theBetheAnsatz equations
(3.14), and take the thermodynamic limit, i.e. N →+∞, L→+∞, while keeping
n0=N/L fixed and finite. After ordering the Bethe numbers {Ii } (or equivalently the
pseudo-momenta {ki }, that are real if γ > 0 [4]), the Bethe Ansatz equations can be
rewritten as

ki − 1

L

N∑

j=1

θ(ki − k j ) = y(ki ) (3.23)

where y is a ‘counting function’, constrained by twoproperties: it is strictly increasing
and satisfies the Bethe Ansatz equations at any of the quasi-momenta, i.e., according
to Eq. (3.14), such that
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y(ki ) = 2π

L
Ii . (3.24)

The aim is then to go from the discrete distribution to the continuum, defining a
density of pseudo-momenta such that

ρ(ki )= lim
N ,L→+∞,N/L=n0

1

L(ki+1−ki )
. (3.25)

This density is strictly positive as expected, thanks to the ordering convention. In the
thermodynamic limit, the sum in Eq. (3.23) becomes an integral over k,

N∑

j=1

→ L
∫
dk ρ(k), (3.26)

and the derivative of y with respect to k,

y′(ki ) = lim
N ,L→+∞,N/L=n0

y(ki+1) − y(ki )

ki+1 − ki
= 2πρ(ki ), (3.27)

so that

1

2π
y(k) =

∫ k

dk ′ρ(k ′). (3.28)

With these definitions, the set of Bethe Ansatz equations (3.14) boils down to a single
integral equation, relating the counting function to the distributionof quasi-momenta:

y(k) = k −
∫ kmax

kmin

dk ′ θ(k−k ′)ρ(k ′), (3.29)

where kmin and kmax represent the lowest and highest quasi-momenta allowed by the
Fermi sea structure. They are finite in the ground state, and the integration bounds are
symmetric as a consequence of Eq. (3.15): kmin =−kmax . Differentiating Eq. (3.29)
with respect to k yields, by combination with Eq. (3.28),

ρ(k) = 1

2π
− 1

2π

∫ kmax

−kmax

dk ′K (k − k ′)ρ(k ′), (3.30)

where K (k)=θ′(k)=− 2c
c2+k2 .

In view of a mathematical treatment of Eq. (3.30), it is convenient to perform the
following rescalings:

k=kmax z, c=kmaxα, ρ(k; c)=g(z;α), (3.31)
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where z represents a pseudo-momentum in reduced units such that its maximal value
is 1, α is a non-negative parameter, and g(z;α) denotes the distribution of quasi-
momenta expressed in these reduced units. Finally, in the thermodynamic limit, the
set of Bethe Ansatz equations (3.14) boils down to a set of three equations only,
namely

g(z;α) − 1

2π

∫ 1

−1
dy

2αg(y;α)

α2 + (y − z)2
= 1

2π
, (3.32)

where α is in one-to-one correspondence with the Lieb parameter γ introduced in
Eq. (3.21) via a second equation,

γ

∫ 1

−1
dy g(y;α) = α. (3.33)

The third equation yields the dimensionless average ground-state energy per particle
e, linked to the total ground-state energy E0 expressed in the original units, and to
the reduced density of pseudo-momenta g by

e(γ) = 2m

�2

E0(γ)

Nn20
=
∫ 1
−1 dyg[y;α(γ)]y2

{∫ 1
−1 dyg[y;α(γ)]}3 . (3.34)

Interestingly, Eq. (3.32) is decoupled from Eqs. (3.33) and (3.34), which is specific
to the ground state [27]. It is a homogeneous type II Fredholm integral equation with
Lorentzian kernel, whose closed-form, exact solution is unknown but amenable to
various approximation methods.

Before solving these equations, it is convenient to recall a few general properties
of the density of pseudo-momenta.

(i) The function g is unique [4].
(ii) It is an even function of z, in agreement with the particle-hole symmetry

noticed above. To see this, it is convenient to rewrite Eq. (3.32) as

g(z;α) = 1

2π

[
1 + 2α

(∫ 1

0
dy

g(y;α)

α2 + (y − z)2
+
∫ 1

0
dy

g(−y;α)

α2 + (y + z)2

)]
.

(3.35)

Then, introducing

gs(z;α) = g(z;α) + g(−z;α)

2
, (3.36)

it is easy to check that gs(z;α) and g(z;α) are both solution to the Lieb equation.
However, according to (i) the solution is unique, imposing g(−z;α) = g(z;α).

(iii) The function g is infinitely differentiable (analytic) in z if α>0 [4]. This
implies in particular that it has an extremum (which turns out to be a minimum) at
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z=1. The non-analyticity in the interaction strength at α=0 is a signature of the
absence of adiabatic continuation in 1D between ideal bosons and interacting ones.

(iv) ∀z ∈ [−1, 1], g(z;α) > 0, as a consequence of Eq. (3.25), as expected for
a density. Moreover, ∀α > 0, ∀z ∈ [−1, 1], g(z;α) > gTG(z) = 1

2π . This property
directly follows from the discussion below Eq. (B.7) in the corresponding appendix,
and the mapping between Love’s equation (B.2) and the Lieb equation (3.32).

(v) ∀z ∈ [−1, 1], g is bounded from above if α > 0 [4], as expected from the
Mermin-Wagner-Hohenberg theorem, that prevents true condensation.

In order to determine the ground-state energy in the thermodynamic limit, the
most crucial step is to solve the Lieb equation (3.32). This was done numerically
by Lieb and Liniger for a few values of α, spanning several decades. The procedure
relies on the following steps: an arbitrary (positive) value is fixed forα, and Eq. (3.32)
is solved, i.e. the reduced density of pseudo-momenta g(z;α) is evaluated with the
required accuracy as a function of z in the interval [−1, 1]. Then, Eq. (3.33) yields
γ(α), subsequently inverted to obtain α(γ). In doing so, one notices that γ(α) is an
increasing function, thus interaction regimes are defined in the same order in terms
of both variables. The ground-state energy is then obtained from Eq. (3.34), as well
as many interesting observables, that are combinations of its derivatives. They all
depend on the sole Lieb parameter γ, which is the key of the conceptual simplicity
of the Lieb–Liniger model.

3.2.3 Weak-Coupling Regime

Analytical breakthroughs towards the exact solution of the Bethe Ansatz equations
have been quite scarce, sinceLieb andLiniger derived them. I figure out three possible
explanations: first, the Bethe Ansatz equations (3.14) or (3.32) are easily amenable to
numerical calculations in a wide range of interaction strengths. Furthermore, simple
approximate expressions reach a global 10% accuracy [21], comparable to error bars
in the first generation of ultracold atom experiments. Finally, the set of Lieb equations
is actually especially difficult to tackle analytically. Indeed, one should keep in mind
that, although it consists in only three equations, the latter emerged as a convenient
and compact way to rewrite an infinite set of coupled ones.

In the weakly-interacting regime, finding accurate approximate solutions of
Eq. (3.32) at very small values of the parameter α is quite an involved task, both
numerically and analytically. This is a consequence of the singularity of the function
g at α=0, whose physical interpretation is that noninteracting bosons are not stable
in 1D.

A guess function was proposed by Lieb and Liniger [4], namely

g(z;α) 	α
1

√
1 − z2

2πα
. (3.37)
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It is a semi-circle law, rigorously justified in [28], that suggests a link with random
matrices theory [29]. Lieb and Liniger have also shown, increasing the list of con-
straints on the density of pseudo-momenta g, that the semi-circular law Eq. (3.37) is
a strict lower bound for the latter [4].

Heuristic arguments have suggested the following correction far from the edges
in the variable z [28, 30]:

g(z;α) 	α
1,α
|1±z|
√
1 − z2

2πα
+ 1

4π2
√
1 − z2

[
z ln

(
1 − z

1 + z

)
+ ln

(
16π

α

)
+ 1

]
,

(3.38)

rigorously derived much later in [31]. To my knowledge, no further correction is
explicitly known to date in this regime. I will not delve into the inversion step γ(α) ↔
α(γ) in the main text, but refer to Appendix B.1, where a link with a classical
problem is discussed, namely the calculation of the exact capacitance of a circular
plate capacitor.

As far as the ground-state energy is concerned, in their seminal article Lieb and
Liniger showed that e(γ) ≤ γ, and obtained the correction

e(γ) 	γ
1 γ − 4

3π
γ3/2 (3.39)

from a Bogoliubov expansion [32]. This approximation must be discarded at high
coupling for predicting negative energies, but works surprisingly well at very small
interaction strengths (γ�1), given that there is noBose-Einstein condensation. Actu-
ally, the Bogoliubov expansion Eq. (3.39) coincides with the approximate result
obtained by inserting Eq. (3.38) in the Lieb equation, as confirmed later in [33], and
detailed in [31, 34].

It was then inferred on numerical grounds that the next order is such that [35]

e(γ) = γ − 4

3π
γ3/2 +

[
1

6
− 1

π2

]
γ2 + o(γ2), (3.40)

a result that agrees with later indirect (where by ‘indirect’, I mean that the technique
involveddoes not rely on theLieb equation) numerical calculations performed in [36],
and [37] where the value 0.06535 is found for the coefficient of γ2. Equation (3.40)
was derived quasi-rigorously much later in [38], also by indirect means. Actually, no
fully analytical calculation based on Bethe Ansatz has confirmed this term yet, as the
quite technical derivation in Ref. [39] apparently contains a non-identified mistake.

Next step is

e(γ) = γ − 4

3π
γ3/2 +

[
1

6
− 1

π2

]
γ2 + a3γ

5/2 + O(γ3), (3.41)



3.2 Exact Ground-State Energy of the Lieb–Liniger Model 61

where the exact fourth term, derived in closed form as multiple integrals by indirect
means, was numerically evaluated to a3 	 −0.001597 in [37]. A similar value was
then recovered by fitting accurate numerical data [40]: a3 	 −0.001588, and another
had been obtained previously in [35]: a3 	 −0.0018.

The general structure of the weak-coupling series is very likely to be [38]

e(γ) =
+∞∑

k=0

akγ
1+k/2, (3.42)

but until quite recently it was doubtful that the exact value of the coefficient a3 would
be identified in a close future. Ground-breaking numerical results have been obtained
in [41], where the few next unknown coefficients ak≥3 have been evaluated with high
accuracy, such as

a3 	 −0.00158769986550594498929,

a4 	 −0.00016846018782773903545,

a5 	 −0.0000208649733584017408, (3.43)

up to a10 included, by an appropriate sampling in numerical integration of the Lieb
equation, and a method that accelerates the convergence. In particular, a4 is in rel-
atively good agreement with the approximate value a4 	 −0.000171 previously
obtained in [40]. The fabulous accuracy of (3.43) has allowed for and has been
increased by experimental number theory along the three subsequent arXiv versions
of Ref. [41].

I guessed the value

a3 =
(
3

8
ζ(3) − 1

2

)
1

π3
, (3.44)

based on the following heuristic grounds: in [37], an overall factor 1/π3 is predicted,
and a3 is written as a sum of two integrals, that might correspond to a sum of two
types of terms. Also, in the first arXiv version of [41], Prolhac wrote that he could
not identify a3 as a low-order polynomial in 1/π with rational coefficients. In view
of the relative simplicity of a0, a1 and a2, one can legitimately infer that the factor of
1/π3 in a3 should be irrational. One can then think of ζ(3), where ζ is the Riemann
zeta function. Indeed, the previous coefficient, a2, can be written as (ζ(2) − 1) 1

π2 ,
and ζ(3) is irrational [42].

My conjecture Eq. (3.44) then inspired Prolhac, who guessed

a4 = a3
3π

=
(
1

8
ζ(3) − 1

6

)
1

π4
(3.45)

and even proposed
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a5 =
(

− 45

1024
ζ(5) + 15

256
ζ(3) − 1

32

)
1

π5
, (3.46)

using a code that identifies the rational coefficients of a linear combination of peculiar
values of the zeta function when given a target value [41]. In principle, numerical
values of the next coefficients could be obtained by iterating the procedure further.
However, guessing other exact numbers without further insight seems difficult, as the
relative accuracy of their numerical values decreases at each step, while the required
precision is expected to increase, in view of the apparently increasing number of
terms involved in the linear combination. Although the generating function of the
exact coefficients of the weakly-interacting expansion still remains quite obscure, it
seems reasonable to guess that ak naturally contains a factor 1/πk at all orders k, so
that

e(γ) =
+∞∑

k=0

ãk
πk

γ1+k/2. (3.47)

3.2.4 Strong- to Intermediate Coupling Regime

While the weak-coupling regime is tremendously difficult to tackle in the close
vicinity of the singularity, at strong coupling the problem, although it remains far
from trivial, is much easier to deal with in comparison. In the Tonks–Girardeau
regime (γ→+∞), the reduced dimensionless energy is

eTG = π2

3
, (3.48)

and coincides with the well-known result for spinless noninteracting fermions,
Eq. (2.13), due to the Bose–Fermi mapping. It corresponds to a uniform distribution
of pseudo-momenta,

gTG(z) = 1

2π
�(1 − |z|), (3.49)

where � denotes the Heaviside distribution. For z ∈ [−1, 1], i.e. inside the pseudo-
Fermi sea, finite-interaction corrections to Eq. (3.49) can be expressed as

g(z;α) 	α�1

km∑

k=0

Pk(z)

αk
, (3.50)

where {Pk}k=0,...,km are polynomials and km is a cut-off. Then, this truncated expansion
can be used to approximate α(γ), inverted in γ(α), and yields the corresponding
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expansion of the ground-state energy:

e(γ) 	γ�1

km∑

k=0

ek
γk

, (3.51)

where {ek}k=0,...,km are real coefficients. Surprisingly, few non-trivial corrections to
the Tonks–Girardeau limit are available in the literature, in view of the relative
simplicity of the first few steps. In [43], this procedure has been pushed to sixth
order.

A systematic method was proposed by Ristivojevic in [44], where it was used to
generate corrections to the Tonks–Girardeau regime up to order 8. In [45], I have
studied this method in detail, and used it to obtain analytical expressions up to
order 20 in 1/γ. In a few words, the method, detailed in Appendix B.2, yields an
approximation to the density of pseudo-momenta of the form

g(z;α, M) =
2M+2∑

k=0

M∑

j=0

g jk
z2 j

αk
, (3.52)

where the matrix coefficients g jk are, by construction, polynomials in 1/π with
rational coefficients, and M is an integer cut-off such that the truncated density of
pseudo-momenta g(z;α, M) converges to g(z;α) as M→+∞.

The original article [44] and ours [45], together, give a faithful account of the
strengths and weaknesses of this method: a major positive trait is that it yields two
orders of perturbation theory in 1/α at each step, and is automatically consistent to all
orders. The lowest interaction strength attainablewithin this expansion isα=2, since
the procedure relies on a peculiar expansion of the Lorentzian kernel in Eq. (3.32).
This corresponds to a Lieb parameter γ(α=2)	4.527, which is an intermediate
interaction strength. A priori, this value is small enough to recombine with the avail-
able expansions in the weakly-interacting regime, and thus obtain accurate estimates
of the ground-state energy over the whole range of repulsive interactions. However,
it could as well be seen as a strong limitation of the method, all the more so as, since
convergence with M to the exact solution is slow, one can not reasonably expect to
obtain reliable results below γ	5 even with a huge number of corrections.

This drawback stems from the fact that capturing the correct behavior of the
density of pseudo-momenta g as a function of z in thewhole interval [−1, 1] is crucial
to obtain accurate expressions of the ground-state energy, whereas the approximation
Eq. (3.52) converges slowly to the exact value close to z=±1 since the Taylor
expansion is performed at the origin. This reflects in the fact that the maximum
exponent of z2 varies more slowly with M than the one of 1/α. What is more, if
one is interested in explicit analytical results, at increasing M the method quickly
yields too unhandy expressions for the function g, as it generates 1 + (M + 1)(M +
2)(M + 3)/3 terms. To finish with, it is difficult to evaluate the accuracy of a given
approximation in a rigorous and systematic way.
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Fig. 3.1 Dimensionless function gm(z; α, 9), mean of the 18th and 20th order expansions in 1/α of
the density of pseudo-momenta g(z; α), as a function of the dimensionless variable z, at dimension-
less parameters α=2.5 (solid), α=2.3 (dashed) and α=2 (dotted) from bottom to top, compared
to the corresponding numerically exact solutions (dots). Only a few numerical values are shown to
improve the visibility, and numerical error is within the size of the dots

Consistency at all orders is obviously the main quality of this method, the other
points are rather drawbacks. After putting them into light, I have developed various
methods to circumvent them duringmy thesis, but could not fix them simultaneously.
The main improvements I could propose are the following:

(a) The huge number of corrections needed to reach α 	 2 with good accuracy
close to the Fermi surface z=±1 seems redhibitory at first, but I have noticed that
the arithmetic average of two consecutive orders in M , denoted by

gm(z;α, M) = g(z;α, M) + g(z;α, M−1)

2
, (3.53)

dramatically increases the precision. Figure 3.1 illustrates the excellent agreement,
at M=9, with numerical calculations for α∈[2,+∞[. Another approach consists
in truncating expansions to their highest odd order in 1/α, more accurate than the
even one, as already pointed out in [46].

(b) I have also found a way to avoid expanding the Lorentzian kernel in Eq. (3.32),
and adapt Ristivojevic’s method to the whole range of repulsive interaction strengths
]0,+∞[, as detailed in Appendix B.3. However, self-consistency at all orders, that
was themain advantage of themethod, is lost. Furthermore, the analytical expressions
obtained are quite complicated, urging at a numerical evaluation at the very last step
of the procedure. I have pushed the method to order 50 in z, yielding the ground-state
energy with machine precision over a very wide range of strong and intermediate
interaction strengths and an interesting comparison point for other analytical and
numerical approaches.

(c) Last but not least, I have looked for compact analytical expressions, by iden-
tifying structures in the bare result of Ristivojevic’s method. As far as the density
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of pseudo-momenta g is concerned, I refer to [45] for a detailed account of these
compact notations. My approach opens a new line of research, but I have not inves-
tigated it deeply enough to obtain fully satisfying expressions. Comparatively, the
same method revealed far more powerful when applied to the ground-state energy.

Once again, the underlying idea is to rely on experimental number theory. This
time, the aim is not to guess numerical values of unknown coefficients as in the
weakly-interacting regime, but rather to put regular patterns into light by scrutinizing
the first few terms, and guess subsequent ones without actually computing them. To
do so, I have considered all operations that yield the strong-coupling expansion of
e(γ), Eq. (3.51), as a black box, and focused on the result. A bit of reflexion hints at
writing

e(γ)

eTG
=

+∞∑

n=0

ẽn(γ), (3.54)

where the index n denotes a somewhat elusive notion of complexity, that corresponds
to the level of difficulty to identify the pattern that defines ẽn .

Focusing on the strong-coupling expansion Eq. (3.51), I have identified a first
sequence of terms, conjectured that they appear at all higher orders as well, and
resummed the series, thus obtaining

ẽ0(γ) =
+∞∑

k=0

(
k + 1

1

)(
− 2

γ

)k

= γ2

(2 + γ)2
. (3.55)

Then, I noticed that the final expression for ẽ0 corresponds to Lieb and Lin-
iger’s approximate solution, that assumes a uniform density of pseudo-momenta
in Eq. (3.32) [4]. I have also found that the intermediate step in Eq. (3.55) appears
in an appendix of Ref. [47], but writing k+1 instead of the equivalent binomial
interpretation, which is my main step forward, as will be seen below.

Using the strong-coupling expansion of e(γ) up to 20th order in 1/γ, and guided
by the property

+∞∑

k=0

(
k+3n+1

3n+1

)(
− 2

γ

)k

=
(

γ

γ + 2

)3n+2

, (3.56)

I have conjectured that the structure of the terms of complexity n≥1 is

ẽn(γ) = π2nγ2Ln(γ)

(2 + γ)3n+2
, (3.57)

where Ln is a polynomial of degree n−1 with non-zero, rational coefficients of
alternate signs. The complexity turns out to be naturally related to the index n in the
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right-hand side of this equation, and can be re-defined, a posteriori, from the latter.
I have identified the first few polynomials as

L1(γ) = 32

15
,

L2(γ) = −96

35
γ + 848

315
,

L3(γ) = 512

105
γ2 − 4352

525
γ + 13184

4725
,

L4(γ) = −1024

99
γ3 + 131584

5775
γ2 − 4096

275
γ + 11776

3465
,

L5(γ) = 24576

1001
γ4 − 296050688

4729725
γ3 + 453367808

7882875
γ2 − 227944448

7882875
γ + 533377024

212837625
,

L6(γ) = −4096

65
γ5+ 6140928

35035
γ4− 4695891968

23648625
γ3+ 3710763008

23648625
γ2

−152281088

4729725
γ+ 134336512

42567525
. (3.58)

I have also conjectured that the coefficient of the highest-degree monomial of Ln ,
written as

Ln(X) =
n−1∑

k=0

lk X
k, (3.59)

is

ln−1 = 3 × (−1)n+1 × 22n+3

(n + 2)(2n + 1)(2n + 3)
. (3.60)

Consulting the literature once more at this stage, I found out that the first correction
ẽ1 had been rigorously predicted in [34], supportingmy conjecture on the structure of
e(γ) in the strong-coupling regime, Eq. (3.57). Later on, Prolhac checked numerically
that all coefficients in Eq. (3.58) are correct, and that Eq. (3.60) still holds at larger
values of n [48].

Innocent as it may look (after all, it is just another way of writing the strong-
coupling expansion), the structure provided by Eq. (3.57) has huge advantages.
Although the structure Eq. (3.57) was not obvious at first, now that it has been found,
identifying the polynomials Ln from Eq. (3.51) to all accessible orders becomes a
trivial task. The expressions thereby obtained are more compact than the strong-
coupling expansion, Eq. (3.51), and correspond to a partial resummation of the
asymptotic series. Last but not least, contrary to the 1/γ expansion, the combination
of Eqs. (3.54) and (3.57), truncated to the maximal order to which the polynomials
are known in Eq. (3.58), does not diverge at low γ. This fact considerably widens
the validity range of the expansion.
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Nonetheless, a few aspects are not satisfying so far. Progressively higher order
expansions in 1/γ are needed to identify the polynomials in Eq. (3.58). The expansion
Eq. (3.57) remains conjectural, and although a proof could be given using the tech-
niques of [34], this direct approach looks tremendously complicated. To finish with,
I did not manage to identify the generating function of the polynomials in Eq. (3.58),
except for the first coefficient, Eq. (3.60), preventing from inferring higher-order
polynomials in Eq. (3.58) without relying on the 1/γ expansion, Eq. (3.51). Let me
stress, however, that identifying this generating function may allow for a full resum-
mation of the series, and thus to explicitly obtain the exact ground-state energy of
the Lieb–Liniger model.

3.2.5 Illustrations

Bridging weak- and strong-coupling expansions, I have obtained the ground-state
energy of the Lieb–Liniger model with good accuracy over the whole range of repul-
sive interactions, as illustrated in Fig. 3.2.

It can be split into two parts, that correspond to kinetic and interaction energy
respectively, as [4]

e(γ) = [e(γ) − γe′(γ)] + γe′(γ) = ek(γ) + ep(γ). (3.61)

As illustrated in Fig. 3.3, the dimensionless kinetic energy per particle, ek , is a mono-
tonic function of γ, while the dimensionless interaction energy ep (positive since
interactions are repulsive), reaches a global maximum at an intermediate interaction
strength.

This fact can be qualitatively understood on physical grounds. When γ=0, i.e.
for a noninteracting Bose gas, the density of quasi-momenta is a Dirac-delta func-
tion, bosons are individually at rest, and the kinetic energy of the gas is zero. The

Fig. 3.2 Dimensionless
ground state energy per
particle e normalized to its
value in the Tonks–Girardeau
limit eTG =π2/3 (dotted), as
a function of the
dimensionless interaction
strength γ: conjectural
expansion at large γ (solid)
as given by Eq. (3.57) to
sixth order, small γ
expansion (dashed) and
numerical evaluation (points)
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Fig. 3.3 Dimensionless ground-state kinetic energy per particle (solid) and interaction energy
per particle (dashed), normalized to the average dimensionless energy per particle in the Tonks–
Girardeau limit eTG , as a function of the dimensionless interaction strength γ. The horizontal line
(dotted) is a guide to the eye. The results are indistinguishable from the numerical estimation of
Ref. [49]

interaction energy is null too, by definition. Switching on interactions adiabatically,
the interaction energy increases abruptly, but can be treated perturbatively. In the
opposite, Tonks–Girardeau limit, in k-space the gas is equivalent to noninteracting
fermions due to the Bose–Fermi mapping, thus its interaction energy is also zero.
If the interaction strength of the bosonic gas decreases, it becomes equivalent to
weakly-interacting fermions [50], thus the interaction energy increases, at a slow
pace due to the remnant artificial Pauli principle. By continuity, at intermediate γ
the interaction energy must reach a maximum, that corresponds to a subtle interplay
between statistics in k-space and interactions in real space. Since the interaction
energy is at its apex, this must be the regime where perturbative approaches are the
least adapted, explaining the counter-intuitive fact that intermediate interactions are
not quite amenable to analytical methods.

An alternative interpretation is utterly based on the density of quasi-momenta in
the original units, as illustrated in Fig. 3.4. This quantity interpolates between a top-
hat function in the Tonks–Girardeau regime, and a Dirac-delta for noninteracting
bosons. The density of quasi-momenta is relatively flat in a wide range of large
interaction strengths, explaining why the approximation e(γ)	 ẽ0(γ) works so well
from the Tonks–Girardeau regime to intermediate interaction strengths.

To sum up with, in this section I have explained how coordinate Bethe Ansatz
gives access to the exact ground-state energy of the Lieb–Linigermodel, both at finite
boson number and in the thermodynamic limit, as a set of coupled equations. The
latter is easily solved numerically at fixed interaction strength, but its analytical, exact
solution is still unknown. In recent years, both weak- and strong-coupling regimes
have been theoretically addressed in a systematic way, allowing in principle to obtain
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Fig. 3.4 Density of pseudo-momenta ρ as a function of dimensionless pseudo-momentum k/kF for
several interaction strengths. Different line styles represent various approximations. From bottom to
top, one sees the exact result in the Tonks–Girardeau regime (thick), then four curves corresponding
to dimensionless parametersα=10, 5, 3 and 2 respectively (solid) obtained from analyticalmethods
and a Monte-Carlo algorithm to solve the Lieb equation Eq. (3.32) (indistinguishable from each
other). Above, another set of curves corresponds to interaction strengths from α=1.8 to α=0.4
with step −0.2 and from bottom to top (dashed), also obtained from a Monte-Carlo algorithm,
where again analytical and numerical results are indistinguishable. Finally, I also plot the result at
α=0.2 from the method of Appendix B.3 (dotted, thick)

exact expansions to arbitrary order, but the procedures remain quite complicated
when high orders are required.

I have performed a tentative partial resummation of the strong-coupling series
expansion, and the weak-coupling one seems to contain a rich and interesting struc-
ture involving the Riemann zeta function at odd arguments. These expressions are
known with high enough accuracy to numerically match at intermediate coupling.
The relative error is of the order of a few per thousands over the whole range of inter-
action strengths, and semi-analytical techniques allow to reach machine precision if
needed. Hence, while the Lieb–Liniger model was ‘solved’ from the very beginning
in the sense that its exact ground-state energy was expressed in closed form as the
solution of a set of equations, it is now solved in a stronger sense, both analytically
and numerically. Strictly speaking, the problem of the ground-state energy is still
partially open.

In an even stronger acception, solving a model includes the knowledge of corre-
lation functions, an issue that I tackle from the next section on.

3.3 Local Correlation Functions

Oneof themain limitations of the coordinateBetheAnsatz approach is that it provides
only with an implicit knowledge of the wavefunction close to the thermodynamic
limit, since it is a superposition of an exponentially large number of terms as a func-
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tion of the particle number. Direct calculation of correlation functions based on the
explicit many-body wavefunction remains a formidable task and, for most practical
purposes, is out of reach. The algebraic Bethe Ansatz approach, on the other hand,
provides a more compact expression for the eigenstates. This formulation in turn
allows to express many correlation functions as Fredholm determinants. Although
very elegant, these expressions still require some work to provide useful results.
Actually, thanks to interesting mathematical properties, the explicit knowledge of
the many-body wavefunction is not required to obtain the local correlation functions
of the Lieb–Liniger model, and coordinate Bethe Ansatz is sufficient.

The k-body, local correlation function in the ground state is defined as

gk = 〈[ψ̂†(0)]k[ψ̂(0)]k〉
nk0

, (3.62)

where 〈.〉 represents the ground-state average. With this choice of normalization, gk
represents the probability of observing k bosons simultaneously at the same place.
As a consequence of this definition, the following equality holds trivially:

g1(γ) = 1. (3.63)

Indeed, the numerator of the right-hand side of Eq. (3.62) coincides with the mean
linear density since the gas is uniform, and so does its denominator.

It is expected that all higher-order local correlations depend on the interaction
strength. The following qualitative properties are quite easily shown: in the non-
interacting gas, i.e. if γ=0, gk =1 to all orders k. In the Tonks–Girardeau regime,
since interactions mimic the Pauli principle, two bosons can not be observed simulta-
neously at the sameplace.A fortiori, larger local clusters are forbidden too, sogTG

k =0
to all orders k > 1. In between, at finite interaction strength the probability to observe
k+1 particles at the same place is strictly lower than the one to observe k particles,
thus 0<gk+1(γ)<gk(γ) for any finite γ. One also expects |g′

k+1(γ)|> |g′
k(γ)|>0

(absolute values are crucial since every local correlation function, except g1, is a
strictly-decreasing function of γ). These properties imply that high-order correla-
tion functions are difficult to measure by in-situ observations close to the Tonks–
Girardeau regime.

After these general comments, I turn to more specific cases. I will focus on g2
and g3, that are the most experimentally-relevant local correlation functions [51–54].
From the theoretical point of view, the second-order correlation function is easily
obtained from the ground-state energy, as the Hellmann-Feynman theorem yields
[55]

g2(γ)=e′(γ). (3.64)

According to this equation, the fact that e is an increasing function of the Lieb
parameter γ is a direct consequence of the positiveness of g2.
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As a general rule, all local correlation functions are expected to be related (possibly
in a fairly non-trivial way) to moments of the density of pseudo-momenta, defined
as

ek(γ) =
∫ 1
−1 dz z

kg[z;α(γ)]
{∫ 1

−1 dz g[z;α(γ)]}k+1
. (3.65)

Note that odd-order moments are null, since g is an even function of z, e0=1, and
e2(γ)=e(γ). In particular, the third-order local correlation function governs the rates
of inelastic processes, such as three-body recombination and photoassociation in pair
collisions. It is expressed in terms of the two first non-trivial moments as [56, 57]

g3(γ) = 3

2γ
e′
4 − 5e4

γ2
+
(
1 + γ

2

)
e′
2 − 2

e2
γ

− 3
e2
γ
e′
2 + 9

e22
γ2

. (3.66)

This expression is significantly more complicated than Eq. (3.64), and the situation
is not likely to improve at higher orders, where similar expressions are still unknown.

In [56], the solution to the Bethe Ansatz equations has been found numerically,
and useful approximations to the three-body local correlation function have been
obtained by fitting this numerical solution, namely:

g3(γ) 	 1 − 6π−1γ1/2 + 1.2656γ − 0.2959γ3/2

1 − 0.2262γ − 0.1981γ3/2
, 0 ≤ γ ≤ 1, (3.67)

g3(γ) 	 0.705 − 0.107γ + 5.08 ∗ 10−3γ2

1 + 3.41γ + 0.903γ2 + 0.495γ3
, 1 ≤ γ ≤ 7, (3.68)

g3(γ) 	 16π6

15γ6

9.43 − 5.40γ + γ2

89.32 + 10.19γ + γ2
, 7 ≤ γ ≤ 30 (3.69)

with a relative error lower than 2% according to the authors. For γ ≥ 30, it is tacitly
assumed that the available strong-coupling expansions of g3 are at least as accurate
(Fig. 3.5).

Actually, the dominant term of the strong-coupling asymptotic expansion of all
local correlation functions is known and reads [58, 59]

gk 	γ�1
k!
2k

(
π

γ

)k(k−1)

Ik (3.70)

where

Ik =
∫ 1

−1
dk1 . . .

∫ 1

−1
dkk

∏

{i< j≤k}
(ki − k j )

2, (3.71)

and has even been generalized to [60]:
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Fig. 3.5 Dimensionless
local correlation functions g2
(solid) and g3 (dashed) as
functions of the
dimensionless interaction
strength γ. Three-body
processes are strongly
suppressed at high
interaction strength but
become of the same order of
magnitude as two-body
processes in the
quasi-condensate regime

gk =γ�1

(∏k
j=1 j !

)2 (
1 − 2

γ

)k2−1

[∏k−1
j=1(2 j − 1)!!

]2
(2k − 1)!!

(
π

γ

)k(k−1)

+ . . . (3.72)

The fourth-order local correlation g4(γ) has been constructed using a different
approach in [61] (see Appendix B.4), but this correlation function has not been
probed experimentally yet.

As can be seen on the previous examples, a key ingredient to evaluate a local
correlation function gk by coordinate Bethe Ansatz is to evaluate the moments of the
density of pseudo-momenta, given by Eq. (3.65), to the corresponding order. A good
knowledge of g(z;α) gives instant access to their strongly-interacting expansion. In
particular, I could evaluate e4, that enters g3 through Eq. (3.66). Based once more on
strong-coupling expansions to order 20, I have conjectured that

e2k(γ) =
(

γ

2 + γ

)2k +∞∑

i=0

π2(k+i)

(2 + γ)3i
L2k,i (γ), (3.73)

where L2k,i are polynomials with rational coefficients, such that

L2k,0 = 1

2k + 1
, (3.74)

and L2k,i≥1 is of degree i−1. This generalizes the corresponding conjecture for e2,
Eq. (3.57). In particular, I have identified:

L4,1(γ) = 32

35
,

L4,2(γ) = −1984

1575
γ + 3424

1575
,



3.3 Local Correlation Functions 73

Fig. 3.6 Dimensionless fourth moment of the distribution of quasi-momenta, e4, as a function of
the dimensionless interaction strength γ. The analytical result from the conjecture (3.75) (solid),
and from the conjecture in the weakly-interacting regime, Eq. (3.76), with appropriate coefficients
(dashed), are in excellent agreement with accurate numerical evaluations (dots)

L4,3(γ) = 8192

3465
γ2 − 37376

5775
γ + 169728

45045
,

L4,4(γ) = −47104

9009
γ3 + 59337728

3378375
γ2 − 61582336

3378375
γ + 137573632

23648625
,

L4,5(γ)= 192512

15015
γ4 − 765952

15925
γ3 + 80326709248

1206079875
γ2 − 594448384

14189175
γ + 295196160000

38192529375
,

L4,6(γ) = −335872

9945
γ5+ 132872192

984555
γ4− 2316542492672

10416144375
γ3+ 3689660465152

18091198125
γ2

− 184095784026112

2406129350625
γ+ 12238234443776

1260353469375
. (3.75)

It is worth mentioning that the validity range of the strong-coupling approximation
in 1/γ increases towards weaker interactions with k, as illustrated in Fig. 3.6.

In the weakly-interacting regime, I have conjectured that the even moments have
the following structure:

e2k(γ) =
+∞∑

i=0

ã2k,i
πi

γk+i/2, (3.76)

generalizing my previous conjecture Eq. (3.47) for the ground-state energy. Using
Eq. (3.38), I derived

ã2k,0 =
(
2k

k

)
−
(

2k

k + 1

)
= 1

k + 1

(
2k

k

)
= Ck, (3.77)

where Ck denotes the k-th Catalan number. This is in agreement with a well-known
result in random-matrix theory.

I have also obtained
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ã2k,1=
(
2k

k

)
− 24k
(2k+1

k

)
1

k + 1

k∑

i=0

[
1

22i

(
2i

i

)]2
, (3.78)

but when both k and i are strictly larger than one, the exact coefficients ã2k,i are still
unknown. In the end, to lowest order the k-body local correlation function reads [58]

gk 	γ
1 1 − k(k − 1)

π

√
γ. (3.79)

3.4 Non-local Correlation Functions, Notion of Connection

By essence, local correlations are far fromproviding asmuch information on a system
as non-local ones, i.e. at finite spatial separation. It is usual to investigate the k-body
density matrices, defined as

ρk(x1, . . . , xk; x ′
1, . . . x

′
k)

=
∫

dxk+1 . . .

∫
dxN ψ∗

N (x ′
1, . . . , x

′
k, xk+1, . . . , xN )ψN (x1, . . . , xN ),

(3.80)

and related to the local correlation functions through the relation

gk = N !
(N − k)!

ρk(0, . . . , 0; 0, . . . , 0)
nk0

. (3.81)

Traditionally in condensed-matter physics, attention is devoted to their large-distance
behavior, since it characterizes the type of ordering. In particular, the one-body
correlation function g1 acquires a non-trivial structure in the relative coordinate, that
depends on the interaction strength. As an introduction to this topic, I sum up the
main results in the Tonks–Girardeau regime.

3.4.1 One-Body Non-local Correlation Function in the
Tonks–Girardeau Regime

The one-body, non-local correlation function of a translation-invariant system reads

g1(x) = 〈ψ̂†(x)ψ̂(0)〉
n0

, (3.82)

where x denotes the relative coordinate, i.e. the distance between two points. Even
in the Tonks–Girardeau regime, its exact closed-form expression is unknown, but
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it is amenable to asymptotical study. I use the notation z=kF x , where kF =πn0 is
the Fermi wavevector in 1D, and recall the large-distance expansion derived in [62]
(with signs of the coefficients corrected as in [63]):

gTG1 (z)= G(3/2)4√
2|z|

[
1− 1

32z2
− cos(2z)

8z2
− 3

16

sin(2z)

z3
+ 33

2048

1

z4
+ 93

256

cos(2z)

z4
+. . .

]
,

(3.83)

where G is the Barnes function, defined by G(1)=1 and the functional relation
G(z + 1)=�(z)G(z),� being the Euler Gamma function. Since gTG

1 (z) →z→+∞ 0,
no long-range order is observed. The decay is algebraic, so one speaks of a quasi-
long-range order.

The general large-distance structure has been identified as [64]

gTG1 (z)= G(3/2)4√
2|z|

[
1+

+∞∑

n=1

c2n
z2n

+
+∞∑

m=1

cos(2mz)

z2m

+∞∑

n=0

c′2n,m

z2n
+

+∞∑

m=1

sin(2mz)

z2m+1

+∞∑

n=0

c′′2n,m

z2n

]
,

(3.84)

in agreementwith the fact that g1(z) is an even function in aGalilean-invariantmodel.
Few coefficients have been explicitly identified, however, and Eq. (3.83) remains the
reference to date.

At short distances, using the same technique as in [65] to solve the sixth Painlevé
equation, I have obtained the following expansion, where I have added six orders
compared to [62]:

gTG1 (z)=
8∑

k=0

(−1)k z2k

(2k + 1)! +
|z|3
9π

− 11|z|5
1350π

+ 61|z|7
264600π

+ z8

24300π2 − 253|z|9
71442000π

− 163z10

59535000π2

+ 7141|z|11
207467568000π

+ 589z12

6429780000π2 − 113623|z|13
490868265888000π

− 2447503z14

1143664968600000π2

+
(

1

40186125000π3 + 33661

29452095953280000π

)
|z|15+ 5597693z16

140566821595200000π2 + . . .

(3.85)

The first sum is the truncated Taylor series associated to the function sin(z)/z, and
corresponds to the one-body correlation function of noninteracting fermions,

gF
1 (z) = sin(z)

z
, (3.86)

while the additional terms are specific to bosons with contact interactions. The one-
body correlation function of Tonks–Girardeau bosons differs from the one of a Fermi
gas due to the fact that it depends on the phase of the wavefunction, in addition to its
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Fig. 3.7 Dimensionless
one-body correlation
function gTG1 in the
Tonks–Girardeau regime as a
function of the
dimensionless distance z.
Short-distance asymptotics
given by Eq. (3.85) (solid)
and large-distance
asymptotics given by
Eq. (3.83) (dashed) overlap
at intermediate distances

modulus. The full structure, that would be the short-distance equivalent of Eq. (3.84),
is still unknown. All in all, expansions at short and large distances are known at high
enough orders to overlap at intermediate distances [62, 64, 66], as can be seen in
Fig. 3.7.

I turn to the case of finite interactions, where the large-distance regime is amenable
to Luttinger liquid theory and its generalizations.

3.4.2 Large-Distance, One-Body Correlation Function
at Finite Interaction Strength from the
Tomonaga–Luttinger Liquid Formalism

The Tomonaga–Luttinger liquid theory is a suitable framework to obtain the large-
distance, one-body correlation function. The result reads [67]

gT L
1 (z) = 1

|z| 1
2K

+∞∑

m=0

Bm
cos(2mz)

z2Km2 , (3.87)

where K is the Luttinger parameter and {Bm} denotes an infinite set of form factors.
We already know that the case K =1 corresponds to the Tonks–Girardeau regime. By
comparison with Eq. (3.84) above, it appears that the Tomonaga–Luttinger approach,
although it correctly predicts the behaviour of the dominant term, is not able to provide
the full structure. This is in contrast with the two-body correlation function, whose
equal-time structure is exact in the Tonks–Girardeau regime, as shown in Chap.2.

However, Equation (3.84) has been generalized to finite interaction strengths in
[68], by regularization of the Tomonaga–Luttinger liquid formalism, predicting that
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gRT L
1 (z)= G(3/2)4√

2|z| 1
K

[
1+

+∞∑

n=1

cn(K )

z2n
+

+∞∑

m=1

cos(2mz)

z2Km2

+∞∑

n=0

c′
n,m

z2n
+

+∞∑

m=1

sin(2mz)

z2Km2+1

+∞∑

n=0

c′′
n,m

z2n

]
.

(3.88)

The problem of the extraction of the amplitudes Bm , or {cn, c′
n,m, c′′

n,m} by Bethe
Ansatz or alternative techniques, is once more the main difficulty. A few of them
have been obtained semi-analytically in [69].

3.4.3 Short-Distance, One-Body Correlation Function
from Integrability, Notion of Connection

At arbitrary interaction strength, due to Galilean invariance, the short-distance series
expansion of the one-body density matrix,

ρ1(x, x
′; γ) =

∫
dx2 . . .

∫
dxN ψ∗

N (x, x2, . . . , xN ) ψN (x ′, x2, . . . , xN ), (3.89)

can be written as

ρ1(x, x
′; γ) = 1

L

+∞∑

l=0

cl(γ)(n0|x−x ′|)l . (3.90)

The list of coefficients {cl} can be constructed from integrability at arbitrary interac-
tion strength, using a procedure that relies on conservation laws. The most common
conserved quantities in condensed matter physics are the number of particles, total
momentum and energy, that are eigenvalues of their associated operators: particle
number, momentum and Hamiltonian. On top of those, an integrable model also
features infinitely many conserved quantities, called higher energies and written En .
They are eigenvalues of peculiar operators called higher Hamiltonians, written Ĥn ,
and have the same Bethe eigenvector ψN as the Hamiltonian. To obtain the results
presented in Ref. [70], I have used and compared several strategies, sketched in [71–
73]. All of them are quite technical, but a systematic procedure and a few general
properties have emerged in the course of the derivation.

I have defined the notion of connection for the one-body density matrix as a
functional relation F that connects one of the coefficients cl of Eq. (3.90) to a
local correlation function, via moments of the density of pseudo-momenta and their
derivatives, and reads

F [cl(γ), gk(γ), {e2n(γ), e′
2n(γ), . . . }, γ] = 0. (3.91)

Connections encompass many relationships scattered throughout the literature,
within a unified description. Each of them is unambiguously denoted by the pair
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of indices (l, k), where by convention an index is set to 0 if the corresponding quan-
tity does not appear in Eq. (3.91). This compact notation is convenient, as it allows
to list and classify the connections.

To illustrate this point, I recall the first few connections, obtained from conserva-
tion laws. I find

c0 = g1 = e0 = 1, (3.92)

yielding the connections (0,0) and (0,1), as well as

c1 = 0, (3.93)

denoted by (1,0). The connection (2,2) is

− 2c2 + γg2 = e2, (3.94)

while (0,2) is obtained by applying the Hellmann–Feynman theorem to the Lieb–
Liniger Hamiltonian Eq. (3.1), and is nothing else than Eq. (3.64). Then, combining
the connections (2,2) and (0,2) yields (2,0), that reads

c2 = 1

2
(γe′

2 − e2). (3.95)

The main result of [70] is the derivation of the connection (4,3), that reads

24c4 − 2γ2g3 = e4 − γe′
4. (3.96)

This derivation involves an operator Ĥ4 that yields,when applied to aBethe eigenstate
ψN , the fourth integral of motion E4, such that

E4 =
N∑

i=1

k4i . (3.97)

The higher Hamiltonian Ĥ4 can be written explicitly as [70, 72, 73]

Ĥ4 =
N∑

i=1

∂4

∂x4i

+12c2
N−2∑

i=1

N−1∑

j=i+1

N∑

k= j+1

δ(xi − x j )δ(x j − xk)

−2c
N−1∑

i=1

N∑

j=i+1

{(
∂2

∂x2i
+ ∂2

∂x2j
+ ∂2

∂xi∂x j

)
δ(xi −x j )+δ(xi −x j )

(
∂2

∂x2i
+ ∂2

∂x2j
+ ∂2

∂xi∂x j

)}
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+2c2
N−1∑

i=1

N∑

j=i+1

δ2(xi − x j )

= ĥ(1)
4 + ĥ(2)

4 + ĥ(3)
4 + ĥ(4)

4 . (3.98)

Let me comment on the physical meaning of Eq. (3.96) in view of Eq. (3.98), from
which it is derived. The fact that g3 appears in the connection (4,3) stems from ĥ(2)

4 in
Eq. (3.98), that involves three-body processes provided that N ≥3. The coefficient
c4, that stems from ĥ(1)

4 , is related to the higher kinetic energy in that the momen-
tum operator applied to the density matrix generates the coefficients of its Taylor
expansion when taken at zero distance.

In the course of the derivation, the requirement that Ĥ4 is divergence-free, i.e.
contains no δ(0) term in spite of ĥ(4)

4 being mathematically ill-defined (it contains
an operator δ2), yields the connection (3,2), first obtained in [74] from asymptotic
properties of Fourier transforms:

c3 = γ2

12
g2. (3.99)

The connection (3,0) follows naturally by combination with (0,2) and reads:

c3 = γ2

12
e′
2. (3.100)

In Ref. [70], we also proposed an alternative derivation of (3, 2), as a corollary of
the more general result:

ρ(3)
k (0, . . . ; 0, . . . ) = N − k

12
c2ρk+1(0, . . . ; 0, . . . ), (3.101)

where ρk is the k-body density matrix expanded as

ρk(x1, . . . , xk; x ′
1, . . . , x

′
k) =

+∞∑

m=0

ρ(m)
k

(
x1+x ′

1

2
, x2, . . . , xk; x ′

2, . . . , x
′
k

)
|x1−x ′

1|m,

(3.102)

a form that naturally emerges from the contact condition. Equation (3.101) can be
written as

c(k)
3 = γ2

12
gk+1, (3.103)

where c(k)
3 is the third-order coefficient of the Taylor expansion of the k-body density

matrix, and provides an example of generalized connection, a notion that remains in
limbo.
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Fig. 3.8 Dimensionless
coefficient c4 as a function of
the dimensionless interaction
strength γ, as predicted from
the conjectures (solid and
dashed), compared to
accurate numerical solution
(dots). A sign inversion
occurs at γ 	 3.8

Fig. 3.9 Dimensionless
coefficients c2, c4 and c3
(from bottom to top
respectively) as predicted
from connections combined
to conjectures on the
moments of the density of
pseudo-momenta, as
functions of the
dimensionless interaction
strength γ

As a last step, combining the connection (0,3), Eq. (3.66), with the connection
(4,3), Eq. (3.96), yields the connection (4,0) first published in [75]:

c4(γ)= γe′
4

12
− 3

8
e4+ 2γ2+γ3

24
e′
2−

γe2
6

− γe2e′
2

4
+ 3

4
e22. (3.104)

More generally, all correlations of the model are encoded in the connections of type
(l, 0) and (0, k), as a consequence of integrability.

Combining the results listed above gives access to the first few coefficients
{cl}l=0,...,4 of the Taylor expansion of g1. Contrary to c0 and c1 that are constant,
c2 and c3 that are monotonic functions of γ, c4(γ) changes sign when the interaction
strength takes the numerical value

γc = 3.8160616255908 . . . (3.105)

obtained with this accuracy by two independent methods, based on a numerical and a
semi-analytical solution of theBetheAnsatz equations respectively. This is illustrated
in Figs. 3.8 and 3.9. It was previously known that c4 changes sign, as obtained from
numerical analysis in [76], but the only certitude was that 1 < γc < 8.
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3.5 Momentum Distribution and Tan’s Contact

In addition to real-space correlations, through ballistic expansion of the atomic cloud,
experimentalists have also access to the Fourier transform of the non-local, static
correlation functions. Only the first few orders bear specific names and have been
investigated by now. The Fourier transform of the one-body correlation function g1
is the momentum distribution, while the momentum space representation of g2 is
known as the static structure factor. The momentum distribution is measured with
ever increasing accuracy in various systems, from a 3D Fermi gas over the whole
range of interaction strengths [77, 78] to Bose-Einstein condensates [79, 80] and the
1D Bose gas [81].

The momentum distribution of the Lieb–Liniger model, defined as

n(p) = n0

∫ +∞

−∞
ei

p
�
xg1(x), (3.106)

is difficult to access from integrability. For this reason, most theoretical studies are
based on fully numerical methods so far [49, 76, 82]. Analytically, it is quite natural,
as usual, to treat the Tonks–Girardeau regime as a warm-up. As illustrated in Fig. 3.7,
expressions for the one-body correlation function gTG

1 (z) obtained at small and large
distances match at intermediate distances, but separately none is appropriate for a
direct Fourier transform.

A step forward is made by noticing that the low- and high-momentum expansions
of n(p) can be deduced from the large- and short-distance asymptotics of g1(z)
respectively, according to the following theorem [83]: if a periodic function f is
defined on an interval [−L/2, L/2] and has a singularity of the form f (z) = |z −
z0|αF(z), where F is a regular function, α > −1 and not an even integer, the leading
term of the Fourier transform reads

∫ L/2

−L/2
dz e−ikz f (z) =|k|→+∞ 2 cos

[π
2

(α+1)
]
�(α+1)e−ikz0 F(z0)

1

|k|α+1 + O

(
1

|k|α+2

)
.

(3.107)

A legitimate accuracy requirement is that the expansions of n(p) should overlap at
intermediate momenta. It is more or less fulfilled in the Tonks–Girardeau regime,
but this is not the case yet at finite interaction strengths. It is known, however, that
at small momenta the momentum distribution of the Tonks–Girardeau gas, nTG(p),
scales like p−1/2, in strong contrast with a noninteracting Fermi gas, as usual for
correlation functions of odd order, linked to the phase observable. This result can be
extended to arbitrary interactions using the Tomonaga–Luttinger liquid theory, and
one finds that nT L(p) scales like p

1
2K −1.

At large momenta and in the Tonks–Girardeau regime, to leading order the
momentum distribution scales like 1/p4 [84], again in contrast with a noninteracting
Fermi gas where such a tail does not exist due to the finite Fermi sea structure. This
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Fig. 3.10 Dimensionless
Tan’s contact C= 2π

L
1
n40
C(γ)

as a function of the
dimensionless interaction
strength γ (solid) and its
value in the Tonks–Girardeau
limit, CTG = 4π2

3 (dashed)

inverse power law associated with the Tonks–Girardeau gas is not affected by the
interaction strength, showing its universality, and stems from the |z|3 non-analyticity
in g1 according to Eq. (3.107). The coefficient of the 1/p4 tail is called Tan’s contact,
and is a function of the coupling γ [74]. As such, it yields an experimental means to
evaluate the interaction strength, but as Tan has shown in a series of articles in the
case of a Fermi gas [85–87], and others in a Bose gas [88], it also gives much more
information about the system. For instance, according to Tan’s sweep relation, Tan’s
contact in 1D is related to the ground-state energy E0 of the gas according to

C = − m2

π�4

∂E0

∂(1/g1D)
, (3.108)

that can be rewritten in dimensionless units as

C(γ) = n40
L

2π
γ2g2(γ), (3.109)

and is illustrated in Fig. 3.10. Written in this form, it becomes clear that this quantity
is governed by the two-body correlations.

3.6 Breakdown of Integrability, BALDA Formalism

3.6.1 Effect of a Harmonic Trap

In current experimental realizations of 1D gases, external trapping along the lon-
gitudinal direction often breaks translational invariance, thus spoiling integrability.
Due to this external potential, real systems are inhomogeneous, and their theoretical
description requires modifications.
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Let us assume that the atoms are further confined in the longitudinal direction
by an external potential Vext (x), describing the optical or magnetic trapping used in
ultracold atom experiments. Then, as a generalization of the Lieb–Liniger model,
the Hamiltonian of the system reads

H =
N∑

j=1

⎡

⎣− �
2

2m

∂2

∂x2j
+ Vext (x j ) + g1D

2

∑

{l �= j}
δ(x j − x�)

⎤

⎦ . (3.110)

In the case of a harmonic confinement, the only one I will consider here, Vext (x)=
mω2

0x
2/2. Introducing the harmonic-oscillator length aho=√

�/(mω0) and the one-
dimensional scattering length a1D=−2�

2/(g1Dm), in the inhomogeneous system the
dimensionless parameter corresponding to γ in the homogeneous gas is

α0 = 2aho
|a1D|√N

. (3.111)

Due to the additional term in the Hamiltonian compared to the homogeneous case,
new tools are needed to derive the dynamics of a system described by Eq. (3.110).
The few-particle problem is exactly solvable for N =2 [89] and N =3 [90], either
with analytical techniques or using a geometrical ansatz [91], but the thermodynamic
limit requires a different approach.

3.6.2 Local-Density Approximation for the Density Profile
in the Tonks–Girardeau Regime

In the Tonks–Girardeau regime, characterized by α0→+∞, a generalized Bose–
Fermi mapping allows for an exact solution of the Schrödinger equation associated
to Eq. (3.110) [92]. However, this exact solution is restricted to infinite interaction
strength, and not utterly trivial. It is thus instructing to rely on an approximatemethod
that would be easier to handle, and generalizable to arbitrary interaction strengths.

The local-density approximation (LDA) provides such an approach to this prob-
lem. It is expected to be reliable for sufficiently large systems, where finite size
corrections and gradient terms have negligible impact on the density profile. Its
interest lies also in its generality, as LDA can be applied to various systems, and does
not depend on quantum statistics.

In the Tonks–Girardeau regime, predictions of LDA can be compared to the exact
solution, in particular it has been checked numerically in [93] that the Thomas–Fermi
density profile nT F predicted by the LDA becomes exact in the thermodynamic limit,
as illustrated in Fig. 3.11. This exact equivalence can be proven rigorously [29], and
reads
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Fig. 3.11 Exact density profile of a harmonically trapped Tonks–Girardeau gas (solid) and as
predicted by LDA (dashed) in units of the inverse harmonic oscillator size 1/aho, as a function of
the dimensionless distance z = x/aho, for 1, 10 and 100 particles respectively from top to bottom
and left to right

nTG(x; N )=
N−1∑

n=0

|φn(x)|2 ∼N→+∞ nT F (x; N )= 1

πaho

√

2N−
(

x

aho

)2

,

(3.112)

where the eigenfunctions of the harmonic oscillator are [94]

φn(x) = e−x2/(2a2ho)

(
√

π2nn!aho)1/2 Hn

(
x

aho

)
, (3.113)

and Hn are the Hermite polynomials, defined as Hn(x)=(−1)nex
2 dn

dxn e
−x2 .

3.6.3 From Local-Density Approximation to Bethe Ansatz
LDA

In order to describe a one-dimensional, harmonically-trapped Bose gas, a possible
strategy is to try and combine the local-density approximation, exact for a trapped
Tonks–Girardeau gas in the thermodynamic limit, with Bethe Ansatz, exact for the
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uniform Lieb–Liniger gas at arbitrary interaction strength. This combination leads
to the Bethe Ansatz local-density approximation (BALDA) formalism, that predicts
the thermodynamics of a trapped gas at arbitrary interaction strength.

To do so, in [95] we employed the density functional approach, previously devel-
oped and illustrated in [96, 97] in the fermionic case. In detail, it consists in defining
an energy functional E0[n] of the local density n(x) which, in the local-density
approximation, reads

E0[n] =
∫

dx {ε(n) + [Vext (x) − μ]n(x)} , (3.114)

where ε is the ground-state energy density of the homogeneous gas and μ is its
chemical potential. Minimizing this functional, i.e. setting δE0/δn=0, yields an
implicit equation for the density profile,

3

2

�
2

m
n2e − g1Dn

2
e′(γ) = μ − Vext (x) = μ

(
1 − x2

R2
T F

)
, (3.115)

where

RT F =
√

2μ

mω2
0

(3.116)

is the Thomas–Fermi radius of the harmonic trap, and the dimensionless average
ground-state energy per particle e defined in Eq. (3.34) is such that

ε(n)= �
2

2m
n3e(γ). (3.117)

The chemical potential is fixed by imposing the normalization condition

N =
∫

dx n(x). (3.118)

Note that in the homogeneous case, Eq. (3.114) would yield

μ = n20�
2

2m
(3e − γe′), (3.119)

as expected from thermodynamics [4].

3.6.4 Tan’s Contact of a Trapped Bose Gas

To illustrate the BALDA formalism, in Ref. [95] we have investigated Tan’s contact
of a trapped one-dimensional Bose gas. Before explaining my own contributions to
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the problem, let me summarize a few important analytical results previously obtained
by other authors.

The high-momentum tail of a harmonically-trapped Bose gas in the Tonks–
Girardeau regime scales like p−4, as in the homogeneous case [84], and this power
law still holds at arbitrary interaction strength [74]. It has even been shown that such
a tail is the exact dominant term at finite temperature in the Tonks–Girardeau regime
[98].

Motivated by a recent experiment realizing a 1D gas of fermions with SU (κ)

symmetry with up to κ=6 spin components [99], a step forward has been made
for interacting spin-balanced harmonically-trapped Fermi gases of arbitrary spin.
The two first corrections to Tan’s contact of a fermionic gas in the Tonks–Girardeau
regime have been obtained within the local-density approximation in [97]. This
readily yields the strong-coupling expansion to the same order for the Bose gas in a
harmonic trap, due to a theorem that states the equivalence between a balanced one-
dimensional gas of fermions with SU (κ=+∞) symmetry and a spinless 1D Bose
gas [100]. Another important result of [97] relies on comparison of the BALDA result
to a numerical exact solution fromDMRG, that shows remarkable agreement at large
interaction strengths. It was not possible, however, to attain higher orders analytically
for this Fermi gas, because the strong-coupling expansion of its ground-state energy
is known to third order only [101].

In [95], I have obtained Tan’s contact of the harmonically-trapped 1D Bose gas
to fourth order in the inverse coupling, and developed a procedure to evaluate this
expansion to arbitrary order, from the corresponding asymptotic energy of an homo-
geneous gas at next order. This procedure can be applied to bosons and fermions
alike. Within the LDA, Tan’s contact of the inhomogeneous gas reads

CLDA = g21D
m2

2π�4

∫
dx n2(x)

∂e

∂γ

∣∣∣∣
n0=n(x)

. (3.120)

This expression readily generalizes the known result for the homogeneous gas,
Eq. (3.109). To perform the calculation explicitly, it is necessary to dispose of a
model of equation of state e(γ) for the homogeneous gas. For noninteracting spin-
less fermions or the Tonks–Girardeau gas, the LDA calculation can be performed
this way, but requires the knowledge of the first correction in 1/γ. In the case of the
Lieb–Liniger model with arbitrary coupling constant, I have relied on the strong-
and weak-coupling expansions found in Sect. 3.2.4.

First, I derived the strong-coupling expansion of Tan’s contact for a harmonically-
trapped gas, based on the corresponding expansion of the ground state-energy of the
homogeneous system, Eq. (3.51). To quantify the interaction strength in the trapped
gas, I used the dimensionless unit α0, such that

g1D=�ω0aho
√
Nα0. (3.121)

I also introduced the rescaled variables
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n = n aho√
N

, μ = μ

N�ω0
, x = x

RT F
. (3.122)

Combining Eq. (3.115), the normalization condition Eq. (3.118) and these scalings,
I obtained the following set of equations:

π2

6

+∞∑

k=0

(k + 3)ek
αk
0

nk+2(x;α0) = (1 − x2)μ(α0), (3.123)

where ek is defined as in Eq. (3.51), as well as

1=√2μ

∫ 1

−1
dx n(x). (3.124)

Then, I developed an efficient procedure, that allows to calculate the strong-
coupling expansion of Tan’s contact to arbitrary order. This procedure relies on the
following expansions:

μ =
+∞∑

k=0

ck
αk
0

, (3.125)

and

n(x) =
+∞∑

j=0

b j

α
j
0

f j (x), (3.126)

where {ck}k≥0 and {b j } j≥0 are numerical coefficients, and { f j } j≥0 is a set of unknown
functions. Injected into Eqs. (3.123) and (3.124), they yield a consistency condition:

b j f j (x) =
j∑

m=0

bmj (1 − x2)(m+1)/2, (3.127)

where {bmj } are unknown coefficients of an upper triangular matrix, so that the
previous equations become
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and
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, (3.129)
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where B is the Euler Beta function.
Equations (3.128) and (3.129) are the final set of equations. Solving them when

truncated to order n requires the solution at all lower orders. Moreover, at each
step Eq. (3.128) splits into n+1 independent equations, obtained by equating the
coefficients of (1 − x2)(1+m)/2

m=0,...,n in the left- and right-hand sides. One thus needs to
solve a set of n+2 equations to obtain cn and {bmn}m=0,...,n . Fortunately, n of them,
giving bmj , m ≥ 1, are fully decoupled.

As a final step, Eq. (3.120) yields Tan’s contact. In natural units imposed by the
scaling, i.e. taking [102]

CLDA = CLDA
a3ho
N 5/2

, (3.130)

the final equation reads:
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In spite of the global minus sign, Tan’s contact is a non-negative quantity because
e1<0 and higher-order corrections decrease quickly enough. At order n, the condi-
tion k ′ + k + j ′ = n, where j ′ is the power of α0 in the integrand, shows that the
coefficient of order n is a sum of

(n+2
n

)
integrals. One of them involves en+1, so e(γ)

must be known to order n+1 in 1/γ to obtain the expansion of Tan’s contact to order
n in 1/α0.

Following this approach, the strong-coupling expansion reads:

CLDA = 128
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2
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+ . . . (3.132)

This expression is in agreement with the zero order one obtained in [74], and with
the one derived for a κ-component balanced spinful Fermi gas to order two [97] in
the infinite spin limit.

In the weak-coupling regime, I also derived an expression for Tan’s contact by
combining theweak-coupling expansion of the homogeneous gas to the local-density
approximation. Using the same notations as above, I obtained
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Fig. 3.12 Scaled Tan’s contact for a 1D Bose gas (in units of N/aho) as a function of the dimen-
sionless interaction strength α0/2 = aho/(|a1D|√N ). Results from the strong-coupling expansion:
Tonks–Girardeau (horizontal long-dashed line), 1st order correction (long-dashed), 2nd order cor-
rection (short-dashed), 3rd order correction (dotted), 4th order correction (dot-dashed). Results at
arbitrary interactions: conjecture (dots), exact equation of state (data from Ref. [74], continuous).
The weak-coupling expansion is also shown (double-dashed)
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In this regime, it is not obvious to what order truncation should be performed to
obtain a consistent expansion at a given order, nor to find the variable in which to
expand, as can be seen by evaluating the first orders.

Considering only the k=0 term in Eq. (3.133) yields

n (x) =
(

9

32α0

)1/3

(1 − x2) (3.134)

and

μ (α0) =
(
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32

)1/3

α
2/3
0 . (3.135)

The expansion to next order is problematic. If one retains terms up to k=1, corre-
sponding to the Bogoliubov approximation, since the coefficient a1 is negative the
equation of state is not reliable anymore at large density. Then, it is not possible
to use it to perform the local-density approximation. One may also recall that the
LDA breaks down at very weak interactions, where it is not accurate to neglect the
quantum tails in the density profile [103–105].

In the end, the weak-coupling expansion to lowest order reads

CLDA = 1

5π

(
3

2

)2/3

α
5/3
0 , (3.136)
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in agreement with [74].
Figure 3.12 summarizes our results for Tan’s contact. Notice that, although the

contact is scaled by the overall factor N 5/2/a3ho, it still depends on the number of
bosons through the factor α0/2 = aho/(|a1D|√N ). We have also applied the LDA
numerically to the strong-coupling conjecture, Eq. (3.57). The result is extremely
close to the one obtained from the numerical solution of the Bethe Ansatz equation
of state in [74]. By comparing the strong-coupling expansion with the results of
the full calculation, we notice that the expansion (3.132) is valid down to α0 	 6,
and provides a useful analytical expression for Tan’s contact in an harmonic trap. In
order to accurately describe the regime of lower interactions, a considerable number
of terms would be needed in the strong-coupling expansion of the equation of state.
The use of the conjecture (3.57, 3.58) is thus a valuable alternative with respect
to solving the Bethe Ansatz integral equations, the weak-coupling expansion being
applicable only for very weak interactions α0 � 0.1.

3.7 Summary of This Chapter

This chapter was devoted to the ground-state energy and static correlations of the
Lieb–Liniger model. It began with a relatively detailed account of Lieb and Liniger’s
beautiful derivation of the integral equations that encode all the ground-state prop-
erties of their model in the thermodynamic limit. This procedure, based on Bethe
Ansatz, does not rely on any approximation whatsoever. The Lieb–Liniger model is
thus ‘exactly solved’, in the sense that its ground-state energy is expressed in closed
form as the solution of relatively few equations, but this is not the end of the story,
as this solution is not explicit at that stage.

To make quantitative predictions, the integral equations that governs the exact
ground-state energy can be solved numerically in a first time, but this is not the spirit
of integrable models, that are meant to be exactly solved by analytical techniques.
Sophisticated procedures give access to weak- and strong-coupling expansions of the
ground-state energy, and are valid at arbitrary order. In particular, I have improvedon a
powerful method based on orthogonal polynomials, designed to study the strongly-
interacting regime. I have studied it in detail to put into light its advantages and
drawbacks, and proposed an alternative method explained in appendix, that is even
more powerful.

The Lieb–Liniger model is thus exactly solved in a broader sense, that does not
exhaust the problem however. Indeed, evaluating the numerical coefficients of these
expansions is quite tedious, past the very first orders.My contributions to the problem
are twofold. I have obtained the exact analytical coefficients of the strong-coupling
expansion up to order twenty,while former studies stopped at order eight. In theweak-
coupling regime, from numerical data available in the literature, I guessed the exact
value of the third-order coefficient of the weak-coupling expansion. I also refined
Tracy and Widom’s conjecture on the structure of the weak-coupling expansion.
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As far as the ground-state energy is concerned, the next and last step towards the
exact analytical solutionwould be to identify the generating function of either of these
expansions, and sum the series explicitly. I took the first step by identifying patterns in
the strong-coupling expansion, that enabled me to conjecture a partially-resummed
form, whose validity range and accuracy are considerably enhanced compared to
bare expansions. Most of these results are conjectural, as is often the case in number
theory.

This approximate solution, in turn, allowed me to obtain the local correlation
functions of the Lieb–Liniger model, that give information on the degree of fermion-
ization of the system and on its stability. Generalizing my previous conjectures on
the energy to higher moments of the density of pseudo-momenta, I improved on the
analytical evaluations of these quantities.

Then, I turned to non-local correlation functions. While long-range correlations
are amenable to the Tomonaga–Luttinger liquid framework, the model-dependent
short-range expansion can be obtained systematically by Bethe Ansatz techniques.
Focusing on the one-body correlation function, I constructed higher Hamiltonians
and conserved quantities up to order four. I introduced the notion of connection to
denote equations that relate local correlation functions, coefficients of their short-
range series expansion, and moments of the density of pseudo-momenta. I derived
most of them up to order four, simplified a few of the existing derivations, and
identified these connections with most of the celebrated results in the literature, now
unified in a single formalism. As a new result, I evaluated the fourth-order coefficient
of the one-body correlation function semi-analytically, and found the interaction
strength at which it changes sign, with extreme precision.

The Fourier transform of the one-body correlation function is known as the
momentum distribution, and is also amenable to perturbative expansions. The coef-
ficient of its high-momentum universal tail is known as Tan’s contact. I used
this observable to illustrate an extension of the Bethe Ansatz formalism to an
harmonically-trapped gas, in a non-integrable regime, thanks to its combination
with the local-density approximation. I have developed a procedure that yields the
expansion of Tan’s contact for the trapped Bose gas to arbitrary order in the strongly-
interacting regime, and used it to evaluate the corrections to the Tonks–Girardeau
regime up to fourth order.

3.8 Outlook of This Chapter

This chapter shows that, even at a basic level, the Lieb–Liniger model is far from
having revealed all its secrets.

The exact, analytical expression of the ground-state energy is, more than ever
before, a thriving open problem. It seems easier to tackle at strong coupling, where
a special role seems to be played by the quantity 1+2/γ, associated to a ratio of
Fredholm determinants [106]. However, the new terms identified at weak coupling
look far more interesting. Several other examples of structures involving zeta func-
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tions had already been reported on, in the statistical physics, quantum field theory
and string theory literature. This function appears in the Feynman diagrams of quan-
tum electrodynamics, the φ4 model and correlation functions of the Heisenberg spin
chain [107], but its presence in as simple a model as the Lieb–Liniger Bose gas came
as a surprise and surely deserves as much attention.

A better knowledge of the exact ground-state energy might help ingenuous math-
ematicians to prove new theorems on the zeta function. Examples that come to mind
are the irrationality of ζ(3)/π3, that explicitly appears in the weak-coupling expan-
sion of e(γ), and of ζ(2n + 1) for n ≥ 2 (it is only known that an infinity of them
is irrational [108], and a few improvements thereof). I conjecture that multiple zeta
functions are also involved in this expansion at higher orders, ζ(3)2 to begin with,
as hinted by heuristic arguments.

The techniques used in the case of the Lieb–Liniger model could also be useful
when applied to closely related models such as the Yang-Gaudin model, or for an
extension to the super Tonks–Girardeau regime. In particular, again from numerical
data of Ref. [41], I conjecture that the weak-coupling expansion of the ground-state
energy of the attractive spin-1/2 δ-Fermi gas reads

e(γ) =
+∞∑

k=0

b̃k
γk

π2k−2
. (3.137)

The known exact coefficients are [109]

b̃0 = 1

12
, b̃1 = −1

2
, b̃2 = 1

6
, (3.138)

Prolhac guessed [41]

b̃3=−ζ(3), (3.139)

and from his numerical data I inferred

b̃4=−3

2
ζ(3), b̃5=−3ζ(3). (3.140)

Numerical data may also allow to gain insight in the weak-coupling expansion of
the higher moments of the density of pseudo-momenta, i.e. in the coefficients a2k,i
in Eq. (3.76).

Another purely theoretical issue that may allow to gain insight in the model and
some mathematical aspects is the equivalence between the approach followed in the
main text, and the alternative point of view based on a peculiar nonrelativistic limit
of the sinh-Gordonmodel, investigated in the references associated to Appendix B.4,
that involves other integral equations. The equivalence of different formulations of
the third-order local correlation functions has not been rigorously verified yet. It is
not clear either whether the notion of connection can be adapted to this formalism.
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As far as the BALDA formalism is concerned, though the exact thermodynam-
ics of a harmonically trapped gas is not explicitly known, approximations could be
improved by guesses and summations as in the homogeneous case. It could also
be extended to other types of trapping, as an alternative to the techniques used in
Ref. [110]. In particular, the next term beyond Tan’s tail of the momentum distri-
bution is still widely unexplored, both in the homogeneous and trapped case. For a
homogeneous gas, it should be derived from higher-order connections.

In an experimental perspective, it is also important to investigate finite temperature
thermodynamics of the Lieb–Liniger model [111–113], that can be exactly obtained
from the thermodynamic Bethe Ansatz approach introduced by Yang and Yang [27].
Needless to say, analytical approximate solutions are even more difficult to obtain
in this case, but the interplay of statistics in k-space and interactions should be more
tangible at finite temperature. A series of theoretical works have already tackled
thermal correlation functions of the Lieb–Liniger model. Analytical approximate
expressions have been obtained for the non-local g2 correlation function in various
regimes, and compared to numerical simulations in [114–116], while g3 has been
studied in [59].
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Chapter 4
Dynamical Structure Factor of the
Lieb–Liniger Model and Drag Force Due
to a Potential Barrier

4.1 Introduction

In this chapter, whose original results are mostly based on Refs. [1, 2], I take the
next step towards the full characterization of a 1D Bose gas through its correlation
functions. Going beyond static correlation functions, dynamical ones in energy-
momentum space provide another possible way to understand a system, but their
richer structure makes them harder to evaluate, and their theoretical study involves
fairly advanced techniques. Two observables usually attract peculiar attention: the
Fourier transform of Green’s function, a.k.a. the spectral function, and of the density-
density correlations, known as the dynamical structure factor. The latter is quite
sensitive to both interactions and dimensionality, providing an ideal observable to
probe their joint effect.

Another strong motivation lies in the fact that equilibrium dynamical correlation
functions yield valuable information about the response of a fluid to a weak external
excitation. This response is the central object of linear response theory, that gives
insight into slightly out of equilibrium situations. In this perspective, the dynamical
structure factor governs the response of a fluid to a weak external potential locally
coupled to its density. More precisely, it is linked to the drag force experienced by a
single impurity, that characterizes the viscosity of its flow. I take this opportunity to
dwell on the issue of superfluidity, a concept associated to the dramatic phenomenon
of frictionless flow observed in quantum fluids below a critical velocity.

This chapter is organized as follows: first, I recall a few experimental facts related
to superfluidity and their historical interpretation, then I present Landau’s criterion
for superfluidity, and the drag force criterion as a generalization thereof.

Following Chap.3, I still consider the Lieb–Liniger model. The Tonks–Girardeau
regime is amenable to exact calculations, and at finite interaction strength I use the
Tomonaga–Luttinger liquid framework, keeping in mind that its validity range is
limited to low energies or small flow velocities. Refining the analysis to get closer to
experimental situations, I also investigate finite temperature, as well as the effect of

© Springer Nature Switzerland AG 2018
G. Lang, Correlations in Low-Dimensional Quantum Gases,
Springer Theses, https://doi.org/10.1007/978-3-030-05285-0_4

99

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05285-0_4&domain=pdf
https://doi.org/10.1007/978-3-030-05285-0_4


100 4 Dynamical Structure Factor of the Lieb–Liniger Model …

the barrier width on the drag force, putting into light a quasi-superfluid, supersonic
regime.

To finish with, as a first step towards a beyond Luttinger liquid quantitative treat-
ment, I examine the exact excitation spectrum of the Lieb–Liniger model using
coordinate Bethe Ansatz techniques, and give quantitative bounds for the validity
range of the Tomonaga–Luttinger liquid framework in terms of interaction strength.

4.2 Conceptual Problems Raised by Superfluidity,
Lack of Universal Criterion

Attaining a full understanding of themicroscopicmechanisms behind superfluidity is
among the major challenges of modern physics. An historical perspective shows that
experiments constantly challenge theoretical understanding [3–6] and that, although
four Nobel Prizes have already been awarded for seminal contributions to this com-
plicated topic (to Landau in 1962, Kapitza in 1978, Lee, Osheroff and Richardson in
1996 and to Abrikosov, Ginzburg and Leggett in 2003), interest in the latter shows
no sign of exhaustion whatsoever.

4.2.1 Experimental Facts, Properties of Superfluids

Superfluids are one of the most appealing manifestations of quantum physics at the
macroscopic scale. They seem to defy gravity and surface tension by their ability to
flowup and out of a container, or through narrow slits and nanopores at relatively high
velocity. Another famous property is the fountain effect [7]: when heat is applied to a
superfluid on one side of a porous plug, pressure increases proportionally to the heat
current so that the level of the free surface goes up, and a liquid jet can even occur
if pressure is high enough. If the liquid were described by classical hydrodynamics,
the vapor pressure would be higher on the warm side so that, in order to maintain
hydrostatic equilibrium, the liquid level would have to go down.

Superfluidity is also characterized by a sharp drop of viscosity and thermal resis-
tivity at the transition temperature, as shownby early historical experiments involving
liquid 4He. In this system, the superfluid transition is observed at a temperature Tλ �
2.2K, the lambda point, separating its phases called He I (above) and He II (below)
[8–10].

These facts remind of the sudden fall of resistivity previously witnessed in super-
conductors, hinting at an analogy, or even a deep connection between both phenom-
ena. Superconductivity is traditionally explained by the formation of Cooper pairs of
electrons in a metal, as prescribed by the Bardeen–Cooper–Schrieffer (BCS) theory
[11, 12]. For this picture to emerge in the context of superfluids, it took the unex-
pected observation of superfluidity in 3He [13], at temperatures lower than 2.6mK.
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This historical step bridged the superfluidity of helium and the phenomenon of
superconductivity, as the underlying mechanism was identified as the formation of
pairs of 3He atoms, which are fermionic [14].

The superfluidity of 4He, however, seemed associated to the Bose–Einstein con-
densation of these bosonic atoms [15]. London was the first to relate superfluidity to
Bose–Einstein condensation, through the heuristic observation that the experimental
value of the superfluid critical temperature of 4He is close to the theoretical conden-
sation temperature of an ideal Bose gas at the same density (an intuition sometimes
referred to as the ‘London conjecture’) [16]. This picture has to be nuanced as helium
is a strongly-interacting liquid, the ideal Bose gas is actually not superfluid, and the
superfluid fraction ns/n is equal to one at T = 0, while only ten percent of the atoms
are Bose condensed in 4He.

This notion of superfluid fraction (in analogy to the condensate fraction of a
Bose–Einstein condensate) stems from the Tisza–Landau two-fluid model [17, 18],
that pictures quantum fluids as containing two impenetrable parts, a normal (associ-
ated to the index n) and a fully superfluid one (indexed by s), such that the total density
reads n = nn + ns . The normal part behaves like a Newtonian, classical fluid, while
the superfluid component does not carry entropy and has zero viscosity. In particular,
the two-fluid hydrodynamic second sound velocity is associated to superfluid density.
This collective mode is an entropy wave, with constant pressure, where superfluid
and normal densities oscillate with opposite phases.

For decades, the two isotopes of helium have been the only known examples of
quantum fluids, as it is the only element that is naturally liquid at the very low temper-
atures where quantum effects arise. Much later, from the very last years of the 20th
century on, superfluidity has also been observed in ultracold gases, at temperatures
of the order of a few dozens of nK. Through their high degree of tunability, such
systems provide a versatile tool to study this phenomenon in simplified situations. A
paradigmatic example is the weakly-interacting Bose gas [19, 20], which is far less
complex than helium as its interactions have a simpler structure, are much weaker,
and its excitation spectrum features phonons but no complicated roton excitation.
Superfluidity has then been studied along the BEC-BCS crossover [21, 22], and
in a Bose–Fermi counterflow, where a Bose–Einstein condensate plays the role of
an impurity in a degenerate Fermi fluid [23]. Ultracold atoms also allow to study
superfluidity on a lattice [24], where it is opposed to a Mott insulator phase. In the
superfluid phase, atoms can hop from one site to another and each of them spreads out
over the whole lattice with a long-range phase coherence. More recently, polaritons
in microcavities have provided a new kind of system to explore the very rich physics
of non-equilibrium quantum fluids [25–27], up to room temperature [28].

Even in view of such a huge collection of experimental results, theoretical char-
acterization of superfluidity remains quite challenging. Frictionless flow is the his-
torical criterion; the existence of quantized vortices, quantized circulation, persistent
currents (i.e. metastability of superflow states) or absence of a drag force are also
commonly invoked, but towhat extent thesemanifestations are equivalent or comple-
mentary to each others is far from being settled. This puzzling situation is even more
problematic in cases that have not been considered at the beginning. For instance,
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superfluidity could exist in 1D, where BEC does not, and out-of-equilibrium gases
complexify this picture, leading to scenarios where a few criteria are satisfied, and
others not [29]. In our current understanding, superfluidity is rather an accumulation
of phenomena, preventing, so far, a straightforward and universal description from
emerging.

Equilibriumsuperfluidity canbeprobed experimentally through theHess-Fairbank
effect: when the walls of a toroidal container or a bucket are adiabatically set into
rotation with a small tangential velocity, a superfluid inside stays at rest while a nor-
mal fluid would follow the container. This leads to a nonclassical rotational inertia,
that can be used to determine the superfluid fraction, providing an indirect validation
of the two-fluid description [30]. A superfluid is also described by a macroscopic
wave function ψ(�r) [16], as are Bose–Einstein condensates and superconductors,
which implies phase coherence. The superfluid wave function can be expressed as
ψ(�r) = |ψ(�r)|eiφ(�r) in modulus-phase representation, and the superfluid velocity �vs
is characterized by the gradient of the phase φ through the relation

�vs = �

m

−→∇ φ(�r), (4.1)

where
−→∇ is the nabla operator. A consequence of Eq. (4.1), is that the flow is always

irrotational (curl(�vs) = �0), a characteristic shared with Bose–Eintein condensates.
The phase φ is single-valued, leading to the existence of quantized vortices (as long
as the fluid is not confined to 1D), as first predicted in helium [31] and experimentally
observed in the same system, long before the ultracold gases experiments already
evoked in Chap.2.

Among all possible criteria for superfluidity, I will delve deeper into the so-called
drag force criterion, which is one of the most recent. Due to its historical filia-
tion, I will first introduce the most celebrated and famous criterion for superfluidity:
Landau’s criterion.

4.2.2 Landau’s Criterion for Superfluidity

Why should superfluids flow without friction, while normal fluids experience vis-
cosity? The first relevant answer to this crucial question was provided by Landau,
who proposed a mechanism to explain why dissipation occurs in a normal fluid,
and under what conditions it is prevented [18]. His phenomenological argument, of
which I give a simplified account, is based on the following picture: in a narrow
tube, fluid particles experience random scattering from the walls, that are rough at
the atomic level. This mechanism transfers momentum from the fluid to the walls,
leading to friction in a normal fluid.

Formally, in the reference frame moving with the fluid, let us denote by E0 the
energy of the fluid and by P0 its momentum. If it starts moving with the walls, its
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motionmust begin through aprogressive excitationof internalmoves, therefore by the
appearance of elementary excitations. If p denotes the momentum of an elementary
excitation and ε its energy, then ε(p) is the dispersion relation of the fluid. Thus,
E0 = ε(p) and P0 = p.

Then, going back to the rest frame of the capillary, where the fluid flows with
velocity �v, the energy E of the fluid in this frame of reference is obtained by means
of a Galilean transformation and reads

E = ε + �p · �v + Mv2

2
, (4.2)

whereM = Nm is the totalmass of thefluid andMv2/2 its kinetic energy. The energy
variation caused by dissipation through an elementary excitation is ε(p) + �p · �v,
and is necessarily negative. It is minimal when �v and �p are anti-parallel, imposing
ε − pv ≤ 0, and as a consequence the flow should be dissipationless at velocities
lower than

vc = minp

[
ε(p)

p

]
, (4.3)

where min denotes the minimum. Equation (4.3) links the microscopic observable ε
to a macroscopic one, the critical velocity vc. A direct consequence of this equation
is that systems such that minp[ε(p)/p] = 0 can not be superfluid. In particular, the
minimum of ε(p)/p is solution to ∂p(ε/p) = 0, hence

(
∂ε

∂ p

)
v=vc

= ε

p
. (4.4)

Equation (4.4) means that, at vc, the group and phase velocities of the fluid coincide.
Graphically, the tangent to the excitation spectrum coincides with the line between
this point and the origin. In particular, for a system to be superfluid, its dispersion
relation should not be tangent to the p-axis at the origin. In an ideal Bose gas, where
ε(p) = p2

2m , the rough walls can always impart momentum to the fluid, leading to vis-
cous friction.More generally, gapless systemswith zero slope at the origin in energy-
momentum space are not superfluid. On the contrary, helium is superfluid according
to Eq. (4.3) in view of its dispersion relation, and so is the weakly-interacting Bose
gas, as shown by Bogoliubov who derived the approximate spectrum [32]

εBog(p) =
√
p2c2 +

(
p2

2m

)2

. (4.5)

Predicting the existence of a critical velocity is one of the major contribu-
tions of Landau’s to the theory of superfluids. It has been observed in Bose gases
[19, 20], where vc is of the order of a few mm/s, showing that Landau’s criterion
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is qualitatively correct, studied in 2D, both experimentally [33] and theoretically
[34], and then along the BEC-BCS transition [21]. In the BCS regime, pair-breaking
excitations are expected to limit vc, while for a Bose–Fermi counterflow, Landau’s
criterion can be adapted and becomes [35]

vBF
c = minp

[
εF (p) + εB(p)

p

]
. (4.6)

Upon closer inspection, the critical velocity as predicted by Landau’s criterion is
numerically overevaluated compared tomost experiments, sometimes by one order of
magnitude. A first explanation is that nonlinear processes are neglected in Landau’s
approach, such as vortices in 2D, and vortex rings in 3D [36, 37]. In 1D, it would
certainly yield a too high value as well, as it neglects solitons [38, 39]. It is also
important to keep in mind that Landau’s argument is purely kinematical and classical
in its historical formulation. There is no guarantee that one can apply it to understand
dynamical and quantum aspects of superfluidity. Another criticism is that Galilean
invariance is a crucial assumption, thus the criterion does not apply to inhomogeneous
systems [40].

More generally, correlations, fluctuations and interactions should be addressed
correctly to quantitatively understand the mechanisms behind superfluidity. Coming
back to Eq. (4.3), it is possible that even when the line of slope v intersects the spec-
trum, the transition probability to this state is strongly suppressed due to interactions
or to the specific kind of external perturbing potential. These issues can be tackled
using a more involved formalism, that I will use hereafter.

4.3 Drag Force as a Generalized Landau Criterion

In a seminal article [41], Astrakharchik and Pitaevskii developed a quantitative
approach to the problem of superfluidity of a generic fluid, whose basic idea relies
on an analogy with classical physics, where an object moving in a fluid experiences
viscosity. At the classical level, viscous friction is described phenomenologically by
a velocity-dependent force opposed to the direction ofmotion. In first approximation,
this force scales linearly with velocity for a laminar flow, and quadratically in the
turbulent regime. Its prefactor is usually considered as a phenomenological quantity,
that depends on the viscosity of the fluid and on the shape of the object.

This drag force is not a fundamental ingredient of the theory, but arises due to
collective, complex phenomena. The quantum framework, however, is appropriate
to describe the motion of a single impurity, immerged into a fluid and locally cou-
pled to its density at the atomic scale. Prior to any calculation, based on classical
fluid dynamics and Landau’s criterion, one can expect the following behavior: if an
impurity moves slowly enough inside a superfluid, then its motion does not lead
to friction, and as a consequence, in its frame of reference the velocity of the flow
remains constant.
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In a setup with periodic boundary conditions (to avoid revivals due to rebounces
on walls, that complexify the analysis), a persistent flow should be observed, which
is one manifestation of superfluidity. According to Newton’s laws of motion, if
perchance they hold in this context, the drag force experienced by the impurity must
be strictly zero. Above a critical velocity, however, superfluidity can not be sustained
anymore. Then, it is expected that the impurity experiences a drag force from the
fluid, and slows down.

Defining this drag force at the quantum statistical level was the first challenge
to change this intuition into a quantitative theory, since the very notion of force is
usually absent from the formalisms of quantum physics. A first possible definition,
already proposed in [39], is

�F = −
∫

ddr |ψ(�r)|2−→∇ U, (4.7)

whereψ is the macroscopic wavefunction that describes a Bose-condensed fluid, and
U the potential that models the perturbation due to the impurity. Equation (4.7) can
be seen as the semi-classical analog to the classical definition of a force in terms of
the gradient of a potential. Actually, the drag force corresponds to the opposite of
the force one should exert on the impurity to keep its velocity constant.

The impurity adds a perturbation term to the Hamiltonian, written as

Hpert =
∫

ddr |ψ(�r)|2U (�r − �vt), (4.8)

where �v is the constant velocity at which the impurity moves inside the fluid. In the
case of a point-like impurity, the potential reads

U (�r) = giδ(�r), (4.9)

where gi is the impurity-fluid interaction strength. This picture of a point-like impu-
rity is quite realistic if one has inmind an experiment involving neutrons as impurities,
for instance. In [41], it is also assumed that the impurity is heavy, so that it does not
add a significant kinetic energy term to the fluid-impurity Hamiltonian.

Still in [41], this drag force formalism has been applied to the weakly-interacting
Bose gas, as described by the Gross-Pitaevskii equation, and the norm of the drag
force has been evaluated in dimension one (where the result was already known [39]),
two and three, using the Born approximation that supposes sufficiently low values
of gi . For compactness, I merge the results into a single expression, namely

Fd(v) = sd−1

(2π)d−1

mdndg2i
�d+1

(
v2 − c2d

v

)d−1

�(v − cd), (4.10)
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Fig. 4.1 Dimensionless drag
force

f = Fd/

(
sd−1

(2π)d−1
mdg2i nd

�d+1

)
in

a Bose gas due to a heavy,
point-like impurity, as a
function of the Mach number
v/c, as predicted by the
Bogoliubov theory in
dimension 1 (dotted), 2
(dashed) and 3 (solid)

where nd = N/Ld is the d-dimensional density, sd−1 the area of the unit sphere, cd is
the sound velocity in the mean field approach and plays the role of a critical velocity
due to the Heaviside � function, as illustrated in Fig. 4.1.

The dimensionless drag force profile is strongly dimension-dependent, except at
a special point where all dimensionless drag forces are equal, irrespective of the
dimension. This occurs when the Mach number is equal to the golden ratio, i.e.
v/cd = (1 + √

5)/2. More importantly, at the mean field level a subsonic flow is
superfluid. In this sense, the drag force formalism can be seen as a quantitative
extension of Landau’s criterion [41]. Note that, for an ideal Bose gas, the sound
velocity vanishes and thus it is not superfluid, confirming that interactions are a
crucial ingredient of superfluidity.

We are now equipped with a qualitative criterion for superfluidity [39, 41]: if
there exists a non-zero flow velocity such that the drag force is strictly zero, then
the superfluid fraction is equal to one. As an addendum to this criterion [1, 41]: the
higher the drag force, the farther the flow is from being superfluid.

An advantage of the drag force criterion is that it accomodates perfectly well
with the historical definition of superfluidity as a flow without viscosity. A major
drawback, already noticed by the authors of Ref. [41] themselves, is the lack of
obvious way to define a superfluid fraction from the drag force, that would coincide
with the one predicted by the two-fluid approach.

There is also a second definition of the drag force [41], that has been the most
popular in the subsequent literature:

Ė = − �F · �v, (4.11)

where Ė is the statistical average energy dissipation per unit time. This definition
is proposed in analogy with the classical mechanics formula that links energy dis-
sipation per unit time, i.e. power, to the force responsible for energy transfer to the
environment.

Within this approach, the energy variation per unit time due to the impurity is
calculated first, and the drag force is deduced from the latter. Definition (4.11) is
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quite convenient for experimentalists, in the sense that energy dissipation is related
to the heating rate, which is a measurable quantity [22, 33]. On the other hand,
probing such tiny drag forces (of the order of a few nN) in a direct way seems quite
challenging, although a recent proposal to study superfluidity of light based on an
optomechanical, cantilever beam device, seems quite promising [42].

From the theoretical point of view, Eq. (4.11) does not provide a simple means
to evaluate the drag force analytically in full generality, as the energy variation is
not easy to evaluate. To go further, a useful approximation was developed in [41]. If
a weak potential barrier or impurity is stirred along the fluid, putting it slightly out
of equilibrium, then linear response theory holds and the average energy dissipation
per unit time is linked to the dynamical structure factor Sd(�q,ω) (see Appendix C.1
for more details on this observable)

Sd(�q,ω) =
∫ +∞

−∞
dt

∫
ddr ei(ωt−�q·�r)〈δn(�r , t)δn(�0, 0)〉, (4.12)

where δn denotes the local density fluctuation with respect to the average one, by
the relation, valid in arbitrary dimension [1]:

Ė = − 1

2π�Vd

∫ +∞

0
dω

∫
ddq

(2π)d
Sd(�q,ω)|Ud(�q,ω)|2ω, (4.13)

where Vd is the volume and

Ud(�q,ω) =
∫ +∞

−∞
dt

∫
ddr ei(ωt−�q·�r) Ud(�r , t) (4.14)

is the Fourier transform of the potential barrierUd(�r , t), that defines the perturbation
part of the Hamiltonian as

Hpert =
∫

ddr Ud(�r , t)nd(�r). (4.15)

In 1D, Eq. (4.13) was obtained in [41], and recovered from the Fermi Golden rule in
[43]. The assumption of a weak fluid-barrier coupling is not well controlled in the
derivation, but Iwill assume that it is fulfilled all the same.Note that two quantities are
involved in the integrand of the right-hand side of Eq. (4.13): the Fourier transform
of the potential barrier, and the dynamical structure factor of the gas.

This quantity is worth studying for itself and has been measured by Bragg spec-
troscopy since the early days of ultracold gases experiments [44, 45]. For this reason,
I will devote next paragraph to the dynamical structure factor, starting as usual by
considering the Tonks–Girardeau regime to gain some insight, before turning to
the more complicated situation of a finite interaction strength. From now on in this
chapter, I will focus on the 1D Bose gas as described by the Lieb–Liniger model,
thus postponing the issue of higher dimensions, to be dealt with in Chap.5.
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4.4 Dynamical Structure Factor and Drag Force
for a Tonks–Girardeau Gas

4.4.1 Dynamical Structure Factor

As a first step towards the evaluation of the drag force, I introduce the dynamical
structure factor of a one-dimensional Bose gas,

S(q,ω) =
∫ +∞

−∞

∫ +∞

−∞
dx dt ei(ωt−qx)〈δn(x, t)δn(0, 0)〉. (4.16)

In the Tonks–Girardeau regime, where the Lieb–Liniger model is equivalent to a
gas of noninteracting fermions for this observable due to the Bose–Fermi mapping,
calculating fermionic density-density correlations using Wick’s theorem yields after
Fourier transform, as detailed in Appendix C.2, the well-known result [46, 47]:

STG(q,ω) = m

�|q|�
[
ω+(q) − ω

]
�

[
ω − ω−(q)

]
, (4.17)

where

ω+(q) = �

2m
(q2 + 2qkF ) (4.18)

and

ω−(q) = �

2m
|q2 − 2qkF | (4.19)

are the limiting dispersion relations. They represent the boundaries of the energy-
momentum sector where particle-hole excitations can occur according to energy
conservation in the thermodynamic limit, known as the particle-hole continuum and
illustrated in Fig. 4.2. They also correspond to the type I (+) and type II (−) excitation
spectra of the Lieb–Liniger model at infinite interaction strength, already evoked in
Chap.2.

At zero temperature, the dynamical structure factor features jumps from a strictly
zero to a finite value at these thresholds, but features a smooth smearing at finite
temperature. A natural question is up to what energies and temperatures the phonon-
like excitations, characterized by a quasi-linear spectrum at low energy, are well-
defined when thermal effects come into play. To answer it, the dynamical structure
factor should be evaluated at finite temperature.

Its expression can be obtained from the fluctuation-dissipation theorem as

S(q,ω) = 2�

1 − e−β�ω
�[χnn(q,ω)] , (4.20)
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Fig. 4.2 Dynamical structure factor of a Tonks–Girardeau gas at zero temperature in energy-
momentum space, where darker nuances of grey correspond to higher values. Excitations occur
only inside the area bounded by the excitation spectra of the gas, and are prevented in a low-energy
region due to kinematical constraints in 1D. Note that the spectrum is quasi-linear at the origin
and around the umklapp point (q = 2kF ,ω = 0), which is a signature of well-defined phonon-like
excitations

relating it to the imaginary part of the linear density-density response function χnn .
Lindhard’s expression [48] is valid for noninteracting fermions and, consequently,
also for the Tonks–Girardeau gas:

χnn(q,ω) = 1

L

∑
k

nF (k) − nF (k + q)

�ω + ε(k) − ε(k + q) + i0+ , (4.21)

where

nF (k) = 1

eβ[ε(k)−μ] + 1
(4.22)

is the Fermi–Dirac distribution and ε(k) = �
2k2

2m is the dispersion relation of nonin-
teracting spinless fermions, μ the chemical potential, and the infinitesimal imaginary
part i0+ ensures causality. From Eqs. (4.20) and (4.21), using the property

1

X + i0+ = P.P.

(
1

X

)
− iπδ(X), (4.23)

where P.P. is the principal part distribution, I deduce a practical expression of the
finite-temperature dynamical structure factor in the thermodynamic limit:

STGT>0(q,ω) =
∫ +∞

−∞
dk

nF (k) − nF (k + q)

1 − e−β�ω
δ
[
ω − ωq(k)

]
, (4.24)
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where ωq(k) = 1
�
[ε(k + q) − ε(k)]. This expression is utterly equivalent to

STGT>0(q,ω) =
∫ +∞

−∞
dk nF (k) [1 − nF (k + q)] δ

[
ω − ωq (k)

]
. (4.25)

Either of them can be used to obtain, after a few algebraic manipulations, the final
expression

STGT>0(q,ω) = m

�|q|
nF

[
�ω−ε(q)

�2q/m

]
− nF

[
�ω+ε(q)

�2q/m

]
1 − e−β�ω

. (4.26)

To complete the calculation and make quantitative predictions, it is first necessary to
determine the temperature dependence of the chemical potential, that appears in the
Fermi–Dirac distribution. It is obtained by numerical inversion of the normalization
equation,

1

2π

∫ +∞

−∞
dk nF (k) = n0. (4.27)

Equation (4.27) can not be solved analytically in full generality. At low temperature,
Sommerfeld’s expansion [48] yields the approximate result [1]:

μ(T )

εF
�T�TF 1 + π2

12

(
T

TF

)2

, (4.28)

where εF = ε(kF ) = kBTF is the Fermi energy, kB is Boltzmann’s constant, and TF

the Fermi temperature of the gas. Note that the first correction to the ground-state
chemical potential is exactly opposite to the 3D case. At high temperature, a classical
expansion yields

μ(T )

εF
�T
TF − T

2TF
ln

(
T

TF

)
. (4.29)

The chemical potential being negative at high temperature according to Eq. (4.29),
by continuity there must be a temperature T0 at which it changes sign. The latter is
evaluated analytically as [1]

T0
TF

= 4

π

1

[(√2 − 1)ζ(1/2)]2 � 3.48, (4.30)

where ζ is the Riemann zeta function. These results are illustrated in Fig. 4.3.
Then, I use the numerical solution of Eq. (4.27) to evaluate the dynamical structure

factor of the Tonks–Girardeau gas at finite temperature from Eq. (4.26). As shown
in Fig. 4.4, the dynamical structure factor of the Tonks–Girardeau gas, STG(q,ω), is
quite sensitive to temperature. At finite temperature, the range of allowed excitations
spreads beyond the type I and type II spectra, since the dynamical structure factor
encodes thermally-activated excitations as well. The latter can even occur at ω < 0,
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Fig. 4.3 Dimensionless chemical potential of a noninteracting one-dimensional Fermi gas as a
function of the dimensionless temperature. Dots represent numerical data, the solid curve corre-
sponds to the Sommerfeld approximation at low temperature, and the symbol to the analytical
result for the annulation of the chemical potential. The chemical potential starts increasing with T ,
reaches a maximum and then decreases monotonically, contrary to the 3D case where it is a strictly
decreasing function of temperature

Fig. 4.4 Dynamical structure factor STG(q,ω) of the Tonks–Girardeau gas in the thermodynamic
limit for several dimensionless temperatures, T/TF = 0.1, 0.5, 1 and 4, in panels (a), (b), (c),
and (d), respectively. Darker nuances of grey are associated to higher values. Solid black lines
correspond to the limiting dispersion relations ω+ and ω−, defining the excitation domain at T = 0
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Fig. 4.5 Sections of the dynamical structure factor of the Tonks–Girardeau gas at q = 0.1kF , in
units of the dynamical structure at the umklapp point at zero temperature, as a function of the
dimensionless energy ω/ωF , at various temperatures T/TF = 0, 0.1, 0.2, 0.5 and 5 (semi-thick),
(solid), (dashed), (dotted) and (thick) respectively

meaning that energy can be emitted, although this emission has not been reported
on yet in ultracold atom experiments. The quasi-linear shape of the spectrum near
the origin and the umklapp point (2kF , 0) fades out at temperatures larger than the
order of 0.2 TF , where TF denotes the Fermi temperature. When temperature is of
the order of or higher than TF , this theoretical analysis is not quite relevant since the
gas is very likely not to be one-dimensional anymore in experiments using current
trapping techniques.

Figure4.5 represents sections of the dynamical structure factor at a momentum
q = 0.1kF , near the origin, for various finite temperatures. The divergence of the
dynamical structure factor at T = 0 and q = 0, and the high values that it takes
close to the origin dramatically decrease once temperature is taken into account. An
emission peak, whose position is symmetric to the absorption one already present
at T = 0 with respect to ω = 0, but whose amplitude is lower, appears at finite
temperature. The ratio of their heights is given by the detailed balance relation,

S(q,−ω) = e−β�ωS(q,ω). (4.31)

Both peaks form quite well-defined phonon dispersions at very low temperature, but
start overlapping if T � 0.2 TF . At higher temperatures, of the order of a few TF ,
they can not be distinguished anymore and the dynamical structure factor becomes
symmetric with respect to ω = 0.
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4.4.2 Drag Force Due to a Mobile, Point-Like Impurity
in the Tonks–Girardeau Regime

In 1D and at arbitrary temperature, the drag force reads

FT>0 = 1

2π�

∫ +∞

0
dq |U (q)|2q ST>0(q, qv)(1 − e−β�qv). (4.32)

The graphical interpretation of Eq. (4.32) is that the drag force, that measures dis-
sipation, is obtained by integration of the dynamical structure factor weighted by
other quantities, along a line of slope v in energy-momentum space. At zero tem-
perature, the lower bound of the area where the dynamical structure factor does not
vanish coincides with the lower excitation spectrum, and the link with the graphical
interpretation of Landau’s criterion becomes obvious. However, new ingredients are
taken into account in the drag force formalism: if the weight of excitations is zero,
i.e. for a vanishing dynamical structure factor, excitations do not occur even if the
integration line crosses the excitation spectrum. Moreover, the precise shape of the
potential barrier plays a major role, as will be seen below.

In the Tonks–Girardeau regime, with a potential barrier U (x, t) = Ub δ(x − vt),
combining Eqs. (4.17) and (4.32), a simple expression is obtained at T = 0 [41, 43],
namely

FTG(v) = 2U 2
b n0m

�2

[
�(v − vF ) + v

vF
�(vF − v)

]
. (4.33)

Thus, within linear response theory, drag force is a linear function of the barrier
velocity if v < vF , and saturates when v > vF . As I will show below, this saturation
to a constant finite value is actually an artifact, due to the idealized Dirac-δ shape
of the potential barrier. Equation (4.33) predicts that the drag force takes a non-
zero value if the velocity of the perturbing potential is finite, meaning that energy
dissipation occurs as long as the barrier is driven along the fluid. Thus, according
to the drag force criterion, the Tonks–Girardeau gas is not superfluid even at zero
temperature.

Equation (4.32) also allows to discuss thermal effects on the drag force. At finite
temperature, it simplifies in [1]

FTG
T>0

FTG(vF )
= 1

2

√
T

TF

∫ βmv2/2

0

dε√
ε(eε−βμ(T ) + 1)

. (4.34)

The integral can easily be evaluated numerically. As a main result, thermal effects
cause a depletion of the drag force close to the Fermi velocity, while at low velocity
the drag force profile remains linear. The intriguing fact that, at fixed velocity, the
drag force decreases when temperature increases, might be due to the fact that I do
not take any barrier renormalization into account.
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4.4.3 Effect of a Finite Barrier Width on the Drag Force

The saturation of the drag force at high velocities, predicted by Eq. (4.33), does
not seem realistic. Close examination shows that it stems from the approximation
of the potential barrier by a Dirac function, suggesting to study the effect of the
barrier shape on the drag force. I decided to consider the case of a gaussian barrier,
that models a laser beam, often used as a stirrer in experiments. I have focused on
the case of a blue-detuned, repulsive laser beam. Then, the perturbation part of the
Hamiltonian reads

Hpert =
∫ L

0
dx

√
2

π

Ub

w
e− 2(x−vt)2

w2 ψ†(x)ψ(x), (4.35)

whereUb is the height of the barrier, and w its waist. Prefactors have been chosen so
as to recover a δ-potential in the limit w → 0. The Fourier transform of the potential
in Eq. (4.35) reads

U (q) = Ub e
− q2w2

8 , (4.36)

and the drag force at T = 0 is readily obtained as

Fw>0(v) = U 2
b

2π�

∫ +∞

0
dq e− q2w2

4 q S(q, qv). (4.37)

In the Tonks–Girardeau gas case, I have obtained an explicit expression at T = 0,

FTG
w>0(v)

FTG(vF)
=

√
π

4

1

wkF

{
erf

[
wkF

(
1 + v

vF

)]
− erf

[
wkF

∣∣∣∣1 − v

vF

∣∣∣∣
]}

, (4.38)

where erf(x) = 2√
π

∫ x
0 du e−u2 is the error function. The more general case where

both waist and temperature are finite is obtained by inserting Eqs. (4.26) and (4.36)
into Eq. (4.32), and the integral is then evaluated numerically.

All these results are illustrated in Fig. 4.6.While for a delta potential the drag force
saturates at supersonic flow velocities, at finite barrier width the frag force vanishes
at sufficiently large velocities. According to the drag force criterion, this means that
the flow is close to being superfluid in this regime.

This important result deserves being put in perspective. The first theoretical con-
sideration of the drag force due to a Gaussian laser beam dates back to Ref. [39], that
focuses on the weakly-interacting regime of the Lieb–Liniger model, treated through
the Gross-Pitaevskii equation. At the time I wrote [1], I was not aware of this paper.
My contribution is still seemingly pioneering in the strongly-interacting regime.

In view of these results, it can be inferred that a strong suppression of the drag
force at supersonic barrier velocities is a common feature to all interaction regimes.
The range of velocities where this occurs corresponds to a ‘quasi-superfluid’ regime.
More generally, a typical damping profile, sketched in Fig. 4.7, can decently be
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Fig. 4.6 Drag force at finite barrier waist and temperature in the Tonks–Girardeau gas,
FTG

w>0,T>0(v), in units of FTG(vF ), as a function of the dimensionless barrier velocity v/vF . Solid
lines stand for a dimensionless waist wkF = 0, dashed lines for wkF = 0.5 and thick lines for
wkF = 1. For a given set of curves, temperature increases from 0 to 0.1 TF and 0.5 TF from top to
bottom

Fig. 4.7 Picture taken from Ref. [6], showing the three regimes in the drag force profile, put to
light in a Bose gas and conjectured in a general quantum fluid. The sound velocity c corresponds
to the critical velocity in the Landau mean-field picture. Due to various effects, the flow is really
superfluid only below a lower threshold velocity, the true critical velocity v1, generically lower than
c. This velocity would be null in the Tonks–Girardeau regime, for instance. A dissipative regime
occurs above v1, up to an upper critical velocity v2 above which dissipative effects can be neglected,
and the flow can be considered as quasi-superfluid

expected. Actually, it had already been observed in several experimental situations
upon close inspection [49, 50].

After our work [1], several articles have investigated similar points more in detail.
The authors of Ref. [51], using both numerical and analytical methods, have iden-
tified nonzero temperature, circular motion of the stirrer, and the density profile of
the atomic cloud as additional key factors influencing the magnitude of the critical
velocity in a weakly-interacting Bose gas. According to the terminology introduced
above, a quasi-superfluid regime has been predicted in higher dimensions too. In [52],
the definition Eq. (4.7) of the drag force has been used to consider the effect of a
Gaussian barrier on a weakly-interacting Bose gas, using the Bogoliubov formalism
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in 2D and 3D.Within this approach, the critical velocity still coincides with the sound
velocity, and after reaching a peak around twice the sound velocity, in 3D the drag
force decreases monotonically. Note, however, that the predicted drag force profile
is smooth even at zero temperature, which is not the case in the Tonks–Girardeau
gas. This may be due to the fact that a few corrections to linear response are included
as well within this approach.

In the next section, I shall investigate the whole region between the
Tonks–Girardeau and Gross-Pitaevskii regimes, at intermediate interaction strengths
between the bosons of the fluid.

4.5 Dynamical Structure Factor and Drag Force for a 1D
Bose Gas at Finite Interaction Strength

4.5.1 State of the Art

Evaluating the dynamical structure factor of the Lieb–Liniger model at finite interac-
tion strength is challenging, and several different approaches have been undertaken.

As was the case for thermodynamic quantities, perturbation theory allows to
evaluate dynamical ones in the strongly-interacting regime as corrections to the
Tonks–Girardeau limit. Such a perturbative approachhas beendeveloped tofirst order
in 1/γ at T = 0 in [47], and extended to finite temperature in [53]. By qualitative
comparison of the results obtained in these references, and in the Tonks–Girardeau
regime studied above, I conclude that the difference is scarce as long as γ � 10.
In particular, the low-temperature phonon-like tail starting from the origin at ω < 0
can be observed both in Ref. [53] and in panel a of Fig. 4.4. A notable difference
to the limit γ = +∞ is that excitations are progressively suppressed close to the
umklapp point (q = 2kF ,ω = 0) when the interaction strength is decreased, and a
crude extrapolation suggests that it tends towards a superfluid behavior. However,
one should keep in mind that first-order corrections to the Tonks–Girardeau regime
are expected to be reliable only as far as γ � 10.

In this respect, the Tomonaga–Luttinger liquid formalism, whose use in this con-
text was first suggested in Ref. [41], is more versatile as it can be used at arbitrary
interaction strength. However, it is also expected to be accurate only inside a small,
low-energy sector. This is not necessarily redhibitory to study superfluidity, since
the latter is defined through the low-velocity behavior of the drag force, that is domi-
nated by the low-energy sector of the dynamical structure factor, close to the umklapp
point. However, the quasi-superfluid, supersonic regime, is definitely out of reach
with this method.

Finding the exact dynamical structure factor at arbitrary interaction strength and
energy actually required the development of fairly involved algebraic Bethe Ansatz
techniques. The numerical evaluation of form factors at finite N has been imple-
mented in the Algebraic Bethe Ansatz-based Computation of Universal Structure
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factors (ABACUS) algorithm [54], first at zero [55], then even at finite temperature
[56]. This was a major breakthrough in the long-standing issue of dynamical corre-
lation functions of integrable models, and is one of the most important theoretical
achievements in this field in the early 2000s.

This exact solution tends to validate the main qualitative predictions of the
Imambekov–Glazman (IG) liquid theory, developed in parallel as an extension
of the standard Tomonaga–Luttinger liquid theory to a wider range of energies
[57–61]. The dynamical structure factor of a 1D Bose gas features power-law behav-
iors along the type I and type II excitation branches at T = 0, with a sharp response
at the upper threshold in the case of repulsive interactions, and at the lower one if
they are attractive [62].

Based on numerical data produced with the ABACUS code, a phenomenological
expression has been proposed for the dynamical structure factor, that incorporates the
TL and IG liquid predictions as special cases [63]. Later on, the dynamical structure
factor of 4He has also been obtained numerically, this time with Quantum Monte
Carlo techniques, and also shows beyond-Luttinger liquid behavior [64].

Measures of the dynamical structure factor of an array of 1D gases have shown
remarkable agreement with the algebraic Bethe Ansatz predictions for the Lieb–
Liniger model over a wide range of interaction strengths. They have definitely con-
firmed the need of a beyond-Luttinger liquid theory approach to the problem at high
energies [65, 66].

As far as the drag force is concerned, its first evaluation at arbitrary interaction
strength was reported on in [41], and relied on the Tomonaga–Luttinger liquid frame-
work. Then, the dynamical structure factor as predicted by the ABACUS algorithm,
once combined with Eq. (4.32) and numerically integrated, yielded the drag force
due to a point-like impurity at arbitrary interaction strength [67, 68]. The conclusion
of this study is that, in this configuration, the Lieb–Liniger model is never strictly
superfluid in the thermodynamic limit according to the drag force criterion.

I shall study the dynamical structure factor and drag force within the linear
Tomonaga–Luttinger liquid theory despite its shortcomings, for the following rea-
sons: first of all, it is currently the simplest approach allowing to make fully ana-
lytical, quantitative predictions at finite interaction strength. Moreover, its validity
range is still not known quantitatively, and asks for additional studies. It is also the
first step towards more accurate predictions, e.g. from the Imambekov–Glazman liq-
uid theory, and towards generalizations of the Tomonaga–Luttinger framework to
multi-component gases.

4.5.2 Dynamical Structure Factor from the
Tomonaga–Luttinger Liquid Theory

Starting from the real-space density-density correlations of a Tomonaga–Luttinger
liquid at T = 0 and in the thermodynamic limit, Eq. (2.44), Fourier transform with
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respect to time and space yields the dominant terms of the dynamical structure factor
of gapless 1D models. Since this quantity is symmetric with respect to q ↔ −q,
I shall write the result for q > 0 [1, 41] (I refer to Appendix C.3 for a detailed
derivation):

ST L (q,ω) � K |q|δ[ω − ω(q)] + B1(K )
[
ω2 − (q − 2kF )2v2s

]K−1
�[ω − |q − 2kF |vs ]

= ST L
0 (q,ω) + ST L

1 (q, ω) (4.39)

when read in the same order, where

B1(K ) = A1(K )

(2kFvs)2{K−1}
1

�(K )2

1

vs
(4.40)

is a non-universal coefficient. It is the first-order form factor of the dynamical struc-
ture factor, and is related to the phonic form factor of the density-density correlation
function, A1(K ), already defined in Eq. (2.41).

In Eq. (4.39), S0 displays a sharp peak, in exact correspondence to the linear
phonon-like dispersion ω(q) = qvs . Its divergence and zero widths are artifacts due
to the spectrum linearization. If v ≤ vs , it does not contribute to the drag force in this
framework, and if v � vs , it is also true according to more accurate descriptions,
so I will not devote much attention to S0 anymore, but rather focus on the second
contribution to the dynamical structure factor, denoted by S1.

This quantity features two linear limiting dispersion relations. They are symmet-
ric with respect to q = 2kF , and form a triangular shape above the umklapp point
(2kF , 0), with a vertex on the latter. Actually, these excitation spectra correspond to
the linearization of ω−, so one can write ωT L− = |q − 2kF |vs , and

ST L
1 (q,ω) = B1(K )[ω2 − (ωT L

− )2]K−1�(ω − ωT L
− ). (4.41)

The slopes of the limiting dispersions in S0 and S1 depend on the interaction strength
via vs . Hence, measuring the excitation spectrum of a 1D Bose gas at low energy
provides an indirect way to determine the sound velocity.

To make quantitative predictions, the first requirement is to evaluate vs , or equiv-
alently K , as well as the form factor A1. Both have already been obtained in the
Tonks–Girardeau regime in Chap. 2, readily allowing to make quantitative predic-
tions in this case. If they had not been obtained yet, the Luttinger parameter K could
be determined so as to reproduce the phonon-like dispersion relation at the origin, and
A1 so as to fit the exact dynamical structure factor at the umklapp point. Comparison
between the exact and linearized spectra in the Tonks–Girardeau regime is made in
Fig. 4.8, confirming that the Tomonaga–Luttinger liquid formalism is intrinsically
limited to low energies.

In particular, within this formalism it is impossible to make quantitative predic-
tions around the top of the type II excitation spectrum, where curvature effects are
important. This is not the only problem, actually. In the Tonks–Girardeau regime,
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Fig. 4.8 Definition domain of the dynamical structure factor of the Tonks–Girardeau gas at T = 0,
in the plane (q,ω), in units of (kF ,ωF ). I superimposed the exact result (shaded gray area delimited
by thick curves) to the result in the Tomonaga–Luttinger liquid framework for dimensionless param-
eters K = 1 and vs/vF = 1 (thick lines). In the latter, the domain consists in a line starting from the
origin, and the area included in the infinite triangle starting from the umklapp point (0, 2kF ). The
upper energy limit of potential validity of the Tomonaga–Luttinger liquid theory is approximately
given by the dashed line

the exact dynamical structure factor scales like 1/q inside its definition domain,
whereas the Tomonaga–Luttinger liquid prediction of Eq. (4.39) is constant in the
triangular domain of the umklapp region when K = 1. Both results coincide only
along a vertical line starting from the umklapp point, and this line is finite since the
TLL formalism utterly ignores the upper excitation spectrum.

Although the TLL result is fairly disappointing at first when compared to the
Tonks–Girardeau exact one, I recall that, contrary to the Bogoliubov formalism, it
correctly predicts the existence of excitations near the umklapp point. Moreover, at
this stage it is not excluded that its quantitative agreement with the exact dynam-
ical structure factor of the Lieb–Liniger model may be better at finite interaction
strength. More generally, it is interesting to evaluate the validity range of the stan-
dard Tomonaga–Luttinger liquid theory as precisely as possible, but this requires a
comparison point. A possible generalization, allowing for a comparison to an exact
prediction, concerns thermal effects, already investigated in the Tonks–Girardeau
regime through Eq. (4.26). In the Tomonaga–Luttinger liquid formalism, the dynami-
cal structure factor at finite temperature is obtained byFourier transformofEq. (2.72).

On the one hand, I obtain (I refer to Appendix C.4 for details) [1]

ST L
0,T>0(q,ω) = K |q|

1 − e−β�ω(q)

{
δ[ω − ω(q)] + e−β�ω(q)δ[ω + ω(q)]} , (4.42)

and on the other hand [1],
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Fig. 4.9 Dynamical structure factor of the Tonks–Girardeau gas at T = 0.1 TF in the plane (q,ω)

in units of (kF ,ωF ) in the vicinity of the umklapp point, as predicted from the Bose–Fermi mapping
(left panel), and for a Tomonaga–Luttinger liquid (right panel). The exact temperature dependence
is quite well reproduced in the Tomonaga–Luttinger liquid framework. Differences stem mostly
from nonlinearities, which are not taken into account in this case
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, (4.43)

whereC(K , T ) is a dimensionless prefactor and B(x, y) = �(x)�(y)
�(x+y) is the Euler Beta

function.
While the value of the prefactor C(K , T ) in Eq. (4.43) is fixed by the exact result

at the umklapp, vs(T ) should be evaluated independently. This can be done at very
low temperatures, by identification with the phonon modes, whose slope is vs . It
turns out that below T � 0.2 TF , which is approximately the highest temperature
where these phonons are well defined, vs does not significantly vary with T .

Comparison of the approximation Eq. (4.43) and the exact Tonks–Girardeau result
is shown in Fig. 4.9. Their agreement is quite remarkable, and the validity range of
the TLL framework is even increased compared to the T = 0 case. Surprising at
first, this fact can be understood at the real-space level. Spatial correlations decay
exponentially at large distances according to Eq. (2.72), thus the neglected modes
are not as important. However, at slightly higher temperatures this nice agreement
would break down abruptly. The conclusion is that the Tomonaga–Luttinger liquid
framework is valid at very low temperatures only.

Coming back to T = 0, at finite interaction strength the predictions of the
Tomonaga–Luttinger liquid formalism have not been investigated quantitatively so
far. Here, I try and fill this gap, to allow for a subsequent comparison with more
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powerful techniques. A first necessary condition is to evaluate vs(γ). From its
thermodynamic definition comes

vs(γ) = vF

π

[
3e(γ) − 2γ

de

dγ
(γ) + 1

2
γ2 d

2e

dγ2
(γ)

]1/2

. (4.44)

Analytical expansions of the sound velocity at large and small interaction strength
can be found in the literature. The first- and second-order corrections to the Tonks–
Girardeau regime in 1/γ are given in [69], they are calculated to fourth order in
[70] and up to eighth order in [71]. In the weakly-interacting regime, expansions are
found in [69, 72]. Equations (3.42), (3.57), (3.58) for the dimensionless energy per
particle obtained in Chap. 3 considerably increase the accuracy compared to these
works, after straightforward algebra.

Interestingly, evaluating the ground-state energy per particle e(γ) is not a manda-
tory step to obtain vs(γ), as it is sufficient to know the density of pseudo-momenta
g at the edge of the Fermi sea, i.e. at z = 1, due to the useful equality [73]

vs(γ)

vF
= 1

{2πg[1;α(γ)]}2 . (4.45)

Reciprocally, if vs is already known with high accuracy from Eq. (4.44) applied to
a reliable equation of state e(γ), then Eq. (4.45) provides an excellent accuracy test
for a proposed solution g to the Lieb Eq. (3.52), since it allows to check its value at
the edge of the interval [−1, 1], where it is the most difficult to evaluate with most
known methods.

I have used both approaches to evaluate the sound velocity over a wide range of
strong to intermediate interaction strengths with excellent accuracy, as illustrated in
Fig. 4.10. In particular, the fact that vs →γ→0 0 implies that g(z;α)→z→1,α→0 +∞,
hinting at the fact that polynomial expansion methods are not appropriate at very low
interaction strength, as expected due to the vicinity of the singularity.

Fig. 4.10 Dimensionless
sound velocity vs/vF , where
vF is the Fermi velocity, as a
function of the
dimensionless Lieb
parameter γ, from numerical
solution of the Lieb equation
(dots), compared to values
found in the literature [55,
69] (squares), and analytical
result from Eqs. (3.57),
(3.58), (4.44) (solid). The
Tonks–Girardeau limit is
indicated by the dashed line
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As far as the dynamical structure factor is concerned, there are two possible points
of view at this stage. If the aims is just to find its global shape as a function of γ,
dividing the result by the unknown coefficient A1(K ) allows to avoid evaluating
this coefficient. For quantitative evaluations however, a good knowledge of the form
factor is needed. The solution to this tough problem is provided in [74, 75]. The
form factor is extracted numerically as the solution of a complicated set of coupled
integral equations, whose analytical solution stays out of reach.

Myphilosophy in this thesis is to rely on analytical expressions as often as possible,
so additional efforts are required. Instead of trying and solve the set of equations of
Ref. [75], I have extracted data points from the figure provided in this very reference.
It turns out that they are especially well approached by a very simple fit function, of
the form

A1(K )

π2(K−1)
= 1

2
e−α(K−1), (4.46)

where α � 3.8 up to data extraction errors. This expression is approximately valid
for K ∈ [1, 2], for K � 2 data it is not reliable anymore as A1 takes very small
values.

A few comments are in order: first, Eq. (4.46) is certainly not the exact solution,
in view of the extreme complexity of the equations from which it is supposed to be
the solution. This could be checked if data were also available for K < 1 (i.e. in
the super Tonks–Girardeau regime), where a discrepancy with the extrapolated fit
function is very likely to become obvious. However, Eq. (4.46) may be equivalent,
or at least close to being so, to the exact solution at K �1, in view of the remarkable
agreement with numerical data in this range.

If Eq. (4.46) were exact, to infer the value ofα, I could rely on the exact expansion
close to K = 1 [68],

A1(K )

π2(K−1)
=K�1

1

2
{1 − [1 + 4 ln(2)](K − 1)} + O[(K − 1)2], (4.47)

and by identification of both Taylor expansions at first order in the variable K − 1,
deduce that α = 1 + 4 ln(2) � 3.77, which is actually quite close to the value
obtained by fitting on data points. The agreement is not perfect at higher values
of K , as can be seen in Fig. 4.11. Another clue, if needs be, that Eq. (4.46) is not
exact is that it does not agree with the high-K asymptotic expression obtained in [41].

All together, these results allow to predict quantitatively the dynamical struc-
ture factor near the umklapp point in the Tomonaga–Luttinger liquid framework,
represented in Fig. 4.12. The values chosen for the interaction strength are in exact
correspondence to those of Ref. [55], allowing for a direct comparison with the exact
result from the ABACUS. The agreement is excellent for most values, except at too
high energies because the Tomonaga–Luttinger liquid does not predict the upper
threshold, and for γ = 1, where Eq. (4.46) is likely to be used outside its range of
validity.
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Fig. 4.11 Reduced form factor of a Tomonaga–Luttinger liquid describing the Lieb–Linigermodel,
as a function of the dimensionless Luttinger parameter K . The fit function Eq. (4.46) with α = 1 +
4 ln(2) (solid) is quite accurate over a wider range than the first order Taylor expansion, Eq. (4.47)
(dashed) compared to the graphical data from Ref. [75] (dots)

Fig. 4.12 Dynamical structure factor of the Lieb–Liniger gas as predicted by the Tomonaga–
Luttinger liquid theory, Eq. (4.39), with the expression of the form factor Eq. (4.46), along the
umklapp line and in units of the dynamical structure factor of the Tonks–Girardeau gas at the
umklapppoint, as a functionof the dimensionless energy.Thevarious curves correspond respectively
to values of K that correspond to Lieb parameters γ = +∞ (dotted), γ = 100 (dashed), γ = 20
(long-dashed), γ = 10 (thick), γ = 5 (solid) and γ = 1 (thin), to be compared to the corresponding
figure in Ref. [55]

4.5.3 Drag Force from the Tomonaga–Luttinger Liquid
Formalism

The dynamical structure factor gives access to the drag force through Eq. (4.32).
First, I have addressed the simplest case, namely T = 0 and w = 0, that yields [1]
(see Appendix C.5 for details)
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FT L(v) = U 2
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√
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)2
]K+1 , (4.48)

in agreement with [41] in the limit v/vs �1. At low velocities, the drag force scales
as a power law v2K−1, that depends on the interaction strength in a non-trivial way. A
comparison with the Tonks–Girardeau result at K = 1 allows to determine the exact
form factor,

B1(K = 1) = 1

2vF
. (4.49)

Then, I have generalized the expression of the drag force to finite laser waist w.
In the Tonks–Girardeau regime, I obtained the analytical, simple expression [1]

FT L
w>0,K=1(v) = 2U 2

b n0m

�2

1

(2wkF )2

[
e
− w2k2F

(1+v/vF )2 −e
− w2k2F

(1−v/vF )2

]
, (4.50)

allowing for a quantitative comparison with the exact result, Eq. (4.38). I have
used Eqs. (4.38), (4.48) and (4.50) to plot the curves in Fig. 4.13, showing that
the Tomonaga–Luttinger liquid model predictions in the Tonks–Girardeau regime
are valid for velocities v�vF , as expected since the dynamical structure factor is
well approximated within the TLL model at low energy only. The exact drag force
is all the better approached as the potential is wide. It remains linear near the origin,
but its slope depends on the barrier waist w.

At arbitrary interaction strength, the expression of the drag force in the case of a
finite-width potential is given by [1]

FT L
w>0(v)

FT L(v)
= 1

wkF

+∞∑
k=0

(−1)k

k!

(
wkF
1 + v

vs

)2k+1

2F1

(
−1 − 2k,K ; 2K ;− 2v

vs − v

)
, (4.51)

where 2F1 is the hypergeometric function. I have verified numerically that forwkF �
1, truncating the series to low orders is a very good approximation.

The effect of temperature on the drag force is obtained by integrating numerically
Eq. (4.32) with the input of Eqs. (4.42) and (4.43). In Fig. 4.14, I plot the drag force
at T = 0 and at finite temperature as a function of the velocity for a Tonks–Girardeau
gas, as obtained from the exact solution and theTomonaga–Luttinger liquid approach.

As a main result, I have shown that in the strongly-interacting regime K � 1,
the Tomonaga–Luttinger liquid theory reproduces quite well the exact dynamical
structure factor of the Tonks–Girardeau gas around the umklapp point, as well as the



4.5 Dynamical Structure Factor and Drag Force for a 1D Bose Gas … 125

Fig. 4.13 Drag force in units of FTG(vF ) as a function of the velocity v (in units of vF ), as pre-
dicted for a Tonks–Girardeau gas (dashed lines) and a Tomonaga–Luttinger liquid at dimensionless
parameter K = 1 (solid lines), at T = 0. Thin curves correspond to a dimensionless waistwkF = 0
and thick curves to a finite waist wkF = 0.5. The TLL prediction is valid provided that v�vF

Fig. 4.14 Drag force in units of FTG(vF ) as a function of the velocity v (in units of vF ), as
predicted for a Tonks–Girardeau gas (dashed lines) and a Tomonaga–Luttinger liquid (solid lines),
at w = 0. Thin curves correspond to T = 0 and thick curves to T = 0.1 TF

drag force at lowvelocities, even for a finite-width potential barrier. This allows to use
the Tomonaga–Luttinger liquid theory to predict the generic low-velocity behavior
of the drag force at large to intermediate interactions, as a complementary approach
to the Bogoliubov treatment at weak interactions.

4.6 Exact Excitation Spectra from Integrability

As far as the dynamical structure factor is concerned, to go beyond the standard
Tomonaga–Luttinger liquid using analytical methods, three types of quantities have
to be evaluated with the highest possible accuracy. They are the form factors, that
give the weights of the different contributions, the edge exponents, that describe
power laws at the thresholds, and the excitation spectra of the Lieb–Liniger model,
that fix their locations.
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This section is more specifically devoted to the excitation spectra. Lieb studied
them in [76], and much to his surprise, found out that the excitation spectrum was
two-fold. The Bogoliubov spectrum corresponds to the type-I spectrum for weak
interactions, but the nature of the type-II spectrum in this regime was elucidated later
on, when a new solution to the non-linear Schrödinger equation was found [77]. This
spectrum is most probably linked to solitons, as suggested by a fair number of works
[78–82].

At arbitrary interaction strength, the coordinateBetheAnsatz is sufficient to obtain
the exact excitation spectrum, both at finite particle number and in the thermody-
namic limit. It is technically harder to obtain than the energy, however. The set of
Bethe Ansatz equations (3.14) for the finite-N many-body problem can not be solved
analytically in full generality, but the solution is easily obtained numerically for a few
bosons. To reach the thermodynamic limit with several digits accuracy, the Tonks–
Girardeau case suggests that N should be of the order of a hundred. Although the
interplay between interactions and finite N may slow down the convergence at finite
γ [55], a numerical treatment is still possible.

In [2], I have addressed the problem directly in the thermodynamic limit, where
it boils down to solving two equations [71, 83]:

p(k; γ) = 2π� Q(γ)

∣∣∣∣
∫ k/Q(γ)

1
dy g[y;α(γ)]

∣∣∣∣ (4.52)

and

ε(k; γ) = �
2Q2(γ)

m

∣∣∣∣
∫ k/Q(γ)

1
dy f [y;α(γ)]

∣∣∣∣ , (4.53)

where

Q(γ) = n0∫ 1
−1 dy g[y;α(γ)] (4.54)

is a non-negative quantity known as the Fermi rapidity. It represents the radius of the
quasi-Fermi sphere, and equals kF in the Tonks–Girardeau regime. The function f
that appears in Eq. (4.53) satisfies the integral equation

f (z;α) − 1

π

∫ 1

−1
dy

α

α2 + (y − z)2
f (y;α) = z, (4.55)

referred to as the second Lieb equation in what follows.
For a given interaction strength γ, the excitation spectrum is obtained in a para-

metric way as ε(k; γ)[p(k; γ)], k∈[0,+∞[. In the thermodynamic limit considered
presently, the type I and type II spectra could be interpreted as a single parametric
curve, but the type I part corresponds to |k|/Q ≥ 1 and thus to quasi-particle exci-
tations, while the type II dispersion is obtained for |k|/Q ≤ 1. Thus, the latter is
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associated to processes taking place inside the quasi-Fermi sphere, which confirms
that they correspond to quasi-hole excitations, in agreement with the finite N picture.

Using basic algebraic manipulations on Eqs. (4.52) and (4.53), I have obtained a
few general properties:

(a) The ground state (p = 0, ε = 0) trivially corresponds to k = Q(γ), confirming
that Q represents the edge of the Fermi surface.

(b) The quasi-momentum k = −Q(γ) corresponds to the umklapp point (p =
2pF , ε = 0), always reached by the type II spectrum in the thermodynamic limit,
regardless of the value of γ.

(c) The maximal excitation energy associated to the type II curve lies at k = 0
and corresponds to p = pF .

(d) If k ≤ Q(γ), p(−k) = 2pF − p(k) and ε(−k) = ε(k), hence εI I (p) =
εI I (2pF − p), generalizing tofinite interaction strength the symmetry p ↔ 2pF − p
already put into light in the Tonks–Girardeau regime.

(e) The type I curve εI (p) repeats itself, starting from the umklapp point, shifted
by 2pF in p. Thus, what is usually considered as a continuation of the type II branch
can also be thought as a shifted replica of the type I branch.

(f) Close to the ground state, εI (p) = −εI I (−p). This can be proven using
the following sequence of equalities: εI (p) = εI (p + 2pF ) = −εI I (p + 2pF ) =
−εI I (2pF − (−p)) = −εI I (−p).

These symmetry properties are useful in the analysis of the spectra, and provide
stringent tests for numerical solutions. Before calculating the excitation spectra, let
me make a few technical comments. The momentum p is relatively easy to obtain
if k/Q ≤ 1, since the Lieb equation (3.32) has been solved with high accuracy in
Chap.3. Otherwise, if k/Q > 1, the Lieb equation is solved numerically at z > 1
from the solution at z ≤ 1. Thus, the type II spectrum between p = 0 and p = 2pF
is a priori easier to obtain than the exact type I spectrum.

A new technical difficulty whose solution is not readily provided by the evalua-
tion of the ground-state energy comes from the second Lieb equation (4.55), which
is another type of integral equation, whose exact solution at arbitrary interaction
strength is also unknown. A possible tactics to solve equation (4.55) is to adapt the
orthogonal polynomial method used to deal with the first Lieb equation (3.32), yield-
ing an approximate solution for α > 2 [2, 71]. In the weakly-interacting regime, no
systematic method has been developed so far, but since f is well-behaved at low
α, numerical solutions are rather easily obtained. Moreover, for α > 2 the strong-
coupling expansion converges faster to the exact solution than was the case for the
first Lieb equation, and generates far fewer terms [2].

I also noticed that Eq. (4.55) appears in an alternative approach to the Lieb–
Liniger model, based on a limit case of the sinh-Gordon model, where it must be
solved to obtain the ground-state energy and correlation functions, cf Appendix B.4.
It is also encountered in quite different contexts, such as the problem of two circular
disks rotating slowly in a viscous fluid with equal angular velocities [84], or of the
radiation of water waves due to the motion of a thin rigid circular disk [85].

In the end, I have access to accurate analytical estimates of the type II branch, pro-
vided that α > 2. As far as the type I spectrum is concerned, an additional limitation
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Fig. 4.15 Type I and type II
excitation spectra of the
Lieb–Liniger model for
several values of the
interaction strength, from the
noninteracting Bose gas
(dashed) to the
Tonks–Girardeau regime
(thick) with intermediate
values α = 0.6 (dashed) and
α = 2 (solid)

comes from the fact that the approximate expressions for g(z;α) and f (z;α) are
valid only if |z − y| ≤ α in the integrand.This adds the restriction |k|/Q(α) ≤ α − 1,
which is not constraining as long as α 
 1, but for α � 2, the validity range is very
narrow around p = 0.

To bypass this problem, an iteration method can be used to evaluate g and f .
In practice, this procedure is analytically tractable at large interactions only, as it
allows to recover at best the first few terms of the exact 1/α expansion of ε(k;α) and
p(k;α) (to order 2 in [71]). Another difficulty is that these approximate expressions
are not of polynomial type. It is thus a huge challenge to substitute the parameter
k and express ε(p) explicitly, forcing to resort to approximations at high and small
momenta.

Both excitation spectra are shown in Fig. 4.15 for several values of the interaction
strength, as obtained from the most appropriate method in each case. Note that the
area below the type II spectrum, as well as the maximal excitation energy at pF , are
both increasing functions of the Lieb parameter γ and vanish for a noninteracting
Bose gas.

At small momenta, the type I spectrum can be expressed through its series expan-
sion in p [86, 87], that reads

εI (p; γ) =p�0 vs(γ)p + p2

2m∗(γ)
+ λ∗(γ)

6
p3 + · · · . (4.56)

In the Tonks–Girardeau regime, as follows from Eq. (2.15), the coefficients in
Eq. (4.56) are vs = vF , m∗ = m, λ∗ = 0, and all higher-order coefficients vanish as
well. At finite interaction strength, vs can be seen as a renormalized Fermi velocity,
and m∗ is interpreted as an effective mass, whose general expression is [71, 88]

m

m∗ =
(
1 − γ

d

dγ

) √
vs

vF
. (4.57)
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Fig. 4.16 Dimensionless
inverse renormalized mass
m/m∗ obtained with
Eqs. (4.57), (4.44), (3.57)
and (3.42), as a function of
the dimensionless Lieb
parameter γ (solid). The
exact value in the
Tonks–Girardeau regime is
plotted in dashed line as a
comparison

Its dependence on the interaction strength is shown in Fig. 4.16. Note that for a nonin-
teracting Bose gas,m∗ = m, causing a discontinuity at γ = 0. This can be interpreted
as an other manifestation of the fact that the ideal Bose gas is not adiabatically con-
nected to the weakly-interacting regime in 1D.

As far as the type II spectrum is concerned, the properties (a)–(f) detailed above
suggest another type of expansion,whose truncation tofirst order has been anticipated
in [89]:

εI I (p; γ)

εF
=

+∞∑
n=1

εn(γ)

(
p

pF

)2n (
2 − p

pF

)2n

, (4.58)

where {εn(γ)}n≥1 are dimensionless functions. The property (f) allows to write

εI I (p; γ) = vs(γ)p − p2

2m∗(γ)
+ · · · , (4.59)

and equating both expressions to order p2 yields

ε1(γ) = vs(γ)

vF
. (4.60)

A similar result was recently inferred from a Monte-Carlo simulation of one-
dimensional 4He in [64], and proved by Bethe Ansatz applied to the hard-rods model
in [90]. Using the same approach to next order, I also obtained

ε2(γ) = 1

4

(
vs(γ)

vF
− m

m∗(γ)

)
. (4.61)
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Fig. 4.17 Upper bounds for the validity range of the Tomonaga–Luttinger liquid framework in
dimensionless momentum (left panel) and dimensionless energy (right panel) around the umk-
lapp point (p = 2pF , ε = 0) of the of the Lieb–Liniger model for the excitation spectrum εI I ,
as functions of the dimensionless interaction strength γ. Dots represent the numerical estimate at
finite interaction strength, the dashed curves correspond to the Tonks–Girardeau regime, where
�pTG/pF � 0.2 and �εTG/εF � 0.3

It is now possible to compare the exact spectrum to the truncated series obtained
from Eq. (4.58), to investigate the validity range of various approximate expressions.
I denote by�p and�ε respectively the half-width ofmomentum around the umklapp
point, and themaximumenergy, such that the linearized spectrum εT L = vs |p − 2pF |
is exact up to ten percent. These quantities, shown in Fig. 4.17, should be considered
as upper bounds of validity for dynamical observables such as the dynamical structure
factor. The validity range of the Tomonaga–Luttinger liquid theory is wider at large
interaction strength.

Including the quadratic term inEq. (4.59) and neglecting higher-order ones is actu-
ally a complete change of paradigm, from massless bosonic to massive fermionic
excitations at low energy, and is at the basis of the Imambekov–Glazman theory of
beyond-Luttinger liquids. Systematic substitution of the variable k in Eqs. (4.52)
and (4.53), and higher-order expansions, suggest that higher-order terms in (4.58)
can be neglected in a wide range of strong to intermediate interaction strengths.
Figure4.18 shows the local maximum value εI I (pF ) of the Lieb-II excitation spec-
trum, as obtained from a numerical calculation as well as the expansion (4.58) trun-
cated to orders one and two. I find that the result to order one is satisfying at large γ,
but the second order correction significantly improves the result at intermediate val-
ues of the Lieb parameter. Numerical calculations show that third- and higher-order
corrections are negligible in a wide range of strong interactions.

4.7 Summary of This Chapter

This chapter starts with an historical account of a few experiments that allowedmajor
breakthroughs in the understanding of superfluidity. Discovered in 4He, dramatic
suppression of viscosity was then witnessed in 3He, in ultracold atom experiments
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Fig. 4.18 Maximum of the type II spectrum, εI I (pF ; γ), in units of the Fermi energy εF , as a func-
tion of the dimensionless interaction strength γ. The left panel shows the first order approximation
in Eq. (4.58) taking εn≥2 = 0 (dashed), compared to exact numerical data (dots). The right panel
shows a zoom close to the origin and the second order approximation (solid). Agreement with the
exact result is significantly improved when using this correction

and in polaritons. The conceptual difficulties raised by the notion of superfluidity are
such that no universal definition or characterization means has been found so far.

The most celebrated criterion for superfluidity is due to Landau, who predicted
a thorough absence of viscosity at zero temperature below a critical velocity, that
coincides with the sound velocity at the mean field level. In the filiation of this
criterion, the concept of drag force due to an impurity or a laser beam stirred in the
fluid allows to study friction in a quantitative way. It generalizes Landau’s arguments,
taking into account transition probabilities to excited states and the precise shape of
the potential barrier. Linear response theory allows to express the drag force due to
a weak barrier given the profile of the latter and another observable, the dynamical
structure factor.

The Tonks–Girardeau regime gives an opportunity to evaluate the drag force expe-
rienced by a strongly-interacting Bose gas in the linear response framework, without
additional approximation. In the thermodynamic limit, the energy-momentumprofile
of possible excitations shows that a low-energy region is forbidden in 1D, and low-
energy excitations are dominated by processes that occur close to the umklapp point.
Thermal effects on the dynamical structure factor consist essentially in a broadening
of the momentum-energy sector where excitations can occur, and above T � 0.2 TF ,
well-defined phonon excitations disappear progressively.

As far as the drag force is concerned, at zero temperature, linear response theory
predicts that it saturates at supersonic flow velocities, which seems quite unrealistic,
and at finite temperature the drag force is lower than it would at T = 0 close to
the Fermi velocity, which is also disturbing. The first point is solved by taking into
account the barrier width, assuming aGaussian profile. Then, instead of saturating, at
high velocities the drag force vanishes, hinting at the existence of a quasi-superfluid,
supersonic regime.

At finite interaction strength, several approaches allow to evaluate the dynamical
structure factor, ranging from perturbation theory to the Tomonaga–Luttinger liq-
uid framework, its extension to higher energies through the Imambekov–Glazman
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liquid formalism, and a numerical solution based on algebraic BetheAnsatzmethods.
Although experiments have demonstrated the predictive power of the more advanced
techniques, I have used the standard Tomonaga–Luttinger liquid formalism all the
same. I have calculated the dynamical structure factor and generalized it to finite
temperature, where a comparison to the exact Tonks–Girardeau result has allowed
me to quantitatively show that the effective description is limited to low temperatures,
of the order of T � 0.2 TF .

At zero temperature and finite interaction strength, making quantitative predic-
tionswithin the Tomonaga–Luttinger liquid framework requires the knowledge of the
sound velocity. The latter is evaluated thanks to Bethe Ansatz techniques. Another
key quantity is the first form factor. I have found an accurate fitting function that
allows for a comparison with the exact result from algebraic Bethe Ansatz. Then, I
have evaluated the drag force at low velocities, at finite barrier width and temperature,
where I have compared the predictions with the exact result in the Tonks–Girardeau
regime. This shows that the drag force evaluated in the Tomonaga–Luttinger liquid
framework is correct up to v � 0.2 vF .

To go beyond the standard Luttinger liquid treatment, a crucial point is to accu-
rately evaluate the excitation spectra, amenable to Bethe Ansatz techniques. I have
obtained several symmetry properties of the Lieb II excitation spectrum, found sev-
eral approximations in terms of the sound velocity and effective mass, and evaluated
their validity range.

4.8 Outlook of This Chapter

My analytical analysis stays at a basic level compared to my initial ambitions, as its
accuracy does not compete with the numerical results from the ABACUS algorithm.
I stopped only one step away, however, from making quantitative predictions based
on the Imambekov–Glazman theory, as I only miss the edge exponents, that should
be at reach in principle. My analytical estimates of the excitation spectrum of the
Lieb–Liniger model are already fairly accurate. They could be further improved at
small and intermediate interaction strength, by including next order in the truncated
series. In particular, the function ε3(γ) in Eq. (4.58) depends on λ∗(γ) in Eq. (4.56),
that could be explicitly evaluated by straightforward algebra from results of Refs.
[86, 87]. Reference [91] readily provides a few improvements in this direction.

Exciting open problems related to the drag force could be answered at a basic
level within current means. For instance, the anisotropic drag force due to spin-orbit
coupling constitutes a new thread of development [92, 93]. In the context ofAnderson
localization, a random potential may break down superfluidity at high disorder. This
issue was pioneered in [94], and it has been recently shown that a random potential
with finite correlation length gives rise to the kind of drag force pattern that I have put
into light in this Chapter [95]. Other types of barrier shapes may also be considered,
for instance a shallow lattice [67]. Those having an appropriate profile, whose Fourier
transform does not overlap with the energy-momentum area where the dynamical
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structure factor is non zero, would lead to strict superfluidity in the framework of
linear response theory, according to the drag force criterion. However, even if linear
response theory predicts superfluidity, to be certain that it is the case, drag force
should be accounted for at higher orders in perturbation theory, or even better, non-
perturbatively. This was investigated in [43] for the Tonks–Girardeau gas.

It has been argued that when quantumfluctuations are properly taken into account,
they impose a zero critical velocity as there always exists a Casimir type force [96,
97]. However, the latter is of a far lesser amplitude, and another key ingredient,
neglected in this approach and mine, is finite mass impurity. It can be taken into
account in the drag force formalism [43], or in the Bose polaron framework, where
the full excitation spectrum of the gas and impurity is considered non-perturbatively
[98]. The situation is radically different then, and strict superfluidity has been pre-
dicted by Landau’s criterion, proven rigorously in the context of finite mass [99] and
in particular in 1D [100]. More generally, even in the drag force context, at finite
N a small gap appears at the umklapp point [67], allowing superfluidity at very low
velocities [101]. It would also be interesting to relate the drag force to supercur-
rent decay, which has emerged as the standard observable to study superfluidity of
mesoscopic systems. These works show that superfluidity is rather expected at the
mesoscopic scale than the macroscopic one.

The drag force formalism, as it has been applied so far, is not fully satisfying,
as it should be used in Newton’s equations to predict the equation of motion of
the impurity, rather than just checking whether the drag force is zero or not. The
only example thereof that I know is [67], although studies of long-time velocity as a
function of the initial one are flourishing in the literature [99, 102]. Moreover, at the
moment the drag force formalism does not take into account the inhomogeneities,
that are essential [40]. They have been taken into account in the Tomonaga–Luttinger
liquid framework in [103], but to fully understand the back action of the drag on the
local density profile, it should be taken into account dynamically, so that numerical
support is still needed to follow the center of mass position correctly [104, 105].
The dynamics of a mobile impurity pulled through a 1D fluid at zero temperature
with a constant force, investigated in [106, 107], urges for a proper treatment beyond
linear response theory, as this response is nonlinear. To finish with, experimentally,
there are some contexts where the drag force should still be measured, for instance
in polaritons [108], or in a 1D gas.

To enlarge the scope of this study to other fields of physics, let memention that the
concept of superfluidity is also studied in astrophysics since neutron stars may have a
superfluid behavior [109, 110], and in cosmology [111]. In a longer run perspective,
stability against thermal fluctuations or external perturbations is crucial to allow
for technological applications beyond mere cooling. The key parameters, critical
temperature and critical velocity, are typically highest in the strongly-correlated
regime, where the interactions that may stabilize the many-body state are peculiarly
strong.
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Chapter 5
Dimensional Crossovers in a Gas
of Noninteracting Spinless Fermions

5.1 Introduction

In order to describe ultracold atom experiments with high accuracy, in addition to
selecting a model that accounts for the interactions, several other aspects have to be
taken into account, such as finite temperature, system size and number of particles, or
inhomogeneities of the atomic cloud. Such refinements have already been illustrated
on the example of the Lieb-Liniger model in the previous chapters. Tackling several
effects simultaneously is technically challenging, but it is not easy either to rank
them by relative importance and decide which of them could be neglected or should
be incorporated in priority.

Among all simplifying assumptions that could be questioned, there is one on
which I have not insisted enough yet. Indeed, most of the low-dimensional gases
experimentally realized so far are not strictly one-dimensional, but involve a multi-
component structure. For instance, when an array of wires is created, the gases
confined in two different ones may interact through their phase or density. Even
in a tightly-confined single gas, the conditions requested to reach a strictly one-
dimensional regime are not ideally fulfilled, and the gas is actually quasi-1D, in the
sense that it features several modes in momentum-energy space. This slight nuance
may bemore important to take into consideration than any of the effects listed before.
Although considering even a few modes is a theoretical challenge of its own, it did
not refrain pioneers to investigate the dimensional crossover to higher dimensions
alreadymentioned inChap.2.While its technical difficulty lies at an even higher level
from the theoretical point of view, this phenomenon is accessible to experiments.

To have a chance of treating the dimensional crossover problem analytically and
exactly, I have considered the most conceptually simple system, i.e. a noninteracting
gas. In this case, dimensional crossover is obviously not realized by interactions, but
rather by a transverse deconfinement, through a progressive release of the trapping
potential. This scenario is not the most commonly considered in the literature, so
Ref. [1], on which this chapter is based, is quite pioneering and original. The simpli-
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fications made at the very beginning enable me to study dynamical observables such
as the dynamical structure factor and drag force quite in detail.

This chapter is organized as follows: first, I calculate the dynamical structure factor
of a noninteracting Fermi gas in higher dimensions. Then, I develop a formalism that
describes the multi-mode structure, and use it to recover the previous results by
adding more modes up to observing a dimensional crossover. The same work is done
on the drag force, then.

In a second time, I consider the effect of a harmonic trap in the longitudinal
direction within the local-density approximation, and show that the trap increases
the effective dimension of the system, allowing to simulate a gas in a box up to
dimension d=6.

To conclude the chapter, I develop a multimode Tomonaga–Luttinger model to
describe the noninteracting Fermi gas, and apply it throughout the dimensional
crossover from 1D to 2D.

5.2 Energy-Momentum Space Dimensional Crossover
in a Box Trap

In this section, I consider N non-interacting spinless fermions of mass m in an
anisotropic parallellepipedic box confinement at zero temperature. I assume that the
length Lx of the box trap is much larger than its width Ly and height Lz , giving
it the shape of a beam, and that the gas confined in the latter is uniform. Thanks
to recent developments, this seemingly much-idealized situation can be approached
experimentally, in an optical box trap [2–5]. If at least one of the transverse sizes is
small enough, i.e. such that the energy level spacing is larger than all characteristic
energy scales of the problem (given by temperature, or chemical potential), then the
gas is confined to 2D or even to 1D, since the occupation of higher transverse modes
is suppressed. In the following, I study the behavior of the system as transverse sizes
are gradually increased and transversemodes get occupied. This yields a dimensional
crossover from 1D to 2D, and eventually 3D, whose principle is sketched in Fig. 5.1.

An interesting observable in this context is the dynamical structure factor, already
considered in the previous chapter, as it is strongly sensitive to dimension as will be
seen below. To begin with, I study the effect of space dimension by direct calcula-
tion. In arbitrary dimension d in a box-trap, the dynamical structure factor can be
calculated as

Sd(�q,ω)=Vd

∫ +∞

−∞
dt
∫
ddr ei(ωt−�q·�r)〈δnd(�r , t)δnd(�0, 0)〉, (5.1)

where Vd is the volume of the system, ��q and �ω are the transferred momen-
tum and energy in the Bragg scattering process, δnd(�r , t)=nd(�r , t)−N/Vd is the
local fluctuation of the density operator around its average value, and 〈. . . 〉 denotes
the equilibrium quantum statistical average. Note that I have slightly modified the
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Fig. 5.1 Illustration of the dimensional crossover concept in energy-momentum space. Consider
a d-dimensional gas of noninteracting spinless fermions. In the transverse direction, the Fermi
energy is low enough, so that only one mode is selected. When a transverse dimension L of the box
increases, new modes are available below the Fermi energy. In the limit of an infinite transverse
direction, they form a continuum, and the system is (d+1)-dimensional

expression of the dynamical structure factor compared to the previous chapter, so
that its unit does not depend on d. Putting the prefactor Vd before would only have
led to heavier notations.

If the gas is probed in the longitudinal direction, i.e. specializing to �q=q�ex ,
where �ex is the unit vector along the x-axis, so that x1 denotes the first coordinate in
dimension d, then

Sd (q�ex , ω)=Vd

∫
ddk

(2π)d−1 �

(
εF −

d∑
i=1

εkxi

)
�

(
d∑

i=1

εkxi+qδi,1 −εF

)
δ[ω−(ωkx1+q −ωkx1

)], (5.2)

which is more convenient than Eq. (5.1) to actually perform the calculations. From
Eq. (5.2), I have computed the dynamical structure factor of a d-dimensional Fermi
gas in the thermodynamic limit, for d=1, 2, 3. In particular, I recovered the known
result in 1D, given by Eq. (4.26), and 3D [6, 7]. As far as the two-dimensional case
is concerned, details of calculations can be found in Ref. [1].

Then, looking for a general expression that would depend explicitly on d, I have
realized that these results can be written in a compact form as

Sd (q�ex ,ω) = Vdsd

(
m

2π�q

)d

[
�(ω+−ω)�(ω−ω−)(ω+−ω)

d−1
2 [ω−sign(q−2kF)ω−] d−1

2

+�(2kF −q)�(ω−−ω)
{
[(ω−+ω)(ω+−ω)] d−1

2 −[(ω++ω)(ω−−ω)] d−1
2

}]
, (5.3)

where
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kF =
[
N

Vd

(2π)d

�d

]1/d
(5.4)

is the modulus of the d-dimensional Fermi wavevector of the gas,

�d = π
d
2

�
(
d+2
2

) (5.5)

is the volume of the unit d-dimensional ball,

sd = 2π
d+1
2

�
(
d+1
2

) (5.6)

is the area of the unit d-sphere, and keeping the same notation as in the previous
chapter,

ω± =
∣∣∣∣�q

2

2m
± �kFq

m

∣∣∣∣ . (5.7)

Equation (5.3) clearly shows that dimension d=1 has a special role, since the sec-
ond term vanishes, then. The dynamically-forbidden, low-energy region encountered
in the previous chapter is thus one more specificity of a 1D gas. Another interesting
aspect of Eq. (5.3) is that it explicitly depends on an integer parameter, that I have
denoted by d for obvious reasons. Let us call it n, forget about physics for a while and
look at (5.3) with the eyes of a puremathematician.When thinking about a strategy to
prove that the property P(n), that means ‘(5.3) holds if d=n’, is true for any natural
integer n, the first one that comes to mind is induction on this index. For a mathe-
matician, this ought to be a reflex, but a physicist would argue that there is actually
no need for such a proof, since P(n) is already established for all physically-relevant
dimensions, 1, 2 and 3.

An interesting issue has been raised, though: a tool would be needed to perform
the induction step P(n)→ P(n+1), and multimode structures turn out to be natural
candidates to play this role. The very possibility of performing any of the peculiar
induction steps is in itself an appreciable opportunity, as it yields an alternative to
direct calculation and, as such, away to cross-check long and tedious derivations.One
can even hope that this step would yield new insights into dimensional crossovers,
and allow to revisit dimensional-dependent phenomena.

As a first illustration, let us consider the dimensional crossover of the dynamical
structure factor from 1D to 2D, obtained by populating higher transverse modes of
the atomicwaveguide in a quasi-1D (Q1D) structure. The two-dimensional fermionic
field operator reads

ψ̂(x, y) =
∑
kx

∑
ky

eikx x√
Lx

eiky y√
Ly

âkx ky , (5.8)
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where kx,y = 2π
Lx,y

jx,y , with jx,y an integer, and âkx ky = â�k is the fermionic annihila-

tion operator, such that {â�k, â
†
�k ′ }=δ�k,�k ′ , and 〈â†�k â�k ′ 〉 = δ�k, �k ′nF (εk), where once again

nF (εk) = 1
eβ[εk−μ]+1

is the Fermi-Dirac distribution. Then, applying Wick’s theorem,
I find that

〈δn(�r , t)δn(�0, 0)〉 = 1

(Lx L y)2

∑
�k,�k ′

e−i[(�k−�k ′)·�r−(ωkx +ωky −ωk′x −ωk′y )t]

nF (εkx+εky )[1−nF (εk ′
x
+εk ′

y
)]. (5.9)

Substituting Eq. (5.9) into (5.1), the dynamical structure factor reads

SQ1(q�ex ,ω)= Lx

L y

∫ +∞

−∞
dt
∫ Lx/2

−Lx/2
dx
∫ Ly/2

−Ly/2
dyei(ωt−qx x)

1

(2π)2

∫ +∞

−∞
dkx

∫ +∞

−∞
dk ′

x

∑
ky ,k ′

y

e−i[(kx−k ′
x )x+(ky−k ′

y)y−(ωkx +ωky −ωk′x −ωk′y )t]

nF (εkx+εky )[1−nF (εk ′
x
+εk ′

y
)]. (5.10)

A few additional algebraic manipulations and specialization to T =0 yield

SQ1(q�ex , ω) =
∑
ky

2πLx

∫ +∞
−∞

dkx�[εF −(εkx +εky )]�[εkx+qx +εky −εF ]δ[ω−(ωkx+qx −ωkx )]

=
M∑

jy=−M

S1(q�ex , ω; k̃F [ jy/M]), (5.11)

where S1(q�ex ,ω; k̃F [ jy/M]) is the 1Ddynamical structure factorwhere the chemical
potential has been replaced by εF − εky , or equivalently, where the Fermi wavevector
kF,1 is replaced by

k̃F [ jy/M] = kF

√
1− j2y

M̃2
. (5.12)

This defines the number of transverse modes, 2M + 1, through

M= I

[
kF L y

2π

]
= I (M̃), (5.13)

where I is the floor function. In the large-M limit, the Riemann sum in Eq. (5.11)
becomes an integral, and then

kF L y

π

∫ 1

0
dx S1

(
q �ex ,ω; kF

√
1 − x2

)
= S2(q�ex ,ω), (5.14)
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Fig. 5.2 Dynamical
structure factor of a
noninteracting Fermi gas
S(q,ω), in units of
S(q=2kF ,ω=ωF ), for
dimensionless wavevectors
q/kF =1 (upper panel) and
q/kF =3 (lower panel), as a
function of frequency ω in
units of the Fermi frequency,
in 1D (dashed) and Q1D for
2M+1=21 modes (solid)
compared to 2D (dotted).
Few modes are needed for
the Q1D system to display a
similar behavior as the 2D
one, such as the shark fin
shape in the upper panel

providing a formal way to tackle the dimensional crossover from 1D to 2D. More
generally, one can start from any dimension d and find, after relaxation of a transverse
confinement,

SQd(q�ex ,ω) =
M∑

j=−M

Sd(q�ex ,ω; k̃F [ j/M]) −→
M→+∞

kF Ld+1

π

∫ 1

0
dx Sd(q �ex ,ω; k̃F [x]) = Sd+1(q�ex ,ω). (5.15)

If used repeatedly, Eq. (5.15) allows to evaluate the dynamical structure factor up to
any dimension, and is the key to the induction step.

I illustrate graphically the dimensional crossover from 1D to 2D as described
by Eq. (5.15). Figure5.2 shows the dynamical structure factor as a function of the
frequencyω for two choices ofwavevector q. Sections aremade at fixed q, rather than
ω, because such curves are accessible to experiments. In each panel, this observable
is given for a 1D gas, a Q1D gas where M=10 and a 2D gas for comparison. Notice
that only a few modes are needed to recover higher-dimensional physics within a
very good approximation, since in this example, the staircase shape taken by the
dynamical structure factor of the Q1D gas mimics already quite well the 2D one.

I proceed, following the spirit of Chap. 4 where this analysis was done for a
weakly-interacting Bose gas, by studying the effect of dimension on the drag force.
I recall that if a weak potential barrier or impurity is stirred along the fluid, putting
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it slightly out of equilibrium, then in linear response theory the average energy
dissipation per unit time is linked to the dynamical structure factor by the relation

〈Ė〉=− 1

2π�Vd

∫ +∞

0
dω

∫
ddq

(2π)d
Sd(�q,ω)|Ud(�q,ω)|2ω, (5.16)

whereUd(�q,ω) is the Fourier transform of the potential barrierUd(�r , t) defining the
perturbation part of the Hamiltonian Hpert =

∫
ddr Ud(�r , t)nd(�r).

With a delta-potential barrier Ud(�r , t)=Udδ(x−vt) in the direction x , covering
the whole waveguide in the transverse directions, the drag force reads

Fd(v) = U 2
d

2π�Vd

∫ +∞

0
dq qSd(q �ex , qv) (5.17)

in arbitrary dimension. Using the general notation vF,d = �kF,d

m to denote the Fermi
velocity in dimension d, from Eqs. (5.17) and (5.3), I find that for v ≤ vF,d ,

F1(v)= 2U 2
1mn1
�2

v

vF,1
, (5.18)

F2(v)= 2U 2
2mn2
�2

2

π

⎡
⎣ v

vF,2

√
1−
(

v

vF,2

)2

+ arcsin

(
v

vF,2

)⎤
⎦ (5.19)

and

F3(v) = 2U 2
3mn3
�2

3

2

v

vF,3

[
1 − 1

3

(
v

vF,3

)2
]

. (5.20)

If v>vF,d , for the potential barrier considered, the drag force saturates and takes a
universal value

Fd(vF,d) = 2U 2
d mnd
�2

. (5.21)

Then, I have recovered these results by applying the cross-dimensional approach
from dimension d to dimension (d+1) so as to check these results. The drag force
profiles are plotted simultaneously in Fig. 5.3. The qualitative effect of dimension on
the drag force is less impressive than on the dynamical structure factor.

From Eqs. (5.18), (5.19) and (5.20), it is difficult to guess a general formula, valid
for any integer dimension d. This is in stark contrast to the dynamical structure factor,
where a close inspection was sufficient to infer Eq. (5.3). In particular, dimension
two looks fairly weird, as it involves an arcsin function. In absence of any intuition,
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Fig. 5.3 Dimensionless drag
force due to an infinitely thin
potential barrier,
f =F/F(vF ), as a function
of the dimensionless flow
velocity u=v/vF , in
dimensions 1 (dotted), 2
(dashed) and 3 (solid). All of
them experience a saturation
at supersonic velocity flows

I carried out the calculation from Eqs. (5.3) and (5.17), and found that the general
expression actually reads

Fd(ud ≤ 1) = 2U 2
d mnd
�2

2√
π(d + 1)

�( d+2
2 )

�( d+1
2 )

(1 − u2d)
d−1
2

[
(1+ud) 2F1

(
1,
1−d

2
;d+3

2
;−1+ud

1−ud

)
−(ud →−ud)

]
, (5.22)

where 2F1 is the hypergeometric function, and I used the notation ud =v/vF,d . Actu-
ally, this expression can be simplified in even and odd dimensions separately, but the
final expression remains rather heavy all the same, see Ref. [1] for details. According
to the drag force criterion, the non-interacting Fermi gas is not superfluid, as expected
since superfluidity is a collective phenomenon.

5.3 Dimensional Crossovers in a Harmonic Trap

After discussing the dimensional crossover in energy space in a box trap, let us focus
on dimensional crossovers in the experimentally relevant case of a harmonically
trapped gas. To begin with, I consider a 1D Fermi gas, longitudinally confined by a
harmonic trap described by the potential V (x)= 1

2mω2
0x

2, where ω0 is the frequency
of the trap. Assuming a slow spatial variation of the density profile of the gas along
x , the local-density approximation accurately describes the density profile of the gas,
as shown in Chap.3.

Within the same approximation of a slowly-varying spatial confinement, for
wavevectors q larger than the inverse size of the spatial confinement 1/RT F , where
RT F is the Thomas-Fermi radius, the dynamical structure factor S1,h.o.(q,ω) of the
harmonically trapped gas is given by the spatial average
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Fig. 5.4 Dynamical
structure factor of a
noninteracting Fermi gas,
S(q,ω), in units of
S(q=2kF ,ω=ωF ), for
dimensionless wavevectors
q/kF =1 (upper panel) and
q/kF =3 (lower panel), as a
function of frequency ω in
units of the Fermi frequency
ωF , in 2D (dashed), 4D
(dotted) and 6D (solid), as
obtained by considering a
harmonically trapped gas, in
a quantum simulator
perspective

S1,h.o.(q,ω) = 1

2RT F

∫ RT F

−RT F

dx S1,hom[q,ω; n1(x)]

=
∫ 1

0
dz S1,hom(q,ω; n1

√
1 − z2) (5.23)

after the change of variable z= x/RT F , where S1,hom[q,ω; n] is the dynamical struc-
ture factor of a 1Dhomogeneous gas, and the linear density n1= 2N

πRT F
. In otherwords,

the local-density approximation assumes that portions of the gas of the size of the

confinement length scale ah.o. =
√

�

mω0
can be considered as homogeneous, and that

their responses are independent from each other [8]. The validity of this approxima-
tion for the dynamical structure factor has been verified in [9], by comparison with
the exact result.

Interestingly, Eq. (5.23) has the same structure as Eq. (5.14), thus establishing the
equivalence, for the dynamical structure factor, of a 1D harmonically trapped gas
and a 2D gas in a box. More generally, a similar procedure yields the following
property: In reduced units, the dynamical structure factor of a harmonically trapped
ideal gas in d dimensions as predicted by the LDA is the same as in a box trap in
2d dimensions. In Fig. 5.4, I illustrate the latter on the dynamical structure factor
of an ideal Fermi gas in a box in dimensions d=2, 4, 6, as can be simulated by a
harmonically-confined gas in dimension d=1, 2, 3 respectively.

This correspondence between a 2dD box trap and a dD harmonic trap can be
inferred directly from the Hamiltonian of the system: for a box trap there are d
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quadratic contributions stemming from the kinetic energy, whereas for a harmonic
confinement there are 2d quadratic terms originating from both kinetic and potential
energy. Since each term contributes in a similar manner in a semiclassical treatment,
harmonic confinement leads to a doubling of the effective dimensionality of the sys-
tem in the noninteracting case. This is expected not only for the dynamical structure
factor, but is also witnessed in other quantities such as the density of states, the con-
densate fraction of a Bose gas below the critical temperature, and virial coefficients
[10] for instance.

The relevance of the dimensional crossover context to prove dimensional-
dependent properties by induction deserves to be emphasized, in view of this cor-
respondence. In its light, the induction tool suddenly becomes far more interesting,
in particular in the context of a 3D harmonically-trapped gas, as it corresponds to a
uniform gas in 6D, whose dynamical structure factor is cumbersome to evaluate by
direct calculation.

Actually, harmonic trapping in a longitudinal dimension does not necessarily
increase the effective dimension of the system. To illustrate this point, I analyze
the dynamical structure factor of a harmonically-confined gas in the experimentally
relevant casewhere only the central part of the cloud is probed, over a radius r < RT F .
Assuming that r is larger than the characteristic variation length of the external
confinement, and using again the local density approximation, Eq. (5.23) transforms
into

S1,h.o.(q,ω; r) =
∫ r/RT F

0
dx S1

(
q,ω; n1

√
1 − x2

)
. (5.24)

An explicit expression is obtained by evaluating the integral

S=
∫ r/RT F

0
dx �

(
q2+2q

√
1−x2−ω

)
�
(
ω−|q2−2q

√
1−x2|

)
, (5.25)

where ω and q are expressed in reduced units such that kF =1 and ωF =1. The final
expression reads

S = �(ω+−ω)�(ω−ω−)min

⎡
⎣ r

RT F
,

√
1 −

(
ω − q2

2q

)2
⎤
⎦

+�(2−q)�(ω−−ω)min

⎡
⎣ r

RT F
,

√
1 −

(
ω − q2

2q

)2
⎤
⎦

−�(2−q)�(ω−−ω)min

⎡
⎣ r

RT F
,

√
1 −

(
ω + q2

2q

)2
⎤
⎦. (5.26)
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Fig. 5.5 Reduced dynamical
structure factor
S(q=kF ,ω; r)/r in units of
S1(q=kF ,ω) in the plane
(r,ω), where r is the probed
length of the gas in units of
the Thomas-Fermi radius
RT F , and ω the energy in
units of ωF . If r 
 RT F , the
1D box result is recovered,
while r → RT F yields the
2D box result. Excitations
below the lower excitation
branch ω− appear
progressively as the
dimensionless ratio r/RT F is
increased

Equation (5.26) displays another kind of crossover between the dynamical struc-
ture factor of a 1D gas in a box and the one of a 2D gas in a box. In order to obtain the
1D behavior, r/RT F must be the minimal argument everywhere in Eq. (5.26) above,
while a 2D behavior is recovered when it is the maximal one.

Figure5.5 shows the q=kF section of the dynamical structure factor S1,h.o.(q=
kF ,ω; r), as a function of energy, at varying the size r of the probed region. In
essence, to get close to 1D behavior in spite of the longitudinal trapping potential,
one should take the smallest r compatible with the condition r �1/q, that ensures
the validity of the LDA, and with 1−r/RT F 
1 in order to detect enough signal.

This study of the effect of a trap was inspired by experiments. By now, it is time
to investigate another point motivated by theoretical issues, anticipating a possible
generalization to interacting systems. In 1D, I have widely used the Tomonaga–
Luttinger liquid approach to tackle the dynamical correlations, as reported inChaps. 2
and 4. Here, I proceed to consider the noninteracting Fermi gas as a testbed to develop
a generalized Tomonaga–Luttinger liquid framework in higher dimensions.

5.4 Low-Energy Approach for Fermions in a Box Trap,
Cross-Dimensional Luttinger Liquid

In Chap.2, I have pointed out that the Tomonaga–Luttinger liquid approach breaks
downwhen d>1. Explanations of this fact often rely on fairly non-trivial arguments.
However, I shall show that the dynamical structure factor provides a quite simple
and pictural illustration thereof. As can be seen in Fig. 5.6 and in Eq. (5.3), in 2D
and 3D, since excitations are possible at energies lower than ω− and down to ω=0
for any q<2kF , linearization of the lower branch of the excitation spectrum is not
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Fig. 5.6 Definition domain of the dynamical structure factor of a Fermi gas in the plane (q,ω) in
units of (qF,d ,ωF,d ). Shaded areas represent the domain where single particle-hole excitations can
occur. The light one is found in any integer dimension d∈{1, 2, 3}, while the dark one is specific
to d>1. Black straight lines correspond to linearization of the lower excitation spectrum in the
Tomonaga–Luttinger formalism in 1D

Fig. 5.7 Lower boundary of
the definition domain of the
dynamical structure factor
for a Q1D gas with three
modes, in the plane (q,ω) in
units of (kF ,ωF ), as found
in the Tomonaga–Luttinger
formalism (dashed),
compared to the exact
solution (solid)

relevant. This, in turn, can be interpreted as a dramatic manifestation of the standard
Tomonaga–Luttinger liquid theory breakdown.

Many attempts have been made to generalize the Tomonaga–Luttinger model to
higher dimensions, as an alternative to Fermi liquids to describe interacting systems.
An intermediate issue iswhether or not theTLLapplies toQ1Dsystems.As an answer
to both questions at once, I have tried and constructed a Tomonaga–Luttinger model
in higher dimension, defining a multimode Tomonaga–Luttinger model (M-TLM).
Indeed, if d>1, the emergence of contributions to the dynamical structure factor at
energies lower than ω− can be interpreted as contributions from transverse modes.

The key point is to notice that all these modes, taken separately, display a lin-
ear structure in their excitation spectrum at low energy, as illustrated in Fig. 5.7.
This means that each of them can be described in the Tomonaga–Luttinger liquid
framework. Thus, applying Eq. (5.14) to the Tomonaga–Luttinger model, in Q1D the
dynamical structure factor reads

ST L
Q1 (q,ω)=

M∑
j=−M

ST L
1 (q,ω; k̃F [ j/M]). (5.27)
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The question is, up to what point the small errors for each mode due to the use
of the effective theory amplify or cancel when adding more modes, especially in the
limit M→+∞, that corresponds to the crossover to 2D. To address this question, I
have carried out the procedure explicitly on the example of the 1D to 2D crossover
and compared the prediction of the cross-dimensional Tomonaga–Luttinger liquid
theory to the exact solution. Combining Eq. (5.27) to the dynamical structure factor
of a 1D gas yields

ST L
Q1 (q,ω) = Lx

m

4π�

1

M̃

M∑
j=−M

1√
1− j2

M̃2

�

⎛
⎝ω−

∣∣∣∣∣∣q−2kF

√
1− j2

M̃2

∣∣∣∣∣∣vF
√
1− j2

M̃2

⎞
⎠

→M→+∞ Lx
m

2π�

∫ 1

0
dx

1√
1−x2

�
(
ω−
∣∣∣q−2kF

√
1−x2

∣∣∣vF
√
1−x2

)
= ST L

2 (q,ω).

(5.28)

Evaluating the integral yields

ST L
2 (q,ω)= mLx

2π�
[�(q−2kF )S>(q,ω)+�(2kF −q)S<(q,ω)] (5.29)

with

S>(q,ω) = �

(
�q2

8m
− ω

)
�(q̃vF − ω) arcsin

[
q

4kF

(
1 −

√
1 − 8mω

�q2

)]

+ �(4kF − q)�(ω − q̃vF )�

(
�q2

8m
− ω

)
arcsin

[
q

4kF

(
1 −

√
1 − 8mω

�q2

)]

+ arccos

[
q

4kF

(
1+
√
1− 8mω

�q2

)]
+ �

(
ω − �q2

8m

)
�(ω − q̃vF )

π

2
(5.30)

and
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, (5.31)

where q̃=q−2kF .
I illustrate Eqs. (5.30) and (5.31) in Fig. 5.8, that compares sections of the dynam-

ical structure factor as predicted by the multi-mode Tomonaga–Luttinger model and
by exact calculation, as a function of q at ω=0.1ωF . This low-energy value has
been chosen in view of the known validity range of the TLL already studied in 1D.
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Fig. 5.8 Section of the
dynamical structure factor
S(q,ω=0.1ωF ) in units of
S(q=2kF ,ω=0.1ωF ) as a
function of q in units of kF ,
at fixed energy ω=0.1ωF .
The exact result in 2D
(dashed) is compared to the
M-TLM prediction (solid) in
the upper panel. The lower
panel shows a zoom into the
backscattering region near
q=2kF . It compares the 2D
exact (dashed) and the
M-TLM model (solid) to the
exact (thick) and TLM
(dotted) results in 1D

Around the umklapp point (q=2kF ,ω=0) lies a sector where the effective model
is in rather good quantitative agreement with the exact result in 2D. Discrepancies
between the Tomonaga–Luttinger model and the original one at low q are due to the
fact that for a given point, the TLM slightly overestimates the value of the dynamical
structure factor for larger q and underestimates it at lower q, as can be seen in the 1D
case. Combinedwith the fact that the curvature of the dispersion relation is neglected,
and that the density of modes is lower at low q, this explains the anomalous cusp
predicted by the M-TLM at low q. Note however that this result is by far closer to
the 2D exact result than the 1D one in the large M case, showing that there is a true
multi-mode effect.

To conclude, I find that the M→+∞ limit prediction of the multimode
Tomonaga–Luttinger model for a noninteracting gas is in quantitative agreement
with the exact 2D result for ω
ωF and |q−2kF |
2kF . Similar conditions have
to be met in 1D in order to ensure the validity of the Tomonaga–Luttinger model,
therefore my heuristic construction is quite satisfactory from this point of view. It is
not fully satisfying, however, in the sense that the derivation starts from 1D, and the
2D model that would directly yield this result is unknown.

5.5 Summary of This Chapter

In this chapter, I have investigated the dynamical structure factor and drag force of
a noninteracting Fermi gas as functions of space dimension d. This parameter has a
dramatic effect on the dynamical structure factor, whose strongest manifestation is
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a low-energy forbidden region in momentum-energy space in dimension one, that
becomes available in higher dimensions. This effect on the dynamical structure factor
allows to forecast, by adiabatic continuation, the transition from Luttinger to Fermi
liquid behavior in interacting systems. In comparison, the effect on the drag force is
quite limited, since this observable is dominated by excitations close to the umklapp
point.

Then, I have investigated multi-mode systems obtained by releasing a transverse
trapping, and demonstrated the dimensional crossover allowed by this structure.
Actually, the mathematical property hidden behind this dimensional crossover is
merely the crossover from Riemann sums to integrals. I have studied the effect of a
longitudinal harmonic trap and shown, for the noninteracting gas within the local-
density approximation, that each degree of trapping is equivalent to an additional
effective dimension. This property allows to simulate up to six dimensions. The
multimode structure allows to prove general results by induction on space dimension,
which is quite useful in this context. I have also shown that dimension enhancement
does not occur if the dynamical structure factor of a 1D longitudinally trapped gas
is probed in the close vicinity of the trap center.

To finish with, I have turned to the issue of extensions of the TLL formalism
to higher dimensions, in view of future applications to interacting systems. I have
proposed a model of multimode Tomonaga–Luttinger liquid, whose dimensional
crossover to 2D reproduces the exact result with satisfying accuracy at sufficiently
low energies and close to the umklapp point.

5.6 Outlook of This Chapter

A few issues dealt with in this chapter could be investigated further as was done in
Chap.4 for a Bose gas, such as the effect of finite temperature on the dimensional
structure factor of a Fermi gas in dimensions two and three. It is not obvious how
dimensional crossovers would manifest themselves at finite temperature, and the
issue deserves attention. The effect of the barrierwidth on the drag force profile is also
unknown yet in higher dimensions, but I expect that a quasi-superfluid regime exists
in this configuration too. The multimode structure leading to dimensional crossovers
may be investigated for virtually any observable and other models, offering a wide
landscape of perspectives.

The most thriving issue, however, is by far the adaptation of the multicomponent
approach to interacting systems. Some results obtained for a noninteracting gas,
such as the d ↔ 2d correspondence in a harmonic trap, are likely not to be robust.
The multimode Tomonaga–Luttinger liquid formalism, however, can definitely be
adapted to multicomponent interacting system, by choosing the type of interactions
considered. There are essentially two types of terms that emerge [11], leading respec-
tively to density-coupled gases, or to couplings of a cosine type, that correspond to
the Sine-Gordon model. They should be an appropriate low-dimensional description
of Lieb-Liniger or Yang-Gaudin type multicomponent models.
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The simplest case is assuredly the density-coupled multicomponent gas, whose
Hamiltonian,

HT L
M =

M−1∑
i=0

�vi

2π

∫ L

0
dx

[
Ki (∂x�i )

2+ 1

Ki
(∂xθi )

2
]

+ 1

2

M−1∑
i=0

M−1∑
j=0

(1−δi j )gi j

∫ L

0
dx

∂xθi
π

∂xθ j

π
,

(5.32)

is quadratic in the fields and can be diagonalized explicitly [12]. A few results con-
cerning dynamical correlations are already available for a few components [13, 14],
and a general formalism based on generalized hypergeometric series has been devel-
opped to deal with an arbitrary number of components [15].

Next step would be the extension of the Imambekov-Glazman formalism tomulti-
mode gases, and the development of Bethe Ansatz techniques to study the dynamics
of multi-component Lieb-Liniger and Yang-Gaudin models.

In view of the technical difficulty of the dimensional crossover problem even
for a few modes, it might be that quantum simulation will be needed to solve the
problem in full generality. However, if only a fewmodes are needed to recover higher-
dimensional physics as was the case for a noninteracting Fermi gas, then there is
hope that some cases are at reach. Whether or not such solutions could help to better
understand or solve higher-dimensional models is not obvious, nor the way a model
transforms along the dimensional crossover. As an example of this problematics,
the Tonks–Girardeau gas is equivalent to a gas of noninteracting fermions for a few
observables in 1D, but no such correspondence is known in higher dimension. To
what conditions would an indifferentiate 1D gas become a noninteracting Fermi gas
or a unitary Bose gas in 2D is far from obvious.
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Chapter 6
General Conclusion

In conclusion, in this thesis I have studied the effects of interactions, quantum and
thermal fluctuations on a one-dimensional Bose gas.

In the introductory Chap.2, I have recaped a few hallmarks of one-dimensional
quantum systems, such as collectivization of motion and excitations, that prevents
the existence of well-defined quasi-particles and seals the breakdown of Fermi liquid
theory. Fermionization of interacting bosons manifests itself through the appearance
of a Fermi sea structure in quasi-momentum space, and in real space, through a
fictitious Pauli principle that is not due to statistics but to interactions. For systems
with spin, the charge and spin sectors of the Hilbert space decouple, and their exci-
tations split in real space too, challenging the notion of elementary particle. All of
these effects are consequences of the crossing topological constraint, that enhances
the role of fluctuations. Another striking consequence of dimensional reduction is
the Mermin-Wagner theorem, that states the impossibility of spontaneous symmetry
breaking and applies to many models. The latter do not undergo phase transitions but
rather smooth crossovers, withdrawing interest to their phase diagram. An alterna-
tive paradigm consists in characterizing systems through their correlation functions,
either local or non-local, in real or in energy-momentum space, at or out of equi-
librium. These correlation functions are probed on a daily basis in ultracold atom
setups.

Low-dimensional quantum gases are obtained through strong confinement along
transverse directions, allowed by trapping and cooling. They can be created in an
optical lattice, leading to an ensemble of wires, or on a microchip that provides a sin-
gle gas, both situations corresponding to open boundary conditions. Ring geometries,
that realize periodic boundary conditions, are also available thanks to magnetic trap-
ping, radio-frequency fields or a combination thereof, using time-average adiabatic
potentials.

A fair number of simple models describing one-dimensional gases are integrable,
meaning that their scattering matrix verifies the Yang-Baxter equation. This situation
allows to obtain the exact ground-state energy, the excitation spectrum and even,
at the price of huge efforts, correlation functions, using Bethe Ansatz techniques.
Other theoretical tools allow for a quite detailed analytical study of low-dimensional
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models, such as the exact Bose-Fermimapping, that states the formal equivalence, for
many observables, between the Tonks–Girardeau gas of strongly-interacting bosons,
and a fictitious gas of noninteracting spinless fermions. Many models belong to
the universality class of Tomonaga–Luttinger liquids, which is completely solved
by bosonization, and yields the structure of the short-time, large-distance, and low-
energy correlation functions of these models. These correlations are critical at T =0
in the thermodynamic limit, as they decay algebraically in space, which is one more
hallmark of one-dimensional physics. At finite temperature, however, their decay
becomes exponential. Conformal field theory can be used as an alternative formalism
to obtain these correlation functions, and requires less calculation efforts. The validity
range of effective models is investigated by comparison with exact results in the
Tonks–Girardeau regime, or from Bethe Ansatz when they are available.

In Chap.3, I have studied one of the most famous models of 1D gases, where
bosonic atoms interact through a local potential, a.k.a. the Lieb-Liniger model. I have
recalled the Bethe Ansatz procedure to obtain its ground-state energy in closed form
in the thermodynamic limit, as the solution of a set of coupled integral equations.
Approximate solutions of these equations can be constructed systematically with
arbitrary accuracy in the weakly-interacting and strongly-interacting regimes, using
clever series expansions in the coupling constant or its inverse. In the weak-coupling
regime, I have identified the general pattern of the series, and guessed the exact value
of the third-order coefficient. In the strongly-interacting regime, I have pushed the
expansion to an unprecedented order and inferred a partially-resummed structure.
I have also developed a semi-analytical technique that allows to handle all interaction
regimes. In the end, these methods give access to the whole range of interaction
strengths with excellent accuracy.

Then, I have turned to the more intricate issue of local correlation functions.
While the one-body local correlation is trivial, the second- and third-order ones can
be expressed in terms of moments of the density of pseudo-momenta, already studied
to obtain the energy. I have found new expressions in the weak-coupling regime and
conjectured their global structure in the strongly-interacting regime, thus improving
analytical estimates.

The one-body correlation function acquires a non-trivial structure at finite space
separation. Tomonaga–Luttinger liquid theory predicts that it vanishes at infinity,
meaning the absence of off-diagonal long-range order in 1D, but its algebraic decay is
a signature of quasi-long-range order. While the large-distance behavior is universal,
at short distance it strongly depends on the microscopic details of the model. Here,
the coefficients of the short-distance series expansion can be obtained by Bethe
Ansatz, through relations that I have called ‘connections’, that link them to local
correlation functions andmoments of the density of pseudo-momenta. I have derived
the first few connections, and noticed that they correspond to well-known results,
that are gathered and classified for the first time in a single formalism. I have also
given new and shorter derivations of a few of them. Then, by Bethe Ansatz, I have
evaluated the first few coefficients of the short-distance series expansion of the one-
body correlation function explicitly, and found that the first that changes sign when
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the interaction strength varies is the forth one, at a value that I have evaluated with
very high accuracy.

The Fourier transform of the one-body correlation function yields the momen-
tum distribution, whose large-momentum tail scales like an inverse quartic law at
dominant order. Its numerical coefficient, known as Tan’s contact, depends on the
interaction strength and contains much information on the microscopic details of the
model. I have chosen this observable to illustrate a method to solve the Lieb-Liniger
model generalized through an additional harmonic trap, that breaks its integrability.
The technique relies on a combination of Bethe Ansatz and the local-density approx-
imation, whose acronym is BALDA.Within the latter, I have found a procedure, valid
in the strongly-interacting regime, to obtain the exact expansion of Tan’s contact to
arbitrary order in the inverse coupling.

InChap.4, I have considered correlation functions in energy-momentum space. To
be more specific, I have focused on the dynamical structure factor, i.e. the absorption
spectrumof the gas, probed byBragg scattering.An impurity or a laser beam is stirred
along the fluid and couples locally to its density. Provided this coupling is sufficiently
weak, linear response theory applies and allows to evaluate energy dissipation due
to the drag force, once the dynamical structure factor and the shape of the potential
barrier are known. This allows to study superfluidity, as characterized by the absence
of viscosity, i.e. of a drag force, below a critical velocity, as a generalization of
Landau’s criterion. After an introduction to experiments on superfluids, an exposition
of Landau’s criterion and of the drag force concept in the quantum regime, the
dynamical structure factor of the Tonks–Girardeau gas is obtained by Bose-Fermi
mapping. It features a low-energy region where excitations are forbidden, whose
upper bound coincides with the lower excitation spectrum of the model. The drag
force due to an infinitely thin potential barrier is linear in the flow velocity below the
Fermi velocity, then it saturates to a finite value.

At finite temperature, the dynamical structure factor spreads beyond the zero
temperature excitation spectra and acquires excitations at negative energy, that cor-
respond to emission. When temperature increases too much, phonons are not well-
defined anymore. I have also studied the effect of a finite barrier width on the drag
force. It turns out that in this more realistic picture, the drag force is strongly sup-
pressed at large velocities, putting into light the existence of a quasi-superfluid,
supersonic regime.

Although several techniques are available to study dynamical correlation func-
tions at arbitrary interaction strength, I have focused on the Tomonaga–Luttinger
formalism. By comparison of the effective theory with the exact Tonks–Girardeau
predictions, I have studied the validity range of this formalism and found that it is
limited to low energy, low temperature, and low velocity for the drag force. At finite
interaction strength, two parameters are needed to make quantitative predictions:
the Luttinger parameter and the first form factor of the density-density correlation
function. The former is obtained with high accuracy from the ground-state energy by
coordinate Bethe Ansatz, whereas extracting the form factor requires more advanced
techniques. I have guessed an approximate expression that allows to reproduce with
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satisfying accuracy the exact dynamical structure factor at the vertical of the umklapp
point, in a wide range of strong to intermediate couplings.

In view of more sophisticated treatments, for instance within the Imambekov-
Glazman liquid formalism, I have obtained another key ingredient to evaluate the
dynamical structure factor, i.e. the excitation spectrum of the Lieb-Liniger model.
I have identified a series expansion of the Lieb-II type spectrum that respects its
symmetries, and expressed the two first coefficients as functions of the sound velocity
and the effectivemass, found byBetheAnsatz. Comparisonwith a numerical solution
shows that truncating the series to second order is a rather good approximation over
a wide range of interactions strengths.

In Chap.5, I have turned to the issue of the dimensional crossover from 1D to
higher dimensions. There are several ways to address a dimensional crossover, for
instance by coupling 1D gases, or using internal degrees of freedom to create a
synthetic dimension, or releasing a transverse trapping. Here, I have focused on
the last one, on the example of a gas of noninteracting fermions in a box trap of
tunable size. In a first time, I have obtained the dynamical structure factor of the
gas as a function of dimension. A general expression shows that the forbidden low-
energy region in 1D is filled with excitations in any higher dimension, providing an
example of dramatic dimensional effect. The crossover from 1D to 2D is especially
interesting. I have followed it all along and observed the progressive appearance of
transverse energy modes by increasing a transverse size of the box. These modes fill
the low-energy region progressively, up to a point where no energy gap remains and
dimension two is recovered. Then, I have done the same study for the drag force, on
which the effect of dimension is far less spectacular.

Experiments often involve longitudinal harmonic trapping, that can be taken into
account in the local-density approximation framework. It turns out that each degree of
confinement is equivalent, for the dynamical structure factor, to adding an effective
space dimension. This effect is not observed, however, if only the central region
of the trap is probed, where the gas is practically homogeneous. To finish with, in
view of future generalizations to interacting systems, I have developed a multimode
Tomonaga–Luttinger liquid framework, and tested it along the dimensional crossover
from 1D to 2D. Its predictions for a Fermi gas are accurate in the vicinity of the
umklapp point of each single mode, and the global one in 2D.

As detailed in the end of each chapter, various research directions open up from
my work. Explicit identification of the weak- or strong-coupling series expansion of
the ground-state energy of the Lieb-Liniger model may lead to the possibility of a
full resummation, that would yield the exact ground-state energy. The importance of
such an achievement would be comparable to the celebrated solution of the 2D Ising
model by Onsager. In view of the weak-coupling expansion, that seems to involve
the Riemann zeta function at odd arguments, it might be that this solution could help
proving difficult theorems in analytic number theory.

A deeper study of the concept of connection and their calculation at higher orders
may suggest general formulae. The Lieb-Liniger model would then be solved in a
stronger sense, by investigating the high-momentum tail of the momentum distri-
bution to next order, beyond Tan’s contact, as well as higher-order local correlation
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functions. Bethe Ansatz, coupled to the local-density approximation, allows to study
trapped gases in non-integrable regimes, possibly in an exact manner, and could be
tested in other cases than harmonic trapping.

Now that the standard Tomonaga–Luttinger model has been pushed to its limits,
next step would be to make quantitative predictions for dynamical observables from
the Imambekov-Glazman formalism. The excitation spectrum can be evaluated with
excellent accuracy, the form factor is known from algebraic Bethe Ansatz, and the
edge exponents are at hand. This approach, or the ABACUS algorithm, could serve
for a detailed study of the shape and width of the potential barrier on the drag
force profile, in particular to investigate the required conditions to observe a quasi-
superfluid supersonic regime.

Dimensional crossover by confinement release could be investigated in other
systems and on other observables, to gain insight in the crossover mechanism. In
particular, the role that finite temperature could play is not obvious. Multimode
Tomonaga–Luttinger liquids coupled through their densities or a cosine term are a
first step towards an accurate dynamical description of multi-component models,
that would seemingly require a generalized Imambekov-Glazman formalism or a
Bethe-Ansatz based treatment.



Appendix A
Complements to Chapter 2

A.1 Density Correlations of a Tomonaga-Luttinger
Liquid in the Thermodynamic Limit at Zero
Temperature

The aimof this section is to derive Eq. (2.41) in the formalism of Tomonaga-Luttinger
liquids. Elements of this derivation can be found in various references, see e.g. [1].
As a first step, one needs to construct a convenient representation of the gas density
in the continuum. In first quantization, the granular density operator reads

n(x) =
N∑

i=1

δ(x − xi ), (A.1)

where {xi }i=1,...,N label the positions of the point-like particles. This expression is
not practical to handle, and needs coarse-graining in the thermodynamic limit. To
simplify it, one defines a function ζ such that ζ(xi ) = iπ at the position of the i th
particle and zero otherwise, and applies the property of the δ distribution composed
with a function f :

δ[ f (x)] =
∑

xi / f (xi )=0

1

| f ′(xi )|δ(x − xi ), (A.2)

to f (x) = ζ(x) − iπ, so that f ′(x) = ∂xζ(x). Summing over i yields

N∑

i=1

δ[ζ(x) − iπ] =
N∑

i=1

∑

xi

1

|∂xζ(xi )|δ(x − xi ) =
N∑

i=1

1

|∂xζ(x)|δ(x − xi ). (A.3)
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Then, Eq. (A.1) reads

n(x) = |∂xζ(x)|
∑

i

δ[ζ(x) − iπ] = ∂xζ(x)
∑

i

δ[ζ(x) − iπ]. (A.4)

This expression is transformed by applying Poisson’s formula, namely

+∞∑

m=−∞
g(m) =

+∞∑

m=−∞

∫ +∞

−∞
dz g(z)e2imπz, (A.5)

to the function defined as g(z) = δ[ζ(x) − πz], yielding

n(x) = ∂xζ(x)

π

+∞∑

m=−∞
e2imζ(x). (A.6)

I finally define θ(x) = kF x − ζ(x), and rewrite the density-density correlator as

〈n(x, t)n(x ′, t ′)〉

= 1

π2

〈
[kF + ∂xθ(x, t)][kF + ∂x ′θ(x ′, t ′)]

+∞∑

m=−∞

+∞∑

m′=−∞
e2im[θ(x,t)+kF x]e2im′[θ(x ′,t ′)+kF x ′]

〉
.

(A.7)

Due to Galilean-invariance of the system, only relative coordinates are important
in the thermodynamic limit. Therefore, I set x ′ and t ′ to zero in the following. To
compute the correlations using Eq. (A.7), I split the summations over m and m ′ into
several parts.

First, I compute the leading term, obtained for m = m ′ = 0. Keeping only the
latter is the essence of the ‘harmonic approximation’. This term corresponds to
1
π2 〈∂xζ(x, t)∂xζ(0, 0)〉. Using the diagonal form of the Hamiltonian Eq. (2.34), the
field expansion over the bosonic basis Eq. (2.32), and the equation of motion or the
Baker-Campbell-Haussdorff formula for exponentials of operators yields

∂xζ(x, t) = πn0 + 1

2

∑

q �=0

∣∣∣∣
2πK

qL

∣∣∣∣
1/2

iq
{
ei[qx−ω(q)t]bq − e−i[qx−ω(q)t]b†q

}
, (A.8)

with 〈bqb†q ′ 〉 = δq,q ′ and 〈b†qbq ′ 〉 = 0 since q, q ′ �= 0 and T = 0. Also, 〈b†qb†q ′ 〉 =
〈bqbq ′ 〉 = 0, thus

〈∂xζ(x, t)∂xζ(0, 0)〉 − (πn0)
2 = πK

2

1

L

∑

q �=0

|q|eiq[x−sign(q)vs t], (A.9)

and after a few lines of algebra,
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1

π2
〈∂xζ(x, t)∂xζ(0, 0)〉 = n20

(
1 − K

4k2F

[
1

(x − vs t + iε)2
+ 1

(x + vs t − iε)2

])
,

(A.10)
where a short-distance regulator iε has been added.

Another type of contribution is given by n20
∑+∞

m,m ′=−∞,�=(0,0)〈e2imζ(x,t)e2im
′ζ(x ′,t ′)〉.

I introduce a generating function:

Gm,m ′(x, t; x ′, t ′) = e2imζ(x,t)e2im
′ζ(x ′,t ′), (A.11)

and use the identity, valid for two operators A and B both commuting with their
commutator: eA+B = eAeBe

1
2 [A,B], hence

Gm,m ′(x, t; 0, 0) = e2i[mζ(x,t)+m ′ζ(0,0)]e
1
2 [2imζ(x,t),2im ′ζ(0,0)]. (A.12)

Using Eq. (2.43),

[ζ(x, t), ζ(0, 0)] = i
∑

q �=0

∣∣∣∣
πK

qL

∣∣∣∣ sin [qx − ω(q)t] (A.13)

since [bq , b†q ′ ] = δq,q ′ . Also,

mζ(x, t) + m ′ζ(0, 0) = mkFx + 1

2

∑

q �=0

∣∣∣∣
2πK

qL

∣∣∣∣
1/2 [

(mei[qx−ω(q)t] + m ′)bq + h.c.
]
,

(A.14)
where h.c. means ‘hermitian conjugate’. Thus, setting αm,m ′ = mei[qx−ω(q)t] + m ′
for concision,

Gm,m ′(x, t; 0, 0) = e
imkF x+i

∑
q �=0

∣∣∣ 2πKqL

∣∣∣
1/2

(αm,m′bq+h.c.)
e
−2mm ′i 1

L

∑
q �=0

∣∣∣ πK
q

∣∣∣ sin[qx−ω(q)t]
.

(A.15)
We are interested in its statistical average. I use the identity 〈eA〉 = e

1
2 〈A2〉, valid for

any linear operator A, to show that

〈
e
i
∑

q �=0

∣∣∣ 2πKqL

∣∣∣
1/2

(αm,m′bq+h.c.)
〉

= e−∑
q �=0

πK
|q|L (m2+m ′2+2mm ′ cos[qx−ω(q)t])

. (A.16)

Thus,

〈Gm,m ′(x, t; 0, 0)〉 = e2imkF xe−∑
q �=0

πK
|q|L (m2+m ′2+2mm ′ei[qx−ω(q)t])

. (A.17)

To go further, I have to evaluate 1
L

∑
q �=0

1
|q| (m

2 + m ′2 + 2mm ′eiq[x−vs sign(q)t]). First,
note that if this series diverges, then 〈Gmm ′ (x, t; 0, 0)〉 = 0. Rewriting
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m2 + m ′2 + 2mm ′eiq[x−vs sign(q)t] = (m + m ′)2 − 2mm ′ (1 − eiq[x−vs sign(q)t]) ,
(A.18)

one sees that m = −m ′ is a necessary condition in the thermodynamic limit to result
in a non-vanishing contribution.

In the thermodynamic limit, introducing a regularizing cut-off e−εq and using the
property 1

q = ∫ +∞
0 dy e−qy leads to

∫ +∞

0+
dq

e−aq

q

[
1 − e−iqvs t cos(qx)

]

= lim
A→+∞

∫ A

0
dy

∫ +∞

0
dq

[
e−(ε+y)q − 1

2
e−(ε+y+ivs t−i x)q − 1

2
e−(ε+y+ivs t+i x)q

]

= 1

2
ln

[
(ε + ivs t)2 + x2

ε2

]
= 1

2
ln

[
(x − vs t + iε)(x + vs t − iε)

ε2

]
. (A.19)

In the end,

〈
Gm,m ′(x, t; 0, 0)〉 = e2imkF xδm,−m ′

[
(x − vs t + iε)(x + vs t − iε)

ε2

]−Km2

, (A.20)

yielding the other contributions to Eq. (2.41) after replacing the various powers of
the regularizing term ε by the non-universal form factors. In particular, I obtain

Am = 2(εkF )2Km2
(A.21)

in terms of the small-distance cut-off.

A.2 Density Correlations of a Tomonaga-Luttinger Liquid
at Finite Temperature by Bosonization

This appendix provides an alternative approach to CFT to derive Eq. (2.72), based on
the Tomonaga-Luttinger liquid formalism. Calculations are far longer, but provide
an independent way to check the result and are more elementary in the mathematical
sense. I split the calculations into two parts.

A.2.1 First Contribution to the Density Correlation

The beginning of the derivation is essentially the same as in the zero temperature
case, already treated in Appendix A.1. Using the same notations, I start back from

https://doi.org/10.1007/978-3-030-05285-0_2
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Eq. (A.8), up to which the derivation is the same. Now, since T > 0 the quantum-
statistical averages in the bosonic basis are re-evaluated as 〈b†qbq ′ 〉 = δq,q ′nB(q), and

〈bqb†q ′ 〉 = δq,q ′ [1 + nB(q)],wherenB(q) = 1
eβ�ω(q)−1 is theBose-Einstein distribution

of the bosonic modes. Thus,

[〈∂xζ(x, t)∂xζ(0, 0)〉 − (πn0)
2]T>0

= 1

4

∑

q �=0

2πK

|q|L q2
{
ei(qx−ω(q)t)[1 + nB(q)] + e−i(qx−ω(q)t)nB(q)

}

= [〈∂xζ(x, t)∂xζ(0, 0)〉 − (πn0)
2]T=0

+1

4

∑

q �=0

2πK |q|
L

(
ei[qx−ω(q)t] + e−i[qx−ω(q)t]) nB(q), (A.22)

where I have isolated the result at T = 0 already evaluated in Appendix A.1, and a
purely thermal part.

To evaluate this thermal part, I make a few algebraic transformations, take the
thermodynamic limit and use the change of variable β�vsq → q̃ to obtain

2π

L

∑

q �=0

|q| (ei[qx−ω(q)t] + e−i[qx−ω(q)t]) nB(q)

= 1

L2
T

∫ +∞

0
dq

q

eq − 1

[
eiq

(x−vs t)
LT + eiq

(x+vs t)
LT + e−iq (x−vs t)

LT + e−iq (x+vs t)
LT

]
,

(A.23)

where LT = β�vs plays the role of a thermal length. I define K (b) = ∫∞
0 dy y eiby

ey−1
and find that

K (b) + K (−b) =
∫ +∞

0
dy y(eiby + e−iby)e−y

+∞∑

n=0

e−yn

= −
∫ +∞

0
dy

+∞∑

n=0

[
eibye−ye−yn

ib − (n + 1)
+ e−ibye−ye−yn

−ib − (n + 1)

]

=
+∞∑

n=1

∫ +∞

0
dy

[
eibye−yn

−ib + n
+ e−ibye−yn

ib + n

]

=
+∞∑

n=1

[
1

(−ib + n)2
+ 1

(ib + n)2

]
= 2

+∞∑

n=1

n2 − b2

(n2 + b2)2
. (A.24)

Then, I use the property [2]

1

sin2(πx)
= 1

π2x2
+ 2

π2

+∞∑

n=1

x2 + k2

(x2 − k2)2
(A.25)
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combined to sin(i x) = i sinh(x), yielding

2
+∞∑

k=1

k2 − x2

(k2 + x2)2
= π2

[
1

π2x2
− 1

sinh2(πx)

]
, (A.26)

put back the prefactors and add the known result at T = 0 to obtain

〈n(x, t)n(0, 0)〉m=0

n20
= − K

4k2F

π2

L2
T

⎧
⎨

⎩
1

sinh2
[

π(x+vs t)
LT

] + 1

sinh2
[

π(x−vs t)
LT

]

⎫
⎬

⎭ .

(A.27)

A.2.2 Second Contribution to the Density Correlation
Function

This time again, the derivation is at first strictly identical to the one at zero tempera-
ture. The point where they start to differ is Eq. (A.16), so I come back to this exact
point and find

〈
e
i
∑

q �=0

∣∣∣ 2πKqL

∣∣∣
1/2

(αmm′bq+h.c.)
〉

= e
−∑

q,q′ �=0

∣∣∣ πK
qL

∣∣∣
1/2∣∣∣ πK

q′L
∣∣∣
1/2|αmm′ |2δq,q′ [1+2nB (q)]

, (A.28)

thus the generating function at finite temperature reads

〈Gmm ′(x, t; 0, 0)〉T>0

= e2imkF xe
−2mm ′i 1

L

∑
q �=0

∣∣∣ πK
q

∣∣∣ sin[qx−ω(q)t]
e
−∑

q �=0

∣∣∣ πK
qL

∣∣∣(m2+m ′2+2mm ′ cos[qx−ω(q)t])[1+2nB (q)]

= e2imkF xe
−∑

q �=0

∣∣∣ πK
qL

∣∣∣{(m+m ′)2+2mm ′(ei[qx−ω(q)t]−1)+[(m+m ′)2+2mm ′(cos[qx−ω(q)t]−1)]nB (q)}

(A.29)

and the condition m = −m ′ in the thermodynamic limit yields

〈Gmm ′(x, t; 0, 0)〉T>0

= δm,−m ′e2imkF xe−m2K
∫
q �=0

dq
|q| {1−ei[qx−ω(q)t]+2(1−cos[qx−ω(q)t])nB (q)}

. (A.30)

It involves the integral

∫

q �=0

dq

|q|
{
1 − ei[qx−ω(q)t] + 2[1 − cos(qx − ω(q)t)]nB(q)

}

= 2
∫ +∞

0
e−εq dq

q

{
1 − e−iqvs t cos(qx) + 2[1 − cos(qx) cos(qvs t)]nB(q)

}
,

(A.31)
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where I have restored the regulator neglected up to here to simplify the notations. This
integral has been evaluated in imaginary time, defined through τ = i t , in Ref. [1].
The result is then

F1(r) =
∫ +∞

0
e−εq dq

q

{
1 − e−qvsτ cos(qx) + 2[1 − cos(qx) cosh(qvsτ )]nB(q)

}

�x,vsτ	ε
1

2
ln

{
L2
T

π2ε2

[
sinh2

(
πx

LT

)
+ sin2

(
πvsτ

LT

)]}
. (A.32)

I propose my own derivation of the latter, that relies on the following steps:
∫ +∞

0

dq

q
e−εq

{
1 − e−iqvs t cos(qx) + 2[1 − cos(qx) cos(qvs t)]nB(q)

}

=
∫ +∞

0
dq e−εq

∫ +∞

0
dy e−yq

[
1 − e−iqvs t

eiqx + e−iqx

2

+2

(
1 − eiqx + e−iqx

2

eiqvs t + e−iqvs t

2

)
1

eLT q − 1

]

= 1

2

∫ +∞

0
dy

∫ +∞

0
dq e−(ε+y)q

×
(
2 − eiq(x−vs t) − e−iq(x+vs t) +

+∞∑

n=0

e−LT q(n+1)
{
4 − [

eiq(x+vs t) + eiq(x−vs t)

+e−iq(x+vs t) + e−iq(x−vs t)
]})

= 1

2

∫ A→+∞

0
dy

2

ε + y
− 1

ε + y − i(x − vs t)
− 1

ε + y + i(x + vs t)

+
+∞∑

n=0

4

ε + y + LT (n + 1)
− 1

ε + y + LT (n + 1) − i(x + vs t)

− 1

ε + y + LT (n + 1) + i(x − vs t)
− 1

ε + y + LT (n + 1) + i(x + vs t)

− 1

ε + y + LT (n + 1) − i(x − vs t)

= 1

2
ln

[
(x + vs t − iε)(x − vs t + iε)

ε2

+∞∏

n=0

{
1 + (x + vs t)2

[ε + LT (n + 1)]2
}

+∞∏

n′=0

{
1 + (x − vs t)2

[ε + LT (n′ + 1)]2
}]

. (A.33)

Then, in the limit LT , x, vs t 	 ε and using the infinite product expansion of sinh,

sinh(x) = x
+∞∏

n=1

(
1 + x2

k2π2

)
, (A.34)
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as well as sinh2(x) − sinh2(y) = sinh(x + y) sinh(x − y) and sin(i x) = i sinh(x),
I recover Eq. (A.32) as expected, and Eq. (2.72) follows. Actually, it is even possible
to evaluate the integral F1(r) exactly, providing another derivation of Eq. (A.32). To
do so, I start from

F1(r) = 1

2
ln

⎧
⎨

⎩
(x + vs t − iε)(x − vs t + iε)

ε2

+∞∏

n=1

[
1 + (x + vs t)2

(ε + nLT )2

] +∞∏

n′=1

[
1 + (x − vs t)2

(ε + n′LT )2

]⎫⎬

⎭

(A.35)

and rewrite

+∞∏

n=1

[
1 + (x ± vs t)2

(ε + nLT )2

]
=

+∞∏

n=0

⎡

⎢⎣1 +
(
x±vs t
lT

)2

(
ε
LT

+ n
)2

⎤

⎥⎦
ε2

ε2 + (x ± vs t)2
. (A.36)

Then, I use the property [2]

∣∣∣∣
�(x)

�(x − iy)

∣∣∣∣
2

=
+∞∏

k=0

(
1 + y2

(x + k)2

)
, x �= 0,−1,−2 . . . (A.37)

to obtain

F1(r) = 1

2
ln

⎡

⎢⎣
x2 − (vs t − iε)2

ε2
1

1 + (x+vs t)2

ε2

1

1 + (x−vs t)2

ε2

∣∣∣∣∣∣

�
(

ε
LT

)

�
[
ε−i(x+vs t)

LT

]

∣∣∣∣∣∣

2 ∣∣∣∣∣∣

�
(

ε
LT

)

�
[
ε−i(x−vs t)

LT

]

∣∣∣∣∣∣

2⎤

⎥⎦ .

(A.38)

To check consistency with Eq. (A.32), I take the large thermal length limit combined
to the properties �(x) �x→0 1/x and |�(iy)|2 = π/[y sinh(πy)] [2].

A.3 Density Correlations of a Tomonaga-Luttinger
Liquid at Finite Size and Temperature by Bosonization

In this appendix, I provide elements of derivation of Eq. (2.73). To do so, I generalize
Eq. (A.10) to finite size and temperature.

〈∂xζ(x, t)∂xζ(0, 0)〉L<+∞,T>0 − (πn0)
2

= 1

4

∑

q �=0

2πK

|q|L q2{ei[qx−ω(q)t][1 + nB(q)] + e−i[qx−ω(q)t]nB(q)}

= 〈∂xζ(x, t)∂xζ(0, 0)〉L<+∞ − (πn0)
2
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+1

4

∑

q �=0

2πK

|q|L q2{ei[qx−ω(q)t] + e−i[qx−ω(q)t]}nB(q). (A.39)

The result at finite size and zero temperature is easily evaluated and yields Eq. (2.71).
After a few lines of algebra I find that the second part reads

1

4

∑

q �=0

2πK

|q|L q2{ei[qx−ω(q)t] + e−i[qx−ω(q)t]}nB(q) = πK

2L
[F(x − vs t) + F(x + vs t)].

(A.40)

Function F reads

F(u) =
∑

q>0

q(eiqu + e−iqu)

+∞∑

n=1

e−LT qn

= −
+∞∑

n=1

1

LT

∂

∂n

[+∞∑

m=1

(
ei

2π
L mu + e−i 2πL mu

)
e−LT

2π
L mn

]

= − π

2L

+∞∑

n=1

{
1

sinh2
[

π
L (iu − LT n)

] + 1

sinh2
[

π
L (iu + LT n)

]
}

= −π

L

+∞∑

n=1

cos2
(

πu
L

)
sinh2

(
πLT
L n

)− sin2
(

πu
L

)
cosh2

(
πLT
L n

)

[
cos2

(
πu
L

)
sinh2

(
πLT
L n

)+ sin2
(

πu
L

)
cosh2

(
πLT
L n

)]2

= −π

L

+∞∑

n=1

2[cos ( 2πuL
)
cosh

( 2πLT
L n

)− 1]
[
cosh

( 2πLT
L n

)− cos
(
2πu
L

)]2

= − π

2L

⎧
⎪⎨

⎪⎩
− 1

sin2
(

πu
L

) +
⎡

⎢⎣
θ′′
1

(
πu
L , e− πLT

L

)

θ1

(
πu
L , e− πLT

L

) −
θ′
1

(
πu
L , e− πLT

L

)2

θ1

(
πu
L , e− πLT

L

)2

⎤

⎥⎦

⎫
⎪⎬

⎪⎭
, (A.41)

yielding the first term of Eq. (2.73).
The second contribution is obtained by adapting calculation tricks used to evaluate

the autocorrelation function of the wavefunction in [3, 4]. To obtain the generating
function, it is nomore possible to transform the sums into integrals, so I shall evaluate

∑

q �=0

1

|q|
[
(ei[qx−ω(q)t] − 1)(1 + nB (q)) + (e−i[qx−ω(q)t] − 1)nB (q)

]
= F1(q, u) + F1(q, −v),

(A.42)

where

F1(q, u) =
∑

q>0

1

q

[
(eiqu − 1)

(
1 + 1

eLT q − 1

)
+ (e−iqu − 1)

1

eLT q − 1

]
. (A.43)
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Denoting a = e−i 2πL v and b = e2π
LT
L n ,

F1(q, −v) = L

2π

+∞∑

n=1

1

n

[
an − 1

1 − (b−1)n
+ a−n − 1

bn − 1

]

=
+∞∑

n=1

+∞∑

k=0

(b−k )n
1

n

[
(an − 1) + (a−n − 1)b−n

]

=
+∞∑

k=0

+∞∑

n=1

1

n

[
(ab−k )n − (b−k )n

]
+

+∞∑

k=1

+∞∑

n=1

1

n

[
(a−1b−k )n − (b−k )n

]

= lim
c→1

+∞∑

n=1

1

n
cn(an − 1) +

+∞∑

k=1

+∞∑

n=1

1

n

[
(ab−k )n − (b−k )n + (a−1b−k )n − (b−k )n

]

= T1 + T2. (A.44)

Using

+∞∑

n=1

zn

n
= − ln(1 − z), |z| < 1, (A.45)

and doing a bit of algebra, I find

−T2 =
+∞∑

k=1

[
ln(1 − ab−k) − ln(1 − b−k) + ln(1 − a−1b−k) − ln(1 − b−k)

]

= ln

[+∞∏

k=1

(1 − ab−k)(1 − a−1b−k)

(1 − b−k)2

]
= ln

{+∞∏

k=1

[
1 + sin2

(
πv
L

)

sinh2
( LT

L πk
)
]}

,

(A.46)

and the property

+∞∏

k=1

[
1 + sin2(πz)

sinh2(kπλ)

]
= θ1(πz, e−πλ)

sin(πz)θ′
1(0, e

−πλ)
(A.47)

allows to conclude after straightforward algebraic manipulations.
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B.1 Exact Mapping from the Lieb-Liniger Model onto the
Circular Plate Capacitor

In this appendix I illustrate an exact mapping from the Lieb-Liniger model of delta-
interacting bosons in 1D discussed in the main text, onto a problem of classical
physics. Historically, both have beneficiated from each other, and limit cases can be
understood in different ways according to the context.

Capacitors are emblematic systems in electrostatics lectures. On the example of
the parallel plate ideal capacitor, various concepts can be introduced or illustrated,
such as symmetries of fields or Gauss’ law, allowing to compute the capacitance in a
few lines from basic principles, under the assumption that the plates are infinite. To
go beyond this approximation, geometry must be taken into account to include edge
effects, as was realized by Clausius, Maxwell and Kirchhoff in pioneering works [5–
7]. This problem had a huge impact on science, since it stimulated the foundation of
conformal analysis by Maxwell. The fact that none of these giants managed to solve
the problem in full generality, nor anyone else a century later, hints at its tremendous
technical difficulty.

Actually, the exact capacitance of a circular coaxial plate capacitor with a free
space gap as dielectrics, as a function of the aspect ratio of the cavity α = d/R,
where d is the distance between the plates and R their radius, reads [8]

C(α,λ) = 2ε0R
∫ 1

−1
dz g(z;α,λ), (B.1)

where ε0 is the vacuum permittivity, λ = ±1 in the case of equal (respectively oppo-
site) disc charges or potentials and g is the solution of the Love equation [9, 10]

g(z;α,λ) = 1 + λα

π

∫ 1

−1
dy

g(y;α,λ)

α2 + (y − z)2
, −1 ≤ z ≤ 1. (B.2)
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This equation turns out to become the Lieb equation (3.32) when λ = 1, as first
noticed by Gaudin [11], and maps onto the super Tonks-Girardeau regime when
λ = −1. However, the relevant physical quantities are different in the two problems,
and are obtained at different steps of the resolution.

In what follows, I shall only consider the case of equally charged discs. At small
α, i.e. at small gap, the semi-circular law Eq. (3.37) yields

C(α) �α�1
πε0R

α
= ε0A

d
, (B.3)

where A is the area of a plate, as directly found in the contact approximation. On the
other hand, if the plates are separated from each other and carried up to infinity (this
case would correspond to the Tonks-Girardeau regime in the Lieb-Liniger model),
one finds g(z;+∞) = 1 and thus

C(α → +∞) = 4ε0R. (B.4)

This result can be understood as follows: at infinite gap, the two plates do not feel
each others anymore, and can be considered as two one-plate capacitors in series. The
capacitance of one plate is 8ε0R from an electrostatic treatment, and the additivity
of inverse capacitances in series then yields the awaited result.

At intermediate distances, one qualitatively expects that the capacitance is larger
than evaluated in the contact approximation, due to the effect of the fringing electric
field outside the cavity delimited by the two plates. The contact approximation shall
thus yield a lower bound for any value of α, which is in agreement with property (v)
in the main text.

The main results and conjectures in the small gap regime beyond the contact
approximation [12–16] are summarized and all encompassed in the most general
form [17]:

C(ε) = 1

8ε
+ 1

4π
log

(
1

ε

)
+ log(8π) − 1

4π
+ 1

8π2 ε log2(ε) +
+∞∑

i=1

εi
2i∑

j=0

ci j log
j (ε),

(B.5)

where traditionally in this community, 2ε = α, and C = C/(4πε0R) represents the
geometrical capacitance. It is known that c12 = 0 [17], but higher-order terms have
not been explicitly evaluated yet. It has also been shown that

C≤(ε) = 1

8ε
+ 1

4π
log

(
1

ε

)
+ log(4) − 1

2

4π
(B.6)

is a sharp lower bound [14].
At large α, i.e. for distant plates, many different techniques have been considered.

Historically, Love used the iterated kernel method. Injecting the right-hand side of

https://doi.org/10.1007/978-3-030-05285-0_3
https://doi.org/10.1007/978-3-030-05285-0_3
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Eq. (B.2) into itself and iterating, the solution is expressed as a Neumann series [9]

g(z;α,λ) = 1 +
+∞∑

n=1

λn
∫ 1

−1
dy Kn(y − z) =

+∞∑

n=0

λng I
n(z;α) (B.7)

with K1(x;α) = α
π

1
α2+x2 the kernel of Love’s equation, which is a Cauchy law

(or a Lorentzian), and Kn+1(y − z;α) = ∫ 1
−1 dx K1(y − x;α)Kn(x − z;α) is the

(n + 1)th order iterated kernel.
It follows from the positivity of the Lorentzian kernel and linearity of the integral

that for repulsive plates, g(z;α,+1) > 1. Conversely, g(z;α,−1) < 1 for attractive
plates. Approximate solutions are then obtained by truncation to a given order. One
easily finds that

g I
1(z;α) = 1

π

[
arctan

(
1 − z

α

)
+ arctan

(
1 + z

α

)]
, (B.8)

yielding

C I
1 (α) = 2ε0R

[
4 arctan

(
2

α

)
+ α log

(
α2

α2 + 4

)]
, (B.9)

where C(α,λ) = ∑+∞
n=0 λnC I

n (α).
Higher orders are cumbersome to evaluate exactly, which is a strong limitation

of this method in view of an analytical treatment. Among alternative ways to tackle
the problem, let me mention Fourier series expansion [8, 18], and those based on
orthogonal polynomials [19], that allowed to find the exact expansion of the capac-

Fig. B.1 Geometrical dimensionless capacitance C of the parallel plate capacitor as a function of
its dimensionless aspect ratio α. Results at infinite gap (dashed) and in the contact approximation
(dotted) are rather crude compared to themore sophisticated approximate expressions fromEq. (B.5)
for α < 2 and Eq. (B.10) for α > 2 (solid), when compared to numerical solution of Eqs. (B.1) and
(B.2) (dots)
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itance to order 9 in 1/α in [20] for identical plates, anticipating [21] in the case of
Lieb-Liniger model.

In Fig.B.1, I show several approximations of the geometric capacitance as a func-
tion of the aspect ratio α. In particular, based on an analytical asymptotic expansion,
I have proposed a simple approximation in the large gap regime, namely

C(α) �α	1
1

π

1

1 − 2/(πα)
− 4

3π2α3

1

[1 − 2/(πα)]2 . (B.10)

B.2 Ristivojevic’s Method of Orthogonal Polynomials

In this appendix, I detail Ristivojevic’s method, that allows to systematically find
approximate solutions to Eq. (3.32) in the strongly-interacting regime [21, 22]. First,
let me recall a few qualitative features of the density of pseudo-momenta, g(z;α).
At fixed α, g as a function of z is positive, bounded, unique and even. Moreover, it
is analytic provided α > 0.

Since g is an analytic function of z on the compact [−1, 1], at fixed α it can be
written as

g(z;α) =
+∞∑

n=0

an(α)Qn(z), (B.11)

where {an}n≥0 are unknown analytic functions and {Qn}n≥0 are polynomials of
degree n.

A convenient basis for the Qn’s is provided by the Legendre polynomials, defined
as Pn(X) = (−1)n

2nn!
(

d
dX

)n [(1 − X2)n], that form a complete orthogonal set in this
range. Furthermore, the Legendre polynomial Pn is of degree n and consists in sums
of monomials of the same parity as n, so that, since g is an even function of z,

g(z;α) =
+∞∑

n=0

a2n(α)P2n(z). (B.12)

Under the assumption that α > 2, since (y, z) ∈ [−1, 1]2, the Lorentzian kernel in
Eq. (3.32) can be expanded as:

1

π

α

α2 + (y − z)2
= 1

π

+∞∑

k=0

(−1)k

α2k+1

2k∑

j=0

(
2k

j

)
y j (−1) j z2k− j . (B.13)

Thus, the combination of Eqs. (3.32), (B.12) and (B.13) yields

https://doi.org/10.1007/978-3-030-05285-0_3
https://doi.org/10.1007/978-3-030-05285-0_3
https://doi.org/10.1007/978-3-030-05285-0_3
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+∞∑

n=0

a2n(α)

⎡

⎣P2n(z) − 1

π

+∞∑

k=0

(−1)k

α2k+1

2k∑

j=0

(
2k

j

)
(−1) j z2k− j

∫ 1

−1
dy y j P2n(y)

⎤

⎦ = 1

2π
.

(B.14)

Following [21], I introduce the notation F j
2n = ∫ 1

−1 dy y
j P2n(y).

Due to the parity, F j
2n �= 0 if and only if j is even. An additional condition is that

j ≥ n [2]. Taking it into account and renaming mute parameters (k ↔ n) yields

+∞∑

n=0

⎡

⎣a2n(α)P2n(z) − 1

π

n∑

j=0

j∑

k=0

(−1)n

α2n+1
a2k(α)

(
2n

2 j

)
z2(n− j)F2 j

2k

⎤

⎦ = 1

2π
.

(B.15)

The properties of orthogonality and normalization of Legendre polynomials,

∫ 1

−1
dz P2i (z)P2 j (z) = δi, j

2

4 j + 1
, (B.16)

allow to go further. Doing
∫ 1
−1 dz P2m(z)× Eq. (B.15) yields:

+∞∑

n=0

⎡

⎣a2n(α)δm,n
2

4m + 1
− 1

π

n∑

j=0

j∑

k=0

(−1)n

α2n+1 a2k(α)

(
2n

2 j

)
F2 j
2k F

2(n− j)
2m

⎤

⎦ = 1

2π
F0
2m .

(B.17)

or after n − m → n:

2a2m (α)

4m + 1
− 1

π

+∞∑

n=0

n∑

j=0

j∑

k=0

(−1)n+m

α2(n+m)+1
a2k (α)

(
2(n + m)

2 j

)
F2 j
2k F2(n+m− j)

2m = 1

2π
F0
0 δm,0.

(B.18)

Then, from Eq.7.231.1 of [2] and after a few lines of algebra,

F2l
2m = 22m+1(2l)!(l + m)!

(2l + 2m + 1)!(l − m)! . (B.19)

Inserting Eq. (B.19) into Eq. (B.18) yields after a few simplifications:

2a2m(α)

4m + 1
− 1

π

+∞∑

n=0

n∑

j=0

j∑

k=0

(−1)n+m

α2(n+m)+1
Cm,n, j,ka2k(α) = 1

π
δm,0 (B.20)
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where

Cm,n, j,k = 22k+1( j + k)!
(2 j + 2k + 1)!( j − k)!

22m+1(n + 2m − j)!(2n + 2m)!
(2n + 4m − 2 j + 1)!(n − j)! . (B.21)

To obtain a finite set of equations, I cut off the series in Eq. (B.12) at an integer value
M ≥ 0. The infinite set of equations (B.20) truncated at order M can then be recast
into a matrix form:

[
A
]

⎡

⎢⎢⎢⎣

a0
a2
...

a2M

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎣

1
π
0
...

0

⎤

⎥⎥⎥⎦ , (B.22)

where A is a (M + 1) × (M + 1) squarematrix, inverted to find the set of coefficients
{a2n(α)}0≤n≤M . Actually, one only needs to compute (A−1)i1, ∀i ∈ {1, . . . , M + 1},
and combine to Eq. (B.12) to obtain the final result at order M . For full consistency
with higher orders, one the result shall be expanded in 1/α and truncated at order
2M + 2, and order 2M in z respectively.

B.3 A General Method to Solve the Lieb Equation

Contrary to Ristivojevic’s method presented in the previous appendix, the method
explained in this appendix to solve the Lieb Eq. (3.32) works at arbitrary coupling,
as it does not rely on a strong-coupling expansion of the kernel. However, it also
starts with a series expansion of the density of pseudo-momenta,

g(z;α) =
+∞∑

n=0

c2n(α)z2n, (B.23)

injected in the integral equation (3.32) to transform the latter into an infinite set of
algebraic equations for the coefficients c2n . To do so, the series expansion of the
integral

In(α) =
∫ 1

−1
dy

y2n

α2 + (y − z)2
(B.24)

must be known explicitly. In(α) is expressed in terms of hypergeometric functions
in [23]. After a series of algebraic transformations detailed in Ref. [22], this integral
reads

https://doi.org/10.1007/978-3-030-05285-0_3
https://doi.org/10.1007/978-3-030-05285-0_3
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In(α) = − 1

α

I[ 2n−1
2 ]∑

k=0

(
2n

2k + 1

)
(−1)kα2k+1z2(n−k)−1argth

(
2z

1 + z2 + α2

)

+ 1

α

[
arctan

(
1 + z

α

)
+ arctan

(
1 − z

α

)] n∑

k=0

(−1)k
(
2n

2k

)
(−1)kα2k z2n−2k

+2
n−1∑

m=0

m∑

k=0

(
2m + 1

2k + 1

)
1

2n − 2m − 1
(−1)kα2k z2(m−k), (B.25)

then recast into the form

In(α) =
+∞∑

i=0

d2i,n(α)z2i (B.26)

using properties of the Taylor expansions of the functions involved. This tranforms
the Lieb equation into

+∞∑

n=0

c2n(α)

[
z2n − α

π

+∞∑

i=0

d2i,n(α)z2i
]

= 1

2π
. (B.27)

To finish with, the series is truncated to order M in a self-consistent way, to obtain
the following set of M linear equations:

c2n;M(α) − α

π

M∑

i=0

d2n,i (α)c2i;M(α) = δn,0
1

2π
, (B.28)

where the unknowns are the coefficients c2i;M(α). The solution yields approximate
expressions for a truncated polynomial expansion of g in z. Since the method is
not perturbative in α, each coefficient converges faster to its exact value than with
the orthogonal polynomial method. I have calculated these coefficients up to order
M = 25.

B.4 Other Approaches to Local Correlation Functions

In this appendix, I analyze alternative approaches to obtain the local correlation
functions of a δ-interacting 1D Bose gas. They rely on mappings from special limits
of other models onto the Lieb-Liniger model. The original models are the sinh-
Gordon quantum field theory in a non-relativistic limit, the XXZ spin chain in a
continuum limit, and q-bosons when q → 1.

In the case of the sinh-Gordon model, a special non-relativistic, weak-coupling
limit, that keeps the product of the speed of light and coupling constant unchanged,
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maps its S-matrix onto the Lieb-Liniger one, leading to an exact equivalence [24].
In particular, their correlation functions are formally identical [25], with a subtle
difference: they refer to the ground state for the Lieb-Liniger model and to the
vacuum in the case of the sinh-Gordon model, where the form factors are computed
within the Le Clair-Mussardo formalism [26]. Expressions obtained perturbatively
in previous works have been resummed non-perturbatively in [27], yielding the exact
second- and third-order local correlation functions in terms of solutions of integral
equations.

The strength of this approach is that the expressions thereby obtained are also
valid at finite temperature and in out-of-equilibrium situations. Another advantage
of this method over the canonical Bethe Ansatz treatment is that no derivative is
involved, making numerical methods less cumbersome and more accurate. On the
other hand, within this method one needs to solve several integral equations, whose
number increases with the order of the correlation function, as opposed to one in the
Bethe Ansatz treatment.

The Le Clair-Mussardo formalism has also been extended to the non-relativistic
limit, that can thus be addressed directly in this formalism, without invoking the
original sinh-Gordon model anymore [28]. In the same reference is also shown that
the LeClair-Mussardo formalism can be derived from algebraic Bethe Ansatz.

Then, additional results have been obtained, based on the exact mapping from
a special continuum limit of the XXZ spin chain onto the Lieb-Liniger model [29,
30]. In [31], multiple integral formulae for local correlation functions have been
obtained, that encompass the previous results from the sinh-Gordon model approach
for g2 and g3, and provide the only known expression for g4 to date. This formalism
yields higher-order correlations as well, but no systematic method to construct them
has been provided yet.
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C.1 Around the Notion of Dynamical Structure Factor

This appendix,mostly based on [32], givesmore details about the notion of dynamical
structure factor.

A common method to carry out measurements on a physical system is to submit
it to an external force and to observe the way it reacts. For the result of such an
experiment to adequately reflect the properties of the system, the perturbation due to
the applied force must be sufficiently weak. In this framework, three distinct types
of measurement can be carried out: actual response measurements, susceptibility
measurements that consist in determining the response of a system to a harmonic
force, and relaxation measurements in which, after having removed a force that had
been applied for a very long time, one studies the return to equilibrium. The results
of these three types of measurements are respectively expressed in terms of response
functions, generalized susceptibilities and relaxation functions. In the linear range,
these quantities depend solely on the properties of the unperturbed system, and each
of them is related to the others.

The object of linear response theory is to allow, for any specific problem, to deter-
mine response functions, generalized susceptibilities, and relaxation functions. In
the linear range, all these quantities can be expressed through equilibrium corre-
lation funtions of the relevant dynamical variables of the unperturbed system. The
corresponding expressions constitute the Kubo formulas.

Let us consider an inelastic scattering process in the course of which, under the
effect of an interaction with radiation, a system at equilibrium undergoes a transition
from an initial state |i〉 to a final state | f 〉. The corresponding energy varies from εi
to ε f , whereas the radiation energy varies from Ei to E f . Total energy conservation
implies that Ei + εi = E f + ε f . The energy lost by the radiation is denoted by �ω =
Ei − E f = ε f − εi , so that absorption corresponds to ω > 0 and emission to ω < 0.
I associate an operator A(r) to the system-radiation interaction. For instance, in the
case of scattering of light by a fluid in equilibrium, the radiation is scattered through
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a density fluctuation of the fluid, and therefore the operator A(r) is proportional to
the local density fluctuation δn(r) = n(r) − 〈n〉.

An incident plane-wave initial state |ki 〉 is scattered to a final state which, in the
framework of the Born approximation for scattering, is considered as a plane-wave
state |k f 〉. The matrix element of this interaction operator between the two states
is 〈k f |A(r)|ki 〉 = ∫

e−ik f r A(r)eiki r dr = A(−q), where q = ki − k f . At lowest per-
turbation order, the probability per unit time of the process (|k〉, |i〉) → (|k f 〉, | f 〉)
to occur is given by the Fermi golden rule, that reads

W(k f , f ),(ki ,i) = 2π

�
|〈 f |A(−q)|i〉|2δ[�ω − (ε f − εi )]. (C.1)

The total probability per unit time of the process |ki 〉 → |k f 〉 is obtained byweighting
W(k f , f ),(ki ,i) by the occupation probability pi of the initial state of the system at
equilibrium, and by summing over all initial and final states:

W(k f , f ),(ki ,i) = 2π

�

∑

i, f

pi |〈 f |A(−q)|i〉|2δ[�ω − (ε f − εi )]. (C.2)

The dynamical structure factor is then defined as S(q,ω) = �
2Wki ,k f , where A(r) =

δn(r). This yields the Lehmann representation of the dynamical structure factor, used
for instance in the ABACUS code.

Introducing the Fourier representation of the delta function, S(q,ω) can be
expressed as an autocorrelation function. Since δn(r) is hermitian, 〈 f |δn(−q)|i〉∗ =
〈i |δn(q)| f 〉, so that

S(q,ω) =
∫ +∞

−∞
dt
∑

i, f

pi 〈i |eiεi t/�δn(q)e−iε f t/�| f 〉〈 f |δn(−q)|i〉eiωt

=
∫ +∞

−∞
dt eiωt 〈δn(q, t)δn(−q, 0)〉

= V
∫

dr e−iqr
∫ +∞

−∞
dt eiωtδn(r, t)δn(0, 0). (C.3)

C.2 Dynamical Structure Factor of the Tonks-Girardeau
Gas at Zero Temperature

In this appendix, I shall derive Eq. (4.17). This derivation is quite elementary, but is
a good occasion to make a few comments. According to Eq. (4.16), the dynamical
structure factor is the Fourier transform of the autocorrelation function of density
fluctuations. For the homogeneous gas considered here, themean value of the density
fluctuations is null, thus

https://doi.org/10.1007/978-3-030-05285-0_4
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〈δn(x, t)δn(x ′, t ′)〉 = 〈n(x, t)n(x ′, t ′)〉 − n20. (C.4)

The time-dependent density-density correlation of the Tonks-Girardeau gas has been
evaluated in Chap.2. Brute-force integration of the latter to obtain the dynamical
structure factor is quite tedious, I am not even aware of any work where this cal-
culation has been done, nor did I manage to perform it. However, making a few
transformations before doing the integration considerably simplifies the problem.
According to theBose-Fermimapping, themodel canbemappedonto afictitious one-
dimensional gas of noninteracting spinless fermions. The fermionic field is expressed
in second quantization in terms of fermionic annihilation operators ck as

ψ(x) = 1√
L

∑

k

eikxck, (C.5)

whose time-dependence in the Schrödinger picture is obtained as

ψ(x, t) = eiHt/�ψ(x)e−i Ht/�, (C.6)

where the Hamiltonian is

H =
∑

k

�
2k2

2m
c†kck =

∑

k

�ωkc
†
kck . (C.7)

Then, the equation of motion or the Baker-Campbell-Hausdorff formula yields

ψ(x, t) = 1√
L

∑

k

ei(kx−ωk t)ck . (C.8)

Since n(x, t) = ψ†(x, t)ψ(x, t), Wick’s theorem, that applies to noninteracting
fermions, yields

〈n(x, t)n(0, 0)〉 = 〈ψ†(x, t)ψ(0, 0)〉〈ψ(x, t)ψ†(0, 0)〉
+〈ψ†(x, t)ψ(x, t)〉〈ψ†(0, 0)ψ(0, 0)〉
−〈ψ†(x, t)ψ†(0, 0)〉〈ψ(0, 0)ψ(x, t)〉, (C.9)

and the last term is null. Then, using the expansion of the fermionic field over
fermionic operators, the property 〈c†kck〉 = nF (k)δk,k ′ , fermionic commutation rela-
tions, �(−x) = 1 − �(x) and specialization to T = 0 yields

STG(q,ω) =
∫ +∞

−∞
dt eiωt

∫ +∞

−∞
dx e−iqx 1

L2

∑

k,k′
e−i[(k−k′)x−(ωk−ωk′ )t]�(kF − |k|)�(|k′| − kF )

= 1

L2

∑

k,k′
�(kF − |k|)�(|k′| − kF )2πδ(k′ − k − q)2πδ[ω − (ωk′ − ωk)]. (C.10)
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In the thermodynamic limit, where the sums become integrals, the dynamical struc-
ture factor of the Tonks-Girardeau gas reads

STG(q,ω) =
∫

dk �(kF − |k|)�(|k + q| − kF )δ[ω − (ωk+q − ωk)]. (C.11)

In this equation, the delta function is the formal description of energy conservation
during the scattering process, which is elastic. The Heaviside distributions mean that
the scattering process takes a particle out of the Fermi sea, creating a particle-hole
pair.

Actually,

ωk+q − ωk = �

2m
(q2 + 2qk), (C.12)

and the problem can be split into two cases.
If q ≥ 2kF , then k ∈ [−kF , kF ] and the envelopes are �

2m (q2 − 2kFq) = �

2m |q2 −
2kFq| = ω−, and �

2m (q2 + 2kFq) = ω+.
If 0 ≤ q ≤ 2kF , k ∈ [kF − q, kF ], and the envelopes are �

2m [q2 + 2q(kF − q)] =
�

2m (2qkF − q2) = �

2m |q2 − 2kFq| = ω− and �

2m (q2 + 2qkF ) = ω+.
I evaluate the dynamical structure factor in the case q ≥ 2kF as

STG(q,ω) =
∫ kF

−kF

dk δ

[
ω − �

2m
(q2 + 2qk)

]
. (C.13)

Using the property of the Dirac distribution,

δ[ f (k)] =
∑

k0| f (k0)=0

1

| f ′(k0)|δ(k − k0), (C.14)

by identification here f ′(k) = −�q
m and k0 = 1

2q ( 2mω
�

− q2).

It implies that 1
2q ( 2mω

�
− q2) ∈ [−kF , kF ], so ω ∈ [

ω−,ω+
]
, STG(q,ω) = m

�|q| if
and only if ω ∈ [

ω−,ω+
]
, STG(q,ω) = 0 otherwise. The same conclusion holds if

q ∈ [0, 2kF ], ending the derivation.

C.3 Dynamical Structure Factor of a Tomonaga-Luttinger
Liquid in the Thermodynamic Limit

In this appendix, I give a quite detailed derivationof the dynamical structure factor of a
1D Bose gas, Eq. (4.39), as obtained from the Tomonaga-Luttinger liquid formalism.
My main motivation is that, although the result is well known, details of calculations
are scarce in the literature, and some technical aspects are relatively tricky. For

https://doi.org/10.1007/978-3-030-05285-0_4
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clarity, I shall split the derivation into two parts, and evaluate separately the two
main contributions, S0 and S1.

C.3.1 First Contribution: The Phonon-Like Spectrum Close
to the Origin in Energy-Momentum Space

First, I focus on the term denoted by S0 in Eq. (4.39), associated to the linearized
spectrum at low momentum and energy. According to Eq. (2.44), this contribution
stems from the terms that diverge on the ‘light-cone’, whose form factor is known.
Their Fourier transform is quite easy, the only subtlety is the need of an additional
infinitesimal imaginary part iε to ensure convergence of the integral. Using the light-
cone coordinate u = x − vs t , I find:

F.T .

[
1

(x − vs t + iε)2

]
=
∫ +∞

−∞
dt eiωt

∫ +∞

−∞
dx e−iqx 1

(x − vs t + iε)2

=
∫ +∞

−∞
dt ei(ω−qvs )t

∫ +∞

−∞
du

e−iqu

(u + iε)2
= 2πδ(ω − qvs)

∫ +∞

−∞
du

e−iqu

(u + iε)2
.

(C.15)

Then, integration by parts and a classical application of the residue theorem on two
semi-circular contours in the upper and lower half of the complex plane yield

∫ +∞

−∞
du

e−iqu

(u + iε)2
= −iq

∫ +∞

−∞
du

e−iqu

u + iε
= −2π�(q)q. (C.16)

In the end,

F.T .

[
1

(x ± vs t + iε)2

]
= −4π2|q|δ(ω − |q|vs)�(∓q), (C.17)

whence I conclude that

S0(q,ω) = − K

4π2
(−4π2|q|)δ(ω − ω(q)) = K |q|δ[ω − ω(q)], (C.18)

with ω(q) = |q|vs .
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https://doi.org/10.1007/978-3-030-05285-0_2


186 Appendix C: Complements to Chapter 4

C.3.2 Second Contribution to the Dynamical Structure
Factor: The Umklapp Region

The most interesting contribution to the dynamical structure factor is denoted by S1
in Eq. (4.39), and corresponds to the Fourier transform of the main contribution to
the density-density correlation in Eq. (2.44), whose form factor is not trivial.

The Fourier transform to evaluate here is

I (Km2) =
∫ +∞

−∞
dt eiωt

∫ +∞

−∞
dx e−iqx cos(2mkF x) [(x − vs t + iε)(x + vs t − iε)]−Km2

.

(C.19)
A natural change of coordinates is provided by the light-cone ones, u = x − vs t and
v = x + vs t . The Jacobian of the transformation is

∥∥∥∥∥

∂x
∂u

∂x
∂v

∂t
∂u

∂t
∂v

∥∥∥∥∥ =
∥∥∥∥∥

1
2

1
2

− 1
2vs

1
2vs

∥∥∥∥∥ = 1

2vs
.

After a rescaling and tranformation of the cosine into complex exponentials,

I (Km2) = 2−2Km2

vs

∫ +∞

−∞
du

∫ +∞

−∞
dv

(
v − iε

2

)−Km2 (
u + iε

2

)−Km2

[
e
iv
(

ω
vs

−q+2mkF
)

e
−iu

(
ω
vs

+q−2mkF
)

+ e
iv
(

ω
vs

−q−2mkF
)

e
−iu

(
ω
vs

+q+2mkF
)]

. (C.20)

This in turn can be expressed in terms of

J (q;α) =
∫ +∞

−∞
dx eixq

(
x − iε

2

)−α

, (C.21)

where α > 0. Once again, complex analysis is a natural framework to evaluate this
integral. The difficulty lies in the fact that, since α is not necessarily integer, the
power law represents the exponential of a logarithm, which is multiply defined in
the complex plane. To circumvent this problem, a branch cut is introduced, and the
integral is not evaluated on a semi-circular contour, but on a more complicated one,
sketched in the left panel of Fig. C.1.

Applying the residue theorem to this contour, I find

0 =
∫ R

−R
dx eixq

(
x − iε

2

)−α

+
∫

semi−circle
dz eizq

(
z − iε

2

)−α

+
∫

branchcut
dz eizq

(
z − iε

2

)−α

,

(C.22)
and assuming q > 0,

∫
semi−circle dz e

iqz
(
z − iε

2

)−α →R→+∞ 0, while the first con-
tribution to the right-hand side coincides with the integral J .

To finish the calculation, I still need to evaluate the integral over the branch cut
contour. To do so, I use the property [2]

https://doi.org/10.1007/978-3-030-05285-0_4
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Fig. C.1 The left panel represents the integration contour used in Eq. (C.22), where the black line
coincide with the x-axis, the branch-cut with the y-axis, and the pole (cross) is at iε/2. It contains
the Hänkel contour defined in the right panel, rotated by π/2 and followed backward

1

�(z)
= i

2π

∫

H
dt (−t)−ze−t , (C.23)

where �(z) is the analytic continuation of the Euler Gamma function in the complex
plane and H is the Hänkel contour, sketched in the right panel of Fig. C.1. A rotation
of −π/2 maps the branch cut contour of the left panel onto the Hänkel one followed
backward, that I will denote by BH . This transformation yields, after a few algebraic
manipulations,

J (q;α) = −i
∫

BH
dz eqz

(
−i z − iε

2

)−α

= iqα−1(−i)−αe− εq
2

∫

H
dz e−z(−z)−α

= iα2πqα−1e− εq
2

�(α)
�(q). (C.24)

Still according to [2],

∫ +∞

−∞
dx (β − i x)−νe−i px = 2π pν−1e−β p

�(ν)
�(p),R(ν) > 0,R(β) > 0, (C.25)

that yields the same result even more directly. It is then only a straightforward matter
of algebra and combinations to finish the derivation.



188 Appendix C: Complements to Chapter 4

C.4 Dynamical Structure Factor of a Tomonaga-Luttinger
Liquid in the Thermodynamic Limit at Finite
Temperature

In this appendix, I give a quite detailed derivation of Eqs. (4.42) and (4.43), split into
several parts to gain clarity.

C.4.1 First Contribution to the Dynamical Structure Factor
of a Tomonaga-Luttinger Liquid at Finite Temperature

To obtain the dynamical structure factor at finite temperature, I use the same trick as
before, splitting it artifically as the sum of the zero temperature result and a purely
thermal term denoted ST , which is more convenient to evaluate. Hence,

ST (q,ω) = ST>0(q,ω) − ST=0(q,ω) (C.26)

in the thermodynamic limit, and find after straightforward algebra, I find that the
lowest-order contribution reads

ST0 (q,ω) = F.T .

{
K

4π2

∫

q �=0
dq|q| [ei(qx−ω(q)t) + e−i(qx−ω(q)t)

]
nB(q)

}

= K

LT
{δ [ω + ω(q)] + δ [ω − ω(q)]} β�ω(q)

eβ�ω(q) − 1
. (C.27)

Eventually,

S0,T>0(q,ω) = ST0 (q,ω) + S0,T=0(q,ω)

= K |q|
eβ�ω(q) − 1

{δ[ω + ω(q)] + δ[ω − ω(q)]} + K |q|δ[ω − ω(q)]

= K |q|
1 − e−β�ω(q)

{
δ[ω − ω(q)] + e−β�ωδ[ω + ω(q)]} . (C.28)

C.4.2 Second Contribution to the Dynamical Structure
Factor at Finite Temperature

This part of the calculation is, by far, the most difficult. Straightforward algebraic
transformations and rescalings show that the integral one needs to evaluate in this
situation is

∫ +∞
−∞ du e−iau sinh−K (u). I have done it stepwise, using the property

https://doi.org/10.1007/978-3-030-05285-0_4
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�

(
− yz + xi

2y

)
�(1 + z) = (2i)z+1y �

(
1 + yz − xi

2y

)∫ +∞

0
dt e−t x sinz(t y),

(C.29)
valid if R(yi) > 0 and R(x − zyi) > 0, which is misprinted in [2]. A few more
algebraicmanipulations, such as sinh(x) = i sin(−i x) and splitting the integral, yield
the more practical property

∫ +∞

0
du e−iau sinh−K (u) = 2K−1�

(
K+ia
2

)
�(1 − K )

�
(
1 + ia−K

2

) . (C.30)

Another tricky point concerns the branch cut. Prefactors written as (−1)−K are an
abuse of notation, and should be interpreted either as eiKπ or as e−i Kπ , to obtain the
intermediate expression

S1,T>0(q,ω) = 1

2vs
(LT kF )2

(
ε

LT

)2K

(2π)2(K−2)[�(1 − K )]2
⎡

⎣
�
(
K
2 + i β�

4π [ω + (q − 2kF )vs ]
)

�
(
1 − K

2 + i β�

4π [ω + (q − 2kF )vs ]
) + e−i Kπ

�
(
K
2 − i β�

4π [ω + (q − 2kF )vs ]
)

�
(
1 − K

2 − i β�

4π [ω + (q − 2kF )vs ]
)

⎤

⎦

⎡

⎣
�
(
K
2 − i β�

4π [ω − (q − 2kF )vs ]
)

�
(
1 − K

2 − i β�

4π [ω − (q − 2kF )vs ]
) + eiKπ

�
(
K
2 + i β�

4π [ω − (q − 2kF )vs ]
)

�
(
1 − K

2 + i β�

4π [ω − (q − 2kF )vs ]
)

⎤

⎦

(C.31)

Using the property �(z)�(1 − z) = π
sin(πz) , after straightforward algebra I finally

obtain

S1,T>0(q,ω) = 1

2vs

(
LT

2πε

)2(1−K )

(n0ε)
2e

β�ω
2

B

{
K

2
+ i

β�

4π
[ω + (q − 2kF )vs], K

2
− i

β�

4π
[ω + (q − 2kF )vs]

}

B

{
K

2
+ i

β�

4π
[ω − (q − 2kF )vs], K

2
− i

β�

4π
[ω − (q − 2kF )vs]

}
, (C.32)

yielding Eq. (4.43), and the expression of the coefficient C(K , T ) in terms of the
small-distance cut-off.

To check its consistency with the T = 0 case, I used the property of the Beta
function B(x, y) = �(x)�(y)

�(x+y) , as well as the properties of the Gamma function,�(z) =
�(z) and [2] |�(x + iy)| �y→+∞

√
2π|y|x− 1

2 e− π
2 |y| to write

S1,T (q, ω) ∼T→0 B1(K )

∣∣∣ω2 − (q − 2kF )2v2s

∣∣∣
K−1

e
−π

∣∣∣ β�

4π [ω+(q−2kF )vs ]
∣∣∣
e
−π

∣∣∣ β�

4π [ω−(q−2kF )vs ]
∣∣∣
,

(C.33)
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where

B1(K ) = 2(n0ε)2K

(2n0vs)2(K−1)

π2

�(K )2

1

vs
, (C.34)

and combined it with Eq. (A.21) to obtain Eq. (4.40). In Eq. (C.33), the exponentials
vanish, unless ω ≥ |q − 2kF |vs . Then they equal one, and I recover Eq. (4.39) as
expected.

The special case K = 1 is also worth studying on its own as an additional indirect
check of Eq. (4.43). Assuming q > 0,

S1,K=1,T>0(q, ω)= (kF ε)2

L2T

∫ +∞
−∞

dt
∫ +∞
−∞

dx ei(ωt−qx) e2ikF x

sinh
[

π
LT

(x − vs t)
]
sinh

[
π
LT

(x + vs t)
]

(C.35)

so that, after a few algebraic transformations, it boils down to evaluating the integral

G(a) =
∫ +∞

−∞
du

e−iau

sinh(u)
. (C.36)

This can be done using the property [2]

P.P.

∫ +∞

−∞
dx

e−μx

1 − e−x
= πcotan(πμ), 0 < �(μ) < 1, (C.37)

and complex integration, yielding

G(a) = P.P.

∫ +∞

−∞
du

e− ia+1
2 u

1 − e−u
+ 1

2
Residue(0) = iπ

[
1 + tanh

(aπ

2

)]
.

(C.38)

Rewriting

[1 + tanh(a)][1 + tanh(b)] = ea+b

cosh(a) cosh(b)
, (C.39)

in the end

S1,K=1,T>0(q,ω) = (kF ε)2

2vs

e
β�ω
2

cosh
{
LT
4vs

[ω + (q − 2kF )vs ]
}
cosh

{
LT
4vs

[ω − (q − 2kF )vs ]
} ,

(C.40)

consistent with the case T = 0, and with the general case at K = 1.
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C.5 Drag Force Due to a Delta-Barrier in the
Tomonaga-Luttinger Liquid Framework

This appendix gives two derivations of the second line of Eq. (4.48), starting from
its first line and Eq. (4.39), whose combination yields

F = U 2
b

2π�

∫ +∞

0
dq qS(q, qv)

= U 2
b B1(K )

2π�

∫ +∞

0
dq q

[
(qv)2 − v2

s (q − 2kF )2
]K−1

�(qv − vs |q − 2kF |)

= U 2
b B1(K )

2π�
(v2

s − v2)K−1
∫ q+

q−
dq q (q − q−)K−1(q+ − q)K−1, (C.41)

where I have defined

q± = 2kFvs

vs ∓ v
. (C.42)

Then, introducing the change of variable q = q−q−
q+−q− , up to a global coefficient the

integration boils down to

F ∝
∫ 1

0
dq qK−1(1 − q)K−1

(
1 + q+ − q−

q−
q

)
(C.43)

with q+−q−
q− = 2v

vs−v
. This integral can be evaluated using the property [2]

B(b, c − b) 2F1(a, b; c; z) =
∫ 1

0
dx xb−1(1 − x)c−b−1(1 − zx)−a, |z| < 1, �(c) > �(b),

(C.44)
(thus valid for v/vs < 1/3) where 2F1 is the hypergeometric function defined as
2F1(a, b; c; z) = ∑+∞

n=0
(a)n(b)n

(c)n
zn

n! and (q)n = q(q + 1) . . . (q + n − 1) is the
Pochhammer symbol. I also use the properties of the Beta and Gamma functions,
B(X,Y ) = �(X)�(Y )

�(X+Y )
and �(2z) = 22z−1√

π
�(z)�(z + 1/2), to rewrite

B(K , K ) =
√

π�(K )

22K−1�(K + 1/2)
, (C.45)

and obtain Eq. (4.48) after putting back all prefactors.
Another derivation starts back from the last line of Eq. (C.41), which is split into

two parts as
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∫ q+

q−
dq q(q − q−)K−1(q+ − q)K−1

=
∫ q+

q−
dq (q − q−)K (q+ − q)K−1 + q−

∫ q+

q−
dq (q − q−)K−1(q+ − q)K−1.

(C.46)

Then, the Beta function naturally appears through the property [2]

∫ b

a
dx (x − a)μ−1(b − x)ν−1 = (b − a)μ+ν−1B(μ, ν), b > a, �(μ) > 0, �(ν) > 0,

(C.47)
whence

F(v)

(v2s − v2)K−1U2
b B1(K )/(2π�)

= (q+ − q−)2K B(K + 1, K ) + q−(q+ − q−)2K−1B(K , K )

= (2kF )2K
(2vvs )

2K

(v2s − v2)2K

�(K + 1)�(K )

�(2K + 1)
+ 2kFvs (2kF )2K−1

vs + v

(2vvs )
2K−1

(v2s − v2)2K−1

�(K )2

�(2K )
, (C.48)

and the property �(K + 1) = K�(K ) combined to algebraic manipulations yields
Eq. (4.48).
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