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Supervisor’s Foreword

Gravitational waves are deformations of the space-time metric that propagate at
speed of light and were derived by Albert Einstein from the General Relativity in
1916. The first direct detection was performed by the two LIGO interferometers on
September 14, 2015, almost one century later. The most powerful objects producing
this phenomenon are relativistic compact objects as black holes and neutron stars.
When propagating these waves induces a differential deformation (stretch in one
direction and compress in the orthogonal direction) of the space–time metric that is
very rigid and even with the most energetic astrophysical event, the expected
deformation is very small (relative displacement of 10�21) and very sensitive
instruments have been built. The first tentative to detect them was performed by
Joseph Weber in 1968 but it is only 50 years later that a first detection was
performed by the last generation of detectors using a design done by Rainer Weiss
in the seventies.

This design is described in the first part of Julia Casanueva work with emphasis
on the Advanced Virgo instrument located near Pisa in Italy and its recent evolu-
tions. Gravitational wave detectors are using the state of the art in mechanics,
optics, and control systems. The optical scheme is based on Michelson interfer-
ometer with kilometric Fabry–Perot cavities as arms and using very stable
high-power laser source. The different mirrors are pure silica objects with a
diameter of 30 cm, weight 40 kg each, and defect on their surface is below the nm
scale. As the detector needs to sense the space metric, it needs to be decoupled from
external disturbances (like seismic motion, human activities). To obtain this result,
all the optics constituting the interferometers are suspended. When reaching the
design sensitivity, the limiting noise is thermal displacements of the optics and
quantum error measurement.

As all the optics are suspended, they need to be actively controlled to keep the
different optical cavities in resonance and achieve the desired sensitivity. Feedback
design taking into account the different elements in the loops and possible inter-
action is necessary while minimizing contribution to the detector noise.
Understanding the behavior of the system at the different steps of controls and the
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selection of error signals imply to have a very good understanding of the complex
response of this instrument. This is the heart of Julia Casanueva research work.

In the second part of her thesis, Julia presents all the steps and problems
encountered to bring the Virgo interferometer from free swinging mirrors to a
system with the four optical cavities controlled both in longitudinal and angular
motions. To achieve this work, new technics and comparisons with simulations
were performed. The control done on the interferometer allows reaching a control
with a precision of 10�21 m and 0.1 nrad. Most of the work described here was done
in a year and half, while it took a few years to achieve the same level of precision
with the previous generation of instrument. With a third detector in the gravitational
wave detector network, the error region for the events detected will be reduced by a
least and order of magnitude and allow to have efficient follow-up by electro-
magnetic telescope. During August 2017, the Virgo contribution in the network was
very successful. The interferometer achieved a duty cycle of 85% on this period,
and Virgo was able to contribute to new detections in particular the first gravita-
tional wave source including neutron stars and with an electromagnetic counterpart,
GW170817.

Orsay, France
June 2018

Prof. Nicolas Leroy
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Abstract

The first detection of a gravitational wave (GW) was done on September 14th,
2015, by the LIGO-Virgo Collaboration with the two LIGO detectors. It was
emitted by the merger of a binary black hole, providing the first direct proof of the
existence of black holes. Advanced Virgo is the upgraded version of the Virgo
interferometer, and it will join the LIGO detectors in the next months.

The passage of a GW on Earth induces a change on the distance between test
masses (experiencing only the gravitational interaction) in a differential way. This
distance variation is proportional to the amplitude of the GW; however, the largest
displacement observable on Earth will be of the order of 10�19 m/sqrt(Hz). Taking
this in account, a Michelson interferometer is the ideal instrument to detect this
differential effect. GWs detectors will use suspended mirrors to behave as test
masses. The passage of a GW will cause a change on the distance between the
mirrors that will spoil the interference condition, allowing some light to leak to the
detection photodiode. However, a simple Michelson interferometer does not pro-
vide enough sensitivity. For this reason, the first generation of detectors added
Fabry–Perot cavities in the arms, in order to increase the optical path. A second
change was the addition of an extra mirror in order to recycle the light that comes
back toward the laser, to increase the effective power, creating a new cavity also
known as power recycling cavity (PRC). Its effect is more important when the
Michelson is tuned in an optimal way in a dark fringe.

All the mirrors of the detector are affected by the seismic noise, and so their
distance is continuously changing. It is necessary to control the longitudinal and
angular position of the cavities in order to keep them at resonance. During my
thesis, I have studied the control of Advanced Virgo using simulation and during
the commissioning itself. First of all, I have simulated the control strategy used in
Virgo using modal simulations. The aim was to check if the same strategy could be
applied to Advanced Virgo or if it needs adaptation. In Advanced Virgo, the Fabry–
Perot cavities have a higher finesse, which arises new dynamical problems and
requires a special control strategy that I have modified to match the commissioning
needs. Regarding the PRC, we have studied the impact of its stability on the
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performance of the interferometer. As it is very close from the instability region, the
electrical field inside will be very sensitive to alignment and matching of the laser
beam. We have checked using simulations its impact on the longitudinal controls,
which can become unstable, and a solution has been validated. Then, I have used
this information during the commissioning of the Advanced Virgo detector. In this
thesis, the details of the commissioning of the longitudinal and angular control
of the interferometer will be presented. It includes the frequency stabilization,
which has a key role in the control of the interferometer, since it is the dominant
noise.

viii Abstract
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Chapter 1
Introduction

1.1 Introduction

Albert Einstein predicted the existence of Gravitational Waves (GWs) in 1916 as a
consequence of General Relativity. They are perturbations of the metric caused by an
acceleration ofmass, which propagate at the speed of light. They interact veryweakly
withmatter, and can provide information on phenomena occurring in the densest parts
of astrophysical events not accesible by the EM spectrum, offering a new way to
observe the Universe. The most powerful GWs are emitted by compact objects such
as Neutron Stars and Black Holes and other cataclysmic events such as supernova
explosions [1]. Gravitational Waves will allow us to improve our knowledge of these
objects and to test General Relativity.

Since predicted, a lot of attempts have been made in order to detect them. The
first generation of ground-based interferometric gravitational wave detectors, LIGO
(in the United States) and Virgo (In Italy), stopped the data taking in 2011 without
making any detection. A series of upgrades were planned for the second generation
of detectors in order to improve the sensitivity by an order of magnitude with respect
to the one of Enhanced LIGO and Virgo+.

The first detection of a Gravitational Wave, coming from the merger of two Black
Holes, was made by the Advanced LIGO detectors in 2015 September 14th. Since
then, several other events of this kind has been detected, proving that it is possible
to make astrophysical observations using ground-based detectors. The 1st of August
of 2017, Advanced Virgo detector joined the Advanced LIGO ones in the Scientific
Run O2, the first joint data taking of the full network of second generation detectors.
The presence of the three detectors allows a better reconstruction of the parameters
of the source, including localization. The latter is key for the so called Electromag-
netic follow-up, which is the study of the emissions on the EM spectrum of the
corresponding event, done by a network of observatories around the world. It was
particularly relevant when, the 17th of August of 2017, the merger of a Binary of
Neutron Stars was detected for the first time [2].

© Springer International Publishing AG, part of Springer Nature 2018
J. Casanueva Diaz, Control of the Gravitational Wave Interferometric Detector
Advanced Virgo, Springer Theses, https://doi.org/10.1007/978-3-319-96014-2_1
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2 1 Introduction

The upgrades planned for Advanced Virgo detector strongly affected its function-
ing in many aspects, requiring a commissioning period to restore its nominal state.
The commissioning period started on May 2016 and lasted approximately one year,
until joining the Scientific Run O2. In particular, the work presented in this thesis
focuses on the implementation of the longitudinal and angular controls necessary
to bring Advanced Virgo to its working point in a repetitive and robust way and to
keep it controlled with the highest duty cycle possible. This required not only com-
missioning work but also simulations to provide a better understanding of the new
challenges. In this document I will present the simulation work that I have developed
and analysed, mainly focused on evaluating the impact of the detector upgrades on
the controls, as well as the commissioning work to which I have contributed.

The first chapter is focused on the basic properties of Gravitational Waves and
on the most interesting sources for terrestrial gravitational waves detectors. Then, in
Chap. 3 the detection principle, based on the Michelson interferometer, is presented.
In this chapter the concept of sensitivity of the detector is described, as well as the
optical configuration that maximizes it, that is, the target working point [3]. To reach
this point, the positions of the different mirrors constituting the interferometer and
the laser itself needs to be actively controlled, as we will see later. The limiting
noise sources are also introduced in this chapter, both the technical and fundamental
ones [4].

The technology of these detectors is very complex, and for this reason the activities
are divided in subsystems, depending on the domain of expertise. An overview of
the most relevant subsystems for the understanding of this thesis is given in Chap. 4,
including the main upgrades with respect to the first generation of detectors [5],
Virgo/Virgo+.

Chapter 5 is focused on the Fabry-Perot cavities, one of the key elements in
GW detectors, and their optical properties [6] which will allow us to understand
the first challenges that we encountered in the commissioning. The basic principles
of the longitudinal and angular control [7] are also presented here, applied to the
particular case of the Fabry-Perot cavities in the arms of Advanced Virgo. Special
emphasis has been put in explaining the generation of the error signals [8], both for
the longitudinal and angular controls, and in describing the conditions of stability of
a control. In particular, the error signal generation is based on the phase modulation
of the laser beam, using a technique called Pound-Drever-Hall. The choice of the
modulation frequency will play a key role on the commissioning, as we will see
later on. For this new advanced detector, the geometry and optical gain of the arm
cavities have been changed, in order to improve the sensitivity. The increase of their
optical gain introduces dynamical effects, forcing us to use a special technique to
acquire the longitudinal control of the cavities: the “Guided Lock”. In particular,
this technique is based on the calculation in real time of the speed of the cavity.
We have been able to adapt this technique to the needs of the commissioning, by
obtaining a new method to calculate this speed. Thanks to simulations an analytical
expression that relates the speed with the time that takes for the transmitted power
to pass from 10 to 40% of its maximum value was found. This expression is linear
between this characteristic time and the inverse of the speed. The main advantage of
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this method is that it provides the speed directly in physical units, without the need
of an empirical calibration factor. With this technique we were able to acquire the
longitudinal control of the arm cavities in a short period of time and in a robust way.

Regarding the new geometry of the arm cavities, it had an impact on the angular
control, which become more complex. In particular, the so-called driving matrix [9],
which relates the angular degrees of freedom with the actuators, was not diagonal
anymore. Simulations of the impact of the alignment on the transmitted power were
made, in order to check that the drivingmatrix can be extracted from this information.

Chapter 6 presents the targeted optical configuration, known as Power Recycling
Interferometer (PRITF) [3]. It involves the Michelson interferometer (which should
be in Dark Fringe or in destructive interference) and three Fabry Perot cavities: two
in the arms and one in the central area, the Power Recycling cavity. The latter is
formed by a mirror placed between the laser source and the beam splitter mirror.
In consequence, there are 4 longitudinal degrees of freedom and 16 angular ones.
Moreover, they are all very coupled between them, which increases the complexity
of their control. For this reason, it is very important to choose for each degree of
freedom a good error signal, as decoupled from the other ones as possible. This set
of error signals is called the sensing [9].

The target working point is presented in this chapter, as well as the generation of
the different error signals. Then, a detailed description of the control strategy used
in Virgo to bring the interferometer from its free state to the working point is given.
Each step has been simulated to check the viability of using the same strategy for
Advanced Virgo. The goal of this work was to check the robustness of the error
signals used in the past and to study the use of the new error signals available. Then
a more detailed analysis of the steady state (the working point) has been done, for
choosing the optimal sensing: the error signals with the highest SNR and the lowest
coupling possible. This study allowed us to understand better the control acquisition
sequence and it served as a reference of the behaviour of an ideal interferometer.

Another upgrade which had a big impact on the control of the interferometer is
the stability of the Fabry Perot cavity that recycles the power coming back towards
the laser (Power Recycling cavity, PRC). In particular, the relationship between
misalignments and optical gain has been studied. As the PRC is very close from
instability, the spatial modes of the laser beam or High Order Modes [6], which
are generated by misalignments (among other causes), couple strongly inside the
cavity, decreasing the optical gain. This problem affects specially the modulation
frequencies used to generate the error signals.

This effect has a big impact on the stability of the control loops and a solution to
mitigate this problem is studied here: the use of a modulation at a higher frequency.
Due to the so called Schnupp asymmetry (macroscopic length difference between
the arms of the Michelson), the optical gain of the PRC is inversely proportional
to the modulation frequency. Using a simplified model which takes in account only
the central interferometer, that is, the PRC and the Michelson, we have studied the
sensitivity of the optical gain to the alignment for different modulation frequencies.
This study confirmed that the high frequencies (meaning lower optical gain) are less
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sensitive tomisalignments. Based on this results we proposed a set of alternative error
signals to control the longitudinal degrees of freedom until the angular controls are
engaged. We also showed that the degradation of the optical gain due to the coupling
of spatial modes starts to be relevant when we get close to the working point.

We have also simulated the impact of high order modes on the frequency response
of the common degree of freedom of the arm cavities. In particular, it has been
checked that they create structures that need to be taken in account when designing
the control of the laser frequency to avoid instabilities. The same study showed
that the modulation frequencies also create the same kind of structures, becoming a
limiting factor of the control bandwidth.

Finally, in Chap. 6 we present the practical implementation of the control system
described in the previous chapter, applying the knowledge acquired with the simula-
tions. The different steps of the commissioning are described in detail until reaching
the target working point. However, in practice we have encountered different exper-
imental limitations which obliged us to adapt the strategy in different points, also
described in this chapter.

Among these problems, one of the most relevant ones was the fact that the input
mirror of the PRC had a radius of curvature different form the nominal one. This
made the cavity even closer to the instability region, causing fluctuations of optical
gain of a factor 3when the interferometer was close to its working point. As expected,
it was not possible to use the nominal error signals in this condition. However, the
solution proposed on the previous chapter of generating new error signals using a
modulation at higher frequency proved to be a success. This way it was possible to
acquire the longitudinal control despite the optical gain fluctuations.

In conclusion, the commissioning work done, together with the simulations per-
formed allowed us to bring the interferometer to its working point in a reliable and
robust way, which was the target of this thesis. Figure 1.1 shows an example of a
complete sequence of control acquisition of the Advanced Virgo detector. During
the data taking O2, the duty cycle reached was higher than 80% with an average
horizon of Binary Neutron Stars around 26 Mpc. The sensitivity of the Advanced
Virgo detector allowed not only the first triple detection of the merger of a Binary
Black Hole the 14th of August 2017 but also the improvement of the sky localization
of the Binary Neutron Stars GW170817 3 days later.

Once the control of the interferometer is mastered, the next step is to improve as
much as possible the sensitivity of the interferometer. For this reason there are not
explicit requirements on the performance of the different control loops. Instead, the
figure of merit is the coupling of the different degrees of freedom to the sensitiv-
ity, which depends as well on the different technical noises. To reach the nominal
sensitivity, an iterative process is needed between the hunting of technical noises
and the improvement of the controls. In particular, one of the remaining tasks is the
improvement of the angular controls. The plan is to try to use the same solution as
for the longitudinal controls, that is, to use the error signals generated with a higher
modulation frequency. This way, once the alignment is well controlled, we could
pass the longitudinal controls to the nominal error signals, potentially improving the
sensitivity.



References 5

Fig. 1.1 An example of a real control strategy is shown here, from the engagement of the longi-
tudinal control of the arm cavities until reaching the target working point. This figure shows the
power at the detection port (B1 photodiode), inside the PRC (B4 photodiode) and in transmission
of the arms (B7 and B8 DC). The different steps are indicated with different colours
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Chapter 2
Gravitational Waves

The existence of Gravitational Waves (GW) is a consequence of General Relativity
and was predicted by Albert Einstein in 1916. This theory relates the curvature of the
space-time with the energy-matter distribution. GWs are perturbations of the metric
(geometry of the space-time) that are caused by a movement of mass and which
propagate at the speed of light. In this chapter we will describe their basic properties,
as well as the most relevant sources [1, 2]. We will focus in particular in the ones that
emit powerful GWs that can be detected by ground-based interferometric detectors.

The first detection of a GW was made on September 14th of 2015 by the LIGO-
Virgo collaboration with the two Advanced LIGO detectors [3]. It was emitted by
the merger of a Binary Black Hole, providing the first direct proof of the existence
of Black Holes. This event has marked the beginning of a new way of observing
the Universe, and more detections have been done since then [4, 5]. We will briefly
present their characteristics and the astrophysical implications of these detections.

2.1 Gravitational Waves

General Relativity links gravity to the curvature of the space-time manifold. This
curvature is described by the metric gμν . Einstein Equation relates the metric of the
space-time with the energy/matter distribution so that:

Rμν − 1

2
gμνR = 8πG

c4
Tμν (2.1)

where Rμν is the Ricci tensor, which describes the space-time curvature, and R is the
curvature. They are both function of themetric and its derivatives. G is the gravitation
constant and c is the speed of light in vacuum. Finally Tμν is the stress-energy tensor,
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8 2 Gravitational Waves

which describes the matter distribution. It represents the source of the gravitational
interaction.

In general Einstein equation can not be solved analytically. However it can be
simplified in the weak field limit, that is, when the metric is close to the flat space
one. This is a good approximation when we are far from the source, for example on
Earth. In this case we can linearize the Einstein Equation by writing the metric as:

gμν = ημν + hμν (2.2)

where ημν is the flat space Minkowski metric, which describes an infinite empty
space without gravitation, and hμν is a small perturbation so that |hμν | � 1.

General Relativity predictions do not depend on the choice of coordinates, so it
can be proven that using Lorenz gauge, the Einstein Equation becomes:

(
∇2 − 1

c2
∂2

∂t2

)
hμν = −16πG

c4

(
Tμν − 1

2
gμνT

k
k

)
(2.3)

where hμν is defined as:

hμν = hμν − 1

2
ημνhμνημν (2.4)

The term on the right side of Eq. 2.3 represents the source of the wave. As we are
working under the assumption that we are far from the source, we can neglect this
term. Equation 2.3 then becomes a simple wave equation as in the electromagnetic
case. The general solution can be written as a superposition of plane waves, and it
describes the propagation of what we know as gravitational wave (GW):

hμν(x) = Aμνe
ikαxα

(2.5)

where Aμν is a 4 × 4 symmetric tensor that represents the spatial effect of a GW and
kα is the wave-vector.

The amplitude tensor has a priori 10 degrees of freedom (DOFs). A gauge called
Tensor Traceless (TT) can be chosen so that only 2 DOFs remain. These DOFs are
the two physical polarizations of the GW also known as plus (h+) and cross (hx ). In
this gauge the expression of a GW that propagates along the z-axis can be written as:

hTT
μν =

⎛
⎜⎜⎝
0 0 0 0
0 h+ hx 0
0 hx −h+ 0
0 0 0 0

⎞
⎟⎟⎠ e−i(ωt−kz) (2.6)

where hx and h+ are the scalar amplitudes of the two polarizations, k is the wave-
number and ω is the frequency of the GW.

It is interesting now to evaluate the effect of the passage of a GW. The distance
between two masses, A(xA, yA, zA) = (0,0,0) and B(xB, yB, zB), infinitely close in
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the weak field approximation and in the TT coordinates can be calculated as:

L2 = gμν(x
μ
B − xμ

A)(x
ν
B − xν

A) = (δi j + hTT
i j )xiBx

j
B (2.7)

where δi j is the Kronecker symbol and xiB = L0ni , knowing that n is the unit spatial
vector and L0 is the initial distance between the masses.

This equation can be re-written as:

L =
√
L2
0(δi j + hTT

i j ni n j )

L = L0

√
1 + htti j n

i n j
(2.8)

so we can approximate

L � L0(1 + 1

2
hTT
i j nin j ) (2.9)

This expression indicates that the distance between two test masses is affected by
the passage of a GW. If we define this change as δL = L − L0 we obtain that for an
optimally oriented source:

δL

L0
= h

2
(2.10)

where h is the amplitude of the GW, also known as strain amplitude.
Equation 2.10 shows that the change on the distance between test masses induced

by a GW is proportional to the amplitude of the GW.Moreover, from Expression 2.6
it can be deduced that this effect is differential. Figure 2.1 shows an example of the
effect of a GW that goes through a ring of test masses perpendicularly.

Fig. 2.1 Effect of the plus and cross polarizations of a GW which propagates along the z axis
through a ring of test masses. The evolution with time of the amplitude of the GW, h, is also shown
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The distance between the test masses contracts and then expands in one direction
and the opposite in the perpendicular direction. The effect of the two polarizations is
shown independently and we can see that it is rotated by π/4. Figure 2.1 also shows
the amplitude evolution of the GW (h) with time.

2.2 Sources of Gravitational Waves

We are interested in the sources that emit GWs powerful enough to be detected by
ground-based interferometric detectors. The power emitted by a source in form of
GW is given by the Einstein quadrupole formula:

PGW = G

5c5
〈...I mn

...
I
mn〉 (2.11)

where Imn is the mass quadrupole moment of the source.
In order to estimate the power emitted by a source, the quadrupole moment can

be roughly approximated as:
...
I ∼ ε · M · R2

T 3
(2.12)

where ε is a mass distribution asymmetry factor (ε < 1), M is the mass of the source,
R is a characteristic length scale and T is a characteristic time scale.

Using the characteristic speed of the source v = R/T and its Schwartzschild
radius, RS = 2GM

c2 , Eq. 2.11 can be re-written as:

PGW ∼ c5

G
· ε2 ·

(
RS

R

)2

·
(v
c

)6
(2.13)

From this equation we can extract the conditions for a source to be a good emitter:
it has to be asymmetric (ε ∼ 1), it has to be compact (Rs/R ∼ 1) and relativistic
(v/c ∼ 1). With this information we can already predict which will be the most
promising sources.

However, the emitted power is not the only parameter to take in account for
evaluating the sources that could be detected byground-baseddetectors. Thedistance
of the sources from the Earth plays an important role since h decreases as 1/r. For
this reason, the further a source is, the louder an event needs to be so that it can be
detected.

Finally, the rate atwhich the transient events occur has also an impact on the detec-
tion probability. However, it is difficult to evaluate this parameter since it requires a
knowledge of the processes that lead to the GWs emission that is not available yet
such as population or structure formation among others.

Taking in account these considerations, the sources that are considered as poten-
tial candidates are presented below. Notice that normally they are classified in two



2.2 Sources of Gravitational Waves 11

groups: continuous sources, which comprises rotating neutron stars and stochas-
tic background and transient sources such as compact binary coalescences or core
collapse supernovae.

2.2.1 Neutron Stars

Spinning neutron stars (NS) emit GWs if their mass distribution is asymmetric. The
frequency of the emittedGWswill be at twice the rotational frequency. The amplitude
of the GWs emitted depends on the asymmetry of the momenta of inertia of the NS
or eccentricity ε which, in turn, depends on the equation of state of nuclear matter.

Pulsars are a particular type of NS, which emit a periodic radio pulse. They are
especially interesting because their rotational frequency can be precisely measured.
This information allows the reconstruction of the GW signal which can be integrated
over time in order to improve the Signal-to-Noise ratio (SNR).

The rotational frequency of the NS will decrease due to the energy loss in form of
emitted GWs or electromagnetic radiation. This process is also known as spin-down.
If we suppose that all the energy loss is due to the emission of GWs, we can put an
upper limit on the eccentricity of the NS. Using the data from the first generation
of GW detectors, LIGO and Virgo, we were able to put an upper limit below the
spin-down limit on the eccentricity of two pulsars: Crab [6] and Vela [7].

2.2.2 Compact Binary Coalescence

Binary systems that emit GWswith amplitudes high enough to be detected by ground
based detectors are composed of two neutron stars (NS), two black holes (BH) or a
neutron star and a black hole. These systems emit GWs at twice the orbital frequency.
Due to the loss of energy the orbit shrinks, increasing the orbital frequency until the
two bodies merge.

These sources can not be considered as continuous since the frequency of the
GW emitted is too low for being detected by ground detectors (mHz) until their
coalescence. For this reason they can only be detected close to the merger, when the
frequencies are within the detectors bandwidth (>10 Hz) and increasing rapidly.

A useful parameter is theBBHhorizon, which is the distance atwhich an optimally
located and oriented binary system with two BHs of 10M�1 each, would be detected
with a SNR of 8. This magnitude is widely used to evaluate the sensitivity of the
detectors, in the case of Advanced Virgo the nominal BBH horizon is 898 Mpc.

The signal emitted during this process is well modelled and a template bank is
used for searching sources. The first detections of a GW were binaries black holes.
We will enter into more details about them in the next section.

1M� stand for solar mass, which is equivalent to 1.99 × 1033 kg.
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It is worth mentioning though, that the first indirect proof of the existence of GWs
was provided by a binary far from coalescence. In 1974 R. A. Hulse and J. H. Taylor
discovered a pulsar belonging to a binary system of neutron stars, also known as
PSR B1913+16. The measurement of the evolution of its orbital frequency agreed
precisely with the predictions of GR [8].

2.2.3 Bursts

This category contains the GW transients, which are the emissions that have a short
duration compared to the observation time. The burst sources are in general not well
understood, and in consequence not well modelled. For this reason the search of
these signals is done by looking for an excess of power in the data.

A typical example of these events are Supernovae, which are the collapse of a star
to form a neutron star or a black hole. However, they are not the only source of this
type, cosmic strings are also bursts emitters, to give an examples.

2.2.4 Stochastic Background

This signal can be the result of the incoherent sum of different sources emitting at
the same time and frequency, transient or continuous, or it could have a cosmological
origin. In the first case the sources can not be distinguished, and it can be shown that
the signal follows a Gaussian distribution.

The search of such signals needs a very good understanding of the noise sources of
our detector, since most of the noises have also a Gaussian shape. In order to separate
noise from signal, correlation is used. It consists on combining the data from several
detectors with uncorrelated noises to distinguish the signal from the noise.

2.3 GW150914: First Detection

The 14th of September of 2015 the first detection of a gravitational wave was made
by theAdvanced LIGO gravitational wave detectors, Hanford and Livingston, during
their first Scientific Run [3]. The GW emitted came from the coalescence of a binary
system of black holes of 30M� each. During the process, the system emitted between
2.5 and 3.5M� in GWs until the coalescence. The shape of the emitted GW, known
as GW150914, is shown in Fig. 2.2.

It can be seen in the figure that the frequency of the emitted GW increases at the
same time as the amplitude during the inspiral phase, when the two BHs approach
each other. Then the signal reaches a maximum that corresponds to the merger of
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Fig. 2.2 Upper plots: GW signal detected by the Advanced LIGO detectors in Hanford and Liv-
ingston respectively on September 14th of 2015 (GW150914).Lower plots: Theoretical wave form
of the detected GW in both detectors

both BHs. The detected signals are in very good agreement with the predicted wave
form. This is because the SNR of the detection was very high: 25.

This event provided not only the first direct measurement of a gravitational wave
but also interesting information concerning astrophysics. The experts were expecting
BBH systems either at low masses (under 10M�) or at high masses (above 100M�).
This detection proved that the intermediate range of masses is also populated.

During the first Scientific Run of the Advanced LIGO detector, another BBH was
detected (GW151226) [4]. A third event was detected during the second Scientific
Run, of the same nature as the previous ones (GW170104) [5]. The characteristics
of the three detected events are summarized in Table 2.1.

Notice that the amplitudes of the GWs detected are extremely weak, which is the
reason why building a detector was so challenging, as we will see in the next chapter.

Table 2.1 Characteristics of the three GW signals detected by the Advanced LIGO detectors

GW150914 GW151226 GW170104

Strain peak 10−21 3.4 × 10−22 5 × 10−22

Distance [Mpc] 230–570 250–620 490–1318

Duration from 30 Hz [s] 0.2 1 0.25–0.31

Mass 1st BH [M�] 32–41 11–23 25–40

Mass 2nd BH [M�] 25–33 5–10 13–25

Energy emitted in GW [M�] 2.5–3.5 0.8–1.1 1.3–2.6

Mass of the remnant BH [M�] 58–67 19–27 44–54
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Chapter 3
Ground Based Gravitational
Wave Detectors

In the previous chapter we have introduced the basics about gravitational waves and
their sources. In this one we will explain the working principle of ground based GW
detectors. The fundamental noises that limit the sensitivity will be presented, as well
as the upgrades added to the basic scheme in order to improve the detector sensitivity.

The effort to build GW detectors started back in the 60s with the so called Weber
bar. It was a 1400 kg aluminium bar andGWswere expected to excite its fundamental
mechanical mode. In the same period, another detector configuration was proposed:
using aMichelson interferometer. This detector would provide a wider detection fre-
quency bandwidth [1]. It was sensitive to differential displacements which made this
configuration themost promising one. The current GWdetectors are the consequence
of the refinement of the interferometric design.

Virgo detector was initially a French-Italian project which started at the early
90s. The first design proposal was delivered to the funding agencies in 1992 and
after some adjusting its construction was approved by 1995. The place chosen to
build the experiment was the Italian village of Cascina, in the province of Pisa. The
construction started by the central building, and its commissioning started in 2001,
while the construction of the long arm cavities was taking place in parallel. It was
not until 2004 that the full interferometer was available to start the commissioning.
The first scientific data taking, VSR1, took place in 2007 in parallel to LIGO S5 run.

Virgo detector and its optimized version Virgo+ made four scientific runs in total
between 2007 and 2011, three of them in coincidence with LIGO. As no detection
was made with this first generation of GW detectors, it was decided to upgrade
their design to increase the sensitivity. It was not until 2012 that the Advanced Virgo
Technical Design was released and the installation started, ending in August of 2016.
After one year of commissioning, the Advanced Virgo detector was operative and
joined the 1st of August 2017 the Advanced LIGO detectors on the scientific data
taking O2.
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3.1 Detection Principle

As presented in the previous chapter, the effect of a GW on Earth is a change on
the distance between test masses that is proportional to the amplitude of the GW.
The relationship is shown in Eq. 2.10. Moreover this effect is differential, which
makes a Michelson interferometer the ideal candidate. The particularity of this kind
of detectors is that the mirrors of the interferometer are suspended in order to behave
as test masses.

In a Michelson interferometer, the input beam is split in two with a Beam Splitter
mirror (BS). Each of the beams travels a distance L and then is reflected back to the
BS where they interfere. The interference depends on the phase difference between
the beams (δφ) due to the different optical paths traversed. This phase difference is
related to the distance difference (δL) as:

δφ = 2π

λ
δL = 2π

c
νδL (3.1)

where λ is the laser beam wavelength and ν is the frequency of the laser beam.
Notice that δφ depends on the laser frequency as well. If this frequency fluctuates,

as it is usually the case in practice, it will also contribute to δφ. In this case we can
not distinguish between length and frequency variation [2]:

δL

L
= δν

ν
(3.2)

For this reason the frequency stabilization of the laser will play a key role on the GW
detection, since it can mimic the effect of a GW. However, in this part for simplicity
we are going to consider the ideal case, where there is no frequency noise.

In this section we are not going to derive the equations of the Michelson inter-
ferometer, since we will do it in Sect. 6.1. Here we are interested only in the power
arriving at the detection photodiode, shown in the Michelson scheme of Fig. 3.1.

Fig. 3.1 Scheme of a
Michelson interferometer.
The directions x and y are
taken as the interferometer
arms
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It can be shown that the detected power, Pdet , is equal to [3]:

Pdet = 1

4
· P0 · (r2x + r2y ) · (1 + C · cos(2k�L)) (3.3)

where P0 is the input power, rx,y are the reflectivities of the mirrors on theMichelson
arms and�L = Lx − Ly is the length difference between the arms.C is the contrast,
which is defined as:

C = Pmax − Pmin

Pmax + Pmin
= 2rx · ry

r2x + r2y
(3.4)

where Pmax is the maximum power arriving to the detection photodiode (Bright
Fringe), which happens when the interference is constructive. Pmin is the minimum
power arriving to the detection photodiode (Dark Fringe), which happens when the
interference is destructive.

The contrast depends on the reflectivity of the mirrors, and for totally reflective
mirrors (r1 = r2 = 1 and no losses) it is 1. In this case Pmin is 0 and Pmax is the input
power P0.

As shown in Eq. 3.3 the power detected depends on the optical path difference
between the arms of the Michelson. Now if we consider the passage of a GW, the
phase difference at the BS is:

φ = φ0 + δφGW = 2 · k · �L0 + 2 · k · (δlx − δly) (3.5)

where �L0 is the static length difference between the arms. δlx = 1
2hL and δlx =

− 1
2hL are the length differences induced by the passage of a GW on each arm.
The power detected can be re-written taking in account the effect of a GW. As

the expected amplitude of GWs is very small, the small angle approximation can be
used so:

Pdet = P0
4

· (r2x + r2y ) · (1 − C · [cos(φ0) − sin(φ0)δφGW ]) (3.6)

From this expression we can calculate the variation of the detected power due to the
passage of a GW optimally oriented:

δPdet = P0
4

· (r2x + r2y ) · C · sin(φ0) · δφGW

= P0
4

· (r2x + r2y ) · C · sin(φ0) · (2 · k · h · L)

(3.7)

where L is the average length of the Michelson arms.
This equation shows that the detected power variation due to the passage of a GW

is proportional to its amplitude. However, it depends not only on h but also on the
reflectivity of the mirrors, on the input power, on the contrast, on theMichelson aver-
age length and on the interference condition. The optimization of these parameters
is the key for detecting such a weak signal.
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3.2 Interferometer Sensitivity

As shown in the previous chapter, the typical amplitudes of the GWs we want to
detect are very small when they pass through the Earth, ∼10−21. The sensitivity of
a detector is the minimal signal that we are able to detect, in this case the minimal
strain. The target is to maximize the signal caused by the passage of a GW, that is
δPdet (see Eq. 3.7).

In the absence of any noise, the interference condition that maximizes the sensitiv-
ity would be the grey fringe, meaning only half of the power arrives to the detection
port (for an ideal contrast) [4]. In practice there are noises that limit the sensitivity
and then the working point needs to be different.

In particular the lowest noise level that can be reached is the Quantum one. It has
two contributions: shot noise and radiation pressure, that will be dominant at high
frequencies and at low frequencies respectively. Notice however that a lot of research
is being developed on a technique called squeezing that will allow to improve the
sensitivity beyond the quantum limit at high frequency and/or at low frequencies in
the near future [5].

For the moment though they can not be mitigated and we will focus on the shot
noise, since it is going to limit the sensitivity at high frequencies. Then we will
present the different noises that contribute at low frequency.

3.2.1 Shot Noise

This noise is relatedwith the quantumnature of light and affects to the power detected
by a photodiode. The average number of photons, N , reaching a photodiode can be
calculated as:

N = Pdet · T
hP · ν

(3.8)

where T is the measurement time and hP is the Planck constant.
Knowing that the measurement of the number of photons follows a Poisson dis-

tribution, the uncertainty is equal to
√
N . Then we can calculate the uncertainty on

the detected power:

σP = √
N · hP · ν

T
=

√
hP · ν · Pdet

T
(3.9)

At this point we can impose the condition for detecting a GW: δPdet > σP which
can be written as:

P0khL

4
(r2x + r2y ) sin(φ0) >

√
hPν

T

P0
4

(r2x + r2y )(1 + C cos(φ0))/2 (3.10)
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So the smallest strain that we can detect due to the shot noise is:

h̃shot = 2

k · L ·
√

hP · ν

T · P0 · (r2x + r2y )
·
√

(1 + C · cos(φ0))

C · sin(φ0)
(3.11)

As mentioned before, the target is to tune the free parameters in order to improve
the sensitivity of the detector. From Eq. 3.11 it can be shown [3] that in the presence
of shot noise the optimal interference condition is the Dark Fringe for a perfect
interferometer, so φ0 = (2n + 1)π with n any integer number. Considering also
perfect reflective mirrors, the ideal sensitivity is:

h̃shot = 2

k · L ·
√
hP · ν

P0
(3.12)

The best sensitivity is obtained for a perfect interferometer with C = 1, but this is
not possible in practice, so the real sensitivity is given by:

h̃shot = 2

k · L ·
√

hP · ν

P0 · (r2x + r2y )
· 1√

1 − √
1 − C2

(3.13)

We can evaluate the sensitivity in the ideal case (Eq. 3.12) for an interferometer with
an infrared laser at 1064 nm, 25 W of input power and Michelson arms of 1 m. In
this case h̃shot is of the order of 10−17 1/

√
Hz. Clearly this sensitivity is not enough

to detect GWs, so it needs to be improved. From Eq. 3.12 two improvements can be
deduced: an increase of the arms length, and an increase of the input power.

3.2.2 Improving the Sensitivity

A significant increase of the Michelson arms length is needed in order to reach
the sensitivity necessary for detecting GWs. However, it is not easy to build arms
of more than 3–4 km. The solution found for this problem was to add Fabry-Perot
cavities to the Michelson arms, as shown in Fig. 3.2.

A Fabry-Perot cavity is an optical resonator and when on resonance, the light is
reflected back and forth inside the cavity, increasing the optical path travelled. These
optical resonators will be described in detail in Chap. 5. The increase on the optical
path due to the resonant cavity is related with a parameter called the finesse which
is defined as:

F = π · √
r1 · r2

1 − r1 · r2 (3.14)

where r1,2 are the reflectivities of the input and end mirror respectively.
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Fig. 3.2 Scheme of a
Michelson interferometer
with Fabry-Perot cavities on
its arms

The extra phase accumulated due to a change on the length of a Fabry-Perot cavity
is equal to:

δφFP = 2 · k · 2 · F
π

· δL (3.15)

The effect of this δL on the phase is increasedwith respect to a singlemirror by a factor
GFP = 2 ·F

π
usually known as optical gain of the cavity. However, the behaviour of

a Fabry-Perot cavity depends on the frequency. The storage time is a parameter that
gives the time needed to “fill” a resonant cavity. If the change on the length is faster
than this time, its effects are attenuated by the cavity (it acts as a low-pass filter).
Taking in account the frequency behaviour of the cavity we can write:

δφFP = 2 · k · GFP · δL√
1 +

(
f
fc

)2
(3.16)

where fc = c
4FL is the cut-off frequency over which the effects start to be attenuated

by the cavity. In the case of Advanced Virgo, for Fabry-Perot cavities of F ∼ 450
and arm lengths of 3 km the cut-off frequency is around 50 Hz.

Now we can repeat a reasoning analogous to the one in the previous section to
evaluate the impact of the shot noise on the sensitivity when we add Fabry-Perot
cavities in the arms. The minimal strain that can be detected in this case is:

h̃shot = 1

GFP
· 1

k · L ·
√

hPν

P0 · (r21 + r22 )
· 1√

1 − √
1 − C2

·
√
1 +

(
f

fc

)2

(3.17)

Comparing it to the expression in Eq. 3.13 it can be seen that the sensitivity is
improved by a factor GFP , which in the case of the Advanced Virgo arm cavities is
∼290.
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Fig. 3.3 Scheme of a
Michelson interferometer
with Fabry Perot cavities on
its arms and a power
recycling mirror

The other parameter that can improve the sensitivity is the input power, P0. Again
it is not straightforward to increase the power of the laser since it arises technical
problems, so an alternative was proposed: an additional mirror.

At Dark Fringe, the two beams that recombine at the BS are in destructive inter-
ference. This means that in the ideal case there is no light arriving to the detection
photodiode. Instead, all the power is coming back towards the laser source. The idea
was to add a mirror between the BS and the laser in order to recycle all the power
that is coming back, as it can be seen in Fig. 3.3.

This way a new resonant cavity is created, the Power Recycling Cavity, and the
effective power impinging on the BS is increased by the optical gain of the cavity
GPR . It can be calculated as:

GPR =
(

tPR

1 − rPR · rM ICH

)2

(3.18)

where tPR, rPR are the transmission and reflectivity of the new mirror, also called
Power Recycling mirror or PR, and rM ICH is the reflectivity of the Michelson
enhanced by the presence of the Fabry-Perot cavities, which depends on the inter-
ference condition at the BS.

Knowing that the effective power is increased by GPR , it is straightforward to
evaluate the impact on hshot :

h̃shot = 1

GFP
· 1

k · L ·
√

hPν

GPR · P0 · (r21 + r22 )
· 1√

1 − √
1 − C2

·
√
1 +

(
f

fc

)2

(3.19)
In this case the sensitivity is increased by a factor

√
GPR , which for Advanced Virgo

is ∼6.
Finally, it is foreseen to add an extra cavity to the Advanced Virgo detector in

order to increase further the sensitivity. The target is to recycle the signal produced
by the passage of a GW. For this purpose a mirror is added between the BS and the
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Fig. 3.4 Scheme of a
Michelson interferometer
with Fabry Perot cavities on
its arms, a power recycling
mirror and a signal recycling
mirror

Detection photodiode as shown in Fig. 3.4. This configuration is known as Signal
Recycled or Dual Recycled.

The interest of this configuration is that we can tune the shape of the sensitivity
by changing the length of the Signal Recycling Cavity. In particular, there is a con-
figuration called detuned that maximizes the sensitivity in the range of interest for
BNS.

3.2.3 Limiting Noises

So far we have only considered the shot noise which can not be mitigated. At low fre-
quency though there are other noises that couple to the interferometer and that affect
the sensitivity. Figure 3.5 shows an example of a sensitivity curve of Advanced Virgo
with the contributions of the fundamental noises that typically limit the sensitivity.

The example shown in Fig. 3.5 corresponds to the Advanced Virgo detector on its
Dual Recycled configuration with 125 W of input power tuned for Binaries Neutron
Stars. Even if it is not the current configuration, it is representative of the impact of
the different noises to the sensitivity.

At high frequencies it can be seen that theQuantumnoise dominates the sensitivity,
in particular, the shot noise, as we had anticipated. At low frequencies though, there
are different contributions. Here we will mention the most relevant [7]:

• Quantum noise: As mentioned before it comprises the shot noise (dominant at
high frequencies) and the radiation pressure (dominant at low frequencies). The
latter is the consequence of the force that the photons exert on the test masses,
causing a displacement of the mirrors.
This effect is more important when the power increases since the force is larger
as well. Its behaviour depends on the frequency as 1/ f 2, which is the reason why
it is more important at low frequencies. The impact can be reduced, in particular
by increasing the mass of the mirrors, as it was done for Advanced Virgo, where
their mass is 42 kg.
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Fig. 3.5 Sensitivity curve of the Advanced Virgo detector for its Dual Recycled configuration with
125 W of input power. The contributions from the main limiting noises are also shown [6]

• Thermal noises: Both the test masses and the suspensions experience Brownian
motions, since they operate at ambient temperature. In the case of the suspensions,
this noise is attenuated by the pendulum above its resonance (0.6 Hz). At low
frequencies it is the dominant contribution.
Regarding the test masses, the coating noise is distributed over the mirror surface.
Its effect can be minimized by increasing the beam size and so averaging over a
bigger surface. For this reason the geometry of the arm cavities was modified for
Advanced Virgo, in order to increase the beam size in both mirrors.

• Seismic noise: The ground motion has a big impact on the interferometer per-
formance, and if it is not attenuated, it would dominate the sensitivity at low fre-
quencies. However, as we mentioned previously, in order to behave as test masses
the mirrors are suspended. A pendulum acts as a passive filter, that attenuates the
noise above its resonance frequency as 1/f2. A complex suspension chain has been
designed in order to attenuate completely the effect of the seismic noise above 10
Hz. It will be described in more detail in the next chapter, but it can be already
seen in Fig. 3.5 that it is so suppressed that it does not appear on the scale. As
the mirrors are suspended, the residual seismic noise changes the position of the
optics, sufficiently to spoil the working point. For this reason the position of the
optics need to be actively corrected as we will see in detail later.
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Fig. 3.6 Sensitivity curves of Advanced Virgo for different configurations. The blue one is the
configuration available so far, the rest of the curves correspond to future upgrades

Finally Fig. 3.6 shows the nominal sensitivity for the Advanced Virgo detector on its
current configuration (blue curve) as well as the ones expected after future upgrades.

3.2.4 Homodyne Detection Versus Frontal Modulation

As we have mentioned, the seismic noise is attenuated in a very efficient way. How-
ever, the residual motion of the suspended mirrors is enough to bring the cavities out
of resonance and the Michelson out of a Dark Fringe. For this reason, the position of
the mirrors needs to be controlled to keep the target working point. I will not enter
into details in this section, since this is the main topic of this thesis and it will be
developed in the Chaps. 5, 6 and 7. However we will give the basic knowledge to
understand the type of detection scheme used in Advanced Virgo.

In order to keep the mirrors on their nominal positions, we need an error signal
that provides this information. At the Dark Fringe the DC power at the detection
photodiode has a quadratic shape, which means that it is symmetrical around the
working point. A good error signal though needs to be bipolar1 as we will see in
Sect. 5.4.2, which is not the case. This means that it is necessary to find an alternative
to generate an error signal.

The technique chosen was the Pound-Drever-Hall technique [8], which consists
on modulating in phase the input beam in order to create sidebands. These sidebands

1A bipolar signal has both positive and negative values.
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Fig. 3.7 Variation of the
power at the detection port as
a function of a length
difference between the arm
cavities [7]

appear at ± the modulation frequency and are chosen to be anti-resonant inside
the Fabry-Perot cavities of the arms. This way, they provide a phase reference to the
carrier, which resonates, carrying information about the optical path inside the cavity
and so of its length. The beating between the carrier and the sidebands provides the
error signal, which is proportional to δL (and thus to h).

In order to build an error signal at the detection photodiode, the sidebands need
to reach it, as they provide the phase reference. In the case of Advanced Virgo
we need to take in account the Power Recycling Cavity. The sidebands frequency
needs to be resonant as well inside it in order to reach the detection photodiode.
Moreover, they need to reach the detection photodiode even in Dark Fringe, and
for this reason the Schnupp asymmetry was implemented. It consists on adding a
macroscopic length difference between the short Michelson arms, Lx and Ly so that
the interference between the sidebands at the BS is not perfectly destructive unlike
the carrier interference. Again, this will be described in more details in Chap. 6.

At this point we are able to keep the interferometer at Dark Fringe, and detect the
passage of a GW. The sidebands provides a phase reference and the carrier carries
information of the length difference between the Fabry-Perot arm cavities. However,
this method depends strongly on the quality of the sidebands. This means that if
they are noisy or largely unbalanced, there will be technical noises that will spoil the
sensitivity such as phase and amplitude noise.

To avoid this, it was decided to change the read-out scheme in the Advanced
GW detectors to Homodyne detection or DC readout. As it was mentioned before,
it is not possible to use directly the DC power to control the interferometer in Dark
Fringe. However, we can add a small offset to the arms, which means making one
arm slightly longer than the other. This offset allows a small amount of carrier field
to leak to the detection photodiode, which will play the role of phase reference. In
this configuration the power detected is proportional to the length difference between
the arms and so to h.

Figure 3.7 shows the dependence of the power at the detection photodiode with
respect to a differential detuning. It can be seen how in Dark Fringe the power is
almost insensitive to a differential detuning, while it is almost linear when an offset
is added. This behaviour does not depend on the value of the offset [7]. Of course,
this offset needs to be smaller than the arms resonance, to keep them at their correct
working point.
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However, this method can be used only to control one degree of freedom (DOF),
for the rest of longitudinal DOFs (there are four in total), the PDH technique is
needed. This means that there will be sidebands leaking to the detection photodiode,
spoiling the error signal. To prevent this, an extra Output Mode Cleaner was added
before the detection photodiode. It is a resonant cavity whose target is to select only
the carrier field.

Finally, due to the mistuning of the arm cavity lengths, the effect of radiation
pressure is stronger, so it will be necessary to take it in account when designing the
alignment control, as we will see later in Chap. 5.
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Chapter 4
Advanced Virgo

Ground-based GW detectors are very complex optical systems and for this reason
they are divided in different subsystems. Each of them takes care of a different topic
but of course there are strong interactions between them. The Advanced Virgo detec-
tor is divided in the following subsystems: Optical Simulation and Design (OSD),
Prestabilized Laser (PSL), Injection (INJ), Mirrors (MIR), Thermal Compensation
Systems (TCS), Detection (DET), Interferometer Sensing and Control (ISC), Stray
Light Control (SLC), Suspensions (SUSP), Vacuum (VAC) and Data Acquisition
(DAQ). In this chapter we are going to present the relevant subsystems to have an
overview of the detector and to give a context to the work I have done for the ISC
subsystem [1].

The Advanced Virgo detector was designed to improve the sensitivity of the Virgo
detector by one order of magnitude, which translates in three orders of magnitude
in terms of volume of observable Universe. In this section we will also present the
main upgrades that will allow this improvement.

4.1 OSD: Optical Simulation and Design

This subsystem takes care of the optical design of the interferometer. In order to
improve the sensitivity, the optical design of the interferometer was modified for
Advanced Virgo:

• Increase of the finesse of the arm cavities: In Virgo the finesse was 150 and in
Advanced Virgo it is 450. The finesse has increased by a factor 3, which translates
directly into an improvement on the sensitivity as seen in the previous chapter.
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• Change of the geometry of the arm cavities: In Virgo the Fabry-Perot cavities
on the arms had the beam waist1 on the input mirror. In order to minimize the
coating thermal noise, their geometry was modified to maximize the size of the
beam in both mirrors (see Fig. 5.10 in Sect. 5.3.3).

• Power Recycling Cavity marginally stable: The change on the arms geometry
obliged to adapt the geometry of the PRC in consequence. The new configuration
is very close to instability which will have an important impact on the control of
the interferometer as we will see in Sect. 6.2.2.

• Heaviermirrors: In order to decrease the thermal noise,which is inversely propor-
tional to the mass, the mirrors of Advanced Virgo are thicker (20 cm) and heavier
(42 kg). It also helps to decrease the radiation pressure noise, consequence of the
new read-out scheme, as it was introduced in the previous chapter (see Sect. 3.2.3).

• Improvement of mirror coatings: The mechanical losses in the coating of the
mirrors determine their quality factor and so the displacement of themirror surface
due to its thermal vibration. To improve the thermal noise it is important to mini-
mize them. For this purpose the coating of themirrors of AdvancedVirgowas done
of a newmaterial: Ta2O5, which is the best option known so far. Also the thickness
of the different coating layers has been optimized to minimize mechanical losses.

• Additional photodiode: Tomonitor the power inside the Power Recycling Cavity,
which requires the addition of a Pick-Off inside the cavity. This information will
be useful in order to build error signals for the interferometer control, as it will be
seen later.

For the study of the optical design there are a large variety of simulations that can
be used. During my thesis the simulations that I have used are the following:

• Finesse: It is a modal code. It expands the electric field in a set of Hermite-Gauss
modes in order to reproduce the behaviour of the optical system simulated [2]. It
is ideal to study the steady state of the interferometer.
It can also handle Higher Order Modes (HOMs) which means that the effects
of mismatch and misalignments can be studied with this simulation. The only
inconvenience is that when dealing with defects in marginally stable cavities (as it
is the case for the PRC) it needs a lot of HOMs to converge into the good solution.
This increases the calculation time too much to make it useful in some cases.

• Optickle: It is a simulation tool that allows to simulate the frequency behaviour
of an optical system, including radiation pressure effects [3]. This simulation uses
the plane wave approximation, so it does not take in account HOMs. It is usually
used to simulate the optical response of different elements in the interferometer
for the noise budget or to design control loops.

• e2e: This is a time domain opto-mechanical simulation based on amodalmodel [4].
It allows us to study dynamical effects, since it simulates also the mirrors suspen-
sions and different noises can be added. It is useful to simulate the longitudinal
control of the different DOFs, in particular the moment when they are engaged.

1The waist is the point with the smallest size in a Gaussian beam.
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4.2 TCS: Thermal Compensation System

A marginally stable cavity, as the PRC, is very sensitive to the generation of HOMs,
degrading quickly its performance when they are present. For this reason it is neces-
sary to minimize the coupling of HOMs inside the interferometer in a more efficient
way than in the past.

The target of the Thermal Compensation system is to dealwith optical aberrations:
both the manufacturing defects of the optics and the aberrations caused by thermal
effects due to the power of the laser. In particular its key role is to assure that the
PRC is effectively stable. The new system is composed of two actuators:

• Ring Heater (RH): It is a ring placed around the PR mirror and the input masses.
Its role is to heat the optics in order to increase their radius of curvature. This is
specially critical when the High Power laser will be used, since it will induce a
thermal lens in the optics that needs to be compensated.

• Central Heating (CH): The actuators are CO2 lasers used to heat the center of two
transmissive optics placed in front of the input masses, the Compensation Plates
(CP). The target is to correct for aberrations in the arm cavities and differential
defects (different behaviour on each arm).

4.3 SUSP: Suspensions

The mirrors of the interferometer are suspended, in order to behave as test masses.
However, the seismic noise is a big problem in order to reach the target sensitivity,
since it couples to the optics. For this reason the suspensions of Virgo are a very
complex mechanical system. Figure 4.1 gives an overview of the whole chain, which
is 9 m high.

The top part is called Superattenuator and it is composed by six mechanical filters
attached by metal wires and an inverted pendulum. The attenuation chain is based on
the simple pendulum mechanism. An ideal pendulum attenuates all the horizontal
movements at frequencies above its resonant frequency, f0, by a factor ( f/ f0)

2. The
total attenuation factor is themultiplication of the effect of each individual pendulum.

The last two stages are slightly different: the marionetta and the mirror itself.
There are four magnets attached to each of them which are controlled by four coils.
The angular and longitudinal position of the testmasses can be controlled by acting on
the current sent to the coils. To prevent the mirrors frommoving freely, a preliminary
control also known as Local control (LC) is engaged.

The error signals of these controls are built using optical levers obtained with
red lasers and Position Sensing Devices, which monitor the angular and longitudi-
nal positions of the mirrors. They provide only a local reference and in the target
configuration these error signals are substituted to allow a more precise control.
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Fig. 4.1 Mechanical scheme
of the Superattenuator. Its
aim is to isolate the test
masses from the ground
motion

For Advanced Virgo all the resonant frequencies are below 2.5 Hz, which means
that the mirrors behave as free test masses in the horizontal direction above this
frequency. The seismic noise is attenuated by 14 orders of magnitude above 10 Hz
thanks to the suspension chain [5].

4.4 INJ: Injection

This subsystem is the interface between the laser and the interferometer. It plays an
important role: it fixes the beam size, position and power to match the interferometer.
It also controls some noise sources such as the frequency and power fluctuations, the
beam jitter or the beam position fluctuations. Figure 4.2 shows a basic scheme of the
different components of this subsystem from the laser source to the interferometer
input.

The bench under vacuum is suspended, with an attenuator similar to the one of
the mirrors but smaller. The bench which is on air is not suspended, but the ground
motion is passively damped by a special support and it could be actively corrected
if needed.
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Fig. 4.2 Scheme of the main elements of the Injection subsystem [6]

• ElectroOpticModulator (EOM): It modulates in phase the laser beam to provide
the sidebands used in the different controls of the interferometer. Currently there
are six different modulation frequencies with a modulation depth of 0.1 rad: 6, 8,
22, 56 and 119 MHz.

• Faraday Isolator: It prevents the beam coming back from the interferometer from
reaching the laser.

• Beam Pointing Control (BPC): It acts on the beam position in order to reduce
the beam jitter.

• Input Mode Cleaner (IMC): It is a triangular cavity of approximately 140 m and
finesse 1000. It has two functions: to clean the beam from HOMs so that only the
fundamental mode enters into the interferometer and to stabilize the frequency of
the laser. Its end mirror is also suspended.

• Power stabilization.
• Reference Cavity (RFC): It is a smaller triangular cavity, ∼30 cm and finesse

∼900. It provides a frequency reference and it is used to stabilize the laser fre-
quency at low frequencies.

• Mode Matching Telescope: It adapts the beam size and alignment to match the
interferometer.

As it was mentioned in the previous chapter, the frequency noise couples directly
to the strain that we want to measure (see Eq. 3.2). For this reason a preliminary
frequency stabilization is necessary before engaging the longitudinal control of the
interferometer.

The Reference Cavity provides a frequency reference and it controls the length
of the IMC at low frequencies, where the seismic noise is more important. At higher
frequencies the IMC itself is a good reference. Then, there is a photodiode in reflection
of the IMC that provides information about the deviation of the laser frequency from
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the length of the IMC.With this information the laser frequency is changed to follow
continuously the IMC length. This first stage of frequency stabilization is also known
as the Pre-stabilization loop.

4.5 DET: Detection

The role of this subsystem is to provide the error signals necessary for the different
controls of the interferometer. There are 6 photodiodes for the longitudinal control
and 12 quadrant photodiodes, placed in 5 detection benches, as it is shown in Fig. 4.3.

Each photodiode monitors different signals from the interferometer: B1 the detec-
tion port, B2 the power reflected by the PRC, B4 the power inside the PRC, B5 the
the reflected power by the North Arm cavity, B7 the transmitted power of the North
Arm cavity and B8 the transmitted power of the West Arm cavity.

Regarding the quadrant photodiodes, they are used for the angular control of the
interferometer. There are two per longitudinal photodiode, and they are placed 90◦

Fig. 4.3 Scheme of the detection benches and the photodiodes used for the angular and longitudinal
controls
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of Gouy phase away from each other, in order to extract useful error signals, as it
will be explained in Sect. 5.5.2.

The case of the Detection bench is a particular one for several reasons. First of
all there are two different informations extracted at it: the beam reflected from the
North Arm cavity, B5 and the beam going to the detection port, B1. There is a wedge2

at the Beam Splitter mirror in order to help separating both beams. Also, regarding
the B1 beam, there are two identical Output Mode cleaners placed in series in order
to provide the cleanest beam possible for the DC-readout. Their role is to select
the fundamental mode and reject the Higher Order modes and to select the carrier
wavelength only, rejecting the sidebands. For the longitudinal and angular controls
we use the photodiodes placed before the OMCs. From now on when talking about
the B1 photodiode we refer to the B1p one.

Finally, the PDH technique requires the treatment of the signal acquired by each
photodiode. In particular it is necessary to demodulate the signals to build the error
signals. It consists on multiplying each signal by a sine at the modulation frequency.
In Virgo the demodulation was done analogically but in Advanced Virgo the demod-
ulation is now done digitally. This gives more flexibility in the error signals available,
allowing to demodulate at several different frequencies per photodiode.

In Virgo, one of the limiting technical noises was coming from diffused light.
There were several measures in order to mitigate this noise, in particular the instal-
lation of baffles,3 which is the topic of the SLC subsystem. On its side, the Detection
subsystem proposed to suspend the detection benches as well as to put them under
vacuum. The suspension is very similar to the one used for the mirrors but smaller.
It only has two mechanical filters and the inverted pendulum is shorter as well.

4.6 ISC: Interferometer Sensing and Control

As it was mentioned previously, even with the Local Controls engaged, the optics
experience a residual motion that brings the interferometer out of its working point.
For this reason an active control is needed to act on the optics and keep them on
the desired position. In Advanced Virgo there are 4 longitudinal degrees of freedom
(DOFs) and 16 angular DOFS to be controlled.

An active control or feedback loop needs an error signal to provide permanent
information about the position of the optics with respect to the working point. The
group of error signals used to control the DOFs is called sensing, and one of the tasks
of this subsystem is to find the optimal one for each of them.

Then the error signal is sent to a controller or digital filter that calculates the
correction needed to bring the mirrors to their working point. This correction is sent
to the appropriate actuators: the coils that act on the magnets glued to the mirrors

2A wedge in an optic element consists on introducing an angle between its two surfaces.
3The baffles are mechanical elements coated with a particular material which absorbs light.
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or to the marionetta. The design of the control filters and the choice of actuators or
driving is as well a task of the ISC subsystem.

During my thesis I have participated to the design and commissioning of this
subsystem. This has implied both simulation and implementation work on the longi-
tudinal and angular loops, as well as on the Second Stage of Frequency Stabilization.
The results of my work will be presented in detail in this document.

4.7 DAQ: Data Acquisition

This subsystem takes care of the exchange and processing of the data that are gener-
ated in the interferometer. The scheme shown in Fig. 4.4 gives a simplified overview
of the DAQ subsystem. Some of its tasks are:

• Digitization electronicsbetween the photodiodes signals and both theDataAcqui-
sition systemand the control loops:Analog toDigital converters (ADC) andDigital
to Analog converters (DAC). Their actuation is limited to ±10 V.

• Online software and communication between online processes. This software
allows to implement the digital control loops including the logic and the control
filters, and to inject noise. This software runs in a series of real time comput-
ers (RTPCs) whose sampling frequency is 10 kHz. The communication between
processes has an important role since any delay will have a direct impact on the
stability of the controls, as we will see in the next chapter.

• DAQ: It collects all the information generated in the interferometer and it is used
formonitoring its behaviour. The data are available online, but they are also stocked
for offline analysis. This is specially useful during the commissioning period and
there are three different data streams: raw data, which stores the data at 10 kHz
during 6 months, 50 Hz data, which stores the data at 50 Hz during 1 year, and
trend data, which stores the data at 1 Hz during 3 years.

• Timing system to synchronize the ITF controls and the readout systems.

Fig. 4.4 Scheme of the DAQ chain for the ISC part from the digitization of the photodiode signals
until the analogic conversion of the corrections sent to the mirror actuators
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• Cameras for beam imaging at strategic places such as the detection benches and
for the Local Controls.

• SSFS DSP. The Second Stage of Frequency Stabilization is a particular control
loopwhich needs toworkwith a very lowdelay,whichmeans at very high sampling
frequency,∼1MHz. A specific Digital Signal Processor (DSP) is being developed
to take care of this particular loop.
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Chapter 5
Fabry-Perot Cavities in Advanced Virgo

So far the working principle of the Advanced Virgo detector has been presented,
as well as a detailed overview of its different subsystems. This chapter will give a
detailed description of the Advanced Virgo Fabry-Perot arm cavities, introducing
the basic concepts needed to understand the challenges of their commissioning.
Starting from the general properties of a Fabry-Perot cavity, the aim is to present the
particular problematic linked to their opto-mechanical characteristics and tomotivate
the choice of the experimental techniques that will be used to bring them to their
optimal working point.

5.1 Basic Properties

An optical resonator is an arrangement of mirrors that allows light to circulate in a
closed path. The simplest kind of optical resonator consists of two reflecting mirrors
facing each other at a distance L, and it is also known as Fabry-Perot cavity.

The complex amplitude of the electromagnetic wave resonating inside the cavity
(Ecav) can be calculated, as well as the one of the transmitted (Etr ) and reflected
(Ere f ) electromagnetic waves.

The convention that will be used here to indicate the phase shift of π that experi-
ences the reflected field when travelling from the medium with the lower refraction
index to the medium with the higher refraction index will be Ere f = −r · Ein .

For a cavity with twomirrors (M1,M2) with reflection coefficients r1, r2, transmis-
sion coefficients t1, t2 separated by a distance L (see Fig. 5.1), the electromagnetic
field at different points can be written as:
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Fig. 5.1 Scheme of a
Fabry-Perot cavity. Notice
that the reflective part of the
mirror, its coating, is placed
in the curved part

• E2 = t1 · E1 − r1 · E6

• E3 = E2 · eikL
• E4 = t2 · E3

• E5 = −r2 · E3

• E6 = E5 · eikL
• E7 = r1 · E1 + t1 · E6

where E1 is the input field and k is the wavenumber.
It is worth saying that the reflected field, E7, has two contributions: one coming

from the directly reflected beam and the second one coming from the field inside
the cavity being transmitted through the input mirror. This intra-cavity field is the
result of the interference between the partial waves that are circulating inside the
cavity. Every time a partial wave makes a round trip it acquires a phase shift of 2kL.
The transmitted field instead is equal to the intra-cavity field after being transmitted
through the end mirror.

Starting from the expressions above, the equations of interest can be derived:

• Intra-cavity field (E2):

Ecav = E1 · t1
1 − r1 · r2 · e2ikL (5.1)

• Reflected field (E7):

Eref = E1 ·
[
r1 − r2 · (r21 + t21 ) · e2ikL

1 − r1 · r2 · e2ikL
]

(5.2)

• Transmitted field (E4):

Etr = E1 · t1 · t2 · eikL
1 − r1 · r2 · e2ikL (5.3)

However, these expressions are the complex amplitude of the respective fields while
in practice the measurable quantity is the power. So starting from Eq. 5.3 the power
transmitted by a Fabry-Perot cavity can be written as:

Ptr = Etr · E∗
tr = Pin · t21 · t22

1 + r21 · r22 − 2 · r1 · r2 · cos(2kL)
(5.4)
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This expression is also known as the Airy function (see Fig. 5.2) and it depends on
the phase accumulated during one round-trip, 2kL. This function contains all the
relevant information that can be extracted from a Fabry-Perot cavity [1].

• Resonance condition: when the phase shift after one round trip corresponds to
an integer multiple of 2π their interference is constructive and the cavity is on
resonance.

�φ = 2 · k · L = n · 2 · π (5.5)

Figure 5.2 shows that this phase shift corresponds to amaximumon the transmitted
power. When substituting in Eqs. 5.1 and 5.2 it can be seen that it also corresponds
to a maximum of the intra-cavity power and a minimum of the reflected power. As
the aim of adding Fabry-Perot cavities on the arms is to enhance the optical path
this is the working point on which we are interested, because it corresponds to the
maximum number of round trips travelled by the light.

• Free Spectral Range: is the frequency difference between two consecutive
resonances.

FSR = �ν = c

2 · L (5.6)

• Linewidth: it is the full width at half maximum (see Fig. 5.2), and it is related to
the pole frequency of the cavity such that fp = FWHM/2. It can be calculated from
the condition Ptr (ω1/2) = Ptr (ω = 0)/2 obtaining:

Fig. 5.2 Power transmitted by a Fabry-Perot cavity as a function of the phase shift accumulated in
a round-trip shows an Airy function. In the figure three different cavity configurations are shown:
R = r21 = r22 = 0.99, R = 0.8, R = 0.5. No losses were considered (T + R = 1). δν is the cavity
linewidth and FSR the free spectral range
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δν = 2 · ω1/2

2 · π
= FSR

π
· arccos

(
−1 + r21 · r22 − 4 · r1 · r2

2 · r1 · r1
)

(5.7)

where ω1/2 are the frequencies at which the power reaches half of its maximum
value.
For cavities with high reflectivities (r1r2 ∼ 1) the small angle approximation for
the cosine can be used:

δν ≈ FSR · 1 − r1 · r2
π

√
r1 · r2 (5.8)

The linewidth depends on the reflectivities of themirrors so that it becomes smaller
when r1 and r2 become higher, meaning the light makes more round-trips inside
the cavity.

• Finesse: it is the ratio between the free spectral range and the linewidth of the
cavity.

F = FSR

δν
≈ π

√
r1 · r2

1 − r1 · r2 (5.9)

This is an important parameter, and it can be used to re-write the expression of the
transmitted power of the cavity, Eq. 5.4:

Ptr = Pin · t21
(1 − r1 · r2)2 · t22

1 + (
2 ·F

π

)2
sin2(kL)

(5.10)

• Storage time: it is the mean time of storage of a photon inside a cavity before
it escapes through one of the mirrors. It can be calculated from the relationship
between the linewidth of the spectrum of an exponentially decreasing electromag-
netic wave and the decay time:

τ = 1

π · δν
= F · 2 · L

c · π
(5.11)

As τ is related to the finesse of the cavity it can be used to measure it experi-
mentally by suddenly stopping the power arriving to the cavity and measuring the
exponential decay of the transmitted power.

5.1.1 Types of Cavity

Depending on the field reflected by the cavity (Eq. 5.2), in particular on its numerator,
three types of cavity can be distinguished:

• Undercoupled: when r1 − r2 · (1 − L1) > 0
• Critically coupled: when r1 − r2 · (1 − L1) = 0
• Overcoupled: when r1 − r2 · (1 − L1) < 0
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Fig. 5.3 Intra-cavity, reflected and transmitted field amplitude and phase as a function of the laser
frequency detuning. Three different cavities are presented, in all cases with T1 + T2 = 0.20 (losses
set to zero), from top to bottom: undercoupled, overcoupled and critically coupled
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where L1 are the losses at the input mirror, r21 + t21 + L1 = 1. Figure 5.3 shows how
the transmitted, reflected and intra-cavity fields change for each type of cavity. For
a matter of simplicity the losses have been set to zero.

In a critically coupled cavity the power transmitted by the input mirror equals the
cavity losses in one round-trip [2]. This means that at resonance all the input power
is transmitted and no power is reflected, which is a good example of Impedance
Matching.

Regarding the phase evolution of the electromagnetic fields it can be seen that in
all cases the phase is almost constant when not resonant but it experiences a jump
around the resonance. This property is very important as it will be seen later (see
Sect. 5.4.2).

The configuration which is particularly interesting for the Advanced Virgo optical
design is the overcoupled one. It is the configuration whose reflected field suffers
the most violent phase change around resonance, which makes it very sensitive to
length variations. Since this is the aim of having Fabry-Perot cavities on the arms,
this is the configuration chosen for Advanced Virgo, with nominal transmission
coefficients Tinput = 0.01375 andTend = 4.4 × 10−6, and nominal (maximum) losses
of 37.5 × 10−6. FromEq. 5.9 the nominal finesse of the armcavities canbe calculated,
Farm ≈ 454. Notice as well that this is the configuration which amplifies the most
the stored power.

5.2 Dynamical Effects

So far the general features of Fabry-Perot cavities have been introduced. In this
section the evolution of the electromagnetic fields of the cavity when a mirror is
moving will be presented. It is specially relevant in our case because the mirrors are
suspended and so free to move. Since seismic noise causes the mirrors to move by
approximately 1 µm rms with a velocity of ∼1 µm/s, it is interesting to study the
dynamical effects derived.

Fig. 5.4 Reflected light
from a moving mirror [3]
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Let’s suppose that one of the mirrors of the cavity is moving so that its position
is given by the function X(t) as shown in Fig. 5.4. The path traversed by the light is
defined by the position of the mirror when the light arrives to its surface in which
is given by X(t′). If a reference {x, t} is defined, the additional optical path can be
written [3]

�x = X (t ′) − x = c · (t − t ′) (5.12)

This �x translates into an additional phase of the electromagnetic field reflected
by the mirror that can be seen as a frequency shift as a consequence of a transfer
of energy from the mirror to the wave. This new frequency can be calculated by
deriving the phase:

φ(t) = ω0 · t − 2 · k · X (t ′); φ′(t) = ω0 − 2 · k · dX
dt ′

· dt
′

dt
(5.13)

where ω0 is the nominal frequency of the laser and k is the wavenumber. dt ′
dt can be

derived from Eq. 5.12 obtaining the final expression:

φ′(t) = ωnew = c − vm(t ′)
c + vm(t ′)

· ω0 (5.14)

where vm is the relative velocity of both mirrors or in other words, the cavity velocity.
This expression shows that the movement of a mirror of the Fabry-Perot cavity

causes a Doppler effect on the circulating wave. For low velocity motions such as the
ones expected for Advanced Virgo in free motion (around 1.5 µm/s) the reflection
can be considered as instantaneous (c� vm and so t = t′) and the previous expression
can be simplified by writing everything as a function of t:

ωnew = [1 − 2 · vm(t)

c
] · ω0 (5.15)

For a mirror speed of 1µm/s, the Doppler effect induced is very small (around 1 Hz).
However, this effect will accumulate on each round-trip and for high finesse cavities
it can be of the order of magnitude of the linewidth causing dynamical effects. The
total frequency shift induced by the Doppler effect can be calculated as the product
of the δω experienced in one round-trip times the effective number of round-trips
made by a photon (Ne f f ). Knowing that Ne f f is related to the storage time so that
τ = 2 · L

c · Ne f f we can write:

Nef f · |δω| = |vm(t)| · ω0 · τ

L
(5.16)

The mirror velocity that makes the total Doppler shift equal to the linewidth of the
resonance of the cavity can be calculated using Eqs. 5.11 and 5.16:
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Fig. 5.5 Scheme of a
Fabry-Perot cavity whose
mirrors are moving around a
reference point [3]

vcr = λ

2 · τ · F = π · c · λ

4 · L · F2
(5.17)

This expression gives the critical velocity of themirror fromwhich dynamical effects
start to be relevant. For Advanced Virgo arm cavities, this vcr is 0.4 µm s−1.

Now we are going to study how this dynamical effects impact the fields in the
Fabry-Perot cavity. Let’s suppose that bothmirrors of aFabry-Perot cavity aremoving
around the nominal length L, as shown in Fig. 5.5. The total distance travelled by a
photon at any time can be defined as:

d(t) = L + x2(t − T ) − x1(t) = L + ξ(t) (5.18)

where T is the time needed for a photon to go from one mirror to the other, T = L/c.
The total distance can be written as a fixed part, which is the one that determines the
interference conditions, and a variable part that affects the dynamics of the cavity.

Now the intra-cavity field can be re-written taking into account the variable optical
path due to the mirror movement:

Ecav(t) = t1 · Ein + r1 · r2 · Ein · e2ikd(t) (5.19)

In order to determine the total optical path, the number of round-trips made has to
be considered, so we can write the intra-cavity field expression after N round-trips:

Ecav(t) = t1 · Ein

N−1∑
n=0

(r1 · r2)n · e−2ikSn(t) + Ein · (r1 · r2)N · e−2ikSN (t) (5.20)

where Sn is the partial sum of the length traversed by the photons, or in other words,
the total optical path after n round-trips:

Sn(t) =
n−1∑
m=0

d · (t − 2 · T · m) = vm

n−1∑
m=0

[t − (2 · m + 1) · T ]

= vm · n · t − vm · n2 · T
(5.21)

Equation 5.20 can be simplified if we are in the large-N limit, which means for
a number of round-trips N much higher than Ne f f , when this expression becomes
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Fig. 5.6 Intra-cavity power as a function of time for three different velocities of the cavity with
respect to the critical velocity, vcr . The dashed line represents the intra-cavity power reached by
a cavity which is not moving and whose maximum power is reached at 0. Notice that the y-axis
are not the same and so the maximum power of the peaks decreases considerably when the cavity
velocity increases. Also the position of the maximum is shifted with respect to the static case

exact:

Ecav(t) = t1 · Ein

∞∑
n=0

(r1 · r2)n · e−2ikSn(t) (5.22)

This expression can be re-written in order to take into account the general expression
for the finesse of an optical cavity1:

F = −2 · π

ln(r1r2)
(5.23)

Including also the storage time (Eq. 5.11) we can write:

Ecav(t) = t1 · Ein

∞∑
n=0

ei(2kvmTn
2 − 2kvmtn) − 2Ln/cτ (5.24)

1When presenting the basic properties of Fabry-Perot cavities in Sect. 5.1, the expression of the
finesse for cavities with high reflectivities was introduced for being the most commonly used. Here
we use the general expression instead, valid for no matter which type of cavity [4].
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This equation describes the behaviour of the intra-cavity field considering the
mirror movement and so accounting for dynamical effects. Figure 5.6 shows the
behaviour of the intra-cavity field for different velocities of the mirrors with respect
to the critical velocity, vcr .

The oscillations that appear once the resonance is passed when the speed of the
cavity is above vcr are known as ringing. Even when the cavity movement is very
slow the resonance peak shape is changed and the power build-up in the cavity is not
complete. The mirror movement impacts as well the transmitted and reflected fields.

5.3 Gaussian Optics

5.3.1 Generalities and Definitions

So far we have only considered the axial properties of the electric field on a Fabry-
Perot cavity, describing them as a function of the frequency and the position along
the optical axis, z. However in order to have a more complete description of the
optical resonator we need to consider the transverse beam geometry. Now, in order
to do this we will describe the spatial part of the electric field as:

E(x, y, z) = u(x, y, z) · e−ikz (5.25)

where u(x, y, z) is a complex scalar wave amplitude that describes the transverse
beam shape. In order to find a solution for E(x, y, z) we need to solve the scalar
wave equation:

[	2 + k2] · E(x, y, z) = 0 (5.26)

Substituting Eq. 5.25 on the wave equation we obtain:

∂2u

∂x2
+ ∂2u

∂y2
+ ∂2u

∂z2
− 2 · i · k · ∂u

∂z
= 0 (5.27)

This expression can be simplified for our particular case in which the source is a laser
beam. Lasers are a special type of electromagnetic waves characterised by their low
diffraction [2]. This means that their width in the transverse plane, w is smaller than
a characteristic length along the propagation axis, l, where the properties of the beam
do not change much. For this special case when w/l is small it can be considered
that u(x, y, z) varies very slowly with z and so the second derivative in z can be
neglected. This is called paraxial approximation which leads to the paraxial wave
equation:

∂2u

∂x2
+ ∂2u

∂y2
− 2 · i · k · ∂u

∂z
= 0 (5.28)
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Solving u(x, y, z) for this equation will give an expression that describes the trans-
verse properties of a paraxial beam. The simplest solution is a Gaussian function and
it is given by

u(x, y, z) =
√

2

π
· 1

w(z)
· exp(i�(z)) · exp

(
−ik

x2 + y2

2R(z)
− x2 + y2

w2(z)

)
(5.29)

where w(z) is the beam size, which is the transverse distance where the intensity of
the beam is reduced to 1/e of the maximum at a given point z, R(z) is the radius of
curvature of a wavefront intersecting the axis at a position z and �(z) is an extra
phase shift along the z-axis called the Gouy phase. Their expressions will be written
later on.

From this expression it can be understood that the transversal intensity profile is a
2DGaussian distribution, which gives the name to the beam that describes,Gaussian
beam. However, there is another representation that gives useful information about
the evolution of a Gaussian wave, which is the beam size as a function of the position
along the optical axis and it is shown in Fig. 5.7. For a given wavelength λ the
Gaussian beam profile is completely determined by two parameters: beam waist w0,
which is the minimum beam size, and z0 which is the beam waist position on the
optical axis.

A Gaussian beam can be divided along the z-axis in two sections (see Fig. 5.7)
separated by a parameter called Rayleigh range, zR which can be related to the waist:

zR = π · w2
0

λ
(5.30)

These two regions are: near field, when zR > z, which is the region around the beam
waist and far field, when zR < z, which is the region far from the waist where the
transverse expansion of the beam becomes more noticeable.

Fig. 5.7 Evolution of a
Gaussian beam along the
z-axis (modified from [1])
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At this point some useful parameters of Gaussian beams can be defined:

• Beam size, w(z):

w(z) = w0 ·
√
1 +

(
z − z0
zR

)2

(5.31)

which in the far-field (z � zR , z0) becomes

w(z) ≈ w0 · z

zR
= z · λ

π · w0
(5.32)

• Radius of curvature, R(z):

R(z) = z ·
[
1 +

(
zR
z

)2
]

(5.33)

• Divergence, θd : angle between the optical axis and the beam size in the far-field.

θd = arctan

(
w0

zR

)
≈ w0

zR
(5.34)

• Gouyphase,�(z): it describes the extra longitudinal phase that acquires aGaussian
beam with respect to a plane wave.

�(z) = arctan

(
z − z0
zR

)
(5.35)

5.3.2 Higher Order Modes

The pure Gaussian solution of the paraxial equation that has been described in the
previous section is not the only possible solution for Eq. 5.28. Instead it can be found a
special set of functions (infinite, countable and complete) that are an exact solution of
the paraxial wave equation and which are called Transverse ElectromagneticModes
(TEM). Indeed the product of two Hermite polynomials (Hm(

√
2 x
w
), Hn(

√
2 y
w
)) and

a Gaussian function to describe unm(x, y, z) gives an exact solution of the paraxial
wave equation and forms a set of TEM called Hermite-Gauss modes. The general
expression is given by:
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unm(x, y, z) =un(x, z) · um(y, z)

=(2n+m−1 n! m! π)−1/2 · 1

w(z)
· exp(i(n + m + 1)�(z))·

Hn(
√
2
x

w
) · Hm(

√
2
y

w
) · exp

(
−ik

x2 + y2

2R(z)
− x2 + y2

w2(z)

) (5.36)

where n and m are the indexes that define the Hermite polynomials, which are called
modenumbers and refer to the number of zeros of the polynomial in the corresponding
direction (x or y). The first two Hermite polynomials are:

H0(x) = 1; H1(x) = 2 · x (5.37)

Using these expressions the rest of the Hermite polynomials can be calculated with
the recurrence relation

Hn+1(x) = 2 · x · Hn(x) − 2 · n · Hn−1(x) (5.38)

Hence, the TEM00 corresponds to the Gaussian profile that was described in the
previous section. The TEMs that have n+m> 0 are also calledHigher OrderModes
(HOMs), where n + m represent the order of the mode. As previously mentioned
these mode numbers represent the number of zeros on the Hermite polynomials. This
translates in a dark fringe on the transverse profile of the beam. Figure 5.8 shows the
intensity distribution of different TEMs. Notice as well that the phase shift for the
HOMs due to the propagation on the z-axis is higher than for the TEM00 and it is
given by ψ = (n + m + 1) �(z).

Regarding a linear optical resonator with two concave mirrors, such as the one of
AdvancedVirgo, the eigenfrequencies of theHOMsdepend on the radius of curvature
of the mirrors as well as the length of the cavity. They are given by the following
expression [1]:

Fig. 5.8 Intensity profile of
several Hermite-Gauss
HOMs, unm . As the order
increases, the intensity peak
decreases and the surface
increases. The TEM00 has
the smallest intensity
profile [2]
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Fig. 5.9 Transmitted power during a scan of the North Arm Cavity length. The two highest peaks
correspond to the fundamental mode, meanwhile the smaller peaks are the HOMs. The closer peak
to the TEM00 correspond to the first HOM, the second closer to the second HOM and so on. HOMs
can be seen up to the seventh order, even if the two last are very small

νmnq = c

2 · L ·
[
q + (m + n + 1)

π
· arccos

(√(
1 − L

R1

) (
1 − L

R2

))]
(5.39)

where q is an integer that indicates all the possible resonance conditions. Notice that
for m = n = 0, so the TEM00 or fundamental mode, we find the axial modes that
depend only on the optical length.

Figure 5.9 shows a length scan of one FSR of the North arm cavity of Advanced
Virgo.Due to the residual seismic noise, the length of the cavity changes permanently,
crossing the resonance condition of the different HOMs. The fundamental mode is
the highest peak since it has the strongest coupling to the cavity. Figure 5.9 shows as
well HOMs up to order 7, which reach less power since they couple more weakly.
The presence of HOMs indicate that the beam is not perfectly adapted to the cavity
(misalignment, mismatch, other optical defects and so on). Since the scan is done by
the free mirrors, there is ringing on all of the peaks due to the high mirror velocity.

The Hermite-Gauss modes are not the only set of TEM that solve the paraxial
equation. Another set commonly used are the Laguerre-Gauss modes, that uses the
Laguerre polynomials. The choice of basis depends on the physical phenomena to
be studied. For example Laguerre-Gauss are often used to study the mode-matching,
that is how the beam size matches the cavity geometry. The Hermite-Gauss basis is
used instead to study the alignment of a cavity. In Sect. 5.5 it will be explained how
these HOMs are originated by the cavity.
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5.3.3 Stability of a Resonator

As it was explained at the beginning of this Sect. 5.3, a Gaussian beam is defined by
its waist w0 and its position z0. For a Gaussian beam to be resonant in a Fabry Perot
cavity the radius of curvature of the mirrors (RoC) has to be matched exactly to the
wavefront of the Gaussian beam when impinging on them. This way the mirrors will
reflect the beam exactly as when it arrived but with reversed wavefront, curvature
and direction.

Taking into account the previous consideration, for a given optical resonator with
mirrors of RoC R1 and R2 and separated by a length L, the parameters that match the
Gaussian beam to the optical resonator can be calculated (see Fig. 5.10). In particular,
it is convenient to write these parameters as a function of the resonator g parameters:

g1 = 1 − L

R1

g2 = 1 − L

R2

(5.40)

It can be proven [5] that in order to obtain real and finite solutions for the Gaussian
beam parameters (w0) and the spot sizes on the mirrors (w1 and w2 at the mirror
positions z1 and z2) the g parameters need to fulfill the following stability condition:

0 ≤ g1 · g2 ≤ 1 (5.41)

This expression can be written as well as a function of the Gouy phase,�G , knowing
its relationship with the g parameters, �G = arccos(g1 · g2) as [6]:

π ≤ �G ≤ 0 (5.42)

Every optical resonator is characterized by its g parameters and when the previous
condition is fulfilled the mirrors form a stable periodic focusing system. This stable

Fig. 5.10 Scheme of a
Fabry-Perot cavity with a
Gaussian beam matched to
it [5]
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Fig. 5.11 Stability diagram.
It represents the g-factor =
g1 · g2 as a function of g1
and g2. Each type of cavity
can be characterized by a
point in this diagram, if it
stays within the shadowed
region the cavity is stable,
meanwhile if it stays outside
this region, the cavity will be
unstable [5]

resonator will have associated a unique set of Gaussian TEM. If this condition is not
fulfilled, the mirrors will form an unstable periodic focusing system and no Gaussian
beam will fit properly into this cavity. With these g factors a stability diagram can
be designed as shown in Fig. 5.11. All the resonators are represented by a point on
this diagram, those who fall within the shadowed region are stable and those which
do not are unstable.

5.4 Longitudinal Motion Control

In the previous sections the basics of Fabry-Perot cavities have been presented, aswell
as the particular characteristics of the Advanced Virgo Arm cavities. As mentioned
on Sect. 3.2.2, the aim of having Fabry-Perot cavities on the arms is to increase
the sensitivity by maximizing the optical path travelled by the light that resonates
inside them. This happens only when the cavities are on a resonance position for the
fundamental mode, which will be our desired working point. However, the seismic
noise causes the suspended mirrors to move and in consequence the length of the
cavity is changing permanently if not controlled. This means that a longitudinal
control of the cavity is needed in order to actively correct its length and to keep it on
resonance. Also, as shown in Eq. 3.2 the fluctuations on the frequency of the laser
will be seen as length changes and so the control will have to correct for them as
well.
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5.4.1 Feedback Control Loops

Basically, what is needed is information about the cavity length variation to be able
to bring it back continuously to its working point. The process of taking the output
of a system and feed it back to its input in order to keep it always at a given working
point is called a feedback control loop [7].

Control theory is widely used in many different domains from engineering to
biology, and it has been extensively studied [8]. When applied to Linear Time-
Invariant systems, such as the ones we find in interferometric detectors, frequency-
domain techniques can be used to understand and predict the behaviour of very
complex systems.

A physical system can be characterized by its ability to accept an input parameter
and produce an output in response. When the system is linear, the output and input
are related by a linear expression. Moreover, if the response of the system is the
same independently of the time, we say that it is a linear time-invariant system (LTI).
These systems can be described by a differential equation of the type:

a0 · x(t) + a1 · dx(t)
dt

+ a2 · d
2x(t)

dt2
+ · · · + an · d

nx(t)

dtn
= b0 · y(t) (5.43)

where y(t) is the input of the system, also known as forcing function and x(t) is
the output or response function. A well known example of a second order Linear
Time-Invariant system is the damped Harmonic Oscillator.

Differential equations of high order can be very complicated to solve in the time
domain. Frequency-domain techniques such as the Laplace transform allow us to
find the time response of such complex systems, by solving the differential equation
on the s-domain. The Laplace transform is defined by:

L{ f (t)} = F(s) =
∫ ∞

0
f (t) · e−st dt (5.44)

where s = σ + iω. The integral is single-sided, which makes it perfect to analyse
physical systems starting at t = 0, because it can take into account initial conditions.

The behaviour of a LTI system on the s-domain is characterized by its Transfer
function (TF), which is the ratio between its output and its input both in the s-domain:

G(s) = Output (s)

I nput (s)
= X (s)

Y (s)
(5.45)

The main advantage of solving a differential equation on the s-domain is that the TF
of LTI systems can be described by rational functions, which simplifies considerably
the task:

G(s) = k · (s − z1) · (s − z2) · · · (s − zN−1) · (s − zN )

(s − p1) · (s − p2) · · · (s − pD−1) · (s − pD)
(5.46)
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where G(s) is the TF of the system. All the zi ’s that cancel the numerator of the TF
are called zeros, and all the pi ’s that cancel the denominator of the TF are called
poles. Moreover for real (physical) systems, the poles and zeros are real or complex
conjugate pairs.

This way of writing a transfer function is commonly referred to as zpk, because
with the zeros, the poles and the gain (k) you have all the information needed to
reconstruct the TF.

In order to simplify the visualization of the shape of a TF, it can be written as
a product of, at most, second order polynomials. A first order zero/pole at a given
frequency f0 can be written as [9]:

Z1(s) = s − 2π · f0

P1(s) = 1

s − 2 · π · f0

(5.47)

A simple zero is also known as differentiator because in the time domain it derives
the input value. On the other hand a simple pole is also called integrator because in
the time domain it integrates the input value.

A second order zero/pole at f0 can be written as [9];

Z2(s) = s2 + 2 · π · f0
Q

· s + (2 · π · f0)
2

P2(s) = 1

s2 + 2·π · f0
Q · s + (2 · π · f0)2

(5.48)

where Q is the quality factor. Notice that a quality factor of 0 will give you a simple
zero/pole and a quality factor higher than 0.5 will give you different overshoots
before falling as f2/f−2, as it can be seen on Fig. 5.12.

An example of a system described by a second order pole is the dampedHarmonic
Oscillator, whose behaviour is determined by the value of its Q: overdamped for Q
< 0.5, underdamped for Q > 0.5 and critically damped for Q = 0.5.

This way of writing TF is called second order section (SOS) and it is the most
commonly used because it is very intuitive to understand the global behaviour of a
system from it.

An important information provided by the TF of a system concerns its stability.
A system is stable if, given an arbitrary function as input, the system experiences a
transient which reduces with time, leaving the system back to a quiescent state. On
the contrary, a system is unstable if for an arbitrary input, the system experiences a
transient that increases with time, never returning to a quiescent state. This happens
when the denominator of the TF goes to zero.
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Fig. 5.12 Left picture: Transfer function of a second order system described by a zero with
different Q. Right picture: Transfer function of a second order system described by a pole with
different Q

5.4.1.1 Arm Cavity Feedback System

Control theory can be applied now to our system of interest: the longitudinal control
of a Fabry-Perot cavity. In order to actively correct the position of the mirrors to be
permanently on resonance, that is, implement a feedback loop to control the length
of the cavity, several elements are needed:

• System to be controlled or plant.
• Error signal: a signal that provides constant information about the parameter to
be controlled, in our particular case the length of the cavity and how far it is from
resonance. An important characteristic of a good error signal is the bipolarity,
meaning that it changes sign around the point of interest, giving information about
the sense of the movement. In the case of a Fabry-Perot cavity it is called PDH
signal, and it will be explained in detail in the next Sect. 5.4.2.

• Feedback filter or corrector: it is used to calculate the correction needed to bring
back the cavity to resonance.

• Actuator: it is an element that acts on the plant by applying the correction calcu-
lated by the filter and so recovering the working point. In the case of Advanced
Virgo the actuators are the coils that act on the magnets which are placed on the
mirrors. Their TF is a simple pole given by its particular RLC circuit. However,
as the coils act on the mirror movement we need to consider also the mechanical
TF of the mirror (see Section AdV).
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Fig. 5.13 Scheme of a feedback loop controlling an optical cavity. In the case of the arms of
Advanced Virgo the optical cavity is the Fabry-Perot on the arms, the filter calculates the correction
needed to bring the cavity on resonance from the error signal and the correction is sent to the coils
that act on the magnets placed on the mirror (Sect. 4.3)

A scheme of this feedback loop can be seen on Fig. 5.13. Considering the input
function, Y(s), as a perturbation that brings the plant out of its working point and
the output function, X(s), as the error signal, it is straightforward to calculate the
Transfer Function of the system:

T FFP(s) = X (s)

Y (s)
= Ocav(s)

1 + Ocav(s) · F(s) · Act (s) (5.49)

This equation gives us the behaviour of the system in Closed loop, that is with the
feedback loop active. The aim of a feedback loop is to keep the system in a given
working state, it will correct for or suppress any perturbation that brings the system
out of its working point. As a consequence, the signals of the system in closed loop
will be reduced with respect to the uncontrolled state. This suppression factor is
called Closed loop gain and it gives information about how effective is the control
loop, in this case in keeping the cavity in resonance:

CLgain = 1

1 + Ocav(s) · F(s) · Act (s) (5.50)

Figure 5.14 shows the transfer function of each element of the loop for the Advanced
Virgo arm cavities and its Closed loop gain. It can be understood from the CLgain

that the system will be able to act to reduce the input up to a given frequency, which
is called Unity Gain Frequency (UGF), where it becomes 1.

Regarding the stability, it can be seen on the denominator ofEq. 5.49 thatwhenever
the product Ocav(s) · F(s) · Act (s) becomes −1, the TF will be infinite, that is, the
system will become unstable. This product of the individual TF of the elements of
the system is called Open loop Transfer Function (OLTF), which corresponds to the
system when the feedback is disconnected from the input. Figure 5.15 shows the
OLTF of the feedback loop of one of the arm cavities of Advanced Virgo.

In order to determine the stability of a feedback system from its OLTF, two points
are needed: the UGF, which corresponds to the frequency where the amplitude, also
called gain, becomes 1, and the 180◦ crossover, which is the closest frequency to
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Fig. 5.14 Up-left picture: transfer function of a Fabry Perot cavity of 3 km (normalized). Up-
right picture: transfer function of the actuation of AdV including the coil and the mechanics of the
suspension of the mirror, which explains the two resonances that are visible. Down-left picture:
transfer function of an example of stable corrector for this system.Down-right picture: suppression
factor of the system

the UGF at which the phase becomes ±180◦ (see Fig. 5.15). With these two points
two parameters can be determined:

• Phase margin: is calculated as, phase at the UGF—(±180◦), depending on the
sign of the ±180◦ crossover. If this value is positive the system will be stable,
otherwise, it will be unstable. The absolute value also gives you information about
how much phase margin you have before becoming unstable. For the nominal arm
cavities of AdV (Tinput = 0.01375, Tend = 4.4 × 10−6 and L1,2 = 37.5 × 10−6)
the phase margin is: −115.4 − (−180) = +64.6◦.

• Gainmargin: it is given by the values of the amplitude at both±180◦. It gives you
as well information of your stability margin. In our particular case the amplitude
stability range is: [36.1 0.46]. This means that you can decrease the gain by a factor
36 or increase it by a factor 0.46 and still remain stable.

A figure that provides more complete information about the stability behaviour
of the system is the Nichols plot [9]. It is the representation of both the amplitude
and the phase of the system OLTF for each frequency, see Fig. 5.16. The red point
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Fig. 5.15 Gain and phase of the Open Loop of the Advanced Virgo arm cavities showing the UGF
which is at 65 Hz (red bars) and the 180◦ crossover points at 2.8 and 215 Hz (blue bars). This type
of representation is also known as Bode plot

Fig. 5.16 Nichols plot of the system, showing the gain and the phase of theOLTF for each frequency.
The gain and phase margins are shown in blue and red respectively. The frequencies that indicate
the gain stability limits (low and high) are shown by a blue cross. The grid indicates the behaviour
of the system in Closed Loop
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gives you the instability of the system: when the amplitude is 1 and the phase is
−180◦. The stability condition in this representation requires that the system crosses
the unity gain axis between −180◦ and 0.

From this representation is much straight forward to extract the stability margins
(in red the phase margin and in blue the gain margin). Moreover, the different grids
gives an extra information about the amplification of the system for each frequency.
This is important because even if your system is stable, if it is too close to the
instability area the input will be enhanced instead of reduced. This enhancement is
called an overshoot and depending on your system and in the perturbation sources or
noises it might cause the system to oscillate making it unstable in practice. Normally
the convention is to avoid the 6 dB region where the perturbation is enhanced by a
factor 2.

The equivalent representation in the time domain is the step response of the
system. It is important because it gives you its behaviour at the moment of closing
the control loop. Ideally the response would be a step, but depending on how close
is our system from the instability area, a transient oscillation will take place, at the
frequency which is closer to the instability.

An example of a system too close to the instability area is shown in Fig. 5.17.
The Nichols plot shows that the system passes very close to the 6 dB curve, in the

Fig. 5.17 Left picture: Nichols plot for the previously studied system, but with a higher gain,
which brings the frequency range 150–200 Hz closer to the instability region. Central picture:
Closed Loop gain of the system. There is an overshoot of more than 2 in the critical frequency
region. Right picture: step response of the system when engaging the feedback loop. We can see a
transient oscillation with a period of 6 ms, corresponding to a frequency of ∼170 Hz as expected.
Notice that it converges to 1 outside the zoom that is shown in the figure
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region between 150–200 Hz. An overshoot of more than 2 can be seen on the CLgain

around this frequency region, which means that the movement is enhanced instead
of reduced on that region. Also an oscillation on the step response can be seen, from
which the frequency that is causing the instability can be extracted (T ∼ 0.006 s, f
∼ 170 Hz).

A very simple example has been presented here, but this Laplace analysis of
feedback loops is very powerful, allowing to make a much more detailed analysis by
considering more elements or adding noise sources.

5.4.2 Length Sensing: PDH Technique

The basics to control a Fabry-Perot cavity has been presented in the previous section.
In particular the control scheme used for the 3 km cavities of Advanced Virgo. One
key element is the error signal that contains the information about the length of
the cavity with respect to the resonance point. An ideal error signal fulfils several
conditions: it is bipolar, that means that it changes sign depending on which side of
the working point we are; it is linear, meaning it is proportional to the parameter we
want to measure; and it crosses zero at the desired working point.

In order to obtain an error signal with all these requirements the Pound-Drever-
Hall technique (PDH) is used [10]. It was invented to control the frequency of a
maserwith respect to a reference optical cavity, based on amicrowave technique [11].
Instead in the gravitational waves detectors it is used to control the cavity length with
respect to the wavelength of the laser which has been previously stabilized. It takes
advantage of the fact that the phase of the electromagnetic field entering into the
cavity changes its value around the resonance point (see Fig. 5.3 in Sect. 5.1.1) and
that it is not the case out of resonance, where the phase is almost constant.

PDH technique consists of adding sidebands around the main field or carrier
with a frequency that is chosen to be anti-resonant in the FP cavity while the carrier
is resonant. This way they act as phase reference for the carrier which enters into
the cavity, and carries information about the cavity length. The beating between
sidebands and carrier is the error signal we are interested in because it gives the
phase difference between them.

The sidebands are created by modulating in phase the laser beam using an Electro
Optical Modulator (EOM). It consists of a crystal that changes the propagation prop-
erties of electromagnetic radiation by applying an electric field [1]. In our particular
case a sinusoidal radio-frequency signal of frequency� is applied affecting the phase
of the electromagnetic field as:

EEOM = E0 · e(iω0t+m cos(�t)) (5.51)

where ω0 is the laser frequency and m is the modulation depth. This field can be
re-written in terms of Bessel functions using the Jacobi-Anger expansion at first
order [9]:
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Fig. 5.18 Bessel functions
of first kind from 0 order to
3rd order. In our case the
variable is the modulation
depth, and it can be
understood from the graph
that at low m, J2 and J3 have
negligible values
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EEOM = E0 · eiωt [J0(m) − J1(m) · e−i�t + J1(m) · ei�t
] + · · · (5.52)

where Ji are the Bessel functions of first kind.
The term in J0 corresponds to the carrier and the terms in J1 correspond to the

two first sidebands created, one shifted in frequency from the carrier by � (upper
sideband) an the other one by −� (lower sideband). The points in the expression
refer to the higher order sidebands at integer multiples of the modulation frequency.
As m is often small they have a much smaller amplitude so over the first order they
can be neglected, as it is shown in Fig. 5.18. For example in Advanced Virgo the
modulation depth is 0.1 which means that J0 = 0.9975, J1 = 0.05, J2 = 0.0012 and
J3 = 2 × 10−5.

Now the expression of the error signal in reflection of the cavity can be calculated:

Eref l = E0 · eiωt [J0(m) · rc − J1(m) · r− · e−i�t + J1(m) · r+ · ei�t
]

Pref l = Pin

[
J0(m)2 · ∣∣rc∣∣2 + J1(m)2 · ∣∣r+∣∣2 + J1(m)2 · ∣∣r−∣∣2 (DC)

+ e−i�t · J0(m) · J1(m) · (−rc · r+∗ + rc∗ · r−) + cc (�)

+ e−2i�t · J1(m)2 · r− · r+∗ + cc

]
(2�)

(5.53)

where rc, r+ and r− are the reflection coefficients for the carrier, upper and lower
sideband respectively. The complex conjugate for the reflection coefficients is defined
as r∗ and cc stands for complex conjugate of the previous expression.

In the expression of the reflected power, Eq. 5.53, three terms can be distinguished:
thefirst one inDC,which corresponds to the static power in reflectionof the cavity; the
second term at the modulation frequency, which corresponds to the beating between
sidebands and carrier that we are interested in; and a third term which oscillates at
twice themodulation frequency,which corresponds to the beatingbetween sidebands.



62 5 Fabry-Perot Cavities in Advanced Virgo

Fig. 5.19 Scheme of the PDH technique. The laser is modulated in phase by an EOM, adding
sidebands at the modulation frequency. The carrier field resonates in the cavity while the sidebands
are reflected because they are anti-resonant. The photodiode detects the reflection of the cavity and
the power is multiplied by themodulation frequency. A low pass filter is applied to this demodulated
signal, obtaining the desired error signal

In order to isolate the term which contains the relevant information, the power
is multiplied by the signal used to generate the modulation frequency. This process
is also known as demodulation of the error signal. The resulting signal will have a
term in DC which is the one containing the beating, and terms in �, 2� and 3�. As
we are interested in the DC term as it will be shown to be an excellent error signal,
a low-pass filter is applied to the demodulated signal. The scheme of the process is
shown in Fig. 5.19.

Depending on the phase of the demodulation signal, that iswhetherwemultiply by
a sine or a cosine, the information obtained will be different. Ideally only one of them
will be significant and the other will be zero. The signal obtained from multiplying
by a sine is called in-phase (PDHp) and the one obtained from multiplying by a
cosine is called in-quadrature (PDHq):

PDHp =Pin · J0(m) · J1(m) · �(rc∗ · r− − rc · r+∗)
PDHq =Pin · J0(m) · J1(m) · 
(rc∗ · r− − rc · r+∗)

(5.54)

In practice there are delays due to cables and electronics in the demodulation process.
This means that it is needed to consider a more general case where the demodulation
signal, either a cosine or a sine, needs to include an arbitrary phase such as: cos(�t +
φmod) or sin(�t + φmod). At the end of the process this demodulation phase, φmod ,
needs to be tuned to separate the information provided by the in-phase and the in-
quadrature projections.

It is worth noticing that the phase modulation introduces an effect called Residual
Amplitude Modulation via the EOM. This amplitude modulation occurs at the fre-
quency of the phase modulation, and so it couples to the PDH error signals, changing
their zero-crossing. It can couple to the strain sensitivity, and for this reason there are
important requirements on the EOM performances. An analytical expression of this
error signal can be obtained starting from the reflectivity of the carrier (see Eq. 5.2).
First let’s consider that the carrier is on resonance (see Eq. 5.5) and that a longitudinal
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deviation from resonance δl is applied. The reflectivity then becomes:

rc =
[

r1 − r2 · e2ikδl
1 − r1 · r2 · e2ikδl

]
(5.55)

Notice that the losses have been neglected.
The reflectivity for the sidebands is slightly different because they have been

chosen to be anti-resonant when the carrier is resonant. This means that the phase
shift accumulated by the sidebands when propagating along the arm will be an odd
multiple of π . Taking into account a longitudinal deviation from resonance δl we
can write:

r± =
[

r1 + r2 · e2ikδl
1 + r1 · r2 · e2ikδl

]
≈ 1 (5.56)

As the sidebands are anti-resonant in the arm cavity, the reflectivity can be approxi-
mated to one if no losses are considered, as shown in Fig. 5.3.

There should be a term in ±2�
c δl which can be neglected because � is normally

of the order of MHz and δl of the order of a wavelength (∼1015 Hz). When both
the upper and the lower sidebands are anti-resonant, they have the same reflectivity
which is approximately 1. Taking this approximation into account we can write [12]:

rc∗ · r− − rc · r+∗ = −2 · �(rc) (5.57)

Finally the analytical expression of both PDH projections can be solved for the
reflectivities previously calculated using Eq. 5.57:

PDHp = 4 · Pin · J0(m) · J1(m) · r2 · t21 · sin(2kδl)

1 + r21 · r22 − 2 · r1 · r2 · cos(2kδl)
PDHq = 0

(5.58)
Even if the sidebands are poorly transmitted by the cavity, for being anti-resonant,
there is some beating in transmission that creates also a PDH signal. It can be used
for locking purposes, but it will have a lower signal-to-noise ratio. It differs from
Eq. 5.58 in a factor 2 t2

t1
instead of the term 4r2 [13].

Figure 5.20 shows both projections of the error signal and the transmitted power
of the AdV arm cavity, including the resonance of the carrier and of the sidebands.
The in-phase signal fulfils the conditions for an ideal error signal: it is linear around
the region of interest, it crosses zero at the resonance and it is bipolar around the
working-point. Notice that it is also a good error signal at the sidebands resonance,
but its slope has opposite sign.

On the other hand, the in-quadrature projection is zero at resonance, but a peak
can be seen where the upper and lower sideband are resonant respectively. This is
because it is sensitive to amplitude variations, that is to the absorption of the Fabry-
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Fig. 5.20 Upper picture: transmitted power of a Fabry Perot cavity such as the one of AdV.
Central picture: in-phase projection of the PDH signal. Lower picture: in-quadrature projection
of the PDH signal

Perot cavity. At the carrier resonance there is no structure because the beat note
between carrier and each sideband is dephased by π .

Notice however that the error signal is only linear in a limited region around
resonance and so outside this region it can not be used. It can be shown that the
width of the linear region is equal to the linewidth of the cavity [13] as it can be seen
in Fig. 5.21.

Another interesting feature of the error signal is its slope in the linear region
because it gives us the sensitivity of the error signal to a longitudinal displacement.
It can be obtained from the derivative of (5.58) evaluated at the origin [9]:

dp

d(δl)
= −J0(m) · J1(m) · Pin · r2 · 8 · F

λ
(5.59)

This expression shows that the slope of the error signal depends on the finesse of the
cavity. This means that an increase of this parameter will translate in an increase of
the sensitivity. However, this would also mean a smaller linewidth and so a narrower
linear region. A compromise between both parameters is the key of a good control
of the cavity length.

If we consider that the photodiode transfer function is flat and equal to one it can
be shown that the slope of the error signal is equal to the value of the optical transfer
function of the cavity (as a function of displacement) at low frequency [2]. For this
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Fig. 5.21 The dashed curved represents the power transmitted by the cavity and the blue continuous
line is the correspondent PDH signal for an AdV arm cavity with 1W of input power. It crosses zero
at the resonance and that is linear around this point. The red line shows the PDH signal normalized
and this increases the width of its linear region

reason, from now on we will refer to the slope of the error signal as its Optical Gain
(OG).

This Optical Gain can be calculated from the intra-cavity power (Eq. 5.1) and can
be related to the finesse of the cavity as [14]:

OG =
(

t21
(1 − r1r2)2

)
=

(
(1 + ζ ) · F

π

)
(5.60)

where the value of ζ depends on the type of cavity: 1 < ζ < 0 for an overcoupled
cavity, ζ = 0 for a critically coupled cavity and −1 < ζ < 0 for an undercoupled
cavity.

5.4.2.1 Linearisation of the Error Signal

As it was just mentioned the error signal can only be used within its linear region.
However there is a way to increase the width of this region by processing the error
signal. Equation 5.58 shows that the linear region is limited by the denominator
which for small displacements behaves as δl2. Now, the PDH can be re-written in
terms of transmitted cavity power (Eq. 5.4)

PDHp = 4 · J0(m) · J1(m) · r2 · Ptr
t22

sin(2kδl) (5.61)
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This means that normalizing by the transmitted power it is possible to remove the
limitation on the linear region [15]. The linearised PDH then becomes:

PDHlin = PDHp

Ptr
= 4 · J0(m) · J1(m) · r2

t22
sin(2kδl) (5.62)

Notice that both expressions are linear for small deviations from resonance, but they
have different slopes.

Figure 5.21 shows the comparison between the PDH signal with and without
linearisation. The linear region is now much wider, which increases the range of use
of the error signal, simplifying the lock acquisition.

However in real life linearisation implies that far from resonance we are dividing
by a very small number which is affected by electronic noise or shot noise and this
limits the linear range that can be reached in practice.

5.4.3 Lock Acquisition: Guided Lock

So far the basics of the control loop used to keep the FP cavities on resonance has
been presented as well as how to study its performance once closed. However, in
the case of Advanced Virgo the dynamics of the cavities has to be considered, as
introduced on Sect. 5.2, because it will have an impact on the shape of the error
signal, preventing the control to be engaged.

As it has been seen in the previous section, the error signal is linear only within
a restricted region. Its width is equal to the linewidth of the FP cavity (when non
linearised), which for Advanced Virgo is ∼2.4 nm. The mirrors displacement when
the Local Control is active is approximately 1 µm RMS (see Section AdV), which
means that the cavity will pass through several resonances per second. The control
loop needs to be closed during one resonance crossing, and the success of this action
will depend on the velocity of the cavity. There are several factors that determine the
velocity threshold above which the lock can not be engaged [16]:

• Control bandwidth: the reaction time of a control loop is determined by its
bandwidth (B). In order to acquire lock, the loop needs to react faster than the
time to cross a resonance:

vmax,B <
λ

2 · F · 2 · π · B (5.63)

• Actuation force: the lock acquisition is also limited by the maximum force that
can be applied. The time needed to stop the mirrors which are moving with a linear
momentum mv by applying the maximum force available has to be smaller than
the resonance crossing time. This puts another threshold on the mirror velocity:
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Table 5.1 Threshold velocities calculated for the Virgo+ and Advanced Virgo Fabry-Perot cavities

Units Virgo+ Advanced Virgo

Mirror mass kg 20 42.3

Control bandwidth Hz 100 100

Maximum force per
coil-pair

mN 2.9 2.5

Finesse – 150 450

vmax,B (µm s−1) 2.23 0.74

vmax,F (µm s−1) 0.72 0.26

vmax,cr (µm s−1) 3.71 0.4

vmax,F <

√
λ

2 · F · Fmax

m
(5.64)

• Fabry-Perot cavity dynamics: the field needs some time in order to reach a
stationary state. If the cavity changes its length due to a mirror movement before
its build-up is completed, the ringing effect will start to distort the fields, spoiling
the error signal as well (see Sect. 5.2).

vmax,cr <
λ

2 · F · c · π

2 · L · F (5.65)

These threshold velocities can be estimated for the Advanced Virgo Fabry-Perot arm
cavities. They are shown in Table 5.1 together with the corresponding ones of Virgo+
for comparison.

In the case of Advanced Virgo the three velocities become critical. Regarding the
maximum force that can be applied, there are 4 coil-pairs available for each cavity,
so this factor is no more critical. Moreover, the first two requirements can be relaxed
by linearising the PDH signal as explained in the previous Sect. 5.4.2. This would
increase the width of the linear region as well as the threshold velocity.

However, linearisation does not solve the problem of the ringing effect, which
distorts the fields in a way that can not be compensated by normalization. Figure 5.22
shows a PDH signal for a cavity that moves faster than its critical velocity. It can be
observed that the linear region is smaller than usual, it is asymmetric around zero
and the zero-crossing does not coincide with the resonance. With a PDH like this
the lock acquisition becomes almost impossible and so a special strategy needs to be
adopted: Guided Lock.

5.4.3.1 Guided Lock

Guided lock was first tested at the 40-m laboratory in Caltech [18], and improved
further in TAMA [19]. It was already implemented as well in Virgo+ as a feasibility
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Fig. 5.22 Reflected, transmitted and PDH signal photodetector currents of a Fabry-Perot cavity
with a storage time of 1.8µs. The red line shows the zero-crossing of the PDH signal. Left picture:
no ringing present, v � vcr Right picture: ringing effects are present, v � vcr [17]

test, even though at the time there were no ringing effects present [16]. The basic
principle of the Guided Lock is to estimate the velocity at which a resonance
is crossed in order to give a single extended impulse to the mirror with the
maximum force available sending it back to the same resonancewith an opposed
and smaller velocity than the initial one. If this velocity is smaller than the critical
one, the error signal no more suffers from ringing and the linear control is engaged.
Otherwise another pulse can be applied in order to further calm the cavity.

The locking sequence for one of the arm cavities has been simulated using a
time-domain simulation tool, e2e (Sect. 4.1), and it is shown in Fig. 5.23. A pulse
is applied after the first resonance peak is crossed that sends the cavity back to the
resonance. A second pulse is applied with the opposite force to further reduce the
velocity until the linear controller can be engaged.

The aim is to calculate the duration of the pulse so that the mirror is stopped
and accelerated in the opposite direction with a velocity smaller than the initial one.
Knowing the mass of the mirrors (mmirr ) and the maximum force that can be applied
to them (Fmax ), the maximum acceleration that can be achieved can be calculated
as amax = Fmax /mmirr . With this information the time that the impulse needs to be
applied in order to reach a given velocity can be defined as:

tpulse = vini + v f in

amax
(5.66)

where vini is the initial velocity and v f in = ε · vini where ε is a value between
0 and 1.

One important factor to consider is the time needed for the cavity to go back to the
resonance. If the final velocity is too low, the mirror takes a longer time to return to
the resonance. During this time the seismic noise is able to change the acceleration of
the cavity introducing uncertainty on the final velocity or even changing the direction
of the mirrors motion. From the tests done in Virgo+, the final velocity was chosen
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Fig. 5.23 e2e simulation of a lock engagement sequence using the Guided Lock technique.Upper
picture: transmitted power normalized by the maximum power on the cavity. Central picture:
correction sent to the mirrors in units of force. Lower picture: cavity length variation

to be v f in = 0.3 µm s−1 and as the seismic noise is not expected to have increased,
this value will be kept for the Advanced Virgo cavities lock.

The main challenge of this technique is the velocity estimation, that needs to
be done online, in order to react on time. When there is no dynamical effects the
velocity of the cavity can be calculated from the derivative of the PDH signal on its
linear region. However, this is not true anymore when the ringing is present, and a
power-law correction needs to be applied [19]:

vcav = C ·
(

∂PDHlin

∂t

)P

(5.67)

where C is a calibration factor and P accounts for a power-law correction. Time
domain simulations have been performed in [20] in order to determine up to which
velocity of the cavity the estimation of the velocity is good without the need of a
power-law correction. The simulations concluded that for the error signal linearised
in reflection the approximation is valid up to ±3 µm s−1.

Nevertheless, in practice the lock acquisition of the two arm FP cavities is done
simultaneously, which means that their signals will be mixed at the photodiodes in
reflection. Thus the error signal to be used preferably is the one in transmission.
Simulations tell that in this case, the approximation is valid up to ±1.5 µm s−1.
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However due to the low SNR the data lose significance even before this value.
Together with the difficulty of finding the right calibration factor at the early stage
of commissioning, we looked for an alternative way of calculating the speed online.

The dynamical effects on FP cavities were introduced on Sect. 5.2 and Fig. 5.6
shows the shape of the intracavity power at three different cavity speeds. Although
the ringing effect is visible, it is not the only distortion. The rising of the resonance
peak also changes with the speed, becoming less steeper when the velocity increases.
A new idea was then explored: to use the time that the transmitted power takes to go
from 10% of its maximum power to 40% of its maximum power (t10−40) to calculate
the velocity of the cavity.

This method has two advantages: first of all the velocity of the cavity is calcu-
lated before reaching the resonance, which increases the reaction time and so the
possibilities of slowing down the cavity with only one pulse. Second, the rising time
that is measured is already in physical units, which removes the need of calibration,
decreasing a potential source of uncertainty.

Using the equation of the transmitted power when dynamical effects are present
(Eq. 5.24) a simulation was made in order to determine if it exists a relationship
between t10−40 and the velocity of the cavity. Figure 5.24 shows that it exists a linear
relationship between t10−40 and the inverse of the velocity of the cavity which allows
to calculate the velocity with an accuracy of 1%.

This way of estimating the velocity is limited by the speed at which the cavity
does not have enough build-up to reach 40% of the maximum power, which in our
case is 1.4µm s−1. It is worth to mention as well the local loss of linearity around 1.2
µm s−1 that can be seen in Fig. 5.24. It is not a major problem because it only affects
a small range of velocities (from 1.2 to 1.4 µm s−1), introducing an error of 20% in
the worst case. Both parameters can be improved when using the time between 10
and 30% of the maximum power, which would increase the range of validity of this

Fig. 5.24 The blue points
show the relationship
between t10−40 and the
inverse of the resonance
crossing velocity given by
the simulation. The straight
line is the fit of these points
whose expression is shown
in the legend. The dashed
lines shows the 95%
confidence limits of the fit.
They represent 1% of the
simulation value
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approximation. However, for our particular case the range given by t10−40 is enough
to engage lock.

Notice as well that this way of estimating the velocity, unlike the one that uses
the derivative of the error signal, does not indicate the sign of the velocity. However
this information can be extracted from the sign of the PDH signal, which changes
when crossing the resonance. So its sign when the power build-up is starting will
determine the sign of the impulse thatwill bring the cavity back to the same resonance.
The experimental results after the implementation of this lock strategy are shown in
Sect. 7.2.2.

5.5 Angular Motion Control

So far we have considered only the longitudinal motion of the cavity, in order to
keep the fundamental mode resonant. However this is only true if the input beam is
properly aligned to the cavity axis.When this is not the case the electromagnetic field
couples to higher order modes. The optical axis of a cavity with two spherical mirrors
of RoC R1 and R2 is defined as the line that intersects both center of curvatures, as
shown in the plot on the left of Fig. 5.25.

There are four parameters to describe the alignment of a cavity: 2 rotations
(around the horizontal axis of the mirror, θx or around the vertical axis, θy) and 2
transverse translations (�x, �y). It can be shown [21] that when there is a shift
of the input beam and/or of the cavity axis (δx ) as shown in the Up-Right plot of
Fig. 5.25, the first HOM is coupled:

E(x + δx ) = A · H0(x − δx ) ≈ A ·
[
H0(x) + δx

w0
· H1(x)

]
(5.68)

Fig. 5.25 Left picture: scheme of the optical axis for a Fabry-Perot cavity with spherical mirrors.
Up-right picture: optical axis shift. Down-right picture: Optical axis tilt
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Modeswith order higher than 2 have not been taken into account. This approximation
stands if δx is much smaller than w0. This equation is written for a displacement on
the x-axis, but a displacement on the y-axis will have an identical expression.

For a tilt of the input beam and/or the cavity axis (αx ), as shown in Fig. 5.25
Down-Right, the HOM coupling can be calculated as for the shift. However, this
time a phase change has to be taken into account. This can be understood due to
the fact that the wave-front is spherical and so the phase distribution when a tilt is
present changes with respect to the on-axis. For this case the assumptions are:

|E(x + α(x))| = |E(x ′)| · cos(αx )
−1; φ(x) = k · x · sin(αx ) (5.69)

It can be shown for this case as well [21] that the first HOM is coupled, but this time
with 90◦ of phase shift. Again, this expression is valid for angles much smaller than
the divergence angle of the beam, θd (see Eq. 5.34).

E(x + αx ) ≈ A · [H0(x) + i · k · αx · w0

2
· H1(x)] = A · [H0(x) + i · αx

θd
· H1(x)]

(5.70)
As in the shift case, Eq. 5.70 is equivalent for a tilt αy .

5.5.1 Alignment Coordinates

As mentioned before, a misalignment can occur by changing the input beam and/or
the cavity axis direction. Depending on the nature of the misalignment and on the
cavity optical configuration, the HOMs generated will be different. A change on the
angular position of one mirror could modify the cavity axis both in rotation (tilt) and
in translation (shift). However, from the control point of view it is more convenient
to work in a coordinate system that decouples the two DOF to be controlled. For this
reason wewant to move from themirror basis to the tilt/shift one because they are the
eigenvectors of the optical cavity. Due to the high finesse of the cavity the allowable
mirror misalignments to maintain closed the longitudinal control are in the micro-
radians regime, thus in the following we will use the small angle approximation.

Fig. 5.26 Scheme of a
cavity with its optical axis
tilted
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First we will study the tilt case. The equation of the optical axis can be written
as a function of the optical parameters of the cavity. We are going to consider as
zero-coordinate, z0 the position of the input mirror, as seen in Fig. 5.26. Some useful
parameters can be extracted from it:

• Distance between radius (dR):

dR = R1 − (L − R2) (5.71)

• Beam waist position (zw0 ):

zw0 = dR/2 + (L − R2) = R1 − R2 + L

2
(5.72)

• Optical axis slope (moa):

moa = R1 · θ1

dR/2
(5.73)

• Y-intercept of the optical axis (boa):

boa ≈ −zw0 · moa (5.74)

At this point the optical axis expression can be written:

y = moa · z + boa = moa · z − moa · zw0 = moa · (z − zw0) (5.75)

In order to know the combination of mirror movements needed to make a pure tilt
we solve the optical axis equation for a given point (z = L − R2, y = θ2R2) obtaining
the following relationship:

θ2 = − R1

R2
· θ1 (5.76)

This equation gives the relationship between the angular displacement of bothmirrors
in order to produce a pure tilt of the optical axis.

Fig. 5.27 Scheme of a
cavity with its optical axis
shifted
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This reasoning can be repeated for a pure shift of the optical axis. In this case
the equation of the optical axis becomes easier because the slope is zero. A scheme
of this configuration is shown in Fig. 5.27. To obtain the relationship between the
mirrors angular movement we only need two points of the line:

y = θ1 · R1 = θ2 · R2 (5.77)

With this information we can build the matrix that changes from the mirror basis to
the cavity eigenvectors:

(
θb
δb

)
=

(
1 −R1/R2

1 R1/R2

)
·
(

θ1
θ2

)
(5.78)

where θb is the tilt of the optical axis and δb is the shift of the optical axis.
For the moment the matrix contains only the information about the ratio between

the single mirrors misalignments (θ1 and θ2), and how they couple into tilt and shift.
However, there is a units problem (the shift DOF is expressed in μrad) and so the
values do not have a physical meaning. Nevertheless, it is convenient to have the
same “fake units” in order to compare the coupling between them. The real matrix
will be written at the end of this section.

An additional interest on the tilt/shift coordinate system arises when working at
high power. In this case the light beam exerts a torque upon the mirrors eigenvectors
due to the radiation pressure [22]. This effect is equivalent to an optical spring
connecting the two mirrors and which modifies its mechanical transfer function.
When taking into account radiation pressure the tilt coordinate corresponds to the
(+) mode or hard mode because it increases the frequency of the pendulum, making
the system stiffer. On the other hand, the shift coordinate corresponds to the (−)mode
or soft mode because it decreases the frequency, making the system softer [23].

The stiffness of the optical spring for each mode can be calculated such as [24]:

κ+ = 2 · Pin · L
c · (g1 · g2 − 1)

· (g1 + g2) + √
(g1 + g2)2 + 4

2

κ− = 2 · Pin · L
c · (g1 · g2 − 1)

· (g1 + g2) − √
(g1 + g2)2 + 4

2

(5.79)

As for a classical spring, the resonance frequency can be obtained as f = 1/2π · √k/m.
The angular control will have to adapt to these new values of themechanical TF of the
mirrors. Their value depends on the input power. If one of them becomes negative,
the system will be unstable and it will depend on the control filter to maintain the
stability. This was the case of the shift of the arm cavities in Virgo+. In the new
configuration, the DOFs are stable even at high power (200 W), which simplifies the
design of the angular control.
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5.5.1.1 Arm Cavity Alignment Simulation

A simulation of the misalignment impact on the transmitted power of one of the
arm cavities of Advanced Virgo has been made using Finesse [25]. Starting from
the ideal alignment, a scan of different misalignments around the horizontal axis of
both mirrors (θx ) has been done. The objective was to quantify the evolution of the
transmitted power as a function of the misalignment. The result of the simulation
can be seen in Fig. 5.28. Notice that only θx has been simulated, because we expect
an equivalent behaviour around the vertical axis θy .

From Fig. 5.28 it is clear that in the coordinate system of the mirrors both degrees
of freedom are very coupled. The fact that the ellipse is inclined implies that the two
variables plotted are coupled. The ellipse axis on this figure represents the tilt and
the shift coordinates and it can be seen already that one is much more critical than
the other.

The ratio between them can be estimated by comparing the misalignment needed
to lose a given amount a power while doing a pure tilt or a pure shift, using the
change of basis matrix presented above, in “fake units”. From the simulation we
know that the pure tilt needed to decrease the power to 2.5× 10−5 W is approximately
2.3 ± 0.4µrad and the pure shift needed is 10 ± 0.4 µrad. The total ratio Shift/Tilt
is then 4.3 ± 0.9. The uncertainty on this calculation comes from the limited number
of points simulated. It is clear now that the cavity is more sensitive to a tilt than to

Fig. 5.28 Finesse simulation result of the transmitted power of an arm cavity as a function of the
NI and NEmirrors misalignment on θx . The power distribution is represented in a color scale which
goes from blue (minimum power) to yellow (maximum power)



76 5 Fabry-Perot Cavities in Advanced Virgo

a shift. From the control point of view this means that the most critical degree of
freedom is the tilt of the cavity, which should be controlled first.

The same plot can be represented in the coordinate system tilt/shift mentioned
in the previous section, although now it is more interesting to put them in SI units.
Starting with the tilt, the calibration can be derived from the slope of the optical
axis equation (Eq. 5.74). For an angular movement of 1 µrad of the input mirror the
optical axis of the cavity is tilted by:

θb = θ1 · 2 · R1

R1 − L + R2
= 27.6 (µrad) (5.80)

where R1 = 1420 m and R2 = 1683 m are the nominal RoC of the mirror.
The calibration factor for a pure shift can be derived from Eq. 5.77 instead. For

an angular movement of 1 µrad of the input mirror the optical axis of the cavity is
shifted by:

δb = θ1 · R1 = 1.42 (mm) (5.81)

Now the change of basis matrix can be written in SI units:

(
θb (µrad)
δb (mm)

)
=

(
27.6 −27.6 · R1/R2

1.42 1.42 · R1/R2

)
·
(

θ1 (µrad)
θ2 (µrad)

)
(5.82)

Figure 5.29 shows the scan of the cavity alignment on the tilt/shift basis.

Fig. 5.29 Simulation result of the transmitted power of an arm cavity on the tilt/shift basis having
the tilt calibrated in micro-radians and the shift in millimeters. The power distribution in Watts is
represented in a color scale which goes from blue (minimum power) to yellow (maximum power)
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5.5.2 Automatic Alignment

Once the length of the cavity is controlled, the mirror’s relative position is fixed
to keep the cavity on resonance. However, this does not guarantee that the cavity
axis and the input beam are well aligned. If this is not the case there will be HOMs
generated (see Sect. 5.5) which might couple inside the cavity spoiling the quality
of the field that resonates.

This is not the only effect of the alignment on the cavity behaviour. An additional
problem arises if the optical axis is not well centered inside the cavity, which means
perpendicular to the mirrors and centered on their rotation axis. The mirrors are
subject to alignment drifts due to the fact that they are suspended. When this occurs
and the optical axis is miscentered, the angular movement will cause a change on
the length of the cavity (see Fig. 5.30) spoiling the resonance and adding noise to
the longitudinal control.

This coupling between angular and longitudinal motion can be approximated to
first order to [23]:

δL( f )cav = d( f ) × θmir ( f ) = dRMS · θmir ( f ) + d( f ) · θ RMS
mir (5.83)

where d is the miscentering of the beam with respect to the rotation center of the
mirror and θmir is themisalignment of themirrorwith respect to the centered position.

This means that the drift of the angular dofs and their working point need to be
controlled in order to maintain the cavity alignment and to minimize the coupling to
the cavity length. Typically three different alignment techniques have been used in
gravitational waves interferometric detectors. They can be separated in two groups
depending on the kind of modulation used to produce an error signal.

5.5.2.1 Mechanical Modulation

It consists of adding a tilting oscillation to themirrors of the FP cavity in both degrees
of freedom θx and θy with different frequencies ω

(x,y)
i and ω

(x,y)
e . This technique

takes advantage of the fact that spherical mirrors are insensitive to rotations around

Fig. 5.30 Coupling between
the angular movement of the
mirrors of the cavity with the
length of its optical axis
when a misalignment is
present
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their center. When the cavity is aligned the angular oscillations do not produce any
effect, they are invisible. However, it can be shown [26] that when a misalignment
is present, these lines can be seen in the transmitted power. An error signal can be
obtained from demodulating the transmitted power at these particular frequencies,
ω

(x,y)
i , ω(x,y)

e , which for small amplitudes of the oscillations depends linearly on the
misalignment of the cavity.

Due to the angular-longitudinal coupling in the presence of a misalignment and
a miscentering, the same principle can be applied to the longitudinal corrections of
the cavity. When the cavity is aligned there is no coupling to the cavity length and
so the longitudinal lock is not perturbed. However, a misalignment will couple the
tilting oscillations of the mirrors to the cavity length, and so the frequencies ω

(x,y)
i

and ω
(x,y)
e will appear on the longitudinal corrections sent to the mirrors.

This technique is very easy to implement although it gives information about the
misalignment of the cavity in the single mirror coordinate system. The preliminary
alignment of the AdV arm cavities is done with this technique because it provides
a good initial working point without a very complex commissioning. However, the
typical performances of this type of alignment are 0.5mmof accuracy in the centering
of the beam. In terms of singlemirror alignment it translates in∼0.5µrad. This is very
high if we take in account that the requirements of the alignment of the arm cavities
mirrors are ∼2 nrad. They are calculated so that the power fluctuations induced by
the residual misalignment are lower than 10−3.

Regarding the global alignment of the interferometer it implies the use of a big
number of different oscillation frequencies, whose amplitudes need to be tuned high
enough to be visible but low enough to stay in the linear range of the error signal.
For this reason it is only used at the early stages of the alignment process, being
substituted by a less invasive and more precise technique further on during the lock
acquisition. The requirements for the global alignment will be discussed in more
detail in Sect. 6.4.

5.5.2.2 Phase Modulation: Anderson and Ward Techniques

There are two different techniques that use instead frequency modulation. They
are also known as wave-front sensing techniques because they measure the spatial
distortion of the beam phase distribution due to the presence of misalignments.

The first one was developed by Anderson in 1984 [21]. It consists of adding a
phase modulation at the frequency of the alignment HOMs (TEM10 and TEM01),
which in the case of a linear cavity is the same for both horizontal and vertical
misalignments, ω1. For a perfect alignment there is only TEM00 present, which is on
resonance inside the cavity. In this case, the alignment sidebands are not resonant on
the cavity.

Instead, when a misalignment is present there will be HOMs excited that will
be mostly reflected by the cavity, just as the sidebands of the TEM00. However, the
sideband of the HOMs has been chosen at the same frequency as the carrier of the
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fundamental mode and so the upper one will be resonant in the cavity. This means
that on the presence of a misalignment the transmitted field can be written as:

Etr = E0 · H0(x) · e−iω0t + E1 · A1 · H1(x) · e−i[(ω0+ω1)t+φ1+φ0] (5.84)

where E0 is the amplitude of the on-axis mode, E1 is the amplitude of the sideband
at ω1 and φ0 is a constant factor that accounts for the phase difference between the
fundamental mode and the off-axis one, and the length traversed. From Eqs. 5.68
and 5.70 we can write:

A1 =
[(

δx

w0

)2

+
(

αx

θd

)2
]1/2

φ1 = arctan

(
αx

θd
· w0

δx

) (5.85)

A photodetector in transmission would so detect:

Ptr = |E0 · H0(x)|2 + |E1A1 · H1(x)|2
+ 2 · A1 · E0 · E1 · H0(x) · H1(x) · cos(ω1t + φ1 + φ0)

(5.86)

HoweverH0(x) andH1(x) are orthogonal functions and so the integral of their product
is 0. This means that the interference term, which is the one that contains information
on the alignment, will disappear since the photodiode integrates the signal over all
its surface. Instead, a split detector is needed because it divides the plane of the
detector in two and so the signal can be constructed as the difference of both halves.
Figure 5.31 shows an example of the transmitted electric field when a horizontal
misalignment is present. It is clear from it how the difference between the two halves
would give you information of the TEM10 only, since the fundamental mode is an
even function an it will not contribute.

In particular the difference of both halves of the detector can be demodulated at
ω1 as for the PDH error signal in order to extract the relevant information. The error
signals obtained after this process are [21]:

QI = A1E1 cos(φ1) = E0E1
δx

w0

QQ = A1E1 sin(φ1) = E0E1
αx

θd

(5.87)

where QI is the in-phase error signal and QQ is the in-quadrature one.
As usual, only the horizontal misalignment has been analyzed, but the same rea-

soning can be applied to the vertical one. However in practice this means that the
photodetector has to be divided in four parts in order to obtain signals in both direc-
tions, receiving the name of quadrant photodiode.
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Fig. 5.31 The plot in the upper part of the figure shows three lines: two dashed lines that correspond
to the transverse profile of the TEM00 (the symmetrical one) and of the TEM01 (the one that crosses
zero at the origin) and a continuous line that corresponds to the total electric field as a linear
combination of both contributions. An example of a split photodiode is shown in the lower part
of the figure, each half is acquired independently and then the demodulation of their difference
becomes the error signal [27]

The main advantage of this method is that by tuning the demodulation phase you
can decouple the information about tilt and shift. This means that all the information
needed to close a loop can be extracted from a single quadrant photodiode. However
the disadvantage is that a different modulation frequency is needed for each degree
of freedom, which in the case of the global alignment of the interferometer becomes
too demanding.

Instead the Ward technique takes advantage of the existing modulation that is
used for the longitudinal lock. A photodiode in reflection of the cavity will see
the sidebands of the TEM00 and some of the carrier of the TEM00. In the presence
of a misalignment the off-axis modes will be reflected, as well as their sidebands.
This means that the signal detected will be the beat note between all these fields as
follows [27]:

Pref = (
Ec∗
00E

c
10 + E+∗

00 E+
10 + E−∗

00 E−
10

) + cc

+ (
Ec∗
00E

+
10 + E−∗

00 Ec
10 + E+

00E
c∗
10 + Ec

00E
−∗
10

)
ei(�t+�(z)) + cc

+ (
E+
00E

−∗
10 + E−∗

00 E+
10

)
ei(2�t+�(z)) + cc

(5.88)

where �(z) is the Gouy phase, � is the modulation frequency and E+\− represents
the upper or lower sidebands.
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Fig. 5.32 Upper picture:
wave-front of the beam seen
by a photodetector placed in
the near field of the beam
(NF) in the presence of a tilt
and a shift respectively.
Lower picture: wave-front
of the beam seen by a
photodetector placed in the
far field of the beam (FF)

This expression has a DC term, one at the demodulation frequency and another
at twice the demodulation frequency, as in the PDH error signal case. This time we
are also interested in the term at � so the error signal can be demodulated at this
frequency in order to extract the relevant information. Notice that, as in the previous
technique, due to the orthogonality of H0(x) andH1(x) a split detector will be needed.

However, in this case, as for the PDH technique, all the information is on one
projection of the error signal. This means that in principle the information about tilt
and shift is mixed. In order to separate both degrees of freedom the dependence of the
error signal on the Gouy phase will be used. This can be understood easily from geo-
metrical considerations [28]. At the beam waist, the wave fronts are approximately
plane. In this configuration, a tilt will be sensed as a phase gradient. However, a
shift will produce no phase gradient and so a quadrant placed there would not sense
anything. On the other hand, at a distance z in the far field of the beam, the radius
of curvature converges to z in all cases as it can be seen in Eq. 5.33. This means a
tilt will not create a phase gradient while a lateral displacement will. Both cases are
shown in Fig. 5.32.

So even if the error signal contains information both on the tit and the shift, they
can be decoupled by using two quadrants: one on the waist of the beam (�(z) = 0◦)
and another one in the far field (�(z) = 90◦). This technique is the one chosen for
the global alignment of the interferometer because even if it requires two quadrants
it is the less invasive since it does not impose any extra modulation frequency.

5.6 Summary

The purpose of having Fabry-Perot cavities on the arms of the AdV detector is to
increase the optical path travelled by the light that resonates inside them. It has been
shown that this condition is maximized in a particular position, called the resonance,
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specially for the overcoupled optical cavities. However theAdV arm cavities have the
particularity of having their mirrors suspended. This translates in a residual motion
both in the longitudinal and the angular degrees of freedom which oblige to actively
control them to reach the correct working point and avoid a coupling between them.
This active control or feedback that brings back the cavity permanently to its working
point needs an error signal containing information on the deviation of the dofs from
the nominal position.

In the case of the longitudinal control this error signal is produced using the
PDH technique. However, the high finesse of the cavity (450) together with the
longitudinal movement of the uncontrolled mirrors produce dynamical effects that
distort the error signal. This can be solved by designing an adapted control strategy
or lock acquisition, the Guided Lock. This technique tries to slow down the cavity
around a resonance until the dynamical effects disappear and the feedback can be
engaged normally.

Regarding the angular control there are several techniques that provide informa-
tion on the misalignment of the cavities, that is on the presence of Higher Order
Modes. The easiest to implement is the one using mechanical modulation, which
is the one that will be used at the early stages of the global lock acquisition. This
technique does not provide the best accuracy but it fixes a good and robust alignment
working point that allows the commissioning to move forward.

When it comes to the global alignment of the interferometer the Ward technique
will be used because it is less invasive and it provides error signals that decouple the
information about the cavity angular degrees of freedom, tilt and shift. For doing this it
uses the reflected field of the cavity that is detected by a couple of split photodetectors
or quadrant photodiodes placed in strategical places of the laser beam, the waist and
the far field.

The characteristics of the full interferometer configuration as well as the global
control strategies of both longitudinal and angular degrees of freedom will be dis-
cussed in the next chapter.
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Chapter 6
Power Recycled Interferometer

In the previous chapter we have introduced the problematic that faces the commis-
sioning of the Advanced Virgo arm cavities. The next step in the commissioning
process concerns the Power Recycling configuration of the interferometer (PRITF)
and it will be presented here. Notice that this is the target configuration for the first
Scientific Run of Advanced Virgo.

The aim is the same as for the cavities, that is, to control the interferometer
both longitudinally and angularly. However the full configuration involves several
optical cavities bringing new problems of coupling between error signals and thermal
transients, increasing the difficulty of finding a lock acquisition scheme, even if at
this early stage the thermal transients are not yet relevant.

In this chapter we will define the working point of the PRITF, both for the carrier
and for the sidebands. The lock acquisition procedure used in the past to reach the
working point will be presented, as well as a detailed study of each of its steps and
its validity for the Advanced Virgo optical design. This study will be done using
different simulations, in order to find the most convenient set of error signals both
during the lock acquisition and in the target configuration, adapting the old sensing
when necessary.

Also the optical configuration of the Power Recycling Cavity (PRC) requires a
special consideration for being marginally stable. The implications of this fact will
be explained as well as the strategies proposed to deal with it.

6.1 PRITF Optical Configuration

TheAdvanced Virgo detector is formed by several optical cavities as it was explained
in Chap. 3. When all the mirrors are controlled simultaneously we say that the
interferometer is on its Power Recycling configuration (PRITF). Figure 6.1 shows
the scheme of this configuration with all the lengths that need to be controlled.
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Fig. 6.1 Scheme of the PRITF with all the lengths that needs to be controlled

For simplicity the angular degrees of freedom (DOFs) have not been included. They
will be presented in a dedicated section (see Sect. 6.4).

The FP cavities on the arms have been already presented in the previous chapter
as well as their longitudinal and angular lock strategies. So far we have considered
them independently, however when it comes to the full interferometer the PRCmixes
everything, as it will be shown in this section, and it is more convenient to define
a Common degree of freedom that controls the average length of the arms and a
Differential one that controls the relative length difference between the arms. This
is important because the Differential DOF is the one that will be sensitive to the
passage of a GW (see Chap. 3). The cavities longitudinal degrees of freedom can be
defined as:

CARM = lnorth + lwest

2

DARM = lnorth − lwest

2

(6.1)

where CARM stands for the arm’s Common DOF and DARM for the arm’s Differ-
ential one.

Another degree of freedom to be controlled is theMichelson interferometer, which
depends on the length difference between the two short arms and it is defined as:

MICH = lN I − lW I (6.2)

Finally the last length to be controlled is the one of the PRC which depends on the
distance between the Power Recycling Mirror (PR) and the Beam Splitter (BS) and
the average length between the BS and the Input Mirrors such as:
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PRCL = lPR + lN I + lW I

2
(6.3)

These are the four DOFs that need to be controlled. In order to reach the maximum
sensitivity, they need to be controlled in a particular position or working point.

• The carrier field has to be resonant inside the arm Fabry-Perot cavities, as
seen in the previous chapter.

• The carrier field has to be resonant inside the PRC in order to enhance the
effective input power as much as possible, as explained in Chap. 3, and reach the
arms.

• As introduced in the previous chapter, the control strategy of the arms is based
on the PDH technique, that uses RF sidebands as a phase reference to build the
error signal. For this reason, the sidebands can not be resonant inside the arm
cavities.

• This implies that also the sidebands have to be resonant inside the PRC, other-
wise, they would not reach the arm cavities.

• A phase reference is also needed to build up an error signal for PRCL. For this
reason it is necessary to use a modulation frequency that is not resonant inside
the PRC.

• The chosen detection technique that is explained inChap. 3 requires theMichelson
DOF to be in destructive interference at the detection port (see Fig. 6.1), that
is to be tuned at a Dark Fringe (DF).

Finally, an offset is added to the MICH DOF in order to allow the DC readout
explained as well in Chap. 3. The passage from RF to DC readout has been already
studied in [1]. In the following we will consider only the global control of the PRITF
until reaching the DF. Taking this into account the field equations for the PRITF can
be calculated at its working point.

6.1.1 Electric Field Equations in Dark Fringe: Carrier

As seen in Sect. 5.1 the arm Fabry-Perot cavities can be characterized by their
reflectivity, their transmission and their Finesse or Optical Gain (see Eqs. 5.2, 5.3
and 5.9). This means that effectively they can be treated as equivalent mirrors, which
simplifies the calculations of the electric field for the PRITF configuration.

Let’s consider then a simpleMichelson interferometer, as shown in Fig. 6.2,whose
mirrors reflectivity and transmission are the ones of the Fabry-Perot arm cavities. In
this case the field that arrives to the Detection port or Antisymmetric port and to the
Symmetric port can be written as:

EASY = E1 · rFP

2
· (
e2iklN I − e2iklW I

)
(6.4)
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Fig. 6.2 Scheme of a
Michelson interferometer
with Fabry Perot cavities as
equivalent mirrors

ESYM = −E1 · rFP

2
· (
e2iklN I + e2iklW I

)
(6.5)

where rFP is the reflectivity of the Fabry-Perot arm cavities (see Eq. 5.2), lN I is the
distance between theBS and theNImirror and lW I the one betweenBSandWImirror.
The BS reflectivity and transmission have been considered as tBS = rBS = 1√

2
.

From these equations it can be understood that theAntisymmetric port will be sen-
sitive to the phase difference between the short Michelson arms while the Symmetric
port will be sensitive to common phase changes. In order to simplify the working
point definition it is useful to define two lengths:

L+ = lN I + lW I

2

L− = lN I − lW I

2

(6.6)

Using these expressions, Eqs. 6.4 and 6.5 can be re-written as:

EASY = i · E1 · rFP · e2ikL+ · sin(2kL−) (6.7)

ESYM = −E1 · rFP · e2ikL+ · cos(2kL−) (6.8)

The argument of the sine and the cosine in these expressions defines the interference
condition, and so the working point. It depends on the wavenumber and on the length
L−, which is proportional to the MICH length that needs to be controlled.

The chosen working point is the Dark Fringe, which means that there is no
carrier that arrives to theAntisymmetric port. Themicroscopic interference condition
can be then defined as:

sin(2kL−) = 0 −→ 2 · k · L− = π · n (6.9)

where n is an integer number.
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Fig. 6.3 Scheme of the
whole PRITF configuration
simplified as a Fabry-Perot
cavity. The input mirror is
the PR and the end mirror is
the Michelson interferometer
enhanced by the Fabry Perot
arm cavities

In terms of the degree of freedom to be controlled this means:

MICH = π · n
k

= n · λ

2
(6.10)

Finally we can calculate the reflectivity and the transmission of a Michelson inter-
ferometer, enhanced with Fabry-Perot cavities, in Dark Fringe:

tASY = 0

rSYM = − rFP · e2ikL+
(6.11)

The same exercise of considering the FP cavities as an equivalent mirror can
be done now with the Michelson interferometer. It can be considered as a mirror
whose reflectivity and transmission varies as a function of the interference condition.
Following this reasoning, the full interferometer can be modelled as a single FP
cavity whose input mirror is the Power Recycling Mirror and whose end mirror is
the enhanced Michelson, as shown in Fig. 6.3.

An analogous analysis as the one done in Sect. 5.1 for a simple FP cavity can be
applied in this case in order to calculate the most relevant fields:

• Intra-cavity field: it contains the optical gain for the carrier

Ecav = E1 · tPR

1 − rPR · rSYM · e2iklPR
(6.12)

• Reflected field: signal that comes back to the Symmetric port

Eref l = E1 · rPR + rSYM · (
r2PR + t2PR

) · e2iklPR

1 − rPR · rSYM · e2iklPR
(6.13)

• Transmitted field: signal that gets to the Detection port

Etrans = E1 · tPR · tASY · eiklPR

1 − rPR · rSYM · e2iklPR
(6.14)
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Table 6.1 Optical parameters of the power recycling interferometer for the carrier. Not all the
power is reflected due to the losses in the different optics involved

OGc
PRC Rc

PRC T c
PRC

37.91 0.9995 0

These expressions contain all the information of how the PRITF behaves. It is
worth mentioning that they depend either on rSYM or on tASY , which depend as well
on the FP arm cavities behaviour, showing that the four DOFs are strongly coupled.

Finally the working point can be fully determined by forcing the carrier to be
resonant on the PowerRecyclingCavity. Again, this happens when the intra-cavity
field is maximum, and if we write Ecav in the DF configuration (using Eq. 6.11) it is
straightforward to obtain the resonance condition for the PRC:

Ecav = E1 · tPR

1 + rPR · rFP · e2ik(lPR+L+)
(6.15)

where (lPR + L+) corresponds to the PRCL DOF previously defined in Eq. 6.3. Now
we can impose the resonance condition that maximizes this expression:

e2ik PRCL = 1 −→ 2 · k · PRCL = 2 · n · π (6.16)

where n is an integer number. Notice that the resonance condition is positive because
the reflectivity of the FP cavitieswhen the carrier is resonant is negative (see Eqs. 5.55
and 5.56).

This resonance condition, restricts the length of the PRC so that the carrier is
resonant when:

PRCL = n · λ

2
(6.17)

At this pointwe can evaluate the nominal optical gain, reflectivity and transmission
of the carrier inside the PRC when the full ITF is controlled at its working point:

As the PRC is overcoupled we can calculate the finesse from the OG, using
Eq. 5.60, F = 59.5. The pole of the PRC is at a higher frequency than for the arm
cavities, fPRC = 100 kHz (Table6.1).

6.1.2 Sidebands Behaviour: Schnupp Asymmetry and PRC
Length

Now that the working point of the carrier in the PRITF configuration has been
defined, it is necessary to take into account the role of the sidebands. As explained in
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Sect. 5.4.2, sidebands are used as a phase reference in the control of the arm cavities,
either in reflection or in transmission. This imposes a condition on their frequency,
since they need to be resonant on the PRC in order to reach the input mirrors.

It is easy to write the intra-cavity field of the PRC for the sidebands, by replacing
k with their wavenumber k ′ = k ± �

c , always under the assumption that the carrier
is in Dark Fringe and resonant inside the PRC:

Es
cav = E1 · tPR

1 + rPR · r sFP · cos
(
± 2 ·�L−

c

)
· e±2i �

c P RCL
(6.18)

The resonance condition for the sidebands can be defined then as:

e±2i �
c P RCL = −1 −→ 2 · �

c
· PRCL = (2 · n + 1) · π (6.19)

where n is an integer number, and � is the modulation frequency, � = 2π f1.
The PRC microscopic length is fixed already by the carrier resonance condition

(see Eq. 6.17) and now we can define the sidebands resonance condition which
will stablish the relationship between the allowed modulation frequencies and the
macroscopic PRC length, such as:

νmod = (2 · n + 1) · c

4 · PRCL
(6.20)

As the PRCL is conditioned by the mirrors towers position, the first possible
frequency is the one used in Advanced Virgo for the longitudinal control, f1 =
6.270777 MHz. Once this value has been fixed, we can choose the value of the
sideband used to control the PRC, f2 = f1· 4/3. Its value was only conditioned by
the IMC length, which was fixed in turn to allow the passage of the 6 MHz.

Moreover, in order to have an error signal at theDetectionport, a phase reference
is needed and so the sidebands must reach the Antisymmetric port even in Dark
Fringe. This implies that the interference condition of the Michelson interferometer
can not be destructive for the sidebands at the same time as for the carrier. This can
be easily understood by writing Eqs. 6.7 and 6.8 for the sidebands wavenumber, k ′:

Es
ASY = i · E1 · r sFP · e2ik ′L+ · sin

(
±��S

c

)
(6.21)

Es
SYM = −E1 · r sFP · e2ik ′L+ · cos

(
±��S

c

)
(6.22)

where �S = lN I − lW I .
In the previous section the microscopic interference condition for MICH has

been established in Eq. 6.10. However, a macroscopic length �S can be defined to
change the interference condition of the sidebands without spoiling the carrier one.
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Table 6.2 Optical Gain of the Power Recycling Interferometer for different sidebands frequency,
where f1 is the main modulation frequency, 6.27 MHz

Modulation frequency OGs
PRC

6 MHz 77.16

56 MHz = f1 × 9 13.25

131 MHz = f1 × 21 1.05

This parameter is also called the Schnupp asymmetry. In Virgo it had a value of 0.84
m, but for Advanced Virgo it has been reduced to 0.23 m. This change was motivated
by a future upgrade which implies the installation of a new mirror between the
BS and the Detection port, forming a new resonant cavity, the Signal Recycling
Cavity. The studies showed [2] that in order to optimize the performance of this new
configuration the Schnupp Asymmetry needed to be smaller to avoid back-coupling
of this new cavity to the other DOFs. Ideally, the target value was 5 cm which would
cause a back-coupling lower than 10%. However, 0.23 m was the lowest value that
could be reached given the towers position which implies approximately 60% of
back-coupling.

Notice as well that the value of the electric field at the symmetric and antisym-
metric ports depends on the value of the modulation frequency. This means that each
sideband will see a different Finesse of the PRC since the reflectivity of the effective
end mirror will change. In particular, higher frequencies will be more transmitted to
the ASY port and so they will see a lower finesse. Table 6.2 shows the optical gain
of the PRC for different sideband frequencies at the working point.

It can be seen that the 6 MHz sidebands experience a higher OG than the carrier
inside the PRC. This is because they are not resonant inside the arms and so they
see a higher reflectivity r sFP > rcFP . Figure 6.4 shows a scan of the PRC including
the contributions of the sidebands at the working point. The 6, 56 and 131 MHz
are resonant at the same time as the carrier while the 8 MHz resonates has a differ-
ent resonance condition. The sidebands are not perfectly superposed because their
interference condition is not exactly the same due to the Schnupp asymmetry.

6.1.3 Summary: Working Point

In this section we have defined the target working point for the PRITF configuration,
and the microscopic lengths of the different DOFs. The carrier fixes these lengths
which are gathered in Table 6.3. The role of the sidebands is to provide a phase
reference in order to build up good error signals: one for the arm cavities, f1, one for
the PRC, f2, and a macroscopic length difference in the short arms of the Michelson,
�S . These conditions are also shown in Table 6.3.
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Table 6.3 Resonance conditions of the longitudinal DOFs to reach the working point for the carrier
and for the sidebands

Carrier Sidebands

MICH PRCL Arm L f1 f2 �S

n · λ
2 n · λ

2 n · λ
2 (2n + 1) ·

c
4·PRCL

f1 · 4
3 0.23 cm

Table 6.4 Optical Gain of the PRC for the carrier and for different modulation frequencies, all of
them resonant inside the PRC

Carrier 6 MHz 56 MHz 131 MHz

OGPRC 37.91 77.16 13.25 1.05

Once at this working point, the Optical Gain of the carrier and the first sideband,
f1, is shown in Table 6.4. In order to illustrate the effect of the Schnupp asymmetry,
the Optical Gain inside the PRC of two modulation frequencies with a higher value
are also shown in Table 6.4 for comparison.



94 6 Power Recycled Interferometer

6.2 Longitudinal Control

So far the desired working point for the PRITF has been defined, as well as the
frequency of the sidebands needed. Now we are going to address the problem of
how to control the system to reach this working point. As mentioned in the previous
chapter, the mirrors move due to the seismic noise and so an active control is needed
in order to keep the relevant lengths at the desired values.

However, this configuration is more complex than the single FP cavity, because
there are several coupled DOFs to be controlled simultaneously and independently.
For this reason the choice of the error signals (sensing) and the way of applying
the correction calculated (driving), need a careful study. In the target working point
we need a sensing with very high sensitivity, so a high SNR, and during the lock
acquisition it is more important to have robust error signals, that are well decoupled
between them. A detailed analysis of the sensing will be presented, based on the
results of simulations done with Optickle and Finesse (Sect. 4.1).

6.2.1 Final State: Sensing and Driving

In this configuration there are several photodiodes available and so several poten-
tial error signals for each degree of freedom. Figure 6.5 shows all the photodiodes
available and their location. The ideal ones are chosen based on the following criteria:

• Maximize the slope: the precision of the lock is given by the slope of the error
signal. It has to be as high as possible in order to maximize the Signal to Noise
Ratio (SNR) and so to be more sensitive to deviations from the working point.
Notice that, as it was shown in Eq. 5.59, the OG value is proportional to the
power and to the finesse.

• Linear region: a good error signal has to measure how far the DOF is from the
working point. This is true on the region where it is linear with respect to the
longitudinal displacement. For this reason it is important to maximize the width
of the linear region.

• Zero-crossing: the control loop will bring the system at the position where the
error signal is zero. For this reason the zero-crossing of an error signal has to point
to the desired working position.

For a single FP cavity the first two conditions are complementary, that is, a high
slope implies a narrower linear region and vice versa. However, the PRITF is a more
complex example with several coupled cavities whose interactions do not always
behave as expected. For this reason we will consider these two parameters indepen-
dently in our analysis.

These are the criteria that are used to choose the ideal error signal for each DOF.
However, there is one more consideration that needs to be taken into account: the
coupling between DOFs. It is a crucial issue because the error signals are used
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Fig. 6.5 Scheme of the Power Recycling Interferometer showing the position of the longitudinal
photodiodes

to calculate the length correction needed to bring the different DOFs back to their
working point independently. If the error signal can not decouple the information
about the DOF that needs to control from the other ones, the loop will move the
system away from the good working point.

Typically, two parameters are used in order to determine the coupling between
DOFs at a given sensor. The first one is the demodulation phase that provides the
optimal error signal for a given DOF (φmax ) which is the one that fulfils the best
the three conditions that were just presented. The second one is the Optical Gain at
this demodulation phase. With these two parameters we can build a compass plot
that presents the optimal OG at the corresponding demodulation phase for each DOF.
Ideally the slope scales linearly with the demodulation phase and so it is a very visual
way to understand the contribution of each DOF for a given φ, and so the coupling
between DOFs for all demodulation phases.

Ideally we want the DOFs to be completely decoupled. This means that at a given
sensor the information is distributed so that a basis can be foundwhere the interesting
DOF is all in the in-phase projection (P) and all the information about the other DOFs
is in the in-quadrature projection (Q). In practice their φmax have to be 90◦ apart.
However, this requirement is very stringent and there are circumstances under which
the coupling exists but can be neglected, for example if one of theDOFs is completely
dominant.

A careful study of the optimal sensing at Dark Fringe has been done using the
simulation tool Finesse (see Sect. 4.1). The target was to check whether the sensing
scheme used in Virgo+ is still valid in the present configuration also considering the
new photodiode available to monitor the Intra-cavity power, B4 (see Sect. 4.5).

The first step was to find the good working point in the simulation, that is:
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Table 6.5 Error signals used for the longitudinal control of the different DOFs in Dark Fringe in
Virgo+ and the optimal ones for Advanced Virgo. The first term is the photodiode name and the
second one the demodulation frequency

MICH PRCL CARM DARM

Virgo+ B5 6 MHz B2 8 MHz B5 6 MHz B1 6 MHz

Advanced Virgo B4 6 MHz B2 8 MHz B2 6 MHz B1 6 MHz

• MICH: minimum of B1 photodiode DC signal, which indicates that the interfer-
ometer is in Dark Fringe.

• PRCL: maximum of B4 photodiode DC signal, which indicates the resonance of
the recycling cavity.

• Arm cavities: maximum of B7 and B8 DC signals respectively, which indicates
the resonances of the arm cavities.

At this position, the demodulation phase was optimized in the model at each pho-
todiode for each DOF in order to obtain the best error signals possible. Already
at this stage, the error signals that do not have a good zero crossing (due to off-
sets or even double zero-crossings), or that are not linear around the working point
can be excluded as candidates. Then, the remaining possible signals are classified
depending on their OG (from the highest to the lowest one). Once this is done,
the cross-coupling between DOFs is checked starting from the best candidate, until
finding an error signal that fulfils all the conditions. In order to obtain realistic results
we have taken into account the attenuation due to the telescope of each photodiode.

A summary of the best error signals is presented in Table 6.5, together with the
error signals used in Virgo+ for comparison. They have been chosen following the
process just described.

For both DOFs, PRCL and DARM, the error signals used in Virgo+ are still the
best option for the Advanced Virgo configuration. Instead for the MICHDOF the B4
photodiode is less coupled to the other DOFs than B5. For CARM, the best candidate
is B2 photodiode, which shows a higher OG and less coupling.

Figure 6.6 shows the chosen signals and it can be seen that they fulfill all the
conditions to be good error signals. Concerning the coupling, the corresponding
compass plots are shown as well as the contribution from the other DOFs to the error
signals chosen. There is a lot of information on this Fig. 6.6 and we will try to clarify
its meaning by analysing it in more detail.

Notice that, unless indicated, the signals showed in these plots are the ones coming
directly from the interferometer; no attenuation due to the optical benches has been
considered. This is important to compare photodiodes between them but not for
evaluating the coupling to a single photodiode.

First interesting thing to notice in Fig. 6.6 is that in the compass plots CARM is
the dominant signal, which means that all the photodiodes see (with better or worse
error signals) the common degree of freedom. This is a particular case, because the
seismic noise is not the only contributor but also the frequency noise of the laser.
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Fig. 6.6 Left plots: error signal response to the sweep of the different DOFs. For each error signal
the demodulation phase tuned for the DOF to be controlled. The relevant DC powers are shown in
dashed as an indication of the working point. Right plots: compass plots that show for each DOF
the optimal demodulation phase and the corresponding OG
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As it was mentioned in Chap. 3, the cavities are unable to distinguish between a
change on the length of the laser or on the length of the cavity. For this reason both
noise sources are mixed in the CARM DOF.

Since the frequency noise typically extends up to the kHz region, a mechanical
control only is not sufficient to compensate for it and so the corrections are sent to the
laser itself. However, this loop is quite complex because it involves as well the Input
Mode Cleaner and the Reference Cavity and we will enter into details in the next
section (see Sect. 6.3). For the present analysis is enough to know that the CARM
DOF will be controlled with a very high bandwidth, ∼20 kHz. For this reason we
can consider that in the region of interest (∼100 Hz) it is suppressed by a factor
equal to the gain of the loop in this region. This means a factor 1000 during the
lock acquisition and a factor 108 (80 dB) in DF with the final optimized filter [1]. In
practice this means that it is negligible in all cases.

The plots on the left side of Fig. 6.6 give a lot of interesting information as well.
Each error signal is maximized for the relevant DOF by tuning the demodulation
phase, φmax . Then, a sweep of the length of all DOFs around their working point is
made, in order to see better the contribution of the non-interesting DOFs to the error
signal. In fact they show that the compass plots are not enough to understand if
the DOFs are coupled or not.

A good example of this is the error signal for PRCL, B2 8 MHz. The compass
plot shows that all the DOFs are very coupled, since their maximum OG is attained
for the same demodulation phase. However, we have checked in the plot on the left
that MICH and DARM DOFs are not good error signals: they do not cross zero and
they are not linear. As their value is very small with respect to the amplitude of the
PRCL contribution, their coupling can be neglected.

The information given by the compass plot ismisleading because the demodulated
signal is not a good error signal for these DOFs and so it does not behave as a
PDH signal. In such a complex optical configuration, there are non-trivial couplings
between DOFs and often the sidebands are not balanced, which causes complex
interactions between the sidebands and the carrier. An example of a misbehaviour
of this type is shown in the right plot of Fig. 6.7.

This type of signal changes dramatically with the demodulation phase and so
their slope do not scale properly and a compass plot in this case is meaningless. The
DOFs whose contribution behaves this way do not couple strongly to the relevant
DOF, since they do not cross zero at the working point and so they do not modify
the nominal OG. However, as they are non-zero at the working point, they introduce
an offset, changing the zero-crossing position and as a consequence the working
point. Depending on the value of this offset, the distortion caused by the contribution
of the other DOFs can spoil the error signal. This means that we need to consider
two sources of coupling: when the signal that couples crosses zero, it affects the
OG of the error signal and when it does not cross zero it modifies the error signal
zero-crossing by adding an offset.

Taking into account these considerations, the only error signal which is still cou-
pled to a DOF is B2 8 MHz, which sees the variations of CARM. However this is
not worrying, first of all because CARM is strongly suppressed and second, because
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Fig. 6.7 Response of two error signals to a sweep of the PRC length for different demodulation
phases. Left plot: B2 8 MHz, good PDH error signal. Right plot: B1 6 MHz, bad error signal
whose behaviour depends strongly on the demodulation phase

Table 6.6 Sensing matrix of the Power Recycling Interferometer on its working point. The values
in bold represent the most relevant contributions to each error signal

DARM MICH CARM in-loop PRCL

B1 6 MHz 6.7 × 10−3 −2.3 × 10−5 – –

B4 6 MHz – −2.8 × 10−7 9.3 × 10−5 −2.4 × 10−7

B2 6 MHz – – 0.13 × 10−8 –

B2 8 MHz – – −0.14 × 10−8 6.9 × 10−4

the coupling is unilateral which means that CARM error signal does not see PRCL
DOF. So as long as CARM is controlled in first place, this coupling will not become
a problem.

Table 6.6 shows the sensing matrix for the working point of the PRITF configu-
ration. It shows the Optical Gain (W/m) of the chosen error signals when they are
optimized for the interesting DOF. CARM is a special case as it was already men-
tioned and so the OG shown is the one in-loop, supposing a suppression of 108 in
DC, which is a conservative factor. The cells marked with a line represent the DOFs
which do not contribute to the sensing matrix, since they do not couple to the OG
because they are not linear around the working point.

The most relevant contributions are shown in bold and it can be seen that the
sensingmatrix can be considered as triangular. This means that it can be diagonalized
and so the control will be able to decouple all the DOFs. In this case we have taken
into account the optical benches attenuation of each photodiode.

Once the sensing is fixed, and so the optimal error signal has been chosen for each
DOF, we need to consider how to actuate on the system (driving). So far the error
signals are decoupled so that each of them provides information about one DOF only.
However, it is necessary to preserve this decoupling when applying the corrections,
which is the role of the driving matrix.
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Table 6.7 Driving matrix of the Power Recycling Interferometer [1]

DARM CARM MICH PRCL

NE −1/2 −1

WE 1/2 −1

BS 1/
√
2

PR −1/2 −1

The driving matrix carries the information about which mirrors need to be moved,
and how much they need to be moved in order to act on each DOF independently.
This waywe know how and towhichmirrors the corrections calculated by the control
filter of each DOF need to be applied.

As the geometry of the interferometer has not changed, the driving matrix used
in Virgo+ is still valid for Advanced Virgo [1]. The strategy chosen was to leave the
Input Mirrors swinging freely and apply the corrections needed to the other mirrors
(Table6.7).

6.2.2 PRC Stability Versus Alignment: 131 MHz

As it was anticipated in the introduction the Power Recycling cavity needs a special
consideration due to its optical configuration. The conditions for an optical cavity to
be stable were explained in Sect. 5.3.3. The PRC of Advanced Virgo is very close
to the limit of stability, in particular 1 − g1g2 = 0.19 × 10−5, which is equivalent
to �G = 2 mrad. This situation is worsened by the mirror imperfections since they
scatter light from the fundamental mode to the HOMs.

The consequence of being so close to the instability region is that the frequencies
of the HOMs are very close to the fundamental mode. In this case, in the presence
of HOMs (due to a misalignment or to a mismatch for example) they will couple
very strongly to the optical cavity, diminishing the power in the fundamental mode.
Figure 6.8 shows the relationship between the HOM separation for the PRC and the
Gouy phase of the cavity. On it they are marked the Advanced Virgo configuration
as well as the Virgo+ one. The separation decreases with the Gouy phase, until
becoming a degenerate cavity when reaching instability.

The frequency separation between HOMs has been calculated from Eq. 5.39,
and for the PRC is 11.3 kHz. When compared to its linewidth which is 210 kHz
it is obvious that the coupling is going to be very important. Figure 6.9 shows the
power distribution between the fundamental mode and the different HOMs on the B4
photodiode for a scan of the PRC length at theworking point.Only the first four orders
are shown, but it is clear that the coupling of the HOMs inside the interferometer is
very important.
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Fig. 6.10 Scheme of the Central Interferometer with the relevant lengths to be controlled

Table 6.8 Optical Gain of the CITF for the carrier and the different sidebands frequency

Modulation frequency OGs
PRC

Carrier 49.3

6 MHz 47.91

56 MHz = 6 × 9 MHz 10.80

131 MHz = 6 × 21 MHz 1.00

In practice this will have an impact on the stability of the control loop. The
longitudinal control filter is designed for the nominal Optical TF, however as the
power in the fundamental mode will change so will do the DC value of the Optical
TF. If the power fluctuations are larger than the amplitude margin of the filter, the
control will become unstable, causing the loop to saturate and open.

This could be a problem in case of fluctuations such as the ones of the align-
ment DOFs when only the Local Controls (LC) are engaged. In order to evaluate
the impact of the alignment on the optical gain, several Finesse simulations of the
Central Interferometer (CITF) configuration were done. This configuration consists
in misaligning the end mirrors to “remove” the arm cavities, which leaves only the
two central DOFs, MICH and PRCL, to be controlled as shown in Fig. 6.10. It is
simpler than the PRITF one, but sufficient to study the behaviour of the carrier and
the sidebands inside the PRC, which is our target, as we will see now.

For the sidebands the CITF configuration is equivalent to the PRITF one, scaled
by the fact that they see the reflectivity of the input mirrors instead of the reflectivity
of the FP cavities out of resonance, and so they see a lower finesse of the PRC.
The carrier sees as well the reflectivity of the input mirrors, which raises slightly its
finesse inside the PRC instead, see Table 6.8.
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The main difference with respect to the PRITF configuration is that when the
carrier is resonant inside the arms it acquires an extra phase π due to the cavity
reflectivity that makes it resonant on the PRC at the same time as the sidebands (see
Fig. 5.3). But this is not the case anymore for the CITF and so the carrier and the
sidebands do not resonate at the same time inside the PRC. This is not a problem
although it obliges us to study them separately.

The first study showed that indeed the impact of the alignment was very strong,
with a loss of 80% of the OG in the presence of a misalignment of 0.15 µrad on
the PR mirror [3]. The Local Controls are not precise enough to control the mirrors
with a 0.1 µrad precision so it was necessary to look for a solution to deal with these
power fluctuations. We expect the same behaviour for a misalignment of the input
mirrors.

Several years ago there was a proposition of taking advantage of the dependence
of the PRC finesse on the sidebands frequency due to the Schnupp asymmetry.
The idea was to add a higher frequency modulation that would see a lower finesse
inside the PRC because it would be less sensitive to optical aberrations [2]. This
can be understood very easily from the energy conservation in an optical cavity,
r2 = 1 − t2 − L . In a high finesse cavity the transmission is very low, and so any
energy loss from coupling to HOMs will have a big impact in the reflectivity and as a
consequence, in the effective finesse. On the contrary, in a low finesse cavity, where
the reflectivity is already dominated by the losses, the impact of any extra loss will
be smaller, and so the OG (which is related to the finesse) will not change a lot.

We wanted to explore the use of the same solution to cope with the natural mis-
alignment of the PRC when not controlled angularly (only by the LC). This time we
made a simulation on the CITF adding several modulation frequencies with higher
values (all of them multiples of f1 to be resonant inside the PRC) to determine
how effective was this solution. Table 6.9 shows the loss of OG with the PR mirror

Table 6.9 Optical Gain loss in different photodiodes due to a 1 µrad of misalignment of the PR
mirror. Notice that the 56 MHz is 9 f1 and the 131 MHz is 21 f1 and so they are all resonant inside
the PRC

Carrier lock Sideband lock

OG loss (%) OG loss (%)

B1 6 MHz 91.3 91.5

B1 56 MHz – 83.0

B1 131 MHz – 65.3

B2 6 MHz 91.8 91.7

B2 56 MHz – 83.7

B2 131 MHz – 68.1

B4 6 MHz 91.6 91.5

B4 56 MHz – 83.3

B4 131 MHz – 65.7
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misaligned by 1 µrad with respect to the ideal alignment for different modulation
frequencies and for different photodiodes.

The table has two columns corresponding to two different configurations. The
first one when the carrier is resonant inside the PRC and so the sidebands are not and
they act as phase reference. The second one is the most interesting, which is when
the sidebands are resonant inside the PRC. This time is the carrier that acts as a phase
reference since it is not resonant in the cavity.

Only the values at 6 MHz are shown in the first case, since it is the behaviour of
the carrier that matters, and so all the sidebands give the same value. As predicted
in [3] there is a dramatical OG loss. In the second case a difference in the OG loss
between the different sidebands can be seen. As expected, using a higher frequency
decreases the OG drop, confirming the effectivity of this solution. Finally, the OG
loss is very similar for the carrier lock and for the 6 MHz one, since their OG is also
similar (OGc

C IT F = 49.3, OGs
PRC = 47.91).

In conclusion, the marginally stable nature of the PRC makes it too sensitive to
misalignment to keep a stable feedback control. However, this issue can be mitigated
by building the error signals with a higher modulation frequency. This solution can
be adopted in order to engage the lock, while the alignment is not controlled yet.
This sensing will provide a stable lock, even if it will be less precise, since the OG
will be lower. Once the longitudinal control is engaged, it will be possible to close
the alignment loops necessary to stabilize the OG of the 6 MHz sideband inside the
PRC. Then, the control can be handed-off to the nominal error signal, improving the
precision of the lock.

6.2.3 Lock Acquisition Strategy: Variable Finesse

So far the target working point has been defined, as well as the DOFs that need to be
controlled in order to reach it. However, initially all the mirrors are freely moving
and in order to engage the lock, all the four lengths have to be within their linear
range simultaneously which does not happen very often by chance. Moreover, the
actuation does not have enough dynamic to stop all the mirrors at the same time, the
seismic and frequency noises are to high. This obliges us to use an alternative lock
strategy, as it was done for the arm cavities.

The Variable finesse method is the control strategy that was implemented for
Virgo and Virgo+ [4]. It consists in engaging the control of the ITF far from its
working point, in an intermediate interference condition of the Michelson that is
reached by adding an offset to its error signal. This reduces the PRC finesse as well
as the impact of the coupling between the different DOFs. From this point, and
with all the four DOFs already controlled, the MICH offset is slowly reduced until
reaching dark fringe. The advantage of this method is that the target working point
is attained by passing through a series of steady-states where all the control loops
are already closed. This technique is called variable finesse because the change in
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because the duration of each step was chosen arbitrarily so that the signals behaviour during the
sequence could be understood

the interference condition of the Michelson changes the reflectivity of the compound
end mirror of the PRC, changing as well its finesse.

Even though the lock acquisition is simplified by starting from a PRC with a
lower finesse, it is still very challenging to engage the control of the four DOFs at
the same time, especially due to the coupling between them, as it was introduced in
the previous section (see Eq. 6.13).

This problem is solved by misaligning the PR mirror at the beginning of the lock
sequence. This way there are only three DOFs to be controlled, and they can be
more easily decoupled. The arm cavities are brought to resonance and the Michelson
is controlled at its Half-Fringe, where RSYM = TASY = 0.5. At this point the PR
mirror is aligned and its control is engaged. It is at this stage when the coupling
between DOFs starts to be relevant, distorting the error signals. Once all the lengths
are controlled, the offset on the MICH length is slowly decreased until reaching the
Dark Fringe.

In order to better illustrate the control strategy, the whole process was simulated
using Optickle. Starting far from their working point the mirrors are brought to the
correct position following the variable finesse lock strategy. The evolution of the
power impinging on the different photodiodes during the lock sequence is shown in
Fig. 6.11.

With the information provided by the simulation, we are going to describe each
stage of the lock strategy in detail, together with the problems that will be faced
during the process and potential solutions.
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• Steps 1 and 2: The lock sequence starts when the cavities are brought to reso-
nance by acting on the end mirrors while all the others are moving freely and the
PRmirror is misaligned. The photodiodes in transmission of the arms pass through
several peaks, which correspond to resonances of the carrier and the sidebands,
until reaching the working point where the power stabilizes at the maximum of a
carrier resonance. It is the transmission of each cavity which is used as error signal
at this stage.

• Step 3: During this step the Michelson is locked on its Half-Fringe. As the
PR mirror is misaligned, B2 and B4 photodiodes are equivalent, except for their
amplitude which is much lower for B4 due to the low reflectivity of the Pick-off-
Plate (POP). Also notice that the B1 photodiode has the opposite behaviour, as
expected, since the it monitors the differential phase between the arms while B2
and B4 monitor the common phase.
It is worthmentioning that during these three first steps, theB5 photodiode reads an
almost constant power. This is because it receives the power reflected by the North
arm cavity before it interferes with the beam that comes from the West cavity. As
the reflectivity of the arm cavities is very high, the reflected power remains almost
constant independently of the PRC length.
Also in this step the change of basis from arm cavities to CARM and DARM
takes place. This is important because the DARM DOF is the one sensitive to
the passage of a GW. Also, once in this basis a more stringent control on the
Common DOF can be engaged by acting on the laser frequency, the Second Stage
of Frequency Stabilization (SSFS) (Sect. 6.3). It helps to improve the sensitivity
and it reduces the coupling of CARM to the other DOFs.

• Step 4: The following step is the most critical one, the PR mirror alignment.
During this transition the power impinging in all the photodiodes oscillates strongly
aswepass throughdifferent resonances.Alsoduring the process there is an increase
of power of a factor 10 in all the photodiodes except for B2, where it is a factor 100,
as the power build-up increases. The OG of the error signals scales with the power,
and so it will fluctuate strongly which will make it difficult for the control loop to
remain stable during the transition. In order to mitigate this effect, it is necessary
to normalize all the error signals by the corresponding fluctuating power before
aligning the PR mirror (already from Step 3).

• Step 5: Once the PRC is controlled, the Michelson offset is slowly reduced
towards Dark Fringe. During this process the arm cavities transmission and the
power inside the PRC increase until reaching their maximum. This is because the
finesse of the PRC increases while we become closer to the DF and so does the
intra-cavity power. However the transmission (B1) and the reflection (B2) of the
PRC have a more complex behaviour.
As the Michelson interference condition changes, the equivalent end mirror of
the PRC changes its reflectivity. At the beginning the PR mirror has a bigger
reflectivity than the end mirror so the cavity is under-coupled. However, while
going towards DF the endmirror reflectivity increases until reaching the critically-
coupled condition. In this configuration there is a minimum in the reflected power
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as shown in Fig. 6.11 around 7.5. It is not exactly zero due to the presence of the
sidebands.
As the MICH offset keeps on decreasing, the cavity pass to an over-coupled con-
figuration, and the reflectivity increases at the same time that the transmitted power
reaches a minimum in the DF where there is no carrier at the ASY port, only the
sidebands leakage due to the Schnupp asymmetry.

6.2.3.1 Harmonic Demodulation: 3 � Error Signal

It is worth mentioning that during the MICH offset reduction the powers change
again significantly. However this process is done in a controlled way, so it can be as
slow as required, which leaves time to retune the gains of the control loops in order
to compensate the power changes. So during this step it is not necessary to normalize
the error signals, although it can simplify the process.

The PRCL control loop is slightly different though. The change on the optical
parameters during this last step makes the system pass through some critical con-
ditions such as the critically-coupled configuration where rcPRC = 0 or the moment
where the recycling gain inside the PRC is the same for the carrier and for the side-
band, rcPRC = r sPRC . As it is presented in [5], when passing close to these situations
the error signals used for the control can suffer from large amplitude fluctuations or
even change signs, which can not be compensated.

An extra problem is the coupling between CARM and PRCL in the photodiode
in reflection (B2). As it was previously showed in Eq. 6.13, the reflectivity of the
PRC depends on the microscopic lengths of the arm cavities and of the interference
condition of the Michelson and so will do the PDH error signal [5]. The coupling
between DOFs in this photodiode has been already seen in Fig. 6.6.

For these reasons it is convenient to generate the PRCL error signal using the 3�

demodulation proposed and tested in TAMA [5] and that is used as well in LIGO
control scheme [6]. It consists in demodulating the photodiode signal at 3 �. The
target of this technique is to extract the information needed about the PRC length
avoiding the contributions from the carrier and the first sideband which depend
strongly on the optical parameters of the PRC. The 3� error signal depends instead
on the second and third order sidebands as it is shown in the following expression:

PDHp3� = − J0(m) · J3(m) · OG2
c · r3�

PRC · |rc′
FP | · CARM

− J1(m) · J2(m) · OG2
� · r2�

PRC · r�
FP · cos

(
��S

c

)
· PRCL

− J0(m) · J3(m) ·
(
OG2

c · r3�
PRC · rcFP

+ OG2
3� · rcPRC · r3�

FP · cos
(
3��S

c

))
· PRCL

(6.23)
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Table 6.10 Summary of the
different steps of the lock
acquisition sequence,
Variable Finesse

Step 1 North arm lock

Step 2 West arm lock

Step 3 Michelson locked in HF

Change to CARM/DARM

Engage the SSFS

Step 4 PR alignment

Step 5 MICH offset reduction

Step 6 MICH hand-off to DF

where OG∗ are the optical gain inside the PRC of the different elements, r∗∗ are the
reflectivities of the PRC or the arm cavities for the carrier and the different sidebands,
and �S is the Shcnupp asymmetry.

This error signalworkswell because the oddmultiples of the sideband are resonant
inside the PRC but not the even multiples. They accumulate an extra π phase inside
the PRC that makes them anti-resonant, as shown in Eq. 6.20. According to this, the
second order sideband is not resonant inside the PRC and can act as phase reference,
while the third order sideband is resonant but less sensitive to the optical parameters
than the carrier and the first order sideband.

Now the error signal not only depends on the reflectivity of the PRC for the
carrier but also on the one of the second and third order sidebands, which do not
disappear and so they fluctuate less during the MICH offset reduction. Simulation
done in [5] showed that the amplitude of the 3� error signal remains almost constant
while changing the cavity configuration. Moreover, with the 3� signal, the coupling
of CARM is decreased by a factor 30 for Schnnup asymmetries lower than 0.4 m,
which is our case.

Variable finesse, was used for controlling Virgo and Virgo+. The different steps
of this procedure are summarized in Table 6.10.

The particular error signals used for each DOF have changed during time for
various reasons, from design changes to commissioning limitations. A detailed study
on the validity of the error signals used in the past is presented below, together with
some alternatives for those which do not work in a robust way, always from the
information provided by the Finesse simulations.

Notice, though, that the analysis presented here is slightly different from the one
done in Sect. 6.2.1. The target is to bring the interferometer to its working position
in a controlled way. This means that the priority is not so much a good SNR, but
more a good controllability, and so to decouple the DOFs as much as possible.
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6.2.4 Step 3: Recombined Configuration

The case of the MICH longitudinal control is particular because we are controlling
it far from its working point in the steady state. The RF signals are not valid so far
from the Dark Fringe so an alternative error signal is needed. However, looking at
the power on B1 it can be seen that the signal is linear between Bright Fringe and
Dark Fringe. In Virgo, B1 DCwas used as an error signal, normalized by B5 DC, and
then an offset was added to bring the zero-crossing to the Michelson Half-Fringe.

As it was explained, normalization is very important to survive to Step 4, when the
PR mirror is aligned. In the past, the B1 DC was normalized using B5 DC because
it is a good probe of the power inside the interferometer. We have used the Finesse
simulation to check whether this combination is still the best, especially taking into
account the addition of the B4 photodiode which monitors the intra-cavity power of
the PRC.

The simulation shows that normalizing by B4 DC power is a good candidate,
but the B5 DC normalization is still the best option because even though its OG is
one order of magnitude lower, its linear region is one order of magnitude wider (see
Fig. 6.12). The linear region has been evaluated as the range within which the error
signal deviates less than 10% from the linear fit.

Also during this step we pass from controlling the arm cavities independently
to control the Common and Differential lengths. Since the arm cavity lengths are
decoupled on the photodiodes, that is, B7 sees only the North arm length and B8
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uous lines are their response to a sweep of the Michelson DOF. The dashed lines are the fit of the
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Fig. 6.13 Coupling
mechanism of the phase
noise into an error signal [7]

sees only the West arm length, it is easy to build a normalized error signal for the
Common and Differential DOFs based on Eq. 6.1:

CARM = B7 6MHz

B7 DC
+ B8 6MHz

B8 DC

DARM = B7 6MHz

B7 DC
− B8 6MHz

B8 DC

(6.24)

These error signals were also used for the lock acquisition in Virgo. The advantage
is that the linear region is very large due to the normalization of the error signals,
it increases from an interval of 0.5◦ to an interval of 35◦ (always from a simulation
point of view, in real life the noise will limit before). The disadvantage is that the
transmitted power is very low and so in practice the SNR will be limited by the noise
of the sensors.

However theCARMerror signal builtwithB7andB8 is toonoisy for the frequency
stabilization, since its bandwidth will be much larger. An error signal with a better
SNR is needed, and in the past B5 photodiodewas used for this purpose. In Advanced
Virgo it is forseen to use the B4 photodiode as error signal. In this case there is not
much flexibility because the SSFS control loop is a particular one (it runs at very
high sampling frequency) and special hardware is needed for reading the photodiode
signals. However this error signal does not need normalization to survive the PR
alignment since the control loop has an enormous gain margin (a factor 100) as it
will be seen in the next Sect. 6.3.

Also using B4 6 MHz for CARM is not incompatible with using it for MICH
as well, since they are separated by 90◦, as it can be seen in Fig. 6.6. Moreover, it
could be convenient to do this in order to avoid the coupling of phase noise. The
phase noise is normally coming from the mis-tuning of the demodulation phase or a
change on the phase of the modulation frequency. Let’s consider that the error signal
we want to use for CARM is on the P projection. As it is in closed loop, its value
will be kept at zero. If you have an offset in the Q projection, as it is usually the case
due to an unbalance of the sidebands, the phase noise will make it rotate around the
Y-axis, which will cause a coupling to the P projection and so to the error signal we
are interested in, as shown in Fig. 6.13. If instead we use the Q projection as an error
signal for MICH, it will be zeroed by the control loop, minimizing the coupling of
the phase noise [7].
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Fig. 6.14 Response of an error signal to the different DOFs with the demodulation phase, φmax ,
tuned for the interesting one.Upper-left plot: CARM error signal.Upper-right plot: DARM error
signal. Lower-left plot: CARM error signal for the SSFS. Lower-right plot: MICH error signal

It is also useful to check the coupling between the three DOFs. Figure 6.14 shows
the chosen error signals optimized for the interesting DOF and how they behave
when the other DOFs are not in their working point.

The same photodiodes are used for sensing CARM and DARM, but there is only
one demodulation phase per photodiode to be tuned. In the case showed in Fig. 6.14
the demodulation phase of the photodiodes, φmax , was tuned for the Common mode
and kept for both error signal combinations. Notice however that when optimizing
per DARM the φmax is almost the same so we can choose to optimize the phase with
respect to any of them. These error signals are perfectly decoupled from the other
DOFs as well as B4 6 MHz for CARM.

However, this is not the case for the MICH error signal, to which DARM is
strongly coupled. At this stage this is not a problem because DARM error signal
does not sense MICH DOF and so there is no problem as far as DARM is controlled
first. Also notice that when it comes to the Michelson DOF, the working point is not
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critical. It is not important to know exactly the fringe offset, but to start at a low PRC
finesse and then increase it until reaching the working point.

6.2.5 Step 4: PR Alignment

Regarding the alignment of the PR mirror, we have checked first if the error signals
chosen for Step 3 were still valid after the alignment of the PR mirror. Let’s start
by MICH error signal, B1/B5 DC-offset, which is shown in Fig. 6.15. There are a
few interesting things that can be deduced from this plot. First of all, notice that
the zero-crossing of the MICH error signal is not anymore at zero (Half-Fringe) but
it has shifted by ∼1.7◦, as shown by the black dashed line. In terms of fringe it is
negligible (0.9% deviation from the Half-Fringe) but not in terms of coupling.

Around zero (the vertical dashed blue line), which represents the working point
of the rest of DOFs, the coupling of PRCL and CARM to theMICHOG is negligible
for being at the maximum of a parabola (quadratic coupling). However, as the zero-
crossing of MICH has been slightly shifted, they have a very big value around zero
(500) as shown by the horizontal blue line, and so they will introduce an enormous
offset. However, by tuning the offset of theMICH error signal properly, and so tuning
their value to 0, the PRCL and CARM coupling can disappear. However, the DARM
DOF is still very coupled to this error signal which means that its robustness will
depend on the DARM error signal behaviour.
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Fig. 6.15 Response of the MICH error signal B1 DC/B5 DC to a sweep of the different DOFs
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Fig. 6.16 Response to a sweep of the differentDOFs of the error signals forCARMandDARMbuilt
with the photodiodes in transmission of the arm cavities with the demodulation phase optimized for
CARM. As mentioned before, their demodulation phases are optimized for CARM DOF (CARM
φmax )

TheDARMandCARMerror signals built fromB7 andB8 photodiodes are shown
in Fig. 6.16. The CARM error signal, B7 6 MHznorm + B8 6 MHznorm , is still a good
error signal, with negligible coupling with the other DOFs.

This is not the case for the DARM error signal, B7 6 MHznorm–B8 6 MHznorm ,
though. The transmission of the North cavity is shown in dashed in order to indicate
the position of the resonance, which has slightly changed after the alignment of the
PR mirror. In principle this is not worrying, as far as the working point provided by
the error signal is in agreement with the resonance position, as it is the case.

However, the coupling of the other DOFs can not be neglected, they would intro-
duce a big offset. Together with the coupling of DARM into the MICH error signal
makes this error signal not an ideal option. We have looked for alternative error sig-
nals that would solve this problem, in particular in the B1 photodiode since it is the
chosen one for the Dark Fringe and so a natural candidate. Figure 6.17 shows the B1
signal demodulated at 6 and 131 MHz normalized by B1 DC.

First of all notice that even though the working point of DARM is shifted when
the PR mirror is aligned, it is not the case for the other DOFs. This means that we
have to evaluate the coupling of the DOFs around their respective working point
because we are assuming that all the DOFS are controlled at this stage.

Taking this into account, MICH and PRCL introduce a static offset in both error
signals. However this offset is small enough so that the zero-crossing stays within
the linear region of the error signal. The main difference between both signals is the
coupling of CARM. It is quadratic in the case of the 131 MHz and so it contributes
to the offset as MICH and PRCL, however in the case of the 6 MHz signal it couples
strongly to the OG. Also the 131 MHz has a higher OG because the sidebands are
more transmitted to the ASY port.
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Fig. 6.17 Response of the B1 6 and 131 MHz to a sweep of the different DOFs with the demodu-
lation phase optimized for DARM (DARM φmax )

In conclusion, the B1 photodiode signals demodulated at 131 and 6 MHz are a
good alternative for controlling the DARMDOF during the PR alignment if the cou-
pling predicted by the simulation for the B7 6MHznorm–B8 6MHznorm is confirmed
experimentally and is a problem.

Regarding the error signal for the SSFS control loop, Fig. 6.18 shows that B4 6
MHz is decoupled from both MICH and PRCL. DARMDOF couples quite strongly
instead, but if this becomes a problem, the SSFS could be engaged after the alignment
of the PR, when the DARM loop is already stable and we can tune the good working
point by adding an offset.

Finally Fig. 6.19 shows the two potential error signals for the PRC, the 8 MHz
that will be used in the Dark Fringe, and the 3 � that was used in Virgo during the
MICH offset reduction.

It can be understood from the plots that the 8 MHz error signal sees the CARM
DOF, even though the coupling is not very significant, especially taking into account
that it is very suppressed. DARMDOF also couples slightly by adding an offset, but
as the PRCL resonance is very wide, it is not a fundamental problem.

However, it is worth noticing that the 3 � error signal is completely decoupled
from the other DOFs, which makes it a better candidate. The only inconvenient is
that due to the coefficients J2(m) and J3(m) that affect this error signal (see Eq. 6.23)
the OG is very low, which in practice can translate in a noisy error signal (low SNR).
Again, this is not necessarily a problem because here the priority is the robustness
and not the sensitivity.

This error signal does not need normalization because it is engaged once the PR
is aligned and so once the power has reached a maximum.
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Fig. 6.19 Response of B2 6 MHz and 3 � error signals for a sweep of the different DOFs with the
demodulation phase tuned for PRCL (PRCL φmax )

6.2.6 Towards Dark Fringe: MICH Offset Reduction

So far we have discussed few options of potential error signals that are likely to
survive the alignment of the PR mirror. In this section we are going to study how
these error signals evolve during theMICHoffset reduction, as well as their coupling.

The first thing to look at is the demodulation phase evolution. As it was already
mentioned in Sect. 5.4.2, in practice the demodulation phase needs to be tuned in
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order to project all the relevant information in-phase (P) or in-quadrature (Q) of the
error signal. A demodulation phase badly tuned will translate in a loss of OG due to
a leak of the relevant information to the other projection.

This means that on top of the change in OG due to the MICH offset reduction,
there might be further fluctuations due to a shift on the optimal demodulation phase,
as it has been observed experimentally in the past. In principle, as the process is very
slow, this gain fluctuations can be compensated, or the demodulation can be re-tuned
when necessary during the lock acquisition procedure as it was done in Virgo and
Virgo+. However, we are looking for more violent changes such as sign changes,
that are hard to deal with and we will try to avoid them.

Figure 6.20 shows theOGvariation due to a bad tuning of the demodulation phase.
In otherwords, the change that theOGwould suffer if the demodulation phase is tuned
at Step 4 and not further adjusted during the MICH offset reduction. This variation is
expressed relative to the optimal demodulation phase φmax at each point. In the plot
on the right side it is shown the evolution of the optimal demodulation phase with
respect to the initial point. The simulation has beenmade for different offsets between
Step 4 (Half-Fringe) and Dark fringe, including the Critically-Coupled point.

As we can see in the left plot of Fig. 6.20, most of the error signals stay within
a 20% of OG change, with fluctuations of the demodulation phase of 20◦, which is
negligible. The DARM error signals though, suffer a big variation of the OG and it
can be seen in the plot on the right that the optimal demodulation phase suffers from
big fluctuations. This can be understood from the unbalance between the sidebands
due to the Schnupp asymmetry, and which is sensed by the differential DOFs. The
upper and the lower sideband do not have the same interference condition, and so
they are not symmetrical at the carrier resonance, which has an impact on the error
signal. Figure 6.21 shows the power on the upper and lower sideband at 6 MHz in
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for different MICH offsets

the B1 photodiode at different MICH offsets. They are unbalanced at 0, the carrier
resonance, except at DF, where they are very close to being identical.

For this reason the DARMDOF error signals have a more complicated behaviour
than the other DOFS. The MICH DOF does not experience this problem because it
uses DC powers as error signals. The alternative error signals for DARM proposed
to minimize the coupling of the other DOFs, B1 6 MHz and B1 131 MHz, change
sign during the offset reduction as we can see in Fig. 6.22.

The B1 131 MHz can be ruled out, because it changes sign independently of the
demodulation phase, and this can not be compensated. In the right plot the error
signal has an opposite slope after the two first points.

The case is slightly different for the B1 6 MHz, because the sign change depends
on the demodulation phase. In the left plot of Fig. 6.22 there are two sets of signals,
the continuous lines which represent the error signals with the optimal demodulation
phase at eachMICHoffset, and the dashed linedwhich correspond to the error signals
obtained by keeping the initial demodulation phase. In this case the change in the
slope occurs onlywhen the demodulation phase is detuned, and so it could be avoided
by tuning the phase at the last stages of the MICH offset reduction process.

So after exploring the alternatives to the DARM error signal B7 6 MHznorm–B8
6 MHznorm we found that B1 6 MHz could be used, knowing that the first one is
very coupled to the other DOFs but that the second one needs a careful tuning of the
demodulation phase.
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Fig. 6.22 Response of the B1 6 and 131 MHz error signals to a sweep of DARM for different
MICH offsets from Step 4 (Half-Fringe) to DF. The continuous lines correspond to the error signals
whose demodulation phase is optimally tuned. The dashed lines correspond to the error signal tuned
with the initial demodulation phase

Finally it is also interesting to study the evolution of the coupling of the most
promising error signals. In order to evaluate it, we have taken as a reference for each
DOF and at each MICH offset, the maximum of the linear region of the error signal.
This way it is easier to evaluate whether the offset induced by the other DOFs is
significant or not.

The offset induced by the other DOFs has been evaluated by taking the maximum
value of the interesting error signal when sweeping these other DOFs, within a given
interval. This interval is chosen depending on the DOF. For PRCL, CARM and
DARM it is their FWHM, so the region around the resonance until the power is
decreased by a factor 2. For MICH, it has been chosen in a slightly different way: the
width of the interval has been chosen equal to the region around the Dark Fringe that
increases the power in the ASY port by a factor 2. Then this interval is applied around
the corresponding working point at the different MICH offsets. These intervals are a
pessimistic limit, because the control loops do not allow such a high residual motion,
but it allows us to evaluate the evolution of the couplings in a systematic way.

Figure 6.23 shows the coupling evolution of the PRCL and CARM DOFs. The
PRCL error signal is decoupled from the other DOFs as it can be seen in the left plot.
Notice however, that in the critically-coupled configuration the coupling becomes
more relevant, and so it will be a sensible point.

Regarding the CARM error signal, we can see that even if at the beginning the
DARMcoupling is important up to Step 3 and it decreases during the offset reduction.
As the UGF of the CARM control loop is very high (few kHz), this coupling is not
very worrying.

The coupling evolution of the differential DOFS is shown in Fig. 6.24. TheMICH
error signal is dominated by the DARM coupling during all the offset reduction
process. In the case of DARM, in the right plot, the coupling is relevant only at the
beginning, and it decreases towards DF.
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This coupling of DARM to MICH can be solved by implementing a hierarchical
control, where the UGF of DARM is higher than the one of MICH. This way MICH
will see a smaller movement of DARM within its control bandwidth, reducing the
impact on the MICH error signal.

In the previous section we have explained the need of a higher modulation
frequency in order to deal with the power fluctuations expected due to themarginally
stable PRC. The study has been made in DF, where the PRC reaches its maximum
finesse. However, at the beginning of the lock acquisition the PRC has a low finesse
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Fig. 6.25 Variation of the OG of the 6 MHz and the 131 MHz inside the PRC as a function of the
losses and the MICH offset. In the x-axis 0.5 corresponds to Half-Fringe and 1 corresponds to Dark
Fringe

since the Michelson is on its Half-Fringe. At this point, the losses are already very
big and the sensitivity to alignment will be low with a low impact on the OG.

The interesting thing to determine is at which Michelson offset the PRC has
enough finesse so that the extra losses due to the coupling of HOMs start to be
relevant. For this reasonwehavemade a simple calculation of theOGof the sidebands
inside the PRC during the MICH offset reduction, increasing the losses up to 5%.
The results are shown in Fig. 6.25.

In the case of the 6 MHz, it is not until 80% of the MICH offset (almost in dark
fringe) that the losses start to have an impact on the OG of the sidebands starting to
be more and more critical. This indicates that it will not be until the last steps that we
will need to use the modulation frequency foreseen to survive to the OG fluctuations
due to alignment drifts. On the other hand, we can see that the 131 MHz is much less
sensitive to the losses even in Dark Fringe.

There is a last interesting point to consider, which is the transition of the MICH
control from theDCpowers to anRF signal. The tricky point of this hand-off is that
you need tomake the transition between two signals that are not valid simultaneously.
If you try to use the RF error signal out of its linear region, the control loop will
bring the Michelson towards the wrong direction. For this reason it is important to
make the change inside the linear region or very close to it. Figure 6.6 shows the
linear region of B4 6MHz, which starts approximately 3◦ far from resonance, which
is equivalent to 98% of DF, in terms of wavelength.

6.2.7 Summary: Longitudinal Control Sensing

The most important part of a good control is to have good error signals. This means
to fulfil several conditions:
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Table 6.11 Summary of the error signals proposed for each DOF in Step 3 and Step 4

Step 3 MICH: B1DC /B5DC -offset DARM is strongly coupled

CARM: B7 6 MHznorm + B8 6
MHznorm
SSFS: B4 6 MHz

DARM: B7 6 MHznorm–B8 6
MHznorm

MICH is well decoupled, no
problem

Step 4 PRCL: B2 3� To survive the change in
optical configuration

MICH: B1DC /B5DC -offset DARM is strongly coupled

SSFS: B4 6 MHz

DARM: B1 6 MHznorm or B1
131 MHznorm

Alternatives less coupled to
MICH

• High OG
• Wide linear region
• Good zero-crossing
• Low coupling from other DOFs

The lock strategy that allows us to reach the working point defined in the previous
section is called Variable finesse, and it is summarized in Table 6.10. It consists on
engaging the control far from the working point, where it is less critical, and then go
towards the dark fringe passing through a series of steady states, always with all the
DOFs controlled.

We have made a study of the sensing used in the past during the different steps
of the lock acquisition sequence, finding alternatives when necessary. This has been
done using the results of Optickle and Finesse simulations. Notice that during this
process the priority was to find robust error signals, and so well decoupled. Another
important point is to normalize the error signals, since the power inside the inter-
ferometer changes as the optical configurations evolve towards the final one. The
results for Steps 3 and 4 are summarized in Table 6.11.

The last part of the analysis was the evolution of these error signals during the
fringe offset. Regarding the change of the demodulation phase during this process it
has been seen that it is only relevant in the case of DARM due to the unbalance of
the sidebands at the carrier resonance. This forces us to discard the B1 131 MHznorm
error signal since it changes sign during this process. So for DARM the candidates
are B7 6 MHznorm–B8 6 MHznorm (MICH couples significantly) and B1 6MHznorm
(it is necessary to tune the demodulation phase to prevent sign flips).

Regarding the coupling evolution, the DOFs are intrinsically coupled, especially
in Half-Fringe, where it is less problematic due to the lower finesse of the PRC. This
coupling becomes more and more critical with the increase of the finesse, but it is
easier to decouple the sensing closer to the Dark Fringe. The most critical coupling
is DARM to MICH, which can be solved by using a hierarchical control.
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Table 6.12 Summary of the
error signals proposed for the
working point of the
interferometer

PRCL B2 8 MHz

CARM B2 6 MHz

MICH B4 6 MHz

DARM B1 6 MHz

We have also estimated that the PRC stability will become a problem around 80%
of DF, where it might be necessary to use error signals coming from high modulation
frequencies as the 131 MHz. Finally the hand-off to Dark Fringe is a critical step,
since the error signal are not valid simultaneously. The linear region of the MICH
RF signal starts at 98% of fringe offset.

We have studied several options for each DOF, but the optimal ones at each step
will be decided depending on experimental observations. Once inDF the error signals
used during the lock acquisition will be handed-off to the optimal ones, which have
been chosen in order to have the best sensitivity possible, and so the highest SNR.
The chosen error signals for DF are shown in Table 6.12. It exists also the possibility
of using B4 6MHz P and Q projections for CARM andMICH, since would improve
the phase noise of these error signals.

6.3 SSFS: Second Stage of Frequency Stabilization

So far we have mentioned that the common degree of freedom is a particular one,
because it has two contributions: the common cavity length and the laser frequency.
The frequency noise is also a common noise, since it couples to the interferometer
through the laser, and unlike the seismic noise, it is broadband. In an ideal symmetric
interferometer, the frequency noise is perfectly cancelled at the ASY port. However,
in practice due to the Schnupp asymmetry, it couples to the asymmetric port. The
detection of a gravitationalwave depends on this commonphase noise that reaches the
dark port to be smaller than the δφ produced by the signal to be detected. Moreover,
it needs to be smaller in all the measurement frequency bandwidth.

At first the frequency stabilization is done by the pre-stabilization loop, which
locks the frequency of the laser to the length of the IMC cavity up to 300 kHz (see
Sect. 4.4). Subsequently, the length of the IMC is controlled by the Reference Cavity
up to ∼180 Hz. In order to improve further the control of the frequency stabilization
a better reference is necessary.

The CARM error signal provides the frequency reference for the Second Stage
of Frequency Stabilization. However, the optical TF of CARM limits the control
bandwidth that can be reached. This is because at each Free Spectral Range, the TF
experiences a change of phase of −180◦, which can not be compensated by a filter,
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Fig. 6.26 Optical TF of the interferometer common DOF, CARM and the B4 6 MHz error signal
for several stages in the lock acquisition strategy

creating an instability. This rule is applied as well for a sideband resonance, which
were chosen to be almost antiresonant.

For Advanced Virgo the FSR of the arm cavities is approximately 50 kHz, which
means that the first sideband resonance is at ∼25 kHz, which will be the limit to the
UGF. Figure 6.26 shows an Optickle simulation of the TF between CARM and B4
6 MHz photodiode for several of the steps of the Variable Finesse lock acquisition
sequence, where this phase jump can be observed [8]. For this reason, a second
control loop is needed in order to reduce the frequency noise above 25 kHz. This is
the role of the pre-stabilization analogical loop.

As it was already mentioned, the error signal to be used comes from either B4 or
B2 photodiodes. This is because they measure the Common noise that is cancelled
at the ASY port and comes back towards the SYM. Previously we have talked about
the leakage of frequency noise to the Dark Fringe through the Schnupp asymmetry.
However, it is worth noticing that any asymmetry in the interferometer will increase
this coupling: asymmetry between the arm cavities finesse, between the arm cavities
losses, between the radius of curvature of the cavity mirrors... All this information
is gathered in the so-called Common Mode Rejection Factor of the interferometer.
It is a limiting factor of the performance of the frequency stabilization, and some
constraints have been put on the most relevant parameters in order to reach the
required sensitivity [9]. The finesse asymmetry can be at most 1% and the losses
asymmetry at most 40 ppm.
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6.3.1 SSFS Architecture

The need of two nested loops makes the architecture of the SSFS quite complicated.
In the following, we will describe in detail the different loops and their interaction
as well as the considerations needed in order to design the control filters and make
the overall system stable.

Figure 6.27 shows a scheme of the SSFS architecture. There are several noises
relevant to this loop: the laser frequency, ν0, and the mirrors movement due to the
seismic noise of the IMC, the RFC and the common movement of the arm cavities.
No sensing noise has been taking into account.

As mentioned before, the pre-stabilization loop is working normally over the
UGF of the CARM loop, 20 kHz. This means that the laser frequency is locked to
the IMC length using as an error signal the IMC reflection with a control filter FP .
The control filter is analogic in order to reach a very high UGF, 300 kHz. In this
frequency bandwidth there is no interaction between the loops.

Up to 20 kHz is the CARM error signal which provides information about the
frequency noise. This information is then split in two, the low frequency is sent to the
IMC mirror, and the high frequency to the laser itself through the pre-stabilization
filter, FP . This split is done because the IMC control bandwidth is limited to several
hundreds of Hzs by the delay due to the digital nature of the filter. This means that
there are two filters that use the same error signal, and so they interact in a non-trivial
way and they need to be designed very carefully.

Finally, the Reference Cavity still acts as a frequency reference at very low fre-
quencies. This loop has a very low bandwidth, of several Hzs and it prevents slow
drifts of the laser frequency.

In order to better understand the interactions of these loops, the global open loop
of the system can be calculated [9]:

Fig. 6.27 Scheme of the Second Stage of Frequency Stabilization
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Fig. 6.28 OLTF of the pre-stabilization loop that locks the frequency of the laser to the IMC length

CLT F = T ν
I MC

(1 − OP) (1 − ON )
(6.25)

where T ν
I MC is the optical TF of the transmission of the IMC for a frequency noise,

0P is the OL of the pre-stabilization loop and 0N is the OL of the nested CARM
loops.

Before entering into details the CLTF gives already information about the stability
of the overall system, which will diverge if any of the OL is unstable. The OL of the
pre-stabilization is already implemented at the beginning of the lock acquisition and
so it is stable. It depends on the analogical filter, the different laser actuators and the
optical TF of the reflection of the IMC for a frequency noise. It is well known and
shown in Fig. 6.28.

Regarding the OL of the nested loops, its expression is more complicated:

ON =T z
I MCMIMC FIMC FS(GIT F + GRFC)+
T ν
I MC

1 − OP
(1 − OIMC)FSFP(GIT F + GRFC)

(6.26)

where FS is the SSFSfilter and T
z
I MC and Rz

I MC are the optical TFs of the transmission
and reflection of the IMC for a length variation.MIMC is the TF of the actuator and the
suspension of themirror of the IMC, FIMC is the control filter of the IMCandOIMC =
Rz
I MCMIMC FIMC is the open loop of the IMC mechanical lock. Finally GIT F is the

optical TF of the Interferometer Common mode for a frequency noise, seen by the
error signal to be used and GRFC = Gz

IT FMIT F FRFC R
z
RFC is the coupling of the

frequency noise to the error signal through the RFC loop.
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This expression accounts for the two branches of the loop. The first term in
the sum corresponds to the slow loop, which takes the correction of the fast filter,
FS , and filters it again by FIMC , applying the correction to the IMC. The second
term corresponds to the fast loop, the one that goes to the laser directly. This part
is a bit more complicated because apart from the frequency noise coming from
the interferometer which is filtered by the SSFS loop, FS , it considers as well the
closed loop of the pre-stabilization, and the interaction with the slow loop. It can be
proved [10] that the nested loop will be stable if both terms on the global OLTF, the
slow and the fast one, are stable individually. However, notice that the filters to be
designed, FIMC and FS are mixed in these terms, which complicates their design.

6.3.2 SSFS Commissioning: CARM to MC

Before entering into the details of these two loops, the scheme can be slightly sim-
plified. This could be advantageous both for the loop design and the commissioning.
The commissioning of this loop is very complicated, especially since for AdV the
scheme was different than in Virgo and we had to start its commissioning from
scratch. However, the fact that the SSFS is now digital (it was analogical in the past),
allowed us more flexibility during the process and allowed us to simplify the scheme
as it will be presented here.

It can be proven that, when using analogical control filters, a single error signal
can not be shared between two loops if both of them have gain at DC because there
is always a residual offset that will end up saturating the control [10]. A way to avoid
this is to send the error signal to the fast filter and then send the correction to the
slow filter. This is the reason why the correction of the SSFS filter is sent to the IMC
instead of the error signal.

Now that the SSFS is implemented digitally, this is not a problem anymore and
we can decouple the IMC branch by sending the error signal itself instead of the
correction of the SSFS filter. This allows us to make an intermediate state in the
commissioning of this subsystem by engaging first the slow branch only. The lock
of the CARM DOF on the IMC will allow us to debug the system and easy the
commissioning process. Also in order to simplify further the process, the RFC loop
is not yet engaged, it will be the last step.

In the OL of the nested loop, the FS parameter will disappear from the first term,
which decouples more both branches and simplifies the filter design. The first loop
to be engaged then is the slow one, that sends CARM error signal to the IMC.
Figure 6.29 shows its OL, which has an UGF of ∼180◦. The control filter used is the
same used to control the length of the IMC with the error signal of the RFC, apart
from a compensator for the ITF optical TF.

The following step is then the engagement of the SSFS loop itself, the fast loop. So
far the loops were decoupled, it is at this moment that they start interacting, and we
need to consider it for the design of the filter. However, the process is now relatively
simple since the other filter is already designed and stable. There are two factors to
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Fig. 6.29 OLTF of the IMC control loop when it uses the CARM error signal

take into account: the stability of the crossing point between the two filters, which
is achieved when both filters have a relationship of 1/f at the cross-over frequency,
and the stability of the SSFS loop itself.

Figure 6.30 shows the IMC OLTF, the SSFS OLTF and the Global SSFS OLTF,
which is the sum of both loops, as indicated in Eq. 6.26. The cross-over frequency
is chosen by tuning the gain of the SSFS filter, and it has been fixed around 150 Hz.
At this point the stability criteria is fulfilled since the SSFS OLTF is flat, and the
behaviour of the IMC OLTF is f −1.

Once the ratio between both filters is fixed, the global gain is used to adjust the
UGF of the system. In Fig. 6.30 it has been chosen at 5 kHz, but it can be seen that
there is phase margin up to ∼15 kHz. In this example the phase is limited by a pole
placed at 20 kHz, which is used to decrease the gain of the filter at high frequencies.
However, as it was mentioned before, we are anyway limited by the arm cavities FSR
at 25 kHz, and so for lock acquisition purposes this filter gives us enough actuation
range.

Once these two loops are engaged, the very slow loop that uses the error signal
of the Reference Cavity is engaged. This loop is not critical from the stability point
of view but it is important in order to prevent big drifts of the main frequency of the
laser. Figure 6.31 shows the OLTF of this loop, which has an UGF of 2 Hz.
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Fig. 6.31 Global OLTF of the CARM slow loop that uses the error signal of the RFC

6.3.3 Impact of HOMs on the Optical TF

The target UGF of the SSFS control filter is 20 kHz. However, it has been observed in
the past that the presence of HOMs has an impact on the Optical TF of the Common
DOF of the interferometer. In particular, the first HOMs of the sidebands will be very
close to the UGF, and they might cause instabilities if the filter does not take them
into account.
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Fig. 6.32 Optical TF of the interferometer common DOF, CARM, and the B4 6 MHz error signal
in Dark Fringe. It is shown for different misalignments of several of the mirrors

A Finesse simulation has been made in order to anticipate the impact of this
HOMs, and the shape of the appearing structures. Figure 6.32 shows the Optical TF
of the Common DOF of the interferometer at B4 6 MHz in Dark Fringe when some
mirrors are misaligned.

In the ideal case there are two notches. The first one corresponds to the sidebands,
which are so close (∼300 Hz) that they have merged into one single notch. The
second one at 50 kHz corresponds to the carrier. The phase in both cases experiences
a jump that will cause the instability of a filter, as it was mentioned previously.

The misalignments of the arm mirrors do not cause significant structures. When
the PR mirror is misaligned, the first HOMs of the sidebands appears quite strongly
(±5860 Hz), as well as the third order ones (±17,580 Hz) as peaks. The second
order modes do not appear strongly, since they are not resonant in the interferometer
(±11,720 Hz), and they appear as notches instead.

At the level of the phase, there are jumps of 90◦, which can be compensated with
the filter if necessary. With this information it is clear that the alignment of the PR
mirror will be critical for the stability of the SSFS filter, and that it is important to
measure the Optical TF of the Interferometer in order to push the UGF of the filter
at the maximum possible.
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6.4 Angular Control

So far we have talked about the longitudinal control and the frequency stabilization
of the Power Recycling Interferometer. In this section we are going to present the
last stage, the angular control. In Chap. 5 the eigenvectors of the alignment of an
optical cavity have been described, tilt and shift. However, the PRITF configuration
is more complex and there are more angular DOFs, in particular 16, to be controlled.

First of all we are going to define these angular DOFs:

• PRM: tilt of the PR mirror.
• BSM: tilt of the BS mirror.
• Comm(+): common tilt of both arm cavities which makes their optical axis to
recombine in the same spot of the BS mirror.

• Comm(–): common shift of both arm cavities which makes their optical axis to
recombine in the same spot of the BS mirror.

• Diff(+): differential tilt of both arm cavities which makes their optical axis to
recombine in opposite sides of the BS mirror.

• Diff(–): differential shift of both arm cavities which makes their optical axis to
recombine in opposite sides of the BS mirror.

Notice that each of this DOFs have two planes of angular movement, θx and θy .
Figure 6.33 shows a scheme of the Common and Differential modes. We do not

expect any radiation pressure inside the Central part of the Interferometer, because
the power is not high enough.

Fig. 6.33 Scheme of the four angularDOFs of the arm cavities in the horizontal plane. The direction
of the rotation of each mirror is indicated with the standard vector notation which indicates if the
rotation axis is going in or out of the plane. The dashed line indicates the reference Optical Axis
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Regarding the requirements on the loops performances, the target is to control
them so that the power fluctuations of the carrier and the sidebands on the different
cavities are smaller than 10−3. This translates into a control of the cavities mirrors
around 2 nrad and of the Power Recycling mirror of ∼25 nrad.

6.4.1 Sensing and Driving

There are twoquadrant photodiodes separated by90◦ ofGouyphase at eachDetection
bench. They are all demodulated digitally except for the ones located in transmis-
sion of the arms which are only available in DC. The simulation done in [11] with
Finesse, studies the optimal sensing for the alignment DOFs, which is summarized
in Table 6.13.

This sensing is decoupled,which allows all theDOFs tobe closed in full bandwidth
without the need of a hierarchical control.

Regarding the driving, the PRM and BSM are trivial, since there is only a mirror
involved on each. However, the arm cavities DOFs depend on four mirrors, which
might be difficult to implement in practice. The theoretical driving matrix is based
on the one calculated for the tilt and shift DOFs of a simple Fabry Perot cavity in
Matrix (5.82):

Comm(+) = (−θN I + α · θNE ) ± (θN I − α · θNE )

2
(6.27)

Comm(−) = (θN I + α · θNE ) ± (−θN I − α · θNE )

2
(6.28)

Di f f (+) = (−θN I + α · θNE ) ± (−θN I + α · θNE )

2
(6.29)

Di f f (−) = (θN I + α · θNE ) ± (θN I + α · θNE )

2
(6.30)

Table 6.13 Quadrant
photodiodes that provide the
optimal sensing to control the
angular DOFs of the PRITF
configuration

PRM B2 8 MHz (Q)

BSM B1 6 MHz (Q)

Comm(+) B2 8 MHz (P)

Comm(−) B1 6 MHz (P)

Diff(+) QPD B7 DC + QPD B8 DC

Diff(−) QPD B7 DC − QPD B8 DC
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where α = (R1/R2) and R1/2 stands for the RoC of the input and end mirror respec-
tively. The± accounts for the reversing reflection of the BSmirror, the + corresponds
to the yaw direction (θ y) and the corresponds to the pitch direction (θ x ).

This is the design of the alignment at the Dark Fringe, in the Steady State of the
interferometer. However, the alignment is the most difficult part of the control. This
is mainly because there are a lot of DOFs to control, because they are mostly slow
loops which are difficult to tune due to their also slow response and because they
need all the longitudinal loops to be working properly.

As the lock acquisition of the longitudinal control is relatively fast with respect to
the slow drifts of the alignment, if the system is aligned at the beginning of the lock
sequence it will remain reasonably aligned until reaching the DF. For this reason it is
not fully engaged since the beginning, only theDOFs that are limiting the longitudinal
lock as the PR mirror one. In Virgo+ for example, during the lock acquisition only
the PR mirror was engaged, the rest were engaged when in DF.

The commissioning of the angular automatic alignment will be explained in detail
in the next chapter (see Sects. 7.2.4, 7.4.4 and 7.5.3), together with the difficulties
caused by the coupling of the HOMs inside the interferometer.

6.5 Summary

In this chapter we have analysed the Power Recycling Interferometer configura-
tion, which is the nominal one for the scientific run. We have presented its optical
configuration and the longitudinal DOFs to be controlled. Then we have defined
the working point of the carrier inside the interferometer as well as the role of the
different sidebands and the conditions they need to fulfil.

Next we have presented the results of the Finesse simulation of the error signals
in Dark Fringe. As this is the working point, the error signals needs to be as sensitive
as possible while remaining decoupled. The optimal sensing has been showed, as
well as the driving necessary to keep the DOFs decoupled.

Wehave also explained that since the PowerRecyclingCavity ismarginally stable,
the HOMs are very close to the carrier and couple a lot to the interferometer. This
makes the PRC especially sensitive to alignment, which might cause fluctuations on
the OG of the error signals making the longitudinal loops unstable.

The solution proposed is to use the high frequency sidebands which, due to the
Schnupp asymmetry, see huge losses and so a lower finesse inside the PRC. For this
reason, any extra losses due to couplings of the HOMs will be negligible, and so the
error signal will be more robust, although less sensitive.

The uncontrolled interferometer moves, due to the seismic and frequency noise,
too much to engage the lock of the four DOFS in Dark Fringe at the same time. For
this reason a lock acquisition strategy is needed. The one used in Virgo and Virgo+
has been presented: Variable finesse. It proposes to control the longitudinal DOFs
far from the working point, where the finesse is very high and the DOFs are very
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coupled, in order to easy the process. The lock strategy can be summarized in the
following steps:

• Step 1: With the PR mirror misaligned, and the Michelson uncontrolled, bring the
North cavity to resonance.

• Step 2: Bring the West arm to resonance.
• Step 3: Lock the Michelson interferometer in Half-Fringe by adding an offset to
its error signal. Change the arm cavities control basis into CARM and DARM.

• Step 4: Align the PR mirror and engage the control of the PRC.
• Step 5: Decrease the MICH offset until reaching Dark Fringe.

These steps have been simulated using Optickle and Finesse in order to better under-
stand the behaviour of the error signals during the lock acquisition, in particular
the ones used in the past. The target of this study was to check that they behave as
expected, to evaluate the performance of the new photodiode B4 and to anticipate
any potential problem and look for solutions if needed. In this case the priority is to
find robust error signals that survive the lock acquisition.

We have studied the quality of the error signals, which in the intermediate steps
is not always good due to the asymmetry of the sidebands, and the coupling between
DOFs, which is quite complex and evolves during the lock acquisition. We have
studied the potential signals in Steps 3 and 4 and then their evolution during the
MICH offset reduction, in particular the impact of the demodulation phase. Nomajor
changes have been introduced with respect to the sensing used in Virgo and Virgo+
except for the use of B4 6 MHz for CARM.

The control loop of the CARM dof has been addressed in a dedicated section
because it is very complex due to its two contributions, the seismic and the frequency
noise. However, the frequency noise requires a high bandwidth control, that can not
be achieved bymechanically actuating on the endmirrors. Instead the corrections are
used to modify the laser frequency. At the end the frequency control is split in several
frequency bands: at high frequency, above 25 kHz is the pre-stabilization loop that
locks the frequency of the laser to the IMC length; below 25 kHz is the Second Stage
of Frequency Stabilization which uses the CARM error signal and splits it in two,
the low frequency is sent to the IMC mirror (up to ∼200 Hz) and the high frequency
to the laser itself, by summing it to the pre-stabilization loop. Finally the corrections
at very low frequencies, up to several Hzs, are provided by the RFC and sent to the
end mirrors.

The last step is the angular control. This is the most complex stage because there
are 16 DOFs to control. For this reason, the strategy is to close only the DOFs
that prevent the longitudinal control to reach DF. Finally, the alignment depends as
well on the presence of HOMs inside the interferometer, which can spoil the error
signals coming from the quadrant photodiodes. This means that some kind of thermal
compensation might be needed in order to get proper error signal and close all the
DOFs in full bandwidth.
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Chapter 7
Advanced Virgo Commissioning

So far we have described in detail the PRITF and how it can be controlled from the
theoretical point of viewwith the help of simulations and past experience. Notice that
the aim of all the preparatory work that has been presented in the previous chapters
was to better understand the behaviour of the Advanced Virgo interferometer and to
anticipate potential problems.

In this chapter we are going to present the practical implementation of the process
described in the previous section: the commissioning. In particular we will present
the commissioning of Advanced Virgo until the first lock in Dark Fringe, which
is the target configuration of this work. The different stages of the commissioning
will be described in detail, as well as the problems encountered and the solutions
implemented. We will put the emphasis on describing the logic of the process. It was
not only based on theoretical considerations but also on experimental observations
and in many cases on hardware constraints.

7.1 Commissioning Timeline

First of all it is important to give an overview of the Commissioning chronology,
focusing in particular on the time I have worked for the ISC subsystem. For this
reason the timeline that will be presented here will begin with the first light reaching
a photodiode in transmission of the North Arm, until the first lock in Dark Fringe.

It is important aswell tomention the technical issues encountered that have caused
major disturbances to the normal development of the commissioning activity to better
understand the process. The target of the commissioning was to join O2. However,
due to installation problems, the time margin for commissioning was dramatically
reduced, which had a strong impact on its development.

The most relevant thing to take into account is the problem with the monolithic
fibers thatwere used to suspend themirrors. Since the 11th ofNovember of 2015, they
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Table 7.1 Dates when the
different fibers broke

11-Nov-2015 WI fiber broken

11-Dec-2015 NI fiber broken

26-Feb-2016 NI fiber broken (2nd)

18-Jun-2016 WI fiber broken (2nd)

21-Jun-2016 WE fiber broken

13-Oct-2016 NE fiber broken

have broken on six different occasions, with themirrors falling as a consequence. The
chronology is shown in Table 7.1, although the last one was broken while pumping
the vacuum in order to replace the fibers. This was amajor issue because it requires to
break the vacuum of the tower containing the mirror, extract the mirror to check for
possible damage, send it to be cleaned if necessary, cleaning of the towers, replacing
thefibers,mounting themirrors in the payloads and putting themunder vacuumagain.
This operation requires at least 1 week of work, during which the commissioning
activities are very limited.

For this reason the commissioning of the CITF was postponed, even if histori-
cally it has been a good way to start commissioning different hardware and software
elements. The CITF is a relatively simple configuration from the control point of
view that it is well understood; therefore, it can provide preliminary diagnosis on
the good operation of different components: photodiodes, demodulation, commu-
nication between different elements, actuation on the mirrors... In practice, in this
configuration has been commissioned later on in order to test different subsystems
such as the Thermal Compensation System (TCS) or to test different procedures such
as the hand-off of MICH error signal at DF.

These fibers were installed and used during the Scientific Run of Virgo+, so in the
first two occasions we re-installed the mirrors with the same suspensions, since the
technology was well tested. After the third fall it was decided to replace the fibers
by steel wires, since the problem was not understood. The last mirror in replacing
its fibers was the NE, which was the only one that had not experienced any problem.
However its fibers broke during the venting process. After a big effort to understand
the causes of this problem, they have been identified and a project to solve them is
being prepared [1].

The delay caused by this problem postponed the beginning of the commissioning,
reducing considerably the time available for this purpose. For this reason, the com-
missioning activity has been intensified, with the priority of joining the Scientific
Run as soon as possible.

Another issue that we faced during the installation period is that the BS was
manufactured with the wedge in the vertical direction instead of in the horizontal
one as foreseen. This had an important impact on the design of the detection bench,
in particular on the beam separation between B1 (beam at the detection port) and B5
(beam reflected by theNorth cavity). The bench needed to be adapted in consequence,
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Fig. 7.1 Timeline of the ISC commissioning of the interferometer from the first light arriving to
the photodiode in transmission of the North arm to the first lock in DC readout. This is the period
during which I have worked on the commissioning of Advanced Virgo

but there was not a lot of margin so the priority was given to the quality of the B1
beam, which is the one used for the detection of GWs [2].

Figure 7.1 shows a timeline of the commissioning of Advanced Virgo since the
North cavity was aligned for the first time the 24th of May of 2016 until the first
lock in DC readout the 30th of March of 2017. The main source of delay, apart from
the silica fibers, was the actuation of the BS. Already in Step 3 the MICH control
loop was sending very high corrections, which were almost saturating. The gain of
the loop was not enough to survive the full alignment of the PR mirror which means
that more actuation was necessary for a good control.

We tried to mitigate this lack of actuation at the level of the mirror by imple-
menting a hierarchical control where the high frequency corrections were sent to the
marionetta. However the gain in dynamics was not enough and the decision to add
an extra magnet to the mirror was taken the 21st of December. Once done, the lock
of the PRITF was achieved within one day.

Finally it isworthmentioning aswell the impact of theTCSon the commissioning,
even if it did not cause a direct delay. The PR mirror is pre-curved by 47 m far from
the nominal value, in order to compensate for the thermal lens that will be induced
by the High Power laser (125 W) that will be installed in the near future. However,
the cold RoC makes the PRC “marginally unstable” which means that the cavity
is not able to select the fundamental mode and the coupling of HOMs inside the
interferometer is very high.

In principle this could be solved by using the Ring Heater (RH) to change the RoC
of the PR mirror and bring the cavity to stability. However, due to a manufacturing
problem, the ears of the PRwere bigger than designed and so themirror wasmounted
7.5 mm closer to the RH, and so to the coils used to actuate the mirrors. The result is
that turning on the RH heats up these coils more than usual, in particular it has been
estimated that in order to reach the good RoC the coils will work at ∼67◦. This is
not recommended because the outgassing of the coils could damage the coating of
the mirrors [3].

For safety reasons the RH can work only at half power, which means that in order
to make the PRC stable it is necessary to act on the input masses with the Central
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Heating. However the commissioning of the thermal compensation subsystem is
delicate because thermal constants are very long (several hours) and it is necessary
to have an already working system in order to tune it properly.

So it is important to keep in mind that the commissioning of Advanced Virgo so
far has been done without any TCS, and so we have worked with an unstable cavity.
Apart from the extra losses and the high presence of HOMs inside the interferometer,
an additional difficulty is that modal simulations are not able to simulate unstable
cavities. The software that describes unstable cavities is still under development and
it is not able to reproduce error signals yet. For these reasons the behaviour of the
interferometer might deviate from what theory and simulations predict, especially
for the alignment as will be detailed later.

7.2 Steps 1 and 2: Arm Cavities Control

The commissioning started with the arm cavities, in particular the North one. This
is because the North arm cavity defines the alignment of the beam, since it is not
affected by theBS position. The first stepwas to find a pre-alignment of the cavity that
allowed light to reach the photodiode in transmission. It took several days because
we could not see the beam except in some particular places. Once this was done, it
took approximately 2 weeks to engage the longitudinal control and another 2 weeks
to have the first version of alignment.

At the beginning one of the most time consuming tasks was the pre-alignment of
the cavities. It consists on finding the good angular positions in order to have enough
light on the photodiodes to engage the control. When the mirrors are only under the
Local Controls (LC) and there is no cavity alignment, the angular DOFs can drift by
several µrad in relatively short time scales: several hours are enough to lose the light
in transmission of the cavities. For this reason it was necessary to align the mirrors
periodically by hand, which was very time consuming.

Once the cavity alignment was engaged, this problem was fixed since it prevents
the angular DOFs from drifting away in an uncontrolled way. After this we were
able to keep the cavities on resonance during long periods of time. Two months later
the West cavity was available, and it was quite straightforward to implement a full
control as the one of the North arm. In this section we will describe in detail this
commissioning process.

7.2.1 Velocity and Finesse Measurements

The first work that was needed in order to engage the longitudinal control was to
monitor the velocity of the cavity, since it is the key point of the Guided Lock
technique (see Sect. 5.4.3). Simulations had shown that the derivative of the PDH
error signal was a good probe for the cavity velocity in the expected range of the
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Fig. 7.2 Resonance in
transmission of the North
arm fitted using the
analytical expression. In this
example the fitted velocity is
1.61 µm/s and the fitted
finesse is 453
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cavities of Advanced Virgo. However, it was still necessary to find the calibration of
this error signal that would give the velocity in physical units.

In order to do this we need an alternative method to calculate the velocity in
physical units to be used as a reference. In the past, the distance between two TEM00

had been used, since we know that they are separated by an FSR (see Sect. 5.1). One
source of error of this method is that it supposes that the velocity is constant, so the
acceleration due to the seismic noise is not taken into account. However, it could
provide a first estimation of the calibration factor.

The disadvantage is that the presence of HOMs makes the identification of the
fundamental mode very difficult. In order to clearly do so it is necessary to excite the
mirrors so that they cross very often the resonances allowing to distinguish between
consecutive FSRs. The problem is that at this range of velocities (>2 µrad) the
derivative of the PDH signal needs a power law correction [4], which introduces
uncertainty in the measurement.

Instead we decided to use the distortion of the power inside a FP cavity due to
dynamical effects to obtain the velocity. Equation 5.24 gives its expression taking
into account the movement of its mirrors. It depends on two parameters: the velocity
of the cavity, vm , and the storage time of the cavity, τ . This expression can be easily
adapted to the transmitted power, which can be measured, by taking into account the
transmission of the end mirror. Then it can be used to fit the transmitted power of the
cavity which will provide the value of the velocity at which the resonance is crossed.
An example is shown in Fig. 7.2.

The comparison between the velocity obtained with the fit and the derivative of
the PDH signal allows us to obtain a first estimation of the calibration factor. In the
early stages of commissioning it was the error signal in reflection of the cavity, B4
6 MHz, the one used for the longitudinal control. Using a set of data of 120 s and
discarding the fits with a normalized residual higher than 30, the calibration factor
obtained is Cv = (3.64 ± 0.15) × 10−7 ms−1 au−1. The error included here comes
only from statistical considerations.
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Fig. 7.3 Histogram of the finesse fitted from the resonances in transmission. Left plot: North arm
cavity, F = 445 ± 2. Right plot: West arm cavity, F = 462 ± 7

With the same analysis we obtain as well the storage time of the cavity which
allows us to calculate the finesse. This provided a preliminary check that the cavities
behaved as they should and that there were no major problems. Figure 7.3 shows the
histogram of the finesse fitted using this method for the North andWest arm cavities.
Again, only statistical errors have been taken into account. However in this case the
uncertainty on the alignment is an important source of error since it could lead to
underestimate the real finesse. The fitted values are consistent with the target finesse
which is Farm = 454, so no major problems were suggested by this preliminary
analysis.

7.2.2 Guided Lock Implementation

The calibration factor measured previously, Cv , gave us a starting point to work
on the Guided Lock technique (see Sect. 5.4.3). Notice however that even if time
domain simulations had been made, the implementation in a programming language
compatible with real-time computing was not straightforward. For this reason, the
first version of this control technique was not very efficient and it was needed to wait
for several minutes in order to engage the lock of the cavities. Figure 7.4 shows the
first lock of the North Arm cavity the 24th of May, 2016.

The plot in the left shows the power in transmission of the north arm cavity, which
fluctuates around its maximum power. The plot in the right shows the correction
sent to the end mirror in order to keep the cavity on resonance. We see clearly the
guided lock process: two short impulses one at −10 V and the next one at 10 V
before engaging the linear lock. Notice, however that the strategy was not very well
optimized yet. The trigger of the linear lock was not well adjusted since the second
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Fig. 7.4 First lock acquisition of the North arm cavity. Left plot: Power in transmission of the
cavity. Right plot: Correction sent to the NE mirror

resonance was slow enough for engaging it, but a second impulse was sent instead
before engaging the control.

The keypoints to adjustwere the velocity estimation, thedurationof the impulse
and themoment of engaging the linear lock. For the first point we used the results of
the simulation showed in Sect. 5.4.3. The lock algorithm would initialize a counter
when the cavity reaches 10% of the maximum transmitted power (we used as a
reference the power when the cavity is controlled on resonance) which stops when
reaching 40%. This parameter, GLcount contains the information about the cavity
velocity and we use it to take a decision.

As mentioned in the corresponding section, the chosen target velocity after the
continuous impulse was 0.3 µms−1. This velocity roughly corresponds to 50 counts
and when GLcount exceeds this value, we know that the cavity is slow enough that
our PDH error signal will not suffer from important ringing effects and the linear
lock can be engaged.

Notice that normally we would need to take in consideration the level of trans-
mitted power before engaging the linear lock as the error signal is linear only when
the power is higher than Pmax/2. However as the error signal that we are using is
normalized, its linear region is much wider and there is no need of specific power
triggers.

On the other hand, if GLcount is lower than 50 after reaching 40% of Pmax , we
know that the cavity is going too fast and an impulse is needed in order to slow it
down. Equation 5.66 shows the time that the pulse has to be applied knowing that
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Fig. 7.5 Lock acquisition sequence using the Guided Lock technique optimized in the Nort Arm
cavity. Upper plot: power in transmission of the cavity. Central plot: error signal, B7 6 MHz.
Lower plot: correction sent to the end mirror

the maximum force available is 2.5 mN (10 V), the mass of the mirrors is 42.3 kg
and the target velocity, v f in is 0.3 µms−1.

For the direction of the impulse we use the sign of the error signal before the
zero crossing. The equivalence between the sign of the impulse and the sign of the
error signal needs to be tuned empirically since it depends on the demodulation
phase as well. However, it is not difficult to correctly tune it since a wrong sign will
“accelerate” the cavity.

Then the impulse is sent during the calculated time and with the good sign, and a
new iteration starts when the cavity crosses the next resonance until the cavity lock
is engaged.

An example of this process is shown in Fig. 7.5. It shows the power in transmission
of the arm cavity, and two resonances can be seen before the lock is engaged. The
first resonance presents ringing effects but not the second one, which indicates that
the second resonance was crossed with a lower velocity.

From the error signal slope it can be seen that the first and the second time that the
resonance is crossed, it is done in opposite directions. Also in this case the ringing
is well visible in the first resonance-crossing and less in the second one. The change
in the direction is due to the pulse shown in the lower plot. The time that the pulse
was applied was shorter the second time that the resonance was crossed, which also
indicates a slower velocity.
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When the linear lock is engaged, the correction sent saturates. In Sect. 5.4.1 we
saw that the step responsemight oscillate before reaching a stable state in the presence
of an overshoot. In this case the transient is due to the noise in the error signals. After
a small amount of time the correction stabilizes within the dynamic range of the
actuators, reaching the steady state.

7.2.3 Error Signal Calibration

As it was mentioned before at the beginning we used B4 6 MHz (the error signal
in reflection of the cavities) to control them because it has more signal than the
photodiodes in transmission and so it is less noisy. However, as soon as we realized
that the lock could be engaged directly in transmission, we started using B7 and B8
6MHz because they would allow us to engage simultaneously the lock of both arms.

It is easy to tune the demodulation phases of these error signals, since we can
leave the cavities free-swinging and tune the phases in order to maximize the slope
of the signal in-phase (P) and minimize the signal in-quadrature (Q), as it is shown
in the left plot of Fig. 7.6.

Once the cavities are locked, the FFT (Fast Fourier Transform) of both error
signals will allow us to tune it in a more precise way, again by maximizing the signal
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Fig. 7.6 Left plot: DC power and P and Q projections of the error signal in B7 photodiode (arm
transmission) when crossing a resonance. Right plot: FFT of the error signal P and Q projection
while the cavity is controlled
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in P and minimizing the signal in Q. Once within a range of±10◦ around the optimal
demodulation phase, the effect of the tuning is hard to see on the projection we are
trying to optimize. Instead, at this stage is easier to minimize the other projection,
until reaching the electronic noise of the photodiode. The plot on the right of Fig. 7.6
shows an example when the North cavity is locked.

The error signal provides information about the quality of the lock since it
carries information about how far is the cavity from resonance. This means that
when the cavity is controlled, the error signal basically represents the residual length
fluctuations, and so if we calibrate it, we will know the precision of the longitudinal
control.

In order to calibrate the error signal, we will use the knowledge we have of the
OLTF of the feedback loop of the cavities. As exposed in Sect. 5.4.1, the feedback
loop of a simple Fabry Perot cavity depends on:

• The Plant, which in our case is the Optical TF of the arm cavity (W/m).
• The Sensor Transfer Function (V/W).
• The Control Filter (V/V).
• The Actuators (µm/V), which comprises the Mechanical TF of the suspension of
the mirror and the TF of the coils, which are already calibrated in physical units.

The error signal can be calibrated by measuring experimentally the Open Loop TF
of the arm cavity and comparing it to the model. The gain of the control filter and the
calibration factor of the actuator TF are known, so the extra factor needed in order
to make the model agree with the experimental measurement will be the calibration
factor that we are interested in. It contains the gains of the Optical TF and the Sensor
TF, always under the supposition that the photodiode has a flat TF in the region of
interest.

In order tomeasure experimentally a transfer function it is necessary to inject
noise in a strategic point of the feedback loopwhile it is closed. This way the response
of the system can be monitored. The point of injection (Input Y(s)) and the point
where we measure the system’s response (Output X(s)) are chosen depending on the
TF we are interested in. As we want to measure the OLTF of the system, the noise
will be injected at the level of the error signal and the response will be studied after
the control filter, as shown in Fig. 7.7.

Fig. 7.7 Scheme of the
feedback loop of a cavity
showing where to inject
noise in order to measure the
OLTF
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measurement is shown in the lower plot

In order to make a good measurement we need to be sure that the level of injected
noise is high enough to have coherence between the Input and the chosen Output.
For this reason the noise has to be adapted to the shape of the correction sent to the
actuators of the loop in the frequency bandwidth that we want to study. On the one
hand the noise needs to be high enough to have coherence, but on the other hand it
has to be low enough not to saturate the controls which would provoke a loss of the
control. This usually means that the noise injected can not be simply white noise,
but it has to be shaped to fulfil this requirements.

Figure 7.8 shows the measurement of the OLTF of the North arm. It has an UGF
of 28 Hz, and it can be seen that the model (already presented in Sect. 5.4.1) and the
measurements are in agreement in the region where the coherence is good (>0.8).
Notice however that in order to have a good agreement for the phase of the filter, an
additional delay of 800 µs has been considered.

This delay comes from the propagation of the error signal from the photodiode
to the actuator. This includes the delay due to the passage through several digital
processes, which typically is 200 µs per process, and the delay from the actuator
itself, which have been measured by the calibration team and is typically of the order
of 400 µs [5]. It plays a key role on the stability of the filters since a time delay is
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seen in the frequency domain as a phase loss [6] which will limit the phase margin
and so the bandwidth that can be reached. Indeed, the maximum UGF that can be
achieved is limited by the delay since at 200 Hz there is no phase margin anymore
(less than 45◦).

In order to improve the performance of the filter, an extra integrator (a pole) has
been added at low frequencies, also known as boost. It can not be seen on Fig. 7.8
because it is out of the frequency range shown. Its role is to have a more stringent
control at low frequencies, where there is a higher presence of noise, mainly seismic
one. It reduces the stability margin at low frequencies, but it provides a better control.
For this reason, the control is engaged without the boost, and once the transients have
passed (few seconds) and the cavity is controlled, the boost is turned on.

From this measurement we have been able to derive the calibration factor for
the North Arm and for the West Arm by doing an equivalent noise injection.

• Cnorth = 2.15 × 10−7 m/V
• Cwest = 2.66 × 10−7 m/V

The discrepancies between both can come from slightly different optical transfer
functions. The maximum power measured is not the same for both arms, so either
the finesse is not exactly the sameor there is somediffused light on one of the benches.
Regarding the uncertainty on the calibration factors, there are two main sources. One
comes from the fit, which has been done with an accuracy around 15%. The second
one comes from the measurement itself, and the conditions of the interferometer
during the data taking. When the PR is misaligned the interferometer is in a quiet
state, so we are limited by the fit error. However, the aim of these measurements is a
check of the loops correct behaviour, not precision. For this reason we will not take
into account errors in the calibration factors.

Finally, applying this coefficient to the corresponding error signals, we can cal-
culate the residual motion of the cavities when they are controlled with the rms of
their power spectral density (PSD). For the north arm it is 25 pm and for the west
arm it is 27 pm, as we can see in Fig. 7.9. The performances are very similar between
them, as expected, since the controllers are the same and they are affected by the
same noise sources. The UGF of the control loop when the PSD of the error signals
was done was ∼55 Hz.

The rms is mainly dominated by peaks at 50, 100 and 150 Hz, which come from
electronic coupling. In this case the solution would be to reduce the coupling of these
lines to the error signal, which would allow us to improve the quality of the lock.
This work will be done at the DF during the noise hunting period while trying to
improve the sensitivity.

If the correction needed to compensate these lines is larger than the actuator
dynamics, the controlmight become unstable. In this case it is possible to add a notch1

at these frequencies on the filter. This could be a problem for the 50 Hz frequency
since it is close to the control UGF and it could reduce the stability margin.

1A notch is a special type of band-stop filter that attenuates a very narrow frequency range.
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Fig. 7.9 FFT of the error signals used for the arm longitudinal control calibrated. Left plot: B7 6
MHz normalized error signal, rms = 25 pm. Right plot: B8 6 MHz normalized error signal, rms 27
pm

7.2.4 Angular Control

As it was mentioned in Chap. 5, the mirrors suffer from slow angular drifts, which
couple to the longitudinal control introducing noise and spoiling the coupling of the
input beam to the optical resonator. For this reason an active angular control is needed
both to align the beam to the optical axis of the cavity and to center the cavity axis
with respect to the mirror actuation.

Several methods were presented in Sect. 5.5.2 and it was decided that the mechan-
icalmodulationwas the best for the arm cavities. It does not provide a high bandwidth
control, itsUGF is normally of the order of tenths ofmHz, but it is easily implemented
and very robust, which makes it perfect for the beginning of the commissioning. A
control loop which such a low bandwidth is also known as drift control.

7.2.4.1 Sensing

As explained in the previous chapter, themechanicalmodulation takes advantage of
the coupling between the longitudinal and the angular motion. Its working principle
is to add a sine on the angular degree of freedom to be controlled at a particular
frequency, f θi

dri f t . This movement will cause a length change, δL , when the optical
axis is not perfectly aligned. The δL will be corrected by the longitudinal control in
order to keep the cavity on resonance. This means that the presence of a signal at
f θi
dri f t in the longitudinal correctionwill tell us that the oscillatingDOF ismisaligned.
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This information can be extracted by demodulating this correction at f θi
dri f t and then

use as an error signal.
For the alignment of the beam with respect to the cavity axis the rationale is

very similar. A line at f �i
dri f t is placed into the DOF of the beam to be controlled.

However in this case it is the transmitted power that contains information, because
the alignment of the beam with respect to the optical axis modifies the power that
resonates inside the cavity (see Sect. 5.5). The presence of a line at f �i

dri f t on the
spectrum of the transmitted power will be minimum when the beam and the optical
axis of the cavity are well aligned so the demodulation of Ptr at f �i

dri f t can be used
as an error signal for the control of the beam alignment.

The first step was the centering of the beam on the PR and the NI mirrors.
Mechanical modulation was used also for this purpose. A dithering line was added
to both PR and NI angular DOFs and then the low finesse cavity PR-NI was locked.
The beam’s tilt and shift were adjusted in order to minimize the dithering line on the
spectrum of the longitudinal lock correction and to maximize the resonating power.

This provides a pre-alignment of the beamwith respect to the interferometer plane.
This step is very important because the actuators of the beam alignment which have
large dynamics are components of the Injection telescope Sect. 4.4 and they can not
be used inside a control loop since they are very sensitive. For the shift DOF this is
especially critical since it can only be adjusted with this telescope or by adjusting
the height of the mirrors with the suspensions, but none of these actions can be made
within a control loop.

On the other hand, the tilt of the beam can be fine tuned taking advantage of the
fact that the PR mirror is curved. In this case the angle of the output beam will be
different depending on where it impinges on the PR mirror and so a translation will
cause a tilt of the beam that impinges on the North cavity. For the same reason, a
translation of the BS mirror will tilt the beam that impinges on the West arm cavity.
Notice that the beam impinging on the North arm cavity depends only on the input
beam alignment while the one impinging on the West arm cavity can be further
adjusted with the BS. It is for this reason that the PR-NI cavity is used as a reference.

The next step was to choose the frequency of the dithering signals. The aimwas
to tune them to be as low as possible while keeping them visible in the correction
spectrum. The frequencies were chosen to fall into a quiet part of it, but within the
bandwidth of actuation of the marionetta. As its TF behaves as 1/f2, more actuation
is necessary to actuate at higher frequencies. To avoid saturation, the bandwidth can
be at most 20 Hz. It turned out that the region around 10 Hz is the most quiet one
and so the lines chosen were: 9.5 Hz for the NE θx , 10.5 Hz for NE θy , 11.5 Hz for
NI θx and 12.5 Hz for NI θy . They can be seen in Fig. 7.10.

Once the lines were injected, the correction of the lock was demodulated at the
chosen dithering frequencies in order to build the error signals of the four angular
DOFs of the cavity. At this point it was necessary to check if these demodulated
signals were good error signals. First of all we checked if they could sense the
corresponding mirror movement. In order to do this, during one lock of the North
Arm cavity, each of the mirrors was misaligned in an independent way. Then the
correction of the longitudinal control is demodulated at each f θi

dri f t to get the angular
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Fig. 7.10 Zoom of the power spectral density of the correction of the longitudinal lock of the North
Arm cavity once the dithering lines are added to the mirrors angular DOFs

error signals. The demodulation phases were tuned offline in order to maximize the
effect of the angular movement. The results are shown in Fig. 7.11.

The plots on the left of Fig. 7.11 show the signals from the LCs which represent
the misalignment experienced by each angular DOF. On the right plots we can see
the optimized demodulated signals. It is clear that they sense the misalignment of
each mirror, as we expected. The zero-crossing do not agree with the one of the LCs,
but this can be tuned by adding an offset.

However, it was also observed that the NE and NI error signals were very coupled
between them, as expected from the geometry of the arm cavity (see Sect. 5.5.1). For
this reason, in order to build error signals that are decoupled between them it was
necessary to reconstruct the cavity eigenvectors: tilt and shift.

Regarding the tilt of the input beams of the cavities, a similar process has been
done. For the North arm cavity, dithering lines have been added to the PR mirror
translation and for the West one they have been added to the BS mirror. The error
signal are obtained this time by demodulating the transmitted power.

7.2.4.2 Driving

In Sect. 5.5.1, the eigenvectors of the cavity alignment were defined in Eq. 5.82.
However, in real life the ability to actuate on this DOFs depends on the actuators
calibration, which is accurate within 10% [7]. In order to decrease this uncertainty
we have measured experimentally the dependence of the transmitted power of
the cavity on the single mirrors alignment.
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Fig. 7.11 Left plot: angularmovement of eachmirror of the north cavity.Rightplot: corresponding
error signals with the demodulated phase optimized

Starting from an aligned state with the LC engaged but with the cavity unlocked
longitudinally, the evolution of the transmitted power resonances or flashes has been
studied as a function of themisalignment of bothmirrors. In order to do so, an angular
line has been added to the θi of the End mirror at the level of the marionetta, with
an amplitude of ±8 µrad and at a frequency of 20 mHz. The frequency was chosen
under the resonances of the mirror pendulum (600 and 800 mHz) in order to avoid
the attenuation due to the mechanical transfer function which decreases as 1/f2 above
the resonances. Otherwise, in order to make such an important angular movement,
the correction sent would be too high.

At the same time the angular position of the North Input mirror was changed
by applying a slow ramp at the marionetta (several minutes to do ±35 µrad). This
action was repeated for different alignments of NE θi (always with the angular line
on) until the misalignment was too important to see any flash on the B7 photodiode.
When this happened, the mirrors were repositioned in order to find an alignment that
allowed to have light resonating on the cavity. This process was iterated in order to
make several complete scans of the cavity alignment. An example of this scan for
the North arm cavity in the Y-plane is shown on Fig. 7.12.
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Fig. 7.12 Scan of the transmitted power of north arm by misaligning the NE and NI mirrors on θx
by acting on the marionetta. The flashes on the transmitted power, B7 DC, are resonances of the
cavity. It is shown how they increase and decrease depending on the angular position of the cavity
mirrors. The data shown are sampled at 1 Hz (trend data)

With the collected data, an analogue plot to Fig. 5.28 was done for the arm cavities
of Advanced Virgo. The analysis has been made with the trend data (stored at 1 Hz),
and in order to have more statistics the mean, maximum and minimum values of
the mirrors alignment positions have been used. For each alignment position, the
maximum power of the transmission peaks of each scan has been taken into account.
Notice that as we are using the data at 1 Hz, there are several transmission peaks
at each position. Taking the maximum value of the power guarantees that we are
selecting the slowest peak (as explained on Sect. 5.4.3).

In order to be sure that the maximum peak is always a 00 and not a HOM due
to a high misalignment, we made a simulation and we checked that in the studied
interval the 00 carries always the most power (see Fig. 7.13).

As there were made several complete scans of the cavity alignment, for each
alignment position there were several power values. This way the impact of the
cavity velocity on the power of the transmission peaks was minimized. The analysis
has been done by taking the maximum value of all of them and by taking the mean
value obtaining an equivalent result for both configurations. Figure 7.14 shows the
configuration where the maximum values are taken.

According to Eqs. 5.76 and 5.77 the slope of Fig. 7.14 should give us the ratio
between both radius of curvature that is used in order to change basis. Figure 7.14 has
been fitted to a line with a slope of 0.92 to be comparedwith the theoretical onewhich
is 0.84. The discrepancy comes from the cross-calibration between the actuators of
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Fig. 7.13 Power ratio between the HOMs due to the misalignment and the 00 as a function of θx
of NE and NI mirrors (PHOM /P00). The power ratio goes from blue (when there is no HOM) to
yellow (when the 00 and the HOM have the same power)

Fig. 7.14 Measurement of the transmitted power of north arm as a function of the mirrors misalign-
ment on θx . The power distribution is represented in a color scale which goes from blue (minimum
power) to yellow (maximum power)

the NE mirror and the NI mirror which are expected to be identical within a 10%
error [7]. Taking into account this uncertainty the experimental measurement is well
in agreement with the values predicted by the theory.

This measurement has been done for the two cavities and in the two planes X
and Y. Table 7.2 shows the measured driving of the arm cavities angular DOFs. In
particular, the coefficients shown correspond to a pure tilt. In order to reconstruct
the shift it is enough to change the sign of the end mirror coefficient. All the values
are within 10% of discrepancy from the theoretical value except the X-plane of the
North arm cavity, where this discrepancy is of the order of 30%.
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Table 7.2 Driving of the cavities that produces a pure tilt. In order to drive a shift it is only
necessary to change the sign of the End mirror coefficient. These coefficients correspond to the
matrix elements of Eq. 5.78

North arm θx North arm θy West arm θx West arm θy

End mirror −0.92 1.09 −0.89 −0.72

Input mirror 1 1 1 1

Fig. 7.15 Measurement of the transmitted power of north arm as a function of the optical axis
angular degrees of freedom. The power distribution is represented in a color scale which goes from
blue (minimum power) to yellow (maximum power)

The relative sensitivity to a shift or to a tilt can be extracted from Fig. 7.15. The
ratio between both DOFs can be calculated as done for the simulation: in this case
for the photodiode signal to decrease to 0.032 V a pure tilt of 6.7 ± 0.6 µrad and a
pure shift of 39.6 ± 0.6 µrad are needed. The ratio between them is in this case 5.9
± 0.6 which is in agreement with the result of the simulations taking into account
the actuators calibration uncertainty of 10% previously mentioned.

Using the slope found experimentally the change of basis to tilt/shift has been
made as well as its calibration and it is shown on Fig. 7.15.

7.2.4.3 Implementation

At this point we have all the information needed to engage the loop. First of all the
error signals obtained from each mirror (4 in total) are combined in order to recreate
the tilt and shift degrees of freedom using Eq. 5.78. Then, they are sent to the control
filter which for a drift control consists of a simple integrator whose gain is adjusted
in order to have an UGF around several tenths of mHz.

The limiting part of this control is the precision of the actuators, because the cavity
angular DOFs need a particular driving matrix in order to be decoupled. In order to
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simplify this problem we have implemented a hierarchical control between tilt and
shift. Knowing that the tilt is the most relevant DOF, it has the highest bandwidth and
so it is the fastest loop. The shift is the slow loop, with a lower bandwidth than the
tilt. As it is the less sensitive DOF, we have simplified the driving and used only the
input mirror to correct it. This way any coupling from the slow loop can be quickly
corrected by the fast one.

Regarding the beam tilt, this loop has also a high bandwidth, since it is a relevant
one as well. In this case there is no problem of driving, since only one mirror is
involved.

This control scheme has allowed us to reach very long periods of lock (several
hours). Also an advantage is that with a rough pre-alignment of the arm cavities, the
drift control is able to bring them to an aligned state in a short period of time, saving a
lot of commissioning time. Figure 7.16 shows a lock period of the North arm cavity.
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Fig. 7.16 Alignment of the North Arm cavity thanks to the drift control. Upper plot: power
transmitted by the cavity.Central plots: angular position of the end and input mirrors in both the X
and Y-planes. Lower plot: position of the PR mirror both in the horizontal and the vertical planes
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It is first locked longitudinally while being misaligned (half of the maximum power)
and then the drift control is engaged.

In Fig. 7.16 the angular control acts on the alignment of the cavity mirrors and the
beam until reaching the aligned state, where the power is maximum. As mentioned
previously, we will use the translation of the PR mirror as actuator of the beam
alignment. Within 1 min most of the power is recovered. So in principle even if the
control it is not very precise, it is very robust and provides a stable alignment over
extended periods of time, which was the target.

7.3 Step 3: Recombined

As presented in the previous chapter, in this step all the loops are engaged in a
sequential way, except the PRCL one because the PR mirror is misaligned at this
stage to minimize the coupling. As a reminder, the Michelson is locked on its Half-
Fringe in order to decrease the finesse of the PRCwhen it will be aligned. Then, there
is a change of basis and we pass from controlling the arm cavities in an independent
way to control the Common and Differential arm lengths, CARM and DARM. This
allows us to engage the Second Stage of Frequency Stabilization, decreasing the
frequency noise in preparation for the next step.

7.3.1 MICH Loop

Once the arm cavities are controlled and aligned, the next step in the lock acquisition
scheme is to control theMichelson interferometer. Two error signals had been studied
for this DOF using the simulations: B1/B5 and B1/B4, with an offset to change the
interference condition. The conclusion was that both error signals were valid but that
the B1/B5 would provide a wider linear range.

Unfortunately, in practice the B5 photodiode was the last one to be available, and
theB5DC signalwas not very stable. This signal is extracted from the sameDetection
bench as the B1 photodiode and the separation of both beams is very tricky, as we
mentioned in Sect. 7.1. For this reason we discarded the use of B5 as a normalization
in favour of B1 beam, which is the priority.

As the normalization by B4 had a very narrow linear range, we decided to try
another possibility: B1+B4. The DC signal at the B4 photodiode gives the power
reflected back from the symmetric port and the B1 photodiode gives the power arriv-
ing to the antisymmetric port. The power distribution between these two photodiodes
gives information about the Michelson interference condition and so the sum of both
gives the total power interfering at the BS.

This new error signal is shown in Fig. 7.17, where we can see that even if the
slope is lower than for the error signals studied in the past section, the linear region
is similar (B1/B4 linear range is 5.7 × 10−8 m as shown in Fig. 6.12), and so it is a
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Fig. 7.17 Simulation of an alternative MICH error signal, B1/(B1+B4). The plot shows as well a
fit of the linear region

robust error signal as well. Again the linear region has been calculated as the region
within which the error signals deviates less than 10% from the linear fit. Regarding
the coupling between DOFs, it is essentially the same as for B1/B4 and B1/B5.

In practice we need to calibrate the B1 and B4 error signals, since each detection
bench has a different telescope. The target is to equalise the power in B1 photodiode
at Bright Fringe and the power in B4 photodiode in Dark Fringe, which is the good
behaviour. The B1 photodiode was taken as reference and a calibration factor was
applied to the B4 signal to fulfil this condition.

An advantage of this error signal is that it gives us direct information about the
fringe offset. This signal has a value of 1 at bright fringe and a value of 0 at dark
fringe. So atHalf-Fringe theMICHoffsetwill be 0.5. This is very convenient from the
coupling point of view because it allows us to adjust the offset properly, minimizing
the coupling of the other DOFs as explained in Sect. 6.2.5.

The fringe evolution given by the power distribution is not equivalent to the
interference condition given by the length difference between the arms (MICH)
when the PR mirror is aligned. This can be appreciated in Fig. 7.18 that shows the
relationship between them once the PR mirror is aligned. At 0.6 they are almost
equivalent and the difference between them increases when getting close to the DF
and to the Bright Fringe.

However, this error signal is very useful since it provides straightforward infor-
mation about the fringe offset. For this reason, from now on the MICH offset will be
defined as a function of the power and not the length difference between the short
arms.

An important parameter when we want to engage a control loop is the trigger. It
is a switch that is turned on when we are in the good conditions to engage the
linear lock and turned off when the conditions are not good anymore. Usually
the good range is within the linear range of the error signal. In the case of the arm
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Fig. 7.18 Relationship between the fringe offset as a function of the wavelength and as a function
of the power that recombines at the BS, B1+B4

cavities, the trigger was the counter on the rising time of the transmitted power. For
the Michelson, a simple trigger on the power will be used to know when we are in
the good region.

The signal that is used as trigger is the error signal itself, without any offset
applied. The value chosen was an interval of ±0.1 around the working point, which
is within the linear range, as seen in Fig. 7.17, and close to the working point. So the
trigger that will be used for MICH will be 0.4 < B1/(B1+B4) < 0.6. An example of
the lock engagement is shown in Fig. 7.19.

The trigger is 0 when we are outside the region of interest and it becomes 1 when
the error signal becomes smaller than 0.1. At this point, the linear lock is engaged,
and corrections start to be sent to the mirror actuators, in this case the BS.

It can be observed that during the first instants of the lock, the correction saturates,
since the dynamic of the actuators is only ±10 V. This is normal during the transient
that takes place when the lock is engaged, which corresponds to the step response
presented in Sect. 5.4.1. After this transient the correction stabilizes around normal
values, and so does the power at its Half-Fringe value.

Once the lock is engaged, the trigger parameters are changed in order to anticipate
the PR alignment. A relevant increase of the power is foreseen so the range of
the trigger is broadened to allow some fluctuations caused by the lock acquisition
transients. This is done to avoid that the control is turned off by the trigger during
this process or during the MICH offset reduction.

At this point we can measure the OLTF of the MICH loop by injecting noise,
and the results are shown in Fig. 7.20. The TF of the actuators is the same as for the
arm cavities, but the optical transfer function is flat instead of having a pole as in
their case. The measurement of the OLTF is well in agreement with the model.
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Fig. 7.19 Example of a lock of theMICHDOF. The plots shown are: the error signal (up-right), the
power in the antisymmetric port (up-left), the trigger (down-right) and the correction (down-left)
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Fig. 7.20 Comparison of the measurement and the model of the OLTF of the MICH DOF. It has
an UGF of 20 Hz and a delay of 2400 µs



7.3 Step 3: Recombined 159

10 0 10 1 10 2 10 3

Frequency [Hz]

10 -13

10 -12

10 -11

10 -10

A
m

pl
itu

de
 [m

/s
qr

t(
H

z)
]

B1/(B1+B4) - 0.5

Fig. 7.21 Calibrated power spectral density of the MICH error signal, while locked in the recom-
bined configuration. The residual length fluctuation is given by its rms, 140 pm

The UGF of the MICH loop is 20 Hz. As we have mentioned in the previous
chapter, it is convenient to have a hierarchical control between MICH and DARM
loops since they are highly coupled. MICH loop is the slow one which is the reason
why the UGF is so low. The DARM loop has priority since is the DOF that will
detect the passage of a GW.

In order to fit the phase, a delay of 2400 µs was needed. This delay is very high
with respect to the actuators one which is of the order of 400 µs. In order to check if
there was a problem with this loop, we made a different kind of noise injection, also
known as sweep sine. It consists on injecting a sine and change its frequency in the
range of interest. This does not provide a precise measurement of the shape of the
OLTF because it has information only in a discrete set of frequencies, but it assures
an almost perfect coherence at each frequency.

We made a measurement on the frequency range corresponding to the high limit
of the phase margin to check the delay. When the measurement is done with a
sweep sine, the phase is better adjusted and the measured delay is 650 µs which
is consistent with the known delay sources. The extra delay might come from the
process that generates the white noise in real time computers, which decreases when
we are injecting only a sine.

Again, with this measurement we can calibrate the error signal used to control
the MICH DOF. The calibration factor obtained is CMICH = 3.3 × 10−10 m/V and
the PSD is shown in Fig. 7.21. It has an rms of 140 pm, which is higher than for the
arm cavities, but also the UGF is lower for this DOF. Again, the rms is dominated
by the 50 Hz line. In this case the 100 and 150 Hz lines do not appear because there
are a specific notch for it and all the harmonics of the 50 Hz up to 500 Hz. These
notches were implemented to decrease the correction of this loop, which was close
to saturation.
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Notice however that the maximum UGF that can be achieved does not depend
only on the digital delay of the signals inside the control loop (phase margin). The
dynamics of the corrections can also have an impact on this value. This was a problem
for the MICH loop, whose control was saturating even on steady state. In this case,
an increase of the bandwidth would mean an increase of the correction sent as well,
leading to a bigger saturation. A non invasive solution was tried by implementing
the so called marionetta reallocation. This consists on splitting the control between
the mirror itself and the higher stage in the suspension chain, the marionetta. This
usually helps because it increases the actuation range.

In this case this was not enough, and it proved to be a limiting factor when
aligning the PRmirror since the control needed more bandwidth but at the same time
the actuation was saturating. For this reason, the 22nd of December it was decided
to increase the gain of the actuation by a factor 6. This was an invasive operation
because it implied the opening of the BS tower, but it allowed the first lock of the
PRITF in Half-Fringe with the PR mirror fully aligned, as it will be seen later on in
this chapter.

7.3.2 CARM/DARM Loops

Once all theDOFs are controlled (the PRmirror is still misaligned)wemake a change
of basis between controlling the arms length independently and controlling the Com-
mon and Differential arm lengths. In order to do this, we build the error signals with
the transmission of the arms, as explained in Eq. 6.24. The only modification was to
take into account the gain of the arm loops (Gnorth and Gwest ) when reconstructing
the sensing, this way both error signals have the correct weight in the sum, and so
the sensing becomes:

CARM = Gnorth · B7 6MHz

B7 DC
+ Gwest · B8 6MHz

B8 DC

DARM = Gnorth · B7 6MHz

B7 DC
− Gwest · B8 6MHz

B8 DC

(7.1)

Finally, notice that the relative phase between the error signals is important in order
to assure that we are summing or subtracting. The sum of two error signals de-phased
by π is a subtraction instead. In order to check this we made the TF between both
error signals and its phase will tell us the phase difference between them. We have
adjusted this relative phase to 0 by changing the demodulation phase of one of the
error signals by π in order to preserve the expression of the sensing.

Regarding the driving, it is the one shown in Table 6.7, which shows the actuation
that decouples the CARM and DARM DOFs.

The control filter is the same as the one for the single cavities at this early stage
of the commissioning. However, the transition needs to be done carefully, in order
not to open the control of the arm cavities. As the arm loops are already closed, the
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Fig. 7.22 Transition between controlling the length of the arms independently, to control the
common and differential length, CARM and DARM. The figure shows the arms transmitted power
and the correction applied to each DOF. From point A, the corrections are calculated but not sent
yet. At point B the transition is done progressively

integrator of the controller (the poles) is already charged with information. For this
reason we are going to initialize the CARM and DARM filters before making the
change of basis. This means that the error signal is sent to the filter, which calculates
the corrections, but they are not sent to the actuators yet. Once the filter has been
charged for several seconds, the correction from the arm loops is stopped and the
ones from CARM and DARM are sent. The transition between both error signals is
done progressively over several seconds and it is is shown in Fig. 7.22.

The figure shows an example of the hand-off to CARM and DARMDOFs. The
CARM and DARM corrections start to be calculated at point A and 5 s after the
hand-off is done (point B), that is, the corrections start to be sent. The transmitted
power of the arms remains unchanged, as expected, since this basis is equivalent to
the previous one.

7.3.3 Second Stage of Frequency Stabilization

At this point we are ready to engage the Second Stage of Frequency Stabilization
using the CARM error signal coming from the B4 photodiode. As mentioned in
Sect. 6.3, we have tried to decouple the slow and the fast branches of the frequency
stabilization, by sending the error signal to both the IMC and the SSFS. This allows
us to pass through an intermediate state before engaging the control in full bandwidth
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which is the lock of the slow branch only, sending the CARM error signal to the Input
Mode Cleaner (IMC).

7.3.3.1 Slow Loop: CARM to IMC

TheOLTF of the IMC is well known, since it is engaged from the beginning using the
error signal coming from the Reference Cavity. So in principle the commissioning of
this slow branch is straightforward, it is only necessary to add a compensation for the
Optical TF of CARM (zero @ 50 Hz), which is characterized by the pole of the arm
cavities at this stage. In order to keep the loop stable after the compensator, an extra
pole is added (pole @ 2000 Hz), and the resulting OLTF was shown in Fig. 6.29.

So in practice it is only necessary to calibrate the CARM error signal, B4 6
MHz normalized by B4 DC, with respect to the error signal of the RFC. Even if it
was not necessary to normalize it because the gain margin was large enough, we did
it to simplify the MICH offset reduction process.

In order to do this calibration we started from the TF between the B4 6 MHznorm
error signal and the correction sent to the IMC when the loop is closed with the RFC
error signal. This TF was chosen because it gives the extra calibration factor needed
in order to substitute the RFC error signal by the CARM error signal while keeping
the filter in the stability region.

First of all notice that no specific noise injection was done in this case, since the
frequency noise is dominant above the UGF of the IMC (171 Hz) up to 1 kHz. Then,
whenwemake the TF between the error signal (Output) and the correction calculated
by the filter (Input) we are measuring:

T FB4−Corr = T FAct · T FCARM · T FPh (7.2)

The calibration factor that we are looking for comes from the different optical TF and
the different photodiode.By taking into account themechanical TFof the actuator and
themirror suspension, which is already calibrated, and the shape of the CARMTFwe
obtain this extra factor that needs to be taken into account when using B4 6MHznorm
error signal. The measured calibration factor was CB4 = −1.9 × 10−5 V/V. The
minus sign comes from the fact that the global phase of the TF was π , meaning the
error signals have opposite signs, which has to be compensated by the filter gain.

Once the calibration was done it was straightforward to make the hand-off2

between the error signals. The only change was to add a couple zero-pole to the
filter and the calibration factor to the filter gain. This is done at the same time as
the error signal is changed, being an instantaneous transition, triggered by a manual
switch. The transition can be seen in Fig. 7.23 and the beginning is marked by the
dashed line. The improvement on the control after the transition is clear by looking

2We call hand-off to the process of passing from one error signal to another one while the system
remains locked.
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Fig. 7.23 Lock sequence of the slow branch of the SSFS loop. The control is engaged using a
manual trigger at the moment marked by the dashed line and the transition is instantaneous. The
figure shows: arms transmitted power (upper plot) and correction sent to the IMC mirror (lower
plot). The improvement on the frequency noise can be clearly observed on the transmitted power

at the stability of the transmitted power. The transition is almost transparent for the
IMC as it can be seen from the continuity of the correction sent.

A noise injection can be done in order to measure the OLTF of the slow branch of
the SSFS as done for the arm cavities. As the actuation of the IMCmirror is calibrated
in µm, we can calculate the calibration factor in this case as well by comparing the
measurement with the theoretical model presented in Sect. 6.3. Figure 7.24 shows
both the measurement and the model of the OLTF of the IMC when locked using
CARM error signal which has an UGF of 171 Hz. In order to match the phase to
the measurement a delay of 800 µs needed to be added. This delay is still within
reasonable values.

The calibration factor extracted from the measurements is Ccal = 1.9 × 10−11

m/V. However, as we are dealing with frequency stabilization, we are more interested
in calculating the residual frequency variation. This operation is straightforward
according to δν/ν = δL/L (Eq. 3.2) where L is the arm cavity length (3 km). We can
then transform the calibration factor into a more convenient unit,Cν

cal = 1.79Hz/V.
The calibrated PSD of the B4 6 MHznorm error signal when used by the IMC loop
is shown in Fig. 7.27. In the plot it is compared to the PSD when the loop is closed
with the Reference Cavity error signal and with the SSFS fast branch closed.

7.3.3.2 Fast Loop: SSFS

Once the slow branch was engaged, the only missing part was the commissioning of
the fast branch of the SSFS. The first thing we did was to estimate the gain of the
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Fig. 7.24 Comparison of the measurement and the model of the OLTF of the slow branch of the
SSFS: the IMC lock using the CARM error signal. The UGF is 171 Hz and the fitted delay 800 µs

filter necessary to assure the filter stability. In principle we are interested in the TF
between the error signal that we want to use, B4 6 MHznorm , and the correction sent
to the laser. This is analogous to the noise injection done in order to calibrate the MC
loop. The tricky part is that in this case, the error signal is already in closed loop in
the IMC, so we need to take it into account and compensate for it. In fact this is not
a problem, since the OLTF of the slow branch is well known from the model and the
measurements.

Since the loop is not yet closed, the noise has been injected instead of the correction
of the SSFS and sent to the pre-stabilization filter. The injection was done while the
IMC was controlled using the RFC. As the calibration factor between the RFC error
signal and the B4 6 MHznorm is known (CB4), the conversion is straightforward. The
measured OLTF after compensating for the IMC loop was flat, as expected, with a
level of CSSFS−RFC = 10−4 V/V. If we take into account the calibration factor CB4,
the OLTF has an approximate value of 5 V/V, that will need to be compensated by
the control filter in order to reach the stability.

This calibration factor is used to fix the cross-over frequency between the IMC
loop and the SSFS loop. As it is shown in Sect. 6.3, the target cross-over frequency
is 150 Hz. Then the UGF of the system is further increased by tuning both gains at
the same time so that the cross-over frequency is not modified.

Once this was done, we tried to engage the SSFS without success. The origin of
the problem was not clear from the data since the unlocks were very fast, of the order
of a few milliseconds. In such a short time is very hard to extract information. For
this reason we changed the strategy, we turned on the SSFS at very low gain so that
at the beginning it had no impact on the system. Progressively we started to increase
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Fig. 7.25 Comparison of the measurement and the model of the OLTF of the fast loop of the SSFS.
Its UGF is 2 kHz and the fitted delay is 17.5 µs

the gain of the SSFS control filter, and we found that the system would unlock due
to instabilities at very low frequency (tenths of Hz).

The explanation for these oscillations was the presence of some structures that
were not included in the model. The first lock on the 4th of January was achieved by
compensating these structures inside the SSFS filter, which had a very complicated
behaviour. Further investigations showed that these structures were coming from a
coupling between the SSFS and the Automatic Alignment (AA) of the IMC.

The SSFS loop modifies the working point of the IMC, which is seen by the
longitudinal error signal of the IMC. If the beam is not perfectly centred in the quad-
rants, when the information from the individual quadrants is subtracted not all the
fundamental mode disappears. This allows some information about the longitudinal
control to leak into the quadrant photodiodes used for the AA. So in practice the
engagement of the SSFS control was provoking a malfunctioning of the alignment
loop, creating unexpected structures. As they were placed at higher frequencies than
the bandwidth necessary for the AA (several Hz), an optimization of this filter to
discriminate them solved completely the problem.

At this point, with the system behaving as expected, we could remove all the
compensators added to the control filter, returning to the initial shape.Ameasurement
of the OLTF of the SSFS in this configuration is shown in Fig. 7.25. Two separate
noise injections have been done in order to cover a wider bandwidth. If we try to do
the same in only one noise injection there are more risks of saturating the control
and the noise shape has to be finely tuned.
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The measurement shown in Fig. 7.25 agrees well with the model: it has an UGF
of 2 kHz, and with the Digital Signal Processor (DSP) running at 200 kHz the phase
agrees with a delay of 27.5 µs. This delay has two different origins: one is linked
to the digital processes sampling frequency and the other one to the physical link
between processes. The first one has two contributions: the SSFS DSP itself, and the
demodulation process. In principle they contribute with one sample of delay each
so, tsample = 2/fsampl = 10 µs. This delay can be reduced by increasing the sampling
frequency.

Regarding the physical link, there is an optical fiber that allows communication
between the demodulated signals and the DSP, which introduces a delay that depends
on its length. There are 50 m of optical fiber, which corresponds to approximately
2.5 µs of delay, which can not be reduced. According to this, there are 5 µs of not-
understood delay. The team that develops the DSP is confident that this delay can
be reduced by a better synchronization of the different elements on the digital chain.
The delay of this loop is significantly less than the others because both the actuators
and the digital processes involved have a lower delay.

An interesting feature is the small oscillation seen both in themagnitude and in the
phase around 1 kHz. This results from an interaction between both SSFS branches,
the slow and the fast one. This allows us to determine the exact cross-over frequency,
and the delay of the IMC loop. The filter still has gain margin (up to an UGF of 6
kHz). It was decided not to adjust the UGF in the recombined interferometer and do
it once the PR is aligned instead. This way we can take advantage of this gain margin
to deal with the increase of power.

The UGF is limited by the delay in the loop. This is because the amplitude mar-
gin is limited by the delay introduced to the system, which changes the behaviour
of the phase. The part concerning the number of samples inside the DSP depends
on the sampling frequency, so by increasing it, the delay can be reduced. This phe-
nomena can be seen in Fig. 7.26. It shows the same filter for two different sampling
frequencies, 200 and 500 kHz. The phase crosses 180◦ at higher frequencies in the
second case, giving more phase margin and allowing to increase the UGF. The same
filter at 500 kHz allows us to reach an UGF of 8–9 kHz.

The third curve of Fig. 7.26 shows a more adapted filter for 500 kHz of sampling
frequency with a roll-off at higher frequencies, which would allow us to increase
further the UGF, up to 10 kHz. From now on, the results shown will be with the
DSP running at 500 kHz, which was the best configuration available during the
commissioning.

It is interesting to compare the residual frequency variations of the CommonDOF,
for the different controls. Figure 7.27 shows the PSDof theB4 6MHznorm error signal
in the recombined configuration, when the CARM DOF is controlled mechanically,
with only the slow branch engaged (CARM to the IMC) and with the SSFS engaged.

The noise is considerably reduced (around a factor 10) in the region between 10
and 100 Hz when using the CARM error signal to lock the IMC, passing from an
rms of 35 to 16 mHz. These rms are dominated by the lines at 50, 100 and 150 Hz,
which explains why it is only reduced by a factor 2 between both cases. When the
full SSFS is engaged, the noise is further reduced, especially at low frequency and
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Fig. 7.26 Measurement of the OLTF of the fast loop of the SSFS. The blue and red lines show
the same control filter at two different sampling frequencies. It has an impact on the phase margin,
which increases with the sampling frequency. The blue line shows the same filter, with a roll-off at
a higher frequency, with 500 kHz of sampling frequency. The phase margin is even bigger in this
case
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in the region 200–400 Hz. In this case the curves are significantly reduced, lowering
the overall rms to 3 mHz.

7.3.3.3 RFC Loop

Finally there is one more control loop to complete the SSFS. This loop is engaged
once the SSFS fast loop is already engaged. Its role is to control the frequency of the
laser at very low frequency using the error signal of the Reference Cavity. When the
SSFS is engaged, the common length of the arm cavities is the reference used for
the laser frequency stabilization. For this reason the RFC error signal, which is very
stable at low frequencies, is used to control the CARMDOF at very low frequencies
by acting on the end mirrors with the proper driving (see Table 6.7). A measurement
of this loop is shown in Fig. 7.28.

As we can see in this figure, the UGF of this loop is 2 Hz. This measurement has
been done using a sweep sine. It does not provide a perfect shape, but it agrees very
well with the model. The delay used to fit the phase was 750 µs, which is coherent
with the expected values.
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Fig. 7.28 Comparison of themeasurement and themodel of theOLTF of the RFC loop that actuates
on the end mirrors, fixing the laser frequency at very low frequencies. It has an UGF of 2 Hz and
the fitted delay is 750 µs
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7.4 Step 4: PR Alignment

During the Step 3, all the DOFs are engaged except PRCL, since the PR mirror is
misaligned. At Step 4 it is aligned and the control of the PRC is engaged. This step
is very critical since there is an important increase of the power circulating inside
the interferometer and as a consequence, of the OG of the different error signals. To
minimize this effect, the error signals used in Step 3 are normalized by the relevant
powers, as presented the previous section and in Chap. 6.

Also after the alignment of the PR, the coupling between the different DOFs will
increase and the behaviour of the sidebands becomes more complicated. Once the
PR is aligned it is convenient to engage the alignment of the PR mirror, since it will
become a limiting factor for the longitudinal controls later on the locking sequence.

7.4.1 PRCL Loop

As presented in the previous chapter, there are two candidates for the PRCL error
signal: B2 3� and B2 8MHz. It was shown that the 3� is less sensitive to changes of
the PRC optical parameters as expected during theMICH offset reduction. However,
we do not expect big changes until the point where the PRC passes from under-
coupled to over-coupled, which happens when very close to DF (97.6% of theMICH
power offset). So it was decided to use initially the 8 MHz, since it has a better SNR,
and hand-off to the 3 � error signal closer to the critically-coupled point. It was also
decided to normalize the error signal in order to anticipate for the OG change during
the MICH offset reduction. The same normalization as for the MICH error signal
has been used: the sum of B1 DC and B4 DC.

The next step is to tune the demodulation phase of the error signal. This is
not a straightforward process since we need to optimize it before aligning the PR
mirror. For this reason we will use the lock of the PR-NI cavity as a reference. In
this configuration, the 8 and 18 MHz sidebands are not resonant, acting as a phase
reference, while the carrier is resonant inside the PR-NI cavity (the end mirrors are
misaligned).

When we pass to the PRITF configuration, the sidebands are still not resonant,
but the carrier is now resonant inside the arm cavities as well so the phase of the
reflected field changes by 180◦. For this reason the same phase can be used for the
PRCL DOF, taking into account that the filter gain will have opposite sign.

At this point the PR mirror can be brought to its aligned position. This time
the trigger that starts the control depends on the intra cavity power, B4 DC. This
parameter indicates the moment when the PR is enough aligned, i.e. when the cavity
build-up is enough close to the final one that the control loop can be engaged. This
value has been fixed empirically to B4 DC > 0.025 mW. At this moment the filter
starts to send corrections to the PRmirror and the lock is engaged. Even if the sign of
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Fig. 7.29 Alignment of the PR mirror and lock of the PRCL DOF. The figure shows: the power
inside the PRC, B4, the angular position of the PR mirror, the trigger and the correction sent to the
PR mirror. It can be seen how, while the PR is being aligned, the cavity build-up starts, and once it
is high enough, the trigger is activated and the corrections start to be sent

the filter gain was obtained during the tuning of the demodulation phase, the value of
the gain was obtained empirically, starting from the value used for the PR-NI cavity.
Figure 7.29 shows the process of alignment of the PR mirror and the engagement of
the PRCL loop.

The PR mirror starts to move towards its aligned position at the beginning of the
sequence shown in the plots. At first the effect on the power is negligible, however
once the PR is more or less 5µrad far from the aligned position, there are oscillations
that start to appear in the B4 photodiode due to the crossing of different resonances
of the carrier and the sidebands, similar to what was shown by the simulation. It is
not until the PR is 2 µrad far from the target angular position that the power starts
to increase significantly, triggering the engagement of the control loop. By the time
the PR is aligned the PRCL loop is already engaged.

Notice that at the beginning due to some experimental difficulties to engage this
loop it was decided to engage the control in a slightly brighter fringe, since the finesse
of the PRC would be lower. For this reason we engage the lock at 70% of Bright
Fringe instead of exactly at Half-Fringe (50%).

Once the loop is engaged the trigger is broadened as in the case of the MICH
loop. In this case it is necessary since the trigger is on the intra-cavity power, which
is going to increase during the MICH offset reduction. For this reason the higher
threshold (DC < TriggerH ) has to be increased to a higher value than the value of
B4 DC in DF.
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Fig. 7.30 Comparison of the measurement and the model of the OLTF of the PRCL loop. The UGF
is at 70 Hz

A measurement of the OLTF of this loop can be done by injecting noise as for
the other DOFS, and the result is shown in Fig. 7.30. The optical TF of the PRC can
be considered flat since it has a pole at 100 kHz. The UGF is at 70 Hz and the delay
needed to fit the phase was 400 µs. This DOF is already controlled with a boost, i.e.
with an extra integrator at low frequencies that makes the filter to correct more in
that region.

Also from this measurement the calibration factor of the error signal can be
extracted, CPRCL = 1.4 × 10−9 m/V. Figure 7.31 shows the PSD of the error signal
used, B2 8 MHz normalized, with an rms of 71 pm.

7.4.2 MICH Driving Matrix

There is an extra factor to take into account when the PRmirror is aligned: the driving
matrix of the MICH DOF. So far it was driven using one mirror only, since the PR
was misaligned and it did not play a role yet. However, once the PRC is locked, it
is necessary to use both mirrors. Otherwise we would send the MICH correction to
the PRCL DOF as well. We decided to measure experimentally the driving matrix,
by minimizing this coupling of the MICH DOF to the PRCL DOF. The ideal driving
matrix was presented in Table 6.7 and we obtained:

MICH = 0.7 · BS + 0.5 · PR (7.3)
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Fig. 7.31 Calibrated PSD of the PRCL error signal, B2 8MHz normalized by B1+B4. The remain-
ing length fluctuations are 71 pm rms

In order to monitor the coupling, we injected a line in MICH at 11.1 Hz and we
made the driving matrix vary until this line disappeared from the PRCL correction.
So we fixed the coefficient of the BS to 0.7 and we made a sweep of the PR mirror
coefficient. The transfer function betweenMICH and PRCL and the injected line has
been monitored during this sweep. The ratio between both TFs as a function of the
PR coefficient is shown in Fig. 7.32.

We see that there is a linear relationship between both magnitudes that can be
well fitted. According to this measurement, the diagonal driving term for the PR
mirror is −0.42 ± 0.01. This measurement supposes that the coupling only comes
from the driving term and so that the sensing is completely decoupled. This is a safe
assumption since the PRCL error signal is very decoupled from the other DOFs, as
it was shown by the simulations in Fig. 6.19.

7.4.3 Longitudinal Loops After the PR Alignment

As it was anticipated in the previous chapter, the alignment of the PRmirror supposes
an increase in the power impinging on all the photodiodes of a factor 10, and of a
factor 100 on the B2 photodiode. It is interesting to study the changes that experience
the longitudinal loops and check the efficiency of the chosen normalizations.

TheMICHDOF does not suffer any particular change, its gain is tuned by 20% in
order to keep a UGF of 25 Hz. The DARMDOF tuning is a bit more critical instead.
As we have anticipated in the previous section, both differential DOFs are very
coupled, and the way to mitigate this effect is to implement a hierarchical control.



7.4 Step 4: PR Alignment 173

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

PR driving term

-0.5

0

0.5

1

1.5

2

P
R

C
L 

/ M
IC

H
 c

ou
pl

in
g

y = (1.30  0.02)  0.01

Measurements
   Linear fit

Fig. 7.32 Ratio between the TF of the injected line and PRCL and the TF of the injected line and
MICH as a function of the PR driving coefficient when actuating on MICH DOF. The figure shows
the measurements done and the linear fit whose zero-crossing gives the PR driving coefficient that
suppresses the coupling of MICH to PRCL

In order to study this phenomena we have measured the OLTF of the DARMDOF
for two gains of MICH, separated by a factor 2 corresponding to UGF of 16 and 8
Hz. The measured DARM OLTFs are shown in Fig. 7.33 and they have an UGF of
28 Hz.

Both the magnitude and the phase are deformed for both cases due to the coupling
of both loops in a very similar way as in the SSFS loop. The effect is very small
for the case where MICH UGF is lower, and it becomes worse when both UGFs are
closer. This proves the need of a hierarchical control between these two DOFs. We
can consider that around a factor 3 between both UGFs is a safe factor in terms of
coupling. For this reason it was decided to fix DARM UGF at 70 Hz (remember
that MICH UGF was fixed at 25 Hz). Thanks to the normalization the gain of the
DARM loop needs to be adjusted only by 20%.

Regarding the SSFS loop, the gain remains unmodified during the PR alignment,
since this loop has a very high phase margin. The loop passes from 3 to 6 kHz of
UGF once the PRCL DOF is locked. It is only modified by a factor 2 because it is
also normalized. The SSFS is a key loop when trying to go further during the lock
acquisition scheme since the frequency noise couples strongly to the rest of DOFs
and so we are interested in having the highest gain available, always keeping a safe
margin.

To illustrate this, Fig. 7.34 shows the error signal used for the control of the SSFS,
B4 6 MHz, when the SSFS is engaged before and after the PR alignment and the
samewhen the SSFS is off.When it is not engaged, the frequency noise couples more
than when the PR is aligned, as expected. Once it is engaged, the noise is reduced by
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two orders of magnitude in the interesting region (from 10 to 1000 Hz), which will
simplify the lock acquisition process.

7.4.4 Alignment Using Quadrant Photodiodes

Asmentioned in the previous section, the alignment of the PRITF is themost complex
part of the control of the interferometer. There are a lot of angular DOFs, 16 in total,
which have complicated couplings during the lock acquisition. For this reason only
the most critical ones are engaged before reaching the Dark Fringe: the PR and the
BS.

So far all the mirrors are angularly controlled via the Local Controls, which pro-
vide a local reference for the mirrors position, independently of the other optical
elements. However, at this point we are interested into the alignment with respect to
the rest of the interferometer. For this reason we want to use the quadrant photodi-
odes, because they indicate the working point where there are no first order HOMs
generated.

Let’s start by thePRmirror alignment, which is a key point in the lock acquisition
sequence since it causes the sidebands gain to fluctuate due to the stability of the
PRC. As a reminder, the best error signals for the PR mirror alignment are the ones
coming from the B2 quadrant photodiode (in reflection of the PRC) demodulated at
8 MHz (see Sect. 6.4).

At each detection bench there are two quadrant photodiodes, separated by 90◦
of Gouy phase. However, they are not placed at 0 (waist) and 90◦ (far field), but at
a random position, since it is simpler from the optical bench design point of view.
This only means that the information they carry about the different angular DOFs
is mixed in both quadrants and we need to find the good sensing matrix in order to
separate them.

In order to determine the sensing matrix we made a noise injection on each DOF
(θx and θy) at 2 Hz. Then we tuned the phases of the quadrant photodiodes3 in order
to maximize the injected line. The amplitude of the TF between the noise and the
error signal gives us the sensing matrix.

In order to check the quality of the error signal we have used the sensing matrix in
order to reconstruct the noise injection. The results of the reconstruction are shown
in Fig. 7.35.

The plots in the left of Fig. 7.35 show the reconstruction of the injected sine at 2
Hz in the time domain, and the plots in the right the reconstruction of the error signal
in the frequency domain. In the same plots the error signal from the Local Controls
is also shown as a reference.

The time domain plots give information about the zero of the error signal: the
working point. It is interesting to compare them with the ones from the LC because

3In a quadrant photodiode there are two error signals and so two demodulation phases to tune: the
horizontal and the vertical one.
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Fig. 7.35 Reconstruction of the angular noise injection performed on the PRmirror compared to the
reconstruction from the Local Controls. The plots on the left show the time domain reconstruction
while The plots on the right show the frequency domain reconstruction of the PR angular noise
injections

during Step 3 the drift control brings the interferometer to an aligned state. As the
alignment drifts occur at low frequencies, theLCpositions are still good after aligning
the PR mirror during several minutes (∼15 min) and so they are a good reference.

The θy (yaw)4 reconstructed from the quadrants agrees with the one from the LC
while the θx (pitch) from the quadrants is shifted by half a µrad. It is not negligible,
but it could be due to a misalignment of the beam with respect to the PR mirror, so
in principle we will consider it as physical.

Regarding the frequency domain it can be seen that the frequency is well recon-
structed, having a similar SNR to the LC signal. However, over 2 Hz, the noise of
the reconstructed error signals is of the same order of magnitude or even bigger. This
is a problem for engaging the alignment in full bandwidth (UGF around 2 Hz). It
is not the case for the LC because the system is very stable (it is independent from
the interferometer, it is insensitive to its fluctuations) and so the controller can be
designed to cut the error signal above the UGF in a very efficient way. This is not the
case for the error signals from the quadrants since they extract information from the

4Yaw and Pitch are a name convention for an angular movement around the y-axis (θy) and the
x-axis (θx ) respectively.
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Fig. 7.36 Reconstruction of the angular noise injection performed on theBSmirror compared to the
reconstruction from the Local Controls. The plots on the left show the time domain reconstruction
while The plots on the right show the frequency domain reconstruction of the BS angular noise
injections

interferometer. The optical gain fluctuates in this case, which requires more phase
margin and so the cut has to be less aggressive than in the case of the LC.

However, even if an alignment in full-bandwidth seems too challenging, the error
signals are good enough to engage a drift control. A loop was closed at this stage
without any problem.

The same process has been conducted for the BS angular DOF. This degree of
freedom is less critical, but it is also important since it impacts on the recombination
of the beams at the antisymmetric port. We injected the same line at 2 Hz, this time
to the BS mirror. The results are shown in Fig. 7.36.

First of all notice that the LC are very noisy in this case, which can be understood
from the presence of very big lines at 50 and 150 Hz. From the time domain plots
we can see that the Pitch has a good zero. However, this is not the case for the
Yaw, which is shifted by 1.5 µrad. This offset is too high to be real, since, as it was
just mentioned, the alignment does not have time to drift so much in a short time.
Also, such a big misalignment should be macroscopically visible in the cameras that
monitor the beams at the different detection benches, in this case the one that is
placed in the antisymmetric port.
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For this reason, we decided to add an offset to this error signal, choosing ourselves
the working point with the help of the cameras. The loop was engaged without any
problem, but the evolution of this offset was monitored in case it drifts during the
MICHoffset reduction. Finally, the frequency domain signals show an up-conversion
of the line injected (there are peaks at 4, 6 and 8 MHz) which is not physical and
will spoil the error signal.

7.5 Towards Dark Fringe

At this point we have all the DOFs controlled and their UGFs have been chosen
carefully. Now we need to decrease the MICH offset to pass from 0.7 of bright
fringe to Dark Fringe. The tricky part of this transition is the fact that the power
in all photodiodes will change during this process as well as the optical configura-
tion, and in consequence also the OG of the different error signals. If this variation
is too important, the loops may become unstable causing an unlock of the whole
interferometer.

7.5.1 Optical Gain Evolution

Figure 7.37 shows the evolution of the power inside the interferometer during a lock
where a MICH offset of 0.07 was reached, compared to the simulations presented
in Sect. 6.2.3. The power at the antisymmetric port, B1, the power at the symmetric
port, B2, and the power inside the PRC, B4 are shown in Fig. 7.37. In order to be able
to compare simulation and measurements, they have been normalized to the power
at a MICH offset of 0.4

The power at B1 and B4 is more or less in agreement with the simulation, which
represents the ideal case. However, the power on B2 does not agree with the simu-
lation near the DF, which gives us information about the optical configuration of the
interferometer.

The first interesting thing is the MICH offset at which the PRC is critically
coupled. This happens when the Round Trip Losses (RTL) of the PRC are equal
to the transmission of the PR mirror. So this parameter gives information about the
losses inside the interferometer. The RTL of a FP cavity depend on the transmission
and the losses of the input and end mirrors [8]. In the case of the PRC it depends on:
the PRmirror transmission (TPR) and losses (LPR), theMICH interference condition
(TMICH ), and the losses inside the Fabry-Perot cavities (Larm). The total expression
can be written as:

RT LPRC = TPR + TMICH + LPR + Larm (7.4)
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Fig. 7.37 Power evolution during the MICH offset reduction. Upper plot: power in the antisym-
metric port. Central plot: power reflected by the PRC. Lower plot: PRC intra-cavity power

From Fig. 7.37 in the ideal case the PRC is critically coupled at Offsetccsimu = 0.025,
while in the real interferometer this happens at Offsetccreal = 0.031. Knowing that the
simulations have been done with the measured transmission of the PR [9], it can be
concluded that the PRC has smaller losses than in the design. For the simulation we
considered Larm = 75 ppm and LPR = 35 ppm.5

Another interesting information that can be extracted from Fig. 7.37 comes from
the depth of the minimum of the power on B2. In the simulation this minimum is
much lower than in the real interferometer (a factor 10). The fact that there is more
reflected power in the real interferometer when we approach Dark Fringe implies the
presence of HOMs that are generated but do not couple to the interferometer. This is
not surprising taking into account that the only alignment engaged is the PR mirror
loop in drift control and that the input beam is mismatched with respect to the PRC
since the PR mirror RoC is 70 m away from the nominal value.

So far we have seen how the power inside the interferometer varies with the
MICH offset reduction in a non-negligible way (more than 2 orders of magnitude).
In practice this causes problems of saturation in the photodiodes. In particular the
photodiodes in transmission of the arm cavities that are used for controlling DARM
are exchanged during the lock acquisition (at 0.3 of MICH offset) from the PD1 that
receives 90% of the light entering into the detection bench to PD2 which receives
only 10%.

5These are the maximum losses accepted to reach the nominal sensitivity [10].
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Fig. 7.38 Variation of the UGF during the MICH offset reduction for DARM, MICH and PRCL.
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Regarding the longitudinal loops performance, all the error signals were normal-
ized to dealwith the PR alignment, which is convenient for theMICHoffset reduction
as well. In Fig. 7.38 the variation of the UGF of the longitudinal loopswith respect
to the MICH offset is shown, except for the SSFS that will be shown later.

Without any normalization all the UGFs increase very rapidly. It would be impos-
sible to compensate dynamically for such an important variation of OG even for a
very slow offset reduction. Instead when the error signals are normalized, the varia-
tion is less important, around a factor 10 at most during the last stages of the offset
reduction process.

Still, a factor 10 is too high for a control loop to survive and so further adjustment
is necessary. For this purpose the UGF servo was implemented. The idea of this
technique is to add a permanent line to the sensing of each DOF above their UGF
(67.1 Hz for PRCL and 87.1 Hz for DARM). This allows us to calculate the OLTF
of each loop at the frequency of the lines. As their shape is known, it is possible to
monitor the variation of the UGF of the longitudinal loops.

Thanks to it we were able to adjust finely the gains of the loops in order to keep
the filters within their stability ranges and to keep the hierarchy between the DARM
and MICH loops. The third set of curves in Fig. 7.38 shows the UGF variation after
the adjustment of the gains using the information provided by the UGF servo. The
UGFs remain stable within a factor 3, which is manageable by the longitudinal loops.

The SSFS loop was studied independently, because at the early stages of the
commissioning it was not possible to implement the UGF servo due to software con-
straints of the SSFS DSP. Instead, we opted for finding an optimized normalization.
Figure 7.39 shows the UGF variation with the standard normalization, B4 DC, which
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fluctuates by a factor 10. The red curve is the result of the adjustment of the gain
done by hand and the variations are at most a factor 2, but they are a bit violent.
Using this data we found an empirical normalization, P0.67

B4DC , that minimizes the
gain fluctuations and the result is shown in the yellow curve. The residual variation
in this case is a bit less than a factor 2, and it changes in a smooth way.

Another interesting question that affects the OG is the demodulation phase vari-
ation, as it was already mentioned in Sect. 6.2.6. A variation of more than 10◦ starts
to have an impact on the OG since the cosine used for the demodulation is not any-
more on its maximum. Figure 7.40 shows the variation of the demodulation phases
of the error signals that are used to control DARM, CARM and PRCL.

First of all notice that we do not tune the demodulation phases during the lock
acquisition sequence, so the fluctuations shown in Fig. 7.40 contribute to the OG
variations shown in Fig. 7.38. For the CARM error signal (B4 6MHz) and for PRCL
error signal (B2 8MHz) there is not a significant variation of the demodulation phase.

In the case of DARM DOF we see variations up to 30◦. This is not unexpected,
since we had already mentioned that the differential DOFs were very sensitive to the
MICH offset reduction, since the sidebands are very unbalanced. This φmax variation
translates in a higher fluctuation of the OG for DARM than for the other DOFs, as
shown in Fig. 7.38. However, this is not very worrying since the DARM error signal
will be handed-off to the B1 photodiode in Dark Fringe.

The initial idea was to start with the 8 MHz error signal and then hand-off to the
3 � when getting closer to the critically-coupled point. However, a sign flip was
detected in this error signal, that prevents us from using it. The behaviour of the
demodulation phase can be seen in Fig. 7.41.
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Fig. 7.40 Variation of the optimal demodulation phase of the used error signals during the MICH
offset reduction. The B7 and B8 6 MHz demodulation phase is tuned separately and then they are
combined to build-up the DARM error signal

Fig. 7.41 Optimal demodulation phase evolution of the B2 8 MHz and 3 � during the MICH
offset reduction. It can be seen how the φmax of the 3 � experiments a big jump when crossing the
critically-coupled point

This phenomenon is unexpected and it is not well understood. The critically
coupled point is crossed at 41 s, and then the phase starts to drift, having a very
violent change that would be impossible to compensate. This was not the case in
Virgo+, since it was used all the way to Dark Fringe.
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The fact that the phase changes at such low MICH offsets might suggest that
the HOMs that couple into the interferometer have an impact into the 3 � error
signal, which is a very weak signal. The carrier is cleaned from HOMs by the arm
cavities while the sidebands are not. As the 3� signal depends only on the sidebands
information, it is understandable that it is more sensitive to them.

7.5.2 Recycling Gain

We know that there are HOMs generated due to misalignment and mismatch on the
PRC. Since it is very close to the instability, their coupling to the interferometer
will be very high, as it was already detailed in Sect. 6.2.2. A good way to evaluate
the impact of this coupling is to monitor the Recycling Gain of the carrier and the
sidebands. However it is not a straightforward operation, since the B4 photodiode
can not decouple carrier, sidebands and HOMs.

In the carrier casewewill use theB7 andB8 photodiodes because the arm cavities
are able to select the fundamental mode better than the PRC. As the sidebands are
not resonant inside the arms, we are sure that we have information only about the
fundamental mode of the carrier.

As we do not know the input power at the photodiodes we need to take as a
reference the power impinging on them at the recombined configuration (Step 3).
Notice however that we need to compensate for the transmission of the PR mirror.
At Step 3 it is misaligned, but the light that traverses it is attenuated by TPR . This
is not the case anymore when the PRC is aligned, since the light resonates inside it
instead. We do not need to compensate for the Optical Gain of the FP cavities since
it is constant during all the lock acquisition.

Figure 7.42 shows the increase of power on the photodiodes in transmission of
the arms during the MICH offset reduction process, taking the power in Step 3 as a
reference. It agrees very well with the simulation below aMICH offset of 0.25, which
reaches anOG for the carrier inDark Fringe of OGc

PRC = 37.09. Above 0.25 ofMICH
offset the measurements are approximately a factor 2 higher than the simulations.

The origin of this discrepancy has not been further investigated. As the simulation
and the measurement agree close to the working point it is not likely to come from a
bad modelization of the optical parameters in the simulation. Since it is quite clear
that we are dealing with an anomalous PRC, it is more likely to come from the
coupling of HOMs leaking to the photodiode in transmission. For this reason we will
not worry about it until the nature of the PRC is better understood.

The case of the sidebands is a bit more complicated because they are not resonant
in the arm cavities. The fundamental mode resonates inside the PRC together with
the HOMs, and so they are very sensitive to the optical configuration of the interfer-
ometer. For this reason they are an important figure of merit of the interferometer
good functioning.

In order to evaluate the Recycling Gain of the sidebands we need to find a probe
that senses them independently from the carrier. For this purpose we use the 2 �
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Fig. 7.42 Recycling gain of the carrier obtained using the arms transmitted power. The plot shows
a comparison of the value obtained from the simulation and from the experimental data

signal, which results from demodulating the signal read by the photodiode at twice
the modulation frequency, in our case at 12 MHz. This signal contains information
about the beating between the components of the beam separated by 2 �. It contains
a term which depends of 4J0J2 and another term that depends on 2J21. When we are
at the working point they depend as well on their Recycling Gain. For this reason
the first term can be neglected, since the 2 � component is not resonant inside the
interferometer.

However in practice we need a normalization since we do not know the input
power on the photodiodes. In principle we can use the power at the recombined state
as in the carrier case, but then we can not neglect the term 4J0J2.

Following an analogous reasoning as in the carrier case, the RG of the sidebands
at the B5 photodiode can be written as [11]:

RGs
B5 ≈ TPR · 2 · P2�

P2�
HF

(7.5)

where P2� is the power of the 2� error signal, P2�
HF is the power of the 2� error signal

at the recombined configuration and the factor 2 comes from evaluating (2J1(m)2 +
4J0(m)J1(m))/2J1(m)2, where m is the demodulation depth.

Regarding the B4 2 � we also need to take into account the reflectivity of the
Michelson interferometer towards the symmetric port, and so we can obtain the RG
as [11]:

RGs
B4 ≈ TPR · R

HF
SYM

RSYM
· 2 · P2�

P2�
HF

(7.6)
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Fig. 7.43 2 � error signal at the B4 photodiode at 0.1 of MICH offset. It depends on the sidebands
power, and it fluctuates up to a factor 4

However, it is a bit tricky to calculate the RG during the lock acquisition since the
modulation depth of the 6 MHz is decreased when approaching the DF in order to
avoid the B4 photodiode to saturate. While we use the 56 MHz to control the SSFS
and MICH DOFs, the 6 MHz is free. Due to its high recycling gain, it increases a lot
close to the DF, causing the B4 photodiode to saturate. For this reason it is better to
make the calculations directly in DF, which will be presented later.

During the offset reduction we can see that after 0.3 ofMICH offset, the sidebands
start to fluctuate a lot. Figure 7.43 shows the 2 � signal when the interferometer is
locked at 0.1 of MICH offset. They vary more than a factor 3. This confirms the
hypothesis of the high coupling of the HOMs to the interferometer, which has a big
impact in the behaviour of the sidebands. It also explains the misbehaviour of the
3 � signal, as it was pointed out before. This increases the complexity of controlling
the interferometer, since all the longitudinal loops will suffer from UGF fluctuations
and it is very difficult to predict the behaviour of the interferometer.

7.5.3 Alignment

In Step 4 we have engaged the PR and BS loops, since they are the most simple
angular DOFs, and they improve significantly the performance of the interferometer.
The problem that was observed in the previous step was the presence of offsets on
the error signal with respect to the positions indicated by the LC. They have been
compensated by adding an offset to the error signals. For this reason it is important
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Fig. 7.44 Error signal from the B2 quadrant photodiode (QPD) demodulated at 8 MHz during the
MICH offset reduction.Upper plot: error signal of the PR θx DOFwith and without normalization.
Central plot: error signal of the PR θy DOF with and without normalization. Lower plot: MICH
offset

to check that these offsets do not evolve during the MICH offset reduction process,
as well as the sensing.

First of all we have found a good normalization for the four loops. In the case
of the PR loop we have normalized by the square root of the DC power impinging
on the B4 quadrant photodiode (QPD). This is because we are using the 8 MHz and
so only the carrier experiments the increase of the optical gain due to the optical
configuration of the interferometer.

For the BS, as both the sidebands and the carrier are resonant inside the PRC,
we normalize by the DC power impinging on B1 DC. We do not use the power
on the QPD in this case, since it saturates close to DF, which is not the case for
the photodiode used for the longitudinal control. Figures 7.44 and 7.45 shows the
evolution of the error signals of both loops with andwithout the normalization during
the fringe offset reduction. We see that it remains stable thanks to the normalization.

Now regarding the evolution of the offset we found that for the PR loop, the
working point given by the error signals is not good all over theMICHoffset reduction
process. During the lock acquisition sequence it was clear from the cameras that the
beams at B4 where not well superposed, meaning that the alignment was fixed at a
bad point.

We tried to add an offset to the error signal during the MICH offset reduction,
tuning the working point by hand. However, this offset would change from one day
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Fig. 7.45 Error signal from the B1 quadrant photodiode (QPD) demodulated at 6 MHz during the
MICH offset reduction.Upper plot: error signal of the BS θx DOFwith and without normalization.
Central plot: error signal of the BS θy DOF with and without normalization. Lower plot: MICH
offset

to the other, which would oblige us to tune it almost daily. Somehow it was practical
to have this loop engaged, since, once the offset tuned, it would remove a variable
from the lock sequence, which was already very complex.

In the case of the BS, we had added an offset to the yaw DOF from the beginning,
since the zero of the error signal was more than 1 µrad away from the aligned
position. The same problem of the offset of the error signal that changes over the
offset reduction process was found for this loop, but also an extra problem on the yaw
DOF. The sensing would change as well, which does not allow to close a stable loop
on it. It is not surprising that one DOF works differently from the other, which could
be caused by the presence of astigmatism on the beam. In this case the beam profile
is not the same in 2 orthogonal directions, modifying the response of the quadrant
photodiodes.

This behaviour of the QPDs signals which fluctuate depending on the optical
configuration of the interferometer is compatible with the presence of HOMs inside
the interferometer. Remember that the working principle of the automatic alignment
is based on the supposition that the first ordermode is dominant over theHOMs. If this
is not the case, as it seems to indicate the sidebands behaviour, the information seen
by the quadrants will be a mixture of the different HOMs and it will be impossible
to disentangle the relevant information.
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The only solution to this problem is to use the Thermal Compensation System
to bring the PRC to the most stable condition possible and to reduce the presence
of HOMs. However, as it was not possible at that moment, we decided to find an
alternative to control the alignment, since the quadrants were not reliable.

So we recovered the mechanical modulation technique used at the recombined
configuration. It was decided to turn off the mechanical modulation lines once the
interferometer is aligned on Step 3. Then the lock acquisition continues without
alignment until a MICH offset of 0.1. At this point the lines are turned on again, but
this time with a smaller amplitude, since the system is much more sensitive at this
point. This does not provide an absolute alignment, since this technique only centers
the beam into the optics in order to minimize the coupling between the angular and
longitudinal controls, but it stabilizes the interferometer in a repeatable way.

We modified the BS and PR loops with respect to Step 3 though. We only suc-
ceeded to use the quadrant photodiodes in a reliable way for the PR loop, even if the
offset is set by hand, using the same error signal as in Step 4, B2 8 MHz. Regarding
the BS, the same angular lines as before are added, but now we use as error signal
the demodulation of B1 DC at f θi

dri f t . This is used to align the recombination at the
antisymmetric port. Once the system had time to get aligned, the alignment loops
are turned off and we are ready to make the passage to DF in an aligned position.

7.6 Dark Fringe

So far we have presented the lock strategy up to reaching 0.1 of MICH offset. The
missing step is the hand-off of MICH error signal: it is necessary to pass from
the DC error signal to the Radio Frequency error signal. As it was explained in the
previous chapter, this step is critical since the hand-off is done between two error
signals whose validity does not overlap. As it was shown by the simulation, the linear
region of the MICH error signal starts at 98% of fringe in terms of wavelength or
99.9% in terms of power.

However the DC error signal is not a good error signal anymore so close to the
DF. Moreover the fluctuations of the sidebands make difficult the approach to the DF
in a stable way. For this reason the hand-off is done before, at 90% of fringe in terms
of power, as it was done in Virgo+. This is a state that was reached in a repeatable
way, and thanks to the alignment we could keep the interferometer controlled during
relatively long periods of time.

Regarding the demodulation phase, it does not need to be tuned since the in-phase
projection of the error signal is used to control the SSFS. To find the correct gain is
more difficult, since we do not have information about the values of the signals in DF.
The strategy was to study the unlocks close to the working point, since occasionally
the interferometer would cross the DFwhichwould allow tomake a rough estimation
of the scaling factor needed. Finally, the hand-off needs to be instantaneous, without
any transition. The aim is to avoid as much as possible the zone where the error
signals are not good and to pass from a controlled state to another one.
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Fig. 7.46 MICH hand-off to an RF signal and lock in DF. The power in the antisymmetric port is
shown as well as the MICH offset, the signal showing the transition between both error signals and
the B4 56 MHz Q which is the target one

At the beginning we tried to make the hand-off directly with the 6 MHz. However
due to the enormous fluctuations of the sidebands, this transition was not reliable.
Even though we succeeded several times, the control in DF was very unstable lasting
only few minutes. We tried then to use the solution proposed in Sect. 6.2.2, that is
to use an error signal generated by a higher modulation frequency. Due to technical
problems, the 119 MHz was not available and so the only option was the 56 MHz,
which in any case has a lower Recycling Gain than the 6 MHz (13 vs. 77).

This test was successful and in spite of the sidebands stability the control was
much more stable, providing longer periods of lock. Moreover, this error signal
would allow to reach the DF in a reliable way. An example of the MICH hand-off is
shown in Fig. 7.46. The offset reduction is done quasi-instantaneously (in 1 s), and
we can see the drop of power in the antisymmetric port, at B1 DC.

In the same figure we can see the error signal used for MICH, which transitions
from the old one, B1/B1+B4 to B4 56 MHz Q. Finally the last signal shown is B4
56 MHz Q, which is free until 10.5 s. Then the transition to Dark Fringe starts, and
it can be seen that instead of going straight towards zero, the error signal goes first
towards more negative values and then it reaches zero at DF. This is because when
the hand-off is done, we are not yet within the linear region of the error signal.
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Fig. 7.47 DARM hand-off once in DF from the B7 6 MHznorm -B8 6 MHznorm to the B1 56 MHz
which is mores stable. We can see the MICH hand-off first, and then the DARM one

At this point the error signals do not need normalization anymore, and so B4 56
MHz is not normalized.

Once it was confirmed that this error signal was more reliable than the 6 MHz,
we took the decision of changing the error signal of the SSFS as well to its 56 MHz
version (B4 P). This had two advantages: the first one the robustness regarding the
sidebands fluctuations and the second one to reduce the phase noise, as explained in
Sect. 6.2.4.

The final step is to change the DARM error signal. So far it is locked using
B7 6 MHznorm-B8 6 MHznorm which are very unstable as well due to the sidebands
fluctuations. The target is to change the error signal to B1 56 MHz since the 6 MHz
will suffer the same problem.

As DARM is already controlled is straightforward to tune the demodulation phase
and the gain. For the first one it is enough tominimize the spectrum of the quadrature,
B1 56 MHz Q. For the gain instead we can make the TF between the current error
signal and the one we want to use. If φmax is well tuned, both signals are coherent
and the TF is flat. Its value gives the factor that needs to be taken into account in
order to transition between the two error signals. The transition is done in a smooth
way, ramping up the new error signal while ramping down the old one.

An example of the transition is shown in Fig. 7.47. The MICH hand-off can be
seen both in the B1 power and in the DARM error signal. Then, at the second 11,
the DARM hand-off is done, and the control is improved, since the error signal is
reduced.

Regarding the alignment, the dithering lines have been tuned for this configura-
tion, but the scheme is the same as at 0.1 of MICH offset. The only difference is that
in this configuration the PR AA does not work anymore, and so two lines have been
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Fig. 7.48 Left plot: Recycling Gain of the carrier calculated from B7 and B8 DC. Right plot:
Recycling Gain of the sidebands calculated from B4 and B5 2 �

added to the angular DOFs and the error signals are extracted from the correction
of the PRCL DOF. In spite of this effort, the fluctuations of the sidebands did not
improve.

A fraction of lock in Dark Fringe is shown in Fig. 7.48. We have used the pho-
todiodes in transmission in order to calculate the Recycling Gain of the carrier. We
have used Eqs. 7.6 and 7.5 to calculate the Recycling Gain using the 2� error signal.
The carrier remains stable, while the RG of the sidebands fluctuates up to a factor
5. Notice that the target sidebands RG is 77, and so the maximum is still under this
value. Even if the 2 � signal allows us to separate information between the side-
bands behaviour and the carrier, it does not separate the behaviour of the HOMs.
This means that its value might be affected by the presence of HOMs so we can not
take it as a final result. However, it will be useful for the commissioning of the TCS,
to determine if there are improvements or not.

An overview of the lock acquisition sequence is shown in Fig. 7.49, from the
lock of the arms to the DARM hand-off in Dark Fringe. The power on the different
photodiodes (B1, B4, B7 and B8) is shown as a function of time and the different
stages of the process are indicated in different colors. The overall sequence takes
almost 4 min unlike in Virgo+ where the lock acquisition sequence was much longer
(∼30 min) to deal with thermal transients that we do not yet experience.

Once theDF is reached, the twoOutputModeCleaners are locked in order to clean
the beam that is detected by the detection photodiode. Figure 7.50 shows the images
of the cameras installed in the detection bench and monitoring the B1p photodiode
(the one used for the longitudinal control, that we have called B1 during the thesis)
which is placed before the OMCs and the B1 photodiode placed after the second
OMC and which is used for the DC readout. The image in the left corresponds to the
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Fig. 7.49 The Variable Finesse control strategy is shown here, from the arm cavities lock to the
DARM hand-off in DF. The power at the antisymmetric port, inside the PRC and in transmission
of the arms is shown in the figure. The different steps are indicated with different colors

Fig. 7.50 Camera images from the detection bench in DC readout.Left image: B1p camera, which
monitors the beam before entering into the OMC. Right image: B1 camera, transmission of the
second OMC, after the two of them have been controlled

B1p camera and it shows a beam which is not Gaussian due to an important presence
of HOMs and the sidebands. The image on the right shows instead the B1 camera,
where the fundamental mode of the carrier has been selected. The beam quality has
improved significantly after passing through the OMCs.
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A global scheme of the longitudinal and angular controls that are engaged in Dark
Fringe is shown in Fig. 7.51. The sensing and driving of each loop are indicated with
continuous lines. The angular loops are indicated using dashed lines. This is because
they are not systematically engaged in Dark Fringe since they are not always reliable.

Once at the working point, the controls are fine tuned in order to reach the best
sensitivity possible. This implies mainly to add boosts to the controls, since the most
problematic region is the low frequency, where the noise is higher. This is the case for
DARM and SSFS loops. However, the boost implementation has not been successful
for the MICH DOF since the error signal is too noisy and the controls saturate. In
the case of PRCL, the boost was engaged from the beginning.

In this state we have made a set of noise injections to measure the OLTF of the
longitudinal control loops. This measurements are shown in Figs. 7.52 and 7.53,
together with the old filter without the boost for comparison for DARM and SSFS.
Even if the shapes are correct, the UGFs are not accurate since they fluctuate with
the sidebands.

Just as before, we can use the OLTF measurements to calibrate the error signals,
and so to estimate the quality of the longitudinal controls. The calibration factors
estimated in the previous sections are not correct anymore since they take into account
the optical gain, which changes during the MICH offset reduction.

In this case, it makes even less sense to evaluate the errors of the calibration
factors, since the measurement is highly affected by the instability of the interferom-
eter. Taking into account the sidebands fluctuations, the measurements are more an
averaged behaviour of the loops.

The calibration of the SSFS is done in a slightly different way this time. When we
measure the OLTF of the SSFS loop the actuation is applied to the laser and so we
need its calibration factor in Hz/V. When doing the commissioning of the SSFS loop
we had already measured the CSSFS−RFC in V/V. Using the calibration of the error
signal of the RFC CRFC = 6.57 × 104 Hz/V [12] we obtain the calibration of the
actuation of the SSFS in physical units, CAct−SSFS = 6.57Hz/V. Figure 7.54 shows
the PSD of the calibrated error signals. The information of the loops is summarized
in Table 7.3.

First notice that the measured UGFs are not the target ones. It was necessary
to find a compromise between the target UGFs (which provide the best control),
the actuators dynamics (the control saturates if the error signals are noisy) and the
control stability (due to the sidebands fluctuationswe need some extra phasemargin).
In particular, the target UGF of the DARM control is 75 Hz and the gain of this loop
was adjusted after this measurement accordingly.

The precision of the controls is improved in the case of DARM and the SSFS
due to the boosts (DARM0.5 = 27 pm, SSFS0.5 = 3 mHz). In the case of PRCL DOF
the filter has not been adjusted, but the control precision has improved (PRCL0.5 =
71 pm). This is because the SSFS boost has decreased the frequency noise, which
couples strongly to the PRCL DOF, as it was shown in Figs. 6.6 and 6.19. Finally
the MICH control has stayed at the same level (MICH0.5 = 140 pm). Its filter has not
been changed, since its UGF can not be increased. Even if the DARM loop coupling
has been reduced significantly, which should have improved the performance, the
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Fig. 7.52 Comparison between the measurement and the model of the OLTF of PRCL and SSFS
loops. In the case of the SSFS the model with and without boost is showed for comparison
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Fig. 7.53 Comparison between the measurement and the model of the OLTF of MICH and DARM
loops. In the case of DARM the model with and without boost is showed for comparison
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Fig. 7.54 Calibrated PSD of the error signals used in DF for the longitudinal DOFs

Table 7.3 Properties of the longitudinal loops in DF. The precision of the SSFS loop is given in
Hz since it is a frequency stabilization

PRCL MICH CARM DARM

UGF (Hz) 35 30 8000 55

Delay (µs) 400 650 11 700

Precision 9 pm 160 pm 0.009 mHz 0.1 pm

photodiode used now is different. We suspect an important presence of diffused light
on this photodiode (even with the bench under vacuum), based on some specific
measurements made by the noise hunting group. This would worsen the error signal
and so the control performance.
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Chapter 8
Conclusion

The commissioning of the ISC subsystem of the Advanced Virgo detector started on
May2016with the lockof thefirst armcavity.However, itwas not untilNovember that
the installation of the steel fiberswasfinished and the full interferometerwas available
on its final configuration. The commissioning done during the last year together with
the preparatory simulations performed have allowed to bring the interferometer to
its working point in a reliable and robust way. Advanced Virgo joined the Advanced
LIGO detectors on the scientific data taking O2 the 1st of August until the 25th of
August. During this time its duty cycle has been ∼83% with a sensitivity of 26 Mpc
of BNS horizon. The performance of the Advanced Virgo detector allowed to make
the first triple detection of a Binary Black Hole the 14th of August [1].

We have seen that Advanced Virgo has incorporated several upgrades to its design
in order to improve the sensitivity with respect to Virgo. Among them, the increase
of the finesse of the Fabry-Perot cavities on the arms, the change on their geometry
and the stability of the Power Recycling Cavity. These upgrades in particular have a
direct impact on the control of the interferometer and have obliged us to adapt the
control strategies.

The first stage of this work has been to study these problems using simulations.
We have seen that the new finesse of the cavities induces dynamical problems that
require a new lock acquisition technique. Using simulations we have adapted the
Guided Lock technique to our needs. In particular we have obtained the analytical
expression that relates the time that the transmission power takes from reaching 10%
of its maximum power to reaching 40% of it, to the velocity of the cavity. This
allows us to estimate the velocity of the cavity online and in physical units without
any calibration factor. This method allows to engage the control of the arm cavities
in a very short period of time and reliably.

The arm cavities geometry was modified in order to maximize the beam size in
both mirrors. This has increased the complexity of the alignment control, since the

© Springer International Publishing AG, part of Springer Nature 2018
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199

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96014-2_8&domain=pdf


200 8 Conclusion

driving matrix that relates the angular DOFs of the cavity with the actuators is not
diagonal. We have simulated the impact of the alignment on the transmitted power,
confirming that the driving matrix can be extracted from this information. When
the input power will be increased, radiation pressure effects will appear and it will
be necessary to adapt the controls in consequence, adding more complexity to the
alignment loops.

Regarding the PRC stability we have studied the impact of misalignment on its
Optical Gain. We have verified that for being very close from instability, the HOMs
couple strongly, decreasing dramatically the Optical Gain of the cavity, specially for
the sidebands. This has important effects in the stability of the control loops (both
longitudinal and angular) and the quality of the error signals, so we have explored
a solution: the use of a higher modulation frequency. The presence of the Schnupp
asymmetry makes the finesse of the PRC dependent on the modulation frequency.
This way, the higher is the modulation frequency, the lower is the finesse. We have
simulated the impact of alignment on the Optical Gain for different modulation
frequencies, using the Central Interferometer. Our results confirmed that higher fre-
quencies are less sensitive to misalignments. We confirmed it also experimentally
using a low finesse cavity, the PR-NI. Our studies provided an alternative error signal
to control the interferometer until the alignment is stabilized. We have also proved
that the effects of the HOMs will become relevant in the last steps of the control
strategy, when close to the Dark Fringe.

We have also studied the impact of HOMs on the Optical Transfer Function of
the CARM degree of freedom and the photodiode used for its control (B4). We have
confirmed that both the sidebands and the HOMs create structures on the Optical
TF which should be compensated for in the control filter of the SSFS for being very
close to the target UGF.

Finally we have simulated the different steps of the old acquisition strategy with
the new optical design. We have checked the robustness of the error signals used in
the past during the lock acquisition and studied the optimal sensing for the final state,
the Dark Fringe, taking into account both precision and coupling. We have verified
that no major problems arose from the upgrades, and we have found alternative
error signals for the signals potentially problematic. These studies have provided a
better understanding of the process of lock acquisition and a reference for the ideal
behaviour of the interferometer.

Then we have applied all the knowledge acquired with the simulations on the
commissioning process. We have successfully implemented the Guided Lock tech-
nique using the new method of calculating the velocity online. We have engaged the
angular control of the arm cavities using mechanical modulation and it has proved
to be very robust.

However, the commissioning has not always been straightforward and we had to
deal with experimental limitations. First of all the absence of reliable signals coming
from the B5 photodiode forced us to find an alternative normalization for the MICH
error signal. We came up with a combination of signals, B1+B4, that had the extra
advantage of providing direct information on the MICH offset. Once this was fixed,
the normalization proposed was able to keep the control loops within stability during
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the alignment of the PR mirror, as expected. The addition of an intermediate state
in the SSFS was successful and allowed the commissioning of the interferometer
to advance while working on the full bandwidth control. After solving the coupling
with the IMC alignment, the SSFS was engaged and functional.

The pre-curvature1 of the PR mirror made the PRC even more unstable than
foreseen in the design. The fluctuation of the sidebands would reach a factor 3 when
close to the Dark Fringe. This spoiled the error signals on the quadrant photodiodes,
and most probably the 3 � signal as well.

The use of a high frequency modulation was a success and thanks to it we reached
the Dark Fringe in spite of the alignment fluctuations. To be able to control the
interferometer during long periods of time we implemented a basic angular control
adapting the mechanical modulation technique used for the arms.

We have implemented a control strategy that allows the interferometer to reach its
working point in a reproductive and robust way, that is with a high duty cycle. There
are no explicit specifications on the precision of the loops since the important factor
is how do they couple to the sensitivity. The impact of the different DOFs (angular
and longitudinal) on the sensitivity is not straightforward and depends strongly on
the noises present on the interferometer. In order to improve further the sensitivity
an iterative process is necessary between noise hunting and tuning of the controls.
The control loops performance depends strongly on the error signals quality. An
improvement on the sensing noise would allow to optimize the controls without
saturating the actuators.

In particular, to be able to use the nominal modulation frequency (6 MHz) it
is necessary to implement a reliable alignment. We have explored the possibility of
applying the same solution as for the longitudinal control, which is to use the 56MHz.
The signals from the Quadrant photodiodes at this frequency look promising and had
a much better SNR. The first tests prove that the stability of the sidebands improves
dramatically using these signals. Then it is necessary to evaluate if the angular control
provided by these signals is enough to hand-off the longitudinal controls to the 6
MHz. Otherwise, the Thermal Compensation System (under commissioning) will be
necessary to improve the stability of the cavity, allowing us to engage the alignment
with the nominal modulation frequencies and reducing the presence of HOMs in the
interferometer.

Another important aspect in the improvement of the sensitivity is the SSFS,
because the frequency noise couples strongly to the interferometer. However, the
requirements of the frequency stabilization depend on the arms finesse asymmetry
(impact at low frequency) and the arm losses (impact at high frequency). A precise
measurement of these parameters will allow to better understand the performance of
this loop.

Also at present the UGF of this loop is limited by a loop oscillation around 10
kHz. We need to understand if it is due to the sidebands fluctuations that bring the
control out of its phase margin, or if it comes from the presence of structures on
the Optical TF. A measurement of the Optical TF of the CARM degree of freedom

1It is optimised for 125 W.
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would allow to determine the cause. In case of the presence of structures we should
first determine whether the SSFS needs a better performance and if so we should
evaluate if the phase margin we have is enough to compensate for the structures. If
it is not possible, we will need to consider alternatives to reduce the delay, including
the possibility of implementing an analogical solution.
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