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Preface

In recent years, statistical physics started raising the interest of a broad community
of researcher in the field of complex system sciences, ranging from biology to
social sciences, economics or computer sciences. More generally, a growing
number of graduate students and researchers feel the need for learning some basic
concepts and questions coming from other disciplines, leading for instance to the
organization of recurrent interdisciplinary summer schools.

The present booklet is partly based on the introductory lecture on statistical
physics given at the French Summer School on Complex Systems held both in
Lyon and Paris during the summers 2008 and 2009, and jointly organized by two
French Complex Systems Institutes, the ‘‘Institut des Systèmes Complexes Paris
Ile de France’’ (ISC-PIF) and the ‘‘Institut Rhône-Alpin des Systèmes Complexes’’
(IXXI). This introductory lecture was aimed at providing the participants with a
basic knowledge of the concepts and methods of statistical physics so that they
could later on follow more advanced lectures on diverse topics in the field of
complex systems. The lecture has been further extended in the framework of the
second year of Master in ‘‘Complex Systems Modelling’’ of the Ecole Normale
Supérieure de Lyon and Université Lyon 1, whose courses take place at IXXI.

It is a pleasure to thank Guillaume Beslon, Tommaso Roscilde and Sébastian
Grauwin, who were also involved in some of the lectures mentioned above, as well
as Pablo Jensen for his efforts in setting up an interdisciplinary Master course on
complex systems, and for the fruitful collaboration we had over the last years.

v
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Introduction

Generally speaking, the goals of statistical physics may be summarized as follows:
on the one hand to study systems composed of a large number of interacting
‘entities’, and on the other hand to predict the macroscopic (or collective) behavior
of the system considered from the microscopic laws ruling the dynamics of the
individual ‘entities’. These two goals are, to some extent, also shared by what is
nowadays called ‘complex systems science’. However, the specificity of statistical
physics is that:

• The ‘entities’ considered are in most cases atoms or molecules, for which the
individual microscopic laws are known from fundamental physical theories—at
variance with other fields like social sciences for example, where little is known
about the quantitative behavior of individuals.

• These atoms, or molecules, are often all of the same type, or at most of a few
different types—in contrast to biological or social systems for instance, where
the individual ‘entities’ may all differ, or at least belong to a large number of
different types.

For these reasons, systems studied in the framework of statistical physics may
be considered as among the simplest examples of complex systems. One further
specificity of statistical physics with respect to other sciences aiming at describing
the collective behavior of complex systems is that it allows for a rather well-
developed mathematical treatment.

The present booklet is divided into three chapters. The first one deals with
equilibrium statistical physics, trying to expose in a concise way the main concepts
of this theory, and paying specific attention to those concepts that could be more
generally relevant to complex system sciences. The second part mainly aims at
describing time-dependent effects (occurring for instance when a system relaxes to
equilibrium from some non-equilibrium initial condition) in the framework of
stochastic markovian processes. Emphasis is put on simple and generic models,
and some relations to probability theory are also outlined. Finally, the third part
presents a few examples of applications of statistical physics to other types of

ix



complex systems, beyond the strict realm of physics, with the hope to trigger the
interest of readers coming from various disciplinary fields. Simple models of
systems composed of a large number of macroscopic ‘entities’ that do not follow
the same laws as physical atoms or molecules (for instance sand grains, animals or
social agents) are considered. As no general statistical framework exists for such
systems, their description relies on the case-by-case adaptation of different tech-
niques borrowed from standard statistical physics, ranging from mappings to
effective equilibrium systems, to Boltzmann approaches (a technique early
developed in statistical physics to characterize the dynamics of gases) for systems
interacting through binary collisions, or to exact solutions when available.

x Introduction



Chapter 1
Equilibrium Statistical Physics

Systems composed of many particles involve a very large number of degrees of
freedom, and it is most often uninteresting—not to say hopeless—to try to describe
in a detailed way the microscopic state of the system. The aim of statistical physics
is rather to restrict the description of the system to a few relevant macroscopic
observables, and to predict the average values of these observables, or the relations
between them. A standard formalism, called “equilibrium statistical physics”, has
been developed for systems of physical particles having reached a statistical steady
state in the absence of external driving (like heat flux or shearing forces for instance).

In this first part, we shall discuss some of the fundamentals of equilibrium statis-
tical physics. Section 1.1 describes the elementary mechanical notions necessary to
describe a system of physical particles. Section 1.2 introduces the basic statistical
notions and fundamental postulates required to describe in a statistical way a system
that exchanges no energy with its environment. The effect of the environment is then
taken into account in Sect. 1.3, in the case where the environment does not generate
any sustained energy flux into the system. Applications of this general formalism
to the description of collective phenomena and phase transitions are presented in
Sect. 1.4. Finally, the influence of disorder and heterogeneities, which are relevant
in physical systems, but are also expected to play an essential role in many other
types of complex systems, is briefly discussed in Sect. 1.5. For further reading on
these topics related to equilibrium statistical physics (especially for Sects. 1.2–1.4),
we refer the reader to standard textbooks, like e.g. Refs. [1–4].

1.1 Microscopic Dynamics of a Physical System

1.1.1 A Particle Attached to a Spring

As an elementary example, consider a particle constrained to move on a one-
dimensional horizontal axis x, and attached to a spring, the latter being pinned to

E. Bertin, A Concise Introduction to the Statistical Physics of Complex Systems, 1
SpringerBriefs in Complexity, DOI: 10.1007/978-3-642-23923-6_1,
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2 1 Equilibrium Statistical Physics

a rigid wall. We consider the position x(t) of the particle at time t, as well as its
velocity v(t). The force F exerted by the spring on the particle is given by

F = −k(x − x0), (1.1)

where x0 corresponds to the position of repose of the particle, for which the force
vanishes. For convenience, we shall in the following choose the origin of the x axis
such that x0 = 0.

From the basic laws of classical mechanics,1 the motion of the particle is described
by the evolution equation:

m
dv

dt
= F (1.2)

where m is the mass of the particle. We have neglected all friction forces, so that the
force exerted by the spring is the only horizontal force (the gravity force, as well as
the reaction force exerted by the support, do not have horizontal components in the
absence of friction). In terms of x variable, the equation of motion (1.2) reads

m
d2x

dt2 = −kx . (1.3)

The generic solution of this equation is

x(t) = A cos(ωt + φ), ω =
√

k

m
. (1.4)

The constants A and φ are determined by the initial conditions.

Hamiltonian Reformulation of the Problem

Let us introduce the momentum p = mv, and the kinetic energy Ec = 1
2 mv2. In

terms of momentum, the kinetic energy reads Ec = p2/2m. The potential energy U
of the spring, defined by F = −dU/dx, is given by U = 1

2 kx2. The Hamiltonian
H(x, p) is defined as

H(x, p) = Ec(p)+ U (x). (1.5)

In the present case, this definition yields

H(x, p) = p2

2m
+ 1

2
kx2. (1.6)

1 The fundamental theory describing the dynamics of particles at the atomic scale is actually
quantum mechanics rather than classical mechanics. However, classical mechanics is in many cases
of interest a reasonable approximation. We shall thus remain in the framework of classical mechanics
for the purpose of the present booklet.
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In the Hamiltonian formulation, the equations of motion read2

dx

dt
= ∂H

∂p
,

dp

dt
= −∂H

∂x
. (1.7)

On the example of the particle attached to a spring, these equations give

dx

dt
= p

m
,

dp

dt
= −kx, (1.8)

from which one recovers Eq. 1.3 by eliminating p. Hence it is seen on the above
example that the Hamiltonian formalism is equivalent to the standard law of motion
(1.2).

The Hamiltonian formulation has interesting properties, namely energy conserva-
tion and time-reversal invariance. We define the total energy E(t) as
E(t) = H(x(t), p(t)) = Ec(p(t)) + U (x(t)). It is easily shown that the total
energy is conserved during the evolution of the system3

d E

dt
= ∂H

∂x

dx

dt
+ ∂H

∂p

dp

dt
. (1.9)

Using Eq. 1.7, one has

d E

dt
= ∂H

∂x

∂H

∂p
+ ∂H

∂p

(
−∂H

∂x

)
= 0, (1.10)

so that the energy E is conserved. This is confirmed by a direct calculation on the
example of the particle attached to a spring:

E(t) = p(t)2

2m
+ 1

2
kx(t)2

= 1

2m
m2ω2 A2 sin2(ωt + φ)+ 1

2
k A2 cos2(ωt + φ).

(1.11)

Given that ω2 = k/m, one finds

E(t) = 1

2
k A2

(
sin2(ωt + φ)+ cos2(ωt + φ)

)
= 1

2
k A2 (1.12)

which is indeed a constant.

2 For a more detailed introduction to the Hamiltonian formalism, see, e.g., Ref. [5].
3 The concept of energy, introduced here on a specific example, plays a fundamental role in
physics. Though any precise definition of the energy is necessarily formal and abstract, the notion
of energy can be thought of intuitively as a quantity that can take very different forms (kinetic,
electromagnetic or gravitational energy, but also internal energy exchanged through heat transfers)
in such a way that the total amount of energy remains constant. Hence an important issue is to
describe how energy is transferred from one form to another. For instance, in the case of the particle
attached to a spring, the kinetic energy Ec and potential energy U of the spring are continuously
exchanged, in a reversible manner. In the presence of friction forces, kinetic energy would also be
progressively converted, in an irreversible way, into internal energy, thus raising the temperature of
the system.
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Phase-Space Representation

Physical space is described in the above example by the coordinate x. The equations
of motion (1.7) allow the position and momentum of the particle to be determined at
any time once the initial position and momentum are known. So it is interesting to
introduce an abstract representation space containing both position and momentum.
In this example, it is a two-dimensional space, but it could be of higher dimension in
more general situations. This representation space is often called “phase space”. For
the particle attached to the spring, the trajectories in this phase space are ellipses.
Rescaling the coordinates in an appropriate way, one can transform the ellipse into
a circle, and the energy can be identified with the square of the radius of the circle.
To illustrate this property, let us define the new phase-space coordinates X and Y as

X =
√

k

2
x, Y = p√

2m
. (1.13)

Then the energy E can be written as

E = p2

2m
+ 1

2
kx2 = X2 + Y 2. (1.14)

As the energy is fixed, the trajectory of the particle is a circle of radius
√

E in the
(X,Y)-plane.

Time Reversibility

To illustrate the meaning of time reversibility, let us imagine that we film the motion of
the particle with a camera, and that we project it backward. If the backward motion is
also a possible motion, meaning that nothing is unphysical in the backward projected
movie, then the equations of motion are time-reversible.

More formally, we consider the trajectory x(t), t = 0, . . . , t0, and define the
reversed time t ′ = t0 − t. Starting from the equations of motion (1.7) expressed with
t, x and p, time reversal is implemented by replacing t with t0 − t ′, x with x ′ and p
with −p′, yielding

− dx

dt ′
= −∂H

∂p′ ,
dp′

dt ′
= −∂H

∂x ′ . (1.15)

Changing the overall sign in the first equation, one recovers Eq. 1.7 for the primed
variables, meaning that the time-reversed trajectory is also a physical trajectory.

Note that time-reversibility holds only as long as friction forces are neglected.
The latter break time reversal invariance, and this explains why our everyday-life
experience seems to contradict time reversal invariance. For instance, when a glass
falls down onto the floor and breaks into pieces, it is hard to believe that the reverse
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trajectory, in which pieces would come together and the glass would jump onto
the table, is also a possible trajectory, as nobody has ever seen this phenomenon
occur. In order to reconcile macroscopic irreversibility and microscopic reversibility
of trajectories, the point of view of statistical physics is to consider that the reverse
trajectory is possible, but has a very small probability to occur as only very few initial
conditions could lead to this trajectory. So in practice, the corresponding trajectory
is never observed.

1.1.2 Many-Particle System

In a more general situation, a physical system is composed of N particles in a three-
dimensional space. The position of particle i is described by a vector xi , and its
velocity by vi , i = 1, . . . , N . In the Hamiltonian formalism, it is often convenient to
introduce generalized coordinates q j and momenta p j which are scalar quantities,
with j = 1, . . . , 3N : (q1, q2, q3) are the components of the vector x1 describing
the position of particle 1, (q4, q5, q6) are the component of x2, and so on. Simi-
larly, (p1, p2, p3) are the components of the momentum vector mv1 of particle 1,
(p4, p5, p6) are the components of mv2, etc. With these notations, the Hamiltonian
of the N-particle system is defined as

H(q1, . . . , q3N , p1, . . . , p3N ) =
3N∑
j=1

p2
j

2m
+ U (q1, . . . , q3N ). (1.16)

The first term in the Hamiltonian is the kinetic energy, and the last one is the potential
(or interaction) energy. The equations of motion read

dq j

dt
= ∂H

∂p j
,

dp j

dt
= − ∂H

∂q j
, j = 1, . . . , 3N . (1.17)

The properties of energy conservation and time-reversal invariance also hold in this
more general formulation, and are derived in the same way as above. As an illustra-
tion, typical examples of interaction energy U include

• U = 0: case of free particles.
• U = −∑N

i=1 hi xi : particles interacting with an external field, for instance the
gravity field, or an electric field.

• U = ∑
i �=i ′ V (xi − xi ′): pair interaction potential.

1.1.3 Case of Discrete Variables: Spin Models

As a simplified picture, a spin may be thought of as a magnetization S associated to an
atom. The dynamics of spins is ruled by quantum mechanics (the theory that governs
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particles at the atomic scale), which is far beyond the scope of the present lecture.
However, in some situations, the configuration of a spin system can be represented in
a simplified way as a set of binary “spin variables” si = ±1, and the corresponding
energy takes the form

E = −J
∑
〈i, j〉

si s j − h
N∑

i=1

si . (1.18)

The parameter J is the coupling constant between spins, while h is the external
magnetic field. The first sum corresponds to a sum over nearest neighbor sites on a
lattice, but other types of interaction could be considered. This model is called the
Ising model. It provides a qualitative description of the phenomenon of ferromag-
netism observed in metals like iron, in which a spontaneous macroscopic magnetiza-
tion appears below a certain critical temperature. In addition, the Ising model turns
out to be very useful to illustrate some important concepts of statistical physics.

In what follows, we shall consider the words “energy” and “Hamiltonian” as
synonyms, and the corresponding notations E and H as equivalent.

1.2 Statistical Description of an Isolated System at Equilibrium

1.2.1 Notion of Statistical Description: A Toy Model

Let us consider a toy model in which a particle is moving on a ring with L sites. Time
is discretized, meaning that for instance every second the particle moves to the next
site. The motion is purely deterministic: given the position at time t = 0, one can
compute the position i(t) at any later time. Now assume that there is an observable εi

on each site i. It could be for instance the height of the site, or any arbitrary observable
that characterizes the state of the particle when it is at site i.

A natural question would be to know what the average value

〈ε〉 = 1

T

T∑
t=1

εi(t) (1.19)

is after a large observation time T. Two different answers to this question could be
given:

• Simulate the dynamics of the model on a computer, and measure directly 〈ε〉.
• Use the concept of probability as a shortcut, and write

〈ε〉 =
L∑

i=1

Piεi (1.20)
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where the probability Pi to be on site i is defined as

Pi = time spent on site i

total time T
, (1.21)

namely the fraction of time spent on site i.

The probability Pi can be calculated or measured by simulating the dynamics,
but it can also be estimated directly: if the particle has turned a lot of times around
the ring, the fraction of time spent on each site is the same, Pi = 1/L . Hence all
positions of the particle are equiprobable, and the average value 〈ε〉 is obtained as a
flat average over all sites.

1.2.2 Fundamental Postulate of Equilibrium Statistical Physics

We consider a physical system composed of N particles. The microscopic config-
uration of the system is described by (xi ,pi = mvi ), i = 1, . . . , N , or si = ±1,
i = 1, . . . , N , for spin systems.

The total energy E of the system, given for systems of particles by

E =
N∑

i=1

p2
i

2m
+ U (x1, . . . , xN ), (1.22)

or for spins systems by

E = −J
∑
〈i, j〉

si s j − h
N∑

i=1

si , (1.23)

is constant as a function of time (or may vary within a tiny interval [E, E + δE],
in particular for spin systems). Accordingly, starting from an initial condition with
energy E, the system can only visit configurations with the same energy. In the
absence of further information, it is legitimate to postulate that all configurations
with the same energy as the initial one have the same probability to be visited. This
leads us to the fundamental postulate of equilibrium statistical physics:

All configurations with a given energy E have the same probability. Other config-
urations have zero probability.

The corresponding probability distribution is called the microcanonical distrib-
ution or microcanonical ensemble for historical reasons (a probability distribution
can be thought of as describing an infinite set of copies—an ensemble—of a given
system).

A quantity that plays an important role is the “volume”�(E) occupied in phase-
space by all configurations with energy E. For systems with continuous degrees of
freedom, �(E) is the area of the hypersurface defined by fixing the energy E. For
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systems with discrete configurations (spins), �(E) is the number of configurations
with energy E. The Boltzmann entropy is defined as

S(E) = kB ln�(E), (1.24)

where kB = 1.38 × 10−23 J/K is the Boltzmann constant. This constant has been
introduced both for historical and practical reasons, but from a theoretical viewpoint,
its specific value plays no role, so that we shall set it to kB = 1 in the following (this
could be done for instance by working with specific units of temperature and energy
such that kB = 1 in these units).

The notion of entropy is a cornerstone of statistical physics. First introduced in the
context of thermodynamics (the theory of the balance between mechanical energy
transfers and heat exchanges), entropy was later on given a microscopic interpretation
in the framework of statistical physics. Basically, entropy is a measure of the number
of available microscopic configurations compatible with the macroscopic constraints.
More intuitively, entropy can be interpreted as a measure of “disorder” (disordered
macroscopic states often correspond to a larger number of microscopic configurations
than macroscopically ordered states), though the correspondence between the two
notions is not necessarily straightforward. Another popular interpretation, in relation
to information theory, is to consider entropy as a measure of the lack of information
on the system: the larger the number of accessible microscopic configurations, the
less information is available on the system (in an extreme case, if the system can be
with equal probability in any microscopic configuration, one has no information on
the state of the system).

Let us now give a few simple examples of computation of the entropy.

1.2.3 Computation of �(E) and S(E): Some Simple Examples

Paramagnetic Spin Model

We consider a model of independent spins, interacting only with a uniform external
field. The corresponding energy is given by

E = −h
N∑

i=1

si , si = ±1. (1.25)

The phase space (or here simply configuration space) is given by the set of values
{si }i=1,...,N . The question is to know how many configurations there are with a given
energy E. In this specific example, it is easily seen that fixing the energy E amounts
to fixing the magnetization M = ∑N

i=1 si . Let us denote as N+ the number of spins
with value +1 (“up” spins). The magnetization is given by M = N+ − (N − N+) =
2N+−N , so that fixing M is in turn equivalent to fixing N+.From basic combinatorial
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arguments, the number of configurations with a given number of “up” spins is given
by

� = N !
N+!(N − N+)! . (1.26)

Using the relation

N+ = 1

2

(
N − E

h

)
, (1.27)

one can express � as a function of E:

�(E) = N ![ 1
2 (N − E/h)

]! [ 1
2 (N + E/h)

]! . (1.28)

The entropy S(E) is given by

S(E) = ln�(E)

= ln N ! − ln

[
1

2

(
N − E

h

)]
! − ln

[
1

2

(
N + E

h

)]
! (1.29)

Using Stirling’s approximation, valid for large N

ln N ! ≈ N ln N − N , (1.30)

one finds

S(E) = N ln N − N + E/h

2
ln

N + E/h

2
− N − E/h

2
ln

N − E/h

2
. (1.31)

Perfect Gas of Independent Particles

We consider a gas of independent particles confined into a cubic container of volume
V = L3. The generalized coordinates q j satisfy the constraints

0 ≤ q j ≤ L , j = 1, . . . , L . (1.32)

The energy E comes only from the kinetic contribution:

E =
3N∑
j=1

p2
j

2m
. (1.33)

The accessible volume in phase space is the product of the accessible volume for
each particle, times the area of the hypersphere of radius

√
2m E, embedded in a
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3N-dimensional space. The area of the hypersphere of radius R in a D-dimensional
space is

AD(R) = DπD/2

	
( D

2 + 1
) RD−1, (1.34)

where 	(x) = ∫ ∞
0 dt t x−1e−t is the Euler Gamma function (a generalization of

the factorial to real values, satisfying 	(n) = (n − 1)! for integer n ≥ 1). So the
accessible volume �V (E) is given by

�V (E) = L3N 3Nπ3N/2

	
( 3N

2 + 1
)√

2m E
3N−1

= 3Nπ3N/2

	
( 3N

2 + 1
)√

2m
3N−1

V N E
3N−1

2 .

(1.35)

The corresponding entropy reads, assuming N � 1,

SV (E) = ln�(E) = S0 + 3N

2
ln E + N ln V (1.36)

with

S0 = ln

(
3Nπ3N/2

	
( 3N

2 + 1
)√

2m
3N

)
. (1.37)

Note that in principle, some corrections need to be included to take into account
quantum effects, namely the fact that quantum particles are indistinguishable. This
allows in particular �(E) to be made dimensionless, thus rendering the entropy
independent of the system of units chosen. Quantum effects are also important in
order to recover the extensivity of the entropy, that is, the fact that the entropy is
proportional to the number N of particles. In the present form, N ln N terms are
present, making the entropy grow faster than the system size. This is related to the
so-called Gibbs paradox. However, we shall not describe these effects in more details
here, and refer the reader to standard textbooks.

1.2.4 Distribution of Energy Over Subsystems and Statistical
Temperature

Let us consider an isolated system, with fixed energy and number of particles. We
then imagine that the system is partitioned into two subsystems S1 and S2, the
two subsystems being separated by a wall which allows energy exchanges, but not
exchanges of matter. The total energy of the system E = E1 + E2 is fixed, but the
energies E1 and E2 fluctuate due to thermal exchanges.
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For a fixed energy E, let us evaluate the number �(E1|E) of configurations of
the system such that the energy of S1 has a given value E1. In the absence of long-
range forces in the system, the two subsystems can be considered as statistically
independent (apart from the total energy constraint), leading to

�(E1|E) = �1(E1)�2(E − E1), (1.38)

where �k(Ek) is the number of configurations of Sk .

The most probable value E∗
1 of the energy E1 maximizes by definition�(E1|E),

or equivalently ln�(E1|E):
∂

∂E1

∣∣∣
E∗

1

ln�(E1|E) = 0. (1.39)

Combining Eqs. 1.38 and 1.39, one finds

∂ ln�1

∂E1

∣∣∣
E∗

1

= ∂ ln�2

∂E2

∣∣∣
E∗

2 =E−E∗
1

. (1.40)

Thus it turns out that two quantities defined independently in each subsystem are
equal at equilibrium. Namely, defining

βk ≡ ∂ ln�k

∂Ek

∣∣∣
E∗

k

, k = 1, 2, (1.41)

one has β1 = β2. This is the reason why the quantity βk is called the statistical
temperature of Sk . In addition, it can be shown that for large systems, the common
value of β1 and β2 is also equal to

β = ∂S

∂E
(1.42)

computed for the global isolated system.
To identify the precise link between β and the standard thermodynamic tempera-

ture, we notice that in thermodynamics, one has for a system that exchanges no work
with its environment:

d E = T d S, (1.43)

which indicates that β = 1/T (we recall that we have set kB = 1). This is further
confirmed on the example of the perfect gas, for which one finds using Eq. 1.36

β ≡ ∂SV

∂E
= 3N

2E
, (1.44)
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or equivalently

E = 3N

2β
. (1.45)

Besides, one has from the kinetic theory of gases

E = 3

2
N T (1.46)

(which is nothing but equipartition of energy), leading again to the identification
β = 1/T . Hence, in the microcanonical ensemble, one generically defines temper-
ature T through the relation

1

T
= ∂S

∂E
. (1.47)

We now further illustrate this relation on the example of the paramagnetic crystal
that we already encountered earlier. From Eq. 1.31, one has

1

T
= ∂S

∂E
= 1

2h
ln

N − E/h

N + E/h
. (1.48)

This last equation can be inverted to express the energy E as a function of temperature,
yielding

E = −Nh tanh
h

T
. (1.49)

This relation has been obtained by noticing that x = tanh y is equivalent to

y = 1

2
ln

(
1 + x

1 − x

)
. (1.50)

In addition, from the relation E = −Mh, where M = ∑N
i=1 si is the total magneti-

zation, one obtains as a byproduct

M = N tanh
h

T
. (1.51)

1.3 Equilibrium System in Contact with its Environment

1.3.1 Exchanges of Energy

Realistic systems are most often not isolated, but they rather exchange energy with
their environment. A natural idea is then to describe the system S of interest as a
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macroscopic subsystem of a large isolated system S∪R, where R is the environment,
or energy reservoir. The total energy Etot = E + ER is fixed. A configuration Ctot
of the total system can be written as Ctot = (C,CR), where C is a configuration
of S and CR is a configuration of R. The total system S ∪ R is isolated and at
equilibrium, so that it can be described within the macrocanonical framework:

Ptot(Ctot) = 1

�tot(Etot)
, Ctot = (C,CR). (1.52)

To obtain the probability of a configuration C of S, one needs to sum Ptot(Ctot) over
all configurations CR of R compatible with the total energy Etot, namely

P(C) =
∑

CR:ER=Etot−E(C)

Ptot(C,CR) = �R(Etot − E(C))

�tot(Etot)
. (1.53)

We introduce the entropy of the reservoir SR(ER) = ln�R(ER). Under the
assumption that E(C) � Etot, one has

SR(Etot − E(C)) ≈ SR(Etot)− E(C)
∂SR
∂ER

∣∣∣
Etot
. (1.54)

One also has

∂SR
∂ER

∣∣∣
Etot

≈ ∂SR
∂ER

∣∣∣
E∗

R
= 1

T
(1.55)

where T is the temperature of the reservoir. Altogether, we have

P(C) = �R(Etot)

�tot(Etot)
e−E(C)/T . (1.56)

Note that the prefactor �R/�tot depends on the total energy Etot, while we would
like P(C) to depend only on the energy E of the system considered. This problem can
however be bypassed by noticing that the distribution P(C) should be normalized to
unity, namely,

∑
C P(C) = 1. Introducing the partition function

Z =
∑

C

e−E(C)/T , (1.57)

one can then eventually rewrite the distribution P(C) in the form

P(C) = 1

Z
e−E(C)/T , (1.58)

which is the standard form of the canonical distribution.
The partition function Z is a useful tool in statistical physics. For instance, the

average energy 〈E〉 can be easily computed from Z:
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〈E〉 =
∑

C

P(C)E(C) =
∑

C

E(C)
1

Z
e−E(C)/T

= 1

Z

∑
C

E(C)e−βE(C)

= − 1

Z

∂Z

∂β
= −∂ ln Z

∂β
.

(1.59)

Instead of Z, one may also use the “free energy” F defined as

F = −T ln Z . (1.60)

Let us give a simple example of computation of Z, in the case of the paramagnetic
spin model. The partition function is given by

Z =
∑

{si =±1}
e−βE({si }), (1.61)

with E({si }) = −h
∑N

i=1 si . Hence one has

Z =
∑

{si =±1}
eβh

∑N
i=1 si

=
∑

{si =±1}

N∏
i=1

eβhsi =
N∏

i=1

( ∑
s=±1

eβhs

) (1.62)

so that one finds

Z =
(

eβh + e−βh
)N
. (1.63)

Turning to the average energy, one has

〈E〉 = −∂ ln Z

∂β
= −N

∂

∂β
ln

(
eβh + e−βh

)
, (1.64)

so that one obtains, recalling that β = 1/T ,

〈E〉 = −Nh tanh
h

T
. (1.65)

It is interesting to note that the above equation has exactly the same form as Eq.
1.49, provided that one replaces E, which is fixed in the microcanonical ensemble,
by its average value 〈E〉 in the canonical ensemble. This property is an example of a
general property called the “equivalence of ensemble”: in the limit of large systems,
the relations between macroscopic quantities are the same in the different statistical
ensembles, regardless of which quantity is fixed and which one is fluctuating through
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exchanges with a reservoir. The interpretation of this important property is basically
that fluctuating observables actually have very small relative fluctuations for large
system sizes. This property is also deeply related to the law of large numbers and to
the central limit theorem. Indeed, the relative fluctuations (quantified by the standard
deviation normalized by the number of terms) of a sum of independent and identically
distributed random variables go to zero when the number of terms in the sum goes
to infinity. Note that equivalence of ensemble generally breaks down in the presence
of long-range interactions in the systems.

Another example where the computation of Z is straightforward is the perfect gas.
In this case, one has

Z =
L∫

0

dq1 . . .

3L∫

0

dq3N

∞∫
−∞

dp1 . . .

∞∫
−∞

dp3N e−β∑3N
j=1 p2

j /2m

= L3N
3N∏
j=1

∞∫
−∞

dp j e
−βp2

j /2m

= V N

⎛
⎝

∞∫
−∞

dpe−βp2/2m

⎞
⎠

3N

.

(1.66)

Given that
∞∫

−∞
dpe−βp2/2m =

√
2πm

β
, (1.67)

one finds

Z = V N
(

2πm

β

) 3N
2

. (1.68)

Computing the average energy leads to

〈E〉 = −∂ ln Z

∂β
= 3N

2β
= 3

2
N T (1.69)

yielding another example of ensemble equivalence, as this result has the same form
as Eq. 1.45.

1.3.2 Canonical Entropy

As we have seen above, the microcanonical entropy is defined as S(E) = ln�(E).
This definition is clearly related to the equiprobability of accessible microscopic



16 1 Equilibrium Statistical Physics

configurations, since it is based on a counting of accessible configurations. A natural
question is then to know how to define the entropy in more general situations. A
generic definition of entropy has appeared in information theory, namely:

S = −
∑

C

P(C) ln P(C) (1.70)

where the sum is over all accessible configurations of the system. This entropy is
called the Boltzmann–Gibbs, von Neumann or Shannon entropy depending on the
context. This definition of entropy is moreover consistent with the microcanonical
one: if P(C) = 1/�(E) for configurations of energy E, and P(C) = 0 otherwise,
one finds:

S = −
∑

C :E(C)=E

1

�(E)
ln

1

�(E)
= ln�(E). (1.71)

In this general framework, the canonical entropy reads

Scan = −
∑

C

Pcan(C) ln Pcan(C)

= −
∑

C

1

Z
e−βE(C) ln

(
1

Z
e−βE(C)

)

=
∑

C

1

Z
e−βE(C) (ln Z + βE(C))

= ln Z + β〈E〉.

(1.72)

Recalling that the free energy F is defined as F = −T ln Z , one thus has T S =
−F + 〈E〉, which is nothing but the well-known relation F = 〈E〉 − T S. Another
standard thermodynamic relation may be found using 〈E〉 = −∂ ln Z/∂β:

Scan = ln Z − β
∂ ln Z

∂β

= ln Z + T
∂ ln Z

∂T

= ∂

∂T
(T ln Z)

so that one finds the standard thermodynamic relation

Scan = −∂F

∂T
. (1.73)
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1.3.3 Exchanges of Particles with a Reservoir: The
Grand-Canonical Ensemble

Similarly to what was done to obtain the canonical ensemble from the microcanonical
one by allowing energy exchanges with a reservoir, one can further allow exchanges
of particles with a reservoir. The corresponding situation is called the grand-canonical
ensemble.

We thus consider a macroscopic system S exchanging both energy and particles
with a reservoir R. The total system S ∪ R is isolated with total energy Etot and
total number of particles Ntot fixed:

E + ER = Etot, N + NR = Ntot. (1.74)

Generalizing the calculations made in the canonical case, one has

PGC(C) = K�R(ER, NR)
= K�R(Etot − E(C), Ntot − N (C))

= K exp [SR(Etot − E(C), Ntot − N (C))] .

As E(C) � Etot and N (C) � Ntot, one can expand the entropy
SR(Etot − E(C), Ntot − N (C)) to first order:

SR(Etot − E(C), Ntot − N (C)) = SR(Etot, Ntot)

− E(C)
∂SR
∂ER

∣∣∣
Etot,Ntot

− N (C)
∂SR
∂NR

∣∣∣
Etot,Ntot

.

(1.75)
As before, the derivative ∂SR/∂ER is identified with 1/T .We also introduce a new
parameter, the chemical potential μ, defined as:

μ = −T
∂SR
∂NR

. (1.76)

Similarly to the temperature which takes equal values when subsystems exchanging
energy have reached equilibrium, the chemical potential takes equal values in subsys-
tems exchanging particles, when equilibrium is attained. Gathering all the above
results and notations, one finds that

PGC(C) = 1

ZGC
exp

(
− 1

T
E(C)+ μ

T
N (C)

)
(1.77)

which is the standard form of the so-called grand-canonical distribution. The normal-
ization constant ZGC, defined by

ZGC =
∑

C

exp

(
− 1

T
E(C)+ μ

T
N (C)

)
, (1.78)

is called the grand-canonical partition function.
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1.4 Phase Transitions

1.4.1 Example of the Ising Model

Phase transitions correspond to a sudden change of behavior of the system when
varying an external parameter across a transition point. This could be of interest in
complex systems well-beyond physics, and is generically associated with collective
effects. To illustrate this last property, let us briefly come back to the paramagnetic
model defined in Sect. 1.2.3, for which the mean magnetization per spin is given by

〈m〉 ≡ 〈M〉
N

= tanh

(
h

T

)
. (1.79)

The magnetization is non-zero only if there is a non-zero external field which tends
to align the spins. A natural question is thus to know whether one could obtain a non-
zero magnetization by including interactions tending to align spins between them
(and not with respect to an external field). In this spirit, let us consider the standard
(interaction) energy of the Ising model, in the absence of external field:

EIsing = −J
∑
〈i, j〉

si s j , J > 0. (1.80)

This interaction energy is minimized when all spins are parallel. To compute the mean
magnetization per spin, one would need to compute either the partition function in
presence of a external magnetic field and take the derivative of the free energy with
respect to the field, or to compute directly the mean magnetization from its definition.
In any case, this is a very complicated task as soon as the space dimension D is larger
than one, and the exact calculation has been achieved only in dimensions one and
two. The results can be summarized as follows:

• D = 1: m = 0 for all T > 0, so that there is no phase transition at finite tempera-
ture. Calculations are relatively easy.

• D = 2: there is a phase transition at a finite critical temperature Tc, namely m = 0
for T ≥ Tc and m �= 0 for T < Tc. Calculations are however very technical.

• D ≥ 3: no analytical solution is known, but numerical simulations show that there
is a phase transition at a finite temperature that depends on D.

1.4.2 Ising Model in Fully Connected Geometry

An interesting benchmark model, which can be shown analytically to exhibit a phase
transition, is the fully connected Ising model, whose energy is defined as

Efc = − J

N

∑
i< j

si s j + E0, (1.81)
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where the sum is over all pairs of spins in the system. The 1/N prefactor is included
in order to keep the energy per spin finite in the large N limit. The term E0 is added
for later convenience, and is arbitrary at this stage (it does not modify the canonical
distribution). Considering the magnetization M = ∑N

i=1 si , one has, given that
s2

i = 1,

M2 = 2
∑
i< j

si s j + N (1.82)

from which one finds

Efc = − J

2N
(M2 − N )+ E0 = − J

2N
M2 + J

2
+ E0. (1.83)

Choosing E0 = −J/2, and introducing the magnetization per spin m = M/N , one
finds

Efc = − J

2
Nm2. (1.84)

One possible way to detect the phase transition is to compute the probability distrib-
ution P(m) of the magnetization, by summing over all configurations having a given
magnetization m:

P(m) = 1

Z

∑
C :m(C)=m

e−βE(C)

= 1

Z
�(m)e

1
2β J Nm2

= 1

Z
eS(m)+ 1

2β J Nm2

(1.85)

where �(m) = eS(m) is the number of configurations with magnetization m. Using
the relation

�(m) = N !
N+!N−! (1.86)

with

N+ = N

2
(1 + m), N− = N

2
(1 − m), (1.87)

one obtains for S(m) = ln�(m)

S(m) = −N

[
1 + m

2
ln

(
1 + m

2

)
+ 1 − m

2
ln

(
1 − m

2

)]
. (1.88)
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Hence from Eq. 1.85 it turns out that P(m) can be written as

P(m) = e−N f (m) (1.89)

with f(m) given by

f (m) = 1 + m

2
ln

(
1 + m

2

)
+ 1 − m

2
ln

(
1 − m

2

)
− J

2T
m2. (1.90)

The function f(m) is called a large deviation function, or a Landau free energy func-
tion. The magnetization m0 that maximizes the probability distribution P(m) corre-
sponds to a minimum of f(m). Moreover, fluctuations around m0 are exponentially
suppressed with N. For high temperature T, the term J/T is small, and the entropic
contribution to f(m) should dominate, leading to m0 = 0.To understand what happens
when temperature is progressively lowered, it is useful to expand f(m) for small values
of m, up to order m4, leading to:

f (m) = − ln 2 + 1

2

(
1 − J

T

)
m2 + 1

12
m4 + O(m6). (1.91)

One can then distinguish two different cases:

• If T ≥ Tc ≡ J, f(m) has only one minimum, for m = 0.
• If T < Tc, f(m) has two symmetric minima ±m0. These minima are obtained as

solutions of d f/dm = 0:

d f

dm
=

(
1 − J

T

)
m + 1

3
m3 = −

∣∣∣∣1 − J

T

∣∣∣∣ m + 1

3
m3 = 0. (1.92)

The non-zero solutions are m = ±m0 with

m0 =
√

3

(
J

T
− 1

)
= √

3

(
Tc − T

T

)1/2

. (1.93)

It can be checked easily that the solution m = 0 corresponds in this case to a local
maximum of f(m), and thus to a local minimum of P(m).

Hence, there is a phase transition at T = Tc ≡ J , Tc being called the critical
temperature. The most probable magnetization m0 is called the “order parameter
of the phase transition”, as the phase transition is characterized by the onset of a
non-zero value of m0. In addition, the order parameter varies as m0 ∼ (Tc − T )β

for T close to Tc, with β = 1/2 here. The exponent β is an example of critical
exponent, and the value β = 1/2 is called the “mean-field value” of β, for reasons
that will become clear in the next section. The notation β is standard for the critical
exponent associated to the order parameter, and should not be confused with the
inverse temperature β = 1/T .

An important remark is that the average value 〈m〉 of the magnetization is still
zero for T < Tc, since the two values ±m0 of the magnetization have the same
probability. However, for a large system, the time needed to switch between states
m0 and −m0 becomes very large, and the time-averaged magnetization over a typical
observation time window is non-zero, and equal either to m0 or to −m0.
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1.4.3 Ising Model with Finite Connectivity

We now come back to the finite-dimensional Ising model. As mentioned above, the
analytical solution is hard to obtain in dimension D = 2, and is not known in higher
dimensions. However, useful approximations have been developed, the most famous
one being called the mean-field approximation.

The reason why the fully connected model can be easily solved analytically is
that its energy E is a function of the magnetization m only, as seen in Eq. 1.84. When
the model is defined on a finite-dimensional lattice, this property is no longer true,
and the energy reads:

E = − J

2

N∑
i=1

si

⎛
⎝ ∑

j∈V(i)
s j

⎞
⎠ . (1.94)

where V(i) is the set of neighboring sites of site i. The factor 1/2 comes from the
fact that a given link of the lattice now appears twice in the sum. This last expression
can be rewritten as

E = −D J
N∑

i=1

si 〈s j 〉V(i), (1.95)

〈s j 〉V(i) being the local average magnetization of the set of neighbors V(i):

〈s j 〉V(i) = 1

2D

∑
j∈V(i)

s j . (1.96)

The parameter D is the space dimension, and the number of neighbors of a given site
i is 2D, given that we consider hypercubic lattices (square lattice in D = 2, cubic
lattice in D = 3, . . .).

As a first approximation, one could replace the average magnetization over the
set of neighbors by the global magnetization per spin of the whole system, m =
N−1 ∑N

i=1 si :

〈s j 〉V(i) → m. (1.97)

This approximation leads to the following expression of the energy

E ≈ Emf = −D Jm
N∑

i=1

si = −D J Nm2, (1.98)

where the subscript “mf” stands for “mean-field” approximation. Then Emf depends
only on the magnetization m, and has a form similar to the energy Efc of the fully
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connected model. One can define an effective coupling Jmf = 2D J so that the form
of the two energies become exactly the same, namely

Emf = −1

2
Jmf Nm2. (1.99)

Now it is clear that the results of the fully connected model can be applied to the
present mean-field approximation, yielding a phase transition at T mf

c = Jmf = 2D J.
For T > T mf

c , 〈m〉 = 0 while for T < T mf
c , but close to T mf

c , 〈m〉 ∼ (T mf
c − T )1/2.

Qualitatively, the approximation is expected to be valid for large space dimension D.
It can be shown, using more involved arguments, that for D ≥ 4, the approximation
is semi-quantitatively valid, in the sense that the value β = 1/2 of the critical
exponent, obtained from the approximation, is correct. However, the value of the
critical temperature T mf

c is not correctly predicted by the mean-field approximation,
namely Tc �= T mf

c . For D < 4, the value of β differs from the mean-field value 1/2,
and the mean-field approximation breaks down. For D = 3, numerical simulations
indicate that β ≈ 0.31, and for D = 2, the exact solution yields β = 1/8. Finally,
for D = 1, 〈m〉 = 0 except for T = 0, so that the exponent β is not defined.

The discrepancy mentioned above between mean-field predictions and results
obtained in low-dimensional systems mainly comes from the presence of fluctuations
of the local magnetization

∑
j∈V(i) s j . Since on the other hand exact solutions are

very hard to obtain, there is need for a different approach, that could be generic
enough and could be centered on the issue of correlation, which is at the heart of
the difficulties encountered. This is precisely the aim of the renormalization group
approach.

1.4.4 Renormalization Group Approach: A Brief Introduction

A standard observation on finite dimensional systems exhibiting a continuous phase
transition is that the correlation length diverges when the temperature approaches
the critical temperature Tc. The correlation length is defined through the correlation
function

Ci j = 〈(si − m0)(s j − m0)〉 = 〈si s j 〉 − m2
0. (1.100)

As soon as the distance r = di j between sites i and j is large with respect to the
lattice spacing a, the correlation function generally becomes isotropic, Ci j = C(r).
In addition, the large distance behavior of C(r) is often of the form

C(r) ∼ 1

rα
e−r/ξ , α > 0, (1.101)

which defines the correlation length ξ . The latter diverges for T → Tc. This is the
reason why direct calculations in the range T ≈ Tc are very difficult, due to the strong
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correlation between spins. A natural idea is to look for an approach that could reduce
in some way the intensity of correlations, in order to make calculations tractable.

This is basically the principle of the renormalization group (RG) approach, in
which one progressively integrates out small scale degrees of freedom. The idea is
that at the critical point, structures are present at all scales, from the lattice spacing
to the system size. A RG transform may intuitively be thought of as defocusing the
picture of the system, so that fine details become blurred. This method is actually very
general, and could be relevant in many fields of complex system sciences, given that
issues like large scale correlations and scale invariance or fractals are often involved
in complex systems.

For definiteness, let us however consider again the Ising model. To implement
the RG ideas in a practical way, one could make blocks of spins and define an
effective spin for each block, with effective interactions with the neighboring blocks.
The effective interactions are defined in such a way that the large scale properties
are the same as for the original (non-renormalized) model. This is done in practice
by conserving the partition function, namely Z ′ = Z (in the present section, the
prime denotes renormalized quantities). One would then like to define a renormalized
interaction constant J ′ such that

H ′ = −J ′ ∑
〈B1,B2〉

SB1 SB2 (1.102)

where B1 and B2 are generic labels for the blocks (the sites of the renormalized
lattice). The problem is that very often, the RG transform generates new effectives
couplings, like next-nearest-neighbor couplings, that were absent in the original
model, and the number of couplings keeps increasing with the number of iterations
of the RG transform. However, in some simple cases, the transformation can be
performed exactly, without increasing the number of coupling constants, as we shall
see later on.

Yet, let us first emphasize the practical interest of the RG transform. We already
mentioned that one of the main difficulties comes from the presence of long-range
correlations close to the critical point. Through the RG transform, the lattice spacing
becomes a′ = 2a (if one makes blocks of linear size 2a). On the contrary, the corre-
lation length remains unchanged, since the large scale properties remain unaffected
by the RG transform. Hence the correlation length expressed in unit of the lattice
spacing, namely ξ/a, decreases by a factor of 2 in the transformation, to become

ξ ′

a′ = 1

2

ξ

a
. (1.103)

Thus upon iterations of the RG transform, the effective Hamiltonian becomes such
that ξ ′ ∼ a′, so that standard approximation schemes (mean-field, . . . ) can be used.
One then needs to follow the evolution of the coupling constant J ′ under iterations.
This is called the renormalization flow.
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An explicit example can be given with the one-dimensional Ising chain, using a
specific RG transform called decimation procedure [6]. We start with the energy (or
Hamiltonian)

H =
N∑

i=1

Hi,i+1(si , si+1) (1.104)

where the local interaction term Hi,i+1(si , si+1) is given by

Hi,i+1(si , si+1) = −Jsi si+1 + c. (1.105)

Note that periodic boundary conditions are understood. The constant c plays no role
at this stage, but it will be useful later on in the renormalization procedure. The basic
idea of the decimation procedure is to perform, in the partition function, a partial
sum over the spins of—say—odd indices in order to define renormalized coupling
constants J ′ and h′. Then summing over the values of the spins with even indices
yields the partition function Z ′ of the renormalized model, which is by definition of
the renormalization procedure equal to the initial partition function Z. To be more
explicit, one can write Z as

Z =
∑
{s2 j }

∑
{s2 j+1}

exp [−βH({si })] (1.106)

where
∑

{s2 j } (resp.
∑

{s2 j+1}) indicates a sum over all possible values of the N/2
variables {s2 j } (resp. {s2 j+1}). Equation 1.106 can then be rewritten in the following
form:

Z =
∑
{s2 j }

exp
[−βH ′({s2 j })

]
(1.107)

where H ′({s2 j }) is the renormalized Hamiltonian, defined by

exp
[−βH ′({s2 j })

] =
∑

{s2 j+1}
exp [−βH({si })] . (1.108)

Assuming that the renormalized Hamiltonian can be decomposed into a sum of local
terms

H ′({s2 j }) =
N/2∑
j=1

H ′
j, j+1(s2 j , s2 j+2) (1.109)

we get from Eq. 1.108 the relation
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N/2∏
j=1

exp
[
−βH ′

j, j+1(s2 j , s2 j+2)
]

=
∑

{s2 j+1}

N/2∏
j=1

exp
[−βH2 j,2 j+1(s2 j , s2 j+1)− βH2 j+1,2 j+2(s2 j+1, s2 j+2)

]

=
N/2∏
j=1

∑
s2 j+1

exp
[−βH2 j,2 j+1(s2 j , s2 j+1)− βH2 j+1,2 j+2(s2 j+1, s2 j+2)

]

(1.110)
where in the last line, the sum runs over the single variable s2 j+1, the index
j being fixed within the product. This last relation is satisfied if, for any given
j = 1, . . . , N/2, and any given values of s2 j and s2 j+2,

exp
[
−βH ′

j, j+1(s2 j , s2 j+2)
]

=
∑

s2 j+1=±1

exp
[−βH2 j,2 j+1(s2 j , s2 j+1)− βH2 j+1,2 j+2(s2 j+1, s2 j+2)

]
.

(1.111)
Further assuming that H ′

j, j+1(s2 j , s2 j+2) takes the form

H ′
j, j+1(s2 j , s2 j+2) = −J ′s2 j s2 j+2 + c′, (1.112)

where J ′ and c′ are the renormalized parameters, one obtains

exp
[
β J ′s2 j s2 j+2 − βc′] =

∑
s2 j+1=±1

exp
[
β J (s2 j s2 j+1 + s2 j+1s2 j+2)− 2βc

]
.

(1.113)
Introducing the reduced variable4

u = e−4β J , (1.114)

Equation 1.113 leads to the following recursion relation:

u′ = 4u

(1 + u)2
. (1.115)

Let us denote as ξnd the dimensionless correlation length

ξnd = ξ

a
. (1.116)

Then from Eq. 1.103 the recursion relation for ξnd reads

4 We do not follow here the evolution of the constant c under renormalization, and rather focus
on the evolution of the physically relevant coupling constant J.
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ξ ′
nd = 1

2
ξnd, (1.117)

from which one deduces that the fixed points of the renormalization procedure, that
satisfy ξ ′

nd = ξnd, can only be ξnd = ∞ or ξnd = 0. The latter is called the trivial
fixed point, as it corresponds to the limit situation where no correlation is present
in the system. In contrast, the fixed point ξnd = ∞ corresponds to the critical fixed
point, where correlation extends over the whole system size. As ξnd decreases through
iteration of the RG transform, the critical fixed point ξnd = ∞ is unstable, while the
trivial fixed point ξnd = 0 is stable.

Coming back to the iteration relation Eq. 1.115, let us first look for the fixed points
of this equation, namely the solutions of

u = 4u

(1 + u)2
. (1.118)

The value u = 0 is obviously a solution, and it is easy to check that u = 1 is the
other positive solution (u = −3 is the third solution, but in view of Eq. 1.114, we
are seeking for positive solutions only). Then to identify which one of the two fixed
points is the critical point, we need to investigate the stability of each fixed point
under iteration. The stability is studied by introducing a small variation δu around a
given fixed point u1, namely u = u1 ± δu, and writing the evolution equation for
δu to leading order. For u1 = 0, one finds, with u = δu,

δu′ = 4δu

(1 + δu)2
≈ 4δu, δu > 0, (1.119)

so that δu increases upon iteration: the fixed point u1 = 0 is unstable, and thus
corresponds to the critical fixed point. Besides, the fixed point u1 = 1 is easily
checked to be stable. Using u = 1 − δu, we have

1 − δu′ = 4(1 − δu)

(2 − δu)2
, (1.120)

leading after a second order expansion in δu to

δu′ ≈ 1

4
δu2. (1.121)

Hence δu converges to 0 upon iteration, confirming the stability of the fixed point
u1 = 1. Coming back to the critical fixed point, and recalling the definition Eq.
1.114, one sees that u1 = 0 corresponds to an infinite value of J/T . In the above
framework, this case is interpreted as an infinite coupling limit, as the iteration was
made on J. However, the fixed point can also be interpreted as a zero-temperature
fixed point, keeping the coupling constant J fixed.

This one-dimensional example is of course only a very simple case, which can
be solved through other more direct methods. However, it is a good illustration
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of the way the concept of RG can be implemented in practice. In two- or three-
dimensional models, exact treatments like the above one are most often not available.
Yet, many approaches based on different approximation schemes have been devel-
oped. A typical situation in dimension D > 1 is that there is a finite value Kc of the
ratio K = J/T which corresponds to a critical fixed point, and both values K = 0
and K = ∞ correspond to trivial fixed points, where no correlation is present. Quite
importantly, linearizing the iteration equation in the vicinity of the critical fixed point
allows the determination of the critical exponentβ, as well as other critical exponents.
In the Ising chain studied above, this is not possible because the critical temperature
is zero, so that there is no extended temperature region where the magnetization is
non-zero. But this approach turns out to be relevant in dimension higher than one.

1.5 Disordered Systems and Glass Transition

1.5.1 Disorder in Complex Systems: From Social Sciences
to Spin-Glasses

In the general framework of complex systems, disordered systems are systems where
each particle or agent has specific properties, which are qualitatively the same for all
of them, but differ quantitatively from one to the other. In theoretical models, these
quantitative properties are most often drawn from a given probability distribution
for each particle or agent, and remain constant in time. Disordered systems should
be very relevant in complex systems studies, like social science for instance, as each
human being has its specific skills or tastes.

In a physical context, the concept of disordered system could seem less natural,
since all particles within a given class are identical. In this case, disorder rather
comes from the possibly random position of the particles. A standard example is
that of magnetic impurities (that carry a magnetic moment, or spin) diluted in a
non-magnetic material. The interaction between magnetic atoms (which have to be
described in the framework of quantum mechanics) is mediated by the non-magnetic
atoms, and acquires an oscillatory behavior, depending on the distance ri j between
the two spins:

H = −
∑
i, j

J (ri j )si s j . (1.122)

The interaction constant J (ri j ) is a given function of the distance ri j , which oscil-
lates around 0, thus taking both positive and negative values. The amplitude of the
oscillations decays as a power-law of the distance. As the distances between atoms
are random, the interactions between atoms have a random sign, which is the basic
property of spin-glasses.
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1.5.2 Theoretical Spin-Glass Models

In order to propose a simplified model for spin-glass materials, it has been proposed to
replace the position disorder by an interaction disorder, the magnetic atoms being now
situated on a regular lattice. To this purpose, one considers an Ising-like model in D-
dimensions, where the spins are placed at each node of a lattice. Spins on neighboring
sites (i,j) interact through a coupling constant Ji j , drawn from a distribution P(J). As
the couplings Ji j are kept constant in time, one speaks about quenched disorder. This
model is called the Edwards–Anderson model [7]. In D = 1, the Edwards–Anderson
model is equivalent to the standard Ising model, up to a redefinition of the spins. In
D > 1, analytical solutions are not known, and results have thus been obtained
through numerical simulations. A fully connected version, called the Sherrington–
Kirkpatrick model, has been proposed and solved, but the techniques involved are
already rather difficult, even at the level of the fully connected model. The main
qualitative picture emerging from these models is that below a given energy level,
the phase space decomposes into a lot of valleys, or metastable states, from which it
takes a very long time to escape.

1.5.3 The Simplest Disordered System: The Random Energy Model

A very simple disordered model, which already captures a lot of the phenomenology
of realistic disordered systems, has been proposed by Derrida in 1980, and has been
called the Random Energy Model (REM) [8, 9]. The model has 2N configurations,
labeled by an index α = 1, . . . , 2N (it can be thought of as a spin model, with N
spins si = ±1.) To each configuration α is attached a time-independent energy Eα,
chosen at random from the distribution

P(E) = 1√
Nπ J 2

exp

(
− E2

N J 2

)
. (1.123)

All the energies Eα are independent random variables. We denote as n(E)d E the
number of configurations with energy in the interval [E, E + d E], so that n(E) is
the density of configurations with energy E. The density n(E) is a random quantity,
but its fluctuations are small if n(E) is large, namely n(E) ≈ 〈n(E)〉. By definition,
P(E) = 〈n(E)〉/2N , so that 〈n(E)〉 = 2N P(E), leading to

〈n(E)〉 = exp

(
N ln 2 − E2

N J 2

)

= exp

[
N

(
ln 2 − ε2

J 2

)] (1.124)

where the energy density ε = E/N has been introduced. One sees that if
ln 2 − ε2/J 2 > 0, corresponding to |ε| < ε0 = J

√
ln 2, 〈n(E)〉 is exponentially
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large with N, so that there is a large number of configurations at energy density ε, and
the assumption n(E) ≈ 〈n(E)〉 is justified. In contrast, if ln 2 − ε2/J 2 < 0, which
corresponds to |ε| > ε0, 〈n(E)〉 is exponentially small with N. This means that in
most samples, there are no configurations at energy density |ε| > ε0. The non-zero,
but small value of 〈n(E)〉 comes from the contribution to the average value of very
rare samples, which include some configurations with exceptionally low (or high)
energy.

We can now evaluate the partition function of the REM, defined as

Z =
2N∑
α=1

e−Eα/T . (1.125)

As all the energies Eα are random variables, the partition function Z is also a random
variable, which fluctuates from one realization of the disorder to another. Yet, we
can evaluate the typical value of Z as follows:

Z ≈ Z typ =
ε0∫

−ε0

dε〈ñ(ε)〉e−Nε/T , (1.126)

with the notation ñ(ε) = Nn(Nε). In Eq. 1.126, we have replaced ñ(ε) by 〈ñ(ε)〉
for |ε| < ε0, and by 0 for |ε| > ε0, consistently with the above discussion. We can
then write, using Eqs. 1.124 and 1.126,

Z typ =
ε0∫

−ε0

dεeNg(ε) (1.127)

with

g(ε) = ln 2 − ε2

J 2 − ε

T
. (1.128)

In the large N limit, we can evaluate Z typ through a saddle point calculation, namely

Z typ ∼ eNgmax(ε0) (1.129)

where gmax(ε0) is the maximum value of g(ε) over the interval [−ε0, ε0]. Let us first
consider the maximum ε∗ of g(ε) over the entire real line. Taking the derivative of
g(ε), one has

g′(ε) = − 2ε

J 2 − 1

T
. (1.130)

From g′(ε) = 0, we find
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ε∗ = − J 2

2T
. (1.131)

As g(ε) is a parabola, it is increasing for ε < ε∗ and decreasing for ε > ε∗. If
ε∗ > −ε0, then gmax(ε0) = g(ε∗), so that

Z typ ∼ eNg(ε∗). (1.132)

The condition ε∗ > −ε0 translates into T > Tg, where the so-called glass transition
temperature Tg is defined as

Tg = J

2
√

ln 2
. (1.133)

For ε∗ < −ε0, or equivalently T < Tg , g(ε) is a decreasing function of ε over the
entire interval [−ε0, ε0], so that gmax(ε0) = g(−ε0), and

Z typ ∼ eNg(−ε0). (1.134)

From these estimates of Z typ, one can compute the free energy F = −T ln Z typ, and
the entropy S = −∂F/∂T . For T > Tg, one finds

F = −N

(
T ln 2 + J 2

4T

)
, (1.135)

leading for the entropy to

S = N

(
ln 2 − J 2

4T 2

)
. (1.136)

For T < Tg, we have

F = −T Ng(−ε0) = −T N

(
ln 2 − ln 2 + J

T

√
ln 2

)
= −N J

√
ln 2. (1.137)

The free energy does not depend on temperature in this range, so that the corre-
sponding entropy vanishes:

S = 0, T < Tg. (1.138)

It can also be checked that the entropy given in Eq. 1.136 for T > Tg vanishes
continuously for T → Tg.Hence the temperature Tg corresponds to a glass transition
temperature, where the entropy goes to zero when lowering temperature down to Tg,

and remains zero below Tg.Actually, to make the statement sharper, only the entropy
density S/N goes to zero for T < Tg, in the infinite N limit. Computing subleading
corrections to the entropy, one finds that the entropy S is independent of N, but non-
zero, for T < Tg. The entropy is then intensive in this temperature range, meaning
that only a finite number of configurations, among the 2N ones a priori available, are
effectively occupied: the system is quenched in the lowest energy configurations.
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Chapter 2
Non-stationary Dynamics
and Stochastic Formalism

In the first part of this book, we have considered the stationary properties of physical
systems composed of a large number of particles, using as fundamental statistical
object the joint distribution of all the degrees of freedom of the system (for instance
positions and velocities, or spin variables). This steady state is expected to be reached
after a transient regime, during which the macroscopic properties of the system evolve
with time. Describing the statistical state of the system during this transient regime
is also certainly of interest.

However, there is no known simple postulate (similar to the postulate of equiprob-
ability of configurations having a given energy) to characterize the N-particle prob-
ability distribution in this time-dependent regime. Still, one can resort to the generic
mathematical formalism of stochastic processes in order to describe statistically the
time evolution of some specific variables of interest, like the position or velocity
of a probe particle immersed in a fluid. This formalism is presented in Sect. 2.1, in
the simplest case of Markov processes. The example of the random evolution of a
single degree of freedom in a noisy environment (diffusive motion), leading to the
Langevin and Fokker–Planck equations, is discussed in Sect. 2.2. In addition, there
exists situations in which this random evolution can be much faster or much slower
than a priori expected, leading to anomalous diffusion. It may also happen that some
systems fail to reach an equilibrium state, and thus keep relaxing for a very long
time, as in the case of glasses. These situations, that bear some interesting relations
to the central limit theorem and its generalization, are described in Sect. 2.3.

2.1 Markovian Stochastic Processes and Master Equation

2.1.1 Definition of Markovian Stochastic Processes

Let us start with some basic considerations on stochastic processes. For more advance
reading on this topic, we refer the reader to [1] for instance. Roughly speaking, a
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stochastic process is a dynamical process whose evolution is random, and depends
on the presently occupied state and possibly on the history of the system.

Considering first a discrete time process (t = 0, 1, 2, . . .), with a finite number
N of configurations C, we denote as T (Ct+1|Ct ,Ct−1, . . . ,C0) the probability for
the process to jump to a new configuration Ct+1 between times t and t + 1, given
the whole history (Ct ,Ct−1, . . . ,C0). Note that Ct+1 can a priori be any of the N
possible configurations, including the configuration Ct itself. The transition proba-
bility T (Ct+1|Ct ,Ct−1, . . . ,C0) can be considered as a conditional probability, so
that the following normalization condition holds

∑
Ct+1

T (Ct+1|Ct ,Ct−1, . . . ,C0) = 1. (2.139)

Such a stochastic process is said to be Markovian if the transition probability
T (Ct+1|Ct ,Ct−1, . . . ,C0) depends only on the configuration Ct occupied at time t,
and not on previously occupied configurations. In short, markovian processes are
said to be “memoryless”.

The above definition of markovian stochastic processes can be rather straightfor-
wardly extended to several other cases of practical importance. First, the number of
discrete configurations can be infinite, and this case can often be recovered by tacking
the limit N → ∞ in the above definition. If configurations are no longer discrete,
but are defined by a continuous variable yt , a probability density T̃ (yt+1|yt ) needs to
be introduced, in such a way that T̃ (yt+1|yt )dyt+1 is the probability to choose a new
configuration in the interval [yt+1, yt+1 +dyt+1], starting from a given configuration
yt at time t. The equivalent of the normalization condition Eq. 2.139 now reads

∞∫
−∞

T̃ (yt+1|yt )dyt+1 = 1. (2.140)

Another generalization consists in replacing the discrete time steps by a continuous
time evolution. Interestingly, continuous time dynamics can be obtained from the
discrete time dynamics in the limit of a vanishing time step. Hence instead of using
a time step�t = 1 as above, we now take an infinitesimal step�t = dt. In order to
obtain a meaningful limit when dt → 0, the transition probabilities T (C ′|C) from
configuration C to configuration C ′ have to scale with dt in the following way:

T (C ′|C) = W (C ′|C)dt + O(dt2) if C ′ �= C (2.141)

T (C |C) = 1 −
∑

C ′′( �=C)

W (C ′′|C)dt + O(dt2) (2.142)

where W (C ′|C) is independent of dt. In other words, the evolution of continuous
time Markovian stochastic processes is characterized by transition rates W (C ′|C),
such that W (C ′|C)dt is the probability for the process to go from configuration C to
a new configuration C ′ in a time interval [t, t + dt].
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Finally, in the case of a continuous time process represented by a continuous
variable y, a density of transition rate w(y′|y) should be defined, a such a way
that w(y′|y)dy′dt is the probability for the process to reach a value in the interval
[y′, y′ + dy′] at time t + dt, starting from a value y at time t.

2.1.2 Master Equation and Detailed Balance

The master equation describes the time evolution of the probability to occupy a
given configuration. The simplest situation corresponds to discrete time and discrete
configurations. The evolution of the probability Pt (C) to occupy configuration C at
time t is given by

Pt+1(C) =
∑
C ′

T (C |C ′)Pt (C
′). (2.143)

The probability Pt+1(C) is thus simply a sum over all possible configurations C ′ of
the probability to go from C ′ to C, weighted by the probability to occupy the con-
figuration C ′ at time t. It is easy to check, by summing over all configurations C and
using the normalization equation (2.139), that Eq. 2.143 conserves the normalization
of the probability Pt (C); namely, if

∑
C Pt (C) = 1, then

∑
C Pt+1(C) = 1.

For continuous configurations y, a density pt (y) has to be introduced (namely,
pt (y)dy is the probability that the configuration at time t belongs to the interval
[y, y + dy]), and the evolution equation reads:

pt+1(y) =
∞∫

−∞
T̃ (y|y′)pt (y

′)dy′. (2.144)

The evolution of continuous time processes can be derived from this discrete time
equation, using again the limit of a vanishing time step dt. Considering a continuous
time process with discrete configurations, we denote as P(C, t) the probability to be
in configuration C at time t. Combining Eqs. 2.141 and 2.143, we get

P(C, t + dt) =
∑

C ′( �=C)

W (C |C ′)dt P(C ′, t)+
⎛
⎝1 −

∑
C ′( �=C)

W (C ′|C)dt

⎞
⎠ P(C, t).

(2.145)
Expanding the left-hand-side of this last equation to first order in dt, as

P(C, t + dt) = P(C, t)+ d P

dt
(C, t)dt + O(dt2) (2.146)

we eventually find, in the limit dt → 0, that the probability P(C, t) evolves according
to the master equation:
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d P

dt
(C, t) = −P(C, t)

∑
C ′( �=C)

W (C ′|C)+
∑

C ′( �=C)

W (C |C ′)P(C ′, t). (2.147)

The first term in the right-hand-side can be interpreted as a “loss” term (i.e., the sum
of all the possibilities to exit configuration C), while the second term can be thought
of as a “gain” term (the sum of all the possibilities to arrive at configuration C,
starting from any other configuration). A similar equation is obtained in the case of
continuous configurations y for the probability density p(y, t), by basically replacing
discrete sums by integrals in Eq. 2.147:

∂p

∂t
(y, t) = −p(y, t)

∞∫
−∞

dy′w(y′|y)+
∞∫

−∞
dy′w(y|y′)p(y′, t). (2.148)

From now on, we will work mainly with discrete configurations as far as formal and
generic calculations are concerned, keeping in mind that the continuous variable case
can be obtained by switching from discrete to continuous notations.

An interesting property of continuous time master equations is the notion of
detailed balance, which is related to the steady-state (or time-independent) solution
of the master equation. From Eq. 2.147, a time-independent solution P(C) satisfies,
for all configurations C

∑
C ′( �=C)

[−W (C ′|C)P(C)+ W (C |C ′)P(C ′)] = 0. (2.149)

It may happen, for some specific stochastic processes, that the term between bracket
vanishes for all C ′, namely

∀(C,C ′), W (C ′|C)P(C) = W (C |C ′)P(C ′). (2.150)

This situation is referred to as detailed balance. Processes satisfying detailed balance
are much easier to handle analytically. Besides this practical advantage, detailed bal-
ance also plays an important role in the stochastic modeling of microscopic physical
processes (i.e., at the molecular scale). This is due to the fact that detailed balance can
be interpreted as the stochastic counterpart of the microreversibility property satis-
fied by the Hamiltonian dynamics—see Sect. 1.1. Indeed, the probability to observe,
once a statistical steady-state is reached, an elementary trajectory from C at time
t to C ′ at time t + dt is W (C ′|C)dt P(C), while the probability to observe the
reverse trajectory is W (C |C ′)dt P(C ′). The equality of these two probabilities, to
be thought of as a statistical microreversibility, precisely yields the detailed balance
relation (2.150). Hence in order to model, at a coarse-grained level, the dynamics of
a microscopic physical system through a markovian stochastic process, it is natural
to assume that the process satisfies detailed balance (in addition to the appropriate
conservation laws, like energy conservation).

http://dx.doi.org/10.1007/978-3-642-23923-6_1
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2.1.3 Dynamical Increase of the Entropy

It is interesting to introduce a time-dependent entropy defined as

S(t) = −
∑

C

P(C, t) ln P(C, t). (2.151)

This definition closely follows the definition (1.70). Under the assumption W (C ′|C)=
W (C |C ′), which is a specific form of the detailed balance relation (2.150), one can
show that S(t) is increasing with time. Let us start by computing the time-derivative
of the entropy:

d S

dt
= −

∑
C

d P

dt
(C, t) ln P(C, t)−

∑
C

d P

dt
(C, t). (2.152)

The last term cancels due to the normalization condition
∑

C P(C, t) = 1. Using
the master equation, one has:

d S

dt
= −

∑
C

ln P(C, t)
∑

C ′( �=C)

(−W (C ′|C)P(C, t)+ W (C |C ′)P(C ′, t)
)

=
∑

C,C ′(C �=C ′)
ln P(C, t)

(
W (C ′|C)P(C, t)− W (C |C ′)P(C ′, t)

)
. (2.153)

Exchanging the notations C and C ′ in the last equation, we also have

d S

dt
=

∑
C,C ′(C �=C ′)

ln P(C ′, t)
(
W (C |C ′)P(C ′, t)− W (C ′|C)P(C, t)

)
. (2.154)

Summing Eqs. 2.153 and 2.154, and using the detailed balance property W (C ′|C) =
W (C |C ′), we obtain

d S

dt
= 1

2

∑
C,C ′(C �=C ′)

(
ln P(C ′, t)− ln P(C, t)

) (
P(C ′, t)− P(C, t)

)
W (C |C ′).

(2.155)
As [ln P(C ′, t) − ln P(C, t)] and [P(C ′, t) − P(C, t)] have the same sign, one
concludes that

d S

dt
≥ 0. (2.156)

This is one possible statement, in the context of stochastic processes, of the second
law of thermodynamics. Moreover, in the stationary state, d S/dt = 0, and one
necessarily has for all pairs (C,C ′) either Pst(C) = Pst(C ′) or W (C |C ′) = 0,where
Pst(C) is the stationary probability distribution. One then recovers, in a stochastic

http://dx.doi.org/10.1007/978-3-642-23923-6_1
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framework, the fundamental postulate of equilibrium statistical mechanics, stating
that mutually accessible configurations have the same probability.

More generally, for Markovian stochastic processes described by the master equa-
tion (2.147), it is always possible to define a functional S̃({P(C, t)}) that increases
with time, without need for detailed balance or microreversibility properties [1]. The
general definition of S̃ is

S̃(t) = −
∑

C

P(C, t) ln

(
P(C, t)

Pst(C)

)
. (2.157)

However, it turns out that the stationary distribution needs to be known in order to
define S̃, which in many cases restricts the usefulness of the functional S̃.

2.1.4 A Simple Example: The One-Dimensional Random Walk

A simple and illustrative example of stochastic process is the one-dimensional
random walk, where a “particle” moves at random on a discretized line. Let us
consider first the discrete time case: a particle can take only discrete positions
x = . . . ,−2,−1, 0, 1, 2, . . . on a line. Between times t and t + 1, the particle
randomly jumps to one of the two neighboring sites, so that xt+1 = xt + εt , with
εt = ±1 with equal probabilities. The random variables εt and εt ′ , with t �= t ′, are
independent and identically distributed.

The average value and the variance of this process can be derived straightfor-
wardly. We first note that 〈xt+1〉 = 〈xt 〉, so that 〈xt 〉 = 〈x0〉 for all t (the notation
〈. . .〉 denotes an ensemble average, that is an average over a very large number of
samples of the same process; it may thus depend on time). For instance, if the walk
starts with probability 1 from x0 = 0, then all subsequent averages 〈xt 〉 = 0.

Let us now compute the variance of the process, defined as

Var(xt ) = 〈x2
t 〉 − 〈xt 〉2. (2.158)

We assume for simplicity that 〈xt 〉 = 0, so that Var(xt ) = 〈x2
t 〉 (the generalization

to 〈xt 〉 �= 0 is however straightforward). From xt+1 = xt + εt , we get

x2
t+1 = x2

t + 2xtεt + 1, (2.159)

taking into account that ε2
t = 1.Computing the ensemble average of Eq. 2.159 yields

〈x2
t+1〉 = 〈x2

t 〉 + 2〈xt 〉〈εt 〉 + 1, (2.160)

using the fact that xt depends only on εt ′ with t ′ < t, so that xt and εt are independent
random variables. As 〈εt 〉 = 0, it follows that 〈x2

t+1〉 = 〈x2
t 〉 + 1, so that 〈x2

t 〉 =
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〈x2
0 〉 + t. If x0 = 0 with probability 1, one has 〈x2

0 〉 = 0, and 〈x2
t 〉 = t. This means

that the typical position reached by the walk after t steps is of the order of
√

t .
The present random walk problem bears a direct relationship to the central limit

theorem [2, 3]. The central limit theorem states that a sum of independent and identi-
cally distributed (iid) random variables, once conveniently rescaled to have zero mean
and unit variance, converges to a Gaussian distribution. Namely, if y = ∑N

i=1 ui is
a sum of iid random variables of variance σ 2

u , the rescaled variable

z = y − N 〈u〉
σu

√
N

(2.161)

converges to the normal distribution

P(z) = 1√
2π

e−z2/2. (2.162)

As the position xt of the random walk can be expressed as xt = ∑t−1
t ′=0 εt ′, the

distribution of the position of the random walk can be approximated for a large time
t, using the central limit theorem, as

P(x, t) ≈ 1√
2π t

e−x2/2t . (2.163)

Another popular formulation of the random walk problem is the continuous time
dynamics. Labeling with an integer n the sites of the lattice, the transition rate W (n′|n)
from site n to site n′ is given by

W (n′|n) =
{
ν
2 if n′ = n ± 1

0 otherwise
(2.164)

where ν is a characteristic frequency (the inverse of a time scale) of the process. The
master equation reads

d Pn

dt
= −

∑
n′( �=n)

W (n′|n)Pn(t)+
∑

n′( �=n)

W (n|n′)Pn′(t). (2.165)

Replacing the transition rates by their expression given in Eq. 2.164, one finds

d Pn

dt
= −νPn(t)+ ν

2
Pn+1(t)+ ν

2
Pn−1(t). (2.166)

The evolution of the probability distribution Pn(t) can be evaluated from Eq. 2.166,
for instance by integrating it numerically. However, one may be interested in making
analytical predictions in the large time limit, and such a discrete-space equation is
not easy to handle in this case. To this aim, it is thus useful to use a procedure
called “continuous limit”, through which the discrete-space equation (2.166) can be
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approximated by a continuous space equation, namely, a partial differential equation.
To be more specific, let us call a the lattice spacing (which was set above to a = 1).
At large time t � 1/ν, the distribution Pn(t) is expected to vary over spatial scales
much larger than the lattice spacing a; in other words, one has

|Pn+1(t)− Pn(t)|  Pn(t). (2.167)

Plotting Pn(t) as a function of space, it thus appear essentially continuous. We thus
postulate the existence of a distribution p(x,t) of the continuous variable x, such
that the discrete-space distribution can be approximated as Pn(t) ≈ ap(na, t). The
prefactor a is included to ensure a correct normalization,

∑
n Pn(t) = 1. Indeed, one

has for a → 0

∑
n

Pn(t) = a
∑

n

p(na, t) →
∞∫

−∞
p(x, t)dx . (2.168)

For consistency, it is thus necessary to assume that p(x, t) is normalized such that∫ ∞
−∞ p(x, t)dx = 1.

Replacing Pn(t) by ap(na, t) in the master equation (2.166), one obtains

∂p

∂t
(x, t) = −νp(x, t)+ ν

2
p(x + a, t)+ ν

2
p(x − a, t). (2.169)

As a is small, one can expand p(x ± a, t) to second order in a, leading to

p(x ± a, t) = p(x, t)± a
∂p

∂x
(x, t)+ a2

2

∂2 p

∂x2 (x, t)+ O(a3). (2.170)

The linear terms in a appearing in Eq. 2.169 cancel out, so that this equation reduces
to

∂p

∂t
(x, t) = νa2

2

∂2 p

∂x2 (x, t) (2.171)

which is called the diffusion equation. This equation appears in numerous problems
in physics, like the diffusion of heat in a material, or the diffusion of dye in water
for instance. The coefficient 1

2νa2 has to take a finite value D > 0 for the equation
to be well-defined. As the lattice spacing a goes to zero, it is thus necessary that ν
simultaneously goes to infinity, which means that the ‘microscopic’ process appears
very fast on the scale of observation.

Equation 2.171 has several simple solutions of interest. For instance, if the diffus-
ing particle is bound to stay on a segment [−L , L], the long-time limit distribution
is a flat and time-independent distribution over the segment, p(x) = (2L)−1. In
other words, diffusion tends to flatten, or smoothen, the distribution. In contrast,
if the particle can diffuse on the entire line without bound, the distribution p(x, t)
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never reaches a steady-state regime, but rather enters a scaling regime in which the
distribution keeps broadening with time, with a well-define Gaussian shape:

p(x, t) = 1√
4πDt

e−x2/4Dt . (2.172)

Note the analogy with the result obtained from the central limit theorem in the discrete
time case—see Eq. 2.163.

2.2 Langevin and Fokker–Planck Equations

2.2.1 Phenomenological Approach to the Langevin Equation

The above random walk example was quite simple to investigate, but had little explicit
connection with physical systems. We now present another standard example based
on a physical phenomenology. Let us imagine a probe particle immersed in a fluid,
such that the size of the particle is small at the macroscopic scale, but still much
larger than the typical size of the molecules of the fluid. For the sake of simplicity,
we restrict the presentation to a one-dimensional system, but the more realistic three-
dimensional situation would follow the same line.

We choose the mass of the probe particle as the unit mass. The acceleration of the
particle is then governed by the force Fcoll exerted by the collisions with the other
particles:

dv

dt
= Fcoll, (2.173)

where v is the velocity of the probe particle. Since the collisional force is strongly
fluctuating, the basic idea is to decompose Fcoll into an average force which depends
on the velocity, and a purely fluctuating (or noise) part:

Fcoll = 〈Fcoll〉 + ξ(t). (2.174)

Here also, the ensemble average 〈. . .〉 is computed as an average over a large number
of samples of the process, so that Fcoll a priori depends on time. By definition, the
noise ξ(t) has zero mean, 〈ξ(t)〉 = 0. To proceed further, it is necessary to choose a
specific model for both 〈Fcoll〉 and ξ(t). The average force 〈Fcoll〉 can be interpreted
as an effective friction force, which slows down the probe particle; it is thus natural
to choose, as a first approximation, a linear friction force 〈Fcoll〉 = −γ v,with γ > 0
a friction coefficient.

Then, a model of the noise should be given. Beside the property 〈ξ(t)〉 = 0, its two-
time correlation should be specified. Intuitively, one expects collisions occurring at
different times to be essentially uncorrelated, so that one should have 〈ξ(t)ξ(t ′)〉 = 0
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for |t − t ′| � τcol, where τcol is the typical duration of a collision. To emphasize
that ξ(t) decorrelates over a time scale τcol, we write the correlation in the form

〈ξ(t)ξ(t ′)〉 = C

( |t − t ′|
τcol

)
, (2.175)

where the function C(u) converges rapidly to zero when u → ∞.

Altogether, Eq. 2.173 can be rewritten as:

dv

dt
= −γ v + ξ(t). (2.176)

Such an equation is called a linear Langevin equation. For simplicity, we take as
initial condition a fixed value v(0) = v0. We first note, computing the ensemble
average of Eq. 2.176:

d

dt
〈v(t)〉 = −γ 〈v(t)〉, (2.177)

that the ensemble-averaged velocity 〈v(t)〉 obeys the same equation as the non-
averaged velocity, except that noise is now absent. This property is specific to the
linear Langevin equation, and would not be present if we had included a non-linear
dependence on v in the friction force—e.g., 〈Fcoll〉 = −γ v − γ3v

3. The solution of
Eq. 2.177 is a decaying exponential:

〈v(t)〉 = v0e−γ t . (2.178)

More interestingly, the effect of the noise has a deep impact on the evolution
of the variance of the velocity, Var[v(t)] = 〈v(t)2〉 − 〈v(t)〉2. In order to compute
〈v(t)2〉, we first determine the explicit time-dependence of v(t), considering ξ(t) as
an arbitrary given function. Following standard mathematical methods, the general
solution of Eq. 2.176 is given by the sum of the general solution of the homogeneous
equation (i.e., the noiseless equation) and of a particular solution of the full equation.
The general solution of the homogeneous equation is vh(t) = A0e−γ t , where A0
is an arbitrary constant. In order to determine a particular solution, one can use the
so-called “variation of the constant” method, which indicates that such a solution
should be searched in the form vp(t) = A(t)e−γ t , that is, simply replacing the
constant A0 in the solution vh(t) of the homogeneous equation by a function A(t) to
be determined. Inserting vp(t) in Eq. 2.176, we get

d A

dt
e−γ t = ξ(t) (2.179)

whence the solution

A(t) =
t∫

0

eγ t ′ξ(t ′)dt ′ (2.180)
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follows—since we look for a particular solution at this stage, there is no need to add
a constant term to Eq. 2.180. Altogether, one finds for v(t), taking into account the
initial condition v(0) = v0,

v(t) = v0e−γ t + e−γ t

t∫

0

eγ t ′ξ(t ′)dt ′. (2.181)

Computing v(t)2 yields

v(t)2 = v2
0e−2γ t + e−2γ t

⎛
⎝

t∫

0

eγ t ′ξ(t ′)dt ′
⎞
⎠

2

+ 2v0e−2γ t

t∫

0

eγ t ′ξ(t ′)dt ′. (2.182)

Now taking an ensemble average, the last term vanishes because 〈ξ(t)〉 = 0, and
we get

〈v(t)2〉 = v2
0e−2γ t +

〈
e−2γ t

⎛
⎝

t∫

0

eγ t ′ξ(t ′)dt ′
⎞
⎠

2〉
. (2.183)

The first term on the right hand side is precisely 〈v(t)〉2, so that

Var[v(t)] =
〈

e−2γ t

⎛
⎝

t∫

0

eγ t ′ξ(t ′)dt ′
⎞
⎠

2〉
. (2.184)

The square of the integral can be expanded as a product of two integrals, which in
turn can be converted into a double integral:

⎛
⎝

t∫

0

eγ t ′ξ(t ′)dt ′
⎞
⎠

2

=
t∫

0

eγ t ′ξ(t ′)dt ′
t∫

0

eγ t ′′ξ(t ′′)dt ′′ (2.185)

=
t∫

0

dt ′
t∫

0

dt ′′eγ (t ′+t ′′)ξ(t ′)ξ(t ′′) (2.186)

so that Eq. 2.184 eventually turns into

Var[v(t)] = e−2γ t

t∫

0

dt ′
t∫

0

dt ′′eγ (t ′+t ′′)〈ξ(t ′)ξ(t ′′)〉 (2.187)

(we recall that the ensemble average can be interchanged with linear operations like
integrals or derivatives). Using the expression (2.175) of 〈ξ(t ′)ξ(t ′′)〉, we get
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Var[v(t)] = e−2γ t

t∫

0

dt ′
t∫

0

dt ′′eγ (t ′+t ′′)C

( |t ′ − t ′′|
τcol

)
. (2.188)

It is useful to make a change of variable here, replacing t ′′ by the variable y = t ′′ − t ′
in the second integral, which yields

Var[v(t)] = e−2γ t

t∫

0

dt ′e2γ t ′
t−t ′∫

−t ′
dyeγ yC

( |y|
τcol

)
. (2.189)

Considering the limit where τcol  γ−1 (limit of very short collision time), the
exponential term in the integral can be regarded as a constant, eγ y ≈ 1, on the range
of y over which C(|y|/τcol) takes significant values. Note that we have assumed
above a “rapid” decay of C(u) for large u; this assumption can now be made more
precise, as the decay of C(u) has to dominate over the divergence of the term eγ y

for y → ∞. A Gaussian tail C(u) ∼ e−αu2
(α > 0) would for instance be suitable

here.
Coming back to the evaluation of the integral, the above approximation leads to

t−t ′∫

−t ′
dyeγ yC

( |y|
τcol

)
≈

∞∫
−∞

dyC

( |y|
τcol

)
, (2.190)

where we have also approximated the original integral by its extension over the whole
real axis, which is justified by fast decay of C(u). Denoting as � the integral1

� ≡
∞∫

−∞
dyC

( |y|
τcol

)
, (2.191)

we eventually find

Var[v(t)] = e−2γ t�

t∫

0

dt ′e2γ t ′ (2.192)

which is readily integrated into

Var[v(t)] = �

2γ

(
1 − e−2γ t

)
. (2.193)

Hence the variance starts from a zero value at t = 0 (the value v0 at t = 0 is non-
random), and progressively grows until reaching the asymptotic limit �/(2γ ). As

1 Note that from this definition, � is of the order of C(0)τcol. For � to be finite in the limit of a
small τcol, one also needs to assume that C(0) ∝ 1/τcol.
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〈v(t)〉 → 0 when t → ∞, the variance reduces to 〈v2〉 at large time, and this value
can be identified with the equilibrium average. It is known from equilibrium statistical
physics (see Sect. 1.2.4) that 〈 1

2v
2〉eq = 1

2 kB T (equipartition relation), where T is the
temperature of the surrounding liquid –we recall that the mass of the probe particle
was set to unity. Hence equilibrium statistical physics imposes a relation between
the two phenomenologically introduced coefficients � and γ, namely � = 2γ kB T .

For pedagogical purposes, we have used here a correlation 〈ξ(t)ξ(t ′)〉 of the
noise that decays over a time scale τcol, considered to be small with respect to
γ−1. However, in standard presentations of the Langevin equation, use is made of a
mathematical tool called the Dirac distribution δ(x), which can be thought of as a
function being equal to zero for all x �= 0, and being infinite for x = 0, and such
that

∫ ∞
−∞ δ(x)dx = 1. The correlation 〈ξ(t)ξ(t ′)〉 is then usually written as

〈ξ(t)ξ(t ′)〉 = �δ(t − t ′). (2.194)

The main interest of the Dirac distribution is that for an arbitrary function f,

∞∫
−∞

f (x)δ(x − x0)dx = f (x0). (2.195)

In other words, once inserted in an integral, the Dirac distribution precisely picks up
the value of the integrand associated to the value of the variable around which it is
peaked. Hence the Dirac distribution is a tool which gives a mathematical meaning
to the limit τcol → 0, and which thus simplifies formal calculations. In the above
presentation, we chose to keep a small but finite τcol in order to give the reader a better
intuition of the physics behind the calculations, and to avoid possible difficulties
arising from the use of a new mathematical object.

2.2.2 Relation to Random Walks

After having introduced the Langevin equation from a physical perspective (that of a
probe particle immersed in a fluid), it is interesting to present the Langevin equation
from another perspective, that of random walks. To this aim, we come back to the
random walk model introduced in Sect. 2.1.4 and generalize it by including a small
bias in the displacements. We consider a discrete time dynamics with a time step�t,
and we call a the lattice spacing. At time t +�t, the new position xt+�t is chosen
according to xt+�t = xt + εt , where εt is given by

εt =

⎧⎪⎨
⎪⎩

a with prob. ν
2

(
1 + aq(xt )

)
�t

−a with prob. ν
2

(
1 − aq(xt )

)
�t

0 with prob. 1 − ν�t

(2.196)

http://dx.doi.org/10.1007/978-3-642-23923-6_1
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Note that the above dynamical rules can be interpreted as a discretized version of a
continuous time dynamics, as seen from the presence of the time step �t and from
the allowed value εt = 0. Let us define �xt ≡ xt+�t − xt . The dynamical rules
xt+�t = xt + εt can be rewritten as

�xt

�t
= εt

�t
(2.197)

which is the analog of Eq. 2.173, provided that xt is interpreted as a velocity; εt/�t
then plays the role of a random force. Computing the average value of this ‘force’,
we find using Eq. 2.196

〈 εt

�t

〉
= a2νq(xt ). (2.198)

Note that the average is taken over εt , for a fixed value of xt . Let us now consider
the fluctuating part of the ‘force’, and define

ξt = 1

�t
(εt − 〈εt 〉), (2.199)

which is thus the discrete-time analog of ξ(t) introduced in Sect. 2.2.1. We wish to
evaluate the correlation of ξt , given by

〈ξtξt ′ 〉 = 1

(�t)2

〈
(εt − 〈εt 〉)(εt ′ − 〈εt ′ 〉)

〉
. (2.200)

For t �= t ′, 〈ξtξt ′ 〉 is thus equal to zero, as εt and εt ′ are independent random variables.
If t = t ′, one has 〈ξtξt ′ 〉 = Var(εt )/(�t)2.Both cases can be encompassed in a single
expression, introducing (k, k′) through t = k�t and t ′ = k′�t :

〈ξtξt ′ 〉 = 1

(�t)2
Var(εt )δk,k′ (2.201)

where δk,k′ is the Kronecker delta symbol, equal to 1 if k = k′ and to zero otherwise.
Evaluating the variance of εt , we find

Var(εt ) = a2ν�t + O(�t2), (2.202)

so that to leading order in �t,

〈ξtξt ′ 〉 = a2ν
δk,k′

�t
. (2.203)

This expression is the analog of Eq. 2.194, and the role played by τcol in the physical
approach to the Langevin equation is now played by�t. To give further evidence for
this correspondence, we point out that δk,k′/�t can be interpreted as the discretized
version of the Dirac distribution. Indeed, from the definition of the Kronecker delta
symbol, one can write for an arbitrary function f
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∞∑
k′=−∞

�t f (k′�t)
δk,k′

�t
= f (k�t), (2.204)

which is precisely the discretized version of the fundamental property (2.195) of the
Dirac delta function. Hence taking the limit�t → 0 and a → 0, one can reformulate
the above biased random walk problem as a Langevin equation, namely

dx

dt
= Q(x)+ ξ(t) (2.205)

where Q(x) ≡ a2νq(x), and where the noise ξ(t) satisfies

〈ξ(t)〉 = 0, 〈ξ(t)ξ(t ′)〉 = �δ(t − t ′). (2.206)

2.2.3 Fokker–Planck Equation

The Fokker–Planck equation basically describes the evolution of the probability
distribution p(x, t) of a variable x obeying a Langevin equation. It can be derived in
several ways, one of the simplest being to start from the above biased random walk
problem, and to derive the continuous limit of the master equation, following the
same lines as for the derivation of the diffusion equation—see Sect. 2.1.4.

Starting from the biased random walk model of Sect. 2.2.2, we consider the contin-
uous time version of the model, and write the corresponding transition rates W (n′|n),
where n = x/a is a integer labeling the sites of the one-dimensional lattice:

W (n′|n) =
⎧⎨
⎩
ν
2 (1 + aqn) if n′ = n + 1
ν
2 (1 − aqn) if n′ = n − 1
0 otherwise.

(2.207)

To lighten the notations, we have denoted q(na) as qn . Formally, one can write the
transition rates as

W (n′|n) = ν

2
(1 + aqn)δn′, n+1 + ν

2
(1 − aqn)δn′, n−1. (2.208)

The master equation then reads

d Pn

dt
= −νPn(t)+ ν

2
(1 + aqn−1)Pn−1(t)+ ν

2
(1 − aqn+1)Pn+1(t). (2.209)

We now take the continuous limit of this master equation. Writing, as in Sect. 2.1.4,
Pn(t) = ap(na, t), where p(x, t) is a distribution of the continuous variable x
satisfying

∫ ∞
−∞ p(x, t)dx = 1, we have

∂p

∂t
(x, t) = −νp(x, t)+ ν

2
[1+aq(x −a)]p(x −a, t)+ ν

2
[1−aq(x +a)]p(x +a, t).

(2.210)
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Expanding p(x ± a, t) and q(x ± a) to second order in a, we get

p(x ± a, t) = p(x, t)± a
∂p

∂x
(x, t)+ a2

2

∂2 p

∂x2 (x, t)+ O(a2), (2.211)

q(x ± a) = q(x)± aq ′(x)+ a2

2
q ′′(x)+ O(a2). (2.212)

One then finds, keeping only terms up to order a2 in Eq. 2.210:

∂p

∂t
(x, t) = −a2νq(x)

∂p

∂x
− a2νq ′(x)p(x, t)+ a2ν

2

∂2 p

∂x2 . (2.213)

We note that a2ν is related both to the diffusion coefficient D introduced in Sect. 2.1.4,
and to the coefficient � characterizing the correlation of the noise in Sect. 2.2.1:

a2ν = 2D = �. (2.214)

In order to have a well-defined continuous limit, one must here again take the limits
a → 0 and ν → ∞ in such a way that a2ν converges to a finite value. Defining
Q(x) = �q(x), Eq. 2.213 can be rewritten as

∂p

∂t
(x, t) = − ∂

∂x

(
Q(x)p(x, t)

)
+ �

2

∂2 p

∂x2 . (2.215)

This equation is called a Fokker–Planck equation. It describes, from another per-
spective, the same random process as the Langevin equation (2.205).

As an example of application of the Fokker–Planck equation, we come back to
the probe particle studied in Sect. 2.2.1. In this case, the variable x is replaced by
the velocity v, and the bias function is given by Q(v) = −γ v. The Fokker–Planck
equation reads

∂p

∂t
(v, t) = γ

∂

∂v

(
vp(v, t)

)
+ �

2

∂2 p

∂v2 , (2.216)

where the coefficients � and γ are related through � = 2γ kB T . It can be checked
that the solution of this equation, with initial condition p(v, t = 0) = δ(v−v0)—that
is, the initial velocity is non-random and equal to v0—is given by

p(v, t) =
[
2πkB T

(
1 − e−2γ t

)]−1/2
exp

[
− (v − v0e−γ t )2

2kB T (1 − e−2γ t )

]
. (2.217)

This process, namely a random walk confined by a quadratic potential, is also called
Ornstein–Uhlenbeck process.
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2.3 Anomalous Diffusion and Physical Aging

2.3.1 Generalized Central Limit Theorem

We have already briefly discussed in Sect. 2.1.4 the central limit theorem which,
loosely speaking, states that the distribution of a sum of independent and identically
distributed random variables converges to a Gaussian distribution in the limit of a
large number of terms. This theorem actually relies on the important assumption
that the summed random variables have a finite variance. When this condition is not
satisfied, the central limit theorem breaks down.

Let us first examine which type of law can have an infinite variance. We start by
the following simple example of power-law distribution (sometimes called Pareto
distribution in the literature):

p(x) = αxα0
x1+α , x ≥ x0 (2.218)

and p(x) = 0 for x < x0. This distribution is well-defined for all α > 0, in the sense
that

∫ ∞
x0

p(x)dx = 1. The second moment 〈x2〉 reads

〈x2〉 =
∞∫

x0

x2 p(x)dx =
∞∫

x0

αxα0
xα−1 dx . (2.219)

The integral in Eq. 2.219 converges only for α > 2, and diverges for α ≤ 2. Hence,
considering sums of the type SN = ∑N

i=1 xi where the variables xi are distributed
according to the distribution p(x) given in Eq. 2.218, the central limit theorem does
not apply if α ≤ 2, and such sums do not have a Gaussian distribution for large N.
The aim of the Generalized Central Limit Theorem, that we shall discuss below, is
precisely to deal with this type of situations.

However, before presenting the theorem, we would like first to give a flavor, in
intuitive terms, of why the central limit theorem breaks down. Basically, when α is
lowered, the distribution (2.218) becomes broader and broader, with a ‘heavy tail’
that contains a significant part of the probability weight. In other words, very large
values of x have a significant probability to be drawn from the distribution, and such
large values play an essential role in the sum.

We focus on the regime where this effect is the strongest, which corresponds to
α < 1. Indeed, in this range of α, the average value 〈x〉 itself becomes infinite. We
slightly generalize the distribution given in Eq. 2.218 by assuming that only the tail
of the distribution has a power-law behavior, namely

p(x) ∼ c

x1+α , x → ∞. (2.220)

The variable x is defined in the range (x0,∞). Considering N random values xi ,

i = 1, . . . , N drawn from the distribution p(x), we wish to compare the largest value
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in the set {xi } to the sum
∑N

i=1 xi . The typical value of the maximum max(xi ) can
be evaluated as follows. Let us define

Fmax
N (z) ≡ Prob

(
max(x1, . . . , xN ) < z

)
. (2.221)

From the independence property of the xi ’s, one has

Fmax
N (z) =

⎛
⎝

z∫
x0

p(x)dx

⎞
⎠

N

=
(

1 − F̃(z)
)N
, (2.222)

where we have defined the complementary cumulative distribution
F̃(z)≡ ∫ ∞

z p(x) dx. As the typical value of max(x1, . . . , xN ) is large for large N,

we can approximate F̃(z) by its asymptotic behavior at large z:

F̃(z) ∼ c̃

zα
, z → ∞ (2.223)

with c̃ = c/α. It follows that

ln
(

1 − F̃(z)
)N ∼ − c̃N

zα
(2.224)

so that

Fmax
N (z) ∼ e−c̃N/zα . (2.225)

In other words, Fmax
N (z) can be rewritten in the scaling form

Fmax
N (z) ∼ �

( z

N 1/α

)
, (2.226)

with�(u) = e−c̃u−α
,which indicates that the typical value of max(xi ) is of the order

of N 1/α, as Fmax
N (z) increases from 0 to 1 around z ≈ N 1/α.

This observation has important consequences on the sum
∑N

i=1 xi . Intuitively,
one expects the typical value of the sum to be proportional to the number N of terms.
If α > 1, N 1/α  N for large N, so that the largest term remains much smaller than
the sum. In contrast, if α < 1, N 1/α � N , and the assumption that

∑N
i=1 xi is of

the order of N breaks down, as the sum is necessarily greater than its largest term.
A more involved study shows in this case that the sum is of the order of the largest
term itself, namely

N∑
i=1

xi = O(N 1/α). (2.227)

It is customary to say that the largest term ‘dominates’ the sum.
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For 1 < α < 2, the situation is slightly more subtle: the largest term remains
much smaller than the sum, consistently with the finiteness of 〈x〉 which implies∑N

i=1 xi ∼ N 〈x〉. However, the fluctuations of x remain large, as witnessed by the
divergence of the variance of x, which prevents the central limit theorem from being
applicable.

Let us now formulate the Generalized Central Limit Theorem [2, 4]. One con-
siders a set of N independent and identically distributed random variables, drawn
from a distribution p(x) such that

∫ ∞
−∞ x2 p(x)dx is infinite. The cumulative distrib-

ution function is denoted as F(x) ≡ ∫ x
−∞ p(x ′)dx ′. The Generalized Central Limit

Theorem states that the distribution of the rescaled variable

zN = 1

bN

(
N∑

i=1

xi − aN

)
(2.228)

converges, for a suitable choice of the rescaling parameters aN and bN , to the Lévy
distribution L(z;α, β)with 0 < α ≤ 2 and −1 ≤ β ≤ 1, if the following conditions
are satisfied

lim
x→∞

F(−x)

1 − F(x)
= 1 − β

1 + β
(2.229)

∀r > 0, lim
x→∞

1 − F(x)+ F(−x)

1 − F(r x)+ F(−r x)
= rα. (2.230)

The Lévy distribution L(z;α, β) is defined through its characteristic function
(Fourier transform of the probability density)

L̂(k;α, β) ≡
∞∫

−∞
L(z;α, β)e−ikzdz

= exp
[

− |k|α
(

1 + iβ sgn(k) ϕ(k, α)
)]

(2.231)

with

ϕ(k, α) =
{

tan πα
2 if α �= 1

2
π

ln |k| if α = 1
(2.232)

A few remarks are in order here:

• The parameter α has the same interpretation here as in the example above, namely
the tail of the distribution p(x) typically decays with an exponent 1 + α. More
precisely, α is related to the ‘heaviest’ tail: if p(x) behaves as

p(x) ∼ c1

x1+α1
, x → +∞ (2.233)
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p(x) ∼ c2

|x |1+α2
, x → −∞ (2.234)

with 0 < α1, α2 ≤ 2, then α = min(α1, α2).

• The parameter β characterizes the asymmetry of the Lévy distribution: β = 0
corresponds to a symmetric distribution L(−z;α, β) = L(z;α, β), while for β >
0 (resp. β < 0) positive (resp. negative) values of z have a higher probability. In
the above example, one has β = 1 if α1 < α2 and β = −1 if α1 > α2, while if
α1 = α2, β is given by

β = c1 − c2

c1 + c2
. (2.235)

• A “suitable choice of aN and bN ” means that there exists a family of parameters
{aN } and {bN } such that the theorem applies. Though the theorem does not specify
the values of aN and bN , typical choices are aN = 0 (0 < α < 1) or aN =
N 〈x〉 + a0 (1 < α < 2), and bN = b1 N 1/α. Logarithmic corrections may be
needed for α = 1.

• For general values of α and β, the Lévy distribution is known only through its
Fourier transform. However, for a few specific values of the parameters, explicit
expressions of L(z;α, β) are available. For instance, the Gaussian distribution is
recovered for α = 2, whatever the value of β:

L(z; 2, β) = 1√
4π

e−z2/4. (2.236)

Note that due to the parameterization used in Eq. 2.231, the variance of the Gaussian
distribution (2.236) is not equal to one. For α = 1 and β = 0, one gets the Cauchy
distribution:

L(z; 1, 0) = 1

π(1 + z2)
. (2.237)

2.3.2 Anomalous Diffusion

The above results on the statistics of sums of broadly distributed random variables
have important consequences for anomalous diffusion processes. Such processes are
characterized by the fact that the typical displacement of the random walk grows
with time t either faster than t1/2 (superdiffusion) or slower than t1/2 (subdiffusion).

Let us start with the superdiffusive case, which corresponds to a broad distribution
of jump sizes. We consider a discrete time random walk evolving according to xt+1 =
xt +ut ,where ut is drawn from a symmetric distribution p(u). We assume that space
is continuous, and that the variables {ut } are independent and identically distributed
random variables. Accordingly, the position xt is given by
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xt =
t−1∑
t ′=0

ut ′ (2.238)

where we have assumed that x0 = 0. The present problem is thus directly related
to problems of random sums. The symmetry of the distribution p(u) implies that
〈ut 〉 = 0, from which 〈xt 〉 = 0 follows. If 〈u2〉 is finite, one has

〈x2
t 〉 =

∑
t ′, t ′′

〈ut ′ut ′′ 〉 = t〈u2〉 (2.239)

where we have used the fact that the variables ut ′ and ut ′′ are statistically independent.
Hence the mean-square displacement 〈x2

t 〉 is linear in t, which corresponds to a
normal diffusive process. In contrast, if the distribution p(u) is broad, with an infinite
variance, the above reasoning fails, and one needs to use the Generalized Central
Limit Theorem. Considering a distribution p(u) such that

p(u) ∼ c

|u|1+α , u → ±∞ (2.240)

with α < 2, the distribution of the rescaled variable

zt = xt

b1t1/α , (2.241)

where b1 is a suitable scale factor, converges to the Lévy distribution L(z;α, 0).
This means that the typical displacement xtyp after a time t is of the order of t1/α. As
α < 2, one has 1

α
> 1

2 , which indeed corresponds to a superdiffusive process.
On the contrary, subdiffusive walks correspond to a strong local trapping effect,

so that the sojourn times on a given site become broadly distributed, instead of being
fixed to a value�t as the above superdiffusive example. We thus consider a random
walk process in which the time lag τ between two jumps is itself a random variable τ
following a distribution p(τ ),with a tail p(τ ) ∼ c/τ 1+α when τ → ∞ (0 < α < 1).
The walker jumps to one of the two neighboring sites, namely xt+τ = xt +εt ,where
εt = ±1 with equal probabilities.

This case is not a direct application of the Generalized Central Limit Theorem.
However, the behavior of the random walk can be understood through a simple
scaling argument. After N steps, the typical displacement x typ

N of the walker is of the
order of

√
N . To relate N to the actual time t, one can observe that time t is the sum

of the N sojourn times τi at the i th position. Hence,

t =
N∑

i=1

τi = O(N 1/α) (2.242)

where we have used the estimation given in Eq. 2.227. It follows that N = O(tα), so
that x typ

N = O(tα/2), which is slower than normal diffusion (we recall that α < 1).
Note that there also exists rigorous methods to prove the above scaling arguments.
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2.3.3 Aging Dynamics and Trap Models

Although many systems converge to a stationary state on times shorter than or com-
parable to the observation time, it turns out that some systems do not reach a steady
state and keep evolving on time scales that can be very large compared to standard
observation times. This is the case for instance of glasses, which keep aging for years
or more [5]. The same type of mechanism is at play in laser cooling experiments [5].
It is also likely that aging mechanisms, or slow relaxation effects, play a significant
role in many different types of complex systems. Even though the aging mechanisms
may differ from one situation to the other, it is certainly of interest to investigate one
of the simplest known aging phenomena, illustrated by the trap model, which we
describe here within a generic formalism that does not rely on a specific physical
realization.

Let us consider a model system in which to each configuration C is associated a
given lifetime τ.This lifetime τ is the mean time spent in configuration C before mov-
ing to another configuration. As we consider only temporal aspects of the dynamics,
and not other types of observables (energy, magnetization,...), we simply label the
configurations by their lifetime τ. We then choose a simple form for the transition
rate W (τ ′|τ), namely:

W (τ ′|τ) = 1

τ
ψ(τ ′). (2.243)

The function ψ(τ ′) is the a priori probability distribution of the configurations τ ′,
meaning that the selected new configuration is chosen completely at random. From
the normalization condition

∫ ∞
0 dτ ′ψ(τ ′) = 1, we have

∞∫

0

dτ ′W (τ ′|τ) = 1

τ
, (2.244)

so that the characteristic escape time from a configuration with lifetime τ is
precisely τ. For simplicity, we also assume that all lifetimes τ are greater than a
value τ0, that we set to τ0 = 1 in the following. The master equation then reads:

∂P

∂t
(τ, t) = − P(τ, t)

∞∫

1

dτ ′W (τ ′|τ)+
∞∫

1

dτ ′W (τ |τ ′)P(τ ′, t)

= − 1

τ
P(τ, t)+ ψ(τ)

∞∫

1

dτ ′

τ ′ P(τ ′, t). (2.245)

At equilibrium, the probability to be in a configuration with lifetime τ is proportional
to τ and to the a priori distribution ψ(τ) of configurations:
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Peq(τ ) = 1

〈τ 〉τψ(τ), (2.246)

where 〈τ 〉 is defined as

〈τ 〉 =
∞∫

1

dττψ(τ). (2.247)

An interesting situation appears when the distribution ψ(τ) takes a power-law form,
namely

ψ(τ) = α

τ 1+α , τ > 1, α > 0. (2.248)

This is realized for instance in the case of a particle trapped into potential wells of
random depth E, with an exponential distribution

ρ(E) = 1

E0
e−E/E0 . (2.249)

The lifetime τ is given by the standard Arrhenius law

τ = τ0eE/T , (2.250)

where τ0 = 1 is a microscopic time scale. Using the relationψ(τ)|dτ | = ρ(E)|d E |,
one precisely finds the form (2.248) for ψ(τ), with α = T/E0.

In the case α > 1, 〈τ 〉 is finite, but if α ≤ 1 then 〈τ 〉 is infinite, so that the
equilibrium distribution (2.246) does not exist, as it is not normalizable. As a result, no
stationary state can be reached, and the system keeps drifting toward configurations
with larger and larger lifetimes τ.

It is then of interest to determine the time-dependent probability distribution
P(τ, t) in the long-time regime. We postulate the following scaling form

P(τ, t) = 1

t
φ

(τ
t

)
. (2.251)

From the normalization condition of P(τ, t), one has

∞∫

1

dτ P(τ, t) = 1

t

∞∫

1

dτφ
(τ

t

)
= 1, (2.252)

from which one gets, with the change of variable u = τ/t,

∞∫

1/t

duφ(u) = 1. (2.253)
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As φ(u) does not depend explicitly on time t, the above condition cannot be satisfied
for all t. But we are looking for an asymptotic large-t solution, so that we impose
that Eq. 2.253 is satisfied in the infinite t limit, namely

∞∫

0

duφ(u) = 1. (2.254)

As a result, the scaling form (2.251) is an approximate solution that becomes exact
when t → ∞. From Eq. 2.251, one obtains for the time derivative of P(τ, t):

∂P

∂t
= − 1

t2φ
(τ

t

)
− τ

t3φ
′ (τ

t

)
, (2.255)

where φ′ is the derivative of φ. Multiplying Eq. 2.255 by t2, one obtains, with the
notations u = τ/t and v = τ ′/t,

−φ(u)− uφ′(u) = − 1

u
φ(u)+ ψ(ut)t

∞∫

1/t

dv

v
φ(v). (2.256)

Using the specific form (2.248) of ψ(τ), we find

(
1 − 1

u

)
φ(u)+ uφ′(u)+ α

u1+α t−α
∞∫

1/t

dv

v
φ(v) = 0. (2.257)

For the above equation to be well-defined in the infinite t limit in which it is supposed
to be valid, the explicit t-dependence has to cancel out. One thus needs to have

∞∫

1/t

dv

v
φ(v) ∼ tα, t → ∞, (2.258)

which requires that φ(v) has the following asymptotic form at small v:

φ(v) ≈ φ0

vα
, v → 0. (2.259)

Here, φ0 is an arbitrary constant, to be determined later on from the normaliza-
tion condition of φ(u). The master equation is then finally written as the following
differential equation:

(
1 − 1

u

)
φ(u)+ uφ′(u)+ φ0

u1+α = 0. (2.260)

This equation is a linear differential equation, and its solution can be found using
standard techniques. The solution of Eq. 2.260 satisfying the normalization condition
(2.254) reads [6]
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φ(u) = sin(πα)

�(α)

1

u
e−1/u

1/u∫

0

dvvα−1ev, (2.261)

where �(α) = ∫ ∞
0 xα−1e−x dx is the Euler Gamma function. It is rather easy to

show that φ(u) ∼ u−α for u → 0 as expected, and that φ(u) ∼ u−1−α for u → ∞,

leading for P(τ, t) to

P(τ, t) ∝ τψ(τ), τ  t, (2.262)

P(τ, t) ∝ ψ(τ), τ � t. (2.263)

These asymptotic behaviors can be interpreted rather easily: configurations with
lifetimes τ  t have been visited a large number of times, so that they are quasi-
equilibrated; in contrast, configurations with lifetimes τ � t have been visited at
most once, and the precise value of τ is not yet felt by the dynamics (τ appears as
essentially infinite).
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Chapter 3
Statistical Physics of Interacting
Macroscopic “Entities”

Until now, we have mainly considered physical systems, in which elementary entities
are implicitly atoms or molecules. In this case, the laws of motion of the individual
particles are known, and the main difficulty consists in being able to change the scale
of description, going from the scale of particles to the system size.

However, our everydaylife experience tells us that there exist many familiar
systems that are composed of interacting macroscopic “entities”, that thus behave
very differently from atoms or molecules: examples range from sand piles, foams,
bacteria colonies, animal flocks, or road traffic, to quote only a few examples. In
such cases, it is clear that the interacting objects, or individuals, cannot be described
in the same way as molecules, and precise dynamical laws at the individual scale are
most often not known.

The difficulties encountered when trying to apply a statistical physics approach
to such assemblies of macroscopic “entities” are then two-fold. On the one hand, a
model should be given for the dynamics of individual, and it is often not clear how
relevant or reliable such modeling is to describe realistic systems. On the other hand,
reasonable models of individual dynamics usually do not have similar conservation
laws and time-reversal symmetry as the Hamiltonian dynamics of molecular systems.
Hence it is hard, even in specific cases, to build a statistical physics approach from
a postulate similar to the hypothesis of equiprobability of configurations having the
same energy. Interesting attempts in this direction, notably in the context of granular
matter, have however been proposed [1].

In this last part, we illustrate on several examples how different statistical physics
techniques can be devised, in specific cases, to describe assemblies of interacting
agents. In the first example (the dynamics of residential moves in a city, Sect. 3.1),
a mapping can be performed to an effective equilibrium system, yielding inter-
esting insights. In the second example (condensation transition, Sect. 3.2), an explicit
stationary solution of the master equation can be found. In the third example (synchro-
nization transition, Sect. 3.3), a mean-field approach is used to predict the collective
behavior of coupled oscillators. Finally, the last example (collective motion, Sect. 3.4)
is studied through the so-called Boltzmann equation, a generic approach that can be

E. Bertin, A Concise Introduction to the Statistical Physics of Complex Systems, 59
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used when interactions are limited to binary “collisions”, that are extremely localized
in space and time.

3.1 Dynamics of Residential Moves

A standard example of complex system dynamics is the Schelling model which
represents in a schematic way the dynamics of residential moves in a city [2, 3]. The
city is modeled as a checkerboard, divided into cells. Two types of agents (say red
and green) live in the city. They reside in the cells of the checkerboard, with at most
one agent in each cell. Agents characterize their degree of satisfaction regarding their
environment by a utility, which is a given function (the same for all agents) of the
number of agents of the same type in their neighborhood. The neighborhood can be
defined in different ways. One possibility would be to consider the set of nearest
neighbors. However, most studies rather use the Moore neighborhood, that is the
3 × 3 (or sometimes 5 × 5) square surrounding the current cell.

Before moving, an agent chooses at random an empty cell, and evaluates the utility
unew associated to this new location. The agent compares this quantity to the utility
uold of his present location, by computing the utility difference �u = unew − uold.

The move is then accepted with probability 1/(1 + e−�u/T ). Here, T is a parameter
analogous to the temperature in physical systems, that characterizes the influence of
other factors, like the presence of facilities, shops, or friends, that are not explicitly
taken into account in the model, but could bias the decision of moving or not. At low
T, and for a large class of utility functions such that agents have a (possibly slight)
preference for being with agents of the same type, a segregation phenomenon is
observed when simulating the model numerically: two types of domains form, namely
domains with a majority of red agents and domains with a majority of green agents.
Quite surprisingly, this segregation phenomenon seems quite robust, and is also
observed in the case where agents have a marked preference for mixed neighborhood.

The Schelling model in its standard form is very hard to solve analytically, and
solutions are not presently known. The reason for these difficulties is mainly that
the neighborhoods of two neighboring cells overlap, generating complicated corre-
lations in the system. In order to find an analytical solution, a standard strategy is to
define a variant of the model on a specific geometry that avoids these correlations.
This strategy was for instance successful in the Ising model, by introducing a fully
connected version of the model (see Sect. 1.4.2): assuming that all spins interact
together, the phase transition could be obtained analytically in a simple way.

A straightforward application of this idea to the Schelling model a priori seems to
lead to a deadlock. If an agent evaluates his utility by considering the whole city as
his neighborhood, this utility will not change when moving within the city. A more
interesting strategy is then to divide the city into a large number of blocks, so that
agents evaluate their utility within blocks, and move from blocks to blocks. In this
way, correlations between blocks may be suppressed.

http://dx.doi.org/10.1007/978-3-642-23923-6_1


3.1 Dynamics of Residential Moves 61

3.1.1 A Simplified Version of the Schelling Model

In order to implement this strategy, we consider the following model, with a single
type of agent to further simplify the derivation (the case of two different types of
agents can be dealt with in the same way). The segregation phenomenon then corre-
sponds to the formation of domains of different densities. The city is divided into a
large number Q of blocks, each block containing H cells (a cell may be thought of as
representing a flat). We assume that each cell can contain at most one agent, so that the
number nq of agents in a given block q (q = 1, . . . , Q) satisfies nq ≤ H. A micro-
scopic configuration C of the city corresponds to the knowledge of the state (empty
or occupied) of each cell. For each block q, we also introduce the density of agents
ρq = nq/H. Each agent has the same utility function u(ρq), which describes the
degree of satisfaction concerning the density of the block it is living in. The collective
utility is defined as the total utility of all the agents in the city: U (C) = ∑

q nqu(ρq).

A dynamical rule allows the agents to move from one block to another. At each
time step, one picks up at random an agent and a vacant cell, within two different
blocks. The agent moves in that empty cell with probability:

W (C ′|C) = 1

1 + e−�u/T
, (3.264)

where C and C ′ are the configurations before and after the move respectively, and
�u is the variation of utility associated to the proposed move. The parameter T has
the same interpretation as in the standard Schelling model.

It is interesting at this stage to emphasize the difference between the present model
and standard physical approaches. It could seem at first sight that the utility is simply
the equivalent, up to a sign reversal, of the energy in physics. In the present model
however, an economics perspective is adopted, so that the agents are considered as
purely selfish. They take decision only according to their own utility change �u,
and do not consider the potential impact of their decision on the other agents. In
contrast, in physical models, the probability for a particle to move depends on the
energy variation of the whole system, and the effect on the other particles is thus
taken into account from the outset. This has important consequences, as we shall see
below.

3.1.2 Equilibrium Configurations of the Model

We wish to find the stationary probability distribution P(C) of the microscopic config-
urations C. This is not an easy task in general. Yet, if we were able to show that a
detailed balance relation holds in this model, we would straightforwardly get the solu-
tion. Let us assume that the individual cost�u can be written as�u = F(C ′)−F(C),
where F is a function on configuration space. From Eq. 3.264, we find that the
dynamics satisfies a detailed balance relation:
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W (C ′|C)P(C) = W (C |C ′)P(C ′), (3.265)

with a distribution P(C) given by

P(C) = 1

Z
e−F(C)/T . (3.266)

It can be shown that a function F satisfying this condition is given by

F(C) = −
∑

q

nq∑
m=0

u(m/H). (3.267)

To characterize the “segregation” phenomenon, the full statistical information on the
occupation number of each cell is not necessary. Instead, an aggregated description
in terms of densities of the blocks turns out to be more useful. Such a coarse-grained
description is obtained by aggregating all configurations with the same number of
agents in each block. As there are H !/(n!(H − n)!) ways of ordering n agents in H
cells, we obtain the following coarse-grained probability distribution:

P̃({nq}) = 1

Z
exp

(
− H

T

∑
q

f̃ (nq)

)
, (3.268)

where we have introduced the function f̃ :

f̃ (n) = T

H
ln

(
n!(H − n)!

H !
)

− 1

H

nq∑
m=0

u
( m

H

)
. (3.269)

The above expression suggests to consider the limit of large H in order to get a contin-
uous formulation for f̃ . Keeping constant the density of each block
ρq = nq/H (ρq hence becoming a continuous variable) and expanding the factorials
using Stirling’s formula ln n! ≈ n ln n −n, valid for large n, one obtains for H → ∞

1

H
ln

(
nq !(H − nq)!

H !
)

→ ρq ln ρq + (1 − ρq) ln(1 − ρq). (3.270)

Similarly, the last term in the expression of f̃ converges to an integral:

1

H

nq∑
m=0

u
( m

H

)
→

ρq∫

0

u(ρ′)dρ′. (3.271)
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In terms of density ρq , the stationary distributions P̃({nq}) turns into a probability

density �({ρq}) given by (with
∑Q

q=1 ρq = Qρ0 held fixed):

�({ρq}) = K exp

⎛
⎝− H

T

Q∑
q=1

f (ρq)

⎞
⎠ (3.272)

where K is a normalization constant, and where the function f (ρ) is defined as

f (ρ) = Tρ ln ρ + T (1 − ρ) ln(1 − ρ)−
ρ∫

0

u(ρ′)dρ′. (3.273)

The function �({ρq}) = ∑
q f (ρq) may be called a potential, or a large deviation

function. It is also the analogue of the free energy functions used in physics. The
configurations {ρq} that minimize the potential�({ρq}) under the constraint of fixed∑Q

q=1 ρq are the most probable to come up. In the limit H → ∞, these configurations
are the only ones that appear in the stationary state, as the probability of other
configurations vanishes exponentially with H.

3.1.3 Condition for Phase Separation

Focusing on the large H case, the problem gets back to finding the set {ρq} which
minimizes the potential �({ρq}) under the constraint that

∑
q ρq is fixed. We are

interested in knowing whether the stationary state is statistically homogeneous or
inhomogeneous. Following standard physics textbooks methods [4], the homoge-
neous state at density ρ0 is unstable against a phase separation if there exists two
densities ρ1 and ρ2 such that

γ f (ρ1)+ (1 − γ ) f (ρ2) < f (ρ0). (3.274)

The parameter γ (0 < γ < 1) corresponds to the fraction of blocks that would
have a density ρ1 in the diphasic state. This condition simply means that the value
of the potential � is lower for the diphasic state than for the homogeneous state,
so that the diphasic state has a much larger probability to occur. Geometrically,
the inequality (3.274) corresponds to requiring that f (ρ) is a non-convex function
of ρ. The values of ρ1 and ρ2 are obtained by minimizing γ f (ρ′

1)+ (1 − γ ) f (ρ′
2)

over all possible values of ρ′
1 and ρ′

2, with γ determined by the mass conservation
γρ′

1 + (1 − γ )ρ′
2 = ρ0 (see Fig. 3.1).

We now try to translate the convexity condition (3.274) into a condition on the
utility function u(ρ). Phase separation occurs if there is a range of density for which
f (ρ) is concave, namely f ′′(ρ) < 0. We thus compute the second derivative of f,
yielding
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Fig. 3.1 Phase separation:
the system of density ρ0
splits into two phases of
densities ρ1 and ρ2 to lower
its potential

Fig. 3.2 Plot of the function
f (ρ) for different values of
temperature, T = 1, T = 0.2
and T = 0, illustrating that
f (ρ) becomes non-convex
for T < 0.5, leading to a phase
separation
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f ′′(ρ) = T

ρ(1 − ρ)
− u′(ρ). (3.275)

For a given utility function, this condition can be checked explicitly. We note that in
the limit T → 0, f ′′(ρ) = −u′(ρ), so that the homogeneous state is stable if u(ρ)
is a monotonously decreasing function of ρ.

The specific form of the utility function is an input of the model, and it can be
postulated on a phenomenological basis, or rely on a theory of the interactions among
agents. In order to analyze an explicit example of a non-linear utility function, we
consider the asymmetrically peaked utility function defined as:

u(ρ) =
{

2ρ if ρ ≤ 1
2

2(1 − ρ) if ρ > 1
2 .

(3.276)

The expression of f (ρ) can be easily deduced from u(ρ), and is illustrated on Fig. 3.2
for different values of T. To study the stability of the homogeneous phase, we look
at the sign of f ′′(ρ). One has for ρ < 1/2

f ′′(ρ) = T

ρ(1 − ρ)
− 2, (3.277)
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and for ρ > 1/2:

f ′′(ρ) = T

ρ(1 − ρ)
+ 2. (3.278)

It is easy to check that f ′′(ρ) is minimum for ρ → 1
2
−
, the corresponding value

being

lim
ρ→ 1

2
− f ′′(ρ) = 4T − 2. (3.279)

Thus, for T > 1/2, the function f (ρ) is convex on the whole interval 0 < ρ < 1 as
f ′′(ρ) > 0 on this interval, and the homogeneous phase is stable. On the contrary, for
T < 1/2, there exists an interval ρ1 < ρ < ρ2 where f (ρ) is concave ( f ′′(ρ) < 0),
so that in the stationary state, the system is split into two phases of respective densities
ρ1 and ρ2.

The surprising phenomenon here is that a phase separation occurs even in the
case ρ0 = 1/2, although all agents have a significant preference for a half-filled
neighborhood. This can be understood intuitively as follows. At a small, but non-
zero temperature T, small fluctuations of density in the blocks are possible. Let us
assume that we start from the homogeneous state of density ρ0 = 1/2, with some
small fluctuations of this density around the mean value 1/2. If a block has a density
smaller that 1/2, then this block becomes less attracting for the agents living in it. So
some agents will start to move to the most attractive blocks which have exactly the
density 1/2. In doing so, the initial block becomes less and less attractive, thus making
more and more agents leave it. This avalanche process, which is related to the selfish
behavior of the agents, qualitatively explains the instability of the homogeneous state
with density 1/2.

3.2 Condensation Transition

Let us now turn to a different type of situation, involving alternative techniques. While
the above variant of the Schelling model could be dealt with by using a mapping to
an equilibrium system, in many cases such equilibrium methods are not sufficient
to solve the model, due for instance to the presence of fluxes in the system. One
must then resort to other kinds of approaches. Among possible approaches, one can
consider simple enough stochastic models for which an exact solution of the master
equation can be found in the steady state, although detailed balance is not satisfied.
A prominent example of such type of models is the so-called zero-range process
(ZRP) [5], that we describe below. Another well-known example of exactly solv-
able non-equilibrium model is the asymmetric simple exclusion process (ASEP), for
which the derivation of the solution is however much more technical [6].
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3.2.1 Zero Range Process: Definition and Exact Solution

In the ZRP, N particles are randomly placed on the L sites of a one-dimensional lattice
with periodic boundary conditions,1 and can jump from site i to the neighboring site
i + 1 (with the convention L + 1 ≡ 1). Motion is thus biased, which generates a
current of particles along the ring. The interaction between particles is taken into
account through the fact that the probability per unit time to jump from site i to
site i + 1 depends on the current number ni of particles on site i; this probability is
denoted as u(ni ).

A microscopic configuration of the ZRP is given by the set C = {ni } of the
occupation numbers of all sites. The transition rate W (C ′|C) can be written formally
as

W ({n′
i }|{ni }) =

L∑
i=1

u(ni ) δn′
i ,ni −1 δn′

i+1,ni+1+1

∏
j �=i,i+1

δn′
j ,n j

(3.280)

where δn′,n is the Kronecker symbol, equal to 1 if n′ = n, and to 0 otherwise. Using
this form of the transition rate, one can write the corresponding master equation,
which we do not display here to lighten the presentation. It can be shown [5] that the
steady-state distribution can be looked for under a factorized form

P({ni }) = 1

Z

(
L∏

i=1

f (ni )

)
δ∑

j n j ,N (3.281)

where the Kronecker delta symbol accounts for the conservation of the total number
of particles. Inserting this form in the master equation, one obtains the expression of
f (n):

f (n) =
⎧⎨
⎩

∏n
k=1

1

u(k)
if n ≥ 1

1 if n = 0.
(3.282)

Note that the model can also be defined in such a way as to obtain any desired
function f (n) in the steady-state distribution: one simply needs to choose u(n) =
f (n − 1)/ f (n), for n ≥ 1.

3.2.2 Maximal Density and Condensation Phenomenon

One of the interesting properties of the ZRP is the presence of a condensation tran-
sition, where a finite fraction of the total number of particles gather on a single site.

1 We consider here for simplicity the ring geometry, but the ZRP can actually be defined on an
arbitrary graph [7].
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Such a phenomenon appears in the case of a function f (n) decaying as a power-law,
f (n) ∼ A/nα, or equivalently u(n) = 1+α/n+o(1/n).The single-site distribution
can be obtained by considering the rest of the system as a reservoir of particles, a
situation similar to the canonical ensemble at equilibrium. Assuming the system to
be homogeneous, the single-site distribution is then given by

p(n) = c f (n)e−μn (3.283)

where μ is the effective chemical potential of the reservoir. The normalization
constant c is determined by

1

c
=

∞∑
n=0

f (n)e−μn . (3.284)

The convergence of this sum requires that μ > 0 (or μ ≥ 0 if α > 1). The average
density

ρ = 〈n〉 = c
∞∑

n=1

n f (n)e−μn (3.285)

is a decreasing function of μ,which thus reaches its maximum value ρc for μ → 0:

ρc = c
∞∑

n=1

n f (n) ∼ C
∞∑

n=1

A

nα−1 . (3.286)

Hence ρc is infinite ifα ≤ 2, and finite ifα > 2.As a result, ifα > 2, a homogeneous
density of particles cannot exceed a finite value ρc. If, on the contrary, one imposes
a density ρ0 > ρc, by including in the system a number of particles N > Lρc,

the dynamics will necessarily evolve toward a non-homogeneous state. It can be
shown [5] that the resulting state is composed of a “fluid phase”, homogeneous at
density ρc, and a “condensate”, that is a single site containing the remaining number
of particles in the system, namely L(ρ0 − ρc).

Applications of this model range from vibrated granular matter (each site corre-
sponding to a vibrated urn containing grains), to road traffic (sites being sections of
roads), or network dynamics (that is, the dynamics of attachment and detachment
of links on the network) [5]. Note that the ZRP is a very simplified model, so that
mapping it to more realistic situations often implies approximations.

3.3 Synchronization Transition

In the two previous examples, the basic “entities” were effectively modeled as simple
particles, with no internal dynamics. There are however cases where the internal
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dynamics plays a key role. This is the case for instance in several types of biological
processes, from the cellular scale to that of living organisms, which have a periodic
internal activity. In some cases, a population of such dynamical “entities” may enter
a synchronized state, in which all oscillators have essentially the same phase, leading
to global oscillations at the level of the population. A nice example is provided by a
specific species of fireflies living in South Asian forests. During the night, swarms
of such fireflies emit flashes of light in a synchronous way [8]. Many other exam-
ples can also be found in biological, chemical, physical or social systems (like the
synchronization of applause in the latter case). One of the simplest models describing
the synchronization phenomenon is the Kuramoto model, that we describe below.

3.3.1 The Kuramoto Model of Coupled Oscillators

The Kuramoto model [9] consists in a set of N oscillators of phase θ j , evolving
according to the coupled equations

dθ j

dt
= ω j +

N∑
k=1

K jk sin(θk − θ j ), j = 1, . . . , N , (3.287)

where ω j is the natural frequency of oscillator j, and K jk is the coupling constant
between oscillators j and k. Applications of the Kuramoto model range from chemical
oscillators to neural networks, laser arrays or Josephson junctions [8]. We shall here
mostly follow the presentation of this model given in Ref. [8], and refer the reader
to this specialized review for further details.

For reasons that will appear clear below, it is convenient to work in the rotating
frame having the angular velocity � = 1

N

∑N
j=1 ω j . In this frame, the new phase is

given by θ ′
j (t) = θ j (t) − �t and the frequencies are ω′

j = ω j − �. As the phase
difference θ ′

k − θ ′
j in the rotating frame is equal to the phase difference θk − θ j in the

original frame, it turns out that the phases θ ′
j also obey Eq. 3.287, simply replacing

the phases and frequencies by their “primed” counterparts. A synchronized state
is then a state such that θ ′

j (t) is constant in time. In the following, we work in the
rotating frame, and drop the primes to lighten the notations.

The most simple version of the Kuramoto model is obtained by choosing uniform
(mean-field type) couplings Kik = K/N , such that any pair of oscillators has the
same coupling. The 1/N scaling is included so that the sum of all coupling terms does
not trivially dominate the natural frequency in Eq. 3.287. The evolution of θ j is then
given by

dθ j

dt
= ω j + K

N

N∑
k=1

sin(θk − θ j ), j = 1, . . . , N . (3.288)
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In order to characterize the possible synchronization of the oscillators resulting from
the coupling terms, it is convenient to introduce the complex order parameter r eiψ

defined as

r eiψ = 1

N

N∑
k=1

eiθk . (3.289)

In the absence of synchronization, the (mean) value of this order parameter is equal
to zero, while the presence of synchronization is indicated by a value r > 0, the
phase ψ corresponding to the “average” phase of the oscillators. It is convenient to
reformulate Eq. 3.288 as

dθ j

dt
= ω j + Kr sin(ψ − θ j ), j = 1, . . . , N , (3.290)

using the fact that from Eq. 3.289,

r ei(ψ−θ j ) = 1

N

N∑
k=1

ei(θk−θ j ) (3.291)

for any j, and taking the imaginary part of Eq. 3.291.
We shall now focus on the limit of a very large number of coupled oscillators,

N → ∞. In this case, the natural frequencies are described by the density g(ω),
which means that the fraction of oscillators having a natural frequency ω j in the
infinitesimal range [ω,ω + dω] is g(ω)dω. The density g(ω) is normalized as∫ ∞
−∞ g(ω)dω = 1. In addition, the statistics of the phases of oscillators having a given

frequency ω is encoded into the time-dependent probability distribution ρ(θ |ω, t).
This distribution, normalized according to

∫ ∞
−∞ ρ(θ |ω, t)dθ = 1, describes the

statistics of a set of identical oscillators having different initial conditions. Taking
into account Eq. 3.290, the evolution of the distribution ρ(θ |ω, t) is governed by the
equation2

∂ρ

∂t
(θ |ω, t)+ ∂

∂θ

[(
ω + Kr sin(ψ − θ)

)
ρ(θ |ω, t)

]
= 0. (3.292)

In the infinite N limit considered here, the expression (3.289) of the order parameter
reduces to

r eiψ = 〈eiθ 〉 ≡
π∫

−π
dθ

∞∫
−∞

dω eiθρ(θ |ω, t)g(ω). (3.293)

In the following, we look for steady-state solutions and study whether the oscillators
get synchronized or not in this regime, depending on the coupling strength K.

2 This equation can be thought of as a Fokker–Planck equation (see Sect. 2.2.3) in the zero noise
limit.

http://dx.doi.org/10.1007/978-3-642-23923-6_2
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3.3.2 Synchronized Steady State

In order to find the steady-state solution of the model, we need to find for all frequency
ω the time-independent distribution ρ(θ |ω) solution of Eq. 3.292, in which r and
ψ are self-consistently determined from Eq. 3.293. It can easily be checked that
the uniform distribution ρ(θ |ω) = (2π)−1, which leads to r = 0, is a solution of
Eq. 3.292 for all coupling strength K. This solution corresponds to a complete lack
of synchronization between oscillators. While such a situation is likely to be relevant
at low coupling, it is however possible that other solutions exist if the coupling
strength K is strong enough.

To look for such possible solutions, we start from a given value of the order
parameter reiψ with r > 0, determine the solution of Eq. 3.292 for these values of r
and ψ, and then check whether a self-consistent solution of Eq. 3.293 can be found.
We first note that if a stationary solution with global phase ψ exists, then another
steady-state solution of phase ψ + α can be obtained by shifting all the phases θ j

by the same amount α. Hence we can restrict our study to the case ψ = 0, the other
cases being deduced by a simple phase shift.

Under this assumption, the steady-state solution of Eq. 3.292 satisfies

(ω − Kr sin θ) ρ(θ |ω) = C (3.294)

where C is a constant. The condition ρ(θ |ω) ≥ 0 implies that such a solution exists
only if |ω| ≥ Kr. The case |ω| = Kr is further excluded as it would lead to a
non-normalizable distribution ρ(θ |ω). As a result, one finds

ρ(θ |ω) = 1

2π

√
ω2 − (Kr)2

|ω − Kr sin θ | , |ω| > Kr. (3.295)

If |ω| ≤ Kr, the distribution (3.295) is no longer valid. We leave aside the discussion
of the marginal case |ω| = Kr, which plays no role in the following, and focus on
the situation |ω| < Kr. In this case, the evolution equation (3.290) has two fixed
points, solutions of

ω − Kr sin θ = 0. (3.296)

To check the linear stability of a fixed point θ0, we set θ = θ0 + ε, with ε  1.
Expanding Eq. 3.290 to linear order in ε, we get

dε

dt
= −(Kr cos θ0) ε, (3.297)

so that the fixed point θ0 is stable if cos θ0 > 0 and unstable if cos θ0 < 0. Taking
into account Eq. 3.296, the stable fixed point is thus given by

θ0 = sin−1
( ω

Kr

)
. (3.298)
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The distribution ρ(θ |ω) associated to this fixed point solution is a Dirac delta func-
tion, that is an infinitely peaked solution around the fixed point:

ρ(θ |ω) = δ
(
θ − sin−1(ω/Kr)

)
, |ω| < Kr. (3.299)

Now that we have determined ρ(θ |ω) for both |ω| < Kr and |ω| > Kr, we can
self-consistently determine r from Eq. 3.293, setting ψ = 0:

r =
π∫

−π
dθ

Kr∫

−Kr

dω eiθ δ
(
θ − sin−1(ω/Kr)

)
g(ω)

+
√
ω2 − (Kr)2

2π

π∫
−π

dθ
∫

|ω|>Kr

dω
eiθ g(ω)

|ω − Kr sin θ | .
(3.300)

Let us now further assume that g(ω) is an even function, that is for all
ω, g(−ω) = g(ω). Using the symmetries of the sine function, it can be shown that
the second integral in Eq. 3.300 is equal to zero. The first integral can be computed
thanks to the properties of the δ function, namely

b∫
a

dx f (x) δ(x − x0) = f (x0) (3.301)

for any function f, provided that a < x0 < b. One thus finds, exchanging the order
of integration between θ and ω:

r =
Kr∫

−Kr

dω g(ω) ei sin−1(ω/Kr). (3.302)

Using the parity of g(ω), the imaginary part of the integral vanishes, and Eq. 3.302
reduces to

r = 2

Kr∫

0

dω g(ω) cos
(

sin−1(ω/Kr)
)
. (3.303)

Performing the change of variable ω = Kr sin x, one eventually finds the
following self-consistent equation, taking into account the assumption r > 0

π/2∫

0

dx (cos x)2 g(Kr sin x) = 1

2K
. (3.304)
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The solutions of this equation depend on some generic properties of the function
g(ω). In the following, we assume that g(ω) has its maximum at ω = 0, that is
for all ω �= 0, g(ω) < g(0). Denoting as I (r) the integral on the left-hand-side of
Eq. 3.304, we have for all r > 0, I (r) < I (0). Hence if the coupling constant K is
such that (2K )−1 > I (0), Eq. 3.304 has no solution for r, while a solution r > 0
exists for (2K )−1 < I (0). This defines the critical coupling Kc = [2I (0)]−1, above
which a solution r > 0 exists. Expanding g(ω) for small ω as

g(ω) = g(0)− 1

2
|g′′(0)|ω2 + O(ω4), (3.305)

with g′′(0) < 0, one finds after some algebra the following relation, for 0 < K −
Kc  Kc,

r ∼
√

16(K − Kc)

πK 4
c |g′′(0)| . (3.306)

The above result is valid for any regular function g(ω) having its maximum atω = 0.
In the specific case

g(ω) = 1

π

ω0

ω2
0 + ω2

, (3.307)

where ω0 > 0 is a constant, the solution of Eq. 3.304 can be given explicitly for all
K > Kc ≡ 2ω0, namely:

r =
√

1 − 2ω0

K
. (3.308)

Finally, once the steady state solutions have been determined, their stability should
be studied. A detailed stability analysis goes beyond the scope of the present booklet,
but the main result is that the synchronized solution r > 0 obtained for K > Kc

corresponds to the stable state of the system [8].

3.4 Collective Motion of Active Particles

Active “particles” are particles able to sustain a continuous motion thanks to some
external energy input. This concept is used by physicists to describe for instance
the motion of animals or bacteria. A very schematic model of active particle is a
point-like particle with a velocity vector of constant modulus, but arbitrary direction.
When two (or more) active particles interact, they tend to align their velocities.
Such simplified physicists’ models have been extensively studied through numerical
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Fig. 3.3 Schematic
representation of the
dynamics of the model. The
dotted circle on the right
panel represents the
interaction area
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simulations [10–12]. A transition from disordered motion when the density of active
particles is low, to ordered collective motion when the density is high, has been
reported. This transition exhibits some properties similar to that of phase transitions
observed in physical systems. It is also possible to develop analytical approaches,
either by postulating phenomenological equations of motion at the macroscopic scale
(hydrodynamic equations) [13], or by using a Boltzmann approach to derive such
hydrodynamic equations [14, 15]. We present here a brief summary of the results
obtained from the latter approach.

3.4.1 Definition of the Model

We consider self-propelled point-like particles moving on a continuous two-
dimensional space, with a velocity vector v of fixed magnitude v0 (to be chosen
as the velocity unit) in a reference frame. The velocity of the particles is simply
defined by the angle θ between v and a given reference direction. Particles move
in straight line, following their velocity vector, until they experience either a self-
diffusion event (a random scattering), or a binary collision that tends to align the
velocities of the two particles—see Fig. 3.3. Self-diffusion events are defined as
follows: the velocity angle θ of any particle is changed with a probability λ per unit
time to a value θ ′ = θ + η, where η is a Gaussian noise with distribution p0(η) and
variance σ 2

0 .Binary collisions, that are the only interactions between particles, occur
when the distance between two particles becomes less than d0 (in the following, we
set d0 = 1

2 ). The velocity angles θ1 and θ2 of the two particles are then changed
into θ ′

1 = θ + η1 and θ ′
2 = θ + η2, as shown on Fig. 3.3b. In the last expression,

θ = arg(eiθ1 + eiθ2) is the average angle, and η1 and η2 are independent Gaussian
noises with the same distribution p(η) and variance σ 2. Note that these binary colli-
sions are different from the collisions in usual gases, as in this latter case, collisions
are ruled by energy and momentum conservation laws.

3.4.2 Description Through a Boltzmann Equation

A useful mathematical tool to describe statistically the dynamics of the system is
the one-particle phase-space distribution f (r, θ, t), namely the probability to find a



74 3 Statistical Physics of Interacting Macroscopic “Entities”

particle at position r and with a velocity angle θ, at time t. The evolution of this one-
particle phase-space distribution is ruled by the Boltzmann equation, which reads

∂ f

∂t
(r, θ, t)+ e(θ) · ∇ f (r, θ, t) = Idif [ f ] + Icol[ f ]. (3.309)

The functionals Idif [ f ] and Icol[ f ] respectively account for the self-diffusion
and collision phenomena. The vector e(θ) is the unit vector in the direction θ. The
diffusion functional Idif [ f ] is given by

Idif [ f ] = −λ f (r, θ, t)+ λ

π∫
−π

dθ ′
∞∫

−∞
dη p0(η)

×
∞∑

m=−∞
δ(θ ′ + η − θ + 2mπ) f (r, θ ′, t),

(3.310)

where the sum of Dirac delta functions takes into account the periodicity of the
angles. The evaluation of the collision term Icol[ f ] is more subtle. We know that two
particles collide if their distance becomes less than the interaction range d0. In the
frame of particle 1, particle 2 has a velocity v′

2 = e(θ2)−e(θ1).Hence, particles that
collide with particle 1 between t and t+dt are those that lie, at time t, in a rectangle
of length |v′

2| dt and of width 2d0, yielding for the collision functional

Icol[ f ] = − f (r, θ, t)

π∫
−π

dθ ′ |e(θ ′)− e(θ)| f (r, θ ′, t)

+
π∫

−π
dθ1

π∫
−π

dθ2

∞∫
−∞

dη p(η) |e(θ2)− e(θ1)|

× f (r, θ1, t) f (r, θ2, t)
∞∑

m=−∞
δ(θ + η − θ + 2mπ), (3.311)

with θ = arg(eiθ1 + eiθ2). One can check that the uniform angular distribution
f (r, θ, t) = ρ/2π is a solution of Eq. 3.309 for an arbitrary constant density ρ, and
for any noise distributions p0(η) and p(η).

3.4.3 Hydrodynamic Equations and Phase Diagram

In order to deal with more convenient physical quantities, we introduce the hydro-
dynamic density and velocity fields ρ(r, t) and u(r, t):
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ρ(r, t) =
π∫

−π
dθ f (r, θ, t) (3.312)

u(r, t) = 1

ρ(r, t)

π∫
−π

dθ f (r, θ, t) e(θ). (3.313)

Integrating the Boltzmann equation (3.309) over θ, one directly obtains the conti-
nuity equation for ρ(r, t):

∂ρ

∂t
+ ∇ · (ρu) = 0. (3.314)

The operator ∇ is the vectorial differential operator3 of components (∂/∂x, ∂/∂y).
The derivation of a hydrodynamic equation for the velocity field is less straightfor-
ward, and involves an approximation scheme. The reader is referred to Refs. [14, 15]
for more details on the derivation. Introducing for convenience the momentum field
w(r, t) = ρ(r, t)u(r, t), we find the following hydrodynamic equations:

∂w
∂t

+γ (w ·∇)w = −1

2
∇(ρ−κw2)+ (μ− ξw2)w+ν∇2w−κ(∇ ·w)w. (3.316)

It is interesting to give a physical interpretation of the different terms appearing in
this hydrodynamic equation. The first term in the r.h.s. of Eq. 3.316 can be interpreted
as a pressure gradient, considering p = 1

2 (ρ − κw2) as an effective pressure. The
second term accounts for the local relaxation of w, while the third term is analogous
to the standard viscous term appearing in the Navier-Stokes equation describing
usual fluids. Finally, the last term corresponds to a feedback on the flow from the
compressibility effects.

The different coefficients appearing in Eq. 3.316 can be computed explicitly as a
function of the microscopic parameters of the model. They are given by

ν = 1

4

[
λ

(
1 − e−2σ 2

0

)
+ 4

π
ρ

(
14

15
+ 2

3
e−2σ 2

)]−1

, (3.317)

γ = 8ν

π

(
16

15
+ 2e−2σ 2 − e−σ 2/2

)
, (3.318)

3 More explicitly, Eq. 3.314 reads

∂ρ

∂t
+ ∂

∂x
(ρux )+ ∂

∂y
(ρuy) = 0, (3.315)

where (ux , uy) are the components of the vector u.
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Fig. 3.4 Phase diagram of
the model in the
noise-density plane. A
transition line separates the
domains with zero
hydrodynamic velocity,
u = |u| = 0, from the
domain of collective motion,
u > 0. Parameters:
λ = 1, d0 = 0.5, v0 = 1.
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, (3.319)

μ = 4

π
ρ

(
e−σ 2/2 − 2

3

)
− λ

(
1 − e−σ 2

0 /2
)
, (3.320)

ξ = 64ν

π2

(
e−σ 2/2 − 2

5

) (
1

3
+ e−2σ 2

)
. (3.321)

Note that ν, γ and κ are always positive; μ can change sign, and ξ > 0 whenever
μ > 0.

Turning to the study of the spontaneous onset of collective motion in the present
model, we look for possible instabilities of the spatially homogeneous flow, that
is the appearance of a uniform, nonzero, velocity field u (or momentum field w).
Considering a time-dependent, but spatially homogeneous flow, we get

∂w
∂t

= (μ− ξw2)w. (3.322)

Obviously, w = 0 is a solution for arbitrary values of the coefficients. However,
this solution becomes unstable for μ > 0, when a nonzero solution w0 = √

μ/ξ e
appears (e is a unit vector pointing in a arbitrary direction). From the expression
(3.320) of μ, it turns out that μ = 0 corresponds to a threshold value ρt given by

ρt = πλ(1 − e−σ 2
0 /2)

4(e−σ 2/2 − 2
3 )
. (3.323)

The transition line defined by ρt in the plane (ρ, σ ) is plotted on Fig.3.4, in the
case σ0 = σ. The instability is seen to occur at any density, provided the noise
is low enough. The transition line saturates at a value σt = (2 ln 3

2 )
1/2 ≈ 0.90.

Note that if one would instead fix the noise σ0 to a given value, the transition to
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collective motion observed when decreasing σ would disappear below a finite density
ρ0

t = 3
4πλ(1 − e−σ 2

0 /2).

As a conclusion, we have seen that the numerically observed transition to collec-
tive motion in simple models of self-propelled particles can be obtained from
theoretically-derived hydrodynamic equations. We note however that further insta-
bilities leading to more complicated patterns are also observed [11, 14, 15], and
analytical approaches to these instabilities are still an open issue.
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