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Series Preface

v

This series is directed to healthcare professionals who are leading the trans-
formation of health care by using information and knowledge. Launched in
1988 as Computers in Health Care, the series offers a broad range of titles:
some addressed to specific professions such as nursing, medicine, and health
administration; others to special areas of practice such as trauma and radi-
ology. Still other books in the series focus on interdisciplinary issues, such
as the computer-based patient record, electronic health records, and net-
worked healthcare systems.

Renamed Health Informatics in 1998, to reflect the rapid evolution in the
discipline now known as health informatics, the series will continue to add
titles that contribute to the evolution of the field. In the series, eminent
experts, serving as editors or authors, offer their accounts of innovations in
health informatics. Increasingly these accounts go beyond hardware and
software to address the role of information in influencing the transforma-
tion of healthcare delivery systems around the world. The series also will
increasingly focus on “peopleware” and organizational, behavioral, and
societal changes that accompany the diffusion of information technology in
health services environments.

These changes will shape health services in the new millennium. By
making full and creative use of the technology to tame data and to trans-
form information, health informatics will foster the development of the
knowledge age in health care. As coeditors, we pledge to support our pro-
fessional colleagues and the series readers as they share advances in the
emerging and exciting field of health informatics.

Kathryn J. Hannah, PhD, RN
Marion J. Ball, EdD



Preface

vii

When the first edition of Clinical Decision Support Systems was published
in 1999, I began the preface with the statement, “We are at the beginning
of a new era in the application of computer-based decision support for med-
icine.” Usually such statements in hindsight seem unduly optimistic, but if
we look at the landscape of healthcare information technology today, that
assessment appears to be surprisingly accurate. Shortly after the book was
published, the first of several landmark reports from the Institute of Med-
icine on the quality of health care led to greater awareness of the role these
systems can play in improving patient safety and healthcare quality. This
second edition is being published at a time when there is increased gov-
ernmental, research and commercial interest in clinical decision support
systems (CDSS). The purpose of this book is to provide an overview of the
background and state-of-the-art of CDSS. A persistent theme is that CDSS
have enormous potential to transform health care, but developers, evalua-
tors, and users of these tools need to be aware of the design and imple-
mentation issues that must be addressed for that potential to be realized as
these systems continue to evolve.

This book is designed to be (1) a resource on clinical decision support
systems for informatics specialists; (2) a textbook for teachers or students
in health or medical informatics training programs; and (3) a comprehen-
sive introduction for clinicians, with or without expertise in the applications
of computers in medicine, who are interested in learning about current
developments in computer-based clinical decision support systems.

The book includes chapters by nationally recognized experts on the
design, evaluation and application of these systems. This edition includes
updates of chapters in the first edition, as well as several entirely new 
chapters. Section I provides background on CDSS development and eval-
uation. The first chapter introduces the topics that are explored in depth in
later chapters. Chapters 2 through 4 describe the design foundations behind
the decision support tools used today. While there is some overlap in the
concepts addressed in each of these chapters, they each have unique foci.
Chapter 2 focuses primarily on the mathematical foundations of the 



knowledge-based systems, Chapter 3 focuses on pattern recognition
systems, and Chapter 4 includes a detailed discussion of issues in clinical
vocabularies and other important issues in the development and use of
CDSS. Chapter 5 addresses diagnostic decision support systems and sets
this development in the context of the process of physician, not just com-
puter, diagnosis. Chapters 6 and 7 address concerns in the deployment and
evaluation of any computer application in health care. These issues include
examining the legal, ethical, and evaluation issues that must be addressed
when these systems are actively used in health care.

Section II focuses on the applications of these systems in clinical prac-
tice.This section includes three chapters from institutions that not only have
a strong history of deployment of these systems, but also have performed
the research and evaluation studies that provide perspective for others who
are considering the use of these tools. The final chapter in this section pro-
vides guidance on the use of decision support tools for patients.

This book represents an effort, not just by the editor or the individual
chapter authors, but by many others who have provided assistance to them.
We are grateful for the support and encouragement of our editors at
Springer and the assistance of Joy Ptacek and Muzna Mirza in the prepa-
ration of this manuscript.The National Library of Medicine and the Agency
for Healthcare Research and Quality have provided much appreciated
support for my own and many of the chapter authors’ research on CDSS.
Finally, I want to express my gratitude to my friend and colleague, C.
Michael Brooks, Ed.D., who provided the initial and ongoing encourage-
ment for my research activities in clinical decision support systems over the
past twenty years.

Eta S. Berner, EdD, FACMI, FHIMSS
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1
Overview of Clinical Decision
Support Systems*

Eta S. Berner and Tonya J. La Lande

Introduction

Clinical decision support systems (CDSS) are computer systems designed
to impact clinician decision making about individual patients at the point
in time that these decisions are made. With the increased focus on the pre-
vention of medical errors that has occurred since the publication of the
landmark Institute of Medicine report, To Err Is Human, computer-based
physician order entry (CPOE) systems, coupled with CDSS, have been pro-
posed as a key element of systems’ approaches to improving patient
safety.1–4 If used properly, CDSS have the potential to change the way med-
icine has been taught and practiced. This chapter will provide an overview
of clinical decision support systems, summarize current data on the use and
impact of clinical decision support systems in practice, and will provide
guidelines for users to consider as these systems begin to be incorporated
in commercial systems, and implemented outside the research and devel-
opment settings. The other chapters in this book will explore these issues
in more depth.

Types of Clinical Decision Support Systems

There are a variety of systems that can potentially support clinical decisions.
Even Medline and similar healthcare literature databases can support clin-
ical decisions. Decision support systems have been incorporated in health-
care information systems for a long time, but these systems usually have
supported retrospective analyses of financial and administrative data.5

Recently, sophisticated data mining approaches have been proposed for
similar retrospective analyses of both administrative and clinical data6 (see

3

* This chapter is an updated version of Chapter 36 in Ball MJ, Weaver C, Kiel J
(eds). Healthcare Information Management Systems, Third Edition, New York:
Springer-Verlag, 463-477, used with permission.



Chapter 3 for more details on data mining techniques). Although these ret-
rospective approaches can be used to develop guidelines, critical pathways,
or protocols to guide decision making at the point of care, such retrospec-
tive analyses are not usually considered to be CDSS. These distinctions are
important because vendors often will advertise that their product includes
decision support capabilities, but that may refer to the retrospective type
of systems, not those designed to assist clinicians at the point of care.
However, as the interest has increased in CDSS, more vendors have begun
to incorporate these types of systems. Metzger and her colleagues7,8 have
described CDSS using several dimensions. According to their framework,
CDSS differ among themselves in the timing at which they provide support
(before, during, or after the clinical decision is made) and how active or
passive the support is, that is, whether the CDSS actively provides alerts or
passively responds to physician input or patient-specific information.
Finally, CDSS vary in how easy they are for busy clinicians to access.7

Although CDSS have been developed over the last thirty years, many of
them have been stand-alone systems or part of noncommercial computer-
based patient record systems. CDSS also differ in whether the information
provided is general or specialty-based. In recent years, some of the origi-
nally noncommercial systems are now being more widely marketed, and
other vendors are beginning to incorporate CDSS into their computer-
based patient records and physician order entry systems.

Another categorization scheme for CDSS is whether they are knowl-
edge-based systems, or nonknowledge-based systems that employ machine
learning and other statistical pattern recognition approaches. Chapter 2 dis-
cusses the mathematical foundations of the knowledge-based systems, and
Chapter 3 addresses the foundations of the statistical pattern recognition
CDSS. In this overview, we will focus on the knowledge-based systems, and
discuss some examples of other approaches, as well.

Knowledge-Based Clinical Decision Support Systems
Many of today’s knowledge-based CDSS arose out of earlier expert systems
research, where the aim was to build a computer program that could sim-
ulate human thinking.9,10 Medicine was considered a good domain in which
these concepts could be applied. In the last twenty years, the developers of
these systems have begun to adapt them so that they could be used more
easily to support real-life patient care processes.11 Many of the earliest
systems were diagnostic decision support systems, which Miller and 
Geissbuhler discuss in Chapter 5. The intent of these CDSS was no longer
to simulate an expert’s decision making, but to assist the clinician in his or
her own decision making. The system was expected to provide information
for the user, rather than to come up with “the answer,” as was the goal of
earlier expert systems.12 The user was expected to filter that information
and to discard erroneous or useless information. The user was expected to

4 E.S. Berner and T.J. La Lande



be active and to interact with the system, rather than just be a passive recip-
ient of the output. This focus on the interaction of the user with the system
is important in setting appropriate expectations for the way the system will
be used.

There are three parts to most CDSS. These parts are the knowledge base,
the inference or reasoning engine, and a mechanism to communicate with
the user.13 As Spooner explains in Chapter 2, the knowledge base consists
of compiled information that is often, but not always, in the form of if–then
rules. An example of an if–then rule might be, for instance, IF a new order
is placed for a particular blood test that tends to change very slowly, AND
IF that blood test was ordered within the previous 48 hours, THEN alert
the physician. In this case, the rule is designed to prevent duplicate test
ordering. Other types of knowledge bases might include probabilistic asso-
ciations of signs and symptoms with diagnoses, or known drug–drug or
drug–food interactions.

The second part of the CDSS is called the inference engine or reasoning
mechanism, which contains the formulas for combining the rules or associ-
ations in the knowledge base with actual patient data.

Finally, there has to be a communication mechanism, a way of getting the
patient data into the system and getting the output of the system to the user
who will make the actual decision. In some stand-alone systems, the patient
data need to be entered directly by the user. In most of the CDSS incor-
porated into electronic medical records (EMR) systems, the data are
already in electronic form and come from the computer-based patient
record, where they were originally entered by the clinician, or may have
come from laboratory, pharmacy, or other systems. Output to the clinician
may come in the form of a recommendation or alert at the time of order
entry, or, if the alert was triggered after the initial order was entered,
systems of email and wireless notification have been employed.14,15

CDSS have been developed to assist with a variety of decisions. The
example above describes a system designed to provide support for labora-
tory test ordering. Diagnostic decision support systems have been devel-
oped to provide a suggested list of potential diagnoses to the users. The
system might start with the patient’s signs and symptoms, entered either by
the clinician directly or imported from the EMR. The decision support
system’s knowledge base contains information about diseases and their
signs and symptoms.The inference engine maps the patient signs and symp-
toms to those diseases and might suggest some diagnoses for the clinicians
to consider. These systems generally do not generate only a single diagno-
sis, but usually generate a set of diagnoses based on the available informa-
tion. Because the clinician often knows more about the patient than can be
put into the computer, the clinician will be able to eliminate some of the
choices. Most of the diagnostic systems have been stand-alone systems, but
the Wizorder system, developed at Vanderbilt University, has a diagnostic
system that runs in the background, taking its information from the data

1. Overview of Clinical Decision Support Systems 5



already in the EMR.16 This system has been incorporated into the
McKesson Horizon ClinicalsTM system. The use of CDSS at Vanderbilt is
described in detail by Miller and his colleagues in Chapter 10.

Other systems can provide support for medication orders, a major cause
of medical errors.1,17 The input for the system might be the patient’s 
laboratory test results for the blood level of a prescribed medication. The
knowledge base might contain values for therapeutic and toxic blood con-
centrations of the medication and rules on what to do when a toxic level of
the medication is reached. If the medication level was too high, the output
might be an alert to the physician.17 There are CDSS that are part of com-
puterized physician order entry (CPOE) systems that take a new medication
order and the patient’s current medications as input, the knowledge base
might include a drug database and the output would be an alert about drug
interactions so that the physician could change the order. Similarly, input
might be a physician’s therapy plan, where the knowledge base would
contain local protocols or nationally accepted treatment guidelines, and the
output might be a critique of the plan compared to the guidelines.18 Some
hospitals that have implemented these systems allow the user to override the
critique or suggestions, but often the users are required to justify why they
are overriding it. The structure of the CDSS knowledge base will differ
depending on the source of the data and the uses to which they are put.The
design considerations, especially vocabulary issues, are not trivial. The chal-
lenges of CDSS design are discussed in more detail in Chapter 4.

Nonknowledge-Based Clinical Decision Support Systems
Unlike knowledge-based decision support systems, some of the nonknowl-
edge-based CDSS use a form of artificial intelligence called machine learn-
ing, which allows the computer to learn from past experiences and/or to
recognize patterns in the clinical data.19 Artificial neural networks and
genetic algorithms are two types of nonknowledge-based systems.19

Artificial Neural Networks

Research in neural networks has been going on since the 1940s.20 Artificial
neural networks (ANN) simulate human thinking and learn from exam-
ples.19 An ANN consists of nodes called neurodes (which correspond to
neurons) and weighted connections (which correspond to nerve synapses)
that transmit signals between the neurodes in a unidirectional manner.19,21

An ANN contains 3 layers, which include the input layer, output layer, and
hidden layer.19 The input layer is the data receiver and the output layer com-
municates the results, while the hidden layer processes the incoming data
and determines the results.19

This structure bears some similarities to the knowledge-based decision
support systems, but rather than having a knowledge base derived from the

6 E.S. Berner and T.J. La Lande



medical literature or from an expert clinician’s knowledge, the ANN ana-
lyzes the patterns in the patient data, to derive the associations between the
patient’s signs and symptoms and a diagnosis. Many of the knowledge-
based CDSS cover a wide range of diseases. For instance, the input may be
the signs and symptoms exhibited by a patient and the output may be the
possible diseases the patient may have. Neural networks often focus on a
more narrow range of signs and symptoms, for instance, those associated
with a single disease, such as myocardial infarction.22

These systems can learn from examples when supplied with known
results for a large amount of data.21 The system will study this information,
make guesses for the correct output, compare the guesses to the given
results, find patterns that match the input to the correct output, and adjust
the weights of the connections between the neurodes accordingly, in order,
to produce the correct results.21 This iterative process is known as training
the artificial network.21 In the example with myocardial infarction, for
instance, the data including a variety of signs and symptoms from large
numbers of patients who are known to either have or not have a myocar-
dial infarction can be used to train the neural network. Once the network
is trained, i.e., once the weighted associations of signs and symptoms with
the diagnosis are determined, the system can be used on new cases to deter-
mine if the patient has a myocardial infarction.

There are many advantages and disadvantages to using artificial neural
networks. Advantages include eliminating the need to program IF–THEN
rules and eliminating the need for direct input from experts.19 ANNs can
also process incomplete data by inferring what the data should be and can
improve every time they are used because of their dynamic nature.19 ANNs
also do not require a large database to make predictions about outcomes,
but the more comprehensive the training data set is, the more accurate the
ANN is likely to be.21 Even though all of these advantages exist, there are
some disadvantages.The training process involved can be time consuming.19

ANNs follow a statistical pattern recognition approach to derive their for-
mulas for weighting and combining data. The resulting formulas and
weights are often not easily interpretable, and the system cannot explain or
justify why it uses certain data the way it does, which can make the relia-
bility and accountability of these systems a concern.19

Despite the above concerns, artificial neural networks have many appli-
cations in the medical field. In a review article on the use of neural networks
in health care, Baxt provides a chart that shows various applications of
ANNs, which include the diagnosis of appendicitis, back pain, dementia,
myocardial infarction, psychiatric emergencies, sexually transmitted dis-
eases, skin disorders, and temporal arteritis.23 Study results have shown that
ANNs’ diagnostic predictions for pulmonary embolisms were as good as, or
better than, physicians’ predictions.24 Another study also showed that neural
networks did a better job than two experienced cardiologists in detecting
acute myocardial infarction in electrocardiograms with concomitant left
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bundle branch block.25 Studies have also shown that ANNs can predict
which patients are at high risk for cancers such as oral cancer.26 The studies
described in Baxt’s chart illustrate other applications of ANNs, including
predicting outcomes for things such as surgery recovery, liver transplants,
cardiopulmonary resuscitation, and heart valve surgery, as well as the analy-
sis of waveforms of electrocardiograms (ECGs) and electroencephalograms
(EEGs).23

Genetic Algorithms

Another nonknowledge-based method used to create CDSS is a genetic
algorithm (GA). GAs were developed in the 1940s by John Holland at the
Massachusetts Institute of Technology, and are based on the evolutionary
theories by Darwin that dealt with natural selection and survival of the
fittest.19 Just as species change to adapt to their environment, “GAs ‘repro-
duce’ themselves in various recombinations in an effort to find a new
recombinant that is better adapted than its predecessors. (page 239).”19

In other words, without any domain-specific knowledge, components of
random sets of solutions to a problem are evaluated, the best ones are kept
and are then recombined and mutated to form the next set of possible solu-
tions to be evaluated, and this continues until the proper solution is dis-
covered.27 The fitness function is used to determine which solutions are
good and which ones should be eliminated.19 GAs are similar to neural net-
works in that they derive their knowledge from patient data.

Genetic algorithms have also been applied in health care, but there are
fewer examples of this type of CDSS than those based on neural networks.
However, GAs have proved to be a helpful aid in the diagnosis of female
urinary incontinence.28

Although, as Hardin and Chhieng describe in Chapter 3, research has
shown that CDSS based on pattern recognition and machine learning
approaches may be more accurate than the average clinician in diagnosing
the targeted diseases, many physicians are hesitant to use these CDSS in
their practice because the reasoning behind them is not transparent.24 Most
of the systems that are available today involve knowledge-based systems
with rules, guidelines, or other compiled knowledge derived from the
medical literature. The research on the effectiveness of CDSS has come
largely from a few institutions where these systems were developed.

Effectiveness of Clinical Decision Support Systems

Clinical decision support systems have been shown to improve both patient
outcomes, as well as the cost of care. Because many of the published studies
have come out of a limited number of institutions including LDS Hospital,

8 E.S. Berner and T.J. La Lande



Regenstrief Medical Institute and, more recently, Vanderbilt University.
Chapter 8 describes the CDSS deployed in the HELP system at LDS Hos-
pital, Chapter 9 describes the system at the Regenstrief Institute, and
Chapter 10 describes Vanderbilt’s system. In addition, there are an increas-
ing number of studies from other places, that have shown positive
impact.17,29–33 The systems can minimize errors by alerting the physician to
potentially dangerous drug interactions, and the diagnostic programs have
also been shown to improve physician diagnoses.33–36 The reminder and
alerting programs can potentially minimize problem severity and prevent
complications. They can warn of early adverse drug events that have an
impact on both cost and quality of care.4,29,37,38,39 These data have prompted
the Leapfrog Group and others to advocate their use in promoting patient
safety.3 As described in the chapters in Section 2 of this book, most of the
studies that have shown the strongest impact on reducing medication errors
have been done at institutions with very sophisticated, internally developed
systems, and where use of an EMR, CPOE, and CDSS are a routine and
accepted part of the work environment. As more places that do not have
that cultural milieu, or a good understanding of the strengths and limita-
tions of the systems, begin to adopt CDSS, integration of these systems may
prove more difficult.40

Several published reviews of CDSS have emphasized the dearth of evi-
dence of similar effectiveness on a broader scale and have called for more
research, especially qualitative research, that elucidates the factors which
lead to success outside the development environment.41,42 Studies of the
Leeds University abdominal pain system, an early CDSS for diagnosis of
the acute abdomen, showed success in the original environment and much
more limited success when the system was implemented more broadly.43,44

As Chapter 7 shows, while the evidence is increasing, there are still limited
systematic, broad-scale studies of the effectiveness of CDSS. Not only is
there a lack of studies on the impact of the diffusion of successful systems,
but also there are still few places utilizing the systems themselves.45,46 The
KLAS research and consulting firm conducted an extensive survey of the
sites that had implemented CPOE systems.46 As KLAS defines these
systems, CPOE systems usually include CDSS that were defined as, “. . .
alerting, decision logic and knowledge tools to help eliminate errors during
the ordering process.”46 Although most of the CPOE systems provide for
complex decision support, the results of the KLAS survey showed that most
sites did not use more than 10 alerts and that many sites did not use any of
the alerting mechanisms at order entry. These data on system use outside
the research and development sites underscore the fact that despite evi-
dence that CDSS have many benefits, as the KLAS report states, “The use
of active complex alerts is in its infancy.”46

Metzger and McDonald report anecdotal case studies of successful
implementation of CDSS in ambulatory practices.8 While such descrip-
tions can motivate others to adopt CDSS, they are not a substitute for 
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systematic evaluation of implementation in a wide range of settings. Unfor-
tunately, when such evaluations are done, the results have sometimes been
disappointing. A study incorporating guideline-based decision support
systems in 31 general practice settings in England found that, although care
was not optimal before implementing the computer-based guidelines, there
was little change in health outcomes after the system was implemented.
Further examination showed that, although the guideline was triggered
appropriately, clinicians did not go past the first page and essentially did
not use it.18 Another study found that clinicians did not follow the guide-
line advice because they did not agree with it.47

There is a body of research that has shown that physicians have many
unanswered questions during the typical clinical encounter.48,49 This should
provide an optimal opportunity for the use of CDSS, yet a study tracking
the use of a diagnostic system by medical residents indicated very little
use.50 This is unusual given that this group of physicians in training should
have even more “unanswered questions” than more experienced practi-
tioners, but this may be partially explained by the fact that the system was
a stand-alone system not directly integrated into the workflow. Also, Teich
et al. suggest that reminder systems and alerts usually work, but systems
that challenge the physicians’ judgment, or require them to change their
care plans, are much more difficult to implement.51 A case study of a CDSS
for notification of adverse drug events supports this contention. The study
showed that despite warnings of a dangerous drug level, the clinician in
charge repeatedly ignored the advice. The article describes a mechanism of
alerting a variety of clinicians, not just the patient’s primary physician, to
assure that the alerts receive proper attention.17 Bria made analogies to
making some alerts impossible to ignore. He used the example of the
shaking stick in an airplane to alert the pilots to really serious problems.52

In addition to the individual studies, Kawamoto et al.53 examined factors
associated with CDSS success across a variety of studies. They found that
four factors were the main correlates of successful CDSS implementation.
The factors were:

1. providing alerts/reminders automatically as part of the workflow;
2. providing the suggestions at a time and location where the decisions

were being made;
3. providing actionable recommendations; and
4. computerizing the entire process.

Thus, although these systems can potentially influence the process of care,
if they are not used, they obviously cannot have an impact. Integration into
both the culture and the process of care is going to be necessary for these
systems to be optimally used. Institutions that have developed such a
culture provide a glimpse of what is potentially possible (see Chapters
8–10). However, Wong et al., in an article published in 2000, suggest that
the incentives for use are not yet aligned to promote wide-scale adoption
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of CDSS.40 Those incentives may be changing, but these systems are not
equally attractive to all stakeholders. As Doolan and Bates38 illustrate, hos-
pital administrators are beginning to see advantages to adoption of CDSS
and other clinical computing applications, but at this point in time the per-
ceived disadvantages for physicians may loom larger than the advantages.
There are several reasons why implementation of CDSS is challenging.

Some of the problems include issues of how the data are entered. Other
issues include the development and maintenance of the knowledge base
and issues around the vocabulary and user interface. Finally, since these
systems may represent a change in the usual way patient care is conducted,
there is a question of what will motivate their use, which also relates to how
the systems are evaluated.

Implementation Challenges

The first issue concerns data entry, or how the data will actually get into 
the system. Some systems require the user to query the systems and/or 
enter patient data manually. Not only is this “double data entry” disruptive
to the patient care process, it is also time consuming, and, especially in the
ambulatory setting, time is scarce. It is even more time consuming if the
system is not mobile and/or requires a lengthy logon. Much of this disrup-
tion can be mitigated by integrating the CDSS with the hospital informa-
tion system and EMR. As mentioned above, several commercial products
have integrated decision support capabilities. What that means is if the data
are already entered into the medical record, the data are there for the deci-
sion support system to act upon, and, in fact, many systems are potentially
capable of drawing from multiple ancillary systems as well. This is a
strength, but not all clinical decision support systems are integrated, and
without technical standards assuring integration of ancillary systems, such
linkages may be difficult. There are also a number of stand-alone systems,
some of the diagnostic systems and some drug interaction systems, for
example. This means that patient data have to be entered twice—once into
the medical record system, and again, into the decision support system. For
many physicians, this double data entry can limit the usefulness of such
systems.

A related question is who should enter the data in a stand-alone system
or even in the integrated hospital systems. Physicians are usually the key
decision makers, but they are not always the person who interacts with the
hospital systems. One of the reasons for linking CDSS with physician order
entry is that it is much more efficient for the physician to receive the alerts
and reminders from decision support systems. The issue concerns not just
order entry, but also mechanisms of notification. The case study mentioned
earlier described a situation where the physician who received the alert
ignored it.17 These systems can be useful, but their full benefits cannot be
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gained without collaboration between the information technology profes-
sionals and the clinicians.

Although it might not seem that vocabularies should be such a difficult
issue, it is often only when clinicians actually try to use a system, either a
decision support system or computer-based patient record or some other
system with a controlled vocabulary, that they realize either the system
cannot understand what they are trying to say or, worse yet, that it uses the
same words for totally different concepts or different words for the same
concept. The problem is there are no standards that are universally agreed
upon for clinical vocabulary and, since most of the decision support systems
have a controlled vocabulary, errors can have a major impact (see Chapter
4 for more discussion on vocabulary and other design issues).

Future Uses of Clinical Decision Support Systems

Despite the challenges in integrating CDSS, when properly used they have
the potential to make significant improvements in the quality of patient
care. While more research still needs to be done evaluating the impact of
CDSS outside the development settings and the factors that promote or
impede integration, it is likely that increased commercialization will con-
tinue. CDSS for non-clinican users such as patients are likely to grow as
well (see Chapter 11).There is increasing interest in clinical computing and,
as handheld and mobile computing become more widely adopted, better
integration into the process of care may be easier54 In addition, the con-
cerns over medical errors and patient safety are prompting a variety of ini-
tiatives that will lead to increased incorporation of CDSS. Physicians are
legally obligated to practice in accordance with the standard of care, which
at this time does not mandate the use of CDSS. However, that may be
changing. The issue of the use of information technology in general, and
clinical decision support systems in particular, to improve patient safety, has
received a great deal of attention recently.1,2,55 Healthcare administrators,
payers, and patients, are concerned, now more than ever before, that clini-
cians use the available technology to reduce medical errors. The Leapfrog
Group3 has advocated physician order entry (with an implicit coupling of
CDSS to provide alerts to reduce medication errors) as one of their main
quality criteria.

Even if the standard of care does not yet require the use of such systems,
there are some legal and ethical issues that have not yet been well addressed
(see Chapter 6 for a fuller discussion of these issues). One interesting legal
case that has been mentioned in relation to the use of technology in health
care is the Hooper decision. This case involved two tugboats (the T.J.
Hooper and its sister ship) that were pulling barges in the 1930s when radios
(receiving sets) were available, but not widely used on tugboats. Because
the boats did not have a radio, they missed storm warnings and their cargo

12 E.S. Berner and T.J. La Lande



sank.The barge owners sued the tugboat company, even though the tugboat
captains were highly skilled and did the best they could under the circum-
stances to salvage their cargo. They were found liable for not having the
radio, even though it was still not routinely used in boats. Parts of the fol-
lowing excerpt from the Hooper decision have been cited in other discus-
sions of CDSS56

. . . whole calling may have unduly lagged in the adoption of new and available
devices. It never may set its own tests, however persuasive be its usages. Courts must
in the end say what is required; there are precautions so imperative that even their
universal disregard will not excuse their omission. But here there was no custom at
all as to receiving sets; some had them, some did not; the most that can be urged is
that they had not yet become general. Certainly in such a case we need not pause;
when some have thought a device necessary, at least we may say that they were
right, and the others too slack.57

It has been suggested that as CDSS and other advanced computer
systems become more available, the Hooper case may not only provide
legal precedent for liability for failure to use available technology, but the
legal standard of care may also change to include using available CDSS.58

Since this area is still new, it is not clear what type of legal precedents will
be invoked for hospitals that choose to adopt, or avoid adopting, CDSS.
One legal scholar suggests that while the use of CDSS may lower a hospi-
tal’s risk of medical errors, healthcare systems may incur new risks if the
systems either cause harm or are not implemented properly.59 In any case,
there are some guidelines that users can follow that may help ensure more
appropriate use of CDSS.

Guidelines for Selecting and Implementing Clinical
Decision Support Systems†

Osheroff et al. offer practical suggestions for steps to be taken in the imple-
mentation of CDSS.60 The guidelines below address other issues such as
those involved in selecting CDSS, interacting with vendors, and assuring
that user expectations for CDSS are appropriate. They also include legal
and ethical issues that are discussed in more detail in Chapter 6.

Assuring That Users Understand the Limitations
In 1986, Brannigan and Dayhoff highlighted the often different philoso-
phies of physicians and software developers.61 Brannigan and Dayhoff
mention that physicians and software developers differ in regard to how
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“perfect” they expect their “product” to be when it is released to the
public.61 Physicians expect perfection from themselves and those around
them. Physicians undergo rigorous training, have to pass multiple licensing
examinations, and are held in high esteem by society for their knowledge
and skills. In contrast, software developers often assume that initial prod-
ucts will be “buggy” and that eventually most errors will be fixed, often as
a result of user feedback and error reports. There is usually a version 1.01
of almost any system almost as soon as version 1.0 has reached most users.
Because a CDSS is software that in some ways functions like a clinician
consultant, these differing expectations can present problems, especially
when the knowledge base and/or reasoning mechanism of the CDSS is not
transparent to the user. The vendors of these systems have an obligation to
learn from the developers, and to inform the clinicians using the CDSS of
its strengths and limitations.

Assuring That the Knowledge Is From 
Reputable Sources
Users of CDSS need to know the source of the knowledge if they purchase
a knowledge-based system. What rules are actually included in the system
and what is the evidence behind the rules? How was the system tested
before implementation? This validation process should extend not just to
testing whether the rules fire appropriately in the face of specific patient
data (a programming issue), but also to whether the rules themselves are
appropriate (a knowledge-engineering issue). Sim et al. advocate the use of
CDSS to promote evidence-based medical practice, but this can only occur
if the knowledge base contains high quality information.62

Assuring That the System Is Appropriate for the 
Local Site
Vendors need to alert the client about idiosyncrasies that are either built
into the system or need to be added by the user. Does the clinical vocabu-
lary in the system match that in the EMR? What are the normal values
assumed by a system alerting to abnormal laboratory tests, and do they
match those at the client site? In fact, does the client have to define the
normal values as well as the thresholds for the alerts?

The answers to the questions about what exactly the user is getting are
not always easy to obtain. A few years ago, the chapter authors conducted
a survey of the nine vendors listed in the top 100 companies of the annual
vendor revenue survey of Healthcare Informatics. These companies also
indicated that their EMR systems contained decision support functional-
ity.63,64 We began by reviewing the vendor Web sites to see how much infor-
mation about the CDSS they contained. If we could not find answers to our
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questions on the Web site, we telephoned the vendors to find an appropri-
ate person to answer our questions.

The survey asked vendors whether they provided a knowledge
base/medical logic model to their customers. If they answered yes, they were
asked what the knowledge source was, if the knowledge base was updated,
how often the knowledge base was updated, and if there was an additional
charge for the updates. If they answered no to providing a knowledge base,
they were asked if they provided templates for the user to develop rules, if
there was an additional charge for these templates, how much effort was
involved for the customer to build these rules, and whether they provided
mechanisms to obtain/buy rules from somewhere else, and if there was a
charge.

None of the vendor Web sites contained answers to all of the questions
on the survey. The knowledge source was given on one of the nine vendor
Web sites, and two of the nine vendor Web sites indicated that they pro-
vided templates to develop the rules. All nine of the vendors needed to be
contacted to obtain additional information. Obtaining this information
turned out to be a more challenging task than expected.

Three of the vendor representatives with whom we spoke were very
helpful and open to answering the questions. The other six did not know
the answers to some or all of the questions and said they would refer our
questions to someone else who would call us back. After waiting a month
with no response from the vendors, we utilized our personal contacts with
users of five of the remaining systems to request either answers or a refer-
ral to another vendor contact. Two of those contacts returned answers to
most of our questions, leaving us with four companies for whom we could
not obtain answers to most of our questions.

The results of our survey are based on the full answers to the question-
naire from four of the nine clinical decision support vendors, as well as the
information that was obtained from the Web sites and the partial answers
from one of the five remaining vendors. The results show that five of the
nine vendors provide a knowledge base/medical logic model. Two of the
five vendors said their knowledge base comes from rules they developed
based on experience with their customer base in the past. One uses a physi-
cian order entry system and knowledge source that was developed and is
currently used by a well-known academic medical center, and one of the
five vendors did not know the source of their knowledge base. Three of the
five vendors said they update their knowledge base, one does not perform
updates, and two vendor representatives did not know if their knowledge
base was regularly updated. Two of the vendors who said they provided
updates were not sure how often they occurred.

The results also show that seven of the nine vendors provide templates
to develop the rules. Three of these seven vendors did not have an answer
to the question about the amount of effort that is involved for the customer
in building these rules. Four of the seven vendors said it did not take much
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effort to build the rules with the templates. In fact, one vendor pointed 
out that the time consuming part was researching, validating, and approv-
ing new rules. Also, one vendor said they provide a community Web site 
for their customers to post and share rules. Four vendors said they did 
not provide mechanisms to obtain/buy rules from somewhere else, one
vendor said clients could obtain rules from professional committees 
and organizations, and four vendors did not have an answer to this 
question.

When users ask questions like those in our survey, they may find, as 
we did, that the decision support system provided is really just an expert
system shell and that local clinicians need to provide the “knowledge” that
determines the rules. For some systems, an effort has been made to use stan-
dards that can be shared among different sites, for example, the Arden
syntax for medical logic modules,65 but local clinicians must still review the
logic in shared rules to assure that they are appropriate for the local situa-
tion. Using in-house clinicians to determine the rules in the CDSS can
assure its applicability to the local environment, but that means extensive
development and testing must be done locally to assure the CDSS operates
appropriately. Often a considerable amount of physician time is needed.
Without adequate involvement by clinicians, there is a risk that the CDSS
may include rules that are inappropriate for the local situation, or, if there
are no built-in rules, that the CDSS may have only limited functionality. On
the other hand, local development of the logic behind the rules may also
mean that caution should be exercised if the rules are used at different sites.
The important thing is for the user to learn at the outset what roles the
vendor and the client will have to play in the development and maintenance
of the systems. Based on our experience, and despite the fact that many of
the vendors did make an effort to provide the answers for us, there were
still many important questions for which we could not easily obtain the
information. These results can help to explain the findings from the KLAS
survey of CPOE users, which involved users of systems of many of the 
same vendors we surveyed. Although these systems have decision support
capabilities, the effort involved in customizing the CDSS for the local site
may be considerable, and the result may be that CDSS capabilities are
underutilized.46

Assuring That Users Are Properly Trained
Just as the vendor should inform the client how much work is needed to
get the CDSS operational, the vendor should also inform the client how
much technical support and/or clinician training is needed for physicians to
use the system appropriately and/or understand the systems’ recommen-
dations. It is not known whether the users of some CDSS need special clin-
ical expertise to be able to use it properly, in addition to the mechanics 
of training on the use of the CDSS. For instance, systems that base their
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recommendations on what the user enters directly or on what was entered
into the medical record by clinicians have been shown to reach faulty con-
clusions or make inappropriate recommendations if the data on which the
CDSS bases its recommendations are incomplete or inaccurate.66 Also, part
of the reason for integrating CDSS with physician order entry is that it is
assumed the physician has the expertise to understand, react to, and deter-
mine whether to override the CDSS recommendation. Diagnostic systems,
for instance, may make an appropriate diagnostic suggestion that the user
fails to recognize.36,67,68 Thus, vendors of CDSS need to be clear about what
expertise is assumed in using the system, and those who implement the
systems need to assure that only the appropriate users are allowed to
respond to the CDSS advice.

As these systems mature and are more regularly integrated into the
healthcare environment, another possible concern about user expertise
arises. Will users lose their ability to determine when it is appropriate to
override the CDSS? This “de-skilling” concern is similar to that reported
when calculators became commonplace in elementary and secondary edu-
cation, and children who made errors in using the calculator could not tell
that the answers were obviously wrong. The solution to the problem is not
to remove the technology, but to remain alert to both the positive and neg-
ative potential impact on clinician decision making.

Monitoring Proper Utilization of the Installed Clinical
Decision Support Systems
Simply having a CDSS installed and working does not guarantee that it will
be used. Systems that are available for users if they need them, such as
online guidelines or protocols, may not be used if the user has to choose to
consult the system, and especially if the user has to enter additional data
into the system. Automated alerting or reminder systems that prompt the
user can address the issue of the user not recognizing the need for the
system, but another set of problems arises with the more automated
systems. They must be calibrated to alert the user often enough to prevent
serious errors, but not so frequently that they will be ignored eventually. As
mentioned earlier, there have been reports of CDSS triggering an alert that
the patient’s physician ignored.17 What this means is that testing the system
with the users, and monitoring its use, is essential for the CDSS to operate
effectively in practice as well as in theory.

Assuring the Knowledge Base Is Monitored 
and Maintained
Once the CDSS is operational at the client site, a very important issue
involves the responsibility for updating the knowledge base in a timely
manner. New diseases are discovered, new medications come on the
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market, and issues like the threat of bioterrorist actions prompt a need 
for new information to be added to the CDSS. Does the vendor have an
obligation to provide regular knowledge updates? Such maintenance can
be an expensive proposition given both rapidly changing knowledge and
systems with complex rule sets. Who is at fault if the end user makes a deci-
sion based on outdated knowledge, or, conversely, if updating one set of
rules inadvertently affects others, causing them to function improperly?
Such questions were raised over 20 years ago,69 but because CDSS are still
not in widespread use, the legal issues have not really been tested or 
clarified.

The Food and Drug Administration (FDA) is charged with device regu-
lation and has recently begun to reevaluate its previous policy on software
regulation. Up to now, many stand-alone CDSS have been exempt from
FDA device regulation because they required “competent human inter-
vention” between the CDSS’ advice and anything being done to the
patient.70 Even if the rules change and CDSS are required to pass a pre-
market approval process, monitoring would need to be ongoing to ensure
the knowledge does not get out of date, and that what functioned well in
the development process still functions properly at the client site. For this
reason, local software review committees, which would have the responsi-
bility to monitor local software installations for problems, obsolete knowl-
edge, and harm as a result of use, have been advocated.71

Conclusion

There is now growing interest in the use of CDSS.72 More vendors of infor-
mation systems are incorporating them. As skepticism about the usefulness
of computers for clinical practice decreases, the wariness about accepting
the CDSS’ advice, that many clinicians currently exhibit, is likely to
decrease.As research has shown, if CDSS are available and convenient, and
if they provide what appears to be good information, they are likely to be
heeded by clinicians.The remaining chapters in this book explore the issues
raised here in more depth. Underlying all of them is the perspective that,
as CDSS become widespread, we must continue to remember that the role
of the computer should be to enhance and support the human who is ulti-
mately responsible for the clinical decisions.
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2
Mathematical Foundations of
Decision Support Systems

S. Andrew Spooner

Many computer applications may be considered to be clinical decision
support systems. Programs that perform Medline searches or check drug
interactions do support decisions, but they are not “clinical decision support
systems” in the usual sense. What we usually mean by a clinical decision
support system (CDSS) is a program that supports a reasoning task carried
out behind the scenes and based on clinical data. For example, a program
that accepts thyroid panel results and generates a list of possible diagnoses
is what we usually recognize as a diagnostic decision support system, a par-
ticular type of CDSS. General purpose programs that accept clinical find-
ings and generate diagnoses are typical diagnostic decision support systems.
These programs employ numerical and logical techniques to convert clini-
cal input into the kind of information that a physician might use in per-
forming a diagnostic reasoning task. How these numerical techniques work
is the subject of this chapter.

Essential to the understanding of CDSS is familiarity with the basic prin-
ciples of logic and probability. A brief review of these areas is offered first,
followed by a description of a general model of CDSS, which will help in
understanding how some CDSS perform reasoning tasks. Exceptions to the
model will round out this discussion of the mathematical foundations of
CDSS.

Review of Logic and Probability

Set Theory
A brief review of basic concepts in set theory is helpful in understanding
logic, probability, and many other branches of mathematics. A set is a 
collection of unique objects. For example, the major Jones criteria1 for
rheumatic fever is a set:

JONES-CRITERIA-MAJOR = {carditis, migratory polyarthritis, erythema
marginatum, chorea, subcutaneous nodules}
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Likewise, the minor criteria make a set:

JONES-CRITERIA-MINOR = {fever, arthralgia, elevated acute phase
reactants, prolonged P-R interval on electrocardiogram}

To complete our description of the Jones criteria, we need a third set:

GROUP-A-STREP-EVIDENCE = {positive culture, positive rapid
antigen, antibody rise or elevation}

To apply the Jones criteria, one compares the patient’s findings with the
items in the various sets above. A patient is highly likely to have rheumatic
fever if there is evidence of group A streptococcal infection and the patient
has two major criteria or one major and two minor criteria.

Each element or member of the set is distinguishable from the others.
A subset is any collection of elements of a known set. Using the first of 
the criteria above, a patient must have a subset of clinical findings con-
taining at least two of the elements of JONES-CRITERIA-MAJOR to
meet the Jones criteria for rheumatic fever. If a patient has the clinical 
findings:

FINDINGS = {migratory polyarthritis, chorea, subcutaneous nodules}

then we say that FINDINGS is a subset of JONES-CRITERIA-MAJOR,
or, in set terminology:

FINDINGS ⊆ JONES-CRITERIA-MAJOR

The cardinality or size of a set is simply the number of elements in the
set. For our two examples, the cardinalities (written by placing a vertical
bar before and after the symbol for the set) are:

|FINDINGS| = 3
|JONES-CRITERIA-MAJOR| = 5

The basic set operations are intersection and union. The intersection of
two sets is the set of elements the two sets have in common. For example,
if there is a patient with the following set of clinical findings:

CLINICAL-FINDINGS = {heart murmur, migratory polyarthritis, chorea,
subcutaneous nodules, cough}

then the intersection of this set and JONES-CRITERIA-MAJOR is
written:

CLINICAL-FINDINGS ∩ JONES-CRITERIA-MAJOR

It is easy to see that the intersection of these two sets is simply the set
FINDINGS. The union of two sets is the set of all elements that belong to
either set. Since, by definition, a set’s elements must be distinguishable from
one another, the set resulting from the union of our patient’s findings and
the Jones major criteria is written:

24 S.A. Spooner



CLINICAL-FINDINGS ∪ JONES-CRITERIA-MAJOR = {heart
murmur, migratory polyarthritis, chorea, subcutaneous nodules, cough,
carditis, erythema marginatum, chorea}

Anyone who has done a Medline search in which two sets of literature 
citations are combined has performed these set operations; the AND 
function in Medline is like set intersection, and the OR function is like set
union.

Diagnostic criteria like the Jones criteria are good examples of how sets
can be used to represent diagnostic rules.The full Jones criteria, represented
in set theoretical terminology, might read like this (assuming we have sets
JONES-CRITERIA-MINOR and GROUP-A-STREP-EVIDENCE as
described at the beginning of this section):

If CLINICAL-FINDINGS is the set of a given patient’s symptoms, signs,
and laboratory test results, then the patient is highly likely to have
rheumatic fever if either of two conditions are met:

1. |CLINICAL-FINDINGS ∩ JONES-CRITERIA-MAJOR| ≥ 2
and
|CLINICAL-FINDINGS ∩ GROUP-A-STREP-EVIDENCE| ≥ 1

2. |CLINICAL-FINDINGS ∩ JONES-CRITERIA-MAJOR| = 1
and
|CLINICAL-FINDINGS ∩ JONES-CRITERIA-MINOR| ≥ 2
and
|CLINICAL-FINDINGS ∩ GROUP-A-STREP-EVIDENCE| ≥ 1

There are other set operations besides union and intersection. For example,
the phenomenon of set covering has applications in decision making. A
cover of a set is a set of subsets in which each element of the covered set
appears at least once as a member of one of the sets in the cover set. An
example makes this definition clearer. Suppose you were asked to recom-
mend a list of antibiotics for your hospital’s emergency department. Your
objective is to stock the minimum number of antibiotics that will be effec-
tive for 95% of the pathogenic organisms you’ve found in cultures at your
hospital. For the sake of simplicity, suppose that there are six pathogens,
each designated by a letter, which account for 95% of the infections seen
in your hospital. You might represent this set of pathogens as:

PATHOGENS = {A, B, C, D, E, F}

You have the following set of antibiotics from which to choose:

ANTIBIOTICS = {A-Cillin, B-Cillin, C-Cillin, D-Cillin, E-Cillin, F-Cillin}

Each antibiotic is described by the set of pathogens for which that anti-
biotic is effective. Here is a list of your antibiotics, with their covered
pathogen sets (each of which is a subset of PATHOGENS):
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• A-Cillin = {A, C}
• B-Cillin = {A, B, E}
• C-Cillin = {C, D, E}
• D-Cillin = {F}
• E-Cillin = {B, D, F}
• F-Cillin = {E}

What you seek is a set cover of the set PATHOGENS; in other words, you
want to pick a set of antibiotics which contains at least one antibiotic that
is effective for each pathogen. It’s clear that all six antibiotics taken together
make a set cover, but your job is to find the minimum number of anti-
biotics that will get the job done. Casual inspection shows that the set {A-
Cillin, E-Cillin, F-Cillin} does the job as a set cover, in that at least one
antibiotic in that set is effective for each one of the pathogens in
PATHOGENS.

There are many other set operations which can be applied to real-world
decision problems, but the brief introduction presented here should suffice
to illuminate the concepts presented in this book. Generally speaking, sets
are used to formalize logical operations in a way that a machine—usually
a computer—can understand.

Before we leave the topic of sets, fuzzy sets are worth a brief mention.
Under conventional principles of set theory, an element is either a member
of a set or it isn’t. Heart murmur, for example, is definitely not a 
member of the set JONES-CRITERIA-MAJOR. Under fuzzy set theory,
membership in a set is not an all or nothing phenomenon. In a fuzzy set, an
element is a member of the set with a certain probability; e.g., cough is a
member of the set COLD-SYMPTOMS with a probability of 80% (a 4 out
of 5 chance). Fuzzy set theory has created new ways of looking at sets and
new methods for applying set theory to solve decision-making problems:
fuzzy logic.2,3 Fuzzy logic has been used to tackle decision-making problems
in which uncertainty plays a role.

Boolean Logic
Anyone who has performed a search of the medical literature using the
Medline system has used logic. When referring to common logical opera-
tions like combining two sets of literature citations using AND or OR,
we often refer to these operations as “Boolean” logic, in honor of George
Boole (1815–1864), a British mathematics professsor who published
seminal works on formal logic. Indeed, Medline is not a bad way to learn
about Boolean algebra, since its connection to set theory is made so clear
by the sets of literature citations that we manipulate in that system.

Suppose we have performed two literature searches. The result of one
search, set A, represents all the literature citations in the Medline database
that relate to rheumatoid arthritis. Set B consists of all the literature 
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citations on immune globulin. By asking the Medline program to give us a
new set that is the result of combining A and B using the AND operator,
we have a new set, C, that contains literature citations on the use of immune
globulin in rheumatoid arthritis. When we combine two sets of citations
using the AND function of our Medline program, we are asking the com-
puter to give us all citations that appear in both sets. This corresponds
roughly to the English use of the word and.

The word OR in Boolean logic has a slightly different meaning than in
English. In everyday usage, or usually has an exclusive meaning; the state-
ment, “You may opt for chemotherapy or radiation therapy,” usually means
that one may have one or the other therapy, but not both. The Boolean OR
is different. If one were to perform another pair of Medline searches, this
time for all articles that have asthma as a keyword (set A) and those that
mention “reactive airway disease” in the text of the abstract (set B), one
could combine sets A and B with the OR function to get a comprehensive
set of citations on asthma. Because the OR function takes all citations 
that appear in one or both of sets A and B, the OR function is said to be
inclusive.

There are other Boolean operators, like XOR (exclusive OR: “either A
or B but not both”) and NAND (“A and not B”), but AND and OR are
the basic operators with which we are familiar.

How is Boolean logic used in CDSS? The mathematical subjects of state-
ment logic and predicate logic give us formal definitions of how statements
can be combined to produce new conclusions. For example, consider the
following statements:

1. Urine cultures with colony counts of 10,000 or more are considered pos-
itive if they are obtained by bladder catheterization.

2. This patient’s urine culture shows more than 10,000 colonies of E. coli.
3. All patients with positive urine cultures should be treated for urinary

tract infections.

The statements can be combined intuitively, without the use of formal math-
ematics, into the conclusion:

This patient needs to be treated for a UTI.

The logic that gave us the conclusion so easily, comes from our medical intu-
ition, but computers have no intuition. They must be programmed to gen-
erate even the most obvious conclusions. To understand logic as it is
implemented on a computer, one must understand the basics of predicate
logic and deductive reasoning.

The above example about UTIs is a sloppy instance of a syllogism. A syl-
logism is a form of deductive reasoning consisting of a major premise, a
minor premise, and a conclusion. The premises are combined, using rules
of predicate logic, into a conclusion. For example, a syllogism in a ventila-
tor management decision support system might be:
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Major Premise: All blood gas determinations that show carbon dioxide to
be abnormally low indicate an over-ventilated patient.

Minor Premise: The current patient’s carbon dioxide is abnormally low.
Conclusion: Therefore, the current patient is over-ventilated.

Again, this conclusion is obvious, but by representing the above syllogism
using symbols, where the symbol Low-CO2 represents the state of abnor-
mally low carbon dioxide and the symbol OVERVENTILATED represents
the state of an over-ventilated patient, the syllogism looks more computer-
friendly:

Major Premise: Low-CO2 ⇒ OVERVENTILATED
Minor Premise: Low-CO2

Conclusion: OVERVENTILATED

Extending this example, suppose we have another statement in our CDSS
that over-ventilation should cause a high rate alarm to sound (we can rep-
resent this by the symbol HIGH-RATE-ALARM), then we can construct
the syllogism:

Major Premise: Low-CO2 ⇒ OVERVENTILATED
Minor Premise: Over-ventilated ⇒ HIGH-RATE-ALARM
Conclusion: Low-CO2 ⇒ HIGH-RATE-ALARM

Thus, we have generated a new rule for the system, where the intermediate
state of over-ventilation is bypassed. This simplification of two rules into a
new one may or may not help our understanding of the system, but the
results the system gives are the same: a low carbon dioxide value sets off
the high rate alarm. One can imagine how large sets of rules can be com-
bined with each other to reduce complex reasoning tasks to simple ones.

The syllogism above is an example of rule chaining, where two rules are
chained together to form a new conclusion. Specifically, the simple system
outlined above is a forward-chaining deduction system, because the system
starts with if statements and moves to a then statement. In real life, though,
we often start with the “then” portion of a logical rule. For instance, con-
sider the clinical rule:

If your patient has asthma, then give an influenza immunization each fall.

There are many other rules in real clinical practice with the same “then”
portion (“give a flu vaccine”). The question a clinician might ask is not
“Does this patient have asthma? If so, I should give a flu shot,” but 
more likely the question would be simply “Does this patient need a flu
shot?” We start with the “then” portion of this set of flu shot rules. A back-
ward-chaining deduction system does this—it starts with the “then” end of
a set of rules and works backwards to answer questions based on its rule
set. In the flu shot example, a backward-chaining system would start with
the “Does this patient need a flu shot” question and immediately learn that
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the diagnosis of asthma would cause this rule to be satisfied. The system
might then ask the user or query a clinical database about the presence of
this diagnosis.

An example of a backward-chaining deduction system in medicine is the
MYCIN system developed at Stanford.4 MYCIN’s domain was the selec-
tion of antibiotics for the treatment of bacterial infections based on clini-
cal and microbiological information. An example of a forward-chaining
system in medicine is Germwatcher, developed at Barnes Hospital in St.
Louis.5 Germwatcher uses as its rules the Centers for Disease Control and
Prevention’s National Nosocomial Infections Surveillance System.6 Using
a computer program which helps implement a forward-chaining reasoning
system called CLIPS (C Language Integrated Production System, Software
Technology Branch, National Aeronautics and Space Administration,
Johnson Space Center, Houston, TX), expert system shell Germwatcher
works in a large hospital microbiology laboratory to identify nosocomial
infections early from culture data.

CDSS that use logic like the simple ventilator-management system above
have limited application, since the range of truth encompassed by this
logical system includes only true (e.g., the High Rate alarm needs to be
sounded) or false (e.g., the High Rate alarm does not need to be sounded).
Not many applications in medicine can be reduced to such simple truths.
There may be situations where the High Rate alarm might not always have
to be sounded for a low carbon dioxide reading (e.g., for a head injury
patient who needs low carbon dioxide to preserve cerebral blood flow). To
accommodate these situations, it would be helpful if the response from the
system were something like “the high rate alarm should probably be
sounded.” Such a system would then need to be able to handle probabili-
ties, as well as certainties, which most CDSS do. MYCIN, for example,
reports its conclusions in terms of their likelihood. The next section covers
basic concepts of probability.

Probability
Everyday medical practice contains many examples of probability.We often
use words such as probably, unlikely, certainly, or almost certainly in all con-
versations with patients. We only rarely attach numbers to these terms, but
computerized systems must use some numerical representation of likeli-
hood in order to combine statements into conclusions.

Probability is represented numerically by a number between 0 and 1.
Statements with a probability of 0 are false. Statements with a probability
of 1 are true. Most statements from real life fall somewhere in the middle.
A probability of 0.5 or 50% are just as likely to be true as false. A round,
opacified area seen in the lungs on a chest radiograph is probably pneu-
monia; one might assign a probability of 0.8, or 80%, (a 4 in 5 chance) to
this statement. Based on the high probability of pneumonia, one might elect
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to treat this condition without performing further testing—a lung biopsy,
perhaps—that would increase the probability of pneumonia to greater than
80%. We are accustomed to accepting the fact that our diagnoses have a
certain probability of being wrong, so we counsel patients about what to do
in the event (we might use the term “unlikely event”) that things don’t work
out in the expected way.

Probabilities can be combined to yield new probabilities. For example,
the two statements:

Pr(diabetes) = 0.6
Pr(hypertension) = 0.3

mean that the probability of diabetes is 0.6, or 60%, (3 in 5 chance), and
the probability of hypertension is 0.3, or 30%, (3 in 10 chance). We have
not specified the clinical context of these statements, but suppose these
probabilities applied to a particular population. Suppose further that the
two conditions are independent; that is, the likelihood of patients having
one disease is unaffected by whether they have the other (not always a safe
assumption!). If we then want to know what the probability is, of finding a
patient in our specified population with both diseases, we simply multiply
the two probabilities (0.6 and 0.3) to get 0.18, or 18%. If the two clinical
conditions are not independent, (e.g., pulmonary emphysema and lung
cancer) then we cannot combine the probabilities in such a simple, multi-
plicative manner. This is much like the AND function in Medline or the
intersection function as applied to sets.

The familiar “OR” function from our Medline program also has a math-
ematical meaning in combining probabilities. If we wanted to know how
many patients in the above example had diabetes or hypertension (remem-
ber: this would also include those with both diseases in the usual mathe-
matical sense of or), we would compute:

Pr(diabetes OR hypertension) = Pr(diabetes) + Pr(hypertension) −
Pr(diabetes AND hypertension).

The last term in the above equation we already know to be 0.6 × 0.3 = 0.18,
so:

Pr(diabetes OR hypertension) = 0.6 + 0.3 − 0.18 = 0.72.

Conditional probability is another type of probability often used in med-
icine. A conditional probability is the probability of an event (or the prob-
ability of the truth of a statement) given the occurrence of another event (or
the truth of another statement).The most familiar case of conditional prob-
ability in medicine arises in the interpretation of diagnostic tests. For
example, the probability of pneumonia given a round density on a chest
radiograph is what we need to know in interpreting that diagnostic test if
it is positive. In mathematical notation, this conditional probability is
written this way:
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Pr(Pneumonia | Round Density on CXR).

One reads this notation, “The probability of pneumonia given a round
density on chest radiograph.” This notation is convenient in the explana-
tion of Bayes’ rule, which is the cornerstone of the logic in many decision
support systems.

Bayes’ Rule
If we have a patient with jaundice, how likely is it that he has hepatitis?
Written another way, we seek to learn:

Pr(hepatitis | jaundice),

which is read as “the probability of hepatitis given the presence of jaun-
dice.” We may not have this probability at our fingertips, but we might be
able to find a slightly different probability more easily:

Pr(jaundice | hepatitis),

which is, simply, the probability of jaundice given the presence of hepatitis.
The latter probability could be found by studying a series of patients with
proven hepatitis (it would be easy to get this data by looking up diagnosis
codes in the medical records department) and computing the percentage of
these patients who present with jaundice. However, this does not directly
answer our original question. Bayes’ rule allows us to compute the proba-
bility we really want—Pr(hepatitis | jaundice)—with the help of the more
readily available number Pr(jaundice | hepatitis). Bayes’ rule7 is simply 
this:

Notice that to solve this equation, we need not only Pr(jaundice | hepati-
tis), but Pr(hepatitis)—the probability of hepatitis independent of any given
symptom—and Pr(jaundice)—the probability of jaundice independent of
any particular disease. These two independent probabilities are called prior
probabilities, since they are the probabilities prior to the consideration of
other factors.

The derivation of Bayes’ rule is very simple. We already know that the
probability of any two events occurring simultaneously is simply the
product of their individual probabilities. For example, the joint probability
we already computed of diabetes and hypertension in a hypothetical pop-
ulation was:

Pr(diabetes AND hypertension) = Pr(diabetes) × Pr(hypertension)
= 0.6 × 0.3 = 0.18.

Pr
Pr Pr

Pr
hepatitis jaundice

hepatitis jaundice hepatitis
jaundice

( ) = ( ) × ( )
( )
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We were free to multiply these together, because in our hypothetical pop-
ulation, the likelihood of one disease occurring in an individual was inde-
pendent of the other. In other words:

Pr(hypertension) = Pr(hypertension | diabetes)

and

Pr(diabetes) = Pr(diabetes | hypertension).

In this population, one’s chance of having one disease is unaffected by the
presence of the other disease.

In medicine, we are often faced with the question of the likelihood of 
two interrelated events occurring simultaneously in a patient. The case of
a diagnostic test and the disease it is supposed to test for is a good example:
what is the probability of an abnormal chest radiograph and pneumonia
occurring in the same patient simultaneously? The question asks for this
probability:

Pr(pneumonia AND abnormal CXR).

Can’t we simply find out what the incidence of pneumonia in the popula-
tion is, and multiply it by the incidence of abnormal chest radiographs in
the population? A moment’s reflection should show that this simple calcu-
lation is not sufficient. For example, if the incidence of pneumonia is 1 in
1000, and the incidence of abnormal chest radiograph is 1 in 100, then the
erroneous probability would be computed:

WRONG: Pr(pneumonia AND abnormal CXR) =

= 0.00001 = 0.001%

This does not fit with our clinical intuition very well, since we know that
people with pneumonia tend to have abnormal chest films. Our intuition
says that the probability of the two events occurring together should be
pretty close to the probability of having pneumonia alone, since a majority
of those patients will have abnormal chest films. What we really need to
compute is this:

Pr(pneumonia AND abnormal CXR) = Pr(pneumonia) × Pr(abnormal
CXR | pneumonia).

This is the probability of pneumonia multiplied by the probability of an
abnormal chest radiograph given that pneumonia exists. If we take
Pr(abnormal CXR | pneumonia) to be 90%, then the computation matches
our intuition much better.

In general, for any two events A and B:

Pr(A AND B) = Pr(A) × Pr(B | A)

1
1000

1
100

×
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and

Pr(B AND A) = Pr(B) × Pr(A | B).

But since Pr(A AND B) must surely equal Pr(B AND A), we can say that
the right-hand sides of the equations above are equal to each other:

Pr(A) × Pr(B | A) = Pr(B) × Pr(A | B)

Rearranging this equation, we have Bayes’ rule:

At an intuitive level, we use Bayes’ rule when making seat-of-the-pants esti-
mates of disease probability in patients. For example, if we designate hepati-
tis by A and jaundice by B, and there were an on-going epidemic 
of hepatitis (i.e., Pr(A) was high), then our index of suspicion for hepatitis
in a jaundiced person would be increased. Likewise, if the likelihood of
jaundice due to other causes was high (i.e., Pr(B) was high), then our esti-
mation of the probability of hepatitis as a specific diagnosis would be
lowered. Similarly, if jaundice were pathognomonic of hepatitis (i.e.,
Pr(A | B) was 1 or near to it), then our hepatitis diagnosis would be greatly
increased. By using numerical estimates of the probability of diseases,
findings, and conditional probabilities, Bayes’ rule can help make medical
decisions.

One might imagine a simple CDSS in which one enters a single symptom
and receives the probability of the presence of a disease given that
symptom. A problem arises when one wishes to get disease probabilities
given multiple symptoms.The number of data points needed to do Bayesian
calculations on multiple simultaneous symptoms is huge. For example, in a
system which handles only single symptoms, if one had a database of 1000
symptoms and 200 diseases, one would need to create 1000 × 200 = 200,000
conditional probabilities, 1000 symptom probabilities, and 200 disease prob-
abilities, for a total of about 200,000 numbers. Since most of these numbers
are 0 (many symptoms are unrelated to many diseases), this may be a rea-
sonable amount of numbers to collect into a knowledge base. When one
starts considering the probabilities needed to do computations on two
simultaneous symptoms, this number climbs from 200,000 to about
200,000,000! If one wanted to design a system that could handle the very
realistic situation of 5 or 6 simultaneous symptoms, estimating the number
of numbers needed to support the calculation would be intractable. Modi-
fying the system to handle multiple simultaneous “diseases” adds even more
to the complexity. Only after making the simplifying assumption that most
disease findings are independent of one another8 do many CDSS use
Bayesian approaches. One such system, Iliad,9 profitably employed this
assumption.

Pr
Pr Pr

Pr
A B

A B A
B

( ) = ( ) × ( )
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Informal Logic
Even if we create a reasoning system that follows all the rules of logic and
probability, it would be difficult to come up with all the numbers that must
be assigned to each event in even a small clinical database. Many success-
ful CDSS have circumvented this difficulty by employing informal rules of
logic to accomplish the reasoning task, without creating an intractable data-
gathering task. In the early development of one of the most famous CDSS,
MYCIN,4,10 the creators of the system developed their own logic system
(heuristic) that made intuitive sense. This system employed “certainty
factors” which ranged from −1 (false) to +1 (true). A certainty factor of 0
indicated no belief in either direction in the statement’s veracity. In com-
bining several statements with the AND function into a single combined
statement in MYCIN, one simply takes the minimum certainty factor of all
the statements as the certainty factor of the combined statement. This
makes a certain intuitive sense: we cannot be any more certain of an AND
statement than we are of the least certain part. Later development of the
MYCIN project showed a sound probabilistic basis for the certainty factor
rules, but the point here is that sometimes cutting mathematical corners can
still yield a useful system. In both the QMR11 and DXplain12 CDSS, there
is a database of diseases and findings (a finding is an item from the history,
physical examination, laboratory data, or radiographic data). Each disease
is defined by a particular set of findings. Each disease-finding relationship
is assigned a frequency (of the finding among people with the disease) and
an evoking strength (of how strongly a finding would evoke the possibility
of a disease) on an ordinal scale (1–5 for frequency; 0–5 for evoking
strength).These two factors make intuitive sense, and the system works, but
the manipulation of these factors within these systems is very different from
the formal algebra of logic and probability.

The General Model of Knowledge-Based Decision 
Support Systems

There are similarities between physician and CDSS reasoning, although a
CDSS might arrive at a similar conclusion to a physician without employ-
ing the same model of reasoning. Physicians do use some probabilistic infor-
mation when they make decisions. For instance, a physician might make a
diagnosis of influenza more often during the winter when influenza is more
prevalent (probable) than in the summer. However, physicians use this
information in informal ways; in other words, they do not actually use
numbers in formulas to make diagnostic decisions.l3–15 Another feature of
real-life clinical decision making is that physicians do not require complete
information to make a decision. Most doctors are comfortable making 
decisions based on incomplete or contradictory information.16 In contrast,
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CDSS rely on well defined numerical techniques to do their reasoning, and
they do require sufficient information to complete their formulae. While
physicians can fall back on their knowledge of pathophysiology, CDSS are
not well suited to situations in which hard data are unknown.To understand
how these systems operate, and under what conditions they are best used,
it is important to appreciate a general model of CDSS.

Figure 2.1 shows a general model of CDSS. There is input to the system
and output from it. The CDSS has a reasoning (inference) engine and a
knowledge base. Understanding these basic components provides a useful
framework for understanding most CDSS and their limitations. There are
systems which do not follow this model which will be discussed briefly later
in this chapter and in Chapter 3 in more detail.

The user supplies input appropriate to the system (i.e., terms from the
system’s controlled vocabulary to represent clinical data), and the system
supplies output (e.g., a differential diagnosis). The reasoning engine applies
formal or informal rules of logic to the input and often relies on additional
facts encoded in the system’s knowledge base. The knowledge base is the
compilation of the relationships between all of the diseases in the system
and their associated manifestations (e.g., signs, symptoms, laboratory and
radiographic tests). Maintaining the knowledge base in such systems is the
most significant bottleneck in the maintenance of such systems, since the
knowledge base needs to be expanded and updated as medical knowledge
grows.

Input
The manner in which clinical information is entered into the CDSS (user
interface) varies from system to system, but most diagnostic systems 
require the user to select terms from its specialized, controlled vocabulary.

Figure 2.1. A general model of a clinical diagnostic decision support system.



Comprehension of natural language has been an elusive goal in the devel-
opment of CDSS. While it would be highly desirable to be able to speak or
type the query “What are the diagnostic possibilities for a four-year-old
child with joint swelling and fever for a month,” most who have used such
systems are accustomed to the task of reformatting this question in terms
the particular CDSS can understand. We might, for example, break the
above query into components:

• Age: 4 years
• Gender: unspecified
• Symptom: joint swelling
• Duration: 1 month
• Time course: unknown

This breakdown of the original query might work on one system, but
another system might demand that we break it down another way:

• Age: less than 12 years
• Finding: arthritis

Notice that the second description describes the age in vague terms, and it
forces us to eschew joint swelling for the more specific term arthritis (usually
defined as joint pain, redness, warmth, and swelling). In the vocabulary of the
program, the age of four years (as opposed to 10 years) is unimportant, and
joint swelling, without other signs of inflammation, is undefined.

Any physician who has assigned diagnostic and procedural codes in
billing systems understands the limitations of controlled vocabularies. In a
CDSS, it is common for the user’s input to be restricted to a finite set of
terms and modifiers. How well the system works in a given clinical situa-
tion may depend on how well the system’s vocabulary matches the terms
the clinician uses. CDSS take a variety of terms, called findings, which
encompass items from the medical history, physical examination, laboratory
results, and other pieces of clinical information. What constitutes a valid
finding in a given program is entirely up to the program; there is no “stan-
dard” set of findings for all CDSS. For general purpose CDSS, items from
the history and physical examination are going to be the findings. In spe-
cialized domains, e.g., an arterial–blood–gas expert system, the input vocab-
ulary will be entirely different and much more restrictive.

Entering “chest pain” as a finding in a CDSS may be insufficient to
capture the essence of the symptom. “Chest pain radiating to the left arm”
may be sufficient, but usually there are pertinent temporal factors related
to symptoms that are difficult to express in a controlled vocabulary. For
example, “sudden onset, 20 minutes ago, of chest pain radiating to the left
arm” has a very different meaning from “five-year history of continuous
chest pain radiating to the left arm.” While CDSS often include a vocabu-
lary of severity and location modifiers, temporal modifiers are more diffi-
cult to build into a system, since minute changes in the timing of onset and
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duration can make a big difference in the conclusion the system reaches.
Some CDSS make simplifying assumptions about broad categories of
timing (acute, subacute, chronic) to aid in the temporal description of find-
ings. Although users may experience frustration in being unable to enter
temporal information, the research is equivocal in its impact.

One solution to the problem of temporal modeling in CDSS is to use an
explicit model of time, in which the user is asked to specify intervals and
points in time, along with temporal relationships between events (e.g., event
A occurred before event B), in order to drive a temporal reasoning process
within the CDSS. Clearly, this complicates the matter of entering data (to
say nothing of programming the system). A simpler approach is to model
time implicitly. In implicit time,17 temporal information is built into the data
input elements of the CDSS; no special temporal reasoning procedures are
required. For example, one input item could be “history of recent exposure
to strep.” By joining the concept “history of” with the concept of a partic-
ular bacterial pathogen, one successfully abstracts the temporal nature of
this finding, which would be pertinent in the diagnosis of rheumatic fever
or post-streptococcal glomerulonephritis. Note that no explicit definition of
“recent” is part of this representation; if for some reason one needed to dis-
tinguish infection 2 weeks ago from infection 3 months ago, this abstraction
would not suffice. Thus, there is a disadvantage to this simplification.
Nonetheless, CDSS which use implicit temporal abstractions seem to
perform well for time-sensitive clinical cases.

Inference Engine
There are many ways of programming an inference engine. The inference
engine is the portion of the CDSS that combines the input and other data
according to some logical scheme for output. Users of the system do not
usually know—or need to know—how the engine works to achieve the
results.

One such scheme for an inference engine is the Bayesian network. Recall
that Bayes’ rule helps us express conditional probabilities—the likelihood
of one event given that another has occurred. A Bayesian network is a way
to put Bayes’ rule to work by laying out graphically which events influence
the likelihood of occurrence of other events. Figure 2.2 shows a Bayesian
network for the diagnosis of pneumonia.

The arrows in the diagram indicate all of the conditional relationships
between findings and diagnoses. Note that the symptoms listed are not nec-
essarily independent; since febrile patients are often tachypneic, even in the
absence of lung disease, one cannot say the two are as independent as
Bayesian reasoning requires. Conceptually, this network simply states that
the diagnosis of pneumonia is supported by the presence of three symp-
toms. The strength of association—that is, how strongly pneumonia is sug-
gested by each of the three symptoms—varies with each symptom–disease
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pairing. By “activating” all three nodes (cough, fever, and tachypnea) the
probability of pneumonia is maximized. Of course, each of these three
nodes might be tied to other disease states in the knowledge base (like lung
cancer or upper respiratory infection).

Bayesian networks can be complex, but their usefulness comes from their
ability to represent knowledge in an intuitively appealing way. Inference
engines that operate on the basis of a network simply adjust probabil-
ities based on simple mathematical relationships between nodes in the
network. Iliad,9 a general CDSS, is one such program that is built on
Bayesian reasoning, and whose reasoning engine can be described as 
a Bayesian network. Mammonet18 is a mammography CDSS built on a
Bayesian network whose nodes include quality of the breast mass, age at
menarche, age of the patient, type of calcification of the mass, and other
findings apt to be present in the evaluation of a mammogram.

Production rule systems are another method of programming an infer-
ence engine. The rules of predicate logic dictate the functioning of such an
engine as it combines statements to form new conclusions. MYCIN,
described earlier, uses a production rule system. Production rules are an
intuitively attractive way to start thinking about CDSS, since so much 
of the care physicians give in daily practice follows certain well known 
rules (e.g., giving patients with asthma an influenza vaccine each year).
Other CDSS using production rules include IMM/Serve,19 a rule-based
immunization decision-making program developed at Yale University and
Hepaxpert (MED-EXPERT Data Systems Ltd., Vienna, Austria), a rule-
based hepatitis serology expert system. Production rule systems can get
quite complicated beyond narrow domains.

An appealing solution to the problem of constructing inference engines
in a clinical setting is to develop a cognitive model of actual clinical rea-
soning. In other words, one could study the reasoning that a physician uses
and attempt to create a computerized version of that cognitive task.
Workers in the field of artificial intelligence, in modeling human cognition,
have developed the notion of “frames” or schemes, as a reasonable 
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cognitive model. A frame consists of a set of “slots” into which fit details of
a particular kind of information. For example, a disease frame may have a
slot for etiologic agent and time course. Frames can be used to construct a
semantic network model of the world, which may then be searched for
answers to questions based on a particular situation. One such application
of frames in medicine is the criterion-table method of diagnosing diseases
like rheumatoid arthritis or Kawasaki disease. By applying a list of criteria,
physicians can classify patients by diagnosis. The AI/Rheum system20

employs this familiar device in an inference engine that can be used outside
its original domain of rheumatologic diseases.

One important aspect of inference engines is their independence from
their knowledge base. Since CDSS take a great deal of time to develop,
reusability has been a focus of research.21 Theoretically, one should be able
to take any inference engine and apply it in any domain. In reality, a given
inference engine is developed with a particular domain in mind, and its use
does not move from that domain.

Knowledge Base
For CDSS to work, they must possess some form of medical knowledge.
Obviously, the method of encoding this knowledge must match the infer-
ence engine design. For example, a CDSS based on a Bayesian network
must contain probabilities—prior, conditional, and posterior—of diseases
and findings. A big obstacle to building such a knowledge base is that many
relevant probabilities are not known. While the medical literature can
surely help with this task, and CDSS developers use the literature to varying
degrees in building their knowledge bases, knowledge base developers must
resort to estimates of probabilities, based on the clinical judgment of
experts, to fill in the needed numbers. Unfortunately, physicians can exhibit
markedly variable behavior in supplying such numbers,22 and probabilities
can vary from situation to situation, even with the same disease entities
(e.g., variations in disease prevalence with different populations).

Once one creates a knowledge base and populates it with some amount
of data, the next task is to create a way to maintain it. Since many CDSS
begin as funded academic research projects, it is no wonder that develop-
ment of their knowledge bases often halts after the grant funds cease. Since
knowledge base maintenance takes a tremendous amount of time, and since
the market for some CDSS is rather small, many CDSS become too expen-
sive to maintain. The knowledge-acquisition bottleneck23 has been recog-
nized as a problem in CDSS research.

Output
The output of CDSS is usually in the form of a list of possibilities,
ranked in some order of probability. Sometimes probability is not the only
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criterion on which results are evaluated; for example, in the DXplain
output, diseases which are not necessarily very likely, but whose misdiag-
nosis would be catastrophic, are flagged with a special disease-importance
tag to call attention to the possibility.12 Very often, physicians are not inter-
ested in the most likely diagnosis from a CDSS; for experienced physicians,
the most likely diagnosis is obvious. It is the less likely diagnosis that one
might fail to consider that interests physicians in CDSS, yet clearly it is dif-
ficult to draw the line between the rare and the ultra-rare.

Nonknowledge-Based Systems

The systems discussed so far have been knowledge-based in the sense that
an expert must expressly encode medical knowledge into numerical form
for the systems to work. The knowledge-based systems cannot simply
“learn” how to do the reasoning task from modeling human experts; the
human expert must put the knowledge into the system explicitly and
directly.

Neural Networks
There are systems that can learn from examples. Neural networks are the
most widely recognized of these types of systems, and there are regular
reports in the medical literature on their use in diverse fields.24–27

Artificial neural networks are constructed in a fashion similar to biolog-
ical neural networks. Neuron bodies (“nodes”) are connected to one
another by axons and dendrites (“links”). Nodes may be turned on or off,
just as a biological neuron can be in an activated or inactivated state. Acti-
vation of a node causes activation of a signal on a link. The effect of that
signal depends on the weight assigned to that link. In most learning neural
networks, some nodes are input nodes and some are output nodes. In the
CDSS context, the input nodes would be findings and the output nodes
would be possible diseases. To understand how a neural network might
work, consider the problem of determining whether a person with a sore
throat has streptococcal infection (as opposed to a harmless viral infection).
There are many input nodes to this decision, and perhaps two output nodes,
strep infection and viral infection. By presenting to a neural network many
thousands of cases of sore throat (where the outcome is known), the neural
network would “learn,” for example, that the presence of cough decreases
the likelihood of strep, and the height of fever increases this likelihood.

The appealing feature of neural networks—and what separates this tech-
nique from other methods of discovering relationships among data, like
logistic regression—is the ability of the system to learn over time. A neural
network changes its behavior based on previous patterns. In a domain
where the relationship between findings and diseases might change, like
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infectious disease surveillance, this changing behavior can be desirable.
Another desirable feature of neural networks is the lack of necessity to
understand complex relationships between input variables; the network
learns these relationships as it changes the links between its nodes. This is
the principal difference between neural networks and Bayesian networks.
In the latter, one explicitly constructs the network based on one’s knowl-
edge of pathophysiology and known probabilities. With neural networks,
the links are established as the network is developed, often on the basis of
a learning process, without regard to pathophysiologic facts. A disadvan-
tage of neural networks, however, is that unlike the other systems discussed,
the “rules” that the network uses do not follow a particular logic and are
not explicitly understandable.

Genetic Algorithms
Genetic algorithms represent another nonknowledge-based method for
constructing CDSS.28–29 Genetic algorithms take their name from an
analogy to the molecular rearrangements that take place in chromosomes.
Genes rearrange themselves randomly; such rearrangements give rise to
variations in an individual, which can affect the individual’s ability to pass
on genetic material. Over time, the species as a whole incorporates the most
adaptive features of the “fittest” individuals. Genetic algorithms take a
similar approach.To use a genetic algorithm, the problem to be solved must
have many components (e.g., a complex cancer treatment protocol with
multiple drugs, radiation therapy, and so on). By selecting components ran-
domly, a population of possible solutions is created.The fittest of these solu-
tions (the one with the best outcome) is selected, and this subpopulation
undergoes rearrangement, producing another generation of solutions. By
iteratively extracting the best solutions, an optimal solution can be reached.
The main challenge in using genetic algorithms is in creating the criteria by
which fitness is defined. Since the computing power required to use both
genetic algorithms and neural networks is considerable, these techniques
have had only limited use in medicine.

Summary

Understanding clinical decision support systems requires a basic under-
standing of probability and logic. Set theory, familiar to most practitioners
who have manipulated collections of literature citations in Medline, pro-
vides the basis for understanding probability and other computational
methods for reasoning. Probability—in particular, conditional probability—
is the principle behind most modern CDSS, but nonprobabilistic heuristic
techniques have been used to good effect in the past. Understanding CDSS
can be facilitated by considering four basic components of the CDSS
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process: input, reasoning engine, knowledge base, and output. Input is often
constrained by controlled vocabularies or limitations in temporal expression
of clinical features. Reasoning engines take on different designs, but their
operation is usually transparent to the user of a CDSS. Knowledge bases
contain data from which the reasoning engine takes rules, probabilities, and
other constructs required to convert the input into output. Output can take
many forms, including a differential diagnosis list or simply a probability of
a particular diagnosis. Nonknowledge-based systems use techniques of
machine learning to generate methods of turning input into meaningful
output, regardless of an explicit representation of expert knowledge.
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3
Data Mining and Clinical Decision
Support Systems

J. Michael Hardin and David C. Chhieng

Introduction
Data mining is a process of pattern and relationship discovery within large
sets of data. The context encompasses several fields, including pattern
recognition, statistics, computer science, and database management. Thus
the definition of data mining largely depends on the point of view of the
writer giving the definitions. For example, from the perspective of pattern
recognition, data mining is defined as the process of identifying valid, novel,
and easily understood patterns within the data set.1

In still broader terms, the main goal of data mining is to convert data into
meaningful information. More specifically, one major primary goal of data
mining is to discover new patterns for the users. The discovery of new 
patterns can serve two purposes: description and prediction. The former
focuses on finding patterns and presenting them to users in an interpretable
and understandable form. Prediction involves identifying variables or fields
in the database and using them to predict future values or behavior of some
entities.

Data mining is well suited to provide decision support in the healthcare
setting. Healthcare organizations face increasing pressures to improve the
quality of care while reducing costs. Because of the large volume of data
generated in healthcare settings, it is not surprising that healthcare organi-
zations have been interested in data mining to enhance physician practices,
disease management, and resource utilization.

Example 3.1

One early application of data mining to health care was done in the early
1990s by United HealthCare Corporation. United HealthCare Corporation
was a managed-care company, and developed its first data mining system,
Quality Screening and Management (QSM), to analyze treatment records
from its members.2 QSM examined 15 measures for studying patients with
chronic illness and compared the care received by its members to that rec-
ommended by national standards and guidelines. Results of the analyses
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were then used to identify appropriate quality management improvement
strategies, and to monitor the effectiveness of such actions. Although not
providing direct support for decision making at the point of care, these data
could be used to improve the way clinical guidelines are used.

Data Mining and Statistical Pattern Recognition

Pattern recognition is a field within the area of data mining. It is the science
that seeks analytical models with the ability to describe or classify
data/measurements. The objective is to infer from a collection of data/
measurements mechanisms to facilitate decision-making processes.3,4 With
time, pattern recognition methodologies have evolved into an interdiscipli-
nary field that covers multiple areas, including statistics, engineering, com-
puter science, and artificial intelligence. Because of cross-disciplinary
interest and participation, it is not surprising that pattern recognition is
comprised of a variety of approaches. One approach to pattern recognition
is called statistical pattern recognition.

Statistical pattern recognition implies the use of a statistical approach to
the modeling of measurements or data.5 Briefly, each pattern is represented
by a set of features or variables related to an object. The goal is to select
features that enable the objects to be classified into one or more groups or
classes.

Data Mining and Clinical Decision Support Systems

With the advent of computing power and medical technology, large data
sets as well as diverse and elaborate methods for data classification have
been developed and studied. As a result, data mining has attracted consid-
erable attention during the past several decades, and has found its way into
a large number of applications that have included both data mining and
clinical decision support systems. Decision support systems refer to a class
of computer-based systems that aids the process of decision making.6 Table
3.1 lists some examples of decision support systems that utilize data mining
tools in healthcare settings.

A typical decision support system consists of five components: the data
management, the model management, the knowledge engine, the user inter-
face, and the user(s).7 One of the major differences between decision
support systems employing data mining tools and those that employ rule-
based expert systems rests in the knowledge engine. In the decision support
systems that utilize rule-based expert systems, the inference engine must be
supplied with the facts and the rules associated with them that, as 
described in Chapter 2, are often expressed in sets of “if–then” rules. In this
sense, the decision support system requires a vast amount of a priori 

3. Data Mining and Clinical Decision Support Systems 45



46 J.M. Hardin and D.C. Chhieng

Table 3.1. Examples of clinical decision support systems and data mining tools that
utilize statistical pattern recognition.
System (reference) Description

Medical imaging recognition and interpretation system
Computer-aided diagnosis of Analysis of digitized images of skin lesions to diagnose 

melanoma23 melanoma
Computer-aided diagnosis of Differentiation between benign and malignant breast 

breast cancer21 nodules, based on multiple ultrasonographic features
Monitoring tumor response to Computer-assisted texture analysis of ultrasound images 

chemotherapy30 aids monitoring of tumor response to chemotherapy
Diagnosis of neuromuscular Classification of electromyographic (EMG) signals,

disorder31 based on the shapes and firing rates of motor unit 
action potentials (MUAPs)

Discrimination of neoplastic and Predicting the presence of brain neoplasm with 
non-neoplastic brain lesions27 magnetic resonance spectroscopy

Gene and protein expression analysis
Molecular profiling of breast Identification of breast cancer subtypes distinguished by 

cancer25 pervasive differences in their gene expression 
patterns

Screening for prostate cancer32 Early detection of prostate cancer based on serum 
protein patterns detected by surface enhanced laser
description ionization time-of-flight mass spectometry 
(SELDI-TOF MS)

Educational system
Mining biomedical literature33 Automated system to mine MEDLINE for references 

to genes and proteins and to assess the relevance of 
each reference assignment

Laboratory system
ISPAHAN34 Classification of immature and mature white blood cells

(neutrophils series) using morphometrical parameters
Histologic diagnosis of Analysis of digital images of tissue sections to identify 

Alzheimer’s disease35 and quantify senile plagues for diagnosing and 
evaluating the severity of Alzheimer’s disease

Diagnosis of inherited metabolic Identification of novel patterns in high-dimensional 
diseases in newborns36 metabolic data for the construction of classification 

system to aid the diagnosis of inherited metabolic 
diseases

Acute care system
Identification of hospitals with Using logistic regression models to compare hospital 

potential quality problems37 profiles based on risk-adjusted death with 30 days of 
noncardiac surgery

Prediction of disposition for Neural network system to predict the disposition in 
children with bronchiolitis22 children presenting to the emergency room with 

bronchiolitis
Estimating the outcome of Predicting the risk of in-hospital mortality in cancer 

hospitalized cancer patients28 patients with nonterminal disease

Miscellaneous
Flat foot functional evaluation38 Gait analysis to diagnosis “flat foot” and to monitor 

recovery after surgical treatment



knowledge on the part of the decision maker in order to provide the right
answers to well formed questions. On the contrary, the decision support
systems employing data mining tools do not require a priori knowledge on
the part of the decision maker. Instead, the system is designed to find new
and unsuspected patterns and relationships in a given set of data; the system
then applies this newly discovered knowledge to a new set of data. This is
most useful when a priori knowledge is limited or nonexistent.

Many successful clinical decision support systems using rule-based expert
systems have been developed for very specialized areas in health care.8–14

One early example of a rule-based expert system is MYCIN, which used its
rules to identify micro-organisms that caused bacteremia and meningitis.14

However, such systems can be challenging to maintain due to the fact that
they often contain several thousand rules or more. In addition, these
“if–then” rule systems have difficulty dealing with uncertainty. Bayesian
systems (see Chapter 2) are one way of addressing uncertainty. Statistical
pattern recognition approaches are another.

Supervised Versus Unsupervised Learning

Data mining and predictive modeling can be understood as learning from
data. In this context, data mining comes in two categories: supervised learn-
ing and unsupervised learning.

Supervised Learning
Supervised learning, also called directed data mining, assumes that the user
knows ahead of time what the classes are and that there are examples of
each class available. (Figure 3.1A) This knowledge is transferred to the
system through a process called training. The data set used in this process
is called the training sample.The training sample is composed of dependent
or target variables, and independent variables or input. The system is
adjusted based on the training sample and the error signal (the difference
between the desired response and the actual response of the system). In
other words, a supervised learning system can be viewed as an operation
that attempts to reduce the discrepancy between the expected and observed
values as the training process progresses. With enough examples in the
training data, the discrepancy will be minimized and the pattern recogni-
tion will be more accurate.

The goal of this approach is to establish a relationship or predictive
model between the dependent and independent variables. Predictive mod-
eling falls into the category of supervised learning because one variable is
designated at the target that will be explained as a function of other vari-
ables. Predictive models are often built to predict the future values or
behavior of an object or entity. The nature of the target/dependent variable
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determines the type of model: a model is called a classification model if the
target variable is discrete; and a regression model if the target variable is
continuous.

Example 3.2

Goldman et al. described the construction of a clinical decision support
system to predict the presence of myocardial infraction in a cohort of 4,770
patients presenting with acute chest pain at two university hospitals and
four community hospitals.15 Based on the patient’s symptoms and signs, the
clinical decision support system had similar sensitivity (88.0% versus
87.8%) but a significantly higher specificity (74% versus 71%) in predict-
ing the absence of myocardial infarction when compared to physicians’
decisions if the patients were required to be admitted to the coronary care
unit. If the decision to admit was based solely on the decision support
system, the admission of patients without infarction to the coronary care
unit would have been reduced by 11.5% without adversely affecting patient
outcomes or quality of care.

A Priori Probability
In supervised learning, the frequency distribution, or a priori probability, of
the classes of a certain training set (or a sample taken from the general pop-
ulation) may be quite different from that of the general population to which
the classifier is intended to be applied. In other words, the training
set/sample may not represent the general population. For example, a par-
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ticular training set may consist of 50% of the subjects with disease and 50%
without the disease. In this case, a priori probabilities of the two classes in
the training set are 0.5 for each class. However, the actual a priori proba-
bility or the actual prevalence of disease may be very different (less than
or greater than 0.5) from that of the training set. In some instances, the
actual a priori probability of the general population may be unknown to
the researchers. This may have a negative effect on the performance of the
classifier when applied to a real world data set. Therefore, it is necessary to
adjust the output of a classifier with respect to the new condition to ensure
the optimal performance of the classifier.16

Unsupervised Learning
In unsupervised or undirected learning, the system is presented with a set
of data but no information is available as to how to group the data into
more meaningful classes (Figure 3.1B). Based on perceived similarities that
the learning system detects within the data set, the system develops classes
or clusters until a set of definable patterns begins to emerge. There are no
target variables; all variables are treated the same way without the distinc-
tion between dependent and independent variables.

Example 3.3

Avanzolini et al. analyzed 13 commonly monitored physiological variables
in a group of 200 patients in the six-hour period immediately following
cardiac surgery in an attempt to identify patients who were at risk for devel-
oping postoperative complications.17 Using an unsupervised learning (clus-
tering) method, the investigators showed the existence of two well defined
categories of patients: those with low risk of developing postoperative com-
plications and those with high risk.

Classifiers for Supervised Learning

In supervised learning, classification refers to the mapping of data items
into one of the predefined classes. In the development of data mining tools
and clinical decision support systems that use statistical approaches like
those described here, one of the critical tasks is to create a classification
model, known as a classifier, which will predict the class of some entities or
patterns based on the values of the input attributes. Choosing the right clas-
sifier is a critical step in the pattern recognition process. A variety of tech-
niques have been used to obtain good classifiers. Some of the more widely
used and well known techniques that are used in data mining include 
decision trees, logistic regression, neural networks, and nearest neighbor
approach.
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Decision Trees
The use of decision trees is perhaps the easiest to understand and the most
widely used method that falls into the category of supervised learning.
Figure 3.2 is the graphical representation of a simple decision tree using
two attributes. A typical decision tree system adopts a top-down strategy in
searching for a solution. It consists of nodes where predictor attributes are
tested. At each node, the algorithm examines all attributes and all values of
each attribute with respect to determining the attribute and a value of the
attribute that will “best” separate the data into more homogeneous sub-
groups with respect to the target variable. In other words, each node is a
classification question and the branches of the tree are partitions of the data
set into different classes. This process repeats itself in a recursive, iterative
manner until no further separation of the data is feasible or a single classi-
fication can be applied to each member of the derived subgroups. There-
fore, the terminal nodes at the end of the branches of the decision tree
represent the different classes.

Example 3.4

An example of a clinical decision support system using decision trees can
be found in a study by Gerald et al.18 The authors developed a decision tree
that assisted health workers in predicting which contacts of tuberculosis
patients were most likely to have positive tuberculin skin tests. The model
was developed based on 292 consecutive cases and close to 3,000 contacts
and subsequently tested prospectively on 366 new cases and 3,162 contacts.
Testing showed that the decision tree model had a sensitivity of 94%, a
specificity of 28%, and a false negative rate of 7%. The authors concluded
that the use of decision trees would decrease the number of contacts inves-
tigated by 25% while maintaining a false negative rate that was close to
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that of the presumed background rate of latent tuberculosis infection in the
region.

Logistic Regression
Logistic regression is used to model data in which the target or dependent
variable is binary, i.e., the dependent variable can take the value 1 with a
probability of success p, or the value 0 with the probability of failure 1 − p.
The main objective is to develop a regression type model relating the binary
variable to the independent variables. As such it is a form of supervised
learning. It can also be used to examine the variation in the dependent vari-
able that can be explained by the independent variables, to rank the inde-
pendent variables based on their relative importance in predicting the
target variable, and to determine the interaction effects among independent
variables. Rather than predicting the values of the dependent variable,
logistic regression estimates the probability that a dependent variable will
have a given value. For example, instead of predicting whether a patient is
suffering from a certain disease, logistic regression tries to estimate the
probability of the patient having the disease. If the estimated probability is
greater than 0.5, then there is a higher probability of the patient having the
disease than not having the disease. The function relating the probabilities
to the independent variables is not a linear function and is represented by
the following equation:

p(y) = 1/{1 + e(−a−bx)}

where p(y) is the probability that y, the dependent variable, occurs based on
x, the value of an attribute/independent variable, a is the constant, and b is
the coefficient of the independent variable. Figure 3.3 shows a graphical rep-
resentation of the logistic regression model which fits the relationship
between the value of the independent variable, x and the probability of
dependent variable, y occurring with a special S-shaped curve that is math-
ematically constrained to remain within the range of 0.0 to 1.0 on the Y axis.
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Example 3.5

The following is an example that applies logistic regression to decision
making. In the earliest stage of the epidemic of severe acute respiratory
syndrome (SARS) when reliable rapid confirmatory tests were lacking, a
group of researchers from Taiwan attempted to establish a scoring system
to improve the diagnostic accuracy of SARS.19 The scoring system was
developed based on the clinical and laboratory findings of 175 suspected
cases using a multivariate, stepwise logistic regression model. The authors
then applied the scoring system to 232 patients and were able to achieve a
sensitivity and specificity of 100% and 93%, respectively, in diagnosing
SARS.

Example 3.6

In another study, the authors applied texture analysis to images of breast
tissue generated by magnetic resonance imaging (MRI) for differentiating
between benign and malignant lesions.20 Using logistic regression analysis,
a diagnostic accuracy of 0.8 +/− 0.07 was obtained with a model requiring
only three parameters.

Neural Networks
The original development of the neural network programs was inspired by
the way the brain recognizes patterns. A neural network is composed of a
large number of processors known as neurons (after the brain cells that
perform a similar function) that have a small amount of local memory and
are connected unidirectionally (Figure 3.4). Each neuron can have more
than one input and operates only on the inputs it receives via the connec-
tions. Like some of the data mining tools, neural networks can be super-
vised or unsupervised. In supervised neural networks, examples in the form
of the training data are provided to the network one at a time. For each
example, the network generates an output that is compared with the actual
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value as a form of feedback. Once the output of the neural network is the
same as the actual value, no further training is required. If the output differs
from the actual value, the network adjusts those parameters that con-
tributed to the incorrect output. Once adjustment is made, another example
is presented to the network and the whole process is repeated. The process
terminates when all parameters are stabilized. The size and representative-
ness of the training data is obviously very important, since a neural network
could work fine on the training set, but not generalize to a broader sample.

Example 3.7

One example of a neural network is the computer-aided diagnosis of solid
breast nodules. In one study, ultrasonographic features were extracted from
300 benign and 284 malignant biopsy-confirmed breast nodules.21 The
neural network was trained with a randomly selected data set consisting of
half of the breast nodule ultrasonographic images. Using the trained neural
network, surgery could be avoided in over half of the patients with benign
nodules with a sensitivity of 99%.

Example 3.8

In another example, a neural network was used to detect the disposition in
children presenting to the emergency room with bronchiolitis (inflamma-
tion of small airways).22 The neural network correctly predicted the dispo-
sition in 81% of test cases.

Nearest Neighbor Classifier
When a system uses the nearest neighbor (NN) classification, each attribute
is assigned a dimension to form a multidimensional space. A training set of
objects, whose classes are known, are analyzed for each attribute; each
object is then plotted within the multidimensional space based on the values
of all attributes. New objects, whose classes are yet to be determined, are
then classified according to a simple rule; each new object is analyzed for
the same set of attributes and is then plotted within the multidimensional
space based on the value of each attribute. The new object is assigned to
the same class of its closest neighbor based on appropriate metric/mea-
surements. In other words, the NN rule assumes that observations which
are the closest together (based on some form of measurement) belong to
the same category (Figure 3.5). The NN rule is often used in situations
where the user has no knowledge of the distribution of the categories.

One extension of this approach is the k-nearest neighbor approach (k-
NN). Instead of comparing to a single nearest prototype, one can take into
account k-neighboring points when classifying a data point, if the number
of preclassified points is large. For each new pattern, the class is assigned
by finding the most prominent class among the k-nearest data points in the
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training set. (Figure 3.5) This approach works very well in cases where a
class does not form a single coherent group but is a collection of more than
one separate group.

Example 3.9

By applying the k-NN classifier, Burroni et al. developed a decision support
system to assist clinicians with distinguishing early melanoma from benign
skin lesions, based on the analysis of digitized images obtained by epilumi-
nescence microscopy.23 Digital images of 201 melanomas and 449 benign
nevi were included in the study and were separated into two groups, a learn-
ing set and a test set. A k-NN pattern recognition classifier was constructed
using all available image features and trained for a sensitivity of 98% with
the learning set. Using an independent test set of images, a mean specificity
of 79% was achieved with a sensitivity of 98%. The authors concluded that
this approach might improve early diagnosis of melanoma and reduce
unnecessary surgery.

Evaluation of Classifiers

ROC Graphs
In statistical pattern recognition, the goal is to map entities to classes.There-
fore, the ultimate question is: which classifiers are more accurate in per-
forming this classification task? Suppose one wanted to identify which
classifiers would be best to determine whether a patient has cancer or not,
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the nearest neighbor of X comes from class A, so it would be labeled class A. Using
the k-NN rule with k = 4, three of the nearest neighbors of sample X come from
class B, so it would be labeled as B.



based on the results of certain laboratory tests. Given a classifier and an
instance, there are four possible outcomes. If the patient has cancer and is
diagnosed with cancer, based on the classifier, it is considered a true posi-
tive; if the patient is declared healthy by the classifier, but really has cancer,
it is considered a false negative. If the patient has no cancer and is declared
healthy, it is considered a true negative; if he is diagnosed as having cancer
when he is really healthy, it is considered a false positive.

We can plot the true positive rate on the Y axis and the false positive rate
on the X axis; a receiver operating characteristic (ROC) graph results
(Figure 3.6). The true positive rate (also known as sensitivity) is obtained
by dividing the number of true positives by the sum of true positives and
false negatives. The false positive rate is obtained by dividing the number
of false positives divided by the sum of true negatives and false positives;
the false positive rate can also be expressed as “1 minus specificity,” where
specificity is equal to true negatives divided by the sum of true negatives
and false positives. The ROC graph is a two-dimensional graph that depicts
the trade-offs between benefits (detecting cancer correctly, or true positive)
and costs (false alarm or false positive). Each classifier generates a pair of
true positive and false positive rates, which corresponds to a point on the
ROC graph.The point (0, 1) represents perfect classification, i.e., 100% true
positive rate and 0% false positive rate. One classifier is considered supe-
rior to another if it has a higher true positive rate and a lower false posi-
tive rate, corresponding to a more “northwest” location relative to the other
on the ROC graph. In general, the false alarm rates go up as one attempts
to increase the true positive rate. Classifiers with points on the southwest
corner of an ROC graph are more “conservative” since they make positive
predictions only with strong evidence; therefore there is a low true positive
rate, but also few false positive errors. On the other hand, classifiers on the
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northeast corner of an ROC graph are more “liberal” since they make pos-
itive prediction with weak evidence; therefore they have high true positive
rates, but also high false positive rates.

Some classifiers, such as neural networks, yield a numeric value which can
be in the form of a numeric score or probability that represents the likeli-
hood an object belongs to a certain class. These classifiers can be converted
into discrete, binary (yes versus no) classifiers by setting a threshold, i.e., if
the output score is above the threshold, the classifier produces a “Yes, else
a No”. By choosing a different threshold, a different point in the ROC graph
is produced. As a result, varying the thresholds will produce a curve in the
ROC graph for a particular classifier. Given an ROC curve, one can select
the threshold corresponding to a particular point on the ROC that produces
the desired binary classifier with the best true positive rate (correctly diag-
nosed cancer) within the constraints of an acceptable false positive rate
(false alarm). This is chosen based on the relative costs of the two types of
errors: missing a diagnosis of cancer (type I error) versus creating a false
alarm (type II error).

The area under the ROC curve (AUC) provides a single statistic (the C-
Statistic) for comparing classifiers. It measures the accuracy of the classi-
fiers. Consider the situation in which a classifier attempts to separate
patients into two groups; those with disease and those without. One can
randomly pick a patient from the disease group and one from the non-
disease group and apply the classifier on both. The area under the curve
represents the percentage of randomly drawn pairs where the classifier 
correctly classifies the two patients in the random pair. The value of 
AUC ranges from 0.5 to 1. A classifier with an AUC of 0.5 would be a 
poor classifier, roughly equivalent to flipping a coin to decide the class mem-
bership. A classifier with an AUC close to 1 results in better classification
of entities to classes. For example, in Example 3.6, the resulting trained
neural network model yielded a normalized area under the ROC curve of
0.95.

Computing the AUC is complex and beyond the scope of this chapter.
Briefly, there are two commonly used methods. One method is based on the
construction of trapezoids under the curve as an approximation of the area.
The other method employs a maximum likelihood estimator to fit a smooth
curve to the data points. Both methods are available as computer programs
and give an estimate of area and standard error that can be used to compare
different classifiers.

Kolmogorov-Smirnov Test
While the AUC provides a way of distinguishing groups overall, there are
other statistical tests used to provide a more refined comparison of groups
or subgroups. The Kolmogorov-Smirnov test, or KS test, is used to deter-
mine whether the distributions of two samples differ from each other or
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whether the distribution of a sample differs from that of the general pop-
ulation. The KS test provides what is called the D-statistic for comparison
of classifiers.24

Unsupervised Learning

Cluster Analysis
Unsupervised classification refers to situations where the goal is to classify
a diverse collection of unlabeled data into different groups based on dif-
ferent features in a data set. Unsupervised classification, also known as
cluster analysis or clustering, is a general term to describe methodologies
that are designed to find natural groupings or clusters based on measured
or perceived similarities among the items in the clusters using a multidi-
mensional data set (Figure 3.7). There is no need to identify the groupings
desired or the features that should be used to classify the data set. In addi-
tion, clustering offers a generalized description of each cluster, resulting in
better understanding of the data set’s characteristics and providing a start-
ing point for exploring further relationships.

Clustering techniques are very useful in data mining because of the
speed, reliability, and consistency with which they can organize a large
amount of data into distinct groupings. Despite the availability of a vast col-
lection of clustering algorithms in the literature, they are based on two
popular approaches: hierarchical clustering and nonhierarchical clustering.
The former, which is the most frequently used technique, organizes data in
a nested sequence of groups that can be displayed in a tree-like structure,
or dendrogram.

There are several problems that are associated with clustering. One
problem is that data can be grouped into clusters with different shapes and
sizes. Another problem is the resolution or granularity, i.e., fine versus
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coarse, with which the data are viewed. This problem is most obvious when
one tries to delineate a region containing a high density of patterns com-
pared to the background. Therefore, some authors define a cluster as one
that consists of a relatively high density of points separated from other clus-
ters by a relatively low density of points, whereas some define clusters con-
taining samples that share more similarities to each other than to samples
of different clusters. As a result, the selection of an appropriate measure of
similarity to define clusters is a major challenge in cluster analysis.

Gene Expression Data Analysis
One of the applications of cluster analysis in medicine is the analysis of 
gene expression. With the completion of the human genome project, which
identified more than 30,000 gene sequences, researchers are now able to
examine the expression of several thousand genes from blood, body fluids,
and tissue samples at the same time, in an attempt to identify gene subsets
that are associated with various disease statistics. Since information is
obtained from hundreds and thousands of gene sequences, an astronomi-
cal body of data is generated. Common research questions often fall under
the following categories: class discovery, class prediction, and gene identifi-
cation. Class prediction refers to the classification of samples based on
certain behaviors or properties such as response to therapy, whereas gene
identification involves the discovery of genes that are differentially
expressed among different disease groups.

Class discovery refers to the discovery of previously unknown cate-
gories or subtypes based on some similarity measure calculated from the
gene expression data. Cluster analysis is often the method of choice in
accomplishing this task, because samples are clustered into groups based
on the similarity of their gene expressions without utilizing any knowledge
of any predefined classification schemes such as known histological tumor
classification.

Example 3.10

In the future, it is likely that genomic data will be incorporated into clini-
cal decision support systems to refine both diagnosis and therapy. The 
following is an example that used clustering to explore breast cancer 
classification using genomic data. In this study, Perou et al. evaluated the
pattern of gene expression of 8,102 human genes in 65 breast cancers
obtained from 42 patients.25 Using hierarchical cluster analysis, the authors
were able to classify 65 breast cancer samples into three distinct subtypes.
One subtype was cancers that overexpressed the oncogene erbB-2. The
remaining two subtypes were unknown prior to this study; they were estro-
gen receptor-positive luminal-like cancers and basaloid cancers. Subsequent
survival analyses on a group of patients with locally advanced breast cancer
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showed significantly different outcomes for the patients belonging to dif-
ferent subtypes; patients with basaloid cancers had a poor survival rate.26

In the same study by Perou et al, the samples contained 20 primary tumors
that were biopsied twice, before and after the completion of chemotherapy.
Using clustering, the authors demonstrated that gene expression patterns
were similar among samples from the same patients taken at different time
points but not between samples taken from different patients.

Other Techniques

The goal of any tool that is used for pattern recognition is to arrive at an
optimal solution within a given set of complex constraints.The development
of sophisticated computer-based computation techniques has enabled ana-
lysts to attain better solutions than previous techniques. As improved tech-
niques are developed to handle increasingly complex problems, there is a
corresponding need for more innovative methods for arriving at optimal
solutions. Genetic algorithms and biologic computing are two examples of
innovative techniques that have gained increasing acceptance and applica-
tion in the field of pattern recognition and data mining.

Genetic Algorithms
The fundamental concept of genetic algorithms has its roots in Darwin’s
evolutionary theories of natural selection and adaptation. According to
Darwin, organisms that come up with successful solutions to best support
them and protect themselves from harm survive, whereas those organisms
that fail to adapt to their environment become extinct. Based on the same
idea of “survival of the fittest,” a genetic algorithm initially tries to solve a
given problem with random solutions. These solutions are often referred 
to as the genomes, or a collection of genes. The gene represents the 
smallest unit of information for the construction of possible solutions.
The next step is to evaluate or quantify the fitness of all the available
genomes or solutions based on a fitness function. The latter returns a value
of goodness or fitness so that a particular genome or solution may be ranked
against all other genomes or solutions. Those solutions with better fit are
ranked higher among others and are allowed to “breed.” Once the initial
evaluation is completed, the genetic algorithms examine new solutions by
letting all the current solutions “evolve” through mutual exchange of
“genetic materials” among solutions to improve the genomes and/or muta-
tion (i.e., randomly changing the genetic materials) to “create” new solu-
tions. The new solutions are then evaluated using the same fitness functions
to determine which solutions are good and which are not and need to be
eliminated. Thus the process repeats itself until an “optimal” solution is
attained.
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There are many benefits of genetic algorithms. One major advantage is
that a genetic algorithm almost always guarantees finding some reasonable
solution to problems, particularly those that we have no idea how to solve.
Further, the final solution is often superior to the initial collection of pos-
sible solutions. Another benefit is that genetic algorithms tend to arrive 
at a solution much faster than other optimization techniques. Also, the
strength of the genetic algorithm does not depend upon complex algorithms
but rather on relatively simple concepts. Despite the power of genetic algo-
rithms, however, some parameters, such as the size of the solution popula-
tion, the rate of mutation and crossover, and the selection methods and
criteria, can significantly affect their performance. For example, if the solu-
tion population size is too small, the genetic algorithm may have exhausted
all the available solutions before the process can identify an optimal solu-
tion. If the rate of genetic mutation is too high, the process may be chang-
ing too fast for the selection to ever bring about convergence, resulting in
the failure of generating an optimal solution.

Example 3.11

Genetic algorithms have been used to construct clinical decision support
systems. In a study by Zellner et al., the authors evaluated the performance
of a logistic regression model in diagnosing brain tumors with magnetic res-
onance spectroscopy using the genetic algorithms approach.27 The genetic
algorithm approach was superior to the conventional approach in 14 out of
18 trials, and the genetic algorithm had fewer false negatives and false pos-
itives. In addition, the authors also pointed out that the genetic algorithm
approach was less costly.

Example 3.12

Genetic algorithms have also been used as a data mining technique in
healthcare operations. One study investigated whether genetic algorithms
could be used to predict the risk of in-hospital mortality of cancer patients.28

A total of 201 cancer patients, over a two-year period of time, was retro-
spectively evaluated. Compared to other methods, such as multivariate
logistic regression, neural networks, and recursive partitioning analysis,
genetic algorithms selected the least number of explanatory variables with
a comparable proportion of the cases explained (79%). The authors con-
cluded that genetic algorithms reliably predicted in-hospital mortality of
cancer patients and were as efficient as the other data mining techniques
examined.

Biological Computing
Biological computing is another new discipline that has found its way into
data mining applications. It cuts across two well established fields: computer
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science and biology. While the genetic algorithm approach uses the analogy
of natural selection to develop computer algorithms, the idea of biological
computing actually involves the use of living organisms or their compo-
nents, e.g., DNA strands, to perform computing operations. The benefits
include the ability to hold enormous amounts of information, the capabil-
ity of massive parallel processing, self-assembly, self-healing, self-
adaptation, and energy efficiency.As of now, a biological computer can only
perform rudimentary functions and it has no practical applications, but its
potential continues to emerge. For example, some scientists have been
working on the development of tiny DNA computers that circulate in a
person’s body to monitor his/her well-being and release the right drugs to
repair damaged tissue or fight off infections and cancers.29

Conclusions

Data mining refers to the process of pattern and relationship discovery
within large data sets. It holds promise in many areas of health care and
medical research, with applications ranging from medical diagnosis to
quality assurance. The power of data mining lies in its ability to allow users
to consider data from a variety of perspectives in order to discover apparent
or hidden patterns.There are two main divisions of classification: supervised
learning or training, and unsupervised learning. Supervised training requires
training samples to be labeled with a known category or outcome to be
applied to the classifier. There are many classifiers available and their per-
formance can be assessed using an ROC curve. Unsupervised learning, also
known as clustering, refers to methodologies that are designed to find
natural groupings or clusters without the benefit of a training set. The goal
is to discover hidden or new relationships within the data set. One applica-
tion of clustering is the analysis of gene expression data. Genetic algorithms
and biological computing are two newer disciplines that have found their
way into data mining applications and clinical decision support systems.
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4
Design and Implementation Issues

Jerome H. Carter

The early 1970s were a time of great optimism for researchers in the field
of medical artificial intelligence. The initial successes of systems such as
MYCIN,1 CASNET,2 and the Leeds abdominal pain system3 made it rea-
sonable to assume that it was only a matter of time until computers became
a standard part of physicians’ diagnostic armamentarium. Over the past few
years, the emphasis in clinical decision support has shifted from its initial
narrow focus on diagnostic expert systems to a much broader range of
applications. Increasingly, clinicians have access to alerts, reminders, and
patient-specific advice for such common tasks as prescription writing and
test ordering.4,5,6,7 Despite these gains, CDSS are not yet common in patient
care settings.8 This chapter will examine the key design and implementa-
tion concerns that must be addressed if these systems are to realize their
full potential.

What accounts for this lack of use? The 30-year experience described by
Engle9 provides valuable insight into the problems encountered in the cre-
ation and deployment of CDSS. He provides a list of factors divided into
critical and noncritical that he feels account for the difficulties in building
a useful system and the rejection of diagnostic systems by clinicians.Accord-
ing to Engle,“Factors that play a role but are not critical include inadequate
computers and peripheral devices, difficulty some people have working with
computers, systems not user-friendly, physicians’ high regard for their own
capabilities, and fear of computer competition, as well as the limited nature
of the programs. In our estimation, the critical impediment to the develop-
ment of decision programs useful in medicine lies in the impossibility of
developing an adequate database and an effective set of decision rules.”The
findings of Berner et al.10 help us to understand some of the frustration
noted by Engle. In their test of four general diagnostic systems, Berner et
al. found that “. . . the proportion of correct diagnoses ranged from
0.52–0.71 and the mean proportion of relevant diagnoses ranged from
0.19–0.37. . . .” This is hardly the type of performance which encourages use
by a busy clinician. While this level of performance may be problematic for
the broad-based systems like QMR,11 Iliad,12 and DXplain,13 programs with
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more limited domains such as Pathfinder14 and the Leeds abdominal pain
system3 have been noted to perform very well. However, Shortliffe15 prop-
erly notes that systems dedicated to a single problem tend to discourage
wide usage because of their limited scope.

Another major design issue is the lack of integration into standard infor-
mation systems,15–17 although this is beginning to change. In contrast to the
lack of acceptance of expert systems in the field of medicine, other disci-
plines have readily adopted them. DENDRAL,18 which suggests the struc-
ture of organic molecules, and R1,19 a system created by Digital Equipment
Corporation, Maynard, MA, which assists in the set up of computer 
systems, have enjoyed broad support. The capability of DENDRAL, R1,
and limited-domain medical systems such as Pathfinder demonstrates that
decision support systems are feasible for routine usage in limited domains.
Thus, the question remains: what must be done in order to achieve success
in broader problem areas? An excellent introduction to the matter is pro-
vided by Russell and Norvig,20 who point out that the field of medicine,
unlike organic chemistry, lacks a general theoretical model. In particular,
medical diagnosis is fraught with uncertainty. Luger and Stubblefield21 take
the analysis further and identify five “deficiencies” of expert systems tech-
nology in general that pose particular problems in judgment-related fields
such as medicine. They are summarized below:

1. Lack of “deep” (causal) knowledge of the domain (i.e., systems do not
understand physiology);

2. Lack of robustness and flexibility. Systems, when faced with a problem
not contained in their knowledge bases, cannot (1) solve the problem,
(2) recognize their inability to solve the problem, nor (3) develop a strat-
egy for doing so;

3. Inability to provide deep explanations;
4. Difficulties in verification;
5. Inability of systems to learn from experience.

The inability to reason with specialized data types (e.g., temporal, spatial),
is another obvious shortcoming of many CDSS. The design issues men-
tioned thus far, that need to be addressed in order for CDSS to become
more widely used, may be divided into two broad categories: (1) technical
design issues, especially knowledge representation, reasoning, and knowl-
edge acquisition and (2) human–computer interaction.

Technical Design Issues

Adding Structure to Medical Knowledge
In order to perform their desired tasks, CDSS require access to knowledge
about their domains. Facts, unadorned, relate little information about the
world. Meaning requires an understanding of relationships. Seeing the
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number 17,000 as an isolated value carries no message. However, once it is
related to a modifier, “white blood cell count,” it has clinical meaning. The
goal of knowledge representation is to provide intelligent systems with
information about a specific domain in a form that can be processed effi-
ciently.The representational scheme, along with domain facts, together, con-
stitute a knowledge base. Over the last 20 years, researchers have created
a number of representational schemes ranging from simple collections of
logic predicates to elaborate network structures. The expressive power of
the representational scheme chosen for an intelligent system has direct
bearing on the types of problems the system may be expected to solve, as
well as how it goes about solving them. For example, a system for detect-
ing and warning about potential drug interactions needs a way of repre-
senting drug classes, alternate names for medications, and the difference
between drugs that are topical and those that are introduced into the body.
If we were to decide later that predicting the ultimate effect of a drug on
a clinical state is the desired output, temporal and physiologic information
must be somehow represented in our knowledge base. Logic-based rea-
soning would work well for the first system; the second would require a
causal mechanism.

Knowledge Representation Formats
Most knowledge representation schemes fall into one of four categories:
logic, procedural, graph/network, or structured. Although not considered a
classic architecture for knowledge bases, database management systems will
undoubtedly play a significant role in this arena as more clinical informa-
tion systems use this format for data storage. The following discussion
reviews some of the concepts discussed in Chapter 2 and illustrates addi-
tional knowledge representation schemes.

Logic-Based Knowledge Representation

Propositional logic was the first representational format widely used for
artificial intelligence research. As previously discussed in Chapter 2, propo-
sitions are statements about the world that are either true or false. These
statements may be connected together to form sentences. Each statement
may then be represented by a letter such as “P.” To illustrate, consider the
two propositions “the mean corpuscular volume (MCV) is decreased in
iron-deficiency anemia” and “the MCV is increased in pernicious anemia.”
The first statement is represented as “P” and the second as “Q.” Proposi-
tional logic provides rules for manipulating statements. For instance,“P and
Q,” “P or Q,” “P and not (Q),” are legal sentences.

The statements which we have asserted concerning the relationship
between the MCV and anemia are useful; however, they must be used as
whole statements, i.e., we cannot take pernicious anemia from Q and use it
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to form new assertions. First-order logic (first-order predicate calculus)
does offer this option. Predicate calculus provides a means of representing
logic statements in a way that permits components of the assertion to be
used as variables. We are no longer stuck with just “P and Q.” Using pred-
icate calculus, the anemia propositions may be rewritten as:

MCV (increased, pernicious anemia)
MCV (decreased, iron deficiency).

Now MCV appears as a “predicate” which provides information concern-
ing the relationship of the “objects” it acts on (increased and pernicious
anemia, as in the first example). In this form, questions can be asked of the
type of MCV (x, iron deficiency), which may be read as “what is the value
of the MCV in iron deficiency anemia?” This new flexibility, the ability to
add predicates to a knowledge base and then to use those predicates to
answer questions, provided a significant boost to the use of logic as a basis
for expert system design. The programming language PROLOG (PRO-
gramming in LOGic), which has been used to create a number of expert
systems, was designed specifically to allow researchers to experiment with
issues in the use of first-order predicate calculus as a knowledge represen-
tation format.

Procedural Knowledge Representations

Logic-based representations are declarative in nature in that they consist
of true or false statements, and all questions are resolved through standard
logic-inferencing mechanisms. In a logic-based system, the diagnosis 
of anemia associated with “increased” MCV would be made by looking
through all the “MCV” logic predicates and finding those that have
“increased” as an object. All matching predicates would then be returned
(in this case, there is only one such predicate, pernicious anemia). Proce-
dural formats, on the other hand, provide more explicit information about
how the knowledge base is to be used to answer a question, it is not simply
a “look up” of known facts. A procedural recasting of the anemia facts
would yield:

IF MCV is increased
THEN conclude pernicious anemia
IF MCV is decreased
THEN conclude iron deficiency anemia.

Notice that procedural systems offer a “process” of sorts to aid in making
the diagnosis (i.e., they tell how to use the facts to draw a conclusion).These
process statements are provided in the form of rules. Rule-based systems
are prototypical procedural representations and have been the dominant
format for medical expert systems since the days of MYCIN.1
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Networks

Networks are specialized structures consisting of nodes (representing facts,
events, objects, processes, etc.) and arcs which link the nodes. As described
in Chapter 2, Bayesian belief networks have proven to be very capable rep-
resentation schemes for probabilistic reasoning systems, overcoming earlier
objections to simple Bayesian expert systems. The flexibility of the network
paradigm has greatly increased its popularity over the past 15 years. For
instance, nodes in a network might consist of frames as advocated by
Minsky,22 or other structures. Even more significant is the capacity of net-
works to capture causal, temporal, and other hard-to-model knowledge
quite readily.

Decision trees23 and artificial neural networks24 are other types of
network representation schemes which have recently come into favor with
CDSS designers. They are discussed in Chapter 3.

Data Representation
Structural representations emphasize the “packaging” of knowledge into
well defined pieces with higher levels of organization. The first widely
adopted structural format was the “frame” metaphor created by Minsky.22

Frames are complex data structures which contain information about the
concept being described along with procedural information detailing how
the frame may change over time. For example, the concept “grocery shop-
ping” may be represented as:

Concept: Grocery shopping
Location: Supermarket
Actions: Item selection (procedure)

Paying (procedure).

Database management systems (DBMS) offer another structured format
for knowledge representation. There are two types of databases which are
frequently found in clinical settings—relational and object-oriented. Rela-
tional databases are based on a record structure in which each record has
a number of fields. A primary field is designated, and all remaining fields in
the record are related directly to this primary field. A disease record might
have the following fields:

Disease Name, Organ System, Diagnostic Test, Gender Affected.

Records are then collected together into tables. Each row in the table rep-
resents a unique record and each column a feature of the record as illus-
trated below in Table 4.1. Additional columns could be used to improve the
richness of the disease description. Each column in a relational record holds
a specific type of data (e.g., number, text, etc.). However, a column cannot
hold more complex data structures, for example, another record, or a list of
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numbers. Object-oriented database management systems (OODBMS)
permit greater expressiveness by permitting the storage of data types that
cannot be handled by relational, table-based systems.25 An anemia object
might be defined as follows:

System: hematological
Anemia Type: microcytic, hypochromic
Disease: iron deficiency anemia
Tests: list (serum iron, TIBC, ferritin)
Rx: ferrous sulfate, ferrous gluconate
Picture: (binary) peripheral smear

This anemia object contains a “list” (a collection of facts or objects) and a
picture as fields in a record. More importantly, objects can “inherit” traits,
thereby permitting new objects to be defined in terms of those which cur-
rently exist. This allows for the creation of new data types, a feature that is
not found in purely relational systems. OODBMS have already begun to
be used by researchers designing decision support systems, and they hold
great promise for use in clinical information systems.26

Structured query language (SQL) may be used to “ask” questions of a
database, however, SQL does not support the creation of inferences, i.e.,
the ability to draw inferences from the data. A major drawback to using a
database as a knowledge base is the lack of a specific knowledge process-
ing mechanism for these systems. However, the ability to use higher level
computer languages with database files lessens the significance of this defi-
ciency. Still, adding inferencing capabilities is not a trivial task.

Special Data Types
Providing support for medical decisions presents unique problems to
system designers because of the size of the problem domain. Adding to the
situation is the need to provide knowledge about dynamic states. This
requires not only facts about the objects themselves (diseases, tests, drugs,
and so on), but also information concerning how these things might change
over time. Predicting metastasis requires anatomical knowledge about cir-
culation patterns and “next to” and “behind” facts. Understanding the 
possible effect of a medication requires knowledge of physiology (e.g.,
elimination times, routes, distribution). The need for causal, temporal, and
spatial knowledge is a major challenge for system designers. There remains
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no widely accepted format for representing the passage of time, three-
dimensional anatomical relationships, nor physiological information. Pro-
grams such as ABEL, CASNET, and CHF advisor2,27,28 have made some
progress with causal knowledge representation, however, no “portable,”
generalized representation is extant.

The effective handling of temporal knowledge has been an important
artificial intelligence (AI) research area from the beginning.Allen29 was the
first to offer a formalism for handling temporal data. He presented a format
based on time points and intervals. However, the method proposed by Allen
is felt to be computationally intractable when used to explain all possible
relations between a set of actions and processes.30 Appropriate handling of
temporal information requires not only a means of representing instants
and intervals, but also a formal means of representing the temporal con-
cepts commonly used by humans. The passage of time, of which humans
have an innate understanding, is not so easily represented in digital format.
Basic temporal concepts such as distinguishing between future and past
events, time dependency (i.e., did event X occur three minutes, three days
or three years before event Y), and concurrency (while X is occurring, Y
usually happens) are essential if CDSS are to reason about prognosis, out-
comes, toxicities, and so on. Medical artificial intelligence researchers have
created a variety of temporal representation and reasoning methods to deal
with these issues. Shahar and Musen30 offer a closed-interval, discrete model
based upon intervals and time points. Events are represented as intervals.
Intervals may have attached parameter value which can be numerical
(primitive) or qualitative (abstract). There are three types of abstracted
intervals: state, gradient, and rate. The RESUME system which embodies
this model also includes a temporal inference mechanism and truth main-
tenance system, which ensures that any changes to primitive data is
reflected throughout the system. TOPAZ, a system developed by Kahn et
al.,31 which analyzes the temporal sequences of white blood cell counts and
chemotherapy drug dosing, also makes use of intervals to represent tem-
poral events in association with causal physiologic data. Kohane32 provides
a third example of encoding temporal information. His experience with
adding temporal information to a knowledge base points out a final issue
with using temporal data. He states, “The addition of temporal information
to medical knowledge bases requires significant effort. In my experience of
developing modestly sized knowledge bases, . . . the task of adding tempo-
ral constraints to every event equaled that of building the rest of the knowl-
edge base.”

All of the temporal models discussed thus far are explicit representations,
whereas most diagnostic systems encode temporal data implicitly. Aliferis
et al.33 address the issue of the need for explicit temporal models and infer-
encing mechanisms. They note that systems such as QMR, Iliad, and
MYCIN manage to function quite well within their domains without having
specific mechanisms for dealing with temporal data. They go on to argue
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that no formal theoretical or empirical argument has been made concern-
ing the relative value of using explicit versus implicit temporal models. It is
very possible that explicit temporal modeling is more important for some
types of decision-support activities (prognosis, outcomes research) than for
others (diagnosis) based upon the character of the knowledge bases.
Perhaps systems that rely upon frequently changing clinical data require
explicit mechanisms for handling time dependent data, whereas those with
more static knowledge bases and which rely on human input can perform
quite well with implicit characterizations. Either way, much needs to be
done in this area.

Default Knowledge
There are a number of important problems in knowledge representation
and knowledge base design that are independent of format—inconsistency,
degree of expressiveness, and incompleteness are ready examples.The most
interesting, and without doubt, one of the most difficult to solve, is that of
default or common sense knowledge. There are facts about humans which
clinicians, when discussing patient problems, consider too basic to even
mention—females become pregnant, men get prostate cancer. Default rea-
soning may be viewed as a means of dealing with incompleteness.34 Con-
sider the statement, “The patient in room 574 is 6 months pregnant.”
Automatically it can be determined (by a human) that this patient: (1) needs
yearly Papanicolaou smears; (2) should not receive certain medications; and
(3) will have an abrupt decrease in weight in three months or so. If our
knowledge base had contained the fact “males do not become pregnant”
and did not have a “females become pregnant” fact, a default reasoning
system might gracefully default to “the patient in room 574 is female” and
proceed with its analysis. This default approach to incompleteness is not
without problems. Ponder the effect of a drug dosing system that gives a
medication because no statement of patient allergy is found in its knowl-
edge base. How should default information be encoded and used? Proposed
solutions to this problem will be discussed later in this chapter.

Reasoning

Due to the fact that early systems were designed by researchers interested
in “artificial intelligence,” much of the work on medical expert systems was
aimed at getting these systems to mimic the decision-making processes of
human experts. Interestingly, programs such as MYCIN, Pathfinder, and 
the Leeds system, while quite capable, do not “reason” in the same manner
as humans. They have no innate understanding of human anatomy or 
physiology, are unable to handle temporal concepts, and have no ability to
learn or deduce new facts. Yet, within their narrow domain, it has been
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demonstrated that they can perform comparably to human experts.
However, once the domain of expected expertise is broadened, perfor-
mance significantly worsens. The failure of techniques used in the design of
limited domain systems to “scale up” to more general systems is a major
driving force behind research in medical artificial intelligence and, by exten-
sion, CDSS. The ability to reason from “first principles” and to understand
the effects of time on disease processes are considered essential to build-
ing robust systems that have more human-like capabilities. A significant
amount of work has been done in the area of causal modeling (i.e., addi-
tion of anatomical and physiological data to knowledge bases).2,27,28 Tem-
poral reasoning and representation have also received a good deal of
attention.30–32 Aside from adding human-like abilities, issues such as the
computational burden of large numbers of calculations in networks, hand-
ling conflicting rules in knowledge bases, gracefully handling uncertainty
and ignorance, and methodologies for acquiring new knowledge are suffi-
ciently formidable so as to attract the attention of researchers.We will begin
the exploration of these issues with the problem of reasoning.

Rule-Based and Early Bayesian Systems
In order to understand the research issues related to reasoning, it is neces-
sary to trace the development of inference mechanisms in CDSS. The most
basic inference mechanism utilized in medical diagnostic systems is propo-
sitional logic, which was described earlier in this chapter using the example
of anemia. Another example of a knowledge base consisting of only two
facts might be: “CPK-MB is increased in myocardial infarction (MI)” and
“chest pain is present in MI.” All facts concerning the findings associated
with myocardial infarctions would, coupled with a mechanism for testing
their validity, allow one to draw a conclusion about the presence of an MI
in a patient. For example, if we state as a premise that “patient X has chest
pain and an increased serum CPK-MB,” it would be reasonable to conclude
that the patient had an MI. This may be written in the form:

IF patient X has chest pain
AND CPK-MB is increased
THEN the problem is MI.

Notice that our small knowledge base does not contain any facts about
other possible causes of chest pain; therefore, the system could not conclude
that the patient has esophageal reflux. According to Russell and Norvig,20

logic systems have three properties which are particularly useful. We will
make use of only one of them for this discussion—“locality.” If there is a
statement of the form “if a, then b” and “a” is known to be true, then we
can conclude that “b” is true regardless of whatever else is known to be
true. Locality is very useful in logic systems where all facts are either 
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completely true or completely false (for this discussion, being true is equiv-
alent to “is only caused by” and false “is never caused by”). However, in
the field of medicine, there are very few findings that can be so neatly cat-
egorized. Consider what happens when we add the fact “chest pain is
present in esophageal reflux.” The presence of chest pain no longer
absolutely implies MI. Locality no longer holds. Rule-based systems such
as MYCIN inherit the properties of logic systems and the possibility of
inconsistency in the knowledge base. The fundamental issue becomes one
of handling uncertainty gracefully. Russell and Norvig offer three reasons
why most systems based on propositional logic are unworkable for medical
diagnosis. These reasons are related to the unavoidable presence of uncer-
tainty and are described as laziness, theoretical ignorance, and practical
ignorance. Laziness, in this instance, describes the reluctance of system
designers to do the work necessary to “list a complete set of antecedents
or consequents needed to ensure an exceptionless rule, and it is too hard
to use the enormous rules that result (p. 463).”20 Theoretical ignorance is
simply an acknowledgment that there is no theory of medicine to guide
modeling of the domain. Last, practical ignorance is a statement of the fact
that, for any particular patient, even if we knew all the applicable rules, we
would rarely have access to all the required information (tests, genetic
history, etc.).

The developers of MYCIN addressed the issue of uncertainty by pio-
neering the use of “certainty factors”—numerical estimates of the confi-
dence in a particular fact. The certainty factors are based upon the opinions
of domain experts and are not derived from epidemiological data. Certainty
factors can take on values from −1 (indicating certainty that a condition is
not true) to 1 (that it is true). Zero indicates that little is known about a
particular fact. This is an important feature which differentiates them from
true probability estimates, which must be between 0 and 1. For example, we
could add certainty factors to our MI knowledge base:

IF chest pain is present
THEN conclude MI 0.65 (certainty factor of 0.65)

Certainty factors were an attempt to deal with uncertainty. However, as will
be illustrated, their use in a rule-based, logic-derived system may lead to
erroneous conclusions.

Consider the effect of adding a new rule (rule 2):

IF chest pain is present
THEN conclude esophageal reflux 0.4 (certainty factor of 0.4).

In a system where locality is expected, if rule 1 fires, then “conclude MI .65”
will become the active hypothesis. Yet it is possible that rule 2 may also be
valid. In order to arrive at the correct diagnosis, some mechanism must 
be in place to adjudicate between the two rules or the knowledge base
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designers must ensure that the two rules will never conflict. In a domain
such as medicine, where thousands of rules may be needed, it is easy to see
how conflicts might creep into the knowledge base and undermine the accu-
racy of the system. An excellent discussion of the failings of rule-based
systems using certainty factors may be found in Heckerman et al.14

Unlike MYCIN, the Leeds abdominal pain system was based on simple
Bayesian computation. However, early Bayesian systems had their own
problems. The most significant was the number of probability estimates
required to make the system workable. In addition, each new piece of evi-
dence required recalculation of all pertinent probability estimates, result-
ing in a burdensome number of computations. A final requirement of early
Bayesian systems was “conditional independence” (an assumption that all
relationships between evidence and hypothesis are independent). The
inability to assure conditional independence caused Bayesian reasoning
systems to lose favor with expert system developers. Thus, even though
MYCIN and the Leeds system proved to be capable of performing well
within their problem domains, their reasoning mechanisms were considered
to be inadequate for larger problems.

Causal Reasoning
Causal reasoning, simply defined, is the use of deep domain knowledge (i.e.,
pathophysiology, anatomy) to assist in the decision-making process.The fact
that clinicians, when faced with a difficult problem, also resort to this form
of reasoning served to enhance its attractiveness as a model for inferenc-
ing in CDSS. Patil35 argues very cogently on behalf of causal reasoning as
a guiding principle in CDSS. He offers a few of the potential benefits—
describing the evolution of diseases over time, reasoning about interactions
among diseases, and the ability to understand specific mechanisms.

CASNET2 was the first medical expert system based upon causal pre-
cepts. Designed to assist in the diagnosis of glaucoma, CASNET’s knowl-
edge is represented in the system as a network of pathophysiologic states.
A particularly interesting feature of CASNET is the hierarchical organiza-
tion of its knowledge base. At the lowest level are patient signs, symptoms,
and tests. The middle layer consists of pathophysiologic states such as
corneal edema and elevated intraocular pressure. The highest knowledge
level is composed of disease categories—open angle glaucoma, secondary
glaucoma, and so on. Connections between the layers represent direct
causal relationships, allowing diseases at the highest level to be viewed as
aggregations of patient findings and pathophysiologic states. Reasoning is
carried out by navigating a path from findings to disease, testing pathway
nodes by calculating a likelihood value for each, then following the highest
likelihood pathway.

The CHF Advisor27 and ABEL28 represent alternate approaches to 
causal reasoning. The CHF Advisor, which assists with the diagnosis and
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management of heart failure, is based upon a qualitative physiologic model
of the cardiovascular system. A truth-maintenance system (TMS) enforces
relationships between parameters. The TMS also allows the program to test
the effects of changes in a particular variable on the entire model. This
permits one to experiment with the effects of altering the value of various
parameters.

ABEL has acid-base and electrolyte disorders as its domain. ABEL’s
knowledge base, like CASNET, models its domain at three levels of detail.
Its highest level represents clinical states (i.e., hypokalemia, acidosis) while
the lowest level is a physiologic representation of electrolyte stores and
movement between various fluid compartments. As noted by Patil,35 “The
critical feature of ABEL is its ability to determine and represent situations
where a hypothesis is capable of explaining part but not all of an observed
finding.” Limited causal modeling has been used in systems such as
Caduceus.36 Causal links are implemented in the knowledge base in the
form of “may be caused by” relationships, serving to constrain the number
of nodes evaluated during the diagnostic process. The causal links in
Caduceus are much more primitive than those in ABEL, CASNET, and
CHF Advisor in that they do not represent deep knowledge of the domain.
The use of a more superficial form of causal links has been exploited in a
newer type of diagnostic system, belief networks, which will be discussed in
a later section.

Causal reasoning, while effective, does have significant limitations as an
inference mechanism. The lack of knowledge concerning the actual mech-
anism for a number of diseases remains a major impediment to the creation
of causal systems—i.e., the pathophysiology of rheumatologic disorders is
much less well defined than those in cardiology. Thus, general domain
systems such as QMR cannot be completely built using this reasoning
model. However, this does not preclude the inclusion of causal knowledge
in these systems. In fact, a good deal of causal knowledge is encoded implic-
itly in QMR’s knowledge base.11

Another design issue for causal systems is level of detail.ABEL has three
levels of detail represented in its knowledge base. How many should be
included to be considered complete? Is a complete representation possible
or even desirable? Perhaps the ultimate design issue is that of “under-
standing.” CASNET and ABEL are designed as networks of causally linked
nodes. And although they can use deep knowledge of their domains, they
do not understand what they are manipulating (the “holy grail” of AI
research from the beginning).

A final matter is that of temporal representation in causal networks. One
of the most basic aspects of any disease is the temporal relationship among
findings. If one knew that a mass has been present on a chest radiograph
for 15 years, it would automatically be considered benign. What is the best
way to represent the implausibility of this being malignant in a knowledge
base? All of these questions add complexity to the design process.
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Probabilistic Reasoning
Bayesian reasoning systems fell out of favor in the mid 1970s due to 
the need to develop and maintain huge probability tables (joint probabil-
ity distributions) in order to perform the required calculations. Aside 
from the need to maintain probability distribution data, a separate and
equally daunting problem was that of assuring conditional independence 
of findings. In many cases, especially for any sufficiently large domain,
this was difficult to achieve. A solution to both problems was advanced 
by the findings of a number of researchers in the form of belief 
networks.14,37,38

A belief network is a directed acyclic graph (the arrows point in one
direction and there are no circular paths) consisting of nodes that contain
conditional probability data. Nodes may be thought of as “parent” and
“child,” with parent nodes connected to child nodes by one-way arrows.
Conditional probability tables at each node reflect the effect of all the
parent nodes on the child node. As might be expected, even this format is
computationally intensive for all but small networks. If you will recall, one
of the problems of early Bayesian systems was conditional independence.
This criticism is addressed by network designers via the use of causal rela-
tionships when creating networks and by use of a catch-all probability esti-
mate in the form of a “noise parameter.” If we say the probability of MI is
0.7 given finding X, and 0.2 given finding Y, and if 1.0 represents certainty,
then 0.3 represents the noise for X and 0.8 for Y. Conditional independence
values are not exact, but the use of noisiness permits usable systems to be
built.39 Heckerman et al. achieved an acceptable solution by building a
limited number of conditional dependencies into their Pathfinder
Network.14 Judea Pearl has produced an excellent text on this subject for
those who wish to develop a fuller understanding of this area.40

Decision-Theoretic Reasoning
A somewhat newer approach to medical expert systems design is the use
of decision theory in the reasoning process.41,42 Decision theory is based
upon the concept of utility—the value to the decision maker of a particu-
lar outcome. In the case of a patient with chest pain where either esophageal
reflux or MI might be the cause, a pure probabilistic system would offer as
its conclusion the diagnosis with the highest probability (for the sake of
argument assume that this is reflux). In a decision-theoretic system, the cost
to the patient of suggesting reflux when the correct diagnosis is MI would
be calculated before offering a final conclusion. Thus utility serves to
“remind” the system of the “cost” of an incorrect diagnosis or suggested
action. A significant problem with decision-theoretic systems is that of
determining how the utilities included in a system will be determined—
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never a simple undertaking. Nevertheless, this is a promising development
in the design of decision support systems.

Possibilistic Reasoning
The discussion of reasoning thus far has focused on the handling of uncer-
tainty. Uncertainty is an expression of the inability to know all the factors
involved in a particular decision and their ultimate effect upon the outcome.
Lofti Zadeh pointed out another decision-making dilemma—imprecision
in the expression of a finding or factor.43 The statement, “cervical cancer is
a disease of younger women” is an example of fuzziness. At what age does
a woman stop being young? Zadeh proposed that unlike traditional set
theory in which an element was in only one set, membership may be pos-
sible to some extent in a number of sets. Thus a 35-year-old woman would
have partial membership in the old set (say 0.3) as well as in the young set
(0.7). Fuzzy logic provides a formalism for computing the truthfulness of
fuzzy propositions.44 Maiers has written a good review of fuzzy logic in
medical expert systems.45

Accounting for Ignorance
Shafer46 describes the Dempster-Shafer theory of evidence as a means of
dealing with ignorance, as opposed to uncertainty. This theory arose out of
the difficulty of assigning prior probability values. In most situations, these
values are estimates and therefore subject to error. The Dempster–Shafer
theory proposes that probability estimates be qualified by using a “belief
function” that computes one’s belief in a particular proposition. Belief func-
tions add to the computational complexity of a system and, due to their
weaker theoretical grounding (as compared to Bayesian and fuzzy systems),
have received less support among CDSS designers.

Common Sense Reasoning
Common sense reasoning, at its most basic level, is about making assump-
tions. This is an indispensable capability that we use constantly. Common
sense (default) reasoning allows objects to be grouped into recognizable
classes that can be mentally manipulated based on common traits. For
example, “birds fly, cars use gasoline, and planes land only at airports” are
statements about classes of objects that are well defined. If one is then told
that a car would not run, an automatic question would be whether it is out
of gas. Now consider what happens when decisions have been made using
the facts mentioned previously and then it is discovered that electric cars
and emus exist.What should be done? Should all prior decisions be revised?
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How should these new facts be added to the knowledge base? New facts
concerning objects currently represented in the knowledge base must be
reconciled with those already present. How should precedence be deter-
mined? Also, how should conclusions added to the knowledge base 
under the influence of old rules be updated or retracted? Default logic as
suggested by Reiter34 and the nonmonotonic logic of McDermott and
Doyle47 are offered as reasoning mechanisms to deal with these problems.
However, no system is available which adequately addresses all issues. In
addition, no working CDSS have been designed using default reasoning
mechanisms.

Case-Based Reasoning
Case-based systems offer an approach to learning and reasoning that 
is very different from those discussed previously. A case, as defined by
Kolodner and Leake,48 is “a contextualized piece of knowledge repre-
senting an experience that teaches a lesson fundamental to achieving 
the goals of the reasoner.” Case-based knowledge bases have two distinct
parts: the case itself and an index that aids efficient context-based retrieval.
Case-based systems acquire knowledge by solving problems. Cases are
stored knowledge that reflect past experience in solving problems. Each
case has three components—problem/situation description, solution, and
outcome. The problem/situation-description describes the past situation or
problem that was solved. It includes the goals of the reasoner as the
problem was being solved, as well as information about the problem 
environment. The solution component contains information regarding 
how the problem was solved. The result of applying the solution, whether
the attempt succeeded or failed, and why, are stored in the outcome com-
ponent. Access to cases is controlled by an index. The key to solving 
problems in case-based systems is matching the current problem to past
experience. Compared to more traditional approaches, advocates of case-
based systems believe that these systems have the following advantages: (1)
they are better at solving problems with open-ended, poorly defined con-
cepts; (2) they arrive at solutions faster; (3) they are better at solving prob-
lems where no good algorithm is available; and (4) cases may serve as
explanations.

Case-based reasoning is not without problems, however. In a large knowl-
edge base, retrieval efficiency is an important determinant of performance.
Therefore, indexing is a key research area. Issues such as whether to use
high-level or low-level features when building indexes, how to design a
general framework for index content, and the design of case retrieval 
algorithms remain a source of vexation for those designing case-based
systems. Despite its problems, case-based reasoning has been used success-
fully in CDSS49,50 and offers an interesting metaphor for building flexible
knowledge-based systems.
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Knowledge Acquisition

Knowledge Engineering
Knowledge engineering is the process of building a knowledge base. A
knowledge engineer is a professional with an understanding of issues 
in knowledge representation, tool selection, artificial intelligence languages,
and software design. A knowledge engineer works with a “domain expert”
to obtain the necessary data to build a knowledge base (knowledge acqui-
sition). This has been the traditional model for building expert systems.
Knowledge engineering can be a very tedious process. The time required to
build a knowledge base for any decent-sized domain is often considerable
and greatly inhibits the production and deployment of knowledge-based
systems. Much of the difficulty in building expert systems in any domain is
due to the lack of a well defined process for the activity. Even with the avail-
ability of specialized shells, languages, and other tools, the knowledge
extraction process is often still haphazard. Domain experts can be very poor
at describing what they do or how they approach a problem. The knowl-
edge engineer often has to learn the domain in order to identify major uni-
fying concepts. Next, the actual problem to be solved must be agreed upon,
and, finally, knowledge representation formats and a reasoning mechanism
must be chosen. Errors made at any step can result in significant delays and
frustrations. Once completed, maintenance becomes a serious problem
which can worsen with turnover of the development team. The “knowledge
acquisition bottleneck” has no real solution using traditional methods.Also,
standard knowledge engineering practices do not take advantage of the
large amount of data stored in information systems currently in use.

Managing Knowledge Using Ontologies
In most instances, knowledge bases are collections of facts about the real
world, encoded in a manner that allows them to be used computationally.
However, more sophisticated decision support systems will require access
to not only facts, but also key concepts that underlie the domain. For
example, accounting for the passage of time or the flow of blood through
specific arterial pathways requires deeper knowledge of the world than
simple assertions that a disease is chronic or that a coronary artery is
obstructed. The field dedicated to creating these higher-level conceptual
maps is ontological engineering, and the resulting knowledge construct is
an ontology. Gruber,51 has defined an ontology as “. . . a formal, explicit
specification of a shared conceptualization.” Thus, ontologies are viewed as
resources that may be used by people or computers for three basic pur-
poses: communication, computational inference and reuse, and knowledge
management52,53. Communication is enhanced by the requirement that all
terms and concepts be standardized and clearly defined, providing for a
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common reference point for all ontology users and builders. As concepts
and terms are defined, all relationships that they may participate in are
likewise defined along with the appropriate access algorithms and rules for
the proper use of all terms, concepts, and relationships. Computational use
of the knowledge contained in the ontology is thereby codified, making it
easier for software designers to understand how to interact with the knowl-
edge base to build intelligent systems. Finally, the framework created in
building an ontology provides for a high-level mechanism and viewpoint
for extending and maintaining the knowledge contained therein, which
greatly simplifies key knowledge management tasks.

In order to function as a viable resource for an organization or any group
of users, “ontological commitment” (all parties who use the ontology agree
to abide by its concepts, terms, and relationships) is a must.

Ontology Organization
Ontologies seek to represent the world (or at least a specific domain) in an
organized manner. Objects, events, and processes that occur in the real
world are captured in a standardized manner based upon fundamental con-
cepts taken from the domain. The highest level (most abstract) of concept
organization is referred to as an “upper ontology.”20 The upper ontology
provides the basis for all concepts that will eventually make-up the final
operational ontology. Figure 4.1 below represents a very simple upper
ontology of living things.

Concepts are rendered in computable form as categories (templates/
classes) that have specific properties. Upper ontology categories are
abstract entities; as such, they do not refer to a specific person or plant.
Rather, the most fundamental properties of each are defined at this level
(with special attention given to those properties that separate one category
from another). A specific person or plant can then be represented as an
object that inherits (“is-a” relationship) properties from all the categories
from which it was derived. Inheritance that occurs via hierarchies may be
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single (derived from a single upper ontology concept) or multiple (derived
from more than one high-level concept). Management of the complexities
of multiple inheritance has tended to favor the creation of mainly single
inheritance ontologies. Therefore, specification of a single person, “John
Doe,” might be accomplished by inheriting key properties along the “Living
Things: Animals: Human” hierarchy.

A second mechanism for enriching the representational capability of
ontologies is that of associations. Associations permit links to be formed
between classes and define allowable interactions between the two. For
example, a “uses for food” association might be defined between the
“Humans and Plants: Edible Classes.”

Events (birth) and processes (movement) can be represented using this
conceptual organization as well. The key is that all those who use the ontol-
ogy must agree to the exact meanings and proper usage of all concepts,
terms, and objects.

Examples of Ontology-Based Systems
Though not yet common as knowledge resources for clinical decision
support systems, excellent examples of systems that use ontological
methods for representation of biomedical concepts do exist. Perhaps the
most frequently used is found within the Unified Medical Language System
(UMLS).54,55

UMLS Semantic Network

The UMLS is an ongoing project of the National Library of Medicine as
part of its efforts to improve access to reference resources. The UMLS acts
as a link between a number of disparate vocabularies and coding systems
(e.g., 0 ICD-9, CPT, SNOMED) and the Medical Subject Headings (MeSH)
coding system. Its major components are the Metathesaurus, which inte-
grates terms and concepts from over 60 code/vocabulary systems, and the
Semantic Network, which provides a high-level conceptual framework for
categorizing terms found in the Metathesaurus. The upper ontology of 
the UMLS semantic network has two basic concepts: Entities and Events.
The next level below describes Physical Objects, Conceptual Entities,
Activities, Phenomena and Processes. Multiple semantic types are defined
along with types of associations: physical, spatial, temporal, functional, and 
conceptual.56,57

GALEN

GALEN (Generalized Architecture for Languages, Encyclopedias, and
Nomenclatures) is designed to act as a terminology for use in clinical
systems58 GALEN is managed by OpenGALEN, a Dutch-based nonprofit
foundation, which provides access to Galen technology, and has been used
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in Europe to create coding systems for surgical procedures. GALEN is an
ambitious project in that it intends to encompass all of medicine and has as
its major goal the creation of a terminology that is both computable and
usable by humans for direct data entry.

The upper ontology of GALEN has two categories: Phenomenon and
ModifierConcept.59 Phenomenon subsumes Structures, Substances, and
Processes, providing classes for representing entities that exist as objects in
the real world (e.g., organs, people, drugs). ModifierConcepts provide
classes for representing features of real world objects (e.g., units of measure,
degrees of severity, etc.). Individual terms in GALEN are derived via use
of “part-of” associations (e.g., component-of, stuff-of, portion-of, member-
of) links that can be inherited.

All GALEN concepts are modeled in GALEN Representation and Inte-
gration Language (GRAIL), a formal language system developed for the
GALEN Project.60 GRAIL provides compositional capabilities to GALEN
(i.e., ability to form complex concepts using simple primitives) and supports
generation of semantic networks. GALEN concepts are embodied in the
GALEN Common Reference Model and access to concepts is managed
through the GALEN Terminology Server. It is the terminology server that
application developers interact with in order to access the vocabulary.

SNOMED CT

SNOMED CT61 is a terminology based on SNOMED RT62 and Read 
Codes Version 3.63 SNOMED is a comprehensive clinical terminology
encompassing 344,000 concepts and close to 1.3 million semantic relation-
ships. The upper level ontology of SNOMED CT has as its top node Root-
Concept.64 Below this node are TopLevelConcept Nodes: 13 that define
clinical concepts and three that provide structural concepts for construct-
ing relationships, assigning values, or other internal functions such as
concept navigation.The top-level clinical concept nodes define concepts for:
Findings, Disease, Procedure, Observable Entity, Body Structure, Organism,
Substance, Pharmaceutical/Biological Product, Specimen, Physical Object,
Physical Force, Events, Environments/Geographical Locations, Social
Context, Staging, and Scales. Top-level structural nodes define: Attribute,
Qualifier Value, and Special Concept entities. SNOMED provides for inher-
itance (is-a) from multiple concepts, and associations between concepts.
Complex concepts may be constructed using simple primitives.

There are efforts underway to key nursing, drug, and administrative ter-
minologies to SNOMED CT, making for a robust clinical terminology.65,66

Ontology Issues in Decision Support
The ready availability of high quality tools, such as Protégé,67,68 for creating
ontologies, bodes well for those creating decision support systems. Share-
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able knowledge bases may be created, that could be used in any number of
systems. Certainly within large integrated delivery systems, software devel-
opers could produce knowledge bases that permit terms and concepts to be
shared by key technologies such as electronic health records or research
database systems. Of course, the more complex the decision to be made, the
more difficult it becomes to build an appropriate computer model of the
domain to support it. Systems that provide straightforward alerts and
reminders are easier to design and build than those which support more
complex decision tasks such as automation of complex practice guidelines.

The Frame Problem

Complex decision support activities, such as multistep guidelines with steps
that occur over time, have to contend with the problem of changing data.
The “frame of reference” problem,20 keeping track of what should and
should not change after some key event, is a major challenge. An example
of this would be assuming a decision is to be made, that requires checking
a lab value and then, based upon that value, some series of interventions is
suggested. Each suggested action may change the underlying system (i.e.,
patient) in ways that make it difficult to predict what the ultimate effects
will be. There are two problems: keeping track of how the patient has
changed and what has remained the same. Humans quite naturally reason
out these “what-if” scenarios; computers require large knowledge bases
with complex rule sets to mimic this type of reasoning.

Lack of Standards

Ontology tools have evolved largely as experimental technologies over 
the last 10–15 years and, as a result, they do not conform to a particular
standard in terms of internal representation format, interface, or lan-
guage.53,69,70 A key issue in building any ontology is term selection. Naming
things is very important, and sharing an ontology within a domain 
requires that all users share a common terminology. SNOMED CT appears
to be the most promising candidate for health care. However, it is far 
from being widely used for key terminology needs within the United States.
Also, one cannot mistake agreement on terms for agreement on definitions.
For example, two hospitals may agree to use common terms to pool 
data. They settle on a SNOMED CT term, Congestive Heart Failure, to rep-
resent a key concept for their disease management program. Hospital A
permits the use of this term for any patient with symptoms of orthopnea
and pedal edema, whereas Hospital B requires a left ventricular ejection
fraction of less than 40% to use the term. Obviously, even though they 
have agreed on a specific term , the definitions are not the same. Hospital
B has a much better defined pool of patients and, if one were analyzing out-
comes of CHF treatment, the data from Hospital B is likely to be of higher
scientific value.
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Ontologies promise to be the next major advance in knowledge 
representation and management. However, they are by no means easy to
design or build, and their ultimate value with be determined by the will-
ingness of healthcare organizations to commit to (1) very specific ways of
accessing and using the knowledge and (2) putting forth the effort to clearly
define key concepts, actions, and terms—something for which there is little
precedent.

Capturing Clinical Detail—Codes, Classifications,
Nomenclatures, Vocabularies
Using computers to manage data requires some means of capturing infor-
mation in a way that permits all potential consumers of medical data to use
it effectively. The Institute of Medicine in its 1992 report on the computer-
based patient record71 detailed the problems of the paper record, in terms
of content and ability to aid in decision making. The issues of content and
utility that plague paper records must be addressed to realize the decision
support benefits in electronic systems. The capture of detailed, analyzable
clinical information in electronic form is a well recognized problem in the
field of medical informatics.72,73,74 Though a number of terminology sets
exist, none has been found that satisfies the wide range of data require-
ments in the broad domain of health care.Adding to the problem is the lack
of a standard definition for the various terminology sets.75,76,77,78 Is it rea-
sonable for anyone new to the field to be completely baffled in trying to
determine the difference between a code, classification, nomenclature, and
controlled vocabulary?

Van Bemmel and Musen79 offer working definitions that may help to
guide this discussion. They define classifications as “. . . an ordered system
of concepts within a domain, with implicit or explicit ordering principles
(p82).” The most common classification in use in the United States is the
International Classification of Diseases (ICD). It began in 1893 as the
Bertillon Classification or International List of Causes of Death, and was
used as an epidemiological tool.80 In ICD version 9, the most used version
containing nearly 7,000 entries, the terms may code for diagnoses (e.g.,
myocardial infarction) or symptoms (chest pain).The ICD is arranged along
a variable axis and continues to order codes based on a structure suggested
by William Farr81 using groupings of epidemic diseases, constitutional or
general diseases, local diseases arranged by site, developmental diseases,
and injuries. The entire classification is divided into 21 chapters (e.g.,
Chapter II: Neoplasms, Chapter III: Hematological diseases) with a strict
hierarchy followed within each chapter. Each term is given a three-digit
code with a possible two-digit extension (e.g., diabetes mellitus—250.00).
The most recent version, ICD-10, has been updated to include more than
13,000 terms and has been extended to cover additional health-related
problems.
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An obvious problem with the ICD system is the lack of clinical detail.
Systems designed for monitoring epidemiologic trends lack the granularity
needed for clinical care.82,83,84 A decision support system that relied on ICD
codes for suggesting interventions would be reduced to making only the
most general advice concerning possible actions due to the paucity of spe-
cific clinical information about the patient.

Codes are means to reduce the amount of information required to com-
municate a concept. Thus, the ICD codes represent its classifications. There
are no rules regarding how coding schemes are to be derived; it is up to the
designer to select a representation format most suited for the purpose at
hand.The Current Procedural Terminology (CPT),85 published by the Amer-
ican Medical Association since 1966, was designed to help with reimburse-
ment for medical services. It consists of approximately 8,000 codes that are
five digits in length, with intervention name and brief description. Codes
may be retired or replaced with newer ones. Like the ICD, CPT codes do not
capture any level of clinical detail aside from the name of the intervention
performed.The CPT is not arranged in a hierarchy, and all interventions that
it encodes are grouped by type (microbiology, chemistry, radiology, etc.).The
CPT and ICD systems are the most commonly used code sets in the United
States and are required for many administrative tasks.

A recent addition to the library of available code sets is the Logical
Observation Identifiers Names and Codes (LOINC) set.86,87,88 LOINC
provides a formal multi-axial code set for laboratory results and clinical
observations. A total of about 32,000 results and observations are included.
LOINC codes are never removed from the system, greatly improving the
ability to maintain accurate longitudinal data. LOINC entities may have
entries along up to six axes: Component, Property,Time Aspect, System,
Scale, Method. LOINC provides a significant amount of clinical detail and
is much more readily suited for clinical decision support tasks than either
the ICD or CPT.

A nomenclature is defined as a system of words used in a particular dis-
cipline. A key distinction between nomenclatures and codes/classifications
systems is that the former permits one to form new concepts by combining
terms, whereas the latter do not. SNOMED CT is the latest iteration of the
SNOMED nomenclature, first published in 1975, and its recent endorse-
ment by the National Health Service in the United Kingdom and the
Department of Health and Human Services in the United States should
lead to its use in newer clinical decision support systems.

“Clinical terminology” and “controlled clinical vocabulary” are some-
what more difficult to define. The terms are often used interchangeably by
many, and there is some disagreement as to the content and scope of the
technology that each term represents.75,76,77,78 Generally speaking, it would
seem that a controlled vocabulary may be derived from any of the above
systems.The key is that the use of all terms is closely constrained (e.g., users
cannot introduce novel terms into the system). This may be done either
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through the use of a restricted list (e.g., in a combo box on a form), or by
the application of algorithms for term selection. Even without a widely
accepted definition, most views of controlled clinical vocabularies are that
they are highly granular term sets arranged in well defined hierarchies that
are designed to support the capture of all aspects of clinical care. It is this
view of expressiveness and utility that appears to underlie the analysis
offered by Cimino in his landmark article, “Desiderata for Controlled
Medical Vocabularies in the Twenty-First Century.”89 While no explicit def-
inition is offered, the author does provide a very practical approach to
understanding and analyzing the requisite features, functions, and architec-
ture for any terminological system intended for the capture of highly gran-
ular, longitudinal clinical data.The desiderata consist of guidelines by which
controlled clinical vocabularies may be judged. Cimino’s criteria address
issues of design, management, and operational use of vocabularies, provid-
ing very helpful guidelines for those whose wish to make use of these tech-
nologies. (See Table 4.2 for a summary of these criteria).

Vocabulary Utilization Issues
Using Cimino’s criteria, it is easy to see that ICD, CPT, and other code sets
might be quite useful for tasks that do not require a great deal of detail,
while more robust term sets are required to capture clinical detail. Of
course, the availability of a controlled clinical vocabulary and integrating
one into a clinical application are two very different issues.90

Spackman and colleagues,62 have identified three types of clinically rele-
vant terminologies: application, user interfaces, and reference. Reference
terminologies are defined by them as “. . . a set of concepts and relation-
ships that provides a common reference point for comparison and aggre-
gation of data about the entire health-care process, recorded by multiple
different individuals, systems, or institutions.” Interface terminologies are
those that are encountered by the user during data entry. Here, the goal is
to present, as quickly and clearly as possible, a collection of acceptable
terms for data entry. This requires hiding a good deal of the complexity of
the underlying reference terminology from the user while allowing for
acceptable data entry speed and expressiveness.

Data Entry Concerns
Completing a problem list or ordering laboratory tests are simple data entry
tasks, easily accomplished with pick-lists. However, entering a complete
history and physical examination for a typical primary care encounter in
this manner would quickly become quite tedious. Solving the problem
seems to require a trade-off between efficiency and expressiveness.91,92 For
example, templates might be used to increase data entry speed but may
have the unintended effect of homogenizing clinical descriptions with an
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Table 4.2. Summary of Cimino’s Desiderata.

Content Sufficient terms should be present that permit the 
entire spectrum of clinical concepts to be clearly 
represented.

Concept-based All terms must have at least one meaning and only one 
meaning, and any meaning is assigned to only one 
term.

Concept permanence Once created, concepts are never purged from the 
system, permitting linking of newer concepts to their 
progenitors.

Polyhierarchy Concepts should be bound to terms following a specific 
hierarchy and, when necessary, may belong to 
multiple hierarchies. Pneumococcus may be found by 
following the “Organism” tree or the “Infectious 
Diseases” tree.

Nonsemantic identifiers The unique identifiers that are assigned to concepts 
should not follow any particular hierarchy or 
organization in which the codes themselves have 
meaning. Example: all cardiovascular concepts should 
not have identifiers that code heart failure as CVS1.0,
right heart failure CVS1.1, high output failure 
CVS1.01, and so on.

Formal definitions All concepts and terms should be clearly defined and,
ideally, definitions are stored in a computable form.

Reject “not elsewhere classified” Concepts that depend, for their meaning, on the 
exclusion of all other terms create semantic problems 
in historical data and should not be allowed.

Multiple granularities Different users of a vocabulary may wish to capture 
varying levels of detail (epidemiologist versus an 
internist). The vocabulary should not dictate the level 
of detail used to record a datum.

Multiple consistent views Just as different users may desire varying levels of 
granularity, so might they also prefer to display, or 
provide access to, terms and concepts at different 
levels of detail.

Context-sensitive representation Chest pain may be a symptom or diagnosis. Application 
designers should provide the context for term 
interpretation, not the vocabulary.

Evolve A well designed vocabulary should be able to manage 
the addition of new terms and concepts to match 
changes in medical knowledge and practice without 
disrupting current users or altering the meaning of 
historical data.

Recognize redundancy Synonyms for concepts are acceptable (if they all map 
to the same root concept). However, there should not 
exist multiple primitive representations of the same 
concept. Example: “myocardial infarction” and “heart 
attack” should exist as a concept and linked 
synonym, not as two separate concepts.



attendant loss of detail. Another approach might be the development of
more intelligent interfaces that can anticipate term requirements and offer
intelligent guesses during data entry. However, this could add greatly to the
complexity of the programming logic of the underlying application. Valida-
tion of user input cannot be ignored.

The ability to compose complex concepts from the juxtaposition of two
or more atomic concepts, referred to as a “compositionality,” greatly
increases the expressive power of any vocabulary but brings with it the
problem of how to prevent the creation of nonsense concepts (juxtaposi-
tion of terms that make no clinical sense).60,93,94 In practice, it would require
that either the applications have extensive knowledge of medical concepts
and language or that additional technologies must be used to provide the
required functionality. The creators of GALEN address this problem by
provision of the Galen Terminology Server as a basic GALEN technology.
Terminology servers95,96 aid in the deployment of vocabularies by providing
services to application developers such as lexical matching, word comple-
tion, terms composition, and other key functions. It seems likely that
complex software such as electronic health records would have extensive
terminology requirements and would require some level of local control of
term management (e.g., only for problem lists, all data entry, specific spe-
cialties, only in research settings). Even with access to professional termi-
nology management tools and or terminology servers, organizations could
find themselves with unexpected costs associated with vocabulary manage-
ment. Obviously, providing users with responsive, helpful vocabulary ser-
vices is not as simple as licensing a clinical terminology.

An additional interface issue is that of local terminologies. In health care
there are often many ways to say the same thing. Permitting users the
freedom to use familiar terms and phrases is a reasonable system design
goal. However, providing this flexibility in the presence of a controlled ter-
minology can be tricky. Providing access for local terms may make data
entry friendlier; however, it makes application design more difficult because
a mapping of local terms to the reference terminology is required. If there
are but a few local terms, then the problem is very manageable. However,
with a sufficiently large local term set, mapping and maintaining an inter-
face terminology and reference terminology could easily become quite bur-
densome. There is also the possibility that, by creating local term sets, some
level of “semantic drift” will occur between sites using the same reference
terminology, defeating much of the value of having a standard reference
terminology. How will local term sets be managed? Getting different clin-
ical specialists to agree on a standard term set is not likely to be a simple
process, especially if the terms become mandatory for all data entry. Having
a terminology server would make the ability to map local terms to a refer-
ence terminology manageable; however, it creates two new problems: (1)
how to manage the local terms and keep them properly aligned with the
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reference terminology, and (2) how to prevent “semantic drift” across non-
related sites.

Maintaining a local terminology for an integrated delivery network could
easily become a costly endeavor in terms of the talent and time to manage
the terminology, unless extremely powerful and easy to use tools are avail-
able. The mapping problem alone could require an inordinate amount of
time from both technical and clinical staff. A major reason often quoted for
the development of standards is to promote data sharing. Healthcare enti-
ties that create local term sets could easily map similar concepts to very dif-
ferent reference terminology concepts or vice-versa. In either case, the data
will no longer be sharable due to semantic drift. Even worse, it may not be
obvious that any disparities exist.

Storage and Retrevial of Encoded Data
Compositionality creates a second design problem for system designers at
the database level. Complex concepts (e.g., myocardial infarction) that exist
atomically in a terminology make it easy to determine how to record the
concept within a clinical information system—one simply selects the code
for the concept. This is known as “precoordination.”97,98 Precoordination
decreases complexity at the interface and database levels because there is
no question as to the proper way to encode a concept. All users, no matter
where they are located, are likely to encode the same concept in the same
manner. When no atomic concept is available, then complex concepts must
be created using collections of atomic concepts (postcoordination).97,98 Post-
coordination provides expressive power; however, in the process it makes
it easy to encode the same complex concept using different sets of atomic
concepts. Even in situations in which the same codes are used, there is no
mandatory order in which they must be sequenced. In practical terms, if
four codes are used to encode a concept, then there are 24 unique sequences
in which they may be stored, making database retrieval quite problematic
even within the same organization. Consider the damper this would place
on pooling data from different entities. Unless a central authority dictates
all terms for all concepts, it will be quite easy (and very likely) that differ-
ent organizations will create incompatible postcoordinated terms for the
same clinical concept, thereby reducing the portability and pooling of data
for analysis—one of the main justifications for having a standard clinical
terminology.

The availability of a standard clinical terminology is an absolute neces-
sity for the capture of detailed clinical data. However, there is no mecha-
nism in place that that will prevent developers and healthcare entities from
using them in nonstandard ways. Reasonably complete terminologies are
so new that many questions regarding their use in application development,
and at the user level, remain unanswered.
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Human–Computer Interaction

It is now time to discuss the issues raised by Engle9 and others concern-
ing the lack of widespread use of decision support technology in clinical
medicine. Heathfield and Wyatt17 provide an analysis of what they 
consider to be the psychological and organizational barriers that explain
the lack of use of these systems. Their opinion is that most systems have not
been designed to address the problems that clinicians actually face. Several
systems are designed to restrict the number of active diagnostic hypothe-
ses (which doctors do quite well), while few are designed to help with dif-
ferential diagnosis and treatment advice. The latter types have been much
better received by physicians than the former. Identifying a well defined
problem to solve should be, but oftentimes has not been, an important con-
sideration for systems designers.

CDSS must take clinicians’ work habits into account. Systems must be
available at the point of care and should be easy to use if they are to be
considered clinical tools. The criticism offered by Clayton and Hripcsak16

extends this analysis by noting that stand-alone systems which require sig-
nificant data entry will not be used on any regular basis. Finally, the single-
problem focus of many systems means that they will be needed only on rare
occasions, at which time it may not be worth the trouble to locate and use
them.This could even be true of general systems covering multiple domains
which, as Miller and Geissbuhler note in Chapter 5, might be justified in
only a small percentage of patients.

Problem Knowledge Couplers (PKCs), as advanced by Weed,99 represent
a rather unique approach to the use of diagnostic/therapeutic decision
support. PKCs are intended to be used at the point of care and on a regular
basis, not just for cases that are perceived to be diagnostically difficult. In
fact, they are designed so that even nonmedical personnel can enter the
patient’s data, although the physician must still interpret the output. PKCs
consist of a knowledge base of diagnoses, findings, and management
options. Each individual coupler addresses a single presenting problem.The
couplers permit controlled input of findings and guide the clinician in the
process of diagnosis and management.

PKCs are interesting from the standpoint of user interaction because they
are meant to be an integral part of each clinical encounter. However, their
use has not become widespread. The use of PKCs represents a significant
intrusion into the clinical practice environment, and it is not clear that they
will be useful for a large number of patients. For example, consider having
a coupler for headache diagnosis and management. For most patients, an
experienced clinician can easily differentiate between types of headaches
based on clinical presentation. Using a coupler would be expected (as with
other broad-domain systems) to be helpful for only a small number of cases.
Thus the return for time invested, if used for every headache patient, would
be very low.
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Heathfield and Wyatt17 have identified several other problems systems
designers need to avoid. The first is a preoccupation with computer arti-
facts. In other words, when beginning a project there may be a tendency to
focus more on what language to use, hardware configurations, and devel-
opment environments, than on the problems of potential users. This preoc-
cupation can hamper the quest for the best problem-solving process and
techniques for solving the particular problem. Next, they argue that systems
designers may fail to use appropriate models for solving problems and may
fail to communicate clearly the design issues to potential users.

The final problem mentioned by Heathfield and Wyatt is that designers
sometimes focus on system development and ignore organizational issues.
Organizational attitudes and support play a critical role in the development
and implementation of any technology. The multidisciplinary nature of
CDSS development makes this process even more vulnerable to problems
of changing personnel, funding, administrative buy-in, and shifting organi-
zational goals. Successful deployment of CDSS technology requires that all
these matters be addressed via specific organizational policies for the cre-
ation and utilization of knowledge-based tools.

Fortunately, many of the criticisms of CDSS are readily addressed by the
growing use of electronic health record systems (EHRS) and computer-
based physician order entry (CPOE) systems. EHRS solve many of the
CDSS problems related to work flow, data entry, and types of decision
support provided.100,101 They provide a standard interface for users and a
data model for CDSS designers. Access to laboratory, pharmacy, and other
standard data is a key feature of EHRS, and allows CDSS designers to shift
the focus from data entry to data access and user interaction. Alerts and
reminder systems have proven to be effective for preventive care, error
reduction, and patient safety.102,103 However, more sophisticated decision
support functions, such as automation of complex guidelines, will require
advances in EHRS design. Automated guidelines that contain multiple
steps and act over multiple patient encounters must address issues related
to the frame problem and must have access to well structured conceptual
knowledge about patients and disease states. Thus, a robust ontology and
controlled vocabulary are minimum requirements. Today, no EHRS has
these features, and until standards for EHRS are clearly defined, systems
are unlikely to appear that support sophisticated knowledge-based 
functions.

CPOE systems have made a mark in hospital settings where, due to the
range of legacy systems present, implementation of packaged EHRS soft-
ware would be problematic. While CPOE systems do not have the level of
integration at the data level that an “all-in-one” EHRS provides, they are
effective within their limited area. However, like EHRS, their utility is
limited by the quality and completeness of the underlying knowledge base.

Interestingly, with the advent of EHRS and CPOE systems, user inter-
face issues do not disappear—they simply change focus. For example, an
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EHRS or CPOE system that provides drug interaction checking during pre-
scription writing offers this function as a background process—the user
does not have to explicitly invoke or shut down the feature. However, if
there is no ability to alter the type (warn for only severe interactions) or
frequency of advice (only for new medicines, not refills) users may become
reluctant to use the system. Similarly, when complex automated guidelines
become available, the challenge to system designers will be not only how
to provide advice seamlessly, but also how to quietly recede into the back-
ground and allow the clinician to proceed with the task at hand. In fact, we
may find that the ultimate issue in human–computer interaction is not one
of functionality, but sovereignty. That is, once the challenges of workflow,
responsiveness, and ease of use are addressed, there will remain the
problem of humans who do not wish to take advice from a machine.104,105,106

Perhaps there is a “threshold of intrusiveness” that, once exceeded, will
result in clinicians ignoring any advice provided.

Conclusion

The history of artificial intelligence in medicine is a mixed one of impres-
sive creativity coupled with limited successes, small gains, and, in the case
of Engle, cynical resignation.9 However, the increasing deployment of elec-
tronic health records and computerized order entry systems provides fertile
ground for offering next-generation decision-support functionality. Never-
theless, serious challenges remain. Our incomplete understanding of the
clinical reasoning process, and lack of an all encompassing “theory of med-
icine” will continue to be both sources of consternation and wonderfully
intriguing research problems.The work done on knowledge representation,
reasoning mechanisms, machine learning, and knowledge acquisition has
wide applicability and many potential benefits for society, even if no truly
intelligent clinical decision support system is ever built. Ontological engi-
neering, and clinical terminology design and deployment, are poised to
become major areas of theoretical and applied research in medical infor-
matics as the quest for sophisticated decision support systems such as auto-
mated, multistep guidelines moves forward.

Do doctors really want help with management of clinical care? Certainly
the enthusiasm demonstrated by policymakers for technology as the key to
addressing patient safety and quality improvement concerns is not matched
within the practitioner community. The growing acceptance of EHRS and
CPOE technology would seem to indicate that the reluctance of clinicians
to use computers was as much a function of less than acceptable user inter-
faces, lack of consideration for workflow, and the high cost of ownership
rather than innate contrariness. However, it may well be that current
systems, which use simple decision support mechanisms, are not sufficiently
intrusive to cause a backlash.
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One thing is certain: should all the problems associated with the design
and implementation of CDSS ultimately be solved, to gain wide acceptance
they must provide decision support without violating two of the most fun-
damental social and intellectual features of the practice of medicine. First,
they must not intrude on the sanctity of the patient-physician relationship.
Second, they must do nothing to remove or alter the quiet satisfaction
derived from knowing that one has made a difference.
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5
Diagnostic Decision 
Support Systems*

Randolph A. Miller and Antoine Geissbuhler

Since primeval times, mankind has attempted to explain natural phenom-
ena using models. For the past four decades, a new kind of modeler, the
healthcare informatician, has developed and proliferated a new kind of
model, the Clinical Diagnostic Decision Support System (DDSS). Model-
ing historically was, and still remains, an inexact science. Ptolemy, in the
“Almagest,” placed the earth at the center of the universe and could still
explain why the sun would rise in the east each morning. Newton’s nonrel-
ativistic formulation of the laws of mechanics works well for earth-bound
engineering applications. Past and present DDSS incorporate inexact
models of the incompletely understood and exceptionally complex process
of clinical diagnosis. Yet mankind, using imperfect models, has built
machines that fly, and has cured many diseases. Because DDSS augment
the natural capabilities of human diagnosticians, they have the potential to
be employed productively.1

This chapter presents a definition of clinical diagnosis and of DDSS; a
discussion of how humans accomplish diagnosis; a survey of previous
attempts to develop computer-based clinical diagnostic tools; a discussion
of the problems encountered in developing, implementing, evaluating, and
maintaining clinical diagnostic decision support systems; and a brief dis-
cussion of the future of such systems.

Definitions of Diagnosis

In order to understand the history of clinical diagnostic decision support
systems and envision their future roles, it is important to define clinical 
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diagnosis and computer-assisted clinical diagnosis. A simple definition of
diagnosis is:2

the placing of an interpretive, higher level label on a set of raw, more primi-
tive observations [Definition 1].

By this definition one form of diagnosis might consist of labeling, as “abnor-
mal” any laboratory test results falling outside 1.5 times the 95% confidence
intervals for the “normal” values seen in the general population as mea-
sured by that laboratory. Another level of diagnosis under the same defin-
ition might consist of labeling the combination of a low serum bicarbonate
level, a high serum chloride level, and an arterial blood pH of 7.3 as “meta-
bolic acidosis.”

A more involved definition of diagnosis, specific for clinical diagnosis, is:2

a mapping from a patient’s data (normal and abnormal history,
physical examination, and laboratory data) to a nosology of disease states
[Definition 2].

Both of these definitions treat diagnosis improperly as a single event,
rather than as a process.A more accurate definition is found in the Random
House Collegiate Dictionary. There, diagnosis is defined as:3

“the process of determining by examination the nature and circumstances of
a diseased condition” [Definition 3].

Skilled diagnosticians develop an understanding of what the patient’s life
situation was like before the illness began, how the illness has manifested
itself, and how it has affected the life situation.2 The clinician must also
determine the patient’s understanding of, and response to, an illness. The
process of diagnosis entails a sequence of interdependent, often highly indi-
vidualized tasks: evoking the patient’s initial history and physical examina-
tion findings; integration of the data into plausible scenarios regarding
known disease processes; evaluating and refining diagnostic hypotheses
through selective elicitation of additional patient information, such as lab-
oratory tests or serial examinations; initiating therapy at appropriate points
in time (including before a diagnosis is established); and evaluating the
effect of both the illness and the therapy, on the patient, over time.2

Diagnosis is a process composed of individual steps. These steps go from
a point of origin (a question and a set of “presenting findings” and “previ-
ously established diagnoses”), to a point of destination (an answer, usually
consisting of a set of “new established diagnoses” and/or “unresolved dif-
ferential diagnoses”). While the beginning and end points may be identical,
the steps one diagnostician follows may be very different from those taken
by another diagnostician, and the same diagnostician may take different
steps in two nearly identical cases. Because expertise varies among clini-
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cians, different individuals will encounter different diagnostic problems in
evaluating the same patient. For instance, they may generate dissimilar
questions based on difficulties with disparate steps in the diagnostic process,
even if they follow exactly the same steps.

Studies of clinicians’ information needs help us to understand the vari-
ability in diagnostic problem solving among clinicians. Osheroff, Forsythe,
and colleagues4,5 used participant observation, a standard anthropological
technique, to identify and classify information needs during the practice of
medicine in an academic health center. They identified three components
of “comprehensive information needs:” (1) currently satisfied information
needs (information recognized as relevant to a question and already known
to the clinician); (2) consciously recognized information needs (information
recognized by the clinician as important to know to solve the problem, but
which is not known by the clinician); and (3) unrecognized information
needs (information that is important for the clinician to know to solve a
problem at hand, but is not recognized as being important by the clinician).
Failure to detect a diagnostic problem at all would fall into the latter cate-
gory. Different clinicians will experience different diagnostic problems
within the same patient case, based on each clinician’s varying knowledge
of the patient and unique personal store of general medical knowledge.
Osheroff et al. noted the difficulty people and machines have in tailoring
general medical knowledge to specific clinical cases. There may be a wealth
of information in a patient’s inpatient and outpatient records, and also a
large medical literature describing causes of the patient’s problems. The
challenge is to quickly and efficiently reconcile one body of information
with the other.1,4 DDSS can potentially facilitate that reconciliation. A
DDSS can be defined as:

a computer-based algorithm that assists a clinician with one or more com-
ponent steps of the diagnostic process [Definition 4].

While clinicians may have differing conceptions of what they mean by 
diagnosis, the definitions embodied in DDSS are even more varied. DDSS
users are often slow to recognize that each system functionally defines 
diagnosis as the set of tasks that it can perform. Experienced users often
become familiar with using DDSS as tools to supplement, rather than
replace, their own diagnostic capabilities. Untrained DDSS users may have
preconceived unrealistic expectations that engender subsequent frustra-
tion. Naive users view diagnosis on their own terms, based on their own
experiences, and expect diagnostic decision support systems to behave in a
familiar manner. For example, it is unreasonable to expect that a DDSS can
solve a vague problem with minimal input or that DDSS can assist clini-
cians in understanding how an illness has affected the patient’s lifestyle.
Conversely, system developers sometimes create useful diagnostic tools that
provide capabilities outside the experience of human diagnosticians. For

5. Diagnostic Decision Support Systems 101



example, the relationships function of R-QMR† (a DDSS), takes, as input,
up to 10 findings that the clinician-user would like to explain as the key or
“pivotal” findings from a diagnostically challenging case, and produces, as
output, a rank-ordered list of “disease complexes” that each explain all of
the input findings.7 Each disease complex is made up of from one to four
interrelated disorders (e.g., disease A predisposing to disease B and causing
disease C). Because busy clinicians can spare little free time for extraneous
activities, user training for DDSS is extremely critical and must address 
the potential cognitive mismatch between user expectations and system
capabilities.

An important concept related to the use of DDSS is understanding that
the problem to be solved originates in the mind of the clinician-user. The
diagnostic problem cannot be defined in an absolute sense, for example, by
an arbitrary set of input findings selected from a case. The DDSS analog of
the metaphysical question,“if a tree falls in a forest in the absence of people,
will there be a sound?” is “if clinical findings are extracted from a patient
case in the absence of a query from a clinician caring for the patient (or
someone asked to function with that mindset), is there a diagnostic problem
to be solved, or can there be a ‘correct’ answer?”There is only one way that
the findings of a case, in isolation, can define a diagnostic problem, and that
is when the diagnostic problem is the global one, i.e., the DDSS, through its
own initiative, is expected to take all the steps in the diagnostic process
required to explain all patient findings through establishing new diagnoses
(or unresolved differential diagnoses if there is not a solution). It is rare in
clinical practice to encounter the “global” diagnostic problem. Clinicians
usually complete a portion of the evaluation process before they encounter
difficulty, and, correspondingly, once they overcome the difficulty, they are
usually capable of completing the evaluation without further assistance.
While early DDSS developers often assumed the only problem worth
solving was the global diagnostic problem, emphasis over the last decade
has shifted to helping clinicians with problems they encounter during indi-
vidual steps in the diagnostic process. This has led to the demise of the
“Greek Oracle” model, where the DDSS was expected to take all of the
patient’s findings and come up with “the answer.” Current DDSS models
assume that the user will interact with the DDSS in an iterative fashion,
selectively entering patient information and using the DDSS output to
assist with the problems encountered in the diagnostic process.8

In order to interact optimally with the DDSS, the users need to under-
stand the assumptions built into the system. As noted previously, each
DDSS functionally defines diagnosis as the tasks it can perform (or assist
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users in performing). The subtle nature of underlying assumptions that
system developers incorporate into DDSS can be deceptive to users. For
example, one of the most well known diagnostic systems is the Bayesian
program for diagnosis of acute abdominal pain developed by de Dombal
and colleagues.9,10 As it was originally developed, the system’s goal, not
stated explicitly, was to discriminate between surgical and nonsurgical
causes of acute abdominal pain in order to help triage patients in an emer-
gency room (or similar) setting. A limited number of explicit diagnoses are
supported by the system, all of which, except “nonspecific abdominal pain,”
are surgical disorders or potentially surgically treated disorders (such as
acute appendicitis, acute pancreatitis, and acute diverticulitis). The perfor-
mance of the system was evaluated in multicenter studies10 and shown to
be exemplary with respect to the circumstances for which it was designed.
However, naive users generically relying on de Dombal’s system to help
with the diagnosis of all patients presenting with acute abdominal pain
would be disappointed.There is a high potential for errors in caring for such
patients if the clinician-users do not supplement system output with their
own knowledge. The system could not properly diagnose patients present-
ing with acute intermittent porphyria, lead poisoning, early T10 dermatome
herpes zoster, or familial Mediterranean fever. Even when the system per-
forms optimally, all these conditions would be labeled as “nonspecific
abdominal pain.”

The utility of making specific diagnoses lies in the selection of effective
therapies, making accurate prognoses, and providing detailed explanations.1

In some situations, it is not necessary to arrive at an exact diagnosis in order
to fulfill one or more of these objectives. Treatment is often initiated before
an exact diagnosis is made. Furthermore, the utility of making certain diag-
noses is debatable, especially if there is a small probability of effective treat-
ment. For instance, labeling a patient as having “obesity” does not flatter
the patient, and, even worse, may cause the clinician to do more harm than
good. Good documentation exists in the medical literature, that once a
patient reaches approximately twice their ideal body weight, the patient’s
metabolism and psychology related to eating changes11 so that the progno-
sis of dieting down to the ideal body weight and staying there is approxi-
mately equal to the survival rate for gastric carcinoma at five years.
Resorting to nonprescription, potentially harmful therapies such as 
unsupervised prolonged fasting, or prescribed amphetamines may lead to
more harm than benefit, yet desperate patients and physicians sometimes
resort to such approaches.

The cost of eliciting all possible patient data is potentially staggering—
temporally, economically, and ethically—since there are real risks of mor-
bidity and/or mortality associated with many diagnostic procedures such as
liver biopsy or cardiac catheterization. (Of note, there are some individu-
als who now advocate “total body imaging” as a noninvasive, relatively
affordable mechanism of gathering maximal diagnostic information at one
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time from a patient, despite the fact that, other than for identifying tumor
metastases, there is little evidence to support this procedure.) Given the
impossibility and impracticality of gathering every conceivable piece of
diagnostic information with respect to each patient, the “art” of diagnosis
lies in the ability of the diagnostician to carefully evoke enough relevant
information to justify all important and ultimately correct diagnoses in each
case, as well as to initiate therapies at appropriate points during the evalu-
ation.2 The knowledge of how to “work up” the patient depends critically
on the ability to evoke history, symptoms, and physical examination find-
ings, concurrently with the ability to generate diagnostic hypotheses that
suggest how to further refine or pursue the findings already elicited, or to
pursue completely different additional findings. In addition, this must be
done in a compassionate and cost-effective manner.2

Human Diagnostic Reasoning

Diagnostic reasoning involves diverse cognitive activities, including infor-
mation gathering, pattern recognition, problem solving, decision making,
judgment under uncertainty, and empathy. Large amounts of highly orga-
nized knowledge are necessary to function in this relatively unstructured
cognitive domain. Our knowledge of human diagnostic reasoning is based
on generic psychological experiments about reasoning and on direct studies
of the diagnostic process itself. Relevant principles of human problem-
solving behavior have been unveiled through focused studies examining
constrained problem spaces such as chess-playing and cryptoarithmetic.12

Such studies have documented that experts recognize patterns of activity
within a domain at an integrated, higher level (“chunking”) than novices.
Additional psychological experiments about judgments made under uncer-
tainty13 have provided insights into individuals’ imperfect semiquantitative
reasoning skills.

To investigate the complex intellectual task of clinical diagnosis, many
researchers14,15 have used behavioral methods that combine protocol analy-
sis with introspection. Researchers record clinicians as they think aloud
while performing specified cognitive tasks related to diagnosis (including
normal clinical activities). Post facto, the clinicians themselves, or others, are
asked to interpret the motives, knowledge, diagnostic hypotheses, and
strategies involved in the recorded sessions. However, there is no proof that
the stories constructed by experts to explain their diagnostic reasoning cor-
respond to the actual reasoning methods they use subconsciously.

Most models of diagnostic reasoning include the following elements: the
activation of working hypotheses; the testing of these hypotheses; the acqui-
sition and interpretation of additional information; and confirming, reject-
ing, or adding of new hypotheses as information is gathered over time.
Working hypotheses are generated early in the process of information 
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gathering, at a time when only few facts are known about the patient.14,15

Only a limited number of these hypotheses, rarely more than five, are enter-
tained simultaneously, probably because of the limited capacity of human
short term memory.16 Early hypothesis generation is probably accomplished
through some form of pattern recognition, with experts more capable of
applying compiled knowledge and experiences than novices. Comparing
clinical reasoning in novices and experts, Evans and Patel17 showed that
experts rarely rely directly on causal reasoning and knowledge of basic sci-
ences, except when reasoning outside their domain of expertise.

As noted by Pople and others,18 clinical diagnosis fits Simon’s criteria for
being an ill-structured problem.19 Simon gave as an example of an ill-
structured problem, the task an architect faces in creatively designing a new
house “from scratch”—the realm of possible solutions encompasses a great
variety of applicable methods and a broad set of alternative outcomes. As
summarized by Pople, Simon observed that ill-structured problems can be
solved by splitting the problem into smaller, well defined subtasks that are
each more easily accomplished.18

In clinical diagnosis, early hypothesis generation helps to constrain 
reasoning to “high yield” areas, and permits the use of heuristic methods 
to further elucidate a solution.20 Studies have shown that most clinicians
employ the hypothetico-deductive method after early hypothesis genera-
tion.14,15 Data are collected with a view to their usefulness in refining, reject-
ing, or substituting for the original set of hypotheses. In the setting of
clinicopathological exercises, Eddy and Clanton21 showed that identification
of a pivotal finding is often used to simplify the diagnostic problem and to
narrow the focus to a limited set of hypotheses. Kassirer and Gorry15

described the “process of case building,” where hypotheses are evaluated
against the model of a disease entity using techniques that can be emulated
in computers using Bayes’ rule, Boolean algebra, or template matching (see
Chapter 2 for an explanation of these terms). They also recognized that
heuristic methods are commonly used to confirm, eliminate, discriminate
between, or explore hypotheses. Weed22 and Hurst and Walker23 suggested
that clinical problem-solving can be approached by splitting complex, com-
posite problems into relatively independent, discrete “problem areas.”With
respect to diagnosis, Pople observed that separating complex differential
diagnoses into problem areas allows diagnosticians to apply additional pow-
erful reasoning heuristics. They can assume that the differential diagnosis
list within a problem area contains mutually exclusive hypotheses and that
the list can be made to be exhaustive (i.e., complete), so that it is assured
that the correct diagnosis is on the list for the problem area, and that only
one diagnosis on the list is the correct one.18

Kassirer has identified three abstract categories of human diagnostic rea-
soning strategies: probabilistic, causal, and deterministic.24 Formal models
for each type of reasoning have been developed, most often separately from
observational studies on how actual reasoning occurs. Probabilistic models
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such as Brunswik’s lens model25 and Bayesian26,27 approaches, as well as
decision analysis28,29 define statistical associations between clinical variables
and use mathematical models to compute optimal decisions.While it is clear
that diagnosticians consider prevalence and other probabilistic concepts
during their reasoning,14,15 observational and experimental studies show
that humans are not intuitively good statisticians.13,30 Human problem-
solvers tend to rely on judgmental heuristics. Experiments document that
humans improperly evaluate subjective probabilities, misuse prior proba-
bilities, and fail to recognize important phenomena, such as the regression
towards the mean. While there has been some evidence that humans have
more difficulty reasoning with probabilities than they do understanding the
concepts which underlie them,31 humans also demonstrate other reasoning
errors such as reluctance to revise opinions when presented with data that
do not fit with working hypotheses when the data’s diagnostic significance
is properly understood.13,30

Models of causal (pathophysiological) reasoning, such as those developed
by Feinstein32,33 in the 1970s, establish cause-and-effect relations between
clinical variables within anatomic, physiologic, biochemical, and ultimately,
genetics-based representations of the reality. Although causal inferences
(reasoning from causes to consequences) can be viewed as the inverse of
diagnostic inferences (reasoning from consequences to causes), studies
have shown that when making judgments under uncertainty, humans assign
greater impact to causal rather than other diagnostic data of equal infor-
mative weight, and they commonly make over-confident predictions when
dealing with highly uncertain models.13 Causal, pathophysiological reason-
ing uses shared, global, patient-independent knowledge33 and provides an
efficient means of verifying and explaining diagnostic hypotheses. However,
it is not clear how much causal reasoning is actually used in early hypoth-
esis generation and other stages of nonverbalized diagnostic reasoning. As
noted earlier, observational studies indicate that experts tend to employ
causal, pathophysiological reasoning only when faced with problems
outside the realm of their expertise, highly atypical problems, or when they
are asked to explain their reasoning to others.5

In deterministic models, production rules, i.e., specifying appropriate
actions in response to certain conditions, are used to represent the basic
building blocks of human problem-solving. Such if–then rules representing
compiled knowledge can be expressed in the form of branching-logic flow-
charts and clinical algorithms for nonexperts to follow. However, produc-
tion rules do not deal effectively with uncertainty,34 which is a disadvantage
in clinical practice, where uncertainty is a common feature.

The late M. Scott Blois, a great philosopher-informatician-clinician, used
a funnel to illustrate the spectrum of clinical judgment.35 Consideration of
patients’ ill-structured problems, including undifferentiated concerns and
vague complaints, occurs at the wide end of the funnel. Focused decisions
in response to specific clinical questions (e.g., choosing an antibiotic to treat
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the bacteria isolated as the cause of a pneumonia) were represented at the
narrow end. This model is consistent with Simon’s view of how humans
solve ill-structured problems.18 Blois noted that decision support systems
were best applied toward the narrow end of the funnel, since circumscribed,
well structured problems are encountered there. Those problems are more
amenable to solution through application of computational models of cog-
nitive skills, requiring only focused and specific knowledge. On the other
hand, at the open end of the funnel, one has to deal with common-sense
knowledge and the general scope of ordinary human judgment in order to
make meaningful progress, and few computer-based systems (other than
those for record-keeping) are applicable.

Historical Survey of Diagnostic Decision 
Support Systems

The majority of important concepts related to current DDSS were devel-
oped and presented in the literature prior to 1976. In a comprehensive 1979
review of reasoning strategies employed by early DDSS, Shortliffe,
Buchanan, and Feigenbaum identified the following classes of DDSS: clin-
ical algorithms, clinical databanks that include analytical functions, mathe-
matical pathophysiological models, pattern recognition systems, Bayesian
statistical systems, decision-analytical systems, and symbolic reasoning
(sometimes called “expert” systems).36 This section, without being compre-
hensive, will describe how some of the early pioneering efforts led to many
classes of systems present today.

The many types of DDSS correspond to the large number of clinical
domains to which diagnostic reasoning can be applied, to the multiple steps 
of diagnostic reasoning described above and to the variety of difficulties 
that diagnosticians may encounter at each step. When health care informat-
ics researchers come upon the term “clinical diagnostic decision-support
systems,”many think primarily of general-purpose,broad-spectrum consulta-
tion systems.1 However, Definitions 1 through 3, in the section on definitions
of diagnosis,form the basis for the broad spectrum of diagnostic systems actu-
ally encountered. In a sense, Definition 1, diagnosis as interpretation of raw
observations, is potentially recursive, as it defines successively more complex
classes of diagnostic tools.Low-level diagnostic labels placed on “raw”obser-
vations can be used as input into second-level diagnostic systems that produce
higher-level labels that are then used at progressively higher levels.

There are systems for general diagnosis (no matter how broad or 
narrow their application domains), and systems for diagnosis in specialized
domains such as interpretation of ECG tracings.37 The general notion of
DDSS conveyed in the biomedical literature sometimes overlooks special-
ized, focused, yet highly successful medical device-associated diagnostic
systems. Some simple DDSS help to interpret blood gas results, assist in 
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categorizing diagnostic possibilities based on the output of serum protein
electrophoresis devices, or aid in the interpretation of standardized pul-
monary function tests. DDSS for cytological recognition and classification
have found successful application in devices such as automated differential
blood count analyzers and systems to analyze Papanicolaou smears.1 Small,
focused DDSS are the most widely used form of diagnostic decision support
programs, and their use will grow as they are coupled with other automated
medical devices.1

In their classic paper published in 1959, Ledley and Lusted26 observed
that physicians have an imperfect knowledge of how they solve diagnostic
problems. Ledley and Lusted detailed the principles underlying work on
Bayesian and decision-analytic diagnostic systems that has been carried out
over subsequent decades. They stated that both logic (as embodied in set
theory and Boolean algebra) and probabilistic reasoning (as embodied in
Bayes’ rule) were essential components of medical reasoning. Ledley and
Lusted mentioned the importance of protocol analysis in understanding
human diagnostic reasoning.They stated that they had reviewed how physi-
cians solve New England Journal of Medicine CPC (clinicopathological con-
ference) cases as the foundation for their work on diagnostic computer
systems. Both for practical reasons and for philosophical reasons, much
work on DDSS has focused on the differences between logical deductive
systems and probabilistic systems. Chapter 2 describes these approaches in
more detail. What follows is a description of how DDSS have embodied
these reasoning principles.

Logical systems, based on “discriminating questions” to distinguish
among mutually exclusive alternatives, have played an important role 
since the pioneering work by Bleich and his colleagues38 on acid base and
electrolyte disorders. To this day, such systems are applicable to narrow
domains, especially those where it is fairly certain that only one disorder is
present. When users of a branching logic system incorrectly answer one of
the questions posed by the system, they may find themselves “out on a limb”
with no way to recover except by starting over from the beginning; the like-
lihood of such problems increases when multiple independent disease
processes interact in the patient. Thus, ideal application areas are those
where detailed knowledge of pathophysiology or extensive epidemiologi-
cal data make it possible to identify parameters useful for dividing diag-
nostic sets into nonintersecting subsets, based on specific characteristics.

Bayes’ rule is applicable to larger domains. Warner and colleagues in
1960–1961 developed one of the first medical application systems based on
Bayes’ rule. In their original contribution,27 they discussed the indepen-
dence assumption required among diagnoses and among findings by the
most commonly employed Bayesian applications, and proposed a method
for eliminating the influence of redundant findings.They obtained the prob-
abilities used in the diagnosis of congenital heart diseases from literature
review, from their own series of over 1,000 cases, and from experts’ esti-
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mates based on knowledge of pathophysiology. Warner et al. observed how
diagnostic systems can be very sensitive to false positive findings and to
errors in the system’s database. The importance of obtaining accurate data
from the user was emphasized. In their evaluation of their system’s perfor-
mance, they pointed out the need for an independent “gold standard”
against which the performance of the system could be judged. In the 
evaluation of their system, they used cardiac catheterization data and/or
anatomical (postmortem) data to confirm the actual patient diagnoses.
Warner et al. have continued to develop and refine models for Bayesian
diagnosis over the years.1

In 1968, Gorry and Barnett developed a model for sequential Bayesian
diagnosis.39 The first practical Bayesian system, and one of the first DDSS
to be utilized at widespread clinical sites, was the system for diagnosis of
acute abdominal pain developed by de Dombal and colleagues.1,9 A large
number of groups have subsequently developed, implemented, and refined
Bayesian methods for diagnostic decision making, and a wave of enthusi-
asm surrounds current work on Bayesian belief networks for clinical diag-
nosis.1 Probabilistic systems have played, and will continue to play, an
important role in DDSS development.

An additional alternative exists to categorical (predicate calculus)40 and
probabilistic reasoning that combines features of both but retains a funda-
mental difference. That alternative is heuristic reasoning, reasoning based
on empirical rules of thumb. The HEME program for diagnosis of hema-
tological disorders was one of the earliest systems to employ heuristics and
also one of the first systems to use, in effect, criteria tables for diagnosis of
disease states. It was developed initially by Lipkin, Hardy, Engle, and their
colleagues in the late 1950s.1,41–43 Programs which heuristically match ter-
minology from stored descriptions of disease states to lexical descriptions
of patient cases are similar conceptually to HEME. The CONSIDER
program developed by Lindberg et al.44 and the RECONSIDER program
developed by Blois and his colleagues45 used heuristic lexical matching tech-
niques to identify diseases in Current Medical Information and Terminol-
ogy (CMIT), a manual of diseases compiled and previously maintained by
the American Medical Association. The EXPERT system shell, developed
by Weiss and Kulikowski,46 has been used extensively in developing systems
that utilize criteria tables, including AI/Rheum,47,48 for diagnosis of rheuma-
tological disorders, as well as other systems.

G. Anthony Gorry was an enlightened pioneer in the development of
heuristic diagnostic systems that employ symbolic reasoning. In a classic
paper published in 1968, Gorry49 outlined the general principles underlying
expert system approaches to medical diagnosis that were subsequently
developed in the 1970s and 1980s. Gorry proposed a formal definition of
the diagnostic problem. In a visionary manner, he analyzed the relation-
ships among a generic inference function (used to generate diagnoses from
observed findings), a generic test-selection function that dynamically selects
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the best test to order (in terms of cost and information content), and a
pattern-sorting function that is capable of determining if competing diag-
noses are members of the same “problem area” (i.e., whether diagnostic
hypotheses should be considered together because they are related to
pathology in the same organ system). He pointed out the difference
between the information value, the economic cost, and the morbidity or
mortality risk of performing tests; discussed the cost of misdiagnosis of
serious, life-threatening or disabling disorders; noted the potential influence
of “red herring” findings on diagnostic systems; described the “multiple
diagnosis” problem faced by systems when patients have more than one
disease; and suggested that the knowledge bases underlying diagnostic
systems could be used to generate simulated cases to test the diagnostic
systems.

Gorry’s schemata represent the intellectual ancestors of a diverse group
of medical diagnostic systems, including, among others: PIP (the Present
Illness Program), developed by Pauker et al.; MEDITEL for adult illnesses,
which was developed by Waxman and Worley from an earlier pediatric
version; Internist-I developed by Pople, Myers, and Miller; QMR, developed
by Miller, Masarie, and Myers; DXplain, developed by Barnett and col-
leagues; Iliad, developed by Warner and colleagues; and a large number of
other systems.1,50–56

Shortliffe introduced the clinical application of rule-based expert systems
for diagnosis and therapy through his development of MYCIN1,57 in
1973–1976. MYCIN used backward chaining through its rule base to collect
information to identify the organism(s) causing bacteremia or meningitis in
patients (see discussion of backward and forward chaining in Chapter 2).
A large number of rule-based DDSS have been developed over the years,
but most rule-based DDSS have been devoted to narrow application areas
due to the extreme complexity of maintaining rule-based systems with more
than a few thousand rules.1

With the advent of the microcomputer came a change in philosophy in
regard to the development of DDSS. For example, the style of diagnostic
consultation in the original 1974 Internist-I program treated the physician
as unable to solve a diagnostic problem. The model assumed that the physi-
cian would transfer all historical information, physical examination findings,
and laboratory data to the Internist-I expert diagnostic consultant program.
The physician’s subsequent role was that of a passive observer, answering
yes or no to questions generated by Internist-I. Ultimately, the omniscient
Greek Oracle (consultant program) was supposed to provide the correct
diagnosis and explain its reasoning. By the late 1980s and early 1990s, devel-
opers abandoned the “Greek Oracle” model8 of diagnostic decision support.
Encouraged by the critiquing model developed by Miller1,58 and his col-
leagues, recent DDSS developers have made it their objective to create a
mutually beneficial system that takes advantage of the strengths of both 
the user’s knowledge and the system’s abilities. The goal is to improve 
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performance of both the user and the machine over their native (unas-
sisted) states.

Several innovative techniques were added in the 1980s and 1990s, to 
previous models for computer-assisted medical diagnosis. The trend has
been to develop more formal models that add mathematical rigor to the
successful, but more arbitrary, heuristic explorations of the 1970s and early
1980s. However, there are tradeoffs involved in formal mathematical
models, often related to available data quality, which in many ways make
them heuristic as well.59 Systems based on fuzzy set theory and Bayesian
belief networks were developed to overcome limitations of heuristic and
simple Bayesian models.1 Reggia, Nau, and Wang1,60 developed set covering
models as a formalization of ad hoc problem-area formation (partitioning)
schemes, such as that developed by Pople and Miller for Internist-I.61

Neural networks represent an entirely new approach to medical diagno-
sis, although the weights learned by simple one-layer networks may be anal-
ogous or identical to Bayesian probabilities.1 Problems with neural networks
include selecting the best topology, preventing overtraining and undertrain-
ing, and determining what cases to use for training. The more complex a
neural network is (number of input and output nodes, number of hidden
layers), the greater the need for a large number of appropriate training cases.
Often, large epidemiologically controlled patient data sets are not available.
There is a tendency among some developers to resort to simulation tech-
niques to generate training cases. Use of “artificial” cases to train neural net-
works may lead to sub-optimal performance on real cases. Chapters 1–4
provide additional detail on the models mentioned above.

Developing, Implementing, Evaluating,
and Maintaining Diagnostic Decision Support Systems

For any DDSS to achieve success, it must complete a number of stages of
development.2,62 To begin with, a DDSS should be developed to meet doc-
umented information needs.4,5,63 Developers must perform a clinical needs
assessment to determine the utility of the proposed system and the fre-
quency with which it might be used in various real-world settings. Clinical
systems should not be developed simply because someone wants to test an
exciting new computational algorithm. The rule, “if it’s not broke, don’t 
fix it” applies to the development of DDSS, as well as other aspects of 
technology. Developers must carefully define the scope and nature 
of the process to be automated. They must also understand the process to
be automated well enough to reduce the process to an algorithm. All
systems, especially DDSS, have boundaries (both in domain coverage and
algorithm robustness) beyond which the systems often fail. Developers
must understand these limits and make users aware of them. Each algo-
rithm must be studied to determine the ways in which it might fail, due to
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both inherent limitations and flaws that might occur during the process of
implementation.2

Developers and interested third parties must evaluate any automated
system carefully, initially “in vitro” (outside of the patient care arena, with
no risks to patients), and, once warranted, in vivo (prospectively, on the
front lines of actual patient care delivery) in order to determine if the auto-
mated system improves or promotes important outcomes that are not pos-
sible with the pre-existing manual system.64 Finally, developers and users
must demonstrate the practical utility of the system by showing that clini-
cians can adopt it for productive daily use.2 A potentially great system that
is not used cannot have a beneficial impact on clinical outcomes. Unfortu-
nately, few, if any, of the existing clinical decision support systems have yet
fulfilled these criteria.

There are a number of problems that have limited the ultimate success
of DDSS to date. These include: difficulties with domain selection and
knowledge-base construction and maintenance; problems with the diag-
nostic algorithms and user interfaces; the problem of system evolution,
including evaluation, testing, and quality control; issues related to machine
interfaces and clinical vocabularies; and legal and ethical issues.These issues
are discussed below.

Clinical Domain Selection
DDSS domain selection is often problematic. Substantial clinical domains
must be chosen in order to avoid creating “toy” systems. However, con-
struction of knowledge bases, to support substantial DDSS, can require
dozens of person-years of effort in broad domains such as general internal
medicine. To date, although most large medical knowledge bases have at
least initially been created in the academic environment, many projects do
not have adequate funding to sustain such activity over time.65 Availability
of adequate domain expertise is also a problem. Clinical collaborators gen-
erally earn their wages through patient care or research, and sustaining
high-level input from individuals with adequate clinical expertise can be dif-
ficult in the face of real-world demands. Commercial vendors must hire an
adequate and well qualified staff of physicians in order to maintain medical
knowledge bases. However, the income generated through the sale of
DDSS programs is limited by the number of users who purchase a program
or its updates, so scaling up a DDSS maintenance department can be 
difficult.

Different problems affect DDSS with narrow domains. One problem is
garnering an adequate audience. The CASNET system was an exemplary
prototypic system for reasoning pathophysiologically about the diagnosis
and therapy of glaucoma.66 It typifies a problem that can occur with suc-
cessful experimental expert systems—the persons most likely to require a
specialized system’s use in clinical medicine are the domain experts whose
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knowledge was used to develop the system.The persons who routinely diag-
nose and treat glaucoma are ophthalmologists, who are by definition board-
certified specialists in the domain of ophthalmology. The program, in effect,
preaches to the choir. It is more difficult for an automated system to provide
benefit to experts in that specialty, so experts may not use it, but general-
ists are also unlikely to use a system with very narrow functioning. A
program like the CASNET system must be extremely robust and provide
more than one kind of service (e.g., it should have integrated record-
management and other functions) in order for it to find use in clinical 
practice.

Knowledge-Base Construction and Maintenance
Knowledge base maintenance is critical to the clinical validity of a DDSS.1

Yet it is hard to judge when new clinical knowledge becomes an established
“fact.” The first reports of new clinical discoveries in highly regarded
medical journals must await confirmation by other groups over time before
their content can be added to a medical knowledge base. The nosological
labels used in diagnosis reflect the current level of scientific understanding
of pathophysiology and disease, and they may change over time without the
patient or the patient’s illness, per se, changing.1 For example, changes occur
in how a label is applied when the “gold standard” for making a diagnosis
shifts from a pathological biopsy result to an abnormal serological test—
patients with earlier, previously unrecognized forms of the illness may be
labeled as having the disease. Corresponding changes must be made to keep
a DDSS knowledge base up to date.

Knowledge-base construction must be a scientifically reproducible
process that can be accomplished by qualified individuals at any site.67

Knowledge-base construction should be clinically grounded, based on
“absolute” clinical knowledge whenever possible. Attempts to “tune” the
DDSS knowledge base to improve performance on a given case or group
of cases should be strongly discouraged unless such tuning has an objective
basis, such as information culled from the medical literature. If the process
of knowledge-base construction is highly dependent on a single individual,
or can only be carried out at a single institution, then the survival of that
system over time is in jeopardy. While much of the glamour of computer-
based diagnostic systems lies in the computer algorithms and interfaces, the
long-term value and viability of a system depends on the quality, accuracy,
and timeliness of its knowledge base.1

Even initially successful DDSS cannot survive unless the medical knowl-
edge bases supporting them are kept current. This can require Herculean
efforts. Shortliffe’s MYCIN program57 was developed as a research project
to demonstrate the applicability of rule-based expert systems to clinical
medicine. MYCIN was a brilliant, pioneering effort in this regard. The eval-
uation of MYCIN in the late 1970s by Yu and colleagues demonstrated that
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the program could perform at the expert level on challenging cases.68 But
MYCIN was never put into routine clinical use, nor was an effort made to
update its knowledge base over time. After 1979, lack of maintenance
caused its antibiotic therapy knowledge base to become out of date.

Diagnostic Decision Support Systems—Diagnostic
Algorithms and User Interfaces
Just as computer-based implementation of many complex algorithms
involves making trade-offs between space (memory) and time (CPU
cycles), development of real-world diagnostic systems involves a constant
balancing of theory (model complexity) and practicality (ability to con-
struct and maintain adequate medical databases or knowledge bases, and
ability to create systems which respond to users’ needs in an acceptably
short time interval).59 We may understand, in theory, how to develop
systems that take into account gradations of symptoms, the degree of uncer-
tainty in the patient and/or physician-user regarding a finding, the severity
of each illness under consideration, the pathophysiological mechanisms of
disease, and/or the time course of illnesses. Such complexities may ulti-
mately be required to make actual systems work reliably. However, it is not
yet practical to build such complex, broad-based systems for patient care.
The effort required to build and maintain superficial knowledge bases is
measured in dozens of person-years of effort, and more complex knowl-
edge bases are likely to require an order of magnitude greater effort.1

Although some people believe that the computer will eventually replace 
the physician,69 that position is not very tenable.A clinician cannot convey his
or her complete understanding of an involved patient case to a computer
program. One can never assume that a computer program “knows” all that
needs to be known about the patient case,no matter how much time and effort
is spent on data input into the computer system.As a result, the clinician-user
who directly evaluated the patient must be considered to be the definitive
source of information about the patient during the entire course of any 
computer-based consultation.2 In addition, the highly skilled health-care 
practitioner—who understands the patient as a person—possesses the most
important intellect to be employed during a consultation. That user should
intellectually control the process of computer-based consultation.DDSS must
be designed to permit users to apply individual tools to assist with the sequence
of steps in the diagnostic process in the sequence that the user prefers at the
time,not in an arbitrary sequence selected by the DDSS algorithm.

All DDSS, and especially narrowly focused ones, face the “critical mass”
problem. Few clinicians are likely to purchase and install office computer
systems solely to run one application. The number of narrow DDSS that
could be useful in the setting of a primary care practitioner’s office is poten-
tially measured in tens or hundreds. Yet few computer-literate individuals
learn how to successfully operate more than a dozen applications. Until
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there is a standard, integrated environment and user interface that allows
smooth transition among dedicated applications, DDSS are not likely to be
used heavily. It is possible that the Internet, with a common user interface
across multiple hardware platforms, will evolve to be the integrated envi-
ronment required. However, current limitations of such interfaces leave this
an open question. Systems must provide flexible environments that adapt to
the user’s needs and problems, rather than providing an interface that is
inflexible and which penalizes the user for deviating from the normal order
of system operation. It must be easy to move from one program function to
another if it is common for the healthcare user to do so mentally on their
own.Transitions must be facilitated when frequent patterns of usage emerge.

Diagnostic Decision Support Systems Testing, Evaluation,
and Quality Control
System evaluation in biomedical informatics should take place as an
ongoing, strategically planned process, not as a single event or small number
of episodes.61,64 Complex software systems and accepted medical practices
both evolve rapidly, so evaluators and readers of evaluations face moving
targets.As previously noted, systems are of value only when they help users
to solve users’ problems. Users, not systems, characterize and solve clinical
diagnostic problems. The ultimate unit of evaluation should be whether the
user plus the system is better than the unaided user with respect to a spec-
ified task or problem (usually one generated by the user).

It is extremely important during system development to conduct infor-
mal “formative” type evaluations. As a part of this process, new cases must
be analyzed with the DDSS on a regular (e.g., weekly) basis. After each
failure of the DDSS to make a “correct” diagnosis, careful analysis of both
the system’s knowledge base and diagnostic algorithms must be carried out.
Both the information in the knowledge base on the “correct” diagnosis, and
the information on any diagnoses offered in error, must be reviewed and
potentially updated. In addition, periodic rerunning of previous series of
test cases should be done on an annual (or similar) basis, to verify that there
has not been significant “drift” in either the knowledge base or the diag-
nostic program that would influence the system’s abilities.

Formal evaluations of DDSS should take into account the following four
perspectives: (1) appropriate evaluation design; (2) specification of criteria
for determining DDSS efficacy in the evaluation; (3) evaluation of the
boundaries or limitations of the DDSS; and (4) identification of potential
reasons for “lack of system effect.”64 Each of these issues is discussed below.

Appropriate Evaluation Design

Evaluation plans should be appropriate for the information needs being
addressed, the level of system maturity, and users’ intended form of DDSS
usage (or specific system function evaluated).62,64 The same DDSS may
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serve as an electronic textbook for one user, a diagnostic checklist genera-
tor for another user, a consultant to determine the next useful step in a spe-
cific patient’s evaluation for a third user, and a tool to critique/reinforce the
users’ own pre-existing hypotheses for a fourth user. Each system function
would require a different form of evaluation whenever anticipated user
benefits depend on which system function is used. Evaluations should
clearly state which user objective is being studied and which of the avail-
able system functions are relevant to that objective.

In 1994, Berner and colleagues evaluated the ability of several systems
to generate first-pass differential diagnoses from a fixed set of input find-
ings.70 These findings were not generated by everyday clinical users, but
from written case summaries of real patient data. That approach was dic-
tated by the desire to standardize system inputs and outputs for purposes
of multisystem use. The primary goal of Berner et al. was to develop
methods and metrics that would characterize aspects of system perfor-
mance in a manner useful for rationally comparing different systems and
their functions. All of the systems in that study were capable of generating
questions to further refine the initial differential diagnoses, which is the
intended mode of clinical use for such systems. Because that study was not
intended to produce a definitive rating or comparison of the systems them-
selves, the involved systems were not placed in the hands of end users, nor
were the systems used in a manner to address common end-user needs.
Even though the evaluation did not examine this capability, the methods
used by Berner were sound. Generating a first-pass differential diagnosis is
a good initial step, but subsequent evidence gathering, reflection, and refine-
ment are required.

There are important questions that must be answered in the evaluation.
Are the problems ones that clinical users generate during clinical practice,
or artificial problems generated by the study design team? Is the case mate-
rial accurately based on actual patient cases? Note that there can be no truly
verifiable diagnosis when artificial, manually constructed or computer-
generated cases are used. Are the evaluation subjects clinical users whose
participation occurs in the clinical context of caring for the patients used as
“test cases?”Are clinical users evaluating abstracts of cases they have never
seen, or are nonclinical personnel evaluating abstracted clinical cases using
computer systems? Are users free to use all system components in whatever
manner they choose, or is it likely that the study design will constrain users
to exercise only limited components of the system? The answers to these
questions will determine the generalizability of the results of the evaluation.

Specification of Criteria for Determining Diagnostic Decision Support
Systems Efficacy in the Evaluation

Evaluations must determine if the criteria for “successful” system perfor-
mance are similar to what clinical practitioners would require during actual
practice. Diagnosis itself, or more properly, “diagnostic benefit,” must be
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defined in such contexts. Similarly, what it means to establish a diagnosis
must be carefully defined. For example, it is not adequate to accept hospi-
tal discharge diagnoses at face value as a “gold standard” since discharge
diagnoses are not of uniform quality—they have been documented to be
influenced by physician competency, coding errors, and economic pressures.
Furthermore, some discharge diagnoses may be “active” (undiagnosed at
admission and related to the patient’s reason for hospitalization), while
others may be relevant but inactive. Criteria for the establishment of a “gold
standard” diagnosis should be stated prospectively, before beginning data
collection.

Evaluation of the Boundaries or Limitations of the Diagnostic Decision
Support Systems

A system may fail when presented with cases outside its knowledge-base
domain, but if an evaluation uses only cases from within that domain, this
failure may never be identified.The limits of a system’s knowledge base are a
concern because patients do not accurately triage themselves to present to the
most appropriate specialists. For instance, as discussed earlier, de Dombal’s
abdominal pain system performed very well when used by surgeons to deter-
mine if patients presenting with abdominal pain required surgery.However,a
patient with atypical appendicitis may present to an internist, and a patient
with abdominal pain due to lead poisoning may first see a surgeon.

Identification of Potential Reasons for “Lack of System Effect”

DDSS operate within a system that not only includes the DDSS itself, but
also the user and the healthcare environment in which the user practices.
A model of all of the possible influences on the evaluation outcomes would
include DDSS-related factors (knowledge-base inadequacies, inadequate
synonyms within vocabularies, faulty algorithms, etc.), user-related factors
(lack of training or experience with the system, failure to use or understand
certain system functions, lack of medical knowledge or clinical expertise,
etc.) and external variables (lack of available gold standards, failure of
patients or clinicians to follow-up during study period). It is important to
recognize that studies that focus on one aspect of system function may have
to make compromises with respect to other system or user-related factors
in order to have an interpretable result. Additionally, in any DDSS evalu-
ation, the user’s ability to generate meaningful input into the system, and
the system’s ability to respond to variable quality of input from different
users, is an important concern.

Evaluations of DDSS must each take a standard objective (which may
be only one component of system function) and measure how effectively
the system enhances users’ performances, using a study design that incor-
porates the most appropriate and rigorous methodology relative to the
stage of system development. The ultimate clinical end user of a given
DDSS must determine if published evaluation studies examine the system’s
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function in the manner that the user intends to use it. This is analogous to
a practitioner determining if a given clinical trial (of an intervention) is rel-
evant to a specific patient by matching the given patient’s characteristics to
the study’s inclusion and exclusion criteria, population demographics, and
the patient’s tolerance for the proposed forms of therapy as compared to
alternatives. The reporting of an individual “negative study” of system per-
formance should not, as it often does now, carry the implication that the
system is globally suboptimal. A negative result for one system function
does not mean that, for the same system, some users cannot derive signifi-
cant benefits for other system functions. Similarly, complete evaluation of
a system over time should examine basic components (e.g., the knowledge
base, ability to generate reasonable differential diagnoses, ability to critique
diagnoses, and so on), as well as clinical functionality (e.g., can novice users,
after standard training, successfully employ the system to solve problems
that they might not otherwise solve as efficiently or completely?). The field
of DDSS evaluation will become mature only when clinical system users
regularly derive the same benefit from published DDSS evaluations as they
do from evaluations of more standard clinical interventions.

Diagnostic Decision Support Systems Interface and
Vocabulary Issues
A critical issue for the success of large-scale, generic DDSS is their environ-
ment.Small, limited,“niche”systems may be adopted and used by the focused
community for which they are intended, while physicians in general medical
practice, for whom the large-scale systems are intended, may not perceive 
the need for diagnostic assistance on a frequent enough basis to justify pur-
chase of one or more such systems. Therefore, it is common wisdom that
DDSS are most likely to succeed if they can be integrated into a clinical envi-
ronment so that patient data capture is already performed by automated 
laboratory and/or hospital information systems. In such an environment, the
physician will not have to manually enter all of a patient’s data in order to
obtain a diagnostic consultation.However,it is not straightforward to transfer
the information on a patient from a hospital information system to a diagnos-
tic consultation system. If 100 hematocrits were measured during a patient’s
admission, which one(s) should be transferred to the consultation system—
the mean, the extremes, or the value typical for a given time in a patient’s
illness? Should all findings be transferred to the consultation system, or only
those findings relevant to the patient’s current illness? These questions must
be resolved by careful study before one can expect to obtain patient consulta-
tions routinely and automatically within the context of a hospital information
system.Another reason for providing an integrated environment is that users
will not use a system unless it is sufficiently convenient to do so.By integrating
DDSS into healthcare provider results reporting and order entry systems,
the usual computer-free workflow processes of the clinician can be replaced
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with an environment conducive to accomplishing a number of computer-
assisted clinical tasks,making it more likely that a DDSS will be used.

Interfaces between automated systems are, at times, as important as the
man-machine interface. Fundamental questions, such as the definition of
diseases and of findings, limit our ability to combine data from the litera-
ture, from clinical databanks, from hospital information systems, and from
individual experts’ experiences in order to create DDSS. Similar problems
exist when trying to match the records from a given case (collected manu-
ally or taken from an electronic medical record) with a computer-based
diagnostic system. A diagnostic system may embody different definitions
for patient descriptors than those of the physician who evaluated the
patient, even though the words used by each may be identical.

In order to facilitate data exchange among local and remote programs, it
is mandatory to have a lexicon or interlingua which facilitates accurate and
reliable transfer of information among systems that have different internal
vocabularies (data dictionaries). The United States National Library of
Medicine Unified Medical Language System (UMLS) project, which
started in 1987 and continues through the present time, represents one such
effort.71

Legal and Ethical Issues
Proposals have been made for governmental agencies, such as the United
States Food and Drug Administration (FDA), which oversees medical
devices, to regulate use of clinical software programs such as DDSS. These
proposals include a variety of recommendations that manufacturers of such
systems would be required to perform to guarantee that the systems would
function per specifications.

There is debate about whether these consultation systems are actually
devices in the same sense as other regulatable devices. In the past, govern-
mental regulation has not been considered necessary when a licensed prac-
titioner is the user of a DDSS.72 It would be both costly and difficult for the
government to regulate DDSS more directly, even if a decision were made
to do so. For general DDSS programs like Iliad, QMR, Meditel and
DXplain, with hundreds to thousands of possible diagnoses represented in
their knowledge bases,70 conducting prospective clinical trials, to demon-
strate that the system worked for all ranges of diagnostic difficulty for a
variety of patients with each diagnosis, would require enrollment of huge
numbers of patients and would cost millions of dollars.

Other approaches, such as a “software quality audit” to determine,
prospectively, if a given software product has flaws, would also be clinically
impractical. The clinician seeking help may have any of several dozen kinds
of diagnostic problems in any given case. Unless it is known, for a given
case, which kind of problem the practitioner will have, performing a soft-
ware quality audit could not predict if the system would be useful.
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Consider the dilemma the FDA or other responsible regulatory agency
would face if it agreed to review situations when a user files a complaint.
First, one must note that few patients undergo definitive enough diagnos-
tic evaluations to make it possible to have a “gold standard” (certain) diag-
nosis. So if the doctor claims the program was wrong, a major question
would be how governmental auditors would know what the actual “right”
diagnosis was. Second, the reviewers would need to know all of the infor-
mation that was knowable about the patient at the time the disputed diag-
nosis was offered.This could potentially violate patient confidentiality if the
records were sent to outsiders for review. All sources of information about
the patient would have to be audited, and this could become as difficult as
evidence gathering in a malpractice trial. To complete the sort of audit
described, the governmental agency would have to determine if the user
had been appropriately trained and if the user used the program correctly.
Unless the program had an internally stored complete audit trail of each
session (down to the level of saving each keystroke the user typed), the
auditors might never be able to recreate the session in question. Also, the
auditors would have to study whether the program’s knowledge base was
appropriate. Initial development of the R-QMR knowledge base at the Uni-
versity of Pittsburgh required an average of three person-weeks of a clini-
cian’s time, which went into literature review of 50–150 primary articles
about each disease, with additional time for synthesis and testing against
cases of real patients with the disease. For an auditor to hire the required
expertise to review this process for hundreds to thousands of diseases for
each of the programs that it would have to review and subsequently
monitor would be costly and cumbersome. The ultimate question, very dif-
ficult to answer, would be whether the original user in the case in question
used the system in the best way possible for the given case. Making such a
determination would require the governmental agency to become expert in
the use of each DDSS program. This could take up to several months of
training and practice for a single auditor to become facile in the use of a
single system. It would be difficult for a governmental agency to muster the
necessary resources for even a small number of such complaints, let alone
nationwide for multiple products with thousands of users. The complexity
of these issues makes it very difficult to formulate appropriate regulatory
policy. In addition to legal issues concerning regulation, there are other legal
and ethical issues relating to use of DDSS that are discussed in Chapter 6.

The Future of Diagnostic Decision Support Systems

It is relatively safe to predict that specialized, focused DDSS will prolifer-
ate, and a sizable number of them will find widespread application.1 As new
medical devices are developed and older devices automated, DDSS 
software that enhances the performance of the device, or helps users to
interpret the output of the device, will become essential. Computerized
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electrocardiogram (EKG) analysis, automated arterial blood gas interpre-
tation, automated protein electrophoresis reports, and automated differen-
tial blood cell counters, are but a few examples of such success at the present
time. In fact, since Miller published an article summarizing past DDSS activ-
ities in 1994,1 the great majority of the several dozen articles on “diagnosis,
computer-assisted” indexed in MEDLINE have described focused systems
for the interpretation of images (radiological studies and pathology cytol-
ogy/sections/slides), signals (EKGs, electroencephalograms (EEGs), and so
on), and diagnosis of very narrowly defined clinical conditions. One by-
product of the success of these systems is that users may be less vigilant in
questioning system accuracy. In a recent article,Tsai and colleagues pointed
out the potential clinical dangers of overreliance of inexpert clinicians on
computer systems for advice—they tend to follow the advice even when it
is wrong.73

The future of large-scale, “generic” diagnostic systems is hopeful,
although less certain. As discussed in this and other chapters, a number of
major challenges remain to be solved before DDSS that address large
medical problem domains can succeed over time. No matter what the level
of use of large-scale, generic DDSS in clinical practice, it is well established
that such systems can play a valuable role in medical education.1 The
process of knowledge-base construction, utilization of such knowledge
bases for medical education in the form of patient case simulations, and the
use of DDSS have all been shown to be of educational value in a variety
of institutional settings.

One exception to the overwhelming recent trend of developing focal
DDSS has been the development of the ISABEL system for general diag-
nosis.74–78 Berner discussed the implications of evaluating DDSS using less
than absolute gold standards, as was proposed by the ISABEL team, in a
well balanced perspective covering “correctness” of diagnosis, “appropri-
ateness” of management suggestions, end-user acceptance and satisfaction,
degree of adoption and use of a DDSS, and issues related to human-
computer system interfaces.79

In summary, the future of DDSS appears to be promising. The number
of researchers in the field is growing. The diversity of DDSS is increasing.
The number of commercial enterprises interested in DDSS is expanding.
Rapid improvements in computer technology continue to be made. A
growing demand for cost-effective clinical information management, and
the desire for better health care, is sweeping the United States.80 Evidence-
based medicine is now in vogue. All these factors will insure that new and
productive DDSS applications will be developed, evaluated, and used.
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6
Ethical and Legal Issues in 
Decision Support

Kenneth W. Goodman

Discrete maladies or illnesses tend to produce particular signs and symp-
toms. This natural correlation makes possible the process of diagnosis and
prognosis. In fact, so strong is our belief in the regularity of signs and symp-
toms that the process has long been regarded as straightforward, if not easy:
“. . . there is nothing remarkable,” Hippocrates suggested some 2,400 years
ago, “in being right in the great majority of cases in the same district, pro-
vided the physician knows the signs and can draw the correct conclusions
from them”.1

Of course, accurate diagnosis and prognosis can be quite difficult, even
given the regularity of signs and symptoms. For one thing, “knowing the
signs” requires a great deal of empirical knowledge and experience. For
another, there is rarely a unique and isomorphic relationship between
symptom and disease. Significantly, Hippocrates smuggles into his account
a presumption of the very thing being described. To say that being right is
unremarkable when one can draw the “correct conclusions” is to say that
it is easy to be right when you know how to be right. Or, making an accu-
rate diagnosis or prognosis is easy if one knows how to make an accurate
diagnosis or prognosis!

The need to make accurate diagnoses is not based merely on the per-
sonal satisfaction that comes from being right, as gratifying as that is. It is
based on the good effects that follow more frequently from accurate diag-
noses than from inaccurate diagnoses. It is also based on the bad effects
that error entails.

In the context of trust and vulnerability that shape patient-physician and
patient-nurse encounters, there emerges an ethical imperative: to adhere to,
or surpass, educational and professional standards, to monitor changes in
one’s domain, to know when one is out of one’s depth. Decision support
systems have the potential to assist clinicians, but their use also entails a
number of ethical concerns. In fact, this is evidence for the maturity of the
science: new health technologies almost always raise ethical issues, and it
should come as no surprise that clinical decision support would provide a
number of challenges for those who use, or would use, computers to assist,
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guide or test clinical decisions. Any comprehensive treatment of clinical
decision support systems (CDSS) should include a review of ethical issues.
In what follows, we identify a number of ethical issues and positions that
emerge when intelligent machines are used to perform or support clinical
decision making, and we survey key legal and regulatory issues.

Ethical Issues

Background and Current Research
It has been clear for more than a decade that health computing raises inter-
esting and important ethical issues. In a crucial early contribution, a physi-
cian, a philosopher, and a lawyer identified a series of ethical concerns, not
the least of which are several surrounding the questions of who should use
a “medical computer program” and under what circumstances.2 Another
early contribution emphasized the challenges raised by threats to physician
autonomy.3

What has emerged since has been called the “Standard View” of com-
putational diagnosis.4 Randolph A. Miller, M.D., a key figure both in the
scientific evolution of computational decision support and in scholarship on
correlate ethical issues, has argued that “Limitations in man-machine inter-
faces, and, more importantly, in automated systems’ ability to represent the
broad variety of concepts relevant to clinical medicine, will prevent ‘human-
assisted computer diagnosis’ from being feasible for decades, if it is at all
possible.”4 Another way of putting this is to say that computers cannot,
either in principle or at least for the foreseeable future, supplant human
decision makers. This observation entails ethical obligations, namely that
computers ought not to be relied on to do what humans do best, and that
a “computer diagnosis” cannot, as a matter of course or policy, be allowed
to trump a human decision or diagnosis.

Happily, the Standard View has been advanced not by those hostile to
the development and use of CDSS, but by leading proponents. The Stan-
dard View bespeaks a conservative and cautious approach to applications
of a new technology, and, as such, captures important moral intuitions about
technological change, risks, and standards.

Interest in the three-way intersection of ethics, medicine, and computing
has increased significantly since initial efforts to explore these issues. On
the one hand, professional societies such as the American Association for
the Advancement of Science, the American College of Physicians and the
American Medical Informatics Association have encouraged educational
programs and other professional activities. On the other hand, the litera-
ture exploring this intersection has progressed significantly, and now
includes the first book devoted to the topic.5

Three core areas of ethical concern have emerged in discussions of 
computer systems that are used to remind, consult, or advise clinicians:
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(1) care standards; (2) appropriate use and users; and (3) professional 
relationships.6

Care Standards
We know a great deal about responsibility in medicine and nursing. For
instance, we know that practitioners should generally not deceive their
patients. We know that patients can be especially vulnerable, and that such
vulnerability should be respected. And we know that physicians and nurses
have a responsibility to do their best, irrespective of economic (dis)incen-
tives, and that they should not attempt treatments that are beyond their
training or expertise.

Learning how to meet these and other responsibilities in the context of
a broad variety of social problems is arguably the leading task in bioethics.
We must first ask whether computing tools help or hinder attempts to 
meet responsibilities, and, second, whether the tools impose new or special
responsibilities. The overarching question may be put thus: does the 
new technology improve patient care? If the answer is affirmative, we 
may suppose we have met an important responsibility. If the answer is 
negative, it seems clear we should not use the new technology. The 
problem is, we often do not know how to answer the question. That is, we
are sometimes unsure whether care will be improved by the use of new
technologies. If we want to meet the responsibility to avoid harm, for
instance, we are impotent until we can determine the effects of the tech-
nology (see Chapter 7).The upshot here is that error avoidance is an ethical
imperative, both to maximize positive, short-term consequences and to
ensure that, in the long run, informatics is not associated with error or care-
lessness, or the kind of cavalier stance sometimes associated with high-tech
boosterism.

The concept of error avoidance is wed to that of a standard of care. Stan-
dards evolve in the health professions because they plot the kinds of actions
that are most successful in achieving certain ends.To fail to adhere to a stan-
dard is thus to increase the risk of error, at least in a mature science. Because
errors or their consequences are generally regarded as harms or evils, the
obligation to hew to standards is an ethical one.

But standards are empirical constructs, and so are open to revision. New
evidence forces changes in standards. (This demonstrates why clinicians
have an ethical obligation to monitor the scientific maturation of their dis-
ciplines by reading journals, attending conferences, etc.) To be sure, the
precise content of any standard might be open to dispute. The “reasonable
person” standard requires the postulation of a vague entity; this is particu-
larly problematic when reasonable people disagree, as is often the case in
medicine and nursing. A “community standard” similarly fails to identify a
bright line between error and success in all circumstances in which it might
be invoked. Note also that it is not always bad to forgo adherence to a 
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practice standard—the standard will generally be invoked in ethical and
legal contexts only when there is a bad outcome, or a flagrant disregard for
the risk of a bad outcome. Sometimes there are good reasons to violate a
standard.This demonstrates how some clinical progress is possible: if every-
one in all cases stuck to a rigid standard, there would be no internal evi-
dence to support modifications of the standard. In other cases, standards
are modified as a result of clinical trial findings, observational studies, and
serendipitous discoveries.

In the case of computer-assisted diagnoses, the challenge is perhaps best
put in the form of a question: does use of a decision support system increase
the risk of error? Note in this regard the following three points. First, while
accurate diagnosis is often linked to optimal treatment, this is not always
the case: some patients are treated appropriately despite an inaccurate diag-
nosis, and some are treated incorrectly despite an accurate diagnosis.
Second, one might still be able to provide an optimal treatment with a vague
or imprecise diagnosis.7 Third, computers can render diagnoses (or perform
diagnosis-like functions) outside of clinical contexts, as, for instance, in tests
for blood-borne pathogens,8 cytology screens,9 and the like.

To ask if a computer diagnosis increases (or decreases) the risk of diag-
nostic or other error is in part to ask whether it will improve patient care.
If the answer is that, on balance, the tool increases (the risk of) diagnostic
error, then we should say it would be unethical to use it. Significantly,
though, what is sought here is an empirical finding or a reasoned judg-
ment—where such a finding is often lacking or even methodologically hard
to come by, or where such a judgment is based on inadequate epistemic
support, at least according to standards otherwise demanded to justify clin-
ical decisions.

This means that we are pressed to answer an ethical question (is it accept-
able to use a decision support system?) in a context of scientific uncertainty
(how accurate is the system?). Many challenges in contemporary bioethics
share this feature, namely, that moral uncertainty parallels scientific or clin-
ical ignorance.

What we generally want in such cases is a way to stimulate the appro-
priate use of new technologies without increasing patient risk. One
approach to doing this is given the nearly oxymoronic term “progressive
caution.” The idea is this: “Medical informatics is, happily, here to stay, but
users and society have extensive responsibilities to ensure that we use our
tools appropriately.This might cause us to move more deliberately or slowly
than some would like. Ethically speaking, that is just too bad.”10 Such a
stance attempts the ethical optimization of decision-support use and devel-
opment by encouraging expansion of the field, but with appropriate levels
of scrutiny, ovesight, and, indeed, caution.

The moral imperative of error avoidance is, in other words, not antipro-
gressive. Rather, it is part of a large and public network of checks and bal-
ances that seeks to optimize good outcomes by regulating conflicts between
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boosters and naysayers. The idea of progressive caution is an attempt to
capture the core values of that regulation.

It has been clear since the first efforts to address ethical issues in 
medical informatics that as computers help the sciences of medicine and
nursing to progress, they will also contribute to changes in the standard of
patient care. When that happens, however, it increases the likelihood that
computer use will come to be required of clinicians. Put differently, in a
comparatively short time, there has been a major shift in the availability
and use of informatics tools.To the degree that informatics can improve the
practice of the health professions, there is a requirement that its tools be
used.

This point is often the most disturbing for practitioners. It is troublesome
that one might have an obligation to use a tool that has been presented as
controversial and in need of further validation. But there is no contradic-
tion here. In fact, it appears that the rise of medical informatics parallels
the emergence of other exciting and controversial tools, ranging from organ
transplantation techniques and advanced life support to laparoscopic sur-
gical procedures and genetic testing and therapy. It is often the case in
history that progress involves this tension. What is wanted is evidence that
people of good will can both advance science and safeguard against abuses.
Research studies that examine not just the accuracy of the systems, but how
they are used, are crucial to collecting that evidence.

Appropriate Use and Users
One way to abuse a tool is to use it for purposes for which it is not 
intended. Another is to use a tool without adequate training. A third way
is to use a tool incorrectly (carelessly, sloppily, etc.) independently of other
shortcomings.

There are a number of reasons why one should not use tools in unin-
tended contexts. First, a tool designed for one purpose has a greater likeli-
hood of not working, or not working well, for other purposes. To be sure,
one might successfully perform an appendectomy with a kitchen knife, or
dice vegetables with a scalpel, but it is bizarre to suggest that one should
try either, except in an emergency.A medical computer system may be used
inappropriately if, for instance, it was designed for educational purposes but
relied on for clinical decision support; or developed for modest decision
support (identifying a number of differential diagnoses) but used in such a
way as to cause a practitioner to abandon a diagnosis arrived at by sound
clinical methods.

In ethically optimizing the use of CDSS, it is perhaps reassuring to know
that we have many models and precedents. From advanced life support and
organ transplantation to developments in pharmacotherapy and genetics,
society regularly has had to cope with technological change in the health
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sciences. Managing change requires that new tools are used appropriately
and by adequately qualified practitioners. Education is at the core of such
management.

Identifying qualifications and providing training must be key components
of any movement to expand the use of decision support software. Ethical
concerns arise when we are unsure of the appropriate or adequate qualifi-
cations and levels of training.6

The fear is that: (1) a healthcare novice, or (2) a healthcare professional
ignorant of a system’s design or capacity will use a decision support system
in patient care.The reason the former is worthy of concern is that, as above,
the practice of medicine and nursing remain human activities. A nonphysi-
cian or nonnurse cannot practice medicine or nursing, no matter how much
computational support is available. This is also a concern in the context of
consumer health informatics, or the widespread availability of online health
advice to the untrained (see Chapter 11).What this means is that the novice
might not know when the system is in error or producing flawed output,
when it is operating on insufficient information, when it is being used in a
domain for which it was not designed, and so on.

There are several reasons we must also focus ethical attention on the use
of decision support software by computationally naive health profession-
als. Such professionals might not use such software to good effect (either
by over- or underestimating its abilities), might not be using it properly, or,
like the novice, might not know when the system is being used in inappro-
priate contexts.

Such fears can be addressed by requirements that users of CDSS have
appropriate qualifications and be adequately trained in the use of the
systems. Unfortunately, it is not yet clear what those qualifications should
be or how extensive a training program would be adequate. It is clear,
however, that the use of diagnostic software cannot, in the long run, advance
ethically without a better sense of where to establish guideposts for quali-
fications and training.This will be an increasingly important area of research
in coming years.

A further ethical concern about appropriate use and users emerges from
the potential to deploy decision support systems in contexts of practice
evaluation, quality assessment, reimbursement for professional services,
and the like. One can imagine an insurance company or managed care orga-
nization using decision support to evaluate, or even challenge, clinical deci-
sions. What makes such use problematic is precisely the same ensemble of
concerns that led us to disdain applications in other contexts: the primacy
of human cognitive expertise, uncertainty about adequate qualifications,
and doubt about the consequences for improved patient care. This is not to
say that a machine cannot give a correct answer in a particular case but,
rather, that there are inadequate grounds to prefer machine decisions as a
matter of general policy.
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Professional Relationships

Many patients believe, mistakenly, that their physicians are omniscient.
Many physicians believe, mistakenly, that their patients are ignoramuses.
Recognition of these mistakes has led, in recent years, to the development
of the idea of “shared decision making,” namely, that patients and providers
are most productively seen as partners.11 If this is so, and there is much to
recommend it in many (though not all) instances, then we need to assess
the effect of a third partner—the computer.

There are two overriding areas of ethical concern here. The first is that
the computer will create conceptual or interpersonal distance between
provider and patient. Communicating about uncertainty, especially when
the stakes are high, has long been a challenge for clinicians. That a com-
puter might be used to (help) render a diagnosis causes us to run the risk
of what we will call the “computational fallacy.” This is the view that what
comes out of a computer is somehow more valid, accurate, or reliable than
human output. Providers and patients who take such a view introduce a
potentially erosive, if not destructive, element into shared decision-making
contexts. Anything that increases the likelihood that a patient decision or
choice will be perceived as misguided or stupid adds to the problem that
shared decision making was supposed to solve.

Now, it might be supposed that the physician or nurse can eliminate at
least some of this tension by not disclosing to a patient that decision support
software was used in his or her case. But this introduces our second area of
ethical concern, namely, the question whether patients should be given this
information. The answer to this question must be determined against a
background shaped by: (1) patient sophistication and understanding of
medical and statistical information, and (2) clinician sophistication and
understanding of communication approaches and strategies. In any case, it
is inappropriate to use computer data or inferences to trump hesitant
patients, or bully them into agreeing with a health professional.12

This point has been made most clearly in the discussion of prognostic
scoring systems, or software used in critical care medicine in part to predict
patient mortality. On the one hand, patients with poor prognoses might still
benefit from extensive interventions, and these benefits might be important
enough for the patient and/or family to seek them; on the other hand,
patients with good survival odds might judge the prolongation of life to be
of little value when weighed against the difficulty or burden of extensive
interventions.13

A related issue is likely to arise with increased frequency as patients 
gain access to decision support software and use it to make demands on
physicians, or at least to challenge or second-guess them. The difficulties
raised by these demands and challenges will multiply as these systems 
improve. As discussed in Chapter 11, there is a sense in which one might
regard such access as an important tool in the process of shared decision
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making: it will not do to expect patients to become involved in their own
care and simultaneously constrain their sources of information. Contrarily,
a patient might constitute a paradigm case of an inappropriate decision
support system user, especially in those cases in which the system causes
someone to forgo appropriate medical care.

We might compare patient use of clinical decision support systems to
patient use of medical texts and journals. In years past, there was an incli-
nation to regard such access as risky and hence inappropriate. While a little
knowledge can be dangerous, a position that does not go beyond such a
view seems to miss an opportunity to educate patients about their illnesses
and the relation between medical literature on the one hand, and medical
knowledge and practice on the other. Much the same point can be made
about patient use of diagnostic tools: a physician should respond to such
use by making clear that computers are not surrogates for health profes-
sionals and that the practice of medicine or nursing entails far more than
statistical induction from signs, symptoms, and lab values. To be sure, it
would be well if actual practice embodied this insight.

As long as the healing professions are practiced in a matrix of scientific
uncertainty and patient values, we err if we appoint computational decision
support as a surrogate for compassionate communication, shared decisions,
and quality care by competent humans.

Legal and Regulatory Issues

Computers and software raise conceptually fascinating and important prac-
tical questions about responsibility and liability. Further, the question of
whether a decision-support system is a medical device needing govern-
mental regulation is a source of tension and debate. In both domains, sci-
entists, clinicians, philosophers, lawyers, and government and policy officials
must grapple with a variety of knotty problems.

The intersection of medicine, computational decision support, and law,
has been addressed mostly in speculative terms. The use of CDSS is not
widespread enough to have stimulated legislation or illuminating prece-
dent. Moreover, medicine and computing share little in the way of a
common legal history. The following observation is as apt today as it was
more than twenty years ago:

“The introduction of computerized decision making will require the merger of com-
puter science and medical care; two areas with fundamentally different legal tradi-
tions. The legal differences between the computer field and medicine are striking.
Medicine is tightly regulated at all levels. Most health-care providers are licensed,
and a rigid hierarchical system is the norm. Yet computer systems and companies
are created in a totally unregulated competitive environment in which “software
piracy” is common, standardization is in its infancy, licensing is a method of trans-
ferring trade secret software, and companies begin in garages.”14
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Liability and Decision Support

The overriding legal issue related to computational decision support is lia-
bility for use, misuse, or even lack of use of a computer to make or assist
in rendering medical decisions.15–18 In the United States, tort law holds
providers of goods and services accountable for injuries sustained by users.
Because of legal and regulatory variation, there are similarities and differ-
ences in other countries.19–21 Such accountability is addressed by either the
negligence standard or the strict liability standard.

The negligence standard applies to services, and strict liability applies to
goods or products, although negligence can sometimes also apply to goods,
as in cases of negligent product design.There is no consensus about whether
decision-support systems are services or products, in part because these
systems have properties that resemble both services and products.2,14–15,22–23

For instance, a physician’s diagnosis is clearly a service, and any liability for
erroneous diagnoses is judged by the negligence standard. If a human diag-
nosis is considered a service, then, it is argued, a computer diagnosis (or the
task of writing the computer code that rendered the diagnosis) should have
the same status. Contrarily, commercial CDSS are manufactured, mass-
marketed, and sold like entities uncontroversially regarded to be products.

An additional complication is that these systems are sold to hospitals,
physicians, patients, and others, and, indeed, are now available on the World
Wide Web. If a patient is injured by a defective system, it remains to be
determined who used the system (the physician? the patient?) and whether
it was misused. Also, it can be exquisitely difficult to identify the defect in
a computer program,15 as well as to answer the important question as to
whether a physician could have intervened and prevented the application
of mistaken advice.2

Neither is there a clear standard of care for use of decision-support soft-
ware by clinicians. Physicians or nurses might someday be found negligent
either for accepting a mistaken computer diagnosis or, having erred in diag-
nosis themselves, for failing to have used a decision-support system that
might have proved corrective. In either case, the determination of negli-
gence will have to be weighed against prevailing community or reasonable-
person standards. As with other areas of practice, errors will increase
liability accordingly as the practitioner is seen to have fallen behind, or
moved too far ahead of, such standards.

There is a clear need for additional conceptual analysis to assist the law
in sorting out these puzzles. Local trial courts and juries will often be out
of their depth if called on to adjudicate liability claims that challenge fun-
damental conceptions of responsibility, accountability, and blame. Similar
difficulties arise in other areas, such as in the intellectual property arena,
when there is a need to determine whether computer software is an inven-
tion or a work of art. In one interesting approach to these questions, Prof.
John Snapper attempts an account of responsibility that will not impede the
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future—and presumably salutary—development of mechanical decision
support. On this account, the attribution of responsibility and duty to com-
puters for certain actions will maximize the good that will result from
increased use of improved decision-support systems.24 The idea is that use
of conceptually inadequate legal tools to punish system designers, owners,
and users, might have a chilling effect on the evolution of decision-support
technology. Spreading responsibility around, and including computers as
agents to which responsibility may be assigned, is said to offer the poten-
tial of stimulating system design and the benefits this would entail.

This much is clear: physicians and nurses who revile and disdain com-
puters will be ignorant of machines that can, in principle, improve their
practice and, hence, patient care. Zealots who take computers to constitute
adequate or even superior human surrogates will have lost touch with the
human foundations of their profession. At either extreme, the risk is high
of falling outside emerging standards. This is a mistake—in ethics and 
at law.

Regulation of Decision-Support Software
While the history of governmental regulation of healthcare products is
traceable to the Pure Food and Drug Acts of 1906, the regulation of medical
devices was not formalized until the Federal Food, Drug, and Cosmetic Act
of 1938.There, medical devices were defined as “instruments, apparatus, and
contrivances, including their components, parts, and accessories intended:
(1) for use in diagnosis, cure, mitigation, treatment, or prevention of dis-
eases in man or other animals; or (2) to affect the structure or any function
of the body of man or other animals.”25–26 In 1976, motivated by the
increased complexity of devices and by reports of some devices’ shortcom-
ings and failures, Congress approved comprehensive Medical Device
Amendments to the 1938 regulations; the amendments were to “ensure that
new devices were safe and effective before they were marketed.”27–28 In
1990, a new regulation replaced that emphasis on premarket approvals with
an emphasis on postmarket surveillance.29 Proposals to regulate diagnostic
software have been evaluated against the 1976 and 1990 laws and a broad
array of draft policies and statements.

The U.S. Food and Drug Administration (FDA) unequivocally regards
medical software as a device. The FDA identifies four types of devices:

1. Educational and Bibliographic Software
Federal authorities regard the following as exempt from, or not falling
under, existing regulation:
• Software intended only for use in performing traditional “library”

functions, such as storage, retrieval, and dissemination of medical
information (i.e., functions that are traditionally carried out using
medical textbooks and journals).
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• Software intended only for use as general accounting or communica-
tions functions.

• Software solely intended for educational purposes, rather than to diag-
nose or treat patients.30

2. Software Components
Some software is incorporated into medical devices and is actively reg-
ulated. Examples include the software in:
• infusion pumps;
• pacemakers;
• ventilators;
• magnetic resonance imaging devices;
• diagnostic X-ray systems;
• clinical laboratory instruments;
• blood grouping instruments.30

3. Software Accessories
Software accessories are attached to, or used with, other devices, and as
such are also actively regulated. These include software for:
• radiation treatment planning;
• conversion of pacemaker telemetry data;
• conversion, transmission or storage of medical images;
• off-line analysis of EEG data;
• digital analysis and graphical presentation of EEG data;
• calculation of rate response for a cardiac pacemaker;
• perfusion calculations for cardiopulmonary bypass;
• calculation of bone fracture risk from bone densitometry data;
• statistical analysis of pulse oximetry data;
• calculation of refractive power of intraocular lenses.30

4. Stand-Alone Software
The most controversial class, stand-alone software, includes CDSS and
other decision support systems. Whether or how such systems should be
regulated is a matter of continuing debate. Examples include:
• blood bank software systems which control donor deferrals and

release of blood products;
• software designed to assist a healthcare practitioner in arriving at a

diagnosis of a particular patient;
• software which analyzes for potential therapeutic interventions for a

particular patient;
• software which records medical information for later recall, analysis,

or action by a healthcare practitioner (e.g., hospital information
systems, prescription ordering, drug interaction information systems,
emergency room triage software, and various calculators which auto-
mate calculations of drug doses).30

In 1989, an FDA draft policy proposed regulatory exemption for “Previ-
ously unclassified information management products . . . such as expert or
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knowledge-based systems, artificial intelligence, and other types of decision-
support systems intended to involve competent human intervention before
any impact on human health occurs.”31 The question then became whether
CDSS were intended to involve competent human intervention. This
remains an interesting and important policy—and conceptual—issue. In
Chapter 5, Miller and Geissbuhler examine some of the issues connected
with FDA regulation.

While the FDA regards software as a device, there are a number of
reasons why it might be best if medical decision-support software were not
subjected to thorough federal regulation. The most common arguments
against regulation include the following:

• Software is most accurately regarded as a mental construct or abstract
entity, i.e., the sort of thing not customarily falling within the FDA’s reg-
ulatory purview.

• Practitioners—not software—have traditionally been subjected to licens-
ing requirements.

• Software evolves rapidly and locally, and any sort of national software
monitoring is likely to be ineffective or impossible.

• Software is imperfect, and so improvement and refinement—not perfec-
tion—must be the standard to be striven for and met. Yet at law, strict
liability standards (usually applied to devices or goods but not services)
require perfection.

Several of these points could be in line with an influential stance held by
a former commissioner of the agency, namely that the FDA should “apply
the least regulation allowed to remain consistent with the requirements of
public health and safety.”32

The debate over medical software regulation represents one of the most
important controversies of the Computer Age. The balancing of risks and
benefits, as well as public safety and technological progress, means that 
scientists, clinicians, and policy makers have one of civilization’s most 
interesting—and challenging—tasks.

Conclusion and Future Directions

Clinicians, philosophers, lawyers, and policy makers have grappled for more
than a decade with social, ethical, and legal issues raised by the growth of
health informatics, perhaps especially by progress in development of tools
for clinical decision support. What has emerged is a recognition that future
scientific growth must be guided by corresponding attention to ethical
issues. These issues address the role of: error avoidance and standards;
appropriate use and users; and professional relationships. Scientific pro-
grams and publications may be regarded as duty-bound to foster environ-
ments in which further attention to ethical, legal, and social issues is
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encouraged. Indeed, to the extent that morality guides the law, vigorous
programs to identify and debate ethical issues will be of no small service to
society as legislatures, courts, and government regulators and policy makers
attempt to apply the insights of ethics to practical problems in health 
informatics.

More research on ethical issues involved in use of CDSS is essential for
this process. We have, for instance, only begun to address issues that arise
when diagnostic tools are made available on the World Wide Web. We are
in no way clear about the level of ethics education that is appropriate for
students in health informatics, and there is much work to be done at the
intersections of ethics and system evaluation, and of ethics and standards
of care.

Elsewhere in the history of science and technology, such challenges are
often taken to constitute evidence of the growth and maturation of an
applied science.This is no less true for clinical decision support systems and,
indeed, for all of health informatics.
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7
Clinical Trials of 
Information Interventions

E. Andrew Balas and Suzanne Austin Boren

When a clinical decision support system (CDSS) passes the test of accuracy
and is ready for clinical implementation, the need for replicable and 
generalizable measurement of practical impact emerges. It is increasingly
acknowledged that measurement of system performance and impact rep-
resents the research component of informatics projects, and that such eval-
uations should guide the development of decision support technologies.1,2

This chapter discusses the methodology for systematic evaluation of infor-
mation interventions. It provides a framework for designing appropriate
tests of the clinical impact of CDSS.

Several studies have demonstrated that computers are able to influence
the behavior of providers, management of patients, and outcome of health
care in many clinical areas.3–8 Unfortunately, claims for computerized
medical information systems seem to exceed the documented benefits.
Many predictions about the computer revolution have not been realized,
and the evidence arising from various clinical experiments is often contro-
versial.9–12 There is an increasing demand to provide convincing evidence of
the benefits of clinical information services.13–15

The Practical and Scientific Need for Clinical Testing

Few medical questions have been more controversial than the clinical use-
fulness of computer systems. Early on in the development of clinical com-
puting applications, it was suggested that the ability of computers to 
store information on patient history, physical findings, and laboratory 
data would assist in decision making, thereby freeing the physician to focus
on other aspects of clinical care.16 However, enthusiasm for the potential of
the computer as an intellectual tool eroded quickly. For example, some
studies indicated that a computer system for diagnosing abdominal pain
generated more accurate information and reduced perforation rate.17,18

Other studies concluded that the same system had no useful role in this
diagnosis.19,20
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Early computer system evaluations often assumed that more patient
information meant better patient care. However, evaluation of techniques
such as electronic fetal heart rate monitoring illustrate that this is not always
the case. In the early 1970s, the common perception was that continuous
heart rate monitoring can protect the fetus from prolonged intrauterine
oxygen deprivation.21,22 Subsequently, several controlled clinical trials failed
to demonstrate any clinical benefit of this technology.23–25

Evaluators of clinical computer applications have repeatedly criticized
insufficient demonstration of quality improvement. In a review of reports
on clinical computer systems, over 75% of 135 articles were anecdotal, and
only half of the remainder met basic scientific criteria for the conduct of
clinical trials.13 Piantadosi and Byar14 concluded that a basic shift is required
in how scientists view research concepts as opposed to research results;
the former are generally not considered proper objects for review or dis-
semination. Similar issues have been raised in other areas of health sciences.
For example, Tyson et al.26 conducted a review of therapeutic studies in 
perinatal medicine and found only 10% of the reports presented conclu-
sions of the investigators that were supported by the evidence they 
presented.

Some argue that medical information systems need not justify themselves
in terms of improved patient outcomes because these systems are designed
to influence primarily the providers of health care.27 Therefore, only the
change in the process of care has to be demonstrated (e.g., performance of
clinicians). This argument is acceptable when the process of care affected
has an obvious relationship to healthcare outcomes (e.g., certain cancer
screening procedures). However, there are numerous aspects of health care
for which the relationship between process and outcome is unclear (e.g.,
completeness of medical records).

Nevertheless, in order to compete for the resources of healthcare
providers, system developers have to demonstrate the relevance of their
computer programs to healthcare quality improvement and cost control.28

Medical practice involves a tremendous amount of information processing:
collecting patient data, sharing information with patients, decision making
in diagnostics and therapeutics, documenting care, communicating with
other healthcare professionals, and educating patients. Healthcare organi-
zations invest on average only 2.6% of their operating budget in informa-
tion technology, a marked contrast with the average 8% to 9% invested by
the banking industry.29 During the past decades, computer systems have
become active ingredients of health services, but the assessment of the new
information technology is still considered to be a controversial issue. Prac-
titioners interested in applying the new technologies need information on
the results of the clinical evaluation of computer systems.

The recurrent debate over healthcare reform and the intensive search for
cost-effective methods to improve patient care, repeatedly highlight the
need for adequate technology assessment of clinical information systems.
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Although early evaluation studies focused on the accuracy of information
generated by the computer system, newer studies tend to focus on differ-
ences in the process or outcome of care due to the computer system.
Although health care is clearly an information-intensive service, the clini-
cal value of computer applications is often questioned due to the lack of
demonstrated clinical benefits. As healthcare organizations are actively
searching for opportunities to improve their information systems through
purchase or development, the example set by systems on the market is very
important for practical and theoretical purposes as well.

Research Methods to Demonstrate Practical Impact

There is a growing demand for adequate technology assessment in the field
of medical informatics.13,14,30,31 Medical technology includes drugs, devices,
and procedures used in medical care, as well as the organizational and sup-
portive systems that provide such care. Technology assessment provides
practitioners with information on alternative techniques. The pioneering
report of Cochrane noted that many standard medical practices lack evi-
dence of effectiveness.32 Concerns of costs also stimulate efforts to assess
the practical value of not only new, but also established, technologies. Some
argue that the assessment of healthcare technologies should be an iterative
process and that there is a need to continuously reassess existing tech-
nologies by combining evidence from all reliable sources.32,33

As Berwick notes, Deming’s theory of continuous quality improvement
depends on understanding and revising the production processes on the
basis of data about the processes themselves.34 Likewise, quality improve-
ment efforts in health care depend on measurable quality objectives and
appropriate interventions and changes in the process. Particularly, ran-
domized controlled trials (RCTs) have direct relevance to healthcare
quality improvement as they become increasingly important sources of
information about the clinical value of various interventions (e.g., physician
and patient education,35 interventions to promote cancer screening,36 com-
puterized medical records,37 and home care after hospital discharge38).

The concept of demonstrating quality improvement by measurements is
accepted in the field of medical informatics. Clinical computer system
designers often use benchmark tests, surveys, and historical control com-
parisons to indicate the quality improvement resulting from the use of the
new system. However, benchmark tests only measure the technical perfor-
mance of the computer programs. They do not provide useful data on the
impact of the system on either the process or outcomes of care. On the other
hand, surveys of users’ opinions only provide indirect information about
the difference the system made in patient care.

Comparison with historical controls (before-after study) is a popular
method of evaluating clinical computer applications.The fact that computer
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systems are often connected to a patient database further encourages the
use of historical controls as a baseline for evaluation.39 Although they may
provide some useful information, analyses of databases or historical control
groups of patients cannot replace planned clinical experimentation.40 The
greatest concern in using historical controls is that there may be a con-
founding bias introduced by the different time periods. Definitions of
disease and diagnostic testing methods may change over time. In the data-
base, data may be missing either because they were lost or not recorded.
Furthermore, developing hypotheses after the collection of data often leads
to unplanned multiple comparisons.41 Excessive numbers of statistical 
tests can easily result in misleading statistical significance, but no practical
significance.

Randomized controlled clinical studies can provide the most valid infor-
mation about the efficacy of computerized information systems in patient
care.42 From 1985–1995, the number of randomized controlled clinical trials
testing computerized information interventions increased an average of
50% annually.42

A review of clinical trials of clinical decision support systems provides
strong evidence that some clinical decision support systems can improve
physician performance.43,44 However, the majority of studies assessing
patient outcomes did not demonstrate significant improvements. In addi-
tion, there have been very few controlled studies of CDSS, which have a
diagnostic, as opposed to a therapy focus.

User Satisfaction with Decision Support Systems

Measuring and managing users’ attitudes toward various aspects of infor-
mation systems is an important part of making computer systems success-
ful. No clinical computer system can be successful without gaining the
support of practitioners. The primary challenge of measurement is to find
an appropriate control for comparison. Ideally, satisfaction should be mea-
sured before and after the introduction of the new decision-support system,
and there should be an improvement in users’ satisfaction. However, it is
often challenging to develop a generic user-satisfaction instrument.

There are many complex beliefs, attitudes, and behaviors influencing
computer use among healthcare professionals. A critical success criterion
for how useful information systems are, is the way in which computer users
react to various aspects of the system. If overall satisfaction levels are high,
the user will adapt his/her activities to take advantage of the computer. The
user may not cooperate and may become antagonistic toward the system if
satisfaction is too low. Questionnaires or surveys are tools that can be used
to assess user attitudes. The particular significance of surveys is their ability
to measure the acceptance of the system and the satisfaction of the users.
However, a system must be used appropriately before its impact can be
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accurately measured. Inattention on the part of system developers to the
specific clinical needs of end users may result in system underutilization or
sabotage.45,46

Teach and Shortliffe47 found that physician attitudes regarding computer-
based clinical decision aids and a medical computing tutorial were gener-
ally favorable. Physician expectations about the effect of computer-assisted
consultation systems on medical practice were also positive, although there
were considerable differences among physicians. In addition, the tutorial
produced a substantial increase in knowledge about computing concepts
and a significant effect on physician demands.

Decision-support modules built into the Health Evaluation through
Logical Processes (HELP) system are described in more detail in Chapter
8. HELP is a clinical information system developed at LDS Hospital that
includes a computer-based patient record, alerts, reminders, and other deci-
sion-support aids. Gardner and Lundsgaarde measured the attitudes of
physicians and nurses who used the HELP system through a questionnaire
with fixed-choice questions supplemented with free-text comments.48 The
respondents did not feel that computerized decision support decreased
their decision-making power, nor did they feel that expert computer
systems would compromise patient privacy or lead to external monitoring.
The results of the survey indicated that experience with a system was the
best way to break down attitudinal barriers to the use of that system.
Although surveys and questionnaires can provide direct evidence of user
attitudes toward CDSS, they are only an indirect measure of the behavioral
impact of these systems.

Randomized Controlled Clinical Trials of 
Decision-Support Services

Because medical practice requires the efficient management of informa-
tion, providing information to physicians is increasingly recognized as a
clinical intervention designed to influence the process and/or outcome 
of patient care.40,49 The quality of care is expected to be improved by the
advanced methods of decision support. However, the benefits have to be
demonstrated by appropriately controlled clinical measurements.There are
many types of randomized clinical trials (e.g., parallel designs, factorial
designs, cross-over trials), but the basic principles are the same: prospective
and contemporaneous monitoring of the effect of a randomly allocated
intervention. It is widely accepted that clinical trials represent a design
superior to before-and-after studies (vulnerable to changes, over time, that
are unrelated to the effect of the intervention) or matched control studies
(a much less reliable method of obtaining comparable groups of subjects).
Today, drugs, surgical procedures, alternative care delivery techniques, and
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computerized decision-support services are evaluated in randomized con-
trolled trials. For example, Pozen et al.50 tested a predictive instrument to
reduce admissions to the coronary care unit. They found that the instru-
ment had the potential to reduce coronary care unit admissions by 250,000
for acute ischemic heart disease.

As necessary as RCTs are, they also have limitations. RCTs can test only
specific hypotheses about selected aspects of computer systems. For
instance, no single RCT can answer the question as to whether an integrated
hospital system is good or bad. Selected information systems can be good
for certain types of patients, indifferent for others, and only potentially
useful for a third group of patients. Experimental evaluations of clinical
computer applications (computer-assisted services) need to identify the
specific conditions to be treated, specific interventions to be tested, and spe-
cific outcome variables to be measured. If this is done, the results can be
specific, interpretable, and useful for practical purposes.

A surprisingly high proportion of trials are performed in outpatient facil-
ities, particularly in primary care, while relatively few trials evaluated hos-
pital information systems. This finding is in contrast to the large sums of
money spent on information systems for inpatient care.

Although clinical trials are rapidly gaining acceptance in technology
assessment, the methodology of such trials does not seem to be common
knowledge. Several techniques commonly used in drug trials are irrelevant
in testing computerized information interventions (e.g., blinding to the
intervention, placebo), while other aspects are more critical (e.g., detailed
description of sites, technical specification of intervention). The evaluated
effect can be either a change in the process of care (e.g., increased or
reduced use of certain drugs) or in the outcome of care (e.g., lower rate of
infections). A particular weakness of many trials of computer systems is the
lack of evaluation of patient outcome. It is certainly understandable that
many information service trials evaluate the effect on care processes, since
their main intent is to influence the process through the provision of accu-
rate and timely information. However, documenting decreased side effects
or other outcome measures, such as lower complication rates, could prob-
ably convince more clinicians as to their usefulness.

The setting in which the trial is conducted is critical to the representa-
tiveness of the trial. For example, the guidelines of the Nordic Council on
Medicines recommend that the selection of a site for the trial has to be
dependent on the potential risks involved to ensure satisfactory safety for
the subjects.51 It is a reasonable expectation that the site of a trial should
represent the actual settings where the intervention will ordinarily be
applied, otherwise, the generalization of the results are questionable. Many
RCTs have tested the effect of various interventions on the practice pat-
terns of residents in large academic centers. It is frequently assumed that
the effects will be identical when board certified physicians are subjected
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to the same intervention in a nonacademic environment, a hypothesis which
has never been evaluated.

In health services research, randomization often assigns patients to
groups through their healthcare providers. Major textbooks on clinical trials
describe a large variety of randomization techniques.52 The common feature
of these techniques is that the patient is the unit of randomization. In health
services research, it is often the provider who is directly targeted by the
intervention. Therefore, the provider should be the unit of randomization
and patients or encounters are randomized only through their providers.
Our studies documented that only one-third of the trials on computer
systems used an appropriate randomization technique.53 The use of
provider as a unit of randomization works well and could be more widely
used in health services research. However, the number of providers has to
be sufficient to ensure representativeness of not only the patient sample,
but also of the provider sample. It is difficult to accept trials that random-
ize through a small number of provider units (e.g., patients of one hospital
are in the study group while patients of another hospital are in the control
group). In most cases, trials that randomize through less than six provider
units should not be accepted as valid sources of evidence.

Columbia Registry of Medical Management Trials

Improving quality of care is not only a professional and ethical concern 
of physicians, but also the most important challenge facing a healthcare
organization today.34 Advanced computer techniques promise significant
improvement in the quality of care through increased use of appropriate
procedures and reduced use of unnecessary and potentially harmful pro-
cedures. Cochrane54 emphasized the need to summarize evidence derived
from randomized controlled trials as distinct from other kinds of evidence
and to organize critical summaries by specialty or subspecialty of all rele-
vant randomized controlled trials.

Various trial registries have been established in an attempt to improve
access to published reports. Many of these registries deal with perinatal
care, management for AIDS, or cancer treatment (e.g., the Oxford Perina-
tal Database,55 the AIDS Clinical Trials Information Service, and the
National Cancer Institute (NCI) Cancer Control Intervention Studies56).
Some review papers contain valuable bibliographies of clinical trials.57

However, clinical trials testing medical management interventions, a broad
area critical to health-care quality improvement and cost control, have not
been the focus of any known registry.

The purpose of organizing the Columbia Registry of Medical Manage-
ment Trials is to support practitioners and researchers with the best avail-
able controlled evidence on the practical value of clinical interventions
changing the delivery of health services. The registry is used to facilitate
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access through improved MEDLINE indexing, to develop meta-analyses
and reviews, and to analyze the trial methodology in health services
research. Examples of the interventions within the scope of our registry
include patient education, reminders/prompts, feedback, computer-aided
diagnosis-making, and computerized records. There are approximately
1,800 reports on randomized controlled trials in the registry.

Specific eligibility criteria have been developed for inclusion/exclusion of
reports in the Columbia Registry of Medical Management Trials.The design
of the report is the first aspect evaluated. The study must be a prospective,
contemporaneously controlled clinical trial with random assignment of
intervention. Trials using allocation systems similar to a random number
table (e.g., alternating encounters, alternating days of the week) are also eli-
gible. Reports that do not meet this basic criterion (e.g., nonrandomized
trial groups, review articles) are not included in the registry. Second, there
should be an information management intervention in the study group with
no similar intervention in the control group. Often, the control group simply
receives the current standard of care, as compared with the experimental
intervention used in the trial. The third criterion is that the effect of the
intervention on the process and/or outcome of patient care must be mea-
sured. Planned or ongoing trials are not included in the registry because
they do not meet this criterion.

The Columbia Registry of Medical Management Trials serves as a valu-
able resource for information system developers and practitioners by sys-
tematically collecting and rearranging the knowledge from these trials into
a format that can be used by practitioners and others making healthcare
decisions. This knowledge engineering is accomplished in several steps.
First, the trials are located by using a systematic approach to search
MEDLINE, which is likely to outperform conventional searches. Each
search consists of a study design concept and an intervention or effect
concept. The study design concept is the same for each search and includes
the following terms: random (truncated textword), group (truncated
textword), random allocation (textword and MeSH), randomized con-
trolled trial (publication type) and clinical trial (publication type). The
intervention or effect concept changes depending on specific interventions
or effects. Subsequently, critical information is abstracted from the regis-
tered trials, and the practical messages of such studies are made available
to those who need them.The same executive summary can be used to imple-
ment organizational changes, further healthcare quality improvement,
conduct meta-analyses, or write literature reviews.

Several studies documented that, regardless of the complexity of the
search process, some eligible reports will remain unretrieved. Therefore,
clinical trial registries grow not only through the inclusion of new publica-
tions, but also through the discovery of eligible studies published earlier.
The developers of the Oxford Perinatal Database also noted that there is
no “gold standard” available to judge the completeness of a registry.55
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The synthesis of trial results helps the identification of most effective
information services. Table 7.1 shows the percentages of positive trials 
for different types of information interventions that are included in the 
registry.

The number of randomized controlled trials as the ultimate evidence on
the practical difference made by a specific intervention is rapidly expand-
ing. Meta-analysis is the use of statistical techniques to integrate results of
separate, but similar, clinical trials. Instead of providing a qualitative assess-
ment of a few studies, meta-analysis promises a systematic and quantitative
synthesis of all available studies. Systematic collection procedures are
designed to avoid the well known deficiencies of the conventional “pick-
and-choose” approach.58

Research synthesis of evidence from several randomized controlled clin-
ical trials always raises the question of clinical efficacy. Vote-counting is an
established method of expressing the success rate of a particular interven-
tion.59 When the number of successful trials is very high in a particular cat-
egory, then the intervention is likely to make a difference. The particular
advantage of vote-counting is that information on the success or failure of
the intervention is available from virtually all trial reports. Obviously, vote-
counting does not consider the magnitude of effect. Primary research
reports not providing enough information to calculate effect size estimates
usually contain information about the direction of the effect. On the other
hand, meta-analyses using the popular odds-ratio methods can specify the
magnitude of the effect, and are likely to discover additional categories of
effective interventions.

Diversity, a frequent concern in research synthesis, can be an advantage
as well as a disadvantage. Trials pooled together are always somewhat 
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Table 7.1. Information intervention categories.
Number of Reports 

Information Intervention Categories (% Positive)

Patient Focus
Computer-assisted interactive patient education, instruction 19 (74)

and therapy
Patient prompt/reminder 15 (80)
Patient-computer interactive information gathering 2 (100)

Provider Focus
Provider prompt/reminder 19 (100)
Computer-assisted treatment planner 19 (79)
Provider feedback 19 (68)
Computerized medical record and information access 19 (74)
Prediction 6 (83)
Computer-assisted diagnosis 4 (50)

Total* 98 (85)

* Some reports test several interventions.



different in their sites, samples, interventions, and effect variables. A diver-
sity of sites and samples (within the stated pooling criteria) can help docu-
ment an intervention’s success under a variety of circumstances. Diverse
interventions can also help to reflect the natural variability of use in dif-
ferent healthcare organizations. For example, it would be unreasonable to
demand separate testing of physician reminders for every single clinical
procedure. Successfully applying a particular information intervention in a
variety of settings and disease conditions increases the generalizability of
results and the intervention’s practical value.

As discussed in Chapter 2, computerized decision support requires rep-
resentation of clinical knowledge in Boolean production rules or other
tightly organized structures (e.g., expression in probabilities, knowledge
frames). To represent the data from clinical trials, into a form that can be
used in CDSS, requires knowledge engineering, and the structuring of such
evidence is becoming an important trend in knowledge engineering. As the
amount of published scientific evidence grows, finding the right report is no
longer sufficient. The report has to be supplemented with the abstraction
of the specific information to meet the needs of clinicians, researchers, and
policy makers. Conventional abstracts by the investigators provide useful
synopses, but often lack detail and standardization. An analysis of 150 trial
reports led to the development and validation of a quality scoring system
which can be used as an itemized checklist to portray the methodological
quality of health services research trials.53

Effective Information Interventions
Randomized controlled trials confirm that four generic information inter-
ventions that are active components of computer systems can make a sig-
nificant difference in patient care (patient education, treatment planning,
physician and patient reminders).60 To manage care and improve quality,
computer systems of primary care should incorporate these effective infor-
mation services.

Interactive patient education can help patients improve their health
through health promotion, educational information on the management of
medical conditions, and computerized instruction. Seventy-four percent of
the patient education studies were successful. Chapter 11 includes descrip-
tions of some of these patient education studies.

A large number of studies employed the use of computer algorithms to
assist in drug dosing decision making (e.g., aminoglycoside,61 insulin,62

digoxin,3 phenytoin,63 sodium nitroprusside,64 lidocaine,65 propranol,66 and
amitriptyline67). For example, the first known trial of a decision-support
system compared the effect of computed digoxin dosage to that of unaided
physician judgment.3 The results indicated that the computer slightly out-
performed the physician and that the correlation between predicted and
measured serum digoxin concentrations was closer in the computer-assisted
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patient group. Overall, 79% of the computer-assisted treatment planner
studies were successful.

Reminders represent one of the primary techniques of delivering 
messages generated by clinical decision support systems. Reminder mes-
sages recommend specific action at the time of decision-making. Comput-
ers can scan each patient’s record to identify tests and other proce-
dures that are due. The main function of the computer system is the iden-
tification of eligible patients and triggering the use of a particular clinical
procedure.

Several controlled experiments have demonstrated that physicians
respond to computer-generated reminders by performing the recom-
mended interventions (e.g., influenza immunization, mammography). For
example, patients of physicians who received reminders on the encounter
forms were significantly more likely to have a mammogram ordered for
them.67 Procedures frequently targeted by the provider prompt/reminder
trials included cancer screening36,68 (stool occult blood, sigmoidoscopy,
rectal examination, mammography, breast examination, Papanicolaou 
test, pelvic examination) and vaccinations (influenza,69 pneumococcal,70

tetanus,71 and infant immunizations72).All of the physician reminder studies
and 80% of the patient reminder studies were successful.

The syntheses of trial results from the registry have already led to several
practical and significant observations. For example, our meta-analyses of
randomized controlled trials testing physician reminders concluded that
this is a highly effective information intervention, but the results vary
depending on the targeted clinical procedure (e.g., cancer screening versus
immunization).73,74 These and other studies have demonstrated that com-
puters can help to make patient care more consistent by reminding physi-
cians to order or perform recommended procedures. Many systems show
significant and beneficial impact in selected clinical areas, particularly
health maintenance. In addition, 95% of the studies in our systematic review
of the acceptability and effectiveness of computerized patient education
interventions reported positive results.75

Value of Noncomputerized Information Interventions
Originally, the Columbia Registry of Medical Management Trials was
designed to include only trials using some form of computer intervention.
Once the first 100 trials had been registered, it became clear that noncom-
puterized information interventions could be equally valuable.

Patient education provides an example of how noncomputerized infor-
mation interventions can be effective. Educating patients about good
chronic care, needs to be based on scientifically sound evidence. Patient edu-
cation involves more than telling people what to do or giving them instruc-
tional material to read. The growing number of randomized clinical trials
testing patient information makes the casual, ad hoc, and opinion-based
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approach to patient education unacceptable. People easily slip in opinions
when they are describing what should be included in the education of
patients. Generalization of clinical trial results appears to be a better option
than just relying on opinion. There are many education topics that are defi-
nitely useful for patients, and educators should choose them over contents
that have never been shown to be beneficial.

A systematic review of 170 studies involving the education of 25,970
patients with diabetes, asthma, or congestive heart failure documents that
far more clinical evidence is available on patient education beyond simply
confirming that education is generally useful. Numerous successful ran-
domized controlled trials link various educational contents and methods to
improved health status, social functioning, and satisfaction.76 This system-
atic review has led to the development of evidence-based patient education
checklists for diabetes, asthma, and congestive heart failure. The evidence
base from the randomized controlled trials of patient education could be
combined with information technologies to increase access to education
through new approaches. Packaging of informational messages, for easier
and more effective prompting, as well as alternative delivery techniques,
should be analyzed in future randomized controlled trials.

Obtaining good data is the basis for decision making about the value of
diagnostic and other decision support systems. As more CDSS reach the
implementation stage, RCTs of their effectiveness, as an information 
intervention, will be possible. Registries of RCTs will be able to provide the
data needed to answer questions about the value of particular CDSS, the
value of CDSS in particular settings, and the value of CDSS for particular
purposes.
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Section 2
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Decision Support Systems in
Clinical Practice



8
Clinical Decision Support at
Intermountain Healthcare

Peter J. Haug, Reed M. Gardner, R. Scott Evans,
Beatriz H. Rocha, and Roberto A. Rocha

Decision support technologies are becoming increasingly available to
medical practitioners. A variety of programs designed to assist with 
drug dosing, health maintenance, diagnosis, and other clinically rel-
evant healthcare decisions have been developed for the medical work-
place. Increasing ease of access to personal computers is partially 
responsible for this growth. More important, however, is the growing
dependency on computers to maintain part or all of the medical record.This
has led to a growing interest in and, in some cases, dependency on, auto-
mated medical decision making to support the delivery of economical,
quality care.

The Electronic Health Record (EHR) is the primary driver for the
growing use of computerized decision tools. The growth in use and sophis-
tication of the EHR has provided a backdrop against which clinical deci-
sion support systems (CDSS) appear as a logical consequence.

The EHR itself may be seen as a response to the increasing complexity
and volume of both the clinical data associated with an individual patient
and the medical knowledge necessary to assimilate and respond to this data.
Recent evidence emphasizes the cost of failures to properly integrate the
patient’s findings with the fruits of medical science. In 1999, the Institute of
Medicine estimated that between 44,000 and 98,000 Americans die each
year because of medical errors.1 Computer-based systems have been pro-
posed as a remedy for a large subset of these errors.2–5

CDSS are often described as a cure for these and other failings in tradi-
tional care delivery. Much of the literature that has sparked this awareness
comes from research done on an older generation of medical information
systems. These systems reside on large mainframe computing hardware.
Many of them have been designed to serve hospitals and have supported
the patient care given there.6–7 The applications and algorithms that were
piloted in these systems have provided the background for the modern 
decision support technologies, which we see developing and evolving in
client/server environments, on personal computers, and on systems based
in Internet technologies.
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Contributors to the science of applying computer systems to clinical prac-
tice include the several sites where hospital-based, medical decision support
has been implemented and studied.Among the leaders in these efforts have
been groups at the Regenstrief Institute in Indianapolis,8 Columbia-Pres-
byterian Medical Center in New York,9 Beth Israel Hospital in Boston,10

and the HELP System at the LDS Hospital in Salt Lake City.11 Successful
efforts to incorporate decision support into order entry systems at the
Brigham and Women’s Hospital in Boston12 and Vanderbilt University
Medical Center in Nashville13 are helping to define the direction that
healthcare computing will follow in the future. In this chapter, we will
review the experience gained in 25 years of CDSS delivered through the
HELP System.

While a great deal can be learned from these hospital-based information
systems, a new generation of medical computing environments is evolving.
The creators of these environments are not satisfied to provide service for
hospitalized patients alone. Instead, their intended scope is the entire
healthcare record, covering patients served in both the inpatient and out-
patient setting. The systems produced strive to provide a truly longitudinal
and comprehensive medical record.

As new systems develop, the infrastructure necessary to provide CDSS
is being newly engineered. This provides an opportunity to review the
lessons learned in the older systems mentioned above, and to give those
lessons form by incorporating them in new healthcare computing imple-
mentations. Below, we describe the architecture that we have chosen to
incorporate into our newest CDSS as well as the effects of a growing focus
on the delivery of new types of medical knowledge.

In this chapter, we focus on the experience of Intermountain Healthcare
(IHC), a provider of integrated medical services in the Intermountain West,
as an example of two phenomena readily recognized in a variety of health-
care organizations, as they adopt or extend systems designed to replace the
paper-based medical record with an electronic one. These phenomena are
the continued value of decision support applications in the hospital setting
and the growing effort to project and expand the use of these technologies
across the entire gamut of clinical care, supporting both new and old CDSS
agendas in the inpatient and outpatient setting.

To illustrate decision support in the inpatient setting, we will describe a
set of classic applications evolved in the HELP Hospital Information
System (HIS) located at the LDS Hospital in Salt Lake City. Teams from
IHC, the Department of Medical Informatics of the University of Utah, and
commercial partners developed these applications.As a part of our descrip-
tion of decision support, we will discuss the data used and the mechanism
through which suggested decisions are communicated to the user. Most
CDSS in hospitals depend on simple algorithms to inform and remind users
of important clinical data or of medical facts, which may change the deci-
sions they have made or will make. Examples of these include decision
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support tools that critique medication orders, and the system for identify-
ing life-threatening laboratory results that are described below.

Below, we also discuss the adaptation of classical CDSS architecture to
serve within an enterprise EHR. Rather than focusing on examples, we will
endeavor, in this section, to describe the constituents of an environment
appropriate for the creation of robust, enterprise CDSS.

An enterprise CDSS implies an enterprise model for knowledge man-
agement. This is particularly relevant in light of several new types of deci-
sion support being integrated into clinical computing environments.

A key example of these new decision support models is the CDSS asso-
ciated with Computer-based Physician Order Entry (CPOE). CPOE differs
dramatically from the classical decision support environments. These were
generally constructed around a vision of the physician’s workflow that dif-
fered little from the behaviors supported by a wholly paper medical record.
CPOE requires an approach to design and delivery that reflects a careful
remodeling of the way in which physicians manage a key part of their
medical responsibilities, the overall direction of patient care.

The Help System

The overall setting for the CDSS examples described here is the HELP
Hospital Information System (HIS). This system is a culmination of more
than 25 years of development and testing.11 It currently operates on high
availability hardware supplied by the HP NonStop Enterprise Division.
Software components of the HELP system have also been installed in many
of the 20 hospitals operated by Intermountain Healthcare (IHC). At the
LDS Hospital, IHC’s central, tertiary care facility, the information system
communicates with users and developers through approximately 2,000 ter-
minals and more than 200 printers. The system is interfaced with a variety
of other computer systems, including a billing system, a laboratory system,
a medical records system, a digital radiology system, and a collection of local
area networks (LANs) used by a variety of departments for local research
and departmental management functions.

The HELP System consists of an integrated clinical database, a frame-
based medical decision support system, programs to support hospital 
and departmental clinical and administrative functions, and the soft-
ware tools needed to maintain and expand these components. The inte-
grated clinical database contains a variety of patient data (Table 8.1) 
kept online during the patient’s stay to allow review by health-care pro-
fessionals at terminals throughout the hospital. These terminals allow 
the entry of pertinent clinical data into the HELP system by personnel who
are involved in patient care. In addition, automated systems capture 
clinical information directly from monitors and other instruments in the
hospitals’ ICUs.
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Use of the HELP system as a medical expert system has been a major
focus of research since the system’s inception. The result has been a set of
embedded expert system development tools. The HELP System contains a
decision support subsystem based on a modular representation of medical
decision logic in frames.14 These modules are used to: (1) define the data
used in making the target medical decision; and (2) encode the logic that
converts the raw data into the proposed decision. Decisions encoded in
these modules resemble small computer programs written in a Pascal-like
language. They are each designed to represent a single simple decision
capable of activation in a number of ways. The language supports either
simple or multiple outputs from a frame. This flexibility can be used to
create more complex modules capable of deriving several distinct decisions
from the same data.

This set of tools has led to the successful development of expert systems
in blood gas interpretation,15 intensive care settings,16 and medication mon-
itoring,17 to name a few. The HELP System hardware and software envi-
ronment has provided the setting for the implementation and testing of
most of the decision support examples described below.

The history of decision support in the HELP System extends more than
25 years into the past. This classic hospital information system includes two
types of CDSS systems. The first type focuses on narrowly circumscribed
medical conditions. The logic is typically simple and the data requirements
modest. The Critical Laboratory Alerting System described below is an
example of this type.

The second type of CDSS is much less common.This type of tool attempts
to discriminate among a group of important diagnostic entities using raw
medical data. Diagnostic systems often attempt the challenging task of man-
aging large degrees of uncertainty using pattern matching algorithms.
Several of these systems have been, or are being, tested in the HELP 
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Table 8.1. Clinical data routinely captured by the HELP hospital information
system (partial list).

Chemistry Hematology
Medications X-ray Findings
Allergies Dietary Information
Blood Gases Surgical Procedures
Electrocardiograms ICU Monitoring
Intake/Output Pulmonary Function
Demographic Information Microbiology
Cardiac Catheterization Data Respiratory Therapy Notes
Biopsy Results Nursing Data
Select Physical Examination Pathology Department Data
Admit/Discharge Information History and Physical Exam Reports
Consult Reports Procedure Reports



environment. Below, we describe experience with three of the experimen-
tal diagnostic applications.

Categories of Decision Support Technologies

Independent of the environment in which they are used, two elements of
medical decision support applications are critical to their success.These are:
(1) the mechanism by which the systems acquire the data used in their deci-
sion algorithms; and (2) the interface through which they interact with clin-
icians to report their results. These considerations have led us to describe
different categorizations of decision support.18 Although somewhat arbi-
trary, this categorization captures the idea that different models of com-
puterized assistance may be needed for different types of clinical problems.

The four categories are:

1. Processes which respond to clinical data by issuing an alert;
2. Programs activated in response to recorded decisions to alter care (typ-

ically new orders); these applications work by critiquing the decision and
proposing alternative suggestions as appropriate;

3. Applications that respond to a request by the decision maker by sug-
gesting a set of diagnostic or therapeutic maneuvers fitted to the patient’s
needs;

4. Retrospective quality assurance applications where clinical data are
abstracted from patient records and summary decisions about the quality
of care are made and fed back to caregivers.

We will describe the first three types in this chapter.

Alerting Systems

Alerting processes are programs that function continuously, monitoring
select clinical data as it is stored in the patient’s electronic record. They are
designed to test specific types of data against predefined criteria. If the data
meet the criteria, these systems alert medical personnel. The timing and
character of the messages vary with the alerting goals.

A typical example is a subsystem implemented within the HELP System
that monitors common laboratory results and detects and alerts for poten-
tially life-threatening abnormalities in the data acquired. This type of appli-
cation is notable for the simplicity of its decision logic as well as for the
magnitude of its potential impact.

The HELP System captures results from the clinical laboratory through
an interface to a dedicated laboratory information system (LIS).The results
are collected and returned to the HELP System for storage in the clinical
record as soon as they are collected and validated in the LIS.
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Laboratory results are reviewed by personnel engaged in patient care
both through terminals connected to the HELP System and through a
variety of special and general-purpose printouts, such as rounds reports
generated by the HELP System. The “times” when the data are reviewed
have only a loose relationship to the “times” when these data become avail-
able. Instead, the principal determinant of the review time is typically the
work schedules of the physicians and nurses involved with the patient. The
physician, for instance, may visit the hospital twice a day for rounds and
review patient data only during those times unless some aspect of the
patient’s condition prompts a more aggressive approach.

Under these circumstances, abnormalities in laboratory results, especially
those that are unexpected, may not receive the timely attention they
deserve. In particular, unexpected laboratory abnormalities may go unseen
for hours until a nurse or physician reviews them during their routine activ-
ities. Or, as some authors have noted, they may be missed entirely.19,20

As a response to this disparity, Karen Bradshaw-Tate and her associates
have described an experiment with a Computerized Laboratory Alerting
System (CLAS) designed to bring potentially life-threatening conditions to
the attention of caregivers.21–24 This system was constructed by reducing a
set of 60 alerts developed during a previous pilot system25 to the 10 most
important (Table 8.2).

Six medical experts from the disciplines of surgery, cardiology, internal
medicine, and critical care participated in the development of these alerts
and the system used to deliver them. The alerts chosen were translated 
into computer logic and tested to determine that the logic functioned prop-
erly. Data from previously admitted patients were used to refine and test
the logic.

Once the logic was deemed acceptable, an experiment was designed 
to evaluate the effect of the system on several intermediate outcome 
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Table 8.2. Alerts for which computerized alerting logic was created.
Alerting Condition Criteria

Hyponatremia (NAL) Na+ < 120mEq/l
Falling Sodium (NAF) Na+ fallen 15+ mEq/l in 24h and Na+ < 130mEq/l
Hypernatremia (NAH) Na+ > 155mEq/l
Hypokalemia (KL) K+ < 2.7mEq/l
Falling Potassium (KLF) K+ fallen 1+ mEq/l in 24h and K+ < 3.2mEq/l
Hypokalemia, patient on digoxin (KLD) K+ < 3.3mEq/l and patient on digoxin
Hyperkalemia (KH) K+ > 6.0mEq/l
Metabolic Acidosis (CO2L) CO2 < 15 and BUN < 50

or CO2 < 18 and BUN < 50
or CO2 < 18 (BUN unknown)
or CO2 fallen 10+ in 24hr. and CO2 < 25

Hypoglycemia (GL) Glucose < 45mg%
Hyperglycemia (GH) Glucose > 500mg%



measures. Two approaches were tested for delivering the alerts. The first of
these techniques was tested on a single nursing division to determine its
acceptability.A flashing yellow light was installed in the division, and when-
ever an alert was generated for a patient in that division, the light was acti-
vated. It continued to flash until the alert was reviewed and acknowledged
on a computer terminal.

The second approach was less intrusive to the nursing staff. Whenever
anyone accessed the program used to review a patient’s laboratory results,
any unacknowledged alerts for that patient were immediately displayed
along with the data that had triggered them.

The results of this type of intervention were tested in three ways. First,
appropriateness of treatment was evaluated.The alerting system was shown
to result in a significant increase in appropriate therapy for conditions
involving abnormalities of Na+, K+, and glucose. Second, time spent in the
life-threatening condition with and without the alerting system was exam-
ined. Finally, the hospital length of stay was examined. A significant
improvement in this parameter was also noted for the patients with abnor-
malities of Na+, K+, or glucose.

This type of decision support intervention is becoming increasingly
common as hospital information systems evolve.26 In the inpatient envi-
ronment where the severity of illness is steadily increasing, the possiblility
of better alerting has the potential to improve quality of patient care.

Interestingly, the system for alerting on critical laboratory values has
been re-implemented in recent years. The IHC laboratory that processes
the inpatient laboratory values also serves a variety of locations into which
the HELP System does not reach, notably a large number of outpatient
clinics. Based upon the value of this type of intervention, Laboratory Ser-
vices has instituted the process of having personnel telephone ordering
physicians or other caregivers whenever critical laboratory values are
detected. Thus, the limitations of a model that was restricted to select inpa-
tient locations have been circumvented.

The developing enterprise information system, parts of which are
described below, will provide yet another way to avoid the limitations of an
inpatient system. This system can reach the caregivers associated with out-
patients as well as inpatients, and it invites a re-implementation of the com-
puterized version of this system in a way that provides comprehensive
coverage. The evolving capability to move alerting to an outpatient setting
is illustrated by the example that follows.

A recent alerting application designed to work in the outpatient setting is
among the first to take advantage of a new, enterprise CDSS infrastructure.
This application automates a part of the Chronic Anticoagulation Clinic’s
(CAC) anticoagulation protocol.This clinic manages patients that are taking
anticoagulation drugs (principally Coumadin) for extended periods of time.
The objective is to maintain each patient’s International Normalized 
Ratio (INR) within a range specified for the patient. A key component is a
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rule-based system that monitors coagulation studies for compliance with
these goals and presents alerts to the clinical user through a computerized
in-box. Alerts for dangerously altered INRs are also sent to the clinic nurse
practitioner’s pager so that immediate action can be taken.

The CAC protocol has been working since June 2003, and since then the
clinic has come to rely completely on the alerts generated by the protocol.
They replace a paper-based process and couple the prescribing practice of
the physicians (captured in the enterprise EHR) with the clotting test
results captured in the clinical laboratory that reflect the effectiveness of
this therapeutic intervention.

Critiquing Systems

In the alerting example described above, the computer system responded
to abnormalities in the data as they entered into the database by prompt-
ing those caring for the patient to intervene. In contrast, critiquing processes
begin functioning when an order for a medical intervention is entered into
the information system. Such methods typically respond by evaluating an
order and either pointing out disparities between the order and an internal
definition of proper care or by proposing an alternative therapeutic
approach. Below, we describe a critiquing subsystem that specifically targets
orders for blood products.

Over the years, it has become apparent that the transfusion of blood
products is an important, often life-saving, therapy and that these same
blood products must be ordered and administered with care. Not only are
there significant reasons for anxiety concerning diseases that can be trans-
mitted during transfusions, but also the limited supply and short shelf life
of blood products make them a scarce resource to be used sparingly. In
1987, the Joint Commission for the Accreditation of Healthcare Organiza-
tions (JCAHO) began to require healthcare institutions to develop criteria
for the use of blood products and to carefully monitor compliance with
these criteria.

At the LDS Hospital, the response to these requirements was to develop
a computer system designed specifically to manage the ordering of trans-
fusions and to assist in ensuring compliance with criteria for proper use of
blood products.27–30 A central premise of the system design was that all
orders would be entered into the computer and that physicians or nurses
would enter all blood orders.

Embedded in the blood-ordering program is a critiquing tool designed
to ascertain the reason for every transfusion and to compare the reason
against strict criteria. The approach used provides information specific to
the type of transfusion planned. For instance, when an order is made for
packed red blood cells, the criteria in Table 8.3 are used to critique the
order.
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The process of entering an order into this system includes several points
at which information bearing on the propriety of giving blood products is
displayed.As a first step, the physician is shown the blood products ordered
in the last 24 hours. This is followed by a display of the applicable labora-
tory data. Then the user chooses the specific blood products required along
with the number of units and the priority (stat, routine, etc.). At this point,
the user is asked to document the reason for the order. A list of reasons,
specific to the blood product chosen, is displayed, and the user chooses 
the appropriate rationale for the intervention. The computer then applies
the stored criteria and determines whether the order meets the hospital’s
guidelines.

If the guidelines are met, the order is logged and the blood bank and
nursing division are informed electronically and via computer printout. If
the criteria are not met, the user is presented with a message stating the
applicable criteria and relevant patient data. The physician or nurse may
optionally decide to place or cancel the order. If the order is made, he or
she is required to enter the reasons for the decision to override the system.

The criteria used are the result of a consensus effort by the LDS Hospi-
tal medical staff. The criteria were developed using primarily published
guidelines but with some adaptations for local conditions (altitude of 4,500
feet). The criteria have undergone several modifications based on experi-
ence as well as new definitions of standards for these therapies.

One way of measuring the effectiveness of the system’s various critiquing
messages is to examine the frequency with which the process of ordering
blood products is terminated as a result of the feedback. During one six-
month period, the ordering program was entered and then exited without
an order 677 times. This was 12.9% of the total uses. We estimate that one-
half of these exits represent decisions not to order blood products based on
feedback from the program.

The program relies heavily on the integrated clinical database in the
HELP System. It accesses data from: (1) the admitting department; (2) 
the clinical laboratory; (3) surgical scheduling; (4) the blood bank; and (5)
the orders entered by nurses and physicians.
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Table 8.3. Simplified criteria for ordering red blood
cells.

Hemoglobin < 12g/dl or hematocrit < 35% if age ≥ 35 years
Hemoglobin < 10g/dl or hematocrit < 30% if age < 35 years
Oxygen saturation (SaO2) < 95%
Active bleeding
Blood loss > 500ml
Systolic blood pressure < 100mmHg or heart rate > 100bpm
Adult respiratory distress syndrome (ARDS)



The blood-ordering program described above contains processes that
support computerized critiquing. The program responds to interventions
chosen by the physician by analyzing the order and, if appropriate, sug-
gesting reasons to alter the therapeutic plan.

The process used by the blood-ordering program is different than that
used in the alerting application in that it involves a dialogue with the user.
As a result, the critique can provide a series of informational responses
designed to assure that the user is fully aware of the status of the patient
as well as of accepted guidelines governing blood product usage.

Historically, physician use of generalized computerized order entry pro-
grams has been limited. However, modern order entry programs are being
designed to encourage their use by physicians. A part of this encourage-
ment is based on the ability of these programs to critique orders. Physicians
often appreciate the ability of an automated ordering system to give feed-
back on proper dosing and accepted care protocols as they make their inter-
ventional decisions. Opportunities for a constructive interaction between
the computer and the clinician are clearly growing, and applications that
critique medical decisions can contribute to this growth.

Suggestion Systems

The third category of computer applications designed to support medical
decision making is potentially the most interactive. This group of processes
is designed to react to requests (either direct or implied) for assistance.
These processes respond by making concrete suggestions concerning which
actions should be taken next.

Unlike alerts, action oriented messages from these systems are expected.
Clinicians would typically call up a computer screen, enter requested data,
and wait for suggestions from these systems before instituting a new
therapy. Unlike critiquing systems, the physician need not commit to an
order before the program applies its stored medical logic. Instead, the
program conducts an interactive session with the user during which a sug-
gestion concerning a specific therapeutic decision is sought.The system then
reviews relevant data, including data that has been requested from the user,
and formulates a suggestion for an intervention based on the medical
knowledge stored in its knowledge base.

The example below is, in many ways, typical of suggestion systems. It 
functions in the realm of ventilator therapy and has been implemented in
increasingly more sophisticated forms in intensive care settings at the LDS
Hospital since 1987.

As a tertiary care setting, LDS Hospital sees a large number of patients
with respiratory failure. One of the more difficult of these problems is that
of Adult Respiratory Distress Syndrome (ARDS). This disease can com-
plicate a number of other conditions, including trauma, infectious disease,
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and shock. The usual therapy includes respiratory support while the under-
lying pulmonary injury heals. Unfortunately, overall mortality for ARDS
had remained at about 50% for many years. For the subset of ARDS
patients who manifest severe hypoxemia, the mortality had been approxi-
mately 90%.

The study of computer protocols for delivering care to ARDS patients
was a side effect of research into the effectiveness of a new therapeutic
intervention of this difficult disease. In the early 1980s, research began to
suggest that external membrane devices that bypassed the lungs to remove
carbon dioxide (CO2) directly from a patient’s body might improve survival
in the most severely ill ARDS patients. Physicians at the LDS Hospital
wanted to study this new approach in a rigorously controlled clinical trial.
They chose to do an experiment with a test group that received the exter-
nal lung treatment and a control group that did not receive the treatment.
However, the researchers were aware that the management of ARDS dif-
fered from patient to patient, depending on the course the disease followed,
and the training and previous experience of the physicians and staff caring
for the patient. For this reason, they decided to standardize care by strict
adherence to predetermined treatment protocols.

At first, they developed a set of paper protocols.As the protocols became
more complex, it became clear that they would be difficult to follow man-
ually. Therefore, it was decided to computerize them. The result was a set
of computerized rules that were designed to direct, in detail, the manage-
ment of patients in both the test and control branches of a study of extra-
corporeal CO2 removal (ECCO2R).31–33 While the rules were designed
initially for this research, they were soon made general enough that they
could be used in the management of other patients requiring ventilator
support.

The protocols were created by a group of physicians, nurses, respiratory
therapists, and specialists in medical informatics. The initial study period
was to be 18 months. Subsequent development concentrated on first elim-
inating errors in protocol logic, second on extending the scope of these
tools, and finally on reworking behavioral patterns in the intensive care
setting so that the protocols could be effectively implemented.

The protocol system devised was used successfully during the ECCO2R
study. The study was terminated after 40 patients were treated, 21 with
ECCO2R and 19 with conventional therapy. At that time, there were eight
survivors in the conventional therapy group (42%) and seven in the
ECCO2R group (33%).33 The study group concluded that there was no sig-
nificant difference between ECCO2R and conventional treatment of severe
ARDS. However, the 42% survival in the control group was unexpected.
Reported survivals in these severely ill patients were less than 15%. The
results led the researchers to suspect that the quality and uniformity of care
provided through the use of computerized protocols had resulted in an
important improvement in patient outcomes.
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As a consequence, development and study of these protocols has con-
tinued. Figure 8.1 summarizes the results of their use in 111 LDS Hospital
patients, and compares these results to those of two other groups Massa-
chusetts General Hospital (MGH) and a group in Europe (the European
Collaborative Study) interested in the problem of treating ARDS. It is
becoming increasingly clear that the standardization of complex ventilator
care decisions possible with computers has a pronounced benefit for
patients.

It should be noted that here we have focused the definition of systems
for suggesting therapeutic interventions quite narrowly. We have limited
our example to a system that responds with a suggestion when the clinician
has explicitly or implicitly requested one. Such a computerized decision
support process is an area in which we are continuing to explore better ways
to interact with clinicians and better ways to capture and encode protocol
knowledge.

Diagnostic Decision Support in the Help System

The examples above have stressed different approaches to the activation of
medical decision support logic and to the delivery of the resulting decisions
to the computer user. Below, we change our focus. One of the greatest chal-
lenges for a computerized medical decision system is to participate usefully
in the diagnostic process. Diagnostic decision support systems (DDSS)
differ from the CDSS described above.Typical decision support systems can
draw attention to specific data elements and/or derive therapeutic sugges-
tions from these elements. Such applications offer assistance in the basic
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recognition processes and can categorize patients by pathophysiologic 
condition. On the other hand, the diagnostic process is a preliminary step
to suggesting therapeutic interventions. Computerized diagnostic decisions
are generally involved with different goals, interfaces, and decision algo-
rithms than the applications previously described.

Two types of diagnostic applications are described. They differ in the
degree with which the developers have solved the problem of providing a
clinically useful service. The first type represents a group of applications
that, using a set of raw clinical data, attempt to standardize various diag-
nostic categorizations that impact discrete therapeutic decisions. Three
HELP System examples are discussed.

The second group of diagnostic processes described comes from the
family of applications that attempt to simulate the more extensive and flex-
ible diagnostic behavior of physicians. Those discussed here represent pre-
liminary research whose clinical applicability remains to be determined.
The status of these applications in terms of preliminary data and experi-
ence limited to a research and development environment are described.

Proven Diagnostic Applications

A number of applications residing in the HELP system can, through the
use of various diagnostic strategies, affect patient care. Below we describe
three of these applications. The first is an application that evaluates patient
data to detect adverse drug events. The second is a tool that recognizes
nosocomial infections. The third is a computerized assistant that informs
and advises physicians as they undertake the complex task of determining
how to treat a patient with a possible infection.

Adverse Drug Events
Adverse drug events (ADEs) are defined by the World Health Organiza-
tion as “any response to a drug which is noxious, unintended, and which
occurs at doses normally used in man for the prophylaxis, diagnosis, or
therapy of disease.” ADEs can range in severity from drowsiness or nausea
to anaphylaxis and death. It has been estimated that in the United States
that drug-related morbidity and mortality costs more than $136 billion per
year.34

The process of recognizing ADEs differs from that of drug monitoring at
the time of drug dispensing; this latter process has become a standard part
of computerized pharmacy systems. The alerting systems embedded in
modern-day pharmacy dispensing systems typically evaluate ordered med-
ications against a list of contraindications based on known allergies,
expected reactions with other patient medications, or the information from
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the clinical laboratory that can be expected to affect the drugs given or the
dosage of those medications. In contrast, the goal of an ADE detection
system is to determine the existence of a drug reaction from the patient
data collected during the routine documentation of patient care.

An ADE recognition subsystem has been implemented in the HELP
system.35–36 This ADE subsystem continuously monitors patients for the
occurrence of an ADE. The system does so by inspecting the patient data
entered at the bedside for signs of rash, changes in respiratory rate, heart
rate, hearing, mental status, seizure, anaphylaxis, diarrhea, and fever. In
addition, data from the clinical lab, the pharmacy, and the medication chart-
ing applications are analyzed to determine possible ADEs.

The system evaluates all of the patients in the hospital and generates a
daily computer report indicating which patients have possible ADEs. A 
clinical pharmacist then follows up on these patients and completes the
evaluation using a verification program. This program provides a consistent
method of completing the diagnostic process.A scoring system (the Naranjo
method) is used to score the ADEs as definite (score ≥ 9), probable (score
5–8), possible (score 1–4), or unlikely (score 0).37 The physicians caring for
each patient are notified of confirmed ADEs by the pharmacist who does
the evaluation.

The existence of an application for diagnosis of ADEs has increased the
frequency with which these events are recognized and documented in the
hospital setting. Using a voluntary reporting method, nine ADEs were
recorded in the one-year period from May 1, 1988 to May 1, 1989. In the
period from May 1, 1989 to May 1, 1990, while the program was in use, 401
adverse drug events were identified.

An additional effect of this program appears to be a reduction in the
number of severe ADEs seen. During the year beginning in January of 
1990, 41 ADEs occurred. In this time frame, physicians were notified of ver-
ified ADEs only if they were classified as severe or life threatening. In two
subsequent periods (the year of 1991 and the year of 1992) early notifica-
tion of physicians was practiced for all severities of ADE. Numbers of
severe ADEs decreased to 12 and 15 during the follow-up time periods 
(p < 0.001).

In an effort to understand the impact of the drug reactions that were the
target of this application, the costs of ADEs were examined. In studies 
that used the computer tools described above, investigators found that
length of hospital stay for patients with ADEs was increased by 1.91 days
and that costs resulting from the increased stay were $2,262. The increased
risk of death among patients experiencing ADEs was 1.88 times.38 Thus,
the cost savings and impact on quality of care in reducing ADEs was 
substantial.

These tools leverage the fact that the majority of the data necessary for
their function is available in the HELP system’s integrated database. They
illustrate the potential for computerized diagnostic applications to impact
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patient care not just by assisting with the choice of interventions, but also
by focusing clinical attention on those cases where the interventions chosen
have put the patient at risk.

Nosocomial Infections
In the previous example, a rule-based system was used to suggest the diag-
nosis of adverse drug events for a group of patients undergoing therapy in
the hospital. Another application in use at the LDS Hospital is designed to
recognize nosocomial, or hospital acquired infections.39 The program serves
a need recognized by the JCAHO that requires ongoing surveillance for
hospital-acquired infections.

The process of detecting nosocomial hospital infections serves a recog-
nized clinical purpose. Control measures based on this information are
believed to be important in interrupting the spread of hospital-acquired
infections. Evidence suggests that intensive surveillance programs may be
linked to reduced rates of infection. However, the process can be expen-
sive. Traditional techniques require infection control personnel to manually
screen all appropriate patients on a routine basis.

The computerized surveillance system used in LDS Hospital relies on
data from a variety of sources to diagnose nosocomial infections. Informa-
tion from the microbiology laboratory, nurse charting, the chemistry labo-
ratory, the admitting office, surgery, pharmacy, radiology, and respiratory
therapy are used. Once each day, a report is produced detailing the com-
puter’s findings. This report can be used to follow up on the patients for
whom there is evidence of nosocomial infection.

In studies done to compare the computer-based surveillance of nosoco-
mial infections to the traditional, manual approach, 217 patients were deter-
mined to be possible victims of hospital-acquired infection (out of 4,679
patients discharged in a two-month period).This included 182 patients iden-
tified by the computer and an overlapping 145 patients recognized by tra-
ditional means. Of these patients, 155 were confirmed to have nosocomial
infections.

For the group of 155 patients, the computer’s sensitivity was 90% with a
false positive rate of 23%, while the infection control practitioners demon-
strated a sensitivity of 76% and a false positive rate of 19%.When the hours
required to use each approach were estimated, the computer-based
approach was more than twice as efficient as the entirely manual technique.

The nosocomial infection tool, like the ADE recognition system, uses
Boolean logic in a relatively simple diagnostic process. In an effort to extend
the process of managing hospital-acquired infections, an extension to the
infection control system was developed. The goal of the enhancement was
to predict which patients were likely to contract a nosocomial infection in
the hospital in the future.The tool is based on different decision algorithms.
Data from patients with infections acquired in the hospital were combined
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with data from a control set of patients, and a group of statistical programs
were used to identify risk factors. Logistic regression using these risk factors
was used in the development of tools that could estimate the risk of 
hospital-acquired infection for inpatients.The resulting system is capable of
predicting these infections in 63% of the population who are ultimately
affected.40

Antibiotic Assistant
The third application in this group is an example of a multipronged
approach to the task of supporting medical decision making. As a part of
ongoing research into the use of computers in medical care, the Infectious
Disease Department at LDS Hospital developed a tool to help clinicians
make informed decisions concerning the administration of antibiotics.41,42

The “antibiotic assistant” application provides three basic services. First, it
assembles relevant data for the physicians so they can determine whether
a specific patient is infected and what sorts of interventions might be appro-
priate. Information such as the most recent temperature, renal function, and
allergies are presented. Second, the system suggests a course of therapy
appropriate to that patient’s condition. Finally, the program allows the clin-
ician to review hospital experience with infections for the past six months
and the past five years. One of the options of the program allows the clin-
ician to review the logic behind the computer’s suggestions while another
presents brief monographs on the appropriate use of each antibiotic in the
hospital formulary.

The diagnostic processes embedded in this application are derived from
data extracted from the HELP system and analyzed on a monthly basis.The
goal of the analysis is to define the probability of each potential pathogen
as a causative agent for a certain class of patient. Six clinical variables are
used in this process. These variables were identified through a statistical
analysis of 23 proposed data elements. They include the site of infection,
the patient’s status (inpatient or outpatient), the mode of transmission
(community- or hospital-acquired), the patient’s hospital service, the
patient’s age, and the patient’s sex.

The result of this monthly analysis is an assessment of the likelihood of
each pathogen for every combination of the patient-related variables. For
example, once the analysis is complete, the percentage of hospital-acquired
bacteremias due to Escherichia coli in male patients age 50 or less who are
on the cardiovascular service will be stored in the program’s knowledge
base. The analytic programs also evaluate susceptibility data to determine
which antibiotics are likely to cover the most probable pathogens for each
combination of patient variables.

This probabilistic knowledge is then filtered through a set of rules created
by infectious disease experts.These rules adjust the output of the first phase
to include criteria representing basic tenets of antibacterial therapy. For
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example, the susceptibility information garnered from the historical data
would be updated to indicate that amikacin should be used only for infec-
tions due to gram-negative organisms.

The resulting knowledge base is used by the antibiotic assistant program
to make presumptive diagnoses of infectious organisms and to suggest
treatments appropriate to these organisms. It remains up-to-date through
monthly updates of its knowledge base. By offering the monographs and
explanations mentioned above and by allowing the clinicians to browse its
knowledge base, it provides large amounts of information in addition to its
suggestions.

Research into Complex Diagnostic Applications

The systems described above have had a clear and measurable effect on
improving health care provided in the hospital setting. The dream of even
more sophisticated and inclusive systems were presented more than 30
years ago. In 1959, Ledley and Lusted described the application of methods
from the realm of symbolic logic and statistical pattern recognition to prob-
lems in medicine.43 They proposed that these tools be used to assist in the
diagnostic process and in other problems involving medical decision
making. Computer systems were the enabling technology that was pre-
dicted to bring these tools to the bedside.

A variety of researchers have accepted the challenge of Ledley and
Lusted and produced experimental systems designed to diagnose a variety
of illnesses. A number of these systems are mentioned elsewhere in this
book.Within the HELP system, researchers have created and tested several
DDSS. Two of these are described below.

An important portion of the value of computerized diagnostic tools lies
in the development of well-designed models of the diagnostic process to
assist in the complex clinical decision-making tasks. Physicians clearly exer-
cise their diagnostic knowledge not only when they assign a diagnostic label
to a patient, but also during processes as diverse as reading medical reports
and critiquing the clinical behavior of their peers. Below, we give examples
of experimental systems that: (1) assist with data collection; and (2) help
assess the quality of medical reports.

The applications described below benefit from a long-standing interest in
Bayesian techniques for probability revision among researchers using the
HELP system. For more than 20 years, the HELP system has contained a
frame-based decision support subsystem capable of capturing and employ-
ing Bayes’ equation to assess probabilistically the support for diagnoses
provided by various combinations of clinical data.14 Approaches to decision
support, such as those described in Chapter 2 of this book, have been and
continue to be key areas of research in the HELP medical informatics 
community.
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Assisting Data Collection

Efforts to direct data collection in the HELP system have concentrated on
the patient history. The goal has been to identify tools that could effectively
collect a medical history appropriate for use in diagnostic decision support
applications. While earlier efforts focused on history appropriate to a wide
variety of diseases,44 more recent efforts have focused on acquiring data
bearing on pulmonary diseases.45,46

Three techniques for collecting the history were explored. The first was
a simple branching questionnaire.This approach takes full advantage of the
hierarchical relationship between more and less specific questions. For
instance, if the question “Have you had chest pain with this illness?” was
answered “Yes,” then more specific questions such as “Is your chest pain
brought on by exertion?” were asked. Alternately, if the answer to the first
question were “No”, the more specific questions would not be asked.

The second technique has been called decision-driven data acquisition
(DDA). With this technique, a frame-based, Bayesian expert system ana-
lyzes all data available at any point in the patient interview. The individual
disease frames determine which additional information is needed to eval-
uate the likelihood of the particular disease. Each frame proposes one or
more questions. From this list, a supervisory program selects a group of five
questions, which are then presented to the patient. The system passes
through this cycle multiple times until criteria are met indicating that no
additional data are needed.

A third approach has also been tested. It is similar to the DDA method
except that it was adapted for use in a setting where the patient was not
present at a computer terminal. The approach begins when a paper ques-
tionnaire containing screening questions is presented to a patient. Staff
members enter the answers into the computer, and the patient’s data are
compared to the diagnostic frames. The questions are scored in a filtering
process, and then from 0 to 40 additional questions are printed for the
patient to answer. After the patient answers these additional questions, the
answers are entered into the computer and the process is completed.

The branching questionnaire mode of data collection and the DDA mode
were tested on inpatients at the LDS Hospital. Fifty patients took a DDA
managed history and 23 received a history managed by the branching ques-
tionnaire program. Figure 8.2 illustrates the results.

On average, the DDA mode took a significantly (p < 0.05) shorter time
to run (8.2 minutes) and asked significantly fewer questions (48.8 questions)
than did the branching questionnaire (19.2 minutes and 137 questions,
respectively). The two-stage, paper questionnaire was tested separately on
patients coming to the X-ray department for chest X-rays. It appeared to
perform similarly to the interactive DDA mode. It should be noted that
there was no significant difference between the techniques in terms of 
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diagnostic accuracy. Using history alone, all three succeeded in placing the
patient’s correct disease in a five-member differential diagnostic list from
70–88% of the time.

Assessing the Quality of Medical Reports
A second example of an alternative use of diagnostic knowledge comes
from a study of result reporting in the radiology department. The central
goal of this project was to develop a technique for measuring the quality 
of X-ray reporting without requiring the review of radiographs by 
multiple radiologists. This is in contradistinction to typical approaches for
evaluating the accuracy of radiologists. Typically, audit procedures in the
radiology department require multiple readings of a select set of X-rays.47–51

The results of the repeated readings are used to define a “gold standard”
for the films. Then the individual radiologists are compared to the gold 
standard.

The technique developed as a part of this project was based on a simple
premise. Each examination was a test of the radiologist’s accuracy. Instead
of comparing the abnormalities reported to a standard formulated through
multiple readings, the description in the report was evaluated in compari-
son to the patient’s overall diagnostic outcome. In the case of chest X-rays,
the standard was the list of final diagnoses (ICD-9 codes) integrated into
the patient’s record at the time of discharge. The report generated by the
radiologist was successful to the extent that it supported the process that
led to one of the discharge diagnoses.

While a variety of algorithms can be used to link the findings represented
in the X-ray report to the final diagnosis, we have demonstrated the success
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of a variation on Shannon Information Content in discriminating among
physicians reading chest X-rays. Shannon Information Content52 is a math-
ematical formalism for assessing the informational value of messages. We
have modified it to provide a measure of the information produced by the
radiologists as they interpret an X-ray. The assumption inherent in this
usage is that the information contained in an X-ray report can be expected
to alter the likelihood of the various diseases that a patient might have.
Information Content is calculated from the change in probability of these
diseases.

For this technique to work, a diagnostic system was required that was
capable of discriminating among diseases producing abnormalities on the
chest radiograph. The information content was calculated from the change
in disease probability induced by the findings recorded in the chest X-ray
report. A Bayesian system provided the required probabilities.

Our evidence for the success of this technique came from two studies. In
the first, we used expert systems technologies to demonstrate discrimina-
tion in a controlled experiment.53 In this experiment, five X-ray readers read
an identical set of 100 films.The assessment produced by the diagnostic logic
program gave results consistent with the differing expertise of the readers
and similar to the results of a more standard audit procedure.

In a second study of this audit technique, we extended the test environ-
ment into the realm where we hope to use it clinically.54 We tested a group
of radiologists following their standard procedure for interpreting radi-
ographs. Each chest X-ray was reviewed, the report dictated and transcribed
only once, as is typical with most radiologists’ daily work. The goal of the
study was to test the ability of a knowledge-based approach to measure 
the quality of X-ray reporting, without requiring repeated reading of the
radiographs.

This technique used a modified version of the Shannon Information
Content measure, and was designed to assess both the positive information
contributed by X-ray findings relevant to a patient’s disease, and the nega-
tive information contributed by findings which do not apply to any of the
patient’s illnesses. X-ray readers were compared based on the bits of infor-
mation produced. We used 651 chest X-ray reports, generated by a group
of radiologists, that were compared to the patients’ discharge diagnoses
using a measure of information content. The radiologists were grouped
according to whether they had received additional (post residency) train-
ing in chest radiology. The “trained” radiologists produced 11% more
information than the “untrained” radiologists (0.664 bits as opposed to
0.589 bits, significant at p < 0.005).

The average information content calculated successfully discriminated
these groups. However, it is an overall measure. Examination of the inter-
action between the groups of radiologists and disease subgroups indicates
that the score can also discriminate at the level of different diseases (p <
0.05). This suggests that the technique might not only discriminate overall
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quality of X-ray interpretation, but it might also be of use at pinpointing
the specific diseases for which an individual radiologist may be failing to
generate effective information.

Infrastructure for an Enterprise Clinical Diagnostic
Support Systems
In order to build and test the variety of CDSS applications described above,
an environment conducive to the development of decision support appli-
cations is necessary. The HELP system served this role for more than two
decades. During that time, the development and maintenance of an infra-
structure, designed to sustain an effective CDSS, became a central tenet of
the system.

Now, a new medical computing environment is replacing the HELP
System as the core of IHC’s Electronic Health Record. This system is
known as HELP2. Based on our experience with the HELP system,55 a new
decision support infrastructure has been developed for this new platform.56

This infrastructure is comprised of five main modules: data-drive, time-drive,
rule node, dispatch node, and configuration manager. Figure 8.3 illustrates
the design.

Data-drive is the module responsible for activating the rules whenever
any clinical data are stored in the database (new, updated, or logically
deleted). Whenever data are stored in the clinical data repository, a copy is
forwarded to the data-drive module. The data instances are filtered using a
configuration file that identifies data for which decision rules exist. Only
those that match continue to be processed. They are transformed into a
standard data representation and sent to the time-drive module. This allows
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a temporal offset between the receipt of the data and the execution of the
rules.

Data that arrive in the time-drive module can be held there for a prede-
termined amount of time before they are delivered to the rule node. The
objective is to be able to activate the rules at certain times of the day, or
after a certain period of time. The holding time can be from seconds to
years. In most cases, data that come from the data-drive typically have no
waiting time, and are immediately delivered to the rule node.

The rule node was designed to allow wide choice in the methods used for
processing the data. It can run different inference engines, allowing differ-
ent representations of knowledge. We have tested with rule in pure java
code as well as logic-executed in third-party inference engines. The rule
node receives the data and verifies which rules or protocols should be exe-
cuted. Besides data-drive and time-drive, the rule node can also be activated
synchronously, i.e., directly by an application. If the activating application
were an interactive application, it would be able to activate a needed rule
set directly and receive in reply the computed decisions. These could then
be presented to the waiting user.

If additional data are necessary to execute triggered rules, the data are
retrieved from the database and converted into the same common data
model. This common data model has a marked benefit as we transition the
EHR from HELP to HELP2. Currently, the clinical data are stored in two
completely different databases, the HELP system and the HELP2 system.
These systems have different data structures and “dictionaries” (coding
systems). Translating the data to a common data model allows the devel-
opment of rules independent of the data location or structure. Rule devel-
opers have no need to know were the data are physically located and/or its
structure or codes. This facilitates maintenance of the rules when migrating
data from a legacy system to a new platform.57

After the rules are executed, the conclusions that are generated are sent
to the dispatch node. The dispatch node is responsible for saving the con-
clusions to the EHR and delivering them to a destination specified by the
user or the rule developer. Currently, the dispatch node can send the rules’
conclusion (e.g., alerts, critiques, suggestion, etc.) to pagers, cell phones,
email, and to an electronic “in-box” specific to each user.

A configuration manager controls the functioning of the all the modules.
It is Web-based and allows the system to be managed and configured from
any browser. Modules can be configured without having to deactivate the
system. The configuration manager also permits the monitoring of salient
system functions including error states and performance.

This collection of modules represents an embodiment of the lessons
learned from the original CDSS developed over more than two decades for
the HELP system. New decision support applications designed and built for
HELP2 provide a daily test of our success in learning from our earlier expe-
riences with CDSS.
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Intermountain Healthcare’s Clinical Knowledge
Management Infrastructure

As IHC intensifies the transition from its legacy inpatient information
system (the HELP system) to the new component-based clinical informa-
tion system (HELP2), a new definition of computable medical knowledge
has evolved. The examples of CDSS described above were designed to
intervene in select medical decisions by providing focused and specific
observations or suggestions. The new definition has grown to embrace
systems that access collections of more general advice while still respecting
the context provided by a selected patient’s data and the applications
invoked by the user.

The new definition applies to a variety of informational interventions
including: (1) tools that reach across the Internet to query commercial and
public collections of medical advice, to bring back references appropriate
to the medical context surrounding the query; (2) systems that query local
collections of problem-specific clinical guidelines to provide context-
specific advice on medical care. This advice seeks to promote decisions that
are consistent with IHC’s care standards; and (3) collections of orders
designed to provide a context-specific starting point for clinicians using
IHC’s new Computer-based Physician Order Entry (CPOE) system.

These broader goals have led to a revised view of the environment
required for authoring and maintaining medical knowledge. This view is
embodied in a comprehensive clinical knowledge management (CKM)
strategy, which is being implemented within the HELP2 computing envi-
ronment. Below, we briefly discuss this strategy and its implementation.The
focus, instead of being on examples, is on the processes of coordinating
development and exploitation of computerized medical knowledge and
tools to support these processes.

Infrastructure Overview
A key strategy, adopted by Intermountain Healthcare, for promoting con-
sistency and quality in clinical care, is the development and deployment of
problem-specific guidelines detailing salient features of that care. These
guidelines may be delivered as textual advice suited to the clinical circum-
stances, or as lists of suggested orders designed to provide an initial order
set in a CPOE package.

The strategy for managing the largely descriptive knowledge represented
is based on coordinated initiatives that identify and disseminate clinical best
practices to help reduce clinical variability and improve disease manage-
ment processes and outcomes. These initiatives, known as “Clinical Pro-
grams,”58 are developed by interdisciplinary teams supported by specialized
workgroups. Development teams and workgroups are recruited from prac-
ticing clinicians who provide both domain knowledge and local or regional
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representation. A senior physician, recognized as a system-wide domain
expert, is commonly the leader of these teams.

In addition to practicing clinicians, each team is also staffed with out-
comes analysts, data architects, knowledge engineers, and clinical education
professionals. Development teams and workgroups are responsible for the
creation of corporate-wide care process models, data collection tools,
provider and patient educational materials, clinical documentation tem-
plates, and different kinds of computerized decision support elements, such
as rules, protocols, care plans, and order sets. These groups are also respon-
sible for the selection and customization of external knowledge sources
obtained from public domain sources, or through licensing from commer-
cial vendors.

Content development priorities are established by guidance councils,
taking into account the most prevalent and/or variable diagnostic condi-
tions and clinical work processes, complemented by key patient safety
processes. The Clinical Programs that have been established so far at 
IHC cover the following medical specialties and subspecialties: cardio-
vascular medicine, intensive medicine, neuromusculoskeletal diseases,
oncology, pediatrics, preventive care, primary care, surgery, and women and
newborns.

Tools to Manage Clinical Knowledge
A complete software infrastructure to support the clinical knowledge man-
agement strategy just described has also been developed. The software
infrastructure aims at supporting distributed and collaborative processes
for authoring, reviewing, and deployment of knowledge content. During the
authoring and review phases, all the knowledge content is stored and orga-
nized by a knowledge repository (KR).

The KR is the cornerstone of the clinical knowledge management soft-
ware infrastructure. The KR has been implemented using a flexible data-
base model and can be used to store multiple categories of knowledge
content, ranging from unstructured narrative text to well structured docu-
ments and executable logic modules. Each KR record is considered a
knowledge document that is preferably represented in XML, but many of
the most common multipurpose internet mail extensions (MIME) formats
are also supported.59

Every knowledge document is associated with a header XML document
that is used to store detailed document metadata. The header is used to
implement the KR’s version control mechanism, providing a detailed
record of all the changes and enhancements made to any given knowledge
document. In terms of searching and retrieving knowledge documents from
the KR, a set of specialized services has been created, leveraging existing
XML document transformation and presentation standards.60 The KR cur-
rently provides services to find, retrieve, and/or manipulate the knowledge
documents according to the needs of various client applications. However,
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content manipulation is limited to instances stored natively as XML 
documents.

Authoring and review processes for KR documents are supported by two
web-based applications: the Knowledge Authoring Tool” (KAT), and the
Knowledge Review Online (KRO). KAT is an authoring environment that
allows clinical experts to create knowledge documents using XML as the
underlying representation formalism.61,62 The authoring environment gener-
ates XML instances using data entry templates created from document
models expressed in XML Schema.62 The templates are used to guide and
enforce the underlying structure of each knowledge document, implement-
ing a variety of data types that can be used to create simple narrative docu-
ments, as well as richly tagged structured documents. The current version of
KAT is being used to author 10 different types of documents, ranging from
order sets for IHC’s CPOE system to corporate nursing care standards.

The main function of KRO is to support an open and distributed review
process, where practicing clinicians, i.e., end-users of the knowledge docu-
ments, have the opportunity to provide direct feedback to the document
authors. The implementation of KRO exposes all the KR knowledge doc-
uments to nearly all IHC clinicians through IHC’s intranet. Whenever a
review is submitted, the author is promptly notified by e-mail. Reviews are
also stored in the KR and can be accessed by any other KRO user. Also
through KRO, clinicians can subscribe to e-mail alerts that keep them
informed about updates and modifications to the documents they have
selected. The functions available in KRO are designed to be exposed as
simple Web services, enabling users to submit a review or to subscribe to
an e-mail alert from within the clinical applications that they routinely use
to take care of patients (CPOE, Results Review, etc.).

Application of the Clinical Knowledge Management
Infrastructure to Computer-based Physician Order Entry
In the next generation of medical information systems, a fundamental tool
for delivering decision support will be a computerized version of the
medical order entry system. Both the critiquing and suggestion-based
approaches described above are most effective in an environment where
the physician personally documents his diagnostic and therapeutic decisions
through a direct interaction with the computer. Intermountain Healthcare’s
approach to implementing CPOE illustrates the use of the knowledge 
management tools described above.

IHC is in the process of developing a new CPOE system. The CPOE
system is a module of the new HELP2 system, and it is being gradually
implemented at all IHC’s hospitals and outpatient facilities. The CPOE
implementation strategy is based on context specific order sets as a key
factor to encourage physicians’ acceptance of the new system.

The development of these order sets utilizes the CKM infrastructure
described above, with the underlying assumption that order sets are, in fact,
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intervention tools to promote the implementation of clinical care processes
that embody best practices and evidence-based guidelines and protocols.63

Once fully implemented, more than 3,500 physicians will be routinely using
the new CPOE system.

The effective development of order sets requires a constant collabora-
tion between clinical experts responsible for authoring the order sets and
the clinicians who use these sets. Direct and continuous feedback is prob-
ably the most efficient mechanism to request fixes or suggest enhancements
to the content of the order sets. The dialogue established between authors
and users promotes open collaboration and provides a sense of co-
ownership of the resulting order sets. IHC considers this process vital for
the overall success of the CPOE implementation, and the clinical programs
are fully committed to this approach.

Currently, the editorial process for the creation and maintenance of order
sets is initiated and controlled exclusively by the lead author. Development
teams or workgroups are responsible for nominating the lead authors.
Using KAT, the author can create an order set by simply filling the tem-
plate that has been designed specifically for order sets.61 Once the author-
ing phase is completed, the author can publish the order set, so others can
review its content and analyze its appropriateness.

As indicated above, the review phase is supported by KRO.Within KRO,
every comment and suggestion regarding an order set is instantaneously
made available to the author and to the other reviewers. If suggestions
made by reviewers require modifications to the order set, the author can
make those modifications using KAT and promptly publish a new version
of the order set. The authoring and review cycle can be repeated several
times, until the content of the order set is considered adequate for clinical
use. The approval for clinical use results from the consensus of the group
that nominated the lead author. Once the order set is approved, the author
is responsible for activating it. The activation is obtained by just changing
the status of the order set to “active.” At this point, the order set is auto-
matically made available to the CPOE system.

Once order sets are made available to the CPOE system, clinicians begin
to use them during the ordering process. In reality, the activation of a brand
new order set for clinical use marks the beginning of a secondary review
cycle, where authors start receiving feedback from the actual users of the
order sets. During this secondary review cycle, the authors are again respon-
sible for analyzing and adopting, or not, the modifications suggested by the
users.

At this stage, the most difficult challenge for the author is to try to under-
stand and accommodate the needs of the different CPOE deployment 
settings. In essence, the lead author, supported by the corresponding 
development team or workgroup, is directly responsible for making sure
the order sets are not only current with published evidence and accredita-
tion requirements, but also reflect and accommodate the peculiarities of the
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different clinical settings. All these activities have to be performed in a
timely fashion, and in harmony with previously defined best practices. The
solution implemented by IHC is based on a collaborative knowledge man-
agement approach, where knowledge experts retain the authority to create
and modify most of the knowledge content necessary for the CPOE system.

The process used to test and revise CPOE is being put through a series
of small prototypes. Select groups of physicians (e.g., teams from the ICUs,
groups of surgeons) volunteer to develop order sets and to use the appli-
cation that allows them to be viewed and modified, and used as the orders
for a specific patient. Their experience with this process is used to revise
the order sets and the software that delivers them.

The main complaints relate to the absence of a connected order com-
munications system. The physicians create their orders using a computer-
ized tool, but then are required to provide a printed version to the ward
clerks for further processing. This extra step will be eliminated when a new
order communication system, currently on the drawing boards, is put into
service and integrated with the interactive CPOE application.

Summary

In this chapter, we have reviewed a number of hospital-based applications
that provide medical decision support. These applications can be catego-
rized in a variety of different ways. We have found it profitable to think of
these systems in terms of their relationship to the data, and of their inter-
faces with their users. These foci should be helpful to future system devel-
opers and implementers, as they reflect on the environment required for
the success of decision support applications.

We have also attempted to emphasize the range of sophistication that can
be found in a clinically operational CDSS. Applications using simple logic
can contribute a great deal to the quality of care provided in a clinical
setting. Programs that use more complex techniques and that strive to
provide the more sophisticated decisions associated with disease recogni-
tion can also contribute. Among the diagnostic applications currently func-
tioning in hospital settings, those that focus on specific, limited diagnostic
goals with a recognizable target audience have been more successful.
General-purpose diagnostic programs, while capable of producing interest-
ing results, have yet to find an audience for which they can provide a
routine, valued support function.

The lessons learned from the information systems used in hospitals are
diffusing rapidly into the outpatient setting. Less expensive hardware, more
flexible software, and an environment that increasingly values the efficien-
cies that computers can offer are encouraging the development of systems
for a wide range of clinical settings. As this process occurs, the lessons
gleaned by developers of CDSS systems in a hospital setting provide a
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springboard for the decision support systems of the future. These systems
will embody, in their software infrastructure, computing models derived
from experiments conducted in environments like the HELP system.

As new CDSS systems incorporate the infrastructure and decision
models developed in the past, these next-generation systems will also incor-
porate approaches to knowledge engineering and maintenance that have
evolved as a part of the research described above. These knowledge man-
agement practices reflect a philosophy of development and continuous
review shared by a community of caregivers. Adherence to this approach
will do much to reduce the challenges associated with implementing poten-
tially disruptive CDSS technologies, by involving the medical community
in their creation and growth.
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9
Clinical Decision Support 
Within the Regenstrief Medical
Record System

Burke W. Mamlin, J. Marc Overhage, William Tierney,
Paul Dexter, and Clement J. McDonald

In this chapter, we review a timeline of Regenstrief Medical Record System
(RMRS) studies related to decision support, describe the system’s archi-
tecture, and discuss the lessons we have learned from over a quarter century
of experience with clinical decision support systems (CDSS). From the
beginning, the RMRS has included mechanisms for writing rules for gen-
erating reminders to physicians, based on clinical data, including laboratory
results, visit diagnosis, coded medications prescribed in the clinic, and vital
signs collected on encounter forms.

Reminders and Guidelines—A History of Regenstrief
Medical Record System Decision Support*

The Regenstrief Institute (Indianapolis, IN) began developing the RMRS
in 1972. It was first installed in the diabetes clinic of Wishard Memorial Hos-
pital (Indianapolis, IN), running on a Digital Equipment Corporation PDP
11/44 computer with four access lines.2 In 1974, the use of this system was
expanded to a few of the hospital’s many general medicine clinics.

In 1976, we published our first randomized, controlled trial of reminders
in the Annals of Internal Medicine.3 In this and most of our subsequent
reminder studies, we were motivated by the fact that humans are imperfect
information processors, subject to oversights and distractions. We intro-
duced this study based on the following premises, providing a cogent ratio-
nale for this and all of our subsequent reminder studies:

There is a general tendency to associate the process of medical care with sophis-
ticated intellectual activity—the creation of causal hypotheses from knowledge
of biomedical mechanisms, the choice of therapeutics based on summed experi-
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ence. It is easy to forget that at the working level much medical activity consists
of simple recognition-response arcs—the hematocrit fall triggers a test of the stool
for occult blood; the newly positive purified protein derivative test stimulates a 
chest X-ray. For such “reflexes,” the stimulus is the occurrence of a simple clini-
cal event, the response is a corrective or clarifying action, and the connecting logic
is defined by simple rules or protocols. In these terms, much of routine (but impor-
tant) medical activity requires compulsive attention to protocol rather than intel-
lectual brilliance.

On occasion, physicians’ clinical “reflexes” fail, as evidenced by errors with
respect to the management of simple clinical events. Cole, Balmer, and Wilson4

found delay or omission of the proper treatment in 8 of 30 cases of tuberculosis.
Three of these involved failure to note positive culture reports shown on the
chart. Others have found similar errors of attention with respect to X-ray reports
of active tuberculosis.5,6 Greenblatt and Koch-Weser7 noted that 77 of 781 patients
on spironolactone were being given supplemental potassium chloride (KCI)
despite blood urea nitrogen (BUN) levels greater than 25mg/dl, and that 41% of
these were hyperkalemic. In a report by Shapiro, Slone, and Lewis,8 respiratory
depressants caused the death of 2 patients with chronic lung disease. Caranasos,
Stewart, and Cluff9 reported that 2.9% of hospitalizations are the direct result of
the effects of medication. Among 606 patients from a general medicine clinic,
Kelley and Mamlin10 found 7 with cervical carcinomas, 38 with intraocular hyper-
tension, 17 with untreated congestive heart failure, 9 with recent myocardial
infarcts and numerous patients with abnormal chemical test results, all of whom
had their diseases go undetected despite regular clinic visits.

Can errors such as the above be reduced by prospective, protocol-driven com-
puter reminders about the existence and implications of simple clinical events?

This study, which was performed in the Wishard diabetes clinic, used pre-
specified rules to identify patients who were eligible for particular clinical
actions and then generated reminders to physicians about such actions. For
example, if a patient was taking aminophylline and his or her serum amino-
phylline level had not been measured within a designated time period, the
computer generated a reminder to the physician about ordering an amino-
phylline level. For this study, the reminder rules were executed each night
as a batch process that examined the computer records of patients who were
scheduled for visits on the next day. The reminders for each patient were
delivered as a paper report that the clinic staff attached to the front of the
patient’s chart, along with a computer-generated flow chart and encounter
form.The flow chart displayed the patient’s active drug profile and provided
space for writing notes and orders. The study was a randomized, controlled
trial, and physicians were randomized to intervention status (received
reminders) or control status (did not receive reminders). Patients inherited
the study status of their respective physicians. We developed nearly 300
rules in two categories:11

1. Reminders to order a specific test because a particular medication had
been prescribed for the patient. The rules were of this general form: “if
on drug A and no test B for X months, then order test B.”
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2. Reminders to change therapy in response to an abnormal measurement.
The general form of these rules was: “if on drug A and the first dose was
followed by a change in test B for the worse, then warn about a possi-
ble causal relation.”

The computer generated reminders for both intervention and control
patients, but delivered them only to the physicians in the intervention
group. The primary outcome was the rate at which physicians responded to
the computer-suggested actions for the eligible patients.

During the 8-month study, 601 visits (301 visits by 119 study patients and
300 visits by 107 control patients) activated one or more study rules. Sixty-
three clinicians responded to 36% of events with reminders and 11%
without (p < 0.0001). They responded to 28% of second-category events
with reminders and 13% without (p < 0.026). When only the most clinically
significant events (e.g., increase the antihypertensive regimen for diastolic
blood pressure greater than 110mm Hg) were considered, the clinicians
responded to 47% of events when reminded, but only 4% when not. This
study showed that computer-generated reminders could improve clinical
processes, and it was the first randomized, controlled study of computer-
based decision support to show a significant effect on the care process.

In a subsequent study published in the New England Journal of Medi-
cine, McDonald described the “nonperfectibility of man.”3 This study, per-
formed in the general medicine clinic (not the diabetes clinic), included
more reminder rules (390 compared to 300) and used a cross-over design,
in which physicians served as their own controls (i.e., physicians were the
intervention subjects in one phase of the study and controls in another).
In this study, we followed 9 physicians practicing in a general medicine 
clinic for one half-day per week for 17 weeks. During the intervention
phase, clinicians were asked to initialize the reminder reports to indicate
that they had actually seen the reminders. This study included three kinds
of reminders:

1. Type I: suggestions to observe a physical finding or inquire about a
symptom;

2. Type II: suggestions to order a diagnostic study;
3. Type III: suggestions to change or initiate a therapeutic regimen.

The reminders were printed on the encounter form that clinicians used for
writing notes and orders, as well as on the one-page reminder sheet. Physi-
cians acted on the computer-suggested actions in 51% of 327 intervention
events and 22% of 385 control events (p < 0.00001). The rate at which they
responded was not higher for physicians whose control periods followed
their study periods; thus the computer-generated suggestions had no “train-
ing effect.” In other words, the computer reminders did not teach the physi-
cians something they did not know, but rather activated the physicians’
pre-existing knowledge and intentions.
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Interestingly, during the study, one medicine resident insisted, “What was
needed was education of bad physicians about what they did not know, not
reminders to good physicians about what they knew.” Because each physi-
cian served as his or her own control, we could observe the effect of the
reminders on each individual physician. As it turned out, this particular
physician’s response to reminders was larger than that of any other study
participant. He took the suggested action in 75% of the cases when he was
reminded, but only in 25% of the cases when not.

A subsequent study, which used 410 computerized protocols and studied
31 physicians over 17 weeks, corroborated the findings of the first two
studies.12 In this 1980 study, we offered access to the medical literature that
supported the reminders, in addition to an improved and more sophisti-
cated set of reminder rules.

As part of this third study, we stationed a pharmacy faculty member in
the clinic, with copies of reference articles that provided justifications for
many of the reminders. The reminder reports given to care providers cited
these references and invited the providers to obtain original copies from
the nearby pharmacist. Physicians responded significantly more often with
reminders than without; indeed, reminders had a two-fold or greater effect
on practitioner behavior. However, the reminders evoked little physician
interest in the supporting literature. In fact, not a single cited article was
requested from the pharmacist during the study. The physicians did not ask
for copies of the referenced articles (given by house officers in informal dis-
cussions) because of: (1) the time pressure of patients waiting to be seen
back on the wards; and (2) the fact that they agreed with, and knew the evi-
dence that justified, the reminder (i.e., they did not need convincing).

By the late 1970s, the RMRS had grown into a full, electronic medical
record repository for Wishard Memorial Hospital, the reminder rules had
been compiled into a formal computer language (CARE), and the scope of
the rules had increased substantially. During 1978–1980, we performed our
largest reminder study—a two-year, randomized, controlled trial that
included 1,490 different reminder rules, the complete set of which were pub-
lished.13 This two-year study included 130 different providers (including
house officers, nurse practitioners, and faculty members), nearly 14,000
patients, of whom 90% were eligible for one of the reminder actions, and
more than 50,000 visits. During this study, the computer generated 140,000
reminders for both intervention and control visits.14 This was the largest ran-
domized controlled trial (RCT) of a reminder system ever performed.

In the 1978 study, we used a more sophisticated randomization (by 
practice—called “teams” in our environment—rather than by individual
providers) to minimize the possibility of contamination between interven-
tion and control physicians. We also used more sophisticated analytic tech-
niques15 to take into account possible clustering effects of patients within
providers and/or providers within study teams. We used the same general
strategy of delivering reminders on paper reports that we had used in all
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previous studies. During the study, the computer suggested an average of
six different clinical actions per patient (e.g., testing for occult blood or
adding a beta-blocker to the patient’s treatment regimen). The reminders
increased the physicians’ completion of the suggested actions from 29% of
the eligible control patients to 49% of the eligible intervention patients.The
15 most frequently suggested clinical actions accounted for 69.8% of all
reminders given. The reminders had the greatest effect on preventive care
(e.g., influenza vaccination, pneumonia vaccination, occult blood testing),
for which reminders increased the usage rate by two- to four-fold!

In all of the studies discussed thus far, intervention physicians took the
suggested actions for a much larger percent of eligible patients than did
control physicians. However, even with reminders, physicians failed to take
the suggested actions for 40–50% of the eligible patients. Some of this lack
of response can be explained by the fact that the physicians did not always
see the reminder reports. In one of the studies, we asked physicians to initial
all reminder reports they had seen or read (whether or not they agreed with
the reminder). This allowed us to distinguish between reminders seen by
the physician and those that were not seen. We discovered that an impor-
tant component of the variance in response rate (15%) was explained by
the physician not seeing or reading the reminders. We believe there is room
to improve the physicians’ rate of responding to the reminder reports. Nev-
ertheless, we should not expect to get to a 100% response rate because: (1)
in some cases, a nonresponse is the correct response; (2) the patient will not
always accept the suggested action; and (3) the computer does not always
have all of the relevant information about the suggested action.After audit-
ing a sample of the charts,14 we found gaps in the computer’s patient infor-
mation base that would have invalidated the reminders in 5% (pneumonia
vaccine) to 50% (cervical pap testing) of cases, depending upon the action
suggested.

We also assessed whether it was necessary to deliver reminders in real
time. Could similar results be obtained by providing feedback reports to
physicians, indicating which patients they had seen in the previous month
who were eligible for preventive care but had not received it? We compared
such feedback reports with real-time computer reminders in a 2 × 2 facto-
rial randomized, controlled trial.16 This 7-month study included 6,045
patients and targeted 13 preventive care protocols, both testing (e.g., mam-
mograms) and treatment (e.g., oral calcium carbonate for osteoporosis pro-
phylaxis). Each protocol could be delivered as a monthly feedback report
or as a printed reminder in the clinic (immediate feedback). Suggestions on
the feedback reports were followed by specific actions the physician could
take: (1) reschedule the patient sooner; (2) perform the test during the next
scheduled visit; (3) stop the reminder for this patient (not applicable, but
the physician agrees, in principle, with the protocol); (4) stop the reminder
for this patient (physician disagrees with protocol); and (5) pull patient’s
chart for review. Both reminders and feedback reports increased adherence
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to the preventive care suggestions, although reminders were significantly
more powerful than feedback reports. Notably, the combination of
reminders and feedback reports was no better than feedback reports alone.
This is understandable, since the physicians checked “remind me next visit”
for 80% of the suggestions on the feedback reports.

Following the successful demonstration that computer reminders sub-
stantially increased adherence to practice guidelines, especially those tar-
geting preventive care, computer reminders were implemented throughout
Wishard’s general medicine and primary care pediatric clinics. Consistent
with the process of continuous quality improvement,17 we then sought ways
to further increase physicians’ adherence to guideline-based care sugges-
tions. In one study, we assessed the effects of forcing physicians to respond
to selected reminders for cancer screening tests.18 In a randomized, con-
trolled trial, intervention physicians had to either order the suggested test
(cervical Papanicolaou smear, mammogram, or fecal occult blood test) or
explain why they did not do so.This study included 145 physicians and 5,407
patients. Intervention physicians followed 46% of the reminders compared
with 38% for control physicians (p = 0.002). Intervention physicians’
reasons for not adhering to the guidelines included the physician being too
busy or the patient being too sick that day (23%), the reminder being inap-
propriate (23%, mostly due to missing data on prior hysterectomies), and
the patient’s refusal to take the test (10%).19

In this study, we demonstrated large effects on care processes, and, with
a secondary analysis, we showed a large reduction in winter morbidity. This
effect was limited to patients who were eligible for influenza vaccines in the
years when a large excess in pneumonia mortality occurred.20 Nonetheless,
we should not expect to be able to demonstrate improved outcomes in
every process intervention, because individual small scale process inter-
ventions often do not have the huge sample sizes that would be needed to
show outcome effects. The HIP Mammography study included nearly
60,000 eligible women and followed them for over 7 years.21 Our reminder
study included less than 3,000 eligible women and followed them for 2
years.

During the 1980s, as the RMRS grew, we developed and implemented a
physician workstation—the Medical Gopher22—with physician order entry
(CPOE) and note writing capabilities. This system was implemented using
personal computers networked to the RMRS. The Medical Gopher bene-
fited from the existing electronic medical record, while enabling direct
physician interaction for real-time decision support.22,23 While CPOE can
exist apart from CDSS, most CPOE systems include aspects of CDSS. In
our case, we integrated decision support into the Medical Gopher from its
inception and leveraged the direct physician interaction to facilitate further
studies.

We used the Medical Gopher order-entry system in the outpatient 
setting to study the effects of three different interventions in laboratory 
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test ordering: the display of previous test results,24 charges for tests,25

and/or the likelihood of a positive result when tests were being ordered,
respectively.18,24–26

The first study included 111 internal medicine physicians in an outpatient
medicine clinic and ran for 16 weeks. Scheduled patients were randomized
to intervention or control status, and previous test results were displayed
when any of a selected subset of the most common test panels (e.g., CBC,
electrolyte, Chem 12) was ordered on intervention patients. When the com-
puter displayed previous test results for commonly ordered tests, the physi-
cians ordered 16.8% fewer of such tests and generated 13% lower test
charges.24

In another study, William Tierney, MD, developed logistic regression
equations based on data in the RMRS about medication use, previous test
values, and demographics to predict the likelihood that a test result would
be abnormal. Logistic regression equations were developed for 8 different
laboratory tests. When the computer displayed the predicted probabilities
that a test would be abnormal—most of which were much lower than the
physicians expected—physicians ordered significantly fewer tests, resulting
in a 9% reduction in charges.26

Displaying the charges for individual outpatient tests, along with the total
charge for all tests ordered during the outpatient visit, also reduced test
ordering.25 We studied 121 physicians’ order entries in an outpatient med-
icine clinic over 59 weeks. Half of the physicians were randomized to the
intervention group and the other half to the control group. For 14 weeks
before the intervention began, the test ordering rates and related charges
were the same across both groups. During the 26-week intervention, when
the computer displayed the charge of each new test ordered and the cumu-
lative charges for all tests ordered during that session, physicians ordered
14% fewer tests per patient visit and generated charges that were 13%
lower ($6.68 per visit). The effect was greater for scheduled visits than non-
scheduled visits and fell back to near baseline in the 6 months following the
intervention. No change in adverse outcomes (hospitalizations, ER visits,
and clinic visits) occurred in the intervention group.

During the late 1980s, we extended the use of the Medical Gopher from
the outpatient clinics into the inpatient wards of Wishard Memorial Hos-
pital, and we performed the first randomized study of CPOE compared to
traditional, paper order entry on the inpatient medicine service. In this
study, the order-entry system provided problem-specific menus, order-
specific templates, a display of the patient’s charge for each item, and warn-
ings for allergies, drug-drug, or drug-diagnosis interactions. The menus and
templates were designed to encourage cost-effective ordering and discour-
age expensive treatments. We did not include active reminders in this study.
Six inpatient medicine ward services were randomized to intervention or
control groups.
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Over 19 months, 68 teams, each comprised of a faculty member, residents,
and medical students, were randomly assigned to these services and cared
for 5,219 patients. We accounted for house staff returning for additional
rotations by placing them onto a service with the same status—interven-
tion or control—as their initial rotation. Physicians and students on ward
services randomized to the intervention arm used the PC-based order-entry
system for all orders, while control services continued to use a traditional
paper-based, order-writing chart and had no access to the Gopher system.
The patients seen on intervention services were not significantly different
from those on control services. However, we demonstrated a savings of
12.7% (nearly $900) per admission when the CPOE system was used.27

Further, hospital stays for intervention admissions were 10.5% (0.89 days)
shorter than controls (p = 0.11). No differences in hospital re-admissions,
ER visits, or clinic visits were seen at 1 and 3 months following discharge.
When the cost savings were extrapolated to all of the hospital’s medical ser-
vices, the predicted savings were $3 million per year.

Once the Medical Gopher order-entry system was in regular use in 
both inpatient and outpatient settings, we began using it as a platform 
for real-time, complex decision support. We created a new, rule-writing 
language for the Gopher order-entry system that we called G-CARE 
(short for Gopher-CARE). Physicians can use reminders generated from
G-CARE for real-time responses to data and orders entered as part of the
order-entry process, while also considering data already stored in the
RMRS.23 When a G-CARE rule executes, it produces a multivalued 
result that may include a date, an identifier, a numeric value, a logical value,
and/or a prespecified order. Rule designers can write six types of rules: (1)
algebraic rules for evaluating expressions; (2) logical rules to execute a
logical operation and return a value of true or false; (3) prompt rules to
request input from the user; (4) reminder rules that returns one set of pos-
sible reminder texts and/or order sets; (5) selection rules to retrieve data
from other G-CARE rules or the medical record; and (6) special rules to
execute special system code. These rules can be activated at many steps in
the order-entry process, including at the start of an order session (before
the physician enters any data), immediately after the physician enters a
medical problem, at the time the physician selects an order for processing,
when the physician completes an order, and at the completion of an order
session. These alternatives are further described elsewhere.23 G-CARE can
be used to provide prior test results, suggest orders for baseline testing or
follow-up monitoring, or block contraindicated orders and suggest alterna-
tives. For example, the computer might suggest a nuclear medicine renal
study instead of an intravenous pyelogram (IVP) in a patient with renal
insufficiency.

Since we had so much success with preventive care reminders in the out-
patient setting, we expected the same success in a study of preventive care
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reminders on the inpatient side. However, our initial attempt was disap-
pointing; our first inpatient reminder study was a negative study.28 We attrib-
uted these negative findings to two factors: (1) physicians think of
preventive care (e.g., immunization) as belonging in the outpatient, not the
inpatient, side of patient care; and (2) the delivery method for reminders
was too timid and indirect—a message advised the physician that reminders
were available and required him/her to press a special key to see the
reminders.

In a more recent inpatient study that focused on 4 preventive measures
(pneumococcal vaccination, influenza vaccination, aspirin for vascular
disease risk, and subcutaneous heparin for deep vein thrombosis (DVT)
prophylaxis), real-time reminders to inpatient physicians did have the large
effect we expected.29 In this study, providers were randomized into inter-
vention and control groups, and intervention physicians received reminders
as orderable pop-ups. Over half of the 6,371 patients admitted to a general
medicine service over an 18-month period were eligible for 1 or more of
the 4 preventive measures. Their ordering rates (intervention versus
control) were 35.8% versus 0.8% for pneumococcal vaccination, 51.4%
versus 1.0% for influenza vaccination, 32.2% versus 18.9% for prophylac-
tic heparin, and 36.4% versus 27.6% for prophylactic aspirin (p < 0.001 in
all cases). We attributed the success of this later study to small—but impor-
tant—changes in the delivery of the reminders to the ordering physician.
Unlike in the previous study, reminders popped up as an order that the
physician could accept or reject, but which they could not ignore.

We also have shown the capability of real-time, computer-generated
reminders to decrease errors of omission in regard to monitoring therapies
and disease in the hospital setting.30 Overhage developed a set of orders that
were required as corollaries to orders for 87 selected test and treatment
orders. For example, an order for a heparin drip would have an order for an
activated partial thromboplastin time (APTT) measurement to follow the
effect of the heparin as a corollary. Over a 6-month trial, physicians who had
been given reminders about corollary orders ordered them for 46.3% of
their eligible patients compared to a 21.9% ordering rate under comparable
circumstances by control physicians (p < 0.0001). Pharmacists intervened for
errors considered to be life threatening, severe, or significant 33% less often
for intervention physicians than for control physicians. No significant change
in length of stay or hospital charges was detected.

We studied the effects of reminders to physicians to discuss advanced
directives with their patients who were either among the oldest old 
(≥75 years) or had serious chronic conditions. In a 2 × 2 factorial design,
we reminded physicians to either discuss instruction directives (instruc-
tions about specific types of care—cardiopulmonary resuscitation, ven-
tilation, surgery, artificial hydration and nutrition, etc.—and whether the
patient would want the care if terminally ill), proxy directives (establish-
ing durable power of attorney for health care), both instruction and 
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proxy directives, or neither advance directive (controls). Both types of
reminders increased the rate at which physicians discussed advanced 
directives with eligible patients, with the greatest effect—a six-fold
increase—observed for physicians who received both types of reminders
over the one-year study period (4% for controls compared to 24% for these
physicians).31

As guidelines were introduced into the order-entry system using G-
CARE, we gained some valuable insights.32–34 Tierney and colleagues
described some of the problems encountered when developing computer-
ized guidelines for heart failure. For example, information in published
guidelines can be horribly inadequate for defining a computer-executable
reminder rule. Published guidelines often include vague terminology, omit
branch points, rely on data not available in the electronic records, and fail
to address comorbidities or concurrent therapy.

Despite these limitations, using G-CARE we were able to program into
the outpatient Gopher workstations detailed guidelines for managing
ischemic heart disease and heart failure, hypertension, and reactive airways
disease. In a 2-year randomized, controlled trial, 2,123 patients were
prospectively enrolled, with 700 having each of the above conditions. Half
of the physicians were randomized to receive suggested orders for the man-
agement of these chronic conditions, while half did not. All physicians used
Gopher to write all orders. A retrospective review of 10% of the charts of
patients included in this study showed that the suggested care was indeed
indicated. However, receiving suggested orders had no effect on adherence
to any of the evidence-based suggestions, clinical outcomes (e.g., hospital-
izations or emergency department visits for heart or lung disease, blood
pressure control), or health-related quality of life for patients with heart
disease,35 lung disease,36 or hypertension.37 These same physicians, who
adhered to preventive care reminders, ignored most reminders about
chronic disease management. Querying them on their responses to guide-
lines for managing chronic conditions, we found them to have mixed feel-
ings.Although they found the guidelines to be good sources of information,
they also felt they were intrusive and mostly aimed to control costs. The
management of chronic disease is also more complicated and subject to
more special cases and alternatives than can be easily incorporated into
computer reminder rules.

Beyond Reminders—Other Uses of Our General
Decision Logic

We have applied the general capabilities of the decision logic for many 
purposes that we have not formally studied or reported. Most of these 
applications have been developed in response to cost, administrative, or
regulatory needs.
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Saving Costs and Improving Efficiency 
Through Reminders
We use CARE rules to suggest less expensive medications and therapies
when the physicians choose the most expensive choices in a given thera-
peutic class. For example, when physicians order one of the patented and
expensive SSRI antidepressants, we direct their attention to fluoxetine
(Prozac), which is roughly one fifth the cost (because it has gone off patent)
but equally efficacious (see Figure 9.1).38 In the case of fluidized beds, we
remind providers of the option of a static air mattress, which some studies
have shown to be as good but at a much lower cost. Of course, the com-
puter also enforces formulary controls on medication prescribing.
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We also have rules and logic that help the hospital physicians adhere to
Medicare regulations about short-stay patients. For example, the computer
reminds physicians to correctly classify their patients as short-stay patients
at admission, and then shortly before the 36-hour limit, the computer
reminds the responsible physician(s) to write full admissions orders if 
necessary.

Assistance to Clinical Research
After IRB approval of a given clinical trial, investigators generally must get
the approval of the physician who is responsible for a given patient before
inviting that patient into the clinical trial. We use Gopher reminders to help
in this recruitment process. In the outpatient clinics and emergency rooms,
an order session requires the physician to enter the medical problem that
was the focus of the patient’s visit. Reminder rules linked to the visit diag-
nosis entry can check for inclusion or exclusion criteria and, when the
patient meets criteria, ask the physician whether the patient should be
invited into the study. The system can then immediately page the study
nurse coordinator to invite approved patients into the study while they are
still on site.

Other Decision-Support Mechanisms

The Gopher system does not use the generalized (G-CARE) rules engine
to deliver all of its decision support. It uses specialized programs driven by
tables to deliver decision support for specialized purposes—such as drug
interactions, formulary management, and medical necessity checking.

Drug-Drug, Drug-Problem, and Drug-Allergy Checking
Drug-drug, drug-problem, and drug-allergy checks are evoked when a treat-
ment order is entered. The computer uses a table that maps a specific drug
to its drug classes. For example: trimethoprim-sulfamethoxazole is a sulfon-
amide and a triamterene because it is a combination drug; and metoprolol is
both a beta blocker and a selective beta blocker. The computer also keeps a
list of the classes to which each active drug order belongs, as well as the class
of problems to which each problem in the active problem list belongs. Drug-
drug interactions are checked at the class level by examining all combina-
tions of the entered drugs’ classes with the patients’ currently active drugs’
classes. For each interacting pair, the computer displays a window alerting
the physician to the interaction and explaining its importance (see Figures
9.2 and 9.3). Our interaction table includes only the strong and scientifically
well supported drug interactions, so this processing occurs at blink speed.
The physician’s workflow is interrupted only by important interactions.
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Drug-problem interactions and allergy testing use the same general
approach; all checking is done at the class level.

Insurance-Based Formulary Control of 
Medication Prescribing
We have specialized programs that can check on insurance plan-dependent
formularies, displaying the alternatives within a given drug class, and their
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relative costs. So, if a physician enters an order for the drug Nexium,® a
proton pump inhibitor, a menu will pop up with the proton pump
inhibitor(s) that the patient’s insurance plan will cover. The drug costs are
indicated by the number of dollar signs shown to the left of the drug name
(ranging from “$” for low cost to “$$$$” for very high cost). The lists of
drugs that are provided within a given class and their costs vary by insur-
ance plan. For example, for one plan, Prilosec® (omeprazole) may be the
only drug, while another plan might include Nexium® (esomeprazole)
because of special contract arrangements between the insurance plan and
the pharmaceutical manufacturer. Formularies differ from one insurance
plan to the next, and individual plans change their formularies over time.
Because keeping track of all of these details is maddeningly difficult, such
formulary-specific content has great value for physicians.

However, we have been able to deploy this capability for only two of our
hospital’s major insurance carriers because insurance plans rarely provide
their formularies in electronic form, thus requiring that they be updated
manually. Standards in this area are desperately needed.

Medical Necessity
For a subset of diagnostic tests, Medicare mandates that testing meet 
their requirements for medical necessity. The Medicare intermediaries
provide tables with a list of ICD-9 diagnostic codes for each of the medical
necessity tests. When one of the qualifying diagnoses appears in the diag-
nosis field for a patient’s visit, Medicare accepts the test as medically 
necessary.When a visit includes a test that requires medical necessity check-
ing and the billing diagnosis does not include one of the qualifying diag-
noses for the ordered test, Medicare requires the practice to have the
patient sign a special document stating that he or she will pay for the test.
It is important to note that many kinds of tests and procedures that are
actually medically necessary are not classified as such under the Medicare
rubric. This medical necessity requirement places new burdens on medical
practice; it requires that the check-out process include the CPT codes for
all tests ordered and a computer system that checks to determine 
whether medical necessity is met for each of those tests. The practice also
is put in the awkward position of having to state that the tests are not med-
ically necessary (by Centers for Medicare and Medicaid Services’ rules),
even when they may be quite necessary by the standards of usual medical
care.

In the Gopher order-entry system, we alleviate this problem by asking
providers to identify a reason for each test they enter.They can choose from
the patient’s active problem list and/or from a list of common reasons 
for ordering the test. When a test does not meet medical necessity by
Medicare’s standards, the computer informs the physician, so that he or she
can either explain it to the patient or reconsider ordering the test. This puts
a small, additional burden on the physician, but it smoothes the check-out
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process and reduces the number of situations in which the patient is 
surprised with additional charges.

Passive Billboards, Menus, and Fill-in-the-Blank
Templates to Guide Decisions
The Gopher system also provides decision support through static text dis-
plays (that we call “billboards”), as well as context-specific menus.

When a provider enters the name of an order, the computer pops up a
window with up to eight lines of text to inform (or guide) the provider about
that order (see Figure 9.4).

We call this text the billboard because it is designed for quick reading
and is focused on the order being written. We use this order-specific bill-
board to warn physicians about the costs and the most important
dangers/benefits of the tests/treatments being ordered. In some cases, the
billboard text will suggest alternatives. Using G-CARE rules, we can make
portions of the billboard text dynamic. For example, we can include the date
that a test was last ordered and its result or embed clinical calculations (e.g.,
body mass index or creatinine clearance) into the text.

The same window (just beneath the billboard) provides areas for enter-
ing the values needed to complete an order or a note. Such details include
dose, amounts to dispense, instructions, and reasons for the order. Most of
these values can be entered using order-specific menus. The content of 
these menus also provides guidance to the order-entry process. The most
important field required to complete an order is the Sig. (i.e., instruction 
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for the order). A given order can have multiple Sig. templates. For example,
the Sig. menu for trimethoprim-sulfamethoxazole has seven options, includ-
ing one for urinary tract infections and another for PCP prophylaxis (see
Figure 9.5).

We use fill-in-the-blank templates for constructing the order instructions.
A very simple, fill-in–the-blank template for medication may include
options for the dose, the frequency, and the reason for the order (e.g., “prn
pain”). The choices within the template apply to the specific order as well
as the specific order context. Complex fill-in-the-blank templates can
express rules for adjusting an IV drip, such as dopamine infusion based on
the blood pressure response. Fill-in-the-blank templates also can be used to
request the justification for an order. For example, the template for GI con-
sults asks the user to pick one of the acceptable reasons for a GI consult,
and an order for vancomycin asks the user to provide a reason that will
satisfy pharmacy and therapeutics (P & T) guidelines to reduce the devel-
opment of vancomycin-resistant bacteria (see Figure 9.6).
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We use a combination of executable logic, order-specific billboard text,
and fill-in-the-blank templates to solve many institutional cost and opera-
tional problems, while at the same time improving physicians’ workflow and
reducing their paperwork.

Reference Materials and Tools
In addition to the decision support described above, we provide easy access
to online references and resources, including MEDLINE, PubMed, UpTo-
Date,® drug information resources, a nutritional handbook, disease man-
agement guidelines, and a clinical calculator, as well as a link to our medical
library with access to hundreds of online medical journals.

Architecture of the Regenstrief Medical Record System

In this section, we offer a brief overview of the RMRS architecture, includ-
ing the knowledge base, inference engines, and user interfaces used for deci-
sion support.

Knowledgebase
The knowledge within RMRS is spread throughout multiple, integrated
resources. The electronic medical record (EMR) exists on a central system
that is tied to all of the ancillary systems and data sources.39 The PC-based
Medical Gopher order-entry system runs on a local area network (LAN)
connected to, yet distinct from, the central repository. The majority of our
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decision-support resources are stored on the Gopher’s LAN for perfor-
mance purposes (see Table 9.1).

Inference Engines
There are two main “engines” running within the RMRS to deliver deci-
sion support (see Table 9.2).
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Table 9.1. RMRS clinical decision support knowledge sources.
Knowledge Location Description

Specialty-specific Gopher specialty table Includes menu choices and
menus templates that vary between

medical specialties.
Problem-specific Gopher dictionary Each Gopher dictionary entry for a

menus medical problem contains sets of
comments and orders pertinent to
the problem. For example,
“congestive heart failure” menus
include orders for diuretics, ACE
inhibitors, beta blockers, daily
weights, etc.

Differential Gopher DDX table Symptom-based differential
diagnoses diagnoses data.

Medical necessity Gopher medical necessity Relationships between tests,
table procedures and diagnoses are based

on payer criteria for 
reimbursement.

Drug allergies Gopher code Drugs ordered are checked against a
coded list of the patient’s allergies.

Drug interactions Gopher drug interactions Drug family, specific drug, and
table diagnosis interactions, along with

descriptions of the interaction, are
scanned whenever a drug order is
entered into the system.

Medical and drug Gopher reference tables Links to reference information are
references and Internet available at any time through a help

key or menu option.
Consequent orders Gopher dictionary Consequent orders are tests or

treatments that should be ordered
before an order is initiated, or for
monitoring after an order is
initiated.

Order templates (fill- Gopher dictionary Templates are written in a local
in-the-blanks) format and stored into the Gopher

dictionary. When an order is placed,
this information is pulled from the
dictionary and used to generate fill-
in-the-blank templates. G-CARE
rules may be embedded to provide
additional information and create
dynamic templates.



CARE rules running on a server generate reminders for visit notes,14

while a PC-based extension, G-CARE, drives the immediate response of
suggested orders, corollary orders, blocking orders, and dynamic menus
during the ordering process.23 The notification of drug-drug interactions and
patient allergies is performed by specialized codes within the CPOE 
system.

Communicating with the User
Users receive decision support from the RMRS in numerous ways (see
Table 9.3). Generally speaking, providers receive decision support and
interact with the system through two primary methods: reports (e.g.,
encounter forms) and the CPOE system. The RMRS prints out diagnosis
lists, patient-based reminders, and dynamic data entry prompts on the
encounter form for each visit. It also prints out a single-page clinical
abstract summarizing recent lab results, visits, and medications.40

In both inpatient and outpatient settings, all physicians interact 
with our CPOE system when writing orders or notes. All clinics have 
workstations in the doctor charting room, however, several have comput-
ers in the exam room as well. Reminders produced by the Medical Gopher’s
inference engine can be presented to an ordering provider in several
formats:

1. Textual information, for example, an informational message relevant to
the current order.

2. Annotated orders that can be accepted or rejected with a keystroke or
mouse click.

3. A request for information, such as the patient’s body weight or height.
4. An insertion of patient-specific values or a calculation result into a test

display or menu item.
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Table 9.2. RMRS inference engines.
Knowledge Location Description

Encounter form RMRS One large file contains all reminder protocols. A batch
reminder process executes all of these protocols nightly to 
protocols generate reminders for the next day’s scheduled clinic 

visits. Protocols are written in the CARE language.

G-CARE Gopher Decision support logic written in an Arden-like language
CARE Rule that allows for a complex network of expressions to 
Table generate reminders, fetch and display results or test 

prices, suggest orders, block contraindicated orders, and 
even prompt the user for data.



Timing is an important challenge in the successful use of reminders in
decision support. Therefore, we have designed the CPOE system to trigger
reminders in various contexts:

1. Upon selecting an orderable item: these reminders are usually designed
to either discourage or redirect the provider to an alternative, and less
expensive or safer order. We call these “blocking rules.”

2. Following the completion of an order: these are suggestions for actions
that might be required because of the new order, for example, in response
to an order for intravenous gentamicin, to suggest that gentamicin levels
be followed.

3. After entering a problem into the patient’s problem list or declaring the
reason for a visit: medical problems can trigger requests for more infor-
mation or trigger problem-specific suggestions.

Any of these triggers may spawn a message via internal e-mail or over the
internal digital pager to inform someone outside the clinic of an event. The
principal use of this feature is to inform study coordinators when a provider
has given permission for a patient to be enrolled in a clinical trial so that
the researcher can approach the patient during the same visit.
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Table 9.3. The ways an RMRS provider experiences decision support.

Allergy notification
Drug-drug interactions
Suggested orders (when starting an order session for a patient)
Specialty- and problem-specific order sets
Dynamic menus (e.g., weight-based)
Diagnosis- and age-specific dosing and administration-interval suggestions
Dynamically computed dosing suggestions (e.g., adjusted for renal function)
Corollary orders (e.g., “since you ordered X, you might want to order Y”)
Blocking orders (e.g., “X is no longer formulary, consider ordering Y or Z”)
Notification of existing advance directives
Links to references/tools (library resources, patient education, clinical calculator, etc.)
One-button access to patient’s active orders and medication profile
Supersets (batteries of orders, e.g., “DIABETIC SUPPLIES MENU”)
Order-specific institutional policies
Price of orders
Date and value of most recent result(s) when ordering tests
E-mail (e.g., “a social worker informs the team that patient X was accepted to an extended

care facility”) and daily messages
To-do lists and patient notes
Notification of patient encounters
Printed reminders on pocket-sized rounds reports, encounter forms, medication lists, and

other reports
Alphanumeric paging for critical values
Alphanumeric paging notification for clinic patients seen in the emergency room or

admitted



Lessons from More Than a Quarter Century of
Experience with Computerized Decision Support

Evidence-Based Lessons

• Computerized reminders . . .
• . . . can change clinical behavior;11

• . . . can reduce errors and improve adherence to practice guidelines;3,30

• . . . do not necessarily provoke providers to review the associated lit-
erature;12

• . . . have a strong and persistent effect on patient care;14

• . . . can promote preventive medicine in both the outpatient14 and inpa-
tient29 settings;

• . . . have a greater effect than delayed feedback for enhancing preven-
tive care;16 and

• . . . can increase discussion and completion of advance directives.31

• Presenting prior test results can reduce unnecessary testing.24

• Offering providers predictions of abnormal results can reduce testing.26

• Displaying the charges for diagnostic tests significantly reduces the
number and cost of tests ordered, especially for patients with scheduled
visits.25 This effect does not persist if charges are no longer displayed.

• Reminders for flu shots can generate better patient outcomes.20

• Requiring physicians to respond to computer-generated reminders
improves their compliance with preventive care protocols;18 however,
promoting preventive care through computerized reminders presents
further challenges in the inpatient setting.28

• CPOE and CDSS can significantly reduce patient charges and hospital
costs.27

• CPOE-based CDSS can be attained with little or no time added to the
patient care process.41

Experience-Based Lessons

• Start with the assumption “the user is always right” because computer
systems often lack fine details and reminder rules cannot anticipate every
situation.
• Users should be able to override nearly every decision. When we first

created reminders for mammograms, we found that users were dis-
missing them. Why? Because the computer system was unaware of a
prior mastectomy, a dying patient, or a recently obtained mammogram
from another institution. Simply appending these conditions as selec-
table options after the reminder both acknowledged the system’s lim-
itations and regained our users’ confidence.
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• Workflow is paramount!
• Keep it simple.

• Workflow is one of the most critical aspects of delivering excellent,
efficient patient care. Decision support often introduces new steps
(whether it is a new piece of paper to be reviewed or an alert within
CPOE that must be navigated). Implementers of decision support
must be cognizant of the impact on workflow.

• Whenever possible, favor provider-oriented workflow.
• Avoid punishing the user with additional obstacles when simple

rewording or changing a default value will do. The same result often
can be achieved in either a user-friendly or not-so-friendly manner.
For example, if providers are disregarding decision support that sug-
gests a more effective test or treatment, first consider where, when,
and how the message is being delivered (e.g., could it be conveyed
more concisely or at a more appropriate position in workflow?)
before introducing extra steps (e.g., forcing the user to acknowledge
the message with an extra key press).

• When possible, allow for free text. For example, we generally allow
order instructions to be selected from the menu or typed in as free
text. While free text may limit the computer’s understanding of the
data, judicious use of free text can make the system more “user-
friendly.”

• Response-times should be sub-second, i.e., “blazingly fast.”
• Providers do not want to wait for a computer during a busy day. Deci-

sion support that involves significant processing should either be sim-
plified or moved to a batch process that can run asynchronously with
the patient’s visit.

• Don’t overwhelm the users.
• Too many reminders or too many choices are worse than none.
• Keep messages and text short and focused.

• Never underestimate the power of user feedback—seek it out!
• Early in the development of the Medical Gopher, we invented the

pizza meeting for gaining user feedback. In these weekly pizza meet-
ings, we traded pizza for house staff and student feedback on the
system. This feedback was critical in both forming a user-friendly
system and addressing system problems early.

• Listening is often 90% of the solution; however, the ability to respond
rapidly with improvements or fixes will cover the last 10%.

• Up-time is critical.
• To effectively incorporate decision support into workflow, providers

must be able to depend on the system. Erratic behavior (e.g., unpre-
dictable reminders) will not be tolerated and users will quickly dismiss
the system.
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Decision Support During Inpatient
Care Provider Order Entry:
The Vanderbilt Experience*

Randolph A. Miller, L. Russell Waitman, Sutin Chen, and
S. Trent Rosenbloom

Introduction

The need for decision support systems in medicine has been understood 
for 2,500 years. Hippocrates noted “Life is short, the art long, opportunity
fleeting, experience treacherous, judgment difficult.” (Aphorisms, sec. I, ca.
460–400 BC). While the basis for clinical decision support has been recog-
nized throughout the ages, careful studies in the recent medical literature
document those needs specifically.1–14 Early pioneers, such as McDonald,
Tierney, and their colleagues at the Regenstrief Medical Institute15–25 (see
Chapter 9); Warner, Gardner and their colleagues at LDS Hospital26–28 (see
Chapter 8); and many other groups have confirmed, through controlled
studies, the initial report of Shakespeare in 1597: “If to do were as easy as
to know what were good to do, chapels had been churches, and poor men’s
cottages princes’ palaces. . . . I can easier teach twenty what were good to
be done than to be one of the twenty to follow my own teaching” (The Mer-
chant of Venice, Act I, Scene ii). Busy clinicians have so many diverse tasks
to perform that they are constantly distracted from being able to accom-
plish what is known to them as good medical practice. “Men are men; the
best sometimes forget” (Shakespeare, Othello, 1605; Act II, Scene iii).
Reminding systems and other forms of clinical decision support have been
shown to be effective in overcoming such lapses of memory in a number of
clinical situations.15–40 However, the success of systems intended to be used
by busy practitioners is not guaranteed. A significant number of clinical
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informatics systems (not all documented in the literature) implemented
with good intentions have been met with anger and resentment.41–44 Pro-
viding decision-support capabilities in a timely and convenient manner can
add value to otherwise lackluster or marginal systems, and improve quality
of care and reduce costs.15–40

This chapter addresses the following questions: (1) What steps or stages
in physician or other care provider order entry (CPOE) represent appro-
priate breakpoints (both computationally and with respect to end-user
workflows) at which one can introduce clinical decision support? (2) What
categories of decision support are relevant during CPOE sessions? and (3)
What methods for workflow interruption should one consider in order to
implement decision-support interventions based on end-user tolerance and
clinical urgency?

The authors use the Vanderbilt WizOrder CPOE system as the primary
context for discussing decision support interventions. Through longstand-
ing partnerships with clinician end-users, Vanderbilt Biomedical Infor-
matics faculty members, fellows, and staff developed a CPOE system
(WizOrder), implemented it on the wards of an academic teaching hospi-
tal, and evolved it in response to ongoing feedback.45–55 The approach to
decision support described in this chapter was derived through generaliza-
tion from experience. While the authors draw heavily on their Vanderbilt
experience, the above questions and their answers are generic enough that
others may find value from the descriptions provided herein.

The authors describe the precommercial version of WizOrder at Van-
derbilt. The WizOrder CPOE system was developed by Vanderbilt Uni-
versity faculty within the School of Medicine beginning in 1994.The product
was not commercialized until May–June of 2001. At that time, Vanderbilt
University entered into a marketing agreement with McKesson to com-
mercially sell and distribute the WizOrder Care Provider Order Entry
System, after rewriting and recasting it as Horizon Expert Orders in
McKesson’s product line. The authors have referred to the system through-
out the manuscript by its name at Vanderbilt, WizOrder. All descriptions
are of system components developed at Vanderbilt University and not by
the commercial vendor.

Basic Care Provider Order Entry System Functionality

Order entry within most CPOE systems parallels manual paper chart-based
order creation. Manual ordering involves: (1) finding the patient’s chart; (2)
finding the topmost blank order page; (3) handwriting new orders as a
block; (4) signing the orders to make them legal; (5) after setting a flag 
indicating presence of new orders, placing the chart where clerical unit 
staff expect to find charts with new orders; and (6) informing unit staff
(patient’s nurse, others) when life-critical or extremely urgent orders 
have been written. For the corresponding electronic CPOE processes,
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the user: (1) authenticates with user name and password; (2) invokes the
CPOE application and selects a patient for order entry; (3) enters and 
modifies orders, using an electronic scratchpad (buffer) that holds orders
but does not deliver them to ancillary departments (e.g., lab or pharmacy)
for immediate action; (4) indicates when he or she is ready to finalize the
set of orders on the scratchpad to send them out for processing; and (5)
reviews and edits orders on the scratchpad before they are dispatched to
be carried out. With electronic CPOE, person-to-person manual communi-
cation of life-critical, or otherwise very urgent, orders remains essential for
patient safety.

The panes of Figure 10.1 represent the Vanderbilt approach to imple-
menting key components of an order entry interface. Vanderbilt end 
users strongly recommended that the CPOE system interface should have
geographical consistency—meaning that the same types of clinical infor-
mation are always displayed in the same areas of the screen, and that the
number of pop-up windows and pull-down menus that could obscure
display of clinically important information were limited. WizOrder’s 
left-sided window displays currently active (or expired in the previous 24
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Figure 10.1. WizOrder primary user interface screen panes: PANE #1, current and
recent orders display; PANE #2, selectable “pick list” display; PANE #3, in-context
instructions; PANE #4, user input text entry area. User had previously typed “nitro”
into completer in PANE #4; PANE #2 shows results.



hours) orders for the current CPOE patient (PANE #1). The upper right
window presents context-dependent pick lists of options available for order
creation or modification (PANE #2). The middle right window represents
a context-sensitive help window that instructs the user on available next
actions (PANE #3). The bottom right window contains a text input region
(PANE #4).

Creating Orders
A key CPOE system design consideration involves how clinicians specify
what they want to order. Many systems56–59 utilize a hierarchical organiza-
tion of orders, illustrated by the following example (bold font indicates
hypothetical selection made at each level):

. . . Orderable Pick List Level 1: Pharmacy, Laboratory, Radiology, Dietary,
Nursing [orders], . . .

. . . Orderable Pick List Level 2: Hematology Tests, Serum Chemistry Tests,
Urinalysis, . . .

. . . Orderable Pick List Level 3: Complete blood count (CBC), platelet
count, blood Rh type, . . .

Many systems also have a completer function that allows the clinician-user
to type shorthand word fragments derived from the desired order name (or
its synonyms). The completer then searches for potentially matching terms
from the orderables dictionary, and provides the user with a pick list of
order names from which the user can select. For example, typing “nitro”
into an orders completer (Figure 10.1, PANE #4) would return a pick list
(PANE #2) of orderable items’ names, with “nitroglycerin sublingual” at or
near the top of the list, and lesser/partial/wordier matches (e.g., nitrogen
mustard, urea nitrogen blood) farther down the list. Vanderbilt users typi-
cally specify new orders using the completer function, and only rarely use
WizOrder’s hierarchies for order entry—usually when they do not know
the specific name for the item they want to order.

After selecting an order name, users must specify (enter) an individual
order’s components (e.g., dose, route, frequency, etc, for a medication
order). Many CPOE systems formally define orderables and their compo-
nents using a data dictionary with structured templates that specify neces-
sary and optional fields required to fully create an individual order. Figure
10.2 illustrates WizOrder sequential prompts for building an order for sub-
lingual nitroglycerin (based on stored templates), and Figure 10.3 indicates
how the order, once fully specified for WizOrder, transfers to the left-sided
active orders area (PANE #1). Another mechanism for generating new
orders (used often, but less than half the time at Vanderbilt) is order sets—
groupings of diagnosis or procedure-related selectable orders.60 If the user
selects an order set name from a completer pick list or from the WizOrder
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Figure 10.2. Frequency prompts (medication-specific) for “nitroglycerin sublin-
gual” orderable, after dose already specified by similar process.

Figure 10.3. Order for “nitroglycerin” moves to left window (PANE #1) once fully
completed.



order set hierarchy, the order set’s component orders are retrieved and dis-
played as selectable items in the upper right pick list window (Figure 10.4,
PANE #2).

Displaying Active Orders
Most CPOE user interfaces manage the display of currently active orders.
In complex patient cases, the number of active orders may exceed 100.
Therefore, simply listing all such orders in a display panel (sorted alpha-
betically by order name) will not be helpful to clinicians unfamiliar with the
patient’s case, since locating an arbitrarily named specific order within a 
long list is difficult. Early in the development of WizOrder, end users
requested that a display of active orders follow a grouping based on the
ADC VAAN DISML acronym (familiar to physicians)—Admission, Diag-
nosis, Condition, Vital signs, Activity, Allergies, and so on (Figure 10.1,
PANE #1). Most CPOE systems use similar methods to segment the active
orders display into clinically useful buckets. Many CPOE systems facilitate
electronic rearrangements of the active orders display to accommodate 
different users’ workflows (e.g., nurses, attending physicians). Vanderbilt’s
specialized intensive care units and the emergency department, for 
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Figure 10.4. First six orders in the acute coronary syndrome order set.



example, required location-specific specialized views of active orders. As
WizOrder displays active orders, it also displays recently expired orders
(within the past 24 hours) with a special symbol in the left margin to indicate
that those orders that have expired; a different left-margin symbol indicates
orders soon to expire.

Modifying and Finalizing Orders
Figure 10.5 illustrates the result of a mouse click on an order in the left Wiz-
Order pane. WizOrder displays a series of options listing what the user can
do to the order at that point (modify, discontinue, renew, etc.) After the Wiz-
Order user is finished entering orders for a session, clicking a designated
button on the CPOE screen transfers the user to a final accept screen (see
Figure 10.6). This screen gives users a last chance to verify (or to change)
their orders from the current ordering session. Once final-accepted, the
orders are sent to the appropriate ancillary systems for action and com-
mitted to a relational database for archiving. Similar features are available
in most CPOE systems.
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Figure 10.5. “Pop-up” options (PANE #5) after selecting nitroglycerin order from
PANE #1.



Displaying Information and Providing Complex 
Decision Support
A final WizOrder component consists of an intermittently displayed, pop-
up window that contains an internal HTML browser (labeled “PANE #5”
in various figures). The WizOrder program uses this capability to display
static Web documents with educational content or dynamically generated
CPOE-related pages that provide complex, patient-specific decision
support capabilities.49,50

Philosophy Underlying Decision Support During Care
Provider Order Entry

Use of a CPOE system during patient care provides a unique opportunity
to interject decision support features that improve clinical workflows,
provide focused relevant educational materials, and influence how care is
delivered to patients. It is somewhat of an art to be able to provide clinical
decision support that is well accepted and used widely. Key considerations
in the approach to providing decision support include: what content to
provide; when to intervene in the clinical workflow process; and how to
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Figure 10.6. Final accept screen (PANE #5) allows user to verify orders at end of
ordering session.



intervene, in terms of both degree of disruption of workflows and mecha-
nism of interruption. These considerations are addressed later in this
chapter.

The nature of the clinical application domain determines what types of
decision-support content to provide. It is not appropriate to allow a clini-
cian to spend 1–2 minutes constructing an intricate medication order, only
to later inform the clinician that the medication is contra-indicated due to
a previously documented patient allergy. Allergy warnings should take
place at the time the clinician first indicates the name of a new medication
to be prescribed. Conversely, delivering a warning to a clinician to order a
partial thromboplastin time (PTT) monitoring test, immediately as the clin-
ician completes a heparin order, may cause both exasperation and a lost
sense of autonomy when that is exactly what the clinician intends to order
next. Checking whether a PTT monitoring test has been ordered at the end
of an order entry session, during which intravenous heparin therapy was
initiated, may be more appropriate, since the user is done entering orders
at that stage. Oppenheim et al. observed that permitting the physician to
enter an order with feedback provided only at the conclusion of order con-
struction, and then only if the order is possibly incorrect, serves dual pur-
poses.61 First, delayed warnings make clinicians first commit to a preferred
course of action, thus discouraging reliance on CPOE systems to make clin-
ical decisions for the users. Second, delayed warnings give the clinician user
the opportunity to correct problems they detect spontaneously, whereas
early warnings may impart negative reinforcement by underscoring clini-
cians’ errors.61

In the authors’ experience, busy clinical users value CPOE system
responsiveness and intuitiveness. A key aspect of responsiveness involves
creating orders at an appropriate clinical level (both for users’ levels of
training and for their knowledge of their patients). The physicians and
nurses entering orders into a CPOE system typically have a different
mindset than individuals who will carry out the orders in ancillary areas
(e.g., pharmacy, radiology, and dietary departments). Problems in creating
CPOE system orderable item names can occur when the technical terms
used in ancillary departments are carried forward as the orderable items
vocabulary for clinicians. So while radiology technicians might think in
terms of “chest X-ray 2 views” and “knee X-ray 3 views”, clinicians are more
comfortable ordering “chest X-ray PA and lateral” and “knee X-ray AP,
lateral and oblique.” Similarly, if the CPOE system asks the physician order-
ing a chest X-ray how the patient should be transported to the radiology
department, the physician is unlikely to give an optimal response because
physicians are rarely involved in determining a patient’s transport. Thus,
CPOE systems should not ask clinicians to perform tasks that fall outside
of their job responsibilities, or about which they have little knowledge.
Structuring orderable items with the clinician in mind helps to overcome
major barriers to adoption and can prevent errors.
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Intelligent system interfaces can dramatically decrease the burden of
ancillary departments in dealing with CPOE system generated orders. For
example, pharmacists use the pharmacy system to fill and dispense the clin-
ical orderables specified within the CPOE system; if a high-level order is
issued by the physician, it may require more work on the pharmacy system
side of the interface to specify all components of an order correctly. Once
the physician specifies a medication order at a clinical level, an intelligent
interface within the CPOE system can evaluate both the pharmacy’s for-
mulary and the floor stock inventory on the patient’s unit, and then auto-
matically determine the correct dispensable within the pharmacy system.
Currently, the intelligent pharmacy interface within WizOrder guesses the
correct pharmacy-level dispensable item over 90% of the time. This allows
the pharmacist to devote more time to evaluating each order’s clinical valid-
ity, safety, and efficacy.

As a frequently used clinician data entry tool, an institution’s CPOE
system becomes a target for administrators and researchers wishing to
capture additional data at the point of care. It is important to avoid over-
burdening clinicians with requests that interrupt their workflows, and, when
extra information is required, the system should only ask clinicians for
information about which they are the definitive source. For example, at Van-
derbilt, upon patient admission, the attending physician of record was orig-
inally input into the admission, discharge, transfer (ADT) system by an
admitting clerk. However, the admitting clerks were not always informed
of the specifics of physician group coverage schedules, and often they did
not know the correct name to enter. The problem was addressed by finding
a more definitive data source—the admitting house staff team, who must
discuss each admission with the attending physician—and having them
enter the name into the CPOE system. Conversely, if one wants to record
whether a patient received aspirin in the emergency department just prior
to admission, asking an intern who is entering discharge orders for the
patient several days later (and who did not admit the patient) could be
viewed as a nuisance, and cause lower-than-optimal data quality.

While some decision support functions not directly related to order entry
can be delivered during an order entry session, they will not be discussed
in this chapter: for example, a laboratory system that generates alerts when-
ever abnormal patient results occur might notify clinicians responsible for
the patient’s care either by paging them or via e-mail or an asynchronous
pop-up alarm that occurs when the clinician is currently logged into the
CPOE application.62 Such alerts originate outside of the CPOE session
context. Many CPOE systems, including WizOrder, display permanent
taskbars, an array of useful links, continuously during the application
session;45,59,63–65 however, such taskbars rarely provide context-specific deci-
sion support of the sort described here. Instead, they allow the user to access
common CPOE functions. For instance, the BICS (Brigham Integrated
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Computer System, in Boston) toolbar allows the clinician to quickly view
orders and search for patients, among other functions.64,66

Roles for Decision Support Within Care Provider Order
Entry: Categories of Interventions

1. Creating Legible, Complete, Correct, Rapidly
Actionable Orders

A CPOE system can avert problems associated with handwritten order 
creation,67 for example, illegibility, incompleteness, and incorrectness.
Improved legibility not only reduces errors, but also saves staff time because
nurses, pharmacists, and medical technicians spend time and energy as they
decipher the meaning of ambiguous handwritten orders and then make
phone calls to clarify what was meant. Complete orders contain all the nec-
essary parameters to make an order actionable (order name, start date and
time, duration, frequency, etc.). Correct orders have parameter values that
meet requirements for safe, prudent patient care (e.g., drug doses are appro-
priate for the patient’s age, weight, and renal function). Most CPOE system
interfaces ensure completeness and promote correctness of orders.67–69

2. Providing Patient-Specific Clinical Decision Support
An important CPOE system capability is generation of decision support
recommendations customized to individual patients’ specific conditions. A
CPOE system can provide a safety net through behind-the-scenes recon-
ciliation of patient-specific information (laboratory results, age, allergies,
existing medications from the clinical data repository70) with stored best
practice rules. For example, most CPOE systems screen patient orders
against dosing rules and drug interaction references to reduce medication
prescribing errors.53,66,71–74 A CPOE system can also facilitate clinical care
improvement by promoting use of evidence-based clinical practice guide-
lines58,75,76 through end-user order generation via diagnosis or procedure-
specific order sets56,59,65,70,76 or via computer-based advisors,58,64,73,77,78 as
detailed below.

3. Optimizing Clinical Care (Improved Workflow, More
Cost-Effective and Regulatory-Compliant)
Often, complex software systems functionally become high-level program-
ming languages for their end users. Once clinicians regularly use a CPOE
system, they begin to make suggestions about modifying it to make their



work easier and more effective. For example, to improve workflows, several
surgical services at Vanderbilt encouraged WizOrder developers to create
registry orders. The orders place patients on a registry that allows clinicians
to track, via a census, diagnoses and procedures performed on registry
patients (e.g., neurosurgery service). At the same time, registries enabled
efficient transfer of appropriate information to the billing office, relieving
physicians of that responsibility. Early CPOE users at Vanderbilt requested
printed rounding reports to facilitate patient care during work rounds and
attending (teaching) rounds. The rounding reports concisely summarize, on
the front and back of an 8.5 × 11 inch piece of paper, both the patient’s
active orders and all laboratory results reported in the prior 72 hours with
highlight markers next to significant (e.g., abnormal) results. After several
years, the institution’s administration began to view the CPOE system as a
tool to implement quality of care, cost containment, and compliance initia-
tives.52–54 Institution-wide CPOE interventions can: discourage the ordering
of inappropriate, recurring tests;20,52,79 advise against costly tests or require
further justification before allowing them to proceed;22,55,80 display formu-
lary information;55,57 and help the ordering clinician to enter requisite third
party payer compliance codes (e.g., ICD-9 or CPT) for diagnostic tests. Clin-
icians are not always familiar with compliance rules, and they tend to write
reasons for tests based on suspected diagnoses (e.g., “rule out MI” for an
electrocardiogram, or “possible pneumonia” for a chest X-ray) rather than
indications for testing approved by third party payers. Orders that require
specific reasons for compliance can be made to trigger the WizOrder inter-
nal Web browser to display and capture order-specific compliance-related
reasons for testing. This can increase the rate of third party payer reim-
bursements for those tests due to more accurate, complete capture of com-
pliant reasons.

Clinical decision support features within CPOE systems can also
promote implementation and enforcement of local hospital policies. The
Regenstrief Medical Record System (RMRS) (see Chapter 9), successfully
used computer reminders to increase discussion about, and completion of,
advanced directives (end-of-life, “do not resuscitate” related orders).81

Previous studies had indicated that too few patients completed advance
directives.82 In Boston, the BICS was modified in order to prevent the
appearance of vancomycin-resistant microorganisms by requiring clinicians
ordering vancomycin to enter a reason for using the antibiotic.83

The challenge for CPOE system developers is to honor the care improve-
ment goals while keeping the system responsive and intuitive. Developers
must strike a proper balance between clinical improvements versus cost
containment. At times, both goals may be achieved in a single interven-
tion—judiciously ordering fewer tests does not mandate a lower quality of
care.52 However, care improvement interventions may themselves have
unintended consequences that require continuous monitoring and feedback
for optimal results.54

226 R.A. Miller et al.



4. Providing Just-in-Time, Focused Education Relevant
to Patient Care
Most CPOE systems provide relevant educational prompts and, in addition,
links to more detailed educational information resources. Educational
prompts can be introduced as in-line summaries that appear while pre-
scribing a medication. Figure 10.7 shows in the upper right WizOrder panel
in-line suggestions for vancomycin dosing adjustments in neonates with
meningitis or with renal impairment. The CPOE Web browser content can
also provide effective educational information, for example, presenting a
summary of disease-specific national guidelines, links to educational mono-
graphs, or a summary of indications and contra-indications for a specific
therapy. Educational links can assist clinician users to perform complex
ordering, such as for total parenteral nutrition (TPN) in a neonatal inten-
sive care unit. The design of a CPOE system user interface can significantly
influence the rate at which users follow educational links and read the
related materials. Simply having an option for decision support may not be
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Figure 10.7. In-line recommendations for dosing vancomycin in NICU include: (a)
PANE #2, suggested doses for regular use, for meningitis, and for renal impairment;
(b) PANE #1, passive display of weight, dosing weight, and gestational age; and (c)
PANE #2, display of renal function test results (not available for training patient in
this example).



sufficient to command users’ attention, and stronger cues, such as different
visual displays as to the relevance of the information, may be needed.55

Critical Points at Which to Implement Decision Support
Within Care Provider Order Entry

Each stage of use of a CPOE system permits a focused repertoire of deci-
sion support interventions, both in terms of user community affected,
patients affected, and appropriateness of the intervention for the task the
end user is performing. For example, as the CPOE system is launched 
from a clinical workstation desktop, system-wide messages can appear, but
patient-specific advice cannot (since, typically, a patient has not yet been
selected). Below, we discuss the type of decision support that is appropri-
ate and feasible for each stage.

1. Stage of Care Provider Order Entry Session Initiation
Upon initial launching of the CPOE application, the identity of the clini-
cian user is known, but not the identity of the patient. At this stage, users
may be advised of new CPOE system features on a one-time-only basis. To
avoid annoying users, such interventions should be used sparingly; for
example, for features of general interest to all users such as a new method
of entering a specific group of commonly used orders that replaces the pre-
vious method of doing so. Once the alert is displayed, the system removes
the current user from the list of users who still need to see that message
again. At launch, the CPOE system can also inform users of information
related to their personal use of the system, such as the number of orders
(and number of patients) requiring their countersignature, and provide a
link to facilitate completing the task.

2. Stage of Selecting Care Provider Order Entry Patient
from Hospital Ward Census
After CPOE system launch, users typically select an individual patient 
for order entry. A number of alerts can occur at the stage of displaying 
the census of available patients for CPOE. Similar to the BICS system 
in Boston (and other CPOE systems), WizOrder provides, via the patient
census screen, an inpatient, unit-wide view of the status of recently 
issued orders (see Figure 10.8). A map view of the given hospital ward
shows all beds and uses color coding to indicate which beds have new 
unacknowledged, urgent (i.e, stat) orders and which have unacknowl-
edged routine orders. A care provider wishing to enter new orders (or
acknowledge recent orders) can click on a bed on the display screen to 
initiate an order entry session for that particular patient. An alternative 
to the map view of a hospital unit census is a list view that lists patients 
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on the unit, and that can be sorted by patient name or by ascending bed
number. In WizOrder, icons located beside patients’ names in the list view
provide useful information (Figure 10.9). Using a similar list census screen,
the BICS system presents a renewal reminder next to the patient’s name
when a medication order for a given patient nears expiration.84

3. Stage of Individual Patient Session Initiation
Once the order entry session becomes specific to a selected patient, several
new types of decision-support related events can occur. In WizOrder, once
the patient is identified, the system retrieves all relevant past (active and
inactive) orders for the patient, and previously stored patient-specific infor-
mation such as weight, height, coded allergies, and active protocols (with
related date of protocol initiation information). As the user waits for the
initial patient-specific CPOE screen to appear, WizOrder queries the
patient data repository to obtain the patient’s recent laboratory results for
common important tests, in order to assist with subsequent CPOE decision-
support recommendations.
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Figure 10.8. CPOE “map” view of hospital ward. Map indicates beds (circles) with
different shading to indicate new, urgent “stat” orders or those with new “routine”
orders; right border shading indicates highest priority of new orders not yet
acknowledged (across all beds) by nursing staff.



Ability to recover from an interrupted CPOE session without loss of
work (time and effort) is critical to busy clinicians’ acceptance of such
systems. Lost sessions can occur due to system bugs (such as a disk becom-
ing unexpectedly full), environmental factors (such as network outages or
power failures), and user factors (such as abandoning a workstation during
a medical emergency, with a subsequent session timeout). Figure 10.10
shows the alert that occurs upon initiation of a patient-specific CPOE
session for a patient with a previously interrupted session. The user is then
given the option to play back and recover the orders from the previously
interrupted session.

Among the many other types of alerts that can occur at the stage of ini-
tiating a patient-specific CPOE session are: presentation of a summary of
past alerts and warnings related to the patient’s orders—e.g., allergies and
drug interactions; notification of medications about to expire; display of the
names of active protocols for the patient (e.g., “Deep Venous Thrombosis
prophylaxis protocol”); and promotion, via reminders, of new protocols for
which the patient is eligible. Figure 10.11 illustrates an admission wizard
that indicates to the user, for the ward on which the patient is bedded,
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Figure 10.9. “Patient list” view of CPOE ward census. Several graphical “icon”
alerts (left margin next to patient name) provide useful information regarding ward
census at a glance. The inverted triangles provide duplicate last name warnings; “S”
indicates patients on whom medical students have entered orders that must be
reviewed by a licensed medical doctor to become “activated;” and pumpkins indi-
cate patients who have been bedded as outpatients long enough that conversion to
inpatient status (or discharge to home) should be considered.
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Figure 10.10. Interrupted/incomplete previous WizOrder CPOE session warning.
Allows user to recover from previously interrupted ordering session.

Figure 10.11. Admission Wizard prompts user to select evidence-based protocol
for patient when relevant to case.
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Figure 10.12. Drug-drug interaction warning after entry of new medication name.

the commonly used, evidence-based best-of-care order sets that are avail-
able within the system, and it encourages the user to select one for use on
the patient, if applicable. The structure of such an order set, once selected,
is shown in Figure 10.4 in the upper right window (PANE #2).

4. Stage of Individual (Single)Order Selection
Upon selecting a specific CPOE orderable item, and before the details of
the order are specified by the user, certain decision support checks may be
appropriate. In order to not waste the user’s time, once a drug name is iden-
tified as being the next order, and before the user specifies the details of
the drug order (dose, route, frequency, etc), CPOE-based allergy and drug
interaction checking should issue any relevant warnings. Figure 10.12 illus-
trates a WizOrder drug-drug interaction warning after entry of the new
medication name.

Individual order selection can also trigger protocol-based interventions
such as recommending drug substitutions (suggesting a less expensive or
more effective medication than the one originally selected). Similarly, single
order selection can initiate computer-based advisors related to the specific
order (Figure 10.13A and 10.13B). A similar mechanism that redirects
physician workflow occurs in the BloodLink-Guideline system for test
ordering.58 Many CPOE systems offer the capability to link order sets to



Figure 10.13. (A) Clinician-user initially attempted to order “VQ scan” of lung for
pulmonary embolism, and WizOrder completer maps to official name of test (item
1 in PANE #2), which user then selects by typing choice in PANE #4. (B) Selecting
lung scan order from A launches anticoagulation adviser in WizOrder, helps clini-
cian select appropriate diagnostic workup, and therapy for suspected or confirmed
deep venous thrombosis (DVT) or pulmonary embolism (as well as DVT prophy-
laxis and therapy for other disorders such as acute coronary syndrome).

A

B



Figure 10.14. “In-line”, patient-specific, interactive advice for clinician while
attempting to prescribe cyclosporine for patient; developed by experts in the phar-
macy to guide clinician to best choice.

individual selectable orders (i.e., to transfer the user to an order set when
an individual order is selected).56,59,65,70,76 Order sets are described in detail
below.

5. Stage of Individual (Single) Order Construction
Once the order name has been selected, the CPOE system assists the user
in completing required steps for order construction (see Figure 10.14 for an
example of instructions during cyclosporine ordering). WizOrder guides
medication order construction by highlighting recommended drug doses
and drug frequencies and by presenting alerts for potentially incorrect deci-
sions. This is similar to what is described in the literature for the BICS
system in Boston.66,73 Many CPOE systems also provide computer-based
advisors to enforce compliance with established, evidence-based guide-
lines.58,77 As described in Chapter 8, the antibiotic advisor system at LDS
Hospital in Salt Lake City recommends therapy options for critically ill
patients based on patient vital signs and serology, microbiology, pathology,
and radiology results.77

Based on their research, Bates et al. observed that clinicians generally
take the path of least resistance.73,85,86 Providing effective decision support
involves not only alerting the provider about a potential error, but pro-
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viding a correct alternative option as well. For instance, in the BICS system,
if meperidine hydrochloride is prescribed for a patient whose creatinine
clearance (a measure of renal function), is significantly diminished, an alert
notifies the user that the drug might possibly promote seizures in this
patient, and suggests a substitute medication.84

6. Stage of Individual Order Completion
Once an individual order’s components have been fully specified (and any
allergy or other alerts that might have prevented order construction have
been dealt with), a number of decision-support functions related to the
order as a whole become appropriate. Upon completed order construction,
many CPOE systems suggest corollary orders—follow-up tasks clinically
indicated after certain orders.73,84,87,88 For example, after ordering gentam-
icin, an antibiotic, it is often appropriate to order serum drug levels. Figure
10.15 illustrates this capability in WizOrder. As discussed in Chapter 9, the
RMRS system presents corollary orders for many drug-drug monitoring
test pairs (e.g., warfarin prescriptions and related INR/prothrombin time
tests) and for drug-drug side effect pairs (e.g., prescription of class II nar-
cotics and orders for stool softeners to treat/prevent the constipation caused
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Figure 10.15. After completing gentamicin order (seen in PANE #1), system offers
selectable gentamicin monitoring orders (in PANE #2) as “one click away” for con-
venience (suggesting best practice, but not requiring it).



by narcotics).87 Another example is offering clinicians the opportunity to
order heparin (to prevent DVT) after a completed order for bed rest (which
predisposes to DVT).84 Research has shown more effective ordering and
improved outcomes as a result of such systems.89

7. Stage of Ordering Session Completion
Once the user has specified all individual new (or modified) orders and
wishes to finalize the ordering session, various decision-support related exit
checks are appropriate.As noted above, recurring reminders to do what the
clinician user already intended to do are not well tolerated. Instead of using
corollary orders to prompt PTT and INR monitoring after orders for
heparin and warfarin, respectively, WizOrder waits until the ordering
session is complete. At that point, it becomes fair game to issue warnings if
appropriate monitoring tests have not been issued. Conversely, if during a
given ordering session, a clinician discontinues either the heparin infusion
or the PTT monitoring tests but not the other item of the pair, it is appro-
priate to use an exit check that warns the clinician that parallel actions to
discontinue both are usually needed. Figures 10.16 and 10.17 illustrate the
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Figure 10.16. WizOrder “exit check.” On completing admission orders on an ICU
patient, if the clinician-user has not specified a target RASS (Richmond Agitation
Sedation Scale) score, the system uses a pop-up alert to remind the clinician that it
is ICU policy to do so.



two-part WizOrder exit check for ordering (or updating) the Richmond
Agitation and Sedation Scale (RASS) target score whenever pain medica-
tions or sedatives are ordered for a patient in an ICU.

Care Provider Order Entry Intervention Approaches—
from Subtle to Intrusive

While the interfaces of successful CPOE systems are rarely seamless, users
adapt to their styles of workflow after training and repeated use. Once accli-
mated to the CPOE system workflows, users do not appreciate interrup-
tions that deter them from the previously noted path of least resistance.86

Determining whether, how, and when to disrupt clinician workflows to
provide appropriate decision support is critical to end-user acceptance of
both the decision support and the CPOE system overall. Below, we describe
a number of approaches to introducing decision support, from nondisrup-
tive to very disruptive, and give examples of where each may appropriate.

1. Incidental Display of Relevant Information
Presentation of additional viewable text on a portion of the usual applica-
tion screen allows the user direct access to relevant information with
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Figure 10.17. User (from Figure 10.16) requests assistance in specifying RASS
score; web-based advisor assists user with data collection and score calculation.



minimal interruption to workflow. Because no user input (e.g., acknowl-
edgment of the information) is required, and no additional information is 
available (e.g., the user cannot click on or select the displayed information
to learn more), the clinician is free to read or to ignore the displayed 
information.WizOrder displays the most recent results of serum electrolyte
tests during ordering of intravenous fluid therapy. WizOrder also displays
relevant dosing information for prescribing medications, for example, on
pediatric units, the patient’s actual weight, dosing weight, and pharmacy-
recommended dosing guidelines (see Figure 10.7). Information relating to
costs may be displayed as well.

2. Incidental Display of Linked Education Opportunities
A CPOE system may have order-related educational information that is
too voluminous to include in the usual order entry screen. Under such cir-
cumstances, the CPOE system can present links for users to select (click
on) that lead to a separate screen/window providing the relevant textual
information. Examples might include links to relevant drug guidelines and
formulary information.59 The Vanderbilt Patient Care Provider Order Entry
with Integrated Tactical Support study,55 provided links to pharmacother-
apy-related information (illustrated by the “GenRx” and “WizRx” links on
the right margin of PANE #3, Figure 10.2), and reference material for diag-
nosis in internal medicine. Figure 10.18 provides an example, in PANE #5,
of displaying an evidence-based summary of what is known about a specific
drug interaction (selected by the user from the drug interaction warnings
list of Figure 10.18, PANE #2). In other systems, as clinicians review rec-
ommended drug doses for patients with renal impairment, they can display
the data used to calculate creatinine clearance using a keyboard shortcut
link.64

3. Interactive Sequential Advice for User-Directed
Clinical Activity
By presenting stepwise instructions in context, CPOE systems help users 
to carry out discrete tasks. Figure 10.2 presents the default minimum 
type of advice that WizOrder provides for order construction; Figure 10.14
provides a more complex example whereby the user is sequentially
prompted, through questions and answers, to order the most appropriate
form of cyclosporine for the patient. Another system, the BloodLink-
Guideline system58 directs blood test ordering decisions by first having the
clinician select the appropriate guideline, then presenting a menu of related
indications, and, finally, presenting a menu of relevant tests for a selected
indication.
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4. Recallable Best Practice Guidelines with Actionable
Pre-Formed Pick List Selections
Order sets are pick lists containing constituent individual pre-specified full
orders, often representing standardized protocols. Figure 10.4 illustrates a
portion of the WizOrder order set for acute coronary syndrome. Order sets
are often presented in hierarchies for easy access, organized by clinical
department,40,59 by organ system, or by clinical diagnosis, condition, or pro-
cedure.57,76,90 While picking orders from order sets may be viewed as dis-
ruptive to the usual workflow of creating individual orders, in many CPOE
systems appropriate use of order sets can increase users’ time-efficiency and
promote completeness and correctness of orders.58,60,91

5. Pop-Up Alerts that Interrupt Workflow and Require a
Response for the User to Continue
Pop-up alerts can present clinically important information (in a separate
user interface window) that must be acknowledged by the user before
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Figure 10.18. Clinician prescribed cyclosporine while a currently active order for
gentamicin was in place. Following a drug interaction alert (PANE #2), user clicks
on item 1 to request evidence basis for what is known about the drug interaction
(displayed in pop-up window, PANE #5).



resuming previous CPOE activity. Use of such interventions is typically
viewed by users as disruptive, and should be reserved for only the most
severe clinical indications. Pop-up fatigue can occur when too many alerts
of this type disrupt clinical workflows.92 In WizOrder and other systems,
pop-up windows alert physicians when excessive chemotherapy doses are
ordered.48,93 Figure 10.19 illustrates how a WizOrder user is notified that 
the most recent laboratory test ordered will be sent out to a reference lab-
oratory for completion, and provides advice on how to optimize ordering
with respect to institutional policies regarding reimbursement for testing.
This mechanism is used to display hospital-approved drug substitution reg-
imens. Figure 10.20 shows a WizOrder drug substitution pop-up (imple-
mented as an advisor, Method 6, below). Figure 10.16 shows how the RASS
exit check was implemented as a pop-up alert in WizOrder. Figure 10.12
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Figure 10.19. Clinician user begins to order “selenium blood” level (PANE #2),
prompting a pop-up warning (PANE #5) that stops workflow and demands atten-
tion. The pop-up explains that the test is sent to a reference laboratory and takes
three days to perform. User is notified that reimbursement may be compromised if
patient is discharged before result is known. Pop-up provides instructions for alter-
native ordering mechanisms (that can be selected directly from pop-up) if clinician
believes that obtaining the result of the order is not urgent/emergent for the current
patient.



illustrates how WizOrder uses the pop-up method to present a drug inter-
action alert.

6. Complex, Computer-Based Protocols that Interact 
with the User to Make Patient-Specific Calculations 
and Recommendations
The most complex form of decision support is an interactive advisor that
integrates patient-specific information (laboratory results, active orders,
weight, allergies, etc.) with complex guidelines or protocols, and presents
calculated/derived information to the user for decision making, typically
involving a two-way dialogue between the application and the user.
Complex advisors may combine educational advice, calculators for patient-
specific dosing, and other functionality in one screen. The Antibiotic
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Figure 10.20. User ordered an antibiotic for which the Pharmaceuticals and Ther-
apeutics (P&T) Committee had recommended a substitution. A variant pop-up, this
educational advisor guides the clinician through ordering an alternative antibiotic.
Links to “package inserts” (via buttons) detail how to prescribe the recommended
drug under various circumstances. A physician who knows little about the recom-
mended drug could learn enough to prescribe it appropriately.



Advisor system at LDS Hospital in Salt Lake City is described in Chapter
8. The LDS advisor analyzes patient data and laboratory results in order to
determine likely pathogens, and then determines the optimal treatment for
the patient, including factors such as patient allergies and local patterns of
antimicrobial functions into its assessment. In WizOrder, the Web browser
pop-up window is used to dynamically generate patient-specific advisory
content.49,50 Figure 10.21 illustrates the WizOrder TPN ordering advisor for
the neonatal intensive care unit (NICU).

Conclusion

It is critical that system developers, the technologists maintaining the
system, and clinical experts collaborate in managing clinical systems during
development. Implementing decision-support capabilities within clinical
systems requires an understanding of the clinical significance of a proposed
intervention, detailed knowledge of the intervention itself, and a good
understanding of the workflows of the clinicians who will be affected by 
the intervention. The authors have described multiple mechanisms for
delivering decision support within the context of CPOE systems using 
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Figure 10.21. NICU total parenteral nutrition (TPN) advisor provides complex
interactive advice and performs various calculations.



Vanderbilt’s WizOrder system for illustration. There are three important
axes to consider: the role of decision support, when to intervene, and the
method of intervention. Framing decision support in this manner may help
both developers and clinical end users to understand how to tailor the
system whenever new decision-support needs arise. This framework may
also be useful when evaluating and reviewing decision support within
CPOE systems.

Offering decision support within a CPOE system provides both clinical
end users and institutional administrators with the opportunity to substan-
tially change the way that an institution carries out its work, and to improve
patient care processes in terms of quality and safety.
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11
Decision Support for Patients

Holly B. Jimison, Paul P. Sher, and Jennifer J.B. Jimison

This chapter is designed to introduce the concept of computer-based deci-
sion support systems for patients. With the rapid growth of computing 
technology available to consumers and the virtual explosion of health 
information available on the World Wide Web, patient decision aids and
computer-based health interventions are now a more common part of
routine medical care. The new field of consumer health informatics deals
with “developing and evaluating methods and applications to integrate con-
sumer needs and preferences into information management systems in clin-
ical practice, education, and research.”1 This technology, both hardware and
software, is part of a growing trend toward empowering consumers to take
a more active role in their own health care and to provide the necessary
information to enhance their decision making. Today, more than ever, con-
sumers are using information technology as an important supplement to the
information provided by healthcare professionals in the course of clinical
encounters.

Role of Consumer Health Informatics in Patient Care

Research studies have shown that access to health information can enable
patients to be more active participants in the treatment process, leading 
to better medical outcomes.2–5 Health education is an important aspect 
of doctor-patient communication. Patients report that they want to be
informed about their medical condition,6,7 and the process of sharing 
information enhances the doctor-patient relationship. The rapid growth 
of consumer health software and materials on the Web has facilitated
patient participation in their health care and decision making. These
systems have been developed to assist patients with informed consent,8

as well as coping and decision-making skills.9,10 Involvement in one’s
medical care also involves the concepts of patient empowerment and 
self-efficacy.
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Empowerment and Self-Efficacy
Empowerment and self-efficacy are closely linked concepts. In general,
empowerment can be thought of as the process that enables people to
“own” their own lives and have control over their destiny. It is closely
related to health outcomes in that powerlessness has been shown to be a
broad-based risk factor for disease. Studies demonstrate that patients who
feel “in control” in a medical situation have better outcomes than those who
feel “powerless.”11–13

Similarly, self-efficacy is a patient’s level of confidence that he or she can
perform a specific task or health behavior in the future. Several clinical
studies have shown self-efficacy to be the variable most predictive of
improvements in patients’ functional status.14–21 For example, in a study of
functional status after bypass surgery, self-efficacy explained more vari-
ability in functional status outcomes than did measures of disease severity,
functional capacity, comorbidity, or preoperative functioning.22 Addition-
ally, in a study on patients with rheumatoid arthritis, the degree of perceived
self-efficacy was correlated with reduced pain and joint inflammation and
improved psychosocial functioning.16 In cancer patients, a strong positive
correlation was found between self-efficacy and quality of life and mood.23

In the prevention area, perceived self-efficacy was shown to play a signifi-
cant role in smoking cessation relapse rate, control of eating and weight,
and adherence to general preventive health programs.24

Given the strong influence of empowerment and self-efficacy on health
outcomes, it is important to incorporate a focus on these concepts when
designing systems for patient use. The feeling of empowerment and self-
efficacy can be enhanced, for instance, by online support groups where
patients are able to connect, communicate, and engage in problem solving
with others who have similar medical problems.This has been demonstrated
by the Comprehensive Health Enhancement and Support System (CHESS)
in women with breast cancer and patients with AIDS.9,10,25 An important
measure of the success of health information systems is how well they
promote empowerment and self-efficacy for patients.

Incorporating Patient Preferences
As medical care increasingly focuses on chronic disease, it is especially
important that patient preferences regarding the long-term effects of 
their medical care be taken into account. For patients to be adequately
informed to make decisions regarding their medical care, it is important 
that they obtain information about the quality of life associated with the
possible medical outcomes of these decisions. Yet the reliable assessment
of a patient’s preferences and risk attitudes for clinical outcomes is proba-
bly the weakest link in most clinical decision making. Recent efforts to
explore the use of computers in communication about health outcomes, and
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in assessing patients’ preferences for various health outcomes, have started
to address these issues.26–28 Information on patient preferences is important
for tailoring information to patients and for providing decision support.26

Tailored information has been found to be more effective in providing con-
sumer information29 and is preferred by patients.30 In addition to differences
in preferences for health outcomes, patients differ in the degree to which
they choose to be involved in decision making. Research confirms that 
age (younger), gender (females), and education level (more) are strong 
predictors of the desire to be involved in medical decisions. There is also a
higher desire to be involved in medical decisions that appear to require 
less medical expertise, such as a knee injury, as opposed to a cancerous
growth.30

The Computer as a Health Information Medium

There has been an increase in research devoted to testing the effective-
ness of various formats and types of media for conveying health infor-
mation to consumers.31–35 These studies tend to show that video and slides
are educationally more effective than books and audiotapes. Computer
approaches have the additional advantages of interactivity, providing 
feedback in the learning process and the ability to tailor information to the
individual patient. However, in many cases, more research is required to
demonstrate the effectiveness of computer approaches. In addition, design-
ers of systems for patients have not always been sufficiently sensitive to
human-computer interface issues. The design of a system for general health
education for patients requires specifications that meet a variety of needs.
Table 11.1 outlines the design guidelines for a consumer health information
system.36

Health Information and Decision Support Systems 
for Patients

The number of commercial computer and Web-based products to support
patients’ health information needs is expanding rapidly. The information
and decision aids range from general home healthcare reference informa-
tion to symptom management and diagnostic decision support. There has
been a dramatic upsurge in consumers’ use of the Web to acquire health
information. Physicians, clinics, hospitals, and insurers are all redefining
their business practices to incorporate the Internet and Web delivery
systems. In addition, in 2004 the Pew Survey on the Internet and American
Life found that 55% of Internet users have used the Web to seek health
information.37 Whereas many computer tools for patients, in the past, were 
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delivered via CD-ROM or videodisc, current technology with broadband
access, makes Web delivery far less expensive and more easily accessible by
most patients. The following sections describe the various types of health
information and decision support applications available for patients and
their families.

General Health References
There are several publishers of Web-based general health encyclopedic 
reference materials. These materials are typically alphabetically arranged
and searchable. Topics include prevention, diseases, treatments, and pro-
cedures. Oftentimes, content creators and publishers, such as A.D.A.M.38

and Healthwise39 will license their content to several other clients that, in
turn, deliver Web material for patients. These clients may be health insur-
ance companies, health portals, such as WebMD40, or general Web portals
with health services, such as Yahoo! and AOL. The U.S. Federal Govern-
ment also supports a Web service for consumers on their Healthfinder site.41
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Table 11.1. Design guidelines for a consumer health information system.

Intuitive Interface
• Graphical metaphors easily understood by the general populace
• Designed for use by naïve, untrained users
• Online help available at every stage
• Immediate word definitions available in every application

Complete Coverage/Coordination
• Single location for information on disease and health concerns
• Coordinated with routine medical care

Hierarchical Presentation
• Simple summary information presented first
• More detail and complexity available as desired
• Guided movement through databases
• User requests anticipated, presearch to improved speed

Presentation Tailored to the Individual
• Material presented appropriate for the assessed reading level
• Material presented appropriate for education and medical expertise
• Material presented in a culturally sensitive manner
• Material presented in the appropriate language
• Material tailored to history and assessed patient-specific health risks
• Patient preferences incorporated

Facilitate Quality Decision Making
• Health outcomes information included
• Patient preferences on health outcomes incorporated
• Summary of tailored decision support information

Option for Printout
• Ability for the patient to have material to take home/share with family included



The material on this site is a compendium of information available from
other government sites, but written at a lay level. The government also 
provides MedlinePlus to assist patients in searching for reliable health
information. Several academic medical centers, such as Mayo Clinic, have
also created their own consumer-based Web sites based on locally created
information.42

Web sites that present a full complement of health information will also
typically organize information by age, e.g., child’s health, women’s health,
men’s health, or senior health. Alternate organizational schemes that users
find helpful include separating information by disease, and then linking pos-
sible symptoms, diagnostic procedures, and treatments within that cluster.
Sites such as WebMD40 have also found it useful to have a separate section
with information for newly diagnosed patients. More detailed information
on specific diseases or conditions, is often available from societies or groups
specializing in a topic. Finally, online medical dictionaries, disease-specific
discussion boards, and “ask-an-expert” services are also often found as com-
ponents of health portal sites.

Drug Information
Information about prescriptions is most commonly obtained from content
providers and publishers that specialize in just that feature. Examples of
searchable drug databases for patient use are RxList,43 DrugInfoNet,44 and
RxMed.45 These databases include general and interaction information on
a large number of prescription and over-the-counter drugs. Additionally,
some of the health portals offer a Web tool that specifically checks for drug-
drug interactions for a particular patient’s set of prescriptions. Multum46 is
one such company that provides this database and algorithms for these Web
sites.

Diagnostic Decision Support
Some of the health portals that offer general reference and drug informa-
tion also offer interactive tools to assist patients in health assessment,
symptom management, and limited diagnostic information (usually in
preparation for shared decision making in an office visit). Health risk
appraisals usually take the form of a questionnaire with questions on family
history and health behaviors. After completion, patients receive a tailored
printout with a summary of results that may help them prioritize their
health goals. Companies, such as WellMed,47 will provide this service for
organizations with health portals. This information may then be linked to a
personal health record and shared with one’s clinician.

Another example of online self-assessment using a questionnaire style
format is Mayo Clinic’s depression test.42 It is embedded in a page with links
to further information on depression. These types of assessments allow the
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patient to know when to pursue diagnostic advice from a health care pro-
fessional and when to seek treatment.

Many of the health portals also offer calculator style tools to help patients
manage their health. For example, after entering height and weight, patients
can obtain their body mass index. Pregnancy calculations and target heart
rate calculations are also amenable to this approach.

Occasionally, the health Web sites will offer diagnostic aids for patients.
However, there has been some reluctance to offer advice that is overly spe-
cific. The usual approach on the health sites that offer symptom-based diag-
nosis is to assess a symptom or two and then present a list of possible causes,
with links to further reading. The Mayo Clinic Web site for patients offers
what they call Health Decision Guides42 for a limited number of diseases
and conditions.The guides consist of background material on the condition,
how the condition is diagnosed, treatment options with thorough descrip-
tions, and the pros and cons of each option.Within their site, the background
material is supplemented with video clips on the Web. This goal of this
approach is not to provide the patient with a diagnosis or specific recom-
mendation, but to prepare the patient to be an informed participant in
making the treatment decision during the next visit to the clinician.

The Foundation for Informed Medical Decision Making (FIMDM) has
taken the decision assistance even further. They focus on treatment deci-
sions where patient preferences on health outcomes are important.48 They
use video (in some cases interactive) to convey to patients what it might be
like to live with possible future outcomes. With the background on prog-
nosis and an understanding of the related health outcomes, patients will be
better prepared to participate in shared decision making with their clini-
cian when treatment goals are set. FIMDM provides tools for breast cancer,
prostate cancer, knee osteoarthritis, back pain, coronary artery disease, and
reproductive conditions. Treatment decisions for chronic conditions such as
these are often quite sensitive to patient preferences, and it is important to
have tools that facilitate patient participation in decision making.

It is interesting to note that health books and computer applications, for
patients, on CD-ROMs, are likely to have more explicit diagnostic infor-
mation with recommendations than what is currently seen on the Web. For
example, the American Medical Association’s Family Medical GuideTM is a
program consisting of seven modules: (1) diseases, disorders, and condi-
tions; (2) an atlas of the body; (3) symptoms and self-diagnosis; (4) your
healthy body; (5) injuries and emergencies; (6) diagnostic imaging tech-
niques; and (7) caring for the sick. The program’s diagnostic decision
support section consists of a large number of symptom flow charts that are
organized alphabetically, or can be accessed by either pain-site diagrams or
body system diagnosis. The diagnostic symptom charts are flow diagrams in
which each question is read to the user by the computer. A “yes” or “no”
answer to the question directs the user through the flow diagram to the next
question, leading to a patient-specific recommendation.
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The Home Medical Advisor ProTM CD-ROM software has a symptom
analysis program for single symptoms, and a symptom complex analysis
program for multiple symptoms.49 Users are asked a series of questions to
further characterize their symptoms. The analysis of the multiple symptom
case uses rule-based algorithms to identify diseases that match the symp-
toms and then restructures the list based on disease likelihood. The analy-
sis lists possible diseases categorized in two ways. First, the number of
symptoms that match with a particular disease is listed, starting with dis-
eases with the most matches. Second, the probabilities appear in parenthe-
ses following the diagnosis (expressed as very common, common, rare, and
very rare). The Home Medical Advisor ProTM also has a drug interaction
tool that can provide users with feedback on 500,000 possible interactions.

The two patient software packages, Medical HouseCallTM and Pediatric
HouseCallTM, have sophisticated diagnostic features. The algorithms were
derived from a diagnostic and treatment expert system for clinicians, known
as IliadTM, developed in Utah by a team from Applied Medical Informat-
ics, and from the Department of Medical Informatics and the University of
Utah.49 The knowledge base and inference engine were restructured for the
patient software systems to accommodate consumer queries and provide
lay answers. After a user inputs answers to a series of questions from the
software, the system presents a ranked order of disease likelihoods based
on symptoms and Bayesian analysis. The software points out the remaining
uncertainty of this list, since selecting an actual diagnosis would require
physical examination and possible tests. In adapting the Iliad knowledge
base for home use with patients, the developers eliminated the physical
exam findings and lab tests. The vocabulary was translated into “consumer
language.” Additionally, the diagnostic probabilities were adjusted not to
exceed 70%, the estimated contribution of historical information to making
a diagnosis. As with the other diagnosis programs for patients, Medical
HouseCallTM and Pediatric HouseCallTM also have drug interaction
modules.

Helping Patients Judge the Quality of 
Health Information

Judging the quality of health materials on the Web or in software packages
is particularly challenging for consumers. For books or CD-ROMs, con-
sumers may have an indication of the credibility of the publisher. However,
there are minimal monetary and skill barriers to creating Web sites, and it
is fairly easy to make a site look quite professional and indistinguishable
from those of larger, well established organizations. Not all sites are “peer
reviewed,” published, or created by professionals with expertise in the topic
covered. Because the quality of health information is so critical for 
consumers, several organizations have created guidelines for judging the
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quality of information on the Web for consumers.50–52 Some of the criteria
included in all of these guidelines are topical relevance, currency of the
information, accuracy, and authoritativeness or objectivity.

From the consumer’s point of view, topical relevance is certainly impor-
tant when assessing the usefulness and quality of a Web site or computer
application. The relevance of a site is context-specific and depends on the
particular question an individual consumer has in mind. To find appropri-
ate materials, sites must be clearly organized and/or have intelligent search
functions. In addition, the relevance of the material depends on the degree
to which it is tailored to the individual and is appropriate to their specific
needs. Most health material on the Web is generic and not interactively tai-
lored to individuals. This basically replicates what could be found in a text-
book or brochure. The final aspect of relevance to an individual has to do
with whether the material is action oriented, and either helps the consumer
make a healthcare decision that may lead to an action or promotes health
behavior change.

Currency or the timeliness of information is an important consideration.
It is often difficult to have a generalized policy on how often health mate-
rials need to be updated. However, most professional sites ensure at least
quarterly review of all materials. Consumers may judge the currency of Web
site information by looking for date stamps or a notice of date of creation
and/or update. It is important to note that some Web sites use algorithms
to automatically update their time stamp even if the material has not been
changed or even reviewed, giving the impression of the information being
current. Responding to the difficulty that consumers are likely to have in
judging these aspects of Web site quality, the Health on the Net (HON)
Foundation52 has promoted an ethical code of conduct and a set of stan-
dards for Web site developers to ensure the reliability of medical and health
information available on the World Wide Web. Consumer health sites that
display an HON certificate signify that they are in compliance with the
HON code of conduct and standards. Providing health information and
interventions over the Internet is becoming an increasingly important com-
ponent of health care. Ensuring that the materials are unbiased, accurate,
relevant, and timely is fundamental to providing quality health care.

Patient Access to Decision Support Systems

As the demand for more health information and decision support grows,
the need for wider availability of these systems becomes even more impor-
tant. Today, these systems can be found in a variety of settings and in a
variety of forms. In addition to consumers searching the Web at home,
public access computer systems can be found in public libraries, health
resource centers, worksites, schools, and community centers. Different
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systems may require quite different physical locations. For instance, many
patients are uncomfortable exploring sensitive health information in a
public space.

There are many factors that influence the health information seeking
behavior of patients. As documented by Harris, these factors include demo-
graphic divisions such as age, gender, disability, race and ethnicity, and
socioeconomic status.53 Research indicates that these demographic vari-
ables can predict differences in the amount and type of health information
that patients want. Whereas some patients may not seek much information,
for many of those who do desire information, serious barriers to the use of
these systems still exist.

A lack of reading ability is a functional barrier affecting use of computer
systems. Approximately one out of five Americans is functionally illiterate,
reading at or below the fifth-grade level. Most studies on the comprehen-
sion of health education handouts, typically show that only half of the
patients are able to comprehend written health materials.54–56 Studies con-
firmed that patients’ reading levels were well below what was needed to
understand standard health brochures.57 In developing health information
for patients, one cannot assume that a patient who has completed a certain
grade level in school can read at the corresponding level. Numerous studies
on literacy and readability confirm the widespread problem of low literacy
skills.58–60 Health materials should be written at least three grade levels
lower than the average educational level of the target population.61 Text
characteristics also play an important role in comprehension and retention
of material. Organization and clarity need to be considered in creating edu-
cational materials.62 Computers with multimedia capabilities can correct
some of these problems by conveying information through video, audio and
graphics that would normally be presented as written text. These systems
can also be adapted for multiple foreign languages.

In addition to language and literacy issues, an area that is often over-
looked relates to the cultural issues associated with health information-
seeking behavior and the willingness to use computers to access health
information. Most developers have not invested the time to develop
systems that are culturally and linguistically relevant to diverse populations.

Finally, the question of who will pay for the access and use of technolo-
gies for consumer health information is still an unresolved issue. Educa-
tional and socioeconomic factors still determine access to computers and
information technologies. Younger, more affluent, and well educated
patients are more likely to have access to home computers, diagnostic soft-
ware, and Internet access. The poor and socioeconomically disadvantaged
already have worse health outcomes and worse access to medical care.
Special effort is required to ensure ease of access and ease of use of health
information systems so as to not further disadvantage the very people who
have the greatest need for these resources.
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The Future of Decision Support Systems for Patients

Advances in communications and information processing technology are
certainly changing the way in which medicine is practiced, with dramatic
impact on how patients are beginning to receive their health information
and interact with the medical care system. There has also been a shift
toward consumers becoming empowered participants and assuming a more
active role in their medical care decisions, through increased and more
effective access to healthcare information and decision tools. The develop-
ers of computer applications for patients have pushed the field of consumer
health informatics forward with many innovative systems. However, to
achieve significant improvements in the quality of care and health out-
comes, researchers and system developers need to focus on bringing the
knowledge gained from previous work in health education and behavior
change into the design of new systems. This is a rapidly developing field,
with significant innovations in the commercial sector. However, research in
several areas is needed to move the field forward in providing real benefits
to patients’ health outcomes and in showing the effectiveness of the systems
to purchasers of health care. The criteria for evaluating computer-based
decision support systems for patients are similar to the criteria for physi-
cian systems, namely accuracy and effectiveness.63 However, the rapid
deployment of these systems, in an ever changing medical care environ-
ment, makes critical evaluation of consumer health information systems
extremely difficult. Web sites change daily, and access to one system usually
means increased access to many others. It is important to understand the
potential effectiveness of investments in this area. Careful needs assessment
before system development, usability testing during development, con-
trolled clinical trials, and studies of use and outcomes in natural settings are
all critical to our understanding of how to best provide health information
and decision assistance to patients.
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