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Preface

Since 1990s, soft matter physics has become one of the main focuses in the
field of condensed matter physics. Many subjects of soft matter physics have
become active research fields, such as colloidal matter, membrane, gel, sur-
factant, liquid crystals, and polymers etc. Coming into the 21st century, this
trend in soft matter research has continued and amplified, because soft matter
physics and chemistry are the main connections between life science/biology
and nanotechnology/nano-science. As a branch of soft matter physics, soft
matter mechanics was a main source of inspiration in the early development
of soft matter physics in the last century. Two of the most influential theories
in soft matter physics were developed in the field of soft matter mechanics
in 1950s and 1960s: (1) the Eriksen–Lislie theory of liquid crystals, and (2)
the Biot finite deformation theory of gels. In the recent years, there is a sig-
nificant resurgence in the research of soft matter mechanics. Comparing to
the soft matter research in physics, chemistry, and biology, the contemporary
soft matter mechanics research has its own unique character and advantage,
because it brings profound insight and interpretation from the viewpoint of
mechanics, and it utilizes the powerful computational technology in contin-
uum mechanics, e.g. finite element methods, and other related continuum
modeling and simulation methodologies into soft matter modelings and sim-
ulations.

In this book, we have selected nine different works from a group of leading
young researchers working in the field of soft matter mechanics to be pre-
sented here. we have specifically asked the authors to present and introduce
their work in a tutorial fashion, so that they will be suitable for readers from
other disciplines and the first year graduate students. We believe that this
collection of work represents a new trend and a breath of fresh in the soft
matter mechanics research.

In Chapter 1, Chen and his colleagues presented their own research and
a comprehensive review on both molecular modeling as well as continuum
modeling of Deoxyribonucleic acid (DNA). They have not only discussed
the DNA modeling at different scales but also discussed statistical model-
ing and multiscale simulation of mechanical behaviors of DNAs. If you are
interested in modeling biomechanical behaviors DNAs, this is a work that
you definitely cannot miss. In Chapter 2, Sauer presented his latest work
on computational colliodial mechanics, in which a mesoscale coarse grained
continuum framework is developed that is capable of solving many problems
in colliodial physics and chemistry. In particular, this work presents a spe-
cial type of atomistic finite element method, which may be useful for solving
practical problems in applictions of soft matter mechanics and physics, such
as contact and adhesion problems at small scales. In Chapter 3, Zeng, Li,
and Ren presented their latest work on soft matter modeling of stem cells.
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In this work, they have developed a liquid crystal elastomer cell model that
can mimic the mechanical behaviors of the cytoskeleton of a cell as well as
the cell membranes. In recent developments of stem cell research, there have
been many evidences linking the stem cell differentiation mechanism to its
ability to sense the extracellular enviroments. Zeng, Li and Ren’s work pro-
vide a sophasticated and yet convincing soft matter cell model to explain the
mechanotransduction mechanism of the cell. In Chapter 4, Hatami-Marbini
and Picu have provided a detailed account on foundation of mechanical mod-
eling of semiflexible bio-polymers. The mechanics of random fiber networks
have many important applications in soft matter physics, which includes
the study of cellular cytoskeleton and filaments, collagenous connective tis-
sues, battery substrates, and many other bio-polymer systems. In this work,
Hatami-Marbini and Picu have mainly focused on non-affine deformation of
aggregated polymer chains, their long-range correlations, and associated net-
work elasticity. This is a topic that is seldom discussed in the literature, and
authors’ lucid exposition on this subject will become a valuable source in
literatures. From a different angle on a similar subject, Karpov and Grankin
presented their study on the origin of entropic elasticity of polymer chains by
using the Monte–Carlo method in Chapter 5. In this work, the authors are
trying to elucidate the moleular origin of entropic elasticity of polymer chains
through atomistic modeling and statistical simulations. The chapter provides
a good case study on the Monte–Cralo simulation of polymer chains, and the
results presented here have provided both molecular interpretation and the
limitation of the continuum model. Chapter 6 is an overview article by Hong
on continuum modeling of stimuli-responsive gels. The author has spend last
7 or 8 years studying mechanical behaviors of stimuli-responsive gels, begin-
ning from his graduate study at Harvard. Mechanics of gels, in particular,
stimuli-responsive gels, is an important topic of soft matter mechanics, and
the author is one of the leading researchers in this area. This Chapter is a
state-of-the-art overview on the subject, and it is worthy of reading for read-
ers who are interested in gels. In Chapter 7, Zamiri and De have documented
their recent research of micro-mechanics study on three-dimensional (3D)
crystallized protein materials and structures. In nature, proteins are used as
the primary building units of biological structures as they are composed of
20 different amino acids in comparison to 4 nucleotides in DNAs. Current
research has focused on better understanding and developing approaches to
construct 1D, 2D and 3D protein structures and systems such as collagen,
keratin, elastin, tubulin, fibroin, enzyme and bio-membranes for a range of
applications including regenerative medicine, drug delivery and surface engi-
neering. This Chapter not only presents the authors own research results, but
also discussed the latest developments in this research field. In Chapter 8, Li
and Gao have presented a research article on micro-mechanics of open-celled
foams. Foam is regarded as the simplest example of soft matter. In most of
previous studies, research efforts have been focused on liquid-phase foams or
foam rheology. In this article, Li and Gao have examined how the microstruc-
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ture can affect the mechanical properties of the foams in solid phase, which
can be rarely found in the literature. More importantly, such modeling tech-
nique can be applied to analysis of foams in more general states. In Chapter 9,
Liu and Xia have provided a review on capillary adhesion of micro-beams and
plates, which includes some of their own research work in this subject. The
capillary adhesive effect of micro-beams and plates is an important subject,
which is the theoretical foundation to a crucial issue in marking nanoscale
and microscale sensors and nano-electrical and mechanical system (NEMS)
as well as micro-electro-mechanical systems (MEMS). In order to help readers
to understnd this subject, the authors have given us an in-depth discussion
and derivation on capillary adhesion theory of micro-beams and micro-plates,
which is an excellent tutorial article for the beginners.

The above nine chapters have covered several main types of soft matters,
such as polymers and elastomers, membrances, gels, foams, DANs and pro-
teins, etc., but also have discussed the related contact and adhesion theory
as well as modeling techniques. By presenting such a unqiue collection to
readers, especially young readers, we wish that the book can promote soft
matter mechanics research, application, and education.

Shaofan Li and Bohua Sun
April 1st, 2011
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Chapter 1 Atomistic to Continuum Modeling
of DNA Molecules
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Abstract: DNA molecules play significant roles in many biological pro-
cesses. Those biologically important processes involving DNA are accompa-
nied by deformations of the double helix. Thus the mechanics of DNA have
created interest in recent years as a result of the possibility of investigating
DNA at individual molecule level. In this chapter, we first provide literature
review of various mathematical models and computational framework for de-
scribing mechanical behavior of DNA molecules at different length scales, in-
cluding the statistical models, atomistic models, and continuum models. We
then introduce the recent advances in multiscale modeling of DNA molecules
based on wavelet projection coarse graining approach and its homogeniza-
tion into a hyperelastic beam. We show that with proper projection of the
DNA fine scale potential functions and characterization of elasticity constants
based on the coarsened DNA molecules, a continuum model with intrinsic
molecular properties can be constructed for effective modeling of fundamen-
tal mechanical behavior in DNA molecules.

Keywords: DNA molecules, molecular dynamic simulation, wavelet pro-
jection method, hyperelasticity, multiscale method

∗Corresponding author, E-mail: jschen@seas.ucla.edu.



2 Chapter 1 Atomistic to Continuum Modeling of DNA Molecules

1.1 Introduction

The mechanical properties of DNA have very important biological implica-
tion. For example, the bending and twisting rigidities of DNA affect how it
packs and folds into chromosomes, bends upon interactions with proteins and
packs into the confined space within a virus. Many biologically important pro-
cesses involving DNA are accompanied by deformations of the double helix.
Thus the mechanics of DNA have aroused interest in recent years in investi-
gating DNA at individual molecule level. In the past decade, new methods
of manipulating single molecules have offered researchers the opportunity to
measure directly the forces generated in biochemical reactions and to exert
external forces that alter the fate of these reactions.

DNA, or deoxyribonucleic acid, is basically a long relatively rigid polymer
that contains coded instructions in the functioning of all known living organ-
isms; it is the basic building block of life. Most DNAs are located in the cell
nucleus. Hereditary information stored in DNA is encoded in the chemical
language and reproduced in all cells of living organism.

DNA exists in several possible conformations in nature, referred to as
A-DNA, B-DNA, and Z-DNA, whereas the most common DNA structure
under the conditions found in cells is the B-DNA. A typical B-DNA molecule
is a right-handed double helix with about 10.5 base pairs per helical turn,
each of which has a pitch of 3.4 nm as shown in Fig. 1.1, consisting of a wide
major groove and a narrow minor groove.

Fig. 1.1 Molecular structure of the double-stranded DNA molecule: (a) side view,
(b) top view. (color plot at the end of the book)

The basic monomer units of DNA are called nucleotides. The nucleotide
unit consists of a base, a deoxyribose sugar, and a phosphate. There are four
types of bases: adenine (A), thymine (T), guanine (G), and cytosine (C).
Among these four bases, adenine and guanine are purines, which are the larger
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two types of bases found in DNA. Cytosine and thymine are pyrimidines. The
structures of four bases are shown in Fig. 1.2.

Fig. 1.2 Chemical structures of adenine (a), thymine (b), guanine (c), and cytosine
(d).

The deoxyribose sugar of the DNA backbone has five carbon atoms and
three oxygen atoms as shown in Fig. 1.3. The hydroxyl groups on the 5′ and
3′ carbons are linked to the phosphate groups to form the DNA backbone.
DNA chains are made by connecting those nucleotides together via chemical
bonds.

DNA normally is a double-stranded macromolecule. Double-stranded
DNA is simply two chains of single-stranded DNA, positioned so that their
bases can interact with each other. Two polynucleotide chains, held together
by weak thermodynamic forces, form a DNA molecule as shown in Fig. 1.4.
Within the DNA double helix, A forms two hydrogen bonds with T on the
opposite strand, and G forms three hydrogen bonds with C on the opposite
strand. The base pairs dA– dT and dG –dC have the same length and occupy
the same space within a DNA double helix. Therefore the DNA molecule has
a uniform diameter.

Many researchers have performed experimental study of the elastic be-
havior of dsDNA using different mechanical forces, for example, magnetic
beads[1], hydrodynamic drag[2], glass micro-needles[3], atomic force
microscopy[4], and optical traps[5].
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Fig. 1.3 Chemical structures of nucleotide, including (a) nitrogen base (adenine),
(b) sugar, and (c) phosphate group.

Fig. 1.4 Double helical structure of the dsDNA molecule. (color plot at the end
of the book)



1.2 Statistical models for DNAs —polymer elasticity 5

In 1992, Smith et al.[1] chemically attached one end of a single DNA
molecule to a glass surface and another end to a magnetic bead. The bead
was subjected to magnetic and hydrodynamic forces. By observing the equi-
librium positions of the bead, extension versus force curves could be obtained
as shown in Fig. 1.7. This early work opened a route for mechanical study
on individual molecules, followed by Cluzel et al. [3], Smith et al. [5], Leger
and Chatenay [6], and Clausen-Schaumann and Gaub [4] with enhanced ex-
perimental techniques.

These research groups found that with little force, the molecule could
be stretched to its contour length in accordance with predictions from the
Worm Like Chain (WLC) model, which will be introduced in Section 1.2.2
and then extended elastically. By a force of around 65 pN, a plateau appeared
in the force-extension curve, causing the DNA molecule to increase in length
to roughly 1.7 times the normal contour length while roughly maintaining
the same force. Beyond this point, further extension led to a rapid increase
in force and rupturing of the molecule construction as shown in Fig. 1.5.

Fig. 1.5 Typical force-extension behavior of the dsDNA molecule (experimental
data extracted from [5]): (1) entropic elasticity regime, (2) intrinsic elasticity
regime, (3) overstretching transition, and (4) breaking covalent bonds.

1.2 Statistical models for DNAs— polymer elasticity

As discussed in the previous section, under the low-force extension (smaller
than 10 pN), the double-stranded DNA (dsDNA) in solution bends and curves
as a result of thermal fluctuations. Such fluctuations shorten the end-to-end
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distance of the molecule and has the tendency to maximize the disorder
(entropy) of the molecule. The fluctuations are purely entropic and can be
described by the two simple polymer elasticity models: the freely jointed
chain (FJC) model and the worm-like chain (WLC) model. With intermediate
and large forces, the WLC model represents DNA behavior much better than
the FJC model compared with the experimental measurements. However,
modification of these intrinsic elasticity models is needed at the large-force
stretching level due to enthalpic effects. In this section, the fundamentals of
both the FJC and WLC models are reviewed, followed by the presentation
of the extensible WLC model and some modified models accounting for the
overstretching transition and long-range electrostatic interactions.

1.2.1 The freely jointed chain (FJC) model

Flory’s freely jointed chain (FJC) model[7] servers as the basis of many single
polymer theories. This model treats the polymer as a chain of N statistically
independent successive rigid segments, known as Kuhn segments, jointed by
perfectly flexible hinges as depicted in Fig. 1.6. Each segment has a fixed
length b (also called the Kuhn length), which is a measure of chain stiffness,
and its orientation is assumed to be completely uncorrelated in the sense
that the polymer segment has no preferred orientation. In the absence of an
external force, all configurations have equal energy and the chain displays the
characteristics of a random walk. To pull the ends of such a chain away from
each other, external forces need to be applied which lead to the reduction of
the entropy.

Fig. 1.6 The freely jointed chain consists of identical segments of length b, jointed
by perfectly flexible hinges with the external force f applied in the z direction.
The polymer configuration is described by the orientation vectors ti and angle θ
between the ith segment and the applied force direction[7].

In the FJC model, the probability that the segment is oriented along the
angle θ with respect to the applied force is given as[8]

p(θ) = C exp
(
− V

kBT

)
= C exp

(
fb cos θ

kBT

)
(1.1)
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where V = fb cos θ is the potential energy acquired by a segment aligned
along the direction θ with an external force, C is a normalization constant,
and kB and T are the Boltzmann constant (1.381×10−23 J/K) and absolute
temperature, respectively.

The average angular orientation of the polymer can therefore be expressed
by

〈cosθ〉 =

∫ π

0

p(θ) cos θ2π sin θdθ∫ π

0

p(θ)2π sin θdθ

(1.2)

where the bracket denotes the average operation over all the possible orienta-
tions. Carrying out the integration leads to an analytical expression describ-
ing the entropic elastic behavior〈

l

Lcontour

〉
= coth

(
fb

kBT

)
− kBT

fb
≡ L

(
fb

kBT

)
(1.3)

where l and Lcontour = Nb are the end-to-end distance and the contour length
of the polymer, respectively, and L is the Langevin function.

The above expression can be inverted to yield the following force-extension
relation

f =
kBT

b
L −1(〈l/Lcontour〉) (1.4)

where L−1 is the inverse Langevin function. The Langevin and inverse
Langevin functions can be approximated by the following series forms:

L ≈ 1
3
x− 1

45
x3 +

2
945

x5 − 1
4725

x7 + · · · (1.5)

L −1 ≈ 3x +
9
5
x3 +

297
175

x5 +
1539
875

x7 + · · · .

The typical force-extension curve obtained by the FJC model is illustrated
in Fig. 1.7. At low-force extension (l << Lcontour), Eq. (1.4) is reduced to the
linear Hooke-law behavior by

f =
3kBT

b

〈
l

Lcontour

〉
= ksp

〈
l

Lcontour

〉
(1.6)

where ksp = 3kBT/b = 3kBT/2P is the effective Hookian spring constant of
the polymer for the FJC model, and P is the persistence length of the chain
which defines the chain stiffness. The proportionality of the effective spring
constant to the absolute temperature only explains that the elastic behavior
of this model is purely entropic.

On the other hand, with the high stretching force, Eq. (1.3) yields
〈l/Lcontour〉 → 1, which means that all the links of the chain are aligned
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Fig. 1.7 Force versus extension experimental data taken from [1] for λ phage DNA
pulled by magnetic beads in 10 mM Na+ buffer. The data are fit for a WLC model
solved numerically (WLC exact, solid line), using Eq. (1.10) (WLC interpolated,
dash line), both assuming the persistence length P = 53 nm. The FJC curve (dotted-
dash line) assumes b = 2P = 106 nm from Eq. (1.4). The Hooke’s law force curve
(solid line with circle) for the low-force extension is from Eq. (1.6)[1]. (color plot at
the end of the book)

in the same direction as that of the external force. However, the individual
segments are slightly extensible in reality while they are inextensible and
completely straight in this model. As shown in Fig. 1.8, no thermal fluctu-
ations away from the straight line are allowed and the polymer disorder is

Fig. 1.8 Illustration of the lack description of thermal fluctuation for the FJC
model[10]: (a) idealized freely jointed chain, (b) realistic polymer chain.
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restricted at the joints between segments. Therefore, the FJC model can only
describe the behavior of dsDNA in the limit of low forces (< 0.1 pN) and is
not accurate for DNA molecule with intermediate and large forces.

1.2.2 The worm-like chain (WLC) model

A much more precise description of the elastic behavior of dsDNA with low
and intermediate stretching forces is the worm-like chain (WLC) model[1,11,12]

which envisions an isotropic flexible rod that takes bending energy into con-
sideration. This model is also called the Kratky –Porod model[11] whose con-
figuration can be described by the position vector r(S) as a function of the
relaxed-state contour length S. As shown in Fig. 1.9, the local tangent vector
and curvature (t and k, respectively) can be defined by

t(S) =
dr(S)
dS

, k(S) =
dt(S)
dS

=
d2r(S)
dS2

. (1.7)

Then, by the applied external force f , the energy of the WLC model can be
written as follows:

EWLC

kBT
=

P

2

∫ L

0

(
dt
dS

)2

dS − f

∫ L

0

(t · z)2dS (1.8)

where z is the unit vector in the z direction and P is the persistence length
of the chain that is the characteristic length associated with the decay of
tangent-tangent correlations with zero stretching force:

〈t(0) · t(S)〉 = 〈cos θ(S)〉 = exp
(
− S

P

)
(1.9)

Fig. 1.9 Worm-like chain model as a continuum elastic rod subjected to an external
force[11] .

The force-extension relation, which relies on the calculation of the parti-
tion function and the free energy of this inextensible WLC model, must be
obtained numerically. Although there is no analytical formula equivalent to
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Eq. (1.4) for the force-extension curve of a WLC, an interpolation formula
was given by Bustamante et al.[13]:

fP

kBT
= x +

1
4(1− x)2

− 1
4

(1.10)

where x = l/Lcontour defines the end-to-end distance extension. The above in-
terpolation formula approaches to the exact solution as l → 0 or l → Lcontour,
but produces 5%— 10% error in-between. Subsequently, an enhanced inter-
polation formula by Bouchiat et al.[14] based on Eq. (1.10) with 0.1% error
is:

fP

kBT
= x +

1
4(1− x)2

− 1
4

+
7∑

i=2

aix
i (1.11)

with a2 = −0.516 422 8, a3 = −2.737 418, a4 = 16.074 97, a5 = −38.876 07,

a6 = 39.499 44, and a7 = −14.177 18.
The force versus extension relations of a WLC model by both exact nu-

merical calculation and approximate interpolation formula is shown in Fig.
1.7. As observed from Fig. 1.7, the FJC model works well only at small-force
stretching, whereas the WLC model provides a good description of the whole
entropic extension in the limit of 10 pN. Beyond this 10 pN entropic limit,
the DNA molecule displays a linear stretching behavior due to enthalpic ef-
fects. This linear stretching behavior can be described by taking the enthalpic
correction into account and will be discussed in Section 1.2.3.

1.2.3 Beyond the entropic regime

Beyond the entropic regime, i.e., from 5 pN to about 50 pN, there is dis-
tinct deviation from the WCL model and experimental data as shown in
Fig. 1.7. Indeed, the end-to-end distance becomes much longer than its
theoretical B-form DNA contour length. Therefore, with these large forces,
the DNA molecule undergoes a chemical structure change and the behav-
ior is not purely entropic but intrinsic elasticity. From the experimental
observations[5,15], due to the enthalpic effect, the DNA behaves like an elas-
tic stretchable solid with the stretch modulus K0 ranging from 500 pN to
1 500 pN which covers the existing experimental measurements[5,14], and the
force-extension relation can be approximated by using the extensible worm-
like chain model as given in the following equation[15,16]:

x = 1− 1
2

(
kBT

fP

) 1
2

+
f

K0
(1.12)
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where the stretch modulus of a simple elastic rod with radius a is related to
its intrinsic persistence length Pi as follows:

Pi =
K0a

2

4kBT
. (1.13)

If assuming the dsDNA radius a is 1 nm, an intrinsic persistence length of
60 nm is obtained which is in good agreement with the value determined
from the entropic elasticity model[5].

When the applied external force is larger than 65 pN, the dsDNA molecule
undergoes a sudden conformational change from its ordinary B-form to
S-form[5,17]. In this B-to-S overstretching transition, the DNA molecule
stretches to about 1.7 times its canonical B-form contour length within a
narrow range of forces, indicating a high level of cooperativity. Storm and
Nelson[17] proposed a discrete persistent chain (DPC) model, which borrows
the essential ideas from the FJC and WLC models, for describing the large
force stretching and overstretching of DNA molecule. This model takes the
conformational change transition into consieration by using a two-state Ising
model, one state for the B-form DNA and the other for the S-form DNA.
The least-squares fit of the Ising-DPC model to the overstretching experi-
mental data exhibits reasonable agreement in the large force stretching and
overstretching regions.

1.2.4 Long-range electrostatic effects

Ions play significant roles in the bending rigidity of DNA molecule in many
biological processes, for example, DNA replication, RNA transcription,
chromosome formation, and viral packaging. From the experimental
observation[18], the lowering of ionic strength increases the measured per-
sistence length, but reduces the stretch modulus K0. However, as a WLC
type polymer, the increase of the intrinsic persistence length Pi of DNA
molecule will increase the effective stretch modulus K0 as illustrated in Eq.
(1.13) which contradicts the experimental measurements. This is one of the
major limitations of this elastic rod model for describing the behavior of DNA
molecules.

In order to account for the long-range electrostatic interactions due to
ionic effects, the following approximation of the screen Debey – Hückel
potential[19,20] can be introduced into the energy expression of the WLC
model in Eq. (1.8)

Eelec−stat

kBT
=

ν2

εw

∫ L

0

ds

∫ L

0

dS′
exp(−κ|r(S)− r(S′)|)

|r(S)− r(S′)| (1.14)
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where εw = 80 is the dielectric constant of water, κ is the inverse Debey –
Hückel length, and ν is the number of effective electron charges density of
DNA. With this modification, the measured persistence length is consistent
with the above electrostatic contribution for DNA molecules in monovalent
salt (Na+, for example). However, with multivalent ions like MgCl[21]2 , the
measured persistence lengths are about 25 – 30 nm which is shorter than the
intrinsic persistence length calculated from the WLC model, and this model is
no longer appropriate to determining the bending rigidity (persistence length)
of the DNA molecules.

In addition to the analytic approaches based on statistical mechanics to
investigate the bio-mechanical properties of DNA molecules, computational
modeling and simulations provide alternative means to probe the microma-
nipulation of single DNA molecules, such as overstretching of the DNA in-
duced by external forces, to qualitatively examine the interactions between
DNA and proteins, for example, the DNA loop formation due to protein bind-
ing in E. coli, and to quantitatively study the portal force exerted during the
process of DNA being packaged into a virus capsid. The molecular dynam-
ics (MD) method, the continuum modeling approaches, and the multiscale
simulation techniques will be introduced in the subsequent sections.

1.3 Atomistic modeling of DNA molecules

One of the important tools in the study of biological molecules is the method
of molecular dynamics (MD). Molecular dynamics is a numerical technique
for computing the equilibrium and transport characteristics of a many-body
atomic system[22]. It was first introduced by Alder and Wainwright in the
late 1950s[23-25] to study the interactions of hard spheres, and was applied to
studying protein in 1970s[26] and nucleic acids in the mid-1980s[27]. In molec-
ular dynamics, each atom is treated as a point that carries mass, and a force
filed is utilized to describe the interactions between atoms. The motions and
the time evolution of a set of interacting atoms are obtained by integrating
the equations of motion of atoms in time. The thermodynamic statistics are
then extracted from the motion of the atoms. The MD method used for the
nucleic acids simulation will be introduced in this section.

1.3.1 MD basic theory

The molecular dynamics method is based on the classical Newton’s second
law, or the equation of motion. These equations may be written in various
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ways. The most fundamental form is the Lagrangian equation of motion.

d
dt

(
∂L

∂q̇k

)
− ∂L

∂qk
= 0 (1.15)

where qk are the generalized coordinates, and the Lagrangian function L =

K − V. K =
∑ 1

2
miq̇

2
i is the kinetic energy, and V is the potential to be

described in the next section.
If Cartesian coordinates are used, Eq. (1.15) leads to the Newton’s law as

follows:
mir̈i = Fi (1.16)

where mi is the mass of the atoms, ri is the position vector of atom i, and
Fi is the force acting on atom i, which is obtained by the gradient of the
potential with respect to the atomic position:

Fi = −∇riV. (1.17)

One of the most popular time integration methods in MD simulations is
the velocity Verlet method with second order accuracy and energy conserva-
tion:

ri(t + Δt) = ri(t) + vi(t)Δt +
1
2
ai(t)Δt2,

vi

(
t +

1
2
Δt

)
= vi(t) +

1
2
ai(t)Δt,

ai(t + Δt) = − 1
mi

∂V (ri(t + Δt))
∂ri

, (1.18)

vi(t + Δt) = vi

(
t +

1
2
Δt

)
+

1
2
ai(t + Δt)Δt.

1.3.2 Force fields for nucleic acids

The force field is the most important part in the MD simulation, which is used
to describe the interaction between atoms. Although the force field can be
obtained from quantum mechanics calculation[28], due to its computational
intensity, most of the MD simulations are carried out by empirical force fields
or by combined quantum and molecular mechanics[29].

Many empirical force fields have been proposed for the nucleic acid sim-
ulations, such as AMBER, CHARMM, BSM, and OPLS. Two of the most
widely used force fields for bio-molecules are AMBER, which was developed
by Peter Kollman’s group at the University of California, San Francisco[30]



14 Chapter 1 Atomistic to Continuum Modeling of DNA Molecules

and CHARMM at Harvard University[31]. With AMBER, AMBER94 and
AMBER99 are most suitable for the representation of nucleic acids in long-
time simulations[32].

The potential energy function of AMBER is given as

V =
∑

bonds

kb(rij − req)2 +
∑

angles

kθ(θ − θeq)2

+
∑

dihedrals

∑
n

1
2
Kn[1 + cos(nφ − γ)]

+
∑

i

∑
j>i

4εij

[(σij

rij

)12

−
(σij

rij

)6
]

+
∑

i

∑
j>i

qiqj

∈ rij
. (1.19)

The first three terms are used to describe the chemical bond connections and
the last two terms are used to describe the non-bonded interactions including
the van der Waals interaction and Coulomb interaction. The parameter kb is
the bond stretching constant, kθ is the bond angle constant, rij = |ri − rj |
is the distance between atoms i and j, θ is the angle between two adjacent
bonds, req and θeq are the bond equilibrium distance and bond equilibrium
angle, respectively, φ is the torsional angle, γ is the phase angle, Kn is the
torsional rotation force constant, and n is the multiplicity. For the van der
Waals interaction between atom i and atom j, εij is the depth of the van
der Waals well, and σij is the van der Waals diameter. For the Coulomb
interaction, q is the charge of the atom and ∈ is the dielectric constant.

One of the most important advances in the DNA simulations is the ap-
proximation of long-range interactions such as the Coulomb force. The poten-
tial function of the Coulomb interaction is in inverse proportion to the atomic
distance rij . The traditional cut-off long-range interactions could induce ar-
tificial errors, while accurate calculation of all the long-range interactions is
extremely time-consuming. Some methods have been introduced to address
this issue, such as PPPM[33] and PME[34].

1.3.3 Limitations and challenges

The time and size limitations are the most severe restrictions in the applica-
tions of MD. Typical MD simulations can be performed on systems containing
thousands or millions of atoms and for simulation time ranging from a few
picoseconds to hundreds of nanoseconds, too short to follow many important
biological processes. A simulation is reliable when the simulation time is much
longer than the relaxation time of the quantities of interest. For example, the
whole chain relaxation of a single polymer chain may take milliseconds or
even seconds, whereas protein folding may take minutes. However, the pres-
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ence of significantly fast bond vibrations limits the time step in numerical
integration to about one femtosecond. Thus, the corresponding number of
time steps required may exceed hundreds of billions! Explicit/implicit[35] or
entirely implicit models[36] have been proposed with limited success.

Complicated force fields for bio-systems like AMBER[30], CHARMM[31],
and GROMACS[37] are often used, which call for more demanding force eval-
uations. Many alternative strategies and extensions of molecular dynamics,
such as coarsegrained simulations, are being explored to study slow conforma-
tional changes and activated processes. Moreover, many biologically impor-
tant processes involve quantum effects such as changes in chemical bonding,
the presence of important noncovalent intermediates and tunneling of pro-
tons or electrons. Oxygen binding to hemoglobin, catalytic cleavage of the
peptide bond by chymotrypsin and the lightinduced charge transfer in the
photosynthetic reaction center are well-known examples[38]. Classical molec-
ular dynamics cannot be used to model such phenomena, because a quantum
mechanical description is necessary to capture the chemistry of the species
involved.

1.3.4 MD simulation of DNA stretching

In this section, we perform the molecular dynamics simulation of a repre-
sentative segment of DNA molecule. The MD simulation is carried out using
GROMACS (GROningen MAchine for Chemical Simulations)[37] which is a
general purpose serial and parallel molecular dynamics simulation package
originally developed in University of Groningen. GROMACS is primarily de-
signed for computational chemistry and molecular simulations of bio-chemical
molecules such as nucleic acids, proteins, and lipids, which have many bonded
and non-bonded interactions. The time integration algorithm adopted is the
velocity Verlet scheme with a time step of 1 fs. The AMBER99 force field
developed specifically for biomolecules is employed (see also Eq. (1.19)).

The DNA model is composed of regularly repeating base sequences of poly
d(CTCGGCTATTAATAGCCGAG) which contains 1 268 atoms with 20 base
pairs, and the initial conformation of the dsDNA molecule is obtained from
the PDB (Protein Data Bank) 1C7U file, whereas the protein molecule is
removed from the original PDB file for demonstration purpose. After energy
minization of the DNA segment, the DNA molecule is solvated with 2 486
water molecules and neutralized by inserting 43 sodium ions (Na+) and 5
chloride ions (Cl−) in the simulation box with dimensions of 6.5 nm×6.5 nm×
20 nm, which leads to the simulation system of 8 774 atoms in total.

The solvated DNA system is then gradually heated to 310 K and equi-
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librated under NVT ensemble for 100 ps. The van der Waals interactions
are computed with the cutoff distance of 1.1 nm, and the long-range elec-
trostatic forces are calculated more accurately using Particle Mesh Edward
(PME) method[39]. Stretching of the DNA is achieved by imposing a length
restraint between the terminal phosphorus atoms as indicated in Fig. 11a.
We first impose a slight length increase on DNA molecule and then per-
form energy minimization. This allows the DNA to be stretched gradually in
equilibrium. At each incremental step, the potential energy surface and the
force-extension curve are obtained as shown in Fig. 10a and b, respectively.

This force-extension curve can be divided into three distinct regions. In
the region before the force reaches around 65 pN, the behavior is essentially
linear. When the molecule is subjected to forces of about 65 pN, a sudden
increase in the length to stretch ratio of about 1.7 occurs. This overstretch-
ing transition occurs within a narrow range of forces (see the plateau in Fig.
1.10b), suggesting a conformational change of the molecular structure. Fur-
ther stretching of the DNA yields a significant increase in stiffness.

Fig. 1.10 MD simulation results of stretching dsDNA: (a) Energy versus relative
length curve, and (b) Force versus relative length curves (MD simulation in blue
and experiment by Smith in red cross[5]).

Figure 1.11 reveals the progressive deformed configurations of the DNA
during the stretching process. It shows that during the DNA stretching, the
dsDNA is unzipped and leads to significant molecular structural change. A
novel ladder form is observed in the simulation which corresponds to the
overstretching transition region also depicted in Fig. 1.11 and is consistent
with the experimental observations[3,5].

This example demonstrates the ability of MD simulation in modeling
the mechanical and bio-chemical properties of DNAs. Nevertheless, the com-
putational demand becomes unaffordable when applying MD simulation to
biologically meaningful molecular systems involving millions of atoms with
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simulation time up to milliseconds. In the following sections, we will intro-
duce two types of methods to achieve this goal, the coarse-grained models,
continuum models and multiscale simulation methods.

Fig. 1.11 Conformational changes of DNA molecule during the stretching process:
(a) initial, (b) 10 ps, (c) 20 ps, (d) 40 ps, (e) 60 ps. (color plot at the end of the
book)

1.4 Continuum DNA models

Due to the temporal and spatial constraints of MD for DNA modeling, coarse-
grained and continuum models have been proposed to allow the study of
events that occur in milliseconds and at the micron level. We first introduce
a continuum model in this section, and present multiscale coarse-grained ap-
proaches in Section 1.5. In this section, the representation of DNA molecule
using an elastic rod model based on the Kirchhoff’s theory[40] is first intro-
duced, followed by the director field approach[41,42].

1.4.1 Kirchhoff’s elastic Rod model for DNAs

A thin rod can be described by a smooth curve C in the three-dimensional
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space parameterized by the arc-length parameter S. Let the configuration of
a rod be constructed by a continuous family of orthonormal triad {ei(S)} (e1

= normal, e2 = binormal, e3 = tangent) as depicted in Fig. 1.12, with the
origins of the frames located at the line of centroid of the rod Γ t.

Fig. 1.12 Geometric representation of 3D elastic rod model.

The material point at any location of the cross section (on the e1–e2

plane) is defined by means of the triplet {ξα, S}, where S represents the
cross section by the parametric coordinate of this material point location,
and {ξα} determines the position vector of the point away from the centroid
in a cross section.

Consider the general mapping describing the deformation of the rod as

xi = ϕi(X, t) (i = 1, 2, 3) (1.20)

where xi and Xi are the coordinates of a material point in the deformed and
undeformed configurations, respectively, and ϕ is the deformation mapping
function.

Let the centerline of the deformed configuration Γt be parameterized by
S as

Γi : xi = ϕi|ξα=0 = ri(S, t) (α = 1, 2). (1.21)

The deformation of a material point on the cross section (ξ1, ξ2) of the rod
can be expressed by

xi = ϕi = ri(S, t) + ξαeiα(S, t) (1.22)

or in the following vector notation

x = ϕ = r(S, t) + ξ1e1(S, t) + ξ2e2(S, t). (1.23)

The partial derivatives of the orthonormal triad {ei(S)} with respect to the
space S and time t are

e′i(S, t) ≡ ∂ei(S, t)
∂S

= k(S, t) × ei(S, t) = K(S, t) · ei(S, t), (1.24)
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ėi(S, t) ≡ ∂ei(S, t)
∂t

= ω(S, t)× ei(S, t) = W(S, t) · ei(S, t) (1.25)

where the strain vector k(S, t) = ki(S, t)ei contains the centerline curvature
components projected onto the triad basis vector in the cross sections k1(S, t)
and k2(S, t), and the local twist k3(S, t) of the rod. ω(S, t) = ωi(S, t)ei is the
angular velocity vector.

The Kirchhoff’s thin rod theory assumes that the rod is inextensible and
unshearable. Therefore, the tangent to the centerline, r′(S, t), is always par-
allel to e3, i.e.,

r′ =
∂r
∂S

= e3, |r′| = 1. (1.26)

And the strain vector k can be related to the derivatives of the rotations
ϑ = [θ, φ, ψ]T by

k− k0 = [k1 − k0
1 , k2 − k0

2 , ω − ω0]T = [θ′, φ′, ψ′]T (1.27)

where k0
1 , k

0
2 , and ω0 are the initial curvatures and the initial twist of the rod,

respectively.
For an isotropic material with homogeneous circular cross sections, the

moment vector can be written as

M = A1(k1 − k0
1)e1 + A2(k2 − k0

2)e2 + C(ω − ω0)e3 (1.28)

where A1 = EI1 and A2 = EI2 are the bending rigidities along the 1, 2
direction, respectively, C = GJ is the torsional rigidity. E and G are the
Young’s and shear modulus, respectively, I1, I2, and J are the moment of
inertia and the polar moment of inertia, respectively. Equation.(1.28) implies
that the strain energy of the elastic rod has the following quadratic form:

W elastic-Kirchhoff =
1
2

∫ L

0

A1(k1−k0
1)2 +A2(k2−k0

2)2 +C(ω−ω0)2dS (1.29)

and the work done by the external loading can be expressed by

W ext =
∫ L

0

N̄ · (r−R0) + M̄ · (k− k0)dS

+
n∑

i=1

[T(Si) · (k(Si)− k0) + P(Si) · (r(Si)−R0(Si))] (1.30)

where R0 is the position vector of the centerline of the cross section in the un-
deformed configuration, k0 is the intrinsic strain vector describing the initial
geometry of the rod, N̄ and M̄ are distributed force and moment,respectively,
T(Si) and P(Si) are concentrated moment and force, respectively, acting on
the cross section Si. Given appropriate boundary conditions and prescribed
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loading conditions, the configuration of the rod in equilibrium can be obtained
by minimizing the total potential energy Π = W elastic−Kirchhoff −W ext.

Many researchers have successfully applied the above-mentioned Kirch-
hoff’s thin rod theory to the studies of DNA molecules. For example, Wadati
and Tsuru[43] facilitated a combination of topology and energetics for describ-
ing the looped DNA. Westcott et al.[44] employed the elastic rod model to
model DNAs, and included the base sequence effects in each element. Puro-
hit and Nelson[45] investigated the supercoiling effect on the protein-mediated
DNA loops via the elastic rod model, and calculated the DNA contour lengths
with three different levels of DNA supercoiling. Balaeff et al.[18,46,47] used the
elastic rod model to examine the DNA loop formation during the interaction
with the lac repressor protein in E. coli. This model has been applied to mul-
tiscale studies of protein-DNA complexes[48]. The self-contact has also been
considered in modeling the supercoiled DNA molecule[49-51].

1.4.2 Finite element (FE) analysis of DNAs

The finite element method was first introduced in the analysis of DNA su-
percoiling by Yang et al. in 1993 [52] based on the Kirchhoff’s rod theory. In
their approach, in addition to the strain energy and external work defined
in Eqs. (1.29) and (1.30), additional energy W self-contact due to self-contact
constraint in the form of Lagrange multiplier was introduced into the total
potential energy as follows:

Π ∗ =Π −W self-contact

=W elastic-Kirchhoff −W ext −W self-contact (1.31)

where Π ∗ is the modified total potential energy considering self-contact ef-
fects, and

W self-contact =
∫ Sb

Sa

λ(S) · [r(Ld + 2Sb − S)− r(S)− rd(S)]dS (1.32)

where Sa and Sb are the arc-lengths at the beginning and the end of one
contact segment which defines the contact zone, Ld is the arc-length between
two contacting points, λ(S) is the Lagrange multiplier, and rd(S) is the gap
function.

The stationary condition of Eq. (1.32) yields the variational equation:

δΠ ∗ = 0 =
∫ L

0

A1(k1 − k0
1)δk1 + A2(k2 − k0

2)δk2 + C(ω − ω0)δωdS
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−
∫ L

0

N̄ · δr + M̄ · δkdS −
n∑

i=1

[T(Si) · δk(Si) + P(Si) · δr(Si)]

−
∫ Sb

Sa

λ(S) · [δr(Ld + 2Sb − S)− δr(S)]dS

−
∫ Sb

Sa

δλ(S) · [r(Ld + 2Sb − S)− r(S)− rd(S)]dS. (1.33)

Equation.(1.33) is generally nonlinear, so standard linearization with New-
ton –Raphson method is adopted for solving the incremental unknown dis-
placement/rotation vectors and Lagrange multiplier. Consider the finite ele-
ment approximations of the trial and test functions as

δrh =
NEN∑
I=1

NI(S)δrI , Δrh =
NEN∑
I=1

NI(S)ΔrI ,

δϑh =
NEN∑
I=1

N̂I(S)δϑI , Δϑh =
NEN∑
I=1

N̂I(S)ΔϑI , (1.34)

δλh =
NEL∑
I=1

ΛI(S)δλI , , Δλh =
NEL∑
I=1

ΛI(S)ΔλI

where NI(S), N̂I , and ΛI are finite element shape functions associated with
node I for the approximations of the displacement vector, rotation vector,
and Lagrange multiplier, respectively, NEN and NEL are the number of
nodes and Lagrange multiplier nodes in each element, respectively, δrI , δϑI ,
and δλI are admissible variations of displacement, rotation, and Lagrange
multiplier at node I, respectively, and ΔrI , ΔϑI and ΔλI are unknown
incremental field variables of node I. Noting that the shape functions for
the Lagrange multiplier approximation generally differ from those for the
displacement/rotation fields, NI and N̂I , and they should satisfy the LBB
(Ladyshenskaya–Babuška –Brezzi) condition[53-55].

Yang et al.[52] used the above-mentioned finite element formulation to in-
vestigate the equilibrium configurations of supercoiled DNA, and to examine
the effects of base-sequence, anisotropy, and various writhes and twists on
the DNA conformations. White et al.[56,57] studied the DNA loop containing
equallyspaced or non-uniformly distributed intrinsic curvatures, and exam-
ined the effects of salt-dependent stiffness on the DNA conformations. They
found that DNA folds very differently depending on the distribution of the
curvatures and on the point at which the change in the linking number ΔLk

is introduced.
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1.4.3 Director field method for modeling of DNA viral packaging

The director field method has been proposed by using the local direction and
density[41] for describing the motion of DNAs. In this section, the director
field and its computational framework as well as the application to modeling
of DNA packaging in bacterial viruses are presented[41,42].

In the director field approach, the geometry of the DNA is represented
by a vector field m(x) with the following properties: (a) |m(x)| gives the
DNA-length per unit volume, and (b) t = m(x)/|m(x)| defines the unit
vector tangent to DNA (Fig. 1.13). The length of DNA contained within any
volume Ω is

L(Ω) =
∫
Ω

|m|dV. (1.35)

Fig. 1.13 Geometric representation of a DNA by the director field[41].

For a given surface S with unit normal n, the number of signed crossings
through S (flux) can be expressed by

N(S) =
∫

S

m · ndS. (1.36)

The crossing is defined as being positive as the DNA pierces S in the direction
of n, and negative otherwise. For any closed surface S, conservation of mass
states that ∫

S

m · ndS = 0. (1.37)

Consider m to be differentiable, applying divergence operation of Eq. (1.37)
yields

∇ ·m = 0. (1.38)

This states that the director field is divergence-free. Further, the Serret-
Frenet differential geometry of the local unit tangent t, the normal vector n,
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and the binormal vector b are

t′ = κn, n′ = τb− κt, b′ = −τn (1.39)

where κ and τ are the curvature and torsion, respectively, and a prime denotes
the arc-length derivative in the direction of t, i.e., f ′ = t · ∇f . Accordingly,
the curvature and torsion are obtained as

κ2 = |t′|2, (1.40)

τ2 = |n′ + κt|2 = |n′|2 − κ2 =
t′′ ·P(t′) · t′′

|t′|2 − |t′|2 (1.41)

where P(a) ≡ I3 − a⊗ a/|a|2 is the orthogonal projection in the direction of
a vector a ∈ R3. From the above, the curvature and torsion of a DNA can be
computed in terms of the director field m.

DNA conformations are energy minimizers where energy due to bend-
ing and torsion, electrostatic interactions, and entropic effect is considered.
Riemer and Bloomfield[58] ignored the entropic effect and considered only the
strain energy of an inextensible rod and electrostatic interactions as

W
(
m,∇m,∇∇m

)
=

(
A

2
κ2 +

B

2
τ2

)
|m| (1.42)

where A and B are the bending and torsional stiffnesses, respectively, κ is
the local curvature, and τ is the local torsion given in Eq. (1.40). In entropic
regime as introduced in Section 1.1, the bending and torsional stiffnesses of
DNA are related to the persistence lengths as A = akBT and B = bkBT ,
respectively, where T is the absolute temperature, kB is Boltzmann’s con-
stant, a ≈ 50 nm is the bend persistence length, and b ≈ 85 nm is the twist
persistence length[1].

The DNA molecules are highly charged polymers, with one negative charge
for every 0.17 nm of its length. According to the experimental work by
Parsegian et al. using the osmotic pressure technique[59,60], the electrostatic
energy φ per unit volume of hexagonally packed DNA is related to the applied
pressure P and helix spacing d as follows:

P (d) = φ0e
−(d−d0)/c−1, (1.43)

ea(d) = e0 +
√

3
∫ d0

d

P (ξ)ξdξ, (1.44)

φ(u) = uea

(
d =

√
2/
√

3/u

)
(1.45)

= φ0 − μ0u + (μ0 + μ∞)(u +
√

u∞u)e−
√

u∞/u

where u = |m| = 2/(
√

3d2) is the DNA density, ea(d) is the interaction energy
per unit length, e0 = −0.8 kBT nm−1, φ0 = 0.1 kBT nm−3, d0 = 2.8 nm,
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c = 0.15 nm, μ0 = 1.56 kBT nm−1, μ∞ = 4.98 × 105 kBT nm−1, and u∞ =
51.3 nm−2 are experimentally measured constants.

Hence, the total free energy of the DNA is expressed as

E(m) =
∫
Ω

[W (m,∇m,∇∇m) + φ(|m|)]dV. (1.46)

The constrained minimization problem of DNA packaging in a confined capsid
Ω is therefore stated as

inf E(m) (1.47)

subject to: ∇ ·m = 0 in Ω , (1.48)

m · n = 0 on ∂Ω , (1.49)∫
Ω

|m|dV = L (1.50)

where n is the outward unit normal to ∂Ω .
The director field method has been applied to the studies of the confor-

mation of packaged DNA in a confined capsid by Klug et al.[41,42]. Their
numerical results demonstrated good agreement with the experimental mea-
surements[9], and showed that the inverse spool motif is the lowest energy
conformation in all regions of the virus capsid.

1.5 Multiscale homogenization for simulation of DNA
molecules

In this section, we introduce the multiscale homogenization techniques for
the DNA molecules. A coarse-grained DNA model based on the multiscale
wavelet projection method has been proposed by Chen et al.[61-63]. A contin-
uum decription of DNA molecules can be constructed using a coarse-grained
DNA within the hyperelastic beam framework as a second-level homogeniza-
tion.

1.5.1 Basics of multiscale wavelet projection method

Wavelet-based multiscale homogenization has been applied to problems with
high heterogenieties[61,62,64,65] as well as the coarse-grained DNA model[63].
In this subsection, we present the fundamentals of the wavelet basis functions
and the associated decomposition and construction techniques[63,64,66].

Let us consider the multi-resolution analysis by a sequence of nested
subspaces, · · · ⊂ V−1 ⊂ V0 ⊂ V1 · · · ⊂ L2(R), where

⋃
j∈Z

Vj = L2(R) and
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⋂
j∈Z

Vj = ∅. Each subspace of scale j is spanned by a set of the scaling func-

tions ϕj,k(x)

Vj =
{

ϕj,k(x)|ϕj,k(x) = 2
j
2 ϕ

(
2jx− k

)
, k ∈ Z

}
(1.51)

where they obey the dilation and translation laws

ϕ(x) ∈ Vj ⇔ ϕ(2x) ∈ Vj+1, ∀j ∈ Z (dilation), (1.52)

ϕ(x) ∈ V0 ⇔ ϕ(x− n) ∈ V0, ∀n ∈ Z (translation). (1.53)

Then, a mutually orthogonal complement of Vj , a subspace Wj , is defined so
that

Vj+1 = Vj ⊕Wj , ∀j ∈ Z (1.54)

where ⊕ is a direct sum. The subspace Wj is spanned by a set of wavelet
basis functions ψj,k(x) as

Wj =
{
ψj,k(x)|ψj,k(x) = 2

j
2 ψ

(
2jx− k

)
, k ∈ Z

}
(1.55)

where ψ(x) is the mother wavelet, and ⊕j∈ZWj = L2(R). The wavelet func-
tion ψ(x) is chosen to be orthogonal to the scaling function ϕ(x) with respect
to translation. A function f(x) can be approximated by using the scaling
functions at scale j as the basis:

Pjf =
∞∑

k=−∞
ckϕj,k (1.56)

where ck’s are coefficients and Pj is the operator which projects function f(x)
onto the subspace Vj spanned by ϕj,k(x).

The two-scale relation for the scaling functions can be written as

ϕ(x) =
√

2
∞∑

n=−∞
dnϕ(2x− n). (1.57)

By imposing the orthogonality conditions between scaling and wavelet func-
tions in the frequency domain by means of Fourier transform, the orthogonal
wavelet function can be obtained as follows:

ψ(x) =
√

2
∞∑

n=−∞
(−1)n−1d−n−1ϕ(2x− n) (1.58)

where dn is the wavelet coefficient determined by applying the orthogonality
conditions to the scaling functions with respect to the translation parameter,
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i.e.,
∑

anan+2m = 2δm0 (n ∈ Z). Note that Eqs. (1.57) and (1.58) are the
algorithm for the construction of the scaling and wavelet functions at the
coarser scale in terms of the scaling functions at the finer scale. On the
other hand, the decomposition relation, which allows the decomposition of
the scaling function at the finer scale in terms of the scaling and wavelet
functions at the coarser scale, is given as:

ϕ(2x− l) =
∞∑

k=−∞
dl−2kϕ(x − k) +

∞∑
k=−∞

bl−2kψ(x− k), l ∈ Z. (1.59)

Orthogonal scaling functions can be constructed by choosing a candidate
function ϕ∗(x) so that ϕ∗(x) and its Fourier transform have a reasonable de-

cay and finite support, and
∫

ϕ∗(x)dx �= 0. Moreover, the candidate function

should satisfy the two-scale relation

ϕ∗(x) =
∑

n

cnϕ∗(2x− n), n ∈ Z. (1.60)

For the linear scaling function candidate, ϕ∗(x) is a hat function with the
coefficients cn’s summarized in Table 1.5 in Appendix, and the correspond-
ing scaling function is called the linear spline function. Figure 1.14 shows
the scaling and wavelet functions obtained from the hat candidate function
using Eqs. (1.57) and (1.58). The wavelet coefficients dn and the decompo-
sition coefficients bn for the linear spline function are shown in Table 1.6 in
Appendix.

Fig. 1.14 (a) Linear orthogonal scaling function ϕ(x), and (b) corresponding
wavelet function ψ(x).

The multiscale wavelet transformation is defined for transforming func-
tions at various scales with the following transformation operator wj :

wj : Vj+1 → Vj ⊕Wj (1.61)
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where wj maps the basis
{
ϕj+1,k

}
at scale j + 1 onto

{
ϕj,k

}
and

{
ψj,k

}
at scale j. Then, the projection matrices, Pj and Qj , associated with wj

operator are constructed so that⎧⎨⎩Pj : Vj+1 → Vj ,

Qj : Vj+1 →Wj .
(1.62)

These scaling and wavelet functions at different scales are used as the hierar-
chical basis for wavelet-based multiscale homogenization which are discussed
in detail in the next subsection. For scaling and wavelet functions constructed
based on the hat candidate function, the discrete forms of projection matrices
Pj and Qj are

Pj =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

dj−2k 0 0 · · ·
dj−2(k+1) dj+1−2(k+1) dj+2−2(k+1) · · ·

...
...

...

0 0 0 · · ·
0 0 0 · · ·

0 0 0

0 0 0
...

...
...

dj+m−2−2(k+n−1) dj+m−1−2(k+n−1) dj+m−2(k+n−1)

0 0 dj+m−2(k+n)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (1.63)

Qj =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

bj−2k 0 0 · · ·
bj−2(k+1) bj+1−2(k+1) bj+2−2(k+1) · · ·

...
...

...

0 0 0 · · ·
0 0 0 · · ·

0 0 0

0 0 0
...

...
...

bj+m−2−2(k+n−1) bj+m−1−2(k+n−1) bj+m−2(k+n−1)

0 0 bj+m−2(k+n)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (1.64)
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1.5.2 First-level homogenization—wavelet-based coarse-grained
DNA model

The full atomistic simulation is practically unaffordable for biological pro-
cesses with large and complex systems, such as DNA translocation, DNA
replication, DNA-protein interaction, and chromosome formation. In the
first-level homogenization[63], we are aiming at constructing a coarse-grained
model for the DNA molecule based on its fine-scale molecular structure and
properties. The coarse-grained DNA model will then be used to formulate
a hyperelastic beam model for continuum modeling of the DNA (also see
Section 1.5.3).

1.5.2.1 Mapping full atomistic model to coarse-grained DNA model

The approach for coarse-graining takes into account the dimension and com-
plexity of the molecular structure of DNA as well as the properties of interest.
The coarse-grained procedure[63]first defines the coarse-grained superatoms
(also called beads). Each superatom in the coarse-grained DNA model is as-
sumed to represent a group of atoms. Figure 1.15 illustrates the six building
blocks, four nitrogen bases, phosphate group and sugar, for construction of
the coarse-grained DNA model.

Fig. 1.15 Basic building blocks of ds-DNA.

For the coarse-grained model capable of representing the connectivity of
the DNA molecular structure, we choose the center of mass of each build-
ing block as the position of the coarse-grained superatom as shown in Fig.
1.16. The essential step is to establish the interaction potential or force field
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among these superatoms, which is a function of superatom positions r. The
interactions can be expressed in terms of the sum of valence and non-bonded
potentials as follows:

Ū(r) = Ūb(r) + Ūnb(r), (1.65)

Ūb(r) =
∑

bonds

k̄b

(
rij − r̄eq

ij

)2 +
∑

angles

k̄θ

(
θijk − θ̄eq

ijk

)2
, (1.66)

Ūnb(r) =
∑

i

∑
j

{
4ε̄ij

[(
σ̄ij

rij

)12

−
(

σ̄ij

rij

)6]
+

qiqj

∈ rij

}
(1.67)

where Ūb and Ūnb denotes the effective (coarse-grained) bonded and non-
bonded potential functions, respectively, and other parameters with super-
posed bars are the parameters of coarse-grained potentials. These parameters
of the effective force fields for the coarse-grained DNA model are character-
ized by performing the multiscale wavelet projection onto the fine-scale so-
lutoins obtained from the full MD simulation. The details will be illustrated
in the following sections. Here, we consider two-body interaction between
two connected superatoms and three-body interaction expressed in terms
of bending angle between three consecutive connected superatoms for the
valence interaction. We also assume the coarse-grained two-body and three-
body potential functions to be harmonic. Moreover, the fine-scale atomistic
simulation reveals that the probability distributions of torsional angle are
almost flat, suggesting that the corresponding forces due to four-body inter-
actions are negligible.

Fig. 1.16 Schematic of mapping full atomistic DNA model to a coarse-grained
model: (a) building blocks of DNA molecule, (b) DNA molecular structure, and (c)
coarse-grained DNA model. (color plot at the end of the book)
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1.5.2.2 Homogenization of potential function from molecular dy-
namics simulation

The potential functions of the coarse-grained DNA model are constructed in
such a way that the coarse-grained molecule is able to represent the same
configuration space as the atomistic model. To determine the effective force
fields of the coarse-grained model, we first perform a full atomistic simulation
of DNA stretching using NV T ensemble, i.e., the number of particles N , the
volume of the system V , and the temperature T are kept constant during
the MD simulation. The Nose-Hoover method[67,68] is applied to keep the
temperature of the system at 300 K, while the long-range electrostatic in-
teractions are evaluated using Ewald sum technique[69]. The Leapfrog Verlet
algorithm is used for numerical time integration of the equations of motion
with time step size of 1 fs.

The positions of the superatoms are defined as the center of mass of
each building block as mentioned in the previous section. Then, the time
history of relative distance rij between superatoms is computed based on
the trajectory obtained from the full MD simulation. Next, the probability
distributions of the distance can be obtained via the histograms of distance
between centers of mass in each building block. By the Boltzmann’s inversion,
the probability distributions of distance functions are used to determine the
fine-scale interaction potential U(d) in terms of superatom distance d as
follows:

P (d) = A exp
(−U(d)

kBT

)
(1.68)

where A is the constant to be determined, kB is Boltzmann’s constant, T is
the absolute temperature, d is the distance between two bonded superatoms,
and U is the fine-scale bond stretching potential. Next, we perform the mul-
tiscale wavelet projection (introduced in Section 1.5.1) to homogenize the
fine-scale potential function for yielding the effective potential for the coarse-
grained model following Eqs. (1.62). As such, we characterize the effective
bond constant k̄b and the effective equilibrium distance r̄eq

ij using the effec-
tive bond potential. Same procedures, which are summarized in Table 1.1,
are used to characterize the parameters of the effective bond angle potential.

However, the effective non-bonded potential is more difficult to determine
since the distance distribution functions cannot be directly related to the
potential functions due to many-body effects. Fukunaga et al.[70] proposed
the following equation to determine the coarse-grained non-bonded potential
as a function of superatom distance for a polymer system:

Unb(R) = −kBT ln(P (R))H(R∗−R)−kBT ln
〈

exp
(−UAA

nb (R)
kBT

)〉
R

(1.69)

where R is the distance between two superatoms which are not directly
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bonded, H(R∗−R) is the Heavside unit step function, R∗ is a cutoff distance,
which is selected at the position of the first peak of P (R) in this study. The
term UAA

nb (R) denotes the non-bonded potential energy between one atom
in a superatom and all the atoms in another superatom where the distance
between the two superatoms is R, and 〈· · · 〉R is an average operator acting
on superatoms with distance R.

Table 1.1 Procedure for characterization of effective force fields for the coarse-
grained model based on the multiscale wavelet projection method

Step 1 Perform a full MD simulation of stretching DNA in the NV T ensemble

Step 2 Obtain the probability distributions of distance and angle functions
based on the fine-scale simulation results

Step 3 Relate probability distributions to the fine-scale interatomic potentials
using Eq. (1.68)

Step 4 Homogenize the fine-scale potentials using the multiscale wavelet projec-
tion method and obtain the effective force fields

Step 5 Characterize parameters of effective force field

Step 6 Repeat Steps 1 – 5 for different combinations of bonds, bond angles, and
non-bonded pairs

It has been shown by Fukunaga et al.[70] that for polymers, when two
segments are located in short distance but are not directly connected, the
behavior of the two segments is still strongly correlated as if they are bonded
together. Therefore, this part of contribution to the non-bonded potential
could be properly described using the similar form as that of the bonded
potential as given in the first term on the right-hand side of Eq. (1.65). Note
that this term represents the strong repulsive interaction for segments in close
distance. On the other hand, at a long distance, due to many-body effects,
the potential is described in the second term on the right-hand side of Eq.
(1.69), which accounts for the attractive interaction.

We use P, S, A, G, C, and T to represent the superatoms of phosphate
group, sugar, adenine, guanine, cytosine, and thymine, respectively. In this
study, we consider the DNA molecule in pure G –C sequence with 1 260 atoms
in the original full atomistic model, while the coarse-grained DNA model
contains only 120 superatoms as depicted in Fig. 1.17. In Sections.1.5.2.3 –
1.5.2.4, we demonstrate the detail of characterization of the effective bond
stretching, effective bond angle, and effective non-bonded potentials as well
as the numerical results.

1.5.2.3 Characterization of effective bond stretching potential

The fine-scale atomistic SC – C bond distribution at 300 K and the corre-
sponding fine-scale potential function using Ub(d) = −kBT ln Pb(d) are pre-
sented in Fig. 1.18a and b, respectively. Figure 1.19 portrays the effective
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Fig. 1.17 Coarse-graining of DNA molecule: (a) schematic representation of DNA
containing pure G– C base pairs, (b) fine-scale atomistic model, and (c) correspond-
ing coarse-grained model. (color plot at the end of the book)

bond potential by performing multiscale wavelet projection of the finest bond
potential. First, the fine-scale potential is mapped onto the scaling function
space with domain [0,1] and discretized by 2j grid points. To capture the
finest scale potential, the finest grid associated with the finest scale of the
solution is set at j = 7. Using the wavelet projection operators Pj and Qj

defined in Eqs. (1.62) – (1.64), the fine- and coarse-scale components of po-
tential at scale j are extracted. At each scale, fine-scale components which

Fig. 1.18 (a) Probability distribution of bond distance for SC–C bond, and (b)
fine-scale bond potential obtained from the Boltzmann inversion of the probability
distribution function.
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Fig. 1.19 Effective bond potential based on multiscale wavelet projection of fine-
scale bond potential function.

represent the high frequency responses are eliminated and only the coarse-
scale components are kept. By repeating this projection process from j = 7
to j = 3, an effective bond potential between the coarse-grained superatoms
SC – C is obtained as shown in Fig. 1.19. The effective bond constant and
equilibrium distance are determined based on this projected (homogenized)
potential function for SC –C bond. The coarse-grained parameters of each
bond in the DNA segment obtained from the proposed method are summa-
rized in Table 1.2. It can be seen that the bond constant of the coarse-grained
bonds is approximately one order of magnitude lower than the bond constants
in the full atomistic model (typically about 400 kcal/mol/Å).

Table 1.2 Parameters of effective bond potential for the coarse-grained model

Bond type r̄eq
ij (Å) k̄b(kcal/mol/Å

2
)

P – SC 3.98 67.1

P – SC 3.67 66.7

SG–G 4.71 89.7

SC–C 4.17 59.9

G–C 6.40 12.4

The probability distribution computed using coarse-scale model is com-
pared with that of the fine-scale model in Fig. 1.20. We also show the result
of a coarse-grained model where the parameters are obtained through a di-
rectly curve fitting of the fine-scale effective potential. It is shown that the
coarse-grained model obtained from multiscale wavelet project method better
represents the gross behavior of the fine-scale atomistic model.
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Fig. 1.20 Bond length distribution functions obtained for the DNA molecule with
the atomistic and coarse-grained simulations.

1.5.2.4 Characterization of effective bond angle potential

For bond angle potential, eight different bond angle terms need to be param-
eterized: P – SG– G, G–SG –P, P – SC–C, C –SC –P, SG–G– C, SC – C –G
and P– SG –P and P–SC – P. Figure 1.21a shows the atomistic P – SG –G
angle distribution at 300 K. The fine-scale potential function of bond an-
gle P – SG –G, obtained from Boltzmann inversion Ua(θ) = −kBT ln Pa(θ),
is presented in Fig. 1.21b. Here Ua(θ) is the fine-scale potential function of
bond angle P – SG – G, and Pa(θ) is the distribution function for the bond
angle P – SG –G.

Fig. 1.21 (a) Probability distribution of bond angle for P – SG–G angle, and (b)
fine-scale angle potential obtained from the Boltzmann inversion of the probability
distribution function.
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Figure 1.22 shows the effective bond angle potential for the coarse-grained
model based on multiscale wavelet projection method. The fine-scale poten-
tial is first projected onto the scaling function space with domain [0,1], and
is discretized by 2j grid points. The grid associated with the finest scale of
the solution is set at j = 7 to capture finest potential. By performing wavelet
projection at the finest scale, fine- and coarse-scale components of potential
are extracted using the wavelet projection operators Pj and Qj , and only the
coarse-scale component of the potential function is retained. By performing
this wavelet projection from scale j = 7 to j = 3, the effective potential
function is obtained as shown in Fig. 1.22. The coarse-grained constant and
equilibrium distance are characterized based on this projected potential. The
coarse-grained parameters of each angle in the DNA segment obtained from
the proposed method are summarized in Table 1.3. It can be seen that the

Fig. 1.22 Effective angle potential based on multiscale wavelet projection of fine-
scale angle potential function.

Table 1.3 Parameters of effective angle potential for the coarse-grained model

Bond angle type θ̄eq
ijk(deg) k̄θ(kcal/mol/rad2)

P – SG–G 91.95 5.87

G–SG–P 120.05 6.48

P – SC–C 96.39 6.04

C –SC–P 127.06 6.00

SG–G–C 156.99 2.96

SC–C –G 144.00 3.33

P – S – P 119.01 4.32

S –P –S 997.82 5.64
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bond angle parameters of the coarse-grained potential are approximately one
order of magnitude lower than the bond constants in the atomistic model.
The lower constant and higher mass of the superatoms yield a significant
decrease in the frequency of the bond allowing a larger stable time step in
time evolution calculation.

Figure 1.23 compares the bond angle distributions obtained from atom-
istic and coarse-grained models. It is shown that the coarse-grained model
obtained from multiscale wavelet project method adequately represents the
gross response of the fine-scale atomistic model.

Fig. 1.23 Bond angle distribution functions obtained for the DNA molecule with
the atomistic and coarse-grained simulations.

1.5.2.5 Characterization of effective non-bonded potential

The non-bonded potential of the fine-scale follows Eq. (1.69), in which the
potentials for the short-range repulsive interaction and long-range attractive
interaction are obtained separately. Figure 1.24a shows the short-range radial
distribution function of G – C group obtained from the fine-scale atomistic
simulation of DNA molecule. The corresponding short-range non-bonded po-
tential, −kBT ln P (R) as the first term of Eq. (1.69), is shown in Fig. 1.24b.
The long-range non-bonded potential obtained based on the second term of
Eq. (1.69) is shown in Fig. 1.24c. By combining the short-range and long-
range effects, the effective non-bonded potential based on Eq. (1.69) is given
in Fig. 1.24d.

Again the fine-scale potential is first projected onto the scaling function
space with domain [0,1], and is discretized by 2j grid points. The effective
non-bonded potential obtained based on multiscale wavelet projection from
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Fig. 1.24 (a) Short-range radial distribution function of G –C group, (b) corre-
sponding short-range fine-scale non-bonded potential by −kBT ln P (R), (c) fine-
scale long-range non-bonded potential by −kBT ln〈exp[−UAA

nb (R)/kBT ]〉R, and (d)
fine-scale non-bonded potential of G –C group (combination of short-range and
long-range potentials).

scales j = 6 to j = 4 is shown in Fig. 1.25. The parameters of the non-
bonded potential are characterized based on the following 12-6 Lennard –
Jones potential

Ūnb = 4ε̄

[(
σ̄

rij

)12

−
(

σ̄

rij

)6]
(1.70)

Fig. 1.25 Effective non-bonded potential based on multiscale wavelet projection.
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where ε̄ and σ̄ are the coarse-grained well-depth and van der Waals diameter
of the corresponding species, respectively. The characterized coarse-grained
parameters of each non-bonded potential in the DNA segment with the form
of Eq. (1.70) are summarized in Table 1.4. Figure 1.26 compares the radial
distribution functions obtained from atomistic and coarse-grained models. It
is shown that the coarse-grained model obtained from wavelet project method
properly represents the global behavior of the fine-scale atomistic model.

Table 1.4 Parameters of effective non-bonded potential for the coarse-grained
model

Non-bond type ε̄(kcal/mol) σ̄(Å)

SS 1.15 5.03

SC 1.09 5.15

SG 2.37 4.32

SP 0.51 3.75

CC 1.59 5.05

CG 1.65 5.10

GG 1.83 5.15

PC 1.52 6.20

PG 1.10 6.50

PP 1.00 6.00

Fig. 1.26 Radial distribution functions of the DNA molecule obtained from the
atomistic and coarse-grained simulations.



1.5 Multiscale homogenization for simulation of DNA molecules 39

1.5.3 Second-level homogenization— hyperelastic beam formula-
tion for DNA

The coarse-grained DNA model developed in Section 1.5.2 has the following
advantages compared to the full atomistic model: (a) the coarse-grained
model contains much less degrees of freedom, (b) the molecular structure
of the coarse-grained model is much more regular than the fine-scale model
and can be described by simple geometry, and (c) the potential functions
are smoother and advantageous for temporal discretization. Therefore, in the
second level homogenization, the coarse-grained DNA model is utilized to
construct a hyperelastic beam for continuum modeling.

In this level of homogenization, we select each turn of the coarse-grained
DNA as a unit cell, which contains about 10 – 11 base pairs, and adopt the
classical Cauchy-Born rule[71,72] to describe the continuum deformation as,

rij = F · rij
0 (1.71)

where rij and rij
0 are bond vectors connecting superatoms i and j in the

deformed and undeformed (reference) configurations, respectively, Fij =
∂xj/∂Xj denotes the deformation gradient of a material point, and Xi and xi

are vector components of the material (undeformed) and spatial (deformed)
configurations, respectively.

For the atomistic system, the potential energy stored in the bonds can
be expressed as a function of the atomic distance rij , i.e., U = U(rij). The
strain energy density wc of the material point at the continuum level for a
specific DNA unit cell is given as

wc =

∑
U(rij)

V0
(1.72)

where V0 = πa2h is the volume of the representative unit cell in the unde-
formed configuration. Since the potential functions of a DNA molecule in-
clude two-body bond stretching, three-body angle, four-body torsional, and
non-bonded interactions, we are seeking for the individual continuum descrip-
tions of those atomistic interactions, i.e., the strain energy density and 2nd
Piola-Kirchhoff (PK) stress tensor S, by means of the deformation gradient
F.

We first derive the continuum description of the two-body bond stretching
energy by considering the following harmonic potential function:

Ubond =
∑

bonds

kb

(
rij − rij

0

)2
. (1.73)

Considering an arbitrary bond connecting two superatoms i and j in the
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undeformed configuration as shown in Fig. 1.27, we have

rij
0 = X(i) −X(j), rij

0 =
∣∣X(i) −X(j)

∣∣, Nij =
rij
0

rij
0

. (1.74)

Fig. 1.27 Schematic of orientations of bond vector rij in the (a) initial (unde-
formed) configuration, and (b) current (deformed) configuration.

For simplicity, we omit the superscripts “i, j” in the rest of the derivation.
Under deformation, the stretch ratio of the bond can be related to the Green –
Lagrangian strain tensor E by the Cauchy– Born rule as follows:

r

r0
=
√

N ·C ·N =
√

1 + 2N ·E ·N (1.75)

where C = FTF = I+2E is the right-Cauchy deformation tensor. Therefore,
the strain energy density for the two-body bond stretching potential can be
expressed by summing up the atomistic potential energy as follows:

wc
bond =

1
V0

Ubond =
1
V0

∑
bonds

kb(r0)2
(√

1 + 2N ·E ·N
)2

. (1.76)

It can be seen from Eq. (1.76) that the energy density extracted from the
atomistic potential contains the continuum measures such as E and N, atom-
istic potential constant such as kb, and the atomistic structure information
such as r0. Equation (1.76) essentially provides a continuum strain energy
description with atomistic details involved. We then assume a hyperelas-
ticity material model exists for the DNA molecule, the corresponding stress-
strain relationship based on the atomistic potential can be obtained by taking
derivative of Eq. (1.76) with respect to the Green-Lagrangian strain tensor
E as

Sbond =
∂wc

bond

∂E
=

1
V0

∑
bonds

kb(r0)2
(

1− 1
1 + 2N ·E ·N

)
M (1.77)

where

M ≡

⎡⎢⎢⎣
N2

1 N1N2 N1N3

N1N2 N2
2 N2N3

N1N3 N2N3 N2
3

⎤⎥⎥⎦ (1.78)
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and Ni is the ith component of the initial bond orientation N. Similarly, we
can obtain the continuum descriptions and stress-strain relations of three-
body and four-body potentials based on the atomistic potentials following
the same procedures:

3-body potential:

wc
angle =

Uangle

V0
=

1
V0

∑
angles

kθ

(
θijk − θ0

ijk

)2
, (1.79)

Sangle =
∂wc

angle

∂E
=

2
V0

∑
angles

kθ(θijk − θ0
ijk)

∂θijk

∂E
. (1.80)

4-body potential:

wc
dihedral =

Udihedral

V0
=

1
V0

∑
dihedrals

Kn

2
(φ− φ0)2, (1.81)

Sdihedral =
∂wc

dihedral

∂E
=

1
V0

∑
dihedrals

Kn(φ − φ0)
∂φ

∂E
. (1.82)

The non-bonded interactions are calculated with interatomic potentials by
grouping atoms in the same molecule and those in other molecules. The
general form of the non-bonded energy of the atomistic system can be written
as

Enb =
∑

i

∑
j > i

Vnb(rij) (1.83)

where Vnb is the non-bonded potential, rij is the distance between superatoms
i and j. For DNA molecules, the non-bonded interactions include the van der
Waals and Coulomb interactions. They are treated using similar method here.
Consider interactions of two unit cells with volume V0, with each containing
n superatoms. The continuum strain energy density for non-bonded interac-
tions is expressed as[73]

wc
nb(r) =

( n

V0

)2

Vnb(r) ≡ ρ2
atomVnb(r) (1.84)

where ρatom = n/V0 denotes the number density of superatoms per unit cell
volume V0, and r is the distance between two particles in the deformed config-
uration. Then, the total energy can be computed by the following integration

Π nb =
1
2
(ρnb)2

∫
Ω0

∫
Ω0−ΩX

Vnb(r)dΩ0dΩ0 (1.85)

where Ω0 is a sphere of region centered at X with a cutoff radius to exclude
the bonded interactions.
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Based on the developed continuum hyperelastic material model, we for-
mulate a three-dimensional elastic beam model with contour length L whose
internal energy and total energy are given by

Π int =
1
2

∫ L

0

κTDbκdS+
1
2

∫ L

0

γTDsγdS+
1
2

∫ L

0

EAε2dS+
1
2

∫ L

0

GJψ2dS

(1.86)
Π = Π int + Π nb −Π ext (1.87)

where κ and γ are vectors of curvature and strain, respectively, ε is the axial
strain, ψ is the twist angle, E and G are the Young’s and shear moduli,
respectively, A, I and J are the cross-sectional area, moment of inertia, and
polar moment of inertia, respectively, Π nb is the non-bonded energy derived
previously, Π ext is the external work, and Db = diag(EI, EI) and Ds =
diag(GA, GA) are bending and shearing stiffnesses, respectively.

The stationary condition of Eq. (1.87) states the equilibrium equation of
the 3D beam

δΠ =
∫ L

0

(Dsδκ + Dsδγ + EAδε + GJδψ)dS + δΠ nb − δΠ ext = 0. (1.88)

The elasticity constants E and G are determined based on the elasticity
tensor:

C =
∂2wc

∂E∂E
(1.89)

where wc = wc
bond+wc

angle+wc
dihedral+wc

nb is the DNA energy density function
constructed in Section 1.5.3. By setting Fij = δij , the Young’s modulus and
shear modulus can be extracted from C.

It is worthy to note that the contribution of the 4-body dihedral angle
potential to both shear and Young’s moduli is very small, which is only 0.1%
of that due to bond stretching potential. We numerically determined the
following elasticity constants of pure G – C sequence DNA by summing up
the effects due to 2-body bond stretching and 3-body angle potentials:

G = 8.7× 108 Pa and E = 5.1× 108 Pa. (1.90)

The above calculated Young’s modulus agrees fairly well with the experi-
mental measured quantities, i.e., E = 0.5− 0.7× 108 Pa[74]. However, in the
current estimation of the mechanical properties of DNA, we do not consider
the solution effect and the sequence-dependent variation, so the presented
values could be regarded as the upper bound of the elasticity constants. It
is also interesting to note from Eq. (1.90) that the calculated Young’s and
shear moduli indicate that the corresponding Poisson’s ratio is negative, i.e.,

ν =
E − 2G

2G
≈ −0.7. (1.91)
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This negative Poisson’s ratio was also observed experimentally by Manning[75]

and Baumann[21], where Poisson’s ratios of −0.7 and −0.4 < ν < 0 have
been reported. For demonstration purpose, we take 2-body bond stretching
potential as an example. Equation.(1.92) gives the expression of the ratio
between the shear modulus and the Young’s modulus as follows:

Gbond

Ebond
=

∑
bonds

N2
2∑

bonds

N2
3

. (1.92)

Based on the DNA helical structure, it can be shown that
∑

N2
2 >

∑
N2

3 ,
which implies the shear modulus is larger that the Young’s modulus, hence
resulting in the negative Poisson’s ratio. The characterized elasticity con-
stants are also adopted in the three-dimensional beam formulation for the
following applications of continuum modeling of DNAs.

1.5.4 Applications

1.5.4.1 Simulations of DNA stretching

For demonstration purpose of the proposed multiscale framework, we first
perform a molecular dynamics simulation of a representative segment of DNA
molecule with pure G – C sequences as shown in Fig. 1.1. The Verlet velocity
time integration algorithm with 1 fs time step size and AMBER force field
is used in the MD simulation of stretching DNA molecule. The DNA model
is first relaxed to yield its equilibrium position. We then imposed a slightly
increased length on the DNA and perform energy minimization accordingly.
This allows the DNA to be stretched gradually in equilibrium. A smoothed
polynomial function is fit through the total energy curve by least-squares
fit as shown in Fig. 1.28a. The corresponding force-extension curve is com-
puted by taking the derivative of the energy polynomial function with respect
to a spatial coordinate as illustrated in Fig. 1.28b which is consistent with
the single-molecule experiments on DNA under extension[1,3,5]. Figure 1.29a
illustrates the DNA deformed configuration during the stretching process,
and the results show that the ds-DNA is unzipped and leads to a significant
DNA molecular structural change. This novel ladder form observed in the
MD simulation which corresponds to the overstretching transition region in
the force-extension curve is consistent with the experimental observation[3,5].

For simplicity, the solution effect is not considered in the DNA molec-
ular model in the multiscale homogenization. The objective of this work is
to construct a coarse-grained model and to formulate the hyperelastic con-
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Fig. 1.28 (a) Predicted energy versus extension curve of the full atomistic DNA
model, and (b) the corresponding predicted force versus extension curve.

Fig. 1.29 The progressive DNA configurations of (a) full atomistic DNA model,
and (b) coarse-grained DNA model. (color plot at the end of the book)

tinuum beam model that can represent the gross response of the fine-scale
DNA model. We construct the coarse-grained model following the procedure
introduced in Section 1.5.2 as shown in Fig. 1.17c and the corresponding
force fields of the coarse-grained DNA model are determined by performing
the multiscale wavelet projection. Then, we repeat the stretching process
of DNA molecule using the coarse-grained model, and the corresponding
energy-extension and force-extension curves and the deformed configurations
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are shown in Fig. 1.30a, Fig. 1.30b and Fig. 1.29b, respectively. As we can see
from the numerical results, the proposed coarse-grained DNA model is able to
predict consistent gross behavior as the full atomistic model, and the homog-
enized coarse-grained model allows long-time step size and reduces a large
number of degrees of freedom leading to the better computational efficiency
in three to four orders of magnitude in terms of CPU time.

Fig. 1.30 (a) Predicted energy versus extension curve of the coarse-grained DNA
model, and (b) the corresponding predicted force versus extension curve.

Next, we model the DNA stretching process by using the proposed con-
tinuum beam model through the multiscale two-level homogenization as il-
lustrated in Sections 1.5.2 and 1.5.3. However, we observed from the full
atomistic simulation of DNA stretching as shown in Fig. 1.31 that the rel-
ative contribution of the 2-body bond stretching energy increases with the
increase of DNA extension while the 4-body dihedral angle energy reduces
with the DNA further extending. This is due to the molecular structural
change from B-DNA to S-DNA in the overstretching transition, and this ef-
fect is taken into account by expressing the continuum strain energy function
as

W = α(s)W 1 + (1 − α(s))W 2 (1.93)

where α(s) is a transition function considering the fraction of B-form DNA
during the DNA stretching process while α = 1 as s � 1.2 and α < 1 as
s > 1.2. W 1 is the strain energy function derived from the coarse-grained
model and W 2 is a phenomenological strain energy function representing the
behavior of the S-form DNA and reflecting the rapid strain hardening after
transition which is given as follows[76]:

W 2(I1) = −G

2
Jm ln

(
1− I1 − 3

Jm

)
(1.94)
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where G is the shear modulus, I1 is the principal invariant of the Green
deformation tensor, and Jm > 0 is a parameter taking into account the
limiting molecule extensibility.

The comparison of force-extension curve between fine-scale simulation
and the continuum model is shown in Fig. 1.31. By introducing a transition
function from the physical understanding of the DNA stretching process, the
continuum model properly captures the behavior of fine scale simulation.

Fig. 1.31 Comparison of force-extension curves between fine-scale simulation and
the continuum model.

1.5.4.2 Modeling of DNA loop formation

The loop formation of DNA molecule is one of the important protein-DNA
interaction processes in biological systems. We applied the proposed hyper-
elastic three-dimensional beam to the simulation of the DNA looping as-
sociated with a sequence-specific DNA-binding protein — the lac repressor
(LacI ), which inhibits the gene coding involved in the metabolism of lactose
in bacteria. The lac repressor occurs as a tetramer, where the four subunits
form a V-shaped molecule as depicted in Fig. 1.321 . The lac repressor pro-
tein has three distinct regions: (a) a core domain that binds lactose and
other similar molecules, which is divided into N and C subdomains, (b) a
tetramerization domain joining four monomers in an alpha-helix bundle, and
(c) a headpiece domain in which two LacI proteins bind DNA.

LacI -DNA system in solution contains millions of atoms with time scales
spanning from microseconds to milliseconds, and a full atomistic simulation is

11LBI PDB file for the lac repressor is obtained from Protein Data Bank.
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Fig. 1.32 Crystal structure of the lac repressor binding DNA. (color plot at the
end of the book)

practically unaffordable to investigate the DNA looping behavior. Therefore,
the continuum descriptions are preferred to simulate the configuration and
free energy of the DNA loop.

In this study, we constructed a three-dimensional hyperelastic beam model
of the DNA loop with 76 base pairs long composed of regularly repeating
G – C sequences. The elasticity constants are extracted from the multiscale
atomistic-continuum model introduced in Section 1.5.4.1, and the DNA loop
is modeled by 100 Hughes-Liu beam elements[77] in DYNA3D[78]. The lac
repressor itself is treated as a rigid coupler and the boundary conditions of
the beam are obtained from the crystal structure of the lac repressor DNA
complex[79]. In the simulation, the two ends of the beam were first moved to
their preassumed position as illustrated in Fig. 1.33a, and the two ends were
bent to satisfy the above-mentioned boundary conditions. Then, the right
end of the beam was rotated around its axial axis to investigate the DNA
looping process.

The simulated configurations are shown in Fig. 1.33b which are consis-
tent with Balaeff et al.’s work[47]. The calculated elastic energy presented in
Fig. 1.33c agrees reasonably with the experimentally measured free energy
of the DNA loop[45]. The predicted periodicity of the free energy, which is
consistent with the helical periodicity of DNA molecules, can be captured
by the continuum beam model. However, since the protein-DNA interaction
effect is not considered in the numerical modeling, it results in the deviation
of calculated elastic energy from the free energy measured in experiment for
short DNA molecules. This will be improved in the future by including the
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Fig. 1.33 Continuum modeling of DNA loop formation (a) boundary conditions
for the continuum beam model, (b) configurations of DNA looping, (c) numerically
calculated elastic energy versus DNA length, and (d) experimentally measured
loop free-energy versus DNA length.

protein-DNA interactions while treating the lac repressor proteins as flexible
bodies.

1.6 Conclusion

This chapter presents a state-of-the-art review of mathematical models com-
putational methods, as well as the newly developed multiscale computational
approaches, for modeling of DNA molecules. We first reviewed the experimen-
tal work on single molecule manipulations of DNAs which reveal the mechani-
cal properties of DNA molecules. The statistical models, such as the FJC and
WLC models, were introduced to describe the behavior of DNA molecules
in extension, and they are able to capture the force-extension responses in
low and intermediate forces. Some modifications were considered to better
predict the force-extension responses by taking overstretching transition and
electrostatic effects into account. The method of molecular dynamics was pre-
sented and numerical results of stretching DNA molecule were presented to
demonstrate the effectiveness of MD simulations to investigate the fine-scale
behavior of DNA molecules. Due to the time and size limitations of the MD
method, continuum approaches, such as the one based on a Kirchhoff theory
and the other based on a director field method, were presented. These con-
tinuum methods, however, require geometry and material constants that are
typically difficult to obtain. A new multiscale multilevel approach was then
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introduced. This is based on a multiscale wavelet project method to construct
a coarse-grained DNA model, followed by an atomistic continuum homoge-
nization based on a potential equivalence to yield a hyperelastic DNA model
with embedded molecular properties. The multiscale DNA model enables sys-
tematic characterization of fundamental mechanical properties of DNAs and
offers an effective computational framework for modeling DNA molecules.
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Appendix: Wavelet and decomposition coefficients for li-
near spline function

For a linear scaling function candidate, ϕ∗(x) is a hat function with the
coefficients cn’s summarized in the table below:

Table 1.5 Orthogonal expansion coefficients, cn, for hat candidate function (cn =
c−n)

n cn

0 1.291 675 492 159 28 E+00

1 − 1.746 632 344 444 64 E−01

2 3.521 011 525 921 82 E−02

3 − 7.874 425 129 503 93 E−03

The wavelet and decomposition coefficients for scale decomposition be-
tween scaling function ϕ(x) at scale j + 1 and the scaling function ϕ(x) and
wavelet function ψ(x) at scale j associated with Eq. (1.59) are given in Table
1.6.

Table 1.6 Wavelet coefficients, (dn = d−n) and decomposition coefficients (bn =
b−n−2) for linear spline function

n dn bn

−1 — 0.817 646 595 961 945

0 8.176 460 570 109 34 E−01 − 0.397 296 919 701 700

1 3.972 970 881 341 91 E−01 − 0.069 101 397 548 309

2 −6.910 098 674 164 67 E−02 0.051 944 587 049 999

3 −5.194 534 808 183 84 E−02 0.016 972 531 859 965

4 1.697 104 789 387 06 E−02 − 0.009 987 734 381 633
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Continued

n dn bn

5 9.990 595 444 183 77 E−03 −0.003 888 792 672 210

6 −3.883 262 250 905 55 E−03 0.002 191 236 880 415

7 −2.201 951 238 397 20 E−03 0.000 944 025 366 123

8 9.233 710 054 871 56 E−04 −0.000 473 612 955 027

9 5.116 360 226 930 58 E−04 −0.000 315 829 481 785

10 −2.242 963 267 262 62 E−04 0.000 036 249 000 464
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Abstract: This article gives an overview of adhesive contact for soft bodies
and focuses on a general computational framework that is suitable for treat-
ing a large class of adhesion problems. The contact formulation is based on
a non-linear continuum approach that is capable of describing bodies down
to length scales of several nanometers. Several finite element formulations
are presented, that introduce various approximations in order to increase the
computational efficiency. The approaches are illustrated by several examples
throughout the text. These include carbon nanotube interaction, adhesion of
spheres, nanoindentation, thin film peeling, gecko adhesion and self-cleaning
surface mechanisms.

Keywords: adhesion, coarse-graining, computional contact mechanics,
finite element method, large deformations, peeling

2.1 Introduction

This article presents an overview of recent progress on the computional mod-
eling of adhesive contact. The demand for computational methods arises since
the complexities inherent in adhesive contact problems mostly preclude the
use of analytical methods. These complexities include the microstructure,
large deformations, nonlinear material behavior and the multiscale and mul-
tiphysical nature of many adhesion problems. Computations therefore form
an essential part, together with experimental methods, in the study of adhe-
sive contact problems.

The first adhesive contact models that were formulated are the models of
Johnson et al.[1], Derjaguin et al.[2] and Maugis[3], which are analytical mod-
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els based on the Hertzian contact theory[4], which in turn is based on linear
half-space theory. These models are widely used but have several shortcom-
ings as explained in Section 1.6. With the availability of increasing compu-
tational power, accurate computational contact models[5,6] became available.
Recent developments in computational contact mechanics are surface smooth-
ing techniques (see [7, 8, 9] for 2D approaches and [10, 11] for 3D approaches),
mortar methods (see [12, 13] for 2D and [14, 15] for 3D approaches), consti-
tutive contact models for friction and adhesion[16,17], time integration for
impact problems[18], multiscale methods for contact[19,20], and homogeniza-
tion methods for contact[21,22]. Most of the developments in computational
contact mechanics are driven by macroscale engineering problem so that for-
mulations for very small length scales have received less attention. At such
length scales the approaches of molecular dynamics can be applied to con-
tact problems[23-25]. But they become quickly inefficient for length scales
exceeding several nanometers. Therefore it is advantageous to use coupling
methods, that combine atomistic and continuum descriptions, like the “quasi-
continuum method”[26,27], originally formulated for crystalline solids. The
quasi-continuum method has been also applied to contact recently[23]. As an
alternative to these coupling methods, one can also coarse-grain the contact
behavior at the atomic level into an effective continuum contact formulation.
This approach goes back to the analytical integration methods of Bradley[28]

and Hamaker[29]. These formulations, however, are only valid for rigid bod-
ies, since the contact deformations are not taken into account.1 These can be
taken into account if the framework of molecular coarse-graining is combined
with computational contact mechanics[30]. The model developed there, the
so-called “coarse-grained contact model” is used as the basis for the discus-
sion in this article. Two of the major advantages of this model are (a) that it
can be used over a wide range of length scales, and (b) that it is particularly
suitable for strong adhesion of soft bodies.

The remainder of this paper is structured as follows. Section 2.2 presents
the framework of the coarse-grained contact model. Corresponding finite el-
ement algorithms are then discussed in Section 2.3. Section 2.4 presents sev-
eral applications of the contact model. Special attention is placed on peeling
contact (Section 2.5) and rough surface contact (Section 2.6). The article
concludes with Section 2.7.

1Taking the deformation into account was already suggested in the thirties by
Derjaguin[31], but it was not achieved until the analytical models of Johnson et al.[1]

and Derjaguin et al.[2] appeared, as mentioned above.
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2.2 Continuum contact formulation

This section presents a theoretical framework for adhesive contact of soft bod-
ies. The formulation is based on the “coarse-grained contact model” intro-
duced by Sauer and Li[30] and the discussion follows the derivation provided
by Sauer[32] and Sauer and Wriggers[33]. The key idea is to describe adhesive
contact between the bodies by a global interaction potential Πc, that is based
on the local interactions between the individual particles of the neighboring
bodies. These local interactions are described by a pair potential φ, which,
for example, can be taken as the Lennard – Jones potential,

φ(r) := ε
(r0

r

)12

− 2ε
(r0

r

)6

. (2.1)

Here r denotes the distance of the interacting particles, and ε and r0 are
model parameters that describe the strength and range of the interaction.
One motivation in using the Lennard – Jones potential is that it is suitable
for describing van-der-Waals adhesion. In general, any distance-dependent
potential φ(r) can be used in the following framework.1 For example, one
can also use this framework to construct cohesive zone models.

Figure 2.1a shows the kinematics of two interacting bodies in the frame-
work of nonlinear continuum mechanics. B01 and B02 denote the reference
configurations of the two bodies. Their current and deformed configurations
are denoted by B1 and B2.2 The motions mapping two generic material points
X1 ∈ B01 and X2 ∈ B01 to the current positions x1 ∈ B1 and x2 ∈ B2 are
denoted by x1 = ϕ1(X1, t) and x2 = ϕ2(X2, t). Associated with the two
motions are the two deformation gradients F1 = gradϕ1 and F2 = gradϕ2,
where the gradient operator grad(...) denotes the derivative with respect to
the reference configurations B01 and B02. The two bodies are subjected to
the essential and natural boundary conditions

ϕk = ϕ̄k, on ∂uBk for k = 1, 2,

knk = t̄k, on ∂tBk for k = 1, 2,
(2.2)

where ϕ̄k and t̄k are the values of the prescribed boundary displacement
and traction, k is the Cauchy stress tensor and nk the outward unit nor-
mal of ∂Bk. Further, ∂uBk and ∂tBk denote the displacement and trac-
tion boundaries in the current configuration which are supposed to satisfy
∂uBk ∪ ∂tBk = ∂Bk and ∂uBk ∩ ∂tBk = ∅. Moreover, we require the initial

1φ(r) must be such that the integration and differentiation appearing in Eqs. (2.11)
and (2.15) is well defined.

2The symbol B is used to denote both the body and the configuration it occupies in
R

3.
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Fig. 2.1 Contact kinematics of two deformable bodies[30]. The left-hand side shows
the undeformed initial configuration; the right-hand side shows the deformed cur-
rent configuration.

conditions

ϕk(Xk, 0) = ϕ0(Xk), ϕ̇k(Xk, 0) = V0(Xk), in Bk, (2.3)

where ϕ̇k =
∂

∂t
ϕk(Xk, t) denotes the material time derivative of ϕk and

ϕ0(Xk) and V0(Xk) denote the given initial configuration and velocity field
of Bk at t = 0.1 As indicated in Fig. 2.1, the particle densities in the two
respective configurations are denoted by β0k (in number of particles per ref-
erence volume), and βk (in number of particles per current volume). The
density βk is related to the mass density by ρk = mkβk, where mk is the
mass of the particles in body Bk. The volume differentials of the spatial con-
figuration, dvk, and the material configuration, dVk, are related by

dvk = Jk dVk, (2.4)

where Jk = detFk is the Jacobian determinant of the mapping ϕk. A flux of
particles from or into the bodies is not considered. It then follows that the
particle and mass densities of the two configurations are in inverse relation
to Eq. (2.4), i.e.

βk = β0k/Jk, ρk = ρ0k/Jk, (2.5)

and that the total number of particles (and the mass) within a given volume
are conserved, i.e. we have

β0k dVk = βk dvk = const. (2.6)
1The initial configuration of Bk may or may not coincide with the reference configu-

ration B0k .
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The total potential energy of the two interacting bodies is given by the
sum of the internal, external and contact energy, i.e.

Π = Πint + Πc −Πext. (2.7)

The individual contributions can be defined from the coarse-graining of the
corresponding energies of a discrete particulate system[30]. We thus find the
following expressions, which are written in the same form as they usually
appear within a continuum mechanical context.

The internal energy of the two bodies is given by

Πint =
2∑

k=1

Πint,k, Πint,k =
∫
B0k

Wk(ϕk) dVk, (2.8)

where Wk(Fk) is the stored energy (per reference volume) of body Bk that
depends on the deformation ϕk. If hyperelastic material behavior of the two
bodies is assumed, the first Piola – Kirchhof stress tensor and the Cauchy
stress tensor are given by

Pk =
∂Wk

∂Fk
, k =

1
Jk

PkFT
k . (2.9)

An example of a suitable material law is the Neo –Hooke model, which is
considered for some of the examples discussed in Section 2.4 to 2.6. The
internal energy Πint can be complemented by an internal surface energy,
expressed analogously as

Πsurf =
2∑

k=1

Πsurf,k, Πsurf,k =
∫

∂B0k

Uk(ϕk) dAk, (2.10)

where Uk(ϕk) is the stored surface energy (per reference surface) of body
Bk that depends on the deformation ϕk. Such a framework is suitable to
describing membranes and shells[34] and should also be considered for solids
where the surface energy plays an important role.

The contact energy is defined as the total interaction energy between all
particle pairs located at positions x1 ∈ B1 and x2 ∈ B2. In the continuum
limit this is expressed as

Πc =
∫
B1

∫
B2

β1 β2 φ(x1 − x2) dv2 dv1. (2.11)

This expression can be easily rewritten as an integration over the reference
configurations B0k due to the relation given in Eq. (2.6).

Πext = Πext,1 + Πext,2 is the energy associated with the external loads,
i.e. applied surface tractions t̄k and body forces b̄k. We assume Πext,k is
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consistent with the variation

δΠext,k =
∫
Bk

δϕk · ρkb̄k dvk +
∫

∂tBk

δϕk · t̄k dak, (2.12)

which expresses the virtual work done by the external loads.
The variation of the other terms lead to the expressions[32]

δΠint,k =
∫
Bk

grad(δϕk) : k dvk, (2.13)

and

δΠc =
2∑

k=1

δΠc,k, δΠc,k = −
∫
Bk

δϕk · βkbk dvk, (2.14)

where grad (...) denotes the gradient operator w.r.t. the current configuration
and bk denotes a body force that is defined through the interaction potential
φ as

bk(xk) := −∂Φ�

∂xk
, Φ� :=

∫
B�

β� φ(r) dv�. (2.15)

Pulling the gradient inside the integral gives the alternative expression

bk(xk) =
∫
B�

β� F (r) r̄k dv�, (2.16)

since
∂φ

∂xk
= −F (r) r̄k, (2.17)

for F (r) = −∂φ

∂r
and

r̄k :=
rk

rk
, rk := xk − x�, rk := |rk|. (2.18)

The kinetic energy of the interacting bodies is given by

K =
2∑

k=1

Kk, Kk =
1
2

∫
Bk

ρk vk · vk dvk, (2.19)

where vk = ẋk is the velocity field of body Bk. Given the Lagrangian L =
K − Π , the weak form then follows from Hamilton’s variational principle,
which states that the action

A =
∫ t2

t1

L dt, (2.20)
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attains its stationary value for the true motion among all kinematically ad-
missible variations within the time interval T = {t1, t2}[35]. The variation of
the action δA of each body Bk is obtained as

δAk =
∫
T

∫
Bk

ρkvk · δϕ̇k dvk dt−
∫
T

δΠk dt, (2.21)

where δΠk = δΠint,k + δΠc,k − δΠext,k according to Eqs. (2.7), (2.12), (2.13)
and (2.14). By switching the order of integration and by using integration of
parts, the first contribution is rewritten as∫

Bk

∫
T

ρkvk · δϕ̇k dt dvk = −
∫
Bk

∫
T

ρkv̇k · δϕk dt dvk, (2.22)

where the variation of the motion δϕk is chosen so that it vanishes at t = t1
and t = t2. Following Hamilton’s principle the condition δA = 0 then yields
the equation

2∑
k=1

[∫
Bk

δϕk · ρkv̇k dvk +
∫
Bk

grad(δϕk) : k dvk

−
∫
Bk

δϕk · βkbk dvk − δΠext,k

]
= 0, ∀ δϕk,

(2.23)

which is the governing weak form of the contact problem of Fig. 2.1.
Due to the formulation of the contact body forces according to Eq. (2.15),

six levels of integration are required in order to evaluate the virtual contact
work in Eq. (2.23). While it is straight forward to construct a numerical inte-
gration scheme for this[30], such an approach tends to be very inefficient. This
motivates the development of alternative integration methods as discussed by
Sauer and Li[24,30]. The most efficient strategy presented there considers the
approximate analytical integration of Eq. (2.15). This approach, which re-
duces the numerical integration from six levels down to three levels, will be
considered in the following. The strategy, outlined in detail by Sauer and
Li[30], consists of two steps:

(1) In order to evaluate the body force bk at point xk ∈ Bk, we first
project the point perpendicularly onto the neighboring surface ∂B� (� �= k).
This gives the surface point xp ∈ ∂B�.1

(2) Secondly, we approximate the neighboring body B� at point xp as a
flat half-space and integrate field Φ�, appearing in Eq. (2.15), analytically.

This approach results in an efficient body force formulation which will be
denoted in short by “BF” in the remainder of this paper. In [30] a third step is

1It is important to note that the point xp ∈ ∂B� depends on point xk ∈ Bk and is
therefore not a material point of B�, as the point xp, in general, does not follow the motion
of B�.
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taken, which considers projecting the body forces bk onto the surface of body
Bk and replaces them by an effective surface traction. This last approach
results in an even more efficient surface force formulation, which will be
denoted in short by “SF” in the following. The two approaches are illustrated
in Fig. 2.2. We note that the closest point projection considered in the first
step is a common procedure in computational contact methods[6]. It depends
strongly on the surface where we project onto and it can cause difficulties
for non-convex surfaces. In the projection xk → xp, we denote the projection
distance by rk and the projection direction by −np, which is opposite to the
direction of the surface normal np of ∂B� at xp. The approximate half-space
integration of Eq. (2.15) according to step 2, which is derived and assessed
in [33], yields the simple expression

bk = πβ�εr
2
0

[
1
5

( r0

rk

)10

−
( r0

rk

)4
]
np, (2.24)

Fig. 2.2 Nanoscale contact-interaction forces according to the body force formu-
lation (a) and the surface force formulation (b)[33]

for the Lennard–Jones potential (Eq. (2.1)). Here, the density β� is eval-
uated at the projection point xp. Introducing Hamaker’s constant AH =
2π2β01β02εr

6
0

[36] we can also write

β0kbk =
AH

2πr4
0J�

[
1
5

( r0

rk

)10

−
( r0

rk

)4
]
np. (2.25)

This expression can be inserted directly into the weak form (Eq. (2.23)).
Altogether the BF formulation depends on two parameters, AH and r0, which
characterize the strength and range of adhesion.

The SF formulation is obtained by projecting the body force bk onto
the surface of body Bk and replacing it by an effective surface traction. The
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projection is done parallel to the direction of the body forces in order to keep
the balance of angular momentum unaffected. We thus project along −np,
i.e. in the opposite direction of the surface normal of the neighboring body
B� at point xp. The projection is accomplished by the following integration:
According to Fig. 2.2 the volume element dvk can be expressed by

dvk = c�(rk) drk cosαk dak, (2.26)

where dak denotes the area element obtained from projecting dvk along −np

onto the surface ∂Bk, where c� is a coefficient that depends on the principle
surface curvatures of ∂B[33]

� , where rs denotes the distance between the sur-
faces of the neighboring bodies, and αk denotes the inclination of the surface
in relation to the direction of projection, that is, we have cosαk = −np · nk.
Inserting Eq. (2.26) into the weak form (Eq. (2.23)) we obtain

2∑
k=1

[∫
Bk

δϕk · ρkv̇k dvk +
∫
Bk

grad(δϕk) : k dvk

−
∫

∂cBk

δϕk · tk cosαk dak − δΠext,k

]
= 0, ∀ δϕk,

(2.27)

where we have defined the contact traction

tk :=
∫ rc

rs

c�(rk)βk bk(rk) drk. (2.28)

With Eq. (2.28), the body force according to Eq. (2.24) can be easily in-
tegrated analytically. Considering the reasonable assumptions c� ≈ 1 and
βk ≈ const[33] one obtains

tk = πβkβ�εr
3
0

[
1
45

(r0

rs

)9

− 1
3

(r0

rs

)3
]
np. (2.29)

In the preceding derivation, the SF formulation is derived as an approxima-
tion to the BF formulation. The SF formulation, however, can also be seen
as an independent formulation that appears for the case of bodies that only
interact via their surfaces[32].

The contact model governed by Eq. (2.23), or alternatively by Eq. (2.27),
is a conservative model, since it is derived from a Lagrangian. In general, dis-
sipative contact models can be formulated by including viscous, i.e. velocity-
dependent, damping terms within the internal energy and possibly also within
the contact adhesion energy. Dissipation is also introduced if frictional con-
tact is considered. Classical Coulomb-based friction models[6], however, may
be inappropriate for adhesive contact (see Section 2.6). Without considering
friction, the contact forces are defined by Eq. (2.24), or alternatively Eq.
(2.29), which are normal to the surface of the neighboring body.
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2.3 Finite element formulations

This section discusses the 3D finite element formulation of the contact model
given in the preceding section. The finite element arrays for the two formula-
tions are derived and the overall contact algorithm is discussed. For general
references to non-linear finite element procedures the reader is referred to the
monographs of Belytschko et al.[37] and Wriggers[38].

The finite element method offers a systematic solution strategy to ap-
proximately solve the weak form governing the problem. To facilitate the
numerical integration of Eqs. (2.23) and (2.27), the integration domains Bk

and ∂Bk (k = 1, 2) are partitioned into finite volume elements Ωe
k and surface

elements Γ e
k , that contain a certain number of nodes, denoted by ne = nve

for Ωe
k and ne = nse for Γ e

k . Within each element (xk ∈ Ωe
k or xk ∈ Γ e

k ), the
displacement field uk of body Bk and its variations δϕk are approximated by
the standard FE interpolation1

uh
k(xk) = Nk(xk)ue

k, δϕh
k(xk) = Nk(xk)ve

k, (2.30)

where ue
k and ve

k are arrays with size (3ne×1) that denote the displacements
and variations of the elemental nodes, and

Nk =
[
N1 I , N2 I , ... , Nne I

]
(2.31)

is a (3× 3ne) matrix formed by the ne shape functions NI(I = 1, 2, ..., ne) of
the element. Inserting approximations (Eq. (2.30)) into the weak forms (Eq.
(2.23) and Eq. (2.27)), leads to a discretized weak form which in short can
be written as[32]

vT
[
Mü + fint + fc − fext

]
= 0, ∀v ∈ Vh. (2.32)

Here the vector v ∈ Vh contains the kinematically admissible virtual dis-
placements of all the finite element nodes and the vectors fint, fc and fext

denote the internal forces, contact forces and external forces acting on the
finite element nodes. These arrays are assembled from the vectors fe

int, f
e
c and

fe
ext that denote the corresponding forces acting on the individual elements

and which are listed below. Equation (32) leads to the nonlinear equation

f(ü,u) := Mü + fint + fc − fext = 0, (2.33)

where, in general, both fint and fc (and in principle also fext) depend nonlin-
early on the nodal deformation u. M is the mass matrix of the system which,

1In the following description, uk and uh
k are used to denote the displacement field and

its FE approximation, ue
k is used to denote the stacked vector of all nodal displacements

of element e, and u is used to denote the stacked vector of all nodal displacements of
the two discretized bodies Bh

1 and Bh
2 . Analogous definitions are used for the reference

configuration and the current configuration (characterized by the vector fields X and x).
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according to Eq. (2.23), is composed of the elemental contributions

Me
k =

∫
Ωe

k

ρk NT
k Nk dvk. (2.34)

According to Eq. (2.13), which does not consider a velocity dependency, the
internal force vector fe

int acting on element Ωe
k can be written as follows[38]:

fe
int,k =

∫
Ωe

k

BT
e σk dvk (2.35)

where Be is an array with size (6× 3ne) that contains the derivatives of the
nodal shape functions NI .

In the following, four different methods for the evaluation of the contact
force fe

c are presented. Table 2.1 gives an overview of these methods and lists
their main advantages and disadvantages. The first finite element formulation
that appears naturally from the body force formulation outlined in Eqs. (2.15)
and (2.14) is very simple but inefficient and is therefore denoted as “naive
body force FE formulation” (NBF). It is identical to the formulation initially
proposed in [30], where it is denoted as “method 1”. According to Eqs. (2.15)
and (2.14) it is straightforward to show that the nodal force vector fe

c,k in
Ωe

k ∈ Bk is given by
fe
c,k =

∑
Ωe

�∈Bh
�

fc,k, (2.36)

Table 2.1 Comparison of the different contact force evaluation methods in the
framework of the finite element method. R� denotes the minimum curvature radius
of the neighboring body[33]

Formulation Numerical integration Advantages Disadvantages

NBF Over Bk and B� Very simple Very inefficient

NSF Over ∂cBk and ∂cB� Simple Inefficient

BF Over Bk Efficient Inaccurate if R� < 8 nm

SF Over ∂cBk

Highly efficient & sim-
ilar to classical contact
algorithms

Inaccurate if R� < 8 nm
and for very strong ad-
hesion

and
fc,k =

∫
Ωe

k

∫
Ωe

�

NT
k βkβ�

∂φ

∂xk
dv� dvk, (2.37)

where ∂φ/∂xk is given by Eqs. (2.17) and (2.18). Equation (2.33) is solved
iteratively using Newton’s method. Therefore we need to know the tangent
matrix kc formed by the elemental contributions

ke
c :=

∂fe
c

∂ue
. (2.38)
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The force fe
c,k (Eq. (2.36)) depends on the deformation of the elements Ωe

k ∈
Bk and Ωe

� ∈ B� (� �= k), so that one finds the two tangent contributions

ke
c,kk =

∂fe
c,k

∂ue
k

=
∑

Ωe
�∈Bh

�

kc,kk,

ke
c,k� =

∂fe
c,k

∂ue
�

= kc,k�,

(2.39)

with

kc,kk =
∫
Ωe

k

∫
Ωe

�

NT
k βkβ�

∂2φ

∂xk ∂xk
Nk dv� dvk,

kc,k� =
∫
Ωe

k

∫
Ωe

�

NT
k βkβ�

∂2φ

∂xk ∂x�
N� dv� dvk,

(2.40)

and
∂2φ

∂xk ∂x�
=

F (rk)
rk

I +
[
F ′(rk)− F (rk)

rk

]
r̄k ⊗ r̄k,

∂2φ

∂xk ∂xk
= − ∂2φ

∂xk ∂x�
.

(2.41)

In general, this formulation is straightforward to implement, but is very ineffi-
cient for practical purposes. Careful attention must be paid to the formulation
of symmetry lines[30]. Similar to this formulation, a “naive surface force FE
formulation” (NSF) can be developed. This is based on the analytical inte-
gration into the depth of the two bodies which leads to a modification of the
interaction potential φ. The resulting formulation is analogous to the above
NBF formulation, replacing Ωe

k and Ωe
� by the surface elements Γ e

k and Γ e
� .

Details are given in[30, 32], where this formulation is denoted as “method 2”.
The NSF formulation is still quite inefficient, especially in 3D.

Therefore it is useful to use the half-space approximation outlined above
and replace Eq. (2.15) by Eq. (2.24). This increases efficiency considerably,
since numerical integration is only performed over one body. In the resulting
finite element body force formulation (BF), the elemental contact force vector
acting on the nve nodes of element Ωe

k is given by the (3nve × 1) vector

fe
c,k = −

∫
Ωe

k

NT
k βk bk dvk = −

∫
Ωe

0k

NT
k β0k bk dVk, (2.42)

which can be evaluated as an integration over either the current or the refer-
ence configuration of the element (denoted as Ωe

k and Ωe
0k). This expression

follows directly from Eqs. (2.23), (2.30), (2.31) and (2.32). The tangent as-
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sociated with Eq. (2.42) is given by

ke
c,kk = −

∫
Ωe

0k

NT
k

∂Bk

∂xk
Nk dVk,

ke
c,k� = −

∫
Ωe

0k

NT
k

∂Bk

∂xp

∂xp

∂ue
�

dVk,

(2.43)

where we have introduced Bk := β0k bk. The first matrix, ke
c,kk, has the size

(3nve× 3nve), where nve is the number of nodes of element Ωe
k . The gradient

of Bk =: Bk np is given by[33]

∂Bk

∂xk
= B′k np ⊗

∂rk

∂xk
+ Bk

∂np

∂xk
, (2.44)

with
∂rk

∂xk
= np and

∂np

∂xk
=

1
κ−1

1 + rk

ap
1 ⊗ ap

1 +
1

κ−1
2 + rk

ap
2 ⊗ ap

2 . (2.45)

Here κ1 and κ2 denote the principal curvatures1 of the master surface ∂Bm

at the projection point xp, and ap
1 and ap

2 denote the corresponding tangent
vectors at xp. The derivative B′k = ∂Bk/∂rk follows readily from Eq. (2.25).
The second tangent contribution, ke

c,k�, captures the effect of the deformation
of surface ∂B� on fe

c,k and has the size (3nve×3nse), where nse is the number
of surface nodes used to interpolate ∂B� at xp. The gradient of Bk w.r.t., the
projection point xp can be written as follows:

∂Bk

∂xp
= B′k np ⊗

∂rk

∂xp
+ Bk

∂np

∂xp
, (2.46)

with ∂rk/∂xp = −np and

∂np

∂xp
= − 1

rk

(
I− np ⊗ np

)
(2.47)

according to Eq. (2.18). The contribution ∂xp/∂ue
� , appearing in Eq. (2.43),

describes how changes of the surface configuration affect the projection point
xp. It follows from the description of the FE surface and can be computed
within the local Newton iteration needed in general to compute xp. Fur-
ther details will be reported in a future publication. If body B� is rigid and
immobile the tangent contribution ke

c,k� vanishes.
If the body forces are projected onto the surface, according to Fig. 2.2,

we obtain the surface force (SF) formulation according to Eqs. (2.27) and
1Here the curvature is taken to be positive for convex bodies like a sphere.
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(2.29). Here, the elemental contact force vector acting on the nse nodes of
surface element Γ e

k is given by the (3nse × 1) vector

fe
c,k := −

∫
Γe

k

NT
k tk cosαk dak = −

∫
Γe

0k

NT
k Tk θk dAk, (2.48)

where

Tk := Jk tk = πβ0kβ�εr
3
0

[
1
45

(r0

rs

)9

− 1
3

(r0

rs

)3
]
np (2.49)

and
θk := −np · F−T

k N̄k
[33] (2.50)

In the equations above Nk denotes the array of the nse shape function of
element Γ e

k according to Eq. (2.31) while N̄k denotes the outward surface
normal of Γ e

k0 at xk. Fk denotes the deformation gradient at point xk ∈ Γ e
k .

The vector fe
c,k can be evaluated as an integration over either the current or

the reference configuration of the element (denoted as Γ e
k and Γ e

0k). In [30]
this formulation has been denoted as “method 3”. Considering constant θk

the tangent matrix of the SF formulation is given by

ke
c,kk = −

∫
Γe

0k

NT
k

∂Tk

∂xk
Nk θk dAk,

ke
c,k� = −

∫
Γe

0k

NT
k

∂Tk

∂xp

∂xp

∂ue
�

θkdAk,

(2.51)

where, for Tk := Tk(rk)np,

∂Tk

∂xk
= T ′k np ⊗ np + Tk

∂np

∂xk
,

∂Tk

∂xp
= −T ′k np ⊗ np + Tk

∂np

∂xp
,

(2.52)

analogous to Eqs. (2.43), (2.44) and (2.46). Consider fixed θk can actually
improve the accuracy of the SF formulation[33]. If θk is kept variable, the
additional three tangent contributions

ke
c,kkθ1

=
∫
Γe

0k

NT
k Tk ⊗ N̄kF−1

k

∂np

∂xk
Nk dAk,

ke
c,kkθ2

=
∫
Γe

0k

NT
k Tk ⊗ np

∂F−T
k N̄k

∂ue
dAk,

ke
c,k�θ = −

∫
Γe

0k

NT
k Tk ⊗ N̄kF−1

k

∂np

∂xp
N� dAk,

(2.53)

are picked up. Here the first and third contributions are fully specified through
Eqs. (2.45) and (2.47). The second contribution, ke

c,kkθ2
, depends on the
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deformation of the volume element Ωe
k attached behind the surface element

Γ e
k , and therefore has the size (3nse × 3nve). The matrix

∂F−T
k N̄k

∂ue
=

[
∂F−T

k N̄k

∂u1
, · · · ,

∂F−T
k N̄k

∂unve

]
(2.54)

consists of the (3× 3) blocks

∂F−T
k N̄k

∂uI
=

(
J−T

k ∇ξNI

)
⊗

(
F−T

k N̄k

)
(2.55)

for I = 1, ..., nve. Here Jk denotes the Jacobian of the parametrization of
element Ωe

k . The reader is referred to [33] for a derivation of Eq. (2.55).
Table 2.2 shows the algorithm used to solve the contact problem with the

finite element method. The solution algorithm requires four major loops: a
loading loop, a Newton iteration loop, a loop over the finite elements and
a loop for the numerical quadrature. At the quadrature points of the con-
tact elements we need to determine the projection of these points onto the
neighboring surface. This projection is a common task in computational con-
tact mechanics[32] and may require a second, local Newton iteration. The
two elemental loops are needed to assemble the forces fint and fc. We note
that for the BF formulation, the vectors fc and fint can, in principle, be
evaluated within the same loop, although a higher integration accuracy is
usually needed for fc. The Newton iteration is used to solve the discretized
equilibrium Eq. (2.33). The loading loop is needed to advance the prescribed
loading. We further note that no active set strategy is needed in the algo-
rithm. Such a strategy is used to determine if certain contact elements are
currently active or not. In the presented approach all contact elements are
considered active and no particular distinction is needed, which can result in
substantial computational savings. For dynamic problems a time integration
scheme, like Newmark’s algorithm, has to be considered. The Newmark algo-
rithm leads to a simple modification of the force vector f and tangent k[38],
which can be evaluated at the element level.

The parameter ε inside potential φ defines the strength of adhesion. For
low ε the adhesive forces vanish and the resulting contact problem is purely
repulsive. For large ε, strong adhesive forces appear, which will affect the
boundary of the contact area. This is shown in Fig. 2.3, which considers
contact between a rigid sphere and a soft substrate[33]. The figure shows
that for strong adhesion a dense mesh refinement is required at the contact
boundary. Section 2.5. discusses an enriched finite element method developed
to treat such cases efficiently. The strength of adhesion can be characterized
by the parameter

γ
W

=
w0

W0
, (2.56)
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Table 2.2 Solution algorithm for the coarse-grained contact model[33]

Loading loop: apply load (e.g. prescribed forces, prescribed displacements) in
increments; at each load step:

Newton iteration (for obtaining the solution u to Eq. (2.33))

• Provide starting guess u0, e.g. based on the solution of the previous load
step

• Iterate for i → i + 1 until convergence:

(1) loop over the volume elements Ωe to compute fe
int (Eq. (2.35)) and

ke
int =

∂fe
int

∂ue
; assemble these into the global force and stiffness arrays f

and k

(2) NBF: loop over the vol. elements Ωe
k and Ωe

� to compute fe
c,k (Eq. (2.36))

and ke
c,kk, ke

c,k� (Eq. (2.39)); BF: loop over the volume elements Ωe
k to

compute fe
c,k (Eq. (2.42)) and ke

c,kk, ke
c,k� (Eq. (2.43)); SF: loop over the

surface elements Γ e
k to compute fe

c,k (Eq. (2.48)) and ke
c,kk,ke

c,k� (Eqs.
(2.51) and (2.53)); contributions fe

c,k, ke
c,kk and ke

c,k� are computed by
numerical quadrature; at each quadrature point xk:

(a) Obtain the projection of xk onto the surface of the neighboring
body

(b) BF: evaluate the contact-interaction force according to Eq.
(2.25); SF: evaluate the contact-interaction force according to
Eq. (2.49)

assemble fe
c,k, ke

c,kk and ke
c,k� into f and k

(3) Apply boundary conditions

(4) Solve kΔu = −f and update ui+1 = ui + Δu

Fig. 2.3 Comparison between weak adhesion (γW = 1 000, left) and strong adhe-
sion (γW = 1, right)[33]. Increasing the strength of adhesion has the same relative
effect as decreasing the stiffness of the bodies. (color plot at the end of the book)

where W0 and w0 denote two energy densities associated with the energy
stored in the elastic deformation and in the adhesion. They can be defined
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as

W0 = E, w0 =
AH

2π2r3
0

, (2.57)

where E denotes Young’s modulus and AH denotes Hamaker’s constant. Ac-
cording to the definition of Hamaker’s constant we can also write w0 =
β01β02εr

3
0. In the example considered in Figs. 2.3 to 2.5 the adhesion pa-

rameter is considered as γ
W

= 1 000 (weak adhesion) and γ
W

= 1 (strong
adhesion).

The computational formulation outlined by the equations in this section
converges as Fig. 2.4 shows. This demonstrates the general mesh indepen-
dence of the contact formulation. The example corresponds to the problem
considered in Fig. 2.3. Here the case of strong adhesion is displayed. Figure
2.5 shows the rate of convergence. The rate of convergence is much higher
for weak adhesion than for strong adhesion. To capture the deformation and

Fig. 2.4 Mesh convergence of the SF formulation (using a mesh with 43, 83, 163

and 323 finite elements. Contact with a rigid sphere is considered[33]. (color plot at
the end of the book)

Fig. 2.5 FE convergence rate for contact between a rigid sphere and a soft sub-
strate considering both strong and weak adhesion[33]. More elements are required
to resolve strong adhesion accurately.
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stress field of the repulsive contact region at the center of indentation a com-
parably coarse mesh is adequate. To capture the deformation and stress field
of the adhesive contact region at the indentation boundary a comparably fine
mesh is required. Therefore, as parameter γ

W
decreases (i.e. as the strength

of adhesion increases) a larger mesh refinement is required.
The contact forces according to Eqs. (2.24) and (2.49) are always nor-

mal to the surface of the neighboring bodies and hence the model is locally
frictionless. This is consistent with the observation that atomically smooth
surfaces offer only negligible resistance to sliding[39]. The present contact for-
mulation can still be used to define global friction through dissipative material
behavior as is discussed in Section 2.6.

2.4 Adhesion examples

This section presents several numerical examples based on the computational
adhesion model outlined in the preceding two sections.

The first example considers the adhesion of (40, 40) carbon nanotubes
(CNTs) and is taken from Sauer and Li[30]. The (40, 40) tube consists of a
hexagonal graphene structure with 160 carbon atoms around the circumfer-
ence. The tube material is modeled linear elastically with Young’s modulus
E = 5.0 TPa, Poisson’s ratio ν = 0.19 and wall thickness t = 0.075 nm.
The non-bonded interaction between distant tube segments is modeled by
the Lennard – Jones potential Eq. (2.1) where the parameters are chosen as
r0 = 0.383 nm and ε = 2.39 meV. Plane strain conditions are considered.
Fig. 2.6 shows the undeformed tube, its interaction with a rigid graphite
substrate, with neighboring tubes in a bundle and with itself as it collapses
(counter-clockwise, starting from the left). All configurations shown are sta-
ble and drawn to scale. The tube is modeled by 40 geometrically exact 2-node
rod elements[38]. The black dots in Fig. 2.6 show the FE nodes and not the
carbon atoms. Using 40 elements, the atomic density becomes 4 atoms per
element corresponding to a reduction in the dofs by about 2.7 compared to a
full atomic simulation1. The results shown in Fig. 2.6 are in agreement with
experimental and computational results reported in the literature[40-43].

The second example, that has been published in [17, 44], examines the ad-
hesion of soft spheres. For this case, the JKR[1] and related models, like the
Maugis – Dugdale model[3], have been formulated. These models are based
on linear half-space theory and infinitesimal deformations, which assumes
the contact area to be much smaller than the radius of the spheres. For large
deformation contact, however, these models cannot be used and one should

1160 × 2 atomic dofs vs. 40 × 3 nodal FE dofs for plane strain considerations.
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Fig. 2.6 Adhesion of carbon nanotubes[30].

resort to computational models like the one presented here. Here, contact
within a sphere of radius R0 = 21 nm with a flat half-space is considered. In
the Maugis model the strength of adhesion is characterized by the parameter
λ ∈ (0,∞). Increasing λ corresponds to increasing adhesion. In fact the limit
λ →∞ reproduces the JKR model as a special case. In the present example
the adhesion parameter is chosen as λ = 1.3. Parameter λ is a model specific
parameter that is related but has no explicit correspondence to the physi-
cally motivated parameter γ

W
. It has been found that the value γ

W
= 11.55

produces a remarkable agreement in the following results.
Figure 2.7 shows the normal contact force P versus the normal contact ap-

proach u for the considered problem. For moderate displacements the agree-
ment is excellent. For increasing displacements the two curves diverge since
the small deformation assumption used in the Maugis model is no longer
valid. For increasing negative displacements, which correspond to separating

Fig. 2.7 Adhesion of soft spheres: force-displacement curve[44].
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the bodies, the Maugis model loses its applicability since it is not defined
there. For the considered parameters a contact instability occurs, which is
indicated by the S-shaped section in the force-displacement curve[30].

To further illustrate the agreement between the two models, the contact
pressure between the two bodies is examined in Fig. 2.8. The pressure distri-
bution according to Maugis and the CGC models is shown in the graphs on
the right-hand side. The agreement between both models is excellent. The ver-
tical axis displays the radial distance from the center axis measured relative to
the sphere radius R0. The horizontal axis measures the pressure in multiples
of Young’s modulus E. Altogether, four cases are shown, which correspond
to the four states at u = −0.038 8 R0, u = −0.017 6 R0, u = 0.042 3 R0 and
u = 0.101 3 R0 that are marked by open circles in Fig. 2.7. According to the
Maugis model these correspond to a = 0.050 R0, a = 0.186 R0, a = 0.329 R0

and a = 0.420 R0, where a characterizes the radius of the contact area. The
graphs on the left-hand side display the deformation of the contact partners
together with the stress field σz, which is the stress component in the vertical
direction. The stress coloring chosen in the figure ranges from −0.12 E (dark
blue) to 0.08 E (dark red). Both the stress field, and the pressure distribution
show the smooth repulsive compression at the center of contact and the sharp
attractive tension at the contact boundary. The agreement between the two
models is much better in the repulsive zone than in attractive zone.

The third example considers the computation of the nanoindentation of
a thin incompressible rubber film and is taken from Sauer[44]. A rigid Vick-
ers indenter is considered, which is a four-sided pyramidal indenter with an
opening angle of 2 × 68◦ between opposing faces. The indenter is pressed
into a thin film with a considered thickness of R0 = 10 nm. The rubber film
is considered perfectly bonded to an underlying rigid substrate. The rubber
material is considered nearly incompressible, and is described by the Neo-
Hookean material model

W (J, Ĉ) = U(J) +
μ

2
(Î1 − 3), (2.58)

which is based on a split between the volumetric deformation, described by
the determinant of the deformation gradient J = detF, and the deviatoric
deformation, characterized by

Î1 = trĈ, Ĉ = F̂TF̂, F̂ = J−
1
3 F. (2.59)

The volumetric strain energy is taken as

U(J) =
K

4
(J2 − 1)− K

2
ln J. (2.60)

Parameters K and μ denote the bulk and shear moduli which are related to
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Fig. 2.8 Adhesion of soft spheres: deformation and stress field (a); contact pressure
between the two bodies (b)[44]. The four cases correspond to the four states marked
in Fig. 2.7. (color plot at the end of the book)



76 Chapter 2 Computational Contact Formulations for Soft Body Adhesion

Young’s modulus E and Poisson’s ratio ν according to

K =
E

3(1− 2ν)
, μ =

E

2(1 + ν)
. (2.61)

In the following example Poisson’s ratio is chosen as ν = 0.499. E is used for
normalization and is thus left unspecified. For the indentation computations
a Q1P0 finite element formulation for large deformations is used[38]. Due to
symmetry only one quarter of the contact zone is modeled up to a distance of
30 nm from the indenter tip. Figure 2.9 displays the deformation at u = 0.5R0

for the two cases where the adhesion is very strong (Fig. 2.9a) and very weak
(Fig. 2.9b). As observed in Fig. 2.3, strong adhesion leads to large tensile
contact forces and surface deformations at the contact boundary, which are
not present for weak adhesion. The coloring shown in both figures visualizes
the stress field σr, which is the stress in the radial direction from the indenter
tip. For γ

W
= 2.17, the range of σr lies between −0.55 E (blue: compression)

and 0.09 E (red: tension). Since the tensile stress region is localized in a
narrow band at the contact boundary, a high mesh refinement is needed to
capture these forces accurately. The adhesion forces lead to the reduction of
the resultant contact force: For γ

W
= 1 000 we have P = 0.549 ER2

0, whereas
for γ

W
= 2.17 we only have P = 0.506 ER2

0.

Fig. 2.9 Nanoindentation with strong (a) and weak (b) adhesion[44]. (color plot
at the end of the book)

As a fourth example the dynamic pull-off behavior of an adhering gecko
seta is considered[45]. The seta is a thin, hair-like structure that branches
into hundreds of fine tips, the so-called spatulae. The setae are up to 100 μm
long and have a cross-sectional diameter of a few micrometers. The spat-
ulae are around 1 μm long and have a cross-sectional diameter of around
100 nm. The adhesion between seta and substrate occurs predominately at
the spatula pad, which forms the tip of the spatula and is several hundred
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nanometers long and wide, but only a few nanometers thick. The thinness
of the pad gives it great flexibility to deform and adapt to the inclination
and roughness of the substrate surface. Since the seta dimensions are sev-
eral orders of magnitude larger than the range of intermolecular adhesion,
a hierarchical, three-dimensional multiscale procedure is developed in [20]
that spans six orders of magnitude and is able to efficiently simulate the me-
chanical behavior of a gecko seta during adhesion. The multiscale approach is
based on the three distinct modeling levels illustrated in Fig. 2.10. Within the
multiscale approach, the coarse-grained contact model is used to model the
molecular interaction between the spatula pad and the underlying substrate.
The spatula itself is modeled as a thin elastic rod with varying cross-section.
At the seta level, a fractal geometry model is constructed that captures the
hierarchical branching of the seta. A geometrically exact rod formulation is
used to capture the nonlinear kinematics of large deformations[20]. The con-
stitutive behavior of the seta and spatula is described by a linear elastic
isotropic material law with Young’s modulus E = 2 GPa and Poisson’s ratio
ν = 0.2. The density is assumed to be ρ = 1 000 kg/m3. The adhesion pa-
rameters are chosen as AH = 10−19 J and r0 = 0.4 nm. Further details of the
model, particularly the geometry and the FE rod formulation, are reported
by Sauer[20]. The multiscale seta model described above is used to analyze

Fig. 2.10 Multiscale model describing the adhesion mechanism of the gecko
seta[20].
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the dynamic pull-off behavior of the seta. Therefore, a vertical displacement
u(t) is applied to the shaft of the spatula and seta so that the pull-off velocity
v = u̇ is constant. The rotations and horizontal displacements of the shaft
are considered fixed. Figure 2.11 shows the deformation of the spatula and
seta and the corresponding force-displacement curves during pull-off. For the
considered velocities and model parameters, the maximum pull-off force of a
single spatula lies in the range of 8— 17 nN, which is in very good agreement
with the values observed by Huber et al.[46] and Sun et al.[47]. For the clarity
of the figure, the entire spatula pull-off curve is only shown for the case v =
0.1 m/s, while the other cases are shown only prior to jump-off-contact. The
pull-off behavior of the gecko spatula is characterized by peeling, which is
discussed in further detail in the following section. The pull-off behavior of
the spatula is inserted into the seta model as a contact law for the seta tips.
The maximum pull-off force of the seta that is then obtained lies in the range
of 0.4— 1.4 μN. These pull-off forces do not agree with the value reported by
Autumn et al.[48]. However the values of Autumn et al. are also inconsistent
with the findings of Huber et al.[46] and Sun et al.[47]. Newmark’s integration
algorithm[38] has been used for the computations.

Fig. 2.11 Pull-off computation of a gecko spatula (left) and seta (right); deforma-
tion (top) and force-displacement curve (bottom)[45]. (color plot at the end of the
book)

There is a long list of further examples that can be analyzed by the pre-
sented contact formulation. These include thin film peeling[49], MEMS stic-
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tion[50], delamination[51], atomic force microscopy (AFM), cell adhesion[52-54],
particle adhesion to liquid surfaces[55], rough surface adhesion[56], interac-
tions of nanoparticles[57] and synthetic adhesion mechanisms[58]. The cases
of peeling and rough surfaces are further examined in the following sections.

2.5 Peeling contact

The separation of strongly adhering soft bodies is often characterized by peel-
ing. The understanding of the peeling behavior is therefore central to many
important applications in coating, bonding and adhesion technology. Exam-
ples include the bonding properties of thin films and the adhesion mechanisms
of various insects and lizards. There is also a standardized peeling test used
to analyze the properties of adhesives and adherents. For very thin elastic
films, where the bending stiffness can be neglected, the peeling behavior can
be characterized by the analytical model of Kendall[49]. But for general appli-
cations computational approaches must be used. Adhesive peeling is closely
related to cohesive fracture and therefore finite element based cohesive zone
models are often considered for peeling computations[59-62].

A challenge in the computation of peeling problems are the large peeling
stresses that can occur in a very narrow zone at the peeling front, as shown
in the example of Fig. 2.12. Considered is a strip with length � = 200 L0

and height h = 10 L0 adhering to a rigid substrate. The strip is peeled off
the substrate by applying a rotation θ incrementally at the right boundary.
The strip is modeled by an isotropic, nonlinearly elastic Neo –Hooke material
with E = 2 GPa and ν = 0.2. Plain strain conditions are considered. Adhesive
contact is considered along 75% of the bottom surface (from x = 0 to x =
150 L0) using the contact model described above with r0 = 0.4 nm and

Fig. 2.12 Peeling of an elastic strip by an applied end rotation: deformation of
the strip (a); stress at the peeling front (b)[63]. (color plot at the end of the book)
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AH = 10−19 J, which are the values associated with gecko adhesion.
Classical finite element (FE)-based contact formulations often lead to a

dilemma: either a highly refined FE description is chosen, which is compu-
tationally expensive or a coarse description is used, which is efficient but
inaccurate and perhaps even unstable during computations. It therefore be-
comes desirable to develop improved computational contact formulations for
peeling that are both accurate and efficient.

Such a formulation is proposed by Sauer[63]. The approach is based on
a local enrichment of the contact surface so that the contact surface repre-
sentation is more accurate than the bulk representation. Therefore, a new
class of enhanced surface elements for contact is developed. The simplest of
these is the so-called Q1C2 element which approximates the contact surface
by a quadratic interpolation while the bulk is approximated by a linear inter-
polation. This is achieved by adding a surface node to the standard 4-node
quadrilateral (the Q1 element). The shape functions of the Q1C2 element,
expressed in the master configuration (Ωe = (|ξ| � 1, |η| � 1)), thus are

N1 =
1
4
(ξ2 − ξ)(1 − η),

N2 =
1
4
(ξ2 + ξ)(1 − η),

N3 =
1
4
(1 + ξ)(1 + η),

N4 =
1
4
(1 − ξ)(1 + η),

N5 =
1
2
(1 − ξ2)(1 − η),

(2.62)

so that the displacement is approximated by

uh
e =

5∑
I=1

NI uI . (2.63)

This element is combined with a standard Q1 formulation within the bulk,
so that the interpolation is linear in the bulk and quadratic on the surface. In
the first element layer a transition zone exists, where the formulation is still
quadratic, due to the influence of the surface nodes. Formally this is written
as

uh ∈ P1 in Bh,

uh ∈ P2 on ∂cBh,
(2.64)

where P1 denotes the space of continuous, piecewise linear functions (bilinear
to be precise) and P2 denotes the space of continuous, piecewise quadratic
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functions. The enriched 5-node quadrilateral satisfies the compact support
condition

Na(ξb, ηb) = δab, (2.65)

at the nodes, and the partition of unity

5∑
I=1

NI = 1 ∀ ξ, η. (2.66)

Since the element is linear in the bulk and quadratic on the contact sur-
face, it is denoted as Q1C2 in the following. With this notation a standard
displacement-based contact formulation is a Q1C1 finite element formulation.
Since each node has two dofs, the Q1C2 element has 10 dofs in total.

In principle, the Q1C2 element has the same contact accuracy as a fully
quadratic finite element contact description[64], but is much more efficient.
The new elements are initially developed to improve peeling computations
but they also show improved behavior for sliding computations. The approach
is quite simple, efficient and very effective.

The new enriched contact elements achieve a substantial improvement
in peeling computations compared to standard contact formulations. This is
shown in Fig. 2.13, which reports the force-displacement curve for the peeling
example given in Fig. 2.12. Instead of an oscillatory result the new elements
smoothen the forces. Due to the reduction of the oscillations the computation
is much more robust. A detailed assessment of the increased accuracy of the
new element formulations is discussed by Sauer [63]. This work also contains
a surface enrichment based on Hermite polynomials, the Q1CH element for-
mulation, which constructs an approximation that is continuous (C0) within
the domain Bh, and continuously differentiable (C1) on the contact surface
∂Bh, i.e.

uh ∈ C0 ∀x ∈ Bh,

uh ∈ C1 ∀x ∈ ∂cBh.
(2.67)

The C1QH formulation gives highly accurate results in peeling and contact
sliding computations. An extension of the enrichment strategy to 3D is also
shown by Sauer[63]. For very thin films, the peeling kinematics can also be
described accurately by non-linear rod formulations[65], which provide an
efficient alternative to solid formulations.

The enriched contact formulation is suitable to studying the peeling be-
havior of complex, three-dimensional structures like gecko spatula. The spat-
ulae form the tips of the fine hairs that coat the gecko toes, being responsible
for the adhesion mechanism used by the gecko. They transfer the tensile forces
between substrate and the gecko toes during adhesion. The spatula consists
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Fig. 2.13 Peeling forces: force-displacement curve (a); oscillation in the force-
displacement curve (b)[63]. (color plot at the end of the book)

of a cylindrical shaft connected to a very thin and flexible pad that can adapt
and adhere to the underlying substrate. The entire spatula is about 1 000 nm
long (see [20, 66] for further geometrical details). Figure 2.14 shows a finite
element computation of a gecko spatula adhering to a flat substrate. The
angle between substrate and spatula shaft is considered to be at 60◦. Due

Fig. 2.14 Finite element computation of the peeling of a single gecko spatula[66].
(color plot at the end of the book)
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to symmetry, only half of the spatula is modeled. Around 100 000 elements
are used. The contact configuration shown in Fig. 2.14 has a zero net contact
force. Large deformations and high stresses occur inside the spatula pad at
the boundary of the contact zone. The coloring shows the distribution of the
stress I1 = tr . The maximum adhesive stress appears at the underside of the
pad and has a value of about 0.11E. The material parameters used for this
computation are E = 2 GPa, ν = 0.2, AH = 10−19 J and r0 = 0.4 nm, which
results in γ

W
= 25.3 according to Eqs. (2.56) and (2.57). Further details of

the modeling and simulation of spatula adhesion are discussed by Sauer and
Holl[66].

2.6 Rough surface contact

Real surfaces are not perfectly flat but are characterized by various roughness
levels at different length scales, that affect the contact behavior like friction,
adhesion, conductivity and wetting[56,67].

The earliest approaches studying rough surface contact are based on elas-
tic half-space theory and use the analytical solutions of Boussinesq and
Hertz[68]. In order to integrate the effect of multiple contact points, re-
searchers have developed both statistical and deterministic methods:

One of the first studies of rough surface contact is the seminal work of
Greenwood and Williamson[69]1 . The Greenwood– Williams (GW) model as-
sumes that the surface roughness follows from a known, e.g. Gaussian, dis-
tribution and assumes that all local contacts behave according to Hertzian
theory. The GW model has been extended to adhesive contact based on the
analytical JKR and DMT contact theories[70,72]. Recently an extension to
adhesion has also appeared by Persson[71]2 .

The Greenwood– Williams model does not account for the actual position
of local contacts nor does it reflect the fractal nature of rough surfaces. There-
fore a second approach, also based on half-space theory, has appeared which
considers the integration of the point load solution of Boussinesq over the
contact surface. Using a discrete surface representation, a relation between
contact displacement and pressure is obtained based on influence coefficients.
This approach has also been denoted as the matrix inversion method[73-77].
Deterministic roughness models together with linear elastic half-space theory
have also been applied to frictional contact with adhesion[78].

The drawback of half-space methods is that they rely on several restricting
assumptions. These are: (a) simplified geometry, like that of spheres and half-

1An earlier study appeared in the 1940s by Zhuravlev[81].
2This approach was criticized by Borodich[82].
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spaces, (b) small deformation theory and (c) linear material behavior. These
assumptions can be suitable for stiff bodies. For soft bodies, on the other
hand, large contact deformations can occur, which requires the use of non-
linear kinematics, so that the approaches mentioned above cannot be used.
Therefore the framework of non-linear continuum mechanics in conjunction
with finite element methods offers an ideal framework to study rough surface
contact and include the effects of friction and adhesion[79,80]. For van der
Waals adhesion, the continuum contact model outlined in Section 2.2 offers a
suitable framework to study rough surface contact. As an example, Fig. 2.15
shows the stress and deformation within a soft elastic block in contact with
a rough rigid surface. The surface roughness is described by asperities that

Fig. 2.15 Rough surface contact: surface roughness (a); contact deformation and
stress of a soft elastic block pressed onto the surface (b); (c) force-displacement
curve considering strong adhesion (γW = 2) in contrast to weak adhesion (γW =
1 000). Equivalently, this corresponds to comparing a soft block with a stiff block
for fixed adhesion strength. The data is normalized by the asperity spacing R0 and
the energy E0 = ER2

0. (color plot at the end of the book)
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follow a Gaussian profile. The block is modeled by a Neo –Hookean material
model with initial Young’s modulus E, that is left unspecified, and Poisson’s
ratio ν = 0.2. The coloring shows the distribution of the vertical normal stress
component σ33 which lies in the range of 0 to −1.4 E. The load-displacement
curve in Fig. 2.15 shows that the strength of adhesion, which is represented by
the parameter γ

W
according to Eq. (2.56), has a large effect on the contact

forces. A big difference also occurs for the local contact deformation and
stress, similarly as observed in Figs. 2.3 and 2.9.

It is known that increased roughness tends to cause an increase of the
friction forces and a decrease of the adhesion forces. In many cases, however,
the exact nature of these mechanisms is not yet fully understood, especially
for soft materials undergoing large contact deformations. Further research
is therefore needed to determine the precise effect of surface roughness on
adhesion and friction. Classical friction laws, like Coulomb’s law, require
compressive contact forces in order to provide frictional resistance, and are
therefore not applicable to describing friction under adhesive, i.e. tensile,
forces as they can be observed in lizard and insect adhesion[83]. So far, the
following origins of friction have been identified:

(1) Atomic friction[39,84,85], which offers resistance to the sliding of atom-
ically flat surfaces but tends to be very weak compared to roughness-induced
friction.

(2) Internal hysteresis within contact bodies with dissipative material
behavior. This occurs due to the cyclic loading of bodies in sliding contact
and is perceived as friction at the macroscale. Internal hysteresis can be
caused by viscosity, plasticity or damage, e.g. wear.

(3) Hysteresis within a contact lubricant. While viscous lubricants tend
to reduce friction through reducing the influence of internal hysteresis, they
themselves dissipate energy on the other hand.

(4) Hysteresis coming from the adhesion law. This part, however, is some-
times confused with the second contribution. For instance, if the Lennard –
Jones potential is used to model adhesion, then there is no hysteresis in the
adhesion law. Only the combined effect with the material behavior will result
in hysteresis.

Another aspect is the scale transition of contact adhesion and friction.
Van der Waals adhesion, for example, has a range of a few nanometers. It
therefore has a strong effect on very small bodies that can come into close
contact. For large bodies, on the other hand, surface roughness and con-
taminating surface particles often prevent intimate contact so that the effect
of van der Waals adhesion is lost at larger scales. The question thus arises,
how to describe the effective contact behavior at a given length scale for
given material and roughness parameters of the neighboring bodies. While
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the traditional approach has been to use experimental models at increasingly
finer length scales, a new emerging paradigm is the use of homogenization or
coarse-graining methods that are based on underlying principles, like molecu-
lar or even quantum mechanical modeling. For contact, such homogenization
strategies have been considered by Luan and Robbins[23]; Luan et al.[86];
Sauer and Li[24,30]; Temizer and Wriggers[21]; Wriggers and Reinelt[19]; Yang
and Persson[25]; Temizer and Wriggers[22]. The basic idea of contact homog-
enization is outlined in Fig. 2.16. Suppose we are interested in finding the
effective contact behavior at the micrometer scale based on the underlying
behavior of rough surface contact at the nanometer scale. If we are interested
in the behavior of the global problem then it becomes inefficient to model the
fine details of the contact zone. Therefore an effective model is sought, which
yields the same (or similar) overall contact behavior as the detailed model.
In other words, we seek the effective contact potential φ∗ capable of provid-
ing the same effective behavior for smooth contact surfaces as the original
potential φ (Eq. (2.1)) does for rough surfaces. This can be accomplished by
simulating the contact behavior of a representative volume element (RVE)
and comparing it to the contact behavior of the effective model. In the case
of frictional sliding contact, we may additionally seek an effective friction
coefficient μ∗ for smooth surfaces which captures the overall sliding behavior
of the original rough surface, with coefficient μ, accurately.

Fig. 2.16 Homogenization of the detailed nanometer scale contact behavior (a)
into an effective contact model at the micrometer scale (b).

Rough surfaces also affect the contact behavior of liquids. A prominent
example is the self-cleaning mechanism of lotus leaves, which is caused by
the complex surface microstructure of the leaves[87]. Lotus surfaces are hy-
drophobic, so that water does not coat the surface but rather forms small
droplets which roll-off easily, even for a small inclination of the surface. For-
eign pollutants clinging to the surface, like dirt or germ particles, adhere to
passing water droplets and are thus swept away from the surface. This is pos-
sible since the attractive forces between particles and surface are weaker than
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those between particles and water. Otherwise the pollutant particles cannot
be swept away by water droplets and the surface loses its self-cleaning ca-
pability. Figure 2.17 shows a hydrostatic finite element solution of a liquid
droplet in contact with a rough surface[88]. The local contact angle at the
three-phase boundary of water, solid and air is considered to be 180◦. In this
case the droplet sits on top of the asperities instead of wetting the grooves, a
state knowing as the Cassie-Baxter state of wetting. The considered droplet
has a volume of 29.45 nL, which corresponds to an spherical diameter of
3.83 mm. The asperity spacing is chosen as 0.383 mm.

Fig. 2.17 Finite element solution of a liquid droplet in contact with a rough
surface. The contact angle at the three-phase boundary is considered to be 180◦.

2.7 Conclusion

This article gives an overview of the formulation, implementation, behavior
and application of small-scale contact of soft bodies. Due to the high com-
pliance, adhesional forces have a large effect on the contact behavior of soft
bodies. Adhesive contact of two bodies can be derived from an interaction
potential (see Section 2.2) which provides a very general model framework.
The model is expressed in two variants: the body force formulation (BF) and
the surface force formulation (SF). The BF formulation is the natural formu-
lation that appears from a long-range, particle-based interaction formulation
as the Lennard – Jones potential. The SF formulation is obtained from the
projection of these body forces onto the surface, which is useful to increase
numerical efficiency. Section 2.3 presents the 3D finite element equations for
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both adhesive contact formulations. In both cases two versions are reported:
a naive implementation, that is simple, but not efficient and a highly efficient
but more complicated implementation that is based on a closest point projec-
tion and analytical integration. The contact algorithm used for all methods is
then summarized in Table 2.2. Depending on the ratio between the material
stiffness and the strength of adhesion, the contact behavior is fundamentally
different: for stiff bodies, the effect of adhesion is negligible and only compres-
sive contact forces are observed. For soft bodies, adhesion dominates contact
and strong tensile contact forces are observed at the boundary of the con-
tact area. The effect of adhesion is illustrated by several numerical examples
in Section 2.4 and Section 2.6. The considered applications include carbon
nanotube interaction, adhesion of spheres, nanoindentation, gecko adhesion
and self-cleaning surface mechanisms. The separation of adhering soft bodies
often leads to a peeling mechanism. These mechanisms can pose a substantial
computational challenge, as shown in Section 2.5. Using an enriched surface
representation within the peeling zone allows the construction of efficient
computational formulations for peeling problems. The contact behavior of
soft bodies, like adhesion and friction, is strongly influenced by the surface
microstructure. The precise nature of these influences is still an open research
topic. A useful tool for determining effective contact models from underly-
ing, fundamental principles, are contact homogenization methods, which are
outlined in Section 2.6.

The author is currently working on the extension of some of the contact
formulations presented here. Among those are the extension of the enriched
contact formulation presented in Section 2.5, the development of efficient in-
tegration algorithms for dynamic contact adhesion problems, the formulation
of suitable friction laws for adhesive contact and the extension of the con-
tact model for liquid droplets. Further challenges in soft body contact lie in
the fields of multifield problems, parameter identification and determination,
inverse problems and also the constitutive modeling of the soft materials
themselves.
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Chapter 3 Soft Matter Modeling of Biological
Cells

Xiaowei Zeng, Shaofan Li∗ and Bo Ren

Department of Civil and Environmental Engineering, University of
California, Berkeley, CA 94720, USA

Abstract: In this work, we review some of our recent work on develop-
ments of soft matter models for cells to study the focal adhesion of endothelial
cells as well as stem cells, in an attempt to explain mechanical information
exchange between the cells and their extracellular environment. Particularly,
we model the macroscale endothelial cell as a hyperelastic medium, and the
stem cell as a liquid crystal elastomer. A nanoscale adhesive model is intro-
duced to describe the interaction between receptors and ligands. We have
developed and implemented a Lagrange type meshfree Galerkin formulation
and related computational algorithms for the proposed cell and adhesive con-
tact model. A comparison study with experimental data has been conducted
to validate the parameters of the cell model. By using the soft matter cell
model, we have simulated the soft adhesive contact process between cells and
extracellular substrate. The soft matter cell model presented in this work is a
primitive one, but it may have provided a useful approach for more realistic
and more accurate modeling of cells, especially stem cells.

Keywords: endothelial cell, focal adhesion, liquid crystal elastomer, mul-
tiscale simulations, soft contact, stem cell

3.1 Introduction

A recent advance in cellular and molecular biology is the discovery that the
behavior of stem cells depends sensitively on both the rigidity and surface
micro-structures of the extracellular environment. For example, Engler et
al.[1] reported that matrix elasticity directs stem cell lineage specification.
The ability of the cell to sense the environmental mechanical stimulus and
subsequently to mediate its own coordinated responses is called Mechan-

∗Corresponding author, E-mail: shaofan@berkeley.edu



96 Chapter 3 Soft Matter Modeling of Biological Cells

otransduction. As a process of cellular signal transduction in response to me-
chanical stimuli, mechanotransduction plays important role in normal physi-
ological processes such as cell motility, angiogenesis, embryonic development,
tissue regeneration, and wound healing. However, abnormal mechanotrans-
duction is also responsible for a series of diseases in cardiology, orthopedics,
neurology, and oncology. One common channel for force transmission is via
focal adhesion. The exact mechanotransduction mechanism of focal adhesion
is still unknown, and it is under active investigation. The objectives of current
research are: (a) to establish a predictive modeling paradigm that can help
us understand biomechanics and biophysics underlying focal adhesion-based
mechanotransduction, and (b) to explain and to elucidate protein conforma-
tional changes and binding affinity changes in response to external forces,
external ligand perturbations, and properties of external environment.

In recent years, we have developed a soft matter coarse-grained model
that combines the strength of different modeling methods including nanoscale
interatomic potential for adhesive contact and meshfree method of contact
mechanics to implement this project. We hope results from this study will
give insight into the role of soft elasticity on mechanotransduction of focal
adhesion, helping to unravel its molecular mechanisms on diseases, and to
assist the design of targeting therapies. Moreover, the study of the contact
mechanics of cell adhesion will directly contribute to our knowledge on func-
tion, self-assembly, and self-disassembly of focal adhesion, whose molecular
mechanism of mechanotransduction is vital to understand many fundamental
problems of lifesciences, biology, and medicine, such as the basic cell func-
tions relating to all the issues from cell motility to cell cycle, interaction and
relationship between receptors and ligands, cytoskeleton dynamics, and viral
binding.

To study the soft contact and focal adhesion of cells may help us design
biomimetic models for the extracellular matrix and by analyzing their effect
on cell-matrix adhesion, we hope to eventually unravel the basic principles at
work at the interface between living cells and their environment. This may
pave the way for rational design of scaffolds for tissue engineering and for
new strategies in regenerative medicine and cancer therapy. The applications
of this research range from dental implants to hip replacements.

Moreover, there are human genetic diseases caused by inability to express
a specific adhesion molecule. For example, the leukocytes from leukocyte
adhesion deficiency patients fail to adhere to the blood vessel wall during
inflammation, which causes patients to exhibit serious infections that can be
life threatening. Therefore, the molecular mechanism of focal adhesion plays
a very important role in the function of human immune system and curing
human genetic diseases.
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Furthermore, soft surface properties appear to be important in stem cell
lineage specification. Stem cells take their cue from their physical surround-
ings. To understand the interaction between stem cells and their physical
environments, the focal adhesion in particular, will offer potential benefits
for the large-scale production of embryonic stem cells.

3.2 Soft matter modeling of cells

3.2.1 The future is soft

Soft matter chemistry, physics, and mechanics have emerged as the frontier
multi-disciplinary scientific research, that are concerned with the study of
colloidal suspensions, liquid crystals, liquid crystal polymers, and surfactant
(soap-like molecules) (Fig. 3.1). The term, soft matter, was coined by the
late Professor Pierre –Gilles de Gennes in his visionary 1991 Nobel Physics
Prize speech. The behavior of these systems is dominated by one simple fact:
they contain mesoscopic structures with sizes between those of a typical small
molecule such as water (∼ 0.3 nm) and the beaker containing liquid. These
mesoscopic structures ranging from 10 nm to 1 μm can be suspended solid
particles or liquid drops, polymer coils formed by linking together tens of
thousands of smaller molecular units, or micelles spontaneously formed by
soap molecules.

Fig. 3.1 Mechanics of soft matter and its multiscale components. (color plot at
the end of the book)

Soft matter displays a range of fascinating properties, with most of them
relating to the ability to assemble itself into complex structures. Another
important property of some soft elastic materials is that they possess some
‘soft deformation modes’, i.e. some or all of elastic stiffnesses can vanish. It
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leads to drastic structure changes or conformation changes, or in other words,
the phase transitions.

Soft matter has been studied by chemists, chemical engineers, and bi-
ologists for many years. Since 1970s, a group of physicists have joined the
research and created a sub-discipline in physics, namely, physics of the soft
condensed matter. Due to the emergence of nanoscience and technology,
bio-molecular science and technology, and environmental engineering, many
nanoscale systems consist of soft matters, such as DNA, RNA, proteins,
cells, and tissues, which are either bio-molecule or biopolymer made of bio-
molecules, and they are ubiquitous in almost all life forms and organisms.

A common feature of many soft matter systems is their richness in chem-
ical or biological details. Despite of the various forms of these materials,
many of their properties have common physiochemical origins. For example,
all polymer molecules share some common properties because they are long
balls of strings continually wriggling under thermal fluctuations. Almost all
soft matter has a large number of internal degrees of freedom, weak interac-
tions between structural elements, and a delicate balance between entropic
and enthalpic contributions to the free energy.

Moreover, studying the generic properties of soft matter can give fresh
insight into a range of rather broad and fundamental questions that cut
across a whole discipline: one example being addressed by this research is
the contact mechanics of soft matter and focal adhesion of cells, which is one
of the fundamental challenges in today’s biology and medicine.

Even though the mechanics of soft matter is still in its infancy today,
it has been always an essential part of soft condensed matter physics. Such
as an example is the celebrated Ericksen– Leslie theory[2-5], which is one
of the early contributions of soft condensed matter physics. Today, the soft
mechanics and its computation have been rising to re-invigorate classical
continuum mechanics.

3.2.2 The reasons to use liquid crystal elastomers to model cell
and focal adhesion

The first successful coarse-grained modeling of the cell structure should be
credited to Helfrich and his co-workers[6-8]. In 1970s, Helfrich and his co-
workers modeled the cell membrane as a liquid crystal, and they carried out
calculations to give the correct shape of red blood cells, which was probably
the first triumph of soft matter physics. Currently, at spectrin level, the
most sophisticated model of cytoskeleton membranes model is proposed by
Li et al.[9] It is based on the worm-like chain (WLC) model[10,11], which is
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essentially an entropic elastomer model without internal microstructure or
internal degrees of freedom.

If one combines both the liquid crystal and the entropic elastomer, one
will end with a completely new material— the liquid crystal elastomer! Liq-
uid crystal elastomers consist of networks of cross-linked polymeric chains,
each of which contains rigid rod-like molecules called mesogens[12,13]. Liquid
crystal elastomers combine the elastic properties of rubbers with the order
inherence in nematic liquid crystals. Stretching a monodomain strip of ne-
matic elastomer in a direction transverse to the nematic director results in
an energy-free rotation of the director, giving rise to a soft elastic response.

The main reasons that we perceive that this could be a successful model
are: (a) Liquid crystal elastomers have soft modes that can be triggered in
contact/adhesion through phase transition. This gives a theoretical possibility
to capture self-assembly/ self-disassembly of the focal adhesion— a state of
liquid gel. (b) The microstructure of myosin in cell cytoskeleton remarkably
resembles the microstructure of mesogens in nematic elastomers. (c) This is a
mathematically elegant and computational tractable model, which is feasible
in the current computer and computational technologies.

In Fig. 3.2, we juxtapose the morphology of the myosin in stress fibers and
that of the mesogen of nematic polymers. One can see the similarity between
them while possessing the same micro-structure in terms of soft elasticity.

Fig. 3.2 Comparison between (a) myosin-actin in cells and (b) mesogens in liquid
crystal elastomers. (color plot at the end of the book)

In fact, the collagen is a long fibrous structural proteins, which is the main
constituent of connective tissue and extracellular matrix in animals, and it is
the most abundant protein in mammals. Recently, evidences have been dis-
covered that some collagens can be precisely characterized by liquid crystal
elastomers. Martin et al.[14] have shown that type I procollagen, the precur-
sor for mammalian type I collagen fibrils, forms nematic and pre-cholesteric
liquid crystals in vitro and have argued that this accounts for the assembly
of crimped fibrils and other assemblies in vitro. Knight et al.[15] and Knight
and Vollrath[16] have presented evidence that the fibrillar collagens and the
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dragline silks of orb web spiders are actual liquid crystal elastomers.
Therefore, we believe that the newly formulated liquid crystal elastomer

theory[17,18] provides the best possible coarse-grained model for both cy-
toskeleton modeling and the modeling of collagen tissues.

3.2.3 Elasticity of soft contact/cell adhesion and surface material
property sensing

Cell contacts are adhesion in nature, involved in one of the most common
biological phenomena— the focal adhesion— which is referred to a thin layer
of anchorage molecular assemblies of cytoskeleton plasma between the mem-
brane of a cell, e.g. fibroblast and the substratum of extracellular matrix.
Focal adhesion may be viewed or modeled as a macromolecular medium that
can sense (signaling) the stiffness or rigidity as well as the surface energy
density distribution on the extracellular matrix and convert it or transduce
it (mechanotransduction) to protein conformation and cell shape and motion
as well.

At 2006 Annual Meeting of the American Society for Cell Biology, C.
J. Murphy of University of Wisconsin –Madison presented data showing that
embryonic stem cells are more likely to keep their pluripotency — their ability
to become any type of cells — when they are grown on a surface stamped with
a pattern of tiny ridges. In the same year, in an issue of Cell, a team led by D.
E. Discher of the University of Pennsylvania found that stem cells grown on
the stiffest matrix became bone precursors. Those grown on the softest surface
became nerve cells, and those grown on a medium-stiff substrate assumed the
characteristics of muscle cells[19]. Moreover, experimental studies with soft
elastic substrates have shown that fibroblast-like cells spread to larger areas
on stiffer substrates, and that they can locomote to stiff or tensed regions
in their environment[1,20], and hence they are controlled by the stiffness of
the environment. The rigidity response seems to be coupled with growth
inhibition on soft substrates, which distinguishes normal cells from cancer
cells.

In the past ten years, several elasticity models of focal adhesion and rigid-
ity sensing have been proposed: (a) the two-spring rigidity sensing model by
Schwarz[21]; (b) thermodynamic self-assemble model by Shemesh et al.[22]; (c)
crosstalk model by Bershadsky et al.[23]; (d) one-dimensional cluster model
by Bickel and Bruinsma[24]; (e) shear-lag model by Aroush and Wagnet[25];
(f) force-induced adsorption model by Besser and Safran[26]; (g) contractil-
ity/adhesion cooperation model by Novak et al.[27]; (h) force regulation model
by Bruinsma[28]; (i) substrate deformation model by Wang[29].
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Most of these models are one-dimensional elasticity models with some
biology insights or speculations. The contributors are from different fields:
physicists, bio-engineers, material scientists, chemists, and only one
mechanician[29]. Here we briefly introduce the two-spring rigidity sensing
model by Schwarz[21], which is schematically depicted in Fig. 3.3. In this
model, a stress fiber connects two sites of focal adhesion. The spring con-
stants Ke and Ki represent extracellular and intercellular stiffnesses, respec-
tively, and ko is a weak link representing the strength of connecting bonds. A
molecular motor can build force inside stress fibers, and it can be shown that
the larger the Ke the faster the force will be built up. Therefore, the rigidity
can be sensed by a time scale. This model represents the current state and
understanding of molecular mechanism of focal adhesion. Even the present
authors concede that a three-dimensional elasticity analysis as well as other
feature of cell mechanics should be included.

Fig. 3.3 The two-spring rigidity sensing model[21]. (color plot at the end of the
book)

Recently, several general cell contact and focal adhesion models have also
been proposed by notables Freund and Lin[30], Ni and Chiang[31], and Desh-
pande et al.[32]. Continuum models also have been developed recently to
predict cell adhesion in the early stage[33,34] and to simulate cell crawling[35].
In order to understand the precise bio-mechanical sensing process during cell
contact and adhesion and to explain a possible mechanotransduction mech-
anism of the event, we have developed a multiscale soft matter cell model
for simulation of cell contact and adhesion. In a recent paper[36], the present
authors have reported some early results of this study.

3.2.4 Cell and ECM modeling

The main objective of this work is to advance cell modeling and simulation,
particularly stem cell modeling and simulation, we systematically build a soft
matter cell model by treating stem cells as soft matters. We propose to model
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the endothelial cell as hyperelastic materials, which has been used by Caille
et al.[37] to model the endothelia cells. We also propose to use liquid crystal
elastomer to model stem cells.

The extra-cellular matrix is modeled as a substrate of hyperelastic block,
which has been extensively used as cell models or gel models[38,39]. An illus-
tration of the cell model is shown in Fig. 3.4. In the following sections, we
shall describe both hyperelastic constitutive model and liquid crystal elas-
tomer model used in our cell and extracellular matrix modeling.

Fig. 3.4 Soft matter cell model and soft adhesive contact model. (color plot at the
end of the book)

3.2.4.1 Hyperelastic model

First, we use a hyperelastic constitutive model to represent cell scaffold
and cell plasma aggregates, and the cell model is considered to be isotropic
and nonlinear, and exhibits elastic response under large strains. There are
more than 20 hyperelastic constitutive relations for rubber-like materials,
a comparison of different hyperelastic models was found by Marckmann
and Verron[40]. In this research, we adopted the modified Mooney – Rivlin
material[41] to model the cell nucleus and extracellular matrices. The strain
energy density function W for the modified Mooney – Rivlin material is given
as follows:

W = C1(I1 − 3I
1
3
3 ) + C2(I2 − 3I

2
3
3 ) +

1
2
λ(ln I3)

2 (3.1)

where C1, C2 and λ are material constants and C = FT · F is the right
Cauchy –Green deformation tensor; the three invariants of the right Cauchy –
Green tensor are defined as

I1 = trC, (3.2)

I2 =
1
2
[(trC)2 − trC2], (3.3)

I3 = detC. (3.4)
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The corresponding constitutive relations can be expressed in terms of the sec-
ond Piola –Kirchhoff stress tensor S, and the invariants of the right Cauchy –
Green tensor,

S = 2{(C1 + C2I1)I− C2C− (C1I
1
3
3 + 2C2I

2
3
3 − λ ln I3)C−1}. (3.5)

After the second Piola – Kirchhoff stress is obtained, the first Piola –Kirchhoff
stress tensor can be immediately computed as P = S · FT, which can then
be substituted into the later developed meshfree Galerkin formulation to
calculate the internal nodal force.

If the substrate is modeled as a Mooney –Rivlin hyperelastic medium,
its elastic stiffness tensor is a fourth order tensor that can be evaluated as
follows:

C = 4
∂2W

∂C∂C
= 4C2I⊗ I +

4
3
(C1I

1
3
3 + 4C2I

2
3
3 − λ)C−1 ⊗C−1

− 4(C1I
1
3
3 + 2C2I

2
3
3 − λ ln I3)C−1 �C−1 − 4C2I. (3.6)

By making the elastic constants, C1, C2 and λ, dependent on spatial coordi-
nates, one can model the substrate with inhomogeneous stiffness.

3.2.4.2 Liquid crystal elastomer model

The main difficulty of applying finite element analysis to a liquid crystal
elastomer cell model is that the free-energy density of the model is non-
convex, and it is usually a multiwell potential. Since the contact does not
allow the system to stay in a uniform equilibrium stress state that is resting
entirely in a single well, the domain structures emerge, which is exactly what
we would like to capture. The rearrangement of domain structures will lead
to soft deformation mode. In fact, we conjecture that the focal adhesion is
actually a liquid domain soft mode due to contact and adhesion with the
extracellular matrix.

A typical entropic free-energy expression for a liquid crystal elastomer
is[13,42]:

Fbulk =
1
2
kBT tr

(
L0 ·FT · L−1 ·F

)
+

1
2
kBT ln

detL
a3

where kB is the Boltzmann constant, T is temperature, tr is the trace op-
erator, the scalar a is a material parameter related to the distortion that
polymer chains suffer with the establishment of nematic order, L0 and L are
polymer’s step length tensors at referential configuration and current config-
uration respectively. They are related to the director field h as follows:

L = �⊥I(2) + (�‖ − �⊥)h⊗ h, s =
�‖
�⊥
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and the first Piola –Kirchhoff stress is

P =
∂F
∂F

. (3.7)

However, this free-energy potential is not convex[43-45], which poses a
serious challenge in the Galerkin weak-form-based computations.

To regularize the free-energy potential, following Fried and Korchagin[46],
we add the Oseen –Zöcher – Frank energy density, a strain gradient term, to
the bulk potential

Fgrad = J
κ(s− 1)2

2s
|FT∇⊗ h|2 = J

κ(s− 1)2

2s
|FTG|2

where κ is a simplified Oseen –Zöcher –Frank elastic constant, J = detF is
the determinant of Jacobian, and G := ∇⊗h. Then the total potential energy
of the Nematic liquid-crystal elastomer becomes[46],

Ft =
μ

2

[
|F|2 − s− 1

s

∣∣FTh
∣∣2 + (s− 1)|Fh0|2

− (s− 1)2

s
(FTh · h0)2 − 3

]
+ J

κ(s− 1)2

2s
|FTG|2. (3.8)

The first dynamic equation of motion for the liquid crystal elastomer can be
derived from the balance of linear momentum,

ρ
∂2u
∂t2

= −F−T∇p + div
∂Ft

∂F
+ B (3.9)

where p is the hydrostatic pressure, div is the divergence operator, and B is
the body force.

Although a few people have derived the hydrodynamic equation for the di-
rector field of the liquid crystal elastomers including Anderson et al.[47] whose
derivation is based on the balance of angular momentum, how to establish
a thermodynamically correct, general dynamics equation or hydrodynamics
equations for the liquid crystal elastomers under finite deformations is still
an open problem in soft matter physics research.

Since we are more interested in the evolution of the order parameter,
which may correlate with the physical phenomena such as receptor diffusion
or myosin head rotatory relaxation, we propose the following Allen –Cahn
type of approach[48]:

Dh̃
Dt

= −C δFt

δh
. (3.10)

This approach has solid thermodynamics foundation. Note that the objective
rate in Eq. (3.10) should be used for the first order time derivative of director
field on the left-hand side of the equation.
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3.3 A nanoscale adhesive contact model

Between the cell and its extracellular matrix, there are complex interactions
between ligands and receptors. In this research, we do not attempt to model
the exact molecular mechanism of cell adhesion or the detailed molecular
motions during adhesion. Instead, we are interested in modeling the overall
adhesion effect between cells and their substrates. The specific attractive
adhesion force may be simulated by a cohesive potential.

In our meshfree simulation, we adopt a cohesive potential given by
Seifert[49]. Roy and Qi[35] used the same potential to model the interactions
between cell and a rigid substrate to study cell crawling.

In our 3D contact simulations, both cell and ECM can be deformable.
We treat the cell outer surface as slaves, and we treat the ECM top surface
as master surface. The contact algorithm begins with prediction of the slave
particles at time step n, the contact-detection algorithm is then used to search
all the particles on outer cell surface. The procedures are outlined as follows:

(i) Discretizing the top surface of the substrate into triangles
In the meshfree computation, the adhesive force between the cell and

substrate is calculated based on the following point-interaction algorithm
(Fig. 3.5). For contact-detection purpose, we first need to discretize the top
surface of the substrate into triangles because each triangle has a unique
normal. The distance between a point and a triangle in 3D space can be
easily obtained.

Fig. 3.5 Cell surface particles and corresponding substrate surface element.

(ii) Searching master triangular surfaces for each salve particle
In meshfree computations, in principle, we need to search all surface tri-

angles on the top surface of the substrate for each slave particle to find the
triangle that has the shortest distance to the particle (Fig. 3.5). For example,
we have a particle P on the cell surface, and we have a triangle �ABC on
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the substrate surface. The normal direction of �ABC is n = AB×AC. The
shortest distance between P and �ABC is gapn = ‖DP‖ = n ·AP with D
the perpendicular intersection point. If the position of D is in �ABC, we
find the matching surface triangle for particle P. If the position of D is out-
side �ABC, we keep searching until we find the matching surface triangle
for the particle P. Define the area of �ABD, �BCD, �CAD as:

αA =
1
2
‖BC×BD‖, (3.11)

αB =
1
2
‖CA×CD‖, (3.12)

αC =
1
2
‖AB×AD‖. (3.13)

If αA � 0, αB � 0, and αC � 0, then the position of D is inside �ABC
(Fig. 3.5a), otherwise outside (Fig. 3.5b).

(iii) Calculating the contact force for each slave particle
In this work, the interaction zone between ligands and receptors is mod-

eled as an interactive zone, or gap(<100 nm) that separates the cell from its
substrate, and the adhesive force distribution varies according to the magni-
tude of the gap distribution. In our meshfree simulation, we adopt a adhesive
potential given by Seifert[49]. Roy and Qi[35] used the same potential to model
the interactions between cell and a rigid substrate to study cell crawling.

Φ(r) = σ

[(ε

r

)4

− 2
(ε

r

)2
]

(3.14)

where σ is the energy depth and r(r = gapn) is the gap length at a specific
location. The adhesive force vector can be calculated as follows:

F(r) = −∂Φ
∂r

= φ′(r)
r
r

(3.15)

where
φ′(r) =

4σ

ε

{(ε

r

)5

−
(ε

r

)3}
. (3.16)

Taking the ligand-receptor bond density into consideration, the adhesive
force between the cell membrane and the substrate surface can be calculated
as follows:

f(r) = NbF(r) = Nb
4σ

ε

[(ε

r

)5

−
(ε

r

)3]r
r

(3.17)

where Nb is the bond density, we choose Nb = 500 μm−2, σ = 0.024 pN · μm
from Roy and Qi (2010) and we choose ε = 100 nm.

For the surface particle P in cell, we can get the adhesive contact force

fP = f(r) (3.18)
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where f(r) is the force between the surface particle P and the matching
surface triangle element of the substrate (Fig. 3.5).

f(r) = Nbφ
′(r)

r
r
, r = rPD = rP − rD, and r = |rPD| = gapn. (3.19)

(iv) Updating the contact force for master contact particles
Since the substrate is deformable, we should apply the contact force to

the master nodal particles to make sure that the total force is balanced. We
use shape function to distribute the contact force to the three nodal particles
of the corresponding surface triangle element of the substrate as follows:

fA = −αA

α
fP , (3.20)

fB = −αB

α
fP , (3.21)

fC = −αC

α
fP (3.22)

where α = αA + αB + αC is the total area of the triangle element.
(v) Redistribute the contact forces to neighboring particles within the

support
The force vectors calculated above are the exact nodal force vectors for

each slave particle and corresponding master nodal surface particles. In mesh-
free contact approach, one has to redistribute such exact nodal force to its
supporting nodal particles. Hence after the force distribution, the contact
force at the particle I becomes

f I =
nnode∑
J=1

NI(XJ )fJ . (3.23)

If choosing the finite element interpolation, NI(XJ ) = δIJ , we can recover
the exact nodal force vector[50].

3.4 Meshfree Galerkin formulation and the computational
algorithm

A total Lagrangian formulation is adopted in the numerical computation. The
numerical simulations are conducted by using meshfree methods[51]. Meshfree
method have advantages when solving large deformation problems in contrast
to the traditional finite element method. In our meshfree simulation, both the
cell and its substrate are discretized by a set of particles, and then they are
represented by interpolation functions.
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The weak form of the balance of linear momentum under finite strain
condition can be expressed as

2∑
i=1

∫
Ω

(i)
0

ρ
(i)
0 ü(i) · δu(i)dΩ (i) +

2∑
i=1

∫
Ω

(i)
0

P(i) : δF(i)dΩ (i)

=
2∑

i=1

∫
Ω

(i)
0

ρ
(i)
0 B(i) · δu(i)dΩ (i)

+
2∑

i=1

∫
Γ

(i)
t

T
(i) · δu(i)dS(i) +

2∑
i=1

δΠ (i)
AC (3.24)

where B is the body force, P is the first Piola –Kirchhoff stress, T is the
prescribed traction on the traction boundary Γ (i)

t , index i = 1 corresponds
to cell, and index i = 2 corresponds to extracellular matrix substrate. Note
that the last term in Eq. (3.24), δΠ (i)

AC , denotes the virtual work contribution
from adhesive contact, which will be discussed in details in the next section.

Following the standard meshfree discretization procedure established by
Li and Liu[51], we can obtain the following discrete equations of motion with
the understanding that those equations may be applied to both cell and
substrate:

Md̈ = f ext − f int(d) (3.25)

where M is the lumped mass matrix, f int is the internal force array arising
from the current state of stress, fext is the external force array including body
forces and surface traction and contact forces,

MIJ =
∫
Ω0

ρ0NINJdΩ , (3.26)

f int
I =

∫
Ω0

PiJNI,JeidΩ , (3.27)

fext
I =

∫
Ω0

ρ0BiNIeidΩ +
∫
Γt

TiNIeidS +
∫
Γc

f iNIeidS. (3.28)

At time tn+1 = tn + Δt, the discrete equation of motion can be written as:

Man+1 = f ext
n+1 − f int

n+1. (3.29)

If the central difference scheme is used in the time integration, we have

dn+1 = dn + Δtvn +
1
2
Δt2an, (3.30)

an+1 = M−1(f ext
n+1 − f int

n+1), (3.31)

vn+1 = vn +
1
2
Δt(an + an+1) (3.32)

where d, a,v denote the nodal displacement, acceleration and velocity arrays,
respectively.



3.5 Numerical simulations 109

3.5 Numerical simulations

We have applied the soft matter cell models together with the multiscale
contact-adhesion algorithm to simulating cell-ECM contact and adhesion. To
ensure a meaningful simulation, we have first conducted validation test of the
proposed cell models. By doing so, we can identify the parameters of the soft
matter model. Then we applied the validated material models to simulating
contact between a cell and substrates with different stiffnesses.

3.5.1 Validation of the material models

To validate the proposed cell model, we have applied it to simulating cell
deformation under compression, and then we compare the simulation result
with experiment measurements for endothelial cells[37]. The constant force is
applied at the top and bottom rigid microplates, and the boundary nodes are
in contact with the cell surface. The classical contact algorithm is applied in
the two contact surfaces. In the simulation, the cell deformation is defined
as the relative reduction in height, i.e. (H0 − H)/H0. We first consider the
hyperelastic Mooney –Rivlin cell model, and we fit the force-deformation
curve (Fig. 3.6c) to get the material constants for endothelial cell. Then we
adjust the material coefficients for nematic liquid crystal elastomer trying to
get the best fit as well.

Figure 3.6a and b show the cell shape before and after deformation. The
force-deformation curve is plotted in Fig. 3.6c. The applied compressive forces
increase non-linearly as a function of the cell height reduction. From the
simulation (Fig. 3.6c), one can find that the force required to create the
same deformation for endothelia cell is larger than that for stem cells, which

Fig. 3.6 Validation of the cell model: (a) before deformation, (b) after deforma-
tion, (c) force-deformation curve. (color plot at the end of the book)
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is reasonable considering the fact that the stem cells are undeveloped cells.
It can be seen from Fig. 3.6 that our stem cell model is much softer than
endothelial cell one, which most likely is true in reality.

3.5.2 Endothelial cell simulations

In this simulation, the endothelial cell is modeled as a spherical ball ini-
tially in three-dimensional space, with a diameter of D = 10 μm (Fig.
3.7). The substrate is modeled as a 3D circular plate with a dimension
of (R × H = 15 μm × 5 μm). In our meshfree computation, a total of
4 341 particles are used in discretization of the cell, and 16 640 particles
are used to form the meshfree disretization of the substrate. The endothelial
cell is modeled as hyperelastic material of the Mooney – Rivlin type. The
initial density is ρ0 = 1.0 × 103 kg/m3, and the material constants are
CCell

1 = 2.126× 103 Pa, CCell
2 = 1.700× 102 Pa and λCell = 1.700× 105 Pa.

Fig. 3.7 3D Computational model of cell spreading. (color plot at the end of the
book)

The substrate is modeled as a Mooney – Rivlin hyperelastic material. Two
different substrates with different stiffness are considered. The densities for
two substrates are the same as the density for the endothelial cell. The ma-
terial constants for the soft and stiff substrates are chosen as:

CSoft
1 = 6.325× 104 Pa, CSoft

2 = 5.06× 103 Pa, λSoft = 5.06× 106 Pa,
CStiff

1 = 1.265× 106 Pa, CStiff
2 = 1.012× 105 Pa, λStiff = 1.012× 108 Pa.

The cell is standing still initially and the initial gap between the cell and
substrate is set at 200 nm. The bottom surface of the substrate is fixed during
the whole simulation. The adhesive force will bring the cell into contact with
the substrate, and then the cell will spread under the adhesive contact forces.
To expedite the simulation, a big gravitational force is applied.

From this simulation, one may observe the cell spreading over time. In
Figs. 3.8 and 3.9, we display the cell shapes and stress contour on two different
substrates with different stiffnesses under the same contact conditions at the
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same time.

Fig. 3.8 Time sequence of endothelial cell contact with a soft substrate. (color
plot at the end of the book)

For comparison, we juxtapose two of the last sequences of cell contact
process in Figs. 3.10a and b. One may find that the contact between the cell
and stiff substrate generates more spreading than the soft one. As indicated
by Winer et al.[52], many cells show a stiffness-dependent spreading, e.g. the
cell exhibits increased spreading and adhesion on stiffer substrates.
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Fig. 3.9 Time sequence of endothelial cell contact with a stiff substrate. (color
plot at the end of the book)

Fig. 3.10 Cell spreading over substrates with different stiffnesses: (a) soft sub-
strate, (b) stiff substrate. (color plot at the end of the book)
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3.5.3 Stem cell simulations

For the stem cell simulation, the size and initial condition are exactly the same
as the endothelial cell simulation, the only difference is that the stem cell is
modeled with liquid crystal elastomers. The material constants for liquid
crystal elastomer are chosen as: the shear modulus μ = 1.0× 104 N/m2, the
Frank modulus κ = 1.0× 10−11 N, the step length anisotropy s = 2.0.

Similar results have been obtained for stem cell simulations. In Fig. 3.11,
we display a time sequence of a cell contacting the soft substrate. The color
contour is the effective stress contour and the white arrow stands for the
director field. Comparing to 2D simulations, 3D simulations provide a possible
way to capture the cell morphology changes described by Ni and Chiang[31].
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Fig. 3.11 Time sequence of stem cell contact with a soft substrate. (color plot at
the end of the book)

3.6 Discussion and conclusions

To develop a fully three-dimensional soft elasticity model capable of explain-
ing cell adhesion, locomotion, and its structure transformation coupled with
focal adhesion is a challenge. On the other hand, the soft matter model-
ing and simulation of cell contact may provide possible explanations on cell
mechanotransduction and other issues at the large-scale level.

Our simulation results have shown that: by using the proposed soft matter
cell model, when a “cell” is in contact with a substrate, the size of spreading
area of the cell also changes or differs depending on the stiffness of extracellu-
lar substrate (Fig. 3.10). It should be noted that cell, stem cell in particular,
behavior is complex biological phenomenon. The proposed soft matter cell
model is only intended to model mechanical behavior of cells at a coarse-
gained level, which may not and cannot explain the molecular mechanisms
of cell motion, evolution, and proliferation, and it requires in-depth study of
every aspect of molecular cell biology including all relevant bio-chemical, bio-
physical, as well as bio-mechanical factors and their interactions at different
scales.

Developing soft matter models for cells especially stem cells may help
us understand bio-mechanical and bio-physical behavior of cells. It is the
authors’ opinion that by combining the soft matter cell model with molecular
simulation we may be able to achieve qualitative prediction on cell behavior in
collaborating with experimental observation. The predictive stem cell model
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may give both scientific insight into and clinic guidance on a host of health
care problems, such as regenerated medicine and drug design and delivery
problems.
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Abstract: An intertwined network of fibers forms the microstructure of
many biological materials and defines their mechanical properties. Depend-
ing on the properties of individual fibers, from mechanics point of view,
these fibrous materials can be considered to behave as semiflexible networks
or flexible networks. While the behavior of flexible networks has been studied
thoroughly, the mechanics of semiflexible networks is a less developed sub-
ject. In semiflexible networks, the filaments resist the external stresses by
storing energy in both bending and axial modes of deformation. Their de-
formation field is non-affine and has long range correlations within a certain
range of scales of observation. Due to the increasing interest in understand-
ing the mechanical and rheological properties of complex systems such as the
cell cytoskeleton and connective tissue, a growing interest was manifested in
characterizing the mechanics of the semiflexible networks in the recent years.
This chapter discusses recent advances in the field of semiflexible random
fiber networks, including the quantification of their non-affine deformation
and methods for solving boundary value problems on fibrous domains with
intrinsic long range correlations.

Keywords: semiflexible fiber networks, non-affinity measure, scaling prop-
erties of the network microstructure and mechanics

4.1 Introduction

The mechanics of random fiber networks defines the elasticity and deforma-
tion of many biological and non-biological systems such as the cytoskeleton,
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collagenous connective tissues, battery substrates and paper products among
many others. For example, the cytoskeleton is a random network of filamen-
tous proteins: filamentous actin (F-actin), microtubules and intermediate
filaments. This network is rendered active by the presence of myosin motor
molecules and has a complex role in the mechanics of the cell, the transport
of biomolecules within the cytoplasm and in chemo-mechanical transduction
and signaling[1-3]. The cytoskeleton is an out-of-equilibrium network which
constantly remodels itself in response to external stimuli using a large num-
ber of binding and cross-linking proteins interacting with the cytoskeletal
filaments. Fiber networks may also be exploited by several infectious bac-
teria for self-propulsion[4,5]. The bacterial pathogen listeria monocytogenes,
responsible for more than 2000 annual illnesses and deaths in US, form a fil-
amentous comet tail by taking over the host cell actin machinery. The comet
tail is a complex network of cross-linked filaments which are constantly poly-
merized and depolymerized to generate forces to propel the bacteria within
the cytoplasm of the infected cells and into the other neighboring cells. The
local elasticity of these media determines to a large extent cellular growth
rates. Connective tissues (CTs) such as cartilage and tendon belong to an-
other category of biological fibrous networks. The mechanical functionality of
CTs derives directly from the structure and composition of their extracellular
matrix (ECM). ECM is a network of insoluble fibrils (e.g., collagen, elastin)
and soluble proteoglycan polymers. It is responsible for carrying stresses and
maintaining tissue shape while influencing a large number of other biologi-
cal properties and functions of the tissue. In any connective tissue, the con-
stituents are meticulously arranged inside the extracellular matrix to optimize
the function of that specific tissue.

Polymer networks are divided into two broad categories of flexible net-
works and semiflexible networks. Semiflexible networks are made up of stiff
filamentous aggregates that are heavily cross-linked on the scale of their
thermal persistence length (the length at which the thermal bending fluc-
tuations become apparent). Therefore, unlike flexible polymers where the
energy is stored in the stretching mode of filaments, semiflexible networks
store the elastic strain energy in both stretching and bending deformation of
the filaments[6]. This property renders the behavior of semiflexible networks
and its relationship to the mechanical properties of its constituents to be
more complicated than those of the flexible networks. To provide physical in-
sight into the difference between the mechanics of the flexible and semiflexible
networks, it is sufficient to recall that in the flexible networks, segments of
a given polymeric chain separated by cross-links behave independently (i.e.
the response of a chain segment is not correlated to that of its immediate
neighboring segments). However, in semiflexible networks, the long persis-
tence length of the chains imposes correlations on scales larger than that of
the average segment length (the distance along the chain between two suc-
cessive cross-links). For example, the persistence length of F-actin, the main
constituent of the cytoskeleton, is on the order of 10 μm, which is compa-
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rable to the contour length of the respective molecule/fiber. The persistence
length of microtubules is even longer and comparable with the cell size. Gen-
erally, the models developed in the literature for flexible networks (mainly
for polymeric networks such as rubbers[7,8]) are not adequate to describe the
behavior of semiflexible systems.

This chapter focuses on the elastic behavior of athermal semiflexible net-
works. The chapter begins with a brief review of the current computational
methods and advancements on representing and reconstructing the network
topology. Next, the concept of non-affinity and its importance in analyzing
the behavior of heterogeneous structures are discussed. The Mikado Model
is used to produce computer-generated network architectures and to show
that network fiber density is long-range correlated. Moreover, the network
elasticity at various length scales is studied to prove the power law scal-
ing property of the network elastic modulus and to show that random fiber
networks deform in a manner similar to highly heterogeneous continua with
stochastic, long-range correlated distribution of moduli. Finally, a Stochastic
Finite Element-based methodology is proposed as an efficient method to solve
boundary value problems defined over very large fiber network domains.

4.2 Network representation and generation

The first and essential step in modeling biological fibrous networks is to obtain
and reconstruct their true microstructure. Moreover, understanding the fiber
network architecture is essential in assessing the effect of various microstruc-
tural features in order to manufacture efficient and reliable tissue-engineered
constructs. There are various imaging techniques for obtaining network mi-
crostructural information. The light level histology technique, magnetic res-
onance imaging, computed tomography, and optical coherence tomography
are among the methods to obtain 3D images of mainly hard, porous tissues
such as bone[9-13]. The structural images of soft tissues can be obtained from
confocal microscopy, multiphoton microscopy, electron microscopy and trans-
mission electron microscopy[14-17]. Estimates of tissue biomechanical proper-
ties may be obtained from some of these imaging techniques[13]. In these
techniques, often referred to as elastography, the stiffness of the tissue sam-
ple is determined by measuring the tissue strain from variations in optical
reflections after and before subjecting the tissue to a uniform pressure. The
network microstructure is derived from non-invasive and indirect measure-
ments such as small-angle light scattering and polarimetric imaging where
the pattern of scattered laser light transmitted through the sample yields
the fiber orientation distribution[18-20]. These imaging techniques differ from
the point of view of resolution, sample size, and their applicability to in vivo
monitoring.

The network architecture as well as the microstructural features such
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as fiber orientation, fiber diameter and their connectivity are extracted from
these images. Automated algorithms have been developed to scan the network
images and to extract quantitative information on the network morphology
such as fiber angle distribution and alignment. These methods are used to
extract the network architecture and to assess the effect of various microstruc-
tural features in the manufacturing of engineered tissue constructs. Hough
transform-based technique, intensity gradient-based approach, direct track-
ing algorithm, and fast fourier transform-based image analysis are among
image analysis methodologies that have been implemented successfully[21-26].
These algorithms are expensive and their performance depends on the resolu-
tion of the images. Complete representation and description of fiber network
architecture rely on the capability of these methods to identify network struc-
tural details. When the average response of the system is of interest, detailed
information on the network geometry is not required and models representing
average geometric properties are sufficient. Depending on the microstructural
observations, one may develop various computer models for this purpose.
For instance, if periodicity and a distinct unit-cell are observed in the real
network, models with repeat unit cells such as cellular cubic/hexagonal ge-
ometries may be used. The Delaunay triangulation and Voronoi tessellation
are among the various algorithms used to represent the structures of cellu-
lar networks[27-31]. Specialized computational techniques such as Metropolis-
Hastings importance sampling algorithm are required to represent the details
of the microstructure of an actual fibrous structure[32-34]. Random networks
may also be constructed by growing straight fibers from randomly distributed
seed points in a domain. In this model, the fiber growth rate is constant and
a fiber stops growing when it hits another fiber or a domain boundary[35].
Another approach to generate random fibrous structures is the Mikado Model
which is discussed next.

In the Mikado Model, 2D random fiber networks are generated by ran-
domly placing fibers of length, L0, in a square domain of linear dimensions,
L. The initial orientation of the fibers is random or selected according to a
specified distribution function, in separate models. Rigid connections may or
may not be defined at all points where fibers cross. Many dangling ends are
produced during fiber deposition; these dangling ends do not contribute to
the energy of the system if the fiber excluding volume contribution to stress
production is neglected.

In order to fully define the model and investigate the network mechanics,
one needs to specify constitutive properties of the individual network fibers
in addition to their morphology data (e.g., diameter). For example, there
have been many experimental and computational efforts to characterize the
mechanical properties of individual cytoskeletal filaments[36]. In this chap-
ter, the bending and axial stiffness of each fiber are denoted by κ and η,
respectively. The system acquires overall rigidity at a critical point defined
by a critical fiber density[40]. This threshold depends on the fiber orienta-
tions. The characteristic lengths that may play a role in the mechanics of
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fiber networks are the fiber length, L0, the mean segment length, lc (or the
fiber number density, N , i.e. the number of fiber centers per unit area) and
a parameter with units of length which represents the relative importance
of the bending, κ, and stretching, η moduli, lb =

√
κ/η. The mean segment

length is related directly to the fiber number density, N , as lc ∼ π/2NL0,
for large N [39]. It is known that in the high density limit (large N or small
lc), the network overall response is converging to the affine behavior and
the shear modulus scales linearly with the fiber density and approaches the
affine prediction[40,42]. Increasing the bending stiffness κ (large lb) has a sim-
ilar effect[39,42]. In the other limit, when the bending rigidity and/or the fiber
number density are low, the non-affinity is important and the shear modulus
is smaller than predictions obtained based on the affine approximation.

4.3 Affine vs. non-affine deformation

A material deforms affinely when the strain measured locally is identical to
the far field/applied strain. If a spatially homogenous continuum is subjected
to a uniform strain field ε0

ij , the displacement field is affine on all scales of
observation and the displacement at all points within the domain is given by
uaff

i (xj) = ε0
ijxj . In inhomogeneous media, the deformation field is given by

ui(xj) = ε0
ijxj + δui(xj) where δui(xj) is the local derivation from the affine

displacement.
If one assumes that the deformation of the fiber network is affine, a closed-

form relation to the overall response of the network (elastic moduli) in terms
of fiber properties and orientation can be developed[37,38]. However, the de-
formation of random, cross-linked fiber networks is highly non-affine[39-44]. It
is worth mentioning that non-affine deformation has also been evidenced in
other disordered systems, such as granular materials and glasses[45,48,50]. Non-
cohesive granular materials consist of discrete macroscopic particles having
repulsive forces between them. In fiber networks, non-affine deformation leads
to the decrease of effective elastic moduli relative to those expected based on
the affine assumption[35,40,41,44]. In granular packing, non-affine motion of the
grains leads to enhanced dissipation and a high loss modulus[46]. Figure 4.1
shows a network subjected to uniform shear load. Since the network response
is non-affine, the deformation field does not follow the deformation of the uni-
form far-field, i.e. the points on the vertical dash lines in the reference state
configuration do not remain on the dash lines after deformation. The energy
level of a structure that deforms non-affinely is lower than that of the same
structure undergoing affine deformation; therefore, non-affine deformation at
the micro- and nano-length scales leads to a more compliant macroscopic
response. It is essential to have a measure of non-affinity in order to study
the effects of various network geometrical and mechanical parameters (e.g.
fiber number density, fiber length, fiber bending / stretching stiffness, far
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field loading and fiber initial orientations) on this type of deformation. The
next discusses some of the functions proposed for this purpose.

Fig. 4.1 A schematic representation of (a) un-deformed and (b) deformed random
fiber networks. The deformation of the network is non-affine since it does not follow
the deformation field of the uniform applied far field. If the deformation was affine,
network nodes initially located along the vertical dash lines in (a) would remain on
the dash lines after deformation in (b)

Various measures have been developed to quantify the non-affinity not
only in random networks but in other disordered structures. A detailed study
of non-affine behavior and non-affinity correlation functions of the form
〈δui(x)δuj(0)〉x in random elastic media was performed by DiDonna and
Lubensky [6]; 〈∗〉x represents the average of the expression ∗ over x. The
general aspect of the non-affine response in random disctere systems can be
described in terms of a continuum elastic media with a fluctuating elastic
modulus tensor with a uniform nonzero average and locally fluctuating local
stress tensor with vanishing mean. Langer and Liu[47] studied the response
of foams to small perturbations using three measures of non-affinity, two of
which are based on bubble displacements (δ u = u − uaff , where u is the
actual displacement of a bubble and uaff is the corresponding affine displace-
ment), while the other one is based on energy. They deform the structure
affinely and let it relax from its affine configuration. In the first measure of
non-affinity, the shift in the bubble final relaxed positions relative to their ini-
tial affine deformation is measured. In the second measure, they compute the
difference of a bubble position with respect to the average shift of its neigh-
bors. Finally, the third measure represents the change of the elastic energy
between bubbles in their initial affine and final, relaxed configurations. The
non-affine displacement, δ u, was used by Tanguy et al.[48] who studied the
deformation of amorphous bodies made from polydisperse Lennard – Jones
beads. These are vectorial quantities computed at the site of each discrete
entity of the ensemble.

Head et al.[39] studied non-affinity in networks of semiflexible polymers
subjected to shear. They introduced a scalar non-affinity measure based on
the infinitesimal change of the angle, θ, made by a vector connecting two
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nodes in the structure with one of the global axes, i.e.

δθ2(r) = 〈(θ − θaff)2〉r, (4.1)

where θaff denotes the corresponding affine prediction of this angle, r is the
distance between the respective two network nodes and represents the scale at
which non-affinity is studied. They observed a monotonic power-like decrease
in δθ2(r)as r increases. They used this measure to divide the networks into
affine and non-affine. For this purpose they introduced the parameter L/λ,
where λ is a length given by λ = lc(lc/lb)z and z is an exponent selected
between 0.33 and 0.40. At large L/λ, the non-affinity measure δθ2(r) appears
to reach a plateau at small r/L0 where this saturation implies that network
behavior is approximately affine irrespective of how small the length scale of
interest is (does not increase as the length scale of observation decreases).
This suggests that the deformation is non-affine for compliant low density
networks while it is affine for stiff high density networks. Onck et al.[41] showed
that the degree of non-affinity decreases as the network is subjected to large
deformations. They employed a scalar measure defined by

ΔA =
1

Δγ

〈‖δ u‖
‖x‖

〉
, (4.2)

where ‖ · · · ‖ denotes the vector length, x is the current position vector of
a cross link and Δγ is the applied shear increment. The average is worked
out over all network cross-links. They observed that deformation becomes
more affine with increasing strain and there exists a transition of bending
dominated response at small strain to stretching dominating response at large
strains.

Since the behavior of random networks needs to be studied at various
length scales, the probing length scale must be incorporated in the non-
affinity measure. Most non-affinity measures including those mentioned in the
above cannot easily be related to mechanical fields or to a tangible property of
the network. Hatami –Marbini and Picu[43] proposed a probing length-scale-
dependent non-affinity measure based on the gradients of the displacement
field. The measure provides a unified description of non-affinity in both strains
and rotation. This non-affinity measure was used to study the influence of
the network characteristic length scales, fiber density and far-field loadings
on the degree of non-affinity of the deformation. It is based on the fluctuation
of the actual strain/rotation relative to the respective affine quantity (or the
far field). The deformation of the system loaded by displacement-imposed
boundary conditions is obtained numerically via energy minimization. Once
the nodal displacements are obtained, strains are computed at various prob-
ing length scales by choosing a triplet of network nodes so that they form
approximately an equilateral triangle (Fig. 4.2) The displacement field within
the triangle is written in terms of nodal displacements (ui, i = 1..3) using in-
terpolation functions of the constant-strain triangular element (CST) from
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the finite element method:

u(x) = Ni(x)ui, (4.3)

where sum over repeated index is implied and Ni(x) are the shape functions
of the CST element[49].

The constant small strain field = (ε11, ε22, ε12) and the rotation ω12

associated with each triplet of nodes can be evaluated from the gradient of
the displacements,

εij =
1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
for i, j = 1, 2,

ω12 =
1
2

(
∂u1

∂x2
− ∂u2

∂x1

)
.

(4.4)

The resulting gradients are considered to be an average of the underlying
fields over the length scale r which is equal to the square root of the area of the
respective triangle. For all length scales r, 〈 〉r = aff where the correspond-
ing affine strain components, aff , are the applied far field. The measure of
non-affinity is defined as the fluctuation of the actual deformation gradients
relative to their affine estimates:

H(r) = (H1, H2, H3, H4) =
〈
(Ξ−Ξaff)2

〉
r
, (4.5)

where Ξ = (ε11 ε22 ε12 ω12). The index r denotes the length scale at
which H is evaluated.

Fig. 4.2 (a) Sample realization of the random fiber network structure along with
a representative quasi-equilateral triangle used for probing the strain field, (b)
normalized non-affinity measure H(r) = H(r)/ε2

0 against the normalized prob-
ing length scale, r/L0 (size of the triangle in (a)) for networks of density N=200
fibers per unit area and lb/L0 = 10−4 subjected to the uniaxial far-field strain

= (ε0, 0, 0)[43].

As opposed to the other measures used in the literature, this measure
naturally separates the deformation and the rigid body rotation components
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of the displacement field. It is independent of the far field loading and is better
suited for direct comparison with continuum models in the appropriate limit.
Using this non-affinity measure, Hatami – Marbini and Picu[43,49] preformed a
comprehensive study of the non-affine deformation of random fiber networks
and studied the effects of network characteristic lengths, type of far-field
loadings and initial fiber orientations. They observed that all strains exhibit
non-affine fluctuations of comparable magnitudes and the non-affinity in the
rotation ω12 is similar to that of the strains. This relates to observations of
rotatory structures in the non-affine displacements of granular materials[50].
Based on their results, all components of the non-affinity measure follow a
power law scaling with r over the entire range of probed length scales (Fig.
4.2b). In random fiber networks, the scaling exponent does not depend on
the far field loading and fiber initial length L0.

4.4 Network microstructure: scaling properties of the
fiber density function

Structural self-similarity of the network microstructure can be investigated
at various length scales using either the box-counting method or density
autocorrelation functions. In the box-counting method, the number of squares
of size δ required to cover an image is counted and its variation is plotted
against δ. If a material has fractal scaling properties, the total number of
square Nδ will show a power law variation with the square size δ, i.e.

Nδ ∝ δ−Dδ , (4.6)

where Dδ is the box-counting (fractal) dimension of the structure. The sizes of
square elements can be considered as the length scale at which the network
microstructure is probed. If the probing length scale δ is larger than the
mean fiber segment length lc, this method fails since the whole 2D domain
is tiled and the dimension of the embedding space, i.e. Dδ=2, is recovered.
Therefore, the box-counting approach may only be applied to probing the
network structure as long as δ/lc < 2.0[51]. Figure 4.3 shows the number of
squares Nδ vs. the mesh size δ in a log-log plot for networks with various
fiber number densities. Despite the small range of scales that can be probed
by this method, few observations can be made from this plot. At large length
scales, δ/lc > 0.5, the fractal dimension is 1.55 ± 0.05 and at small length
scales, δ/lc < 0.5, it is 1.25 ± 0.05. The fractal dimension of the network is
almost independent of the fiber number density. These fractal dimensions are
in agreement with the results reported by Kaye[52].

Although the above procedure yields valuable information relevant to the
hole size distribution in the network, it is not useful when δ/lc > 2. In
order to investigate the structure of the network geometry at larger length
scales, the autocorrelation function of the fiber density may be used. The
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Fig. 4.3 The result of box counting method used to probe the self-similarity of
random fiber networks. Results of four different fiber densities are shown. Two
distinct scaling regions separated at length scale δ/lc = 0.5 are observed. The small
slope is 1.25 ± 0.05 and the large one is 1.55 ± 0.05.

autocorrelation function (ACF) is often used to study the stochastic self-
similarity of disordered systems. The autocorrelation function ACF (x, y) for
a function f(x, y) of mean zero is computed as follows:

ACF (x, y) =
∫

f(x′, y′)f(x + x′, y + y′) dx′dy′. (4.7)

The result is a 2D function. The radial autocorrelation (a 1D function)
can be computed from the result of the integral in Eq. (4.7) by averaging over
multiple origins and over all radial lines passing through the current origin.
Therefore, the radial autocorrelation function C(r) for the function f(r, θ)
with mean zero is defined as

C(r) =
1
2π

∫∫
f(r′, θ)f(r + r′, θ)dr′dθ. (4.8)

If a function has scaling properties, its radial autocorrelation function
decays as a power law with exponent 6-2Df where Df is the fractal box
dimension of the graph of the respective function[53].

Let function f represent the fiber density, ρ. The fiber density of the net-
work at different probing length scales δ/lc can be obtained by overlaying the
square mesh described above on networks with various fiber number densi-
ties N (Fig. 4.4a). The fiber density is measured by computing the total fiber
length in each square element. A rough surface of the network fiber density
distribution at the length scale specified by the element size/resolution δ is
obtained. The discrete form of Eq (4.8) is used to study the fractal properties
of this rough surface at various length scales δ. Figure 4.4b shows the nor-
malized ACF of the density distribution, Cρ, of networks with wide variety



4.4 Network microstructure: scaling properties of the fiber density function 129

of fiber densities probed at various length scales. The normalization is the
average of the squared mean densities of fibers over all square elements. It
is observed that Cρ varies as a power law function with the probing length
scale, i.e. Cρ(r) ∝ r−sρ . The exponent of this function is sρ = 0.88 ± 0.04
and is independent of the fiber number density. Therefore, the fractal box
dimension of the density surface is Dρ = 2.55 ± 0.02. The upper cut-off of
the power law scaling behavior is approximately L0/2; beyond this limit, the
density function becomes uncorrelated.

Fig. 4.4 (a) Schematic representation showing a random fiber network along with
a regular mesh of characteristic dimension δ. The regular mesh is used exclusively
for probing the network. The size of square elements denotes the length scale of
observation, (b) the autocorrelation function of the fiber density for networks with
various fiber densities probed at different length scales δ/lc. The power law behavior
is independent of the fiber density[56].

It is also possible to evaluate the probability distribution function (PDF)
of fiber densities over all squares of size δ of the probing mesh. Figure 4.5
shows the PDF of the normalized fiber density (δ2ρδ) for a random fiber
network with L = 10 and N = 150. It is seen that as the probing length
scale, δ/lc increases, the density function obtained from probing the network
at large scales looks more like a random uncorrelated function. Therefore,
there exists an upper limit (proportional to L0) for the fractal scaling of the
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network density. This limit is the scale beyond which the network behaves
with a very good approximation as a homogeneous continuum.

Fig. 4.5 The probability distribution function of normalized densities (δ2ρδ) for
random fiber networks with L = 10 and N = 150 probed at various length scales
δ/lc.

It is also useful to perform a multi-fractal analysis using these same data.
While perfect fractals are defined by a unique fractal dimension characterizing
scaling over the entire range of scales, real materials exhibiting self-similarity
often have multi-fractal characterisitics, i.e. the fractal dimension changes
as the scale of observation is varied. If PDFδ (ρ) denotes the probability
distribution function of the fiber density measured at length scale δ, the q-th
moment of this distribution is defined as

mq
δ =

∫
ρqPDFδ (ρ) dρ. (4.9)

If the function PDF(x) exhibits fractal scaling, one obtains mq
δ ∝ δβ(q)[54],

where β(q) is a generic function of the moment order. If β(q) is not linear
in its argument, the respective function has multifractal properties[55]. The
result of multifractal analysis of a network with N = 400 is shown in Fig.
4.6. The range of scales considered is δ/L0 ∈ (2lc/L0, 0.5), i.e. the range
with which scaling is observed in the ACF functions. It is observed that mq

δ

is indeed a power law of δ and β(q) has a linear variation with the order
q (inset, Fig. 4.6). This indicates that the density function is single-fractal
function within this range of scales.
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Fig. 4.6 Multifractal analysis of the distribution of densities. The lines represent
the scaling of the q-th moment of the density probability distribution function with
the probing length scale δ. These are functions of the form mq

δ ∝ δβ(q), where
the power (beta) β(q) is linear with q as shown in the inset. This indicates that
the density is characterized by a single fractal dimension over the range of scales
considered.

4.5 Network elasticity: the equivalent continuum and its
elastic moduli

Since the fiber number density is linearly related to the stiffness at high
densities[39], the elastic moduli are expected to have properties similar to
those discussed above for the fiber density. In order to test this conjecture and
to investigate the elasticity of the network at various length scales, Hatami –
Marbini and Picu[56] solved the nodal displacements of the network subjected
to far-field loading (displacement boundary value problem) by minimizing the
potential energy of the entire network. A regular mesh of square elements of
size δ was overlaid on the network (Fig. 4.4a). Each square domain was con-
sidered separately and the displacements, axial forces and bending moments
at the intersection points of fibers with square edges were evaluated. This
yields the traction distribution along the perimeter of each square element of
size δ from which the average stress state in the respective domain is calcu-
lated. Next, using linear finite element shape functions, the displacement field
inside each square element is described in terms of the displacements of its
corners. The displacements of the corners are unknown; nevertheless, they
can be estimated by imposing the condition that predicted displacements
of the intersection points on the square element perimeter to be the clos-
est to their actual values. Once the displacement field is known, the strain
field distribution and subsequently the average strains within the problem
domain are known. The elastic constants in each square domain are evalu-
ated based on the local average stress and strain state. Thus, each square
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domain can be replaced by an isotropic homogeneous continuum domain.
This fitting can be performed provided that the fiber density in the respec-
tive element is sufficiently large so that the elasticity of each element can be
assumed to be isotropic and also the total moment acting on each element
edge can be neglected; this happens once the probing length scale δ is larger
than approximately 2l

[51]
c . Following the above procedure, Hatami – Marbini

and Picu[56] studied the autocorrelation function of Young’s modulus, CE(r),
for networks with various fiber number densities probed at different probing
length scales and observed power law scaling, CE(r) ∝ r−sE , with exponent
sE = 0.92 ± 0.06. Therefore, the fractal dimension of the stiffness distribu-
tion surface is DE = 2.56 ± 0.03. This value is in good agreement with Dρ,
confirming the proportionality relation between Young’s modulus and fiber
density in this range of parameters.

4.6 Boundary value problems on dense fiber network do-
mains

The power law scaling property of the density function and elastic moduli
proves that random fiber networks deform in a manner similar to highly
heterogeneous continua with stochastic long-range correlated distribution of
moduli. Since scale decoupling does not exist in such structures and within the
range of self-similarity, standard information-passing techniques or the usual
theoretical tools developed by homogenization theory[57] cannot be used. This
conclusion is essential when addressing big problems such as the deformation
of the cytoskeleton consisting of stiff fibers (e.g. microtubules) whose length
is comparable with that of the entire cell. Specialized methods such as that
developed in [58] are required. In the following, a methodology developed by
Hatami –Marbini and Picu[56] as well as a brief review of other methods used
in literature to model the deformation of fiber network are discussed.

4.6.1 Background: affine and non-affine theories

Significant research has been dedicated to describing the macroscopic re-
sponse of fibrous systems to applied load in terms of their microstructure, i.e.
their mechanical (elasticity, plasticity, creep and fatigue behavior of individ-
ual fibers) and geometrical (fiber density, fiber length and fiber orientations)
properties. Both phenomenological and micromechanics models were used
for this purpose. Phenomenological models are based on fitting mathemati-
cal equations to sets of experimental data. Although they are usually simple
and easy to implement, they provide little insight into the connection between
the fitting parameters and the network physical and mechanical properties.
Micromechanics models clear-up this ambiguity. Micromechanics models are
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divided into two broad categories based on whether they are formulated using
the affine or non-affine assumption for the network response.

One of the earliest micromechanics models developed for fibrous mate-
rials is due to Cox[59]. In this model, fibers are assumed to span the entire
problem domain and to be loaded only at their ends. Moreover, their bend-
ing stiffness is ignored; fiber stores energy only in the stretching mode. The
only geometrical parameter is the fiber orientation, which is selected from a
specified distribution function. Narter et al.[37] extended the fiber network
theory of Cox to three dimensions (3D) and predicted their elastic moduli
in terms of the density and elastic constants of the fibers. In the following,
the two-dimensional version of these models is given; the reader is referred
to Narter et al.[37] for the three-dimensional case.

Consider a unit cell of Nv fibers with orientation distribution function
f(θ) subjected to a uniform shear strain γ. The strain in a fiber element with
orientation θ is given by

ε (θ) = γ sin θ cos θ. (4.10)

If all fibers obey Hooke’s law and have the same axial stiffness μf , the
total energy Π stored in the fibers can be computed as follows:

Π =
∫ π

0

1
2
Nvf (θ)Afμfγ2 sin2 θ cos2 dθ, (4.11)

where Af is the area of the fiber cross-section and Nv is the number of straight
fibers of unit length per unit area. If fiber orientations follow a uniform dis-
tribution, the corresponding affine modulus, Gaff , per unit thickness of fiber
network is given by

Gaff =
1
8
NvAfμf . (4.12)

The above analysis can be extended to consider fiber bending stiffness
and transverse deflections. For this purpose, Astrom et al.[60] estimated the
stiffness of random networks consisting of interconnected short fibers using
effective medium theory. Furthermore, Wu and Dzenis[38] derived the effec-
tive stiffness of random fiber networks based on the probability distribution
function of fiber lengths and orientations. They developed their model for sta-
tistically homogenous networks consisting of linear elastic fibers of uniform
diameters and lengths. Rigid contacts are considered between fibers and each
fiber segment is modeled as a beam element. Besides Euler –Bernoulli beam
elements, Timoshenko beam elements and simple rod elements may also be
used to model fiber segments depending on their modes of deformation. Sim-
ilar models have also been developed by considering fiber-fiber bondings as
hinged or built-in torsional springs[61,62]. If the network microstructure is
generated by the Mikado model, fiber centers are uncorrelated and the fiber
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segment length distribution is Poissonian:

f(l) =
1
lc

exp
−l

lc
(4.13)

where l represents the segment length and lc ∼ π/2NL0(L0 is the straight
fiber length and N is the fiber concentration) is the mean segment length
for uniformly distributed fibers. Having the distribution of fiber segments
and assuming that the microscopic deformation of a fiber segment complies
with the uniform strain of the effective continuum (affine assumption), the
network effective moduli are determined from the equivalency of the strain
energy stored in the fibers and the energy of the effective continuum domain.
If only stretching of fibers is considered, this method yields the effective shear
modulus given by Narter, et al.[37,39],

Gaff ∼ π
16

μfAf

L0

(
L0

lc
+ 2

lc
L0
− 3

)
∼ π

16
μfAf

lc
. (4.14)

Note N = NvL0. Although affine models present explicit expressions for the
effective stiffness of fiber networks, the significant error in their estimates
renders them largely inadequate in most cases[35]. As discussed above, the
mechanics of fiber networks like that of any disordered system is non-affine.
In these structures and at scales close to the characteristic length scales of
the problem, ordinary homogenization techniques are not applicable due to
the absence of a well-defined unit cell. In the following paragraph, some of the
previous efforts to consider non-affinity in predicting the network macroscopic
behavior are discussed; these models are referred to as network models.

Wilhem and Frey[40] considered a random network of rigid rods and stud-
ied the relation between the shear modulus of the network and the fiber
density. They concluded that the network elasticity is dominated by bending
deformation. A similar numerical study of semiflexible filaments was con-
ducted by Head, et al.[39] in which the authors showed that there are two
distinct regimes in the behavior of random networks: while networks with
large fiber density behave affinely, low density networks deform non-affinely.
The strain stiffening of semiflexible random networks at large strain is con-
sidered by Onck, et al.[41]. It is argued that stiffening results from the rear-
rangement/alignment of fibers, not from the nonlinear response of polymeric
filaments themselves. A transition from the bending-dominated response of
the system at small strains to the stretching-dominated response at large
strains occurs because of the non-affine rearrangement of the fibers during
network stretching. Chandran and Barocas[35] in their study of tissue and
tissue equivalents showed that the actual macroscopic stress in random fiber
networks is about three fold lower than the stress predicted using the affine
deformation assumption. They further concluded that in random networks
there is very little correlation between the strain in a fibril and its orientation.
Moreover, Barocas and coworkers[34,63,64] developed an information-passing
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multiscale modeling scheme for the network behavior. They assumed that in
a large, statistically homogenous fiber network, there exists a representative
volume element (RVE) which is structurally typical for the entire sample.
The problem is represented at larger scales as a continuum, which is dis-
cretized in finite elements. RVEs are used to provide the Cauchy stress at
each integration point of the finite element mesh. The mean RVE Cauchy
stress is calculated by averaging network fiber forces. The macroscopic bal-
ance equations are then solved using this stress to determine the new mi-
croscopic deformation field. This process is repeated until the desired degree
of convergence is reached. The validity of this methodology hinges on the
existence of a representative volume element for the respective network.

In previous sections, it was shown that the deformation of random fiber
networks is similar to the deformation of highly heterogeneous continuum
domains with stochastic fractal distribution of moduli. In fractal structures,
correlations of the deformation field extend to the scale of the entire problem
domain. Hence, the structure has no translational symmetry and identifying
a representative volume element becomes problematic; in these situations no
sub-structuring is possible and the entire boundary value problem has to be
solved at once.

A methodology for solving boundary value problems defined on fiber net-
work domains, which takes account of these considerations, was developed by
Hatami-Marbini and Picu[56,65]. This methodolgy is based on the Stochas-
tic Finite Element Method (SFEM) which captures the stochastic nature of
the network[58,66-71]. The fiber network is first mapped to a highly heteroge-
neous continuum using the method discussed above in connection with the
evaluation of the density and Young’s modulus ACF. As seen, the map with
resolution δ < L0 exhibits long-range spatial correlations of the moduli. Fur-
thermore, multiple networks with the same global parameters correspond to
different continua. The elasticity at a given site in multiple replicas is un-
correlated. In SFEM, the field of elastic constants is generated through a
stochastic process having properties similar to those observed for the actual
network. This process is written in the form of a Karhunen –Loeve decompo-
sition. This facilitates the representation of spatial correlations. The unknown
fields, i.e. the displacements, are represented in terms of chaos polynomials.
The variational problem is written in terms of these two expansions in the
weak sense (as in FEM formulations) and in the mean (with respect to the
stochastic process producing system replicas).

The stochastic finite element formulation for a general mechanics bound-
ary value problem is represented following a brief review of the Karhunen –
Loeve decomposition. This general formulation is then used to derive finite
element equations for two-dimensional elasticity problems of fiber networks.
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4.6.2 Karhunen –Loeve decomposition

Let f(x, ξ) denote a random process where x ∈ B and ξ ∈ Ω , i.e. f : B×Ω →
R. Here, B denotes a subset of the real space R and Ω is the probability
space. Therefore, the function f(x, ξ) is a random function with two variables,
a probabilistic one ξ and a deterministic spatial one x. The mean of the
random function at any point x ∈ B is given by:

〈f(x, ξ)〉ξ = f(x) =
∫
Ω

f(x, ξ)dP (ξ), (4.15)

where P is a probability measure defined on the Ω , 〈∗〉ξ represents the average
of the stochastic function ∗ over ξ and is denoted by a bar over the function,
i.e. 〈∗〉ξ = ∗.

The linear elastic equilibrium and kinematics equations of a boundary
value problem with random elastic constants can be written in the most
general form as:

L(x, ξ)u(x, ξ) = g(x), (4.16)

where x ∈ B,L(x, ξ) is a partial differential operator and u(x, ξ) is the un-
known response of the problem to g(x) which is a deterministic loading. If the
probabilistic information about L(x, ξ) is known, the solution of Eq. (4.16) is
completely determined by finding the joint probability distribution of u(x, ξ)
and L(x, ξ). Such a complete set of information about the solution is often
very difficult to obtain. However, there are few procedures in the literature
which provide the modest amount of information about the solution in terms
of its moments[66]. Using Eq. (4.15), Eq. (4.16) can be written as

[L(x) + l(x, ξ)]u(x, ξ) = g(x), (4.17)

where L(x) denotes the statistical average of operator L(x, ξ) over ξ, i.e.

L(x, ξ) = L(x) + l(x, ξ). (4.18)

The dependence of l(x, ξ) on ξ is expressed in terms of a set of random
functions (ξ) using the Karhunen –Loeve expansion[72]. Therefore,

l(x, ξ) =
∑

i

√
λiωi(ξ)a(i)(x), (4.19)

where {ωi(ξ)} is a set of orthonormal random variables, {λi} is a set of
constants, and {a(i)(x)} is an orthonormal set of deterministic functions.
The random variables {ωi(ξ)} satisfy the following conditions,

〈ωi(ξ)〉ξ = 0,

〈ωi(ξ)ωj(ξ)〉ξ = δij , (4.20)
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where δij is the Kronecker delta function. It can be shown that the determin-
istic functions a(x) are the solution of the following homogeneous Fredholm
integral equation of the second kind,∫

B

Cov(x,y)a(y)dy = λa(x), (4.21)

where
Cov(x,y) = 〈l(x, ξ)l(y, ξ)〉ξ =

∫
Ω

l(x, ξ)l(y, ξ)dP (ξ), (4.22)

is the covariance function. Since the covariance function is symmetrically and
positively definite, its eigenvalues are real. The eigenfunctions are orthogonal
and form a complete set, i.e.∫

B

a(i)(y)a(j)(y)dy = δij . (4.23)

It can be shown that the generalized coordinate system defined by these
eigenfunctions is optimal in the sense that the mean square error resulting
from a finite representation of l(x, ξ) is minimum[66]. An alternative state-
ment of the problem is to find the spectral decomposition of the covariance
as follows:

Cov(x,y) =
∑

i

λia(i)(x)a(i)(y). (4.24)

Obviously, the constants λi are the eigenvalues of the eigenprobelm defined
by Eq. (4.21).

4.6.3 Stochastic finite element formulation of 2D problems

The explicit form of the governing linear elastic equilibrium and kinematics
equations are derived for a two-dimensional static problem with linear elastic
constitutive law and infinitesimal deformation. Here only a brief overview of
the required steps to obtain the stochastic finite element formulation is given.
For a comprehensive overview of the methodology, the reader is referred to
Ghanem and Spanos’s book[66]. Let us consider a two-dimensional stochastic
domain which is discretized into finite elements. The strain energy V e stored
in each element of area Ae can be expressed as

V e =
1
2

∫
Ae

(x, ξ)T (x, ξ) dAe. (4.25)

Here, (x, ξ) = (σ11, σ22, σ12)
T and (x, ξ) = (ε11, ε22, 2ε12)

T are the 2D
stress and strain tensors, respectively. For linear elastic materials,

(x, ξ) = De(x, ξ) (x, ξ), (4.26)
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where

De(x, ξ) =
E(x, ξ)
1− v2

⎡⎢⎢⎣
1 ν 0

ν 1 0

0 0
(1− ν)

2

⎤⎥⎥⎦ , (4.27)

is the matrix of constitutive relation for the 2D plane stress problems with
constant Possion’s ratio ν and stochastic Young’s modulus E(x, ξ). In general,
one can take the Possion’s ratio to be a stochastic function, too; however, here
ν is assumed to be constant. The strain tensor is related to the displacement
field, u(x, ξ), through the relation

(x, θ) =

⎡⎢⎢⎢⎢⎢⎢⎣

∂

∂x
0

0
∂

∂y

∂

∂y

∂

∂x

⎤⎥⎥⎥⎥⎥⎥⎦u(x, ξ) = Hu(x, ξ). (4.28)

The two-dimensional displacement field is expressed as

u(x, ξ) = N(x)d(ξ), (4.29)

where N(x) is the two-dimensional deterministic finite element shape func-
tions and d(ξ) are nodal displacements. For simplicity and without loss of
generality, consider deterministically distributed loads external forces T(x).
The work performed by the applied forces is then written as

W e =
∫
Γe

T(x)u(x, ξ)dΓ , (4.30)

where Γ e denotes the boundary of element e. Minimizing the potential energy
of the system, Π =

∑
e

V e −W e with respect to the nodal displacements

yields,
Kd = f , (4.31)

where

K =
∑

e

∫
Se

B(x)TD(x, ξ)B(x)dS,

B(x) = HN(x), (4.32)

f =
∑

e

∫
Γe

N(x)TT(x)dΓ .

If the Karhunen– Loeve decomposition of D(x, ξ) is written as

D(x, ξ) = D(x) +
∑
i=1

√
λiωi(ξ)a(i)(x), (4.33)
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and is substituted into Eqs. (4.31—4.32),∑
i=0

ωi(ξ)K(i)d = f , (4.34)

where

K(i) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑

e

∫
Se

√
λiB(x)Ta(i)(x)B(x)dS, i �= 0

∑
e

∫
Se

D(x)B(x)TB(x)dS, i = 0
(4.35)

and ω0(ξ) = 1. Rewrite Eq. (4.34) as[
I +

∑
i=1

ωi(ξ)Q(i)

]
d = g, (4.36)

in which
Q(i) = K(0)−1

K(i),

g = K(0)−1
f .

(4.37)

The random vector of nodal displacements can be expanded as follows:

d =
∑

j

c(j)Ψj [ (ξ)], (4.38)

where Ψj [ (ξ)] are chaos polynomials. A complete discussion of chaos poly-
nomials is given in[66]. Substituting Eq. (4.38) into Eq. (4.36) and forming
the inner product of the result with Ψj [ (ξ)] yield,

c(m) +
∑

j

∑
i

ςijmQ(i)c(j) = 〈gΨm[ (ξ)]〉ξ, (4.39)

where
ςijm = 〈ωiΨj ( )Ψm ( )〉ξ. (4.40)

The solution of Eq. (4.39) with c as unknowns provides the statistics of
the nodal displacements through Eq. (4.40).

4.7 Solution of boundary value problems on dense fiber
network domains

Hatami –Marbini and Picu[56] employed the above procedure to solve me-
chanics boundary value problems defined on domains of random fiber net-
works subjected to uniform and non-uniform loadings. For this purpose and
in order to find the response of a network at resolution δ/lc, they consid-
ered the network equivalent stochastic continuum problem subjected to the
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same boundary conditions. The equivalent continuum is divided into square
elements of size δ/lc with elastic moduli E(ξ) having a power law spatial
autocorrelation function. The Karhunen– Loeve expansion of the stiffness
matrix D(x, ξ) is written and the procedure outlined in the previous sec-
tion is followed to find the statistics of the deformation field. Note that the
stochastic input to the problem is the spatially correlated stiffness tensor.
The solution obtained from this approach can be compared with solutions
of (a) the equivalent continuum replica averaging and (b) the fiber network
replica averaging. In the equivalent continuum replica averaging (referred to
as C-Averaging), the classical finite element method is used to solve a large
number of realizations of the equivalent continuum, with each being a deter-
ministic problem and the stiffness distribution inside the domain is obtained
from sampling the probability distribution function of the stochastic Young’s
modulus. The fiber network replica averaging (referred to as N-Averaging) is
based on solving numerically the deformation of a much fuller realization of
random fiber networks subjected to similar boundary conditions. Figure 4.7
shows Hatami –Marbini and Picu’s solution of the deformation field for a net-
work subjected to uniform tension, i.e. p(L, x2) = p0. In this figure, the nodal
displacements of the overlaid mesh obtained from stochastic finite elements
are compared with those evaluated from replica averaging. u[i, j] represent
the displacements of a node located at x1 = (i− 1)δ and x2 = (j− 1)δ where
i, j = 1..n + 1, δ is the size of square elements, n = L/δ and L is the size of
the network square domain. Moreover, 〈u[i, .]〉x2 and 〈σu [i,.]〉x2 are

〈u [i, .]〉x2 =
1

n + 1

n+1∑
j=1

u [i, j],

〈σu [i,.]〉x2 =
1

n + 1

n+1∑
j=1

σu [i,j], (4.41)

where 〈u [i, j]〉ξ ≡ u [i, j] and σu [i,j] denote the mean and standard devi-
ation of nodal displacements, respectively. It is seen that the accuracy of
the stochastic finite element solution depends on the order of chaos poly-
nomials and the number of terms in the Kahunen –Loeve expansion where
the effect of the latter is more significant. Since they used a limited num-
ber of replicas to perform the fiber network replica averaging, it is expected
that N-averaging yields an upper limit for the standard deviation. The re-
sults are in agreement with those obtained from replica averaging over many
deterministic structures. Hatami –Marbini and Picu stated that because tra-
ditional homogenization theory approaches are not applicable to problems
with long-range correlations, the above approach is a practical alternative
for the solution of boundary value defined on dense random fiber networks.
This procedure is considerably faster and cheaper than replica averaging es-
pecially for large problem domains containing large number of fibers.
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Fig. 4.7 The variation of (a) the normalized average of mean horizontal nodal
displacement, and (b) the normalized standard deviation of the horizontal nodal
displacement inside the stochastic continuum equivalent to the network pulled with
a uniform tension along the edge x1/L = 1. The results obtained from the stochas-
tic finite element method (SFEM) with Mn = 4 terms in the Karhunen –Loeve
decomposition and np = 2 terms in the chaos polynomial expansion are shown,
along with results from N-and C-averaging (described in text).
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Chapter 5 Atomic Scale Monte-Carlo Studies
of Entropic Elasticity Properties of
Polymer Chain Molecules

Eduard G. Karpov∗ and Mykhailo V. Grankin

Department of Civil & Materials Engineering, University of Illinois,
Chicago, IL 60607

Abstract: This chapter describes atomic scale Monte –Carlo studies of en-
tropic elasticity properties of individual polymer chain molecules. An efficient
numerical Monte –Carlo sampling approach is outlined and used to evaluate
the entropic contribution to the total elastic force. Specific load-extension
curves are obtained numerically for a group of molecules with degenerate po-
tential energy profiles. Results of the atomistic modeling are compared with
the limiting continuum model of the same type of polymers. The extent of
the linear and nonlinear elastic regimes and dependence on the molecular
weight and geometric parameters of the molecules are discussed.

Keywords: entropic elasticity, Monte-Carlo modeling, polymers, statisti-
cal properties

5.1 Introduction

Theoretical prediction and validation of mechanical properties of polymer
chain molecules, particularly, complex biomolecules[1-7], proteins and lip-
ids[8-10], are impeded by the involvement of the entropic elasticity effects[11-15].
The entropy-driven elastic forces arise from the essential degeneracy of the
molecule potential energy function in the configuration space. The entropy
dependent term, – TS, where T is the system temperature, may notably
contribute to the free energy F of a polymer chain and even dominate over
the usual interatomic potential energy U , when the chain is subject to an
external mechanical loading.

Continuum level empirical approaches to the description of entropic elas-
tic media are currently available[11-12,16-18]; those utilize the helmholtz free
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energy thermodynamic potential[19-22], F = U−TS, as a basic physical char-
acteristic of any material system carrying out mechanical work at a constant
(nonzero) temperature. However, very few analytical or numerical studies of
the entropic elastic properties of individual molecules have been conducted,
particularly, with an atomistic resolution[14,23-25]. The entropic elasticity is
determined by thermally triggered stochastic transitions between different
geometric configurations of the polymer chain occurring continuously in the
physical space at the atomic scale. A direct analysis of these geometric con-
formations for the purpose of establishing a reliable and well parameterized
entropy-to-deformation dependence is extremely difficult to the great num-
ber of internal degrees of freedom and a high order of degeneracy of the
interatomic potential energy function, even for the simplest polymer chains.

This chapter describes a very efficient nondeterministic numerical ap-
proach to study entropic elasticity properties of individual polymer chain
molecules. the approach is based on a Monte – Carlo[26-31] random sampling
scheme with an atomistic (monomer scale) resolution eligible for the evalua-
tion of entropic contribution to the total elastic force in large polymer chain
molecules. Specific load-extension curves[32-35] are obtained numerically for a
group of molecules with degenerate potential energy profiles[11]. The entropic
elastic properties are evaluated by reproducing a numerical probability den-
sity function for the configuration entropy of the molecules. Results of the
atomistic modeling are compared with the limiting continuum model of the
same type of polymers. The extent of linear and nonlinear elastic regimes
and dependence on the molecular weight and geometric parameters of the
molecules are discussed. The linear regimes for the entropic elastic forces
are observed for a wide range of molecular parameters in agreement with a
generic continuum scale approach[11-12]. However, the present atomic scale
model shows that the conventional continuum scale linearity of the entropic
elasticity is breaking at both very small and large elongations of the individ-
ual molecules subject to external loadings, as well as for extreme values of
some basic geometric parameters of the molecule. Particularly, the extent of
the nonlinear regime is shown to depend on the kink or atomic bond angle,
and therefore, the gyration radius of the molecular chain.

5.2 Entropic elasticity of linear polymer molecules

In the presence of significant entropic effects, the elastic response of a physical
system at constant temperature subject to external mechanical loading is
determined by behavior of the thermodynamic free energy potential of the
system associated with such a response[11-12]. Variance of the free energy
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potential defines mechanical work done by the system over external bodies
without changing the system temperature. It is convenient to introduce the
distance L between two endpoints of a polymer chain molecule loaded with
self-equilibrated external forces f (Fig. 5.1). The parameter L can be related
to the standard mechanical strain,

ε =
L− L0

L0
(5.1)

where L0 is some relaxed length of the molecule, or the distance between
the same endpoints in the absence of external forces. The free energy change
then can be written as

∂F = −f∂L. (5.2)

Here, the right-hand side represents an elementary mechanical work of the
external forces on the contraction or elongation of the molecule. Then the
external force is given by the derivative

f = −
(

∂F

∂L

)
T,a

(5.3)

evaluated at a constant temperature T and a constant set {a} of any external
thermodynamic parameters.

Fig. 5.1 Polymer chain molecule loaded with a pair of self-equilibrated external
forces.

Equation (5.3) can be expanded using the standard thermodynamic def-
inition of the Helmholtz free energy potential[19-22] in terms of the system’s
internal energy U and entropy S:

f = −∂F

∂L
= −∂ (U − TS)

∂L
= −∂U

∂L︸ ︷︷ ︸
fU

+ T
∂S

∂L︸ ︷︷ ︸
fS

. (5.4)

Internal energy change at a constant temperature may only be related to the
variance of potential energy of atomic interaction due to bond lengths and
bond angles changes. Therefore the first term on the right-hand side of Eq.
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(5.4) represents the usual energetic elastic force (fU ), while the second term
is the entropic elastic force (fS). We note that the entropic elastic force is
linear with system temperature for any type of functional dependence of the
entropy on the parameter L. This behavior is analogous to the linearity of
ideal gas pressure dependence on temperature, which is viewed as an entropic
effect in the absence of potential energy interaction between the individual
gas molecules[21-22].

Since the entropic force in Eq. (5.4) is not related to the potential energy,
it only depends on the geometrical transformations of the molecule. If such a
transformation occurs for a constant potential energy of the molecule, then
the resultant change of the configuration entropy represents a pure contribu-
tion to the entropic elastic force,

∂U

∂L
= 0 : f = fS = T

∂S

∂L︸ ︷︷ ︸
fS

. (5.5)

The condition ∂U/∂L = 0 in Eq. (5.5) represents the “ideal rubber” system or
model, where entropic elastic forces fully dominate over the energetic elastic
forces.

Extension or contraction of the ideal rubber chain is not related to any
changes of molecular bond lengths or angles, and should be viewed as a result
of mere reorientation of individual blocks (monomers) in the molecule relative
to each other. This statement can be clarified using the example shown in
Fig. 5.2. Consider first a lower mass molecule, such as C2H6 ethane, where
the 3-fold symmetric transformation of rotation of the 3H group about the
C –C bond is possible. One may anticipate a general form of the relevant
rotational potential (Fig. 5.2),

Uϕ = U0[1− cos(3ϕ)] (5.6)

where angle ϕ describes orientation of the two 3H groups relative to each
other. The three minima of this potential correspond to three equivalently
stable rotational states of the molecule at angles ϕ = 0◦, 120◦ and 240◦, while
the three maxima correspond to the most energetically unfavorable relative
orientations of the 3H groups and represent the non-bonding interaction of re-
pulsive character between the hydrogen atoms. For a C4H10 butane molecule,
the rotational potential has different properties (Fig. 5.2 plot). Particularly,
rotation about the left or right C –C bond is 3-fold symmetric as in the ethane
molecule; however, rotation about the middle C –C bond is characterized by
the global minimum at ϕ = 0◦ and two identical local minima at ϕ = 120◦

and 240◦. These configurations are named the transconformation and gauche
states of the molecule, respectively.
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Fig. 5.2 Rotational symmetry of bonding energy potential in hydrocarbon
molecules. The plot shows an accurate 3-fold symmetry of the potential for ethane
or propane and a quasiperiodicity for butane and higher order molecules, including
polyethylene. (color plot at the end of the book)

Similar properties of the rotational potential are also observed in higher
order chain molecules, for example, for the relative monomer orientation
in [CH2]n polyethylene, as well as in more complex organic polymers and
biopolymers. Existence of several molecular conformations with identical val-
ues of the potential energy in a local repetitive group leads to a very high
degeneracy of the total potential energy function of the molecule. Being sub-
ject to an external load, such a molecule can respond by changing its config-
uration and by subsequent entropy decrease, rather than by storing potential
energy as a normal elastic body.

Dependence of the molecular entropy onto the separation distance, S(L),
can be introduced using the Boltzmann relationship,

S(L) = kB ln w(L) (5.7)

where kB is the Boltzmann constant, and developing a dependence of the
configurational probability density function w on the right-hand side onto the
parameter L. Analytical or numerical evaluation of the function w = w(L) is
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a key task in studying entropic elastic properties of polymers and other soft
matter systems. Indeed, for a given w(L), the entropic force dependence on
L can be found using Eqs. (5.7) and (5.5), so that

fS(L) = kBT
∂

∂L
ln w(L). (5.8)

Section 5.2.1 provides an analytical approach to determine w(L) using a con-
tinuum limit approximation for polymer chain molecules, and Section 5.2.2
describes an efficient Monte–Carlo numerical procedure for w(L) evaluation,
where an atomic scale resolution is preserved for the molecular structure. Re-
sults of the continuum and discrete atomic studies will further be discussed
and compared to each other.

5.2.1 Continuum limit

In the limiting case of a very large number of monomers, when the distance
between two adjacent monomers is vanishing compared to the total length of
the polymer chain, one may assume that the separation distance L between
the two loaded endpoints (Fig. 5.1), is essentially a continuously distributed
quantity. Analytical distribution for L then can be derived by setting the ori-
gin of a Cartesian coordinate system at one of the endpoints and analyzing
position of the other endpoint in the same system (Fig. 5.1). Since the num-
ber of monomers is very large, the free endpoint has no directional preference
relative to the origin of the coordinate system. Each of the coordinates of the
free endpoint is a random number normally distributed about zero value with
some variance a being the same for all three coordinate directions. Thus, po-
sition of the free endpoint is of a random Cartesian vector, whose distribution
is given by

w(r) = w(x, y, z) =
1

(2πa2)
3
2
e−

x2+y2+z2

2a2 . (5.9)

The variance a of this distribution depends on the molecule’s internal prop-
erties, such as the total number of monomers, molecular weight, local bond
angles and bond lengths, and potential energy profiles. The distribution (Eq.
(5.9)) is spherically symmetric, and therefore it can be simplified using the
spherical coordinates (L, θ, ϕ), so that

x2 + y2 + z2 → L2, dr = dxdydz → L2dL sin θdθdϕ. (5.10)

Here L is the earlier introduced distance between two loaded endpoints of
the polymer. Using Eq. (5.10), the elementary probability w (r) dr can be
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written in spherical coordinates as

w(r)dr =
1

(2πa2)
3
2
e−

x2+y2+z2

2a2 dxdydz =
L2

(2πa2)
3
2
e−

L2

2a2 dL sin θdθdϕ. (5.11)

This probability is spatially isotropic, and therefore integration over the
spherical coordinate angles leads to mere addition of the 4π factor to give
a one-dimensional elementary probability corresponding to the interval of
distances from L to L + dL:

w(L)dL =
4πL2

(2πa2)
3
2
e−

L2

2a2 dL. (5.12)

Thus, probability density function for the parameter of distance L between
two loaded endpoints of the polymer chain is essentially a spherical normal
distribution,

w(L) =

√
2
π

L2

a3
e−

L2

2a2 . (5.13)

A plot of this distribution is shown in Fig. 5.3, where the most probable and
mean values of the distance L are related to the variance a,

L0 = a
√

2, L̄ = a

√
8
π

. (5.14)

Fig. 5.3 Probability density function for the distance parameter L (a). molecular
entropy and entropic elastic force expressed as functions of L (b).

The analytical distribution (Eq. (5.13)) gives the entropy and the entropic
force, according to Eqs. (5.7) and (5.8), in the form

S(L) = Const + kB

(
2 ln

L

a
− L2

2a2

)
,

fS(L) = T
∂S

∂L
= kBT

(
2
L
− L

a2

)
. (5.15)
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As can be seen, the entropic force is linear relative to L, when L is greater
than L0. The asymptotic slope of the force curve at L →∞ in Fig. 5.3 gives
the entropic elastic modulus,

k =
kBT

a2
=

2kBT

L2
0

. (5.16)

Since the entropic elastic force is zero at L = L0 corresponding to a maximum
of the molecular entropy, the value L0 can be referred to as a relaxed length
of the molecule, which can be used for a standard linear force model of the
type k(L –L0).

5.2.2 Monte –Carlo sampling

Within the continuum assumptions of Section 5.2.1, the variance parameter
a for the distribution (Eq. (5.13)) cannot be elucidated, because the inter-
nal atomic structure of the polymer is not-taken account of. Furthermore,
assuming a continuum range for the parameter L implies a possibility for the
polymer chain to have critically small local curvature radii that may not be
realized for an actual chemical bond structure of the polymer.

Consider a polymer chain model of the type shown in Fig. 5.4, where the
vectors A, B and C show spatial orientation of the intra-monomer bonds,
such as the C– C bond in the polyethylene molecule of Fig. 5.2. The angle
θ between a pair of two adjacent intra-monomer bonds, as well as the bond
length, u, are basic characteristics of the chain that determine its entropic
elastic properties. Another important parameter is the total number Ne of
monomers on the chain under investigation. The two bonds A and B define
a plane so that the next adjacent bond C can form an out-of-plane angle ϕ

equal to one of the three possible random values corresponding to the sta-
ble energetically favorable confirmations of this local group. Particularly, the
triplet of possible random realization of the angle ϕ could be {0◦, 120◦, 240◦}
as in the example shown in Fig. 5.2, or another 3-fold symmetric or asym-
metric set. These angles define relative rotational orientation of two adjacent
monomers on the axis of their chemical bond. For more complex molecules,
angle ϕ may have more than three possible values. Obviously, the total num-
ber of possible global configurations of the entire polymer molecule with Ne

monomers will be nNe−1, where n is the dimensionality of the set of angles
ϕi being 3 in the above example. If the local rotational potential minima
are identical for all three values of ϕ, then the number 3Ne−1 also represents
the order of degeneracy of the global molecular potential in the configuration
space. In other words, such a molecule can have 3Ne−1 different configurations
at a constant value of potential energy of the atomic interactions comprising
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Fig. 5.4 Relative orientation of three intra-monomer bonds (vectors A, B and C)
representing a local region of a polymer chain molecule; θ is the principal bonding
(kink) angle in the discrete atomic lattice model of the molecule.

this molecule. For example, at Ne = 1 000, the total number of configurations
is about 4.4× 10476. A direct analysis of such vast numbers of configurations
for the elucidation of the w(L) distribution form is generally intractable.

A probabilistic Monte –Carlo sampling approach can be employed to se-
lect a sufficiently large number of random molecular configurations N0 and
to build a numerical histogram showing the approximate w(L) distribution.
The sampling procedure utilizes probabilities Pi of the realization of each of
the angles ϕi in a local group of bonds depicted in Fig. 5.4. These probabil-
ities can be determined as asymptotic (at time t → ∞) solutions of kinetic
balance equations with a matrix of transition probabilities rij . Values of the
coefficients rij can be determined using the respectable activation energy of
the rotational transformations provided by a local potential of the Eq. (5.6).
Since the entire approach is quasistatic, only relative probabilities are re-
quired rather than the actual dynamic rates, or probabilities per unit time.
According to the transition state theory[36-42], such relative probabilities are
proportional to the Boltzmann factors,

rij ∼ exp
(
− Eij

kBT

)
(5.17)
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where Eij is the activation energy of the i → j transformation. Asymptotic
solution of the kinetic equations at t→∞ can be found by solving a system
of linear equations of the type

P1(r12 + r13) = P2r21 + P3r31,

P2(r21 + r23) = P1r12 + P3r32,

P1 + P2 + P3 = 1.

(5.18)

Here, the last equation represents the fact that the system is always found
in one of the three possible states. If there are more than three possible con-
figurations of the local group (Fig. 5.4), the system (Eq. (5.18)) is expanded
to a respectable number of the sought probabilities Pi.

On the next step, the probabilities Pi are utilized during the Monte –Carlo
sampling procedures to render random global configurations of the polymer
molecule. Example configurations are shown in Fig. 5.5, where various bond-
ing angles θ have been utilized. In this and all further numerical examples, the

Fig. 5.5 Overall geometry samples for various bond angles θ and constant number
Ne of monomers in the molecular chain. The plot shows dependence of the gyration
radius of the molecule on Ne. (color plot at the end of the book)
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set of local angles ϕi and the respectable set of probabilities Pi are chosen to
be {0◦, 120◦, 240◦} and {1/3, 1/3, 1/3}. The three probabilities are selected
equally for a more adequate comparison of the discrete numerical model with
the continuum limit. Meanwhile, in the analysis of more complex molecules,
where a continuum analogy is not sought, a more thorough analysis of the
type (Eq. (5.17) and Eq. (5.18)) based on a realistic interatomic potential
should be performed. As can be seen from Fig. 5.5, the bonding angles θ has
a major influence on the overall geometry of the molecule. Particularly, one
may introduce the gyration radius of the molecule,

R2
g =

1
2N2

e

∑
i,j

(ri − rj)2 ∼=
1

Ne

N∑
i=1

(ri − r̄)2, r̄ =
1

Ne

N∑
i=1

ri (5.19)

where ri is a position vector of the ith monomer in a global system and r̄ is
the centroid of the molecule in the same system. The gyration radius Rg is
a basic geometric parameter of the polymer chain, which represents a mean
radius of the spherical volume occupied by the molecule characterized by a
specific set of local parameters (θ, u, ϕi, Pi). Parameter u essentially serves
as a geometric scaling parameter, and the value u = 1 was employed in the
calculations. Therefore, the unit of length for the numerically determined
physical parameters plotted in Figs. 5.7 and 5.8 is the actual bond length in
a polymer molecule under consideration that is typically several angstroms.

For each specific interval of values of the calculated parameter L, between
Li and Li + ΔL, the Monte – Carlo sampling procedure will yield a particular
number Ni of molecular configurations whose length falls within the range of
this interval. Then the approximate value of the distribution function w(L)
at L = Li can be determined as

w(Li) ≈
Ni(Li, Li + ΔL)

N0 ΔL
. (5.20)

The accuracy of this approximation is higher for greater total sizes N0 of
the sample set, and for smaller values of the interval ΔL. Examples of this
numerical atomic scale distribution are shown in a histogram form in Fig.
5.6 for various bond angles. These numerical histograms are brought to com-
parison with the analytical distribution (Eq. (5.13)) plotted for the same
respectable values L0 as the numerical distributions. Surprisingly, the shapes
of the discrete atomistic and continuous distributions are very different at
small bond angles, such as θ = 5◦ – 10◦, while at angles greater than 30◦,
they are virtually identical.

Since the distribution w(L) ultimately determines the properties of the
entropy (Eq. (5.7)) and elastic force (Eq. (5.8)) functions, the atomistic model
of Fig. 5.6 demonstrates significant deviations in the physical behavior from
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Fig. 5.6 Examples of the numerical distribution (Eq. (5.20)) in comparison with
the analytical continuum model distribution (Eq. (5.13)) at various bonding angles
θ. (color plot at the end of the book)

the continuum model of Fig. 5.3 for small bonding angles θ. Indeed, calcula-
tion of the numerical entropy and entropic elastic force dependence,

S(Li) = kB ln w(Li), fS(Li) = kBT lim
ΔL→0

ln w(Li + ΔL)− ln w(Li)
ΔL

(5.21)
leads to the results presented in Fig. 5.7 for a polymer chain of 1 000 monomers
at various kink angles θ. Here, the total number of sampled molecular config-
urations, N0 = 105. Behavior of the entropic force for the atomistic model is
similar to the continuum model of Section 5.2.1 in the range of angles from
about 25◦ to 50◦. However, for very small and very large kink angles, the
entropic force is nonlinear not only at small L, as in the continuum model of
Fig. 5.3, but also at large separation distances L. Furthermore, the entropic
force for molecules with low gyration radii (densely packed polymers), i.e.
for those with large parameter θ, is linear mostly in the extension or un-
folding mode, while for very sparsely packed molecules (with small θ), it is
linear mostly in the contraction mode. Increased fluctuations in Fig. 5.7 data
for the entropic force at larger L and greater angles θ can be explained by
numerical error of calculation of the logarithmic functions at small random
arguments.
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Fig. 5.7 Numerical values of the molecular entropy and entropic elastic force
varying with separation distances between two loaded endpoints of the molecule
(Fig. 5.1) for small (top) and large (bottom) kink angles θ; u is the distance between
two adjacent monomers or the C– C bond length. (color plot at the end of the book)

Extended linear regimes for the entropic force exist in the sampled poly-
mer chains at all values of θ for moderate elongations of the molecule. Ap-
proximate elastic moduli k and relaxed lengths L0 associated with these linear
regimes are plotted in Fig. 5.8 relative to the total number Ne of monomers
in the chain. Ne is a basic parameter defining the radius of gyration (Fig.
5.5) and the molecular mass of the polymer. The parameters k and L0 can
be utilized for a standard linear force model of the type k(L− L0). Similar
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Fig. 5.8 Elastic moduli (left) and relaxed lengths of the endpoint separation
(right) for the linear elastic regimes observed in Fig. 5.7. (color plot at the end
of the book)

to the gyration radius, the relaxed separation length L0 grows proportional
to N

1
2
e at Ne > 1 000. The elastic modulus approaches asymptotically the

continuum model value (16) for Ne → ∞, while significant deviations from
Eq. (5.16) can bee seen at Ne < 1 000 and for bond angles θ � 15◦.

5.3 Summary

In this chapter, we have discussed a simple and efficient Monet –Carlo sam-
pling approach allowing evaluation of entropic elastic properties of individual
polymer chain molecules with an atomistic resolution, where a direct analysis
of the nNe−1 molecular configurations at n � 3 and Ne > 30 is intractable. In-
ternal atomic scale parameters that determine the global geometric (gyration
radius) and entropic elastic properties (linearity, elastic modulus and relaxed
length) of the polymer molecule include the intra-monomer bond length u

and angle θ, the set of relative rotation angles ϕi of adjacent monomers, and
a respectful set of the transition probabilities Pi. These parameters also de-
termine the order of degeneracy of the total potential energy of the molecule
in the configuration space.

Results of the numerical studies have been compared with the limiting
continuum model of the polymers. A significant divergence with the contin-
uum model behavior is observed at smaller bond angles for all elongations
of the molecule. Linearity of the entropic force exists in a wide range of
the elongations, however, molecules with low gyration radii (densely packed
polymers), i.e. those with large parameter θ, are linear mostly in extension
or unfolding, while very sparsely packed molecules are linear mostly in the
contraction mode. This logical result, though, cannot be reproduced within
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the settings a of continuum model. Furthermore, the nonlinear regimes are
observed not only in the contraction, as what has been observed with the
continuum approach, but also for high elongations at both very large and
very small gyration radii. The latter result cannot be reproduced with the
usage of a purely continuum approach.
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Chapter 6 Continuum Models of Stimuli-res-
ponsive Gels

Wei Hong∗

Department of Aerospace Engineering, Iowa State University,
Ames, IA 50011, USA

Abstract: Immersed in a solution of small molecules and ions, a network
of long-chain polymers may imbibe the solution and swell, resulting in a poly-
meric gel. Depending on the molecular structure of the polymers, the amount
of swelling can be regulated by moisture, mechanical forces, ionic strength,
electric field, pH value, and many other types of stimuli. Starting from the
basic principles of non-equilibrium thermodynamics, this chapter formulates
a field theory of the coupled large deformation and mass transportation in a
neutral polymeric gel. The theory is then extended to study polyelectrolyte
gels with charge-carrying networks by accounting for the electromechanical
coupling and migration of solute ions. While the theoretical framework is
adaptable to various types of material models, some representative ones are
described through specific free-energy functions and kinetic laws. A specific
material law for pH-sensitive gels—a special type of polyelectrolyte gels— is
introduced as an example of incorporating chemical reactions in modeling
stimuli-responsive gels. Finally, a simplified theory for the equilibrium but
inhomogeneous swelling of a polymeric gel is deduced. The theory and the
specific material models are illustrated through several examples.

Keywords: polymer, gel, thermodynamics

6.1 Introduction

Immersed in a liquid, a covalently cross-linked network of long-chain polymers
imbibes the small solvent molecules (together with other solutes if present)
from the liquid and swells, resulting in a polymeric gel. While the small
molecules can readily change their neighbors, the connectivity of the poly-
mer network is usually preserved by the cross-links. As a result, the gel can

∗Corresponding author, E-mail: whong@iastate.edu.
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swell and shrink repeatedly as the solvent molecules migrate in and out. The
volume of a swollen gel is typically many times that of the dry network. De-
pending on the species of the constituent polymer and solvent, the amount of
swelling is affected by mechanical forces, light, salt, pH value, temperature,
or electric field[1,2].

Most biological tissues contain polymeric gels[3], such as pectin which reg-
ulates the water flow in plants in response to changes in ionic concentration[4],
and articular cartilage which maintains low friction in joints[5]. Synthetic gels
are also being developed for diverse applications including tissue engineering[6],
drug delivery[7], sensors[8,9], and actuators[10-12]. In many applications, gels
serve as transducers that convert between non-mechanical stimuli (e.g., hu-
midity, temperature, pH value, and ion concentration) and large displace-
ments or appreciable forces. Most of the mechanisms consist of gels swelling
against the constraint of hard materials, and the induced stress fields are
often inhomogeneous. Therefore, a field theory that couples nonlinear elastic
deformation and migration of small molecules is needed to describe those
mechanisms as well as other complex swelling phenomena of gels.

The thermodynamics of swelling dates at least back to Gibbs[13], who
formulated an equilibrium theory for the deformation of an elastic solid that
absorbs a fluid. When a material-dependent free-energy function is specified,
the Gibbs theory leads to a boundary-value problem that governs the fields
of deformation and liquid concentration in equilibrium with external loads.
For polymeric gels, a free-energy function often used is the Flory –Rehner
model[14], which combines the entropy of stretching the polymer network
and the entropy of mixing the polymers with the solvent. The kinetics of
swelling also has a long history. The theory developed by Biot[15] who used
Darcy’s law to model the motion of a fluid in a porous solid has been widely
used to analyze subjects ranging from soil to biological tissues.

In the tradition of Gibbs and Biot, this chapter summarizes the recent de-
velopments by Hong and coworkers[16-18], and formulates a continuum frame-
work in terms of nonequilibrium thermodynamics for the modeling of stimuli-
responsive gels. Such an approach, however, leaves the free-energy function
and the kinetic law open, both being material-specific. Some simple material
laws, which are deduced from theoretical abstraction and idealization, will
be presented as examples.

6.2 Nonequilibrium thermodynamics of neutral gels

Since gels are known to be responsive to various types of stimuli due to
different mechanisms, it is impossible to build a universal model that covers
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all of them. Three types of gels will be selectively studied in this chapter. As
the first subject of this chapter, the neutral gels which consist of only one
species of polymer chains and one species of solvent molecules, both being
electroneutral, will be considered in this section.

The solvent molecules constantly change their neighbors and migrate in
and out of the gel freely. In order to trace the deformation of the gel, we
will look at the polymer network. Imagine attaching a field of markers to the
polymer chains. While the choice of a reference state is more or less arbitrary,
here we simply take the dry polymer network under no mechanical load as the
reference state, and name each marker by its coordinate X in the reference
state. In the current state at time t, the marker X moves to a place with
coordinate x(X, t). We measure both the volume element dV (X) and the
area element N(X)dA(X) of integrals in the reference configuration, where
N(X) is the unit outward-normal vector.

Figure 6.1 illustrates two ways of doing work upon a piece of neutral gel:
application of a mechanical force (e.g. by hanging to the polymer network a
weight), and attaching to the gel a source of solvent molecules (e.g. by con-
necting the gel to a reservoir through a pump). Let us first consider the conse-
quence of a field of mechanical forces. In the current state, let b(X, t)dV (X)
be the force on a volume element and t(X, t)dA(X) be that on an area el-
ement. When the polymer network deforms by δx, the field of forces does
work ∫

b · δxdV +
∫

t · δxdA. (6.1)

Similarly, we imagine a field of sources, with chemical potential μ(X, t), is
connected to the gel. Associated with the number of solvent molecules in-
jected by the sources: δr(X, t)dV (X) in a volume element and δi(X, t)dA(X)

Fig. 6.1 Two ways of doing work on a neutral polymeric gel. Mechanical loads are
applied by hanging a field of weights to the network. Chemical loads are applied
using a field of pumps to inject solvent molecules into the gel.
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on an area element, the field of sources does work∫
μδrdV +

∫
μδidA. (6.2)

The sign of δr and δi is so defined that they are positive when molecules
migrate into the gel.

In practice, many parts of a gel may not be attached to sources. Instead,
the solvent molecules migrate to and from neighboring parts. In line with the
theory described here, it is equivalent to imagine that every element of the
network is still attached to a source, the chemical potential of which is tuned
to a level so that the solvent molecules will neither migrate into nor out of
the gel. The imaginary sources provide a way of measuring the local chemical
potential near a marker in the gel.

After studying the external loads, we will turn to the energy stored in
a gel. Here we will focus on isothermal processes and drop the temperature
from the list of state variables. Neglecting the free energy of a surface or
interface, we write the Helmholtz free energy of an element of volume in the
current state as WdV . The Helmholtz free energy of the gel is the integral of
the free-energy density W over the volume of the gel. Following a common
practice in field theories, we take this approach by assuming that the gel
consists of many small volume elements, with each being small enough to be
considered to be homogeneous, and the free energy of the gel is just the sum
of that of each element.

The free-energy density is a function of a set of the local field variables.
The choice of the field variables, together with the functional form of the free-
energy density, constitutes a specific material model. For neutral polymeric
gel, we take the following two commonly used field variables.

To describe the local stretching state of the polymer network near marker
X, we invoke the deformation gradient

F (X, t) = ∇x. (6.3)

Here and throughout the chapter, the spatial differential operator ∇ is taken
with respect to the reference configuration.

To account for the mobile species, we define the field of nominal solvent
concentration C(X, t), so that CdV is the number of solvent molecules in a
volume element in the current state.

The Helmholtz free-energy density is assumed to be a function of the
deformation gradient and the nominal solvent concentration, W (F, C). Con-
sequently, associated with small changes in the independent variables, the
free-energy density changes by

δW =
∂W

∂F
: δF +

∂W

∂C
δC. (6.4)
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Following a well-known result in solid mechanics, to rid W of its dependence
on rigid-body rotations, we require that W depends on F only through the
product FT ·F (i.e. the right Cauchy-Green deformation tensor).

The gel, the pump, the mechanical forces, and the solvent sources form
a thermodynamic system. The system is held at a constant temperature by
preserving thermal equilibrium with a reservoir of energy. The Helmholtz free
energy of the system is the sum of two parts: the change in the free energy of
the gel, and the change in the free energy of the mechanical loads or solvent
sources, i.e. the negative of the work of Eqs. (6.1) and (6.2). Although the
system is in thermal equilibrium with the energy reservoir, it may not be
in thermodynamic equilibrium. The principle of thermodynamics dictates
that the Helmholtz free energy of the system never increases in a physically
possible process:∫

δWdV −
∫

b · δxdV −
∫

t · δxdA−
∫

μδrdV −
∫

μδidA � 0. (6.5)

The inequality holds when the process is irreversible, and the equality holds
when the system undergoes a reversible process, i.e. the system is in equilib-
rium.

No chemical reaction takes place in the system, so that the total number
of solvent molecules is preserved. Let δI be the nominal flux vector of solvent
migration, so that δI ·NdA is the number of molecules passing through the
element of area. The conservation of solvent molecules requires that

δC +∇ · δI = δr (6.6)

in the volume, and that
δI ·N = −δi (6.7)

on a surface.
Using Eqs. (6.4), (6.6) and (6.7), we can rewrite Eq. (6.5) as∫

(∇ ·PT + b) · δxdV +
∫

(t−P ·N) · δxdA

+
∫ (

∂W

∂C
− μ

)
δCdV −

∫
∇μ · δIdV � 0,

(6.8)

where P is the nominal stress (or the Piola – Kirchhoff stress of the first kind):

P =
∂W (F, C)

∂F
. (6.9)

All terms on the left-hand side of inequality Eq. (6.8) represent the dissi-
pation of free-energy through distinct processes: the first two are due to
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the deformation of the network, the third is due to the injection of solvent
molecules, and the fourth due to the migration of solvent molecules.

Let us first consider the process of injection. The imaginary pumps that
connect the gel to the sources are added for ease of description, it is safe
to assume that they are reversible and dissipate no energy. As a result, the
solvent near the pump is always in local equilibrium with the source, namely,

μ =
∂W

∂C
. (6.10)

In most cases, a gel does not have any volumetric source of solvent, and the
artificially added sources together with Eq. (6.10) server just as the definition
of local chemical potential. The local chemical potential equals that in the
imaginary reservoir if no solvent will migrate in or out of the gel when the
reservoir is attached.

Admitting Eq. (6.10), to ensure that Eq. (6.9) holds true for any dis-
placement or flux, we require that the integrands of the rest three terms in
Eq. (6.8) must be positive-definite for all physically possible processes. One
common way to do this is to adopt a kinetic law for each irreversible process.
We can correlate the unbalanced body force with the velocity of the polymer
network by introducing a viscous-drag-like relation:

∇ ·PT + b = f · ẋ (6.11)

in the volume, and
t−P ·N = f ′ · ẋ (6.12)

on a surface. An alternative (but not necessarily equivalent) approach to
account for the dissipation due to deformation of polymer network would be
to introduce viscous stress and correlate it to the velocity gradient, similar to
that in finite-deformation viscoelasticity[19]. For the dissipation due to solvent
migration, we can correlate the solvent flux, J = ∂I/∂t, to its driving force,
the chemical potential gradient, as

J = −M · ∇μ. (6.13)

The kinetic tensors f , f ′, and M may not be constant in general, but are all
positively definite.

By imagining a picture in which all solvent molecules rest still in space,
and the polymer network slides through the viscous liquid solvent, Tanaka
et al.[20] derived a simplified model by considering only the network friction
through Eq. (6.11) and neglecting the solvent flux. Although the idealized
picture may represent the free swelling process of a gel in a still liquid,
it deviates from the actual physical process in more general cases. A gel
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may deform instantaneously under mechanical loads by carrying the solvent
molecules together with the network.

While an actual physical process may involve all types of dissipation,
in this chapter we will look at the other extremes and only consider the
dissipation due to migration of solvent. Such extremes represent the case
when the relative motion of the polymer network to the external solvent is
slow, and the pressure gradient through the gel is small, so that the solvent
molecules migrate in a process similar to self diffusion, and induce negligible
drag on the network. Therefore, the polymer network is in partial mechanical
equilibrium, satisfying the equation

∇ ·PT + b = 0 (6.14)

in the bulk, and the boundary condition

P ·N = t (6.15)

on surfaces where a traction t is prescribed.
The conservation law of solvent molecules, Eqs. (6.7) and (6.8), can also

be written in terms of the changing rate of nominal concentration

Ċ = ṙ −∇ · J, (6.16)

J ·N = −i̇, (6.17)

where ṙ and i̇ are the injection rates of solvent molecules in the bulk and on
a surface, respectively.

Equations (6.5), (6.13), (6.14), and (6.16) constitute a closed initial-
boundary-value problem. When the material-dependent free-energy function
W (F, C) and mobility tensor M are determined and proper initial and bound-
ary conditions are prescribed, we can readily evolve the morphology of a
neutral polymeric gel by solving the fields x(X, t) and C(X, t).

6.3 A simple material model for neutral gels

When the polymer network absorbs solvent, it swells and increases its volume.
The volume change and the solvent concentration are interdependent. The
accurate functional relation between detF and C may be determined exper-
imentally. Here following a common practice we assume that the individual
polymer chains and the individual solvent molecules are incompressible. The
relation is then simply expressed as

1 + vC = detF, (6.18)
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where v is the volume occupied by one solvent molecule in the gel. The
molecular incompressibility condition, Eq. (6.18), can be enforced by adding

a term
∫

Π(1 + vC − detF) dV to the total free energy of the system, where

Π(X, t) is a field of Lagrange multiplier. The field equations (6.13)— (6.17)
will maintain the original form if we modify the constitutive relation, Eq.
(6.5), to

P =
∂W (F, C)

∂F
− F−TΠdetF and μ =

∂W (F, C)
∂C

+ vΠ. (6.19)

The solvent molecules enter or leave the gel freely, but the polymers chains
are cross-linked into the network and cannot leave the gel. The situation
is analogous to that of a membrane permeable to the solvent but not to
the solute. If such a membrane separates a pure solvent form a solution,
the solvent will diffuse across the membrane until the solution builds up a
counteracting pressure, known as the osmotic pressure. From Eq. (6.19), we
can interpret the Lagrange multiplier Π as the osmotic pressure that modifies
the ideal behavior of the solvent in the gel.

To illustrate the general procedure and to describe the approximate be-
havior of polymeric gels, we will adopt a simple form of the free-energy func-
tion and kinetic law. The accurate prediction of a specific gel may require
additional terms and parameters to fit experimental data, a task that is be-
yond the scope of this chapter.

The free energy of a neutral gel comes from two molecular processes:
stretching the polymer network and mixing the polymers and solvent
molecules. A usual treatment is to take the sum of both contributions, and
write the energy function in the form[14]

W (F, C) = Ws(F) + Wm(C), (6.20)

where Ws and Wm are the free energy of stretching and mixing, respectively.
Considering the entropy of polymer chains of Gaussian statistics, we write

the free energy of stretching as[21]1

Ws(F) =
1
2
NkT [F : F− 2 ln(detF)− 3], (6.21)

where N is the number of polymer chains in the gel per unit reference volume,
and kT the temperature in the unit of energy. Other forms of the free energy
of stretching are available in the literature [22 – 24].

1The coefficient 2 in the second term in the bracket of Eq. (6.21) is a consequence of
the stress-free assumption of the dry polymer network in the reference state. If the entropy
of cross-linking is accounted for, the coefficient shall be modified to 1, and the reference
state is no longer stress-free. The difference in final results, however, is minuscule.
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When the long polymers are not cross-linked, they form a liquid solution
with the small solvent molecules. Utilizing a lattice model, Flory (1942) and
Huggins (1941) obtained the free energy of mixing as follows:1

Wm(C) = −kT

v

[
vC ln

(
1 +

1
vC

)
+

χ

1 + vC

]
. (6.22)

The first term inside the bracket comes from the entropy of mixing, and
the second from the enthalpy of mixing, characterized by a dimensionless
parameter χ. The polymer is more hydrophilic when the value of χ is smaller2 .

Substituting the specific functional forms in Eqs. (6.20)—(6.22) into
Eq. (6.19), we have the equations of state:

P = NkT (F− F−T)− F−TΠdetF, (6.23)

μ = kT

[
ln

vC

1 + vC
+

1
1 + vC

+
χ

(1 + vC)2

]
+ vΠ. (6.24)

As a simple example for the kinetic law, we assume the coefficient of
diffusion of the solvent molecules, D, to be isotropic and independent of the
state. This simplification shall be reasonable for a highly swollen gel, in which
the small molecules are the majority component. Let c(X, t) be the number
of solvent molecules per unit volume in the current state, and j(X, t) be the
corresponding solvent flux crossing per unit area in the current state. The flux
relates to the gradient of chemical potential through a well-known equation

j = −cD

kT
∇xμ, (6.25)

where the gradient∇x is taken with respect to the coordinates of the markers
in the current state, and relates to the gradient in the reference state as∇μ =
∇xμ · F. Utilizing the geometric relations c = C/ detF and j = F · J/ detF,
and comparing Eqs. (6.13) and (6.25), we relate the mobility tensor to the
coefficient of diffusion as:

M =
CD

kT
(FT · F)−1. (6.26)

Even though the diffusion is isotropic in the current state, under a finite
anisotropic deformation, the mobility tensor defined using nominal quantities
is anisotropic.

To complete the initial-boundary-value problem, a set of boundary condi-
tions on surface traction (or displacement) and chemical potential (or solvent

1Some terms independent of F or C have been removed from Eqs. (6.21) and (6.22)
for simplicity.

2To arrive at the functional form of Eq. (6.22), Flory (1942) and Huggins (1941) used
a lattice model in which the volume of each segment of polymer chain was the same as
that of a solvent molecule, v.
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concentration) needs to be prescribed. Due to molecular incompressibility, the
changes in volume and solvent concentration are interdependent. As shown
in Eqs. (6.23) and (6.24), the constitutive expressions of stress and chemi-
cal potential are also related by the Lagrange multiplier Π. As a result, the
boundary conditions of surface traction and chemical potential need to be
consistent with each other. The functional forms of Eqs. (6.23) and (6.24)
imply that the reference of chemical potential (when μ = 0) is taken to be a
pressure-free pure solvent. When the gel is immersed in a pressurized solvent,
the pressure contribution must appear in both the surface traction and the
chemical potential. For example, if the surface of a gel is in contact with a
pure solvent under pressure p, the consistent boundary conditions should be
t = −pn and μ = pv, where n is the unit normal of the surface element in
the current state.

6.4 Swelling of a spherical gel

To illustrate the field theory and material model described in the previous
sections, we will look at the swelling process of a spherical gel. Before time
zero, the gel is in equilibrium with an unsaturated environment in which
the chemical potential of solvent is related to the relative humidity RH as
μ0 = kT ln RH . The gel is then submerged into a saturated environment with
chemical potential μ = 0. The solvent molecules diffuse into the gel, and the
gel swells as a consequence.

We will normalize the chemical potential by kT and normalize the stress
by kT/v, and denote the corresponding dimensionless fields as μ̃ and P̃. A
representative volume of a solvent molecule is v = 10−28 m3. At room tem-
perature, kT = 4 × 10−21 J and kT/v = 40 MPa. The free-energy functions
(6.21) and (6.22) introduce two dimensionless material parameters: Nv and
χ. The representative values are Nv = 10−4 − 10−1 and χ = 0 − 1.2. Here
in this example, we will take the values Nv = 10−2 and χ = 0.1. The theory
does not have an intrinsic length scale. The only length scale in the problem
is the size of the gel, L. We will normalize time by L2/D, and denote the
dimensionless time with τ . Using the representative value of the coefficient of
self diffusion of water at room temperature, D = 10−9 m2/s, for a size scale
L ∼ 1 mm, we find that the time scale is L2/D = 103 s.

For simplicity, we assume that the gel swells isotropically, and no insta-
bility develops so that both the deformation and the solvent distribution are
spherically symmetric. Let L be the radius of the gel and R be the radial
coordinate of the markers in the reference state. At time t, the marker R

moves to a place r(R, t). We will use r̃ = r/L and R̃ = R/L to represent
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the dimensionless coordinates. The radial and circumferential stretches are,
respectively,

λr =
∂r̃

∂R̃
and λθ =

r̃

R̃
. (6.27)

The constitutive equations (6.23) and (6.24) are specialized to

P̃r = Nv

(
λr −

1
λr

)
+

(
λ2

θ ln
λrλ

2
θ − 1

λrλ2
θ

+
1
λr

+
χ

λ2
rλ

2
θ

)
− μ̃λ2

θ, (6.28)

P̃θ = Nv

(
λθ −

1
λθ

)
+

(
λrλθ ln

λrλ
2
θ − 1

λrλ2
θ

+
1
λθ

+
χ

λrλ3
θ

)
− μ̃λrλθ. (6.29)

For spherically symmetric case, in the absence of distributed force, the me-
chanical equilibrium, Eq. (6.14), is specialized to

∂P̃r

∂R̃
+ 2

P̃r − P̃θ

R̃
= 0. (6.30)

Assuming that solvent flux only exists in the radial direction, the solvent
conservation, Eq. (6.16), reduces to

∂

∂τ
(λrλ

2
θ) =

1

R̃2

∂

∂R̃

(
R̃2 λrλ

2
θ − 1
λ2

r

∂μ̃

∂R̃

)
. (6.31)

The boundary conditions at the surface of the gel, R̃ = 1, are given by

P̃r(1, τ) = 0 and μ̃(1, τ) = 0. (6.32)

In the center, the natural boundary conditions

r̃(0, τ) = 0 and
∂μ̃

∂R̃
(0, τ) = 0 (6.33)

are prescribed by symmetry.
At time zero, the gel is in equilibrium and stress-free. We introduce a set

of consistent initial conditions,

r̃(R̃, 0) = λ0R̃ and μ̃(R̃, 0) = Nv

(
λ0 −

1
λ0

)
+ln

λ3
0 − 1
λ3

0

+
1
λ3

0

+
χ

λ6
0

, (6.34)

with the initial swelling ratio λ0 = 1.05.
This initial-boundary-value problem is solved numerically with COMSOL

Multiphysics 3.5a, and the results are plotted in Fig. 6.2. The profiles of
the two main field variables, the normalized radial displacement ur/L and
the dimensionless chemical potential of solvent μ/kT are shown in Fig. 6.2a
and b, respectively. Despite the difference in relative time, the evolution of
the chemical potential field in the spherical gel is very similar to a regular
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Fig. 6.2 (a) The spatial profiles of normalized radial displacement of a spherical gel
at various dimensionless time during swelling, (b) the spatial profiles of normalized
chemical potential of solvent, (c) the distribution of normalized true radial stress,
plotted in the deformed configuration, (d) the distribution of normalized true hoop
stress, plotted in the deformed configuration. (color plot at the end of the book)

concentration-driven diffusion problem. The solvent molecules enter from the
surface of the gel, and the front of diffusion gradually propagates to the core.

The swelling and the influx of solvent induce a stress field in the gel.
For more explicit comparison, we plot the normalized true stresses vσr/(kT )
and vσθ/(kT ) as a function of the then-current deformed coordinate r/L,
as shown in Fig. 6.2c and d. Shortly after the diffusion process begins, the
superficial layer of the gel swells in the radial direction, but the circumferen-
tial direction is constrained by the rest of the gels. A high compressive hoop
stress thus builds up in the swollen layer, and maximizes at the surface, where
it reaches multiples of the initial modulus of the network. Even though the
solvent has not yet diffused to the inner part of the gel, the expanding ten-
dency of the swollen layer induces a hydrostatic tension in the unswollen core.
Since we have assumed molecular incompressibility in the material model, no
deformation takes place in the inner part even with the tension. While the
diffusion front propagates inward, the swollen part increases in size and the
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stress concentration near the surface gradually relieves, but the hydrostatic
tension in the inner part increases. Significant swelling of the whole gel takes
place after the diffusion front reaches the center, when both radial and hoop
stresses start to decrease.

Unlike a regular concentration-driven diffusion process, the swelling of a
spherical gel takes a much longer time to equilibrate. After dimensionless time
τ ≈ 10, the chemical potential of the solvent molecules has almost reached
equilibrium, but a significant level of hydrostatic stress (on the same order of
the network stiffness) still resides in the gel. The gradient of the hydrostatic
stress would still drive the flux of solvent molecules. The gel continues to
swell until dimensionless time τ ≈ 200 —1 000. The characteristic swelling
time of the gel is determined by the dimensionless stiffness of the polymer
network, Nv. For a relatively stiff gel, with Nv close to 1, the swelling will
be relatively fast, but the achievable swelling ratio is low. For a relatively
compliant gel, the swelling is slower, but the swelling ratio is much higher.
The swelling ratios of gels with three stiffness values are plotted as a function
of the dimensionless time in Fig. 6.3.

Fig. 6.3 Linear swelling ratio of three gels with different network stiffnesses.

6.5 Thermodynamics of polyelectrolyte gels

Many natural and synthetic macromolecules are polyelectrolytes, long-chain
polymers containing ionizable groups. In a solution, the ionizable groups
dissociate into fixed charges, which are bonded to the polymer, and mobile
ions in the solution, as depicted in Fig. 6.4. The solution consists of solvent
molecules of a low molecular weight, as well as ions of two types: co-ions
that bear charges of the same sign as the fixed charges, and counterions that
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bear charges of the opposite sign. A large number of polyelectrolyte chains
can form a three-dimensional network by crosslinks. The network can imbibe
liquid solution and swell, resulting in a polyelectrolyte gel. The amount of
swelling can be regulated by geometric constraints, mechanical forces, ionic
concentrations, and electric fields.

Fig. 6.4 A network of covalently cross-linked polyelectrolyte chains imbibes a
solution and swell. The ionizable groups on the polymers dissociate and leave fixed
charge on the polymer network. The counterions, co-ions, and solvent molecules
(not shown) are mobile and can cross the interface between the gel and the external
solution.

In this section, by studying the non-equilibrium thermodynamics of poly-
electrolyte gels, we will extend the field theory of neutral gels developed in
previous sections to couple electrochemistry and large deformation.

As illustrated in Fig. 6.5, there are three ways for the external agents to
do work upon a polyelectrolyte gel. Just as in a neutral gel, the work done
by a field of mechanical forces is given by Eq. (6.1). To define the fields of
chemical potentials of mobile species, we imagine attaching fields of pumps
to the gel. The pumps are connected to idealized reservoirs, and prescribe
a time-dependent field of chemical potential μa(X, t) for mobile species a.
Upon injection of δra number of particles of species a, the corresponding
pump does work μaδra. Accounting for both the pumps connected to the
bulk and those connected to the surface, the work done is, similar to Eq.
(6.2), ∑

a

∫
μaδradV +

∑
a

∫
μaδiadA, (6.35)

where the summation is taken over all mobile species, including solvent and
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both types of mobile ions.

Fig. 6.5 Three ways of doing work on a polyelectrolyte gel. Mechanical loads are
applied by hanging a field of weights to the network. Chemical loads are applied
using a field of pumps to injecting solvent molecules or solute ions into the gel.
Electric loads are applied by connecting a field of batteries to the gel.

The gel is taken to be an ionic conductor, but an electronic insulator.
Imagine that every element of the network is attached with an electrode, and
that electrodes of neighboring elements are electrically insulated from one
another. In the current state, let the electronic charges on electrodes be qdV

in a volume element and ωdA on a surface element. The electrodes are then
connected to a field of batteries with electric potential Φ(X, t). Upon inflow
of electronic charges δq and δω through the electrodes, the field of batteries
does work ∫

ΦδqdV +
∫

ΦδωdA. (6.36)

In practice, many parts of the gel are not attached with electrodes and bat-
teries, and are kept in the open-circuit condition. These parts contain no
electronic charges, q = 0 and ω = 0. Just as the imaginary field of pumps
introduced for the definition of chemical potential, the field of imaginary elec-
trodes and batteries here is introduced for definition of the electric potential
in a polyelectrolyte gel. When an actual electrode is absent, the electric po-
tential at a material point is defined as the voltage of the imaginary battery
needed to keep the electrode charge-free when connected to this point.

Let QdV be the total charge in the current state on a volume element.
The total charge includes the contributions from electrons, ions, and fixed
charges:

Q = q +
∑

b

ezbCb + ez0C0, (6.37)

where e is the elementary charge, Ca is the nominal concentration of species
a, and za is its valence. The summation is carried over all mobile ions, and the
valence and nominal concentration of fixed charges are specifically denoted
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as z0 and C0, respectively. Just as in the model of neutral gels, the concentra-
tions of mobile species are assumed to be continuous across any interfaces,
so that the total charge on a surface element only includes the electronic
contribution, ωdA. Expressed in terms of the nominal fields[25], the Gauss’s
law of electrostatics dictates that the nominal electric displacement D̃(X, t)
satisfies

∇ · D̃ = Q (6.38)

in the volume, and
(D̃+ − D̃−) ·N = ω (6.39)

on an interface between media labeled as – and +, with the unit vector N
normal to it in the reference state, pointing towards +.

To account for the effect of ions and electric field, we extend the Helmholtz
free-energy density of a neutral gel to include its dependence on ion concentra-
tions and nominal electric displacement, W (F, D̃, C1, C2, · · · ) Consequently,
associated with small changes in the independent variables, the free-energy
density changes by

δW =
∂W

∂F
: δF +

∂W

∂D̃
· δD̃ +

∑
a

∂W

∂Ca
δCa. (6.40)

The polyelectrolyte gel, together with the weights, the pumps and the
batteries, constitutes a thermodynamic system. The change in the Helmholtz
free energy of the system is the sum over the parts: the change in the free

energy of the gel
∫

WdV , and the changes in the free energy of the weights,

pumps, and batteries, i.e. the negative amounts of the work in Eqs. (6.1),
(6.35) and (6.36). While the system is assumed to be in thermal equilibrium,
it is not necessarily in mechanical, chemical or electrostatic equilibria. In a
physically possible process, thermodynamics dictates that the Helmholtz free
energy should never increase,∫

δWdV −
∫

b · δxdV −
∫

t · δxdA−
∑

a

∫
μaδradV

−
∑

a

∫
μaδiadA−

∫
ΦδqdV −

∫
ΦδωdA � 0, (6.41)

where the equality holds in a reversible process or the system is in equilibrium.
In this section, we still assume that no chemical reaction happens during

the process, so that all mobile species are conserved:

Ċa = ṙa −∇ · Ja, (6.42)

(Ja+ − Ja−) ·N = i̇a, (6.43)
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where Ja is the nominal flux of mobile species a, i̇a the incoming flux of species
a through an interface, and the signs indicate the two media separated by the
interface under consideration. Using Eqs. (6.37)—(6.40), (6.42) and (6.43),
and applying the divergence theorem, we can rewrite Eq. (6.41) as∫

(∇ ·PT + b) · ẋdV +
∫

[t− (P+ −P−) ·N] · ẋdA

+
∑

a

∫ (
∂W

∂Ca
+ ezaΦ − μa

)
ĊadV −

∑
a

∫
∇μa · JadV

+
∫ (

∂W

∂D̃
− Ẽ

)
· ˙̃DdV � 0, (6.44)

where P = ∂W/∂F is the nominal stress tensor, and Ẽ = −∇Φ is the vector
of nominal electric field.

Each integral in Eq. (6.44) accounts for the dissipation of Helmholtz free
energy through distinct processes: the first two are due to the deformation
of the network, the third is due to the injection of mobile species, the fourth
due to the migration of mobile species, and the last due to the polarization
of solvent and polymer network. Similar to Section 6.2, we assume the rate
of swelling to be limited by the migration of mobile species, and neglect the
energy dissipation in all other processes. Consequently, the integrands in all
but the fourth term of Eq. (6.44) vanish. The nominal stress P satisfies the
mechanical equilibrium equation

∇ ·PT + b = 0 (6.45)

in the volume, and
(P+ −P−) ·N = t (6.46)

on an interface where the traction t is prescribed. The local chemical potential
of species a is related to the concentration and the electric potential as follows:

μa = ezaΦ +
∂W (F, D̃, C1, C2, · · · )

∂Ca
. (6.47)

The local electrostatic equilibrium is achieved, so that

Ẽ =
∂W (F, D̃, C1, C2, · · · )

∂D̃
. (6.48)

Once the above condition of partial equilibrium is satisfied, only the fourth
integral in Eq. (6.44), and the inequality reduces to

−
∑

a

Ja · ∇μa � 0. (6.49)
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A common way to enforce this inequality is to assume the fluxes of mobile
species to be linear in the gradients of chemical potentials:

Ja = −
∑

b

Mab · ∇μa, (6.50)

with a positive-definite matrix {Mab} of the linear transformation. In general,
the migration flux of a mobile species depends not only on the gradient of its
own chemical potential, but also on that of other mobile species. For example,
the migration of solvent molecules in a polyelectrolyte gel may carry along a
number of mobile ions.

6.6 A material model for polyelectrolyte gels

A large number of models exist in the literature, describing the liquid mixture
of uncrosslinked polymers and solvent molecules. On the other hand, there
also exist a large number of models that describe the elasticity of crosslinked
polymers. In many gels, the density of crosslinks is so low that to a good
approximation, the effect of crosslinks on mixing may be neglected, and one
can simply write the free energy of a gel as the sum of the free energy of the
network and that of the solution. The Flory –Rehner approach described in
Section 6.3 has been extended to polyelectrolyte gels[26-29]. In this section, we
further extend this approach by adding a term due to electric polarization.
Specifically, we write the free-energy density of the gel as a sum

W = Ws + Wm + Wi + Wp, (6.51)

where Ws, Wm, Wi and Wp are the contributions from stretching the polymer
network, mixing the polymers and the solution, mixing the solvent and the
ions, and polarizing the dielectric polymers and the solvent in the gel.

Similar to a neutral polymeric gel, the volume expansion of a gel is de-
pendent on the concentrations of solvent and mobile ions. Assuming that in-
dividual molecules or ions of mobile species are incompressible with volume
va, we can write the relation as 1 +

∑
vaCa = detF. This incompressibility

constraint is enforced by adding the term,(
1 +

∑
a

vaCa − detF

)
Π, (6.52)

to the free-energy function Eq. (6.51), where Π is a field of Lagrange multi-
plier.



6.6 A material model for polyelectrolyte gels 183

The functional form of the energy of stretching, Ws, is identical to Eq.
(6.21) in Section 6.3:

Ws =
1
2
NkT [F : F− 2 ln (detF)− 3] . (6.53)

To estimate the energy of mixing, we take two steps. We first take the mobile
ions and solvent molecules to be indistinguishable, and consider the free en-
ergy of mixing the polymer chains and the solution. In this section, we only
consider a dilute solution with negligible volume fractions of ions, so that
Wm has a form identical to Eq. (6.22):

Wm = −kT

vs

[
vsCs ln

(
1 +

1
vsCs

)
+

χ

1 + vsCs

]
, (6.54)

where Cs is the nominal concentration of solvent molecules in the gel, and vs

is the volume occupied by one solvent molecule which is assumed to be the
same as that occupied by a monomer1 .

As a second step, we differentiate between the solute and solvent in the
solution. Considering solely the entropy of mixing, the free energy of mixing
the ions with solvent is given by

Wi = kT
∑

a

Ca

⎛⎝ln
Ca∑
b

Cb
− ln ςa

0 − 1

⎞⎠ . (6.55)

To understand this expression, one may think of a liquid solution with no
polymer network. Eq. (6.55) is similar to the free energy of an ideal solution.
Let ςa

0 be the reference mole fraction of species a, at which the chemical
potential of the species is set to be zero. In this context, the choice of the
reference mole fraction is arbitrary, and the references of different species
need not be the same. When the mole fraction changes to ςa, the chemical
potential is kT ln ςa. In a gel, we still assume that the ions and the solvent
form an ideal solution independent of the polymer network, but the mole
fraction is now ςa = Ca/

∑
Cb. Under the dilute-solution assumption, the

solvent concentration is much higher than the ion concentrations, thus Eq.
(6.55) can be approximately rewritten as

Wi ≈ kT
∑
b
=s

Cb

(
ln

Cb

Cs
− ln ςb

0 − 1
)

, (6.56)

where the summation is taken over all mobile ions but not solvent molecules.
1Such an approach neglects the energy of mixing polymer chains with solute ions,

and may not be valid if the ion concentration is relatively high or the ions are reactive to
polymer chains.
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Now let us turn to the energy of electric polarization. In the absence of
free electrons, the polyelectrolyte gel is an ionic conductor but an electronic
insulator. If we only consider the mixture of pure solvent and the polymer
network, excluding all mobile charges, the medium is a dielectric. Here we as-
sume its dielectric property to be ideal and linear, namely, having physically
decoupled deformation and polarization with electric permittivity ε indepen-
dent of the deformation state and history[30]. Such a material has electric
polarization energy per unit volume in the current state D ·D/2ε, where D
is the true electric displacement and is related to its nominal counterpart as
D = F·D̃/ detF[31]. In terms of nominal fields, the free energy of polarization
per unit reference volume is

Wp =
1
2ε

D̃ · FT ·F · D̃
detF

. (6.57)

The permittivity of the mixture, in general, can be a function of the solvent
concentration, due to the difference in the dielectric properties between the
solvent and the polymer network. However, often the major part of the gel
is occupied by solvent molecules, vsCs >> 1, and one may be able to use the
permittivity of the solvent as that of the gel, independent of the composition.

We now have constructed a specific free-energy function. Applying this
free-energy function to the equations of partial equilibrium in Section 6.5, we
obtain the specific constitutive equations for stress

P = NkT (F−F−T)+
F · D̃⊗ D̃− D̃ · FT ·F · D̃F−T

ε detF
−F−TΠdetF, (6.58)

chemical potential of solvent

μs = kT

⎡⎣ln
vsCs

1 + vsCs
+

1
1 + vsCs

+
χ

(1 + vsCs)2
−

∑
b
=s

Cb

Cs

⎤⎦ + vsΠ, (6.59)

chemical potential of each species of mobile ions

μb = ezbΦ + kT ln
Cb

Csςb
0

+ vbΠ, (6.60)

and the nominal electric field

Ẽ =
FT ·F · D̃

ε detF
. (6.61)

Using the geometric relations between the true fields and the nominal
fields[31], we can rewrite Eq. (6.58) in terms of the true stress :

=
NkT

detF
(FT · F− I) +

1
ε
(D⊗D−D ·DI) −ΠI. (6.62)



6.6 A material model for polyelectrolyte gels 185

where I is second-rank identity tensor. Similarly, we can recover the familiar
relation between the true electric field E and the true electric displacement
D:

εE = D. (6.63)

The second term on the right-hand side of Eq. (6.62) is often referred to as
the Maxwell stress. It is merely a consequence of the specific material model,
and may not be directly applicable to general materials. For example, the
form of this term will be different if the dependence of the permittivity on
the composition of the gel needs to be accounted for. On the other hand,
the electrostatic contribution to the stress, as measured by the dimensionless
parameter εE2/kT , is very small in the bulk of an aqueous ionic solution, ex-
cept in the thin electric double layers near electrodes or interfaces. Therefore,
this term is often neglected in models of polyelectrolyte gels[32-34].

If we still use the simple kinetic model for neutral gels, by assuming
an isotropic and state-independent diffusion coefficient Da for each mobile
species, we will obtain the mobility tensors in the form:

Ma =
CaDa

kT
(FT · F)−1. (6.64)

We also assume that the diffusion fluxes of different species are independent
of each other, so that Mab = 0 when a �= b. In terms of the true fields, the
kinetic equation for the diffusion flux of mobile species a is given by

ja = −caDa

kT
∇xμa, (6.65)

where ca is the true concentration, i.e. the number of a particles per unit
current volume, and ∇x is the gradient operator in the current configuration.
Eq. (6.65) is applicable to the diffusion fluxes of both solvent molecules and
mobile ions.

Applying Eq. (6.60) to Eq. (6.65) and then to the conservation of species,
Eq. (6.42), we arrive at the evolution equation for the true concentration of
mobile ions:

ċb =
Db

kT
∇x ·

(
ecbzb∇xΦ +∇xcb +

cb

cs
∇xCs + vbcb∇xΠ

)
+ ṙa. (6.66)

In the dilute limit, since the ion concentrations are much lower than the
solvent concentration, cb << cs, and the volume fraction of ions is negligible,
vbcb << 1, the third and fourth terms in the parentheses of Eq. (6.66) may
be ignored. In the absence of volumetric source, Eq. (6.66) further reduces to
the Nernst –Planck equation

ċb ≈ Db

kT
∇x · (ecbzb∇xΦ +∇xcb), (6.67)
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which has been widely used in models of polyelectrolyte gels[33,34]. However,
the functional form of Eq. (6.66) or (6.67) is only the consequence of the
specific free-energy function and kinetic law described in this section, and
requires the dilute-solution assumption. Care must be taken when general-
izing these equations to gels with different free-energy functions or dealing
scenarios with relatively high ion concentrations.

6.7 Chemical reactions and pH-sensitive gels

In previous sections, we have neglected any chemical reaction in a gel, so
that the total number of particles is conserved for each mobile species, and
the nominal concentration of fixed charges is constant. Here we will use a
type of pH-sensitive gel as an example to illustrate the general procedure
of modeling chemical reactions in polymeric gels. Figure 6.6 illustrates the
model system: a network of covalently cross-linked polymers bearing acidic
groups AH. When the network imbibes the solvent, some of the acidic groups
on the network dissociate into hydrogen ions H+ mobile in the solvent, and
conjugate base A− attached on the network. Once dissociated, each network-
attached conjugate base A− gives rise to a fixed charge. The dissociation
reaction is reversible:

AH ↔ A− + H+. (6.68)

A change in the local concentration of hydrogen ions may affect the balance
of the reaction, thus the concentration of fixed charges. The pH-sensitive gel
can be regarded as a special type of polyelectrolyte gel that has variable
concentration of fixed charges.

For simplicity, we consider a solution that only contains three types of
ions: the hydrogel ion H+, the co-ion, and the counterion. We assume that the
co-ion and the counterion have valences 1 and – 1, respectively, and they do
not participate in any chemical reaction. Let CH+, C+ and C− be the nominal
concentrations of the three species, and CA− be the nominal concentration
of conjugate bases A –, i.e. the fixed-charge concentration. The total charge
per unit reference volume of the gel, Eq. (6.37), is now specialized to

Q = q + e(CH+ + C+ − C− − CA−). (6.69)

As a special type of polyelectrolyte gel, the pH-sensitive gel satisfies all
field equations in Section 6.5, except the conservation law of hydrogen ions.
Accounting for the H+ generation in reaction Eq. (6.68), we can rewrite the
conservation law, Eq. (6.42), as

ĊH+ = ĊA− + rH+ −∇ · JH+. (6.70)
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During reaction, the sum of the number of the associated acidic groups AH
and that of the fixed charges A− is conserved:

CAH + CA− = C0, (6.71)

where C0 is the number of acidic groups on the network per unit volume in
the reference state. Since the co-ions and counterions do not participate in
any chemical reaction, their concentrations still follow the conservation law
in Eq. (6.42).

Subject to the reversible chemical reaction, Eq. (6.68), the state of a
volume element of pH-sensitive gel depends not only on the concentrations
of mobile species, but also on the fixed-charge concentration CA−, which is
an indicator of the level of dissociation. We stipulate that the Helmholtz free
energy of the gel per unit volume in the reference state is

W = W (F, D̃, Cs, CH+, C+, C−, CA−). (6.72)

Substituting Eqs. (6.69)— (6.72) into the thermodynamic inequality, Eq.
(6.41), and applying the divergence theorem, we obtain that∫

(∇ ·PT + b) · ẋdV +
∫

[t− (P+ −P−) ·N] · ẋdA

+
∑

a

∫ (
∂W

∂Ca
+ ezaΦ − μa

)
ĊadV −

∑
a

∫
∇μa · JadV . (6.73)

+
∫ (

∂W

∂D̃
− Ẽ

)
· ˙̃DdV +

∫ (
∂W

∂CA− − eΦ + μH+

)
ĊA−dV � 0.

Similar to Eq. (6.44), the summations are taken over all mobile species, in-
cluding the solvent molecules and all mobile ions. The only difference between
Eq. (6.73) and Eq. (6.44) lies on the last term, which is associated with the
change in the fixed-charge density. If we still assume the kinetic process to
be diffusion-limited, and insist that all terms except the fourth vanish, Eq.
(6.73) will give rise to the equation,

∂W

∂CA− = eΦ − μH+ = − ∂W

∂CH+
, (6.74)

in addition to all equations of partial equilibrium in Section 6.5, Eqs. (6.45)—
(6.48). Eq. (6.74) physically represents the local equilibrium of the chemical
reaction, indicating that the chemical reaction is much faster than the dif-
fusion process of mobile species, and the energy dissipation involved in the
reaction is negligible. With the addition of Eq. (6.74), the concentration field
of the fixed-charge density, CA−(X, t), can be determined together with other
fields.
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Now we will introduce a specific free-energy function for the pH-sensitive
polyelectrolyte gel. Starting from Eq. (6.51), we account for the contribution
of the dissociation reaction by adding a term, Wd, to the free-energy function:

W = Ws + Wm + Wi + Wp + Wd. (6.75)

Following Marcombe et al. (2010), we model the dissociation of the acidic
groups in analogy with the model of regular solution. The Helmholtz free
energy due to dissociation is taken to be

Wd = kT

(
CA− ln

CA−

C0
+ CAH ln

CAH

C0

)
+ γCA−. (6.76)

This expression consists of both the entropy of dissociation and the enthalpy
of dissociation, where γ is the increase in the enthalpy when an acidic group
dissociates. Note that CAH is not among the independent variables of the
free-energy function Eq. (6.72). Using Eq. (6.71), however, we can express it
in terms of the fixed-charge concentration, CAH = C0 − CA−.

Substituting Eqs. (6.75) and (6.76) into Eq. (6.74), we arrive at the local
equilibrium condition for the fixed-charge concentration:

kT ln
CA−

C0 − CA− + γ = −kT ln
CH+

CsςH+
0

− vH+Π. (6.77)

Neglecting the excessive volume of hydrogen ion vH+, we can further write
Eq. (6.77) into a more familiar form

ςA−ςH+

ςAH
= ςH+

0 exp
(
− γ

kT

)
, (6.78)

where ςA−, ςH+, and ςAH are the molar fractions of the corresponding species
(e.g. ςH+ = CH+/CS). The right-hand side of Eq. (6.78) is related to a com-
monly used concept, the equilibrium constant Kc, as Kc = ςH+

0 /vs exp(−γ/kT ).
It can be seen that when the contribution of a chemical reactions needs to
be accounted for, the choice of the reference for the chemical potential of
a reactant is no longer arbitrary. Here for Eq. (6.78) to be valid, the refer-
ence concentration ςH+

0 /vs must equal the equilibrium constant Kc at the
high-temperature limit (1/T → 0).

The model of a pH-sensitive gel considered in this section assumes that
the co-ions and counterions do not participate in any chemical reaction. As
a result, the functional form of the chemical potentials and kinetic relations
remain the same as the nonreactive model described in Sections 6.6, Eqs.
(6.60) and (6.67). The results may not be used in systems containing reactive
co-ions or counterions, e.g. when the gel is immersed in a basis in which the
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association between hydrogen ions and hydroxide ions needs to be accounted
for. Nevertheless, the general approach of modeling chemical reactions inside
a gel may still be applicable to those systems by modifying the corresponding
conservation laws. The detailed description on more complex models, how-
ever, is beyond the scope of this chapter.

6.8 Equilibrium models of polymeric gels

Due to mathematical complexity, the dynamic models described in the pre-
vious sections may only be solved numerically. For example, on numerical
implementations, one may refer to the related scientific papers by Nemat-
Nasser and Li[35], De et al.[33], Baek and Srinivasa[29], Dolbow et al.[36], Li et
al.[34], Swaminathan et al.[37], and many others. A detailed numerical model
usually assumes or implies a combination of the free-energy function and ki-
netic laws. Many numerical models utilize at least partly the simple material
models shown in Sections 6.3, 6.6, and 6.7, and many use special material
models that represent the behavior of specific materials. Some models are
written in the reference configuration, and some others are represented in
the current configuration or even in an Euler description. Nevertheless, all
models at least agree with the general rules of nonequilibrium thermodynam-
ics as shown in Sections 6.2 and 6.5.

In this section, we will focus on the behavior of a polymeric gel in a
long-term limit, namely, the state in which the gel is in thermodynamic equi-
librium with mechanical, electrical, and chemical loads. In the absence of
electromechanical load or geometric constraint, a homogeneous and isotropic
polymer network equilibrates with a liquid solution by a homogeneous and
isotropic deformation, which is often referred to as free swelling. Such free
swelling, however, rarely occurs in practice. Inhomogeneous but equilibrium
states occur, for example, when the network itself is modulated[38-40], or the
network is subject to a load or constraint[41,42]. The swelling of a gel is some-
times modeled by prescribing a constant volumetric strain. This practice is
erroneous when swelling is anisotropic or inhomogeneous. Since a swollen gel
is highly compressible, the volumetric strain (or the swelling ratio) depends
on the local stress state and in general can be inhomogeneous. As will be
shown, the volumetric strain should not be prescribed, but rather solved as
a part of the boundary-value problem.

In a thermodynamic equilibrium state, the total free energy of the system
is minimized, so that the equal sign in Eq. (6.8) for a neutral gel (or Eq.
(6.44) for a polyelectrolyte gel) should hold, and all integrands must vanish.
Consequently, the chemical potential μa of each mobile species, such as the
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solvent and the mobile ions in the case of polyelectrolyte, is homogeneous
throughout the gel and in the external solution. For a polyelectrolyte gel,
we will neglect the electric field inside the gel and assume electroneutrality
to further simplify the equilibrium field theory. As an ionic conductor, the
major part of a gel or the external solution is nearly neutral, except the
region near the interface between dissimilar materials, such as the gel-solution
interface. In equilibrium, an electric double layer of a thickness scaled with
the Debye length forms on the interface[18]. The electric field in a double layer
decays exponentially and vanishes deep inside the gel or the solution. In many
applications, the Debye length is much smaller than other lengths of interest.
Therefore, in this section, we will neglect the effect of the electric double
layer, and assume the gel to be electroneutral. Under such an assumption, the
electric potential Φ inside the gel is homogeneous, but may still be different
from that in the solution or in another gel of dissimilar property.

Now let us construct another free-energy function Ŵ through a Legendre
transformation:

Ŵ = W (F, C1, C2, . . .)−
∑

a

(μa − ezaΦ)Ca. (6.79)

Once a functional form of W is specified, Eq. (6.47) becomes a set of algebraic
equations, and we can express the concentration of one mobile species Ca in
terms of the deformation gradient F and the chemical potential of all mobile
species in the external solution μa. Consequently, Eq. (6.79) defines Ŵ as
a function of the deformation gradient and the chemical potential of mobile
species, Ŵ (F, μ1, μ2, . . .). Substituting Eq. (6.79) into (6.41) and considering
the electroneutrality, we have, in equilibrium:∫

δŴdV =
∫

b · δxdV +
∫

t · δxdA. (6.80)

With the aid of the new free-energy function, Eq. (6.80) takes the same
form as the equilibrium condition for a hyperelastic solid. Once the material-
dependent function Ŵ (F, μ1, μ2, . . .) is specified, we can readily implement
a finite-element method for the gel just like a regular hyperelastic solid. As
noted above, the equilibrium chemical potentials of mobile species inside the
gel are homogeneous and are equal to those in the external solution, μa.
Indeed, the chemical potentials play a role analogous to that of temperature
in an equilibrium thermal expansion problem. The equilibrium condition for
a neutral gel is identical to Eq. (6.80), only that one mobile species, the
solvent, is present.

Some finite-element software, such as SIMULIA Abaqus and COMSOL
Multiphysics, allows users to program special free-energy functions while uti-
lizing the existing computational platform for hyperelastic materials.
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Here as an example, we will construct an equilibrium model based on the
specific free-energy function for the pH-sensitive gel described in Section 6.7.
In the absence of electric field, subject to the Legendre transform Eq. (6.79),
the free-energy function prescribed by Eqs. (6.53), (6.54), (6.56), (6.75), and
(6.76) gives rise to

Ŵ = NkT

(
1
2
F : F− ln J − 1

)
+

kT

vs

[
(J − 1) ln

J − 1
J

− χ

J

]
− μs

kT
(J − 1)− kT (C+ + C− + CH+) (6.81)

+kT

[
CA− ln

CA−

C0
+ (C0 − CA−) ln

C0 − CA−

C0

]
+ γCA−,

where J = detF. The concentration of dissociated fixed charges CA− is
related to that of hydrogen ions by Eq. (6.77) or (6.78), or more explicitly

CA− = C0

[
1 +

KC

CH+
(J − 1)

]−1

. (6.82)

The concentrations of mobile ions are related to their chemical potentials by
Eq. (6.60), and when the excessive volume of ions is neglected,

C± = (J − 1)
ς±0
vs

exp
(
∓eΦ

kT

)
, CH+ = (J − 1)

ςH+
0

vs
exp

(
−eΦ

kT

)
. (6.83)

Here, the molar fractions of ions in the external solution, ς±0 and ςH+
0 , are

taken to be the references for the corresponding chemical potentials, i.e. the
chemical potentials of ions are set to be 0 in the grounded external solution.
The equilibrium electric potential in the gel, Φ, is uniform but unknown. One
may cancel Φ from Eq. (6.83) and arrive at the following Donnan equations:

C+

ς+
0

=
CH+

ςH+
0

,
C−

ς−0
=

(
CH+

ςH+
0

)−1

. (6.84)

For solvent molecules, on the other hand, the chemical potential in the
external solution is given by

μs = − kT

J − 1
2(ς+

0 + ςH+
0 ). (6.85)

In agreement with the chemical potential in the gel, Eq. (6.59), we have taken
pure solvent to be the reference in Eq. (6.85). The condition for electroneu-
trality in the external solution, ς+

0 + ςH+
0 + ς−0 = 0, is also used.

At any deformation state, the equilibrium ion concentrations in the gel,
C+, C−, CH+, and CA− can be determined by solving the nonlinear algebraic
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systems (Eq. (6.82) and Eq. (6.84)), together with the neutrality condition
in the gel.

C+ + CH+ − C− − CA− = 0. (6.86)

The resulting ion concentrations can be expressed in terms of J , ς+
0 , and ςH+

0 .
Consequently, Ŵ can be expressed as a function of the following independent
variables:

Ŵ = Ŵ (F, ς+
0 , ςH+

0 ). (6.87)

It is assumed that the composition of the external solution, ς+
0 , and ςH+

0 ,
remains unchanged when the mechanical forces do work, so that the variation
in the free energy Ŵ is due entirely to the variation of the deformation
gradient. The concentrations of counterions and hydrogen ions serve as known
parameters to the problem.

This procedure is coded into a user-defined subroutine for hyperelastic
materials (UHYPER) in Abaqus[43], and then used to calculate the example
of a composite gel beam. As shown in Fig. 6.6 a, two strips of pH-sensitive
gels with different molar fractions of dissociable ionic groups are bounded,
forming a composite beam. The beam is assembled under an environment
with pH = − log10(ς

H+
0 /vs) = 5, and counterion fraction ς+

0 = 1× 10−4. The
external pH value is then varied while the counterion concentration is kept
constant. Both strips swell when pH value of the solution increases. Due to

Fig. 6.6 (a) Sketch of the numerical model – a composite beam of two pH-sensitive
gels. The two gel strips have different fractions of dissociable acidic groups on
polymer networks, and are bonded together at a reference of pH = 5. (b) and (c)
When the pH value of the external solution is lower than the reference, both strips
shrink, but the top strip shrinks more significantly, causing the composite beam
to bend upwards. (d) When pH = 5 at the external solution, the composite beam
retracts and recovers the reference state. (e) and (f) When the external solution is
less acidic than the reference, both strips swell, but the top strip expands more so
that the beam bends downwards.
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the difference in the availability of acidic groups, the top strip contains more
fixed charge after dissociation. As a result, the composite beam bends back
and forth depending on the acidity of the external solution. The deformed
meshes under various pH values are plotted in Fig. 6.6 b — f.

In the numerical calculations, we take the dimensionless combinations
of parameters. Since the design of the structure does not require very large
deformation, we select a relatively stiff polymer network with dimension-
less stiffness Nvs = 0.01. If we assume the volume per solvent molecule to
be vs = 10−28 m3, this dimensionless value corresponds to a modulus of
∼0.4 MPa. The material parameter χ is taken to be 0.1. The equilibrium
constant of acidic dissociation, Kc, has the same dimension as the concen-
tration. We set pKc = − log10(Kc) = 4.3, a commonly used value for the
dissociation of carboxylic acids.

This example is used for demonstrative purpose, instead of a functional
design of an active device. For higher pH sensitivity, one may construct a
composite beam from one gel with dissociable acidic groups and the other
with dissociable basic groups, so that the two strips will act in different
directions and thus enhance the bending motion. Similar devices, consisting
of an integrated structure of stimuli-sensitive gels and rigid parts or gels
of different types as constraints, can be used as multifunctional actuators
or sensors. The theoretical framework presented in this chapter may help
qualitative understanding of the mechanisms, as well as serving as the basis
of numerical tools for quantitative predictions.

6.9 Summary

This chapter reviews the recent development of continuum models for stimuli-
responsive gels. The theoretical framework is derived from thermodynamic
principals and is applicable to a wide range of similar materials that have
large deformation, mass transportation and multi-physics coupling behavior.
Several examples of specific material models are presented, including those for
neutral polymeric gels, polyelectrolyte gels, and pH-sensitive gels. The proce-
dure of constructing the phenomenological material models may be extended
and applied to the modeling of active gels that are responsive to other types
of stimuli, such as heat, magnetic field, and light. The theory and models
outlined in this chapter have successfully described many of the qualitative
trends and phenomena observed in experiments[43-47]. However, a quantita-
tive comparison between the theoretical prediction and experimental results
is difficult at the current stage for several reasons: the free-energy functions
we select to highlight the essence of the theory may be over-simplified while
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actual experiments use more complex systems such as copolymers and multi-
ingredient solutions; existing experiments often report insufficient details and
leave more parameters to fit. With the difficulties in mind, we only focus on
illustrating the fundamentals of theories in this chapter and leave extensive
comparisons to future work.

References

[1] Li Y, Tanaka T. Phase transitions of gels. Annu Rev Mater Sci, 22: 243-277,
1992.

[2] Osada Y, Gong J P. Soft and wet materials: polymer gels. Adv Mater, 10:
827-837, 1998.

[3] Melody A S, Mark E F. Interstitial flow and its effects in soft tissues. Annu
Rev Biomed Eng, 9: 229-256, 2007.

[4] Zwieniecki M A, Melcher P J, Holbrook N M. Hydrogel control of xylem
hydraulic resistance in plants. Science, 291: 1059-1062, 2001.

[5] Hodge W A, Fijian R S, Carlson K L, et al. Contact pressures in the human
hip joint measured in vivo. Proc Natl Acad Sci USA, 83: 2879-2883, 1986.

[6] Lee K Y, Mooney D J. Hydrogels for tissue engineering. Chem Rev, 101:
1869-1879, 2001.

[7] Duncan R. The dawning era of polymer therapeutics. Nat Rev Drug Discov,
2: 347-360, 2003.

[8] Lee Y J, Braun P V. Tunable inverse opal hydrogel pH sensors. Adv Mater,
15: 563-566, 2003.

[9] Richter A, Paschew G, Klatt S, et al. Review on hydrogel-based pH sensors
and microsensors. Sensors, 8: 561-581, 2008.

[10] Beebe D J, Moore J S, Bauer J M, et al. Functional hydrogel structures for
autonomous flow control inside microfluidic channels. Nature, 404: 588-590,
2000.

[11] Dong L, Agarwal A K, Beebe D J, et al. Adaptive liquid microlenses activated
by stimuli-responsive hydrogels. Nature, 442: 551-554, 2006.

[12] Carpi F, Smela E. Biomedical Applications of Electroactive Polymer Actua-
tors. Wiley, UK, 2009.

[13] Gibbs J W. On the equilibrium of heterogeneous substances. In: The Scientific
Papers of J. Willard Gibbs. Longmans, Green, and Co., London, 1878.

[14] Flory P J, Rehner J. Statistical mechanics of cross-linked polymer networks
II: Swelling. J Chem Phys, 11: 521-526, 1943.

[15] Biot M A. General theory of three-dimensional consolidation. J Appl Phys,
12: 155-164, 1941.

[16] Hong W, Zhao X, Zhou J, et al. A theory of coupled diffusion and large
deformation in polymeric gels. J. Mech. Phy. Solids, 56: 1779-1793, 2008.

[17] Hong W, Liu Z, Suo Z. Inhomogeneous swelling of a gel in equilibrium with
a solvent and mechanical load. I J Solids Struct, 46: 3282-3289, 2009.

[18] Hong W, Zhao X, Suo Z. Large deformation and electrochemistry of polyelec-
trolyte gels. J. Mech. Phys. Solids, 58: 558-577, 2010.

[19] Reese S, Govindjee S. A theory of finite viscoelasticity and numerical aspects.
Int J Solids Struct, 35: 3455-3482, 1998.



References 195

[20] Tanaka T, Hocker L, Benedek G B. Spectrum of light scattered from a vis-
coelastic gel. J Chern Phys, 59: 5151-5159, 1973.

[21] Flory P J. Principles of Polymer Chemistry. Cornell University Press, Ithaca,
NY, 467-470, 1953.

[22] Boyce M C, Arruda E M. Constitutive models of rubber elasticity: A review.
Rubber Chem Technol, 73: 504-523, 2000.

[23] Marckmann G, Verron E. Comparison of hyperelastic models for rubberlike
materials. Rubber Chem Technol, 79: 835-858, 2006.

[24] Horkay F, McKenna, G B. Polymer networks and gels. In: Mark, J.E. ed.
Physical Properties of Polymers Handbook. Springer, New York, 497-523,
2007.

[25] Dorfmann A, Ogden R W. Nonlinear electroelasticity. Acta Mechanica, 174:
167-183, 2005.

[26] Ricka J, Tanaka T. Swelling of ionic gels: Quantitative performance of the
Donnan theory. Macromolecules, 17: 2916-2921, 1984.

[27] Hooper H H, Baker J P, Blanch H W, et al. Swelling equilibria for positively
ionized polyacrylamide hydrogels. Macromolecules, 23: 1096-1104, 1990.

[28] Brannon-Peppas L, Peppas N A. Equilibrium swelling behavior of pH-sensitive
hydrogels. Chem Eng Sci, 46: 715-722, 1991.

[29] Baek S, Srinivasa A R. Modeling of the pH-sensitive behavior of an ionic gel
in the presence of diffusion. I J Non-linear Mech, 39: 1301-1318, 2004.

[30] Zhao X H, Hong W, Suo Z G. Electromechanical hysteresis and coexistent
states in dielectric elastomers. Phys Rev B, 76: 134113, 2007.

[31] Suo Z G, Zhao X H, Greene W H. A nonlinear field theory of deformable
dielectrics. J Mech Phys Solids, 56: 467-486, 2008.

[32] Lai W M, Hou J S, Mow V C. A triphasic theory for the swelling and defor-
mation behaviors of articular-cartilage. J Biomech Eng—Trans ASME, 113:
245-258, 1991.

[33] De S K, Aluru N R, Johnson B, et al. Equilibrium swelling and kinetics of
pH-responsive hydrogels: Models, experiments, and simulations. J Microelec-
tromech Sys, 11: 544-555, 2002.

[34] Li H, Luo R, Lam K Y. Modeling and simulation of deformation of hydrogels
responding to electric stimulus. J Biomech, 40: 1091-1098, 2007.

[35] Nemat-Nasser S, Li J Y. Electromechanical response of ionic polymer-metal
composites. J Appl Phys, 87: 3321-3331, 2000.

[36] Dolbow J, Fried E, Ji H. A numerical strategy for investigating the kinetic
response of stimulus-responsive hydrogels. Comp Meth Appl Mech Eng, 194:
42-44, 2005.

[37] Swaminathan N, Qu J, Sun Y. An electrochemomechanical theory of defects
in ionic solids, I: Theory. Philos Mag, 87: 1705-1721, 2007.

[38] Hu Z B, Zhang X M, Li Y. Synthesis and application of modulated polymer
gels. Science, 269: 525-527, 1995.

[39] Klein Y, Efrati E, Sharon E. Shaping of elastic sheets by prescription of non-
Euclidean metrices. Science, 315: 1116-1120, 2007.

[40] Ladet S, David L, Domard A. Multi-membrane hydrogels. Nature, 452: 76-79,
2008.

[41] Treloar L R G. The swelling of cross-linked amorphous polymers under strain.
Trans Faraday Soc, 46: 783-789, 1950.

[42] Kim S J, Spinks G M, Prosser S, et al. Surprising shrinkage of expanding gels
under external load. Nature Mater, 5: 48-51, 2006.



196 Chapter 6 Continuum Models of Stimuli-responsive Gels

[43] Marcombe R, Cai S, Hong W, et al. A theory of constrained swelling of a
pH-sensitive hydrogel. Soft Matter, 6: 784-793, 2010.

[44] Hong W, Zhao X, Suo Z. Drying-induced bifurcation in a hydrogel-actuated
nanostructure. J Appl Phys, 104: 084905, 2008.

[45] Wang X, Hong W. Surface interactions between two like-charged polyelec-
trolyte gels. Phys Rev E, 81: 041803, 2010.

[46] Hu Y, Zhao X, Vlassak J, et al. Using indentation to characterize the poroe-
lasticity of gels. Appl Phys Lett, 96: 121904, 2010.

[47] Cai S, Bertoldi K, Wang H, et al. Osmotic collapse of a void in an elastomer:
Breathing, buckling and creasing. Soft Matter, doi: 10.1039/c0sm00451k,
2010.

[48] Sidorenko A, Krupenkin T, Taylor A, et al. Reversible switching of hydrogel-
actuated nanostructures into complex micropatterns. Science, 315:487-490.



Chapter 7 Micromechanics of 3D Crystallized
Protein Structures

Amir Reza Zamiri and Suvranu De∗

Advanced Computational Research Laboratory, Department of Mechanical,
Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute,

110 8th St., Troy, NY 12180, United States

Abstract: In this chapter we develop micromechanics-based models of
three-dimensional crystallized protein molecules with tetragonal lysozyme as
an example system. While certain crystallographic directions exhibit purely
elastic behavior, others exhibit elastoplastic response. The yield stress and
critical resolved shear stress are observed to be sensitive to temperature and
the amount of intracrystalline water. An increase in temperature and the
amount of intracrystalline water molecules leads to a decrease in the critical
resolved shear stress of the slip systems and makes the crystal softer. The
analysis presented here may be applied to other protein crystal systems as
well.

Keywords: 3D protein crystal, bionanoporous, micromechanics, crystal
plasticity, model

7.1 Introduction

Advances in technology necessitate the development of new materials and sys-
tems with novel mechanical, physical and chemical properties. The bottom-
up self-assembly strategy[1] provides an excellent route to deliver such new
materials. Self-assembly allows building matter up from individual atoms,
molecules and molecular building blocks through hierarchal organization and
provides control of the material properties right at the molecular scale.

Nature provides perfect examples of self-assembled materials based on
molecular building blocks such as nucleic acids, polysaccharides and lipids
which are organized into efficient multifunctional structures and systems
ranging from the nanoscopic to the macroscopic scales. Therefore, one of
the main efforts in the area of biologically inspired technology is to under-
stand the mechanisms that nature uses to construct structures with inter-
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esting properties. Such knowledge will help to develop biomimetic materials
and devices for a range of engineering and medical applications including re-
generative medicine, electronic materials, biotechnology, nanotechnology and
drug delivery. Among all biomolecular units, nucleic acids and peptides have
been the subjects of most intense research.

Nucleic acid units, especially DNA, have attracted a significant atten-
tion in self-assembly of nanostructures for a range of applications includ-
ing nanoelectronics, biosensing, and computation which relies only on the
base-pairing properties of the DNA duplex. A surprisingly large number of
structures ranging from tetrahedron, octahedron, cube, buckyball, dodecahe-
dron to astonishing two-dimensional lattices may be obtained through DNA
self-assembly[2-4].

However, in nature, proteins are used as the primary building units of
biological structures as they are composed of 20 different amino acids in
comparison to 4 nucleotides in DNA. This variety in the amino acids leads to
a range of different properties in charge, hydrophobicity, interactions, chemi-
cal reactivity and functionality. Peptides and proteins have not hitherto been
considered as useful building blocks in materials technology. However, re-
cent advances in genetic and protein engineering have changed this view.
Currently, research is underway that focuses on better understanding and
developing approaches to construct 1D, 2D and 3D protein structures and
systems such as collagen, keratin, elastin, tubulin, fibroin, enzyme and bio-
membranes for a range of applications including regenerative medicine, drug
delivery and surface engineering[5-24].

It is now well known that a combination of mechanical, chemical and bio-
logical factors is responsible for molecular self-assembly[25]. Besides, novel ap-
plications of such assembled materials and structures require physical, chem-
ical and biological design parameters to be multiplexed to ensure optimal
physico-chemical performance. Therefore, substantial work is necessary to
map the dependence of such biological, chemical, and mechanical factors to
develop self-assembled structures with optimal properties. In this chapter we
will focus on the mechanics of 3D crystallized proteins as a class of such
self-assembled materials.

7.2 3D crystallized protein structures

3D crystallized protein structures are obtained as a result of molecular self-
assembly of protein molecules into highly ordered 3D structures. In the past,
the main goal of protein crystallization was to explore the structure of protein
molecules using X-ray and electron microscopy[26]. Recently, protein crys-
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tals have emerged as promising bionanoporous materials for different ap-
plications including highly selective biocatalysis, biosensing, bioseparation,
vaccine formulation, and drug delivery[26-28]. Over the past decade, signif-
icant research and development efforts have been focused on engineering
protein crystals, efficacy testing, model development, and production and
characterization[29-32]. These advances have led to new therapeutic applica-
tions of protein crystals, which now include treatments in acute conditions
such as cancer, cardiovascular disease, viral disease and chronic conditions
such as diabetes, growth hormone deficiency, haemophilia, arthritis, psoriasis
and Crohn’s disease. As proteins are relatively large molecules, the 3D crys-
tal is a mesoporous material and if the protein molecules in the lattice are
enzymes, they can be also used as catalysts for bio-sensing and separation.

Despite these successes, many challenges remain such as the characteriza-
tion of protein crystals including stability. The functionality and stability of
protein molecules are largely dependent on the environmental working condi-
tions such as temperature, pH and the surrounding fluid. Several studies have
been undertaken on thermal and chemical stability of protein crystals[33-35]

to understand such effects. However, the mechanical stability of protein crys-
tals under different conditions has not been extensively studied. Therefore, to
explore the fundamental design principles for development of such materials
with optimal functionality and stability, further research is needed.

7.3 Thermomechanical properties of protein crystals

Based upon indentation analysis, protein crystals are relatively fragile and
soft materials and their mechanical properties are highly sensitive to both en-
vironmental conditions and the type of the protein molecule[36]. Indentation
and compression analysis of 3D crystallized form of the tetragonal lysozyme
protein have revealed that its mechanical properties are size-dependent[36-37].
Compression testing of crystal leads to nonlinear elastic deformation lead-
ing to fracture whereas during microindentation, the microcrystals exhibit
elastic-plastic deformation. The temperature and amount of intracrystalline
water have significant effects on the elastic and plastic properties of the crys-
tals. At lower temperature and water content, the crystal is more brittle
while it is more ductile at higher temperature and humidity[37]. The plastic
deformation at the microscale has been established due to crystalline slip.
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7.4 A micromechanical model for protein crystals

Based on the knowledge that crystalline slip is a major cause of the plastic
deformation in protein crystals, a micromechanical model has been developed
to predict the mechanical behavior of such materials[38]. In this model the
effects of the temperature and water molecules on the mechanical behavior
of the protein crystals are expressed by their effects on the slip resistance.
To explain the model, let us consider Fig. 7.1 which shows the 3D assembled
structure of a tetragonal lysozyme protein crystal. In such crystals there are
specific molecular planes such as (110) which have the greatest separation
and therefore, may glide to each other under external loads.

Fig. 7.1 A 3D crystallized structure of a tetragonal lysozyme crystal (protein
molecule is from PDB code: 133L)[45]. (color plot at the end of the book)

The average velocities of dislocations on a slip system α may be expressed
generally as[39]:

v̄α = vα
0 fp(τα, ) (7.1)

where να
0 is the limiting velocity, fp a probability function, τα the resolved

shear stress on slip system α, and a vector containing state variables such
as temperature. It has been shown that for most materials the probability
function satisfies a power law expression:

fp(τα, ) = K sgn(τα)
(

τα

τα
y

)2n−1

(7.2)

where K and n are material constants and τα
y is the critical resolved shear

stress of the slip system α. The rate of shear strain on a slip system α is:

γ̇α = φαραbαv̄α (7.3)
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where φα is a material parameter, ρα is the dislocation density, and bα is the
Burgers vector. Combining Eqs. (7.1) – (7.3) one obtains:

γ̇α = κ sgn(τα)
(

τα

τα
y

)2n−1

(7.4)

where κ is a parameter which is a function of K, φα, ρα, and bα.
Let m be a unit vector normal to the slip plane and s a unit vector in the

slip direction in the crystal coordinate system. Then, any slip system can be
defined by an orientation matrix

Iα = sα ⊗mα (7.5)

with symmetric and antisymmetric parts

Pα =
1
2
(Iα + IαT ), (7.6)

wα =
1
2
(Iα − IαT ) (7.7)

which define the plastic rate of deformation Dp and spin rate Ωp as:

Dp =
N∑

α=1

γ̇α ·Pα, (7.8)

Ωp =
N∑

α=1

γ̇α ·wα (7.9)

where N is the number of slip systems in the crystal.
According to the normality rule in plasticity, a yield function F ( , ) could

be defined so that

DP = λ
∂F ( , )

∂
(7.10)

where λ is a positive parameter which depends on the type of dislocation
barriers and needs to be computed numerically. Replacing γ̇α in Eq. (7.8)
from Eq. (7.9) and solving the deferential equation (7.10), a yield surface for
protein crystals can be defined as:

F ( , χ) =
1
2n

(
N∑

α=1

∣∣∣∣ : Pα

τα
y

∣∣∣∣2n

− 1

)
(7.11)

where τα = : Pα.
Equations (7.8) – (7.11) lead to the following expressions for plastic rates

of the deformation and spin:

Dp = λ

N∑
α=1

sgn(τα)
τα
y

∣∣∣∣τα

τα
y

∣∣∣∣2n−1

·Pα, (7.12)
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Ωp = λ

N∑
α=1

sgn(τα)
τα
y

∣∣∣∣τα

τα
y

∣∣∣∣2n−1

·wα. (7.13)

The effects of the temperature, water molecules, and other environmental
effects on the deformation behavior of protein crystals are considered through
their influences on the critical resolved shear stress τα

y .

7.5 Application to tetragonal lysozyme as a protein crys-
tal model

A well studied protein is lysozyme which is an enzyme found in egg white,
tear, saliva, mucus and other body fluids. As an enzyme, its main role is to
lyse cell walls of gram positive bacteria. Since lysozyme can be easily crystal-
lized, it is usually used as a good protein model in different studies. Lysozyme
can be self-assembled into different crystal structures including orthorhom-
bic, tetragonal, and monoclinic ones Fig. 7.2 shows a tetragonal lysozyme
crystal obtained by self-assembly. The tetragonal lysozyme crystal (Fig. 7.1)
belongs to the P43212 space group with lattice constants of a=b=7.91 nm, c=
3.79 nm, and Z=8[37].

Fig. 7.2 A tetragonal lysozyme single crystal. (color plot at the end of the book)

7.5.1 Elastic deformation in lysozyme crystals

The elastic constants of tetragonal lysozyme crystal are highly sensitive to
both temperature and humidity[40-43]. The Young’s modulus of lysozyme
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crystal decreases with increasing temperature according to the following
relationship[40].

ΔE = −CT E0ΔT (7.14)

where ΔE and ΔT are increments in the Young’s modulus and temperature,
respectively, E0 is the Young’s modulus at 300 K and CT is a constant equal
to 2× 10−3 K−1 for lysozyme crystals. The Young’s modulus increases with
the increasing amount of the intracrystalline water molecules[38,41] as follows:

ΔE = CwE0Δt (7.15)

where Δt is the evaporation time and Cw is a constant whose value depends
on environmental parameters such as temperature. For natural evaporation of
water from lysozyme crystal surface at room temperature, Cw was calculated
to be 0.039 6 min−1[31].

7.5.2 Plastic deformation in lysozyme crystals

The tetragonal lysozyme crystal has two sets of slip systems[40]; a primary
{110}〈001〉 systems and a secondary {110}〈110〉 systems. Depending on the
crystal orientation and environmental conditions, during the deformation the
{110}〈001〉 slip systems get activated first followed by the secondary slip
systems at higher stresses. Using extensive simulations of microindentation
to duplicate the indentation experimental data, the critical resolved shear
stresses for these slip systems as a function of temperature and intracrys-
talline water molecule have been identified[38]. In such simulations, a 3D
cylindrical finite element model of the lysozyme crystal was used, which was
fixed at the bottom surface. At any integration point of the finite element
model, a lysozyme crystal whose (110) molecular plane is perpendicular to
the axes of the cylindrical model was chosen. This model was then used to
simulate the micro Vickers hardness tests along [110] crystallographic direc-
tion to obtain the force and tip displacement curves at different temperatures
and amounts of intracrystalline water. These simulations were used following
an optimization procedure to determine the CRSS values for the different slip
sets so that the Vickers hardnesses obtained from the simulations matched
published experimental values.

Figure 7.3 shows the temperature dependency of the critical resolved shear
stresses (CRSS) of tetragonal lysozyme crystals. Similar to other crystalline
materials, plastic flow in lysozyme crystals occurs due to creation and mo-
tion of dislocations[37]. At normal rates of deformation, thermal fluctuations
provide the energy to carry the dislocations over the lattice potential barri-
ers. Since the dislocations at higher temperatures have a higher probability
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of overcoming lattice potential barriers due to higher thermal fluctuations,
the CRSS for activation of the slip systems is lower. This explains why the
CRSS decreases with increasing temperature for both slip systems, as shown
in Fig. 7.3. At lower temperatures, the CRSS of the {110}〈001〉 slip system
is much less than the CRSS of the {110}〈110〉 slip system, therefore, it can
be more easily activated. At higher temperatures the CRSS of both slip sets
is small and both can easily get activated. At temperatures below room tem-
perature, the deformation in lysozyme crystal is primarily elastic while at
higher temperatures it is elastic-plastic[37]. Therefore, at lower temperatures
the temperature variation of the CRSS is primarily due to the temperature
dependence of the elastic constant. However, at higher temperatures, both
the elastic constant and dislocation mechanisms are affected by temperature
which results in a higher drop in CRSS with increasing temperature.

Fig. 7.3 The effect of temperature on critical resolved shear stresses of the tetrag-
onal lysozyme crystal.

Due to their applications, protein crystals are usually in a fluid environ-
ment and therefore, have a significant amount of intercrystalline water. As
shown in Fig. 7.4, the CRSS for both slip systems increases with evaporation
time (decreasing the amount of intracrystalline water). A change in intracrys-
talline water changes both the lattice and elastic constants of protein crystals.
A decrease in the amount of the intracrystalline water leads to an increase in
elastic constants and a decrease in lattice parameters[44]. This increases the
self energy of the dislocations significantly and hinders their nucleation and
activation, thereby increasing the CRSS of the slip systems.

The decrease in CRSS with increasing temperature (Fig. 7.3) may also
be related to the water molecules. Two types of intracrystalline water may
be present in the lattice: mobile water, which can easily traverse through
the crystal and bounded water, which is more strongly bound to the
molecules[41,43]. Mobile water has a high diffusion coefficient at higher tem-
peratures and therefore has little interaction with dislocations. However, at
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Fig. 7.4 The effect of the amount of intracrystalline water molecules on critical
resolved shear stresses of slip systems in tetragonal lysozyme crystal.

lower temperatures it may interact with dislocations and thereby affect dis-
location creation and motion in the lattice[40].

7.5.3 Anisotropic plastic yielding of lysozyme crystals

Figure 7.5 shows the 2D plots of Eq. (7.11) for three different crystal ori-
entations of tetragonal lysozyme at 285 K and 307 K. It is clear that the
tetragonal lysozyme crystal is highly anisotropic and the shape of its yield
surface changes with both temperature and crystal orientation. As discussed
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Fig. 7.5 The yield surface of the tetragonal lysozyme crystals for three different
crystallographic orientations of (001)[100], (011)[100], and (111)[110] at two tem-
peratures of (a) 285 K and (b) 307 K. (color plot at the end of the book)

before, at higher temperatures both {110}〈110〉 and {110}〈001〉 slip systems
are activated during the deformation, therefore the materials are softer while
at low temperature only the {110}〈001〉 slip system can get activated and
materials are more rigid. At room temperature, for lysozyme crystals that
have a large amount of intracrystalline water both {110}〈110〉 and {110}〈001〉
slip systems are activated while at a smaller amount of intracrystalline water
only the {110}〈001〉 slip system can get activated.

7.5.4 Orientation effect on mechanical behavior of lysozyme crys-
tals

The mechanical response of tetragonal lysozyme crystals is anisotropic, hence
orientation dependent. Crystalline slip activity, damage initiation and propa-
gation, and elastic properties of a crystal are functions of both the orientation
of the crystal and external loads. The model developed here can be used to
explore the mechanical response of the crystal under variations of both. For
this purpose a uniaxial compression of the lysozyme crystals was carried out
on a single brick element with sides of 1 mm and a load of 8 N applied
along different crystallographic directions at a rate of 0.05 s−1 to explore the
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anisotropic mechanical properties. Using Eq. (7.4), the overall accumulated
slip γ̄ in a crystal can be obtained by

γ =
N∑

α=1

∫ t

0

|γ̇α|dt (7.16)

The accumulated slip γ̄ can be used as a good measure for evaluation of the
deformation propensity of a crystal having specific orientation with respect
to the external loads. We will now transform to the fixed (or lab) coordinate
system defined by three Euler angles based on the Bunge system in which
the orientation of a crystal is defined by three angles as {ϕ1, φ, ϕ2} (ϕ1 is the
rotation about Z, φ is the rotation about X ′, and ϕ2 is the rotation about Z ′)
(Fig. 7.6). The results of the simulation of the uniaxial compression responses
of the tetragonal lysozyme crystal along different crystallographic directions
at two different temperatures of 307 K and 285 K are shown in Fig. 7.7.
The accumulated slip γ̄, which is a measure of the ductility, is observed to be
orientation and temperature dependent. There are some orientations in which
the crystal shows maximum ductility while in some orientations it remains
completely rigid. At lower temperatures, the crystal is less ductile.

Fig. 7.6 Orientation of a crystal (X ′, Y ′, Z′) with respect to the fixed coordinate
system (X, Y, Z) based on Bunge Euler angles[21] .

Although such analyses provide important information about the ductil-
ity of the crystal, calculation of the accumulated slip γ̄ for all possible ori-
entations is computationally expensive. Therefore, for 3D assembled protein
crystals, which have a relatively small plastic regime, for a given stress/strain
tensor, Eq. (7.11) may be used directly to predict the nature of responses
(elastic/plastic) for a particular crystal orientation. For a 3D protein crystal,
a large positive value of f (Eq. 7.11) indicates a higher tendency of the crys-
tal for crystalline slip and early fracture whereas a large negative value of
f denotes greater mechanical structural integrity and propensity for elastic
deformation. Using the value of f for different crystal orientations, the so-
called deformation distribution maps (DDMs) for tetragonal lysozyme crystal
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Fig. 7.7 The orientation dependent accumulated slip γ̄ obtained for 3D lysozyme
crystals loaded up to 0.01 strain at two different temperatures of 285 K and 307 K
and Euler angles of φ = 0◦, 55◦, and 90◦. In all these analyses, Euler angle ϕ2 = 0◦.
(color plot at the end of the book)

may be plotted. DDMs show the contours of f for different orientations cor-
responding to specific values of ϕ2. Figure 7.8 shows a plot of DDMs for
all possible crystal orientations corresponding to ϕ2 = 0◦, ϕ2 = 22.5◦, and
ϕ2 = 45◦ when the crystal is compressed along X-axis of the lab coordinate
system up to 0.01 strain at two different temperatures of 307 K and 285 K.
Several local minima and maxima are observed in Fig. 7.8. Therefore, under
uniaxial compression there are some orientations which are the softest and
some others which are the hardest in terms of plastic deformability.

Crystal symmetry is also evident from the Figure. Because of this symme-
try, it is sufficient to consider values of Euler angles that lie between [0◦, 90◦].
At temperatures close to 307 K there are more maxima on the DDMs. As
the temperature decreases to 285 K the number of maxima also decreases.
Further study of the DDMs reveals that at higher temperatures (Fig. 7.8a) all
orientations that have their [100] or [010] crystallographic directions along the
compression direction are rather soft. If the X-axis of the lab coordinate sys-
tem is considered as the compression axis, then all such crystal orientations
are placed on the so-called two “orientation fibers”: [100]//X and [010]//X

corresponding to {ϕ1 = 0, φ, ϕ2 = 0} and {ϕ1, φ = 0, ϕ2 = 90◦−ϕ1}, respec-
tively. There is another fiber which starts from {ϕ1 = 60◦, φ = 55◦, ϕ2 = 0◦}
and passes through {ϕ1 = 45◦, φ = 90◦, ϕ2 = 45◦}. There are two other
fibers: [110]//X corresponding to {ϕ1 = 0◦, φ, ϕ2 = 45◦} and [001]//X cor-
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Fig. 7.8 The deformation distribution maps of the 3D assembled lysozyme crystal
at two different temperatures of (a) 307 K and (b) 285 K and different values of
ϕ2. For all orientations the uniaxial compression is along the X-axis of the lab
coordinate system with compression up 0.01 strain. At any ϕ2 section, the maps
show the crystal orientations that have the highest and the lowest values of f (Eq.
(7.11)) and therefore, the greatest tendency for plastic deformation and elastic
deformation, respectively.

responding to {ϕ1 = 90◦, φ = 90◦, ϕ2} along which the crystal is rather hard.
At lower temperatures (Fig. 7.8b), there is only one orientation fiber,

which starts from {ϕ1 = 60◦, φ = 55◦, ϕ2 = 0◦} and passes through {ϕ1 =
45◦, φ = 90◦, ϕ2 = 45◦}, along which the crystal is soft. The crystal is rather
hard along most other orientations. There are two orientation planes: {ϕ1 =
0◦, φ, ϕ2} and {ϕ1, φ = 0◦, ϕ2} on which the crystal is the hardest.

To summarize, the mechanical properties of 3D crystallized proteins such
as tetragonal lysozyme crystal are highly anisotropic and the degree of anis-
otropy is a function of temperature and intracrystalline fluid molecules. At
higher temperatures the crystals are very ductile while they are more rigid
at lower temperatures. These observations provide valuable information re-
garding design of the structures, devices and systems using 3D crystallized
protein materials. For example, if a catalyst made of lysozyme crystals is
required to maintain structural integrity over a range of temperatures un-
der compression, then the orientation of the crystal should be along the
{ϕ1 = 90◦, φ = 90◦, ϕ2} fiber corresponding to which the crystal is rather
hard at both lower and higher temperatures. The analysis presented here
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could be easily used to explore the mechanical behavior of any 3D assembled
protein crystal under different loading conditions. Multiscale modeling may
be used to include effects of molecular flexibility at the lattice points.
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Abstract: Two micromechanics models for three-dimensional (3-D) open-
cell foams are presented. In the first model, an energy method based on
Castigliano’s second theorem is utilized. The analysis is performed on a
tetrakaidecahedral unit cell, which is subjected to compression on its two op-
posite square faces. The thirty-six struts of the unit cell are treated as uniform
slender beams undergoing linearly elastic deformations, and the twenty-four
vertices as rigid joints. All three deformation mechanisms of the cell struts
(i.e., stretching, shearing and bending) possible under the specified loading
are incorporated, and four different strut cross section shapes (i.e., circle,
square, equilateral triangle and Plateau border) are treated in a unified man-
ner, unlike in earlier models. Two closed-form formulas for determining the
effective Young’s modulus and Poisson’s ratio of open-cell foams are provided.
These two formulas are derived by using the composite homogenization the-
ory and contain more parameters than those included in existing models. The
new formulas explicitly show that the elastic properties of the foam depend
on the relative foam density, the shape and size of the strut cross section, and
the Young’s modulus and Poisson’s ratio of the strut material. The predicted
values of the effective Young’s modulus and Poisson’s ratio for carbon foams
compare favorably with those based on existing models and experimental
data.

In the second model, the Voronoi tessellation technique and the finite
element method are used to investigate the microstructure-property rela-
tions of 3-D open-cell foams that have irregular cell shapes and non-uniform
strut cross-sectional areas (SCSAs). Perturbations are introduced to a regular
packing of seeds to generate a spatially periodic Voronoi diagram with differ-
ent degrees of cell shape irregularity (amplitude a), and to the constant SCSA
to generate a uniform distribution of SCSAs with different degrees of SCSA
non-uniformity (amplitude b). Twenty finite element (FE) models are con-
structed, based on the Voronoi diagrams for twenty foam samples (specimens)
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having the same pair of a and b, to obtain the mean values and standard de-
viations of the elastic properties. Spatially periodic boundary conditions are
applied to each specimen. The simulation results indicate that for low-density
imperfect foams the elastic moduli increase as cell shapes become more ir-
regular, but decrease as SCSAs get less uniform. When the relative density
(R) increases, the elastic moduli of imperfect foams increase substantially,
while the Poisson’s ratios decrease moderately. The effect of the interaction
between the two types of imperfections on foam elastic properties appears to
be weak. In addition, it is found that the strut cross-sectional shape has a
significant effect on the foam properties. Also, the elastic response of foams
with the cell shape and SCSA imperfections appears to be isotropic regard-
less of changes in a, b and R and the strut cross-sectional shape.

Keywords: open-cell foams, tetrakaidecahedral cell, microstructure, cas-
tigliano’s second theorem, composite homogenization, elastic properties, ir-
regular cell shapes, non-uniform strut cross-sectional areas, Voronoi tessella-
tion, structure-property relations

8.1 Introduction

Manufactured low-density open-cell foams are finding increasing applications
in ultra-light sandwich structures (as core materials) and in functional devices
for heat dissipation, vibration control or energy absorption. Polymeric foams
(often called cellular plastics) have been studied for a long time[1,2], and
metallic (mostly aluminum) foams have also been extensively investigated[3].
Microcellular carbon foams, which were developed in 1990s[4], are emerging
as a new class of ultra-light cellular materials for structural and thermal
management applications because of their excellent mechanical and thermal
properties[5].

Reliable structural applications of open-cell foams hinge on accurate un-
derstanding of their mechanical behavior. These foams are topology-sensitive
and, as a result, their mechanical performance depends on the cell micro-
architecture, the relative foam density and the properties of the strut mate-
rial. This requires that mechanical models incorporate microstructural fea-
tures of cells. To this end, two types of micromechanics models, namely, unit
cell-based models and random cell-based models have been developed, which
are summarized below.
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8.1.1 Unit cell models

Many models, analytical or experimental, have been developed, based on
idealized unit cells, for predicting mechanical properties of cellular solids.
Such a unit cell (also called repeating unit), when properly identified, can
capture the essential microstructural features of a real cellular material. For
3-D open-cell foams, cubic, tetrahedral, dodecahedral and tetrakaidecahedral
cells have been used as repeating units. With the simplified geometry of a
unit cell, closed-form structure-property relations can often be derived[2].

Figure 8.1 shows a micrograph of an AFRL carbon foam. It can be seen
that the microstructure of such a foam has a three-dimensional (3-D) open-
cell topology and may be represented by a tetrahedral repeating unit con-
taining four struts, as shown in Fig. 8.2. A detailed finite element analysis
based on this unit cell has been provided by Sihn and Roy[6].

Fig. 8.1 Micrograph of an AFRL carbon foam[5].

By using a similar repeating unit, Warren and Kraynik[7] developed a mi-
cromechanical model for estimating effective elastic properties of 3-D open-
cell solid foams. Their analysis, based on the assumption that the displace-
ments of strut midpoints are affine, considered the equilibrium of the me-
chanically isolated joint (rather than the connected struts)[8].

AFRL graphitic carbon foams are blown from anisotropic pitch through a
bubble forming process[9], and, consequently, microstructures of the solidified
carbon foams are controlled by the principle of minimum surface energy. On
the cell level, the repeating unit shown in Fig. 8.2 corresponds to a regular
tetrakaidecahedron (Fig. 8.3), with all of its vertices being connected by
slender struts and each vertex shared by four struts. Such a fourteen-sided
polyhedron can be generated by uniformly truncating the six corners of an
octahedron and contains eight regular hexagonal faces and six square faces.
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Fig. 8.2 Repeating unit of a carbon foam[6].

The tetrakaidecahedral cell is known to be the only polyhedron that can pack
with identical units to fill space and nearly minimize the surface energy[10].

Fig. 8.3 Tetrakaidecahedral cell under compression in the z-direction.

Tetrakaidecahedral cells were first used by Dement’ev and Tarakanov[11]

to model open-cell foams. They applied compressive forces along a 〈100〉
axis of an isolated tetrakaidecahedral cell (i.e., pushing on two square faces)
and found the effective Young’s modulus to be directly proportional to the
relative foam density. This model is inaccurate because strut bending is ne-
glected. In their subsequent analysis[12], bending of cell struts was included
and Young’s modulus was more accurately predicted. However, they consid-
ered only square strut cross sections and did not express Young’s modulus
in terms of the relative foam density. The model of Choi and Lakes[13] uti-
lizes a regular tetrakaidecahedron and an energy method, but it is pseudo
three-dimensional and incorporates only bending deformations. Their predic-
tion of Young’s modulus differs from that of Dement’ev and Tarakanov[12].
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Warren and Kraynik’s[8] micromechanics model is based on a flat-faced, 14-
sided Kevin cell and considers arbitrary homogeneous deformations of a per-
fectly packed foam. Equilibrium analyses are performed for isolated joints,
and forces, moments and displacements at strut midpoints are analytically
derived. This more comprehensive analysis complements their early model
based on a tetrahedral unit cell[7]. Warren and Kraynik’s model gives a good
estimate of the effective Young’s modulus, but it predicts the effective Pois-
son’s ratio to be approximately 0.5 for low-density foams, which is higher
than 1/3, the value suggested by experiments[2].

A common feature of the afore-mentioned micromechanics models is that
a single tetrakaidecahedral cell isolated from the foam material is used as a
representative volume element (RVE), which is of idealized nature. Neverthe-
less, such an idealized RVE approach is typical of micromechanical analysis
of periodic structures[14], including cellular solids[2]. Furthermore, it should
be noticed that none of these existing tetrakaidecahedron-based analyses at-
tempts to provide and utilize complete stress/deformation data for all thirty-
six full-length struts. In addition, the effect of transverse shearing has been
ignored in all of the models mentioned above. Therefore, more comprehen-
sive models that can account for contributions from all structural members,
incorporate all possible deformation mechanisms and lead to accurate pre-
dictions of both Young’s modulus and Poisson’s ratio are needed. The first
micromechanics model developed by the present authors and described in
Section 8.2 are in response to this need.

8.1.2 Random cell models

Although unit cell-based models can provide important results, they are sig-
nificantly limited by their inability to account for microstructural imperfec-
tions inherent in most actual cellular materials, whose cell structures are
typically non-periodic, non-uniform and disordered. Thus, more complex,
statistical models are necessitated to obtain improved predictions. To this
end, suitable numerical methods are often required because of the stochastic
nature of the problem.

Efforts have been made to explore the effects of imperfections, such as ir-
regular cell shapes and sizes[15-18], thickness variations between cell walls[19],
non-uniform solid distribution in cell walls[20], curved/corrugated cell walls[21],
and wavy cell walls[22], on mechanical properties of 3-D open-cell and closed-
cell foams. However, in each of these existing studies only one type of imper-
fections was included at a time. In general, two or more types of imperfec-
tions are simultaneously involved in the microstructure of a cellular material.
Therefore, models incorporating two or more types of imperfections are in
need. This motivated the development of the second model to be presented
in Section 8.3.
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8.2 Micromechanics model using a tetrakaidecahedral
unit cell

In this section, a unit-cell-based micromechanical model is presented for 3-D
open-cell foams, which can account for contributions from all structural mem-
bers, incorporate all possible deformation mechanisms and lead to accurate
predictions of both Young’s modulus and Poisson’s ratio. The tetrakaideca-
hedral unit cell shown in Fig. 8.3 is adopted, and an energy method based on
Castigliano’s second theorem is employed in the formulation. Energy methods
are known to work best for systems with complicated geometry[23-26].

In Subsection 8.2.1, equilibrium analysis is first carried out to obtain the
resultant forces in each of the thirty-six struts of the unit cell, which differs
from what was done in existing models. Castigliano’s second theorem is then
applied to determining the displacements of the unit cell in the loading and
lateral directions. These, together with the use of the composite homogeniza-
tion theory, lead to closed-form formulas for calculating the effective Young’s
modulus and Poisson’s ratio of open-cell foams. As a direct application of
the new model, a parametric study on sample cases involving four different
strut cross section shapes and various values of the relative foam density is
conducted for carbon foams in Subsection 8.2.2, where the current model is
also compared to and verified by existing models and experimental results.
A summary is given in the third and last subsection.

8.2.1 Formulation

Consider the tetrakaidecahedral unit cell illustrated in Fig. 8.3, which is repre-
sentative of the open-cell foam structure perfectly packed by regular tetraka-
idecahedra sitting on a body-centered cubic (BCC) lattice[8] and subjected
to uniaxial compression (Fig. 8.4). The center of this cell is located at one
lattice point. As shown in Fig. 8.3, a pair of concentrated compressive forces
is applied on the two opposite square faces perpendicular to the z-direction.
This symmetric loading mode of pushing on two square faces results in no
twisting in any strut. In fact, the geometric and loading symmetry enables
one to further identify that the struts lying in the xy-plane and the two
surface planes parallel to it experience only stretching and bending, while
the remaining struts undergo bending, shearing and stretching deformations,
with the bending moments vanishing at the strut midpoints[8].

It is assumed that the strut material is linearly elastic and isotropic. Also,
all of the thirty-six struts are taken to be uniform slender beams having the
same geometric and material properties, which are linked to each other at
rigid vertices. Each strut, having the length L and the cross sectional area
A, is assumed to satisfy the classical beam theory, as was done in previous
studies.
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Fig. 8.4 Open-cell foam structure.

8.2.1.1 Young’s modulus

The unit cell shown in Fig. 8.3 is a statically indeterminate frame structure.
Energy principles in structural mechanics can be applied to determine the
resultant forces in each strut. Owing to the geometric and loading symmetry,
only one quarter of the tetrakaidecahedral cell, as shown in Fig. 8.5, needs
to be analyzed. This isolated quarter cell contains twelve structural members
(S1 — S12) and six joints (J1 — J6). Members S1, S2, S8, S9, S11 and S12
have the length L/2, while the rest, as full-length struts, have the length L.
Applied (statically equivalent) forces acting on the quarter cell are the pair
of compressive forces P passing through J1 and J6.

With the struts undergoing no twisting under the applied forces shown
in Fig. 8.3, there is no resisting torque present in any strut. Consequently,
only three types of (generalized) resultant forces (i.e., axial force, transverse
shear forces and bending moments) need to be included in the analysis of any
structural member. Let the resultant forces in the nth structural member be
represented by Nn, Vnα and Mnα, where N , V and M denote, respectively,
axial force, transverse shear force and bending moment, and α stands for
the direction of the bending moment or the transverse shear force, which
coincides with one of the two local coordinate axes η and ζ perpendicular to
the strut axis direction that is aligned with the local coordinate ξ.

Due to symmetry, transverse shear forces in S1, S2, S8, S9, S11 and S12
vanish, and there is only one constant-valued bending moment present in
each of these members, as shown in Fig. 8.5. Here, the local coordinate η is
perpendicular to the strut, and is normal to the applied force P for struts
S1, S2, S11 and S12 but parallel to the direction of the force P for struts S8
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Fig. 8.5 Free body diagram of a quarter of the tetrakaidecahedral cell. (color plot
at the end of the book)

and S9. Furthermore, symmetry requires that, at equal distances from the
respective joint(s),

N1 = N2 = N11 = N12, M1η = M2η = M11η = M12η,

N8 = N9, M8η = M9η,

N3 = N10, V3α = V10α, M3α = M10α,

N4 = N5 = N6 = N7, V4α = V5α = V6α = V7α,

M4α = M5α = M6α = M7α.

(8.1)

The global equilibrium of the quarter cell gives, noting that S1 and S2, S8
and S9, and S11 and S12 are, respectively, orthogonal,

N8 = −(N1 + N11), N9 = −(N2 + N12). (8.2)

Let N1 ≡ F , M1η ≡ MA and M8η ≡ MB, with F , MA and MB being three
(yet-unknown) convenient constants. Then, it follows from Eqs. (8.1) and
(8.2) that

N1 = N2 = N11 = N12 = F, N8 = N9 = −2F,

M1η = M2η = M11η = M12η = MA, M8η = M9η = MB.
(8.3)
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Fig. 8.6 Free body diagram of the S1, S2 and S3 assemblage.

The equilibrium of Joint J1 (Fig. 8.6) requires that
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(8.4a, b, c)

which gives, together with Eq. (8.3),

N3 = F −
√

2
2

P, V3ζ = F +
√

2
2

P, M3η =
√

2MA −
(

F +
√

2
2

P

)
s3,

(8.5a, b, c)
where s3 is the (local) distance along S3 measured from J1. In Fig. 8.6, M3η is
parallel to the segment that connects the middle points of S1 and S2 (and is
therefore normal to S3), and V3ζ is perpendicular to both M3η and the strut
and points outward. Since M3η vanishes at the midpoint of S3, it follows from
Eq. (8.5c), with s3 = L/2, that

MA =
√

2
4

(
F +

√
2

2
P

)
L. (8.6)

Note that V3η ≡ 0 and M3ζ ≡ 0 due to symmetry.
When viewed in plane, the square frame composed of S4 – S7 is a statically

indeterminate planar frame loaded by two pairs of concentrated forces at its
four joints. This frame problem can be decomposed into two simpler problems
(I) and (II), as shown in Fig. 8.7. Since the resultant forces in each member
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of the frame are the same (Eq. (8.1)), only one of the four members, e.g., S5,
needs to be analyzed in each problem. Problem (I) is considered first. A free
body diagram of S5 is illustrated in Fig. 8.8. The two ends C and D stand
for J2 and J4 of S5, respectively.

Fig. 8.7 Square frame.

Fig. 8.8 Free body diagram of S5 in Problem (I): (a) isolated S5; (b) FBD.

The equilibrium of S5 (Fig. 8.8b) gives

N
(I)
5 = −

√
2

4
P, V

(I)
5η =

√
2

4
P, M

(I)
5ζ = MCD −

√
2

4
Ps5, (8.7a, b, c)

where s5 is the (local) distance along S5 measured from Joint 2 (at point C),
and the superscript “(I)” denotes Problem (I).

The internal moment MCD needs to be determined using a compatibility
condition. This is provided by the rigidity of Joint 2, which gives, using
Castigliano’s second theorem[27],

θC =
∫ L

0

(
N

(I)
5

EA

∂N
(I)
5

∂MCD
+

k1V
(I)
5η

GA

∂V
(I)
5η

∂MCD
+

M
(I)
5ζ

EI

∂M
(I)
5ζ

∂MCD

)
ds5 = 0, (8.8)

where θC is the (relative) rotation at point C, E and G are, respectively,
the Young’s modulus and the shear modulus of the strut material, and I
and k1 are, respectively, the second moment of area of the cross section and
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the transverse shear factor. Inserting Eqs. (8.7a,b,c) into Eq. (8.8) results in,
noting that only the third term in the integrand remains after differentiation,

MCD =
√

2
8

PL. (8.9)

Using Eq. (8.9) in Eq. (8.7c) leads to

M
(I)
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√
2

4
P

(
L

2
− s5

)
. (8.10)

For Problem (II), the in-plane resultant forces in S5 can be obtained by follow-
ing the procedures similar to those used above for determining the solution
of Problem (I). The results give

N
(II)
5 = −1

2
F, V

(II)
5η = −1

2
F, M

(II)
5ζ = −1

2
F

(
L

2
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)
. (8.11a, b, c)

The principle of superposition then yields, using Eqs. (8.7a,b), (8.10) and
(8.11a,b,c), the total in-plane resultant forces in S5 (and thus in the entire
square frame) as

N5 = −
(√

2
4

P +
1
2
F

)
, V5η =

√
2

4
P − 1

2
F, (8.12a, b)

M5ζ =

(√
2

4
P − 1

2
F

)(
L

2
− s5

)
. (8.12c)

Note from Eq. (8.12c) that M5ζ is indeed equal to zero at the midpoint of
S5, where s5 = L/2.

To determine the remaining two out-of-plane resultant forces V5ζ and
M5η, consider an assemblage of S5, S7 and S9, as shown in Fig. 8.9a, where
s7, the (local) distance along S7 measured from Joint 5, is taken to be equal
to s5 to make use of the symmetry conditions. Here, the local coordinate η is
perpendicular to the strut and lies in the plane of the square frame for both
S5 and S7, and the coordinate ζ is normal to the plane of the square frame.
The force balance in the direction normal to the planar square frame results
in, with V5ζ = V7ζ (due to symmetry),

V5ζ = −
√

2
2

F. (8.13)

The moment balance of J4 gives, with M5η = M7η (due to symmetry),

M5η = −
√

2
2

MB −
√

2
2

F (L− s5). (8.14)
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The requirement of M5η = 0 at the midpoint of S5 then yields, from Eq.
(8.14),

MB = −FL

2
. (8.15)

Next, the moment balance about J2 can be established with the help of
Fig. 8.9b, where M4η and M5η are perpendicular to S4 and S5, respectively,
and lie in the plane formed by the two struts, and M3η is parallel to the
segment that connects the middle points of S4 and S5 (and is therefore normal
to S3). It requires that

M3η

∣∣
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+
√

2
2

(M4η
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+ M5η
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s5=0

) = 0, (8.16)

where s4 is the (local) distance along S4 measured from Joint 2. Equation
(8.16) leads to, using Eqs. (8.5c) and (8.14) and M4η

∣∣
s4=0

= M5η

∣∣
s5=0

(see
Eq. (8.1)),

F = −
√

2
4

P. (8.17)

Finally, the substitution of Eq. (8.17) into Eqs. (8.6) and (8.15) gives

MA =
1
8
PL, MB =

√
2

8
PL. (8.18a, b)

Fig. 8.9 Free body diagrams of (a) the assemblage of S5, S7 and S9; (b) joint 2
(moments only).

With the constants F , MA and MB determined, the resultant forces in
S1, S3, S5 and S8 can be readily calculated using Eqs. (8.3), (8.5a,b,c) and
(8.12a,b,c)— (8.14). The resultant forces in the remaining members can then
be obtained from Eq. (8.1).
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As a summary, the resultant forces in each of the twelve members of the
quarter cell shown in Fig. 8.5 are listed in Table 8.1, where s6 is the (local)
distance along S6 measured from Joint 5, and s10 is that along S10 measured
from Joint 6.

The effective Young’s modulus can be derived from the stress-strain re-
lation of the unit cell. Equivalently, the symmetry and linearity also enable
one to determine the Young’s modulus using the load-displacement relation
obtained for the uniaxially loaded quarter cell shown in Fig. 8.5. This can be
accomplished by applying Castigliano’s second theorem, as what was done
by Gao et al.[26]. As an energy principle, this theorem allows one to work
with scalars and to use local coordinates.

Table 8.1 Resultant forces in S1— S12
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Note that the total complementary energy of the quarter cell is given by

Πc =
12∑

n=1

Πn, (8.19)

where Πn is the complementary energy in the nth member. For S1, S2, S8,
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S9, S11 and S12,
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For S3 — S7 and S10,
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(8.21)
The results of the integral terms for each member are listed in Table 8.2,
where use has been made of Table 8.1. Applying Castigliano’s second theorem
then gives, from Eq. (8.19),

Δz =
∂Πc

∂P
=

12∑
n=1

∂Πn

∂P
, (8.22)

where Δz is the displacement of the quarter cell in the loading direction,
which is also equal to the displacement of the tetrakaidecahedral unit cell in
the same direction.

By substituting Eqs. (8.20) and (8.21) and the results in Table 8.2 into
Eq. (8.22), the load-displacement relation is finally obtained as

Δz =
25PL

8EA
+

13k1PL

8GA
+

19PL3

96EI
. (8.23)

Clearly, Eq. (8.23) shows that the contribution from transverse shear forces
(i.e., the second term) is on the same order of magnitude as that from axial
forces (i.e., the first term), although the contribution due to bending moments
(i.e., the third term) is dominant for foams having slender struts (i.e., with
large L/

√
A). This differs from the existing analyses reviewed earlier, where

the transverse shearing effect was not explicitly included.
The effective Young’s modulus of the tetrakaidecahedral unit cell, and

thus of the foam, can be determined by using the average strain theorem in
the homogenization theory of composite materials[26,28]. According to this
theorem,

εz ≡
Δz

L∗
, (8.24)

where εz is the uniform (constant) strain applied in the z-direction on the
homogenized body and L∗ = 2

√
2L is the initial height of the unit cell. Then,

the effective Young’s modulus is given by

E∗z =
σz

εz
=

L∗

A∗
P ∗

Δz
, (8.25)

where σz is the effective stress applied in the z-direction, P ∗ ≡ 4P is the
total force applied in the z-direction, and A∗ = Vc/L∗ is the effective cross-
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sectional area of the unit cell, with Vc being the cell volume. For the tetraka-
idecahedral unit cell, Vc = 8

√
2L3. It then follows from Eq. (8.25) that

E∗z =
2
√

2P

LΔz
. (8.26)

Table 8.2 Complementary energies in S1—S12
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The relative density of such an open-cell foam with negligible vertex volume
is given by[8]

R =
3

2
√

2
A

L2
. (8.27)

Inserting Eqs. (8.23) and (8.27) into Eq. (8.26) then yields

E∗z =
EcR2

0.078 72 + [1.171 875 + 1.218 750k1(1 + ν)]cR
, (8.28)

where use has been made of the relation G = E/[2(1 + ν)], with ν being
Poisson’s ratio of the strut material, and c is the radius of gyration defined
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by

c ≡
√

I

A
, (8.29)

whose value for a given strut cross section can be readily determined. The
radius of gyration represents the bending stiffness of a section with a given
cross sectional area. The values of the geometric parameters c and k1 for
four types of strut cross sections are listed in Table 8.3. It can be seen that
with the same cross sectional area the Plateau border cross section provides
the largest bending stiffness, followed by the equilateral triangle, square and
circular cross sections. The values of the transverse shear factor k1 for circular
and square cross sections are, respectively, 1.1 and 1.2[27]. By using the same
method as that discussed by Cook and Young[27], the value of k1 is found to
be 1.2 for equilateral triangle cross sections. The value of k1 for a Plateau
border cross section, which occupies the area enclosed by three identical,
mutually tangent circles, is taken to be the same as that for an equilateral
triangle cross section because of the geometric similarity between them.

Table 8.3 Geometric constants

Strut cross section c k1

Circle 0.079 58 1.1
Square 0.083 33 1.2
Equilateral triangle 0.096 23 1.2
Plateau border 0.133 80 1.2

Equation (8.28) provides a closed-form formula for calculating the effec-
tive Young’s modulus of open-cell foams. This formula explicitly shows that
E∗z depends on the relative foam density (R), the size and shape of the strut
cross section (c and k1), and the elastic properties of the strut material (E
and ν). The expression for E∗z given by Eq. (28) contains more parameters
than those obtained in the previous studies and can be readily reduced to
special cases by specifying the parameters ν, c or k1.

8.2.1.2 Poisson’s ratio

The effective Poisson’s ratio can be obtained from[25,29]

ν∗zx = −εx

εz
, (8.30)

where εx is the average lateral strain caused by the uniaxial loading in the
z-direction. Since the dimensions of the unit cell in the x-and z-directions are
the same, Eq. (8.30) is equivalent to

ν∗zx = −Δx

Δz
. (8.31)

The displacement in the z-direction, Δz, has been determined in the pre-
ceding subsection. The lateral displacement along the x-direction, Δx, can
also be calculated using Castigliano’s second theorem. To accomplish this, a
fictitious pair of concentrated compressive forces P ∗I ≡ 4PI , in addition to
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the compressive loading in the z-direction, is applied on the two opposite
square faces in the x-direction, as shown in Fig. 8.10. Due to symmetry, only
one hexagonal frame formed by the struts S1, S3, S4, S8, S18 and S19 needs
to be analyzed (Fig. 8.10). For the case with loading in the z-direction only,
the resultant forces in S1, S3, S4 and S8 have been listed in Table 8.1. The
resultant forces in S18 and S19 are, respectively, the same as those in S3 and
S4 because of symmetry.

Fig. 8.10 Tetrakaidecahedral cell under compression in the x- and z-directions.
(color plot at the end of the book)

When the unit cell is loaded only in the x-direction, the resultant forces
in these struts can be readily determined by following the same procedures
as those used for the z-direction loading case. The results are given in Table
8.4, in which use has been made of

FI = −
√

2
4

PI , (8.32)

which is a result parallel to that given in Eq. (8.17). In Table 8.4, s8 is the
(local) distance along S8 measured from its right end, and s19 the (local)
distance along S19 measured from its upper end. By superposing the corre-
sponding results in Tables 8.1 and 8.4, the resultant forces in the six struts
of the cell subjected to simultaneous compression in the x- and z-directions
can be readily determined. The results are given in Table 8.5, where s18 is
the (local) distance along S18 measured from its upper end.

Table 8.4 Resultant forces in the six struts caused by loading in the x-direction

n Nn Vnη Vnζ Mnη Mnζ
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√
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8
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√
2

8
PI −1

4
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2
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«
−3
√

2

8
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„
L

2
− s1

«
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Continued

n Nn Vnη Vnζ Mnη Mnζ
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√
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The total complementary energy of the tetrakaidecahedral unit cell under
compression in both the x-and z-directions is given by

Πc =
36∑

n=1

Πn, (8.33)

where Πn is the complementary energy in the nth strut. Based on the geo-
metric and loading symmetry, the general expression given in Eq. (8.33) can
be further simplified to obtain

Πc = 8Π1 + 4Π3 + 8Π4 + 4Π8 + 4Π18 + 8Π19. (8.34)

Using Eq. (8.21) gives the complementary energy for each of the six struts, as
summarized in Table 8.6. Applying Castigliano’s second theorem then yields,
from Eq. (8.34),

Δx =
∂Πc

∂P ∗I
= 8

∂Π1

∂P ∗I
+ 4

∂Π3

∂P ∗I
+ 8

∂Π4

∂P ∗I
+ 4

∂Π8

∂P ∗I
+ 4

∂Π18

∂P ∗I
+ 8

∂Π19

∂P ∗I
, (8.35)

where Δx is the displacement of the tetrakaidecahedral unit cell in the x-
direction. By setting P ∗I equal to zero in evaluating Eq. (8.35), Δx, as the
displacement caused solely by the applied force 4P in the z-direction, will be
determined. The substitution of Eqs. (8.21) and (8.34) and the results given
in Table 8.6 into Eq. (8.35) leads to, after letting P ∗I ≡ 4PI = 0,

Δx = −
(

PL

16EA
+

3k1PL

16GA
+

6.5PL3

96EI

)
, (8.36)

where the negative sign means that the lateral displacement is in the oppo-
site direction to the fictitious force 4PI . Again, it is seen from Eq. (8.36)
that the contribution from transverse shear forces (i.e., the second term) is
comparable to that due to axial forces (i.e., the first term). Hence, neglecting
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this contribution, as what was done in the previous models, may result in
less accurate predictions.

Finally, inserting Eqs. (8.23) and (8.36) into Eq. (8.31) gives

ν∗zx =
0.342 105 + 0.297 729[1 + 6(1 + ν)k1]cR

1 + 0.595 458[25 + 26(1 + ν)k1]cR
, (8.37)

where use has been made of Eqs. (8.27) and (8.29).

Table 8.6 Complementary energy in the six struts
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The closed-form formula given in Eq. (8.37) for calculating the effective
Poisson’s ratio of open-cell foams shows that ν∗zx is explicitly dependent on
the relative foam density (R), the size and shape of the strut cross section
(c and k1), and Poisson’s ratio of the strut material (ν). Compared with the
corresponding formulas provided in the existing models, the expression for
ν∗zx given by Eq. (8.37) incorporates more parameters and can be readily
reduced to specific cases.

8.2.2 Numerical results

To illustrate the application of the new model developed in the preceding
subsection, a parametric study of sample cases has been conducted for 3-D
open-cell carbon foams, whose modeling motivated the work presented in this
chapter. Following Sihn and Roy[6], Young’s modulus (E) and Poisson’s ratio
(ν) of the carbon strut material are, respectively, taken to be 15.61 GPa and
0.33. The shapes used for the strut cross section here include circle, square,
equilateral triangle and Plateau border, among which the last one is believed
to be closest to real struts.

For carbon foams with Plateau border strut cross sections, the effective
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Young’s modulus (E∗z ) and Poisson’s ratio (ν∗zx) varying with the relative
foam density (R) predicted by the current model are graphically illustrated
in Figs. 8.11 and 8.12, where they are also compared to the predictions of
four existing models.

Gibson and Ashby[2] used a micromechanics model of staggered cubic cells
for an open-cell foam and showed that

E∗z
E

= KR2, (8.38)

where the constant K was found to be close to unity after curve fitting
the available experimental data (mostly on polymer foams). Warren and
Kraynik[8] found that for incompressible (i.e., ν = 0.5) struts with Plateau
border cross sections, K = 0.979, which is very close to K = 1 proposed by
Gibson and Ashby[2]. This explains the good agreement between the predic-
tions of these two models, as illustrated in Fig. 8.11.

Fig. 8.11 Young’s modulus vs. relative foam density.

Figure 8.11 shows that the values of E∗z predicted by the current model
and those by the two afore-mentioned models are very close for low-density
foams (with R < 0.15). For high-density foams (with R > 0.15), however,
this is no longer the case; discrepancies between the predictions of the current
model and those of the two existing models increase with R, as shown in Fig.
8.11. This indicates that the transverse shearing effect, which is incorporated
in the current model but excluded in the two earlier models, does not play
a significant role in deformations of low-density foams, where the dominant
mechanism is strut bending. The shearing effect is related to the strut slen-
derness ratio L/c, where c is the radius of gyration and L is the strut length.
When L/c is large (and the relative density of the foam is small), the strut
can be simplified to a Bernoulli –Euler beam so that the shear effect can
be neglected. However, for high-density foams strut shearing becomes a very
important factor and needs to be accounted for in order to obtain accurate
predictions[20].
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The finite element (FE) method offers an alternative approach to defor-
mation analyses of structural foams. An FE model was developed by Sihn
and Roy[6] to calculate Young’s modulus and Poisson’s ratio of carbon foams
with R ranging from 0.1 to 0.35. As shown in Fig. 8.11, the FE model pre-
dicts higher values of E∗z than those by the current analytical model. The
reason for this is that according to the composite homogenization theory[28],
the FE model of Sihn and Roy[6], developed using a displacement formu-
lation, is expected to provide an upper bound estimate of actual value of
the effective Young’s modulus, while the current model, based on the princi-
ple of minimum complementary energy, should furnish the best lower bound
solution[23,25].

The predicted values of the effective Poisson’s ratio (ν∗zx) varying with
R are illustrated in Fig. 8.12. According to our new model, ν∗zx is 0.342 at
R = 0 and decreases gradually as R increases. Gibson and Ashby[2] quoted
some scattered experimental data on ν∗zx, ranging from 0.15 to 0.4, of open-
cell foams with R < 0.1 and proposed 1/3 to be a reasonable value for ν∗zx.
Fig. 8.12 shows that ν∗zx predicted by the current model is very close to 1/3
for R < 0.1. Comparisons are also made with the results given by Warren
and Kraynik[7], as illustrated in Fig. 8.12. Clearly, their predicted values of
ν∗zx are higher, as noted in Section 8.2.1. In addition, Fig. 8.12 reveals that
the values of ν∗zx predicted by the FE model of Sihn and Roy[6] agree well
with those obtained by the current model for R > 0.04.

Fig. 8.12 Poisson’s ratio vs. relative foam density.

The effects of strut cross section shapes on E∗z and ν∗zx at various values
of R are graphically illustrated in Figs. 8.13 and 8.14. It is seen from Fig.
8.13 that E∗z is the highest for the Plateau border strut cross section, followed
by the equilateral triangle, square and circular strut cross sections. This de-
scending order conforms to what was observed by Warren and Kraynik[8].
The order of influence of the strut cross section shape on ν∗zx is opposite to
that on E∗z , as shown in Fig. 8.14. This agrees with that stated by Warren
and Kraynik[7]. At R = 0.05, the maximum relative differences in E∗z and ν∗zx,
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resulting from the use of different shapes of strut cross sections, are 34.5%
and 7.2%, respectively. This implies that the Young’s modulus (E∗z ) is much
more sensitive to the strut cross section shape than the Poisson’s ratio (ν∗zx).

Fig. 8.13 Effects of strut cross section shapes on Young’s modulus.

Fig. 8.14 Effects of strut cross section shapes on Poisson’s ratio.

8.2.3 Summary

A micromechanics model is developed for 3-D open-cell foams using a tetra-
kaidecahedral unit cell sitting on a BCC lattice and subjected to compression
on its two opposite square faces. This model is based on Castigliano’s second
theorem and is of the mechanics-of-materials type. All three deformation
mechanisms (i.e., stretching, shearing and bending) of the cell struts possible
under the specified loading are incorporated, and four different strut cross
section shapes (i.e., circle, square, equilateral triangle and Plateau border)
are dealt with in a unified manner in this model, unlike in earlier models.
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Two closed-form formulas for calculating the effective Young’s modulus
and Poisson’s ratio of open-cell foams are derived using the composite ho-
mogenization theory. These formulas contain more parameters than those
included in existing models, which ignore the transverse shearing effect. The
two formulas explicitly show that the effective elastic properties of open-cell
foams depend on the relative foam density, the shape and size of the strut
cross section, and the elastic properties of the strut material.

As a direct application of the new model, a parametric study of sample
cases involving the four strut cross section shapes and various values of the
relative foam density is conducted for carbon foams. The predicted values of
the effective Young’s modulus agree well with those obtained using two ex-
isting analytical models for low-density foams, and the values of the effective
Poisson’s ratio predicted by the current model are in good agreement with
those results based on the available experimental data and finite element
analyses.

8.3 Random cell model incorporating cell shape and strut
cross-sectional area irregularities

In this section, a random cell model is presented for open-cell foams that
contain two types of co-existing imperfections – irregular cell shapes and non-
uniform strut cross-sectional areas (SCSAs). In Subsection 8.3.1, foams with
different degrees of cell shape irregularity and SCSA non-uniformity are first
constructed using the Voronoi tessellation technique. Twenty finite element
(FE) models are then developed using the constructed Voronoi diagrams to
calculate the effective Young’s moduli, Poisson’s ratios and shear moduli of
the foams. Each of these diagrams (specimens) contains 125 tetrakaideca-
hedral cells. In Subsection 8.3.2, a mesh sensitivity study is first performed
to determine the appropriate number of cells to be included in each speci-
men and the suitable number of specimens to be used in statistical analysis.
This is followed by an investigation into the elastic behavior (isotropic or
anisotropic) of the foams based on the Voronoi diagrams and the FE models.
Finally, a parametric study for sample cases involving various cell shape and
cross-sectional area irregularities is conducted, with the simulation results
presented and discussed. A summary is provided in the last subsection.

8.3.1 Analysis

3-D open-cell foams (e.g., graphitic carbon foams) are often produced through
a bubble forming process. As a result, microstructures of such foams are
controlled by the principle of minimum surface energy. This indicates that
the morphology of such a 3-D open-cell foam may be best represented by
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packed tetrakaidecahedral cells, since tetrakaidecahedron is known to be the
only polyhedron that can pack with identical units to fill space (Fig. 8.15)
and nearly minimize the surface energy[10].

Fig. 8.15 A regular foam sample with 27 complete cells.

Due to the similarity between the mathematical procedure of the Voronoi
tessellation and the physics of foam production, the Voronoi tessellation tech-
nique is a natural choice for describing the microstructure of a foam resulting
from a bubble forming process. The Voronoi tessellation of space is fully
determined by the initial locations of generating seeds[30]. Using regularly
positioned seeds produces regular Voronoi diagrams. The current analysis
starts with a reference model, which is of a tetrakaidecahedral foam struc-
ture with cells of regular shapes and struts of uniform cross-sectional areas.
This reference model is constructed from a set of regularly packed seeds sit-
ting on a body-centered cubic (BCC) lattice using the Voronoi tessellation
technique, as shown in Fig. 8.15. Perturbations are then introduced to the
reference model to generate Voronoi diagrams with irregular cell shapes and
non-uniform SCSAs[16,19]. The non-uniformity here and in the sequel means
that the cross-sectional area of each strut may differ from that of any other
strut, although each strut is regarded as having a constant cross-sectional
area along its length and the cross-sectional shape remains the same for all
the struts.
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8.3.1.1 Spatially periodic random foams with cell shape and SCSA
variations

There are two methods to construct 3-D random foam models using the
Voronoi tessellation technique. One is to first build a Voronoi tessellation
that is larger than the foam specimen of interest from a set of randomly
placed seeds. Then, a bounding parallelepiped with dimensions same as those
of the foam specimen is imposed to trim off the extraneous layer of the
tessellation[15]. This layer contains Voronoi cells that do not resemble (ir-
regular) cells of a foam. It should be noted that the model so obtained is
not periodic and many cells must be included in the specimen to avoid the
edge effect. In addition, only displacement boundary conditions can be ap-
plied in this case. The second method is to use a set of seeds of periodic
symmetry[31]. At the beginning, a pre-set number of seeds are generated
within a parallelepiped having the desired dimensions. Then, the position of
each seed within the parallelepiped is copied to 26 identical parallelepipeds
adjacent to or sitting at the corners of the original parallelepiped. Finally,
the Voronoi tessellation technique is applied to all of the seeds within the
27 parallelepipeds. Part of the resulting Voronoi tessellation inscribed by the
center (original) parallelepiped can then be taken out as the periodic speci-
men of the specified size. In the current study, the second method is adopted
to generate seeds of periodic symmetry, and the needed Voronoi diagrams
are subsequently constructed using the program Qhull developed at the Ge-
ometry Center, the University of Minnesota – Twin Cities (now available at
http://www.geom.uiuc.edu/software/qhull/).

The irregularity of cell shapes is determined by the irregular distribution
of the seeds. By perturbing the locations of the seeds sitting on a BCC lattice,
the coordinates of a perturbed seed k can be obtained as[16]

xk
i = xk

i + aLϕk
i , (8.39)

where xk
i (i ∈ {1, 2, 3}) are the coordinates of the same seed k in the initially

regular lattice, L is the height of a regular tetrakaidecahedron, ϕk
i (∈ [−1, 1])

is a random variable with a uniform distribution, and a(∈ [0, 1]) is the ampli-
tude used to quantify the degree of cell shape irregularity. The smaller a is,
the more regular the Voronoi diagram will be, as illustrated in Fig. 8.16. Reg-
ular 3-D foams are obtained when a = 0, and completely irregular foams are
defined when a = 1.0. Fig. 8.16 shows foam samples with different degrees of
cell shape irregularity. Each sample includes 125 complete tetrakaidecahedral
cells. It is noted from Fig. 8.16 that the two foam specimens with a = 0.5
and a = 1.0 respectively have very similar cell shapes. This is because when
a is greater than 0.5, the cubic space reachable by a seed, whose coordinates
are defined by Eq. (8.39), overlaps with those spaces reachable by its adja-
cent seeds, thereby leading to highly irregular cells in the resulting Voronoi
diagram before a reaches 1.0.

As indicated in Eq. (8.39), for given relative density and amplitude of cell
shape irregularity, the predicted properties of a foam having uniform SCSAs
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depend on the set of stochastic variables ϕk
i (i ∈ {1, 2, 3}; k ∈ {1, . . . , M}, M

= the total number of seeds). These variables are produced using a generator
of uniform random numbers. To obtain the expectation values of the foam
properties, a significant number of simulations with various sets of ϕk

i (∈
[−1, 1]) are needed. In the current work, twenty samples are analyzed for
each value of a. The choice of twenty specimens (samples) will be discussed
further in Subsection 8.3.2.

Fig. 8.16 Foam samples with varying a: (a) a = 0.1, (b) a = 0.5, (c) a = 1.0.

After the cell shapes are determined, statistical variations of SCSAs can
be introduced to the uniform SCSA, A0, given by

A0 =
RL1L2L3

N∑
j=1

lj

, (8.40)

where R is the relative foam density, L1, L2 and L3 are the dimensions of
the foam sample (specimen), lj is the length of strut j, and N is the total
number of struts. To this end, each strut is assigned a random area given
by[19]

Aj = wA0(1 + bψj), (8.41)

where b(∈ [0, 1]) is the amplitude used to quantify the degree of non-uniformity
of SCSAs, ψj(∈ [−1, 1]) is a random variable with a uniform distribution, and
w, called the normalizing factor, is defined by

w =

N∑
j=1

lj

N∑
j=1

(1 + bψj)lj

(8.42)

to ensure that the relative density remains unchanged with the variation of
SCSAs. Given R, a, b and the set of random variables ϕk

i (i ∈ {1, 2, 3}; k ∈
{1, . . . , M}), the predicted foam properties depend on the set of random
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variables ψj(j ∈ {1, 2, . . . , N}), which are generated independently of ϕk
i .

Statistically, it is required to run sufficient simulations with different sets
of ψj to get the expectation values of the foam properties. In the current
study, twenty foam samples, with a remaining fixed for each sample, will be
analyzed for each given value of b. Similarly, twenty samples are considered
for each value of a when b is held constant, as indicated earlier. The reason
for choosing twenty specimens will be provided in Subsection 8.3.2.

8.3.1.2 Finite element analysis

A finite element study is performed to obtain the elastic properties of foams
with cell shape and SCSA irregularities using the commercial software pack-
age ABAQUS 6.3[32]. Graphitic carbon foams are considered here. The
Young’s modulus Es and Poisson’s ratio νs of the carbon strut material are,
respectively, taken to be 15.61 GPa and 0.33[33,34]. Each strut is represented
using a three-node beam element (element type B32 in ABAQUS), which
involves bending, stretching, twisting and shearing deformation mechanisms.
Struts are rigidly connected at the joints by node sharing. A preliminary
study has shown that using such a beam element to model each strut is suf-
ficient for convergence. It is noted that exceptionally short struts do exist in
foam specimens having highly irregular cell shapes. Typical beam elements
cannot well represent these short struts. However, since short struts only ac-
count for a small fraction (a few percent) of the total number of struts, the
effect incurred from using inappropriate element types is negligible[15].

Uniaxial compressive tests on foam specimens along three orthogonal di-
rections, x1, x2 and x3, are considered in three separate analyses to obtain the
effective Young’s moduli and Poisson’s ratios of the foam relative to the three
directions. In each analysis, a small effective compressive strain (e.g., – 0.001)
is applied to the foam specimen in the loading direction through controlling
displacements. This constrains the lateral deflections of slender struts in a
random foam model so that no local buckling of struts will take place. The
effective Young’s moduli E1, E2 and E3 of the foam are given by

E1 =
−F1

ε1L2L3
, (8.43)

E2 =
−F2

ε2L1L3
, (8.44)

E3 =
−F3

ε3L1L2
, (8.45)

where ε1, ε2 and ε3, all being – 0.001, are the applied compressive strains,
and F1, F2 and F3 are, respectively, the total reaction forces along x1, x2

and x3 directions on the prescribed boundary, which are to be obtained from
the finite element analysis. The effective Poisson’s ratios are determined as

ν12 = − u1
2

ε1L2
, ν13 = − u1

3

ε1L3
, (8.46a, b)
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ν21 = − u2
1

ε2L1
, ν23 = − u2

3

ε2L3
, (8.47a, b)

ν31 = − u3
1

ε3L1
, ν32 = − u3

2

ε3L2
, (8.48a, b)

where ui
j(i, j ∈ {1, 2, 3}) is the lateral displacement (extension) in the xj

direction perpendicular to the loading direction xi. Note that ui
j are the

effective displacements of a foam model (a parallelepiped) along the three
directions.

To determine the effective shear modulus G12, a biaxial loading test is
simulated. A tensile strain ε1 = 0.001 in the x1 direction and a compressive
strain ε2 = −0.001 in the x2 direction are applied simultaneously. Then, the
effective shear modulus G12, defined by G12 = τ12/γ12, is given by

G12 =
F1/L2 − F2/L1

2L3(ε1 − ε2)
. (8.49)

Similarly, the other two shear moduli G23 and G31 are obtained as

G23 =
F2/L3 − F3/L2

2L1(ε2 − ε3)
, (8.50)

G31 =
F3/L1 − F1/L3

2L2(ε3 − ε1)
. (8.51)

In modeling uniaxial or biaxial loading tests, displacement boundary con-
ditions are typically used[15,20,21,35,36]. However, displacement boundary con-
ditions that only restrain normal displacements may underestimate foam
properties[37]. Since the specimen is cut out of an infinite structure that
can be regarded as being periodic, spatially periodic boundary conditions
should be applied to ensure that the predicted properties of the specimen are
representative of those of the foam material[18,37,38]. The specimen obtained
by following the procedure described in Subsection 8.3.1.1 is periodic, i.e.,
each node on one face (e.g., v−) has a matched node on the opposite face
of the specimen (e.g., v+), as shown in Fig. 8.17. For a uniaxially deformed
specimen subjected to prescribed strain εi, the periodic boundary conditions
may be represented by

uk+

i − uk−
i = εi(xk+

i − xk−
i ), ωk+

i − ωk−
i = 0, i ∈ {1, 2, 3}, (8.52)

where xk+

i and xk−
i are, respectively, the positions of the matched nodes k+

and k− on the specimen boundary faces with outward unit normal vectors ei

and −ei, uk+

i and uk−
i are, respectively, the normal displacement components

of k+ and k−, and ω+
i and ω−i are, respectively, the rotations of k+ and k−.

The periodic boundary conditions given in Eq. (8.52) can be implemented
by using the option EQUATION in ABAQUS and by introducing four refer-
ence nodes N0, N1, N2 and N3, which define three two-node AXIAL connector
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Fig. 8.17 Matched nodes for implementing spatially periodic boundary conditions.

elements E01, E02 and E03 (Fig. 8.17). The three connector elements inter-
sect at reference node N0 and are located along the e1, e2 and e3 directions,
respectively. Nodes N1, N2 and N3 are allowed to move axially only along
their associated connector elements. The degrees of freedom of the matched
nodes may be coupled with those of the reference nodes by

uk+

i −uk−
i − xk+

i − xk−
i

XK+

i −XK−
i

(UK+

i −UK−
i ) = 0, ωk+

i −ωk−
i −(ΩK+

i −ΩK−
i ) = 0,

(8.53)
where Xi, Ui and Ωi are, respectively, the positions, displacements and ro-
tations of the reference nodes, the superscript “K+” denotes reference nodes
N1, N2 and N3, and the superscript “K−” means reference node N0. For
uniaxial compression along −e2, say, node N0 is fixed and a displacement
corresponding to ε2 = −0.001 is applied at node N2. The reaction force in-
duced in element E02, called ETF1 in ABAQUS, can be substituted into
Eq. (8.44) for F2, and the axial displacements of elements E01 and E03,
called EU1 in ABAQUS, can be inserted into Eqs. (8.47a,b) for u2

1 and u2
3,

respectively.

8.3.2 Results and discussion

8.3.2.1 Mesh sensitivity

Before proceeding to model 3-D foams having irregular cell shapes and non-
uniform SCSAs, an important issue that needs to be resolved is to determine
the appropriate number of cells to be included in a specimen and the appro-
priate number of specimens (S) to be analyzed for each type of foams. Based
on a finite element analysis of random heterogeneous materials using repre-
sentative volume elements (RVEs) of various sizes, Kanit et al.[39] found that
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for a given precision the effective elastic properties of the materials can be
obtained through using either a large RVE accompanied by a small number
of specimens or a small RVE accompanied by a large number of specimens.
This indicates that the number of specimens needs to be carefully chosen for
accurate predictions. As mentioned earlier, in the current study the number
of specimens is initially taken to be 20 (i.e., S = 20), which is the same as
that used by Li, Gao and Subhash[37]. Four families of specimens, with each
containing a same number of cells C(C ∈ {8, 27, 64, 125, 216}), are considered
to determine the appropriate C. For each family, twenty specimens are mod-
eled to obtain the mean values m and standard deviations δ of the effective
properties. The shape irregularity amplitude a and the relative density R re-
main to be 0.5 and 0.01, respectively, for all of the four families of specimens.
The obtained numerical results of E1, G12 and ν12 are graphically shown in
Figs. 8.18 – 8.20. The results for the other elastic properties, including E2,
E3, G23, G31, ν23 and ν31, have similar trends of variation, as displayed in
Figs. 8.18 – 8.20.

Fig. 8.18 Young’s modulus (E1) vs. the number of cells.

Fig. 8.19 Shear modulus (G12) vs. the number of cells.

From Figs. 8.18 – 8.20 it is seen that as the number of cells (C) increases,
the mean values of the effective Young’s modulus E1 and the effective shear
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Fig. 8.20 Poisson’s ratio (ν12) vs. the number of cells.

modulus G12 decrease slightly, while those of the effective Poisson’s ratio
ν12 remain almost the same. The standard deviations (δ) of all the three
properties are reduced with the increase of C for C � 125. When C = 125,
δ is small (no more than 4% of the mean value) for all the three properties.
Further increase of C does not considerably lower the value of δ for E1, but
leads to increased δ values for G12 and ν12. Therefore, C = 125 is chosen as
the number of cells to be included in each specimen.

Fig. 8.21 The shear modulus varying with the number of specimens.

In order to evaluate whether the initially chosen number of specimens
(S = 20) is an appropriate one, finite element analyses are conducted on
three types of foams: the completely irregular foams with a uniform SCSA
(a = 1.0, b = 0), the regular foams with completely non-uniform SCSAs
(a = 0, b = 1.0), and the completely irregular foams with completely non-
uniform SCSAs (a = 1.0, b = 1.0). Each specimen contains 125 cells and has
a relative density R = 0.01. The mean values (m) and standard deviations
(δ) of the effective shear modulus G12 are obtained for the three types of
foams using various values of S(S ∈ {10, 20, 30, 40, 50, 60, 70, 80}), which are
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shown in Fig. 8.21. It is seen from Fig. 8.21 that there is a slight increase in
the mean values of G12 as S increases from 10 to 20, and further increase of
S does not lead to any significant change in the values of m and δ. Hence,
the initial choice of S = 20 as the number of specimens is appropriate.

8.3.2.2 Isotropy of the effective properties

A total of 38 cases, which can be classified into four groups, as listed in Table
8.7, are analyzed in this study. Controlling parameters include the degree of
cell shape irregularity (amplitude a), the degree of SCSA non-uniformity (am-
plitude b), the relative density (R) and the strut cross-sectional shape. The
shapes for the strut cross section examined here include circle, square, equi-
lateral triangle and Plateau border, among which the last one is believed to be
closest to real strut cross-sectional shapes[33]. Hence, most of the simulations
to be presented below are conducted for foams with Plateau border strut cross
sections, as indicated in Table 8.7. Except for the cases with a = 0 and b = 0
(totaling 5), the mean values and standard deviations of the elastic properties
for each case listed in Table 8.7 are obtained from the results of the finite
element analyses performed on twenty specimens. For the former (i.e., perfect
foams with different values of R), only one specimen is needed in each case.
The maximum and minimum mean values (mmax and mmin) and the maxi-
mum standard deviations (δmax) of E1/E2, E2/E3, E3/E1, ν12/ν21, ν23/ν32

and ν31/ν13 are given in Table 8.8. In addition, to examine whether the shear
relation G = E/[2(1+ ν)] is satisfied, which is required for material isotropy,
the results for mmax, mmin and δmax of G12/GT

12, G23/GT
23 and G31/GT

31

are also listed in Table 8.8, where the values of GT
12, GT

23 and GT
31 are, re-

spectively, obtained using GT
12 = E1/[2(1 + ν12)], GT

23 = E2/[2(1 + ν23)] and
GT

31 = E3/[2(1 + ν31)]. An inspection of Table 8.8 indicates that the ex-
treme mean values of each of the nine ratios are very close to unity, and the
maximum standard deviations are all small (less than 7% of the correspond-
ing mean values). Therefore, it can be concluded that the elastic response of

Table 8.7 Modeling cases

Group
number

Cross-sectional
shape

R a b Remarks

1 Plateau border 0.01 0,0.1,0.2,
0.3,0.4,
0.5,0.8,1.0

0 Effects of cell
shape irregularity

2 Plateau border 0.01 0,1.0 0,0.2,0.5,
0.8,1.0

Effects of SCSA
non-uniformity

3 Plateau border 0.01,0.06,
0.11,0.16,
0.22

0,1.0 0,1.0 Effects of the rela-
tive density

4 Plateau border,
equilateral tri-
angle, square,
circle

0.01,0.11 1.0 1.0 Effects of the strut
cross-sectional
shape
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the foams studied is isotropic regardless of changes in cell shape irregular-
ity, SCSA non-uniformity, relative density and strut cross-sectional shape.
Accordingly, only three properties, namely, E1, G12 and ν12, will be dis-
cussed in the sequel. Similar trends can be observed for other effective elastic
properties.

Table 8.8 Isotropy of elastic properties

Ratio of elastic properties mmax mmin δmax

E1/E2 1.023 677 0.991 939 0.065 771
E2/E3 1.014 180 0.986 012 0.055 143
E3/E1 1.010 613 0.981 335 0.066 920
ν12/ν21 1.023 682 0.993 173 0.065 750
ν23/ν32 1.014 122 0.981 473 0.055 130
ν31/ν13 1.010 553 0.981 386 0.067 005
G12/GT

12 1.003 098 0.993 218 0.022 807
G23/GT

23 1.007 912 0.996 438 0.019 437
G31/GT

31 1.008 779 0.996 548 0.023 663

8.3.2.3 Effects of cell shape irregularity

The effects of irregular cell shapes on elastic properties are analyzed for low-
density foams having the same relative density (e.g., R = 0.01). For each
value of a, twenty independent lists of random variables ϕk

i (i ∈ {1, 2, 3}; k ∈
{1, . . . , M}) are used to generate twenty foam samples, each of which has a
unique arrangement of struts. Finite element analyses are then conducted on
the twenty samples, and the mean values and standard deviations of the effec-
tive properties, i.e., the Young’s moduli, Poisson’s ratios and shear moduli,
are obtained.

Figures 8.22 – 8.24 graphically show the predicted values of the Young’s
modulus E1, shear modulus G12 and Poisson’s ratio ν12 at different values
of a. From Figs. 8.22 and 8.23 it is observed that on average, both E1 and
G12 increase considerably with inereasing a (up to a = 0.5) and then stay,
respectively, around 2.8 MPa and 0.95 MPa with small variations as a in-

Fig. 8.22 Effects of cell shape irregularity on the Young’s modulus E1 (with
R = 0.01)
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Fig. 8.23 Effects of cell shape irregularity on the shear modulus G12 (with R =
0.01).

creases further. This implies that foams with a = 0.5 may be regarded as
being highly irregular. Further increase of a can no longer significantly lower
the regularity of cell shapes, as noted in Subsection 8.3.1.1. The mean values
of E1 and G12 at a = 1.0 are, respectively, 86.4% and 88.6% higher than their
corresponding values at a = 0. The regular foam (with a = 0) is the weakest
in terms of the elastic moduli. This conforms to what was observed by Van
der Burg et al.[15]. As a increases, the mean values of the Poisson’s ratio ν12,
however, decrease slightly, as shown in Fig. 8.24. Figure 8.25 indicates the
reduction of normalized SCSA, Ai/Ar, with the increase of a (up to a = 0.5),
which undermines the moduli. Here Ar and Ai are, respectively, the SCSAs
of regular and irregular foams. For the same reason as that for the effects
of a on the moduli, the mean values of Ai/Ar change insignificantly when
a > 0.5. These observations are similar to what was found by Li et al.[37] for
2-D imperfect cellular solids. To explore the reason for strong dependence
of the moduli on cell shape irregularity, Van der Burg et al.[15] visualized
the stress distributions in the struts of a foam specimen loaded by uniaxial
tension. They found that as the foam becomes less regular, stretching defor-
mations in the struts are fostered, which is similarly observed for imperfect

Fig. 8.24 Effects of cell shape irregularity on the Poisson’s ratio ν12 (with R =
0.01).
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honeycombs by Li et al.[37]. Van der Burg et al.[15] further attributed the
enhancement in the foam moduli to the appearance of chains of struts with
strong axial stresses along the loading direction when the cells in the foam
get irregular. These chains were believed to transmit the applied load from
one cell face to another in the specimen. This stiffening effect substantially
outweighs the loss in stiffness caused by the slight decrease in the SCSA,
thereby leading to a significant increase of the elastic moduli.

Fig. 8.25 Effects of cell shape irregularity on the non-dimensional SCSA (with
R = 0.01).

Roberts and Garboczi[18] analyzed random, isotropic open-cell foams with
a roughly uniform cell size. They also used the Voronoi tessellation tech-
nique to generate foam models, each containing approximately 125 cells, and
applied periodic boundary conditions to each foam specimen in their finite
element analyses. Their foam models have shapes similar to the ones gen-
erated here with a = 0.1 (Fig. 8.16a). Based on five specimens, they ob-
tained the mean values of the elastic properties as E = 2.062 44 MPa, G =
0.705 01 MPa and ν = 0.44. The Young’s modulus and Poisson’s ratio of the
solid strut material used in their study are, respectively, Es = 1 GPa and νs =
0.2. To compare with their results, finite element simulations of five specimens
having the same R, Es and νs as theirs are conducted in this study. Each
specimen contains 125 cells, as shown in Fig. 8.16a, and has a relative density
of 0.05. The mean values of the Young’s modulus E1, the shear modulus G12

and the Poisson’s ratio ν12 predicted in the current study are, respectively,
2.051 36 MPa, 0.713 36 MPa and 0.437 11, which are very close to the pre-
dictions of Roberts and Garboczi[18] mentioned above.

8.3.2.4 Effects of SCSA non-uniformity

For three-dimensional open-cell foams, the influence of SCSA variations on
the elastic properties is still unclear. The regular foams with a = 0, the
irregular foams with a = 0.3, and the completely random foams with a =
1.0, all having non-uniform SCSAs, are therefore analyzed here. Four values
of the SCSA non-uniformity amplitude, namely, b = 0.2, 0.5, 0.8 and 1.0,
are used for each of the three values of a. When b = 1.0, SCSA variations
are completely random. For each pair of a and b, twenty foam samples are
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modeled using independent lists of random variables ϕk
i (i ∈ {1, 2, 3}; k ∈

{1, . . . , M}) and ψj(j ∈ {1, . . . , N}). The relative density remains to be 0.01
for the samples analyzed here, and more samples with different values of R
will be discussed in Subsection 8.3.2.5.

The predicted values of the effective Young’s modulus E1, shear modulus
G12 and Poisson’s ratio ν12 at various values of b are shown in Figs. 8.26 – 8.28.
Figures 8.26 and 8.27 indicate that for all the three values of a considered the
elastic moduli E1 and G12 significantly decrease, in a monotonic manner, as
b increases. For the regular foams (a = 0), both E1 and G12 are reduced by
36% as b changes from 0 to 1.0, while the relative reduction is 37% for fully
irregular foams with a = 1.0 and 36% for the irregular foams with a = 0.3.
The Poisson’s ratio ν12, however, is negligibly influenced in each case by the
values of b, as shown in Fig. 8.28. An inspection of Figs. 8.26 – 8.28 also reveals
that for each value of b the elastic moduli are the highest for the completely
irregular foam with a = 1.0, the second highest for the irregular foam with
a = 0.3, and the lowest for the regular foam with a = 0, while the Poisson’s
ratio is slightly lower for the irregular foam with a = 1.0 than that for the
irregular foam with a = 0.3 and that for the regular foam with a = 0. This
agrees with what has been observed from Figs. 8.22 – 8.24.

Fig. 8.26 Effects of SCSA variations on the Young’s modulus E1 (with R = 0.01).

Fig. 8.27 Effects of SCSA variations on the shear modulus G12 (with R = 0.01).
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Fig. 8.28 Effects of SCSA variations on the Poisson’s ratio ν12 (with R = 0.01).

Moreover, it can be noticed from Figs. 8.26 – 8.28 that the differences
between the mean values of the elastic moduli for any two of the three types of
foams with a = 1.0, a = 0.3 and a = 0 are insignificantly affected by varying
b. This implies that the effect of the interaction between the cell shape and
SCSA variations on the elastic moduli of each foam is weak. When these two
variations are very small (i.e., a << 1, b << 1), the weak interaction observed
here can be analytically shown to be true for any such imperfect foam with
a given value of R.

A further examination of Figs. 8.26 and 8.27 shows that the elastic mod-
uli are affected more by the cell shape irregularity than by the SCSA non-
uniformity. This follows from the fact that the elastic moduli for the case
with a = 1.0, b = 1.0 and a = 0.3, b = 0.3 are larger than the corresponding
ones for the case with a = 0, b = 0 (i.e., foams without imperfections), even
though the two elastic moduli are both found to increase as a increases (for
fixed values of b) and to decrease with the increase of b (for fixed values of
a), as discussed earlier. The trend observed above is based on low-density
foams (with R = 0.01 here) and differs from that exhibited by foams with
high values of R, which will be discussed next.

8.3.2.5 Effects of the relative density

Figures 8.29 – 8.31 graphically show the results of the effective Young’s mod-
ulus E1, shear modulus G12 and Poisson’s ratio ν12 as a function of the
relative density for four types of foams: the regular foams with a uniform
SCSA (a = 0, b = 0), the completely irregular foams with a uniform SCSA
(a = 1.0, b = 0), the regular foams with completely non-uniform SCSAs
(a = 0, b = 1.0), and the completely irregular foams with completely non-
uniform SCSAs (a = 1.0, b = 1.0). The variation of the effective Young’s
modulus (E1) with the relative density (R) predicted using the unit cell
model developed by Li et al.[33] is also illustrated in Fig. 8.29 for compar-
ison. In calculating E1 using the formulas derived by Li et al.[33] [see Eqs.
(25) and (28) there], the effective cross-sectional area of the unit cell (A∗)
is taken to be 7L2, which is the area projected by the tetrakaidecahedral
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unit cell onto the xy-plane (Fig. 3 in [33]). For the foams with a uniform
SCSA (i.e., b = 0), the relative density (R) depends on the SCSA, as dic-
tated by Eq. (8.40). The relative density of the irregular foams with b �= 0
depends not only on the SCSAs but also on cell shapes, as governed by Eqs.
(8.40)— (8.42). Five relative densities, i.e., 0.01, 0.06, 0.11, 0.16 and 0.22,
are used for each type of the foams listed above. For the perfect foams (i.e.,
a = 0, b = 0) only one model is needed for each density. For the remain-
ing three types of foams with cell shape and/or SCSA imperfections, twenty
models are constructed for each density except for the case with R = 0.01,
which has been dealt with in the previous simulations. The statistical distri-
butions of ϕk

i (i ∈ {1, 2, 3}; k ∈ {1, . . . , M}) and ψj(j ∈ {1, . . . , N}) for the
models with R = 0.06, 0.11, 0.16 and 0.22 remain the same as those for the
models with R = 0.01.

Fig. 8.29 Effects of the relative density on the Young’s modulus E1 (in logarithmic
scales).

As shown in Figs. 8.29 and 8.30, E1 and G12 for each of the four types
of foams increase monotonically with the relative density. For the perfect
foams (a = 0, b = 0) with the Plateau border strut cross section, Fig. 8.29
shows that the values of the effective Young’s modulus (E1) predicted by the
unit cell model developed by Li et al.[33] are in very good agreement with
the finite element results. For a given value of R, the fact that the values
of E1 and G12 for the perfect foam are less than those for the foams with
a = 1.0 and b = 0 and greater than those for the foams with a = 0 and
b = 1.0 indicates that the elastic moduli (E1 and G12) are enhanced by the
cell shape irregularity but undermined by the SCSA non-uniformity. This
agrees with the observation made earlier based on Figs. 8.22, 8.23, 8.26 and
8.27 for foams with R = 0.01. Smaller values of E1 and G12 for the foams with
a = 1.0 and b = 1.0 than those for the perfect foams imply that the stiffness-
strengthening effect caused by the cell shape irregularity is less pronounced
than the stiffness-weakening effect due to the SCSA non-uniformity. This is
the same as that for 2-D imperfect honeycombs found by Li et al[37].
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Fig. 8.30 Effects of the relative density on the shear modulus G12 (in logarithmic
scales).

Fig. 8.31 Effects of the relative density on the Poisson’s ratio ν12.

Figure 8.31 illustrates the relations between the Poisson’s ratio ν12 and the
relative density R. For all of the four types of foams, ν12 decreases moderately
with the increase of R in a monotonic manner. It is seen that for various
values of R considered, both types of imperfections slightly reduce ν12, and
the influence of a is stronger than that of b when a = b.

In order to further explore the effects of the relative density (R) on the
behavior of foams having the two co-existing imperfections, the differences
between the elastic properties of the imperfect foams and those of the perfect
foams (with a = 0, b = 0) are calculated and examined. Let

eQ = Qr −Qp, (8.54)

where eQ is the difference, Q denotes the elastic property (E1 or G12), and the
superscripts r and p stand for, respectively, the random and perfect foams.
The numerical results for eQ as a function of R are illustrated in Figs. 8.32
and 8.33.

It is observed from Figs. 8.32 and 8.33 that when R increases the differ-
ences in the two elastic moduli induced solely by the presence of irregular cell
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shapes (i.e., a = 1.0, b = 0) initially increase and then decrease, while those
purely caused by the presence of non-uniform SCSAs (i.e., a = 0, b = 1.0)
decrease in a monotonic manner. A further examination of Figs. 8.32 and
8.33 reveals that when R is small the increase in the moduli due to the ap-
pearance of irregular cell shapes (i.e., a = 0.3, 0.5, 1.0) is slightly larger than
the decrease in the moduli caused by the presence of non-uniform SCSAs
(i.e., b = 0.3, 0.5). When R becomes large, however, the effects of the SCSA
non-uniformity on the elastic moduli are more significant than those of the
cell shape irregularity. As a result, the elastic moduli of the foams with the
two co-existing imperfections (i.e., a = b = 0.3, 0.5, 1.0 here) are lower than
those of the perfect foams (i.e., a = 0 and b = 0) when R is large, and the
differences between them increase with R, as illustrated in Figs. 8.32 and
8.33. These observations support and enhance those made earlier based on
Figs. 8.26 and 8.27 for foams with R = 0.01 and on Figs. 8.29 and 8.30 for
foams with various values of R.

Fig. 8.32 Differences in the Young’s modulus varying with the relative density.

Fig. 8.33 Differences in the shear modulus varying with the relative density.
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8.3.2.6 Effects of strut cross-sectional shapes

The effects of strut cross-sectional shapes are studied using completely irregu-
lar foams with completely non-uniform SCSAs (a = 1.0, b = 1.0). Four cross
sectional shapes, namely, Plateau border (PB), equilateral triangle (ET),
square (SQ) and circle (CR), and two relative densities, namely, 0.01 and
0.11, are used. The predicted mean values of normalized elastic properties
Qcs/QPB, where the superscript “cs” refers to ET, SQ or CR, at various
values of R are graphically illustrated in Fig. 8.34. It is seen from Fig. 8.34
that for a given value of R, E1 and G12 are the highest for the Plateau border
strut cross section, followed by the equilateral triangle, square and circular
strut cross sections. The order of influence of the strut cross-sectional shape
on ν12 is opposite to that on the moduli. These conform to what was found
by Li et al.[33] using a unit cell-based model. An inspection of Fig. 8.34 also
indicates that the values of Qcs/QPB are greater for a higher value of R.
This implies that as R increases, the differences in the elastic moduli (E1

and G12) resulting from the use of different strut cross sections are reduced,
while those in the Poisson’s ratio (ν12) increase. In addition, a further exam-
ination of Fig. 8.34 shows that for both values of R considered, the elastic
moduli are more sensitive to the strut cross-sectional shape than the Poisson’s
ratio. This is reflected by the fact that the maximum relative difference in
E1 and G12 caused by utilizing different strut cross sections (approximately
20%) is larger than that in ν12 (8%) for R = 0.11. The disparity is even larger
for lower values of R: the maximum relative differences in the elastic moduli
and the Poisson’s ratio are, respectively, 21% and 6% when R = 0.01.

Fig. 8.34 Effects of strut cross-sectional shapes on normalized elastic properties.

8.3.3 Summary

The effects of cell shape and strut cross-sectional area (SCSA) imperfections
on the elastic properties of 3-D open-cell foams are studied using the Voronoi
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tessellation technique and the finite element method. Voronoi diagrams with
different degrees of cell shape irregularity (amplitude a) are produced by
perturbing regularly packed seeds. Perturbations are then introduced to the
uniform cross-sectional area of the struts to generate a uniform distribution
of SCSAs with different degrees of non-uniformity (amplitude b). Twenty
finite element (FE) models are constructed, based on the Voronoi diagrams
for twenty foam samples having the same pair of a and b, to obtain the mean
values and standard deviations of the elastic properties.

Based on the simulation results and analyses presented, the following
conclusions can be drawn:

(1) The elastic response of foams with cell shape and SCSA imperfections
appears to be isotropic regardless of changes in the cell shape irregularity
(amplitude a), the SCSA non-uniformity (amplitude b), the relative density
(R) and the strut cross-sectional shape.

(2) For low-density random foams with struts of a uniform cross-sectional
area, as the cell shapes become more irregular, on average, the elastic moduli
increase considerably, while the Poisson’s ratios decrease slightly.

(3) For regular foams, the increase in the SCSA non-uniformity substan-
tially reduces the elastic moduli but has little influence on the Poisson’s
ratios.

(4) When irregular cell shapes and non-uniform SCSAs co-exist in a foam,
the effect of the interaction between the two types of imperfections on the
elastic properties appears to be weak. For low-density foams, when the degree
of irregularity and the degree of non-uniformity are equal, the stiffness gain
resulting from the appearance of irregular cells is more than the stiffness
loss due to the perturbation to the uniform SCSA. As the relative density
(R) increases, however, this order of influence is reversed. Consequently, the
elastic moduli of the foams with the two co-existing imperfections are lower
than those of the perfect foams when R becomes large, and the differences
increase with R.

(5) When the relative density increases, the elastic moduli of imperfect
foams increase remarkably, while the Poisson’s ratios decrease moderately.

(6) The strut cross-sectional shape has a significant effect on the elastic
properties of imperfect foams. At a given relative density, the highest moduli
and lowest Poisson’s ratios are obtained for the Plateau border cross section,
followed by the equilateral triangle, square and circular strut cross sections.
Also, elastic moduli appear to be more sensitive to the strut cross-sectional
shape than Poisson’s ratios.
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Abstract: A review is presented for the capillary adhesion of micro-beams
and plates, and this phenomenon exists widely in MEMS, animal hairs, car-
bon nanotubes or nanowires. Although the capillary force is usually negligible
at the macroscopic scale of human buildings, bridges or vehicles, it becomes
dominant at small scales since the surface/volume ratio increases as smaller
objects are considered. In this review, we show the fundamental theory and
analysis method for general problems of capillary adhesion. Firstly, for the
adhesion of micro-beam or micro-plate, the existing investigation deals with
the cases of both infinitesimal and finite deformation. In use of the principle
of minimum total potential energy, the critical adhered length and deflec-
tion of the micro-structure can be derived. Furthermore, the mechanism of
the hierarchical structure in adhesion can be elucidated by means of energy
theory. The method adopted in this chapter can also be developed to solve
other adhesion problems associated with van der Waals force or electrostatic
force. These findings may provide inspirations for the design of micro-devices,
MEMS, micro-sensor and non-wetting materials from different aspects (e.g.,
geometric shape, characteristic size, surface microstructure and elasticity).

Keywords: capillary adhesion, infinitesimal deformation, finite deforma-
tion, hierarchical structure, critical parameters

9.1 Introduction

Capillary action of liquid exists widely in nature, which causes a lot of in-
teresting phenomena in industry and our daily life. For example, water can
be transported by capillary tubes in plants, the lotus and lady’s mantle have
the strong capability of self-cleaning, i.e.“lotus effect”[1-3], water striders or

∗Corresponding authors, E-mails: liujianlin@upc.edu.cn, xiare@whu.edu.cn.
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spiders can walk or jump freely on water surface[4,5], Texas horned lizard
draws water by capillary action through thin channels that extend from its
feet to mouth[6], some millimeter-scale water-walking insects can arrive at
the land with the help of a lateral capillary force originating from the menis-
cus surface[7], shore birds can remove a liquid drop with its beak opening
and closing in a tweezering motion[8], and the solid components floating at
liquid interfaces can self-assemble automatically by their interacting forces[9].
Additionally, capillary force or surface tension is closely related to various ap-
plications in industry, e.g., porous media, micro-fluidic devices, self-cleaning
paints, and glass windows[10,11].

Another important issue about surface tension is the capillary adhesion
of micro-structures or devices. In the past decades, wide attention has been
attracted on the adhesion of materials and devices at micro- and nano-scales,
which may be caused by van der Waals force, Casimir force, capillary force
or some other interaction forces[12-15]. On one hand, adhesion may cause the
failure or collapse of micro-electromechanical systems (MEMS)[12]. In micro-
contact printing technology, for instance, adhesion associated with van der
Waals force leads to stamp deformation and limits the application of this
technology[16,17]. Three kinds of stamp deformation, i.e., roof collapse, buck-
ling and lateral sticking of the fibrillar structures, have been observed in the
process. Besides, van der Waals force may also cause the stiction of high
aspect ratio SU-8 resist when preparing the photonic crystals. On the other
hand, adhesion mechanisms may be useful in the manipulation and opera-
tion of some micro-devices, which are also beneficial for various biological
processes of creatures, such as adhesion of biological macromolecules, cells
or vesicles on a substrate[18-20]. Among others, an interesting example is the
striking adhesion ability of gecko, which is attributed primarily to the van
der Waals force between their feet and the contact surfaces[21,22].

In the process of adhesion, hierarchical structure may often appear com-
pared with some other morphologies. In fact, structural hierarchy plays a
significant role in the physical properties and biological behavior of various
kinds of man-made and natural materials and systems (e.g., the branches
and roots of trees, and the hierarchical macro/meso/micro/nano structure of
bones, silks and other biomaterials). As a representative example, the hier-
archical structures of the specialized adhesive feet of geckos attracted great
interest in the past few years. Gao et al.[23,24] used the fractal concept to
characterize the self-similar fibrillar structures of gecko feet at multiple levels,
and elucidated the importance of the nanometer length scale and structural
hierarchy on the superior adhesion strength.

In this review, we focus on the adhesion of micro-structures induced
mainly by capillary force of liquid films/bridges. In the areas of biology sur-
face, carbon nanotube (CNT) array, MEMS, micro-sensor and micro-fluidics,
surface tension or capillary force becomes a predominant factor with the ra-
tio of surface and volume increasing. Capillary adhesion may often happen in
the fast developing MEMS techniques, in which typical surface separations
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are in the range of 500 – 2 000 nm. Henceforth, water can be trapping in the
gaps of the high surface tension micromachining structures and then produce
strong capillary forces[12,25]. The capillary force may even drive the CNT ar-
rays to reorganize into cellular structure upon drying and produce different
nano-patterns of CNT arrays on thin films[26,27]. The process of self-assembly
of ZnO nanowire arrays into hierarchical patterns is also driven by the capil-
lary force[28]. What is more, the adhesion of animal hairs, carbon nanotubes
or nanowires of a periodically or randomly distributed array always leads
to hierarchical structures[29]. As yet, however, there is a lack of theoretical
investigation on why and how hierarchical structures form due to adhesion.

Therefore, the outline of this chapter is planned as follows: First, we will
mention the capillary adhesion models of micro-beams of infinitesimal de-
formation. Then the finite deformation of micro-beams induced by surface
tension will be introduced. Next, the mechanism of the hierarchical struc-
ture of two bundles of beams will be presented. Finally, some other capillary
adhesion phenomena about plates will be reviewed.

9.2 Capillary adhesion of micro-beams of infinitesimal
deformation

For the characteristic size of MEMS has been reduced to micro or nano-meter,
capillary force is considered as a dominant factor in design and fabricate. To
avoid the collapse of capillary adhesion of MEMS structures, a lot of ex-
perimental and analytical models have been analyzed and constructed. For
example, Mastrangelo et al.[14,15] analyzed the deflection, mechanical stabil-
ity and adhesion of thin micromechanical structures under capillary forces.
They got an approximate condition to avoid adhesion contact of a structure
to the substrate. Zhu et al.[30] also investigated the adhesion of microcan-
tilevers driven by the capillary force and calculated the critical values of
surface energy for initial and full adhesion of two opposing cantilevers. De
Bohr[31] calculated the characteristic parameters of a beam adhered by liq-
uid on a rough substrate, and compared them with the experimental results.
By using the fracture mechanics theory, they pointed out that the work of
adhesion is equal to the surface energy difference in the separated versus the
joined materials minus an interfacial energy term. Their analysis includes the
evaporation of liquid at the interface between two solid materials.

Li et al.[32] also carried out an experiment to study the deflection of a can-
tilever adhered by a liquid bridge using electronic speckle pattern interferom-
etry (ESPI). They measured the transient deformation of a microcantilever
caused by the capillary force, and then constructed the energy function of
the adhesion system based on the independent parameters of adhesion length
and volume fraction of the adhesion medium. The experimental result of the
cantilever in equilibrium is consistent with the analytical solution. Moreover,
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Kwon et al.[33] analyzed the spontaneous spreading of a liquid drop confined
between an elastic plate and a rigid substrate due to the effects of interfacial
forces. The eventual equilibrium shape of the droplet is determined by the
balance between elastic and capillary effects. They provided an analytical
theory for the static shape of the sheet and the extent of liquid spread-
ing, and the result shows that the experiments are quantitatively consistent
with the theory. The theory is relevant to the first step of painting when a
brush is brought down onto canvas. More mundanely, the result allows us to
understand the stiction of microcantilevers to wafer substrates occurring in
microelectromechanical fabrication processes.

Fig. 9.1 Capillary adhesion of two micro-beams of infinitesimal deformation. (color
plot at the end of the book)

Recently, Bico et al., Kim, Mahadevan and Liu et al.[29,34,35] calculated
the critical dry length of two or two bundles of adhered hairs by considering
capillary force and elastic deformation. Refer to a Cartesian coordinate sys-
tem (O – xy). For two micro-beams adhered by a thin liquid film, as shown
in Fig. 9.1, the hairs are assumed to have an identical size of length L,width
b, and thickness e. The distance between the two hairs at the clamped ends
is d. The lengths of the dry (unadhered) and the wet (adhered) segments are
denoted as Ldry and Lwet, respectively. The deflections of the two beams are
symmetric with respect to x-axis. The deflection of the upper beam can be
written as

w =
d

L3
dry

x3 − 3d

2L2
dry

x2 +
d

2
(9.1)

according to the boundary conditions: w(0) = d/2, w′(0) = 0, w(Ldry) = 0,
and w′(Ldry) = 0. The total potential energy includes two parts, namely, the
strain energy and the surface energy, which can be expressed as

Π =
EI

2

∫ Ldry

0

(w′′)2dx + 2(γSL − γSV)Lwetb

=
3EId2

L3
dry

− 2γ cos θY(L− Ldry)b, (9.2)
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where E is the Young’s modulus, I = be3/12 the inertia moment of the
beam, and w the deflection. The symbols γSL and γSV denote the surface
tension of solid/liquid and solid/vapor interfaces, respectively, which satisfy
the Young’s equation, γSV− γSL = γ cos θY, with γ being the surface tension
of liquid/vapor interface and θY being the Young’s contact angle of the beam.

In use of the principle of minimum total potential energy, one can ob-
tain the critical length in equilibrium state according to the condition of
dΠ /dLdry = 0:

Ldry =
4

√
3Ee3d2

8γ cos θY
. (9.3)

The analytical result of Eq. (9.3) is compared with Liu’s experimental
result in Fig. 9.2, which indicates that this solution is in good agreement with
the actual case. Furthermore, we can see that if the total length L < Ldry,
the adhesion energy induced by the introduction of a liquid film between
the two beams is insufficient to provide the strain energy of deformation,
and therefore, the two beams will not adhere together. On the contrary, if
L > Ldry, the surface energy is higher than the strain energy, and then the
adhesion of the two beams becomes possible. The calculated result requires
that the contact angle θY must satisfy 0 � θY < π/2, that is, the hairs must
be hydrophilic. In other words, capillary adhesion can not happen between
two hydrophobic hairs.

Fig. 9.2 Critical adhesion length as a function of the spacing of two micro-beams.

Based upon the similar analysis, Liu et al.[35] investigated the capillary
adhesion of three beams and two bundles of beams, and got the similar
results. Also, this method applies to the capillary adhesion of a beam stuck
on a solid substrate.
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9.3 Capillary adhesion of micro-beams of finite deforma-
tion

The above analyses of capillary adhesion in Section 9.2 are mainly based on
the elastic theory of a beam in small deformation. However, the deforma-
tion of the adhered CNTs and micro-beams is often large because of their
very small bending stiffness. The infinitesimal deformation approximation
may cause a significant error in the solutions. Therefore, based upon the ex-
perimental phenomenon of Journet et al.[36], Liu et al.[37] constructed the
adhesion models of two beams which were adhered by the capillary force in
finite deformation, as shown in Fig. 9.3a. The beams are modeled as two
parallel cantilevers of length L, whose right ends are clamped with a distance
d in between. Without loss of generality, the beams are assumed to have
an identical circular cross-section of radius R and that their left segments
of length l are adhered by water or other liquids. Refer to the Cartesian
coordinate system (O– xy). Besides the Euler coordinate x, the arc length
s, which is a Lagrange coordinate, is also used in the analysis. Because of
the configurational symmetry, only the upper beam will be considered. For
simplicity, the constraints at its right end are released and, instead, a force
P and a moment M as yet to be determined are applied there, as shown in
Fig. 9.3b. The slope angle of the beam at point s is denoted by a function
φ(s), with φ(l0) = φ0 at the midpoint s = l0 = (L + l)/2 of the dry seg-
ment. Assuming that the beam is inextensible, the boundary conditions are
φ(l) = 0, y(l) = 0, φ(L) = 0 and y(L) = d/2. In addition, the configurational
symmetry requires that φ̇(l0) = 0 and y(l0) = d/4 = y(L)/2 at the midpoint
s = l0 of the dry segment, where the dot symbol stands for the derivation

Fig. 9.3 Capillary adhesion of two micro-beams of finite deformation.
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with respect to s.
The total potential energy of the system contains the elastic strain energy,

the surface/interface energy and the potential energy of the external forces.
Considering the geometrical relation ẏ = sin φ, the energy functional with
respect to the deflection of the beam is expressed as

Π =
∫ l0

l

EIφ̇2ds + (γSL − γSV)bl − 2Py(l0) +
∫ l0

l

λ(ẏ − sinφ)ds, (9.4)

where λ(s) is a Lagrange multiplier, and I = πR4/4 the inertial moment
of the beam of a solid cylindrical cross-section. The width of the liquid film
between the two beams is assumed to be b = πR. In the above analysis, the
strain of the linearly elastic beam is still assumed to be infinitesimal though
large displacement and nonlinear force-deflection relationship are considered.
This assumption is usually reasonable for slender beams.

The variation of the functional in Eq. (9.4) about the real deflection curve
of the beam should equal zero, that is, δΠ = 0. Then, one may derive the
governing equation named as Euler-Lagrange equation

φ̈ + α2 cosφ = 0, (9.5)

where α2 = P/(EI). The transversality boundary condition at s = l can also
be derived as φ̇(l)2 = γ cos θYb/(EI), corresponding to the balance between
surface/interface energy and elastic strain energy.

Using the inextensible condition of the beam, the deflection at s = l0 is
derived as

d

4
= (l0 − l)

[
1− 2

E(k)− E(k, θ1)
F (k)− F (k, θ1)

]
, (9.6)

where sin θ1 =
1√
2k

, F (k) and F (k, θ1) are the complete and the incomplete

elliptic integrals of the first kinds, and E(k) and E(k, θ1) the second kinds,
respectively. From Eq. 9.6 in conjunction with the transversality condition

α =
√

γ cos θYb

2EI sin φ0
, the values of k and l can be determined for a given d.

Thereby, the other parameters φ0, l0, α, P and M can also be solved.
Then from Eq. (9.6), the deflection of the beam can be calculated from

the finite deformation analysis. The Cartesian coordinates of an arbitrary
point of the deformed beam can be given by⎧⎪⎪⎨⎪⎪⎩

αx = αl + 2k(cos θ1 − cos θ)

αy =
∫ θ

θ1

2k2 sin2 θ − 1√
1− k2 sin2 θ

dθ.
(9.7)

According to the above equations, the deflection curves of the two adhered
CNTs predicted by the two methods are plotted in Fig. 9.4 for a representa-
tive distance d=500 nm. For a beam with large displacement, the deformation
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predicted by finite deformation theory seems to be more “stiffer” than that
predicted by infinitesimal deformation analysis. The considerable difference
between the results of the two methods clearly evidences the necessity of
adopting the finite deformation elasticity theory to analyze microsized and
nanosized beams.

Fig. 9.4 The deflections of two micro-beams adhered by a liquid film in infinites-
imal or finite deformation.

Seeing the elliptical integration solution of Eq. (9.7), Liu[38] found that
there is an interesting analogy between a liquid bridge and a cantilever of
finite deformation, as shown in Figs. 9.5 and 9.6. It indicates that the two
governing equations take the same style after coordinate translation and scale
transformation. The stiffness, generalized force, curvature, energy origination
and some other parameters are compared for the two physical phenomena
(Table 9.1). The present analyses can make us grasp the nature of this phys-

Fig. 9.5 A liquid bridge between a vertical wall and a substrate, where Λ1 and Λ2

are the Young’s contact angles of the substrate and the side wall. respectively.
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Fig. 9.6 A cantilever under a concentrated force at the free end, where Λ1 is the
slope angle at the free end. and Λ2 is the angle between the tangent line and the
vertical line at an arbitrary point.

ical phenomenon deeply and widely, and give us some inspirations to design
certain analogy experiments between a meniscus and an elastica. Moreover,
the calculated results are beneficial to engineering applications, such as de-
sign and fabrication of MEMS and some micro-manipulations in micro/nano-
technology.

Table 9.1 Analogies between a meniscus and a cantilever

Items Liquid bridge or bubble Cantilever

Governing equation z′′(1 + z′2)−3/2 = c0 + α2z z′′(1 + z′2)−3/2 = β2z

Stiffness Surface tension (γ) Bending stiffness (EI)

Generalized force ρg or Δp P or M

Curvature Δp/γ M/(EI)

Reduced parameter α =
p

ρg/γ β =
p

P/(EI)

Angle (Λ1)
Young’s contact angle

on the substrate
Slope angle at free end

Angle (Λ2)
Young’s contact angle

on the wall
Angle between the beam

and the vertical line

Parameter (a) Maximum width Maximum deflection

Internal potential
energy

Surface energy„
γ

Z a

0

p
1+z′2dx

« Strain energy„
EI

2

Z l

0

ϕ′2ds

«

External potential
energy

−
Z a

0

(Δp0 + ρgz)xz′dx −Pa

Conservative parameter Area of the meniscus S Length of the beam l
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9.4 Hierarchical structure of micro-beams induced by
capillary force

In reality, the arrays of hairs, nanotubes and nanowires often form hierarchi-
cal structures as a result of capillary adhesion. The level number of structural
hierarchy is dependent on the number, spacing and elasticity of hairs. Bico et
al.[29] found the bundle aggregation of two bundles of hairs withdrawn from
water. Based upon this investigation, Py et al.[39] found wet fibrous struc-
tures tend to self-assemble into bundles while the liquid evaporates. They
studied the complex 3D aggregation process of the bundles. Furthermore,
they showed that the physical process imposes a maximal size for the aggre-
gates, which appears as the relevant scale for the distribution. Their simple
toy model involving the aggregation of nearest neighbors exhibits the same
statistics. The mean-field theory accounting for a maximal size is in agree-
ment with both experiments and numerics[40].

In the real world, we can observe that the level number of structural
hierarchy depends on the number, spacing and elasticity of hairs. For sim-
plicity and without loss of generality, Liu et al.[35] considered the adhesion
of N = 2n(n = 1, 2, 3, · · · ) hairs of a periodic array. They may form different
structures in the case of adhesion, and the actual structure tends to minimize
the total potential energy. Thus, the one-level adhesion morphology in Fig.
9.7 and the hierarchical (multi-level) structures in Fig. 9.8 are compared in

Fig. 9.7 One-level structure of a bundle of beams.

order to find out which one is the most energetically favorable. Figure 9.8a
illustrates a two-level adhesion in which any two hairs combine into a larger
one and the bundled hairs will adhere further in the second level, Fig. 9.8b
delineates another two-level configuration in which any three hairs group in
the first level, and Fig. 9.8c gives a hierarchical structure in which each beam
of the N level is composed of two smaller beams of the N − 1 level. For con-
ciseness, they give in the sequel only the energy expression of the hierarchical
system in Fig. 9.8c. Its non-dimensional potential energy at the equilibrium
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state is written as
Π̃3 = A1B − (2n − 1), (9.8)

where A1 = (2n − 1)
(

22n + 2n

6

)1/4

and B = (3−3/4 + 31/4)(A)1/4.

Fig. 9.8 Three possible hierarchical structures of a bundle of beams.

For the hierarchical structure in Fig. 9.8c, the potential energy of the nth
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hierarchy is written as

Π̃Hn = A2B − (2n − 1), (9.9)

where A2 = 23(n−1)/4 + 2
1− 23(n−1)/4

1− 23/4
.

The energy values of the one-level and hierarchical structures are com-
pared in terms of the non-dimensional parameters, A1 and A2. It is seen that
for a larger number n of hairs, the relation A1 > A2 or Π̃3 > Π̃Hn always
holds, or in other words, the energy of the hierarchical structure is lower
than that of the one-level structure. Therefore, the hierarchical phenomenon
is more energetically favorable. This explains why the hierarchical phenom-
ena can often be observed in reality, such as the hierarchical structure of two
bundles of hairs dipped into water[29], as shown in Liu’s experiment of Fig.
9.9. Using the infinitesimal deformation theory of elasticity, the deflection of
the adhered hairs in such a hierarchical structure can also be simulated as in
Section 9.2 but it is omitted here for simplicity.

Fig. 9.9 Experimental photos for the hierarchical structures. (color plot at the end
of the book)

9.5 Capillary adhesion of a plate

In addition to the beam’s stiction, there are some other micro-structures
which can be adhered on the substrate due to capillary force. For instance,
the stiction of a thin plate induced by the capillary force has attracted much
attention to the broad range of applications, such as MEMS industry and
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micro/nano- technology. Lin et al.[41] investigated the adhesion criterion be-
tween a center-anchored circular plate and its underlying substrate caused
by strong capillary forces. The calculation result gives a critical gap for stici-
tion. Bico’s group[42,43] studied a paper or thin sheet wrapped by a liquid
drop, which is of finite deformation state. Moreover, Liu[44] provided another
novel method to calculate the capillary adhesion problem of the plate through
analytical method.

The model is a thin plate with an arbitrary geometry, whose bound is
clamped on a plane curve Γ1. Refer to a Cartesian coordinate system O −
xz, as shown in Fig. 9.10. The plate is assumed to be adhered on the rigid
substrate due to the capillary force induced by a liquid film between the
stiction part of the plate and the substrate. Consequently, the plate includes
a non-adhered part and an adhered one, denoted by D1 and D2, respectively.
The boundary of the adhesion zone is assumed as a plane curve Γ2 as well. The
initial distance between the substrate and the plate is H , and the deflection of
the plate is w. The deflection of the plate w is much smaller than the thickness
of the plate, i.e. the plate is in the infinitesimal deformation state. As the
thickness of the liquid film is quite thin, its total volume can be ignored in
calculation, but in some cases its real morphology must be incorporated[15,33].

Fig. 9.10 Capillary adhesion of a micro-plate on the substrate. (color plot at the
end of the book)

In consideration of the bounds of plate being clamped fixedly on a plane
curve Γ1, the strain energy may be derived as

U =
κ

2

∫∫
D1

(∇2w)2dxdy, (9.10)

where the bending rigidity of the plate is κ = Eh3/[12(1−ν2)], h the thickness
and ν the Poisson’s ratio of the plate. The potential energy functional of the
plate-substrate can be expressed as

Π =
∫∫
D1

Fdxdy − 2
∫∫

D1+D2

γ cos θYdxdy, (9.11)

where F = F (wxx, wyy) =
κ

2
(∇2w)2 + 2γ cos θY.
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Considering the moving boundary conditions and taking variation of Eq.
(9.11), one can obtain the corresponding Euler –Ostrogradskii equation, that
is,

∇4w = 0, (x, y) ∈ D1. (9.12)

During the variation process, one can get the supplementary boundary
condition, i.e. the transversality condition, according to the principle of min-
imum total potential energy[

κ

2
(∇2w)2 + 2γ cos θY + κ

∂

∂n2
(∇2w)

∂w

∂n2
− κ∇2w

∂2w

∂n2
2

] ∣∣∣∣
Γ2

= 0. (9.13)

Equation (9.13) represents the equilibrium condition about the surface energy
and strain energy on the moving bound.

Especially, the case of a circular plate adhered on the rigid substrate is
investigated. For the axi-symmetrical shape of the circular plate, the stiction
domain is also a circle. The initial radius of the plate is R1, the radius of the
adhered circle is R2, and the other parameters or constraints are the same as
those in Fig. 9.9. In combination with Eqs. (9.12) and (9.13), one has

μ

2
=

λ2 − 1− 2 lnλ

(λ2 − 1)2 − 4λ2(lnλ)2
, (9.14)

where the non-dimensional parameter μ =
R2

1

H

√
γ cos θY

κ
. This expression

indicates that μ is not a monotonic function of λ, but has a minimum value
μc with the corresponding value λc. When λ < λc, μ decreases with the
increasing of λ; but when λ > λc, μ should increase with the increasing of λ.
As is well known, when the radius of the plate R1 and the surface tension of
the liquid γ increase, or the initial gap between the plate and the substrate
H and the bending rigidity of the plate κ decreases, the plate can be more
easily adhered on the substrate. Henceforth, the non-dimensional variable μ
should increase with increasing λ. The former part of the evolution rule about
μ and λ conflicts with the physical phenomenon, which is not reasonable and
should be discarded.

To reduce the adhesion of the plate, the initial radius of the plate R1

and the surface tension of the liquid γ must be decreased, or the initial gap
between the plate and the substrate H and the bending rigidity of the plate
κ should be increased. Also, the stiction of the plate is related with the
Young’s contact angles of the plate and the substrate. To satisfy Eq. (9.14),
the Young’s contact angle must satisfy cos θY � 0, which indicates that only
when θY � 90◦, i.e. the plate and the substrate are both hydrophilic, can
the plate be adhered on the substrate. This provides some good advices to
the electronic engineers that to avoid the adhesion of the micro-structures in
MEMS, the structures and the substrate should be modified to hydrophobic-
ity.
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From Eq. (9.14), it can be seen that in order to adhere on the substrate,
the radius of the plate must satisfy R2 � Rc = λcR1. If R2 < Rc, the
adhesion phenomenon of the plate will not occur. Minimizing μ with respect
to λ yields dμ/dλ = 0, i.e.

8λ2(ln λ)3 + 8λ2(lnλ)2 − 8λ2(λ2 − 1) lnλ + (λ2 + 1)(λ2 − 1)2 = 0. (9.15)

The solution of Eq. (9.15) is λc ≈ 0.176, which corresponds to the critical
value μc = 8.868. This means that the plate can not stick to the substrate
at a single contact point, but takes an initial value of adhesion radius. The
result of λc accords with the approximated result 0.175 and the experimental
result 0.15[15]. The slight difference between these calculated results and the
experimental result may be due to the meniscus effect of the liquid film and
the nonideal boundary conditions.

Identically, the above analyses are adaptable to the solid-solid contact

case, i.e. the surface energy is displaced by −
∫∫

D1+D2

γSdxdy, where γS is the

interfacial adhesion energy of per unit contact area. In this case, the boundary
conditions are the same as those of the plate-liquid-substrate contact. The
dependence relationship between the detachment radius Rd(=R1 –R2) and
the parameter H

1
2 h

3
4 is

H
1
4 h

3
4 =

Rd

[
12(1− ν2)γs/E

] 1
4

8
1
4 (1 − λ)F

1
2

, (9.16)

where F = F (λ) = (λ2 − 1− 2 lnλ)/[(λ2 − 1)2 − 4λ2(lnλ)2]. This calculated
result and the experimental result[15] are compared, indicating that the two
results are agreeable in tendency. The reason for the difference between the
two results may be that part of the parameters are not listed in the refer-
ence, for example, the poisson’s ratio of the polysilicon ν is taken as 0.23 for
calculation.

9.6 Conclusions

With the development of micro/nano science and technology, it has been a
hot topic for the advanced science to design and fabricate new materials and
new devices in micro/nano scale. Consequently, the wetting property, defor-
mation and self-assemble effect of micro-structures induced by capillary force
must be considered properly. In this chapter, we review the capillary adhe-
sion of micro-beams and micro-plates, which is termed part of the “elasto-
capillary phenomena”. Generally, all kinds of elasto-capillary phenomena can
be divided into the following aspects, namely, capillary adhesion, capillary
assembly, deformation or collapse induced by capillary force, and capillary
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buckling or wrinkling. For brevity’s sake, only the capillary adhesion is dis-
cussed in this review.

We demonstrated the general theory and analysis method of capillary
adhesion, dealing with the competition between the strain energy and the
surface energy. Firstly, the total potential energy of the system must be con-
structed. Then according to the principle of minimum total potential energy,
the governing equation and the transversality condition associated with the
moving boundary condition are derived. The finite deformation and the hier-
archical structure are also considered, mainly due to the energy equilibrium.

However, there still remain a lot of unsolved problems about capillary
adhesion, such as the adhesion of a single CNT on the substrate, assembly
of the CNT forest, and the problem of CNT beaten down for the existing
water. Capillary effect of nano-indention, capillary assembly of the cell and
biology setae are also important issues to be investigated.

These analyses may provide some inspirations for the design of micro-
devices, CNT forest, MEMS, micro-sensor and non-wetting materials from
different aspects (e.g., geometric shape, characteristic size, surface microstruc-
ture and elasticity).
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