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Preface

Modern physical science is erected on categorial foundations that are incompatible
with the phenomenon of autogenetic unfolding and the associated logical structure
of strong self-referentiality. Autogenesis means that something unfolds out of
itself, within itself, and towards itself. In order to overcome these structural
pitfalls, we need (a) to unearth the categorial foundations of our present theories,
(b) to rethink our notions of time and reality, and that, in turn, allows us (c)
to reconceptualize some of the big, unresolved issues in modern science in a
fundamentally novel perspective. One of the most prominent among them refers to
the recently formulated conjecture “ER = ERP,” around which there emerged a very
interesting and productive debate about the pivotal challenge of modern physics, the
relation of general relativity theory (GRT) and quantum physics (QP). “ER = ERP”
is a shorthand that joins two ideas proposed by Einstein in 1935, namely quantum
entanglement (EPR entanglement, named after Einstein, Podolsky, and Rosen) and
wormholes (ER, for Einstein-Rosen bridges).

Both the enigmatic character of QP and its incompatibility with GRT are rooted
in a historically grown one-sidedness of the categorial underpinnings on which
modern science is erected.1 Metaphorically speaking this deprivation could be
characterized as a “facticity imprisonment” of our thinking. By this we inadvertently
reduce reality to its factual footprints and time to its sequential structure. Both

1In the following papers this topic has been addressed already in a preliminary form:
Filk T, von Müller A (2010) A categorical framework for quantum theory. Ann. Phys. 522(11),
783–801;
von Müller A (2010) Thought and reality. In: Towards a theory of thinking. Springer, Heidelberg,
pp 59–70;
von Müller A (2012) On the emergence and relativity of the local spacetime portrait of reality. In:
Welt der Gründe - Deutsches Jahrbuch für Philosophie, vol 4. Felix Meiner, Hamburg, pp 1233–
1245
von Müller A (2015) The forgotten present. In: von Müller A, Filk T (eds.) Re-thinking time at the
interface of physics and philosophy. Springer, Heidelberg;
von Müller A (2011) The logic of constellations. In: Culture and neural frames of cognition and
communication. Springer, Heidelberg, pp 199–213.
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x Preface

are correct and important, but only partial aspects of time and reality. In order to
overcome the rift between the two foundational theories of modern physics we need
to unearth their different, hitherto overlooked categorial underpinnings and develop
a richer, overarching categorial framework.

In the novel account, facts turn out to be just the traces of the actual taking
place of reality, left behind on the co-emerging canvas of local spacetime. The
actual taking place of reality, instead, occurs still in a primordial form of time, the
nonlocal “time-space of the present” (TSP). Interestingly enough, already Albert
Einstein complained vis-à-vis Rudolf Carnap, in their discussions in Princeton
between 1952 and 1954, about the “painful, but inevitable abandonment” of the
present in physics. The necessity of this abandonment, however, exists only as long
as time is reduced to its linear-sequential aspect, and, directly related, the notion
of the present being reduced to a point-like now. A nonlocal TSP as an aspect of
time in its own right and even as its primordial form (from which the sequential
structure of time emerges as a derivative feature) is, instead, fully compatible with
GRT. One can even argue that GRT implicitly contains such a richer notion of time
and reality, e.g., for what there remains once the local space-time fabric unravels
in singularities. The TSP provides the primordial “stage” or “platform” on which
reality can occur in the first place. Only by “taking place” (!) there, reality gains the
chrono-ontological format of facticity. In the novel account, our human experience
of a present needs no longer to be derogated as just a subjective confabulation. In
the new framework our experience of a present turns out to be the hitherto most
advanced adaptation of cognitive evolution to the actual taking place of reality, as
it occurs in this primordial form of time, the TSP. Obviously, this richer notion of
time changes also our notion of reality. Without the sequential structure of time
there is no causality. In the TSP, reality occurs as a constellatory self-unfolding: Out
of itself, within itself, and towards itself. Based on this richer notion of time and
reality, QP can now be understood as addressing the “reduction” of reality to the
format of facticity, respectively the “crystallization” of time to its linear-sequential
format. Classical and relativistic physics, instead, turn out to be focused on the
resulting factual portrait. But, the singularities of GRT, an integral part of the factual
portrait, indicate the possibility of an inverse transition: They are the instance where
the fabric of local spacetime, and with it the chrono-ontological format of facticity,
dissolves again. Quantum physical reduction and the singularities of GRT, thus, turn
out to describe inverse transitions: Into and out of the chrono-ontological format of
facticity, respectively spacetime locality.

Fundamental for the new theory is to overcome our implicit fixation on a
“monolithic ontology.” In the novel framework, three chrono-ontological portraits
are united like Borromean rings, i.e., every two of them are linked only via the third.
There is (a) the—today erroneously generalized—factual portrait, painted on the
canvas of local space-time, (b) the statu nascendi portrait, covering the actual taking
place of reality, as it occurs in the TSP, and (c) an aspect of inseparable, eventually
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impredicable unity—with reference to Anaximander, called the “apeiron portrait.”
In this new, three-faceted chrono-ontological framework, it becomes possible to
unite QP and GRT as they stand, i.e., without subduing one to the other—just by
recognizing that they address different, but complementary aspects of time and
reality. Convergence is achieved by adding a “third step” to both, QP and GRT,
in which spacetime locality itself is put into perspective.

The two perennial problems in this context, namely the quantum state reduction
or quantum measurement problem in quantum physics, and the problem of singu-
larities in general relativity, may be considered as targeting precisely the issue of
transition into and out of a local space-time event structure respectively, pertaining
to the factual layer of reality. This naturally generates the question, if there exists
a universal mechanism of a topological or logical nature, which would manifest
appropriately these two inverse types of transition, and concurrently provide a
concrete mathematical modeling of the categorial apparatus characteristic of a
“statu-nascendi” layer, according to the autogenetic theory. If such a universal mech-
anism is actually functioning, then the autogenetic theory, beyond its philosophical
impact, acquires significant interpretative power in relation to the resolution of these
pestilential problems of physics. Here, we propose to explore the viable possibility
that this universal mechanism is based on the logical and topological characteristics
of the “Borromean link,” displayed below:

The “Borromean link” consists of an interlocking family of three rings, thought
of as topological circles, such that if any one of them is cut at a point and removed,
then the remaining two become completely unlinked. The “Borromean link” can be
encoded algebraically in terms of the structure of the noncommutative free group in
two generators. Its unique ubiquity lies on seven distinctive roles that constitute the
main focus of this treatise:

1. The “Borromean link” is threefold symmetric and can be iterated self-
referentially ad infinitum by replacing simultaneously each one of the rings
by a “Borromean triad” of rings.
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2. All other topological links can be constructed and expressed algebraically in
terms of two simple algebraic operations within the same noncommutative
group-theoretic model, namely the operations of forming “Borromean stacks”
and “Borromean chains” out of “Borromean stacks.”

3. It serves as a universal singular locus in the algebraic-topological theory of
branched covering spaces.

4. The “Borromean link” can be characterized topologically by means of a higher-
order homological invariant pertaining to the complement of the rings.

5. It provides the simplest model of nonlocal linkage in 3-d space independently of
metrical distance.

6. This nonlocal topological linkage can be extended to 4-d spacetime by adjoining
a temporal symmetry axis of rotation perpendicular to the rings, which is linked
once with each of them.

7. The noncommutative group-theoretic model of the “Borromean link” admits
irreducible representations in both the Lorentz group (local symmetry group
in general relativity) and the unitary group (local symmetry group in quantum
mechanics).

The connection between the “Borromean link” and the dynamics of autogenesis,
i.e., the dynamics of constellatory, self-referential unfolding, emanates from the ad-
junction of an observer, as referent of the “time-space of the present,” located inside
a 3-d sphere (compactification of 3-d Euclidean space), where the “Borromean link”
may be realized. We consider that each one of the three rings surrounds a puncture
on the 3-d sphere, assuming a well-defined physical semantics, and thus it gives rise
to a nonbounding cycle. The existence of each single puncture is associated with the
topological property of multiple connectivity.

First, it is instructive to consider the case of a single puncture together with the
corresponding ring. The internal observer perceives multiple connectivity by means
of the universal covering space of this ring. The concept of a universal covering
space is rooted in algebraic topology and is formulated to depict precisely the pro-
cess of dynamic unfolding of a multiply connected space. The term universal refers
to the property that the unfolding space becomes eventually simply connected. In
other words, the perception of the internal observer is dynamically completed when
the unfolding space becomes simply connected. The semantics of the universal
covering space, in the considered case, is that the multiple connectivity induced
by a ring is being dynamically unfolded as a helix, which is spiraling around the
surface of a cone based on this ring and extended to infinity. With reference to a
single ring, we may easily visualize the first steps of this spiral unfolding, where the
emerging levels are indexed in terms of the integers.
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According to the above, in the case of three rings interconnected topologically in
the form of the “Borromean link,” the respective helically unfolding spirals are not
independent, but each one of them functions as a nonlocal gluing helical staircase
for the other two. In particular, if we consider a snapshot of this unfolding type,
the gluing helical staircase involves four crossing points, i.e., two for each of the
indirectly linked rings with opposite orientation, concatenated in an alternating
manner.

A gluing helical unfolding of the prescribed form is constellatory, since the
nonlocal connectivity function of a helix can take place only in the context of two
other not directly linked, and thus, paratactically placed helices. Moreover, it is also
strongly self-referential, since any of the three helical unfoldings in the universal
covering space functions as a gluing datum for the other two, by the defining
property of the “Borromean link.”
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The present treatise, intended to offer a novel perspective on the relation between
quantum and relativistic physics according to the preceding introductory remarks,
comprises seven chapters. Chapter 1 has been written by Albrecht von Müller, and
Chaps. 2–7 have been written by Elias Zafiris. Each chapter is designed to have
an autonomous structure and can be read independently from the other ones. In
this way, the access to all different conceptual and technical constituting elements
elaborating the main argument of this book is facilitated for readers of diverse
backgrounds, who may be only selectively interested in some particular aspect of
the whole schema. Nevertheless, all the chapters are connected—metaphorically
speaking—in the form of a nonlinear circuit that conceptualizes time and reality in
a fundamentally different way from the standard one that a scholar is usually trained
to think about.

The first chapter serves as a brief and sketchy introduction to the theory of an
autogenetic universe, targeting, in particular, the relation between general relativity
theory and quantum physics. It is placed in the context of the debate surrounding
the “ER = ERP” conjecture, and it elaborates the substantiation of this conjecture in
the refined version of arguing that the singularities of general relativity and quantum
reduction can be seen as inverse transitions into and out of the chrono-ontological
format of factual spacetime. The second chapter develops a precise mathematical
model of the autogenetic universe theory, targeting in particular the following:
(a) The notion of autogenetic constellatory unfolding together with the associated
notion of strong self-referentiality; (b) The notion of the “time-space of the present”
and the precise form of the relation with the standard notion of spacetime; (c)
The connectivity among the three chrono-ontological formats of reality and the
role of the Borromean topological link in this respect. A deeper understanding of
the arguments presented in this chapter requires a certain degree of familiarization
with the technical apparatus developed in detail in the sequel chapters, so the
interested reader is invited to reflect back on this chapter after completing the
reading of the whole treatise. The third chapter focuses on the algebraic encoding
of the Borromean topological link, culminating in the remarkable theorem that
an arbitrarily complex topological link can be constructed solely in terms of
“Borromean connectivity units.” The fourth chapter develops the logical anatomy
of the Borromean topological link based on the strategy of conjugation. In this
manner it enunciates a metaperspective on algorithmic information theory pointing
out essential connections with quantum logic, quantum information, and the theory
of generic sets. The fifth chapter questions the smooth spacetime event manifold
of general relativity theory from a precise sheaf-theoretic rendering of Einstein’s
field equations. The leading idea is that in a theory with intrinsically dynamic
variables, like general relativity, it should be the pertinent physical conditions
or the sources of the field themselves that determine the type of the admissible
extensions over singularities as distributional solutions to the field equations. In
this context, the Borromean link admits a physical gravitational realization as a
higher order wormhole solution of the field equations. The sixth chapter illustrates
the realization of the Borromean link in quantum mechanics in terms of one-
parameter unitary groups. This sheds new light on the phenomenon of quantum
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entanglement, the notion of localization in the quantum domain, the aspect of
objective indistinguishability pertaining to quantum interference, and the ubiquitous
concept of quantum topological and geometric phases. The seventh chapter attempts
to provide a critical evaluation and substantiation of the “ER = EPR” conjecture,
which, in the absence of an exact quantum gravity theory, establishes a precise
relation between spacetime geometry and quantum theory. The two fundamental
and still imperishable issues in the interface between quantum theory and general
relativity, namely the quantum state reduction and the problem of singularities, can
be thought of as targeting the issue of transition into and out of a space-time event
domain respectively. Given that the quantum state reduction is necessitated in virtue
of entanglement between the quantum system and the measurement means, the latter
being in this way the conceptual inverse of the former, the “ER = EPR” conjecture
may be refined by thinking of it in the categorial context of a universal topological
mechanism by means of which the folding out of a local space-time event domain
takes place. It is proposed and demonstrated that the Borromean topological link
provides the sought for universal mechanism to qualify and understand the relation
between entanglement and wormholes, and thus addresses effectively the validity of
the “ER = EPR” conjecture.

In a nutshell, the present treatise argues in favor of a fundamentally different
way of conceptualizing time and reality. In the new conceptual framework, both the
sequentially ordered aspect of time and the factual aspect of reality are emergent
phenomena that come into being only when the actual taking place of reality
is over. In the new view, facts are just the “traces” that the actual taking place
of reality leaves behind on the co-emergent “canvas” of local spacetime. Local
spacetime itself emerges only as facts come into being—and only facts can be
adequately localized in it. But, how does reality then actually occur in the first place?
This “taking place” (in a most literal sense) is conceived as a “constellatory self-
unfolding.” This self-unfolding is characterized by strong self-referentiality, and it
occurs still in the primordial form of time, i.e., in the not yet sequentially structured
“time-space of the present.” In its primordial form, time is the “ontophainetic
platform”,2 i.e., the “stage,” on which reality can occur in the first place.

In the novel framework quantum reduction and singularities can be addressed as
inverse transitions: In quantum physical state reduction reality “gains” the chrono-
ontological format of facticity, and the sequentially ordered aspect of time becomes
applicable. In singularities, instead, the inverse happens: Reality losses its local
spacetime formation and gets back into its primordial, pre-local shape—making
also the use of causality relations, Boolean logic, and the dichotomization of
subject and object obsolete. For our understanding of the relation between quantum
and relativistic physics this new view opens up fundamentally new perspectives:

2In ancient Greek, “ta onta” means “that, what is.” “Phainesthai” means that “something is bringing
itself into appearance” (this is a so-called middle voice, i.e., a grammatical construction in-between
active and passive voice). The neologism “ontophainetic” is meant to indicate the quality of
allowing something that eventually is to appear in the first place.
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Both the quantum physical and general relativistic picture are internally consistent
and legitimate views of time and reality—they just address very different chrono-
ontological portraits. This means that all trials to subjugate one view under the other,
i.e., trying to find hidden variables “beneath” quantum physics, or trying to quantize
gravity, are profoundly erroneous and lead nowhere.

The task of the book is to provide a formal framework in which this categorially
richer view of time and reality can be addressed properly. The mathematical
approach is based on the logical and topological features of the Borromean rings. It
draws upon concepts and methods of algebraic and geometric topology—especially
the theory of sheaves and links, group theory, logic and information theory, in
relation to the standard constructions employed in quantum mechanics and general
relativity, shedding new light on the pestilential problems of their compatibility.

Pullach, Germany Albrecht von Müller
Pullach, Germany Elias Zafiris
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Chapter 1
The Autogenetic Universe Theory
Quantum Reduction and Singularities
as Inverse Transitions: Into and Out
of the Chrono-Ontological Format
of Facticity

1.1 Introduction

Around the conjecture “ER = ERP” there emerged a very interesting and productive
debate about the pivotal challenge of modern physics, the relation of general
relativity theory (GRT) and quantum physics. In the following we introduce a new—
and not so new—conceptual framework that has been developed quietly over the
last three decades. It allows to substantiate the “ER = ERP” conjecture in the refined
version of arguing that the singularities of GRT and quantum reduction can be seen
as inverse transitions into and out of the chrono-ontological format of facticity,
respectively the applicability of local spacetime and causal accounts. In addition, an
algebraization of Borromean topologies will be introduced as a new mathematical
tool for elaborating this approach.

The novel approach is rooted in a philosophical analysis of the incompleteness
of a purely sequential notion of time and in the development of a richer notion of
time in which a nonlocal time-space of the present moves to the center. The linear-
sequential structure turns out to be an important, but derivative aspect of time that
is applicable only for the “traces” of the actual self-unfolding of reality, the facts it
leaves behind on the co-emergent canvas of local spacetime. It follows directly from
this modified conceptual framework that quantum reduction describes the transition
of reality into the state of facticity. Causal account become available only there,
i.e. they are not yet available for the transition itself. Pari passu, it allows to see
the singularities of GRT, i.e. the meltdown of the local spacetime, as the inverse
transition by which reality returns into its primordial, pre-factual and pre-causal
state.

In the following the gist of the novel conceptual framework will be given in four
reasoning steps. Thereafter, the new mathematical approach is outlined.
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1.2 Step I: With Kant Beyond Kant: Discovering
the Existence and Role of Categorial Apparatus
as Enabling and Constraining All Further Theorizing

Immanuel Kant drew our attention to the fact that all further thinking about reality is
based on initial “symmetry breakings” in our appreciation of time and reality. Based
on the physics of his times, Kant saw Newtonian space and Newtonian time as the
inevitable prerequisites of any consistent account of reality. Today, we enjoy a much
richer notion of space—but, in general we work with a still rather narrow notion
of time that limits it—even in GRT—essentially to its linear-sequential structure.
This deprived notion of time prevents us from understanding (a) the crucial role of
singularities, (b) what happens in quantum reduction, and (c) that and how GRT and
quantum theory describe complementary aspects of the taking place of reality.

In order to overcome this pitfall and develop a richer notion of time, it is,
however, necessary to go a philosophical extra mile—so to say “with Kant beyond
Kant”—and to recognize the existence and role of underlying categorial apparatus
(pl.) which enable but also constrain all subsequent thinking.
A categorial apparatus consists of four interrelated components:

– a basic form of connecting predications,
– a basic aspect of time,
– a basic relation between events,
– a basic epistemological setting.

The four constituents of the “classical” categorial apparatus are

– Boolean logic (implementing the principle of “tertium non datur”),
– the linear-sequential aspect of time (i.e., as the ability to order events),
– the principle of causal closure (historically called “causa sufficiens”),
– full separability of subject and object (resp. observer and observandum).

This set of underlying pre-configurations constitutes the factual aspect of reality.
It is a very important and powerful portrait of reality. But this portrait alone does
not yet give us a comprehensive picture of reality—as we know, e.g. from quantum
physics or Gödel’s incompleteness theorem of 1931.

The main structural deficit of the classical apparatus, respectively the factual
portrait of reality, is that it is incompatible with the twin phenomena of strong self-
referentiality and autogenetic unfolding (in which something unfolds in and out of
itself, i.e. in the absence of external causal drivers).

The critical, hitherto unknown features of a categorial apparatus is that is contains
four elements and that these are fully interdependent, i.e. one cannot abandon or
substantially modify any of them without also affecting the others. This explains
e.g. why giving up causality, or formulating a richer notion of time, does not work
in isolation. It requires a comprehensive rethinking.
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1.3 Step II: The Need and the Possibility to Develop a Second
Categorial Apparatus

Since 100 years, theoretical physicists are banging their heads against the wall in
order to “understand” quantum physics and to overcome the rift between GRT and
quantum physics.

Seen from the novel conceptual framework, the reason why all these trials
essentially failed becomes clear: As long as one does not recognize the apparatus
character of the underlying categorial setup, one tries to change its components in
isolation—and this leads inevitably to inconsistencies.

In order to think what happens in quantum reduction and for better understanding
of the relation between GRT and quantum physics, we need to dig still one layer
deeper in our analysis and to unearth the different categorial underpinnings, situated
“beneath” the two foundational theories of physics. Only “down there” we can
recognize the fundamental differences in their portrait of reality, and develop a
richer, overarching conceptual framework.

Having discovered the apparatus character of the underlying categorial setup, one
can formulate a second (and eventually even a third, but for scientific concerns less
important) apparatus. It consists again of four interdependent constituents which, so
to say, “fill the four slots” of a categorial apparatus:

– a constellatory logic (i.e., a predication space in which different, and even
contradicting, propositions unfold their full meaning only mutually, and the
overall significance emerges only in the constellation of all of them),

– a nonlocal time-space of the present (as the temporal platform on which the
primordial self-unfolding of reality actually occurs; only once this “taking place”
(!) has occurred, spatiotemporal locality is available),

– the phenomenon of autogenesis (resp. the principle of constellatory self-
unfolding by which something unfolds out of, within, and toward itself, i.e.
in the absence of external causal drivers),

– the structure of strong self-referentiality (respectively the phenomenon of a rich
identity, like a person, in which something refers to itself in its entirety, thus
further unfolding what existed before this self-reference).

Each of these four constituents may initially seem quite strange, especially if
we project them—as we almost automatically do—into the rest of the classical
categorial framework. But, taken together, they form a full-fledged second categorial
apparatus in its own right. This apparatus does not give us a comparably precise
portrait of reality like the first one, nor does it allow for formal conclusions or far-
reaching predictions. But, it allows us to appreciate and address the actual taking
place of reality, i.e. its ongoing self-unfolding.

By (a) recognizing the existence and role of categorial apparatus, (b) understand-
ing the inherent limitations of the classical apparatus, and (c) complementing it with
a second one, capable to address “reality in the making” respectively the “statu-
nascendi aspect” of reality, we have fundamentally expanded the space of possible
theories.
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1.4 Step III: The Idea of an Autogenetic Universe, the Three
Ways of Portraying It, and Constellatory Self-Unfolding
as Its Most Fundamental Principle

Facts can now be seen as the traces that the actual taking place leaves behind on the
co-emergent canvas of local spacetime. Metaphorically speaking one can compare
the self-unfolding of reality with somebody walking through fresh snow: As long as
we only focus on the traces, we never get to see the wanderer. Or, in other words,
the “facticity imprisonment” of our thinking made us take the “exhaust of reality”
for the actual taking place of reality.

Putting the—now thinkable—phenomenon of constellatory self-unfolding at the
center of our appreciation of reality, we start to see that we might live in an
“autogenetic universe” that unfolds ‘out of’, ‘within’, and ‘towards itself’.

The qualification of the unfolding as ‘out of itself’ refers to the absence of
external drivers. ‘Within itself’ refers to the fact that an autogenetic universe does
not unfold within local spacetime, but the emergence of the latter is part of its
unfolding. The qualification as ‘towards itself’, finally, refers to the phenomenon
that at a certain stage there have emerged entities which became aware of themselves
in an explicit (i.e., language-based) manner. As they are part and parcel of the overall
unfolding of reality, this very process starts—in them, i.e. in every single human
being—to become aware of itself.

An autogenetic universe has three complementary portraits that are related to
each other in the topology of Borromean rings, i.e. taking one of them away leaves
the other two in unmitigated duality.
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– The factual portrait focuses on reality that has already taken place and, thus,
exists in the chrono-ontological format of fact in local spacetime. This is the
only portrait in which coercive, formal proofs are possible (and even here, this
possibility exists only in asymptotic approximation).

– The status-nascendi portrait depicts “reality in the making”, i.e. the actual taking
place of reality that precedes all facts and occurs in the time-space of the present.
Already here, coercive proof is no longer available and “the convincingness of
the more plausible argument”, respectively authentic experience become the—
significantly weaker—“criteria of truth.”

– In the apeiron portrait, finally, reality is addressed in its entirety, as typically
in religious belief systems or in some parts of philosophy and art. This is a
fully legitimate and respectable way of addressing our universe—as long as one
respects the insurmountable limitations of this portrait and all that can be claimed
within it: Nobody can ever prove anything or is ever entitled to force others to
believe what oneself has chosen to believe. (All religio-ideological intolerance
is based on the dramatic epistemological mistake of treating impressions and
beliefs that belong to the apeiron portrait as if they were propositions from the
factual portrait.)
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Only all three portraits together allow for an adequate appreciation of an
autogenetic universe in its essential self-unfolding. By reducing our notion of reality
to facts, and our notion of time to its linear-sequential structure, we deprive our
appreciation of both, the world in which we live and ourselves in a most dramatic
way.

To overcome this “facticity imprisonment” of our thinking is the prerequisite for
overcoming the present obstacles in understanding matter, life, Consciousness, and
mind. But before discussing at least the implications of the new approach for the
foundations of physics in some more detail, I would like to make still a few remarks
on the idea of an autogenetic universe.

The notion ‘autopoietic’ refers to processes in which an entity uses existing
material and configures it in a way that the system reproduces itself. In an
‘autogenetic’ process also the material—and even the framework in which all takes
place—emerges as part of the overall self-unfolding.

A universe that starts to become aware of itself is completely different from
one which just “drags on blindly”. By starting to become aware of itself, the
whole universe gains a fundamentally novel quality—in every single instance where
this happens. This new quality of the whole is the reason for the infinite and
nonnegotiable dignity of every single human being.

With constellatory self-unfolding as the most fundamental and most cross-cutting
principle a radically novel way to appreciate our universe becomes feasible. The
self-constitution of physical matter/energy can be seen as “first order autogenesis,”
which is addressed in quantum physics. Out of this emerges life as a kind of “second
order autogenesis,” characterized already by a higher degree of self-referentiality,
i.e. of self-constitution and self-unfolding. The emergence of consciousness, and
eventually even mind, can again be interpreted as still higher orders of autogenesis
respectively self-unfolding.

Taken together, these thoughts result in what could be called a modest “ToE”.
“Modest” means that there is no claim to understand all, not to speak of being able
to pre- or retrodict all in the sense of a Laplacean demon.
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The notion of a ToE indicates that, despite this irreducible incompleteness, there
is one coherent conceptual framework—allowing to see both, the unity and the
diversity of the emergent reality. In philosophy there is an age-old controversy,
whether unity or diversity is the ultimate principle of reality, closely related to the
debate between monistic and dualistic world views.

The novel thought pattern of constellatory self-unfolding transcends this con-
troversy. If something unfolds itself, an underlying coherence and thus unity is
given. At the same time, the notion unfolding indicates that genuinely novel features
emerge, i.e. there is permanently increasing diversity. The notion of richness brings
the two features quite well together. If something is rich, it (i.e., something that
belongs inherently together) is rich, meaning that it has a multitude of different
facets and components, thus being characterized also by fundamental diversity.

In the new way of appreciating reality we draw on three instead of only one
categorial framework, respectively “apparatus”. These three apparatus constitute
three different but complementary chrono-ontological portraits of reality. Their Bor-
romean interrelatedness is a self-confirming aspect of the novel, above described,
dynamic combination, Integration, and mutual deepening of unity and diversity.

The thought pattern of an autogenetic universe, thus, offers a new way of
describing our world that combines openness for genuine novelty with conceptual
coherence, i.e. it constitutes what has been characterized as a “modest ToE”. In
an autogenetically unfolding universe also, explainability and wonderfulness are no
longer at the detriment of each other—they, too, deepen mutually.

In practical terms, all this leads to a fundamentally richer appreciation of the
world we live in, of all other human beings and of ourselves: It leads in a natural
way to a new basic tenor via-a-vis the ongoing taking place of reality that could be
characterized as “thankful attentiveness”.

1.5 Step IV: What All This Means for the Understanding
of Quantum Physics, General Relativity, and the Relation
Between the Two Theories

In quantum physics the actual taking place of physical reality, i.e. its ongoing self-
constitution is addressed. Relativistic physics, instead, focus mainly on the factual
portrait of reality—with the important exemption of singularities which can now be
seen as the fascinating instance of de-factization, respectively the meltdown of local
spacetime.

As already mentioned, trying to subjugate one approach under the other, i.e.
trying to quantize gravity or to find hidden causal mechanisms beneath quantum
physics is neither needed nor adequate. The two theories address different portraits
of reality, complementing each other because of their fundamental difference.
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The two theories can and should remain as they are—understanding their
relation, however, requires (a) to go the extra mile and unearth the different
categorial foundations of the two theories and (b) to make the transition from a
monolithic to multiple chrono-ontology that comprises all three, the factual, the
statu-nascendi, and the apeiron portrait of reality.

All the essential features of quantum physics fit exactly with the statu-nascendi
portrait of reality: non-locality, superposition, entanglement, genuine indetermi-
nacy, and the a-causal, inherently constellatory nature of the reduction. All of them
require the second categorial apparatus for thinking of them in a consistent way and
as a complementary aspect of reality in its own right.

As long as we have only the factual portrait at our disposal, quantum physics will
inevitably remain mysterious. The situation is a bit similar to trying to cover oneself
with a blanket that is inherently too small. One can cover feet and upper body, but
not both at the same time. By covering one, one bares the other.

With the best brains in physics trying restlessly for almost 100 years, all positions
to place the blanket have been tested—and one can represent the failing efforts as
a kind of compass rose indicating all possible positions of the blanket, i.e. what is
covered and what is left unexplained.
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Real progress can only be made by “enlarging the blanket”, i.e. by a fundamen-
tally novel conceptual framework—or as Einstein put it wisely: “We cannot solve
our problems with the same thinking we used when we created them”. With GRT
the situation is equally fascinating. The curvature of spacetime by what it contains,
mass/energy, constitutes the phenomenon of strong self-referentiality and it ensures
the unity of our universe, despite its diversity.

The appearance of singularities has often been considered a fundamental weak-
ness of GRT. In the here offered conceptual framework of an autogenetic universe
they turn out to be one of the deepest insights of GRT and the crucial bridge
between quantum physics and relativity theory: Singularities are the instances of
de-factization, i.e. the points where reality (driven by the strong self-referentiality
of gravity) leaves again the factual portrait, bringing itself back into the primordial
statu-nascendi format of time and reality.

But, in order to see this, one must have a richer categorial framework, and based
on this, the notion of a self-unfolding universe with three complementary chrono-
ontological portraits.

The phenomenon of reduction in quantum physics and the singularities of
GRT can now be understood as inverse transitions of reality: into and out of the
chrono-ontological format of facticity, respectively, the realm in which the classical
categorial apparatus can be applied properly and legitimately.

This interpretation of quantum physical reduction and the singularities of GRT
as inverse transitions is also the point where the theory of the autogenetic universe
allows to support and to substantiate the “ER = ERP” conjecture—and to explain
why this is so.

In the following section it will be sketched out why and how Borromean
topologies can play a pivotal role in formalizing and proving what has been
introduced here in more philosophical terms.
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In closing the first part of this very brief and sketchy introduction of the theory
of an autogenetic universe, I would like to stress again that both, quantum physics
and GRT, confirm and require the novel conceptual framework and how they both
articulate some of its crucial points in the most elegant way:

– the coincidence of unity and diversity,
– the mutual deepening of explainability and wonderfulness,
– the key role of constellatory self-unfolding as the underlying principle of our

autogenetic universe that unfolds out of, within, and toward itself.



Chapter 2
Model of an Autogenetic Universe
Constellatory Self-Unfolding: A Novel
Syntaxis of Time in the Time-Space
of the Present

2.1 Reflecting on the Basic Premises of the Theory
of an “Autogenetic Universe”

The philosophical theory of an “autogenetic universe” (von Müller 2011, 2012,
2015) proposes new “categorial foundations” for science aiming to overcome the
inherent limitations, incompatibilities and structural pitfalls of the current scientific
paradigm. The basic premise of the proposed new theory is that we live in an
autogenetic universe, meaning that we live in a self-unfolding and strongly self-
referential universe. In relation to this hypothesis, the theory of an “autogenetic
universe” proposes a novel account of time and reality, which aims at a deeper
re-conceptualization of these fundamental notions going beyond or underneath the
structural reduction of the former to its linear-sequential aspect and the concurrent
related reduction of the latter to its factual or event-like aspect. This is of particular
significance in relation to the frontier area of theoretical physics aiming at a
unification of quantum mechanics and general relativity, where it is argued that
a key conceptual element for this purpose requires the relativization of facticity,
namely of the event structures pertaining to a local space-time description capturing
exclusively the factual portrait of reality. It is instructive to note that the notion of
an unfolding universe has been also explored by means of a different approach in
the work of Kafatos and Nadeau (2013).

The “autogenetic universe” theory proposes a triality account constituted in the
form of three interdependent layers, which are connected together in the form of
the “Borromean rings” topology, that is if any one of the layers is removed, then
there remain two unlinked layers. Each layer captures a different aspect of reality,
namely the “apeiron aspect,” the “statu-nascendi,” and the “factual aspect” corre-
spondingly. The “apeiron aspect” is inherently without any structure and expresses
the irreducible global unity or non-separability of reality at this layer, which acts as
a source for “the actual taking place,” to be thought of as a kind of logical disclosure
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topos pertaining to the time-space of the present. The observed traces of this
process, viz. the events embedded within a local space-time background constitute
the “factual aspect” of reality. Whereas the “apeiron aspect” is not amenable to
any direct structural predicative determination, both the “statu-nascendi” and the
“factual aspect” constitute layers whose respective characteristic function can be
depicted in the terms of distinctive underlying “categorial frameworks.”

Each “categorial framework” stands for an integral apparatus consisting of four
interrelated and bidirectionally interdependent components:

(a) a logical structure of a predication space,
(b) a related notion of a spatio-temporal background,
(c) a causal scheme accounting for linkages, and
(d) a corresponding epistemological setting.

In this way, the “factual aspect” of reality is captured by means of a categorial
apparatus, which consists of the following components respectively:

(a) a Boolean logical predication space,
(b) a local metrical space-time continuum,
(c) a classical scheme of efficient causality, and
(d) an epistemological setting based on the notion of absolute separability between

observer and observandum.

The intrinsic necessity of introducing another categorial apparatus constituting
the “statu-nascendi” layer of reality is based on the inability of the former one to
account for the logical structural phenomenon of strong self-referentiality and its
concomitant operational manifestation as autogenesis, meaning a process of self-
referential folding/unfolding without any separable external cause.

From this perspective, the issue of quantum state reduction or quantum mea-
surement problem in quantum physics and the problem of singularities in general
relativity are considered as artifacts caused by focusing exclusively on the categorial
apparatus attached to the factual aspect of reality, while ignoring completely the
categorial apparatus fitting into the “statu-nascendi” layer. In particular, the quantum
reduction problem targets the emergence of a local space-time event continuum
from the fundamental non-spatio-temporal quantum theoretic description of nature,
whereas the singularities problem targets the global breakdown of the metrical
smooth space-time point-event-manifold model of the general theory of relativity.
Thus, both problems viewed from an extended perspective as targeting the issue of
transition into and out of the local space-time event continuum pertaining to the fac-
tual layer of reality point to the conclusion that their resolution requires the explicit
consideration of the categorial apparatus characteristic of the “statu-nascendi”
layer together with the “Borromean rings”-type of topology interconnecting the
three reality layers. Consequently, the resolution of these problems, which may
be both considered as different types of self-referentiality, the first as a self-
referential folding into a local space-time point-event stratum and the second as
a self-referential folding out of this point-event stratum, poses the necessity of a
higher-order relativization of facticity targeting the very notion of a local perspective
on reality.
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We claim that the nature of this notion, that is of a “local perspective on reality”
should not refer to the concept of metrical/geometrical locality in a point-event set-
theoretic space-time manifold but should be of a logical/topological origin to be
thought of as a local logical disclosure topos demarcating the logical structural
pre-conditions of reduction from the global to the local and inversely extension
from the local to the global. This higher-order logical/topological relativization
of facticity, called “categorial relativity,” requires a careful qualification of the
categorial apparatus characteristic of the “statu-nascendi” layer of reality. The
constituent interrelated components of this layer are the following:

(a) a paratactical predication space on which some form of “constellatory logic”
becomes applicable,

(b) a local logical disclosure topos pertaining to the time-space of the present,
(c) a causal scheme of autogenetic folding/unfolding, and
(d) an epistemological setting of strong self-referentiality.

The notion of parataxis refers to a mode of logical coherence of a multiplicity
which is independent of linear sequential organization. This is captured by the
functional role of a “constellatory logic,” where an individuated component of such
a multiplicity can be evaluated only in the context of all other components being
compatible with it in an appropriate manner.

The “autogenetic universe” theory based on the triality account constituted by
the Borromean-type of interconnections of the three layers capturing the “apeiron
aspect,” the “statu-nascendi,” and the “factual aspect” of reality correspondingly,
sheds new light on the old problem of time, together with the concurrent problem
of unfixing the conception of reality from its exclusive reference to the facticity
stratum, which disregards completely even the necessary logical pre-conditions for
the manifestation of events. In this way, it becomes important for the autogenetic
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theory to specify more concretely the appropriate conceptual and technical bridges
which bind together the three layers forming the triality account, as well as to refine
the modeling of this triadic inter-relational scheme to a Borromean structural type
of topological linking. This would be particularly significant for the elucidation and
technical formulation of the principle of “categorial relativity” as a higher-order
relativization of facticity, which would create a common ground for the resolution of
both the problem of quantum reduction and the problem of singularities as inverse-
type of transitions into and out of a local space-time event stratum. The specification
of these bridges would be ultimately necessary for the consistent formulation of
a strong self-referentiality scheme, which would involve the triality account as a
whole, and would give rise to a form of “constellatory logic” functioning at the
“statu-nascendi” with respect to the factual layer.

For this purpose, we propose and develop a precise mathematical model of the
“autogenetic universe” theory, targeting in particular the following:

(a) The notion of autogenetic constellatory unfolding together with the associated
notion of strong self-referentiality;

(b) The notion of the “time-space of the present” and the precise form of the relation
with the standard notion of spacetime.

(c) The connectivity among the three chrono-ontological formats of reality and the
role of the Borromean topological link in this respect.

2.2 Chrono-Topological Binding in the Time-Space
of the Present

According to the major premise of the “autogenetic universe” theory, reality exists
in three different chrono-ontological formats, facticity, statu nascendi, and apeiron.
Because of this, all parts of one, coherent reality must somehow be mutually
interrelated, otherwise there would be no point in speaking of one reality. In this
respect, the autogenetic conception of reality requires that a precise meaning has
to be given to the crucial notion of the “time-space of the present,” which has to
be distinguished from the standard spacetime of events-facts. Given that reality
is characterized by the three different chrono-ontological formats the “time-space
of the present” has to be understood in its potential to bind “the past” with “the
future” in relation to “the present,” not in the sequential event temporal order of
the “continuum of the real line” that models only the factual aspect of reality, but
in another chrono-topological form. The principal argument that is put forward in
this regard is that the sought-after chrono-topological binding form is characterized
by the Borromeanicity property, i.e. it is not chain-like, such that there exists
the possibility that “the very far past” can be glued together with the “very near
future” through the “time-space of the present” if they form a “Borromean temporal
bond.” As a consequence, the Borromean bond pertains to the chrono-ontological
domain, i.e. the “time-space of the present” becomes the temporal topos of the
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process of topological historic unfolding. In this way, and interestingly enough,
“the past” and “the future” exist paratactically in their potential to convey meaning
with respect to the “time-space of the present,” and not hypotactically as in the
sequential-chain model. In turn, this justifies the need for characterizing reality
in “statu-nascendi” via a different categorial framework. From this conceptual
perspective, the interpretation of the “Borromean link” (Zafiris 2016a,b) as a
“temporal-historic bond” requires the following:

1. Reconciliation of the static three-dimensional spatial representation of the “Bor-
romean link” with the dynamic constellatory unfolding and self-referentiality
characteristics of reality in “statu-nascendi.” This issue can be resolved by
realizing that the static representation of Borromeanicity is just the spatial
image, or more precisely, the “epiphany” of the temporal bond. Equivalently,
we consider a cross-section of the bond projected spatially and giving rise to the
standard spatial non-local Borromean-rings-type of linkage in 3-d space. This
admits a concrete mathematical formulation via the algebraic-topological notion
of a “covering space” (Hatcher 2002), which is literally the concept of a “self-
referentially unfolding temporal dimensionality”;

2. Interpretation of the algebraic model of the “Borromean rings” as a “Borromean
temporal bond” among “past,” “present,” and “future,” from the standpoint of
the “time-space of the present,” taking place in “statu-nascendi” with respect to
the connectivity potential of the apeiron. Here, it is proposed that the concepts
of “memory” and “anticipation” play a key role in order to give meaning to the
algebraic model of “strongly self-referential Borromean gluing,” developed in
detail in Chap. 3. This is symbolically represented by the “commutator gluing,”

[α, β−1] = αβ−1α−1β,

where the irreducible formula αβ−1α−1β represents the third ring of the
“Borromean rings” as a product loop, composed by the ordered composition of
the four based oriented loops α, β−1, α−1, and β. It is important to stress that
these loops bear an orientation from the standpoint of the topos characteristic
of “the time-space of the present” with respect to the “past A” and the “future
B” conceptualized as topological circles in a cross-section of the unfolding
enunciated by the “present.” The algebraic irreducibility of αβ−1α−1β encodes
precisely the non-reducible form of binding generated by the Borromean 3-link
in the cross-section of the “time-space of the present” at p. Note that A and B are
in relation of parataxis before the “temporal binding” and the distance between
them is immaterial for the effectuation of the bond;
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3. Distillation of the deeper meaning encoded in the “ER = ERP” conjecture
(Maldacena and Susskind 2013) in relation to the notion of a “Borromean tempo-
ral bond,” where “ER = ERP” is a short-hand joining together two ideas proposed
by Einstein in 1935, namely quantum entanglement (EPR entanglement, named
after Einstein, Podolsky and Rosen) and wormholes (ER, for Einstein–Rosen
bridges). It is shown explicitly that the “Borromean-type of temporal binding”
can be interpreted as a kind of “gravity effect” in the global complement of this
bond. This is in a precise topological sense a type of a “global curvature effect,”
as it will be demonstrated in the sequel, since it is not localizable anywhere. A
cross-section depicted by the “time-space of the present” and projected spatially,
leading to the effect of “spatial non-locality” in 3-d space, can be interpreted
quantum-mechanically as a form of entanglement in 3-d space. In other words,
quantum entanglement is the epiphenomenon observed in 3-d space, playing the
role of a “cross-sectional holographic boundary hypersurface” with respect to the
4-d of the “gravity effect” being caused upon the establishment of a “Borromean
temporal bond.” Equivalently, entanglement is the “epiphany in cross-sectional
3-d” (in the ancient Greek meaning of epiphaino) of the “bulk gravity effect in 4-
d” due to the action of a “Borromean temporal bond.” This “bulk gravity effect”
is conceptualized as a wormhole and constitutes the crux of the “ER = EPR”
correspondence, which actually pertains precisely to the effect of a “Borromean
temporal bond.”

This higher-level abstraction (capturing the essence of the “ER = EPR” corre-
spondence) necessitates a re-thinking of the notion of “time” in Special Relativity
(SR) and General Relativity (GR) as the 4-th dimension of a “spatiotemporal
continuum (Einstein 1956, Hawking and Ellis 1973, Misner et al. 1970).” Not only
this, but the “3-d spatial epiphany” in the form of entanglement is meaningful only if
the “epiphany= 3-d cross-sectional spatial hypersurface” is actually a “holographic
boundary” of 4-d, since the “gravity effect” of the “Borromean temporal bond”
is global (i.e., not localizable anywhere). This necessitates the conceptual and
technical differentiation between the notions of “dimension” and “dimensionality.”
Given that the notion of dimension pertains to the standard notion of spatial
dimension, the treatment of time as a kind of 4-th dimension comes only after the
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imposition of metrical chrono-geometric relations. The “pre-metrical topological
notion of time” (from the standpoint of the “time-space of the present”) should be
thought of in terms of physical dimensionality, meaning an “unfolding dimension”
coming about via a process of temporal division (i.e., in the form of the ancient
Greek notion of dia-stasis). The notion of an “unfolding dimension” is captured
precisely by the algebraic-topological concept of a “covering space” or a “covering
scheme,” which is considered indispensable for the explication of the process of
“self-referential autogenetic unfolding.”

2.3 Multiple-Connectivity in the Time-Space of the Present

The existence of the three different chrono-ontological formats constituting reality,
i.e. facticity, statu nascendi, and apeiron, from the standpoint of the “time-space
of the present” bears a distinguishing quality as a whole, only if “the past” can
be connected to “the future” in a multiplicity of possible ways according to some
scheme of “temporal division” or “temporal partition.” This should be thought of in
contradistinction to the sequential simply-connected ab initio connectivity pattern
of the “standard real-line event continuum,” which is based on the totally ordered
sequential structure of the real numbers.

In mathematical terms, this is described by the topological notion of “multiple-
connectivity” in the “time-space of the present.” In this understanding, multiple-
connectivity pertains to temporal binding according to some temporal division
scheme. It will be shown in the sequel how the temporal division scheme is
implemented in SR and GR based on the constancy of the speed of light and the
induced chrono-geometric relations, respectively. The important thing is that the
topological property of multiple-connectivity has a temporal connotation, whereas
the potential appearance of “alleged non-locality” in 3-d space, for instance, when
quantum entanglement effects are considered, has a spatial connotation, which is
precisely the spatial cross-sectional projection, i.e. the “epiphany” of the particular
form of “temporal binding” in the “time-space of the present.” As a consequence,
time cannot be treated as a dimension bearing the same status like the spatial
dimensions, but has to be conceptualized as a dimensionality, or equivalently,
as an “unfolding dimension” according to some temporal division scheme from
the standpoint of the “time-space of the present.” The basic claim, which will
be presented and elaborate in what follows is that the mathematical consistency
of the autogenetic theory is based on the conception of time as an “unfolding
dimension” according to the topological theory of “covering schemes” and not on
“epi-cyclic notions” like “probabilistic Bayesian updating” or “randomly evolving
connectivity graphs.” At best, the latter become meaningful only at the cross-
sectional spatial projection as epi-phenomena following a fundamental scheme of
“temporal binding.” In other words, the epi-phenomenon of randomness in a spatial
connectivity graph is traced back to the chrono-topological property of multiple-
connectivity as distinguished from a priori simple-connectivity, which leads to a
classical deterministic model.
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Beyond the physical applications, referring to the higher-level abstraction of
interpreting the Borromean topology in terms of a “temporal bond” in the “time-
space of the present” and the concomitant notion of an “unfolding dimension” via
the theory of “covering schemes” or “covering spaces,” it is expected that these
notions can find very important applications in the following: Study of thinking
and understanding, language evolution, human and artificial intelligence, and also
strategic decision making. For instance, the process of acquiring meaning and
understanding via reading a book does not conform to the sequential order of time.
It is more natural that the brain establishes “Borromean temporal bonds” at each
and every “cross-sectional present,” which due to topological multiple-connectivity
allow information amalgamations irrespective of any notion of distance proximity
in the text. This is also important in decision making where things in the “very far
past” can form a “Borromean temporal bond” with anticipated things in the “very
near future” in the “time-space of the present.” It will be described later how this
“temporal binding” can be visualized by means of a “kind of a gravitational field”
inducing a “curvature” that makes things roll to a particular slope without any direct
external cause beyond this bond operating on a higher level.

2.4 The Notion of “Unfolding Temporal Dimension”
and “Covering Schemes”

The notion of an “unfolding temporal dimension” (“dia-stasis”) pertains to all situ-
ations that the “past” can be connected to the “future” in a multiplicity of possible
ways according to some scheme of “temporal division” or “temporal partition”
with respect to the “time-space of the present.” The fundamental example of an
“unfolding temporal dimension” is provided by a spiral or helix that is unfolding
in a “snake-like manner.” This can be visualized either as an “Archimedean screw-
type” of unfolding or as a “logarithmic screw-type” of unfolding, depending on the
periodic rule of temporal division, with two possible orientations. Alternatively, we
may simply think of a “topological chord” wrapped around a cone that is extended
to infinity, such that the particular type of wrapping is subordinate to a specific
rule of temporal division. In this case, the cone represents the time-space of the
present in “statu-nascendi” where the “temporal chords” are unfolding with respect
to the multiple potential connectivities appearing at the spatial epiphany of the
present. The latter is a spatial cross-sectional projection of the spirally unfolding
dia-stasis, and clearly bears the topology of a circle. In this manner, an unfolding
spiral constitutes a “covering space” or a “covering scheme” of the epiphenomenal
spatial circle. The simplest example is demonstrated below, where a spiral in “statu-
nascendi,” unfolding according to a constant periodic rule of temporal division from
the perspective of the “time-space of the present,” covers evenly the epiphenomenal
spatial circle.



2.4 The Notion of “Unfolding Temporal Dimension” and “Covering Schemes” 19

E

B

p

0 1

p

It is going to be described with all details in the sequel, how this type of an
“epiphenomenal spatial circle” arises in the context of our fundamental physical
theories. For example, in the case of SR it “takes place” by the metrical spatialization
of a “temporal unfolding dimension” through the rotational periodic rule determined
by the finitude and constancy of the speed of light. The important thing to
keep in mind at this stage is that a “spirally or helically unfolding temporal
dimension” always gives rise to an epiphenomenal spatialized dimension that bears
the topology of the circle and not of a line. An epiphenomenal spatialized circle
can be coordinatized by means of the unit circle in the complex domain (in two
spatial dimensions) or the quaternion domain (in four spatial dimensions) giving
rise to what may be called as an “imaginary dimension.” Since the unit of this
“imaginary dimension” is interpreted as a rotation by 90◦ in the counterclockwise
orientation on this spatially epiphenomenal circle with respect to the real spatial
dimension, whose extension is depicted horizontally in the complex domain, the
“imaginary dimension” cannot be separated from any “real-number coordinatized
spatial dimension.” This is precisely what gives rise to a “2-d inseparable spacetime”
(if we consider just one “real spatial dimension”) or a “4-d inseparable spacetime”
(if we consider all three spatial dimensions).

The crucial idea is that “an imaginary dimension” constitutes the epiphenomenal
spatialized cross-sectional form of a genuine “temporal unfolding dimension” ac-
cording to the above, and this is precisely the major characteristic that distinguishes
the notion of the “time-space of the present” from the notion of “spacetime.” It is
a category mistake to treat an “imaginary dimension” as a “temporal dimension” in
the same footing like the spatial ones. An “epiphenomenal spatialized imaginary
dimension” bears an “imaginary unit” inducing “circular action by rotation” in
contradistinction to a “real spatial dimension” which bears a unit inducing “linear
extension in a specified direction.”
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2.5 Autogenetic Perspective on Special Relativity

The main distinguishing features of SR, according to the standard presentation, are
the following:

(a) The maximal speed of signal transmission is defined by the speed of light c;
(b) The speed of light is constant in all directions;
(c) The laws of physics are the same in all inertial frames;
(d) Time is treated as the 4-th dimension of an inseparable flat spacetime;
(e) The spatiotemporal metric relations are constant at every point-event of space-

time giving rise to the group of Lorentz transformations as the kinematical
symmetry group of the theory;

(f) The relation between energy and mass E = mc2.

The challenge is to think of SR from the perspective of a “temporal unfolding
dimension,” and according to the previous arguments, interpret it via the premises
of the autogenetic theory. The clue comes from the form of the “spacetime metric,”
where the spatialized temporal coordinate comes with a minus sign. For simplicity,
the argument will be presented in the case of “2-d spacetime” (involving one
spatial and one spatialized temporal dimension), since it extends to the case of “4-d
spacetime” in a straightforward manner. In particular, the “spacetime metric” reads
dS2 = dx2 − c2dt2, which is equivalently written as dS2 = dx2 + (icdt)2, where
the imaginary unit i has been used in the conversion of the temporal factor into the
spatialized form, where the metric relation refers to. In other words, the temporal
metric factor is brought into a spatialized form by the use of the speed of light c via
the intervention of the imaginary unit i (which acts as a conversion factor).

Hence, we are in the case of an “imaginary dimension” conceived as the
epiphenomenal spatialized cross-sectional form of a genuine “temporal unfolding
dimension” projected at the factual level. This “temporal unfolding dimension” with
respect to the “time-space of the present” in “statu-nascendi” is brought about by
the upper bound in information signaling defined by the speed of light c, and thus,
it pertains to phenomena approximating that speed. Since the finitude of the speed
of light affects the metrical chrono-geometric relations at very high speeds, and
not the chrono-topological ones, the cone of unfolding of the “temporal chords” is
actually a “metrical light-cone.” In effect, this means that the “spirally unfolding
temporal dimension” is degenerate topologically, in the sense that the “winding
stairs of the spiral” are not distinguishable metrically, and thus, the potential of
multiple-connectivity between the “past” and the “future” is reduced only to the
possibility of branching with respect to the “time-space of the present.”

From the higher-abstraction level of the “degenerate spiral covering scheme” this
type of temporal unfolding at very high speeds takes place at a constant rate given
by the speed of light c. A conceptual parenthesis will be opened in the sequel in
relation to a possible autogenetic interpretation of this constant rate. But currently,
it is important to examine how the connectivity between the “past” and the “future”
should be thought of with respect to the “time-space of the present” in the case of
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SR. The crucial thing here is not only that the speed of light is constant, but that
the chronogeometric relations induced by this upper bound are constantly the same
at every point-event, since the metric is not variable. This means that the light-cone
at the “time-space of the present” is isomorphic to the light-cone at any past event
and will be isomorphic to the light-cone at any future event. Thus, they can be both
isomorphically rooted at the same point-event in the “time-space of the present,”
but in an inverted relation with respect to each other so that the “past one” can be
distinguished from the “future one.” Epigrammatically, it suffices to consider the
same “degenerate spirally unfolding temporal dimension” for both the “past” and
the “future,” since the periodic unfolding rate is constantly the same, differing only
in orientation, and thus, considered as rooted at the same point-event in the “time-
space of the present.”

If we consider the corresponding “epiphenomenal spatialized imaginary di-
mension” as the cross-sectional projection of the genuine “unfolding temporal
dimension” at the factual level, according to the analysis of the previous section,
it bears an “imaginary unit” inducing “circular action by rotation.” Hence, if we
consider the rooting at the same point-event in the “time-space of the present” of
both the “past” and the “future” differing in orientation, at the “epiphenomenal
spatialized imaginary dimensional level,” which can be precisely thought of as the
“{imaginarily spatialized time}-{real space} of the present rooted at the same point-
event 0,” the “future” is represented by “circular action in the counterclockwise
orientation” induced by rotation via the imaginary unit i, whereas the “past” is
represented by “circular action in the clockwise orientation” induced by rotation
via the complex conjugate imaginary unit i∗ = −i.

Simply put, at the epiphenomenal level, change of time in SR amounts to change
of phase, and this is the same for both the “past” and the “future,” differing only in
orientation with respect to the rooting at a point-event in the present. An immediate
consequence of this is what is usually called “Lorentz contraction of lengths in
the direction of motion.” More concretely, if we consider motion in the horizontal
spatial direction at a high speed below the speed of light, then spatial extension in
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the real horizontal linear dimension by 1 unit of length will appear contracted with
respect to “0,” since it amounts to a change of phase on the unit circle equal to
the passage of spatialized time, making an angle with respect to the real horizontal
dimension. Hence, the length contraction (depending on the speed of motion) with
respect to “0” is just the projection on the horizontal linear spatial dimension of the
corresponding phase change on the unit circle.

Let us return now to the higher-abstraction level of the “degenerate spiral
covering scheme” pertaining to genuine temporal unfolding at very high speeds,
which in SR takes place always at a constant rate given by the speed of light,
e.g. “past” and “future” are distinguished only by opposite orientations and not by
any difference at the unfolding rate. The issue is if we can derive an autogenetic
interpretation of this constant rate. The starting point will be the energy-mass
relation in SR, E = mc2. The standard interpretation of this relation as indicative
of the energy/mass equivalence is not adequate from an autogenetic perspective.
The autogenetics problematics arises through the conception of normal matter as
corresponding to the reality that has already taken place and is, thus, “full member”
of local spacetime.

Following this conception, if we think of normal matter as corresponding to the
reality that has already taken place in relation to the total energy of apeiron reality,
then the equation E = mc2, or equivalently, c = ±√

E/m, gives the constant rate
of genuine temporal unfolding following the conversion of apeiron reality (energy)
to factual reality (relativistic mass) via the “statu-nascendi” where the unfolding
is conceptualized. The ± sign is meaningful with respect to the time-space of the
present as the only distinguishing element between the “past” and the “future” in
SR, since the magnitude itself giving the unfolding rate is always constant. This
perspective turns SR into its head, because the interpretation of the speed of light as
a constant magnitude specifying the rate of temporal unfolding, determined in turn,
by the conversion of apeiron reality to factual reality, requires to take into account all
three portraits of reality. The autogenetic perspective on the energy-mass relation in
SR is also indicative of the conceptual shift involved in the transition from SR to GR.
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Namely, it is the possibility of the non-constancy of the rate of temporal unfolding
between the “past” and the “future” from the standpoint of the “time-space of the
present,” determined as previously, that constitutes the crucial difference from an
autogenetic perspective. As it will be shown in the following section, this is not at
odds with the standard spacetime metric curvature interpretation of gravity caused
by uneven matter distributions. The difference is that the latter is the epiphenomenal
spatialized appearance of a change in the rate of temporal unfolding between the
“past” and the “future” from the standpoint of the “time-space of the present.”

2.6 Autogenetic Perspective on General Relativity

According to Einstein’s principle of equivalence, GR is reduced to SR in the
infinitesimal vicinity of every point-event in spacetime. This is usually referred to as
metric locality, which has to be distinguished from the notion of topological locality.
GR is also a metric theory and topological considerations start to enter the scene
only at the appearance of singularities where the spacetime event geometry breaks
down. The major difference from SR in this respect is that the spacetime metric
becomes variable from point to point in spacetime depending on the distribution
of matter in its vicinity. Thus, the spacetime metric, and therefore, the chrono-
geometric relations are not constant as the case of SR but become variable. In
turn, the variability of the spacetime metric gives rise to the observable spacetime
curvature through which Einstein’s field equations are formulated. The important
thing is that due to the variability of the metric a standard of comparison is required
at each spacetime point. This is called the infinitesimal process of parallel transport
(technically called a connection) involving small round trips around each point
according to a prescribed rule of parallelism (usually referred to as the metric-
compatibility of the connection). These round trips detect the change of orientation
(called the metric anholonomy of the connection) due to local curvature associated
with uneven matter distributions.

The challenge is again to think of GR from the perspective of a “temporal
unfolding dimension” in analogy to the case of SR treated before. For simplicity,
let us consider again the case of a “2-d spacetime” (involving one spatial and one
spatialized temporal dimension) as a model, whence the arguments can be extended
to the case of “4-d spacetime.” In the infinitesimal vicinity of any spacetime point
the metric can get the SR form, dS2 = dx2 + (icdt)2, but in this case, this form is
not retained constantly as we move from point to point.

Therefore, in the infinitesimal vicinity of a point-event at present (i.e., locally in a
metric sense), we consider an “imaginary dimension” conceived as the epiphenom-
enal spatialized cross-sectional form of a genuine “temporal unfolding dimension”
projected at the factual level. Again, since this “imaginary dimension” pertains to
the metrical chrono-geometric relations, and not to the chrono-topological ones
(the latter become relevant only around singularities), the cone of unfolding is a
“metrical light-cone.” Consequently, as in the case of SR the “spirally unfolding
temporal dimension” is degenerate topologically, in the sense that the “winding
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stairs of the spiral” are not distinguishable metrically, and thus the potential of
multiple-connectivity between the “past” and the “future” is reduced only to the
possibility of branching with respect to the “time-space of the present.” The
important subtlety in comparison to the SR case is that the rate of unfolding is
not constant between the “past” and the “future” with respect to the “time-space
of the present.” As a consequence, if we consider the rooting at the same point-
event in the “time-space of the present” of both the “past” and the “future” differing
in orientation, due to the differing rates of unfolding, the light-cone structure may
twist or tilt. At the “epiphenomenal spatialized imaginary dimensional level,” which
can be thought of as the “{imaginarily spatialized time}-{real space} of the present
rooted at the same point-event, this discrepancy in the temporal rate of unfolding
between the “past” and the “future” appears as spacetime curvature.

Conclusively, in the case of GR at the epiphenomenal level, change of time
amounts to change of phase, but the rate of change is not the same for both “past”
and “future.” Equivalently, “past” and “future” are not differing only in orientation
with respect to the rooting at a point-event in the present, but they also differ in
relative phase that epiphenomenally appears as local metric curvature.

2.7 Autogenetic Perspective on Singularities, Quantization,
Entanglement and the “ER=EPR” Correspondence

The limits of GR as a metrical theory arise when the epiphenomenal curvature blows
up, i.e. at the appearance of “spacetime singularities.” At singularities the smooth
metrical spacetime structure breaks down and global topological changes may take
place, like ER bridges or wormholes. From the perspective of a “temporal unfolding
dimension” in this case, the difference between “past” and “future” cannot be
captured by the use of a single “imaginarily spatialized time dimension” adjoined
to 3-d space. More precisely, a relative phase difference with respect to an imaginary
dimension, bearing the topology of the circle as previously, cannot account for the
difference and connectivity between the “past” and the “future” at a singular point.
Singularities open up the multiple connectivity possibilities from the perspective
of genuine temporal unfolding at the “statu-nascendi” level, and thus, pertain to
chrono-topological relations in contradistinction to chrono-geometrical ones.

In order that these multiple-connectivity possibilities can take place, giving rise
to a different higher type of “temporal bonds,” there are two inter-related conditions
that need to be fulfilled:

First, a “spirally unfolding temporal dimension” may be characterized by a more
elaborate type of cross-sectional projection in the “time-space of the present,” in the
sense that change of time at the spatialized epiphenomenal level does not correspond
to change of phase with respect to a single imaginary dimension, but corresponds
to change of circle. This happens when the “past” and the “future” do not differ
merely by a change in the rate of unfolding, which can be realized as a relative phase
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difference within the same “imaginary dimension,” but require complementary
or conjugate “imaginary dimensions” in the “time-space of the present.” In this
case, change of time at the epiphenomenal level requires an appropriate process of
circle change, which can be interpreted as a higher-order connectivity or “temporal
bond.”

Second, the potential of multiple-connectivity between the “past” and the
“future” with respect to the “time-space of the present” can be actualized only if
the “spirally unfolding temporal dimension” is non-degenerate topologically, in the
sense that the “different winding stairs of the spiral” can be distinguished spectrally.

We conclude that none of the above two conditions are fulfilled at the metrical
spacetime event-level of GR. In this manner, the issue of spacetime singularities
forces the transition from the factual to the statu-nascendi level without the
metrical resource provided by an “imaginary spatialized time dimension” adjoined
to 3-d space, since the metric breaks down at singularities. Therefore, chrono-
topological relations become prevalent necessitating the spectral distinguishability
of the winding stairs of an unfolding temporal dimension by means of quantization.
In the simplest case, upon quantization, the winding stairs become distinguishable
spectrally by means of the discrete algebraic structure of the integers.

The subtlety is now that the inverse transition from the statu-nascendi to the
factual level does not happen in an unqualified manner, but requires measurement
processes of quantum observables, not all of which are simultaneously compatible
with respect to the “time-space of the present.” From the viewpoint of the previous
analysis, instead of an “imaginary spatialized time dimension” adjoined to 3-d
space metrically, what is required is a multiplicity of non-simultaneously applicable
“contextual imaginary dimensions” adjoined non-metrically to 3-d space (i.e.,
not as additional spatialized time dimensions) via spectral orthonormal bases
(or equivalently, spectral frames of projection operators) for the measurement
of observables. These “contextual imaginary dimensions” are in the relation of
parataxis with respect to each other. Each one of them instantiates the demarcation
of a non-metrical locality (i.e., a locality not based on the notion of distance)
in the “time-space of the present.” It is precisely this independence from spatial
proximity and distance that allows the emergence of syntaxis and cohesion at a
higher connectivity level, i.e. the formation of “temporal bonds.”

Thus, upon entering the quantum domain of discourse for dealing with the
chrono-topological relations pertaining to the singularities of GR in the transition
from the metricized event spacetime to the statu-nascendi, the inverse transition
can only take place locally or contextually by means of an arsenal of non-
simultaneously applicable spectral frames for measurement.

The main claim in this interpretational framework of the autogenetic theory
is that singularities open up multiple connectivity interfaces between the “past”
and the “future” at the “time-space of the present” in “statu-nascendi.” Since the
realization of such a temporal connectivity interface becomes effective only on the
condition of topological non-degeneracy of the genuine temporal unfolding, and
therefore upon quantization according to the preceding, it can take place by the
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non-metrical adjunction of “contextual imaginary dimensions” to 3-d space, i.e. the
adjunction of local spectral frames at the “time-space of the present.”

Note that the notion of a “contextual imaginary dimension” now is not playing
the role of an “imaginary spatialized time dimension,” but plays the role of an
“event horizon,” since the transition from “statu-nascendi” to the factual happens
always only via a spectral frame of measurement. In a nutshell, what appears
as a singularity at the metrical level of 4-d spacetime, forcing the transition to
the “statu-nascendi,” where quantization is invoked to account for the pertinent
chrono-topological relations, requires the instantiation of an “event horizon” via the
adjunction of a “contextual imaginary dimension” to facilitate the inverse transition
from the “statu-nascendi” to the factual level.

Following the understanding of a “contextual imaginary dimension” via the
notion of an “event horizon,” it is important to examine now how two singularities
can open up a “higher connectivity interface” between the “past” and the “future”
at the “time-space of the present” in “statu-nascendi.” A necessary condition for
such a type of “connectivity interface,” non-dependent on metrical proximity, is
that the “two induced contextual imaginary dimensions” of the singularities are
“relationally conjugate” in the “time-space of the present,” so that they can be
cohesively glued together not in absolute pair-wise fashion, but only in modular
relation to the “present.”

This modularity dependence on the “present” implies that the corresponding
“event horizons” can be amalgamated homologically in relation to the “present.” In
chrono-topological terms this type of “modular gluing” pertaining to the “present”
(in the “time-space of the present”) can be instantiated by means of a “holographic
boundary” adjoined to 3-d space at “present,” demarcating the “imaginary oriented
surface of cohesion” of the two corresponding “contextual imaginary dimensions.”
It must be emphasized that the compatible fusion of the pertaining “contextual
imaginary dimensions” does not happen in spacetime, but refers to their modular
amalgamation with and with respect to the “present” in the “time-space of the
present.” Taking into account the association of the former with quantum theoretical
spectral “event horizons” at the “statu-nascendi” level, it becomes transparent that
the “modular gluing” of these event horizons pertaining to the “present” is precisely
a process of quantum entanglement. In this manner, the “holographic cohesive
boundary” adjoined to 3-d space at “present” by this “modular gluing” constitutes
the topological manifestation of quantum entanglement.

Put equivalently, from an inverse viewpoint, quantum entanglement is the
expression of modular amalgamation with and with respect to the “present” of
two “relationally conjugate event horizons” (in the “time-space of the present” and
independently of any metrical proximity) in the form of a “holographic boundary”
adjoined to 3-d space at “present.” The crucial point here is that this “holographic
boundary” can function as a “higher connectivity interface” between the “past” and
the “future” with respect to their modular relation to the “present,” if and only
if it is oriented. It is precisely the orientation on the so demarcated “imaginary
boundary surface at present,” adjoined to 3-d space, that makes it a “temporally
synectic boundary” or a “holographic boundary of cohesion” between the “past”
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and the “future” in their “modular gluing” capacity to the “present.” In the context
of GR, reminding the association of singularities with the opening up of “contextual
imaginary dimensions” to 3-d space, the capacity of “modular gluing” of two
“relationally conjugate singularities,” e.g. of a “black hole” with a “white hole,”
according to the preceding, is interpreted at the factual level of spacetime as a
wormhole that is impossible to pass through (non-traversable wormhole). Therefore,
we obtain a conceptual grasp of the meaning of the “ER = EPR” correspondence
from an autogenetic standpoint, which in the context of its initial conception and
formulation is a conjecture pertaining to the quantum-gravity theoretical domain.

2.8 Syntaxis and Cohesion of Temporal Unfolding
at the Time-Space of the Present

The major objective of grasping conceptually this correspondence is not only to
demonstrate the potency of the implications associated with the notion of a “genuine
unfolding temporal dimension” understood autogenetically, but also to pave the way
for applying this framework to a novel theory of thinking, in particular, to a novel
approach to “decision making.” For this reason, it is worth attempting to transfer
these notions metaphorically in the field of “decision making” taking place at the
“time-space of the present.”

The conceptual grasp of the autogenetic notion of a “genuine temporal unfolding
dimension” via the algebraic-topological theory of “covering schemes,” together
with the crystallization of the idea that a “spirally or helically unfolding temporal
dimension” in the “time-space of the present” always gives rise, either, to an
epiphenomenal spatialized-time imaginary dimension at the metrical level, or, to
an arsenal of non-simultaneously applicable contextual imaginary dimensions at
the non-metrical level, provides an optimal starting point for this application. The
abstraction required to perform the metaphor properly is based, on the one hand,
in the preservation of the distinction among the three chrono-ontological formats
of reality, and on the other hand, in the appropriate utilization of the notion of
an “imaginary dimension” metrically or non-metrically, i.e. as a means of getting
adjoined to 3-d space and induce observable effects at the epiphenomenal level.

In the course of this problematics, we realize that the “backbones” of the
crucial ideas pertaining to SR, GR, and QG (quantum gravity), from the unifying
autogenetic perspective of a “genuine temporal unfolding dimension,” refer to
particular constraints imposed on “imaginary dimensions” at the “time-space of the
present.” In the first two cases, the constraints are of a metrical kind, whereas in
the latter case, the constraint is of a topological kind that forces the necessity of
quantization. To be more precise, the important idea is always to consider a cross-
sectional projection of a “spirally or helically unfolding temporal dimension” in the
“time-space of the present,” according to a metrical constraint (being constant as in
SR or variable as in GR) or a topological constraint. Then, this constraint induces
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observable effects at the spatialized epiphenomenal level, depending on what
meaning is conveyed to the notion of “change of time” with respect to the “time-
space of the present.” This notion of “change of time” is fundamental, because it
pertains to the connectivity between the “past” and the “future” from the standpoint
of the “present.” What has been shown using the notion of applicable “imaginary
dimensions” arising through the pertinent constraints are the following:

(α) “Change of time” in SR amounts to “change of phase,” and this is the same
for both the “past” and the “future” differing only in orientation with respect
to the rooting at a point-event in the present. At the epiphenomenal spatialized
level this induces the non-trivial observable effect of “length contraction” in the
direction of motion;

(β) “Change of time” in GR amounts to “change of phase,” but the rate of change
is not the same for both the “past” and the “future.” Equivalently, “past” and
“future” are not differing only in orientation with respect to the rooting at
a point-event in the present, but they also differ in “relative phase.” At the
epiphenomenal spatialized level this induces the non-trivial observable effect
of “local metric curvature” associated with some “matter source,” and thus,
geometrizes the effect of gravity;

(γ ) “Change of time” in QG does not amount to “change of phase” with respect to
a single imaginary dimension, but amounts to “change of circle” with respect
to two complementary imaginary dimensions in connection with the “present.”
This is the case because the “past” and the “future” do not differ merely by
a change in the rate of unfolding, which can be realized as a relative phase
difference within the same “imaginary dimension,” but require “relationally
conjugate contextual imaginary dimensions” in the “time-space of the present.”
In this case, due to the capacity of “multiple-connectivity” between the “past”
and the “future” with respect to the “present,” “change of time” amounts to
a “synectic circle change” instantiated by the novel conceptualized process of
“modular gluing” with and with respect to the “present.” At the epiphenomenal
spatialized level, this induces the non-trivial observable effect of “quantum
entanglement” taking place at a “holographic boundary of cohesion” adjoined
to 3-d space at “present.” From then on, in order to distinguish the metrical
from the topological semantics of an “imaginary dimension” we will refer to
the QG-type of “change of time” as a “synectic cycle change.”

The aim of recapitulating the above differences among SR, GR, and QG, from
the unifying perspective pertaining to the distinctive applied notions of “change of
time” via the adjunction of “imaginary dimensions” to 3-d space at the “time-space
of the present” is the underlying realization that these notions can be transferred
outside the strict technical contexts of these theories by abstracting the content of
the relevant constraints. For instance, in the simplest case of SR, the constraint
emanates from the constancy of the speed of light, in its function as a universal
metrical factor for spatializing time in a projected cross-section of the temporal
unfolding in the “time-space of the present” in terms of a metrical imaginary
dimension. Bringing into mind that the speed of light demarcates the upper bound
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in the propagation of electromagnetic signals, there is nothing that prevents the
applicability of the SR-analogous notion of metrical imaginary dimension, adjoined
to 3-d space, by another type of constant spatializing time by the demarcation
of another upper bound pertaining to a different sort of propagation. The crucial
thing here is that the latter type of upper bound as a metrical constraint would also
amount to “change of time” as a “change of phase” (true, with a different period or
frequency) in analogy to the SR-case, and most important, would induce the non-
trivial observable effect of “length contraction” in the direction of propagation at
the epiphenomenal level.

To be more concrete, consider the exemplary case of propagation of an army in
the battlefield. Initially, the notion of an armored vehicle was conceived as a means
of protecting the infantry following it. The strategic transmutation of this conception
into a unit of armored vehicles moving independently of the infantry amounts to
a change in the syntaxis of time in the battlefield. This is because the speed of
propagation is altered by the upper bound set by the unit of armored vehicles, and
consequently, at the epiphenomenal level, “change of time” amounts to “change of
phase” in the battlefield, caused by the adjunction of the SR-type of “spatialized time
imaginary dimension” to 3-d space (as a metricized constraint of upper bound in the
speed of propagation). Again, the observable effect at the epiphenomenal spatial
level, caused by this decision, is the “length contraction” in the direction of motion
of the army in the battlefield. In the same stream of ideas, it is clear how GR-type of
observable effects appear in the battlefield, i.e. effects of local curvature analogous
to the gravitational ones, in the strategic decision of “metallaxis” of a cavalry unit in
the “past” into an “armored unit” in the “future” that took place at the “time-space
of some pertinent present.” “Change of time” in both cases amounts to “change of
phase” in the battlefield, but the rate of unfolding is different with reference to the
“cavalry unit” in the “past” in comparison to the “armored unit” in the “future.” This
is qualified as a “relative phase” in the “variable metric-spatialized imaginary time
dimension” adjoined to 3-d space, that epiphenomenally results in a local metric
curvature effect in the battlefield, i.e. a bending or twisting the battlefield in analogy
to the “geometrized gravitational effect.”

We will focus our attention now to the QG-type of “change of time,” i.e. to
what is called a “synectic cycle change” and scrutinize in detail its implications
for “decision making” in the “time-space of the present.” The claim is that this
type of “change of time” bears a particular significance in relation to our reading
and historic understanding of “international treaties” for instance, as well as for
guiding “high strategy decision making” when the different historical stages of a
genuine temporal unfolding are not suppressed or eradicated, but on the contrary,
are utilized as a resource for higher types of connectivity interfaces between the
“past” and the “future“, not visible and not comprehensible from the factual portrait
of reality. In the course of this synthesis, it will be attempted to delineate the
major constraints required for the realization of this type of “change of time”
as a “synectic cycle change,” i.e. as instantiating a “higher connectivity interface
or cohesion” between the “past” and the “future” with and with respect to the
“present,” and not as destroying any type of connectivity that a “random cycle
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change” would result to. This is an important difference and epitomizes the
notion of historicity as a process of unfolding via “temporal chords” that bear the
capacity to resonate at “present” with “elicited seeds,” directed from the “past,”
through “memory,” “tradition” and “value,” but also from the “future,” through
“anticipation,” “innovation,” “expectation,” “insight” and “vision.”

2.9 Change of Time as a Synectic Cycle Change

From the standpoint of the “time-space of the present” in the context of the
autogenetic theory, the first constraint for comprehending “change of time” as a
“synectic cycle change” is the non-annihilation of the “past” and the non-repulsion
of the “future,” both conceived in “seed-like-form” in their capacity to form a
“temporal bond” with and with respect to the “present.” The notion of a “temporal
bond” is a fundamental one for this purpose and is characterized by the following
premises:

1. A “temporal bond” is not conditioned by relations of metrical proximity of the
“elicited seeds” from the “past” and the “future” at “present” in the “time-space
of the present”;

2. A “temporal bond” between the “elicited seeds” from the “past” and the “future”
always bears a modular relation with and with respect to the “present,” i.e. it is
not tantamount to a “pair-wise gluing” of the “past” with the “future,” but to a
“modular gluing” in relation to “the present” and together with the “present”;

3. A “temporal bond” induces a “synectic cycle change” if and only if the pertinent
“elicited seeds” from the “past” and the “future,” in their capacity to get glued
together in a “modular manner” with and with respect to the “present,” are
both “relatively prime” with respect to the “present,” i.e. not analyzable and not
localizable to any other common factors with respect to the “present”;

4. A “temporal bond” as a “synthetic unit” modulo the “present,” characterized by
the quality that the “elicited seeds” from the “past” and the “future” amenable to
amalgamation, are both “relatively prime” in relation to the “present,” defines a
division scheme of the temporal unfolding according to this unit, which, in turn,
specifies the “syntaxis of time change” at the epiphenomenal spatial level in the
form of a “synectic cycle change”;

5. A “temporal bond” is a bond of “least action” in the “time-space of the present.”
This is because it constitutes an inseparable tripartite correlation, which cannot
be analyzed to any pairwise correlations.

It is especially worth to highlight the quality of “relative primeness” with respect
to the “present,” characterizing non-metrically proximal seeds from the “past” and
“the future” in their capacity to establish a “modular gluing relation” with and
with respect to the “present,” if and only if they enter into a “temporal bond.” The
notion of being a “relatively prime” is analogous to the corresponding notion in
integer modular algebra conceived first by Gauss, where the notion of an “absolute
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integer prime” is relativized with respect to a modulus. The significance of this
generalization in the case of integer modular systems is that any integer can assume
the role of a prime only in relation to another one acting as a modulus. The idea
here is that the quality of “relative primeness” is crucial for the realization of a
“temporal bond” inducing, according to the preceding, a “synectic cycle change”
from the “past” to the “future” in the “time-space of the present.” Intuitively, the
underlying conception is that “relatively to the present,” a “seed” from the “past”
becomes “spectrally spontaneously visible” and thus, “spontaneously elicited”
in “the present,” without being factorizable through anything else. The same
symmetrically holds for a seed in the “future” in its capacity to enter into a “temporal
bond” with a seed from the “past” in a “modular way” with and with respect to the
“present.”

A natural issue arising in this setting pertains to the explication of the roots on
which the analogy with integer modular algebra is based on in the present case. The
indirect resolution of this issue comes from the second constraint required for the
realization of this type of “change of time” as a “synectic cycle change” effected by
a “temporal bond.” It is instructive to remind that the realization of such a temporal
connectivity interface becomes effective only on the condition of topological non-
degeneracy of the genuine temporal unfolding between the “past” and the “future”
at the “time-space of the present” in “statu-nascendi.” Equivalently, the potential of
multiple-connectivity between the “past” and the “future” in the form of “seeds”
entering into a “temporal bond” with respect to the “time-space of the present” can
be actualized only if a “spirally unfolding temporal dimension” is non-degenerate
topologically, in the sense that the “different winding stairs of the spiral” can be
distinguished spectrally.

Physically, the spectral distinguishability of the winding stairs of an unfolding
temporal dimension takes place by means of quantization. More precisely, upon
quantization, the winding stairs become distinguishable spectrally by means of
the group of the integers, which physically count “quanta of action.” Notice that
this constitutes a form of absolute distinguishability. According to the fundamental
quality characterizing a “temporal bond,” spectral distinguishability should be
always relativized with respect to the pertinent “present” in the “time-space of this
present,” and not be considered in absolute terms. From the autogenetic perspective,
a “spirally unfolding temporal dimension” may unfold outwards, inwards, and
multi-directionally. Most important, it can be subdivided according to the “synthetic
unit” established by the formation of a “temporal bond” modulo the “present.”
Thus, the subdivision property, considered together with the quality of “relative
primeness” with respect to the “present,” characterizing seeds from the “past”
and “the future” entering into a “temporal bond,” leads to the conclusion that
spectral distinguishability relativized with respect to the pertinent “present” takes
place in the fashion of modular integer algebra, i.e. by the residue modular system
determined by “relative primeness” with respect to the “present” playing the role of
the “modulus.”
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The most important consequence of “relative primeness” in this respect is that
the pertinent seeds of the “past” and the “future” entering into a “temporal bond,”
as described previously, become “relationally inverse with respect to the present”
and “relationally conjugate with respect to each other” in the “time-space of the
present.”

Is there any way to visualize these relations at the epiphenomenal spatial level
referring to the “present”? For this purpose, we remind that we have to utilize
the device of “imaginary dimensions.” More precisely, we have to consider some
seed from the “past” and some seed in the “future” (in their capacity to enter
into a “temporal bond” at “present”) in their respective contexts of two non-
simultaneously applicable “imaginary dimensions” adjoined non-metrically to 3-d
space. In this manner, a seed from the “past” with a seed in the “future” entering into
a “temporal bond” at present, and thus being “relationally conjugate with respect to
each other” due to “relative primeness” at “present,” can be visualized in terms
of the corresponding “contextual imaginary dimensions” being transverse, and
thus complementary at “present.” Then, their “modular gluing” with respect to the
“present,” upon establishment of the “temporal bond,” gives rise to a “holographic
boundary” adjoined to 3-d space at “present.” This “temporal synectic boundary”
of cohesion of the “past” with the “future” at “present” demarcates the “imaginary
oriented surface of cohesion” of those “contextual imaginary dimensions.”

What is required for understanding more deeply this “holographic boundary
of cohesion” is to describe and visualize the action of “eliciting seeds” from the
“past” and the “future” at “present” in view of their power or capacity to enter
into a “temporal bond” in the “time-space of the present.” Since a “temporal
bond” is tantamount to gluing the pertinent “eliciting seeds” from the “past” and
the “future” in a “modular manner” with and with respect to the “present,” “the
present” should be thought of as an “Archimedean fulcrum” relative to these seeds,
or more precisely, relative to their respective “contextual imaginary dimensions” in
the “time-space of the present.” It is important to keep in mind that these “contextual
imaginary dimensions” of the “eliciting seeds” from the “past” and the “future”
should be thought topologically as cycles.

The quality of being “relatively prime” with respect to the “present,” character-
izing “eliciting seeds” from the “past” and the “future” entering into a “temporal
bond” is the key for the sought for topological representation, set up as a task for
enhancing our understanding, in the preceding paragraph. First, it implies that the
corresponding “contextual imaginary dimensions” are non-mutually inclusive and
transverse, thus, complementary with respect to the fulcrum. Second, it implies that
seeds from the “past” and the “future” become “eliciting seeds” in their power to
enter into a temporal bond at “present” only if they can be “leveraged to the present”
relationally to each other with respect to the “fulcrum.”
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2.10 Genuine Novelty: Relative Primeness as the Key
for Synectic Cycle Change

It is significant to amplify the implications derived in the previous section in order
to establish the sought-after topological representation referring to a “synectic cycle
change” via the notion of a “temporal bond.” For this purpose, it is instructive
to start from the clear intuitive idea that the quality of “relative primeness” with
respect to the “present” means that a pertinent “seed” from the “past” or the “future”
becomes “spectrally spontaneously visible” from the “present” in the “time-space of
the present.” Therefore, if we consider a seed either in the “past” or in the “future”
in the context of its “imaginary dimension,” it becomes “spectrally spontaneously
visible” from the fulcrum, i.e. not factorizable through any other simpler common
factor, by means of a loop (simple tame closed curve) that is based at the fulcrum,
i.e. it starts and ends at the fulcrum, and passes through the cycle (non-metrical,
deformable circle) representing spatially the corresponding “imaginary dimension.”
More precisely, since we refer to a seed, it is appropriate to consider the whole
equivalence class of such loops that can be continuously deformed to each other. It
is enough to make visible a single representative of this class, which is recognized
reflectively, by means of a based loop at the fulcrum as previously. We may think
of it as a “reflexive recognition principle” (relatively to the fulcrum) of a seed in
the “past” in its power to enter into a temporal bond with a seed in the “future”
(or the other way round) at “present.” If we denote the relevant cycle by A, then
it is important to notice that a based loop at the fulcrum passing through A may
admit two distinct orientations: If the loop passes through the cycle A with direction
away from the fulcrum it is denoted by α, whereas if it passes with direction toward
the fulcrum it is denoted by α−1. Thus, in a 2-d spatial representation a seed can
be recognized reflexively by means of a “cycle crossing” directed away from the
fulcrum (+), or directed toward the fulcrum (−).
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After having established the “reflexive recognition principle” of a seed relative to
the fulcrum, in terms of a loop based at the fulcrum and crossing the corresponding
cycle with a (+) or (−) orientation, we need to examine the meaning of “relative
primeness” in this representation setting.

“Relative primeness” is a quality characterizing both a seed from the “past” and
a seed from the “future” in relation to the “present,” upon entering into a “temporal
bond” at “present.” In this case, the pertinent seeds from the “past” and the “future”
are qualified as “elicited seeds” at “present,” meaning that they are “leveraged to
the present” relationally to each other with respect to the “fulcrum.” In other words,
reflexive recognition of a seed in the “past” or in the “future” in their power to enter
into a “temporal bond” is not enough for the establishment of the bond. What is
required additionally is “leveraging” these seeds to the “present” using the quality
of “relative primeness,” so that they become “elicited seeds” at present. The idea is
that an “elicited seed” from the “past” can be fused together with an “elicited seed”
from the “future” with respect to the “present”-“fulcrum,” so that a “temporal bond”
is formed with the “present.”

It is worth elaborating in more detail how “temporal leveraging” takes place with
respect to the fulcrum. This introduces the novel concept of a “temporal chord” at
“present” via which the expression of a “temporal bond” becomes explicit.

“Temporal leveraging” of reflexively recognized seeds with respect to the
fulcrum is enunciated by decoding their quality of being “relatively prime” with
respect to the fulcrum. This means that they are (i) “relationally inverse with respect
to the fulcrum,” and (ii) “relationally conjugate with respect to each other” in the
“time-space of the present.” Consider a recognized seed from the “past,” identified
either with the based oriented loop at the fulcrum, α+1 := α, or with α−1, by
means of “cycle A crossing,” depending on the orientation. Analogously, consider a
recognized seed in the “future,” identified either with the based oriented loop at the
fulcrum, β−1, or with β, by means of “cycle B crossing,” depending again on the
orientation. For instance, if α and β−1 are recognized, they both become “elicited
seeds” at “present” by “temporal leveraging” with respect to the fulcrum. Being
relationally conjugate with respect to each other means that β and β−1 play the role
of bidirectional bridges for the leveraging of α, and also that α and α−1 play the
role of bidirectional bridges for the leveraging of β−1. “Elicited seeds” give rise
to “temporal chords” at “present.” Equivalently, a “temporal chord” at “present” is
formed by interpolating a recognized seed from the “past,” for example, α, between
the bridges β and β−1, i.e. by “temporal leveraging” the seed α with respect to the
fulcrum, e.g. βαβ−1.



2.11 Autogenetic Fusion and Synectic Cycle Change: A Temporal Bond Links. . . 35

The significance of “temporal chords” at “present” is that they can form
“resonances.” More precisely, a “temporal chord” from a recognized seed in the
“past” can be “fused” together with a “temporal chord” from a recognized seed
in the “future” by forming a “resonance” at “present.” This “fusion” of “temporal
chords” resulting into a “resonance” at “present” takes place if and only if a “new
cycle” is instantiated at “present” gluing together the cycles A and B in a non-
pairwise manner.

2.11 Autogenetic Fusion and Synectic Cycle Change:
A Temporal Bond Links in the Borromean Topology

The process of modular gluing epitomizing the establishment of a “temporal bond”
and giving rise to a “synectic cycle change” can be described in detail as follows:

Consider a recognized seed from the “past,” identified with the based oriented
loop at the fulcrum, α, by means of “cycle A crossing” in the prescribed orientation,
and analogously, a recognized seed in the “future,” identified with the based oriented
loop at the fulcrum, β, by means of “cycle B crossing,” in the prescribed orientation
as well. These oriented fulcrum-based loops can be composed, either in the order
αβ or in the order βα, and these compositions are non-commutative. Let’s consider
the composition in the order αβ. The first objective is to extend this composition in
consecutive stages so as to form “temporal chords” at the fulcrum. If we adjoin by
composition α−1 to αβ, we obtain the “temporal chord” αβα−1, which amounts to
leveraging β with respect to the fulcrum, utilizing the bridges α and α−1 for this
recognized seed in the future. Next, we adjoin β−1 to the “temporal chord” αβα−1,
to obtain αβα−1β−1, which can be read either as the composition of the “temporal
chord” αβα−1 with β−1 or as the composition of α with the “temporal chord”
βα−1β−1, due to the associativity property of non-commutative composition. In
this way, continuing the process of adjoining as above, i.e. keep leveraging with
respect to the fulcrum, the second, and most important objective is to generate a
cycle based at the fulcrum. A cycle of this form is generated when the leveraging
process ends with the composition αβ that has been utilized at the initial stage. A
cycle based at the fulcrum is generated by the resonance of a “temporal chord” from
a recognized seed in the “past” with a “temporal chord” from a recognized seed in
the “future” as follows:

αβ → αβα−1 → αβα−1β−1 → αβα−1β−1α → αβα−1β−1αβ.

In the above process, the cycle generated is given by

C = αβα−1β−1,
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since starting from the ordered non-commutative composition αβ and leveraging
with respect to the fulcrum, we arrived at:

(αβα−1β−1)(αβ) = C(αβ).

The cycle

C = (αβα−1β−1) := [α, β],

i.e. the commutator of α and β, is generated by the resonance of the “temporal
chord” αβα−1 with the “temporal chord” βα−1β−1 leading to their autogenetic
fusion by means of the cycle C = (αβα−1β−1), at the fulcrum. This provides a
physical visual interpretation of the “novel cycle” C based at the fulcrum, which
effects the “modular gluing” of the cycles A and B.

In other words, it provides the visual representation of the abstract algebraic
process of “modular gluing” of the “past” and the “future” with the “present” and
with respect to the “present,” which we have described in the preceding. Visually,
the cycle C = (αβα−1β−1) := [α, β] involves four crossings of the cycles A and
B, namely two of cycle A and two of cycle B, with opposite orientations and in
an alternating order. Notice that the formation of a cycle of the form C, i.e. of a
resonance pertaining to a “temporal chord” from a recognized seed in the “past”
with a “temporal chord” from a recognized seed in the “future” does not depend on
what we consider as an initial composition, like (αβ) in the case we presented. If we
consider any other initial composition from all possible ones, we will again arrive
at a cycle of the form C, i.e. to a resonance of a “temporal chord” from the “past”
with a “temporal chord” in the “future” with respect to the fulcrum. In other terms,
the formation of a cycle of the form C gluing A and B modularly with respect to
the fulcrum is the invariant of “resonance” between a “temporal chord” from the
“past” with a “temporal chord” in the “future.” It is precisely this invariant that
characterizes “change of time” as a “synectic cycle change” in this case.

The significant thing to highlight is that a “temporal bond” induces a particular
type of topological linking of the cycles A, B, and C, which is described by the
“Borromean rings” topology. Equivalently, “synectic cycle change” is tantamount
to the “Borromean topological link” of the cycles A, B, and C at the epiphenomenal
spatial level, as a consequence of the autogenetic analysis. This means that if any
one of the cycles is removed from the “Borromean link” the remaining two come
completely apart, and leads us to a complete understanding that this type of “change
of time,” according to the above, as a “cycle change” which is synectic.



2.12 Minimal Surface of Cohesion in the Time-Space of the Present 37

It is enough to state briefly here that the algebraic representation of the
“Borromean rings,” which is developed in full detail in the next chapter, a cycle
of the form C = (αβα−1β−1) := [α, β] based at the fulcrum, and involving four
crossings of the cycles A and B, encodes algebraically the modular gluing condition
of this non-splittable 3-link as well as the complete splittability of all 2-sublinks due
to the absence of any pair-wise gluing.

2.12 Minimal Surface of Cohesion in the Time-Space
of the Present

The representation of a “temporal bond” in the form of the “Borromean rings” is
of the utmost significance for strategic decision theory, because it enables us to
visualize the process of “synectic cycle change,” effected by the “modular gluing” of
a seed from the “past” with a seed in the “future” with respect to the “present,” upon
establishment of this “temporal bond.” More precisely, it provides the topological
means to elucidate how a “holographic boundary of cohesion” is adjoined to
3-d space at “present” as the epiphenomenal spatial reflection of a “temporal
bond.” This “synectic boundary” connecting holographically a seed from the “past”
with a seed in the “future” at “present,” independently of their proximal distance,
demarcates an “imaginary oriented compact and connected surface of cohesion”
in 3-d space at “present,” which is adjoined to it as a “holographic boundary” at
“present.”

The adjunction of this “holographic boundary of cohesion” to 3-d space at the
epiphenomenal spatial level of the “present” takes place as follows: We consider the
compact, connected, and oriented surface with boundary the “Borromean rings.”
This surface is visualized as follows:
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Thus, the “imaginary surface of cohesion” at the epiphenomenal spatial level is
equivalent to a torus bearing three punctures (corresponding to the aphaeresis of
three disks). This is a surface of genus one playing the role of the “holographic
boundary of cohesion” adjoined to 3-d space in the complement of the three
topologically linked cycles instantiating the “Borromean rings” at “present.”

The significance of this “imaginary surface of cohesion” caused by a “temporal
bond” is that physically it can be interpreted as a “global curvature topological
effect” in analogy to the “local curvature metrical effect” associated with gravity
due to matter sources in the case of GR. Not only this, but additionally, this “global
curvature effect” is the “least-action solution” to any physical or strategic problem
that requires a “higher connectivity interface” to glue modularly the “past” with
the “future” at “present.” How can we think of a simple way to visualize at the
epiphenomenal spatial level the instantiation of a “temporal bond,” implemented as
a “least-action solution,” and giving rise to such a “global curvature effect”?

The proposed visualization is to consider the “minimal surface” formed by a soap
film, when three wire rings linked together as the “Borromean rings” are immersed
into a solution of soapy water and then taken out. This surface is a “least-action”
solution to the shape that a soap film acquires in this case, since it minimizes the
area. Interestingly enough, every point in this “surface of cohesion” is locally similar
to a saddle, i.e. its local curved geometry is of the hyperbolic type, whereas its global
topology is of the toroidal type.



References 39

References

Einstein A (1956) The meaning of relativity, 5th edn. Princeton University Press, Princeton
Hatcher A (2002) Algebraic topology. Cambridge University Press, Cambridge
Hawking SW, Ellis GFR (1973) The large scale structure of space-time. Cambridge University

Press, Cambridge
Kafatos M, Nadeau R (2013) The conscious universe: parts and wholes in physical reality, 2nd

edn. Springer, Berlin



40 2 Model of an Autogenetic Universe Constellatory Self-Unfolding: A Novel. . .

Maldacena J, Susskind L (2013) Cool horizons for entangled black holes. Fortsch Phys 61:781–811
Misner CW, Thorne KS, Wheeler JA (1970) Gravitation. W. H. Freeman and Company, New York
von Müller A (2011) The logic of constellations. “A complementary mode of thinking that is

crucial for understanding how reality actually takes place”. In: Culture and neural frames of
cognition and communication. Springer, Heidelberg, pp 199–213

von Müller A (2012) On the emergence and relativity of the local spacetime portrait of reality.
Welt der Gründe - Deutsches Jahr-buch für Philosophie, vol. 4. Felix Meiner, Hamburg, pp
1233–1245

von Müller A (2015) The forgotten present. In: von Müller A, Filk T (eds) Re-thinking time at the
interface of physics and philosophy. Springer, Heidelberg, pp 1–46

Zafiris E (2016a) Loops, projective invariants and the realization of the Borromean topological
link in quantum mechanics. Quantum Stud Math Found 3:337–359. https://doi.org/10.1007/
s40509-016-0081-y

Zafiris E (2016b) What is the validity domain of Einstein’s equations? Distributional solutions
over singularities and topological links in geometrodynamics. Invited paper for the centennial
volume on Albert Einstein’s 1915 paper on the general theory of relativity: 100 years of
chronogeometrodynamics: the status of the Einstein’s theory of gravitation in its centennial
year. Universe 2(3):17. https://doi.org/10.3390/universe2030017

https://doi.org/10.1007/s40509-016-0081-y
https://doi.org/10.1007/s40509-016-0081-y
https://doi.org/10.3390/universe2030017


Chapter 3
Borromean Link in Algebraic Form
Group-Theoretic Encoding: The
Borromean Rings as Prime Connectivity
Units of All Topological Links

3.1 The “Borromean Link” Topological Type

The term “Borromean rings” originates from their display at the coat of arms of
the Borromeo family in Northern Italy. Mathematically speaking, the “Borromean
rings” (Brunn 1892; Cromwell 1998) consist of three topological circles, which
are linked together in such a way that each of the rings (topological circles) lies
completely over one of the other two, and completely under the other, as it is shown
at the picture below:

This particular type of topological linking displayed by the “Borromean rings” is
called the “Borromean link,” and is characterized by the following distinguishing
property: If any one of the rings is removed from the “Borromean link” the
remaining two come completely apart. It is important to emphasize that the rings
should be thought of as topological circles and not as perfectly circular geometric
circles (Brunn 1892; Cromwell 1998; Debrunner 1961; Hatcher 2002; Kawauchi
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1996; Lindström and Zetterström 1991; Milnor 1954). The adjective topological
means that they can be deformed continuously under the constraint that the
particular type of linkage forming the Borromean configuration is preserved. Thus,
a convenient way to imagine them is in terms of deformable elastic closed strings,
which for ease of visualization can be considered as embedded in ordinary three-
dimensional space.

3.2 The “Borromean Link” in Terms of Loops

The notion of a deformable elastic closed string, which we use to model each of
the three rings forming the “Borromean-link,” is abstracted in topological terms by
means of the concept of a tame closed curve or loop. Thus, topologically speaking
the “Borromean-link” is considered as an interlocking family of three loops, such
that if any one of them is cut, then the remaining two become completely unlinked.
The modeling of the “Borromean-link” in terms of loops is important because it
provides the possibility for an appropriate algebraic expression of the topological
gluing conditions, which express the particular manifestation of the Borromean
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configuration. In this way, our objective is an algebraic encoding of the nature of
interlocking of three loops constituting the “Borromean-link.”

First, it is instructive to specify precisely the meaning of the notion of a tame
closed curve or loop. The property of tameness means that the closed curves con-
sidered can be deformed continuously and without self-intersections into polygonal
curves, viz. these ones formed by a finite collection of straight-line segments. Given
this qualification, a loop is characterized by the following properties:

1. No point separates a loop, viz. no single scissors-cut can separate a loop into two
pieces.

2. Each set of two points does separate a loop, viz. two scissors-cuts separates a
loop into two pieces.

3. A loop is an one-dimensional object.
4. A loop is bounded, viz. it is contained in some sphere of sufficiently large radius.

We stress the fact that all four of the above listed properties are essential for the
characterization of the notion of a loop, thought of as a figure in three-dimensional
space. Moreover, a loop is called knotted if it cannot be continuously deformed into
a circle in three-dimensional space without self-intersection. Therefore, each one
of the three interlocking rings of the “Borromean link” should be considered as an
unknotted tame closed curve. We refer to them simply as loops keeping in mind that
each one of them is unknotted. In terms of loops, the “Borromean link” is depicted
as the configuration displayed on the left below, which is to be contrasted with a
different type of configuration consisting of three interconnected loops displayed on
the right.

The “Borromean link” configuration of loops on the left is such that if any of
the loops is cut at a point and removed, then the remaining two loops become
completely unlinked. In contradistinction, the configuration on the right is such that
each loop actually links each of the other two.



44 3 Borromean Link in Algebraic Form Group-Theoretic Encoding: The Borromean. . .

Up to now, the notion of a topological link has been used quite informally, so
it is necessary to specify it in more precise terms, based on the underlying idea of
connectivity among a collection of loops. Hence, we begin by defining an N-link as
a collection of N loops in three-dimensional space, where N is a natural number.
Regarding the connectivity of a collection of N loops, the crucial property is the
property of splittability of the corresponding N-link. We say that an N-link is
splittable if it can be deformed continuously in three-dimensional space, such that
part of the link lies within B and the rest of the link lies within C, where B, C denote
mutually exclusive solid spheres (balls) in three-dimensional space.

Intuitively, the property of splittability of an N-link means that the link can come
at least partly apart without cutting. Complete splittability means that the link can
come completely apart without cutting. On the other side, non-splittability means
that not even one of the involved loops, or any pair of them, or any combination of
them, can be separated from the rest without cutting. As an illustration, we consider
the following 3-link:

The above 3-link consists of three loops, denoted by C, D, and E. Clearly,
this is a splittable 3-link, which is not completely splittable. As it can be easily
seen in the above figure, the loops D and E cannot be split apart without cutting.
Notwithstanding this fact, it is a splittable 3-link because the loopC can be separated
from the rest without cutting. Thus, the above 3-link can come at least partly apart,
and therefore is splittable.

The property of splittability of a topological link as defined previously, is
adequate to characterize completely the particular type of the “Borromean link.”
First, the “Borromean link” is a 3-link, since it is consists of three loops. Second,
the connectivity of this 3-link in terms of the splittability property is formulated
as follows: The “Borromean link” is a non-splittable 3-link, such that every 2-
sublink of this 3-link is completely splittable. It is clear that it is a non-splittable
3-link because not even one of the three loops, or any pair of them, can be separated
from the rest without cutting. A 2-sublink is simply any sub-collection of two loops
obtained by erasing the loop that does not belong to this sub-collection. Since the
“Borromean link” is characterized by the property that if we erase any one of
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the three interlocking loops, then the remaining two loops become unlinked, it is
obvious that every 2-sublink of the initial 3-link is completely splittable, according
to the figure below:

3.3 The Group Structure of Based Oriented Loops
in 3-d Space

In the previous section we characterized the “Borromean link” in terms of a
topological property, namely the splittability or not of a 3-link and its 2-sublinks,
which describes completely the connectivity type of the Borromean configuration.
In this section, we shift our perspective and seek for an algebraic structure that will
be able to encode the above topological information. For this purpose we proceed
as follows: First, we consider an unknotted tame closed curve in three-dimensional
space. Since any such curve can be continuously deformed to a circle it is enough to
think of a circle in three-dimensional space, denoted by A. Second, we consider a
based oriented loop in three-dimensional space, which may pass through this circle
a finite number of times, each one with a prescribed orientation. A based loop means
simply that it starts and ends at a fixed point p of the three-dimensional space. The
orientation of the loop can be thought of in terms of an observer, which is fixed at
the point p, such that: If the loop passes through the circle one time with direction
away from the observer, it is denoted by α+1, whereas if it passes one time with
direction toward the observer, it is denoted by α−1.

Note that in the symbols of the generic algebraic form “χ” it is encoded the
following information: First, the passage or not of a based loop through a circle
A, which qualifies or not the naming of the loop by the corresponding symbol α.
Second, the number of times that this based loop passes through the circle A, which
is encoded as a power of the symbol α. Third, the orientation of the loop with respect
to the fixed observer at the base point of the loop, which is encoded by a “+” sign if
a passage through the circle takes place away from the observer and by a “−” sign
if a passage takes place toward the observer.
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We may illustrate schematically the above as follows:

In the first figure from the left, it is depicted a loop in 3-d space, which is based
at the point p, such that: It starts at the point p, then it passes through the circle A

once directed away from the fixed observer at p, then it curves around the circle A,
and finally it returns to the point p. According to the above, this loop in relation to
the circle A should be denoted by α+1, which we write simply as α.

An important observation is that any other loop with the same properties can
be continuously deformed to the loop α. Thus, the algebraic symbol “α” should
actually stand for the equivalence class [α] of all loops of the kind α, passing
through the circle A once with the prescribed orientation. Any loop in the class
[α] can be continuously deformed to an equivalent one in the same class. Under this
understanding, we may still keep using the symbol α as above, where α is thought
of as a representative of the whole equivalence class [α].

In the middle figure, it is depicted a loop in 3-d space, which is based at the point
p, such that: It starts at the point p, then it passes through the circle A twice directed
away from the fixed observer at p, then it curves around the circle A, and finally it
returns to the point p. According to the above, this loop in relation to the circle A

should be denoted by α+2 = α ◦ α, which we write simply as α2.
In the last figure from the left, it is depicted a loop in 3-d space, which is based

at the point p, such that: It starts at the point p, then it curves around the circle A,
then it passes through the circle A once directed toward the fixed observer at p, and
finally it returns to the point p. According to the above, this loop in relation to the
circle A should be denoted by α−1 = 1/α.

Taking for granted the algebraic encoding of based oriented loops in relation to
circles in 3-d space, according to the above, we may proceed by thinking of an
appropriate algebraic structure having the capacity to express symbolically these
relations. The first step in this direction is to consider the possibility of composition
of based oriented loops of the type “χ” in relation to circles of the type “X” in
3-d space. Clearly, the possibility of defining the composition of two loops of the
above form is viable if both of the loops are based on the same point p. Then, the
composed based oriented loop should be also a loop of the same form in relation to
the two circles of the composing ones. We may illustrate the proposed composition
rule schematically as follows:
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In the above figure, we consider two based oriented loops, which are both based
at the same point p, where as usual we imagine an observer fixed at this point.
Taking into account the orientations, we denote the first loop by α (in relation to
the circle A) and the second loop by β (in relation to the circle B). Then, we can
define their composition denoted by α ◦ β respecting the order of tracing the loops,
viz. we first trace α, and then we trace β. Thus, the rule of composition produces
a based oriented loop α ◦ β in 3-d space in relation to the circles A and B, which
is interpreted as follows: It starts at the point p, then it passes through the circle A

once directed away from the fixed observer at p, then it passes through the circle B

once directed away from the fixed observer at p, and finally it returns to the point
p. We note that it is allowed to remove the end of α and the beginning of β from the
base point p, and then join them together at a nearby point as it is illustrated in the
above figure. We think of the composition rule α ◦ β as the product of the oriented
loops α and β based at the same point in 3-d space, which we may denote simply
as αβ.

Now, using this product operation we wish to define a suitable algebraic structure,
where this product would play the role of multiplication of the elements of this
algebraic structure. A significant observation is that the sought algebraic structure
cannot be a commutative one, since the multiplication operation of the elements
is not a commutative operation, viz. αβ �= βα. This is clear by the fact that the
rule of composition of based oriented loops at a point is order dependent, such that
α ◦β �= β ◦α. This means that the based oriented loop α ◦β cannot be continuously
deformed to the based oriented loop β ◦ α. In other words, the order dependence
of the composition rule makes the corresponding multiplication operation a non-
commutative operation. Besides, it is immediate to show that multiplication is an
associative operation, viz. that (α ◦ β) ◦ γ = α ◦ (β ◦ γ ), so that we may skip
parentheses altogether in multiple compositions of based oriented loops.

Having established the closure of the elements of the generic type “χ” under
non-commutative associative multiplication as previously, we look for the existence
of an identity element, as well as for the existence of inverses with respect to this
operation. There is an obvious candidate for each based oriented loop α, namely
the loop α−1, whose encoding meaning in terms of orientation has been already
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explained. If we consider the compositions α ◦ α−1 and α−1 ◦ α, we obtain in both
cases as a multiplication product the based loop at the same point, which does not
pass through any circle at all. Thus, we name the latter loop as the multiplicative
identity 1 in our algebraic structure, such that αα−1 = α−1α = 1. It is also easy
to verify that 1α = α1 = α. Notice that the equality sign is interpreted as an
equivalence of based oriented loops under continuous deformation, according to
our previous remarks referring to the meaning of the equivalence class [α].

We conclude that the set of symbols of the generic type “χ” representing
based oriented loops in relation to topological circles X, endowed with the non-
commutative multiplication operation of composition product of loops based at the
same point, form the algebraic structure of a non-commutative group, denoted by
�. This group structure will be our means to encode algebraically the connectivity
of the “Borromean link” in the sequel.

3.4 The Algebraic Encoding of the “Borromean Link”

We have already explained previously that the equality in the non-commutative
multiplicative group � encodes the topological relation of equivalence of based ori-
ented loops under continuous deformation. In other words, using the multiplication
operation we may form any permissible string of symbols in the group �, which
can be shortened into an irreducible form by using the group-theoretic relations
αα−1 = α−1α = 1, 1α = α1 = α, αα = α2, and so on. Thus, two arbitrary
strings of symbols in the group � are equal if they can be brought into the same
irreducible form in �. Concomitantly, this means that the corresponding composed
based oriented loops, or simply product loops, are equivalent under continuous
deformation.

The property of irreducibility of a string of symbols in the group �, or
equivalently of a product loop in �, is the guiding idea for the algebraic encoding of
the “Borromean link” in terms of the structure of �. First, it is instructive to remind
that a product loop in � is always considered with respect to the corresponding
circles it passes through with a prescribed orientation. For example, as we have seen
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the product loop αβ is considered in relation to the circles A and B in this specific
order. Moreover, it is clear that both the based oriented loops of the form α and α−1

and any power of them in the group � with a prescribed orientation, are considered
with respect to a circle of the form A. Thus, any multiplicative concatenation of
symbols in the group �, when translated in product loop terms is thought of in
relation to corresponding circles. These form the collection of all circles that a
product loop is associated with.

Having clarified this fact, we proceed by trying to understand what kind of
topological information the property of irreducibility of a string of symbols in the
group � translates in algebraic terms. The crucial idea is that algebraic irreducibility
encodes the topological property of non-splittability of a link. In order to motivate
this idea, we remind that a link has been defined as a collection of loops, whence the
topological connectivity of a link has been captured by the property of splittability.
In particular, the “Borromean link” is a non-splittable 3-link, such that every 2-
sublink formed by erasing one of the three loops of this 3-link is completely
splittable.

Because of the fact that all three loops of the Borromean configuration are
unknotted tame closed curves, we can equivalently think of this configuration in
terms of a product loop in the group �, which is associated with two circles A

and B in a precise way characteristic of the “Borromean link.” The first hint comes
from the realization that the cutting and removal of this hypothetical product loop
would leave the two circles alone. This phenomenon corresponds to the complete
splittability of the 2-sublink obtained by erasing this loop. In algebraic terms, this
situation depicted by the above figure on the right is described by the identity
element 1 of the group �. Thus, complete splittability of this 2-sublink is encoded
by the identity 1 of �. For symmetry reasons, we expect that the same phenomenon
will take place if we erase any of the circles A or B, since the identity element of
� is unique. Nevertheless, in order to prove it algebraically we need the explicit
formula describing the product loop in the terms of elements of �.

The second hint comes from the realization that, since the product loop should
be expressed in relation to the circles A and B, it would certainly involve at least
a string of symbols consisting of α, β and their group inverses α−1, β−1 in some
specific order, which does not involve any consecutive appearance of αα−1, α−1α,
ββ−1, β−1β, because all of them are reduced to the identity 1. The reason for the
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appearance of both α, β, and their group inverses α−1, β−1, lies on our expectation
that removal of any of the circles A or B would collapse the product loop to the
identity 1. This is the desired case referring to the “Borromean link” because every
2-sublink is completely splittable. It is obvious that if the circle A is erased, for
instance, then in the sought-after product loop formula both instances of α and α−1

should be deleted, since both α and α−1 have a meaning with respect to A. The
same holds symmetrically for β and β−1 in relation to the circle B.

The last ingredient before arriving at the product loop formula in terms of the
group-theoretic structure � is the requirement of irreducibility. This is quite clear
from the preceding discussion already. Since the fact that every 2-sublink of the
“Borromean link” is completely splittable is encoded algebraically by reducibility
to the identity of �, the natural requirement is that the non-splittability of the total
3-link should be encoded by the irreducibility of the product loop formula.

Taking into account all the above considerations and assuming the order from left
to right, we conclude that there exists only one combination of symbols that fulfills
our requirements, namely:

γ = αβ−1α−1β.

Thus, the irreducible formula αβ−1α−1β represents the loop γ as a product
loop composed by the ordered composition of the four based oriented loops
α ◦β−1 ◦α−1 ◦β. We call the product loop γ the “Borromean loop” and the formula
or multiplicative string αβ−1α−1β the “Borromean loop formula.” The algebraic
irreducibility of αβ−1α−1β in the group � encodes the non-splittability of the 3-
link in the “Borromean rings” configuration. We notice that deletion of both α and
α−1 (corresponding to removal of the circle A) reduces the formula to the identity 1
(and the same happens symmetrically for both β and β−1 in relation to the circle B).
Thus, every 2-sublink of the Borromean 3-link is completely splittable. We represent
schematically the above as follows:

In the above figure, we imagine that we pull continuously apart the two
upper rings of the “Borromean link” displayed on the left. Then, we obtain the
configuration on the right, which is interpreted in group-theoretic terms as a product
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loop, viz. the irreducible “Borromean loop” associated with these two circles.
Hence, we have a geometric representation of the “Borromean loop formula.” The
algebraic irreducibility of this formula αβ−1α−1β in the group � encodes the non-
splittability of the 3-link in the Borromean configuration. Clearly, if we cut the
“Borromean loop,” or remove any of the circles A or B, we obtain a completely
splittable 2-sublink.

In geometric terms, the “Borromean loop formula” reads as follows: First, it
passes away from the fixed observer at p through A (represented by α). Second it
passes toward the observer at p through B (represented by β−1). Third it passes
again toward the observer through A (represented by α−1). Fourth, it passes away
from the observer through B (represented by β).

Thus, the topological information of the “Borromean link” has been completely
encoded in terms of the algebraic structure of the non-commutative multiplicative
group �. In this way, we have obtained a bi-directional bridge between the
topological connectivity model of the “Borromean rings” expressed in terms of links
and the algebraic algorithmic information model expressed in terms of the structure
of the group �. This is of fundamental significance because it allows the translation
of a hard topological problem into algebraic terms, viz. the encoding of the problem
in group-theoretic terms, where it can be solved quite easily, and then inversely, the
decoding of this solution into topological terms, which provides the solution of the
initially posed topological problem. An illustration of this powerful method, which
generalizes the case of the “Borromean rings” to higher non-splittable links whose
all sublinks are completely splittable, in analogy to the Borromean case, will be
presented in the sequel.

3.5 The “Borromean Link” as a Building Block
for Generalized Topological Links

It is instructive to clarify that the algebraic structure of the group � is not only
restricted to the typical Borromean configuration, explained in the previous section,
but it can encode the topological information of higher links since we are free
to construct product loops composed of any number of factors according to the
composition rule we have defined. This presents the challenge of using the group
� in order to solve the harder topological problem of identifying a non-splittable 4-
link whose all 3-sublinks are completely splittable. Clearly, this problem constitutes
the immediate higher generalization of the “Borromean link,” which involves a non-
splittable 3-link whose all 2-sublinks are completely splittable. The main interest in
such a generalization lies in the intuition that the “Borromean link” acts as a kind of
a building block for the substantiation of higher order links of this type.

The method we will follow in order to attack this topological problem is the use
of the bi-directional bridge between topology and algebra we have established in this
context. Namely, we will translate the problem in terms of the algebraic structure
of the group �, we will try to solve it in group-theoretic terms, and then decode



52 3 Borromean Link in Algebraic Form Group-Theoretic Encoding: The Borromean. . .

the solution back into topological terms. Intuitively, the notion of a link involves
the gluing conditions among its constituents. It is precisely these gluing conditions
that are expressed algebraically in terms of the group �, as the fundamental case
of the “Borromean link” has revealed by means of the “Borromean loop formula”
γ = αβ−1α−1β in relation to the circles A and B.

The starting point is the analogous one to the standard “Borromean link” case.
Namely, since all 3-sublinks of the sought-after non-splittable 4-link are completely
splittable we will consider three circles A, B, C and look for a product loop
composed of the products of α, β, γ and their group inverses α−1, β−1, γ−1, in
some specific order, which does not involve any consecutive appearance of αα−1,
α−1α, ββ−1, β−1β, γ γ−1, γ−1γ , because all of them are reduced to the identity
1. The crucial point again is that the product loop formula should reduce to 1 in
the group � in case of removal of any of the circles A, B, or C, which is encoded
algebraically by the deletion of all instances of both α, α−1, or β, β−1, or γ , γ−1,
depending on erasingA, orB or C, respectively. This is again the algebraic encoding
of the fact that every 3-sublink of the total non-splittable 4-link should be completely
splittable. Clearly, the non-splittability of the 4-link is again encoded by means of
irreducibility of the product formula describing this 4-link.

Algebraically, this problem can be solved quite easily. The most elegant solution,
which also trivializes the algebraic encoding of even higher links of this type, is to
use the “Borromean link,” viz. the algebraic “Borromean loop formula” αβ−1α−1β

in the group � as a building block and iterate it self-referentially. For our purposes,
we will explain how this works for the case at issue. First, by inspecting the
“Borromean loop formula” αβ−1α−1β we realize that it can be written as the
commutator in the group �, that is defined as follows:

[α, β−1] = αβ−1α−1β.

This means that the commutator [α, β−1] of the elements α and β−1 in the group
� producing the “Borromean loop formula” encodes algebraically both the gluing
condition of the non-splittable 3-link and of the completely splittability of all 2-
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sublinks, according to the preceding analysis. We may also re-define the element
β−1 as b, viz. β−1 := b in the group � in order to obtain the commutator:

[α, b] = αbα−1b−1

in the group � equivalently. Thus, the idea of using the “Borromean link” as a
building block for analogous links of a higher type means employing the group
commutator iteratively as an encoding device for these higher links of the same
type. Therefore, in the case of a total non-splittable 4-link all 3-sublinks of which
are completely splittable that involves the gluing of the three circles A, B, and C of
the above figure by a “higher Borromean loop” we proceed as follows:

First, we glue the circles A and B by the standard “Borromean loop” and then we
glue analogically this product with C. Algebraically speaking, the first step is simply
the commutator ξ = [α, b] = αbα−1b−1. The first iteration of this procedure, which
involves the gluing of the product ξ with γ (in relation to the circle C), reads simply
as the commutator of ξ with γ . We conclude that a “higher Borromean loop” that
solves the problem is given in the structural terms of the group � simply as follows:

δ = [ξ, γ ] = [[α, b], γ ].

If we expand this formula, by using the definition of the group commutator as well
as the group theoretic relation

(χψ)−1 = ψ−1χ−1,

where χ , ψ may stand for arbitrary strings of elements of the group �, we obtain
the following unfolded expression for the “higher Borromean loop formula”:

δ = [ξ, γ ] = [[α, b], γ ] = {αbα−1b−1}γ {bαb−1α−1}γ−1.

From the above expanded “higher Borromean loop formula” it also becomes
clear how the Borromean link becomes a building block via terms of the form
λμλ−1μ−1 = [λ,μ] for expressing higher order links of the Borromean type. We
can also see that deletion of all incidences of any of the symbols (which involves
the simultaneous deletion of the inverse symbol as well, according to the preceding)
reduces the formula to the identity 1 in the group �.

As a final step, we decode back the obtained algebraic solution in topological
terms by using the inverse bridge, and the obtained topological solution of the
problem of finding a non-splittable 4-link whose all 3-sublinks are completely
splittable by means of “Borromean building blocks” is illustrated as follows:
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We conclude by noticing that although the topological solution of the problem
is quite hard to obtain in a straightforward manner, as it is evidenced by the above
figure, the same problem can be solved quite easily by using the algebraic structure
of the group �, and in particular, the notion of the group commutator and its
iterations. It is a remarkable fact that the “Borromean link” is encoded in terms of
the commutator of �. In this way, the “Borromean link” can be efficiently used as
a building block for the encoding of higher-order links of the type described above,
by iterating the formation of commutators for product loops.

3.6 Borromean Extension in Depth: The Self-Referential
Unfolding of Commutators and “Borromean Stacks”

In the previous section we proposed the idea of using the “Borromean link” as a
building block for analogous links of a higher type by making higher order iterations
of the group � commutator. We have explained already how this method works
in the case of a total non-splittable 4-link all 3-sublinks of which are completely
splittable. The crucial insight is that the group commutator acts as an encoding
device for these higher links of the same type in two ways: First, the commutator
provides the gluing scheme of link-formation by means of “Borromean loops.”
Second, due to the fact that deletion of all incidences of any of the involved symbols
reduces the commutator to the identity 1 in the group �, the commutator also
encodes the information of complete splittability of any remaining sublink after
removing any of the constituents of the total non-splittable link.
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In order to proceed more efficiently, we need to systematize our terminology as
follows: The notion of the commutator of the simple oriented based loops a, b, that
is [a, b], is used as synonymous to the algebraic “Borromean loop formula” in the
group � and it is decoded in topological terms as the concept of a “Borromean link.”
We denote the latter by �(3, 2) meaning that it is a total non-splittable 3-link all 2-
sublinks of which are completely splittable. In this way, the symbol �(4, 3) denotes
a total non-splittable 4-link all 3-sublinks of which are completely splittable. By
induction, the symbol �(N,N −1), where N ≥ 3, denotes a total non-splittable N-
link all (N − 1)-sublinks of which are completely splittable. We have shown that a
�(4, 3) link can be constructed in terms of “Borromean link building blocks” simply
by iterating once the commutator formation. This means that starting with three
symbols a, b, c, we first glue a with b together by means of the commutator [a, b],
and then we glue their glued product [a, b] with c to obtain the stacked commutator
[[a, b], c]. This final glued product gives the required fourth symbol in the group
�2, which decodes topologically as a �(4, 3) link. In an analogous manner, by
iterating twice the commutator formation starting with four symbols a, b, c, d , we
obtain a �(5, 4) link. The same process can be clearly repeated inductively, so that
we finally can construct any �(N,N − 1) link by means of Borromean building
blocks, or more precisely, Borromean connectivity units, where N ≥ 3. We may
summarize this process in the following table:

We note that the process of iterating the commutator formation in the group �,
so as to obtain any link of the form �(N,N − 1), can be realized as an algorithmic
procedure of commutator stacking in consecutive nested levels. Semantically,
this procedure may be thought of as an operation of self-referential unfolding.
The reason is that if we start iterating the commutator formation from level-0
(“Borromean link” �(3, 2)) which involves simple loops, then already at level-1
(link �(4, 3)), the symbol [a, b] in the composite stacked commutator [[a, b], c]
plays a dual role: First, it is the symbol of a loop, namely the product “Borromean
loop” of a and b, and second, it is the symbol of a gluing operator acting on a

and b. Thus, the unfolding from level-0 to level-1 takes place self-referentially by
identifying a loop as an argument of the stacked commutator at level-1 with the
result of a gluing operator at the previous level-0. Clearly, the same phenomenon
repeats at all higher levels.

It is instructive to explain in more detail the algebraic operation of commutator
stacking. Recall that a commutator of two symbols a and b produces a new symbol
[a, b] in the group �, where [a, b] denotes the gluing of a and b together to produce
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a new symbol, such that the triad of symbols a, b, and [a, b] constitute a “Borromean
link” of the type�(3, 2). Thus, a �(3, 2) link involves a commutator in two symbols
standing for the gluing operator of these two symbols according to the Borromean
constraint. Similarly, a �(4, 3) link involves a stacked commutator in three symbols.
The commutator is stacked because first we have to glue a with b, and then we have
to glue their product [a, b] with c in order to produce a new symbol [[a, b], c], such
that the tetrad of symbols a, b, c, and [[a, b], c] constitute a �(4, 3) link.

We stress again that deletion of any of the involved symbols in the stacked
commutator collapses it to the unity of the group �, meaning that erasing any one of
them causes the rest to come apart. Thus, by induction a �(N,N−1) link involves a
stacked commutator in (N−1) symbols, where N ≥ 3. For convenience, we call it a
stacked commutator of order (N−1). Note that the order of the stacked commutator
in any link of the form �(N,N − 1) coincides with the number of symbols that
separate if we remove any symbol from the total non-splittableN-link. For example,
a �(7, 6) link is expressed via a stacked commutator of order 6, meaning that it
should be a commutator in six symbols of the form [[[[[a, b], c], d], e], f ]. For
reasons of simplicity, we define a stacked commutator of order (N − 1) as a
“Borromean stack” of order (N − 1).

3.7 Borromean Extension in Length: The Formation
of “Borromean Chains”

First, we introduce another definition to the series of the previous ones for
terminological convenience. This refers to the characterization of a link of the
general form �(N,K). A link of the form �(N,K) is defined as a link of N

loops in 3-d space, such that each K-sublink is completely splittable, but each
(K + 1)-sublink, (K + 2)-sublink, . . . , (N − 1)-sublink up to the N-link itself is
non-splittable. For example, a �(7, 3) link is a link of seven loops, such that each
3-sublink is completely splittable, but each 4-sublink, 5-sublink, 6-sublink, and the
7-link itself is non-splittable. The natural question emerging in this context is if
it is possible to express a general link �(N,K) in terms of “Borromean building
blocks,” or equivalently “Borromean functional units” encoded algebraically by the
gluing operator of symbols, viz. by the commutator in the group �. We already
know the answer in case that K = (N − 1). Namely, we have shown that the
algebraic operation of commutator stacking of order (N − 1) is enough to express
any �(N,N − 1) link. In other words, an arbitrary �(N,N − 1) link is simply a
“Borromean stack” of order (N − 1). So we need to consider what happens in the
general case, where K �= (N − 1).

We will show in the sequel that there exists another natural operation on
“Borromean building blocks,” which is described by taking an appropriate product
of commutators in the group �. Intuitively speaking, this natural operation should
express a procedure of Borromean extension in length, or simply the formation of
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a “Borromean chain” of some appropriate length. In order to motivate the notion of
a “Borromean chain” it is necessary to start with the simplest example of this type,
namely the �(4, 2) link. This is a link of four loops, such that each 2-sublink is
completely splittable, but each 3-sublink and the 4-link itself is non-splittable. From
this definition, we immediately deduce that if we remove any loop from a �(4, 2)
link we obtain a 3-sublink which is non-splittable. Moreover, since each 2-sublink
is completely splittable, we deduce that if we remove any loop from a �(4, 2)
link we actually obtain a �(3, 2) link, viz. a “Borromean link.” Furthermore, if we
remove any two loops from a �(4, 2) link the remaining two fall completely apart
because again each 2-sublink of a �(4, 2) link is completely splittable. Therefore,
by encoding this information in the group �, we attack the problem as follows:
Consider three symbols a, b, and c. We seek a formula expressing the fourth symbol,
such that deletion of all incidences of any of the symbols a or b or c causes the
formula to reduce to the “Borromean loop formula” (that is the commutator of the
remaining two symbols), whereas deletion of all incidences of any two of the three
symbols, viz. (a, b), or (a, c), or (b, c) causes the formula to reduce to the unity 1.

It is instructive to emphasize that the algebraic encoding of the problem referring
to a �(4, 2) link paves the way to its solution. The problem is if it is possible to
express a �(4, 2) link in terms of “Borromean building blocks,” viz. in terms of
suitable operations on commutators in the group �. By the defining properties of a
�(4, 2) link, if a formula in three symbols a, b, c actually existed fulfilling the two
requirements of the previous paragraph, and also expressed exclusively in terms of
commutators built from these three symbols, then it would be true that the �(4, 2)
link can be constructed in terms of “Borromean building blocks.” Now, considering
the symbols a, b, and c, we may construct the “Borromean stack” of order 3, viz. the
stacked commutator formula [[a, b], c]. Clearly, although this expresses a �(4, 3)
link as we have seen in the previous section, it is not an appropriate formula to
express a �(4, 2) link because deletion of any of the three symbols causes the
formula to reduce to 1. What we need is another operation, which hopefully can
involve only commutators and have the desired properties. A simple observation is
that given three symbols a, b, and c, we may construct out of them three distinct
commutators, namely [a, b], [a, c], and [b, c]. Since each of these commutators
gives a new symbol in the group �, we may take their product which is also a new
symbol in the group �.

Notice that each of the commutators [a, b], [a, c], [b, c] gives separately a
“Borromean link.” Thus, their product [a, b][a, c][b, c] is actually a composition
of three separate “Borromean links” in the group �:

ρ = [a, b] ◦ [a, c] ◦ [b, c],

which gives rise to a “Borromean chain” of length 3. The formation of this
“Borromean chain” ρ provides the sought-after operation on “Borromean building
blocks” to express a �(4, 2) link, and therefore solve the posed problem. We can
immediately see this as follows: First, we notice that deletion of any one of the
symbols a, b, c, in the “Borromean chain” ρ of length 3, [a, b] ◦ [a, c] ◦ [b, c],
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reduces this chain to a “Borromean link.” For instance, if we delete the symbol
a, what remains is the “Borromean link” [b, c], and analogously for the other two
cases. Second, we notice that deletion of any two of the symbols a, b, c, reduces
this chain to unity. Hence, we conclude that the “Borromean chain” of length 3,
defined by the product of commutators [a, b][a, c][b, c] , provides the formula for
the fourth symbol ρ in the group �, such that the defining properties of a �(4, 2)
link are satisfied, and moreover, this link is expressed in terms of “Borromean
building blocks.” An interesting observation that we will use in the sequel is that
the length of the “Borromean chain” solving the problem is given by the number
of combinations of two symbols out of three, where a combination is simply the
formation of the commutator of two symbols in this case.

3.8 The Fundamental Theorem: The “Borromean Link” as
the Prime Connectivity Unit in the Universe of All Links

Regarding the possibility of expressing arbitrary links in 3-d space of the general
form �(N,K) in terms of “Borromean building blocks,” or equivalently “Bor-
romean connectivity units” we have proved up to present the following: First,
the algebraic operation of commutator stacking of order (N − 1) is enough to
express any �(N,N − 1) link. In other words, an arbitrary �(N,N − 1) link
is simply a “Borromean stack” of order (N − 1). For instance, a �(4, 3) link is
simply a “Borromean stack” of order 3. Second, we have shown that the expression
of a �(4, 2) link requires the consideration of another operation on “Borromean
building blocks,” which is interpreted as the operation of extension of length 3,
called the formation of a “Borromean chain” of length 3. Based on these findings,
the next question posing itself naturally in this context is if these two operations on
“Borromean building blocks,” namely the formation of “Borromean stacks” of some
suitable order and the formation of “Borromean chains” of some suitable length are
adequate in order to express any arbitrary link in 3-d space of the general form
�(N,K).

This would be certainly of significance in our understanding of the whole
universe of links, because it would prove that any �(N,K) link can be constructed
by means of “Borromean connectivity units” via the combinatorial formation of
“Borromean stacks” and “Borromean chains.” Moreover, due to the algebraic
modelling scheme instantiated structurally by the non-commutative group �, the
process of analysis and synthesis of arbitrary links in terms of prime elements, viz. in
terms of “Borromean connectivity units” would be implementable algorithmically,
and thus used as a valuable tool for making evaluations and predictions.

Before we consider the general case of a �(N,K) link, it is instructive for our
intuition to examine the case of a �(5, 3) link. The reason is that a �(5, 3) link has
enough complexity so as to pave the way for the treatment of the general case of a
�(N,K) link. From the definition of a �(5, 3) link, the crucial observation is that
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if we remove any of the loops what remains is a �(4, 3) link, which we already
know that is expressed by means of a “Borromean stack” of order 3, viz. by the
stacked commutator formula [[a, b], c] in three symbols. Thus, in order to express
the formula of a �(5, 3) link, if we consider four symbols a, b, c, d , we require a
formula such that deletion of any of them causes the formula to reduce to the one of
a �(4, 3) link, viz. to a “Borromean stack” of order 3.

The important concept solving this problem is based on the observation that we
can form “Borromean chains” of arbitrary length using “Borromean stacks.” In the
particular case of a �(5, 3) link considered, since we require that deletion of any of
the four involved symbols a, b, c, d , reduces the formula to a “Borromean stack” of
order 3, we just need to form a “Borromean chain” of “Borromean stacks” of order
3, where the length of the chain should be 4. This is explained easily by the fact
that the length of the “Borromean chain” is given by the number of combinations of
three symbols (which is the number of symbols involved in a “Borromean stack” of
order 3) out of four symbols a, b, c, d . We immediately conclude that the sought-
after formula expressing a �(5, 3) link is given by the “Borromean chain” of length
4, composed by “Borromean stacks” of order 3, and described explicitly by the
following formula:

χ = [[a, b], c] ◦ [[a, b], d] ◦ [[a, c], d] ◦ [[b, c], d].

In more detail, we see that the above formula is given by the composition of four
“Borromean stacks” of order 3 (since they involve three symbols each), and thus
produces a “Borromean chain” of length 4, such that deletion of any of the four
involved symbols a, b, c, d reduces this chain to a “Borromean stack” of order 3 as
required. Thus, we have completely resolved the problem of a �(5, 3) link in terms
of prime “Borromean connectivity units.”

Now, having understood in detail the case of a �(5, 3) link, we are ready to state
the central theorem of this treatise:

Fundamental Theorem An arbitrarily complex link of the general form�(N,K),
where 1 ≤ K ≤ N , can be constructed solely in terms of “Borromean building
blocks,” by means of forming Borromean stacks and Borromean chains out of
Borromean stacks of appropriate order and length, respectively.

Proof We consider an arbitrarily complex link of the general form �(N,K), where
1 ≤ K ≤ N , and prove that it can be constructed solely in terms of “Borromean
building blocks” within the group �. For any K , we already know that the link
�(K + 1,K) is expressed by means of a “Borromean stack” of order K . Next,
we consider (K + 1) symbols in �, and we wish to construct a �(K + 2,K)

link. The crucial observation is that if we remove any topological circle from a
�(K + 2,K) link, what remains is a �(K + 1,K) link. Thus, we treat this case in
complete analogy to the case of a �(5, 3) link, discussed previously. More precisely,
we form a “Borromean chain” out of “Borromean stacks” of order K , where the
length of this chain is given by the number of combinations of K symbols out of
(K + 1) symbols. The formula expressing this “Borromean chain” provides the
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sought-after (K + 2) symbol. Now, we consider (K + 2) symbols, and we wish
to construct a �(K + 3,K) link. We just have to form a “Borromean chain” out
of “Borromean stacks” of order K , where the length of this chain is given by
the number of combinations of K symbols out of (K + 2) symbols. The formula
expressing this new “Borromean chain” provides the sought-after (K + 3) symbol
in �. We continue the same process of formation of new “Borromean chains” of
appropriate combinatorial length composed by “Borromean stacks” of order K ,
stage by stage, until we reach N . This completes the proof of the theorem that an
arbitrarily complex link of the general form �(N,K) can be constructed solely in
terms of “Borromean building blocks,” or equivalently, “Borromean connectivity
units.”

We may consider as an application of this theorem the case of a �(7, 4) link.
The link �(5, 4) is expressed by means of a “Borromean stack” of order 4. Next,
we consider five symbols, and we wish to construct a �(6, 4) link. Let us call
these symbols a, b, c, d , e. Next, we form a “Borromean chain” of “Borromean
stacks” of order 4, where the length of this chain is given by the number of
combinations of four symbols out of five symbols, which is 5. Let us denote by
f the new symbol provided by this “Borromean chain” of length 5. Thus, we have
constructed a �(6, 4) link. Now, we consider these six symbols a, b, c, d , e, f ,
and we wish to construct a �(7, 4) link. We just have to form a “Borromean chain”
of “Borromean stacks” of order 4, where the length of this chain is given by the
number of combinations of four symbols out of six symbols, which is 15. The
product formula expressing this new “Borromean chain” of length 15 provides the
sought-after 7th symbol. Therefore, we have constructed a �(7, 4) link by means
of prime “Borromean connectivity units” using only the combinatorial formation of
“Borromean stacks” and “Borromean chains.”
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Chapter 4
Borromean Link in Logic
A Metaperspective on Algorithmic
Information: Logical Conjugation
Strategy and the Role of the Borromean
Topology

4.1 On the Notion of Analogical Relations and Metaphors

The notion of analogy will be considered in its broadest possible sense, namely
as a mode of reasoning or problem-solving in which a phenomenon, or a quantity,
or an object, or a class of objects, or even a category of objects, is intentionally
compared to another in order to establish similarity of relationship. Moreover, of the
two particular instances between which a resemblance (similarity of relationship) is
established, one is generally not directly comprehensible, while the other is assumed
to be better or more easily tractable. It is important to clarify that according to
the above, an analogical relation bears the semantics of a resemblance not between
instances, but between the relations of instances. Thus, an analogy is a resemblance
relation, involving (at least) two terms, each of which is itself a relation.

Hence, if assumed temporarily that the latter are binary relations between objects
(conceived set-theoretically), then, we obtain four terms constituting an analogical
relation. The four terms are being distributed in two distinct levels, two of the four on
each level. Furthermore, three of the four terms are assumed to be known or directly
measurable, or accessible, or more generally, determinable by some method, and the
purpose is to determine the fourth.

The primary examples of analogies emanate from Thales’ paradigm on the theory
of homothesis or proportionality. It is important to emphasize that the purpose of
Thales’ theory of proportions had been the measurement of not directly accessible
magnitudes. More concretely, the objective of Thales was to find the height x of
an inaccessible pyramid, given the length c of its accessible shadow, as well as the
height a and shadow length b of an accessible object, functioning as a measurement
rod. The analogical relation devised by Thales for the resolution of this problem
reads as follows:
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(a to b) is as (x to c)

Symbolically, the above analogy is depicted by the equation a
b

= x
c

, from which
the not directly accessible magnitude x can be determined indirectly as x = ac

b
.

Note that the four terms of this proportion between magnitudes are arranged into
two distinct levels according to some qualifying characteristic. More concretely, in
Thales’ theory a and x occupy one level as vertical heights, whereas b and c occupy
the other level as horizontal shadows.

It is important to remind the fact that Thales has provided a geometric solution
to the posed problem, since the algebraic solution presented above formulated by
means of an equation involving the operations of multiplication and division of pos-
itive integer magnitudes was not known in his days. Hence, it is not an exaggeration
to claim that the geometric theory of proportions contained the seeds of conception
of modern algebraic structures (closed under the action of operations on their ele-
ments), together with the notion of setting up algebraic equations for the determina-
tion of unknowns. In this mode of thinking, the geometric resolution of the Thalesian
problem, in terms of proportionality (analogy of magnitudes), implicitly anticipates
the discovery of the multiplicative monoid structure of positive integers, and subse-
quently, the multiplicative group structure of the rationals and the real numbers.

The meaning of this assertion boils down to the realization that the determination
of an unknown magnitude in the Thalesian setting, by analogical reasoning,
interpreted now algebraically, requires the introduction of the multiplicative group
structure of the rational numbers or the real numbers (standing for magnitudes) in
order to provide a solution to the associated equation expressing that analogical
relation. In a suggestive manner, we can rewrite the solution of this equation in the
following form:

x = MacMb
−1

meaning that to obtain the not directly accessible magnitude x, “multiply by a”
(denoted by Ma) the magnitude c, and then, divide by b (denoted by Mb

−1). Thus,
the determination of inaccessible magnitudes by means of analogy algebraically
necessitates the introduction of the group-theoretic closure structure on magnitudes,
equipped with the operation of multiplication and possessing an inverse, which is
division.
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By extrapolating, we may assume that the resolution of a more general problem,
based on analogical reasoning (not restricted to the situation of proportionality of
magnitudes) implicitly requires for its algebraic manipulation the following:

Firstly, the distribution of the four terms of an analogical relation into two distinct
levels, two of the four on each level, where, three of the four terms are assumed to
be directly determinable, and the purpose is to determine the fourth.

Secondly, the introduction of an appropriate closed algebraic structure with
respect to a process that connects the two distinct levels, playing a similar role
to the operation of multiplication (between magnitudes at different levels). This
multiplicative adjunctive process can be thought of as a directed bridge which
connects the upper level with the lower one, where each level is occupied by things
belonging to the same class or universe of discourse.

Thirdly, the possible determination of the inverse to the multiplicative adjunctive
process, called the division process. In many of the cases an exact inverse process
(being suggestive of the global schematism of reversibility via another level)
may not be attainable, and thus, partially or locally inverse processes should be
employed, satisfying appropriate conditions.

According to the above, in case that an exact inversion process is available
or globally constructible, facilitating an effective exact round-trip between two
delineated levels, we call the analogical relation a metaphor. This conception has
an Aristotelian origin and captures the relevant qualifying statement in Poetics
(Aristotle), according to which: “Metaphor is the substitution of the name of
something else, and this may take place from genus to species, or from species
to genus, or from species to species, or according to proportion.” Projecting this
statement back to the general environment of analogical relations, we conclude that
a general analogy between instances may be concerned with class membership or
class characterization.

Thus, an analogy, formulated as a relation among four terms distributed at two
distinguished levels, expresses a resemblance between two instances at the same
level, only within the context of totalities, or reference frames, or networks of
relations, conceived as corresponding individual instances at the other level. Note
that the unifying conceptual thread on all different manifestations of analogical
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relations is the following: Starting from a term at some level the determination of
an inaccessible term with respect to the first, at the same level, via a cyclical global
round-trip process through another level, involving three stages:

First, setting up an encoding multiplicative adjunctive bridge of correspondence
of the initial term with a reference domain, or gnomon, conceived individually at
another level. Second, processing or resolving the task at this other level. Finally,
devising a decoding bridge of correspondence, inverse to the multiplicative one,
that facilitates the return at the initial level and simultaneously resolves indirectly
the problem of direct inaccessibility.

Subject to the above observations characterizing the essence of an analogical re-
lation, resembling the algebraic transcription of the Thalesian theory of proportions
of magnitudes in a generalized conceptual setting, we may attempt to formulate an
analogy in the form of the following symbolic relation:

X = SAS−1

where the unknown X is determined by some three-stage resolution process of the
form described above, through some quite easily determinable A at another level
mediated via the opposite pointing bridges S and S−1 connecting the two levels.
In case that the bridges S and S−1 are exact inverses and A is considered to be
noise-free, we say that the analogy is effective, characterized as a metaphor. In the
general case, where the bridges S and S−1 are not exact inverses to each other, but
only conceptually inverse, they are called adjoint. This type of resolution process
making up an analogy has been proposed independently in relation to the reduction
of complexity, and as a means of modelling complex systems, in Melzak (1983) and
Rosen (1978). The above characterization of a metaphor subsumes the category-
theoretic notion of a functorial duality (Awodey 2006). In this way, an analogical
relation pertaining to different categorical levels of structure may also be considered
from the viewpoint of the theory of adjunctions, where the conceptually inverse
bridges form a pair of adjoint functors (Zafiris 2012).

From a general interpretative standpoint, the symbolic relation X = SAS−1

admits a dualistic interpretation, namely one in terms of substances and another
in terms of operations. In a general context, the operational interpretation is
preferable for our purposes, since it stresses the emphasis on the process devised
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for overcoming a direct inaccessibility. In this sense, the indirectly determinable by
analogy symbolX, followed by the sign of equality, may be interpreted as signifying
the total ordered series of the three actions needed for its effective determination
via another level, connected to its own by two inversely directed bridges. It is
also instructive to notice that the meaning of the operational interpretation can be
captured even from its dual substantive viewpoint, under the convention that the
symbolic relation of analogy can be extended in the notational form:

X(l1, l2) = S(l1)A(l1, l2)S
−1(l2)

where the symbols l1 and l2 denote some kind of base locality or base indexing
parameter.

4.2 Logical Conjugation and Its Properties

In general mathematical terms, the presentation of an effective analogical relation,
or metaphor, in the symbolic form

X = SAS−1

definesX to be conjugate to A under S, where S−1 is considered to be the conceptual
inverse of S. This is a useful observation because it associates the principle of
conjugation with the semantics of a metaphor. Let us now examine briefly the
structure of an analogical relation presented in the above form by means of logical
conjugation.

First of all, we realize that the relation X = SAS−1 consists of two basic
semantic parts: The first part is constituted by the conceptually inverse vertical
processes S and S−1, forming the outer part of the analogical relation, and signifying
a bidirectional bridge of information encoding/decoding between two different
levels. The second part is constituted by the horizontal process A, forming the inner
part of the analogy, and signifying a directed process of information transfer, or even
information storage, within the level specified by the functioning of the first vertical
directed bridge, performed previously. Note that the functionality of an analogical
relation is being crucially dependent on the interpolation of some appropriate inner
part A between the succession of the actions of the inversely pointing bridges. More
precisely, if the inner part A is absent, then the outer part simply does not have any
functionality since it cancels out. Based on this fact, we can formulate the basic
properties of logical conjugation as pertaining to effective analogical relations as
follows:

1. Logical Conjugation or Metaphor Extension in Length: This means that two
metaphors sharing the same bridges can be combined horizontally simply by
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juxtaposing one with another as follows: if X1 = SA1S
−1 and X2 = SA2S

−1,
then X1X2 = SA1A2S

−1;
2. Logical Conjugation or Metaphor Extension in Depth (Metaphor Stacking): This

means that the inner part of a metaphor can be substituted by another metaphor,
such that the initial metaphor can be accomplished via a splitting into a deeper
level of hypostasis, and so on, as follows: if X = SAS−1 and A = TBT −1, so
that, X = ST BT −1S−1, then X = [ST ]B[ST ]−1;

3. Logical Conjugation or Metaphor Inversion: This means that if a process X is
conjugate to a process A at another level under the action of a bridge S, then A

is conjugate to X under S−1, as follows: if X = SAS−1, then A = S−1XS.

Due to the properties listed above, an effective analogical relation constituted by
means of logical conjugation can be presented in the form of an equivalence relation,
namely as:

X∼SA

stating that X is conjugate to A under S. This is an equivalence relation because
it is reflexive, transitive, and symmetric: First, due to the property of metaphor
extension in length if X1∼SA1 and X2∼SA2, then X1X2∼SA1A2. Second, due to
the property of metaphor extension in depth, the transitivity condition is established
since, if X∼SA and A∼T B, then, X∼ST B. Finally, due to the property of metaphor
inversion, the symmetry condition is established since, if X∼SA, then A∼S−1X.

Now, suppose that M ⊆ K × K is the equivalence relation induced by logical
conjugation on a set of processes K . We may consider a category (K,M) in which
K is the set of objects (standing for processes), M is the set of arrows, and the
source and target maps M → K are given by the first and second projection. Then
given X and A in K , there is precisely one arrow (X,A) if X and A are in the same
equivalence class, viz. they are metaphorically related by conjugation, while there is
none if they are not. Then transitivity assures us that we can compose arrows, while
reflexivity tells us that over each process X in K there is a unique arrow (X,X),
which is the identity. Finally symmetry tells us that any arrow (X,A) has an inverse
(A,X). Thus, (K,M) is a groupoid (category in which all arrows are isomorphisms)
such that from a given object of this category (process) to another there is at most
one arrow (if they are metaphorically related). Conversely, given a groupoid, such
that from a given object to another there is at most one arrow, if we denote by K

the set of objects and by M the set of arrows, the source and target maps induce an
injective morphism M ↪→ K × K , which gives an equivalence relation on K with
the desired semantics.

An interesting type of logical conjugation arises in case that a bridge S equals
its own inverse, that is S = S−1. An immediate consequence is that if the inter-
level transformation S is repeated twice in succession, then it gives the identity, viz.
S2 = 1. In this case the bridge S is called an involution bridge. The most well-known
example of an involution bridge is provided by any device operating strictly between
two states, represented by the simplest Boolean algebra containing two truth values
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(True and False, or 0 and 1). Then, if the bridge S represents the transformation from
the one state to the other (acting like a Boolean negation operator between the levels
of truth and falsity), its repeated application for a second time brings us back to the
original state. In logical terms, the negation of negation is equivalent to the identity,
and therefore, an involution bridge functioning between two states distributed in
two distinct levels is a picturesque way of expressing the law of excluded middle in
Boolean logic.

4.3 Logical Conjugation and Extension of Algebraic
Structure

Let us now examine the functionality of logical conjugation from a structural
algebraic standpoint. We have already claimed previously that the resolution of the
Thalesian problem of determination of an inaccessible magnitude by the method
of proportions implicitly contains the seeds of discovery of the multiplicative
group structure of (positive) rationals. More precisely, multiplication is an essential
operation that can be performed on integers endowing them with the closed structure
of a multiplicative monoid. Division, the inverse operation to multiplication, is
nevertheless not a total operation on integers, and thus, the determination of
inaccessible magnitudes on the basis of proportion cannot be effectively performed
within the reference domain of integers.

The resolution of the problem of making the operation of division total, and
thus resolving the Thalesian problem, requires the extension of this domain into
a new domain of numbers, where the required inverse operation can be always
implemented. This means that the resolution of the problem requires an appropriate
extension of the initial closed structure (integers) with respect to the operation of
multiplication into a new structure (rationals) being closed with respect to both
multiplication and its inverse operation of division. This is a recurring theme in
universal algebra and thus it deserves a closer analysis in order to explain the way
of its implementation by means of the logical conjugation strategy.

For this purpose, it is necessary to state explicitly the ordered series of three
processes that have to be performed, according to the general pattern characterizing
metaphors, for the construction of the field of rationals from the ring of integers. We
remind that the rationals constitutes the set of all fractions a/b, a, and b integers,
b �= 0 with the usual relation a/b ≡ c/d if ad = bc, which makes invertible every
non-zero element of the integers.

The basic ingredient of the construction of the field of fractions is the fact
that the set of non-zero elements of the integers is multiplicatively closed (Atiyah
and MacDonald 1969). The structural metaphor characterizing completely this
construction is technically called the process of localization of the commutative
unital ring of the integers Z with respect to the multiplicative closed subset of the
non-zero integers. The whole purpose of this structural metaphor by conjugation
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is to make every element of the multiplicative closed subset of non-zero integers
invertible, such that the new structure of numbers obtained in this manner fulfills
the following objectives: First, it bears a structural similarity to the initial domain
of numbers, viz. it is also a commutative unital ring with respect to addition
and multiplication. Second, the operation of division (inverse to multiplication)
can be performed by the existence of inverses of non-zero integers, which have
been incorporated in the new extended closure domain of numbers. Third, as
a consequence of the above, the initial domain of numbers together with their
arithmetic can be embedded in the new one.

We consider the commutative unital ring of integers Z and let S ⊆ Z be the
multiplicative closed subset of non-zero integers. The first step is to set up a directed
bridge from the level of commutative unital rings to the level of sets, encoding the
process of extending the underlying set-theoretic domain of integers Z into a new
domain formed by the cartesian product of sets Z×S. Note that the ordered pairs of
integers (a, s) with s �= 0 are not supposed to have any a priori structure, since their
existence is required at the level of sets by means of the encoding directed bridge
connecting the involved structural levels. In this extended new set-theoretic domain
the initial task can be facilitated by imposing the homological equivalence criterion,
according to which the ordered pair of integers (va, vs) should be equivalent to
(a, s) for any non-zero integer v. Technically this condition is described in the
following way:

In the set Z × S we define the following binary relation: (a, s) � (b, t) if and
only if there exists v ∈ S such that: v(at −bs) = 0. The relation � is an equivalence
relation, partitioning the set Z × S into equivalence classes. We will denote the
quotient set by ZS , and the equivalence class of (a, s) by the fraction symbol a/s.
Thus, the quotient set ZS contains elements which can be interpreted as fractions,
bearing the semantics of numbers allowing division by non-zero integers.

The structural metaphor is completed via logical conjugation by setting up an
inversely directed decoding bridge from the level of sets to the level of commutative
unital rings, effectuating the indirect round-trip as follows: We set a/s + b/t :=
(ta + sb)/st , (a/s)(b/t) = (ab/st) for every a/s, b/t ∈ ZS . The operations are
well defined and endow ZS with the structure of a ring. The zero and unit elements
are, respectively, 0/s and s/s, for every s ∈ S. Finally, we define the canonical
morphism of rings h : Z → ZS , given by h(a) = a/1, for every a ∈ Z. Note that
for any s ∈ S we have that 1/s is the inverse of h(s) in ZS . Hence, ZS is the smallest
ring containing Z, in which every element of the multiplicative closed subset of
non-zero integers S is invertible.

Thus, the extension of scalars of the commutative unital ring of integers Z by
means of algebraic localization, with respect to the multiplicative closed subset of
non-zero integers, is understood as a structural algebraic metaphor implemented
by logical conjugation. The structural effect of this metaphor by conjugation is the
addition of multiplicative inverses to the elements of the multiplicative closed subset
S ⊆ Z, such that the extended ring ZS consists of fractions a/s, where a ∈ Z, s ∈ S.
Moreover, the conceptualization of algebraic localization as a structural metaphor
for the resolution of the general problem of making division a total operation by



4.4 Structural Logical Conjugation in Relation to Homothesis 69

congruent extension of structure via the logical process of conjugation permits its
application in generalized structural environments as we shall see in the sequel.

4.4 Structural Logical Conjugation in Relation
to Homothesis

It is instructive to explicate in more detail the conjugation strategy related with the
efficient functioning of the above structural metaphor. First, we observe that the
encoding process of the underlying set-theoretic domain of Z into the new domain
formed by the cartesian product of sets Z × S takes place by means of extending
the scalars of Z with respect to the scalars of the multiplicative closed subset S
of Z. This means that the extension of scalars of the set-theoretic domain of Z is
effectuated by adjoining to Z the scalars of a well-defined internal algebraic part S
of Z distinguished by its anticipated operational role.

Second, the level of sets can be thought of as a temporary underlying scaffolding
via which logical conjugation can be effectively applied. More precisely, at the level
of sets the operational role of the distinguished part S of Z can be implemented by
the imposition of an appropriate homological equivalence relation on the previously
extended set-theoretic domain Z × S. The conceptual underpinning of this process
is the identification of those elements of the extended domain Z × S, which exhibit
a certain resemblance of behavior, which we symbolize by the relation R. Any
suitable criterion of homological indiscernibility must lead to a partition of Z × S

into disjoint classes of elements bearing the imposed relation of resemblance R, and
hence R must be an equivalence relation. Since the imposition of such a relation
R effectuates a classification of the elements of Z × S into disjoint classes of
equivalent elements, partitioning it in the particular way determined by R, the latter
can be thought of as a resemblance perspective. In this manner, an equivalence
class modulo the resemblance perspective R consists of all the elements of Z × S,
indiscernible with respect to R, and thus homologically identical.

More specifically, the resemblance perspective R imposed on Z × S requires
that the ordered pair of integers (va, vs) should be homologically identical as (a, s)
for any non-zero integer v, under the intended interpretation of the resemblance
class of (a, s) by the fraction symbol a/s. Note that the resemblance classes (a, s)
are metaphorically interpreted as elements a/s, being assigned a new name, viz.
fractions, of a new set, namely of the quotient set ZS . It is important to notice that
consequent to the transition from Z × S to ZS is the replacement of equivalence
modulo R, viz. R-perspective resemblance, by equality (identity) of elements in the
quotient ZS .

Third, the structural metaphor realizing the result of the applied logical conjuga-
tion is completed by means of the inversely directing bridge from the level of sets
back to the initial level of commutative unital rings. The semantic aspect of this
bridge amounts to a re-casting of the elements of the quotient set ZS , as elements
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of a new ring, viz. as elements of the same closed structural genus as the initial
Z. This is accomplished by modifying appropriately the addition and multiplication
operations referring to these new elements (fractions). This modification takes place
according to the principle that the new operations should incorporate and reproduce
the effect of the old ones, when restricted to the old elements, being dressed in the
new form imposed by the adopted resemblance perspective.

The important thing to notice is that the completion of the structural metaphor
according to the logical conjugation strategy described above accomplishes the
task of making the operation of division total, and thus, resolves the geometric
problem of homothesis in a structural way. In this way, from the standpoint of the
ring of integers, the structural metaphor permitting the unconstrained action of the
division operation on magnitudes, belonging now to an extended closed partially
congruent structure of the same algebraic genus (ring of rationals), accomplishes
the interpretation of division as an emergent well-defined total operation. This is
due to the fact that the operation of division acts properly on this new kind of
species (fractions), which remains closed with respect to its action. The logical
conjugation resolves the original Thalesian problem structurally because fractions
are formed at the set-theoretic level, and then lifted at the ring-theoretic level by
means of encoding/decoding bridges. In particular, fractions are formed by the
inverse processes of extending the set-theoretic domain Z to the larger one Z × S

with respect to the part S, and then restricting this extended domain by collapsing
it, viz. by partitioning it homologically into disjoint classes, with respect to the
imposed internal resemblance perspective subsumed.

In more general terms, the above algebraic localization structural metaphor is a
particular application of the logical conjugation strategy designed for the resolution
of a specific problem involving (at least) two delineated structural levels, and based
on the existence of a pair of inversely pointing bridges connecting these two levels,
as follows: First, by means of an extension bridge, encoding the information of
a structural domain into a new extended one assuming existence at a different
level. Second, performing the required task at that level by realizing an appropriate
equivalence relation, and subsequently forming the associated quotient structure.
Finally, by means of a reciprocal bridge, decoding the acquired information in a
structural form congruent to the form of the structural domain we started with,
according to the specification of the initial level.

4.5 Self-referential Structural Metaphors via Logical
Conjugation

At a further stage of development of these ideas, we realize that the successful
epistemological implementation of the conjugation strategy, concerning structural
metaphors, necessitates primarily the investigation of the meaning of an effective
analogical relation within the same algebraic structural genus. This task is impor-
tant, because it clarifies the nature of an indirect analogical self-referential relation
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taking place within a certain closed structural genus. From the general context of
the preceding analysis, it has become clear that at least, referring to the set-theoretic
level of magnification, a set can be related to a distinguished part of it by the
imposition of an equivalence relation on their jointly formed cartesian product with
respect to a resemblance perspective, which reciprocally necessitated the delineation
of that distinguished part in the first place. The total process can be cast into the
pattern assumed by a self-referential structural metaphor as follows:

Initially, we assume that a set of elements, considered as an individual object
within the genus of sets (characterized by the membership relation), can relate to
itself by separation of a well-defined part of it, viz. a subset bearing the functional
role subsumed by a particular resemblance perspective. In turn, this resemblance
perspective can be applied to the extended object obtained from the initial object
by adjoining the distinguished part. Finally, using the quotient construction, we
collapse the extended object into a new partitioned object belonging to the same
genus. Of course, this is only possible if all of the following conditions can be
fulfilled: First, if the initial object can split its substance between two internal levels
or hypostases within the same genus, such that the latter, formed by extension
with respect to a part, is also an object of the same genus encoding the former.
Second, if the application of the resemblance perspective on the extended object
partitions it into equivalence classes, forcing in this way a homological criterion of
identity, or equivalently an indiscernibility relation with respect to this resemblance
perspective, at the same level. Thirdly, if the equivalence classes of the quotient can
be re-interpreted as elements of a new object of the same genus, being formed at
the initial level by identifying equivalent elements with respect to the resemblance
perspective.

It is significant to realize that an indirect self-referential relation, implicated by
logical conjugation within the same genus, accomplishes precisely the satisfaction
of the above conditions. This is possible by means of two inverse internal bridges
connecting these two separate levels of hypostasis into a non-contradictory circular
pattern as follows: the first bridge carries out the extension process of an object to
another level of hypostasis, being formed by adjoining to it a distinguished part,
delineated by the functional role subsumed under a resemblance perspective. At the
new level, an appropriate equivalence relation on the extended object implements
the functional role of the resemblance perspective, viz. implements a homological
criterion of identity. As a result, we end up with a partitioning of the extended
object into a set of equivalence classes constituted by indiscernible elements with
respect to the imposed criterion. Finally, an inverse bridge performs the transition
back to the initial level, by collapsing the extended object with respect to the
resemblance perspective, and thus, transforming the resemblance relation into an
equality (identity) of elements in the quotient set, formed back at the initial level.
Notice the crucial point that the quotient structure formed by returning to the initial
level has to be again a set-theoretic object, that is, it must be congruent to the
structural specification of the initial object we started with.

After this series of remarks, there arises the natural problem of applying the
logical conjugation strategy realizing indirect self-referential metaphors into the
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context of objects belonging to some algebraic structural genus, like groups, rings,
and algebras. This becomes possible, if we formalize the notion of a resemblance
perspective as an equivalence kernel of a comparison morphism (homomorphism)
between structures of the same algebraic genus. Notice that the functional role
subsumed by a resemblance perspective elevates the relation of equivalence among
elements belonging into the same equivalence class at the level reached at by
descending the first bridge, to a relation of equality (homological identity) at the
initial level regained by ascending back through the inverse bridge. In turn, this
constitutes the precise implementation of what we call a homological criterion of
identity.

Set-theoretically speaking, this amounts to the implication that if two elements
α and β of the extended set, at the new internal level of hypostasis, are equivalent
with respect to a perspective R, viz. αRβ, then their images inside the quotient
set, interpreted as new elements, at the initial level, are identical, viz. [α]R =
[β]R. Based on this argument, we can deduce the modelling of the notion of a
resemblance perspective between structures of the same algebraic genus, by passing
into some appropriately restricted type of equivalence relation by means of logical
conjugation, depending on the algebraic genus considered.

4.6 Self-Referential Algebraic Kernels of Resemblance

In a general context, the minimum requirements for an algebraic system include the
existence of a set S with an equality relation for which there is defined a binary law
of composition, viz., a single-valued function of pairs α, β such that αβ is in S for
α, β in S (Bourbaki 1990). Adopting this as our starting point, we superimpose an
equivalence relation R on S in order to investigate how a desired restricted type of
equivalence relation arises. Namely, denoting by � the set of equivalence classes
CαmodR, we raise the following question: Can an operation

⊙
be defined in �

based upon the composition operation in S?
We proceed along the lines of what might be a first attempt to investigate this

question by defining:

Cα

⊙
Cβ = Cαβ

The above apparently makes the product dependent upon the choice of class
representatives. This deficiency can be amended by requiring that, if Cά = Cα

and C
β́

= Cβ , then CάCβ́
= CαCβ . This amounts to the assertion, if άRα and

β́Rβ, then άβ́Rαβ. Equivalently stated, we obtain the condition: άRα implies
that άxRαx and xάRxα for all x. We call regular those equivalence relations
which satisfy the condition above. The latter constitutes a necessary and sufficient
condition upon R in order that Cα

⊙
Cβ = Cαβ stands for a well-defined operation.

Then, we can easily deduce that the correspondence ϕ of S onto � defined by:
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ϕ(x) = Cα if and only if x ∈ Cα is an algebraic homomorphism, called the
natural homomorphism. Essentially, from a reciprocal standpoint, � should be
a homomorphic image of S under a correspondence, mapping all elements of S

belonging to an equivalence class onto an element of �. But the existence of
such a homomorphism immediately implies the existence of one mapping the
class containing α upon Cα , and the homomorphism property then requires that
Cα

⊙
Cβ = Cαβ holds true.

The central idea explained previously can be now easily applied to structures of
some algebraic genus, for example, to groups. In this case, we consider a group
S together with a regular equivalence relation R. Then, defining an operation in
� = {Cα,Cβ, ...} according to the composition rule Cα

⊙
Cβ = Cαβ , we obtain a

homomorphic image of S. Since a homomorphic image of a group is necessarily a
group, we deduce that � is actually a group whose identity element is Ce, where e

is the identity element of the group S.
The above construction shows that the process of shrinking a group S with the

aid of a regular equivalence R produces a homomorphic image � of S being also
a group, and thus, preserving the structural specification of its algebraic genus.
Conversely, given a homomorphic image � of S, there is defined a partition, and
therefore, an equivalence relation R on S. Moreover, the homomorphism property
implies that R is a regular equivalence relation.

In a nutshell, we conclude that in the case of groups, the problem of finding
all homomorphic images of S reduces to that of finding all regular equivalence
relations over S. For this purpose, we make use of the coset decomposition of a
group S with respect to a subgroup H . More precisely, we define αRβ if and only if
α = hβ, where h ∈H . We can easily show that R is actually an equivalence relation,
such that the equivalence class Cα = Hα, called right coset of H . Moreover,
since άRα implies that άxRαx, the equivalence relation R is right regular. But
conversely, starting with a right regular equivalence R in S we find that Ce is a
subgroup and Cα = Ceα, since βRα implies that βα−1Re; hence βα−1 ∈ Ce,
or, β ∈ Ceα and conversely. Thus, the problem of finding the various right regular
equivalence relations in S is reduced to the problem of determination of the right
coset decompositions of S with respect to its subgroups.

Precisely analogous considerations establish that the various left regular equiva-
lence relations in S are completely determined by the left coset decompositions of S
with respect to its subgroups. Thus, we conclude that, if R is a regular equivalence
relation, then, on the one side, it defines a left coset decomposition with respect to
the subgroup H of all elements x such that xRe, and on the other side, it defines a
right coset decomposition with respect to the same subgroup. Hence R stems from a
subgroup for which the left cosets are identical with its right cosets. Such a subgroup
N is called a normal subgroup of S, satisfying: xN = Nx for all x in S. Thus, a
regular equivalence relation R in S stems from a normal subgroup N of S, viz., a
subgroup remaining invariant under logical conjugation, meaning that N = xNx−1

for all x in S. Conversely, a normal subgroup of S defines a regular equivalence
relation on S. Now, if N is a normal subgroup of S, then its cosets Cx = xN form
a group with the following composition rule of closure: αN

⊙
βN = αβN , or
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equivalently, Cα

⊙
Cβ = Cαβ holds. The resulting quotient � = S/N is a group

homomorphic to S and constitutes that group, which collapses the normal subgroup
N of S to the identity element of �. Conversely, every homomorphic image of S
can be duplicated by, viz. it becomes isomorphic to such a quotient group.

The completely analogous analysis for the case of rings yields the corresponding
homomorphism theorem with the same efficiency. Thus, we have deduced the
modelling of the notion of a resemblance perspective between structures of the same
algebraic genus, by the concept of regular equivalence relations. Consequently, the
implementation of self-referential metaphors within the context of objects belonging
to some algebraic structural genus becomes possible if we formalize the notion of a
resemblance perspective precisely as a regular equivalence kernel of a comparison
morphism (homomorphism) between structures of the same algebraic genus.

More concretely, in the case of groups, we have the following: Let S and T be
groups and let φ be a group homomorphism from S to T . If eT is the identity element
of T , then the kernel of φ is the subset of S consisting of all those elements of S
which are being mapped by φ to the element eT :

Ker(φ) = {x ∈ S : φ(x) = eT }

Since a group homomorphism preserves identity elements, the identity element eS
of S must belong to Ker(φ). By the preceding analysis, it turns out that Ker(φ) is
actually a normal subgroup of S. Thus, we can form the quotient group S/Ker(φ),
which is naturally isomorphic to Im(φ), viz. the image of φ (which is a subgroup
of T ).

Analogously, in the case of rings with a unit element we have the following: Let
S and T be rings and let φ be a ring homomorphism from S to T . If 0T is the zero
element of T , then the kernel of φ is the subset of S consisting of all those elements
of S which are being mapped by φ to the element 0T :

Ker(φ) = {x ∈ S : φ(x) = 0T }

Since a ring homomorphism preserves zero elements, the zero element 0S of S must
belong to the kernel. It turns out that, although Ker(φ) is generally not a subring
of S, since it may not contain the multiplicative identity, it is nevertheless a two-
sided ideal of S. Thus, we can form the quotient ring S/Ker(φ), which is naturally
isomorphic to Im(φ), viz. the image of φ (which is a subring of T ).

The effective generation of self-referential structural metaphors via logical
conjugation in the context of some algebraic genus, implicated by the action of
regular equivalence relations within this genus, provides a powerful methodological
device for the resolution of a wide range of problems. Moreover, a self-referential
structural metaphor may be combined with another type of metaphor, for instance a
genus to species metaphor.

As an example, we may consider the case of the genus of (finite) groups. We have
already seen previously that a regular equivalence relation on a group corresponds to
a normal subgroup of this group, interpreted as an internal resemblance perspective.
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More precisely, this resemblance perspective constitutes the regular equivalence
kernel of the homomorphism from the group to its corresponding quotient group. A
natural problem arising in this context refers to the possibility of decomposition of a
group into a finite series of non-further decomposable groups (simple groups) using
the method of division with respect to internal resemblance perspectives, namely,
with respect to normal subgroups. This is the problem of solvability of a group-
theoretic structure, which has been first posed in the context of Galois theory (Cox
2004). If solvability is attainable, then the initial group can be thought of as being
decomposed into a finite series of irreducible group layers (factor groups) being
adjoined to each other in a proper way.

This problem can be successfully tackled by means of the conjugation strategy,
if we combine the previously explained self-referential structural metaphor with
a genus to species metaphor between the genus of multiplicative groups and the
species of the integers. In the context of the latter metaphor, if a group corresponds
to an integer, then a normal subgroup corresponds to a divisor of this integer and the
associated quotient group corresponds to the quotient of the integer by the divisor.
Furthermore, a non-further decomposable group (simple group) corresponds to a
prime integer number, and finally, the notion of decomposition of a group into a
finite series of simple groups using the method of division with respect to normal
subgroups corresponds to the Euclidean algorithm for divisibility of the integers.

4.7 Logical Conjugation via a Gnomon: Homological
Criterion of Identity

It is instructive to emphasize that the appropriate operational implementation of
all different manifestations of the logical conjugation strategy rests only on two
prerequisites:

First, the ability to induce a meaningful stratification into different levels which
can be connected by means of encoding and decoding bridges. In the general
case, we may think of these levels as structural ones. The stratification may even
involve substructures of an initially given structure, delineated according to a
specific characteristic and adjoined to the initial structure, as separate levels. The
latter is particularly suited to the resolution of self-referential problems through a
cyclical conjugation process by means of the reciprocal and reflexive techniques of
descending and ascending.

Second, the ability to establish a relation of homology among the stratified levels.
It is precisely the ingenuity of a homological criterion that provides the seed for the
successful implementation of the logical conjugation strategy. Put differently, an
effective analogical relation or metaphor subsumed by logical conjugation requires
an appropriate criterion of homology among stratified levels in order to operate.
We point out that the notion of metaphor literally means transport. Thus, logical
conjugation can be conceived as a logical transport process involving at least two
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separate levels according to a specific criterion of homology among these levels. We
also note that metaphor may refer to transport of information or structure or matter
or energy or whatever else this notion can refer to, whereas the logical conjugation
strategy via which it takes place is indifferent to its particular qualifications. This
provides the sought for universality in the application of logical conjugation in
different fields.

From the above, we deduce that what is crucial for the logical conjugation
method is the establishment of some appropriate homological criterion operating
among the stratified levels. Then, based on this homological criterion it becomes
more tractable to devise appropriate encoding and decoding bridges connecting
reciprocally all different levels and effectuating a metaphor process. It is interesting
to note that from the present viewpoint the notion of homology bears a logical
function although it is usually introduced and implemented via topological means.
At least, it is important to stress that a homological criterion is independent of
local metrical spatiotemporal distance notions. For this reason, it can operate non-
locally or among different scales. The ubiquity of a homological criterion is that it
establishes some particular measure of invariance among the stratified levels. This
measure can be expressed as an arithmetic invariant, like a ratio or a fraction, or
even in structural terms like a group or groupoid. The essential thing is that inter-
level connectivity, or simply a process of metaphor, requires a homological criterion
in order to be expressed via the logical conjugation strategy and conversely.

In standard mathematical terminology, what we call a homological criterion
appears in a variety of different formulations, which are unified conceptually from
our perspective. This unification is facilitated by means of logical conjugation and
its net effect, which is metaphor according to some qualification, and ultimately
as an effective means of copying with complexity and self-reference. For instance,
a homological criterion may be expressed in the simplest possible manifestation
as a relation of homothesis or proportionality of integer magnitudes as in the
original Thalesian conception. It may also be expressed as a relation of similarity
between two square matrices, where the homological criterion is the representation
of the same linear transformation with respect to two different basis of a vector
space. In this case, the logical conjugation strategy resolves the problem of
diagonalization via the method of eigenvalues. In the field of differential topology
and differential geometry a homological criterion is provided by the notion of a
local homeomorphism or local diffeomorphism correspondingly (Bredon 1997).
We may note parenthetically that from the perspective of logical conjugation the
notions of topological or differential manifolds defined by descending to simpler
spaces like the Euclidean ones and then ascending back via the method of gluing
from the local to the global level are solely needed for the formulation of the
metaphor process of differentiation, called covariant transport, and giving rise to the
invariants of curvature (Mallios and Zafiris 2016). Finally, a homological criterion
may be literally expressed in standard algebraic topological terms, viz. in terms of
homology and cohomology theory (Hatcher 2002; Mac Lane 1998). In broad terms,
homology theory establishes invariant measures of topological similarity in terms
of a series of groups stratified into different scales or dimensions. The topological
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similarity is defined by means of classifying chains of connectivity into two classes,
called cycles and boundaries correspondingly. More precisely, two cycles are homo-
logically equivalent if they differ by a boundary. The dual theory, called cohomology
theory, is based correspondingly on the notion of cochains of connectivity, which are
classified respectively into cocycles and coboundaries. In this case, two cocycles are
cohomologically equivalent if they differ by a coboundary. For example, in the case
of de Rham cohomology theory, the cocycles are represented as closed differential
forms and the coboundaries as exact differential forms.

A natural question arising in this context is the following: Notwithstanding the
technicalities involved, for example in the setting of homology and cohomology
theories of various forms, is there a guiding concept that lends itself to a proper and
efficient depiction of a homological criterion? In other words, what is the common
thread between the homothesis equivalence relation and the more sophisticated
algebraic-topological homology equivalence relation making them both amenable
by means of the logical conjugation strategy?

We argue that the common conceptual thread for establishing a proper homologi-
cal criterion is provided by the use of a gnomon. The intuitive idea of a gnomon also
makes more easily conceptualized the quite abstract notion of an algebraic kernel
of resemblance, developed in the previous section. The best definition of the notion
of a gnomon has been given by the great mathematician Heron of Alexandria in the
following terms: A gnomon is that form which, if it is adjoined to some originally
given form, results in a new extended form being similar or homologous to the
original one. In order to understand the depth of this simple looking definition of
a gnomon it is necessary to start from its initial conception in the context of the
Thalesian theory of homothesis. In this context, the gnomon is literally speaking the
part of the sundial that casts the shadow.

We can easily see that it is exactly the adjunction of the gnomon to the pyramid,
which induces a homothetic equivalence relation between the level of objects and
the level of their shadows with reference to their magnitudes at the same time of the
day, and consequently makes logical conjugation operative for the determination
of the not directly accessible magnitude of the height of the pyramid in terms of
proportion. In its simplest possible form the general process of adjoining a gnomon
in order to obtain a relation of homothesis may be visualized as follows:
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Formally, the relation of homothesis is an equivalence relation, and thus induces
a partition into equivalence classes standing for the blocks or cells of this partition.
The quotient structure obtained by factoring out this equivalence relation incor-
porates a new criterion of logical identity in comparison to the initial one, which
is precisely characterized in terms of the chosen gnomon of homothesis. In other
words, the notion of logical identity is relativized with respect to the gnomon, such
that the unit element of the quotient structure expresses equivalence modulo the
gnomon.

In the case of homothesis or proportionality of magnitudes, the metaphoric aspect
of logical conjugation may be easily visualized in terms of a recursive or periodic
application of a gnomon. This leads naturally to the dynamical notions of gnomonic
growth or unfolding and reciprocally gnomonic subdivision or folding by means of
logical conjugation. A particular well-known example is provided by the function
of the golden mean gnomon, depicted graphically as follows:

The conclusion obtained from the analysis of the notion of a homothetic
gnomon can be extrapolated to more complex situations, where a more general
homological criterion is required for the effective application of logical conjugation.
The abstraction consists in thinking of a gnomon as a means to indicate, or discern,
or distinguish, or to set a boundary. The function of a gnomon is again to induce
a certain type of modularity incorporating a logical criterion of identity, which is
effectuated homologically. For instance, in the case of a manifold, the gnomon is a
local Euclidean space and the homological criterion is subsumed by the notion of a
local homeomorphism. The modularity type is expressed by the gluing conditions
of local Euclidean patches adjoined homologically to a globally intractable space
endowing it with the structure of a manifold. The logical conjugation strategy is
used as a means to resolve a difficult problem for manifolds in terms of simpler
problems, which can be solved at the level of local Euclidean patches and their
amalgamations. Equivalently put, this logical method conjugates a complex problem
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at the manifold level to a simpler problem at the local Euclidean level where it can
be directly resolved. The efficiency of logical conjugation rests on the fact that we
are able to descend and ascend between these levels due to the homological criterion
enforced by the associated gnomon.

Finally, it is worth explaining the notion of gnomon employed in standard
homology theory, as it is conceptualized in algebraic topology. In this case,
the role of a gnomon is played by the notion of a boundary. We remind that
chains of connectivity in homology theory are classified in terms of cycles and
boundaries. Intuitively, a boundary at some dimension is a bounding chain of a
higher dimensional topological form, whereas a cycle stands for a non-bounding
chain. Visually, non-bounding chains may be thought of in terms of holes or
punctures or higher dimensional cavities, whereas boundaries may be thought of in
terms of filled, and thus bounding chains. The basic idea of a boundary as a gnomon,
establishing a homological criterion such that logical conjugation can operate, is that
adjoining a boundary to a cycle gives a topologically similar or homologous cycle.
Thus, two cycles differing by a boundary belong to the same homology equivalence
class as it is depicted visually below.

In this sense, homology equivalence classes, which are actually abelian groups
due to the algebraic operations involved in composing chains and orienting bound-
aries, enfold the invariant information of holes and cavities of topological forms.
We emphasize again that these group invariants are obtained solely by the logical
conjugation strategy on the basis of the homological criterion of identity set up by
the notion of a gnomonic boundary.
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4.8 Logical Conjugation Applied to Incompleteness:
Gödel’s Gnomon

In this section we will attempt to understand the formulation of Gödel’s first
incompleteness theorem (Gödel 1992), see also Franzen (2005), from the per-
spective of the logical conjugation strategy. Stated concisely, the essence of this
theorem says that if an arithmetic structure endowed with the operations of addition
and multiplication is consistent, then it contains undecidable propositions, viz.
propositions whose truth or false valuation cannot be proved within this arithmetic
structure.

The key to understanding Gödel’s argument from our perspective consists in
delineating the stratification of the argument into levels and uncovering the gnomon
which induces an appropriate homological criterion and permits the metaphor by
conjugation or descent and ascent between these levels. Gödel’s argument requires
a stratification into two levels, one of which is called the mathematical level and
the other the metamathematical level. Intuitively, the mathematical level involves
general propositions about numbers and the metamathematical level involves
general propositions about general propositions about numbers. The argument refers
to a true proposition at the metamathematical level, whose truth is established
by logical conjugation through the mathematical level. It is clear that Gödel’s
argument involves an indirect self-reference, which is absolutely legitimate since
it is implemented via descending to and ascending from the mathematical level.
The crucial thing to realize is that Gödel used a gnomon to express his theorem,
which induces a process of metaphor based on a homological symmetry between
the metamathematical and mathematical levels. The Gödelian homological criterion
between these two levels is a gnomon of numbering or ordering. Gödel’s gnomon
is used to establish encoding and decoding reciprocal translation bridges between
the two levels, such that a particular argument obtained at the mathematical level
by means of a process called Cantor’s diagonalization (Smullyan 1991, 1994) is
transferred by logical conjugation to the metamathematical level in order to prove
the theorem.

In more detail, it is significant to explain the function of Gödel’s gnomon.
Since the alphabet of arithmetic is countable, it is possible to instantiate a fixed
schema of numbering or ordering, which assigns a unique positive integer to every
legitimate arithmetic formula. The same schema can be extended to order finite
strings of arithmetic formulas. Of course, there exist many such appropriate schemas
of ordering or numbering, but the essential idea is that by fixing any one of them
the function of ordering or numbering can be carried out. For example, we may
fix the ordering gnomon provided by the natural numbers’ sequence, such that
every arithmetic formula and every finite string of arithmetic formulas is assigned
a unique number in this sequence, called its Gödel number. It is immediate to
realize that in the way described the structure of natural numbers may be adjoined
to the structure of an arithmetic. In particular, the proof of an arithmetic formula
K constitutes a finite string ending with K itself, and thus proofs are naturally
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assigned Gödel numbers in the ordering. Gödel considers the proposition p(x, y)

at the metamathematical level stating the following: “x is the Gödel number
of an arithmetic formula whose proof has Gödel number y”. Then, still at the
metamathematical level, considers the associated proposition ∀y¬p(x, y), which
reads as follows: “No number y is the Gödel number of a proof of the arithmetic
formula whose Gödel number is x”. The last proposition simply means that the x-th
formula in our ordering schema is not provable.

The crucial think to notice is that in the last proposition the variable x is a
free variable. Then, the natural question to ask is the following: Is the proposition
∀y¬p(x, y) at the metamathematical level Gödel-numberable itself, viz. does the
Gödel gnomon applies to this proposition? This is the crux of the matter because,
as we already know, a gnomon is effective if it enforces a homological criterion to
the structure it is adjoined to. Clearly, such a homological criterion is feasible in
the present case, only if the Gödel gnomon actually assigns a unique number to the
proposition ∀y¬p(x, y), where x is a free variable. It is now clarified why the major
part of Gödel’s paper (Gödel 1992) is devoted to show that the aforementioned
proposition is indeed Gödel-numberable. Let us denote the Gödel number of the
metamathematical level proposition ∀y¬p(x, y), where x is free, by the number ξ
at the mathematical level. The homological criterion can now be implemented using
Gödel’s gnomon by applying Cantor’s diagonalization process at the mathematical
level in order to achieve closure. This simply amounts to substituting the free
variable x in the proposition ∀y¬p(x, y) by the definite number ξ to obtain now
at the mathematical level the proposition ∀y¬p(ξ, y), which means that the ξ -th
formula in our ordering schema is not provable.

A little moment of reflection convinces us about the role of Gödel’s gnomon:
Note that by applying this gnomon the metamathematical level proposition
∀y¬p(x, y), where x is free, is precisely mirrored at the number ξ at the
mathematical level. This means that the above metamathematical level proposition
is homologically identical to a certain arithmetic formula at the mathematical level
whose sequential number is ξ modulo the gnomon employed. Equivalently, the
metamathematical level proposition ∀y¬p(x, y), where x is free, is symmetrical
modulo the gnomon, and thus homologically identical, with the ξ -th arithmetic
formula in the ordering induced by the gnomon at the mathematical level. Now,
the process of Cantor diagonalization at the mathematical level involves a reflexive
action, since we feed this fixed ordering number ξ as an argument in the place
of the free variable x of ∀y¬p(x, y). In this manner, we obtain a legitimate
mathematical level proposition ∀y¬p(ξ, y), which states that the ξ -th formula
in our ordering schema is not provable, since no number y is the Gödel number
of a proof of the arithmetic formula whose Gödel number is ξ . Finally, using the
homological criterion of identity established by Gödel’s gnomon in reverse, we
ascend back at the metamathematical level, where we finally obtain a proposition
that ascertains its own unprovability. It is precisely this proposition that expresses
Gödel’s incompleteness theorem itself, since this proposition is undecidable given
the consistency of our arithmetic.
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It is instructive to highlight that Gödel’s gnomon and the previously described
logical conjugation strategy between the metamathematical and mathematical
levels is operative with respect to the whole structure of an arithmetic, viz. with
respect to both the additive and multiplicative structure of an arithmetic system.
In case that only the additive structure is considered, Gödel’s gnomon does not
induce by adjunction a homological criterion between the metamathematical and
mathematical levels, and it can be shown that the incompleteness theorem is not
valid.

A final remark to also be stressed refers to the observation that Gödel’s gnomon,
from the perspective of the logical conjugation strategy, effects an indirect self-
reference at the metamathematical level via descending to and ascending back
from the mathematical level. The metaphorical process of indirect self-reference
is actually conducted at the mathematical level by means of an infinite closure
operation substantiated by Cantor’s diagonalization process. In other words, em-
ploying Gödel’s gnomon we become able to make indirect self-reference feasible
by conjugating it to an infinite closure operation. This also leads to the conclusion
that Turing’s argument, according to which the halting problem by means of a
universal Turing machine is undecidable, should be viewed as the computational
variant of Gödel’s first incompleteness theorem (Chaitin 2007). The reason is that
Turing’s argument can be also considered as a logical conjugation argument of the
same form, meaning that indirect self-reference at the level of a universal Turing
machine is feasible by conjugating it to the infinite closure operation of Cantor’s
diagonalization. Turing’s gnomon is similarly a gnomon of ordering or numbering
programs by means of the natural numbers’ sequence.

4.9 Logical Conjugation Applied to Algorithmic Complexity
and Generic Forcing Conditions: Relating Chaitin’s
with Cohen’s Gnomons

A significant refinement of Gödel’s first incompleteness theorem is provided by
Chaitin’s incompleteness theorem in the context of algorithmic or program-size
complexity theory (Chaitin 1987, 2007). The algorithmic complexity of a string
is essentially defined by the length of the shortest program that generates this
string and then halts. In this sense, a finite string is characterized as random if its
complexity is equal approximately to its length. There are strings with arbitrarily
large algorithmic complexity and the problem of program-size complexity is
undecidable. In this context, Chaitin’s incompleteness theorem states that given a
consistent arithmetic, there exists a number C depending upon the given arithmetic,
such that any proposition of the form “the program-size complexity of the string
s is greater than C” is not provable. Thus, since there are true such propositions,
it follows that there are propositions of the above form being undecidable within
the context of the given arithmetic. From our perspective of logical conjugation,
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Chaitin’s argument is a refinement of Gödel’s first incompleteness theorem because
it involves a metaphor extension in depth or stacking. First, Chaitin’s gnomon
is based on counting the number of bits in a program whence the homological
criterion is applied for self-delimiting programs, viz. strings having the property that
one can tell where they end. Second, Chaitin’s program-size counting gnomon is
modified probabilistically, by a deeper stage conjugation via the measure-theoretic
level involving the probability P(x) that a program will give a number x at the
higher level, preserving nevertheless the same homological criterion as applied
to self-delimiting programs. This is called the algorithmic probability of x, and a
summation of probabilities over all possible outputs x yields the halting probability
� = ∑

x P (x), where � is interpreted as a random infinite sequence of bits (Chaitin
2006).

Chaitin’s incompleteness theorem constitutes a refinement of Gödel’s first
incompleteness theorem because it involves a deeper stage logical conjugation via
the measure-theoretic level. In particular, the halting probability � is a random real
number (Chaitin 2006; Calude 2007). The most intuitive conception of randomness
is tied to the notion of non-predictability. In other words, if one knows the first n-
bits of a random sequence, it is not possible to predict the next n + 1-bit. Here, the
central objects of our attention are elements of the continuum {0, 1}N := 2N .

Elements of 2N may be viewed either as infinite sequences of bits (infinite
strings) or as sets of natural numbers, which can be identified with their charac-
teristic functions. We denote the set of finite binary strings as 2[N]. The set 2[N] can
be canonically identified with N , so that subsets of N may be thought of as sets of
strings. We also denote the length of a finite string σ by | σ |. Using finite binary
strings, we may define a topology on 2N as follows: First, we define the extension
of a finite string σ by the clopen set E(σ) = {x ∈ 2N : σ = [x]|σ |}, where [x]
denotes the operation of restriction. Second, we consider clopen sets of the form
E(σ), where σ is a finite binary string, as the base of a topology on 2N , where
each E(σ) is a basic clopen set, to be thought of as an interval in the continuum. In
particular, we may identify 2N with the interval of real numbers [0, 1] by associating
each real number with its usual binary representation. If we regardμ as the Lebesgue
measure on [0, 1], then we have that μ(E(σ)) = 2−|σ |. Now, we expect that non-
random sequences form a set of measure zero. Intuitively, using the above defined
topology, we require that the extensions of longer and longer initial segments σ of
a string x ∈ 2N become arbitrarily small. In this manner, random sequences are
defined from a complementary viewpoint measure-theoretically on the basis of the
fact that non-random sequences should form sets of measure zero.

Now, if we come back to the intuitive conception of randomness as related
with non-predictability, we may require that there is no algorithm α which can
ever compute, and thus uniformly measure, [x]|σ | from any sorter string. Here an
algorithm is considered as a function α : 2[N] → {0, 1}. The above idea constitutes,
in effect, a complexity measure based on program-size. The notion of program-
size complexity introduced by Chaitin to this effect regards σ as a self-delimiting
program, viz. as a program delimited by an end-marker (Chaitin 2006). Clearly, no
extension � of a self-delimiting program can be a self-delimiting program, since
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the end-marker will not be in the right place. If ψ : 2[N] → 2[N] is a partial
recursive function with prefix-free domain, viz. computable by a self-delimiting
reference universal Turing machine, the Chaitin complexity of σ , or the algorithmic
information content of σ is defined by I (σ ) = min{| τ |: ψ(τ) = σ }. This is the
length of the shortest program τ of the self-delimiting universal Turing machine
that outputs σ . Then, we define an infinite sequence x ∈ 2N to be random if all its
extensions have high Chaitin complexity, capturing in this way the above intuitive
conception of randomness. More precisely, an infinite sequence x is random if and
only if there exists a constant k, such that (∀n)[I ([x]n) ≥ (n − k)]. The infinite
sequences that satisfy this condition form a set of measure one, and thus random
sequences form a set of measure one. This result is in good compatibility with
the measure theoretic characterization of non-random sequences as sets of measure
zero derived in the previous paragraph. In this sense, the characterization of random
sequences according to Chaitin or program-size complexity is in agreement with the
measure-theoretic characterization completing the logical conjugation.

Chaitin’s incompleteness theorem constitutes not only a refinement of Gödel’s
first incompleteness theorem due to the deeper stage logical conjugation via the
measure-theoretic level, or equivalently via the program-size complexity level, but
it also contains the germs of two powerful generalizations: The first comes from a
deeper level conjugation via the level of generic sets and Cohen’s forcing conditions
(Cohen 2008) based on an analogical type of relation between the notions of random
sets and generic sets. The second comes from an interpretation of the constant
involved in the definition of random sequences in terms of an uncertainty relation
between two conjugate domains in the spirit of Heisenberg’s uncertainty principle
in quantum mechanics (Heisenberg 1949). Both of these generalizations will be
examined in detail in another place. Currently, it is important to explain the concepts
involved in the interrelations between Chaitin’s gnomon with Cohen’s gnomon on
the one hand, and Chaitin’s gnomon with Heisenberg’s gnomon on the other hand.
According to the knowledge of the author the proposed interrelations have not been
considered in the literature before. Not surprisingly both of them involve the notion
of logical conjugation.

Let us start to explain the logical conjugation strategy involving a deeper level
metaphor stacking via the level of generic sets related with Cohen’s method of
forcing (Cohen 2008), or equivalently the level of Boolean-valued sets (Bell 1988).
This conjugation is based on the analogical relation between random sets and
generic sets. Both of them can be formulated as Boolean-valued models of set
theory, or equivalently as variable sets, called sheaves, over a Boolean algebra. In
the first case the Boolean algebra is identified with the Borel algebra of clopen sets
defined above modulo the sets of measure zero (non-random sequences), whence
in the second is identified with a Boolean algebra of Cohen forcing conditions. In
this manner, the proposed deeper level logical conjugation stacking views random
sequences as Cohen forcing conditions with respect to a Boolean measure algebra
in the context of a Boolean-valued model of set theory containing a consistent
arithmetic. Intuitively stated, the sets in this Boolean-valued model, or equivalently
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the sheaves over the Boolean measure algebra, are to be thought of as sets, whose
elements are not evaluated to the two-valued Boolean algebra 2, but are evaluated
on the clopen sets of the Boolean measure algebra.

For the sake of completeness, it is instructive to explain in more detail the logical
conjugation via the deeper level of Boolean-valued sets. We may think that we
start from a standard model of set theory, which we agree to call constant sets.
The elements of constant sets are characterized by valuations in the two-valued
Boolean algebra 2. Then we adjoin a multiplicative encoding bridge from the
level of constant sets to the level of variable sets, which in this case are the sets
varying over a Boolean algebra. From Stone’s representation theorem for Boolean
algebras (Johnstone 1986), we construct a totally disconnected compact Hausdorff
space (Stone space) and we think of the variation in terms of the function space of
measurable functions over this space.

If we arrest the variation at a point of this space, viz. at a principal ultrafilter of the
associated Boolean algebra, then we define a homological criterion of identity by the
stipulation that two functions are equivalent if their measurable values agree at this
point. Thus, after having identified the equivalence classes induced by this criterion,
we can ascend back to the level of constant sets. In other words, the quotient set
obtained is a standard set and we have come back full circle via Stone duality. Of
course, if we decide to arrest the variation at an ideal point of the Stone space, viz. at
a non-principal ultrafilter of the Boolean algebra, then a new possibility arises. More
concretely, if we apply the same homological criterion for ideal points, we obtain a
new quotient set at the level of constant sets, which is an extension of the constant
set we started with, called a Boolean ultrapower of this set. The Boolean ultrapower
is a new constant set, which is internally indistinguishable from the initial set we
started with.

Cohen’s forcing method via the gnomon of generic sets is a refinement of the
method of evaluation at ideal points aiming to the construction of new constant sets
internally distinguishable from the set we started with. Instead of ideal points, one
considers a partially ordered set P of forcing conditions. Arresting the variation with
respect to these forcing conditions, one obtains a generic distinguishable extension
of the initial set at the level of constant sets, such that a proposition is true in the
generic extension if and only if it is forced by some generic forcing condition in
P . Note that the generic set of forcing conditions is not contained in the initial
constant set, and thus Cohen’s forcing requires logical conjugation via the deeper
level of variable sets. Moreover, Cohen’s method of forcing via some generic set is
equivalent to forcing with respect to a Boolean algebra, which in the present case
is identified with a Boolean measure algebra. In this manner, we propose that the
notion of random sets involved in applying Chaitin’s gnomon may be interpreted by
logical conjugation via the notion of generic sets involved in Cohen’s gnomon.
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4.10 Logical Conjugation Applied to Uncertainty Relations:
Relating Chaitin’s with Heisenberg’s Gnomons

Let us now explain the second germ of generalization involved in Chaitin’s
gnomon in relation to Heisenberg’s gnomon in quantum mechanics. We remind
that Heisenberg’s uncertainty relation involves a limit, defined by Planck’s constant,
pertaining to the simultaneous determination of two conjugate observables, for
example, position and momentum of a quantum system (Heisenberg 1949).

We note that observables in quantum mechanics are defined as self-adjoint
operators, bearing thus a spectral resolution in terms of projection operators. In this
way, each observable is associated with a complete Boolean algebra of projection
operators obtained by its spectral decomposition (Epperson and Zafiris 2013; Davis
1977; Heelan 1970; Selesnick 2004). If two observables commute, then they can
be resolved by means of a common Boolean algebra of projectors. In other words,
a commutative algebra of observables is logically characterized by means of the
Boolean algebra of projectors (idempotent elements of the commutative algebra),
which simultaneously resolve all the observables belonging in this algebra. The
non-commutativity of observables like the position and the momentum of a quantum
system, quantified by means of Heisenberg’s uncertainty principle, signifies the fact
that there does not exist a universal Boolean algebras of projectors resolving all the
observables in quantum mechanics. Thus, the internal logic of a quantum system is
not a Boolean logic of projection operators, but a globally non-Boolean amalgam
of local Boolean patches, where each patch covers the manifestation of a maximal
commutative algebra of simultaneously measurable observables (Zafiris 2006a,b,
2007; Zafiris and Karakostas 2013). Non-commutative observables like position and
momentum belong to two different Boolean patches, which cannot be amalgamated
together simultaneously under a bigger Boolean patch. Notwithstanding this fact,
a position observable can be transformed to a momentum observable by means of
a unitary transformation and conversely, viz. the well-known Fourier and inverse
Fourier transform. In this manner, the position and momentum Boolean patches
constitute two conjugate logical domains, which cannot be subsumed under a
universal Boolean domain, and thus are complementary in Bohr’s terminology
(Bohr 1958).

These conjugate Boolean domains correspond to conjugate Boolean projection-
valued measure algebras. Note that each Boolean algebra of projectors gives rise,
using Cohen’s gnomon in this context, viz. logical conjugation via the level of
variable sets as above, to a generic set of forcing conditions. Then, a proposition
is true in the generic extension, obtained as explained previously, if and only if it
is forced by some generic forcing condition. This is suited in understanding the
measurement process of an observable in quantum mechanics, where a proposition
refers to the result of a measurement on this observable and the generic forcing
condition corresponds to the projection operator of a measurement device which
clicks upon registration of this result.
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The difference in comparison to the previous case, appearing for the first time
in quantum mechanics, is that there exist distinct local generic sets of forcing
conditions corresponding to conjugate observables, which cannot be subsumed
under a universal global generic set. Hence, in a well-defined sense, which can
be made precise using the theory of sheaf-theoretic localization of observables
(Mallios and Zafiris 2016), the logical treatment of quantum mechanics requires a
localization of Cohen’s gnomon of forcing, with respect to local Boolean domains,
and thus giving rise to generalized local models of set theory called topoi. In turn,
this logical localization with respect to conjugate Boolean valued sets gives rise
to the phenomena of contextuality in quantum theory. We interpret Heisenberg’s
uncertainty principle as setting the bound (in terms of Planck’s constant) of the
simultaneous determination of two conjugate observables with respect to the same
Boolean domain of measurement. This is expressed in terms of the standard
deviations in the expectation values of conjugate observables in the form δx · δp ≥
h̄/2, where h̄ := h/2π in the case of position and momentum observables. Each
of these observables is considered as a Boolean homomorphism from the Borel
measure algebra of the real line (where the results of measurements are recorded)
to the corresponding Boolean patch containing the respective projections in the
spectral resolution of these observables.

Let us now examine if Chaitin’s gnomon can be presented in a form giving rise to
an uncertainty relation between two conjugate Boolean domains. The first Boolean
domain we consider is the domain of random real numbers in the continuum
[0, 1]. We remind that we identify 2N with the interval of real numbers [0, 1] by
associating each real number with its binary representation. Moreover, if we regard
μ as the Lebesgue measure on [0, 1], we have that μ(E(γ )) = 2−|γ |, where γ is
a finite binary string, to be thought of as a program of a self-delimiting universal
Turing machine ψ . For an output χ of this machine, we have immediately that the
probability of χ is given by:

P(χ) := μ(χ) =
∑

γ :ψ(γ )=χ

2−|γ |

Chaitin’s � = ∑
χ P (χ) is a random infinite sequence of bits, and thus a random

real in [0, 1] of Lebesgue measure one. It is interpreted as the halting probability
of ψ , viz. the probability that ψ halts when its binary input is chosen randomly bit
by bit, such as by flipping a coin. In practice, we may only compute finitely many
digits of �.

The second Boolean domain we consider is the domain of program-size complex-
ity. If ψ : 2[N] → 2[N] is a partial recursive function with prefix-free domain, viz.
computable by a self-delimiting universal Turing machine, the Chaitin or program-
size complexity of χ , or even the algorithmic information content of χ is defined
by:

I (χ) = min{| γ |: ψ(γ ) = χ}
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The complexity measure I (χ) is the length of the shortest program γ of the self-
delimiting universal Turing machine that outputs χ . Moreover, an infinite sequence
x is random if and only if there exists a constant k, such that:

(∀n)[I ([x]n) ≥ (n − k)]

The infinite random sequences that satisfy this condition form a set of measure one,
and thus for Chaitin’s � we obtain:

(∀n)[I ([�]n) ≥ (n − k)]

The above inequality is interpreted clearly as an uncertainty relation pertaining to
the conjugate Boolean domains of random real numbers in [0, 1] and program-
size complexity length measures. Since it is an uncertainty relation between two
conjugate Boolean domains, these domains cannot be embedded in a universal
Boolean domain simultaneously subsuming both of them. Thus, the constant k is
interpreted as setting the bound of the simultaneous determination of two conjugate
observables, viz. the random real � in [0, 1] and the program-size complexity length
measure I .

4.11 Composite Logical Conjugation and Galois Solvability

We have analyzed previously that both Heisenberg’s and Chaitin’s logical con-
jugation methods give rise to uncertainty relations between two conjugate or
complementary Boolean domains which cannot be subsumed under a common
universal Boolean domain simultaneously with absolute precision. Moreover, if we
consider each Boolean domain separately we may interpret it as a Boolean algebra
of generic forcing conditions, descend to the level of Boolean valued sets, then
apply a Cohen-type criterion of homological identity with respect to these forcing
conditions, and finally ascend back to the initial level of constant sets, obtaining in
this manner a generalized model internally distinguishable from the one we started
with. The latter reflects the intervention of a suitable measurement procedure for
obtaining information with respect to an observable being logically classified by this
Boolean domain. The logical classification takes place via the procedure of spectral
resolution in terms of a Boolean algebra of projectors in the context of operator
functional analysis, or more generally, via the procedure of measurability in terms of
a Borel measure algebra, which can even be projection-valued. The important point
to be emphasized is that the Cohen-type strategy of logical conjugation cannot be
implemented simultaneously with respect to two complementary Boolean domains.

A natural question arising in this context is if it possible to implement the
strategy of logical conjugation in such a way that circumvents the above obstacle.
We may think of each logical Boolean domain as giving rise to a separate gnomon of
conjugation. If we consider two complementary Boolean domains, we cannot apply
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the method of logical conjugation with respect to both of them simultaneously, but
there exists the possibility of composing these two gnomons in an appropriate way.
Since we consider these two gnomons as complementary in a precise sense, justified
by the existence of an uncertainty relation as above, then the most economical
hypothesis is to assume that each gnomon may conjugate the complementary one.
In other words, the levels between each gnomon operates should function as the
encoding/decoding bridges of the complementary gnomon. We may explain this
idea in more detail as follows: We remind that the method of logical conjugation
requires a stratification into levels and the delineation of encoding/decoding bridges
between these levels in order to be able to descend and ascend back. Now each
Boolean domain of discourse provides a natural stratification as well as a natural
descending/ascending bridging between the strata, which can be conceptualized
via Cohen’s gnomon. But, what if there is no intrinsic way of distinguishing
between strata and bridges? Reciprocally put, the distinction between strata and
bridges is meaningful only under the specification of a Boolean domain. If two
complementary gnomons pertaining to two complementary Boolean domains are
utilized simultaneously the only way that logical conjugation can function is by
reversing the role of strata and bridges with respect to these two gnomons, such that
a closure is achieved. Algebraically, the only way that these two complementary
gnomons may be glued together simultaneously is by temporarily suspending the
rigid distinctions between strata and bridges, and just iterating the process of logical
conjugation with respect to the composition of these two gnomons until we reach a
closure. The closure corresponds to a non-trivial cycle of compositions. It turns out
that the formation of this cycle is equivalent to composite logical conjugation where
the levels of one gnomon correspond to the bridges of its complementary gnomon.
We present this simple algebraic argument as follows:

A logical conjugation is generally expressed in the symbolic form

X = S ◦ A ◦ S−1

which defines X to be conjugate to A under S, where S−1 is considered to be the
conceptual inverse of S. Now we consider the first two symbols of the conjugation
S ◦ A ◦ S−1, viz. S ◦ A, as a string, and extend this string by adding new symbols
at the end, such that every three consecutive symbols form a logical conjugation or
equivalently a metaphor. We iterate this operational procedure until we generate a
cycle, viz. until the last two symbols are S ◦ A again that we started with. In more
detail we obtain successively:

S ◦ A ��� S ◦ A ◦ S−1 ��� S ◦ A ◦ S−1 ◦ A−1 ���
��� S ◦ A ◦ S−1 ◦ A−1 ◦ S ��� S ◦ A ◦ S−1 ◦ A−1 ◦ S ◦ A

Since the iteration has produced the string S ◦A ◦ S−1 ◦A−1 ◦ S ◦A, where the last
two symbols are S ◦A again, that we started with, we have generated a closure, viz.
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a nontrivial conjugation cycle that in linear form reads as follows:

S ◦ A ◦ S−1 ◦ A−1 := [S,A] :=� (S,A) := S � A

By a slight abuse of notation we may identify the complementary gnomons by the
symbols S, A correspondingly, whence their composition or gluing is denoted by
the conjugation cycle S � A. Note that the order of composition cannot be reverted,
viz. S � A �= A � S, viz. the operation of composition of complementary gnomons
is a non-commutative operation. Thus, it is significant to impose an orientation on
the conjugation cycle, which reflects the specified cyclic order of composition.

In the case that S, A are elements of a non-commutative group, the composition
[S,A] is referred to as the commutator of S, A. In this case the symbols S−1 and A−1

stand for the group-theoretic inverses of S, A, respectively. This observation leads
to the conjecture that the complementarity of conjugate Boolean domains pertains
to their Boole group theoretic structures, or else it is of a group-theoretic origin. A
Boole group is a group-structure on the topological spectrum of a Boolean algebraic
domain. Thinking of two complementary Boolean group domains as local patches of
a non-abelian global structure the notion of a conjugation cycle provides a natural
method of logically gluing them together. Before we examine the aspects of this
logical gluing by conjugation cycles of complementary gnomons it is instructive
to start from a reciprocal viewpoint and leverage the existing knowledge about
the structure of groups. This will provide the method to locate the existence of
complementary gnomons from a group-theoretic perspective. The central notion of
significance for our problem has to do with the Galoisian notion of solvability of
a group, which we have introduced from our perspective in Sect. 4.6. In particular,
the understanding of Galois theory of groups by the strategy of logical conjugation
uses the gnomon of solvability. This will be explained in more detail in the sequel,
but for the time being it is enough to convey the basic idea.

The triumph of Galois theory (Cox 2004) is based on the theorem that a
polynomial equation is solvable by radicals if and only if the corresponding Galois
group of the equation is solvable. Now a general group is solvable if it can be derived
by the method of group extensions of abelian (commutative) groups. Reciprocally,
a solvable group is a group whose derived series terminates in the trivial subgroup.
Intuitively, the derived series is a stratification into group levels together with a
descending staircase among these strata formed by identifying each subgroup in
the descending series with the commutator subgroup of the previous one. In turn,
the commutator subgroup of a group is the group generated by all the commutators
of this group. The importance of the commutator subgroup of a group rests on the
fact that it provides the most economical way (technically it is the smallest normal
subgroup) such that the quotient of the initial group by the commutator subgroup is
an abelian group. Thus, a group is solvable if by descending into lower and lower
subgroup strata by division with the commutator subgroup we end up with the trivial
subgroup.

It is well-known that all abelian groups are solvable, as well as that all nilpotent
groups are solvable. The first is trivial, but the second is very important, for example,
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in quantum mechanics. It is worth explaining the latter in more detail. A nilpotent
group is a group that may be thought of as an almost-abelian group, in the sense
that the commutator subgroup is almost trivial. For instance, we know that in
quantum mechanics we have complementary Boolean algebraic domains, like the
position and momentum ones. The bounded form of these conjugate observables (or
Weyl form) are constrained to obey the canonical commutation relations expressed
by means of the infinitesimal Planck’s constant, and hence almost commute.
These give rise to a nilpotent group, called the Heisenberg group (Weyl 1950).
The Heisenberg group is of fundamental importance in quantum mechanics and
essentiality constitutes the solvability of the theory in group-theoretic terms. In other
words, the non-commutativity induced by any two conjugate or complementary
Boolean domains in quantum mechanics is circumvented in an almost-commutative
manner by the nilpotency of the Heisenberg group, and thus the solvability of this
group. This circumvention is possible in all cases that we have a vector space
structure equipped with a symplectic form (Mallios and Zafiris 2016). In other
words, the structure of a nilpotent group, induced symplectically, transforms an
intrinsic unsolvability of two conjugate domains into a solvable case. From the
perspective of logical conjugation this amounts to considering conjugation cycles as
infinitesimally small, and thus behaving like covariant differentials or connections
in a precise differential geometric sense. This will be treated in detail in a separate
paper.

The above analysis invites for a search of the source of intrinsic unsolvability. It
is enough to consider the case of finitely generated linear groups, viz. matrix groups
which are used as a concrete representation of abstract groups. There we find the
astonishing result, called Tits alternative, that a finitely generated linear group is
either virtually solvable, meaning that it contains a solvable subgroup involving
a finite descending staircase, or it contains a non-abelian (non-commutative) free
subgroup in two generators (de la Harpe 2000). Thus, we are able to locate the
free group in two generators, denoted by �2, as the actual source of intrinsic
unsolvability. Intuitively speaking, the existence of �2 is associated with non-trivial
and non-reducible logical conjugation cycles between two complementary Boolean
domains. The only way that non-solvability can be traded with or circumvented
is by nilpotency, like in the case of the Heisenberg group in quantum mechanics.
We remind that there always going to exist uncertainty relations between the
observables of two complementary Boolean domains. If the associated constant
of interrelation can be made either infinitesimally small or reciprocally very big,
then the formed logical conjugation cycles vanish in higher order iterations and
the complexity is reducible. It is not an accident that both of our fundamental
physical theories, viz. the theory of relativity and quantum mechanics involve this
type of constants between conjugate Boolean domains. Thus, from the perspective
of logical conjugation, the free group in two generators is the source of logical
conjugation cycles and the group-theoretic property of nilpotency is the golden
mean between non-commutativity and commutativity.

Therefore, it is of high priority to examine in detail the non-abelian free group
�2 and provide particular examples of the manifestation of its action. It will turn
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out that the notion of a conjugation cycle exemplified by the group �2 has a
particularly simple representation in three-dimensional space by means of the link
topology of the Borromean rings (Zafiris 2016). This is going to be our anchor for
the development of our geometric intuition in relation to the action of the group
�2. Conversely, difficult problems in the topological theory of links escaping our
geometric grasp can be resolved by utilizing the structure of the group �2. This
has been already accomplished in the previous chapter, where it has been proved
that the Borromean rings and their higher order generalizations, called Brunnian
links, constitute the primes in realizing all possible types of topological links. A
very interesting aspect of this treatise is that all the constructions can be performed
inside the free group �2. The reason is due to the surprising and counterintuitive
result that the non-abelian free group in two generators contains copies of all other
non-abelian free groups in any finite number of generators as finite index subgroups!
Thus, the complexity of non-reducible logical conjugation cycles and their iterations
generated by two complementary (in some appropriate sense) gnomons subsumes
the whole complexity we may get from any number of gnomons.

We also argue that the group �2 is important in relation to algorithmic informa-
tion theory. There are two reasons on which we base our claim. The first is based
on the fact that elements of �2 can be assigned complexity lengths. Since every
element of �2 can be uniquely expressed as a freely reduced word in the generators
and their inverses, we may simply define the length of an element as the number
of terms in this freely reduced expression. This notion of length has the property
that the length of an element equals the length of its inverse element in this group.
The second is related with the fact that the group �2 has exponential growth rate
(de la Harpe 2000). A deep result of Gromov shows that a nilpotency circumvention
reduces the growth rate to a polynomial one.

The simplest way to describe the concept of a free group is the following: We
consider the set of elements S = {x1, x2, . . . xn} in a group G. A word or string w ∈
{S∪S−1}� is said to be freely reduced if it does not contain a substring consisting of
an element adjacent to its formal inverse. For instance, the string w = xyx−1y−1 =
[x, y] is freely reduced, while z = xy−1yxy is not. The group G is a non-abelian
free group with basis S if S is a set of generators for G and no freely reduced
string in the xi and their inverses represent the identity of the group. The rank of
a free group with basis S is the number of elements of S. We denote a free group
of rank 2 by �2. It can be easily shown that all free groups of the same rank are
isomorphic replicas of each other. So we may identify all of them and talk of the
non-abelian free group on two generators �2. In the sequel, we will uncover the
topological semantics implicated by the action of the group �2. In this way, the
notion of a logical conjugation cycle can be associated and implemented by a precise
topological link, which turns out to be the Borromean rings. The significance of this
result is that whenever a copy of the group �2 is identified within an algebraic
structure, there always exists a Borromean type of topological connectivity between
the represented elements, which gives rise to a non-trivial logical conjugation cycle.
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4.12 Representation of Logical Conjugation Cycles
by the Borromean Link Topology

From a topological viewpoint the Borromean rings constitutes a link formed by
an interlocking family of three loops (tame closed curves), such that if any one
of them is cut at a point and removed, then the remaining two loops become
completely unlinked (Kawauchi 1996; Lindström and Zetterström 1991; Debrunner
1961; Cromwell 1998). In more precise terms, the Borromean link is characterized
topologically by the property of splittability as follows: The Borromean link is a
non-splittable 3-link (because it consists of three loops), such that every 2-sublink of
this 3-link is completely splittable. It is clear that it is a non-splittable 3-link because
not even one of the three loops, or any pair of them, can be separated from the rest
without cutting. A 2-sublink is simply any sub-collection of two loops obtained
by erasing the loop that does not belong to this sub-collection. Since the Borromean
link is characterized by the property that if we erase any one of the three interlocking
loops, then the remaining two loops become unlinked, it is clear that every 2-sublink
of the non-splittable 3-link is completely splittable.

The topological information incorporated in the characterization of the
Borromean link can be encoded algebraically by unfolding carefully the non-
commutative group-structure of based oriented loops in a 3-d space representation.
First, we consider an unknotted tame closed curve in three-dimensional space. Since
any such curve can be continuously deformed to a topological circle, it is enough to
think of a circle in 3-d space, denoted by A. Second, we consider a based oriented
loop in 3-d space, which may pass through this circle A a finite number of times,
each one with a prescribed orientation. A based loop means simply that it starts
and ends at a fixed point p of the 3-d space. The orientation of the loop can be
thought of in terms of an observer, which is fixed at the point p, such that: If the
loop passes through the circle one time with direction away from the observer, it
is denoted by α1, whereas if it passes one time with direction toward the observer,
it is denoted by α−1. We note that any other loop with the same properties can be
continuously deformed to the loop α. Thus, the algebraic symbol α actually denotes
the equivalence class [α] of all loops of kind α, passing through the circle A once
with the prescribed orientation. Taking into account the algebraic encoding of based



94 4 Borromean Link in Logic A Metaperspective on Algorithmic Information:. . .

oriented loops in relation to circles in 3-d space, we can define the composition of
two oriented loops under the proviso that they are based on the same point p in 3-d
space. Notice that the composition operation α ◦ β of the p-based oriented loops α
and β in relation to circles A and B correspondingly is not a commutative operation,
meaning that the order of composition is not allowed to be reversed. Clearly, the
rule of composition produces a based oriented loop α ◦ β in 3-d space in relation to
the circles A and B in the prescribed order. We think of the composition rule α ◦ β

as the non-commutative multiplicative product of the oriented loops α and β based
at the same point p in 3-d space, which we denote simply as αβ. It is immediate to
verify that the above defined multiplication is an associative operation.

Having established the closure of the elements of the generic form χ under non-
commutative associative multiplication as previously, we look for the existence of
an identity element, as well as for the existence of inverses with respect to this
operation. There is an obvious candidate for each based oriented loop α, namely the
loop α−1, where the orientation has been reversed. If we consider the compositions
α ◦ α−1, α−1 ◦ α we obtain in both cases as a multiplication product the based loop
at the same point, which does not pass through any circle at all. Thus, we name
the latter loop as the multiplicative identity 1 in our algebraic structure, such that
αα−1 = α−1α = 1. It is also easy to verify that 1α = α1 = 1. We conclude
that the set of symbols of the generic form χ representing based oriented loops in
relation to circles X, endowed with the non-commutative multiplication operation of
composition product of loops based at the same point, form the algebraic structure
of a non-commutative group, denoted by �.

It is instructive to emphasize that the equality sign in the non-commutative group
� is interpreted topologically as an equivalence relation of p-based oriented loops
under continuous deformation. By making use of the multiplication operation in
� we may form any permissible string of symbols in this group, which can be
reduced into an irreducible form by using only the group-theoretic relations αα−1 =
α−1α = 1, αα = α2, and so on. Thus, if we consider only two p-based oriented
loops, denoted by the symbols α and β respectively with the prescribed orientation,
we form a free group in two generators, denoted by �2.

The property of irreducibility of a string of symbols in the non-commutative
group �2 is the guiding idea for the algebraic encoding of the Borromean link in
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terms of the structure of �2. The crucial observation is that algebraic irreducibility
of strings in �2 can be used to model the topological property of non-splittability
of a 3-link, where complete splittability of all 2-sublinks is encoded by the unique
identity element of �2. In particular, the group-theoretic commutator induced by
the generators of �2:

[α, β−1] = αβ−1α−1β

produces an irreducible non-commutative string of symbols in �2. This string
represents a new based loop γ as a product loop composed by the ordered
composition of the based oriented loops α ◦β−1 ◦α−1 ◦β. We call the product loop
γ the Borromean loop and the formula or multiplicative string αβ−1α−1β in �2 the
Borromean loop formula. Thus, we have obtained a topological representation of a
logical conjugation cycle!

The algebraic irreducibility of the commutator [α, β−1] in the group �2 encodes
the topological non-splittability property of the Borromean 3-link. We notice that
deletion of both α and α−1 (corresponding to removal of the circle A) reduces
the formula to the identity 1 (and the same happens symmetrically for both
β and β−1). This fact models algebraically in the terms of �2 that every 2-
sublink of the Borromean 3-link is completely splittable. We conclude that the
topological information of the Borromean 3-link can be completely encoded in
terms of the algebraic structure of the non-commutative multiplicative free group
in two generators �2. In particular, the group-theoretic commutator [α, β−1] in �2,
encodes algebraically the gluing condition of the based oriented loops α and β−1

(with respect to the circles A and B respectively in the prescribed orientation), and
therefore the non-splittability of the Borromean 3-link, together with the complete
splittability of all 2-sublinks of this 3-link.
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4.13 Logical Conjugation Cycles and Computability
on the Sphere: Revisiting Chaitin’s Gnomon

The starting point of this investigation is based on the following profound remark
of Chaitin (2007, p. 67): “A key technical point that must be stipulated in order
for � to make sense is that an input program must be self-delimiting: its total
length (in bits) must be given within the program itself. (This seemingly minor
point, which paralyzed progress in the field for nearly a decade, is what entailed
the redefinition of algorithmic randomness.) Real programming languages are self-
delimiting, because they provide constructs for beginning and ending a program.
Such constructs allow a program to contain well-defined subprograms, which may
also have other subprograms nested in them. Because a self-delimiting program is
built up by concatenating and nesting self-delimiting subprograms, a program is
syntactically complete only when the last open subprogram is closed. In essence
the beginning and ending constructs for programs and subprograms function
respectively like left and right parentheses in mathematical expressions.

If programs were not self-delimiting, they could not be constructed from
subprograms, and summing the halting probabilities for all programs would yield
an infinite number. If one considers only self-delimiting programs, not only is �

limited to the range between 0 to 1 but also it can be explicitly calculated in the
limit from below.”

Our main interest in this section focusses on the metaphor considering the
beginning and ending constructs of self-delimiting programs and subprograms in
analogy to the left and right parentheses in mathematical expressions. It is true
that our linear representation of strings or words implicates the self-delimiting
property by means of left and right parentheses. A natural generalization would be
to complete each such pair of parentheses in the 1-dim line to a circle in the 2-dim
plane, or equivalently the 1-d complex line. This extremely simple generalization
generates immediately two conjugate domains, where each one of them corresponds
to the choice of orientation on the circle. If we do not impose any orientation
on a circle, it is like we work in the modular arithmetic Z2, viz. we recover the
bit representation of linear strings. Even better, we may complete each pair of
parentheses in the 1-dim line to a circle in the one-point compactification of the
1-dim complex line, viz. on the 1-dim complex projective space, or equivalently
the Riemann sphere S2. Can we imagine representing self-delimiting programs by
means of circular strings on the sphere S2?

The choice of the sphere S2 is not accidental. Without loss of generality we
may consider the unit sphere S2, that is imply the normalization according to which
all points lying on the sphere are of distance 1 from the origin. The unit 2-sphere
S2 constitutes the space of pure states, or equivalently rays, of a 2-level quantum
mechanical system, called currently a qubit. The unit 2-sphere may be thought
of as embedded in the usual three-dimensional space R

3. The Hilbert space of
normalized unit state vectors of a qubit is the 3-sphere S3, and thus the unit 2-sphere
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is considered as the base space of the topological Hopf fibration (Urbantke 2003):

S1 ↪→ S3 � S2

We note that each pair of antipodal points of S2 corresponds to mutually orthogonal
state vectors. The north and south poles are chosen to correspond to the standard
orthonormal basis vectors |0〉 and |1〉 correspondingly. In the case of a spin- 1

2
system, these simply correspond to the spin-up and spin-down states of this system.

We consider the unit sphere S2 as the set of points of three-dimensional space
R

3 that lie at distance 1 from the origin. Then, the non-commutative group SO(3)
denotes the group of rotation operators on R

3 with center at the origin, viz. linear
transformations from R

3 to R
3 represented as 3 × 3 matrices with determinant one.

These are called orthogonal matrices, characterized by the fact that their columns
form an orthonormal basis of R3. Rotations around an axis going through the origin
are the isometries of three-dimensional Euclidean space R3 leaving the origin fixed.
Note that a 3 × 3 orthogonal transformation preserves the inner product for any pair
of vectors in R

3, and moreover it is an isometry of R3 that takes the unit sphere S2

to itself.
In this context, we ask the following question: Does there exist a representation of

the non-abelian free group in two generators �2 on the unit sphere S2, which lifts to
a unitary representation on S3? We remind that the existence of such a representation
would imply the action of non-trivial logical conjugation cycles on S2 and S3,
respectively. Moreover, these logical conjugation cycles would be representable by
means of the Borromean link topology. Such a representation definitely exists if
we are able to locate a subgroup of the non-commutative group SO(3), which is
isomorphic to �2.

We will show in the sequel that this is indeed the case. The proof is based
on the observation that there actually exist rotation operators A and B about two
independent axes through the origin in R

3 generating a non-commutative subgroup
of SO(3), which is isomorphic to the free group �2. In other words, there exists
an isomorphic copy of �2 in SO(3) generated by two independent rotations A and
B. The term independent refers to the requirement that all rotations performed by
sequences of A and B and their inverses are distinct strings in �2.

Actually, we realize that most pairs of rotations in SO(3) are independent in the
above sense, so that even by picking A and B randomly would do. For instance, one
could consider two counterclockwise rotations A and B about the z-axis and the x-
axis respectively of the same angle arccos(3/5). The proof is based on showing
that no reduced string in the symbols A and B and their inverses collapses to
the identity transformation (3 × 3 identity matrix). Intuitively, if we choose two
counterclockwise rotations A and B about the z-axis and the x-axis of the same
angle, then this specific angle needs to be an irrational number of degrees. More
precisely, given an initial orientation, if the specified angle is an irrational number of
degrees, then none of the distinct strings of rotations in �2 performed by sequences
of A and B and their inverses can give back the initial orientation. Thus, no reduced
word in �2 collapses to the identity transformation.
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The existence of an isomorphic copy of �2 in SO(3) has the following
consequence: Each rotation belonging to the non-commutative free subgroup �2
of SO(3) fixes two points in the unit sphere S2, namely the intersection of S2 with
the axis of rotation passing through the origin. If we take the union of all these
points, they form a countable set of points. Then, not only there exists an action of
�2 on the unit sphere S2 (as a subgroup of SO(3) generated by A and B) but this
action is actually free on S2 modulo the countable set of fixed points K .

Thus, we can partition S2\K into a disjoint union of orbits for the action of
�2. If we choose a base point for an orbit, we may identify this orbit with �2
due to the freeness of the action. Moreover, if a countable collection K of points
as above is removed from S2, they can be restored by rotations around an axis
through the origin which has zero overlap with K . In this way, the action of the
group �2 via strings of rotation operators allows to resolve the whole unit sphere
S2. The crucial point again is that the algebraic irreducibility of the commutator
[A,B] of the rotations A and B generating an isomorphic copy of �2 in SO(3)
expresses a non-trivial logical conjugation cycle. In turn, such a logical conjugation
cycles express the fundamental property of topological Borromean non-splittability
or non-separability of these three rotations belonging to the subgroup of SO(3) that
is isomorphic with �2.

Most important, this interpretation provides a topological justification of the fact
that one cannot specify a finitely additive rotation-invariant probability measure
on all subsets of the unit sphere S2 simultaneously. In the same vein of ideas, if
we consider S2 embedded in 3-dim space R

3, we deduce that it is not possible
to specify a finitely additive measure on R

3 that is both translation and rotation
invariant, which can measure every subset of R3, and which gives the unit ball a
non-zero measure. This explains why the Lebesgue measure, which is countably
additive and both translation and rotation invariant, and additionally, gives the unit
ball a non-zero measure, cannot measure every subset of R

3. Thus, it has to be
carefully restricted to only measuring subsets that can be Lebesgue measurable.

According to the analysis presented in Sect. 4.11, since the group of rotation
operators SO(3) contains an isomorphic copy of the free non-commutative group
�2 is unsolvable.

An immediate consequence of the above is that the group of 2×2 complex unitary
matrices with unit determinant SU(2) is also unsolvable, that is it also contains
an isomorphic copy of �2. The reason is that topologically, the simply-connected
special unitary group SU(2) is a covering space of the non-simply connected group
of rotations SO(3), and in particular it is a double cover. More concretely, there
exists a two-to-one surjective homomorphism of groups:

� : SU(2) � SO(3)

whose kernel is given by Ker� = Z2 = {+1,−1}.
Hence, it follows that there exists an isomorphic copy of �2 in SU(2). More

precisely, if A and B are rotations generating an isomorphic copy of �2 in SO(3),
and � : SU(2) � SO(3) is the covering projection, then A and B generate a free
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subgroup of the form �2 in SU(2), for any A and B with �A = A and �B = A.
Since SU(2) is a double cover of SO(3) there exist exactly two elements of the
form A, namely U and −U such that �U = �(−U) = A (the same holds for B
respectively).

We conclude that there exists a representation of the group �2 on the unit sphere
S2, which lifts to a unitary representation on S3. The representation of the group �2
on the unit sphere S2 is given by the free subgroup of rotations of SO(3) generated
by A and B according to the above. Concomitantly, this representation lifts to a
unitary representation on S3 by the free subgroup of unitary operators of SU(2)
generated by A and B. Thus, the Hilbert space of normalized unit state vectors
of a qubit or of a spin- 1

2 system carries a unitary representation of the group �2.
This means that the algebraic irreducibility of the commutator [A,B] of the unitary
operators A and B generating an isomorphic copy of �2 in SU(2) expresses non-
trivial conjugation cycles. Moreover, since the action of the group �2 by strings of
rotations in two generators allows to resolve S2, such that the same lifted action
resolves S3 as well, by strings of corresponding unitary operators, we conclude
that the Borromean link topological connectivity by means of conjugation cycles
is transferred via these actions to the space of rays S2 and the space of unit state
vectors S3 of a qubit. This is the crux of the non-classical behavior of a qubit and
the problem is if the existence of non-trivial conjugation cycles can be turned to a
new computational possibility.

We will outline the first steps towards implementing such a computational
paradigm. For this purpose, our guiding principle will be the implementation of
Chaitin’s uncertainty relation, formulated in Sect. 4.10 in the present context. We
remind that the form of Chaitin’s uncertainty relation reads:

(∀n)[I ([�]n) ≥ (n − k)]

where the constant k is interpreted as setting the bound of the simultaneous
determination of two conjugate observables, viz. the random real � and the
program-size complexity length measure I .

We have shown that there exist isomorphic copies of the group �2 in the
groups of rotation operators SO(3) and the group of unitary operators SU(2)
realizing logical conjugation cycles, or equivalently Borromean loops, on S2 and
S3 respectively. Since the group SU(2) is a subgroup of the group GL(2,C), viz.
the matrix group of 2 × 2 matrices with complex coefficients, and of the group
SL(2,C), viz. the group of 2 × 2 matrices with complex coefficients and unit
determinant, they also contain a copy of the group �2. So we are going to identify
two complex matrices acting as the generators of this copy of �2 using Chaitin’s
uncertainty relation in the present setting. For this purpose, we assume that there
exists a positive integer N playing the role of string length measure, such that for all
m ≥ N , the powers Gm and Hm, where G, H are complex matrices, generate a copy
of �2. This is possible using the method of dominant eigenvalues and dominant
eigenvectors of matrices. We remark that for this purpose we have to diagonalize
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these matrices, a technique which is also based on logical conjugation. In particular,
we look for two matrices G and H , such that: G has the dominant eigenvalue
μ corresponding to a dominant eigenvector u. This means that the eigenspace of
G − μI is one-dimensional and all other eigenvalues of G have modulus less than
|μ|. Similarly, let H have the dominant eigenvalue ν corresponding to a dominant
eigenvector v. Finally, we denote the dominant eigenvalues and corresponding
dominant eigenvectors of G−1 and H−1 by ρ, w, and υ, z, respectively. Next, we
consider the dominant eigenvectors as points on the 1-dim complex projective space,
viz. equivalently on S2. Then, the dominant eigenvalues/eigenvectors implement
the requirement that there exist disjoint open sets containing the points u, v, w,
z, denoted by U , V , W , Z, respectively, such that: There is some m ≥ N with
the property that Gm sends each of these open sets to U , and correspondingly for
the others, viz. Hm to V , G−m to W and H−m to Z. Now, we think of a finite
state computer, with four states labelled by U , V , W , Z and an alphabet Gm := a,
Hm := b, G−m := a−1, H−m := b−1 and transitions rules as described above. It is
clear that the matrices a and b generate now a copy of the free group �2, and thus
we obtain logical conjugation cycles for the formation of strings using our alphabet
with the prescribed transition rules.
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Chapter 5
Borromean Link in Relativity Theory
What Is the Validity Domain of Einstein’s
Field Equations? Sheaf-Theoretic
Distributional Solutions over
Singularities and Topological Links
in Geometrodynamics

5.1 Centennial Perspective on General Relativity

One hundred years after Einstein’s initial conception and formulation of the General
Theory of Relativity, it still remains a vibrant subject of intense research and
formidable depth. In this way, during all these years our understanding of gravitation
in differential geometric terms is being continuously refined. We believe that one of
the highest priorities of a centennial perspective on General Relativity should be a
careful re-examination of the validity domain of Einstein’s field equations. These
equations constitute the irreducible kernel of General Relativity and the possibility
of retaining the form of Einstein’s equations, while concurrently extending their
domain of validity, is promising for shedding new light to old problems and guiding
toward their effective resolution. These problems are primarily related with the
following perennial issues: (a) the smooth manifold background of the theory, (b)
the existence of singular loci in spacetime where the metric breaks down or the
curvature blows up, and (c) the non-geometric nature of the second part of Einstein’s
equations involving the energy-momentum tensor. It turns out that these problems
are intrinsically related to each other and require a critical re-thinking of the initial
assumptions referring to the domain of validity of Einstein’s equations.

In this communication, first of all, we would like to consider the problem of
constructing distinguishable extensions of the smooth spacetime manifold solution
space of Einstein’s equations incorporating singularities by taking into account
recent developments in differential geometry. These developments pertain to the
possible generalization of the technical framework of differential manifolds, on
which the formalism and interpretation of General Relativity is based on, to non-
smooth or singular topological spaces by applying concepts and methods of sheaf
theory and sheaf cohomology. In a nutshell, it turns out that all the usual local
constructions of differential geometry, re-interpreted sheaf-theoretically, do not
require the notion of a global smooth manifold, but are based on much weaker
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conditions of an essentially cohomological nature. The physical interpretation of
these findings, referring to appropriate extensions of Einstein’s equations over
singular domains, is tantamount to the viable possibility of extending the covariant
formulation of Einstein’s equations using continuous distribution-like or even non-
smooth sheaves of coefficients for all the involved tensorial physical quantities.

Second, we would like to show explicitly how certain generalized distribution-
like solutions of partial differential equations, which fit appropriately in the above-
mentioned sheaf-theoretic framework of differential geometry, bear significance in
relation to obtaining singularity-free solutions of Einstein’s equations in extended
domains. We scrutinize the generation of these distribution-like algebra sheaves of
coefficients from a physical perspective and explain the means of their construction
in terms of residue classes of sequences of smooth functions modulo the information
of singular loci encoded in suitable ideals.

Finally, we consider the application of these distribution-like solution sheaves
in Geometrodynamics. The geometrodynamical formalism is very instructive in
relation to the proposed extensions because it leads to the conclusion that active
positive gravitational mass may emerge from purely topological considerations
taking into account the constraints imposed by Einstein’s field equations in the
vacuum. In this manner, we may re-access fruitfully Wheeler’s insights referring
to “mass without mass” and “charge without charge” as well as re-evaluate the
notion of wormhole solutions from a cohomological point of view. In this context,
we propose to model topologically circular boundaries of singular loci in three-
dimensional space in terms of topological links. It turns out that there exists
a universal topological link bearing the connectivity property of the Borromean
rings. The cohomological expression of the Borromean link points to its physical
interpretation as a higher order wormhole solution of the field equations.

5.2 General Relativity from the Perspective of Sheaf Theory

In the standard formulation of General Relativity, the spacetime event structure
is represented by means of a connected, four-dimensional real smooth manifold
X. The chronogeometric relations on the event manifold X are expressed in
terms of a pseudo-Riemannian metric of Lorentzian signature, called the spacetime
metric. The chronogeometric relations are not fixed kinematically a priori, like in
all predecessor classical field theories, but they should be obtained dynamically
in terms of the metric as a solution of Einstein’s field equations depending on
the energy-momentum matter field distributions. In this manner, all the pertinent
chronogeometric relations defined on a four-dimensional smooth manifold, endow-
ing it with the structure of a spacetime manifold, become variable. The dynamical
constitution of these relations by means of the field equations requires the imposition
of a compatibility requirement relating the metric tensor, which represents the
spacetime geometry, with the affine connection, which represents the differential
evolution of the gravitational field. A spacetime manifold is considered to be
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without singularities if the coefficients of the metric tensor field are smooth and
the manifold X is geodesically complete with respect to the metric. In this case, all
timelike geodesic curves can be extended to arbitrary length in the smooth spacetime
manifold X. From a physical viewpoint, according to the above requirements, the
notion of localization at a spacetime point-event is sensible only if the coefficients
of the metric tensor field are smooth in an open neighbourhood of this point.

Algebraically speaking, a real smooth manifold X can be reconstructed entirely
from the R-algebra C∞(X) of smooth real-valued functions on it, and in particular,
the points of X are derived from the algebra C

∞(X) as the R-algebra homomor-
phisms C∞(X) → R. This important observation in relation to General Relativity
has been first proposed and explicated by Geroch in the form of Einstein algebras
(Geroch 1972). From a modern mathematical perspective, it is a consequence of the
Gelfand representation theorem applied to the case of smooth manifolds (Mallios
1993a,b). In this way, manifold points constitute the R-spectrum of the algebra
of smooth functions C

∞(X), being isomorphic with the maximal ideals of this
algebra. Notice that the R-algebra C∞(X) is a commutative topological algebra that
contains the field of real numbers R as a distinguished subalgebra, encapsulating
the predominant physical assumption that our means of characterizing events is
conducted by evaluations in the field of real numbers R.

The algebraic viewpoint is instructive because it makes clear that in the standard
differential geometric setting of General Relativity, all the tensorial physical
quantities are coordinatized by means of the commutative R-algebra of globally
defined smooth real-valued functions C∞(X). Hence, the background of the theory
remains fixed as the R-spectrum of the commutative topological algebra C

∞(X),
supplying smooth coefficients for the coordinatization of physical quantities. The
points of the manifold X, although not dynamically localizable degrees of freedom
in General Relativity, serve as the semantic information carriers of spacetime
events. More precisely, the points are marked on a smooth manifold in terms of
global evaluations of the smooth algebra C

∞(X) in the field of real numbers. The
subtlety of General Relativity is exactly that manifold points are not dynamically
localizable entities in the theory. More precisely, manifold points assume an indirect
reference as indicators of spacetime events, only after the dynamical specification
of chronogeometrical relations among them, as particular solutions of the generally
covariant field equations. Clearly, the existence of singular loci in spacetime
where the metric breaks down in terms of smooth function coefficients forbids the
association of smooth manifold points with spacetime events. What remains is an
emergent notion of an event horizon of a singular locus where spacetime information
may be encoded appropriately.

The dynamical variability of the coefficients coordinatizing all tensorial physical
quantities requires the action of a covariant differential operator to be applied
upon them. This takes place via the notion of an affine connection, which is
expressed as a covariant derivative acting on these smooth coefficients. The result
of differentiation is encoded in C

∞(X)-modules over the algebra C
∞(X), called

modules of differential forms � and their duals � = Hom(�,C∞(X)), as well as
their higher powers constructed by means of exterior algebra.
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In the same algebraic context, the role of a metric geometry on a smooth
manifold, as related with the above modules of differential forms and their duals
in General Relativity, pertains to the representability of spacetime events by points
of the manifold, which in turn necessitates their coordinatization in terms of real
numbers. This is tantamount to the requirement that all types of differentially
variable quantities should possess uniquely defined dual types, such that their point-
event representability can be made possible by means of real numbers. This is
precisely the role of a geometry induced by a metric. Concretely, the spacetime
metric assigns a unique dual to each differentially variable quantity, by effecting
an isomorphism between the modules � and � := Hom(�,C∞(X)), that is
g : � � �, such that df �→ vf := g(df ).

The important thing to notice is that all these constructions can be performed
strictly locally, that is by using only sections defined in the neighborhood of
points. This is an implication that differential geometric constructions should be
expressed not in terms of global algebra coefficients, but in terms of sheaves of
coefficients defined locally. Then, the task is to study the maximal extendibility of
these constructions from the local to the global level, which is technically expressed
via the theory of sheaf cohomology.

In the context of General Relativity, the modelling of the dynamical variability,
caused by the gravitational field by means of the Levi-Civita connection, from a
local sheaf-theoretic perspective, is becoming even more relevant in view of the
spacetime metric compatibility of this connection and the associated solution space
of the theory. Einstein’s equations are formulated in terms of non-linear partial
differential equations involving smooth functions, playing the role of local coef-
ficients coordinatizing the metric tensor, the Ricci tensor, and the scalar curvature.
The solution of these equations in terms of the spacetime metric determines the
local metrical properties of the spacetime manifold around any point, depending
on the energy-momentum tensor. Notwithstanding this, all the global cosmological
predictions of the theory are obtained not from these local solutions of the field
equations per se, but from the possibility of continuation of some local solution to
an extended region. The method of continuation or extension of some solution from
the local to the global level is mathematically of a sheaf-theoretic nature.

In view of the problem of singularities in General Relativity, this is a clear
warning that distribution-like sheaves of coefficients may be more appropriate for
the continuation of some local solution over extended regions when the smooth ones
become ill-defined over singular loci. It is a natural requirement that these sheaves of
coefficients contain the standard smooth ones as a subalgebra, or equivalently there
is an algebra sheaf embedding of the smooth coefficients into the generalized ones.
It is expected that distribution-like sheaves of coefficients can prevent the breaking
down of the metric at singularities, and therefore, provide the means to extend the
domain of validity of the field equations, under the proviso that the same tensorial
equations can be re-expressed covariantly in terms of these generalized sheaves of
coefficients.
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5.3 Cohomological Conditions for Extending the Smooth
Sheaf of Coefficients in General Relativity

Cohomology theory constitutes a sophisticated algebraic-topological method of
assigning global invariants to a topological space in a homotopy-invariant way.
The cohomology groups measure the global obstructions for extending sections
from the local to the global level, for instance, extending local solutions of a
differential equation to a global solution. The differential geometric mechanism
of smooth manifolds is essentially based on the setup of the de Rham complex in
terms of locally defined smooth coefficients. In particular, de Rham cohomology
measures the extent that closed differential forms fail to be exact, and thus the
obstruction to integrability. In this context, the central role is played by the lemma
of Poincaré, according to which every closed differential form is locally exact in
terms of smooth coefficients. The de Rham theorem asserts that the homomorphism
from the de Rham cohomology ring to the differentiable singular cohomology
ring, given by integration of closed forms over differentiable singular cycles, is
a ring isomorphism. The sheaf-theoretic understanding of this deep result came
after the realization that both the de Rham cohomology and the differentiable
singular cohomology are actually special isomorphic cases of sheaf cohomology. In
particular, it has been also crystalized that the de Rham cohomology of a differential
manifold depends only on the property of paracompactness of the underlying
topological space. In turn, the paracompactness property, which is required in the
definition of a differential manifold can also be characterized cohomologically via
the acyclic behavior of soft sheaves, like the sheaf of smooth functions. In other
words, soft sheaves, namely sheaves whose sections over any closed subset can be
extended to a global section, are acyclic over a paracompact topological space.

The re-interpretation and generalization of the standard de Rham cohomology
theory on manifolds in sheaf-cohomological terms is physically significant, because
it provides an intrinsic way to set up and solve differential equations expressing
the dynamical variability of physical quantities. The concepts and technical tools
of sheaf cohomology have been developed through the groundbreaking work of
Grothendieck in geometry (Grothendieck 1957, 1958). What should be initially kept
in mind for physical applications is that the natural argument of a cohomology the-
ory is a pair consisting of a topological space together with a sheaf of commutative
algebras defined over it, rather than just a space.

It is instructive to include the basic definition characterizing the notion of a sheaf
of sets on a topological space X, which also gives rise in a direct way to the notion
of a sheaf of commutative algebras over X that we will employ in the sequel:

A presheaf F of sets on a topological space X consists of the following
information:
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1. For every open set U of X, a set denoted by F(U), and
2. For every inclusion V ↪→ U of open sets of X, a restriction morphism of sets in

the opposite direction:

r(U |V ) : F(U) → F(V ) (5.1)

such that:

(a) r(U |U) = identity at F(U) for all open sets U of X.
(b) r(V |W) ◦ r(U |V ) = r(U |W) for all open sets W ↪→ V ↪→ U . Usually, the

following simplifying notation is used: r(U |V )(s) := s|V .

A presheaf F of sets on a topological space X is defined to be a sheaf if it satisfies
the following two conditions, for every family Va , a ∈ I , of local open covers of V ,
where V open set in X, such that V = ∪aVa:

1. Local identity axiom of sheaf:
Given s, t ∈ F(V ) with s|Va = t|Va for all a ∈ I , then s = t .

2. Gluing axiom of sheaf:
Given sa ∈ F(Va), sb ∈ F(Vb), a, b ∈ I , such that:

sa |Va∩Vb = sb|Va∩Vb , (5.2)

for all a, b ∈ I , then there exists a unique s ∈ F(V ), such that: s|Va = sa ∈
F(Va) and s|Vb = sb ∈ F(Vb).

As a basic example, if F denotes the presheaf that assigns to each open set U ⊂
X, the commutative algebra of all real-valued continuous functions on U , then F is
actually a sheaf. This is intuitively clear since the specification of a topology on X is
solely used for the definition of the continuous functions on X. Thus, the continuity
of each function can be determined locally. This means that continuity respects the
operation of restriction to open sets, and moreover that continuous functions can be
amalgamated together in a unique manner, as it is required for the satisfaction of the
sheaf condition.

The realization that the natural argument of a cohomology theory is not only
a space, but it is actually a pair consisting of a topological space together with
a sheaf of commutative algebras localized over it, has given rise to the notion
of a commutative locally R-algebraized space, defined by means of a pair (X,A)

consisting of a topological space X and a sheaf of commutative R-algebras A on X,
such that the restriction Ax is a local commutative R-algebra for any point x ∈ X.
Regarding the possibility of extending consistently all the standard local differential
geometric constructions in the context of smooth manifolds to singular spaces,
in terms of locally R-algebraized spaces, where a suitable sheaf of commutative
R-algebras A on X substitutes the smooth sheaf of R-algebras C

∞(X)), a full-
grown theory has been recently developed, called Abstract Differential Geometry
(ADG). This theory has shown that the standard differential-analytic tools of locally
Euclidean spaces and smooth manifolds leading to the formulation and solution of
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differential equations can be actually re-produced and generalized to non-smooth
or singular topological spaces by means of sheaf cohomology. Equivalently, the
suitability of a sheaf of commutative R-algebras A on an abstract topological space
X for expressing the differential geometric mechanism in terms of these coefficients
instead of the smooth ones is entirely determined only by the satisfaction of precise
cohomological conditions pertaining to the characterization of the algebra sheaf A.
We note, in passing, that for economy of symbols we denote algebra sheaves by the
same symbols like we used for algebras before, since the difference is clear from
the context.

The mathematical theory of ADG has been built rigorously by Mallios (1998a,b),
see also Vassiliou (2004) and Fragoulopoulou and Papatriantafillou (2014), based
on critical prior work of Selesnick (1976). The significance of ADG for physics has
been also shown by an explicit reconstruction and generalization of the framework
of the Maxwell and Yang-Mills gauge field theories in sheaf cohomological terms
(Mallios 2006c, 2009), see also Mallios (2006a,b, 2008). An exposition of the basic
didactics of ADG in relation to its physical applications has been presented by
Raptis (2007). The basic method introduced for the generalization of the standard
analytic tools of Classical Differential Geometry (CDG) consists in the following:
Initially, a concept of CDG is suitable for extension to a broader differential context
(beyond the context of smooth manifolds) if it is liable to a process of sheaf-theoretic
localization (Mallios 2004). In CDG all the differential geometric constructions
require that the base space is a smooth manifold. The underlying reason is that
the means of differentiation are lifted locally from the structure of a Euclidean
space. In this way, the de Rham complex is fixed with respect to smooth coefficients
and all tensorial quantities are coordinatized in smooth terms. In ADG the base
space provides merely a topological basis of sheaf-theoretic localization, such
that all the pertinent differential geometric constructions can take place locally,
whereas the latter are not subordinate to this topological basis, meaning that they
are not dependent on any particular localization basis. Thus, the object of primary
significance in ADG is not the base space itself but the algebra sheaf of coefficients
localized over it. The differentiation structure is built in the algebra sheaf of
coefficients by means of the notion of a connection defined independently of any
locally Euclidean considerations. In this way, the associated de Rham complex
can be satisfied by various possible algebra sheaves of coefficients modulo some
well-defined cohomological conditions. We emphasize that the prominent role in
the context of ADG is played by the algebra sheaf of coefficients, interpreted as a
“functional coordinate arithmetic” (Mallios 2007, 2008), see also Zafiris (2004a,b,
2007), Epperson and Zafiris (2013), Mallios and Zafiris (2016), meaning that all
geometric objects involved in the formalism are locally expressed in terms of its
sections. In this way, an algebra sheaf of coefficients is not constrained ab initio to
be a smooth one, restricting the geometric solution space within the spectrum of
a smooth manifold. More generally, a suitable algebra sheaf of coefficients turns
out to be an algebra sheaf of generalized functions including distributions, defined
by Rosinger in the context of solutions to non-linear partial differential equations
(Mallios and Rosinger 1999, 2001).
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Concerning General Relativity, which is formulated using the CDG of smooth
manifolds, the possibilities offered by ADG bear a remarkable physical significance.
In particular, there arises the possibility of re-assessing the global problems of
General Relativity related with the existence of singularities, where the metric
breaks down, from the perspective of appropriate generalized algebra sheaves of
coefficients. In this manner, the validity of Einstein’s equations may be extended
beyond differential manifolds, under the condition that the covariance properties of
all tensorial physical quantities are maintained under these extensions, expressed in
terms of the new sheaves of coefficients. From a physical viewpoint, this approach
would allow to obtain solutions in terms of distribution-like sheaves corresponding
to non-punctual localization properties, which would nevertheless still satisfy the
field equations. This clearly vindicates the following critical remark of Weyl (2009):
“While topology has succeeded fairly well in mastering continuity, we do not yet
understand the inner meaning of the restriction to differential manifolds. Perhaps
one day physics will be able to discard it.”

The possibility of obtaining extended admissible solution spaces in terms of
generalized algebra sheaves of coefficients is based on the fact that the validity
of the de Rham complex, in its sheaf-theoretic guise, is not restricted exclusively
to coordinatization of the tensorial physical quantities by smooth coefficients C∞,
as it is actually the case when the R-spectrum of the coefficients is a smooth
manifold. Thus, we may consider distribution-like sheaves of coefficients satisfying
the validity of the de Rham complex, and therefore, formulate and solve the field
equations in terms of these distribution coefficients instead of the smooth ones. More
precisely, this is the case if the following sequence of R-linear sheaf morphisms:

A → �1(A) → . . . → �n(A) → . . . (5.3)

is a complex of R-vector space sheaves, identified as the sheaf-theoretic de Rham
complex of A.

In this case, if the cohomological condition expressing the Poincaré Lemma,
Ker(d0) = R is satisfied with respect to the algebra sheaf A, and requiring that A
is a soft algebra sheaf, viz. any section over any closed subset of X can be extended
to a global section, we obtain that the sequence:

0 → R → A → �1(A) → . . . → �n(A) → . . . (5.4)

is an exact sequence of R-vector space sheaves. Thus, the sheaf-theoretic de Rham
complex of the algebra sheaf A constitutes an acyclic resolution of the constant
sheaf R.

The physical interpretation of this fact is the following: First of all, the essential
feature of the localization method, utilizing coefficients from algebra sheaves
instead of global algebras, is that the sheaf-theoretic de Rham complex is actually
an acyclic resolution of the constant sheaf of the reals coordinatizing the events.
For instance, referring to the CDG of smooth manifolds, the de Rham complex,
expressed in terms of local smooth coefficients and their differential forms of higher
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orders, provides such an acyclic resolution of the constant sheaf R. What has
been uncovered by ADG is that the smooth algebra sheaf C∞(X)) is not unique
in this respect. More concretely, any other soft algebra sheaf A constituting an
acyclic resolution of the constant sheaf R is a viable source of coefficients for the
coordinatization of the tensors, maintaining at the same time all their covariance
properties in terms of the new local coefficients. This crucial fact essentially
questions the uniqueness of the role of local smooth coefficients for formulating
the means of dynamical variability. In other words, it questions the unique role of
smooth manifold geometric spectrums as domains of validity of the field equations.

The idea to address the problem of singularities from the perspective of ADG
has been proposed already, for instance in Mallios (2009, 2006a). More concretely,
in particular relation to the issue of spacetime singularities, Mallios and Rosinger
(1999, 2001) have applied ADG using as an algebra sheaf of coefficients a variety of
the so-called “spacetime foam algebras,” and by Raptis (2006), building up on prior
work by Mallios and Raptis (2003), using as a sheaf of coefficients “differential
incidence algebras” defined over a locally finite poset substitute of a continuous
manifold.

Our present proposal constitutes a twist of perspective in comparison to these
works, which is actually implemented by physical criteria of suitability going
beyond the satisfaction of the cohomological conditions. Our quest is related with
the possibility of using a particular type of a “spacetime foam algebra” as a kind
of a distribution-like sheaf of coefficients, distinguished on physical grounds, for
extending the domain of validity of Einstein’s field equations. For this purpose, from
the whole variety of “spacetime foam algebras” we distinguish only the “nowhere
dense generalized function algebra” as bearing physical significance in relation
to the field equations of General Relativity. This is based on a physical criterion
determining which properties should be characterized as intrinsic to the gravitational
field and eventually deciding what should be generic with respect to its function
or not. This physical criterion refers to the viable possibility of expressing the
gravitational field sources via the instantiation of these generalized algebra sheaves
of coefficients. Our rational is based on the idea that in an intrinsically dynamically
variable theory, like General Relativity, it should be the pertinent physical conditions
or the sources of the field themselves that determined the type of these extensions
as solutions to the field equations.

5.4 Coping with Spacetime Singularities: Conceptual
and Technical Aspects

In the classical differential geometric formulation of General Relativity, spacetime
is represented as a connected, paracompact, and Hausdorff four-dimensional C∞
manifold X, endowed with a pseudo-Riemannian metric of Lorentzian signature,
which is obtained as a solution of Einstein’s field equations. A spacetime manifold
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is considered to be without singularities if the coefficients of the metric tensor field
are at least of class C

2 and X is geodesically complete with respect to the metric,
meaning that all timelike geodesic curves can be extended to arbitrary length (Clarke
1993; Hawking and Ellis 1973). Consequently, a spacetime manifold is considered
to be singular if there exist incomplete geodesic curves, or equivalently finite
affine length geodesics that cannot be extended. A spacetime singularity delimits
a locus where the behavior of the metric tensor coefficients become ill-defined with
respect to the smooth characterization of the manifold. Usually the singular locus
is identified as a locus where the spacetime curvature blows up. We note that the
localization at a spacetime point-event is meaningful if the metric coefficients are
smooth, or at least of class C2 in a neighborhood of this point.

The usual way to cope with a spacetime singularity is to consider it as a singular
spacetime boundary rather than a locus within spacetime. For instance, a spacetime
boundary may be defined in terms of a set of incomplete curves S. This takes place
by the imposition of an appropriate equivalence relation ∼ on the set S, such that
the quotient set S/ ∼:= ∂X is interpreted as the singular boundary of X. The
criterion of equivalence is determined by the choice of those equivalence classes,
which are forced to play the role of ideal points in the extension of X by ∂X. There
have been proposed various possible choices, for example Geroch’s “g-boundary”
or Schmidt’s “b-boundary,” but it is always assumed that X is topologically dense
in X

⊔
∂X (Bosshard 1976; Schmidt 1971). Following this approach, Heller and

Sasin have shown that Einstein’s field equations can be formulated in the extension
of X by ∂X, that is on X

⊔
∂X defined as an “Einstein structured space” (Heller and

Sasin 1995). Actually, this is the Gelfand spectrum of a sheaf of Einstein algebras,
which constitutes the sheaf-theoretic localization of an Einstein algebra, a notion
proposed initially by Geroch in his attempt to re-formulate General Relativity in
algebraic terms without invoking directly a spacetime manifold background (Geroch
1972). In particular, it has been proved that the closed Friedmann world model and
the Schwarzschild solution, combined with Schmidt’s “b-boundary” construction, fit
nicely in the sheaf-theoretic context of an “Einstein structured space.” In turn, this
has been a first indication that the validity of Einstein’s equations may be extended
to bigger domains incorporating singular loci, which are not smooth manifolds
anymore. It has been also pointed out that some sorts of singularities can also appear
when there exists a transition to the quantum gravity regime. More concretely, the
smooth manifold structure of spacetime can break down and the possible validity of
Einstein’s equations should be sought for in further extended and generalized non-
smooth spectrums of appropriate sheaves of algebras, where the singularities are not
necessarily forced to some type of spacetime boundary.

From a broader conceptual perspective, the issue of singularities in General
Relativity as impossibilities of extending smooth metric solutions of Einstein’s
equations necessitates the coordinatization of all the tensorial quantities by distri-
butional coefficients effecting a type of topological coarse-graining over singular
loci, and thus localizing the point-event stratum in their terms. Under the proviso
that these distributional coefficients form algebra sheaves fulfilling all the required
cohomological conditions, the means of extending local distributional solutions
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generalizes the standard method of extending timelike geodesic curves in a smooth
manifold. The physical significance of this generalization is that the domain of
validity of the field equations can be extended beyond the notion of a smooth
manifold. Not only this, but additionally, these distinguishable extensions may be
associated intrinsically with the gravitational field, under the constraint that sources
of the field itself giving rise to singularities can be expressed topologically in the
terms of distribution-like algebra sheaves.

In this state of affairs, the smoothness assumption can be retained, at best, only
locally and certainly far from singular loci. Mathematically, there should exist
an embedding of the algebra sheaf of smooth functions into a distribution-like
algebra sheaf of coefficients qualified as a solution of the extended field equations.
An illuminating way to think of the proposed approach in non-technical terms is
that coping efficiently with singularities requires a process of folding out of the
smooth point-event manifold background. This viewpoint has been emphasized by
von Müller (2015), according to whom, the process of folding out into a “statu-
nascendi” level should be considered in the context of a whole new categorial
apparatus qualifying its intrinsic characteristics in contradistinction to the event
stratum. In this manner, we suggest that the existence of a distribution-like sheaf
of coefficients as a solution of the field equations within an appropriately extended
domain characterized by some generic gravitational criterion paves the way for
understanding the precise nature of this folding out of the smooth point-event
stratum.

The possibility of extending the formulation of Einstein’s equations in the case
of non-smooth spectrums using the sheaf-theoretic technique of localization in the
context of ADG is of major significance. We note that non-smooth spectrums of
algebra sheaves do not require the consideration of singularities as ideal points
on the boundary of a smooth manifold. In other words, singular loci are allowed
to be located, according to specific topological criteria, within a manifold. Of
course, a natural requirement should be that the exclusion of singular loci would
recast Einstein’s equation in the familiar form in terms of smooth coefficients.
But, clearly in case that Einstein’s equations become meaningfully extended over
singular loci, then the coefficients of the metric and curvature tensors cannot be
smooth any more. Therefore, from a smooth perspective, a singularity functions as
an obstruction to the extension of a local solution to the field equations expressed in
terms of smooth coefficients. Thus, more precisely, a singular locus plays the role
of a cohomological obstruction to the extendibility of a local smooth solution. This
criterion incorporates and generalizes sheaf-cohomologically the initial definition of
singular behavior in terms of non-extendibility of geodesics. Essentially the reason
is that the notion of extendibility of local solutions is of a sheaf-theoretic nature,
recalling for instance the well-known procedure of analytic continuation.

There are two important physical consequences emanating from the possibility
of formulating Einstein’s equations in terms of generalized non-smooth sheaves of
coefficients. The first is related with the natural question concerning the criterion
of depicting a particular sheaf of algebras for this purpose. The second is related
with a possible re-evaluation of the status of the energy-momentum source term
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in Einstein’s equations, which currently is not implemented by any process of
geometrization.

Regarding the first, the required physical condition is the following: Since the
formulation of Einstein’s equations can be extended over singular loci, it should
precisely be the nature and specification of these singular loci that would determine
the appropriate sheaf of coefficients, such that a solution can be expressed eventually
in terms of these coefficients. In the non-singular case, we know already that a
solution can be expressed in terms of smooth coefficients. In other words, we
already know that if no singularity is present, the spacetime metric—obtained as
a particular solution of the vacuum Einstein equations, for example—is always
expressible in terms of smooth coefficients, i.e. in terms of the sheaf of algebras
C

∞(X). Hence, we expect that in the presence of a particular type of a singular
locus over which Einstein’s equations hold in terms of a distribution-like sheaf of
coefficients, there exists a metric solution expressed in terms of these coefficients.
Not only this, but additionally, since the knowledge of the metric solution is
completely expressible in terms of these coefficients—considered as unknowns
when plugged into the equations—the specification of a singular locus should force
a corresponding algebra sheaf as the solution. In other words, the nature of a singular
locus should determine the differentiability properties of a metric solution in case
that Einstein’s equations can be extended over this locus. As we stressed previously,
the physical association of singular loci with sources of the gravitational field itself,
giving rise to distinguishable extensions of the standard smooth manifold spacetime
model of General Relativity, implies that sources can be expressed topologically
after all, if solutions of the field equations are expressed in terms of appropriate
distribution-like algebra sheaves.

In this context, the physical significance of ADG is that it determines rigorously
the criteria that these algebra sheaves of coefficients have to satisfy, such that
Einstein’s equations can be satisfied over various sorts of singular loci, expressed
in terms of these coefficients. Not surprisingly these criteria are of a cohomological
nature. Essentially, they determine viable algebra sheaves of coefficients by the
requirement that they are soft, and thus acyclic, such that the validity of the de
Rham complex remains intact. In turn, the basic idea is that the Poincaré Lemma
should remain in force, viz. closed differential forms expressed in these generalized
coefficients should be locally exact as in the smooth case, so that the differential
geometric mechanism can be extended over singularities without breaking down.
We will present a general form of these algebra sheaves consisting of distribution-
like coefficients in the sequel. According to Clarke, the answer to many of the
problems related with singularities “involve detailed considerations of distributional
solutions to Einstein’s equations, leading into an area that is only starting to be
explored . . . ” (Clarke 1993). We propose that the extension of validity of Einstein’s
equations over singular loci in terms of appropriate sheaves of algebras, which
are generally non-smooth, sheds new light on the problem of singular behavior in
General Relativity.

Regarding the second physical consequence, it is instructive to remind that the
energy-momentum source term in the smooth formulation of Einstein’s equations
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is not of any geometric nature. The energy-momentum tensor attributes the source
of curvature entirely to matter (including the cosmological dark energy), as it does
not incorporate the stress-energy associated with the gravitational field itself. There
is an underlying assumption that spacetime is somehow empty unless it is filled in
by matter, expressed in terms of the smooth coefficients of the energy-momentum
tensor. This is the reason that when the energy-momentum part is zero, then the
equations are called vacuum equations. Now the validity of Einstein’s equations
over singular domains in terms of generalized non-smooth algebra sheaves casts
serious doubts on this assumption. Namely, the form of Einstein’s equations with
vanishing non-geometric second part may turn out to be the fundamental form of
these equations. The reason is that sources of the gravitational field itself might
be implemented in terms of non-smooth algebra sheaves, and thus what is called
a vacuum is not empty at all, precisely because it engulfs these sources. This idea
is not actually as controversial as it sounds, if we take seriously into account that
all classical experimental tests of General Relativity involve a vanishing energy-
momentum tensor, and thus what they really verify is the equation Rμν = 0.
This issue has been also pointed out and argued for extensively, from a non-sheaf-
theoretic point of view, by Vishwakarma (2014), who conducted a careful analysis
based on the observational tests of the theory. In the sequel, we will discuss this issue
in more detail from a geometrodynamical perspective in the light of the particular
form of distribution-like algebra sheaves.

5.5 Spacetime Extensions in Terms of Singularity-Free
Distributional Algebra Sheaves

It is physically reasonable to expect that an admissible commutative algebra sheaf of
coefficients in term of which Einstein’s equations may be extended over a singular
locus should be distribution-like. For example, we may think of a matter distribution
confined to a submanifold of spacetime whose density is integrable over this
submanifold. In the context of a linear field theory this should be naturally modelled
in terms of a linear distribution. Unfortunately, this is not possible in the context of
General Relativity, which is a non-linear theory. In other words, Schwarz’s linear
distributions are not suitable candidates for expressing the information of singular
loci.

The unsuitability of linear distributions rests on the fact that the space D
′ they

form is only a linear space, but it is not an algebra. This is characterized as the
“Schwarz Impossibility,” and may be formulated as follows: There is no symmetric
bilinear morphism:

◦ : D′ (V ) × D
′ (V ) � (S, T ) → S ◦ T ∈ D

′ (V )
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so that S ◦ T is the usual point-wise product of continuous functions, when S, T ∈
C

0 (V ). Equivalently, D′ (V ) is not closed under any multiplication that extends the
usual multiplication of continuous functions, where V is an open subset X. Since all
the involved arguments are of a local character, without loss of generality, we may
simply consider V as an open subset of R4.

A physically natural way to bypass “Schwarz Impossibility” is to assume the
existence of an embedding morphism D

′(V ) ↪→ A (V ), which embeds the vector
space of distributions D

′ (V ) as a vector subspace in A (V ), where A (V ) is the
quotient algebra:

A (V ) = K(V )/I, (5.5)

and K(V ) is a subalgebra in C
∞ (V )�, for some index set �, whereas I is an ideal in

K(V ). This approach was initiated by Rosinger (1978, 1980), and developed further
in Rosinger (1987, 1990, 2001, 2007).

We will restrict ourselves to a certain subclass of this type of algebras, namely
the unital, associative, and commutative algebras of generalized functions, whose
suitably defined ideals can engulf algebraically the information of singular loci.
These algebras, introduced by Rosinger (1980), have been formed in such a way as
to express generalized solutions of non-linear partial differential equations. We may
describe the generation of these algebras locally as follows:

Let V ⊆ R
4 be an open set, and L = (�,≤) be a right directed partial order

on some specified index set �. That is, for all λ, μ ∈ �, there exists ν ∈ � such
that λ,μ ≤ ν. With respect to the usual componentwise operations, C∞ (V )� is a
unital and commutative algebra over the reals. We define the following ideal IL in
C

∞ (V )� whose physical meaning will be described in the sequel:

IL (V ) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

φ = (φλ)λ∈�

∃ � ⊂ V closed nowhere dense:
∀ x ∈ [V \ �] being dense:
∃ λ ∈ �:
∀ μ ∈ �, μ ≥ λ:
φμ (x) = 0, ∂pφμ (x) = 0

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(5.6)

In the above definition, we think of � as a singular locus in R
4, characterized as

a closed and nowhere dense subset relative to the open set V ⊆ R
4, such that its

complement V \ � in V is dense. The unital and commutative algebra C
∞ (V )�

contains smooth functionsφλ indexed by the set � and defined over V , to be thought
of as diagrams or sequences of �-indexed smooth functions. The requirement of
the right directed partial order on the specified index set �, which is denoted by
L = (�,≤), is technically necessary in order that the above set forms actually an
ideal in C

∞ (V )�. Now, the ideal IL (V ) in C
∞ (V )� includes all these sequences of

smooth functions φλ that vanish asymptotically outside the singular locus � together
with all their partial derivatives. Therefore, intuitively speaking, the ideal of the form
IL (V ) incorporates all these sequences of smooth functions indexed by � whose
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support covers the singular locus �, whereas they vanish outside it. In this manner,
the information of the singular locus � is encoded in the ideal IL (V ) in C

∞ (V )�.
Hence, the quotient commutative algebra AL (V ) = C

∞ (V )� /IL (V ) is an algebra
of residues of sequences of smooth functions modulo the singular information ideal
IL (V ).

A natural question in the above context refers to the requirement that the
complementV \� of the singular locus � in V should be dense. The necessity of this
requirement can be understood by the fact that we wish to obtain an embedding ι of
the algebra of smooth functions C∞ (V ) into the algebra of generalized functions
AL (V ):

ι : C∞ (V ) ↪→ AL (V ) = C
∞ (V )�

IL (V )
(5.7)

such that:

ϕ ↪→ ι(ϕ) = �(ϕ) + [IL (V )] (5.8)

where �� |V : C∞ (V ) → C
∞ (V )� is the diagonal morphism with respect to �,

defined for an open set V as follows:

��(ϕ) |V = {
�(ϕ) = (ϕλ)λ∈� | ϕλ = ϕ, ∀λ ∈ �,ϕ ∈ C

∞ (V )
}
.

Hence, for every smooth function ϕ in C
∞ (V ), the diagonal image �(ϕ) of ϕ

in C
∞ (V )� is a sequence of smooth functions all identical to ϕ, indexed by �.

The embedding ι is feasible according to the above, if and only if the ideal IL (V )

satisfies the off diagonality condition:

IL (V ) ∩ �� |V = {0}. (5.9)

Therefore, it remains to show that if the complement V \ � of the singular locus �
in V is dense, according to the specification in (5.6), then the ideal IL (V ) actually
satisfies the above off diagonality condition. So we suppose that V \ � is dense in
V , and consider a smooth function χ in C

∞ (V ). If ��(χ) |V := �(χ) belongs
to the ideal IL (V ), then the asymptotic vanishing condition in (5.6) implies that
χ = 0 in V \ �, and therefore, we must have χ = 0 in V because V \ � is dense in
V by hypothesis. Thus, it follows that the ideal IL (V ) satisfies the off diagonality
condition (5.9), as required.

Conclusively, there exists a canonical injective homomorphism of commutative
algebras, or equivalently, an embedding ι of the algebra of smooth functionsC∞ (V )

into the algebra of generalized functions AL (V ):

ι : C∞ (V ) ↪→ AL (V ) = C
∞ (V )�

IL (V )
(5.10)
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Furthermore, in view of (5.6), it follows immediately that the partial differential
operators:

∂p : C∞(V )� � φ = (φλ) �→ ∂pφ = (∂pφλ) ∈ C
∞(V )�

satisfy the inclusion:

∂p (IL (V )) ⊆ IL (V ) . (5.11)

Thus, the standard partial derivative operators on C
∞ (V ) extend to AL (V ):

∂p : AL (V ) � [φ + IL (V )] �→ [∂pφ + IL (V )] ∈ AL (V ) , (5.12)

We conclude that the embedding of commutative algebras (5.10) extends to an
embedding of differential algebras. Therefore, the following diagram commutes:

We emphasize that the embedding (5.10) preserves not only the algebraic
structure of C∞ (V ), but also its differential structure. The off diagonality condition
(5.9) implies also the existence of an injective, linear morphism:

D
′ (V ) ↪→ AL (V ) . (5.13)

Therefore, the differential algebra AL (V ) contains the space of distributions as a
linear subspace, see Rosinger (1990, pp. 234–244), where those algebras that admit
linear embeddings of distributions are characterized in terms of such off diagonality
conditions. However, in contradistinction with (5.10), the embedding (5.13) does
not commute with partial derivatives, and thus, the partial derivatives on AL (V ) do
not, in general, coincide with distributional derivatives, when restricted to D

′ (V ).
Finally, it is crucial to observe that a subset of a topological space is closed

and nowhere dense if and only if it satisfies this condition locally. This is the
key idea used to prove that the algebras of generalized functions AL (V ) form
actually sheaves of commutative algebras, which additionally are soft and flasque
or flabby (Mallios and Rosinger 1999, 2001). Thus, they are characterized as
cohomologically appropriate sheaves of coefficients according to ADG. More
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precisely, the distribution-like soft algebra sheaves of the form AL constitute an
acyclic resolution of the constant sheaf of the reals coordinatizing the events. Thus,
we conclude that the de Rham complex can be rigorously expressed in terms of
these coefficients instead of the smooth ones, and consequently Einstein’s equations
can be formulated with respect to coefficients from the algebra sheaf AL instead of
the smooth ones from C

∞. Consequently, the validity of Einstein’s equations can
be extended over singular loci in a covariant manner by utilizing coefficients from
the sheaf AL for expressing all involved differential geometric tensorial quantities.
Reciprocally, according to the intended physical interpretation of these algebra
sheaves, pertaining to expressing sources of the gravitational field in terms of closed
and nowhere dense subsets, the presence of a singular locus forces an algebra sheaf
of the form AL as coefficients with respect to which Einstein’s equations retain their
validity over this locus and do not break down, like in the case of insisting to use
indiscriminately smooth coefficients.

For the sake of completeness, it is instructive to remind that the softness property
of the sheaves of the form AL means that any section over any closed subset
can be extended to a global section. Thus, these types of sheaves characterize
cohomologically the topological property of paracompactness by means of acyclic-
ity. Equivalently, soft sheaves are acyclic over a paracompact topological space.
Moreover, sheaves of the form AL are not only soft, but they are flasque or flabby as
well, which is a local property. This means that the restriction morphism of sections
in the sheaf definition is an epimorphism. Hence, in this case, we can always extend
any local section by zero to obtain a global section of AL.

We may recapitulate by pointing out that the first basic idea involved in the
construction of distribution-like algebra sheaves of coefficients, in their role to
coordinatize solutions of non-linear partial differential equations, is to model a
singular locus � in R

4 as a closed and nowhere dense subset relative to an open
set V ⊆ R

4, such that its complement V \� in V is dense. The second basic idea is
to express such a closed and nowhere dense singular locus as an ideal in an algebra
sheaf constructed as an extension of the smooth one over a partially ordered set. In
this manner, the ideal expressing algebraically a singular locus contains diagrams of
locally defined smooth functions indexed by � whose support covers the singular
locus �, whereas they vanish outside it. Then, it can be shown that the quotient
commutative algebra sheaf AL (V ) = C

∞ (V )� /IL (V ) is an algebra sheaf of
residues of diagrams of smooth functions modulo the closed nowhere dense singular
ideal IL (V ).

It is instructive to emphasize that the algebra of global sections of the sheaf
AL (V ) contains the space of Schwarz distributions D′ (V ) only as a linear subspace
and not as a commutative subalgebra. For example, Dirac’s delta, considered as
a distribution, is represented in terms of a generalized function whose pertinent
closed and nowhere dense set is an one-point set. It is well known that the square
of the delta distribution is not a distribution itself, since the operation of point-
wise multiplication of distributions is not well-defined in D

′ (V ). Notwithstanding
this fact, the representative generalized function may be unproblematically squared
providing a legitimate generalized function without being a linear distribution itself.
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Clearly, by the rules of construction of these commutative algebras of generalized
functions, arbitrary nonlinear continuous operations may be applied to a generalized
function giving another generalized function in the same algebra. In passing, it is
also worth to point out that the linear space of Schwarz distributions does not give
rise to a flasque vector sheaf in contradistinction to the case of the embedding sheaf
AL (V ), a property which is crucial for the global extendibility of all standard local
differential geometric constructions.

In the sequel, we are going to propose a concrete class of closed and nowhere
dense sets modelling the boundaries of singular loci and forming a topological link
in 3-d space. Conceptually, this essentially means that the semantics of folding out
of a local smooth event stratum into a singular domain may be associated with
the formation of some topological link configuration and its concomitant algebraic
expression in terms of an algebra sheaf of the type AL. At the final stage, we have
to examine if this algebra sheaf satisfies the cohomological conditions necessary
for expressing the differential geometric mechanism of General Relativity in these
terms instead of the globally smooth ones. This turns out to be actually the case,
and therefore, algebra sheaves of the type AL can be used legitimately to express
the metric solution of Einstein’s field equations extended now over singularities.

The important consequence is that we can retain not only the validity, but
the form and covariance property of Einstein’s equations even over singular loci.
The reason is that all physical quantities can still be transformed according to a
tensor law for any arbitrary admissible coordinate transformation. The difference
in comparison to the smooth case is that the coordinates are allowed to be non-
standard or non-smooth, while at the same time all the machinery of differential
geometry can be applied with respect to them. In particular, while the coefficients of
the tensorial physical quantities are non-smooth, all the usual differential-geometric
constructions can be carried out as in the smooth case. The only price to be paid for
this generalization is the rejection of the fixed absolute smooth manifold background
of the theory. We consider this fact as physically nondisturbing, since the essence
of General Relativity is in the covariant formulation and validity of Einstein’s
equations and not on the existence of a smooth background manifold. In particular,
what we gain from such a generalization is not only that Einstein’s equations can be
extended covariantly over singular loci, but also that the solution of these equations
in terms of coefficients from a sheaf of the form AL is free of singularities.

5.6 Topological Links in Geometrodynamics

According to the paradigm of Geometrodynamics (Misner et al. 1970), we may
foliate a spacetime manifold X into three-dimensional spacelike leaves �t by
utilizing a one-parameter family of embeddings εt : � ↪→ X, such that εt (�) = �t .
In the geometrodynamical formulation, the three-dimensional Riemannian manifold
(�, h) is thought of as dynamically evolving, where the corresponding metric at
time t , ht = εt

∗g, is derived by pulling back the spacetime metric g via εt . It
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is implicitly assumed that all three-dimensional spacelike leaves �t are mutually
disjoint, such that the Lorentzian manifold (R × �, ε∗g) represents X, where the
leaves of the considered foliation correspond to the constant time hypersurfaces.

The geometrodynamical picture is instructive for our purposes because it shows
that active gravitational mass may emerge from purely topological considerations
taking into account the constraints imposed by Einstein’s field equations in the
vacuum (Arnowitt et al. 1962). From a physical perspective, this may be interpreted
in a novel way according to Wheeler’s insight referring to “mass without mass”
(Misner and Wheeler 1957; Wheeler 1957) as follows: Localized configurations
of topologically singular loci in open sets of a spacetime manifold restricted
to closed nowhere dense subsets amount to active gravitational mass/energy in
their complementary open dense subsets. In particular, if we consider that the
Lorentzian manifold (R × �, ε∗g) represents X, the singular loci may be localized
within the three-dimensional manifold �. In this context, if � has a non-trivial
topology, Gannon’s theorem (Gannon 1975) implies that spacetime is geodesically
incomplete, and thus singular. The simplest way to implement a non-trivial topology
on � is via the hypothesis of non-simple connectivity. More precisely, the existence
of singular loci in �, localized in closed nowhere dense subsets, make � a multiple-
connected topological space, and thus topologically different from R

3. We may
recapitulate our conclusion up to now by asserting that the existence of singular loci
in closed nowhere dense subsets of �, making it a multiply-connected topological
space, implies active gravitational mass/energy in the complementary open dense
subsets. Moreover, according to the “positive mass theorem” considered in the
vacuum case, this gravitational mass/energy is non-zero and strictly positive. In
passing, we would like to stress that Gannon’s theorem should be conceived as a
significant generalization of the Penrose-Hawking singularity theorems (Hawking
and Ellis 1973), in the sense of replacing the usual geometric hypothesis of closed
trapped surfaces in � by the more general applicable topological hypothesis of non-
simple connectivity of �.

In the same vein of ideas, we may also consider the system of Einstein-Maxwell
equations without sources for the Maxwell field, and in this way address from our
perspective the alternative Wheeler’s insight referring to “charge without charge”
(Misner and Wheeler 1957; Wheeler 1957). This has been originally tied to the
assumption that � is orientable and bears the standard wormhole topology, that
is homotopically equivalent to S1 × S2 − {point}, such that the magnetic flux
lines thread through the wormhole. In this case, the homology class of all 2-
spheres containing both of the wormhole mouths has zero charge, whereas the
two individual wormhole mouths may be considered as having equal and opposite
charges. In this context, a wormhole may be thought of in terms of a one-
dimensional homology class in spacetime. From general results of low-dimensional
geometric topology (Scorpan 2005), we know that every homology class of a four-
dimensional spacetime can be represented by an embedded submanifold. Using the
geometrodynamic foliation, we may restrict this representation to �. In this manner,
we can instantiate a higher-order wormhole solution, for example, by considering
an appropriate two-dimensional homology class.



122 5 Borromean Link in Relativity Theory What Is the Validity Domain of Einstein’s. . .

We are going to outline a general method of generating these types of solutions
guided by the form of the algebra sheaves AL incorporating gravitational properties
defined on dense open sets of X and by restriction to dense open sets of �.
For this purpose, we may consider a singular locus with boundary in R

3 or in
its compactification S3, which is excised from R

3 or S3. We consider a singular
locus as a singular disk cut-off from S3, which may be visualized in terms of a
cone whose apex is at infinity and whose base lies at the boundary of the singular
locus. A singular disk of this form excised from S3 gives rise to a two-dimensional
relative homology class of S3, which may be interpreted according to the above as
a two-dimensional embedded compact submanifold. The circular boundary of this
singular disk is a closed and nowhere dense subset with respect to an open set of S3.
Analogously, we may consider the excision of more than one singular disks from S3,
such that their circular boundaries collectively define a closed and nowhere dense
subset of an open set of S3. We propose to think of these circular singular boundaries
as giving rise to topological links.

The notion of a topological link is based on the underlying idea of connectivity
among a collection of topological circles, called simply loops (Kawauchi 1996). We
consider that a loop is a tame closed curve. The property of tameness means that
a closed curve can be deformed continuously and without self-intersections into
a polygonal one, that is a closed curve formed by a finite collection of straight-
line segments. Given this qualification, a loop is characterized by the following
properties: First, it is a one-dimensional object. Second, it is bounded, meaning
that it is contained in some sphere of sufficiently large radius. Third, a single cut
at a point cannot separate a loop into two pieces, whereas any set of two cuts
at two different points does separate a loop into two pieces. Moreover, a loop is
called knotted if it cannot be continuously deformed into a circle without self-
intersection. We only consider unknotted tame closed curves. A topological N-link
is a collection of N loops, where N is a natural number. Regarding the connectivity
of a collection of N loops, the crucial property is the property of splittability of
the corresponding N-link. We say that a topological N-link is splittable if it can
be deformed continuously, such that part of the link lies within B and the rest of
the link lies within C, where B, C denote mutually exclusive solid spheres (balls).
Intuitively, the property of splittability of an N-link means that the link can come
at least partly apart without cutting. Complete splittability means that the link can
come completely apart without cutting. On the other side, non-splittability means
that not even one of the involved loops, or any pair of them, or any combination of
them, can be separated from the rest without cutting.

According to our hypothesis, a collection of circular singular boundaries defining
a closed and nowhere dense subset of an open set of S3 gives rise to a topological
link in S3. We may now replace the loop components of such a topological link by
open non-intersecting tubular neighborhoods such that the complement of the link in
S3 can be given the structure of a three-dimensional compact and oriented manifold
with boundary. Clearly, this space is homologically equivalent to the original one
since it is just its deformation retract. Next, we may consider an ordering of the
loops l1, l2, . . . lN constituting the link, or equivalently an ordering of their tubular
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neighborhoods λ1, λ2, . . . λN . Then, if we take λi , λj , together with their ordering,
we define the relative homology class σij that is represented by the compact oriented
embedded submanifold whose two boundary components lie on the total boundary,
that is the first one in ∂λi and the second in ∂λj . The orientation is defined as being
negative on the first boundary component and positive on the second, so that we
have a path from λi to λj in this case.

5.7 The Borromean Rings as a Universal Nowhere Dense
Singular Link

According to the formalism of Geometrodynamics, we consider the Lorentzian
manifold (R×�, ε∗g) as a representative of X, where the singularities are localized
within the three-dimensional manifold �. We remind that, according to Gannon’s
theorem, if � is multiple-connected as a topological space, then spacetime is
geodesically incomplete. According to our previous analysis, a collection of circular
singular boundaries defining a closed and nowhere dense subset of an open set of
S3 gives rise to a topological link in S3. Moreover, this implies the existence of
active gravitational mass/energy in the complementary open dense subsets, which is
non-zero and strictly positive.

In this context, it is important to examine if there exists a universal way via which
we can obtain the three-dimensional manifold � by the information incorporated in
a topological link in S3 representing the singular boundaries, forming collectively a
closed and nowhere dense subset. This sheds more light on the role of the algebra
sheaves AL utilized to express gravitational properties defined on dense open sets
of X and by restriction to dense open sets of �, and is guiding in our quest of
exploring generalized wormhole-types of solutions based on topological links and
their associated homology classes.

It turns out that a universal way to obtain � by using a topological link in S3

representing the singular boundaries, according to the above, actually exists and is
based on the notion of a universal topological link. In view of the type of solutions
we are interested in, such a universal link is defined by the Borromean rings. In
particular, using methods of geometric topology, it can be shown that any compact
oriented three-dimensional manifold � without boundary can be obtained as the
branched covering space of the 3-sphere S3 with branch set the Borromean rings
(Hilden et al. 1987). In this manner, the Borromean rings constitute a universal
topological link.

The notion of a branched covering space is a generalization of the standard
notion of a covering space, characterized as a local homeomorphism bearing the
unique path lifting and homotopy lifting property (Hatcher 2002). More precisely,
a branched covering space of the 3-sphere S3 is considered as a map from � to
S3 such that this map is a covering space after we delete or exclude a locus of
points, called the branched locus. The universality property says that � can be
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obtained in this way if the branched locus is formed by the Borromean rings,
considered as a closed and nowhere dense set with respect to an open set in S3 in our
setting. In a well-defined sense, this branched covering space provides the geometric
representation of an algebra sheaf of the form AL restricted to the three spatial
dimensions, where the closed and nowhere dense subset formed by the Borromean
rings is localized. We may extend this closed and nowhere dense subset to four
dimensions by considering a timelike axis perpendicular to the Borromean rings,
which plays the role of a threefold symmetry axis of rotation.

The Borromean rings consist of three rings localized in S3, which are linked
together in such a way that each of the rings lies completely over one of the other
two, and completely under the other, as it is shown at the pictures below:

This particular type of topological linking displayed by the Borromean rings
is called the Borromean link, and is characterized by the following distinguishing
property: If any one of the rings is removed from the Borromean link, the remaining
two come completely apart. It is important to emphasize that the rings should be
modelled in terms of unknotted tame closed curves and not as perfectly circular
geometric circles. The adjective topological means that they can be deformed
continuously under the constraint that the particular type of linkage forming the
Borromean configuration is preserved.

From the viewpoint of the theory of topological links, the Borromean link
constitutes an interlocking family of three loops, such that if any one of them is cut
at a point and removed, then the remaining two loops become completely unlinked
(Cromwell et al. 1998; Debrunner 1961; Hatcher 2002; Lindström and Zetterström
1991; Kawauchi 1996). In more precise terms, the Borromean link is characterized
topologically by the property of splittability as follows: The Borromean link is a
non-splittable 3-link (because it consists of three loops), such that every 2-sublink of
this 3-link is completely splittable. It is clear that it is a non-splittable 3-link because
not even one of the three loops, or any pair of them, can be separated from the rest
without cutting. A 2-sublink is simply any sub-collection of two loops obtained
by erasing the loop that does not belong to this sub-collection. Since the Borromean
link is characterized by the property that if we erase any one of the three interlocking
loops, then the remaining two loops become unlinked, it is clear that every 2-sublink
of the non-splittable 3-link is completely splittable.
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In our context, we conclude that if a triad of circular singular boundaries defining
a closed and nowhere dense subset of an open set of S3 are connected in the form
of the Borromean topological link, then � as a compact oriented three-dimensional
manifold can be obtained as the branched covering space of the 3-sphere S3 with
branch set these Borromean-linked boundaries. Based on these findings, we would
like to explore their semantics in relation to the instantiation of a higher-order
wormhole solution. For this purpose, we remind that the standard wormhole solution
is thought of in terms of a one-dimensional homology class in a space homotopically
equivalent to S1 × S2 − {point}. In our framework, we do not need to impose a
particular topology on � ab initio, since it can now be derived universally as the
branched covering space of S3 over the branch nowhere dense subset of singular
boundaries forming a Borromean link. The fact that the Borromean link is a non-
splittable 3-link, such that every 2-sublink of this 3-link is completely splittable, is
characterized in homology theory by a non-vanishing triple Massey product, where
all pairwise intersection products of one-dimensional homology classes vanish,
reflecting the fact that the components of the Borromean link are not pairwise linked.
If we denote the components of the Borromean link B by λ1, λ2, λ3, the triple
Massey product (Hatcher 2002) is expressed as a two-dimensional cohomology
class in the dense complement of B in S3, that is it defines a non-trivial class in
H 2(S3\(λ1 � λ2 � λ3)).

5.8 Revisiting Einstein’s Insights on Field Theory

The main purpose of this communication, 100 years after Einstein’s formulation
of the General Theory of Relativity, has been an invitation to re-think about the
validity domain of the field equations. The primary motivations emanate from three
distinct sources: The first comes from Clarke’s assertion concerning the problem
of singularities, according to which the answers “involve detailed considerations
of distributional solutions to Einstein’s equations, leading into an area that is
only starting to be explored . . . .” The second comes from Weyl’s critical remark
regarding the role of a background differential manifold, according to which “while
topology has succeeded fairly well in mastering continuity, we do not yet understand
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the inner meaning of the restriction to differential manifolds. Perhaps one day
physics will be able to discard it.” The third comes from Wheeler’s ideas regarding
the notions of “mass without mass” and “charge without charge” in the vacuum,
which can be given a more precise mathematical formulation in topological terms.

The sheaf-theoretic re-formulation of the usual differential geometric framework
of smooth manifolds points to the conclusion that there exist distinguishable
extensions of the standard smooth manifold spacetime model of General Relativity,
which are utilized by appropriate extensions of the sheaf of coefficients parame-
terizing all tensorial physical quantities of the theory. The criteria of suitability of
these extensions are determined by sheaf-cohomological means and maintain the
standard covariance properties of the theory in domains including singular loci.
We have presented and discussed in detail a concrete distribution-like sheaf of
coefficients incorporating singularities in closed and nowhere dense subsets of an
open set of a four-dimensional spacetime. An instructive way to think of these
generalized algebra sheaves of coefficients refers to the role of a singularity as an
obstruction to the existence of a solution to the field equations, expressed in terms
of smooth coefficients. Thus, more generally, a singular locus may be thought of
as a cohomological obstruction to the extendibility of a local smooth solution. This
criterion incorporates and generalizes sheaf-cohomologically the initial definition of
singular behavior in terms of non-extendibility of geodesics. Essentially the reason
is that the notion of extendibility of some local solution is of a sheaf-theoretic nature.

At a further stage involving the formalism of Geometrodynamics, the existence
of singular loci in closed and nowhere dense subsets of a spatial hypersurface,
making it a multiply-connected topological space, implies active gravitational
mass/energy in the complementary open dense subsets. Moreover, according to
the “positive mass theorem” considered in the vacuum case, this gravitational
mass/energy is non-zero and strictly positive. We show that it is enough for this
purpose to consider singular boundaries forming closed and nowhere dense subsets
and forcing a multiple-connected topology, which in turn implies that spacetime is
geodesically incomplete. In view of expressing generalized wormhole solutions in
this context, we propose that closed singular boundaries may form topological links.
In this manner, using results of geometric topology, we point out that the Borromean
topological link is characterized as a universal link. Since this link is characterized
cohomologically by a higher order invariant, it may be associated with a generalized
wormhole model, which reinforces Wheeler’s ideas in Geometrodynamics.

Finally, we express the hope that the proposed approach paves the way for
a further technical and semantical refinement of the following two Einstein’s
fundamental insights in building up General Relativity, which have not been
addressed in satisfactory completeness up to present:

Under the influence of the ideas of Faraday and Maxwell the notion developed that the
whole of physical reality could perhaps be represented as a field whose components depend
on four space-time parameters. If the laws of this field are in general covariant, that is,
are not dependent on a particular choice of coordinate system, then the introduction of
an independent (absolute) space is no longer necessary. That which constitutes the spatial
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character of reality is then simply the four-dimensionality of the field. There is then no
“empty” space, that is, there is no space without a field. (Jammer 1993)

A field theory is not yet completely determined by the system of field equations. Should
one admit the appearance of singularities? . . . It is my opinion that singularities must be
excluded. It does not seem reasonable to me to introduce into a continuum theory points (or
lines etc.) for which the field equations do not hold . . . (Einstein 1956)

In a nutshell, regarding the first, the utilization of distribution-like sheaves of
coefficients extending the smooth one over singularities, and thus extending the
domain of validity of the field equations beyond globally smooth manifolds, shows
in agreement with Geometrodynamics that active gravitational mass/energy may
emerge from purely topological considerations taking into account the constraints
imposed by the field equations in the vacuum. These topological considerations
pertain to the modelling of singularities in terms of closed and nowhere dense sets,
such that their complements who bear the induced active gravitational mass/energy
are open and dense. In this manner, the vacuum can be legitimately considered as a
structural quality of the field itself. Regarding the second, it is indeed unreasonable
to consider singular loci in a continuum theory, where the field equations do not
hold. The existence of distribution-like sheaves of coefficients provides precisely the
means to bypass this problem by coordinatizing all the tensorial quantities in their
terms, extending the smooth ones, and therefore extending the domain of validity of
the field equations.1

5.9 Addressing the Resolution of Singularities in the
Interpretation Context of Autogenetic Theory

5.9.1 The Problem of Singularities in General Relativity

A spacetime manifold is considered to be without singularities if the coefficients of
the metric tensor field are smooth and the manifold X is geodesically complete with
respect to the metric. In this case, all timelike geodesic curves can be extended
to arbitrary length in the smooth spacetime manifold X. Thus, the notion of
localization at a spacetime point-event is sensible only if the coefficients of the
metric tensor field are smooth in an open neighborhood of this point.

A spacetime singularity may be thought of as a locus where the behavior of the
metric tensor field coefficients become irregular. This irregularity is expressed by the

1A similar version to the above has appeared in Zafiris, E. “What is the Validity Domain of
Einstein’s Equations? Distributional Solutions over Singularities and Topological Links in Ge-
ometrodynamics.” Invited paper for the Centennial Volume on Albert Einstein’s 1915 Paper on the
General Theory of Relativity: 100 Years of Chronogeometrodynamics: The Status of the Einstein’s
Theory of Gravitation in Its Centennial Year. Universe, 2 (3), 17; doi:10.3390/universe2030017
(2016).
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impossibility of expressing the metric tensor field in terms of smooth coefficients
in the vicinity of such a singular locus. Since the metric should belong to the
solution space of Einstein’s field equations, there naturally raises the physical
concern if the validity of Einstein’s equations may be extended appropriately over
singular domains. Clearly, this is not possible by retaining the global smoothness
requirement in the determination of the metric coefficients as solutions of the field
equations. In particular, this issue targets the assumption of the global smooth point-
event manifold substratum of the theory in relation to the existence of singular loci
in spacetime where the metric breaks down or the curvature blows up.

We remind that a real smooth manifold X can be reconstituted completely from
the global R-algebraC∞(X) of smooth real-valued functions on it, and in particular,
the point-events of X can be expressed in terms of the algebra C

∞(X) as the
R-algebra homomorphisms C∞(X) → R. Equivalently formulated, the manifold
points-events constitute the R-spectrum of the global algebra of smooth functions
C

∞(X).
Moreover, all the tensorial physical quantities, like the spacetime curvature, are

coordinatized by means of the commutative R-algebra of globally defined smooth
real-valued functions C∞(X). In this manner, the background reference scaffolding
of the theory remains fixed as the R-spectrum of the algebraC∞(X), which supplies
smooth coefficients for the coordinatization of all physical quantities. The points
of the manifold X, although not dynamically localizable degrees of freedom in
General Relativity, serve as the semantic information carriers of the factual level
of reality. The subtlety of General Relativity is exactly that manifold points are
not dynamically localizable entities in the theory. More precisely, manifold points
assume an indirect reference as indicators of spacetime events, only after the
dynamical specification of chronogeometrical relations among them, as particular
solutions of the generally covariant field equations. Clearly, the existence of singular
loci in spacetime where the metric breaks down in terms of smooth function
coefficients forbids the association of smooth manifold points with spacetime
events. What remains is an emergent notion of an event horizon of a singular locus
where spacetime information may be encoded appropriately.

The conceptual underpinning of singularities in General Relativity is that the
physical content of the theory, imprinted in the field equations, cannot be exhausted
by looking exclusively at the factual level of reality, idealized by means of the
point-events of a global smooth spacetime manifold. Even worse, the factual level
cannot be accessed globally, but only in terms of local descriptions and their
interconnections. It is a standard practice in General Relativity to look for local
solutions of the field equations and study their maximal extendibility. Thus, the
solutions of the field equations in terms of the spacetime metric actually form
sheaves of smooth algebra coefficients in the process of extension from the local
to the global level. The existence of a singular locus signifies the non-extendibility
of a local solution expressed in terms of smooth coefficients. This does not a priori
exclude the possibility that there exist other distribution-like sheaves of metric
coefficients satisfying the field equations and being extendible over the former
singular loci as well! This can be possible under the proviso that the domain of
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validity of the field equations goes beyond the notion of a smooth manifold. At best,
the smoothness assumption should be employed only locally and certainly far from
singular loci. In other words, there should exist an embedding of the algebra sheaf of
smooth functions into a distribution-like sheaf of coefficients qualified as a solution
of the field equations. In this way, even if we retain locally the association of the
factual level of reality with the point-events of a smooth manifold, the existence
of singularities signifies a process of folding out of this smooth stratum. In this
manner, the existence of a distribution-like sheaf of coefficients as a solution of the
field equations paves the way for understanding the precise nature of this folding
out of the factual level into a statu-nascendi level. We argue that the mathematical
specification of such a sheaf solution sheds light on the nature of singularities,
determines what should be considered as a generic property of the gravitational
field, and ultimately proves that the interpretation of General Relativity is logically
incomplete without delving into the statu-nascendi level.

From a broad philosophical perspective, the issue of singularities in General
Relativity as impossibilities of extending smooth metric solutions of Einstein’s
equations necessitates a higher logical order of relativization of facticity, going
beyond the standard sequential order of extending timelike geodesic curves in
a smooth manifold. In particular, there should be a statu-nascendi, level with
its intrinsic logical order, via which the process of folding out of the factual
level can be cast into a meaningful form. More concretely, there should be a
whole categorial apparatus qualifying the intrinsic characteristics of the statu-
nascendi level in comparison to the factual one. The necessity of a categorial
apparatus and the indispensable role of an appropriately qualified statu-nascendi
level for understanding the role of singularities in General Relativity has been
emphasized by the conceptual framework of Autogenesis, developed into a fully-
fledged philosophical theory with many applications by von Müller.

5.9.2 The Role of Singularities from the Viewpoint of
Autogenetic Theory

It is instructive to present the basic premises of von Müller’s theory of an autogenetic
universe in a nutshell, since this would facilitate a better understanding of the
proposed strategy to tackle the issue of singularities in General Relativity. The
qualification autogenetic pertains to the two predominant characteristics of the
universe, which are self-unfoldment and strong self-referentiality. Both of these
characteristics cannot be comprehended by an exclusive restriction to a world of
facts. What is required is a relativization of facticity, which leads inevitably to a
novel account of time and reality. More precisely, the structural reduction of time to
its linear-sequential aspect and the concurrent reduction of reality to its factual or
event-like aspect is inadequate to account for critical processes related with folding
into or folding out of the factual portrait of reality. Thus, the problem of singularities
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in General Relativity may be accessed effectively from this conceptual angle under
the proviso that these enfolding/unfolding processes can be qualified by suitable
means, enforcing a relativization of the factual level with respect to a statu-nascendi
level. These means give rise to distinctive categorial frameworks distinguishing the
statu-nascendi level from the factual level.

In more detail, the theory of autogenesis introduces a threefold scheme consti-
tuted in the form of three interdependent layers, which are connected together in
the form of the linking properties of the Borromean rings, that is if any one of
the layers is removed, then there remain two unlinked layers. Each layer captures
a different aspect of reality, namely the apeiron aspect, the statu-nascendi and
the factual aspect correspondingly. The apeiron aspect is inherently without any
structure and expresses the irreducible global unity or non-separability of reality at
this layer, which acts as a potential source for the actual taking place. The latter
should involve both the statu-nascendi and the factual layers. The statu-nascendi
should be better considered as a kind of a non-Boolean logical disclosure topos
pertaining to the time-space of the present. As such it incorporates the logical or
topological pre-conditions for relativizing the semantics of events at the factual
level. It becomes visually informative to think of this relativization of facticity in
terms of some self-referential process which either folds into or inversely folds out
of the factual layer. In this manner, the factual aspect of reality is constituted by
the observed traces of this process, viz. the events embedded within a local space-
time context. Whereas the apeiron aspect is not amenable to any direct structural
predicative determination, both the statu-nascendi and the factual aspect constitute
layers whose respective characteristic function can be depicted in the terms of
distinctive underlying categorial frameworks.

Each categorial framework stands for an integral apparatus consisting of four
interrelated and bidirectionally interdependent components: (a) a logical structure
of a predication space, (b) a related notion of a spatiotemporal context, (c) a causal
scheme accounting for linkages, and (d) a corresponding epistemological setting.
In this way, the factual aspect of reality is captured by means of a categorial
apparatus, which consists of the following components respectively: (a) a Boolean
logical predication space, (b) a local metrical space-time continuum, (c) a classical
scheme of efficient causality, and (d) an epistemological setting based on the
notion of absolute separability between observer and observandum. The intrinsic
necessity of introducing another categorial apparatus constituting the statu-nascendi
layer of reality is based on the inability of the former one to account for the
logical structural phenomenon of strong self-referentiality and its concomitant
operational manifestation as autogenesis, meaning a process of self-referential
folding/unfolding without any separable external cause.

The constituent bidirectionally interrelated components of the statu-nascendi
layer are the following: (a) a paratactical predication space on which some appro-
priate form of constellatory logic becomes applicable, (b) a local logical disclosure
topos pertaining to the time-space of the present, (c) a causal scheme of autogenetic
folding/unfolding, and (d) an epistemological setting of strong self-referentiality.
The notion of parataxis refers to a mode of logical coherence of a multiplicity which
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is independent of linear sequential organization. This is captured by the functional
role of a constellatory logic, where an individuated component of such a multiplicity
can be evaluated only in the context of all other components being compatible with
it in a suitable manner.

Therefore, from the perspective of the theory of autogenesis, the problem of
singularities in General Relativity targets exactly the global breakdown of the
metrical smooth space-time point-event-manifold model of this physical theory.
Thus, it proposes to understand the means of folding out of the local space-time
event continuum pertaining to the factual layer of reality via consideration of the
categorial apparatus pertaining to the statu nascendi level. We stress again that
the categorial apparatus of this level is indispensable for enforcing a higher-order
relativization of facticity, which addresses the very notion of a local perspective on
reality.

It is clear from the preceding that the nature of this notion, that is of a local per-
spective on reality, should not refer to the concept of geometrical locality in a global
point-event manifold. In contradistinction, it should be of a logical/topological
origin demarcating the logical structural pre-conditions that will allow us to perform
indirect self-reference via the statu-nascendi associated with the signification of
folding into and out of the factual level. This higher-order logical/topological
relativization of facticity provides legitimate mathematical modeling means to
exemplify the notion of categorial relativity, related to the function of the categorial
apparatus of the statu nascendi level in the context of the theory of autogenesis.

5.9.3 Outline of the General Mathematical Framework

The construction of a concrete mathematical model consistent with the principle of
categorial relativity in relation to the problem of singularities is not straightforward
and requires a combination of methods leveraging recent advances in differential
geometry, algebraic topology, theory of non-linear partial differential equations and
mathematical logic together with the physical and mathematical constraints posed
by Einstein’s field equations. Notwithstanding the mathematical complexity of this
endeavor, there are five basic axons in the intertwined network of mathematical
concepts and tools.

The first is that the most natural way to describe the process of folding/unfolding
in precise terms is provided by the algebraic notion of a sheaf and its concomitant
topological manifestation in terms of the concept of a local homeomorphism as
exemplified in the theory of etale spaces and covering spaces. Conceptually, we may
think of a covering space as the mathematical model of a folding/unfolding process
according to some periodic rule which is expressed by a discontinuous group action,
for example in terms of the group of the integers. In the case of covering spaces
this periodic rule is constant, viz. the folding/unfolding takes place according to
a constant ratio, whereas in the general case of etale spaces it is variable. There
exists a significant intermediate sheaf-theoretic notion between these two extremes,
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which bears the name of a branched covering space. The importance of this notion is
that we may consider the folding/unfolding as taking place according to a constant
periodic rule with the exception of a finite set constituting a locus where a type of
branching behavior becomes manifest. Intuitively, we may think of this locus as an
interface characterized by some potency index capturing the kind of branching.

The second is that the algebraic notion of a sheaf encapsulating the above
types of local homeomorphisms is naturally associated with a calculus, called sheaf
cohomology, via which all the localized constructions of differential geometry can
be efficiently carried out without the intervention of any smoothness assumption,
like in the classical theory of differential manifolds. This essentially means that
a sheaf of smooth algebra coefficients is dethroned from its unique absolute role
to express the differential geometric mechanism. The physical significance of this
advancement in differential geometry for physics is that distribution-like solution
sheaves turn out to be more suitable than the smooth one in cases where field sources
or singular domains need to be incorporated in the field equations.

The third is the universal role being played by a specific topological link in three-
dimensional space. This is the Borromean link, depicted algebraically by means
of a non-commutative free group in two generators. Its significance lies on five
distinctive roles: (a) it is threefold symmetric and can be iterated self-referentially
ad infinitum. (b) All other topological links can be expressed algebraically in terms
of simple algebraic operations within the same group-theoretic model. (c) It serves
as a universal singular locus in the theory of branched covering spaces. (d) The
components of the Borromean link serve as basis elements in homological vector
spaces and the link itself can be characterized homologically by means of a third-
order topological invariant. (e) It provides the simplest model of non-local linkage
in 3-d space independently of metrical distance.

The fourth is the role of a particular class of sets, called topologically nowhere
dense sets, in relation to establishing solutions of non-linear partial differential
equations. It turns out that closed nowhere dense sets provide the analytic key for
extending solutions over singularities.

The fifth is the logical notion of genericity in mathematical logic crystalized by
the logical method of forcing conditions with respect to a partially ordered set. This
method can be reformulated in sheaf-theoretic terms via the notion of a non-classical
topos, conceived as a generalized and localized model of a set-theoretic universe of
discourse, where indirect self-reference can be unproblematically performed with
respect to the standard absolute model. In a well-defined sense, the notion of a
logical topos bears a semantic logical role complementary to the topological or
geometric role of branched covering spaces in qualifying the categorial apparatus
necessary to access the precise form of a folding/unfolding process.

The rationale of applying the mathematical framework outlined concisely above
to attack the problem of singularities in General Relativity is the following: In
an intrinsically dynamically variable theory like General Relativity, where the
properties of matter determine the gravitational field, it should be the precise
physical conditions themselves that specified the type of the metric tensor field
sheaf coefficients as solutions to the field equations, instead of fixing the coefficients
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ab initio to the smooth ones, and eventually face the breaking down of the metric
or the curvature at singular loci. On the basis of this insight, it turns out that
the domain of validity of Einstein’s field equations can be rigorously extended
beyond smooth real manifolds by admitting other distribution-like algebra sheaves
of coefficients, instead of the smooth one, with respect to which all the differential
geometric constructions can still be performed unambiguously subject only to some
well-understood cohomological conditions. This approach vindicates the following
critical remark of Hermann Weyl: “While topology has succeeded fairly well in
mastering continuity, we do not yet understand the inner meaning of the restriction
to differential manifolds. Perhaps one day physics will be able to discard it.”

5.9.4 Generic Gravitational Properties via Closed Nowhere
Dense Singular Loci

The first basic idea involved in the construction of distribution-like sheaves of
coefficients as solutions of a non-linear partial differential equation is to model a
singular locus � in R

4 as a closed and nowhere dense subset relative to an open
set V ⊆ R

4, such that its complement V \ � in V is dense. The second basic
idea is to express such a closed and nowhere dense singular locus as an ideal in
an algebra sheaf constructed as an extension of the smooth one over a partially
ordered set. In this manner, the ideal expressing algebraically a singular locus
contains diagrams of locally defined smooth functions indexed by � whose support
covers the singular locus �, whereas they vanish outside it. Then, we prove that
the quotient commutative algebra sheaf AL (V ) = C

∞ (V )� /IL (V ) is an algebra
sheaf of residues of diagrams of smooth functions modulo the closed nowhere
dense singular ideal IL (V ). All the examples of such closed and nowhere dense
sets can be obtained by some knot or link in 3-d space. Among them there exists
a universal link, namely the Borromean rings, and thus if we make use of their
universality property all possible closed and nowhere dense loci serving as models
of singularities may be obtained through the Borromean link! Conceptually, this
essentially means that the semantics of folding out of a local smooth event stratum
into a singular domain can be associated with the formation of the Borromean link
configuration and its concomitant algebraic expression in terms of an algebra sheaf
of the type AL. At the final stage, we have to examine if this algebra sheaf satisfies
the cohomological conditions necessary for expressing the differential geometric
mechanism of General Relativity in these terms instead of the globally smooth ones.
This turns out to be actually the case, and therefore, algebra sheaves of the type AL

can be used legitimately to express the metric solution of Einstein’s field equations
extended now over singularities.

In this manner, we conclude that it is possible to maintain the differential
geometric mechanism, used in setting up General Relativity, by using a distribution-
like sheaf of coefficients, and most important, extend it over singularities, such that
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the obtained solutions do not break down as in the smooth case. Philosophically, we
may think of these solutions as extending into the statu-nascendi level, and thus they
carry the information of unfolding subsumed in the construction of the sheaves of
the type AL. Furthermore, the extended sheaf solutions admit a precise formulation
over closed and nowhere dense loci serving as models of singularities, which can be
obtained in a universal way via the Borromean topological link.

Consequently, we are able to retain not only the validity, but the form and
covariance property of Einstein’s field equations even over singular loci via solution
sheaves of the type AL, whence these singular loci bear the role of closed and
nowhere dense sets relative to an open set V ⊆ R

4. The reason is that all physical
quantities can still be transformed according to a tensor law for any arbitrary
admissible coordinate transformation. The difference in comparison to the smooth
case is that the coordinates are allowed to be non-standard or non-smooth, while at
the same time all the machinery of differential geometry can be applied with respect
to them. In particular, while the coefficients of the tensorial physical quantities are
non-smooth, all the usual differential-geometric constructions can be carried out as
in the smooth case. The only price to be paid for this generalization is the rejection
of the fixed absolute global smooth manifold background of the theory. We consider
this fact as physically nondisturbing, since the essence of General Relativity is
in the covariant formulation and validity of Einstein’s equations and not on the
existence of a smooth background manifold. In particular, what we gain from such a
generalization is not only that Einstein’s equations can be extended covariantly over
singular loci, but also that the solution of these equations in terms of coefficients
from a sheaf of the form AL is free of singularities!

In the sequel, we propose a physical gravitational interpretation of algebra
sheaves of the form AL, containing the smooth C

∞ as a subalgebra and the Schwarz
distributions D′ as a linear subspace. For this purpose, we start by naming algebras
of the form AL as generic gravitational algebras. The task is to explain the notion of
a property being gravitationally generic and on the basis of this characterization to
probe the structure of AL from the perspective of General Relativity.

We define a property to be gravitationally generic if it occurs and holds on a dense
open set. In this way, a gravitationally non-generic property should appear only
on a closed nowhere dense subset. We propose that this notion of genericity sheds
light on the structure of algebras of the form AL if exemplified in a gravitational
context. In this manner, it is instructive to think of the notion of topological density
in physical terms, viz. as an indicator of gravitational energy density caused by
sources. In this context, the notion of genericity should be implemented by forcing
conditions. More concretely, a condition forces a gravitational property if this
property holds on a dense open set. A forcing condition forces every gravitational
property either to hold or not in relation to the criterion of density, and thus, a forcing
condition is generic in this sense.

Now using the criterion of gravitational genericity we attempt to explain the
structure of the algebras AL. In particular, we point out that their construction is
based on the notion of gravitationally generic properties. We focus our attention on
the fact that the definition of these algebras is based on the extension of the algebra
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of smooth functions with respect to a partially ordered set L. Thus, the setting up
of these algebras involves the extension of C∞ to C

∞�, where � is the indexing
set of the right directed partial order L = (�,≤). We also stress that this partial
order is necessary in order that the set IL (V ) is qualified as an ideal in AL. A
set of this form is characterized precisely as a closed and nowhere dense subset
relative to an open set V , which remarkably can be obtained in a universal manner
by the Borromean topological link. Since the off-diagonal ideal IL (V ) subsumes
algebraically the information of some singular locus �, characterized as a closed and
nowhere dense set, and thus as a bearer of a gravitationally non-generic property,
the quotient algebra of the form AL (V ) = C

∞ (V )�/IL (V ) incorporates only
properties defined on dense open sets. Hence, according to our definition, AL (V )

incorporates gravitationally generic properties. This is possible if the partial order
L = (�,≤) is actually a partial order of generic forcing conditions.

We note that the generic set of forcing conditions should not be contained
in the initial standard model we started with. In summary, if we start from a
standard smooth manifold model of spacetime, we can construct distinguishable
extensions incorporating gravitational sources implemented by generic sets of
forcing conditions of the form L = (�,≤). Most important, these extensions can
be obtained as singularity-free solutions of Einstein’s equations if all the tensorial
physical quantities are expressed in terms of coefficients from generic gravitational
algebras of the form AL (V ).
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Chapter 6
Borromean Link in Quantum Theory
Loops, Projective Invariants and the
Realization of the Borromean Topological
Link in Quantum Mechanics

6.1 Introduction

The notion of a topological or geometric phase has been introduced in quantum
mechanics by Berry in 1984 (Berry 1984; Simon 1983), and generalized by
Aharonov and Anandan 2 years later in 1986 (Aharonov and Anandan 1987). The
conceptual precursors of this astonishing discovery, which has been unnoticed
in the foundations of quantum theory for more than 60 years, is the work of
Pancharatnam in polarization optics (Wilczek and Shapere 1989) and the Aharonov–
Bohm effect (Aharonov and Bohm 1959, 1961) in electromagnetism. In 1956
Pancharatnam realized that in order to understand interference phenomena it is
not required to know the absolute phase, but only the relative phase difference
between light beams in different states of polarization. For two light beams this
relative phase is given by the phase argument of their complex-valued scalar
inner product. Actually all the typical global quantum mechanical observables are
relative phases obtained by interference phenomena. These phenomena involve
various splitting and recombination processes of beams whose global coherence is
measured precisely by some relative phase difference. If we consider an external
time parametrization of interference phenomena, then the relative phase global
observable can be thought of as the physical attribute measuring the coherence
between two histories of events sharing a common initial and final temporal point.

For example, we may think of the simplest case of a beam which is split into two
beams propagating for a period of time and finally recombined. Their interference
is always measured by a global relative phase difference. We may summarize the
discussion up to this point by stressing the fact that although quantum mechanics
may be locally interpreted in terms of probabilities of events, so that complex phases
do not play any role and can be gauged away, globally it is the relative phase
differences between histories of events that bear the major physical significance.
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Equivalently, a global geometric complex phase may be thought of as the “memory”
of a quantum system undergoing a “cyclic evolution” after coming back to its
original physical state. The “cyclic evolution” is considered with respect to a loop in
an underlying space of control parameters upon which the Hamiltonian depends on.
Given that the temporal dependence of the driving Hamiltonian is only implicit via
the control parameters, tracing a loop in the space of control parameters is naturally
associated with a periodicity property of the state vector.

Beyond the local phase invariance of the probability assignment in quantum me-
chanics, there is another type of invariance stemming from the fact that probability
amplitudes are complex numbers. In general, the complex-valued inner product
〈φ|ψ〉 := z is interpreted as the transition amplitude from the unit state vector
|ψ〉 to 〈φ|. The complex-valued transition amplitude z is used to calculate the
corresponding real-valued, transition probability by squaring, that is z2 = z∗z. The
underlying symmetry of the transition probability is that it remains invariant under
the operation of complex conjugation. Most important, geometric phase factors
distinguish between unitary and antiunitary transformations in terms of complex
conjugation. The implications of this invariance are far reaching because they target
the semantics of the temporal parameter in comparison to its classical connotation.
The necessity for a profoundly different notion of time in the quantum regime,
which encompasses a crucial role for the present, has been emphasized by von
Müller and Filk (von Müller 2015; Filk and von Müller 2010) from the perspective
of the categorical conceptual frame underlying quantum physics. We propose to
use these two interrelated types of invariance, pertaining to transition probabilities,
as an anchor point from which we unravel the role of loops, based loops, and
their projective invariants in the state space of a quantum system. The fact that
based oriented loops can be composed by means of a non-commutative group law
carries the seed for the realization of the Borromean link in quantum mechanics
via its representation in terms of one-parameter unitary groups acting on a specified
state vector. These unitary groups are parameterized by some parameter bearing a
temporal or spatial semantics that plays a distinctively different role in comparison
to the classical counterparts.

The motivation of this work arose from a quite different, although closely
related, perspective concerning the utilization of topological links to probe the
nature of quantum entanglement. More precisely, Aravind proposed to investigate
the correspondence between topological and quantum entanglement based on the
following analogy: If the state of a simple quantum system is to be thought of as
a loop, then the state of an entangled quantum system should be thought of as a
topological link. In the context of this analogy, there emerged the striking result
that the entangled GHZ (Greenberger–Horne–Zeilinger) state of the composite 3-
qubit system is analogous to a Borromean link (Aravind 1997). Notwithstanding
this finding, the weak point of the analogy is that it is dependent on the measurement
basis.

From our viewpoint, the success of an analogy is based on the initial modelling
hypothesis, which in the present case refers to the interesting conception of a quan-
tum state in terms of a loop. In this sense, although the analogy between topological
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entanglement and quantum entanglement turns out to be basis-dependent, there
arises the possibility to test the initial hypothesis in another contingency, namely
the one of quantum interference. In particular, given the invariance of the transition
probability under complex conjugation, it seems more natural to think of a quantum
transition amplitude in terms of a loop instead of Aravind’s initial hypothesis. In
this context, the emergence of a specific link would refer to the specific form of
interference among transition amplitudes. For this purpose, we consider loops in
the space of rays and calculate their projective invariants. We show that arbitrary
transition probabilities can be calculated by means of these projective invariants.
We also deduce the expression of global geometric phase factors and study their
properties. Then, we show that they lead to an invariant distinction between unitary
and antiunitary transformations. Next, we apply the method of projective invariants
of loops in ray space for the calculation of the transition probabilities involved
in the double slit experiment. From the analysis of the double slit experiment in
terms of loops, we realize that we can represent the action of one-parameter unitary
groups in terms of pairs of oppositely oriented based loops at a fixed reference ray.
In this context, we explain the relation among observables, local Boolean frames
of projectors, and one-parameter unitary groups. This leads to the criterion of
differentiation among pairs of based loops in terms of the localization properties
of Boolean frames formed by spectral families of orthogonal projectors. In the
sequel, we exploit the non-commutative group structure of based oriented loops in
3-d space and demonstrate that it carries the topological semantics of a Borromean
link. In particular, we show that the topological information incorporated in the
specification of the Borromean link can be encoded algebraically by means of the
non-commutative group-structure of the free group �2 generated by two oriented
loops, which are based at the same fixed point. Finally, we prove that there exists
a representation of this group structure in terms of one-parameter unitary groups
acting on a quantum state space that realizes the topological linking properties of
the Borromean link.

6.2 Tame Closed Curves and the Borromean Link

The notion of a topological link is based on the underlying idea of connectivity
among a collection of loops. We consider that a loop is a tame closed curve. The
property of tameness means that a closed curve can be deformed continuously
and without self-intersections into a polygonal one, that is a closed curve formed
by a finite collection of straight-line segments. Given this qualification, a loop
is characterized by the following properties: First, it is a one-dimensional object.
Second, it is bounded, meaning that it is contained in some sphere of sufficiently
large radius. Third, a single cut at a point cannot separate a loop into two pieces,
whereas any set of two cuts at two different points does separate a loop into two
pieces. Moreover, a loop is called knotted if it cannot be continuously deformed into
a circle without self-intersection. We only consider unknotted tame closed curves.
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A topological N-link is a collection of N loops, where N is a natural number.
Regarding the connectivity of a collection of N loops, the crucial property is the
property of splittability of the corresponding N-link. We say that a topological N-
link is splittable if it can be deformed continuously, such that part of the link lies
within B and the rest of the link lies within C, where B, C denote mutually exclusive
solid spheres (balls). Intuitively, the property of splittability of an N-link means that
the link can come at least partly apart without cutting. Complete splittability means
that the link can come completely apart without cutting. On the other side, non-
splittability means that not even one of the involved loops, or any pair of them, or
any combination of them, can be separated from the rest without cutting.

The “Borromean rings” consist of three rings, which are linked together in such a
way that each of the rings lies completely over one of the other two, and completely
under the other, as it is shown at the picture below:

This particular type of topological linking displayed by the “Borromean rings” is
called the “Borromean link,” and is characterized by the following distinguishing
property: If any one of the rings is removed from the “Borromean link” the
remaining two come completely apart. It is important to emphasize that the
rings should be modelled in terms of unknotted tame closed curves and not as
perfectly circular geometric circles. The adjective topological means that they can
be deformed continuously under the constraint that the particular type of linkage
forming the Borromean configuration is preserved.

From the viewpoint of the theory of topological links, the Borromean link
constitutes an interlocking family of three loops, such that if any one of them is cut
at a point and removed, then the remaining two loops become completely unlinked
(Cromwell et al. 1998; Debrunner 1961; Hatcher 2002; Lindström and Zetterström
1991; Kawauchi 1996). In more precise terms, the Borromean link is characterized
topologically by the property of splittability as follows: The Borromean link is a
non-splittable 3-link (because it consists of three loops), such that every 2-sublink of
this 3-link is completely splittable. It is clear that it is a non-splittable 3-link because
not even one of the three loops, or any pair of them, can be separated from the rest
without cutting. A 2-sublink is simply any sub-collection of two loops obtained
by erasing the loop that does not belong to this sub-collection. Since the Borromean
link is characterized by the property that if we erase any one of the three interlocking
loops, then the remaining two loops become unlinked, it is clear that every 2-sublink
of the non-splittable 3-link is completely splittable.
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6.3 Aravind’s Analogy: GHZ Entangled State
as a Borromean Link

The existence of topological links, like the Borromean link, may be thought of as a
form of topological entanglement. From the other side, one of the basic distinguish-
ing features between classical and quantum systems is the phenomenon of quantum
entanglement. Thus, there arises the natural question if there exists any type of
correspondence between the forms of topological and quantum entanglement. In the
context of this, Aravind (1997) proposed to investigate the correspondence between
topological and quantum entanglement based on the following analogy: If the state
of a simple quantum system is to be thought of as a ring (topological circle or loop),
then the state of an entangled quantum system should be thought of as a topological
link. Moreover, the measurement of a subsystem of an entangled system should
be thought of as the process of cutting of the corresponding loop. The caveat of
this approach is that there are many possible measurements on a subsystem of a
composite entangled system, and consequently the proposed correspondence should
depend on the choice of the measurement basis.

It is well known that the state space of a composite quantum system is given by
the tensor product of the state spaces of the component subsystems. In the case of
two subsystems A and B, if the state vector of the composite system can be written
as |ψ〉 = |ψA〉⊗|ψB〉, where |ψA〉, |ψB〉 denote some state vector of the subsystem
A and B, respectively, then the state vector |ψ〉 is called separable. Otherwise, if
the pure state |ψ〉 of the composite system cannot be written in the above form it
is called entangled. In the simplest case, we may consider qubits, that is quantum
systems whose state space is 2-d. Let us consider a basis of the 2-d state space
consisting of the state vectors |0〉 and |1〉. So we may consider a composite quantum
system consisting of two qubits. It is immediate to see that there are states of the
composite qubit system, for example:

|ψ〉 = 1√
2
(|00〉 + |11〉)
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where we follow the general convention:

|ψ1〉 ⊗ |ψ2〉 := |ψ1〉|ψ2〉 := |ψ1ψ2〉

which are not separable, and thus they are entangled.
If we follow Aravind’s analogy, then an entangled state of a composite two qubit

system corresponds to a non-splittable topological 2-link, whereas a separable state
corresponds to splittable 2-link. Let us now consider the case of three qubit systems
denoted by A, B, and C correspondingly. The composite quantum system of these
three qubits is characterized by the state space given by the tensor product of the
state spaces of the three component subsystems. We consider the so-called GHZ
state (Greenberger–Horne–Zeilinger) of the composite system (Greenberger et al.
1990) defined by:

|ψ〉 = 1√
2
(|000〉 + |111〉)

It is clear that the GHZ state |ψ〉 of the composite system is entangled. Moreover,
the GHZ state is a symmetric state under permutations of the states of the three
component subsystems. Thus, it can be considered as representing a non-splittable
3-link. Now, we may consider a measurement basis of the composite system given
by the projection operators P0 := |0〉〈0| ⊗ Id ⊗ Id and P1 := |1〉〈1| ⊗ Id ⊗ Id .
These projections correspond to potential measurements only on qubit A. After a
measurement is performed, the composite system is either in the state |000〉 or in
the state |111〉. Both of these states are separable. Therefore, a measurement carried
on the qubit A can be thought of as a process of cutting the corresponding loop.
Consequently, the remaining 2-sublink of the initial non-splittable 3-link becomes
completely splittable. Clearly, due to the permutation symmetry of the GHZ state,
one may consider a potential measurement only on qubit B or only on qubit C
without affecting the argument. Hence, the entangled GHZ state of the composite
3-qubit system is analogous to a Borromean link. The weak point of this analogy is
that it is dependent on the measurement basis.

From the theoretic perspective of our work, although Aravind’s analogy is
instructive for thinking about a possible bridge between the notions of topological
and quantum entanglement, in particular with reference to the Borromean link, it
suffers from the unjustifiable initial assumption that the state of a quantum system
may be thought of in terms of a loop. This poses the problem of investigating, in the
first place, the possible role of loops in the foundations of quantum mechanics.

6.4 Loop Symmetry of Quantum Transition Probabilities

In quantum mechanics the transition amplitude from the physical state |ψ〉 to the
state 〈φ| is given by the complex-valued inner product 〈φ|ψ〉 in Dirac’s notation.
This notation is justified by the fact that the Hilbert space complex-valued inner
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product induces a conjugate isomorphism between the Hilbert space and its dual.
Moreover, the double dual is isomorphic to the original Hilbert space. Equivalently,
there exists a bijective correspondence between the covectors of the dual space and
the conjugate vectors of the state space, which represent physical states. In this way,
a vector is transformed to a covector by Hermitian conjugation, that is |ψ〉† = 〈ψ|,
which in the one-dimensional case is reduced simply to complex conjugation.

The complex-valued transition amplitude 〈φ|ψ〉 := z is used to calculate
the corresponding real-valued, normalized transition probability by squaring. For
simplicity, if |ψ〉 and |φ〉 are unit vectors, the transition probability is given by the
normalized real number z2 = z∗z. It is clear that the transition probability, which
represents a physical magnitude, remains invariant under complex conjugation.
This innocent looking fact can have far-reaching implications. In particular, it
implies that every set of equations in quantum mechanics, which are used for
calculating transition probabilities, may be written in two equivalent and physically
indistinguishable forms differing by complex conjugation.

The whole issue arises from the arbitrary choice of the positive root of
√−1 := i

for the formulation of Schrödinger’s equation:

ih̄
∂ψ

∂t
= Ĥψ

instead of the opposite convention involving the negative root of
√−1, that is

−√−1 := −i, which would give:

−ih̄
∂ψ

∂t
= Ĥψ

Notice that both formulations are physically indistinguishable, since they provide
identical transition probabilities.

After choosing the first convention, as it is usually the case, the issue of invari-
ance of the transition probabilities under complex conjugation is treated as follows:
We note that Schrödinger’s equation is not invariant under complex conjugation,
but it remains invariant under the combined action of complex conjugation and
parameter t reversal. The parameter t is treated as a classical temporal parameter
and is referred to as the parameter of “unitary time evolution,” and thus t-reversal
is interpreted as “time-reversal.” We will refrain from the interpretation of t as a
classical temporal parameter for reasons that will be explained in the sequel, but
presently, in order to comply with the current usage of this parameter we will refer
to it as “time.”

The conclusion we obtain from the above may be summarized as follows: For
each description of a quantum system in terms of a state vector “evolving” along
the positive direction of the real parameter t (“time”), there exists a physically
indistinguishable description in terms of the conjugate state vector “evolving” along
the negative direction of the real parameter t (“time”). Equivalently, in terms of
transition amplitudes, we may say that z is associated with a process “evolving”
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forward in “time,” whereas z∗ with a process “evolving” backward in “time.”
From this viewpoint, the transition probability may be associated with a process
“evolving” around a loop in “time.” The first reaction is to deliberately cease to
consider these loops because they are associated with causality paradoxes.

We will argue that the problem is not associated with the loops themselves,
expressing the symmetry in the calculation of transition amplitudes under complex
conjugation, but with the interpretation of the parameter t as a classical “time”
parameter in analogy to the situation in classical mechanics. Up to present,
acknowledgement of this issue in the foundations of quantum mechanics has
not led to questioning the status of the real parameter t as a classical “time”
parameter, but to a view most commonly referred to as the “double inferential
state-vector formalism” after Watanabe (1955), or the “two-state vector formalism”
after Aharonov, Bergmann and Lebowitz (Aharonov et al. 1964, 2014). In these
formulations, the two-state vector is represented by the pair 〈φ||ψ〉, where the
parameter t denotes “time,” and 〈φ| “evolves” backward in “time,” whereas |ψ〉
“evolves” forward in “time.” These formalisms are “time”-reversal invariant and
have been used for describing pre-selected or post-selected quantum systems, which
has led recently to the theory of weak measurements (Vaidman 1996). Under this
view, causality is “time”-symmetric, since there exists an apparent combination of
(forward) causality and retrocausality.

From our perspective, although these formalisms have contributed significantly
in unraveling important temporal and information-theoretic notions in the foun-
dations of quantum physics, they have been especially designed to preserve the
interpretation of the parameter t as a classical time parameter, together with the
associated concept of “evolution in time,” paying the price of introducing into the
formalism notions of forward and backward causality (with reference to the complex
conjugation symmetry discussed previously). Our strategy will be to discard the
interpretation of t as a classical time parameter and simultaneously to utilize
loops—expressing the symmetry intrinsic in the calculation of quantum transition
probabilities—in an appropriate manner. In this way, it is necessary, first of all, to
differentiate the meaning of the words “transition” and “evolution.”

The main problem is intrinsically associated with the notion of localization in
the quantum domain. For instance, in the position representation of a quantum
system in one dimension, where the position operator is multiplicative and the
momentum operator is differential, the complex valued state vector is expressed
as a continuous and differentiable function of two parameters, where the first
is interpreted as a spatial coordinate position parameter, whereas the other as a
temporal parameter. This induces the inaccurate mental picture of a system whose
wavefunction evolves in an a priori differentiated spatiotemporal continuum, and
thus its localization is thought of in classical spacetime terms irrespective of the
decisive role of measurement processes and the actualization of events.

A mental picture of a similar type is induced by Feynman’s “spacetime ap-
proach to quantum mechanics,” where the “time evolution” of a quantum system
is considered to take place along all possible continuous paths connecting two
classical spacetime points (Feynman et al. 2010). In this formulation, there is
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clearly implicated a notion of spatiotemporal localization, in the sense that the
“evolution” is conceived to take place in an a priori given classical spacetime
continuum. The quantal aspect of Feynman’s approach does not consist in rejecting
the classical spacetime continuum as a means of localizing quantum systems, but
in considering all possible continuous spacetime paths and weighting each one of
them by a transition amplitude z proportional to the complex exponential factor
z ∼ exp(iS/h̄), where S is the classical action associated with the depicted path.
Although Feynman’s path integral method is an invaluable calculation tool of
transition probabilities, it subscribes to a concept of localization in the quantum
domain, which is formulated within an a priori differentiated classical spacetime
substratum. Actually, the operational description of the path integral in the double
slit experiment by Feynman’s approach makes matters more complicated and we
are going to return to this point later.

A natural question emerging at this stage is if the transition probability calculated
by the path integral method bears the property of invariance under complex
conjugation. Again it is easy to see that the real-valued transition probability for
a path, obtained by the product of the associated transition amplitude z with its
complex conjugate amplitude z∗, remains invariant under complex conjugation if
“time” is reversed simultaneously. In other words, the calculation of the transition
probability for a path bears the symmetry of a process “evolving” around a loop
in “time.” Hence, the total transition probability may be obtained by summing all
contributions emanating from all possible loops connecting the initial and final
points (in the forward “time” direction). We are going to exploit this observation—
acquired by a simple symmetry argument—later on, although we will refrain from
interpreting loops of this form as loops in “time.”

The symmetry of a process “evolving” around a loop in “time” in relation to the
calculation of transition probabilities also figures out predominantly in Schwinger’s
“closed time path formalism,” which is extensively used in quantum field theory
(Schwinger 2000). The basic idea of Schwinger’s formalism is the following: The
transition amplitude from a spacetime point to another one may be considered as
a matrix element. Concomitantly, if we consider that the state at an initial fixed
“time” t = 0 is described by a diagonal matrix element, we may insert a complete
orthonormal basis of states into this matrix element at a different later time t ′. In this
manner, it is possible to express the original matrix element at fixed time t = 0 as a
product of the transition amplitude (matrix element) from t = 0 to t ′ with a “time”-
reversed complex conjugate transition amplitude from t ′ to t = 0. Notice that in
the simple case that we associate the transition amplitude with a path from t = 0
to t ′, the “time”-reversed complex conjugate transition amplitude from t ′ to t = 0
does not have to refer necessarily to the same path connecting these two points.
In other words, if the boundary conditions referring to the “forward evolution” are
different from the boundary conditions referring to the “backward evolution” a non-
trivial and non-reducible product of a transition amplitude with a “time”-reversed
complex conjugate transition amplitude is obtained.
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6.5 Projective Invariants and the Emergence of Geometric
Phases

The mystery around the symmetry of processes “evolving” around a loop in “time”
can be partially resolved by a careful consideration of the notion of geometric
phase in quantum mechanics. A general generation schema of an experimentally
observable global phase factor, which is of a purely geometric origin has been
discovered by Berry (Berry 1984; Simon 1983; Wilczek and Shapere 1989) and
generalized by Aharonov and Anandan (1987). It has been shown that a quantum
system undergoing a slowly evolving (adiabatic) cyclic evolution retains a trace of
its motion after coming back to its original physical state. This trace is expressed
by means of a complex phase factor in the state vector of the system, called Berry’s
phase or the geometric phase. The “cyclic evolution,” which is better to be thought
of as a periodicity property of the state vector of a quantum system, is driven
by a Hamiltonian bearing an implicit time dependence through a set of control
variables. For instance, we may think of external electric or magnetic fields which
define the Hamiltonian parametric dependence of a charged system. The adiabatic
condition defines a constraint of parallel transport, or equivalently a connection,
specified by the requirement that the implicit “time” dependence of the Hamiltonian
is sufficiently slow so that the state vector stays in the eigenspace of the same
instantaneous eigenvalue of the Hamiltonian. Intuitively, once the state vector is
prepared in an instantaneous eigenstate of the Hamiltonian with an eigenvalue which
is separated from the neighboring eigenstates by a finite energy gap, then it remains
there during its transport within a finite period.

We may think of the space of control variables as a slowly varying environment
with respect to which a state vector (eigenvector of the Hamiltonian localized at
the corresponding eigenspace) displays a “history” dependent geometric effect:
When the environment returns to its original state, the system also does, but for an
additional global geometric phase factor. Due to the implicit “temporal” dependence
imposed by the “time parameterization” of a closed path in the environmental
parameters of the control space, this global geometric phase factor is thought of as a
trace or memory of the motion encoding the global geometric features of the control
space. The Berry phase is a complex number of modulus one and is experimentally
observable. The two most important features regarding the experimental detection
of a quantum global phase are (1) that it is a statistical object, and (2) it can be
measured only relatively. Thus it becomes observable by comparing the “historical
evolution” of two distinct statistical ensembles of systems through their interference
pattern. The Berry phase is geometric because it depends solely on the geometry of
the control space pathway along which the state vector is transported. It depends
neither on the “temporal metric” duration of the “evolution,” nor on the particular
dynamics that is applied to the system. In more precise differential geometric terms,
a geometric phase factor is expressed in group-theoretic terms as the holonomy of
the associated Chern–Berry connection determining the rule of transport.
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The differential-geometric qualification of a global geometric phase factor,
interpreted physically as a memory of a quantum state vector under a global cyclic
transition in a base space of control parameters, is instructive for many reasons:

First, it requires to take explicitly into account the local phase invariance in the
specification of the state vector of a quantum system. The root of this gauge-type
symmetry is the invariance of the probability assignment under local complex phase
transformations of the state vector. In other words, the state vector of a quantum
system is determined locally only up to an arbitrary complex phase factor.

Second, the base space of control parameters is not spacetime. It is thought of
as an environment of control variables on which the Hamiltonian depends. In this
manner, the “time” dependence of the Hamiltonian is only implicit via the control
variables. Subsequently, loops in the base space of control variables are not “loops
in time,” but they merely signify a periodicity property of the state vector.

Third, the global geometric phase factor is obtained as the holonomy transfor-
mation of the Chern–Berry connection with respect to a loop in the base space of
control parameters. Thus, the geometric phase constitutes the global manifestation
of the curvature of this connection and is totally independent of the parameterization
of this loop by a “temporal parameter.”

A suitable differential geometric model of understanding the notion of global
geometric phase factors involves a homotopy fibration over a base topological space
of control variables, which can be presented either as a principal fiber bundle with
local structure group the group of complex phases, or as a line bundle of states
associated with the former, together with the parallel transport rule imposed by the
Chern–Berry connection (Zafiris 2015). In order to avoid these technicalities at this
point, we will follow a simplified approach which retains all the essential aspects.

We start from the observation that a normalized state vector |ψ〉 describes the
state of a quantum system by the set of its expectation values with respect to an
observable, represented by means of a self-adjoint operator V̂ . These expectation
values are real numbers obtained by the assignment:

V̂ �−→ 〈ψ|V̂ ψ〉
The symmetry of this assignment leads to the conclusion that two different state
vectors actually specify the same state if and only if they are linearly dependent.
For example, the unit state vectors |ψ〉 and eiϕ |ψ〉 specify the same state for any
0 ≤ ϕ ≤ 2π . If we identify linear dependent unit state vectors, that is for any fixed
unit state vector |ψ〉 consider the equivalence class of all unit vectors related by
phases, given by � = {eiϕ |ψ〉, 0 ≤ ϕ ≤ 2π}, then we obtain a 1-1 correspondence
between a physical state (pure state) and the ray � generated by |ψ〉.

We conclude that if we consider the set of all normalized unit state vectors in a
Hilbert space H, that is the subspace U = {|ψ〉 ∈ H|〈ψ|ψ〉 = 1}, then for each
unit state vector |ψ〉 ∈ U there exists a definite ray � ∈ PH, where PH denotes
the set of all rays, to which it belongs to. It is important to notice that each ray �

is an equivalence class of physically indistinguishable unit state vectors under the
action of the group of complex phases U(1) := S

1. It is clear that each ray spans a
one-dimensional linear subspace of H (we exclude the zero vector from H). Thus, it
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can be identified with the one-dimensional projection operatorP 2
ψ = Pψ := |ψ〉〈ψ|

that projects H onto this one-dimensional linear subspace.
Therefore, the space of physical states (pure states) PH is identified with the

space of one-dimensional projection operators of H. We note that although H is a
linear space, neither U nor PH are linear spaces. Nevertheless, there exists a well-
defined projection mapping pr from U to PH, that is pr : U → PH, such that:

|ψ〉 �−→ pr(|ψ〉) := Pψ = |ψ〉〈ψ|

For instance, in the case of a two-level quantum system, where the Hilbert space is
2-complex dimensional, the space of rays is the one-dimensional complex projective
space, which is isomorphic to the Riemann sphere S2. Thus, the projection mapping
gives rise to the Hopf fibration S

1 ↪→ S
3 → S

2 (Urbantke 2003).
We note that for any unit state vector |φ〉 in H, the action of the one-dimensional

projection operator or filter Pψ := |ψ〉〈ψ| is given by:

|ψ〉〈ψ|φ〉 = λφ |ψ〉

where λφ := 〈ψ|φ〉 is valued in the complex numbers C, such that λ2
φ = λφλφ

∗ is
the probability to find the system described by the unit state vector |φ〉 in the state
vector |ψ〉 under the action of the filter Pψ . Notice that the probability assignment
is invariant under the action of a complex phase transformation on the unit state
vector |φ〉, defined by |φ〉 �−→ eiϕ |φ〉. Clearly, it is also invariant under the action
|ψ〉 �−→ eiξ |ψ〉, since 〈ψ| �−→ e−iξ 〈ψ|, and thus Pψ = |ψ〉〈ψ| remains invariant
under complex phase transformations. Thus, the probability λ2

φ = λφλφ
∗ although

it is formulated in terms of state vectors, it actually refers to their corresponding
rays.

Then, it is straightforward to generalize the above argument as follows: For any
two non-orthogonal unit state vectors |ψ1〉 and |ψ2〉 the 2-vertex projective invariant
quantity:

I2(|ψ1〉, |ψ2〉) = I2(�1,�2) = I2(Pψ1 , Pψ2)

= |〈ψ1|ψ2〉|2 = (〈ψ1|ψ2〉) · (〈ψ1|ψ2〉)∗
= T r(Pψ1Pψ2)

is a real non-negative normalized quantity, which gives the transition probability
from |ψ1〉 to |ψ2〉.

Now, for any three unit pairwise non-orthogonal state vectors |ψ1〉, |ψ2〉 and
|ψ3〉, we may define the 3-vertex projective invariant quantity:

I3(|ψ1〉, |ψ2〉, |ψ3〉) = I3(�1,�2,�3) = I3(Pψ1 , Pψ2 , Pψ3)

= (〈ψ1|ψ2〉) · (〈ψ2|ψ3〉) · (〈ψ3|ψ1〉) = 〈ψ1|ψ2〉〈ψ2|ψ3〉〈ψ3|ψ1〉
= T r(Pψ1Pψ2Pψ3)
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The 3-vertex invariant I3(�1,�2,�3) is complex-valued, and depends only on
the relative ordering of the projection operators Pψ1 , Pψ2 , and Pψ3 . Clearly, it
remains invariant under independent complex phase transformations of the state
vectors and it is cyclically symmetric. The latter means that the projective invariant
I3(�1,�2,�3) bears the symmetry of a loop in the space of rays. In turn, this means
that it does not matter which projection operator comes first if we trace the loop in a
way that respects their relative ordering. Thus, in case we make an odd permutation
of the projection operators the sign of the phase representing the complex number
I3(�1,�2,�3), defined modulo 2κπ , κ ∈ Z, changes.

In a similar manner we may define higher order projective invariants, for instance
the 4-vertex invariant I4(�1,�2,�3,�4), and so on, but it is immediate to realize
that they are actually reduced to the information contained in I3(�1,�2,�3) and
I2(�1,�2). So it is worth examining more carefully the complex valued projective
invariant I3(�1,�2,�3), since the real valued non-negative invariant I2(�1,�2)

has been already interpreted as the transition probability from |ψ1〉 to |ψ2〉. A
first observation is that for any two non-orthogonal state vectors (not necessarily
unit ones) |ψ1〉 and |ψ2〉 the polar expression of the complex-valued transition
amplitude:

〈ψ1|ψ2〉 = |〈ψ1|ψ2〉| · e−iδφ12

provides the relative angle:

δφ12 = −Im[ln〈ψ1|ψ2〉]

which is uniquely defined modulo 2κπ , κ ∈ Z. However, it does not bear any
physical meaning since the complex phases of |ψ1〉 and |ψ2〉 may be arbitrarily
re-gauged, and thus δφ12 can get any arbitrary value in the allowed range. In
contradistinction, this is not the case if we choose any three pairwise non-orthogonal
state vectors |ψ1〉, |ψ2〉 and |ψ3〉 and form the 3-vertex invariant I3(�1,�2,�3) by
tracing a loop in the space of their corresponding rays in a given relative order, for
instance �1 → �2 → �3 → �1. In this case, we obtain a total relative angle θ as
follows:

〈ψ1|ψ2〉〈ψ2|ψ3〉〈ψ3|ψ1〉 = |〈ψ1|ψ2〉〈ψ2|ψ3〉〈ψ3|ψ1〉| · e−iθ

I3(�1,�2,�3) = 〈ψ1|ψ2〉〈ψ2|ψ3〉〈ψ3|ψ1〉 = r · e−iθ

where r := |I3(�1,�2,�3)|, and

θ = δφ12 + δφ23 + δφ31

The total relative angle θ is a complex phase invariant quantity, is uniquely defined
modulo 2κπ , κ ∈ Z, and depends only on the relative order of the corresponding
rays as we trace a loop in the space of rays. Note that total relative angles differing
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by an integer cannot be distinguished experimentally. Thus, the corresponding phase
factor exp(−iθ) ∈ U(1) ∼= R/Z is the physically meaningful gauge-invariant and
thus observable factor, called the geometric phase factor. It is instructive to notice
that the derivation of the geometric phase factor did not require any argument
of “temporal evolution”, but is solely based on the relative cyclic order of the
involved rays, which induces an orientation on the traced loop. In this way, an
odd permutation of these rays leads to complex conjugation of the geometric phase
factor.

6.6 Invariant Distinction of Unitary from Antiunitary
Transformations

At the next stage of development of the ideas related with the projective invariants
I3(�1,�2,�3) and I2(�1,�2) we examine the relation of I3 with the symmetries
of I2. We remind that in the case of two unit non-orthogonal state vectors |ψ1〉
and |ψ2〉, the real valued non-negative invariant I2(�1,�2) expresses the transition
probability from |ψ1〉 to |ψ2〉:

I2(�1,�2) = 〈ψ1|ψ2〉 · 〈ψ1|ψ2〉∗ = T r(Pψ1Pψ2)

A symmetry of I2(�1,�2) is defined as a bijective mapping, that is an automor-
phism of PH:

ω : PH → PH

with action Pψ1 �→ ω � Pψ1 , Pψ2 �→ ω � Pψ2 , such that:

I2(�
′
1,�

′
2) = I2(ω(�1), ω(�2)) = I2(�1,�2)

T r(ω � Pψ1ω � Pψ2) = T r(Pψ1Pψ2)

The last expression is identical with the notion of invariance of transition probability
under a Wigner transformation ω (Bargmann 1964). All automorphisms of PH
leaving the transition probability invariant form a group of automorphisms, which is
identified as the symmetry group of the projective invariant I2(�1,�2). According
to Wigner’s theorem any such automorphism of the base space of rays is lifted to
the linear space of unit vectors (and thus by extension to all vectors of the Hilbert
space) either as a linear unitary transformation or as a conjugate linear antiunitary
transformation. If we consider the case of a linear unitary transformation U , we
obtain that: ω � Pψ1 = UPψ1U

−1, ω � Pψ2 = UPψ2U
−1,

T r(ω � Pψ1ω � Pψ2) = T r(UPψ1U
−1UPψ2U

−1) = T r(Pψ1Pψ2)
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The symmetry of I2(�1,�2) basically says that given any element ω in the
symmetry group of automorphisms of PH, such that � �→ � ′ = ω(�), then the
corresponding state vector |ψ ′〉 is determined by the state vector |ψ〉 either by means
of a unitary transformation or by means of an antiunitary transformation. The only
physically viable antiunitary transformation on a state vector is complex conjugation
combined with “time” reversal in the usual terminology.

A natural question arising in this context is if there exists any intrinsic way to
distinguish between unitary and antiunitary transformations leaving the transition
probability invariant as previously. For this purpose, we consider the 3-vertex
invariant I3(�1,�2,�3). A straightforward calculation shows that I3(�1,�2,�3)

remains invariant under unitary transformations, whereas it is complex conjugated
under antiunitary transformations. Thus, I3(�1,�2,�3), or equivalently the geo-
metric phase factor, provides an intrinsic way to distinguish between unitary and
antiunitary transformations leaving the transition probability invariant. Using this
criterion, we also understand the interpretation of the geometric phase factor as
a memory built up after tracing a loop on the space of rays with a prescribed
orientation.

We close this section by calculating for any four unit non-orthogonal state vectors
the 4-vertex invariant I4(�1,�2,�3,�4) that we are going to use later on. We first
show that it is reduced on calculations of 3-vertex invariants. The general expression
of I4 reads as follows:

I4(|ψ1〉, |ψ2〉, |ψ3〉, |ψ4〉) = I4(�1,�2,�3,�4) = I4(Pψ1 , Pψ2 , Pψ3 , Pψ4 )

= (〈ψ1|ψ2〉) · (〈ψ2|ψ3〉) · (〈ψ3|ψ4〉) · (〈ψ4|ψ1〉)
= 〈ψ1|ψ2〉〈ψ2|ψ3〉〈ψ3|ψ4〉〈ψ4|ψ1〉
= T r(Pψ1Pψ2Pψ3Pψ4)

By inspecting the above general expression of I4, we realize that its argument
remains invariant by insertion of a real-valued non-negative invariant (transition
probability) of the form I2. In particular, we insert I2(�3,�1) = 〈ψ3|ψ1〉·〈ψ3|ψ1〉∗,
and we obtain:

I4(|ψ1〉, |ψ2〉, |ψ3〉, |ψ4〉)
= I4(�1,�2,�3,�4)

= 〈ψ1|ψ2〉〈ψ2|ψ3〉〈ψ3|ψ4〉〈ψ4|ψ1〉
= (〈ψ1|ψ2〉〈ψ2|ψ3〉〈ψ3|ψ1〉〈ψ1|ψ3〉〈ψ3|ψ4〉〈ψ4|ψ1〉

)
/I2(�3,�1)

= I3(�1,�2,�3) · I3(�1,�3,�4)

I2(�3,�1)

We may provide a simple geometric interpretation of the above calculation. We think
of a 2-vertex invariant (transition probability) as a line connecting the two vertices
in the space of rays, whereas we think of a 3-vertex invariant I3 as an oriented
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triangular loop connecting the three involved vertices in the space of rays. Then, we
consider a 4-vertex invariant I4 as an oriented four-sided polygonal loop connecting
the four vertices. This oriented polygonal loop may be triangulated by subdivision
into 2 oriented triangular loops. Clearly, this is the case emerging after connecting
vertices �3 and �1 by a line.

6.7 General Transition Probabilities via Projective
Invariants: The Double Slit Experiment

We have already interpreted the 2-vertex invariant in the space of rays as the
transition probability from |ψ1〉 to |ψ2〉, where |ψ1〉, |ψ2〉 denote non-orthogonal
unit state vectors:

I2(�1,�2) = (〈ψ1|ψ2〉) · (〈ψ1|ψ2〉)∗

Moreover, using the method of triangulation, we have shown that a 4-vertex
invariant I4 in the space of rays is expressed in terms of the product of two 3-
vertex invariants of the form I3. A natural question arising in this setting is if it is
possible to calculate the transition probability from a state vector |ψ1〉 to a state
vector |ψ2〉 when the transition involves intermediate state vectors, in terms of
invariants in the space of rays. Usually the intermediate state vectors arise from
the intervention of some complete orthonormal basis of vectors diagonalizing a
corresponding observable, and thus giving rise to a Boolean frame of projection
operators. From our previous analysis, it is evident that the crucial role is to be
played by 3-vertex invariants. We remind that for 3 unit non-orthogonal state vectors
the corresponding 3-vertex invariant has been interpreted as a geometric phase
factor. If we remove the unicity condition, the 3-vertex complex-valued quantity
I3 is still an invariant in the space of rays, whereas the angle of the corresponding
geometric phase factor is given by:

θ = −Im[ln(I3(�1,�2,�3))]

Notice again that θ is defined modulo 2κπ , κ ∈ Z, and depends only on the relative
order of the corresponding rays as we trace a loop along the associated oriented
triangle in the space of rays.

The basic idea boils down to using these 3-vertex invariants of oriented loops in
the space of rays for calculating transition probabilities when the transition involves
intermediate state vectors. In order to demonstrate the proposed method, we start
from the simplest example that involves the transition from a state vector |ψa〉 to a
state vector |ψc〉 via a state vector |ψb〉. If we follow Feynman’s formulation, the
transition probability is given by squaring the corresponding transition amplitude.
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More precisely, the transition amplitude is given by:

〈ψc|ψa〉 = 〈ψc|ψb〉〈ψb|ψa〉

so that the corresponding transition probability is given by:

pb
ac = |〈ψc|ψb〉〈ψb|ψa〉|2

Alternatively, we work in the space of rays and consider the oriented loop obtained
by tracing �a , �b, �c, �b, �a in the prescribed order.

I4(|ψa〉, |ψb〉, |ψc〉, |ψb〉) = I4(�a,�b,�c,�b)

= 〈ψa |ψb〉〈ψb|ψc〉〈ψc|ψb〉〈ψb|ψa〉
= I3(�a,�b,�c) · I3(�a,�c,�b)

I2(�c,�a)

= I3(�a,�b,�c) · I3
∗(�a,�b,�c)

I2(�c,�a)

= |〈ψc|ψb〉〈ψb |ψa〉|2 = pb
ac

We conclude that the transition probability from the state vector |ψa〉 to the state
vector |ψc〉 via a state vector |ψb〉 is obtained in terms of the product of the 3-vertex
invariant I3(�a,�b,�c) with its complex conjugate I3

∗(�a,�b,�c). Thus, it is
completely described in terms of the associated complex-valued 3-vertex invariants
modulo I2(�c,�a).

We move on to examine the case of the double slit experiment, which involves
the transition probability from the state vector |ψa〉 to the state vector |ψc〉 via two
different possible state vectors |ψ1〉, |ψ2〉 corresponding to the action of the one-
dimensional projection operators or filters Pψ1 := |ψ1〉〈ψ1| and Pψ2 := |ψ2〉〈ψ2|
associated with each one of the two slits, respectively. If we follow Feynman’s
formulation, the transition probability is given by squaring the corresponding
transition amplitude. More precisely, the transition amplitude is given by summing
over the two potential transition amplitudes

〈ψc|ψa〉 = 〈ψc|ψ1〉〈ψ1|ψa〉 + 〈ψc|ψ2〉〈ψ2|ψa〉

so that the corresponding transition probability is given by:

p1,2
ac = |〈ψc|ψ1〉〈ψ1|ψa〉 + 〈ψc|ψ2〉〈ψ2|ψa〉|2
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or equivalently:

p1,2
ac = |〈ψc|ψ1〉〈ψ1|ψa〉|2 + |〈ψc|ψ2〉〈ψ2|ψa〉|2

+(〈ψc|ψ1〉〈ψ1|ψa〉) · (〈ψc|ψ2〉〈ψ2|ψa〉)∗
+(〈ψc|ψ1〉〈ψ1|ψa〉)∗ · (〈ψc|ψ2〉〈ψ2|ψa〉)

p1,2
ac = p1

ac + p2
ac + z1

ac · z∗2
ac + z∗1

ac · z2
ac

Feynman’s calculation of the transition probability by squaring the sum of the two
potential transition amplitudes (if no measurement is actually performed at the slits)
is given as a rule under the assumption of assigning these transition amplitudes to
two potential paths from the initial to the final state. In this way, the appearance
of the mixed interference terms z1

ac · z∗2
ac and z∗1

ac · z2
ac has no clear conceptual

explication.
Alternatively, we work in the space of rays and consider all potential oriented

loops involving �a , �1, �2, and �c. In this manner, we end up with four potential
mutually exclusive and jointly exhaustive oriented loops in the space of rays
obtained as follows in the prescribed order:

Loop 1 ≡ l11: �a → �1 → �c → �1 → �a ,
Loop 2 ≡ l22: �a → �2 → �c → �2 → �a ,
Loop 3 ≡ l12: �a → �1 → �c → �2 → �a ,
Loop 4 ≡ l21: �a → �2 → �c → �1 → �a .
To each one of the above potential loops we assign the following projective

invariants, respectively:

I4(�a,�1,�c,�1) = I3(�a,�1,�c) · I3
∗(�a,�1,�c)

I2(�c,�a)

= |〈ψc|ψ1〉〈ψ1|ψa〉|2 = p1
ac

I4(�a,�2,�c,�2) = I3(�a,�2,�c) · I3
∗(�a,�2,�c)

I2(�c,�a)

= |〈ψc|ψ2〉〈ψ2|ψa〉|2 = p2
ac

I4(�a,�1,�c,�2) = I3(�a,�1,�c) · I3
∗(�a,�2,�c)

I2(�c,�a)

= z1
ac · z∗2

ac

I4(�a,�2,�c,�1) = I3(�a,�2,�c) · I3
∗(�a,�1,�c)

I2(�c,�a)

= z∗1
ac · z2

ac
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Thus, the transition probability from the state vector |ψa〉 to the state vector |ψc〉
via two different potential state vectors |ψ1〉, |ψ2〉 is obtained by summation over
all the above invariants in the space of rays:

p1,2
ac = p1

ac + p2
ac + z1

ac · z∗2
ac + z∗1

ac · z2
ac

p1,2
ac = I4(�a,�1,�c,�1) + I4(�a,�1,�c,�2)

+I4(�a,�1,�c,�2) + I4(�a,�2,�c,�1)

p1,2
ac = (

I3(�a,�1,�c) · I3
∗(�a,�1,�c)

+I3(�a,�2,�c) · I3
∗(�a,�2,�c)

+I3(�a,�1,�c) · I3
∗(�a,�2,�c)

+I3(�a,�2,�c) · I3
∗(�a,�1,�c)

)
/I2(�c,�a)

We consider the expression of the total transition probability p
1,2
ac in terms of

3-vertex invariants as the fundamental one. The underlying reason is that a 3-
vertex invariant of an oriented triangular loop in the space of rays remains also
invariant under unitary transformations, whereas it is complex conjugated under
antiunitary transformations. Thus, we may consider a 3-vertex invariant as the scalar
invariant of an oriented triangular loop l in the space of rays realized by means
of a unitary transformation under the choice of an initial vertex. Analogously, we
may consider the complex-conjugate 3-vertex invariant as the scalar invariant of an
oppositely oriented loop l† in the space of rays realized by means of an antiunitary
transformation under the choice of the final vertex in the previous case as the
initial vertex in the present one. Note that the latter loop l† can be rotated by an
even permutation of the vertices T , such that T · l† = l−1 is also based at the
initial vertex of the former, leaving the invariant unchanged. This simply means
that we may consider oriented loops, which are now based at a single vertex,
for instance �a , and represent the actions of unitary/antiunitary transformations
on the corresponding state vector in terms of them. We are going to explore this
viewpoint in the sequel. Before this, it is important to understand better the role of
unitary/antiunitary transformations in relation to utilization of Wigner’s theorem on
symmetries of the space of rays, together with the function of Boolean frames.

6.8 One-Parameter Unitary Transformation Groups
and Boolean Frames

We have already demonstrated that if ω is a I2 symmetry, then it can be interpreted as
a Wigner-type automorphism of the space of rays PH, such that � �→ � ′ = ω(�).
Consequently, the corresponding state vector |ψ ′〉 is determined by the state vector
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|ψ〉 either by means of a unitary transformation or by means of an antiunitary
transformation. Note that this determination is unique up to a multiplicative
constant phase factor of absolute value 1. We remind again that these two types
of transformations are intrinsically distinguished by means of the 3-vertex invariant
I3.

If the symmetry group of automorphisms of I2 is connected, then |ψ ′〉 is
determined by the state vector |ψ〉 by means of a unitary transformation. More
precisely, if we take the symmetry group to be the group of translations on the real
line R, then the unitary transformation is obtained by the unitary representation of
R on the Hilbert space H of state vectors:

s �→ e−is�/h̄

where � is an observable, or equivalently a self-adjoint operator. The existence
and uniqueness of the observable � is given by Stone’s theorem on one-parameter
unitary groups. Given, the one-parameter group of unitary operators e−is�/h̄ =
U(s) = Us , s in R, on the Hilbert space of state vectors, there is one uniquely
defined observable �, which acts as the infinitesimal generator of Us by means of
−i�/h̄. Now, if |ψ0〉 corresponds to s = 0, we obtain:

|ψs〉 = e−is�/h̄|ψ0〉

Infinitesimal differentiation with respect to s in R gives the following:

d|ψs〉
ds

= −i�

h̄
|ψs〉

In the standard terminology, the group of translations on the real line R is identified
with the group of “time” translations and the variable s is denoted by t . Then,
the uniquely defined observable � is identified with the energy observable, or else
Hamiltonian H of the quantum system. Then, the relation:

|ψt 〉 = e−itH/h̄|ψ0〉

is interpreted as unitary “time evolution” of the system, where |ψ0〉 is the state at
“time” t = 0. Moreover, the differential equation:

d|ψt 〉
dt

= −iH

h̄
|ψt 〉

is immediately identified with the Schrödinger equation.
We note that we may alternatively identify the group of translations on the real

line R with the group of “space” translations in some specified direction. Then, the
uniquely defined observable� is identified with the momentum self-adjoint operator
with respect to this direction. For instance, if a “space” translation in the direction y
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is denoted by L, we obtain the following unitary representation of R on the Hilbert
space H of state vectors:

L �→ e−iLpy/h̄

where py = −ih̄∂y in the position representation. Then, the corresponding unitary
transformation is given by the y-displacement unitary operator.

A concrete application of the above unitary transformation can be given in the
case of the double slit experiment. We assume that the two slits are separated by
a distance L in the y-direction and the quantum system is propagating in the x-
direction being normal to the two slits. If no measurement is performed at any of the
slits, the state vector is described by the superposition of state vectors corresponding
to the projections or filters Pψ1 := |ψ1〉〈ψ1|, and Pψ2 := |ψ2〉〈ψ2|. Then, at the
screen the normalized state vector can be expressed as follows:

|ψc〉 = 1√
2
(|ψ1〉 + eiθ |ψ2〉)

Thus, in the position representation we obtain:

ψc(y) = 1√
2
(ψ1(y − L) + eiθψ2(y))

where we assume that the two wavefunctions are the same modulo eiθ denoting
the total geometric relative phase difference between |ψ1〉 and |ψ2〉. Using the y-
displacement unitary operator we obtain:

|ψ1〉 = e−iLpy/h̄|ψ2〉

Moreover, the expectation value of the y-displacement unitary operator is the
following:

〈ψc|e−iLpy/h̄|ψc〉 = eiθ

2

By the previous analysis, it has been crystallized the following: If ω is an I2
symmetry induced by the group of translations on the real line R, that is a Wigner-
type automorphism of the space of rays PH, such that � �→ � ′ = ω(�), the
corresponding state vector |ψ ′〉 is determined by the state vector |ψ〉 by means
of a unitary transformation. Concrete unitary transformations are given by unitary
representations of R on the Hilbert space H of state vectors, under the qualification
of the translations in the real line as “time” translations or “space” translations.
The connection of this viewpoint with the notion of observables is provided by
the utilization of Stone’s theorem establishing a bijective correspondence between
continuous one-parameter groups of unitary operators and observables (Stone
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1932). We saw in the examples explained previously that the involved parameter
is interpreted as a parameter of “time” translations or “space” translations in
the real line. This fact requires a more careful conceptual understanding of the
role of unitary transformations in quantum mechanics (if a measurement does
not take place) as well as their subtle connection with the notion of observ-
ables.

The crucial distinguishing feature of quantum mechanics in relation to all
classical theories is that the totality of all physical observables constitutes a global
non-commutative algebra, and thus quantum observables are not theoretically com-
patible. This simply means that not all observables are simultaneously measurable
with respect to a single universal global logical Boolean frame as is the case in
all classical theories of physics. Thus, there exists a multiplicity of potential local
Boolean frames, where each one of them stands for a context of co-measurable ob-
servables. Technically speaking, each Boolean frame is a complete Boolean algebra
of orthogonal projection operators obtained by the simultaneous spectral resolution
of a family of compatible observables—represented as self-adjoint operators—
with respect to a complete orthonormal basis of eigenstates. Such a family of
compatible observables forms a commutative observable algebra whose orthogonal
idempotent elements (orthogonal projections) constitute a logical Boolean frame
(Zafiris 2006a; Epperson and Zafiris 2013), see also Omnés (1994) and Selesnick
(2003). In this way, each local Boolean frame signifies the local logical pre-
condition predication space for the probabilistic evaluation of all the observables
belonging to the corresponding commutative observable algebra (Zafiris 2006b).
Thus, the manifestation of every single observed event in the quantum regime
requires taking explicitly into account the specific local Boolean frame with respect
to which it is contextualized. Since there does not exist a single, unique, global
Boolean frame, due to the non-commutativity of the totality of quantum observables,
there appears the necessity to consider all possible local Boolean frames and their
interrelations.

The remarkable fact is that each observable instantiates a Boolean algebra of
orthogonal projection operators, which is utilized for the expression of a state
vector as a linear superposition with respect to the associated complete orthonormal
basis of eigenstates of this observable. In this way, a Boolean frame functions as
a means of inducing differentiations in the initially objectively indistinguishable
state of a quantum system in terms of the orthogonal projection operators of this
algebra. In other words, orthogonal projections induce potential differentiations in
a quantum state, which are realized only if a measurement is actually performed.
Thus, observables through their spectral resolution in terms of orthogonal projectors
can be thought of as potential distinguishability filters acting on a quantum state. In
this way, a measurement process creates information by actualizing differentiations
with reference to the associated filters, or else refines the grain of resolution
associated to a quantum state (Zafiris and Karakostas 2013).

What is then the role of the bijective correspondence between observables
and one-parameter groups of unitary transformations, where the parameter is
considered to by varying continuously on the real line? A unitary transformation
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is an automorphism of the Hilbert space of state vectors preserving the inner
product structure, and thus realized by means of a unitary operator as we have
shown previously. The inner product between two state vectors, interpreted as
the transition amplitude from one to the other, if viewed from the perspec-
tive of the space of rays can be thought of as the degree of overlap between
the corresponding rays or projection operators. Given that a projection operator
functions as a distinguishability filter, the overlap provides the degree of in-
distinguishability between the associated states. Thus, a unitary transformation
is simply a transformation which preserves the degree of indistinguishability
between states of a quantum system (if a measurement does not take place).
In this sense, the real-valued varying parameter in a one-parameter group of
unitary operators associated bijectively with an observable is simply a parameter
indexing continuously the preservation of the degree of indistinguishability between
quantum states. This is the crucial aspect that distinguishes the temporal or spatial
meaning of such a parameter in comparison to the classical semantics of these
terms.

6.9 Pairs of Based Oriented Loops and Action
of One-Parameter Unitary Groups

In order to unfold the consequences of this distinction we are going to investigate
in detail the role of based oriented loops in relation to our analysis of the double
slit experiment in terms of projective invariants. More precisely, we have concluded
that oriented loops, which are based at a single reference vertex, for instance �a ,
represents the actions of unitary/antiunitary transformations on the corresponding
state vector. In particular, with respect to a reference vertex it is sufficient to specify
pairs of oppositely oriented loops based at this vertex, for example the pair denoted
by l1 and l−1

1 if we choose as a reference vertex the ray �a .
A natural question is what distinguishes different pairs of such based loops after

specifying a reference vertex. In the guiding case of the double slit experiment the
differentiation is clearly defined with respect to the non-simultaneously realizable
potential filters instantiated by the projection operators Pψ1 := |ψ1〉〈ψ1| and
Pψ2 := |ψ2〉〈ψ2|. Equivalently, the projection operators Pψ1 and Pψ2 belong to
two different disjoint local Boolean frames of potential position measurement that
cannot be embedded into a single global Boolean frame of projections simultane-
ously. Conceptually, if such an embedding was possible, then there would not be
any interference effect at the detection screen if no measurement had taken place at
any of the two slits. In this setting, the ray �c can be thought of as corresponding to
a momentum measurement, and thus, it belongs to the spectral resolution of the
momentum operator. In a nutshell, from the perspective of Boolean frames the
interference effect is simply a consequence of the fact that the Boolean frame of
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the momentum is not reducible to the disjoint union of the position Boolean frames
at the slits.

Therefore, in the case of the double slit experiment, what distinguishes different
pairs of oppositely oriented based loops at the specified reference vertex �a is the
existence of two potential filters Pψ1 and Pψ2 , which cannot be simultaneously
realizable. Equivalently, the differentiation may be considered by means of their
respective two-valued local Boolean frames of potential position measurement
according to the above. Thus, if we take into account the bijection between an
observable (or its associated Boolean frame) and its corresponding continuous one-
parameter unitary group of transformations, we reach the following conclusion:
A pair of oppositely oriented based loops at a specified reference vertex should
represent the action of a continuous one parameter unitary group at this vertex.
Moreover, since Boolean frames are solely used for localization, the represen-
tation of an observable as a self-adjoint operator should be considered locally,
that is with respect to the local Boolean frame it refers to. In particular, the
position observable is resolved differently with respect to the local two-valued
Boolean frames generated by the filters Pψ1 and Pψ2 correspondingly, such that
these resolutions cannot be simultaneously realizable. Hence, the action of the
position observable in relation to the potential filters Pψ1 and Pψ2 at the specified
reference vertex �a gives rise to two different pairs of oppositely oriented based
loops at �a , where each one of them represent the action of a continuous
one parameter unitary group at this vertex in relation to the distinguishability
induced by the corresponding filter or its associated local two-valued Boolean
frame.

The previous discussion, in relation to the double slit experiment, has served the
purpose of introducing the proposed representation of a continuous one parameter
unitary group action at a vertex by a pair of oppositely oriented loops, which
are based at this vertex, as well as the criterion of differentiation among such
pairs of based loops according to the localization properties of local Boolean
frames. What is particularly interesting by this change of perspective is that
there immediately appears the possibility of composition of different oriented
loops based at the same vertex. Moreover, since we also have an inverse for
each based loop, namely the based loop with opposite orientation, we can obtain
a group structure. This group structure, without any further constraints, is free
but non-commutative. It is precisely the natural symmetry of the double slit
experiment that suggests to think of the free non-commutative group generated
by the based oriented loops l1 and l2, if we choose as a reference vertex the
ray �a , where these based loops are distinguished by means of the two potential
filters Pψ1 and Pψ2 according to the above. We claim that this group structure with
respect to a reference ray emanates from the non-commutative group structure of
based oriented loops at a point of 3-d space, and more precisely, it constitutes
its representation in the Hilbert space of state vectors. Therefore, initially it is
necessary to focus our attention on the latter group structure and unfold its
semantics.
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6.10 Non-commutative Group Structure of Based Oriented
Loops in 3-d Space

First, we consider a loop in three-dimensional space as an unknotted tame closed
curve. Since any such closed curve can be continuously deformed to a topological
circle it is enough to think of such a circle in 3-d space, denoted by A. Second, we
consider a based oriented loop in 3-d space, which may pass through this circle A a
finite number of times, each one with a prescribed orientation.

A based loop means simply that it starts and ends at a fixed reference point p of
the 3-d space. The orientation of the loop can be thought of in terms of an observer,
which is fixed at the point p, such that: If the loop passes through the circle one time
with direction away from the observer, it is denoted by α1, whereas if it passes one
time with direction toward the observer, it is denoted by α−1. We note that any other
loop with the same properties can be continuously deformed to the loop α. Thus, the
algebraic symbol α actually denotes the equivalence class [α] of all loops of kind α,
passing through the circle A once with the prescribed orientation.

Taking into account the algebraic encoding of based oriented loops in relation to
topological circles in 3-d space, we can define the composition of two oriented loops
under the proviso that they are based on the same point p in 3-d space. Notice that
the composition operation α ◦β of the p-based oriented loops α and β in relation to
circles A and B correspondingly is not a commutative operation, meaning that the
order of composition is not allowed to be reversed. Clearly, the rule of composition
produces a based oriented loop α◦β in 3-d space in relation to the circles A and B in
the prescribed order. We think of the composition rule α ◦β as the non-commutative
multiplicative product of the oriented loops α and β based at the same point p in 3-d
space, which we may simply denote as αβ. It is immediate to verify that the above
defined multiplication is an associative operation.

Having established the closure of the elements of the generic form χ under non-
commutative associative multiplication as previously, we look for the existence of
an identity element, as well as for the existence of inverses with respect to this
operation. There is an obvious candidate for each based oriented loop α, namely the
loop α−1, where the orientation has been reversed. If we consider the compositions
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α ◦ α−1, α−1 ◦ α we obtain in both cases as a multiplication product the based loop
at the same point, which does not pass through any circle at all. Thus, we name
the latter loop as the multiplicative identity 1 in our algebraic structure, such that
αα−1 = α−1α = 1. It is also easy to verify that 1α = α1 = 1. We conclude
that the set of symbols of the generic form χ representing based oriented loops in
relation to circles X, endowed with the non-commutative multiplication operation of
composition product of loops based at the same point, form the algebraic structure
of a non-commutative group, denoted by �.

It is instructive to emphasize that the equality sign in the non-commutative group
� is interpreted topologically as an equivalence relation of p-based oriented loops
under continuous deformation. By making use of the multiplication operation in
� we may form any permissible string of symbols in this group, which can be
reduced into an irreducible form by using only the group-theoretic relations αα−1 =
α−1α = 1, αα = α2, and so on. Thus, if we consider only two p-based oriented
loops as generators, denoted by the symbols α and β respectively with the prescribed
orientation and obeying no further constraints, we form a non-commutative free
group in two generators, denoted by �2.

6.11 The Borromean Topological Link Semantics
of the Non-commutative Free Group �2

We remind that the Borromean link is characterized topologically by the property
of splittability as follows: The Borromean link is a non-splittable 3-link, such that
every 2-sublink of this 3-link is completely splittable. According to the defining
property of the Borromean link, it is a non-splittable 3-link because not even one of
the three loops, or any pair of them, can be separated from the rest without cutting. A
2-sublink is simply any sub-collection of two loops obtained by erasing the loop that
does not belong to this sub-collection. Since the Borromean link is characterized
by the property that if we erase any one of the three interlocking loops, then the
remaining two loops become unlinked, we obtain that every 2-sublink of the non-
splittable 3-link is completely splittable.

We will show that the topological information incorporated in the specification of
the Borromean link can be encoded algebraically by exploiting the non-commutative
group-structure of the free group �2 generated by two oriented loops, which are
based at the same fixed point of 3-d space. The property of irreducibility of a string
of symbols in the group �2 is the guiding idea for the algebraic encoding of the
Borromean link in terms of the structure of �2. The crucial observation is that
algebraic irreducibility in �2 can be used to model the topological property of non-
splittability of a 3-link, where complete splittability of all 2-sublinks is encoded by
the unique identity element of �2. In particular, the group-theoretic commutator
induced by the generators of �2:
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[α, β−1] = αβ−1α−1β

produces an irreducible non-commutative string of symbols in �2. This string
represents a new based loop γ as a product loop composed by the ordered
composition of the based oriented loops α ◦ β−1 ◦ α−1 ◦ β. We call the product
loop γ the Borromean loop and the formula or multiplicative string αβ−1α−1β in
�2 the Borromean loop formula.

The algebraic irreducibility of the commutator [α, β−1] in the group �2 encodes
the topological non-splittability property of the Borromean 3-link. We notice that
deletion of both α and α−1 (corresponding to removal of the circle A) reduces
the formula to the identity 1 (and the same happens symmetrically for both
β and β−1). This fact models algebraically in the terms of �2 that every 2-
sublink of the Borromean 3-link is completely splittable. We conclude that the
topological information of the Borromean 3-link can be completely encoded in
terms of the algebraic structure of the non-commutative multiplicative free group
in two generators �2. In particular, the group-theoretic commutator [α, β−1] in �2,
encodes algebraically the gluing condition of the based oriented loops α and β−1

(with respect to the circles A and B respectively in the prescribed orientation), and
therefore the non-splittability of the Borromean 3-link, together with the complete
splittability of all 2-sublinks of this 3-link.

We note that the Borromean topological link is characterized by threefold
symmetry. In the algebraic terms of the group �2 this is reflected on the fact that
if we consider any two of the based loops α, β−1, γ , then the third is expressed by
the group commutator of the other two. The threefold symmetry of the Borromean
link may be broken by reducing the free non-commutative group on two generators
�2 to the free nilpotent group on two generators of nilpotent class 2, which is
precisely the Weyl–Heisenberg groupH. More concretely, we may choose the based
loops α, β−1 such that γ = [α, β−1] = αβ−1α−1β and impose the relations
[α, γ ] = [β−1, γ ] = 1.
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6.12 Unitary Representation of the Group �2: Transferring
the Borromean Link to the Quantum State Space

We have shown that the topological information of the Borromean 3-link can be
completely encoded in terms of the algebraic structure of the non-commutative
multiplicative group in two generators �2. In particular, the group �2 encodes the
non-splittability of the Borromean 3-link, together with the complete splittability of
all 2-sublinks of this 3-link.

A natural question arising from our previous analysis is if there exists a
representation of this non-commutative group �2 in the Hilbert space of state
vectors of a quantum system. The representation theory of the free group on two
generators on an abstract Hilbert space has been first studied in detail from a pure
mathematical viewpoint by Choi (1980). Here, we are going to follow a quite
simplified approach, while we put the emphasis on the intended physical semantics.

It is important to stress the fact that such a representation of �2 would transfer
the Borromean link topology to the Hilbert space objects which carried this rep-
resentation. Intuitively, the Borromean 3-link expresses the particular connectivity
property of three based oriented loops, where any two of them are unlinked,
which is captured algebraically by means of the structure of the group �2.
Topological connectivity in this context is associated with the non-splittability of
this link as a 3-link. If we metaphorically think of this connectivity property as
indistinguishability in a quantum theoretic context pertaining to interference of
transition amplitudes, then it becomes quite natural to expect that a representation of
the group �2 would be feasible by means of unitary transformations. The analogy
goes deeper by the fact that in a Borromean 3-link the act of cutting a based
loop leads to complete splittability of the remaining 2-link. Analogously, the act
of measurement does not preserve the degree of indistinguishability between states
(since a measurement creates information by distinguishing among alternatives), the
corresponding unitary group action breaks down, and for instance, in the double slit
experiment the two interfering alternatives become completely distinguishable. The
interpretational aspects of transferring the Borromean link topology in the quantum
state space via the action of one-parameter unitary groups, and their concomitant
representation in terms of oppositely oriented pairs of based loops, requires a more
detailed presentation that will be undertaken shortly. At present, we are going to
prove that a unitary representation of the group �2 indeed exists, and thus the
semantics of the Borromean topological link can be transferred appropriately in
the quantum state space by means of one-parameter unitary groups. As a final
remark, we would like to remind Feynman’s saying that the complete mystery of
quantum mechanics is engulfed in the double slit experiment. We would like to add
in this respect that the double slit experiment may require the understanding of the
Borromean-link topology in its manifestation via the �2 group action on the state
space by one-parameter unitary groups.

First, we need to define the notion of a unitary representation of the group �2
as follows: A unitary representation of the group �2 consists of a Hilbert space of
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states H, together with a group homomorphism from �2 to the group of unitary
operators on H.

Second, we note that the non-commutative group �2 is a free multiplicative
group in two generators g1 and g2. Given two unitary operators U1 and U2 in the
Hilbert space of states H, there exists a unique group homomorphism ζ : �2 →
B(H), where B(H) is the algebra of bounded linear operators in H, which sends
g1 to U1 and g2 to U2, just by the universal property of free groups (Mac Lane
1998). Since ζ is a group homomorphism ζ(gi) = Ui is unitary operator for each
j = 1, 2. Therefore, since {g1, g2} generates �2 as a free group, ζ must be a unitary
representation of the group �2 in the Hilbert space of states H.

Third, we know that B(H) has the structure of a �-algebra over the complexes. If
we consider the free group �-algebra of �2, generated by finite linear combinations
of elements of �2 with complex coefficients, then we have the following: Given
a unitary representation ζ of �2 in the Hilbert space of states H, then this
representation extends by linearity to a �-homomorphism of the group �-algebra
of �2, denoted by C�(�2), to the �-algebra B(H).

Fourth, the algebra C�(�2) is characterized uniquely up to isomorphism by the
following universal property: Given any unitary representation,

ζ : �2 → B(H)

of the group �2, there exists a unique �-homomorphism of the group �-algebra of
�2, C�(�2), to the �-algebra B(H), denoted by

ζ̃ : C�(�2) → B(H)

that satisfies:

ζ̃ (γg) = ζ(g)

for every g ∈ �2, where γg ∈ C�(�2). Thus, if we consider the generating set of
symbols {g1, g2} of �2 as a free group we obtain the relations:

ζ̃ (γg1) = ζ(g1) = U1

ζ̃ (γg2) = ζ(g2) = U2

where U1 and U2 are unitary operators in the Hilbert space of states H.
We consider a faithful representation of the group �-algebra of �2, C�(�2), in

the Hilbert space of states H, such that we identify:

C�(�2) ≡ C�(U1, U2)

where U1 and U2 are unitary operators in the Hilbert space H, considered as
universal, in the following sense: For any other pair V1 and V2 of unitary operators
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in the Hilbert space H, the assignment U1 → V1, U2 → V2, extends to a
�-homomorphism from C�(U1, U2) to C�(V1, V2). Now, by utilizing the spectral
theorem, we may always choose two self-adjoint operators A and B in B(H), such
that U1 = eiA and U2 = eiB .

Next, we consider the set of all continuous functions:

T = {f : [0, 1] → B(H)}

such that f (0) are scalar operators. The set T can be endowed with the structure of a
C�-algebra, which is denoted by the same symbol. We will show that the C�-algebra
C�(�2) ≡ C�(U1, U2) can be imbedded in T as a C�-subalgebra.

We have already seen that if we choose two observables represented as self-
adjoint operators A and B in B(H), then we identify U1 = eiA and U2 = eiB . Next,
we define two continuous functions fU1 and fU2 in the C�-algebra T such that their
image in B(H) is unitary, as follows:

fU1 : [0, 1] → B(H), fU2 : [0, 1] → B(H)

[0, 1] � t �→ fU1(t) := eitA ∈ B(H)

[0, 1] � t �→ fU2(t) := eitB ∈ B(H)

Then, it is clear that we may consider the C�-algebra generated by the continuous
functions fU1 and fU2 , denoted by C�(fU1 , fU2). Then, by the universality property
of C�(�2) ≡ C�(U1, U2) there exists a �-homomorphism from C�(�2) ≡
C�(U1, U2) to C�(fU1, fU2), specified precisely by the assignments U1 �→ fU1

and U2 �→ fU2 . From the other side, we may consider the evaluation morphism
f �→ f (1), which clearly defines a �-homomorphism from C�(fU1 , fU2) to
C�(�2) ≡ C�(U1, U2). The above two �-homomorphisms are inverse to each other,
and thus induce an isomorphism:

C�(�2) ∼= C�(fU1 , fU2)

The significance of this theorem is the following: It is obvious that the algebra
C�(fU1, fU2) is a C�-subalgebra of T. Hence, C�(�2) ≡ C�(U1, U2) can be
imbedded in T as a C�-subalgebra. The crucial fact is that the C�-algebra of
continuous functions T has no nontrivial projections (Cohen 1979). This means
that C�(�2) ≡ C�(U1, U2) imbedded in T as a C�-subalgebra has no nontrivial
projections either. This is important because it shows that the non-commutative
spectrum of C�(�2) ≡ C�(U1, U2) is highly connected. It is instructive to remind
that if a nontrivial projection exists then the corresponding spectrum set of this
projection is both closed and open. As a result, if we consider, for example, a
Boolean algebra of projections, the spectrum of this algebra is a totally disconnected
space (Johnstone 1986). In contradistinction the spectrum of C�(U1, U2) is a highly
non-commutative connected topological space.
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Chapter 7
Borromean Link in Quantum Gravity
A Topological Approach to the
“ER = EPR” Conjecture: Modelling
the Correspondence Between GHZ
Entanglement and Planck-Scale
Wormholes via the Borromean Link

7.1 Introduction: The “ER = EPR” Conjecture
and Planckian Wormholes

In the absence of an exact quantum gravity theory, the “ER = EPR” conjecture
constitutes a recently introduced proposal by Maldacena and Susskind (2013),
aiming to shed light on the relations among spacetime geometry, quantum field
theory and quantum information theory, which is receiving significant attention
currently in relation to its substantiation, proof, and groundbreaking implications.
The “ER = EPR” is a short-hand that joins two ideas proposed by Einstein in 1935.
One involved the quantum correlations implied by what he called “spooky action
at a distance”, referring to the phenomenon of entanglement between quantum
particles (EPR entanglement, named after Einstein, Podolsky, and Rosen) (Einstein
1935). The other showed how two black holes could be connected “non-locally”
via “topological handles” in space-time, known as “wormholes” (ER, for Einstein-
Rosen bridges) (Einstein and Rosen 1935). If the conjecture “ER = EPR” is correct,
then the ideas of quantum entanglement and wormholes are not disjoint, but they
are two manifestations of the same essentially topological idea. Effectively, this
underlying connectedness would form the foundation of quantum space-time.

More precisely, the “ER = EPR” conjecture is grounded in the context of duality
between a gravitational theory formulated in the bulk and a quantum field theory
formulated on the boundary, targeting the correspondence between ER bridges or
wormholes and entanglement. In a sense, the “ER = EPR” conjecture implicates on a
cosmological scale that a complex network of entangled subsystems of the universe
as a whole is also a complex network of ER bridges. In particular, since ER bridges
refer to the connectivity between black holes, the “ER = EPR” conjecture implies
that black holes connected by ER bridges are entangled, and also conversely that
entangled black holes are connected by ER bridges.
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This connective link was first recognized in the context of the AdS/CFT
correspondence, where a wormhole between two asymptotically AdS regions is
dual to two non-interacting conformal field theories in a thermally entangled
state (Maldacena and Susskind 2013; Maldacena 2003), see also Van Raamsdonk
(2010) and Witten (1998). It was also noticed that the area of the minimal surface
cut representing the entanglement entropy and the length of the wormhole is
proportional to correlations between two dual CFTs (Ryu and Takayanagi 2006).
This idea was extended by the proposal that spacetime connectedness in AdS
is related to quantum entanglement in the dual field theory. In this context, the
“ER = EPR” conjecture is a far-reaching generalization of the above, since it
postulates that entanglement is actually equivalent to the existence of wormholes
in spacetime. This, in turn, is based on the conception of entanglement as an
interchangeable resource, meaning that the various forms of entanglement, like
vacuum entanglement or entangled particles or wormholes or even clouds of
Hawking radiation, are inter-transformable into one another by means of local
unitary transformations, which are in principle possible. In this manner, an ordinary
kind of quantum entanglement, like a Bell pair, can be re-interpreted in terms
of the geometric properties of wormholes, and inversely (Susskind 2016, 2014b;
Maldacena and Susskind 2013).

For instance, an extended solution of the Schwarzschild black hole can be
interpreted as two black holes in the same space located far away from each
other, but connected by a wormhole. Minimal radius of the wormhole depends
on the choice of the spacelike slice. Usually the constant t = 0 spacelike slice
is considered, together with two AdS exterior regions connected by a wormhole.
According to the AdS/CFT correspondence, the solution in AdS space referring
to these two black holes corresponds to a highly entangled state defined on the
left and right corresponding CFTs on the boundary. Now, one can think of the
entanglement between left and right CFTs as a representation of the entanglement
between the black holes themselves. At a further stage of development of these
ideas, based on the duality between maximal entanglement and wormholes, the
“ER = EPR” conjecture suggests of thinking about early Hawking radiation in
terms of a black hole that is connected to the interior of the initial emitting black
hole by numerous wormholes making them dependent (Maldacena and Susskind
2013).

However, the example of the maximally entangled GHZ state suggests that
an arbitrary entangled state cannot be represented as a classical Einstein-Rosen
bridge, thus it is necessary to think of a model of a Planckian wormhole going
beyond the classical description of a wormhole in spacetime (Susskind 2016).
This fact points to the conclusion that the relation between entanglement and
wormholes is more complex and a concrete refined mathematical framework
is necessary to establish the validity and universality of the ER = EPR conjec-
ture.
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From a broad conceptual standpoint, the two perennial problems in the interface
between quantum theory and general relativity, namely the quantum state reduc-
tion or quantum measurement problem in quantum physics and the problem of
singularities in general relativity, may be considered as targeting precisely the issue
of transition into and out of a local space-time event structure, respectively (von
Müller 2015). Given that the quantum state reduction associated with the outcome
of a measurement procedure is necessitated in virtue of entanglement between
the quantum system and the measurement means, the latter being in this way
the conceptual converse of the former, the “ER = EPR” conjecture may be refined
conceptually by thinking of it in the categorial context of a universal topological
mechanism by means of which the folding out of a local space-time event structure
takes place. This naturally generates the question, if there exists such a universal
mechanism of a topological nature, which would manifest appropriately these two
inverse types of transition.

7.2 The Borromean Topology as the Universal Means
to Qualify the “ER = EPR” Conjecture

7.2.1 GHZ Entangled State as a Borromean Link

The notion of a topological link is based on the underlying idea of connectivity
among a collection of unknotted tame closed curves, called simply loops (Kawauchi
1996). A topologicalN-link is a collection of N loops, where N is a natural number.
Regarding the connectivity of a collection of N loops, the crucial property is the
property of splittability of the corresponding N-link. We say that a topological N-
link is splittable if it can be deformed continuously, such that part of the link lies
within B and the rest of the link lies within C, where B, C denote mutually exclusive
solid spheres (balls). Intuitively, the property of splittability of an N-link means that
the link can come at least partly apart without cutting. Complete splittability means
that the link can come completely apart without cutting. On the other side, non-
splittability means that not even one of the involved loops, or any pair of them, or
any combination of them, can be separated from the rest without cutting.

The “Borromean rings” consist of three rings, which are linked together in such a
way that each of the rings lies completely over one of the other two, and completely
under the other, as it is shown at the picture below:
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This particular type of topological linking displayed by the “Borromean rings” is
called the “Borromean link,” and is characterized by the following distinguishing
property: If any one of the rings is removed from the “Borromean link,” the
remaining two come completely apart. It is important to emphasize that the rings
should be modelled in terms of unknotted tame closed curves and not as perfectly
circular geometric circles (Cromwell et al. 1998; Debrunner 1961; Hatcher 2002;
Lindström and Zetterström 1991).

From the viewpoint of the theory of topological links, the Borromean link
constitutes an interlocking family of three loops, such that if any one of them
is cut at a point and removed, then the remaining two loops become completely
unlinked. In more precise terms, the Borromean link is characterized topologically
by the property of splittability as follows: The Borromean link is a non-splittable
3-link (because it consists of three loops), such that every 2-sublink of this 3-link
is completely splittable. It is clear that it is a non-splittable 3-link because not even
one of the three loops, or any pair of them, can be separated from the rest without
cutting. A 2-sublink is simply any sub-collection of two loops obtained by erasing
the loop that does not belong to this sub-collection. Since the Borromean link is
characterized by the property that if we erase any one of the three interlocking loops,
then the remaining two loops become unlinked, it is clear that every 2-sublink of the
non-splittable 3-link is completely splittable.

The existence of topological links, like the Borromean link, may be thought
of as a form of topological entanglement. From the other side, one of the basic
distinguishing features between classical and quantum systems is the phenomenon
of quantum entanglement. Thus, there arises the natural question if there ex-
ists any type of correspondence between the forms of topological and quantum
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entanglement. In the context of this, Aravind proposed to investigate the corre-
spondence between topological and quantum entanglement based on the following
analogy (Aravind 1997): If the state of a simple quantum system is to be thought
of as a ring (topological circle or loop), then the state of an entangled quantum
system should be thought of as a topological link. Moreover, the measurement of a
subsystem of an entangled system should be thought of as the process of cutting of
the corresponding loop. The caveat of this approach is that there are many possible
measurements on a subsystem of a composite entangled system, and consequently
the proposed correspondence should depend on the choice of the measurement basis.
We will show in the sequel how it is possible to overcome this issue.

It is well known that the state space of a composite quantum system is given by
the tensor product of the state spaces of the component subsystems. In the case of
two subsystems A and B, if the state vector of the composite system can be written
as |ψ〉 = |ψA〉⊗|ψB〉, where |ψA〉, |ψB〉 denote some state vector of the subsystem
A and B respectively, then the state vector |ψ〉 is called separable. Otherwise, if the
pure state |ψ〉 of the composite system cannot be written in the above form, it is
called entangled.

In the simplest case, we may consider qubits, that is quantum systems whose
state space is 2-d. Let us consider a basis of the 2-d state space consisting of the state
vectors |0〉 and |1〉. So we may consider a composite quantum system consisting of
two qubits. It is immediate to see that there are states of the composite qubit system,
for example:

|ψ〉 = 1√
2
(|00〉 + |11〉)

where we follow the general convention:

|ψ1〉 ⊗ |ψ2〉 := |ψ1〉|ψ2〉 := |ψ1ψ2〉

which are not separable, and thus they are entangled.
If we follow Aravind’s analogy, then an entangled state of a composite two qubit

system corresponds to a non-splittable topological 2-link, whereas a separable state
corresponds to splittable 2-link.

Let us now consider the case of three qubit systems denoted by A, B, and C

correspondingly. The composite quantum system of these three qubits is character-
ized by the state space given by the tensor product of the state spaces of the three
component subsystems. We consider the so-called GHZ state (Greenberger-Horne-
Zeilinger) of the composite system defined by Greenberger et al. (1990):

|ψ〉 = 1√
2
(|000〉 + |111〉)

It is clear that the GHZ state |ψ〉 of the composite system is entangled. Moreover,
the GHZ state is a symmetric state under permutations of the states of the three
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component subsystems. Thus, it can be considered as representing a non-splittable
3-link. Now, we may consider a measurement basis of the composite system given
by the projection operators P0 := |0〉〈0| ⊗ Id ⊗ Id and P1 := |1〉〈1| ⊗ Id ⊗ Id .
These projections correspond to potential measurements only on qubit A. After a
measurement is performed, the composite system is either in the state |000〉 or in
the state |111〉. Both of these states are separable. Therefore, a measurement carried
on the qubit A can be thought of as a process of cutting the corresponding loop.
Consequently, the remaining 2-sublink of the initial non-splittable 3-link becomes
completely splittable. Clearly, due to the permutation symmetry of the GHZ state,
one may consider a potential measurement only on qubit B or only on qubit C
without affecting the argument. Hence, the entangled GHZ state of the composite
3-qubit system is analogous to a Borromean link. The weak point of this analogy is
that it is dependent on the measurement basis.

It has been pointed out that the above problem of dependence on the measure-
ment basis can be rectified by assuming that the process of cutting a loop is actually
represented by taking the reduced density operator of the GHZ state with respect to
the qubit corresponding to this loop. For instance, if the qubit A is traced out in the
GHZ state, then the reduced density operator of the remaining system consisting of
the qubits B and C is given by:

ρBC = trAρ = 1

2
(|00〉〈00| + |11〉〈11|)

We note that this is a separable mixed state formed by the mixture of the separable
pure states |00〉 and |11〉, and thus it reflects the Borromean property.

From our theoretic perspective, although this analogy is instructive for thinking
about a possible bridge between the notions of topological and quantum entan-
glement, in particular with reference to the Borromean link, it suffers from the
unjustifiable initial assumption that the state of a quantum system may be thought
of in terms of a loop.

This problem has been solved by establishing an algebraic, group-theoretic
model of the Borromean link (Zafiris 2016a), thus effectively algebraizing the
Borromean topology, which admits a representation on the Hilbert space of state
vectors, as it will become clear in the sequel.

7.2.2 Non-commutative Group Structure of Based Oriented
Loops in 3-d Space

First, we consider a loop in three-dimensional space as an unknotted tame closed
curve. Since any such closed curve can be continuously deformed to a topological
circle it is enough to think of such a circle in 3-d space, denoted by A. Second, we
consider a based oriented loop in 3-d space, which may pass through this circle A a
finite number of times, each one with a prescribed orientation.
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A based loop means simply that it starts and ends at a fixed reference point p of
the 3-d space. The orientation of the loop can be thought of in terms of an observer,
which is fixed at the point p, such that: If the loop passes through the circle one time
with direction away from the observer, it is denoted by α1, whereas if it passes one
time with direction toward the observer, it is denoted by α−1. We note that any other
loop with the same properties can be continuously deformed to the loop α. Thus, the
algebraic symbol α actually denotes the equivalence class [α] of all loops of kind
α, passing through the circle A once with the prescribed orientation.

Taking into account the algebraic encoding of based oriented loops in relation to
topological circles in 3-d space, we can define the composition of two oriented loops
under the proviso that they are based on the same point p in 3-d space. Notice that
the composition operation α ◦β of the p-based oriented loops α and β in relation to
circles A and B correspondingly is not a commutative operation, meaning that the
order of composition is not allowed to be reversed. Clearly, the rule of composition
produces a based oriented loop α◦β in 3-d space in relation to the circles A and B in
the prescribed order. We think of the composition rule α ◦β as the non-commutative
multiplicative product of the oriented loops α and β based at the same point p in 3-d
space, which we may simply denote as αβ. It is immediate to verify that the above
defined multiplication is an associative operation.

Having established the closure of the elements of the generic form χ under non-
commutative associative multiplication as previously, we look for the existence of
an identity element, as well as for the existence of inverses with respect to this
operation. There is an obvious candidate for each based oriented loop α, namely the
loop α−1, where the orientation has been reversed. If we consider the compositions
α ◦ α−1, α−1 ◦ α we obtain in both cases as a multiplication product the based loop
at the same point, which does not pass through any circle at all. Thus, we name
the latter loop as the multiplicative identity 1 in our algebraic structure, such that
αα−1 = α−1α = 1. It is also easy to verify that 1α = α1 = 1. We conclude
that the set of symbols of the generic form χ representing based oriented loops in
relation to circles X, endowed with the non-commutative multiplication operation of
composition product of loops based at the same point, form the algebraic structure
of a non-commutative group, denoted by �.
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It is instructive to emphasize that the equality sign in the non-commutative group
� is interpreted topologically as an equivalence relation of p-based oriented loops
under continuous deformation. By making use of the multiplication operation in
� we may form any permissible string of symbols in this group, which can be
reduced into an irreducible form by using only the group-theoretic relations αα−1 =
α−1α = 1, αα = α2, and so on. Thus, if we consider only two p-based oriented
loops as generators, denoted by the symbols α and β respectively with the prescribed
orientation and obeying no further constraints, we form a non-commutative free
group in two generators, denoted by �2.

7.2.3 The Borromean Topological Link Semantics of the
Non-commutative Free Group �2

We remind that the Borromean link is characterized topologically by the property
of splittability as follows: The Borromean link is a non-splittable 3-link, such that
every 2-sublink of this 3-link is completely splittable. According to the defining
property of the Borromean link, it is a non-splittable 3-link because not even one of
the three loops, or any pair of them, can be separated from the rest without cutting. A
2-sublink is simply any sub-collection of two loops obtained by erasing the loop that
does not belong to this sub-collection. Since the Borromean link is characterized
by the property that if we erase any one of the three interlocking loops, then the
remaining two loops become unlinked, we obtain that every 2-sublink of the non-
splittable 3-link is completely splittable.

We will show that the topological information incorporated in the specification
of the Borromean link can be encoded algebraically by exploiting the non-
commutative group-structure of the free group �2 generated by two oriented loops,
which are based at the same fixed point of 3-d space. The property of irreducibility
of a string of symbols in the group �2 is the guiding idea for the algebraic encoding
of the Borromean link in terms of the structure of �2. The crucial observation is
that algebraic irreducibility in �2 can be used to model the topological property of
non-splittability of a 3-link, where complete splittability of all 2-sublinks is encoded
by the unique identity element of �2. In particular, the group-theoretic commutator
induced by the generators of �2:

[α, β−1] = αβ−1α−1β

produces an irreducible non-commutative string of symbols in �2. This string
represents a new based loop γ as a product loop composed by the ordered
composition of the based oriented loops α ◦ β−1 ◦ α−1 ◦ β. We call the product
loop γ the Borromean loop and the formula or multiplicative string αβ−1α−1β in
�2 the Borromean loop formula.
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The algebraic irreducibility of the commutator [α, β−1] in the group �2 encodes
the topological non-splittability property of the Borromean 3-link. We notice that
deletion of both α and α−1 (corresponding to removal of the circle A) reduces
the formula to the identity 1 (and the same happens symmetrically for both β and
β−1). This fact models algebraically in the terms of �2 that every 2-sublink of
the Borromean 3-link is completely splittable. We conclude that the topological
information of the Borromean 3-link can be completely encoded in terms of
the algebraic structure of the non-commutative multiplicative free group in two
generators�2. In particular, the group-theoretic commutator [α, β−1] in �2 encodes
algebraically the gluing condition of the based oriented loops α and β−1 (with
respect to the circles A and B respectively in the prescribed orientation), and
therefore the non-splittability of the Borromean 3-link, together with the complete
splittability of all 2-sublinks of this 3-link.

We note that the Borromean topological link is characterized by threefold
symmetry. In the algebraic terms of the group �2 this is reflected on the fact that
if we consider any two of the based loops α, β−1, γ , then the third is expressed by
the group commutator of the other two. The threefold symmetry of the Borromean
link may be broken by reducing the free non-commutative group on two generators
�2 to the free nilpotent group on two generators of nilpotent class 2, which is
precisely the Weyl-Heisenberg groupH. More concretely, we may choose the based
loops α, β−1 such that γ = [α, β−1] = αβ−1α−1β and impose the relations
[α, γ ] = [β−1, γ ] = 1.

7.2.4 Unitary Representation of the Group �2 and Realization
of the Borromean Link in the Quantum State Space

We have shown that the topological information of the Borromean 3-link can be
completely encoded in terms of the algebraic structure of the non-commutative
multiplicative group in two generators �2. In particular, the group �2 encodes the
non-splittability of the Borromean 3-link, together with the complete splittability of
all 2-sublinks of this 3-link.
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A natural question arising from our previous analysis is if there exists a
representation of this non-commutative group �2 in the Hilbert space of state
vectors of a quantum system. Such a representation would transfer the Borromean
topology to the Hilbert space objects which carried this representation. Intuitively,
the Borromean 3-link expresses the particular connectivity property of three based
oriented loops, where any two of them are unlinked, which is captured algebraically
by means of the structure of the group �2. Topological connectivity in this context
is associated with the non-splittability of this link as a 3-link.

If we metaphorically think of this connectivity property as indistinguishability
in a quantum theoretic context, then it becomes quite natural to expect that a
representation of the group �2 would be feasible by means of unitary transfor-
mations. The analogy goes deeper by the fact that in a Borromean 3-link the act
of cutting a based loop leads to complete splittability of the remaining 2-link.
Analogously, the act of taking the reduced density operator does not preserve the
degree of indistinguishability between states and the corresponding unitary group
action breaks down.

We have shown that a unitary representation of the group �2 indeed exists,
and thus the semantics of the Borromean topological link can be transferred
appropriately in the quantum state space by means of one-parameter unitary groups
(Zafiris 2016a). In this way, the Borromean topology can be transferred in the
quantum state space via the action of one-parameter unitary groups, and their
concomitant representation in terms of oppositely oriented pairs of based loops
under the choice of a reference state vector.

Moreover, if we consider a faithful representation of the group �-algebra of �2,
C�(�2), in the Hilbert space of states H, such that we identify:

C�(�2) ≡ C�(U1, U2)

where U1 and U2 are unitary operators in the Hilbert space H, considered as a
universal pair, then C�(U1, U2) has no nontrivial projections. This is important
because it shows that the non-commutative spectrum of C�(�2) ≡ C�(U1, U2) is
highly connected.

It is instructive to remind that if a nontrivial projection exists then the corre-
sponding spectrum set of this projection is both closed and open. As a result, if we
consider, for example, a Boolean algebra of projections, the spectrum of this algebra
is a totally disconnected space. In contradistinction the spectrum of C�(U1, U2) is a
highly non-commutative connected topological space.

7.2.5 Topological Links in Geometrodynamics

According to the paradigm of Geometrodynamics (Misner et al. 1970), we may
foliate a spacetime manifold X into three-dimensional spacelike leaves �t by
utilizing a one-parameter family of embeddings εt : � ↪→ X, such that εt (�) = �t .



7.2 The Borromean Topology as the Universal Means to Qualify the. . . 181

In the geometrodynamical formulation, the three-dimensional Riemannian manifold
(�, h) is thought of as dynamically evolving, where the corresponding metric at
time t , ht = εt

∗g, is derived by pulling back the spacetime metric g via εt . It
is implicitly assumed that all three-dimensional spacelike leaves �t are mutually
disjoint, such that the Lorentzian manifold (R × �, ε∗g) represents X, where the
leaves of the considered foliation correspond to the constant time hypersurfaces.

In particular, if we consider that the Lorentzian manifold (R×�, ε∗g) represents
X, the singular loci may be localized within the three-dimensional manifold �.
In this context, if � has a non-trivial topology, it is known that spacetime is
geodesically incomplete, and thus singular (Clarke 1993; Hawking and Ellis 1973;
Heller and Sasin 1995). The simplest way to implement a non-trivial topology on
� is via the hypothesis of non-simple connectivity (Gannon 1975). More precisely,
the existence of singular loci in � makes � a multiple-connected topological space,
and thus topologically different from R

3.
We may now consider the system of Einstein-Maxwell equations without sources

for the Maxwell field. In this case, � is orientable and bears the standard wormhole
topology, that is homotopically equivalent to S1 × S2 − {point}, such that the
magnetic flux lines thread through the wormhole. The homology class of all 2-
spheres containing both of the wormhole mouths has zero charge, whereas the
two individual wormhole mouths may be considered as having equal and opposite
charges. In this context, a wormhole may be thought of in terms of a one-
dimensional homology class in spacetime. From general results of low-dimensional
geometric topology, we know that every homology class of a four-dimensional
spacetime can be represented by an embedded submanifold (Scorpan 2005). Using
the geometrodynamic foliation, we may restrict this representation to �. In this
manner, we can instantiate a higher-order wormhole solution, for example, by
considering an appropriate two-dimensional homology class. We argue that these
higher-order wormhole solutions provide models of Planckian wormholes that
substantiate the “ER = EPR” conjecture.

We are going to outline a general method of generating these types of solutions.
For this purpose, we may consider a singular locus with boundary in R

3 or in
its compactification S3, which is excised from R

3 or S3. We consider a singular
locus as a singular disk cut-off from S3, which may be visualized in terms of a
cone whose apex is at infinity and whose base lies at the boundary of the singular
locus. A singular disk of this form excised from S3 gives rise to a two-dimensional
relative homology class of S3, which may be interpreted according to the above
as a two-dimensional embedded compact submanifold. The circular boundary of
this singular disk is a closed and nowhere dense subset with respect to an open set
of S3. Analogously, we may consider the excision of more than one singular disks
from S3, such that their circular boundaries collectively define a closed and nowhere
dense subset of an open set of S3. We propose to think of these circular singular
boundaries as giving rise to topological links.
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According to our hypothesis, a collection of circular singular boundaries defining
a closed and nowhere dense subset of an open set of S3 gives rise to a topological
link in S3. We may now replace the loop components of such a topological link
by open non-intersecting tubular neighborhoods such that the complement of the
link in S3 can be given the structure of a three-dimensional compact and oriented
manifold with boundary. Clearly, this space is homologically equivalent to the
original one since it is just its deformation retract. Next, we may consider an
ordering of the loops l1, l2, . . . lN constituting the link, or equivalently an ordering
of their tubular neighborhoods λ1, λ2, . . . λN . Then, if we take λi , λj , together with
their ordering, we define the relative homology class σij that is represented by the
compact oriented embedded submanifold whose two boundary components lie on
the total boundary, that is the first one in ∂λi and the second in ∂λj . The orientation
is defined as being negative on the first boundary component and positive on the
second, so that we have a path from λi to λj in this case.

7.2.6 The Borromean Rings as a Model of Planckian
Wormholes

According to the formalism of Geometrodynamics, we consider the Lorentzian
manifold (R×�, ε∗g) as a representative of X, where the singularities are localized
within the three-dimensional manifold�. We remind that if � is multiple-connected
as a topological space, then spacetime is geodesically incomplete. According to our
proposal, a collection of circular singular boundaries defining a closed and nowhere
dense subset of an open set of S3 gives rise to a topological link in S3.

In this context, it is important to examine if there exists a universal way via which
we can obtain the three-dimensional manifold � by the information incorporated in
a topological link in S3 representing the singular boundaries, forming collectively a
closed and nowhere dense subset. This sheds more light and is guiding in our quest
of exploring generalized wormhole-types of solutions based on topological links
and their associated homology classes.

It turns out that a universal way to obtain � by using a topological link in S3

representing the singular boundaries, according to the above, actually exists and is
based on the notion of a universal topological link. In view of the type of solutions
we are interested in, such a universal link is defined by the Borromean rings. In
particular, using methods of geometric topology, it can be shown that any compact
oriented three-dimensional manifold � without boundary can be obtained as the
branched covering space of the 3-sphere S3 with branch set the Borromean rings
(Hilden et al. 1987). In this manner, the Borromean rings constitute a universal
topological link.
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The notion of a branched covering space is a generalization of the standard
notion of a covering space, characterized as a local homeomorphism bearing the
unique path lifting and homotopy lifting property (Hatcher 2002). More precisely,
a branched covering space of the 3-sphere S3 is considered as a map from � to S3

such that this map is a covering space after we delete or exclude a locus of points,
called the branched locus. The universality property says that � can be obtained
in this way if the branched locus is formed by the Borromean rings, considered as
a closed and nowhere dense set with respect to an open set in S3 in our setting. We
may extend this closed and nowhere dense subset to four dimensions by considering
a timelike axis perpendicular to the Borromean rings, which plays the role of a
threefold symmetry axis of rotation.

In our context, we conclude that if a triad of circular singular boundaries defining
a closed and nowhere dense subset of an open set of S3 are connected in the form
of the Borromean topological link, then � as a compact oriented three-dimensional
manifold can be obtained as the branched covering space of the 3-sphere S3 with
branch set these Borromean-linked boundaries. Based on these findings, we would
like to explore their semantics in relation to the instantiation of a higher-order
wormhole solution.

For this purpose, we remind that the standard wormhole solution is thought of in
terms of a one-dimensional homology class in a space homotopically equivalent to
S1 ×S2 −{point}. In our framework, we do not need to impose a particular topology
on � ab initio, since it can now be derived universally as the branched covering
space of S3 over the branch nowhere dense subset of singular boundaries forming
a Borromean link. The fact that the Borromean link is a non-splittable 3-link,
such that every 2-sublink of this 3-link is completely splittable, is characterized in
homology theory by a non-vanishing triple Massey product (Hatcher 2002), where
all pairwise intersection products of one-dimensional homology classes vanish,
reflecting the fact that the components of the Borromean link are not pairwise linked.
If we denote the components of the Borromean link B by λ1, λ2, λ3, the triple
Massey product is expressed as a two-dimensional cohomology class in the dense
complement of B in S3, that is it defines a non-trivial class in H 2(S3\(λ1 �λ2 �λ3).
Since the Borromean link is characterized cohomologically by a higher order
invariant, it provides the means to model Planckian wormholes in agreement with
the “ER = EPR” conjecture.

Conclusively, the Borromean topological link can be used for modelling both,
a higher-order wormhole solution, to be thought of as a Planckian wormhole, and
the entanglement properties of the GHZ state, in agreement with the “ER = EPR”
conjecture, such that the latter is extended beyond the domain of classical ER
bridges. Thus, the Borromean topology provides the sought for universal mechanism
to qualify and understand the relation between entanglement and wormholes, and
thus addresses effectively the validity of the ER=EPR conjecture from a generalized
conceptual and technical framework.
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7.3 Delving Deeper into the “ER = EPR” Conjecture from
the Borromean Topological Viewpoint

7.3.1 Homology Classes and Holographic Entanglement
Entropy

According to the AdS/CFT correspondence a wormhole between two asymptotically
AdS regions is dual to two non-interacting quantum conformal field theories in
a thermally entangled state. In particular, the extended AdS-Schwarzschild black
hole solution can be interpreted as two black holes in the same space located a big
distance from each other, but connected by a wormhole (Maldacena and Susskind
2013; Maldacena 2003). It is standard to consider the constant t = 0 spacelike
slice together with two AdS exterior regions connected by a wormhole in this
manner. Thus, in the context of the above correspondence, the solution referring
to these two black holes connected by a wormhole is dual to a highly entangled
quantum state, called the thermofield-double state (Israel 1976), defined on the left
and right corresponding quantum CFTs on the boundary and being time-reversal
symmetric. Therefore, one can legitimately think of an ER bridge between two black
holes as giving rise to a highly entangled quantum state between the left and right
corresponding boundary quantum CFTs, and thus obtain the implication “ER ⇒
EPR”. The pertinent question is if the inverse statement, i.e. if a highly entangled
quantum state of the previous form functions as a representation of the connectivity
between the two black holes by an ER bridge, and thus, if the implication “EPR ⇒
ER” is actually legitimate.

It has been shown that the entanglement entropy of the thermofield-double state
is equal to the Bekenstein-Hawking entropy of either black hole, and therefore, pro-
portional to the area of the black hole horizon. In this context, Ryu and Takayanagi
proposed a generalization that allows the calculation of the entanglement entropy
referring to a region of the CFT, called holographic entanglement entropy (Ryu and
Takayanagi 2006). For this purpose, they consider a division of the AdS boundary
time slice into two regions. This division may be extended to the time slice of the
bulk spacetime in the dual gravity representation. If the regions on the boundary
are denoted by A and B correspondingly, the boundary ∂A of the region A may be
extended to a surface γA in the bulk at the depicted time slice, such that ∂A = ∂γA.
Of course, there exists a multiplicity of possible ways that this becomes feasible,
but Ryu and Takayanagi argued that there exists a unique surface having minimal
area, identifying it with γA, such that the holographic entanglement entropy of A is
proportional to the area of γA. In the case of a black hole the minimal surface wraps
around the black hole horizon.

The problem with the validity of the Ryu-Takayanagi prescription for the
calculation of the entanglement entropy referring to a region of the CFT becomes
apparent when we consider two black holes that are entangled, for instance in
the thermofield-double quantum state. Then, the entanglement entropy for the
region of CFT containing the thermofield-double state should be augmented by the
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entanglement entropy of this state. Note that if there is no entanglement between
the black holes, then the Ryu-Takayanagi original prescription remains in force.
It has been pointed out by Susskind (2016) that the resolution of this problem
comes about if we consider that the entanglement between the two black holes
induces an ER bridge between them, and thus, modifies the global topology of the
time slice in the bulk. In more precise mathematical terms, we propose that the
entanglement between the two black holes should be thought of as giving rise to a
non-trivial one-dimensional homology class, which can be always represented by an
embedded submanifold of the time slice in the bulk. In this way, the Ryu-Takayanagi
prescription of the minimal area surface should be modified according to this one-
dimensional homology class. We notice that in view of the above modification in the
calculation of the entanglement entropy referring to a region of the CFT containing
the thermofield-double state, the implication “EPR ⇒ ER” seems to be justified.

In this manner, as we have already proposed in the previous section, we
can instantiate a higher-order wormhole solution, for example, by considering
an appropriate two-dimensional homology or cohomology class and calculate
their contribution to the entanglement entropy referring to a region of CFT. The
rationale is that these higher-order wormhole solutions provide models of Planckian
wormholes that substantiate the “ER = EPR” conjecture. This strategy allows the
extension of the “ER = EPR” conjecture beyond the domain of classical ER bridges
between two black holes. For instance, the entanglement properties of the GHZ
state are precisely modelled by the Borromean topological link. Considering the
circular boundaries λ1, λ2, λ3 connected in the form of the Borromean link B and
defining a closed and nowhere dense subset of an open set of S3, we obtain a two-
dimensional cohomology class in the dense complement of B in S3, denoted by
H 2(S3\(λ1 � λ2 � λ3). This gives rise to a higher-order wormhole solution, which
may be interpreted as a Planck-scale wormhole. Remarkably, due to the threefold
symmetry of the Borromean topological link any of the three boundaries may be
considered as the connectivity bridge for the other two. Additionally, due to the
universality of the Borromean link, � as a compact oriented three-dimensional
manifold can be generated without any ad hoc assumptions as the branched covering
space of the 3-sphere S3 with branch set these Borromean-linked boundaries.

In the sequel, we will attempt to shed more light on the universality of the
Borromean topological link and the instrumental role it plays in qualifying the
“ER = EPR” conjecture under the intended semantics. The guiding idea is that
quantum entanglement constitutes an interchangeable resource (Maldacena and
Susskind 2013; Susskind 2016), meaning that the various forms of entanglement,
like vacuum entanglement or entangled particles or wormholes or even clouds of
Hawking radiation, are inter-transformable into one another by means of local
unitary transformations for some fixed entanglement entropy. Given that the
calculation of entanglement entropy for a region of CFT depends on the existence of
non-trivial homology classes, to be thought of as emerging by the particular linkage
properties of boundaries, it is worth investigating if the Borromean link functions
as a building block for more complex links. This is also suggested by the fact that
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the group-theoretic model of the Borromean link admits a representation in terms of
unitary transformations that we are going to examine in more detail.

7.3.2 Realization of the Borromean Link by Means of
Continuous One-Parameter Groups of Unitary Operators

Given that the Borromean link is a non-splittable 3-link, such that every 2-
sublink of this 3-link is completely splittable, the topological information of its
particular connectivity properties can be encoded algebraically in terms of the non-
commutative multiplicative group-structure of the free group �2 generated by two
oriented loops, which are based at the same fixed point of 3-d space. More precisely,
the group-theoretic commutator [α, β−1] in �2 encodes algebraically the gluing
condition of the based oriented loops α and β−1, and therefore, the non-splittability
of the Borromean 3-link, together with the complete splittability of all 2-sublinks of
this 3-link.

We are going to prove that a unitary representation of the group �2 indeed
exists, and thus the semantics of the Borromean topological link can be transferred
appropriately in the quantum state space by means of one-parameter unitary groups,
where the action of the latter type of groups in Hilbert space has been first studied by
Stone (1932). Given the conception of entanglement as an interchangeable resource,
the extended validity of the “ER = EPR” conjecture implicates that the class of
unitary transformations making this possible come from the unitary representation
of the non-commutative group�2, or equivalently from the unitary realization of the
Borromean link on the state space. Of course, this claim is based on the universality
of the Borromean link in its function to play the role of a building block for the
realization of more complex links, a topic that we will be investigated in the sequel.

First, we need to define the notion of a unitary representation of the group �2
as follows: A unitary representation of the group �2 consists of a Hilbert space of
states H, together with a group homomorphism from �2 to the group of unitary
operators on H.

Second, we note that the non-commutative group �2 is a free multiplicative
group in two generators g1 and g2. Given two unitary operators U1 and U2 in the
Hilbert space of states H, there exists a unique group homomorphism ζ : �2 →
B(H), where B(H) is the algebra of bounded linear operators in H, which sends
g1 to U1 and g2 to U2, just by the universal property of free groups. Since ζ is a
group homomorphism ζ(gi) = Ui is unitary operator for each j = 1, 2. Therefore,
since {g1, g2} generates �2 as a free group, ζ must be a unitary representation of
the group �2 in the Hilbert space of states H.

Third, we know that B(H) has the structure of a �-algebra over the complexes. If
we consider the free group �-algebra of �2, generated by finite linear combinations
of elements of �2 with complex coefficients, then we have the following: Given
a unitary representation ζ of �2 in the Hilbert space of states H, then this
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representation extends by linearity to a �-homomorphism of the group �-algebra
of �2, denoted by C�(�2), to the �-algebra B(H).

Fourth, the algebra C�(�2) is characterized uniquely up to isomorphism by the
following universal property: Given any unitary representation,

ζ : �2 → B(H)

of the group �2, there exists a unique �-homomorphism of the group �-algebra of
�2, C�(�2), to the �-algebra B(H), denoted by

ζ̃ : C�(�2) → B(H)

that satisfies:

ζ̃ (γg) = ζ(g)

for every g ∈ �2, where γg ∈ C�(�2). Thus, if we consider the generating set of
symbols {g1, g2} of �2 as a free group we obtain the relations:

ζ̃ (γg1) = ζ(g1) = U1

ζ̃ (γg2) = ζ(g2) = U2

where U1 and U2 are unitary operators in the Hilbert space of states H.
We consider a faithful representation of the group �-algebra of �2, C�(�2), in

the Hilbert space of states H, such that we identify:

C�(�2) ≡ C�(U1, U2)

where U1 and U2 are unitary operators in the Hilbert space H, considered as
universal, in the following sense: For any other pair V1 and V2 of unitary operators
in the Hilbert space H, the assignment U1 → V1, U2 → V2, extends to a �-
homomorphism from C�(U1, U2) to C�(V1, V2). Now, by utilizing the spectral
theorem, we may always choose two self-adjoint operators A and B in B(H), such
that U1 = eiA and U2 = eiB .

Next, we consider the set of all continuous functions:

T = {f : [0, 1] → B(H)}

such that f (0) are scalar operators. The set T can be endowed with the structure of a
C�-algebra, which is denoted by the same symbol. We will show that the C�-algebra
C�(�2) ≡ C�(U1, U2) can be imbedded in T as a C�-subalgebra.

We have already seen that if we choose two observables represented as self-
adjoint operators A and B in B(H), then we identify U1 = eiA and U2 = eiB . Next,
we define two continuous functions fU1 and fU2 in the C�-algebra T such that their
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image in B(H) is unitary, as follows:

fU1 : [0, 1] → B(H), fU2 : [0, 1] → B(H)

[0, 1] � t �→ fU1(t) := eitA ∈ B(H)

[0, 1] � t �→ fU2(t) := eitB ∈ B(H)

Then, it is clear that we may consider the C�-algebra generated by the continuous
functions fU1 and fU2 , denoted by C�(fU1 , fU2). Then, by the universality property
of C�(�2) ≡ C�(U1, U2) there exists a �-homomorphism from C�(�2) ≡
C�(U1, U2) to C�(fU1, fU2), specified precisely by the assignments U1 �→ fU1

and U2 �→ fU2 . From the other side, we may consider the evaluation morphism
f �→ f (1), which clearly defines a �-homomorphism from C�(fU1 , fU2) to
C�(�2) ≡ C�(U1, U2). The above two �-homomorphisms are inverse to each other,
and thus induce an isomorphism:

C�(�2) ∼= C�(fU1 , fU2)

The significance of this theorem is the following: It is obvious that the algebra
C�(fU1, fU2) is a C�-subalgebra of T. Hence, C�(�2) ≡ C�(U1, U2) can be
imbedded in T as a C�-subalgebra. The crucial fact is that the C�-algebra of
continuous functions T has no nontrivial projections. This means that C�(�2) ≡
C�(U1, U2) imbedded in T as a C�-subalgebra has no nontrivial projections either.
This is important because it shows that the non-commutative spectrum of C�(�2) ≡
C�(U1, U2) is highly connected, in contradistinction to the spectrum of a Boolean
algebra of projection operators resolving a complete set of commuting observables,
which is a totally disconnected space.

Conclusively, the Borromean topological link is realized in the quantum state
space via the combined action of one-parameter unitary groups, and their concomi-
tant representation in terms of oppositely oriented pairs of based loops under the
choice of a reference state vector giving rise to a highly connected non-commutative
topological spectrum. This is particularly interesting in relation to considering
complete sets of measurements in quantum mechanics, where following Susskind
(2016), we think of a measurement as a process that entangles the system with the
apparatus. The relation stems from Stone’s theorem, which establishes a bijective
correspondence between continuous one-parameter groups of unitary operators and
observables. Given that C�(�2) ≡ C�(U1, U2) ∼= C�(fU1 , fU2) according to the
above, the non-commutativity of quantum observables can be traced back to the non-
commutative realization of the Borromean link in terms of one-parameter groups of
unitary operators. Furthermore, if the threefold symmetry of the Borromean link is
broken by reduction of the free non-commutative group on two generators �2 to
the free nilpotent group on two generators of nilpotent class 2, we obtain the Weyl-
Heisenberg group H (Zafiris 2016a).
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7.3.3 The 2-Sphere and 3-Sphere Representations of the
Borromean Link and Qubits

The unit 2-sphere S2 constitutes the space of pure states or equivalently rays of a
2-level quantum mechanical system, called usually a qubit. The unit 2-sphere may
be thought of as embedded in the standard three-dimensional space R3. The Hilbert
space of normalized unit state vectors of a qubit is the 3-sphere S3, and thus the unit
2-sphere is considered as the base space of the Hopf fibration:

S1 ↪→ S3 � S2

We note that each pair of antipodal points of S2 corresponds to mutually orthogonal
state vectors. The north and south poles are chosen to correspond to the standard
orthonormal basis vectors |0〉 and |1〉 correspondingly. In the case of a spin- 1

2
system, these correspond to the spin-up and spin-down states of this system.

We consider the unit sphere S2 as the set of points of three-dimensional space
R

3 that lie at distance 1 from the origin. Then, the non-commutative group SO(3)
denotes the group of rotation operators on R

3 with center at the origin, viz. linear
transformations from R

3 to R
3 represented as 3 × 3 matrices with determinant one.

These are called orthogonal matrices, characterized by the fact that their columns
form an orthonormal basis of R3. Rotations around an axis going through the origin
are the isometries of three-dimensional Euclidean space R3 leaving the origin fixed.
Note that a 3 × 3 orthogonal transformation preserves the inner product for any pair
of vectors in R

3, and moreover it is an isometry of R3 that takes the unit sphere S2

to itself.
In this context, we ask the following question: Does there exist a representation

of the Borromean link via its algebraic encoding in terms of the non-commutative
free group �2 on the unit sphere S2, which lifts to a unitary representation on S3?
Such a representation definitely exists if we are able to locate a subgroup of the
non-commutative group SO(3), which is isomorphic to �2. In fact, we are able to
prove the following theorem:

There are rotation operators A and B about two independent axes through
the origin in R

3 generating a non-commutative subgroup of SO(3), which is
isomorphic to the group�2.

In other words, there exists an isomorphic copy of �2 in SO(3) generated by
two independent rotations A and B. The term independent refers to the requirement
that all rotations performed by sequences of A and B and their inverses are distinct
strings in �2. Actually, most pairs of rotations in SO(3) are independent in the
above sense, so that even by picking A and B randomly would do. For instance, one
could consider two counterclockwise rotations A and B about the z-axis and the x-
axis respectively of the same angle arccos(3/5). The proof is based on showing
that no reduced word in the symbols A and B and their inverses collapses to
the identity transformation (3 × 3 identity matrix). Intuitively, if we choose two
counterclockwise rotations A and B about the z-axis and the x-axis of the same
angle, then this specific angle needs to be an irrational number of degrees. More
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precisely, given an initial orientation, if the specified angle is an irrational number of
degrees, then none of the distinct strings of rotations in �2 performed by sequences
of A and B and their inverses can give back the initial orientation. Thus, no reduced
word in �2 collapses to the identity transformation.

The existence of an isomorphic copy of �2 in SO(3) has the following
consequence: Each rotation belonging to the non-commutative free subgroup �2
of SO(3) fixes two points in the unit sphere S2, namely the intersection of S2 with
the axis of rotation passing through the origin. If we take the union of all these
points, they form a countable set of points. Then, not only there exists an action of
�2 on the unit sphere S2 (as a subgroup of SO(3) generated by A and B) but this
action is actually free on S2 modulo the countable set of fixed points K .

Thus, we can partition S2\K into a disjoint union of orbits for the action of �2. If
we choose a base point for an orbit, we may identify it with �2 due to the freeness of
this action. Moreover, if a countable collectionK of points as above is removed from
S2 they can be restored by rotations around an axis through the origin which has zero
overlap with K . In this way, the action of the group�2 via rotations allows to resolve
the whole unit sphere S2. The crucial point again is that the algebraic irreducibility
of the commutator [A,B] of the rotations A and B generating an isomorphic copy
of �2 in SO(3) expresses the Borromean topological non-splittability or non-
separability of these three rotations belonging to the subgroup of SO(3) isomorphic
with �2. This interpretation provides a topological justification of the fact that
one cannot specify a finitely additive rotation-invariant probability measure on all
subsets of the unit sphere S2. In the terminology of von Neumann, since the group
of rotation operators SO(3) contains an isomorphic copy of �2 it is not amenable.

An immediate consequence of the above is that the group of 2×2 complex unitary
matrices with unit determinant SU(2) is also not amenable, that is it also contains
an isomorphic copy of �2. The reason is that topologically, the simply-connected
special unitary group SU(2) is a covering space of the non-simply connected group
of rotations SO(3), and in particular it is a double cover. More concretely, there
exists a two-to-one surjective homomorphism of groups:

� : SU(2) � SO(3)

whose kernel is given by Ker� = Z2 = {+1,−1}.
Hence, it is clear that there exists an isomorphic copy of �2 in SU(2). More

precisely, if A and B are rotations generating an isomorphic copy of �2 in SO(3),
and � : SU(2) � SO(3) is the covering projection, then A and B generate a free
subgroup of the form �2 in SU(2), for any A and B with �A = A and �B = A.
Since SU(2) is a double cover of SO(3) there exist exactly two elements of the
form A, namely U and −U such that �U = �(−U) = A (the same holds for B
respectively).

We conclude that there exists a representation of the group �2 on the unit sphere
S2, which lifts to a unitary representation on S3. The representation of the group �2
on the unit sphere S2 is given by the free subgroup of rotations of SO(3) generated
by A and B according to the above. Concomitantly, this representation lifts to a
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unitary representation on S3 by the free subgroup of unitary operators of SU(2)
generated by A and B. Thus, the Hilbert space of normalized unit state vectors
of a qubit or of a spin- 1

2 system carries a unitary representation of the group �2.
This means that the algebraic irreducibility of the commutator [A,B] of the unitary
operators A and B generating an isomorphic copy of �2 in SU(2) expresses the
Borromean topological non-splittability or non-separability of these three unitary
operators. Moreover, since the action of the group �2 by strings of rotations in
two generators allows to resolve S2, such that the same lifted action resolves S3 as
well by strings of corresponding unitary operators, we conclude that the property of
Borromean connectivity is transferred via these actions to the space of rays S2 and
the space of unit state vectors of a qubit S3.

In the case of a spin- 1
2 system, the unitary rotation operator U corresponding to

a rotation A with axis n and angle θ is given explicitly by:

U(θn) = e
−i
h̄ θn·S

where S is the generator of the spin- 1
2 unitary rotation group SU(2). Since the

operator S may be represented in matrix form in terms of the Pauli matrices σ1,
σ2 and σ3, as S = h̄

2σ , where σ = (σ1, σ2, σ3), we obtain:

U(θn) = e
−i
2 θn·σ

Now, a unitary rotation U(θn) = U corresponds to a rotation A with axis n and
angle θ as follows: For any vector v of R3 such that v �→ Av, we have:

v · σ �→ U(v · σ)U† := (Av) · σ

Thus, for a rotation A with axis n and angle θ , we obtain a unitary rotation operator
U such that �U = A. If we change the angle of rotation θ by 2π , the rotation
A remains the same, whereas the unitary rotation U changes sign, that is U →
−U . This is consistent with the double covering projection of unitary rotations to
ordinary rotations. Thus, we have that �U = �(−U) = A, that is both unitary
rotations U and −U correspond by the double covering map to the same rotation A.

7.3.4 Borromean Einstein-Rosen Bridge for
Tripartite-Entangled Black Holes

We follow the hypothesis that the degrees of freedom of a black hole can be
represented as a system of qubits (Maldacena and Susskind 2013; Susskind and
Zhao 2014; Susskind 2014a, 2016). More precisely, we assume that a black hole
can be described in terms of a system of K qubits, where K is of order the entropy.
We consider a pair of entangled black holes, which are in the thermofield-double
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state, denoted by |T FD〉. In information-theoretic terms, this pair of entangled
black holes can be represented by a maximally entangled state of 2K qubits. If
we additionally choose the standard orthonormal basis of a qubit consisting of the
state vectors |0〉 and |1〉, then the initial state of the black hole pair can be written as
a product of K maximally entangled Bell pairs:

|T FD〉 ∼ (|00〉 + |11〉)⊗K

Thus, as a starting point, we may first consider a single maximally entangled Bell
pair of qubits:

|Bell〉 ∼ (|00〉 + |11〉)

Let us also invoke a third qubit, which acts as an apparatus qubit, in the sense
that it measures a complete set of commuting observables related with one of
the other two qubits. Then, the process of measurement leads to a tripartite qubit
entanglement, described by the GHZ state (Greenberger-Horne-Zeilinger) of the
composite system:

|ghz〉 ∼ (|000〉 + |111〉)

It is clear that |ghz〉 is entangled, and moreover symmetric under permutations of
the states of the three qubits. We conclude that whenever a process of measurement
is carried out on one of the qubits of a maximally entangled Bell pair, then
there emerges a tripartite entangled GHZ state. The GHZ-type of entanglement is
characterized by the following properties:

1. If any two qubits are traced over, the density matrix of the third qubit is
maximally mixed, and thus, any qubit is maximally entangled with the union
of the other two;

2. If any one qubit is traced over the density matrix of the other two is separable.

For instance, we may consider a measurement basis of the composite system of
qubits A, B, and C given by the projection operators P0 := |0〉〈0| ⊗ Id ⊗ Id and
P1 := |1〉〈1| ⊗ Id ⊗ Id , corresponding to a potential measurement carried out
only on qubit A. After the measurement the composite system is either in the state
|000〉 or in the state |111〉, and clearly both of these states are separable. Due to
the permutation symmetry of the GHZ state, the argument remains the same if, for
example, a potential measurement applies to qubit B instead of A. If we trace over
the qubit A in the GHZ state, then the reduced density operator of the remaining
system consisting of the qubits B and C is given by:

ρBC = trAρ = 1

2
(|00〉〈00| + |11〉〈11|)
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where ρBC denotes a separable mixed state formed by the mixture of the separable
pure states |00〉 and |11〉.

It has been pointed out by Susskind (2016) that the entangled GHZ state of three
qubits |ghz〉 ∼ (|000〉+|111〉) can be expressed in terms of a symmetric tensor with
three indices Tijk corresponding to the qubits. This tensor may be transformed by the
action of local unitary transformations preserving the properties of the GHZ-type of
tripartite entanglement. Notwithstanding the permutation symmetry reflected in the
specification of the tensor Tijk as a symmetric tensor, the basic properties (1) and (2)
of the GHZ-type of tripartite entanglement are not reflected in the tensor notation.

For this reason, we propose that the density operator ρ of the GHZ-entangled
qubits actually forms a Borromean topological link, that is a non-splittable 3-link,
such that every 2-sublink of this 3-link is completely splittable. In this manner,
the process of cutting a loop from the Borromean link is actually represented by
taking the reduced density operator of the GHZ state with respect to the qubit
corresponding to this loop. In our previous example, if we trace over the qubit A in
the GHZ state, then the reduced density operator of the remaining system consisting
of the qubits B and C is given by:

ρBC = trAρ = 1

2
(|00〉〈00| + |11〉〈11|)

where ρBC is a separable mixed state, thus reflecting the splittability property of the
remaining 2-sublink of the Borromean 3-link.

More generally, we already have shown that the Borromean topological link,
through its algebraic encoding in terms of the non-commutative group �2, is
realized in a quantum state space via the combined action of one-parameter unitary
groups, and the concomitant representation of each one of them in terms of
oppositely oriented pairs of loops based at a reference state vector, giving rise to a
highly connected non-commutative topological spectrum. Given that the GHZ-type
of tripartite entanglement is preserved by the action of local unitary transformations
on the GHZ-state vector, we can identify a copy of each local unitary group with the
cyclic orbit of its action oriented in both possible ways and based at the GHZ-state
vector. Therefore, we obtain a realization of the Borromean link in terms of one-
parameter unitary groups, or equivalently via their oriented orbit-loops based on the
GHZ-state vector.

We come back now to a pair of entangled black holes, which is represented by a
maximally entangled state of 2K qubits. We remind that if we choose the standard
orthonormal basis of a qubit consisting of the state vectors |0〉 and |1〉, then the initial
state of the black hole pair can be written as a product of K maximally entangled
Bell pairs:

|T FD〉 ∼ (|00〉 + |11〉)⊗K
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Then, we may invoke again a third system of K qubits, which information-
theoretically can also be considered as a black hole, to be thought of as an apparatus,
in the sense that it measures a complete set of commuting observables related with
one of the other two black holes. Then, the process of measurement leads to a
tripartite black hole entanglement, described by the product of GHZ states:

|GHZ〉 = |ghz〉⊗K ∼ (|000〉 + |111〉)⊗K

The properties of the tripartite black hole entanglement are precisely analogous to
the properties of the tripartite qubit entanglement:

1. If any two black holes are traced over, the density matrix of the third black hole
is maximally mixed, and thus, any black hole is maximally entangled with the
union of the other two;

2. If any one black hole is traced over, the density matrix of the other two is
separable, so that there is no entanglement between any two black holes.

We conclude that the tripartite black hole entanglement follows the rules of the
Borromean topological linking in analogy to the tripartite qubit case. In view of the
“ER = EPR” conjecture, the tripartite black hole entanglement gives rise to a non-
classical Einstein-Rosen bridge, to be thought of as a Planck-scale one, which bears
all the properties of the Borromean topological linking. This gives a precise form to
what is called a GHZ-core or GHZ-brane by Susskind, which cannot be removed by
any local unitary transformations since it is invariant under their action.

From the viewpoint of Susskind, since a tripartite GHZ-entangled state of three
qubits is represented by a symmetric tensor, the analogous tripartite GHZ-entangled
state of three black holes is represented by a tensor network corresponding to the
product of the former ones. This tensor network is conceived as evolving in time
and growing, where this growth represents the growth in complexity.

From the proposed perspective of the Borromean topology, which incorporates
all the pertinent properties of the tripartite black hole entanglement, we obtain
a Borromean topological network whose complexity grows by iteration. More
precisely, in the formation of the Borromean link, if each of the three rings is
substituted by a triplet of rings forming a Borromean link themselves, then all the
properties of Borromean linking are preserved, thus obtaining a Borromean ring of
Borromean rings. This may be iterated ad infinitum, giving rise to higher and higher
orders of complexity. This is how a Borromean network grows outward from the
GHZ-core.

The most important characteristic of the non-classical Einstein-Rosen bridge
arising from the maximally entangled GHZ-state of the tripartite black hole
entanglement is that essentially any of the three black holes serves as a wormhole
only relationally, that is as a bridge in relation to the other two, in the sense that
removal of any of them leaves the remaining two completely unlinked topologically.
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7.3.5 The Borromean Link as the Building Block of All
Higher-Order Linkings

We remind that the topological linking information of the Borromean 3-link can
be completely encoded in terms of the algebraic structure of the non-commutative
multiplicative free group in two generators �2. In particular, the group-theoretic
commutator γ = [α, β−1] in �2 encodes algebraically the gluing condition of
the topological circles A and B by means of composing based oriented loops
referring to them, and therefore, the non-splittability of the Borromean 3-link,
together with the complete splittability of all 2-sublinks of this 3-link. It is precisely
this gluing condition that allows, through the representability of the group �2 in
terms of one-parameter unitary groups, to model the entanglement properties of the
tripartite GHZ state by means of a Borromean 3-link. Therefore, according to the
“ER = EPR” conjecture, the tripartite black hole entanglement gives rise to a non-
classical Einstein-Rosen bridge, which bears all the properties of the Borromean
topological linking. As we have already pointed out the Borromean link can be
iterated to obtain successively higher orders of Borromean linking, and thus build
up a Borromean network of growing complexity.

A natural question arising in this setting is if the Borromean link plays the
fundamental role of a building block for higher-order linkings, which extend and
further qualify the “ER = EPR” conjecture in the intended semantics. The crucial
observation is that the algebraic irreducibility of the commutator γ = [α, β−1] in
the group �2 encodes the topological non-splittability property of the Borromean
3-link. We stress again that deletion of both symbols α and α−1 or equivalently
cutting of both based oriented loops α and α−1 (corresponding to removal of the
topological circle A) reduces the formula to the identity 1 (and the same happens
symmetrically for both β and β−1), modelling in the terms of �2 that every 2-
sublink of the Borromean 3-link is completely splittable. Therefore, at an initial
stage, the idea of using the Borromean link as a building block for analogous links
of a higher type means employing the group commutator iteratively as an encoding
device for these higher links.

We consider the case of a total non-splittable 4-link all 3-sublinks of which
are completely splittable, denoted by �(4, 3), which constitutes the first direct
generalization of the Borromean link as a non-splittable 3-link all 2-sublinks of
which are completely splittable, denoted by �(3, 2), respectively. This case involves
the gluing of three topological circles A, B, and C by a higher Borromean loop.
Thus, we may proceed as follows: First, we glue the circles A and B by the standard
Borromean loop and then we glue analogically this product with C. Algebraically
speaking, the first step is simply the commutator ξ = [α, b], where for simplicity we
have redefined β−1 as b, i.e. β−1 := b. The first iteration of this procedure, which
involves the gluing of the product ξ with γ (in relation to the topological circle C),
reads simply as the commutator of ξ with γ . We conclude that a higher Borromean
loop that solves the problem is given in the structural terms of the group �2 simply
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as follows:

δ = [ξ, γ ] = [[α, b], γ ]

If we expand this formula, by using the definition of the group commutator as well as
the group theoretic relation (χψ)−1 = ψ−1χ−1, where χ , ψ may stand for arbitrary
strings of elements of the group �2, we obtain the following unfolded expression
for the higher Borromean loop formula:

δ = [ξ, γ ] = [[α, b], γ ] = {αbα−1b−1}γ {bαb−1α−1}γ−1

Now it becomes clear how the Borromean link becomes a building block via terms
of the form λμλ−1μ−1 = [λ,μ] for expressing higher order links of the same type.
We can also see that deletion of all incidences of any of the symbols (which involves
the simultaneous deletion of the inverse symbol as well, according to our preceding
explanation) reduces the formula to the identity 1 in the group�2. If we decode back
the obtained algebraic solution in topological terms, then the topological solution of
the problem of finding a non-splittable 4-link whose all 3-sublinks are completely
splittable by means of Borromean building blocks is illustrated as follows:

We recapitulate by emphasizing that the �2 group commutator acts as an encoding
device for these higher links of the type �(4, 3) in two ways: First, the commutator
provides the gluing scheme of link-formation by means of Borromean loops.
Second, due to the fact that deletion of all incidences of any of the involved symbols
reduces the commutator to the identity 1 in the group �2, the commutator also
encodes the information of complete splittability of any remaining sublink after
removing any of the constituents of the total non-splittable link. In this manner, a
�(4, 3) link can be constructed in terms of Borromean link building blocks simply
by iterating once the commutator formation.

According to the above, we may simplify the proposed algebraic algorithm of
constructing a �(4, 3) link within the group �2, keeping in mind the corresponding
topological semantics, as follows: If we start with three symbols a, b, c, we first
glue a with b together by means of the commutator [a, b], and then we glue their
glued product [a, b] with c to obtain the stacked commutator [[a, b], c]. This final
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glued product gives the required fourth symbol in the group �2, which decodes
topologically as a �(4, 3) link. In an analogous manner, by iterating twice the
commutator formation starting with four symbols a, b, c, d , we obtain a �(5, 4)
link. The same process can be clearly repeated inductively, so that we finally can
construct any �(N,N − 1) link by means of Borromean building blocks, or more
precisely, Borromean connectivity units, where N ≥ 3.

We call this algorithmic procedure the operation of commutator stacking in
consecutive nested levels. In this way, a �(N,N − 1) link is algorithmically
constructed by a stacked commutator in (N − 1) symbols, where N ≥ 3. For
convenience, we call it a stacked commutator of order (N − 1). Note that the order
of the stacked commutator in any link of the form �(N,N − 1) coincides with
the number of symbols that separate if we remove any symbol from the total non-
splittable N-link.

We proceed to consider the case of an arbitrary topological link of the general
form �(N,K). A link of the form �(N,K) is defined as a link of N topological
circles, such that each K-sublink is completely splittable, but each (K + 1)-sublink,
(K + 2)-sublink, (K + 3)-sublink, . . ., (N − 1)-sublink up to the N-link itself,
is non-splittable. The natural question emerging in this context is if it is possible
to express a general link �(N,K) in terms of Borromean building blocks, encoded
algebraically by the gluing operator of symbols, viz. by the commutator in the group
�2. We already know that this is feasible in case that K = (N − 1) solely by means
of the operation of commutator stacking of order (N − 1). Hence, we simply call a
�(N,N − 1) link a Borromean stack of order (N − 1).

Clearly a link of the general form �(N,K) cannot be expressed solely as
a Borromean stack. But there exists another natural algorithmic operation on
Borromean building blocks, which is described by taking an appropriate product
of commutators in the group �2. Intuitively speaking, this natural operation should
express a procedure of Borromean extension in length, or simply the formation
of a Borromean chain out of Borromean links of some appropriate length. Most
remarkably, these two operations can be effectively combined by means of forming
Borromean chains out of arbitrary Borromean stacks. This is the crucial idea
that allows the algorithmic construction of a general link �(N,K) in terms of
Borromean building blocks, and effectively, the formation and growth of Borromean
networks of arbitrary complexity based solely on the Borromean linking property at
the core.

The simplest case involves the consideration of three symbols a, b, c in the group
�2 under the established topological semantics. Considering these three symbols we
can construct a Borromean stack of order 3, expressed by the stacked commutator
formula [[a, b], c], and encoding the information of a �(4, 3) link, as we explained
previously. Considering these three symbols a, b, c in the group �2 we can also
construct out of them three distinct commutators, namely [a, b], [a, c], and [b, c].
Since each of these commutators gives a new symbol in the group �2, we may
take their product which is also a new symbol in the group �2. We notice that
each of these commutators [a, b], [a, c], [b, c] gives separately a Borromean link.
Thus, their product [a, b] ◦ [a, c] ◦ [b, c] is actually a composition of three different
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Borromean links, which gives a Borromean chain out of their composition product
that has length 3.

Next, we realize that the formation of this Borromean chain is the appropriate
algorithmic operation on Borromean building blocks to express a �(4, 2) link. We
can immediately see this as follows: First, we notice that deletion of any one of the
symbols a, b, c, in the Borromean chain of length 3, [a, b] ◦ [a, c] ◦ [b, c], reduces
this chain to a standard Borromean link. For instance, if we delete the symbol a,
what remains is the Borromean link [b, c] and analogously for the other two cases.
Second, we notice that deletion of any two of the symbols a, b, c reduces this chain
to unity. Hence, we conclude that the Borromean chain of length 3 provides the
formula for the fourth symbol in the group �2, such that the defining properties of a
�(4, 2) link are satisfied, and most important, this link is expressed solely in terms
of Borromean building blocks. A significant thing to notice is that the length of the
Borromean chain solving the problem in the �(4, 2) case is given by the number
of combinations of two symbols out of three, where a combination is simply the
formation of the commutator of two symbols in this case.

In the same manner that we can form Borromean chains out of Borromean links,
we can form Borromean chains out of Borromean stacks, thus combining effectively
these two algorithmic operations on Borromean links. If Borromean stacking is
conceived as a process of Borromean complexity extension in depth by nesting
into consecutive ordered layers, then Borromean chain formation is conceived as
a process of Borromean complexity extension in length. Using these two operations
separately or in combination, which actually involves the formation of Borromean
chains out of Borromean stacks, we are able to express an arbitrarily complex link
�(N,K) solely in terms of Borromean building blocks.

Before we investigate the general case, it is instructive to describe the formation
of a �(5, 3) link, which exemplifies the above rules of Borromean complexity
growth. From the definition of a �(5, 3) link, the crucial observation is that if we
remove any of the constituent topological circles what remains is a �(4, 3) link,
which we already know that is expressed by means of a Borromean stack of order
3, or equivalently, by the stacked commutator formula [[a, b], c] in three symbols.
Thus, in order to express a �(5, 3) link, if we consider four symbols a, b, c, d , we
look for a formula such that deletion of any of them causes the formula to reduce to
the one of a Borromean stack of order 3. This is accomplished by the algorithmic
operation of forming a Borromean chain of appropriate length out of Borromean
stacks. In the present case of a �(5, 3) link, since we require that deletion of any of
the four involved symbols a, b, c, d reduces the formula to a Borromean stack of
order 3, we just need to form a Borromean chain out of Borromean stacks of order
3, where the length of the chain is given by the number of combinations of three
symbols (which is the number of symbols involved in a Borromean stack of order 3)
out of four symbols a, b, c, d . We immediately deduce that the sought-after formula
expressing a �(5, 3) link is given by the Borromean chain of length 4, composed
out of Borromean stacks of order 3, and described explicitly as follows:

χ = [[a, b], c] ◦ [[a, b], d] ◦ [[a, c], d] ◦ [[b, c], d].
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Finally, we consider an arbitrarily complex link of the general form �(N,K),
where 1 ≤ K ≤ N , and prove that it can be constructed solely in terms of
Borromean building blocks within the group �2. For any K , we already know that
the link �(K + 1,K) is expressed by means of a Borromean stack of order K .
Next, we consider (K + 1) symbols in �2, and we wish to construct a �(K + 2,K)

link. The crucial observation is that if we remove any topological circle from a
�(K + 2,K) link, what remains is a �(K + 1,K) link. Thus, we treat this case in
complete analogy to the case of a �(5, 3) link, discussed previously. More precisely,
we form a Borromean chain out of Borromean stacks of order K , where the length
of this chain is given by the number of combinations of K symbols out of (K + 1)
symbols. The formula expressing this Borromean chain provides the sought-after
(K + 2) symbol. Now, we consider (K + 2) symbols, and we wish to construct a
�(K+3,K) link. We just have to form a Borromean chain out of Borromean stacks
of order K , where the length of this chain is given by the number of combinations
of K symbols out of (K + 2) symbols. The formula expressing this new Borromean
chain provides the sought after (K + 3) symbol in �2. We continue the same
process of formation of new Borromean chains of appropriate combinatorial length
composed by Borromean stacks of order K , stage by stage, until we reach N . This
completes the proof of the proposition that an arbitrarily complex link of the general
form �(N,K) can be constructed solely in terms of Borromean building blocks, or
equivalently, Borromean connectivity topological units. We may summarize these
findings in the form of the following theorem:

An arbitrarily complex link of the general form�(N,K), where 1 ≤ K ≤ N , can
be constructed solely in terms of Borromean building blocks, by means of forming
Borromean stacks and Borromean chains out of Borromean stacks of appropriate
order and length, respectively.

In view of the “ER = EPR” conjecture, and having shown that the Borromean
link serves as a model of both the tripartite GHZ-type of entanglement and the
corresponding non-classical Einstein-Rosen bridge, the above theorem provides the
strongest evidence for the correctness of this conjecture in generalized form.

7.3.6 Criterion of Locality in the Quantum Domain

The previous considerations involving the role of the Borromean link with respect
to the validity of the “ER = EPR” conjecture require a re-thinking of the foundations
of quantum mechanics, especially in relation to what functions as a criterion of
locality in the quantum domain. This is ultimately connected with the conception
of entanglement as an interchangeable resource by means of local unitary transfor-
mations. The notion of local is usually employed heuristically or by appealing to
the classical intuition where the notion of a system can be unambiguously defined
as separated by the rest of the world. The phenomenon of quantum entanglement
is then conceived as a kind of “glue” between a priori distinguishable subsystems
referring to the indirect specification of their compatible observables without any
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violation of the standard spacetime locality. Given our conception of measurement
as a process that entangles the system with the apparatus, the freedom of moving
the Heisenberg cut stands as a warning that these rigid distinctions implicated by
classical intuitions are not well-defined and may lead to inconsistencies when they
are employed to support locality arguments in the quantum domain.

In this way, we may adopt an alternative perspective which views quantum entan-
glement through the lenses of indistinguishability between subsystems or between
a system and an apparatus. This perspective is grounded on the role of unitary
transformations and induces a criterion of locality that is independent of classical
intuitions, based instead on the distinction between the non-commutativity of the
global algebra of quantum observables and the commutativity of any subalgebra of
simultaneously measurable observables. Reciprocally, since the non-commutativity
can be traced back to the non-commutative realization of the Borromean link in
terms of one-parameter groups of unitary transformations, the seeds of locality
should be sought for in the specification and role of a one-parameter unitary
group. We note that a concrete unitary group of this type is provided by a unitary
representation of R on the Hilbert space H of state vectors, under the qualification
of the translations in the real line as “time” translations or “space” translations in a
specified direction. Stone’s theorem (Stone 1932) gives a bijective correspondence
between continuous one-parameter groups of unitary operators and observables, and
in this manner, complete sets of simultaneously measurable observables forming
a commutative subalgebra provide a viable criterion of locality in the quantum
domain.

Intuitively, the criterion of locality is associated with what can be spectrally
distinguished, and thus localized, by means of the orthogonal projections belonging
into the simultaneous resolution of all observables forming this commutative sub-
algebra. Technically, the orthogonal idempotent elements (orthogonal projections)
of this commutative subalgebra of observables constitute a local Boolean frame.
Each local Boolean frame has the structure of a complete Boolean algebra of
orthogonal projection operators obtained by the simultaneous spectral resolution of
a complete set of compatible observables—represented as self-adjoint operators—
with respect to a complete orthonormal basis of eigenstates. We stress that all
possible observables cannot be simultaneously measurable with respect to a single
universal global logical Boolean frame as is the case in all classical theories
of physics. Thus, there exists a multiplicity of potential local Boolean frames,
where each one of them stands for a context of co-measurable observables. In
this way, each local Boolean frame provides spectrally the localization means for
the probabilistic evaluation of all the observables belonging into the associated
commutative algebra. Thus, the evaluation of every single observed event in the
quantum domain requires taking explicitly into account the specific local Boolean
frame with respect to which the corresponding observable is localized.

The remarkable fact is that each observable instantiates a Boolean algebra of
orthogonal projection operators, which is utilized for the expression of a state vector
as a linear superposition with respect to the associated complete orthonormal basis
of eigenstates of this observable. In this way, a Boolean frame functions as a means
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of inducing spectral differentiations in an initially objectively indistinguishable
state in terms of the resolution into orthogonal projection operators. In other
words, orthogonal projections induce potential differentiations in a quantum state,
which are realized only if a measurement is actually performed. Thus, observables
through their spectral resolution in terms of orthogonal projectors can be thought
of as potential distinguishability filters acting on a quantum state. In this way,
a measurement process creates information by actualizing differentiations with
reference to the associated filters, or else refines the grain of resolution associated
to a quantum state.

Conclusively, the spectral resolution of an observable gives rise to a logical
structural invariant characterizing a whole algebra of observables commuting with
the considered one. This logical invariant bears the structure of a complete Boolean
algebra of orthogonal projection operators whose spectrum defines the means of
localization in the quantum domain. We note that the same event may be associated
with more than one applicable local Boolean frames, for instance, if the same
projection belongs to two different overlapping Boolean frames, or if projections
in two different local Boolean frames admit a common spectral refinement (i.e.,
they are compatible under pulling back) in a third local Boolean frame. In this
case, we should consider all pertinent local Boolean frames at once, together
with their interconnecting transformations, and thus form a Boolean localization
system that supplies the covariance property under homomorphisms among these
local Boolean frames. From a topological viewpoint, a Boolean localization system
is characterized as a sheaf-theoretic structure (Zafiris 2004a,b, 2006a,b, 2007;
Epperson and Zafiris 2013).

We come now to examine the implication of Stone’s theorem referring to the
bijective correspondence between observables and one-parameter groups of unitary
transformations, where the parameter is considered to by varying continuously on
the real line. First, we note that the proof of the theorem is based on the spectral
resolution of a self-adjoint operator in terms of orthogonal projections. Given the
localization function of this resolution, qualified in terms of a Boolean frame,
Stone’s theorem characterizes group-theoretically the preservation condition of the
spectral distinctions induced by this local Boolean frame. More precisely, a unitary
transformation is an automorphism of the Hilbert space of state vectors preserving
the inner product structure, and thus realized by means of a unitary operator. The
inner product between two state vectors, interpreted as the transition amplitude from
one to the other, if viewed from the perspective of the space of rays can be thought
of as the degree of overlap between the corresponding rays or projection operators.
Given that a projection operator functions as a distinguishability filter, the overlap
provides the degree of indistinguishability between the associated states. Thus, a
unitary transformation is simply a transformation which preserves the degree of
indistinguishability between states. In this way, the real-valued continuously varying
parameter in a one-parameter group of unitary operators, associated bijectively with
an observable via its resolving local Boolean frame and infinitesimally generated
by it, is simply a parameter indexing continuously the preservation of the degree of
spectral indistinguishability between quantum states. This is the crucial aspect that
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distinguishes the temporal or spatial meaning of such a parameter in comparison to
the classical semantics of these terms (Zafiris 2016a).

We are going to show in the sequel how the analysis of entanglement, i.e. EPR-
type of correlations, fits well with the criterion of locality in the quantum domain,
instantiated by means of local Boolean frames. Keeping in mind the perspective
of indistinguishability with reference to the quantum states themselves, without
invoking a priori artificial distinctions among subsystems, but being able to localize
using Boolean frames and preserve the induced spectral distinctions using the
corresponding one-parameter unitary groups, provides a viable understanding of
the thesis that entanglement is an interchangeable resource.

7.3.7 Quantum Locality and Entanglement: EPR Correlations

In the Hilbert space formulation of quantum theory, and expressed in the usual
terminology, entanglement refers to the phenomenon displayed by a composite
quantum system according to which the behavior and properties of a composite
quantum system consisting of several subsystems are not reducible to the properties
of the individual subsystems. This is manifested in the particular type of correlations
found in the joint probability distributions of events in which different of these
subsystems are involved. More precisely, in the Hilbert space formulation, a single
quantum system is represented by a complex Hilbert space of states, whereas a
composite quantum system is represented by the tensor product of the Hilbert spaces
of states of its subsystems over the complex numbers.

Let us briefly recall that a state of a quantum system is represented by a positive,
Hermitian (self-adjoint) operator of trace 1 called a density operator (or statistical
operator). The density operator is represented as a linear sum of orthogonal, one-
dimensional projections operators:

ρ = �iλiPi

where the weight coefficients λi are positive numbers summing up to unity, that
is �iλi = 1. In case that in the above linear sum only a single coefficient λ is
different from zero, the state is called a pure state, that is ρ = λP . Equivalently,
a pure state can be characterized by a unit state vector � belonging to the one-
dimensional subspace of the Hilbert space (ray) into which P projects. Thus, a
non-pure state, called a mixed state, is considered as a weighted linear sum (called
a convex combination) of pure states (or one-dimensional projection operators)
where the total weight is one. Moreover, a mixed state can be decomposed in many
different ways in the form:

ρ = �iγiρi
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where the coefficients γi are positive weights and the ρi are other density operators
(which may correspond to pure states).

The particular form of the density operator expressed by ρ = �iλiPi is called
the spectral decomposition of the density operator in terms of one-dimensional
projectors. In the Hilbert space formulation, each Hermitian operator has associated
with it a complete Boolean algebra, identified as a Boolean algebra of projection
operators belonging to its spectral decomposition. Hence, given a complete set
of observables of a quantum system, there always exists a complete Boolean
algebra of projection operators, viz. a Boolean subalgebra of the global non-Boolean
event algebra of a quantum system resolving spectrally all these observables, if
and only if these observables are simultaneously measurable, and thus form a
commutative subalgebra. This encapsulates the criterion of locality in the quantum
domain expressed in terms of local Boolean frames that are observable-induced. In a
nutshell, an observational or measurement procedure induces a local Boolean frame
of orthogonal projectors, where each one of these projectors corresponds to one of
the possible results of the measurement. The probability for the result ε in state ρ is
given by:

με = T r(ρPε)

where the numbers (probabilities) με are obtained by the trace of the operator in the
parenthesis, whereas their positivity is induced by the positivity of ρ.

In view of this criterion of locality, something that is not emphasized in the
standard expositions is that the form of decomposition of a density operator in terms
of a convex combination of one-dimensional, orthogonal projection operators is not
unique but depends on the local Boolean frame of projectors associated with some
observational procedure. Thus, the weight coefficients:

λi = T r(ρPi)

where Pi are one-dimensional projectors, should be interpreted as conditional
probabilities with respect to the local Boolean frame that Pi belongs to. Notice that
since Pi may belong to different overlapping local Boolean frames, the coefficients
λi should be interpreted as conditional probabilities with respect to a Boolean
localization system of compatible overlapping local Boolean frames. Thus, λi is the
conditional probability of a whole equivalence class (Boolean germ), conditioned
by the corresponding Boolean localization system (Zafiris 2006b). We conclude that
the density operator of a quantum system provides a description of states in which
all possible decompositions are in a well-defined sense implicitly present at once,
albeit potentially.

In the Hilbert space of a composite quantum system consisting of two subsys-
tems, H = H1 ⊗ H2, there exists a special class of state vectors, called product
states, which have the product form:

� = � [1] ⊗ � [2]
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corresponding to the cartesian product of the state vectors of the two subsystems.
But the tensor product Hilbert space H = H1 ⊗ H2 contains additionally all linear
combinations of such product states. More precisely, if we choose orthonormal
bases � [1]

a and � [2]
b in H1 and H2 correspondingly, a general vector state of the

tensor product Hilbert space H = H1 ⊗ H2 is written in the following form:

� =
∑

ab

ηab�
[1]

a ⊗ � [2]
b

where the state vector � represents a pure state of the total system composed of
subsystems [1] and [2]. We observe that in the general case a pure state of the total
system is not reduced to the product of the state vectors of the two subsystems.
Thus, it constitutes a correlated or entangled state, meaning that each subsystem
does not possess a separable state within the composite system. Conceptually, this
means that each one of the subsystems of the composite system does not have an
individual, separable, and definite state independently of the state of the composite
system, and most significantly, this is the case irrespective of the spatial distance
between the subsystems.

The essential aspect of entanglement phenomena, besides the explication of a
situation where the behavior of the whole is not reduced to the behavior of its parts,
or else, that the whole is more than the sum of its parts, is that the parts do not assume
an individuation or localization independently of the whole. Put differently, there
exists a mutually implicative bidirectional relation between the parts and the whole,
being reminiscent of a topological structure called a sheaf. To avoid a diversion into
sheaf theory, it is enough to point out that the notion of a part (i.e., what is called in
standard terminology a subsystem of a composite system) becomes definable only
by means of localization of the whole, which is observable-induced in the quantum
domain and expressed via local Boolean frames (criterion of locality).

After this brief comment, and keeping up with the usual terminology employing
the notion of subsystems of a composite system, we point out the possibility of
assigning a notion of partial state to each of the subsystems [1] and [2], although
each one of them does not possess an individual, separable state, independently of
the state of the composite system. This notion of partial state would encompass
all the statistical information about H1 that the density operator of the composite
system ρ12 incorporates. In order to be able to define such a notion of partial state
for each of the subsystems [1] and [2] it is necessary to consider local actions
of each one of [1] and [2]. By a local action of subsystem [1], for example, we
mean a measurement which can be performed by an observable of subsystem
[1]. This is an operation which is represented by Hermitian operators of the form
A[1] ⊗ 1[2], where A[1] is a Hermitian operator in H1 corresponding to the chosen
observable. Notice that this is equivalent to employing a local Boolean frame
consisting of projection operators belonging to the spectral decomposition of the
chosen observable. Similarly, a local action of subsystem [2] is represented by
Hermitian operators of the form 1[1] ⊗ B[2].
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We stress the fact that none of the alleged subsystems [1] and [2] have access to
all of the observables (Boolean frames) of the composite system. More concretely,
the algebras of observables of the subsystems can be obtained by the operation of
restriction or localization of the algebra of observables of the composite system to
each one of them. Thus, the subsystems are able to see the state ρ12 of the composite
system only partially. Then, we define the partial state of subsystem [1] as the
reduced density operator ρ1 = T r[2]ρ12 obtained by partial tracing over subsystem
[2] (and analogously for subsystem [2]) by the following requirements:

T r
(
ρ1A

[1]) = T r
(
ρ12

(
A[1] ⊗ 1[2]))

T r
(
ρ2B

[2]) = T r
(
ρ12

(
1[1] ⊗ B[2]))

Thus, for all observables A[1] of subsystem [1], and all observables B[2] of
subsystem 2 the reduced density operators ρ1 and ρ2 correspondingly constitute
simply restrictions or localizations of ρ12 to the respective subsystems. Reciprocally,
giving priority to the criterion of locality in the quantum domain, these subsystems
are precisely distinguished locally in terms of the corresponding Boolean frames
resolving the above observables. We note that many different states ρ12 of the
composite system may have the same restrictions on the algebras of observables
of the two subsystems. Hence, from the point of view of subsystems [1] and [2]
many different states of the composite system have identical restrictions to each
one of them. According to the above requirements, the reduced density operator
ρ1, for example, reproduces the same statistical distribution for an event caused
by a local action of subsystem [1] as ρ12 does, in the sense that we could either
apply the operation A[1] ⊗ 1[2] on the composite system (thus leaving subsystem
[2] unaffected) or apply the operation A[1] directly on subsystem [1]. Note, that
the assumption of considering an event caused by a local action of subsystem [1]
and leaving subsystem [2] unaffected respects the requirement of Einstein locality
in spacetime if the two subsystems are sufficiently separated, meaning that the
probability of an event at subsystem [1] is independent of subsystem [2] in a region
which is spacelike separated with respect to this event.

However, it is important to realize that the reduced density operators ρ1 and ρ2
are not sufficient to determine the probabilities of pairs of correlated events between
the two subsystems. These pairs of correlated events are implied by the entangle-
ment of the states of the composite system if we consider compatible local actions
of the subsystems, meaning measurements which can be performed by compatible
observables of subsystems [1] and [2]. Equivalently, correlations between events of
the subsystems can be observed with coincidence measurements performed between
compatible local Boolean frames within some Boolean localization system of the
composite system corresponding to these compatible observables. The condition
of local Boolean frame compatibility between observables of the subsystems [1]
and [2] means that, given the reduced density operators ρ1 and ρ2, they constitute
restrictions or localizations of some pure state of the composite system only if
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their eigenvalues are identical with respect to these compatible Boolean frames.
Equivalently, a vector state of the tensor product Hilbert space H = H1 ⊗ H2
reflecting the condition of local Boolean frames compatibility is written in the
following form:

� =
∑

j

ηj�
[1]

j ⊗ � [2]
j

where the state vector � represents a pure state of the composite system, � [1]
j ,

� [2]
j are orthonormal bases of the Hilbert spaces H1 and H2 of the subsystems [1]

and [2] respectively, corresponding to the spectral decompositions of ρ1 and ρ2 with
respect to compatible Boolean frames of [1] and [2] (or compatible local actions of
the two subsystems) and ηj are the identical eigenvalues of [1] and [2] with respect
to these bases.

In the physical state of affairs the entanglement-correlated pairs of events usually
refer to some conserved physical quantity like charge, energy, momentum, or spin
orientation of the composite system in relation to its subsystems (corresponding
to some specified observable of the combined system) and persist irrespective of
the metrical distance between the subsystems. It is important for the understanding
of these entanglement correlations to emphasize the significance of the locality
criterion in the quantum domain pertaining to the crucial role of compatibility
between local Boolean frames (with respect to which events occur by measurement
of corresponding observables) in Boolean localization systems. This is the case
because entanglement correlations cannot be reduced to correlations between
assumed pre-existing states assigned to the subsystems before the occurrence of
events (with respect to their corresponding local Boolean frames).

In this manner, we realize that the criterion of locality in the quantum domain
should be invoked explicitly in the analysis of quantum entanglement. More
precisely, it is instructive to summarize the main points as follows:

1. The notion of a quantum subsystem becomes spectrally distinguishable, and thus
localizable, only insofar a complete Boolean frame is designated corresponding
to the measurement of some observable and followed by the registration of some
observed event. In particular, the notion of a subsystem before the existence of
some observed event should be thought of as a potential locality, which under the
designation of some Boolean frame acquires the interpretation of a probability
function (via its partial state description) for the evaluation of event-probabilities
pertaining to the realization of this subsystem as a reference linkage among
observed events referring to the corresponding observable;

2. The separation of a composite system into subsystems does not correspond to a
partition of a system into subsystems with respect to their corresponding density
operators pertaining to their partial description. The only consistent description
is via the algebraic (sheaf-theoretic) operation of restriction or localization of
the algebra of observables of the composite system into appropriate subalgebras
of observables corresponding to potential localities (subsystems) which can be
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realized only after the designation of local Boolean frames. Intuitively, these
subalgebras contain only observables which are “visible” by the so designated
subsystems, distinguished in this way only after the appearance of concrete
events. Furthermore, the observable-induced localized spectral distinguishability
of subsystems within a total system, for example of the subsystems [1] and [2]
according to the preceding, is effectuated by considering observables of the form
A[1] ⊗ 1[2] and 1[1] ⊗ B[2] within the algebra of observables of the total system;

3. The observable-induced localized spectral distinguishability of subsystems
within a total system allows an understanding of entanglement correlations
between the subsystems under the condition of compatibility between their
corresponding local Boolean frames within a Boolean localization system of
a total system. The condition of compatibility means that given the reduced
density operators ρ1 and ρ2 in the case of two localized subsystems, they
constitute restrictions of some pure state of the composite system only if their
eigenvalues are identical with respect to these compatible Boolean frames.

Reflecting on the above, we conclude that the notion of entanglement or
non-separability pertaining to the description of a composite quantum system
with reference to its localized parts and conversely requires to take seriously
into account the intrinsic relativity of this notion with respect to the depiction
of certain compatible local Boolean frames distinguishing the subsystems and
corresponding to compatible observables.

7.3.8 Generic Gravitational Properties and Forcing Conditions
via the Borromean Modelling of the “ER=EPR”
Conjecture at the Planck Scale

In Sects. 3.6 and 3.7 we scrutinized the EPR side of the generalized “ER = EPR”
conjecture from the perspective of the formulated criterion of locality pertaining
to the quantum domain. This is intrinsically associated with the function of local
Boolean frames resolving spectrally complete sets of simultaneously measurable
observables together with their compatibility relations. In this way, referring to a
system via a measurement procedure requires a process of spectral localization of
the global non-commutative algebra of observables with respect to a commutative
subalgebra of co-measurable observables whose orthogonal projections constitute
always a local Boolean frame. In turn, the corresponding by Stone’s theorem
one-parameter unitary group generated by such a local Boolean frame preserves
the spectral distinctions induced by this local Boolean frame in the transition
between states. Thus, a one-parameter unitary group carries the seed of Boolean
frame spectral locality in the quantum domain providing the ground to qualify
Susskind’s thesis that entanglement is an interchangeable resource. From the inverse
viewpoint, given this understanding of locality in the quantum domain, the hallmark
of global non-commutativity can be traced to the non-commutative realization of
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the Borromean link in terms of one-parameter unitary groups, giving rise under a
nilpotency condition to the Weyl-Heisenberg group.

It is precisely the role of the Borromean topological link in addressing the
“ER = EPR” conjecture that invites for a study of the implications for quantum
gravity in the ER side of this correspondence. According to Sects. 2.5 and 2.6 we
consider the Lorentzian manifold (R × �, ε∗g) as a representative of spacetime
X, where the singularities are localized within the three-dimensional manifold �.
We consider that � is a multiple-connected topological space, so that spacetime is
geodesically incomplete. The crucial idea is that a collection of circular singular
boundaries defining a closed and nowhere dense subset of an open set of S3 gives
rise to a topological link in S3. Among all these links, the Borromean link plays
a universal role, in the sense that we can construct the three-dimensional manifold
� by the information incorporated in the Borromean link in S3 representing the
singular boundaries without any further assumptions. This is due to the fact that
any compact oriented three-dimensional manifold � without boundary can be
obtained as the branched covering space of S3 with branch set the Borromean-linked
boundaries. This proposition, together with the algebraic-topological result that the
Borromean link B gives rise to a two-dimensional cohomology class in the dense
complement of B in S3, provides the strongest indication that it expresses a non-
classical (Planck scale) Einstein-Rosen bridge. Clearly, we may extend the closed
and nowhere dense subset of the Borromean-linked boundaries to four dimensions
by considering a timelike axis perpendicular to the Borromean rings, which plays
the role of a threefold symmetry axis. Concomitantly, any other type of non-classical
Einstein-Rosen bridge can be constructed in terms of Borromean buildings blocks.

Given the universality of characterization of these Planck-scale Einstein-Rosen
bridges in this setting, there appears the possibility that active gravitational
mass/energy may emerge from these purely topological considerations taking
into account the constraints imposed by Einstein’s field equations in the vacuum
(Arnowitt et al. 1962). From a physical perspective, this may be interpreted in
a novel way according to Wheeler’s insight referring to “mass without mass”
(Misner and Wheeler 1957) as follows: Localized configurations of topologically
singular loci in open sets of X restricted to closed nowhere dense subsets and
giving rise to topologically linked boundaries when restricted to� amount to active
gravitational mass/energy in their complementary open dense subsets. If we also
employ the “positive mass theorem” in this setting, considered in the vacuum case,
this gravitational mass/energy should be non-zero and strictly positive.

In turn, the above proposition implies that in the quantum gravity regime a
property can be characterized as gravitationally generic if it occurs and holds on
a dense open set. In this way, a gravitationally non-generic property should appear
only on a closed nowhere dense subset. We think of a nowhere dense subset relative
to an open set as the analogue of a set of measure zero in measure theory. Note that
this is only an analogy to guide intuition since nowhere dense subsets relative to
an open set can have non-vanishing Lebesgue measure in general. The notion of a
generic property has its roots in mathematical logic and model theory. It has been
introduced by Cohen in the context of generalized models of set theory using the
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technique of forcing conditions defined over a partially ordered set (Cohen 2008).
We propose to use the same method to construct distinguishable extensions of the
smooth spacetime manifold model of classical general relativity in the light of the
qualification of the “ER = EPR” conjecture from the perspective of the Borromean
topology. It is instructive to think of the notion of topological density in physical
terms, viz. as an indicator of gravitational energy density caused by sources. In
this context, the notion of genericity should be implemented by forcing conditions.
More concretely, a condition forces a gravitational property if this property holds
on a dense open set. A forcing condition forces every gravitational property either
to hold or not in relation to the criterion of density, and thus, a forcing condition is
generic in this sense.

The idea is to induce such forcing conditions in the bulk by considering local
actions of observables on the boundary and using the “ER=EPR” correspondence
in this generalized setting. More precisely, we already know that if we consider
a maximally entangled pair of two parties, then a local action of an observable
of any of them corresponding to an observational procedure of a complete set
of commuting observables (and thus, incorporating the criterion of locality in the
quantum domain) carried out by a third party leads to a GHZ-type of entanglement,
which in turn corresponds to the Borromean linking property. Therefore, by
applying the “ER = EPR” correspondence we can instantiate a Planck scale Einstein-
Rosen bridge that links three circular singular boundaries and defining a closed and
nowhere dense subset of an open set of S3. This can be extended to the bulk, so
that we obtain a closed and nowhere dense subset of an open set in the bulk bearing
the property that its restriction to the boundary forms a Borromean link. Clearly the
same procedure can be employed for higher order links given that all of them can
be constructed in terms of Borromean building blocks. In this setting, the singular
loci in the bulk form closed and nowhere dense subsets with respect to an open
set in the bulk. Moreover, local actions of observables can be partially ordered,
which corresponds to an ordering of the formed link components. The pertinent
problem now is to construct distinguishable extensions of the smooth model of the
bulk entering the quantum gravity regime using the obtained partial order of forcing
conditions.

The rationale behind this approach, connected closely with the far-reaching
implications of qualifying the “ER = EPR” conjecture from the viewpoint of
Borromean topological networks, is the following: We know that Einstein’s field
equations in classical general relativity are expressed in terms of the sheaf of smooth
functions defined over the spacetime manifold. Every distinguishable extension of
the smooth spacetime model according to the proposed schema can be expressed in
terms of a new sheaf of coefficients incorporating the forcing conditions. Thus, there
exists the possibility that Einstein’s equations may retain their form if formulated in
terms of the new sheaf, such that the transition to the quantum gravity regime can
be implemented via the “ER = EPR” correspondence in the proposed generalized
setting only by means of incorporating the forcing conditions appropriately into a
new sheaf of coefficients.
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7.3.9 Generic Gravitational Algebras and the Transition to
Quantum Gravity

It is physically reasonable to expect that an admissible algebra sheaf of coefficients
in term of which an extension of the smooth spacetime manifold model may take
place over singular loci, should be distribution-like (Zafiris 2016b). For example,
we may think of a matter distribution confined to a submanifold of spacetime whose
density is integrable over this submanifold. In the context of a linear field theory
this should be naturally modelled in terms of a linear distribution. Unfortunately,
this is not possible in the context of gravity, which is a non-linear theory. In other
words, Schwarz’s linear distributions are not suitable candidates for expressing the
information of singular loci.

The unsuitability of linear distributions rests on the fact that the space D
′ they

form is only a linear space, but it is not an algebra. This is characterized as the
“Schwarz Impossibility,” and may be formulated as follows: There is no symmetric
bilinear morphism:

◦ : D′ (V ) × D
′ (V ) � (S, T ) → S ◦ T ∈ D

′ (V )

so that S ◦ T is the usual point-wise product of continuous functions, when S, T ∈
C

0 (V ). Equivalently, D′ (V ) is not closed under any multiplication that extends the
usual multiplication of continuous functions, where V is an open subset X. Since all
the involved arguments are of a local character, without loss of generality, we may
simply consider V as an open subset of R4.

A physically natural way to bypass “Schwarz Impossibility” is to assume the
existence of an embedding morphism D

′(V ) ↪→ A (V ), which embeds the vector
space of distributions D

′ (V ) as a vector subspace in A (V ), where A (V ) is the
quotient algebra:

A (V ) = K(V )/I,

and K(V ) is a subalgebra in C
∞ (V )�, for some index set �, whereas I is an

ideal in K(V ). This approach was proposed by Rosinger (1990) in order to express
generalized solutions of non-linear partial differential equations. In our context,
the crucial idea is that we can define a partial order on this indexing set, which
is identified as a partial order of forcing conditions according to the analysis of
the previous section. We may describe the generation of these algebras locally as
follows:

Let V ⊆ R
4 be an open set, and L = (�,≤) be the right directed partial order

on the index set � generated by forcing conditions in our context of qualifying the
“ER = EPR” correspondence in this generalized setting. That is, for all λ, μ ∈ �,
there exists ν ∈ � such that λ,μ ≤ ν. With respect to the usual componentwise
operations, C∞ (V )� is a unital and commutative algebra over the reals. We define
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the following ideal IL in C
∞ (V )� whose physical meaning will be described in the

sequel:

IL (V ) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

φ = (φλ)λ∈�

∃ � ⊂ V closed nowhere dense:
∀ x ∈ [V \ �] being dense:
∃ λ ∈ �:
∀ μ ∈ �, μ ≥ λ:
φμ (x) = 0, ∂pφμ (x) = 0

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

In the above definition, we think of � collectively as a singular locus in R
4,

characterized as a closed and nowhere dense subset relative to the open set V ⊆ R
4,

such that its complement V \ � in V is dense. The unital and commutative algebra
C

∞ (V )� contains smooth functions φλ indexed by the set � and defined over V ,
to be thought of as diagrams or sequences of �-indexed smooth functions. The
requirement of the right directed partial order on the specified index set �, which is
denoted by L = (�,≤), is necessary in order that the above set forms actually an
ideal in C

∞ (V )�. Now, the ideal IL (V ) in C
∞ (V )� includes all these sequences of

smooth functions φλ that vanish asymptotically outside the singular locus � together
with all their partial derivatives. Therefore, intuitively speaking, the ideal of the form
IL (V ) incorporates all these sequences of smooth functions indexed by � whose
support covers the singular locus �, whereas they vanish outside it. In this manner,
the information of the singular locus � is encoded in the ideal IL (V ) in C

∞ (V )�.
Hence, the quotient commutative algebra AL (V ) = C

∞ (V )� /IL (V ) is an algebra
of residues of sequences of smooth functions modulo the singular information ideal
IL (V ).

A natural question in the above context refers to the requirement that the
complementV \� of the singular locus � in V should be dense. The necessity of this
requirement can be understood by the fact that we wish to obtain an embedding ι of
the algebra of smooth functions C∞ (V ) into the algebra of generalized functions
AL (V ):

ι : C∞ (V ) ↪→ AL (V ) = C
∞ (V )�

IL (V )

such that:

ϕ ↪→ ι(ϕ) = �(ϕ) + [IL (V )]

where �� |V : C∞ (V ) → C
∞ (V )� is the diagonal morphism with respect to �,

defined for an open set V as follows:

��(ϕ) |V = {
�(ϕ) = (ϕλ)λ∈� | ϕλ = ϕ, ∀λ ∈ �,ϕ ∈ C

∞ (V )
}
.
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Hence, for every smooth function ϕ in C
∞ (V ), the diagonal image �(ϕ) of ϕ

in C
∞ (V )� is a sequence of smooth functions all identical to ϕ, indexed by �.

The embedding ι is feasible according to the above, if and only if the ideal IL (V )

satisfies the off diagonality condition:

IL (V ) ∩ �� |V = {0}.

Therefore, it remains to show that if the complement V \ � of the singular locus
� in V is dense, then the ideal IL (V ) actually satisfies the above off diagonality
condition. So we suppose that V \ � is dense in V , and consider a smooth function
χ in C

∞ (V ). If ��(χ) |V := �(χ) belongs to the ideal IL (V ), then the asymptotic
vanishing condition implies that χ = 0 in V \�, and therefore, we must have χ = 0
in V because V \� is dense in V by hypothesis. Thus, it follows that the ideal IL (V )

satisfies the off diagonality condition, as required.
Conclusively, there exists a canonical injective homomorphism of commutative

algebras, or equivalently, an embedding ι of the algebra of smooth functionsC∞ (V )

into the algebra of generalized functions AL (V ):

ι : C∞ (V ) ↪→ AL (V ) = C
∞ (V )�

IL (V )

Furthermore, it follows immediately that the partial differential operators:

∂p : C∞ (V )� � φ = (φλ) �→ ∂pφ = (
∂pφλ

) ∈ C
∞ (V )�

satisfy the inclusion:

∂p (IL (V )) ⊆ IL (V ) .

Thus, the standard partial derivative operators on C
∞ (V ) extend to AL (V ):

∂p : AL (V ) � [φ + IL (V )] �→ [∂pφ + IL (V )] ∈ AL (V ) ,

We conclude that the above embedding of commutative algebras extends to an
embedding of differential algebras. Therefore, the following diagram commutes:
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We emphasize that the above embedding preserves not only the algebraic
structure of C∞ (V ), but also its differential structure. The off diagonality condition
implies also the existence of an injective, linear morphism:

D
′ (V ) ↪→ AL (V ) .

Therefore, the differential algebra AL (V ) contains the space of distributions as a
linear subspace, where those algebras that admit linear embeddings of distributions
are characterized in terms of such off diagonality conditions.

Finally, it is important to note that a subset of a topological space is closed
and nowhere dense if and only if it satisfies this condition locally. This is the key
idea used to prove that the algebras of generalized functions AL (V ) form actually
sheaves of commutative algebras, which additionally are soft and flasque or flabby
(Mallios and Rosinger 1999, 2001). The softness property of the sheaves of the
form AL means that any section over any closed subset can be extended to a global
section. Thus, these types of sheaves characterize cohomologically the topological
property of paracompactness by means of acyclicity. Equivalently, soft sheaves are
acyclic over a paracompact topological space. Moreover, sheaves of the form AL

are not only soft, but they are flasque or flabby as well, which is a local property
(Grothendieck 1957, 1958). This means that the restriction morphism of sections in
the sheaf definition is an epimorphism. Hence, in this case, we can always extend
any local section by zero to obtain a global section of AL.

We may recapitulate by pointing out that the first basic idea involved in the
construction of these distribution-like algebra sheaves of coefficients AL is to model
a locus of singularities � in R

4 as a closed and nowhere dense subset relative to
an open set V ⊆ R

4, such that its complement V \ � in V is dense. The second
basic idea is to express such a closed and nowhere dense locus as an ideal in
an algebra sheaf constructed as an extension of the smooth one over a partially
ordered set. This stands for a partially ordered set of forcing conditions obtained by
means of qualifying the “ER = EPR” correspondence via the Borromean topological
link at the Planck scale. In this manner, the ideal expressing algebraically a locus
of singularities contains diagrams of locally defined smooth functions indexed by
� whose support covers the singular locus �, whereas they vanish outside it.
Then, it can be shown that the quotient commutative algebra sheaf AL (V ) =
C

∞ (V )� /IL (V ) is a soft and flasque algebra sheaf of residues of diagrams of
smooth functions modulo the closed nowhere dense singular ideal IL (V ).

The possibility of obtaining distinguishable extensions of the smooth spacetime
model in the transition to the quantum gravity regime, in terms of generalized
algebra sheaves of coefficients, is based on the realization that the validity of
the de Rham complex, in its sheaf-theoretic guise, is not restricted exclusively to
coordinatizing the tensorial physical quantities by smooth coefficients C∞, as it is
actually the case when the R-spectrum of the coefficients is a smooth manifold.
This is a very important fact that has been established recently in the context
of the theory of abstract differential geometry, which generalizes the differential-
geometric framework of smooth manifolds using exclusively sheaf-theoretic means
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(Mallios 1998a,b; Mallios and Zafiris 2016). The physical significance of this
development is that we may construct appropriate distribution-like sheaves of
coefficients satisfying the validity of the de Rham complex, and therefore, formulate
Einstein’s field equations in terms of these distribution-like coefficients instead of
the smooth ones, generalizing in this way an old idea of Geroch (1972). More
precisely, this is the case if the following sequence of R-linear sheaf morphisms:

A → �1(A) → . . . → �n(A) → . . . (7.1)

is a complex of R-vector space sheaves, identified as the sheaf-theoretic de Rham
complex of A.

In this case, if the cohomological condition expressing the Poincaré Lemma,
Ker(d0) = R is satisfied with respect to the algebra sheaf A, and requiring that A
is a soft algebra sheaf, viz. any section over any closed subset of X can be extended
to a global section, we obtain that the sequence:

0 → R → A → �1(A) → . . . → �n(A) → . . . (7.2)

is an exact sequence of R-vector space sheaves. Thus, the sheaf-theoretic de Rham
complex of the algebra sheaf A constitutes an acyclic resolution of the constant
sheaf R.

For instance, referring to the classical differential geometry of smooth manifolds,
the de Rham complex, expressed in terms of local smooth coefficients and their
differential forms of higher orders, provides such an acyclic resolution of the
constant sheaf R. What has been uncovered by the framework of abstract differential
geometry is that the smooth algebra sheaf C∞(X) is not unique in this respect. More
concretely, any other soft algebra sheaf A constituting an acyclic resolution of the
constant sheaf R is a viable source of coefficients for the coordinatization of the
tensors, maintaining at the same time all their covariance properties in terms of the
new local coefficients.

It can be shown without difficulty that the distribution-like soft algebra sheaves
of the form AL actually constitute an acyclic resolution of the constant sheaf of the
reals. Thus, we conclude that the de Rham complex can be rigorously expressed in
terms of these coefficients instead of the smooth ones in the transition to the quan-
tum gravity regime, and consequently Einstein’s equations can be formulated with
respect to coefficients from the algebra sheaf AL instead of the smooth ones from
C

∞. Consequently, the validity of Einstein’s equations can be extended over loci of
singularities in a covariant manner by utilizing coefficients from the sheaf AL for
expressing all involved differential geometric tensorial quantities (Zafiris 2016b).

Finally, using the criterion of gravitational genericity we will attempt to explain
the structure of the algebras AL. In particular, is their constitution based on the
notion of gravitationally generic properties formulated in the previous section? We
focus our attention on the fact that the definition of these algebras is based on the
extension of the algebra of smooth functions with respect to a partially ordered set
L. The latter stands for a partially ordered set of forcing conditions in the sense of
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the model-theoretic method of forcing introduced by Cohen in mathematical logic
(Cohen 2008). Thus, the setup of these algebras involves the extension of C∞ to
C

∞�, where � is the indexing set of the right directed partial orderL = (�,≤). We
also remind that this partial order is necessary in order that the set IL (V ) is qualified
as an ideal in AL. Since the off-diagonal ideal IL (V ) subsumes algebraically the
information of some singular locus �, characterized as a closed and nowhere dense
subset relative to an open set V , and thus as a bearer of a gravitationally non-
generic property, the quotient algebra of the form AL (V ) = C

∞ (V )�/IL (V )

incorporates only properties defined on dense open sets. Hence, according to our
definition,AL (V ) incorporates gravitationally generic properties and for this reason
they should be called generic gravitational algebras in the transition from classical
gravity to quantum gravity. This is legitimate since the partial order L = (�,≤) is
actually a partial order of generic forcing conditions induced at the quantum level
by local actions of observables in the Borromean topological schema of addressing
the validity of the “ER = EPR” correspondence at the Planck scale.

We note that the initial conception of the general method of forcing has been
formulated in the context of models of set theory. It demonstrates that if we start
from a standard model of set theory, we can construct distinguishable extensions of
this model by means of a generic set of forcing conditions, such that a proposition
about a property is true in the generic extension, if and only if it is forced by some
forcing condition in the generic set. Note that the generic set of forcing conditions
should not be contained in the initial standard model we started with.

What we propose is that the method of forcing can be applied equally well to
construct distinguishable extensions of the classical smooth model of spacetime in
the transition to the quantum gravity regime according to the introduced criterion
of gravitational genericity and the Borromean topological qualification of the
“ER = EPR” correspondence. The key idea is to use the generalized form of the
“ER=EPR” conjecture involving the modelling of non-classical Einstein-Rosen
bridges in terms of Borromean topological links and induce the sought for partial
order of forcing conditions from ordering local actions of observables at the
quantum level, as it has been explained in detail in Sect. 3.8. Most important,
these extensions of the classical smooth spacetime model are characterized by the
property that the form of Einstein’s equations in vacuum remains invariant, such that
the transition to quantum gravity, via the Planck scale Borromean linking properties
underlying the “ER = EPR” correspondence, can be implemented by incorporating
a partially ordered set of forcing conditions induced at the quantum level into a
generic gravitational algebra sheaf.
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