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Preface

The electroencephalogram (EEG), a recording of electrical activities in the brain, is
becoming an indispensable tool to investigate human brain functions and to diag-
nose various psychiatric and neurological disorders. Since the first recording of a
human EEG by Dr. Hans Berger, a psychiatrist, in 1924, the development of EEG
technology has continued, and, increasingly, this technology has drawn interest
from researchers in various disciplines, including clinicians, neuroscientists, psy-
chologists, and biomedical engineers. Owing to recent advances in digital tech-
nology and software methodology, EEG is now being used as an important tool in
numerous fields, such as cognitive neuroscience, neuromarketing, neuroer-
gonomics, brain—computer interfaces, neurofeedback, and sports science.

Although there is a consensus that EEGs are easier to record than other
brain-imaging techniques, such as functional magnetic resonance imaging and
positron emission tomography, the analysis of EEGs is not straightforward. For
example, if one wants to observe functional connectivity between two brain regions
of interest, it is necessary to perform a series of EEG processing steps, including
pre-processing, EEG source imaging, and functional connectivity analysis.
Although there are several software packages offering comprehensive tools for
advanced EEG analyses, users still need to choose the specific computational EEG
analysis methods most appropriate for their EEG data. Indeed, there are many kinds
of methods for computational EEG analysis, e.g., a variety of functional connec-
tivity measures. Therefore, it is recommended that EEG researchers understand the
detailed theoretical background of the computational EEG analysis methods being
used. Knowledge of the advantages and disadvantages of each method would help
researchers achieve more successful EEG analysis results.

In this book, we intend to provide a comprehensive review of the state-of-the-art
methods for computational EEG analysis. This book is not a handbook, but a
textbook written by multiple experts. Therefore, this book should be useful not only
to biomedical engineers who are in the initial stages of working on the development
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of EEG analysis methods, but also to clinicians/neuroscientists who want to acquire
extensive knowledge of the technical details of the EEG analysis tools that they use

for their research. We hope the readers find this book useful.

Seoul, South Korea Chang-Hwan Im



Contents

Part I Introduction

1 Basics of EEG: Generation, Acquisition, and Applications
of EEG . . . ..
Chang-Hwan Im

Part I Methods

2 Preprocessingof EEG .. ... ... .. ... .. ... ... ... . ... ...
Sung-Phil Kim

3 EEG Spectral Analysis .. .................... . ... ... ....
Do-Won Kim and Chang-Hwan Im

4  The Analysis of Event-Related Potentials . .. .................
Marco Congedo

S EEG Source Imaging and Multimodal Neuroimaging . . . . .. ... ..
Yingchun Zhang

6  Methods for Functional Connectivity Analysis . ...............
Jeong Woo Choi and Kyung Hwan Kim
Part III Applications

7  Computational EEG Analysis for the Diagnosis of Psychiatric
Inesses. . . .. ...
Seung-Hwan Lee and Yeonsoo Park

8 Analysis of EEG in Medically Intractable Epilepsy. . . . ... ... ...
Ki-Young Jung

vii



viii

10

Contents

Computational EEG Analysis for Brain-Computer
Interfaces . ... ... ... . .. . . ... 193
Garett D. Johnson and Dean J. Krusienski

Computational EEG Analysis for Hyperscanning
and Social Neuroscience . ..................... ... ........ 215
Dan Zhang



Contributors

Jeong Woo Choi Department of Biomedical Engineering, Yonsei University,
Wonju, South Korea

Marco Congedo GIPSA-Lab, Centre National de la Recherche Scientifique
(CNRS), Grenoble-INP, Université Grenoble Alpes, Grenoble, France

Chang-Hwan Im Department of Biomedical Engineering, Hanyang University,
Seoul, South Korea

Garett D. Johnson Department of Electrical and Computer Engineering, Old
Dominion University, Norfolk, VA, USA

Ki-Young Jung Department of Neurology, Seoul National University, Seoul,
Republic of Korea

Do-Won Kim Department of Biomedical Engineering, Chonnam National
University, Yeosu, South Korea

Kyung Hwan Kim Department of Biomedical Engineering, Yonsei University,
Wonju, South Korea

Sung-Phil Kim School of Design and Human Engineering, Ulsan National
Institute of Science and Technology, Ulsan, Republic of Korea

Dean J. Krusienski Department of Electrical and Computer Engineering, Old
Dominion University, Norfolk, VA, USA

Seung-Hwan Lee Department of Psychiatry, Inje University, Ilsan-Paik Hospital,
Goyang, Republic of Korea; Clinical Emotion and Cognition Research Laboratory,
Inje University, Goyang, South Korea

ix



X Contributors

Yeonsoo Park Clinical Emotion and Cognition Research Laboratory, Inje
University, Goyang, South Korea

Dan Zhang Department of Psychology, School of Social Sciences, Tsinghua
University, Beijing, China

Yingchun Zhang Department of Biomedical Engineering, University of Houston,
Houston, USA



Abbreviations

ADC
AR
BCI
BEM
BSS
CAR
CCA
CDS
CSD
CSF
CSP
DCM
DFT
dSPM
DTF
DWT
ECD
EEG
EMD
EMG
EOG
ERD
ERP
ErrP
ERS
ESI
FEM
FFT
FIR
fMRI

Analog-to-digital converter
Autoregressive or autoregression
Brain—computer interface

Boundary element method

Blind source separation

Common average reference

Canonical correlation analysis
Cortically distributed source

Current source density

Cerebrospinal fluid

Common spatial pattern

Dynamic causal modeling

Discrete Fourier transform

Dynamic statistical parametric mapping
Directed transfer function

Discrete wavelet transform

Equivalent current dipole
Electroencephalogram or electroencephalography
Empirical model decomposition
Electromyogram

Electrooculogram

Event-related desynchronization
Event-related potential

Error-related potential

Event-related synchronization
Electrical source imaging

Finite element method

Fast Fourier transform

Finite impulse response

Functional magnetic resonance imaging

xi



xii

NIRS
GC
GLM
HFO
ICA
IED
iEEG
IR

IMF

ISI
LAURA
LMS
LORETA
LTI
MAP
MEG
MI

MI
MMN
MNE
MVAR
NVC
OCD
PCA
PDC
PET
PLI
PLV
PTSD
RLS
SLORETA
SNR
NeY4
SPECT
SQUID
STFT
TE
WMNE

Abbreviations

Functional near-infrared spectroscopy
Granger’s causality

General linear model

High-frequency oscillation

Independent component analysis

Interictal epileptiform discharge

Intracranial EEG

Infinite impulse response

Intrinsic mode function

Inter-stimulus interval

Local autoregressive average

Least mean squares

Low-resolution electromagnetic tomography
Linear time-invariant

Maximum a posteriori
Magnetoencephalography

Motor imagery (in brain—computer interfaces)
Mutual information (in functional connectivity analysis)
Mismatch negativity

Minimum-norm estimates

Multivariate autoregression model
Neurovascular coupling

Obsessive compulsive disorder

Principal component analysis

Partial directed coherence

Positron emission tomography

Phase lag index

Phase locking value

Post-traumatic stress disorder

Recursive least squares

Standardized low-resolution electromagnetic tomography
Signal-to-noise ratio

Seizure onset zone

Single photon emission tomography
Superconducting quantum interference device
Short-time Fourier transform

Transfer entropy

Weighted minimum-norm estimates



Part I
Introduction



Chapter 1 )
Basics of EEG: Generation, Acquisition, oo
and Applications of EEG

Chang-Hwan Im

Abstract The purpose of this chapter is to provide comprehensive knowledge about
the generation and acquisition of electroencephalograms (EEGs), which is essential
for understanding the following chapters. The physiological background on the gen-
eration of EEGs is presented, and then, a detailed description of the acquisition of
EEG signals is given. Practical applications of computational EEG analysis are also
introduced. Finally, the major advantages and limitations of current EEG technolo-
gies are discussed.

1.1 Generation of EEG

An electroencephalogram (EEG) is the flow of neuronal ionic currents recorded
using a pair of electrodes either inside or outside the scalp. The EEG signal recorded
inside the skull, referred to as the intracranial EEG (iEEG), can be used for surgical
planning of intractable epilepsies [15]; however, this is not dealt with in this book
(except in Chap. 8). Throughout this book, “EEG” refers to a scalp EEG recorded
noninvasively from a pair of electrodes attached to the scalp surface.

In comparison with brain metabolism- or hemodynamics-based neuroimaging
modalities, such as positron emission tomography (PET), functional magnetic reso-
nance imaging (fMRI), and functional near-infrared spectroscopy (fNIRS), EEGs can
offer excellent temporal resolution, allowing studies of neuronal dynamics occurring
within a few milliseconds. However, the spatial resolution of an EEG is not compara-
ble to that of an fMRI, owing to the small numbers of spatial data samplings, inherent
volume conduction effect, and physiological and environmental noises/artifacts.

A first human EEG was recorded in 1924 by a German psychiatrist, Hans Berger.
Despite the rapid technological developments, the basic methods for recording EEGs
remain unchanged from Hans Berger’s era. An EEG measures electric potential dif-
ferences between pairs of electrodes. The electrodes may be either directly attached

C.-H. Im (X))
Department of Biomedical Engineering, Hanyang University, Seoul, South Korea
e-mail: ich@hanyang.ac.kr
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to the scalp surface at some specific locations or fitted in a cap (or a net) for more
convenient attachment.

The main generators of the EEG, often referred to as EEG sources, are cortical
neurons. It is well-documented that most neurons in the human brain are concen-
trated within the cerebral cortex, which is a thin sheet of gray matter with 2—-4 mm
thickness. The apical dendrites of the cortical neurons, often referred to as large
cortical pyramidal neurons, are arranged almost perpendicularly to the surface of
the cerebral cortex. Therefore, the direction of the neuronal current flowing along
the long apical dendrites of cortical pyramidal neurons also becomes perpendicular
to the cortical surface [10, 22]. This physiological basis can be used as an important
constraint for EEG source imaging [1], which will be introduced in Chap. 5.

There are two different sorts of intracellular potentials that may potentially con-
tribute to the generation of scalp EEG signals, which are an action potential and a
postsynaptic potential. The action potential is elicited by sudden changes in trans-
membrane resting potential due to the dynamic movements of intracellular and extra-
cellular ions, such as sodium, chloride and potassium ions. When the action potential
within a neuron propagates to a synapse, a small gap junction between two neurons,
the postsynaptic potential is generated across a pair of neighboring neuronal mem-
branes. If the postsynaptic potential exceeds a threshold level, the action potential of
one neuron is delivered to the other neuron (see Fig. 1.1).

Among the two different types of potentials, the postsynaptic potential is believed
to contribute more to the generation of measurable extracranial electric fields than
the action potential. This is because the action potentials do not fire synchronously
in a large number of neurons [25]. On the contrary, although the magnitude of the
postsynaptic potential is generally smaller than that of the action potential, its rela-
tively longer duration (~30 ms) enables synchronous generation of the postsynaptic
potentials in a large number of neurons (see Fig. 1.1). As aforementioned, since the
apical dendrites of cortical pyramidal neurons are arranged almost perpendicularly
to the cortical surface, the summation of the synchronously generated postsynaptic

B J >
e 0r ‘ﬁ
1 ms 10 ms -
T e
3‘ S
Action Potential Post-synaptic Potential =% S YA

Fig. 1.1 (Left) Comparison of waveforms of action potential and postsynaptic potential. (Right)
Synchronous occurrence of postsynaptic potentials can produce unidirectional primary current flow
large enough to be recorded outside the head
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potentials in a small cortical area can induce extracranial electric fields large enough
to be measured on the scalp surface [1]. According to Himildinen et al. [10], the
current density on the cortical surface is approximately 100 nA/mm?. When numer-
ous cortical neurons within a small area are activated synchronously, a unidirectional
neuronal current flow is formed. Figure 1.1 depicts the comparison between action
potential and postsynaptic potential, as well as a schematic illustration of the gener-
ation of the unidirectional neuronal current flow.

The unidirectional neuronal currents, which can be approximately modeled as
equivalent current dipoles (ECDs) in EEG source imaging problems [6] (see Chap. 5
for more details), are called primary or impressed currents [22]. Since the human
body is filled with electrically conductive media, the extracellular currents induced by
the primary currents can flow even to the farthest part of the human body. These extra-
cellular currents are known as secondary, volume, or return currents [22]. According
to the electromagnetic theories, the flow of the secondary currents results in nonuni-
form potential distributions on the scalp. The measurement of the potential difference
between two distant scalp locations over time is the EEG.

Because the EEG measures dynamic changes in potential differences originating
from the secondary current flows, precise evaluation of conductivity profiles of the
volume conductors, i.e., different tissue compartments inside the head, is important,
not only to understand the underlying mechanisms of the EEG, but also to build a
precise head model to calculate electric field quantities generated by primary neu-
ronal currents (this process is called forward calculation). A human head can be
roughly modelled with four different regions: brain, cerebrospinal fluid (CSF), skull,
and scalp. Table 1.1 shows the typical conductivity values when the conductivity of
each region is assumed to be isotropic (having uniform conductivity in all directions)
and homogeneous [9]. The most notable point in the conductivity profile shown in
Table 1.1 is that the conductivity value of the skull is even smaller than those of the
other tissues. Because of the poor electrical conductivity of the skull, the secondary
currents are severely distorted and/or attenuated before they are delivered to the scalp
surface. Since the tissue conductivity is an important factor affecting the reliability
and accuracy of EEG source imaging, anisotropic conductivity characteristics are
sometimes considered. For example, the skull has an anisotropic conductivity prop-
erty, approximately 0.014 and 0.0107 S/m for the directions normal and tangential to
the skull surface, respectively [2]. White matter tissues also have an anisotropic con-
ductivity property: the white matter conducts secondary currents much better along
a fiber direction than in its transverse directions [31]. In practice, however, a rough
approximation of the human head structure as piecewise isotropic and homogeneous
volume conductors (e.g., brain, CSF, skull, and scalp) is most widely used. More
detailed discussion of this topic is provided in Chap. 5.
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Table 1.1 Typical conductivity values for different brain tissues/regions [9]

Regions Absolute conductivity (S/m) | Relative conductivity
Brain 0.22 1

CSF 1.79 8

Skull 0.014 1/16

Scalp 0.22 1

1.2 Acquisition of EEG

Initial analog EEG devices recorded ongoing EEG activities on printed paper, when
no quantitative EEG analysis was possible. Nowadays, owing to the development of
computer technology and digital engineering, EEG signals are stored in computers as
sampled numeric data. The use of a digital EEG enables us to utilize a variety of com-
putational EEG analysis technologies, such as time-frequency analysis, functional
connectivity analysis, and source imaging.

To record EEG data, at least two electrodes must be used, because EEG measures
the potential difference between two distant scalp locations. Recent EEG recording
devices allow simultaneous recording of EEG signals from many scalp locations.
There are two types of EEG recording methods: bipolar and unipolar methods. In
the bipolar method, electrodes are all paired, and the potential differences between
each pair of electrodes are recorded. In the unipolar (or monopolar) method, the
potential differences between each electrode and a reference electrode are recorded.
Theoretically, the reference electrode in unipolar recording can be positioned any-
where; however, because the distribution of potential difference on the scalp surface
varies according to the location of the reference electrode, average reference is fre-
quently used. Average-referenced potential of each electrode can be readily evalu-
ated by subtracting the average of all electrodes from the potential difference of each
electrode. Average reference is particularly useful in depicting spatial distributions
of potentials on the scalp surface, usually referred to as topography or topographic
map.

EEG electrodes are generally attached on the scalp according to international stan-
dard configurations represented by the international 10-20 system. In the 10-20 sys-
tem, electrodes are placed at 10 and 20% fractions of the geodesic distances between
anumber of anatomical landmarks such as inion, nasion, and two preauricular points.
Smaller subdivisions (e.g., the 10-5 system) are also used for the placement of more
electrodes. Further information on the electrode systems and electrode naming can
be found in Oostenveld and Praamstra [24] and other sources—e.g., Wikipedia,
https://en.wikipedia.org/wiki/10-20_system_(EEG).

In general, most EEG recording devices are composed of a signal amplifier, analog
filter, and analog-to-digital converter (ADC). Use of high-quality signal amplifiers is
necessary to display and process EEG signals on the order of microvolts. Since the
recorded EEG signals are usually contaminated by unwanted environmental and/or
systemic noises, such as alternating current (AC) power noises, a variety of electronic
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circuits are implemented in the EEG amplifier to remove or reduce the noise. Analog
filters can also be used to remove specific noise components and increase signal-to-
noise ratio (SNR). High-pass and band-reject (notch) filters can be used optionally
to reject low-frequency physiological noise (e.g., respiration artifact) and AC power
noise, respectively. All EEG devices should include an analog low-pass filter with
a cutoff frequency less than half of the sampling rate to prevent aliasing, unwanted
distortion in the sampled EEG signal. This type of analog low-pass filter is generally
referred to as the anti-aliasing filter. This will be dealt with in a more detailed manner
in Chap. 3. ADC converts the amplified and filtered analog signals to digital EEG
signals using sampling and encoding procedures [28].

1.3 Computational EEG Analysis

Once the digital EEG signals have been stored in storage media, a variety of forms
of information characterizing the underlying brain activities can be extracted from
the numeric data. In this book, four major computational EEG analysis methods are
introduced: EEG spectral analysis (Chap. 3), event-related potential (ERP) analy-
sis (Chap. 4), EEG source imaging (Chap. 5), and functional connectivity analysis
(Chap. 6).

1.3.1 EEG Spectral Analysis

One of the main advantages of EEG over the other hemodynamics- or
neurochemistry-based neuroimaging modalities, such as fMRI and PET, is its supe-
rior temporal resolution that makes it possible to investigate neuronal activities chang-
ing on the order of tens of milliseconds. Thanks to the high temporal resolution of
EEG, a large amount of useful information can also be obtained from frequency
domain (or spectral) analysis. It is well known that changes in the EEG power
spectrum are directly or indirectly associated with a variety of ongoing brain activi-
ties, e.g., mu-band (8—12 Hz) event-related desynchronization (ERD) and beta-band
(18-22 Hz) event-related synchronization (ERS) associated with motor execution
[11] and alpha-band (8—13 Hz) ERD associated with visual encoding [16]. EEG
spectral analysis can also provide useful biomarkers to help diagnose and charac-
terize various psychiatric diseases and neurological disorders. For example, reduced
frontal gamma-band (30-50 Hz activity may indicate declined cognitive function [3]
and increased midline beta-band (13-30 Hz) activity may be an indicator of restless-
leg syndrome [8, 14]. Spectral analysis can also be used to implement various types
of brain—computer interfaces (BCls) and neurofeedback systems [12].
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1.3.2 Event-Related Potential Analysis

In the history of EEG, the most important advancement was the use of stimulus-locked
averaging of event-related EEG. Using event-related potentials (ERP) analysis, one
can observe spatiotemporal components of stimulus-locked brain electrical activities
with reduced background noise. Examples of important ERP components include
P300 [20], N170 [4], mismatch negativity (MMN) [17], and error-related negativity
(ERN) [30], which have been widely used not only for cognitive/clinical neuroscience
studies [21] but also for BCI applications [7]. A series of methods has recently been
proposed to extract more precise spatiotemporal ERP waveforms with fewer repeated
trials, and this will be introduced in a detailed manner in Chap. 4.

1.3.3 EEG Source Imaging

The limited spatial resolution of EEG can be substantially enhanced by performing
EEG source imaging, or electrical source imaging (ESI), which estimates locations,
directions, and/or distribution of EEG sources by solving mathematically defined
problems called inverse problems [23]. To solve the inverse problems, a procedure for
modeling the human head and calculating the relationship between EEG sources and
scalp potentials is necessary. This procedure is generally referred to as forward calcu-
lation or solving forward problems. Because accurate forward calculation is impor-
tant to obtain accurate inverse solutions, high-precision numerical methods, such as
the boundary element method (BEM) and finite-element method (FEM), have been
adopted. To solve the inverse problems, various algorithms and models have been
proposed, each of which has its own advantages and drawbacks. Detailed descriptions
of the methods for EEG forward/inverse problems can be found in Chap. 5.

1.3.4 Functional Connectivity Analysis

Traditional neuroscience studies focused on functional specification of brain areas;
however, recent neuroimaging studies exhibited increased interest in the functional
connectivity among different brain areas. EEG is especially useful to study func-
tional connectivity between two recording sites (or brain areas after EEG source
imaging) because of its high temporal resolution. There are different kinds of func-
tional connectivity measures that have been actively applied to EEG analyses, such
as coherence, phase-locking value (PLV), phase lag index (PLI), Granger’s causal-
ity (GC), and partial directed coherence (PDC). Functional connectivity analysis
has proved to be useful to characterize various psychiatric diseases. Indeed, several
recent studies have shown disrupted or abnormal functional connectivity patterns in
patients with psychiatric illnesses; examples include schizophrenia [27], mild cogni-
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tive impairment [26], and post-traumatic stress disorder [13]. In particular, functional
connectivity analysis is useful to study epilepsy because epilepsy is thought to be
one of the most representative brain network disorders [18]. Detailed descriptions
of the functional connectivity measures can be found in Chap. 6.

1.4 Applications of EEG

In the early stage of development of EEG, visual inspection of EEG waveforms was
the only way to use EEG in practical applications. Indeed, visual inspection of EEG
waveforms is still useful in studying sleep and diagnosing some neurological dis-
orders, such as epilepsy. Dissemination of digital EEGs expanded the application
fields of EEGs from limited research and diagnostic applications to more-extensive
applications, including cognitive neuroscience study, diagnosis of psychiatric dis-
eases, neuromarketing, neuroergonomics, sports science, and human brain mapping.
Recently, owing to the rapid development of digital engineering, EEGs can be applied
to real-time applications, such as BCI and neurofeedback.

The use of EEG in practical applications has steadily increased and is expected
to continue to increase. Indeed, EEG has many advantages over the other methods
to study brain functions, as follows:

e EEG is perfectly noninvasive, without any exposure to radiation or high magnetic
field

EEG is economical

EEG devices can be made small and portable

EEG has high temporal resolution

EEG devices do not generate any noise

EEG can be recorded in an open environment

EEG can be acquired without active response from subjects.

Traditionally, EEG data were acquired in laboratory or clinical environments,
where there are high-end EEG recording devices with a large number of channels
and well-motivated participants who have agreed to participate in experiments with
long durations. Recently, however, the advancement of wireless technology and high-
performance biosensors enabled the development of wearable EEG devices that are
easy to wear and comfortable for long-term use, expediting the development of
novel applications of EEG that do not necessarily require laboratory settings, e.g.,
monitoring the brain activity of healthy persons during daily life [5, 19, 29].

Despite the recent development of EEG technology, EEG still has some intrinsic
limitations that need to be overcome, examples of which include low spatial reso-
Iution and low SNR. Therefore, development of new computational EEG analysis
methods is still necessary to enhance the reliability and usability of EEG.
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Preprocessing of EEG e

Sung-Phil Kim

Abstract Preprocessing of the EEG signal, which is virtually a set of signal process-
ing steps preceding main EEG data analyses, is essential to obtain only brain activity
from the noisy EEG recordings. It has been shown that the design of preprocess-
ing procedures can affect subsequent EEG data analysis outcomes. Preprocessing of
EEG largely includes a number of processes, such as line noise removal, adjustment
of referencing, elimination of bad EEG channels, and artifact removal. This chapter
presents an overview of the methods available for each process and discusses prac-
tical considerations for applying these methods to the EEG signals. In particular,
considerable attention is paid to the state-of-the-art artifact removal methods since
there are still plenty of opportunities to enhance the artifact removal techniques for
EEG, in the perspectives of both signal processing and neuroscience. It is desirable
that this chapter provides the readers an overall view of EEG preprocessing pipelines
and serves as a handbook guide for the practice of EEG preprocessing.

2.1 Introduction

Preprocessing of the EEG signal is an indispensable step for the analysis of EEG in
most circumstances. Although there is still a lack of the standard pipeline of EEG
preprocessing [8, 37, 58] it generally includes any necessary digital signal processing
operations to polish up raw EEG signals with an aim to leave only brain activity
signals for subsequent analyses. Often, EEG preprocessing also involves procedures
to enhance spatiotemporal characteristics of the EEG signal related to the task used
in a study [65].

A number of studies have demonstrated the influences of EEG preprocessing on
the subsequent data analysis results [8, 33, 90, 110, 112]. For instance, the classi-
fication of different mental states from EEG or the control performance of a brain-
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computer interface (BCI) could be dependent on how EEG preprocessing treated the
recorded EEG signals. In fact, it is obvious that any analytic result from the EEG
signals containing significant noise and artifacts is likely to draw misleading conclu-
sions. Recent reports also emphasize the standardization of preprocessing routines
for multi-site data collection in divergent experimental environments [8, 37].

At the center of EEG processing lies the removal of any unnecessary covert and
overt components of the EEG signals. In this chapter, we denote such unneces-
sary components as noise and artifacts. Following the previous notion [65], noise is
regarded as neurological activities irrelevant to an examined behavioral task whereas
artifacts are regarded to originate from external sources unrelated to neurological
activities, such as eye movements, respiration or electrical interference. As most
EEG preprocessing techniques pay attention to removing artefacts, we will also nar-
row our focus on the methods used to eliminate artifacts to clean up the EEG signals.
Note that the topics covered by this chapter do not include the extraction of fea-
tures from the EEG signals for particular applications, which should be discussed
separately.

This chapter begins with the description of early-stage procedures to remove
basic artifacts, sort out contaminated channels and possibly adjust references. It then
discusses a range of methods to remove artifacts from the EEG signals, followed by
brief discussion on EEG preprocessing.

2.2 Early-Stage Preprocessing

Early-stage EEG preprocessing involves fundamental and semi-automated orga-
nization of signal processing functions. It is distinguished from common artifact
removal procedures as this stage of preprocessing is largely independent of any spe-
cific artifact. This chapter describes key parts of early-stage preprocessing including
the removal of line noise, referencing and the elimination of bad channels. Before
describing them, however, it is worth reviewing background characteristics of the
EEG signals.

2.2.1 Characteristics of Background EEG

A basic and brief summary of the characteristics of background EEG activity is given
as follows [104]. The frequency range of EEG is reportedly limited approximately
from 0.01 to 100 Hz. The amplitudes of EEG generated from the brain typically range
within 2100 wV. The power spectral density of EEG is known to follow the power
law [44]. Background brain rhythms are present in EEG, generally being classified
in terms of oscillatory frequency into five disjoint bands: delta (0.5-4 Hz), theta
(4-8 Hz), alpha (8-13 Hz), beta (13-30 Hz) and gamma (30-100 Hz). More details
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of the implications and functions of these rhythms can be found in other resources
(e.g.see [10, 41, 63, 98]).

It is reasonable to consider the EEG signal as stochastic due to the lack of genuine
EEG measurements [93]. In addition, over a long-term period, the EEG signals should
be viewed as a non-stationary time series [57, 66]. However, EEG within a short
time window can be approximately stationary with static statistical properties. The
length of such a window containing stationary EEG signals varies with environments,
generally ranging from several seconds to minutes [51].

2.2.2 Line Noise Removal

Most efforts to eliminate line noise from the EEG signal rely on notch filtering at
60 Hz. A notch filter is typically implemented with a certain frequency width sur-
rounding 60 Hz (e.g. a width of 10 Hz). Consequently, notch filtering, although
successfully removing line noise, could cause unintended distortions in signal com-
ponents oscillating between 50 and 70 Hz. Also, the notch filter can reportedly
generate a transient oscillation in baseline activity, leading to a potential issue in
data interpretation [18]. Follow-up low-pass filtering with a cutoff frequency lower
than 50 Hz may remedy this problem, but instead give rise to other issues such as
alteration of temporal structures of EEG [106] or spurious interactions between EEG
channels [40].

One suggestion to overcome this problem is estimating line noise embedded in
the recorded EEG signals as precise as possible and subtracting it from the data [8,
80]. This method employs multi-taper decomposition to find line noise components
in the signal. A short-time window slides over the course of the signal in which the
transformation of EEG time series based on multi-tapers is carried out [5]. This trans-
formation can effectively estimate spectral energy within each frequency band. Then,
a regression model is applied to estimate the amplitude and phase of sinusoidal line
noise (e.g. sinusoids at 60 Hz) in the transformed frequency domain. The Thompson
F-test evaluates a significance of the magnitude of the estimated line noise. A time
series of sinusoidal line noise is reconstructed if the magnitude is significant. This
process is repeated over the sliding windows. The reconstructed line noise signal
is subtracted from the original EEG signal. The entire process is repeated until the
magnitude at the frequency of line noise becomes non-significant (Fig. 2.1). In this
way, line noise components can be removed without damaging background spectral
components [83].

2.2.3 Referencing

We often subtract a reference (with the same time resolution as the recorded EEG
signals) from the original EEG signal at each channel. The reference signal should
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Fig. 2.1 Line noise removal using the multitaper transformation

remain unchanged relative to the EEG signals during the recording such that dif-
ferences of the EEG signals from reference can effectively represent brain activity
related to a study. Typical choices of reference include a signal recorded at a mastoid
channel, an EEG signal at a particular channel, the average of two mastoid signals
or the average of the entire EEG channels. In any case, it is strongly recommended
that a researcher should inspect a chosen reference signal carefully to ensure that its
amplitude level is on par with those of other EEG signals and it has no correlation
with task-induced brain activity.

Referencing to a mastoid channel has a potential problem because it generates a
single point of failure. If the contact to a mastoid becomes poor at any point during
the recording, referencing to the mastoid can increase signal variance tremendously,
resulting in irreversible contamination of EEG data. The same problem exists for ref-
erencing to a particular EEG channel. Using the common average reference (CAR)
may reduce the effect of single-point failure [9], but still suffer from an outlier chan-
nel. One simple solution to this problem is detecting and removing bad channels
before using CAR [8]. There are other systematic re-referencing methods developed
to address the issues of reference, based on physical considerations and electrody-
namics [38, 113, 114] or on statistical approaches [48, 69, 73].

2.2.4 Bad Channel Detection

It is often necessary to detect a noisy or bad channel that exhibits a contaminated
EEG signal [8]. To detect a bad channel, we can screen each channel to identify
EEG signals with excessively large amplitudes. The robust z-score can be used to
detect extreme amplitudes. For instance, a bad channel is determined when it shows
arobust z-score of the standard deviation greater than a threshold. A bad channel can
be also detected by investigating correlation of a single channel with others. Normal
EEG recordings show across-channel correlations in the low-frequency components.
Hence, the correlation of one channel with other channels after low-pass filtering
can allow us to detect bad channels. If two bad channels are incidentally correlated
with each other, we can attempt to predict one channel using other channels. The
predictor channels can be randomly selected from the remaining channels. Often,
a contaminated channel exhibits relatively large energy in high-frequency bands.
Thus, we can measure a ratio of the power of high-frequency components to that of
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low-frequency components and detect a bad channel showing a ratio higher than a
threshold.

Once being detected, bad channels are replaced with virtual healthy channels
created by the interpolation from neighboring channels, in order to reconstruct the
global brain responses [8, 31]. There exist a number of interpolation schemes useful
for channel reconstruction, including spherical splines [87], higher-order polynomi-
als [4], nearest-neighbor averaging [15] and radial basis function [53]. Using spher-
ical splines allows accurate estimation of scalp potentials if the electrode mapping
is sufficiently dense [38, 97]. Interpolation using a statistical method such as radial
basis functions has advantages of cost-effectiveness with less computational loads.

2.3 Artifact Removal

In this section, we briefly review the potential sources of artifacts mixed in the EEG
signal and the techniques to remove or reduce artifacts. We primarily deal with artifact
removal techniques, forgoing other steps of artifact management such as artifact
detection. However, it does not mean that other methods including artifact detection
or artifact avoidance are less crucial than artifact removal. In fact, artifact removal
is often accompanied by artifact detection for efficient processing of artifacts. There
have been a number of methods for artifact detection that the interested readers can
refer to [3, 14, 32, 52, 81, 84].

2.3.1 Sources of Artifacts

The sources of EEG artifacts can be categorized into two classes: internal and external
sources. The internal sources originate from the physiological systems of self and
include electromagnetic activities of heart, eyes, muscle and so on. The external
sources include all other possible signals from environments that can contaminate
EEG such as wireless telecommunication signals, electrode attachment, recording
equipment and cable movements [93]. Recently. the handling of external artifacts
has become more important as EEG applications tend to move out of laboratories
toward in-home healthcare systems [100]. Yet, the external sources, owing to their
origins, can be inhibited once being identified. On the other hand, the internal artifacts
physiologically permeate EEG, making it difficult to prevent them from occurring
in advance. Therefore, most artifact removal methods have been focused on dealing
with the internal artifacts and here we also pay our attention to the most pronounced
internal artifacts that have been handled by EEG artifact removal methods.

Ocular artifacts include electric activities generated by eye movements or eye
blinking [22, 23]. Interference by ocular artifacts is strong enough to be visible
in EEG waveforms. EEG channels proximal to eyes are more vulnerable to ocular
artifacts. Ocular artifacts can be detected by electrooculogram (EOG) measurements.
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EOG recorded simultaneously with EEG offers an opportunity to readily remove
ocular artifacts from EEG as it helps identify true profiles of artifacts. Once knowing
the waveforms of ocular artifacts, removal algorithms can be developed to subtract
them from the EEG signal without a need to reject contaminated EEG segments.
To measure EOG for ocular artifact removal, it is recommended to record vertical
(VEOQ), horizontal (hEOG) and radial (rEOG) oculomotor signals [88].

Muscle artifacts include electric activities originating from muscle contraction of
the body parts, including face, head, neck, limbs and others. Compared to ocular
artifacts, muscle artifacts generate more various forms depending of the sources
of muscles and related movements. The electrical signals associated with muscle
artifacts can be measured by electromyogram (EMG). However, widespread sources
of muscle artifacts over the body make it challenging to identify true profiles of
artifacts. In addition, the spectral properties of cranial muscle artifacts vary across
sources, corrupting high-frequency EEG components as well as low-frequency ones
[93, 105]. The spatial distribution of muscle artifacts is wider than ocular artifacts,
almost uniform over the entire scalp [44]. Temporal patterns of muscle artifacts are
often associated with tasks as movements of subjects naturally occur in response
to task requirements [95]. Considering all these issues, it still remains a significant
challenge to remove muscle artifacts from EEG [76, 77, 95].

Cardiac artifacts originate from electric activities of the heart. Cardiac artifacts
generally show low amplitudes compared to other artifacts. Cardiac electric activ-
ity can be measured by electrocardiography (ECG). They have well-known regular
characteristics, which resemble epileptic EEG activity and thus possibly leading to
incorrect seizure diagnosis [30]. However, for the perspective of removal algorithms,
regular cardiac waveforms make it easier to correct in EEG. When an EEG electrode
is positioned over a scalp artery, its contact with the skin can alter periodically due
to recurrent motion of a pulsating vessel, which is likely to rhythmic electric activity
similar to EEG oscillations [68]. But this pulsation effect shows periodicity syn-
chronous with the heart, rendering itself being identified by ECG.

2.3.2 Artifact Removal Methods

Artifact removal methods aim to cancel or correct artifacts in EEG with minimal
distortions in the brain signal. Here we briefly overview the computational methods to
remove artifacts from EEG [52, 104]. Along this path, we avoid describing the details
of mathematical backgrounds underlying each method (e.g. blind source separation
(BSS), regression, linear transformation of multivariate Gaussian, etc.). Overall, an
EEG artifact removal method belongs to one of the two kinds: a group of methods
that corrects a single channel independently or another group that processes the
whole channels all together. The single-channel processing methods employ various
techniques including linear regression, filtering, wavelet transform and empirical
mode decomposition (EMD). The whole-channel processing methods are based on
BSS to estimate a set of hidden sources from an observed mixture of those sources
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with only limited information. Below we present several basic methods from both
groups that have been most widely used in EEG studies.

2.3.2.1 Linear Regression

Assuming that artifact reference channels are available and contain thorough wave-
forms of artifacts, linear regression has been one of the main vehicles used to cancel
artifacts from the EEG signal due to its simplicity and ease-of-use. A basic proce-
dure is to estimate a portion of EEG contaminated by artifacts using regression and
to subtract the regressed portion from the contaminated EEG [22, 23, 45]. Linear
regression assumes that an EEG signal is the sum of an original brain signal and
a fraction of the artifact represented in reference. It estimates this fractional factor
from both the observed EEG signal and reference channel. The major drawbacks
of linear regression are that one or more reference channels must be available (e.g.
EOG or ECG), that it assumes a linear combination of EEG and artifacts where the
EEG signal may possess internal nonlinear dynamics and non-stationary, and that
it only applies well to a few types of artifacts such as EOG and ECG. However,
if reference channels are available, linear regression is still an effective solution to
remove artifacts [36, 107].

Linear regression methods operate particularly well with ocular artifacts since
EOG can be directly measured or indirectly inferred from EEG [13, 42]. However,
simple subtraction of a regressed portion of ocular artifacts from EEG can also take
out cerebral components. This problem is termed bidirectional contamination [91].
Many methods have been proposed to address bidirectional contamination among
which the aligned-artifact average procedure demonstrates promising results of can-
celing artifacts from eye movements or blinks while minimizing EEG contamination
[21-23].

2.3.2.2 Filtering

Filters used for artifact removal build a statistical machine whose parameters are
adaptively estimated with certain objectives, learning rules, model structures as well
as data. Three types of filters have been primarily adopted for EEG artifact removal
[104].

Adaptive filters model the way artifacts contaminate the EEG signal by adjusting
the filter weights according to a learning rule formed by an optimization algorithm
[47]. They assume no correlation between the EEG signal and artifacts. For example,
let x[n] be an observed EEG signal mixed with an unknown clean EEG signal y[n]
and an additive artifact signal z[n] (i.e. x[n] =y[n] +z[n]). If the reference to artifact,
r[n], is available, the adaptive filter adjusts its weights, w, to minimize error between
x[n] and wTr[n]. Since r[n] is assumed to be uncorrelated with y[#], the optimal
weights would make w” r[n] as close to z[n] as possible. Then, a difference, {x[n] —
wT r[n]} will become close to y[n] (Fig. 2.2). Many learning algorithms are available
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Fig. 2.2 EEG denoising with adaptive filtering and reference to artifacts

to adjust weights, including least mean squares (LMS) and recursive least squares
(RLS) [47]. It has been shown that adaptive filters are superior to linear regression
because proportion factors are less constrained [91]. However, as in linear regression,
adaptive filters still require reference channels.

The Wiener filter is a linear time-invariant (LTT) filter that minimizes the mean
squared error between desired response and filter output [47]. Optimal weights of the
filter are estimated based on the Wiener-Hopf equation. Learning the weights is done
offline with training samples that contain EEG and artifact signals. Having learned
its weights, the Wiener filter can operate with the contaminated EEG signals without
reference. However, the Wiener filter performance may deteriorate over time if a
proportion of EEG contaminated by artifacts changes over time (i.e. non-stationary).

Bayesian filters in a linear or nonlinear form can overcome some shortcomings
of both linear regression and the Wiener filter as they can sequentially update the
states online without the need of reference channels. Here the states approximate
unknown clean EEG signals. The system model in Bayesian filters approximates the
sequential transition of clean EEG data according to the first-order Markov process
and the observation model estimates the posterior probability distribution of clean
EEG data after observing contaminated EEG data using a likelihood model and
Bayesian approximation. The parameters of the system and observation models need
to be learned from the training data as in the case of the Wiener filter. Although it
is computationally expensive to estimate probability distributions in general, with
some assumptions, Bayesian filters can reduce to simpler forms such as the Kalman
filter or the particle filter. In particular, the Kalman filter has been widely applied for
artifact removal for EEG [50, 59, 82].
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2.3.2.3 Wavelet Transform and Empirical Mode Decomposition

EEG denoising can be achieved by decomposing a single-channel EEG signal into a
set of fundamental basis signals, with a premise that some basis signals may contain
the information of artifacts only. As such, we can find those artifact-related basis
signals and remove them from the decomposed set. Two representative methods for
decomposition of an EEG signal are presented below.

Wavelet transform convolves a given signal with a scaled and shifted version of
a mother wavelet function. It results in a set of coefficients corresponding to each
scale and time shift. The coefficients represent a similarity between a segment of the
signal and the mother wavelet at a given scale. The discrete wavelet transform (DWT)
is derived from continuous wavelet transform with discrete-time sampling. A basic
procedure of the DWT is filtering a signal with low- and high-pass filters, respectively,
where the low-pass filter works similar to the scaling function and the high-pass filter
works similar to the mother wavelet function [52]. Then, the low-pass filtered output
is passed to the next level of filtering with low- and high-pass filters again. This
procedure is repeated up to K levels and yields one approximation coefficient and K
detail coefficients where the approximation coefficient is obtained from the final low-
pass filtering and the detail coefficients are obtained from a series of the high-pass
filtering through K levels. Then, for denoising, a threshold is applied to the detail
coefficients to sort out the ones with small magnitudes. It draws upon a hypothesis
that the signal can be strongly correlated with a properly chosen mother wavelet basis
at some levels whereas artifacts cannot be [104]. Finally, the artifact-reduced signal
is reconstructed by the refined detail coefficients and the approximation coefficient
[94]. Systematic ways of selecting a threshold can be found in some studies [34].

Empirical model decomposition (EMD) is a data-driven technique that decom-
poses a signal into a sum of the band-limited basis functions, called intrinsic mode
functions (IMFs) [49]. The IMFs have zero means and are amplitude and frequency
modulated. EMD has been shown to perform well with nonlinear and non-stationary
signals. If different sets of IMFs can separately represent the signal and artifacts,
we can reconstruct a clean EEG signal by removing artifact-related IMFs from the
decomposed set. EMD has been successfully applied to artifact removal of EEG
[70, 94, 115]. More advanced methods to overcome shortcomings of EMD (e.g. low
robustness against noise, no mathematical background), including ensemble EMD
(EEMD) [99, 116] and multivariate EMD (MEMD) [108], have also been adopted
for artifact removal.

2.3.2.4 Blind Source Separation

Blind source separation (BSS) has been most widely used for artifact removal when
the information about artifacts is limited—for instance, no reference is provided.
The basic BSS methods used for artifact removal assume a linear mixture model in
which the observed multi-channel EEG signals are assumed to be a linear mixture of
unknown sources with little knowledge about sources or a mixing matrix. The optimal
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estimate of sources and a mixing matrix, thus, is achieved by certain assumptions
on the sources such that the sources are mutually independent or uncorrelated. For
instance, let x be an observed EEG signal vector, which is a mixture of an unknown
source vector s with a mixing matrix A, given by:

X=As+n 2.1)

where n denotes additive white noise.

Then, BSS methods estimate A to make sources in s as independent as possible.
Once the estimate of A is obtained, its inverse matrix W = A~! is used to find the
sources given by:

s = Wx. 2.2)

These estimated sources are then inspected either empirically (by visual inspec-
tion, for example) or automatically (by automatic source selection algorithms [109,
111, 119]) to identify artifact-related sources. The reduced set of sources after remov-
ing artifactual ones are then used to reconstruct artifact-free EEG data using A.

Despite its prevalence in EEG preprocessing, BSS suffers from limitations that it
requires multi-channel EEG data and that there is always a possibility that removed
sources may also carry information about brain activity. In addition, researchers
should take into consideration the assumptions each BSS method works under,
including independence, uncorrelatedness, and non-Gaussianity [54, 71]. A variety
of BSS methods, however, have been successfully applied to remove artifacts from
biomedical signals. Below are described several methods that have been widely used
for EEG artifact removal.

Independent component analysis (ICA) is a BSS method based on assumptions
of mutual linear independence between sources and non-Gaussianity [7]. ICA algo-
rithms are based on either second-order or higher-order statistics [54]. The ICA
algorithms based on higher-order statistics estimate W by maximizing statistical
independence of the probability density functions of individual sources using mutual
information or negentropy [7, 19]. The ICA algorithms based on second-order statis-
tics estimate W by decorrelating the time-series data using the second-order blind
identification (SOBI) [20, 103]. ICA has been reported to perform well in EEG arti-
fact removal due to its reasonable assumption of statistical independence between the
EEG signals and artifacts (e.g. see [2]). However, to explore statistical independence,
ICA needs the sufficient amount of EEG data [56]. Also, ICA works best when the
artifacts and the EEG signals remain stationary during the period of analysis, which
may not be the case in general. To ensure stationarity, studies have suggested an
epoch of 10 s or less, or a sample size in the order of multiples of /C where C
is the number of channels [56, 92]. When only a limited number of data samples
are available, studies have suggested using the ICA algorithms with second-order
statistics [28, 55].

Principal component analysis (PCA) has been proposed as a means to remove
artifacts from EEG [39, 67, 102]. PCA transforms presumably correlated multi-
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channel EEG data to mutually uncorrelated principal components (PCs) that preserve
variance of the EEG data as much as possible. A set of PCs can represent artifacts if
artifacts and brain signals are uncorrelated with each other. PCA also assumes joint
normal distributions of the data. Often, it suffers from its restricted assumption that
sources including brain activities are orthogonal to each other [39]. Hence, PCA is
now seldom used directly for artifact removal but instead used for other essential
preprocessing such as whitening [35].

Canonical correlation analysis (CCA) has also been extensively used for artifact
removal from EEG [29, 43, 118]. Basically, CCA seeks for canonical variables that
maximize correlations between two multivariate datasets. For EEG denoising, CCA
finds canonical variables between the original data and its time-shifted version (typi-
cally one step behind). In doing so, canonical variables inferred in sequence represent
the autocorrelation from the highest to the lowest. By assuming that brain activities
are more correlated in time than artifacts, CCA identifies and removes canonical com-
ponents with lower autocorrelations that may correspond to artifacts. The advantage
of CCA over ICA is that it can take temporal correlations of the signals into account
and use less computational resources [52].

Besides the three BSS methods described above, there are other BSS methods
recently proposed for EEG artifact removal. Morphological component analysis
(MCA) can decompose artifacts from EEG if the morphological template of the
target artifacts is available [96]. Singular spectrum analysis (SSA) is a projective sub-
space method that projects a single-channel EEG signal onto a higher-dimensional
space by time embedding, decomposes the embedded signal vector into uncorrelated
components and reconstructs the EEG signal by projecting the embedded signals in
the directions with large eigenvalues [24, 25, 101]. The sparse time artifact removal
algorithm identifies and removes artifactual components of EEG that are sparse in
both space and time [27].

2.3.2.5 Hybrid Artifact Removal Methods

Recent studies have proposed hybrid approaches for EEG artifact removal by com-
bining more than one artifact removal algorithms. Many studies blend one algorithm
from the BSS family and the other with decomposition (e.g. wavelet transform or
EMD). A hybrid method can be characterized by the order of the applications of the
selected algorithms. One group of methods first decomposes an EEG signal and then
applies a BSS algorithm later whereas a different group of methods first estimates
components using a BSS algorithm followed by a decomposition algorithm. The
former usually corrects a single-channel EEG signal whereas the latter processes
multi-channel EEG signals (Fig. 2.3). The hybrid approaches are generally designed
to overcome the limitations of a single artifact removal approach and thus exhibit
better performance, but require more careful choices of algorithms that fit adequately
to the data and/or system requirements (e.g. computational complexity). The exam-
ples of the first group of hybrid methods for artifact removal, decomposition-BSS for
single channels, can be found in various forms, applying wavelet transform followed
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Fig. 2.3 Types of hybrid methods for EEG artifact removal

by (f.b.) ICA [11, 74, 75], EMD f.b. ICA [79, 117], and EMD f.b. CCA [16, 99]. The
examples of the second group, BSS-decomposition for multiple channels, can also
be found in different forms, including ICA f.b. wavelet [1, 12], stationary subspace
analysis f.b. EMD [115], ICA f.b. EMD [70], ICA f.b. regression analysis [61], and
ICA £.b. adaptive filtering [46].

2.4 Discussion

This chapter presents an overview of essential preprocessing steps for EEG. More
detailed guidelines of practical preprocessing procedures can be found in existing
literature (for instance, see [8, 52, 100, 104]). Although there has been substantial
progress in the development of EEG preprocessing methods until recently, continu-
ous advances in EEG-based research keep demanding innovations in preprocessing
techniques. For instance, pervasive and ambulatory applications using EEG foster
the development of preprocessing methods that can work with only a few channels
in real time [78, 86]. Recent neuroscience approaches to use multi-modal brain mea-
surements demand new ways of preprocessing EEG along with other signals such
as functional magnetic resonance imaging (fMRI) [17]. EEG hyperscanning tech-
niques recording brain activities simultaneously in more than one person, possibly
over different sites, need a more systematic preprocessing procedure [6]. Here, we
briefly discuss some ongoing issues and suggestions in the studies involving EEG
preprocessing.

When comparing the artifact removal performance of different algorithms, often
for the demonstration of the superiority of a newly proposed algorithm to existing
ones, we can encounter the issue of the lack of ground truth. Since it is generally
unknown about the exact waveform of a genuine EEG signal of interest, it is diffi-
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cult to assess how much a noisy EEG signal become purified by an artifact removal
algorithm [52]. One way to address this issue is to synthesize simulated signals
mixed with putative true EEG signals and artifacts and evaluate an algorithm with
the simulated signals [60, 64, 92]. Others have suggested using a well-known EEG
waveform evoked by an established cognitive task to test artifact removal methods
[104]. For example, an audio-visual task evoking the auditory N100 event-related
potential may provide a validation dataset with which researchers can evaluate differ-
ent artifact removal methods by assessing N100 waveforms after eliminating artifacts
by different methods (see [88] for more details).

Besides performance evaluation discussed above, there are other issues to address
for the development of an EEG artifact removal method. First, many recent EEG
applications demand online preprocessing of artifacts [26, 43, 86]. Such online pre-
processing is capable of detecting and removing artifacts even for non-stationary
environments so that it can adaptively update the parameters of algorithms by track-
ing environmental changes. As such, the requirement of online processing sometimes
weakens the advantages of certain algorithms that rely on the estimation of model
parameters using a chunk of the training data (e.g. ICA or EMD). Also, computation-
ally expensive machine learning algorithms (e.g. those with deep learning algorithms)
may need further justification to be used for online processing. Yet, in the course
of the development of a new artifact removal algorithm, it would be more effective
to consider online implementation if possible. A fully automated artifact removal
algorithm will underpin online implementation [26, 84]. Second, the availability of
reference channels should be taken into consideration for artifact removal. If no ref-
erence channel is available, we need to use prior knowledge about artifacts or infer
artifacts directly from EEG data [62, 72, 86]. Generally, using an explicit reference
channel may help customizing algorithms for each individual, yielding a more pre-
cise preprocessing method. Depending on the types of artifacts, it may be useful for
improving EEG preprocessing to utilize reference channels, often acquired with a
separate device, such as: EOG channel [22, 23, 61], ECG channel [30], eye tracker
[85], accelerometer [24, 25], and contact impedance [119]. Third, it would be crucial
to match the properties of an algorithm with statistical and physiological character-
istics of the artifacts to remove. The readers may refer to Urigiien et al. [104] for the
suggestions of artifact removal algorithms suitable for different types of artifacts.
Fourth, researchers often opt to utilize public software tools for EEG preprocessing
as well as other EEG data analyses (see [52] for the list of available software tools).
Even though a number of software tools offer complete preprocessing routines and
user interfaces for EEG studies, it is recommended to intensively explore the theoret-
ical backgrounds and technical details of a tool being used. Otherwise, it is difficult
to understand how EEG signals are processed at each preprocessing step. Fifth, it is
helpful to inform study participants about the problems of artifacts in EEG record-
ings such that participants can minimize their movements during the main tasks
[89]. Although it would be also problematic if participants pay too much attention
to movement restriction throughout the whole experiment, a short training phase for
participants to minimize movements during the task periods interleaved with more
flexible breaks can help acquiring high-quality EEG data at the stage of recording.
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This instruction would be especially crucial for the studies recruiting younger par-
ticipants. Sixth, not only highly contaminated channels but also highly contaminated
trials are often eliminated from the analysis. The elimination of contaminated trials
is usually conducted after all the preprocessing steps but its operational principle
is similar to other preprocessing methods. Generally, the trials containing the EEG
signal magnitude greater than a threshold level (e.g. £150 uV) are classified as being
contaminated [89]. Here, the threshold must be specified depending on experimen-
tal conditions. Rejection of too many trials would cause a shortage of the amount
of data in the subsequent analyses, so a careful interactive investigation between
preprocessing methods and trial rejection should be considered. Finally, a devel-
oped preprocessing pipeline may call for assessments based on feedbacks from the
designated applications (e.g. classification of the user intention for brain-computer
interfaces). Consequently, it is worth deliberating an end-fo-end design of EEG signal
processing, from the recording to the interpretation of EEG as a whole.
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Chapter 3 ®)
EEG Spectral Analysis e

Do-Won Kim and Chang-Hwan Im

Abstract Electroencephalogram (EEG) spectral analysis quantifies the amount of
rhythmic (or oscillatory) activity of different frequency in EEGs. Based on numerous
studies that reported significant relationship between the EEG spectrum and human
behavior, cognitive state, or mental illnesses, EEG spectral analysis is now accepted
as one of the principal analysis methods in the field of neuroscience. Despite the
tremendous amount of research related to its usefulness, EEG spectral analysis still
exhibits inconsistent results among studies. This might be partly because of the
various methodological decisions the researchers have to make during EEG spectral
analysis. Indeed, there is no standardized analysis procedure. In this chapter, we cover
some background principles of spectral analysis and introduce important issues that
researchers must consider during EEG spectral analysis.

3.1 Introduction

The human electroencephalogram (EEG) is one of the most complex sets of biomed-
ical signals. It is believed to reflect a variety of processes of the brain, especially the
neocortex, in which our cognitive function and sensorimotor information are pro-
cessed. Since the first report of successful recording of the human EEG by neuropsy-
chiatrist Hans Berger [6, 12], the EEG has been used extensively to help understand
the functions of the brain. Although we still do not have enough understanding to
describe every detail of the brain’s dynamics, extensive neuroscience studies provide
us with pieces of information on how the human brain operates in certain conditions,
e.g., reaction to a given stimulus.

EEGs can be analyzed qualitatively, as Berger did in his report on the human EEG,
or quantitatively, by using various computational EEG analysis methods. Qualitative
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analysis is still used routinely in neurology and sleep studies, mainly to find abnormal
signal patterns or roughly categorize well-known states of the brain that can be easily
recognized by visual inspection [5, 18]. For instance, clinicians determine the origin
of epileptic activity from ictal EEG recordings acquired during epileptic seizure [19,
38]. Another good example of qualitative EEG analysis is EEG-based sleep stage
scoring, using visually evident patterns in the signal (e.g., slowing rhythm, existence
of K-complex or spindle) [15, 37]. Naturally, the experience and expertise of the rater
may influence the outcome, and this motivated researchers to develop less subjective
measures. Quantitative analysis uses mathematical and statistical methods to find
evident features to characterize the given EEG signal, even ones that are difficult
to detect by visual inspection. Each approach classifies the EEG signal in terms
of frequency or period, amplitude, phase relations, and morphology (waveform,
topology, abundance, reactivity, and variability of these parameters) [7].

Among the various quantitative features of EEGs, one of the basic and com-
mon features is the frequency power of the EEG signal. From the earliest stages
of EEG research, probably from the first report of the existence of alpha waves by
Hans Berger, different velocities of the EEG recording were believed to reflect dif-
ferent states of the brain. Based on extensive research, now it is widely accepted
that we can define distinct frequency bands with different roles and characteristics,
namely, the delta (1-3 Hz), theta (4-7 Hz), alpha (8-12 Hz), beta (15-30 Hz), and
gamma (30-100 Hz) frequency bands. The frequency ranges of each band slightly
vary among different studies and researchers; however, it is generally accepted that a
subtle difference (less than 1 Hz) in defining the frequency range does not make
a significant difference [29]. Normally, the lower frequency band is believed to
reflect subconscious states, mostly showing dominant activation during deep sleep
or drowsiness, while relatively higher frequency bands reflect more alerted, active
states or are associated with higher cognitive functions [20, 35].

Two important factors are mainly considered in traditional EEG spectral analysis:
the amount (usually reported as power) of a specific frequency band and its spatial
distribution—see Fig. 3.1a. The power represents the amount of the frequency band
included in the signal, where both increase and decrease of EEG power are meaning-
ful information to understand the underlying brain function. The spatial distribution
of the power is also considered to be crucial, because the power changes in differ-
ent brain areas may represent different processes of the brain. EEG spectral powers
are generally represented as topological distributions on the scalp surface, and this
is usually referred to as quantitative EEG (QEEG) analysis, allowing for intuitive
comparison among groups or conditions in clinical applications. For instance, tradi-
tional gEEG analysis was done by comparing the individual data with a normative
database [22, 23]. The normative database basically contains frequency band power
data carefully collected by several hundreds of healthy subjects with diverse ages.
The spectral power of the individual EEG is usually converted to z-score, which
highlights whether the spectral powers of any EEG channel are enhanced or reduced
compared with the normative database.

In the initial stage of development of spectral analysis methods, it was not easy
to track the temporal variations of the frequency spectrum, because the fremporo-
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Fig. 3.1 a Examples of topographies showing spatial distributions of average absolute spectral
powers for five frequency bands: delta (1-5 Hz), theta (5-8 Hz), alpha (8-12 Hz), beta (15-30 Hz),
and gamma (30-55 Hz). The EEGs were recorded from a normal person in resting state with
eyes open (top row) and eyes closed (bottom row). b Examples of time—frequency maps: grand
average of time—frequency spectra from 20 normal controls (left) and 20 adults with attention
deficit/hyperactivity disorder (ADHD) (right)

spectral EEG analyses need sufficient length of data to secure minimum frequency
resolution. Therefore, early spectral analysis studies were mostly done on long-
lasting and stable EEG recordings, e.g., EEG acquired during resting state or sleep,
for which the exact timing is relatively less important compared with time-locked or
stimulus-dependent experiments. However, after the mathematical background for
estimating the spectral power in a short time window was established [42], it became
possible to investigate the temporal changes of EEG power over a relatively short
time interval, allowing for investigations of time—frequency dynamics of EEGs with
respect to external or internal cues—see Fig. 3.1b.

Spectral analysis is a fundamental computational EEG analysis method that can
provide information on power, spatial distribution, or event-related temporal change
of a frequency of interest. However, EEG spectral analysis often has been regarded
as an unreliable and imprecise method by some neuroscientists and clinicians [29]
owing to the inconsistent results among studies that used spectral analysis. The
inconsistency is partly due to the absence of a golden standard in the analysis pro-
cedure [22]. The researchers confront a series of choices of experimental factors,
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including locations of a reference electrode and recording electrodes, preprocess-
ing methods, and some necessary methodological parameters, such as epoch length,
types of windowing functions, and frequency resolution. What makes it worse is
that a large number of studies often fail to report key factors or parameters, making
new researchers in this field arbitrarily guess the factors/parameters or use default
values provided by analysis software without any concrete background knowledge.
Therefore, in this chapter, we cover not only the basic methodological background
of EEG spectral analysis but also a number of crucial concepts and factors that one
needs to be aware of before and during performing EEG spectral analysis.

3.2 Methodological Background

3.2.1 Continuous Fourier Transform

Fourier transform is a straightforward method to calculate the power spectrum of a
signal. In this chapter, we cover only the basic properties of the Fourier transform,
beginning with how it can estimate the power of a certain frequency in the signal.
Detailed derivation of each equation can be found in signal-processing textbooks [30,
34]. First, we start with the general case of a continuous nonperiodic signal. Assume
x(t) as a signal that is infinite in length and continuous in time. The continuous
Fourier transform (CFT) of a function x(7) is then defined as

+00

X(w) = / x(He 7 dt, (3.1)

—00

where e /*'(= cos wt — j sin wt) are the complex exponentials, and w is the angular
frequency corresponding to the linear frequency f (w = 27f). Equation (3.1) quan-
tifies the amount of contribution of each frequency w in constituting the original
signal. If the signal x(¢) is defined for all real numbers ¢, for any w € R, integrating
x(t) against e 7' with respect to ¢ produces a complex-valued function of w. The
square magnitude of X (w) (|X (a))|2) is called the power spectrum or power spectral
density (PSD), where the angle /X (@) denotes the phase at the given frequency w.
In the frequency domain analysis of EEG, our major interest is the power spectrum
of a given EEG signal, which contains information on how much each frequency
component is contained in the given signal.

The definition in (3.1) can also be considered as a correlation between the signal
x(t) and the complex sinusoidal functions e7*'. Therefore, Fourier transform can
be more intuitively understood as representing how similar the given signal is to the
complex exponential of a given frequency. The higher the correlation is with the
sinusoidal with frequency w, the more influence of the frequency w exists in the
original signal x(¢).
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Using the frequency domain characteristic of x(#), we can also transform the
signal spectrum back to the time series signal using the inverse Fourier transform.
The inverse Fourier transform is defined as

+00

x(t) = % / X (w)d“dw. (3.2)

—00

3.2.2 Discrete Fourier Transform

The CFT described in the previous section assumes that the signal is continuous
in time and infinite in length. However, in any modern EEG recording, the signal
is recorded in a limited time interval and stored digitally after it is amplified. In
other words, the recorded EEG signal that we want to analyze is neither infinite nor
continuous in time. Therefore, we use the discrete Fourier transform (DFT) instead
of the CFT. The DFT assumes that its input signal is one period of a periodic signal.
Its output is the discrete frequency spectrum of this periodic signal.

Consider a discrete signal x[n], the length of which is finite and n = 1, 2,..., N.
The signal is derived by sampling a continuous signal x(¢) with an equal time interval
At or a sampling frequency f; = 1/At. The signal length is fixed to a finite length of
T = N At. The discrete form of the Fourier transform is defined as:

N—1
X[kl =Y xinle ™"V wherek = 0,..., N — 1. (3.3)
n=0

The DFT gives the frequency spectrum at discrete frequencies fj, where the
following relationship is given:

fk = A (34)

when the frequency resolution of the spectral density is given by

1 1
Af === —. 35
f T NAt (33
The frequency resolution is determined only by the length (number of samples) of
the signal. According to the Shannon sampling theorem [36], the highest frequency
of the power spectrum is limited to the Nyquist frequency f given by

b !

Sn > = 2Ar (3.6)
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It is important to understand that the sampling frequency f'; is the only factor that
determines the Nyquist frequency.

As in the CFT, the Fourier coefficients X[k] are complex numbers. Therefore,
X[k] can be expressed as the following in Cartesian form:

X[k] = Xge[k] + jXim[k], 3.7)

where Xg.[k] and Xy, [k] are the real and imaginary parts of X [k], respectively. From
(3.7), the magnitude |X [k]| and the phase @ [k] can be expressed as

IX[K]| = \/ Xg. [k] + X7, [K], (3.8)

_ —1 XIm[k]
@[k] = tan Xeo k] (3.9

The inverse DFT transforms the Fourier coefficient X[k] back into the discrete
time series x[n], as follows:

N-1
xln] = le > X[kleN (3.10)
n=0

3.2.3 Fast Fourier Transform

The fast Fourier transform (FFT) is a particular implementation of the DFT that gives
identical results with reduced calculations [10]. The calculation of (3.4) requires N2
complex multiplications, because, for each of the N discrete frequencies, it is nec-
essary to calculate the sum of N multiplications of complex exponentials. However,
in cases when N is a power of 2 (e.g., 64, 128, 512, 1024, ...), many of these multi-
plications result in identical values, and many of the complex exponentials are zero
or 1. When redundant computations are removed, the number of multiplications is
reduced to Nlog,(N) rather than N2, reducing the computational burden, especially
when N is large. Spectral estimation based on the FFT assumes that the signal is
stationary and slowly varying.

3.2.4 Aliasing and Leakage

Spectral estimation based on the FFT has intrinsic properties called aliasing and
leakage [28], which need to be considered carefully. To understand the aliasing, con-
sider a continuous signal with a single frequency, as shown in Fig. 3.2. As the signal
is recorded, the original signal is sampled to a discrete-time signal, depending on
the sampling frequency (or interval) of the analog-to-digital converter (ADC). If the
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Fig. 3.2 Anexample of an aliasing effect. If the original signal (red bold) is samp