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Preface

The electroencephalogram (EEG), a recording of electrical activities in the brain, is
becoming an indispensable tool to investigate human brain functions and to diag-
nose various psychiatric and neurological disorders. Since the first recording of a
human EEG by Dr. Hans Berger, a psychiatrist, in 1924, the development of EEG
technology has continued, and, increasingly, this technology has drawn interest
from researchers in various disciplines, including clinicians, neuroscientists, psy-
chologists, and biomedical engineers. Owing to recent advances in digital tech-
nology and software methodology, EEG is now being used as an important tool in
numerous fields, such as cognitive neuroscience, neuromarketing, neuroer-
gonomics, brain–computer interfaces, neurofeedback, and sports science.

Although there is a consensus that EEGs are easier to record than other
brain-imaging techniques, such as functional magnetic resonance imaging and
positron emission tomography, the analysis of EEGs is not straightforward. For
example, if one wants to observe functional connectivity between two brain regions
of interest, it is necessary to perform a series of EEG processing steps, including
pre-processing, EEG source imaging, and functional connectivity analysis.
Although there are several software packages offering comprehensive tools for
advanced EEG analyses, users still need to choose the specific computational EEG
analysis methods most appropriate for their EEG data. Indeed, there are many kinds
of methods for computational EEG analysis, e.g., a variety of functional connec-
tivity measures. Therefore, it is recommended that EEG researchers understand the
detailed theoretical background of the computational EEG analysis methods being
used. Knowledge of the advantages and disadvantages of each method would help
researchers achieve more successful EEG analysis results.

In this book, we intend to provide a comprehensive review of the state-of-the-art
methods for computational EEG analysis. This book is not a handbook, but a
textbook written by multiple experts. Therefore, this book should be useful not only
to biomedical engineers who are in the initial stages of working on the development

v



of EEG analysis methods, but also to clinicians/neuroscientists who want to acquire
extensive knowledge of the technical details of the EEG analysis tools that they use
for their research. We hope the readers find this book useful.

Seoul, South Korea Chang-Hwan Im
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Chapter 1
Basics of EEG: Generation, Acquisition,
and Applications of EEG

Chang-Hwan Im

Abstract The purpose of this chapter is to provide comprehensive knowledge about
the generation and acquisition of electroencephalograms (EEGs), which is essential
for understanding the following chapters. The physiological background on the gen-
eration of EEGs is presented, and then, a detailed description of the acquisition of
EEG signals is given. Practical applications of computational EEG analysis are also
introduced. Finally, the major advantages and limitations of current EEG technolo-
gies are discussed.

1.1 Generation of EEG

An electroencephalogram (EEG) is the flow of neuronal ionic currents recorded
using a pair of electrodes either inside or outside the scalp. The EEG signal recorded
inside the skull, referred to as the intracranial EEG (iEEG), can be used for surgical
planning of intractable epilepsies [15]; however, this is not dealt with in this book
(except in Chap. 8). Throughout this book, “EEG” refers to a scalp EEG recorded
noninvasively from a pair of electrodes attached to the scalp surface.

In comparison with brain metabolism- or hemodynamics-based neuroimaging
modalities, such as positron emission tomography (PET), functional magnetic reso-
nance imaging (fMRI), and functional near-infrared spectroscopy (fNIRS), EEGs can
offer excellent temporal resolution, allowing studies of neuronal dynamics occurring
within a fewmilliseconds. However, the spatial resolution of an EEG is not compara-
ble to that of an fMRI, owing to the small numbers of spatial data samplings, inherent
volume conduction effect, and physiological and environmental noises/artifacts.

A first human EEG was recorded in 1924 by a German psychiatrist, Hans Berger.
Despite the rapid technological developments, the basic methods for recording EEGs
remain unchanged from Hans Berger’s era. An EEG measures electric potential dif-
ferences between pairs of electrodes. The electrodes may be either directly attached
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4 C.-H. Im

to the scalp surface at some specific locations or fitted in a cap (or a net) for more
convenient attachment.

The main generators of the EEG, often referred to as EEG sources, are cortical
neurons. It is well-documented that most neurons in the human brain are concen-
trated within the cerebral cortex, which is a thin sheet of gray matter with 2–4 mm
thickness. The apical dendrites of the cortical neurons, often referred to as large
cortical pyramidal neurons, are arranged almost perpendicularly to the surface of
the cerebral cortex. Therefore, the direction of the neuronal current flowing along
the long apical dendrites of cortical pyramidal neurons also becomes perpendicular
to the cortical surface [10, 22]. This physiological basis can be used as an important
constraint for EEG source imaging [1], which will be introduced in Chap. 5.

There are two different sorts of intracellular potentials that may potentially con-
tribute to the generation of scalp EEG signals, which are an action potential and a
postsynaptic potential. The action potential is elicited by sudden changes in trans-
membrane resting potential due to the dynamicmovements of intracellular and extra-
cellular ions, such as sodium, chloride and potassium ions.When the action potential
within a neuron propagates to a synapse, a small gap junction between two neurons,
the postsynaptic potential is generated across a pair of neighboring neuronal mem-
branes. If the postsynaptic potential exceeds a threshold level, the action potential of
one neuron is delivered to the other neuron (see Fig. 1.1).

Among the two different types of potentials, the postsynaptic potential is believed
to contribute more to the generation of measurable extracranial electric fields than
the action potential. This is because the action potentials do not fire synchronously
in a large number of neurons [25]. On the contrary, although the magnitude of the
postsynaptic potential is generally smaller than that of the action potential, its rela-
tively longer duration (~30 ms) enables synchronous generation of the postsynaptic
potentials in a large number of neurons (see Fig. 1.1). As aforementioned, since the
apical dendrites of cortical pyramidal neurons are arranged almost perpendicularly
to the cortical surface, the summation of the synchronously generated postsynaptic

Fig. 1.1 (Left) Comparison of waveforms of action potential and postsynaptic potential. (Right)
Synchronous occurrence of postsynaptic potentials can produce unidirectional primary current flow
large enough to be recorded outside the head



1 Basics of EEG: Generation, Acquisition, and Applications of EEG 5

potentials in a small cortical area can induce extracranial electric fields large enough
to be measured on the scalp surface [1]. According to Hämäläinen et al. [10], the
current density on the cortical surface is approximately 100 nA/mm2. When numer-
ous cortical neurons within a small area are activated synchronously, a unidirectional
neuronal current flow is formed. Figure 1.1 depicts the comparison between action
potential and postsynaptic potential, as well as a schematic illustration of the gener-
ation of the unidirectional neuronal current flow.

The unidirectional neuronal currents, which can be approximately modeled as
equivalent current dipoles (ECDs) in EEG source imaging problems [6] (see Chap. 5
for more details), are called primary or impressed currents [22]. Since the human
body is filledwith electrically conductivemedia, the extracellular currents induced by
the primary currents can flow even to the farthest part of the human body. These extra-
cellular currents are known as secondary, volume, or return currents [22]. According
to the electromagnetic theories, the flow of the secondary currents results in nonuni-
form potential distributions on the scalp. Themeasurement of the potential difference
between two distant scalp locations over time is the EEG.

Because the EEG measures dynamic changes in potential differences originating
from the secondary current flows, precise evaluation of conductivity profiles of the
volume conductors, i.e., different tissue compartments inside the head, is important,
not only to understand the underlying mechanisms of the EEG, but also to build a
precise head model to calculate electric field quantities generated by primary neu-
ronal currents (this process is called forward calculation). A human head can be
roughly modelled with four different regions: brain, cerebrospinal fluid (CSF), skull,
and scalp. Table 1.1 shows the typical conductivity values when the conductivity of
each region is assumed to be isotropic (having uniform conductivity in all directions)
and homogeneous [9]. The most notable point in the conductivity profile shown in
Table 1.1 is that the conductivity value of the skull is even smaller than those of the
other tissues. Because of the poor electrical conductivity of the skull, the secondary
currents are severely distorted and/or attenuated before they are delivered to the scalp
surface. Since the tissue conductivity is an important factor affecting the reliability
and accuracy of EEG source imaging, anisotropic conductivity characteristics are
sometimes considered. For example, the skull has an anisotropic conductivity prop-
erty, approximately 0.014 and 0.0107 S/m for the directions normal and tangential to
the skull surface, respectively [2]. White matter tissues also have an anisotropic con-
ductivity property: the white matter conducts secondary currents much better along
a fiber direction than in its transverse directions [31]. In practice, however, a rough
approximation of the human head structure as piecewise isotropic and homogeneous
volume conductors (e.g., brain, CSF, skull, and scalp) is most widely used. More
detailed discussion of this topic is provided in Chap. 5.
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Table 1.1 Typical conductivity values for different brain tissues/regions [9]

Regions Absolute conductivity (S/m) Relative conductivity

Brain 0.22 1

CSF 1.79 8

Skull 0.014 1/16

Scalp 0.22 1

1.2 Acquisition of EEG

Initial analog EEG devices recorded ongoing EEG activities on printed paper, when
no quantitative EEG analysis was possible. Nowadays, owing to the development of
computer technology and digital engineering, EEG signals are stored in computers as
sampled numeric data. The use of a digital EEG enables us to utilize a variety of com-
putational EEG analysis technologies, such as time-frequency analysis, functional
connectivity analysis, and source imaging.

To record EEG data, at least two electrodes must be used, because EEGmeasures
the potential difference between two distant scalp locations. Recent EEG recording
devices allow simultaneous recording of EEG signals from many scalp locations.
There are two types of EEG recording methods: bipolar and unipolar methods. In
the bipolar method, electrodes are all paired, and the potential differences between
each pair of electrodes are recorded. In the unipolar (or monopolar) method, the
potential differences between each electrode and a reference electrode are recorded.
Theoretically, the reference electrode in unipolar recording can be positioned any-
where; however, because the distribution of potential difference on the scalp surface
varies according to the location of the reference electrode, average reference is fre-
quently used. Average-referenced potential of each electrode can be readily evalu-
ated by subtracting the average of all electrodes from the potential difference of each
electrode. Average reference is particularly useful in depicting spatial distributions
of potentials on the scalp surface, usually referred to as topography or topographic
map.

EEG electrodes are generally attached on the scalp according to international stan-
dard configurations represented by the international 10–20 system. In the 10–20 sys-
tem, electrodes are placed at 10 and 20% fractions of the geodesic distances between
a number of anatomical landmarks such as inion, nasion, and two preauricular points.
Smaller subdivisions (e.g., the 10–5 system) are also used for the placement of more
electrodes. Further information on the electrode systems and electrode naming can
be found in Oostenveld and Praamstra [24] and other sources—e.g., Wikipedia,
https://en.wikipedia.org/wiki/10–20_system_(EEG).

In general, most EEG recording devices are composed of a signal amplifier, analog
filter, and analog-to-digital converter (ADC). Use of high-quality signal amplifiers is
necessary to display and process EEG signals on the order of microvolts. Since the
recorded EEG signals are usually contaminated by unwanted environmental and/or
systemic noises, such as alternating current (AC) power noises, a variety of electronic

https://en.wikipedia.org/wiki/10%e2%80%9320_system_(EEG)
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circuits are implemented in the EEG amplifier to remove or reduce the noise. Analog
filters can also be used to remove specific noise components and increase signal-to-
noise ratio (SNR). High-pass and band-reject (notch) filters can be used optionally
to reject low-frequency physiological noise (e.g., respiration artifact) and AC power
noise, respectively. All EEG devices should include an analog low-pass filter with
a cutoff frequency less than half of the sampling rate to prevent aliasing, unwanted
distortion in the sampled EEG signal. This type of analog low-pass filter is generally
referred to as the anti-aliasing filter. This will be dealt with in amore detailedmanner
in Chap. 3. ADC converts the amplified and filtered analog signals to digital EEG
signals using sampling and encoding procedures [28].

1.3 Computational EEG Analysis

Once the digital EEG signals have been stored in storage media, a variety of forms
of information characterizing the underlying brain activities can be extracted from
the numeric data. In this book, four major computational EEG analysis methods are
introduced: EEG spectral analysis (Chap. 3), event-related potential (ERP) analy-
sis (Chap. 4), EEG source imaging (Chap. 5), and functional connectivity analysis
(Chap. 6).

1.3.1 EEG Spectral Analysis

One of the main advantages of EEG over the other hemodynamics- or
neurochemistry-based neuroimaging modalities, such as fMRI and PET, is its supe-
rior temporal resolution thatmakes it possible to investigate neuronal activities chang-
ing on the order of tens of milliseconds. Thanks to the high temporal resolution of
EEG, a large amount of useful information can also be obtained from frequency
domain (or spectral) analysis. It is well known that changes in the EEG power
spectrum are directly or indirectly associated with a variety of ongoing brain activi-
ties, e.g., mu-band (8–12 Hz) event-related desynchronization (ERD) and beta-band
(18–22 Hz) event-related synchronization (ERS) associated with motor execution
[11] and alpha-band (8–13 Hz) ERD associated with visual encoding [16]. EEG
spectral analysis can also provide useful biomarkers to help diagnose and charac-
terize various psychiatric diseases and neurological disorders. For example, reduced
frontal gamma-band (30–50 Hz activity may indicate declined cognitive function [3]
and increased midline beta-band (13–30 Hz) activity may be an indicator of restless-
leg syndrome [8, 14]. Spectral analysis can also be used to implement various types
of brain–computer interfaces (BCIs) and neurofeedback systems [12].
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1.3.2 Event-Related Potential Analysis

In the history ofEEG, themost important advancementwas the use of stimulus-locked
averaging of event-related EEG. Using event-related potentials (ERP) analysis, one
can observe spatiotemporal components of stimulus-locked brain electrical activities
with reduced background noise. Examples of important ERP components include
P300 [20], N170 [4], mismatch negativity (MMN) [17], and error-related negativity
(ERN) [30],which have beenwidely used not only for cognitive/clinical neuroscience
studies [21] but also for BCI applications [7]. A series of methods has recently been
proposed to extractmore precise spatiotemporal ERPwaveformswith fewer repeated
trials, and this will be introduced in a detailed manner in Chap. 4.

1.3.3 EEG Source Imaging

The limited spatial resolution of EEG can be substantially enhanced by performing
EEG source imaging, or electrical source imaging (ESI), which estimates locations,
directions, and/or distribution of EEG sources by solving mathematically defined
problems called inverse problems [23]. To solve the inverse problems, a procedure for
modeling the human head and calculating the relationship between EEG sources and
scalp potentials is necessary. This procedure is generally referred to as forward calcu-
lation or solving forward problems. Because accurate forward calculation is impor-
tant to obtain accurate inverse solutions, high-precision numerical methods, such as
the boundary element method (BEM) and finite-element method (FEM), have been
adopted. To solve the inverse problems, various algorithms and models have been
proposed, each ofwhich has its own advantages and drawbacks.Detailed descriptions
of the methods for EEG forward/inverse problems can be found in Chap. 5.

1.3.4 Functional Connectivity Analysis

Traditional neuroscience studies focused on functional specification of brain areas;
however, recent neuroimaging studies exhibited increased interest in the functional
connectivity among different brain areas. EEG is especially useful to study func-
tional connectivity between two recording sites (or brain areas after EEG source
imaging) because of its high temporal resolution. There are different kinds of func-
tional connectivity measures that have been actively applied to EEG analyses, such
as coherence, phase-locking value (PLV), phase lag index (PLI), Granger’s causal-
ity (GC), and partial directed coherence (PDC). Functional connectivity analysis
has proved to be useful to characterize various psychiatric diseases. Indeed, several
recent studies have shown disrupted or abnormal functional connectivity patterns in
patients with psychiatric illnesses; examples include schizophrenia [27], mild cogni-
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tive impairment [26], and post-traumatic stress disorder [13]. In particular, functional
connectivity analysis is useful to study epilepsy because epilepsy is thought to be
one of the most representative brain network disorders [18]. Detailed descriptions
of the functional connectivity measures can be found in Chap. 6.

1.4 Applications of EEG

In the early stage of development of EEG, visual inspection of EEG waveforms was
the only way to use EEG in practical applications. Indeed, visual inspection of EEG
waveforms is still useful in studying sleep and diagnosing some neurological dis-
orders, such as epilepsy. Dissemination of digital EEGs expanded the application
fields of EEGs from limited research and diagnostic applications to more-extensive
applications, including cognitive neuroscience study, diagnosis of psychiatric dis-
eases, neuromarketing, neuroergonomics, sports science, and human brain mapping.
Recently, owing to the rapid development of digital engineering, EEGs can be applied
to real-time applications, such as BCI and neurofeedback.

The use of EEG in practical applications has steadily increased and is expected
to continue to increase. Indeed, EEG has many advantages over the other methods
to study brain functions, as follows:

• EEG is perfectly noninvasive, without any exposure to radiation or high magnetic
field

• EEG is economical
• EEG devices can be made small and portable
• EEG has high temporal resolution
• EEG devices do not generate any noise
• EEG can be recorded in an open environment
• EEG can be acquired without active response from subjects.

Traditionally, EEG data were acquired in laboratory or clinical environments,
where there are high-end EEG recording devices with a large number of channels
and well-motivated participants who have agreed to participate in experiments with
long durations. Recently, however, the advancement ofwireless technology and high-
performance biosensors enabled the development of wearable EEG devices that are
easy to wear and comfortable for long-term use, expediting the development of
novel applications of EEG that do not necessarily require laboratory settings, e.g.,
monitoring the brain activity of healthy persons during daily life [5, 19, 29].

Despite the recent development of EEG technology, EEG still has some intrinsic
limitations that need to be overcome, examples of which include low spatial reso-
lution and low SNR. Therefore, development of new computational EEG analysis
methods is still necessary to enhance the reliability and usability of EEG.
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Chapter 2
Preprocessing of EEG

Sung-Phil Kim

Abstract Preprocessing of the EEG signal, which is virtually a set of signal process-
ing steps preceding main EEG data analyses, is essential to obtain only brain activity
from the noisy EEG recordings. It has been shown that the design of preprocess-
ing procedures can affect subsequent EEG data analysis outcomes. Preprocessing of
EEG largely includes a number of processes, such as line noise removal, adjustment
of referencing, elimination of bad EEG channels, and artifact removal. This chapter
presents an overview of the methods available for each process and discusses prac-
tical considerations for applying these methods to the EEG signals. In particular,
considerable attention is paid to the state-of-the-art artifact removal methods since
there are still plenty of opportunities to enhance the artifact removal techniques for
EEG, in the perspectives of both signal processing and neuroscience. It is desirable
that this chapter provides the readers an overall view of EEG preprocessing pipelines
and serves as a handbook guide for the practice of EEG preprocessing.

2.1 Introduction

Preprocessing of the EEG signal is an indispensable step for the analysis of EEG in
most circumstances. Although there is still a lack of the standard pipeline of EEG
preprocessing [8, 37, 58] it generally includes any necessary digital signal processing
operations to polish up raw EEG signals with an aim to leave only brain activity
signals for subsequent analyses. Often, EEG preprocessing also involves procedures
to enhance spatiotemporal characteristics of the EEG signal related to the task used
in a study [65].

A number of studies have demonstrated the influences of EEG preprocessing on
the subsequent data analysis results [8, 33, 90, 110, 112]. For instance, the classi-
fication of different mental states from EEG or the control performance of a brain-
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computer interface (BCI) could be dependent on how EEG preprocessing treated the
recorded EEG signals. In fact, it is obvious that any analytic result from the EEG
signals containing significant noise and artifacts is likely to draw misleading conclu-
sions. Recent reports also emphasize the standardization of preprocessing routines
for multi-site data collection in divergent experimental environments [8, 37].

At the center of EEG processing lies the removal of any unnecessary covert and
overt components of the EEG signals. In this chapter, we denote such unneces-
sary components as noise and artifacts. Following the previous notion [65], noise is
regarded as neurological activities irrelevant to an examined behavioral task whereas
artifacts are regarded to originate from external sources unrelated to neurological
activities, such as eye movements, respiration or electrical interference. As most
EEG preprocessing techniques pay attention to removing artefacts, we will also nar-
row our focus on the methods used to eliminate artifacts to clean up the EEG signals.
Note that the topics covered by this chapter do not include the extraction of fea-
tures from the EEG signals for particular applications, which should be discussed
separately.

This chapter begins with the description of early-stage procedures to remove
basic artifacts, sort out contaminated channels and possibly adjust references. It then
discusses a range of methods to remove artifacts from the EEG signals, followed by
brief discussion on EEG preprocessing.

2.2 Early-Stage Preprocessing

Early-stage EEG preprocessing involves fundamental and semi-automated orga-
nization of signal processing functions. It is distinguished from common artifact
removal procedures as this stage of preprocessing is largely independent of any spe-
cific artifact. This chapter describes key parts of early-stage preprocessing including
the removal of line noise, referencing and the elimination of bad channels. Before
describing them, however, it is worth reviewing background characteristics of the
EEG signals.

2.2.1 Characteristics of Background EEG

Abasic and brief summary of the characteristics of background EEG activity is given
as follows [104]. The frequency range of EEG is reportedly limited approximately
from 0.01 to 100Hz. The amplitudes of EEGgenerated from the brain typically range
within ±100 µV. The power spectral density of EEG is known to follow the power
law [44]. Background brain rhythms are present in EEG, generally being classified
in terms of oscillatory frequency into five disjoint bands: delta (0.5–4 Hz), theta
(4–8 Hz), alpha (8–13 Hz), beta (13–30 Hz) and gamma (30–100 Hz). More details
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of the implications and functions of these rhythms can be found in other resources
(e.g. see [10, 41, 63, 98]).

It is reasonable to consider the EEG signal as stochastic due to the lack of genuine
EEGmeasurements [93]. In addition, over a long-termperiod, theEEGsignals should
be viewed as a non-stationary time series [57, 66]. However, EEG within a short
time window can be approximately stationary with static statistical properties. The
length of such awindow containing stationary EEG signals varieswith environments,
generally ranging from several seconds to minutes [51].

2.2.2 Line Noise Removal

Most efforts to eliminate line noise from the EEG signal rely on notch filtering at
60 Hz. A notch filter is typically implemented with a certain frequency width sur-
rounding 60 Hz (e.g. a width of 10 Hz). Consequently, notch filtering, although
successfully removing line noise, could cause unintended distortions in signal com-
ponents oscillating between 50 and 70 Hz. Also, the notch filter can reportedly
generate a transient oscillation in baseline activity, leading to a potential issue in
data interpretation [18]. Follow-up low-pass filtering with a cutoff frequency lower
than 50 Hz may remedy this problem, but instead give rise to other issues such as
alteration of temporal structures of EEG [106] or spurious interactions between EEG
channels [40].

One suggestion to overcome this problem is estimating line noise embedded in
the recorded EEG signals as precise as possible and subtracting it from the data [8,
80]. This method employs multi-taper decomposition to find line noise components
in the signal. A short-time window slides over the course of the signal in which the
transformation of EEG time series based onmulti-tapers is carried out [5]. This trans-
formation can effectively estimate spectral energywithin each frequency band. Then,
a regression model is applied to estimate the amplitude and phase of sinusoidal line
noise (e.g. sinusoids at 60 Hz) in the transformed frequency domain. The Thompson
F-test evaluates a significance of the magnitude of the estimated line noise. A time
series of sinusoidal line noise is reconstructed if the magnitude is significant. This
process is repeated over the sliding windows. The reconstructed line noise signal
is subtracted from the original EEG signal. The entire process is repeated until the
magnitude at the frequency of line noise becomes non-significant (Fig. 2.1). In this
way, line noise components can be removed without damaging background spectral
components [83].

2.2.3 Referencing

We often subtract a reference (with the same time resolution as the recorded EEG
signals) from the original EEG signal at each channel. The reference signal should
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Fig. 2.1 Line noise removal using the multitaper transformation

remain unchanged relative to the EEG signals during the recording such that dif-
ferences of the EEG signals from reference can effectively represent brain activity
related to a study. Typical choices of reference include a signal recorded at a mastoid
channel, an EEG signal at a particular channel, the average of two mastoid signals
or the average of the entire EEG channels. In any case, it is strongly recommended
that a researcher should inspect a chosen reference signal carefully to ensure that its
amplitude level is on par with those of other EEG signals and it has no correlation
with task-induced brain activity.

Referencing to a mastoid channel has a potential problem because it generates a
single point of failure. If the contact to a mastoid becomes poor at any point during
the recording, referencing to the mastoid can increase signal variance tremendously,
resulting in irreversible contamination of EEG data. The same problem exists for ref-
erencing to a particular EEG channel. Using the common average reference (CAR)
may reduce the effect of single-point failure [9], but still suffer from an outlier chan-
nel. One simple solution to this problem is detecting and removing bad channels
before using CAR [8]. There are other systematic re-referencing methods developed
to address the issues of reference, based on physical considerations and electrody-
namics [38, 113, 114] or on statistical approaches [48, 69, 73].

2.2.4 Bad Channel Detection

It is often necessary to detect a noisy or bad channel that exhibits a contaminated
EEG signal [8]. To detect a bad channel, we can screen each channel to identify
EEG signals with excessively large amplitudes. The robust z-score can be used to
detect extreme amplitudes. For instance, a bad channel is determined when it shows
a robust z-score of the standard deviation greater than a threshold. A bad channel can
be also detected by investigating correlation of a single channel with others. Normal
EEG recordings show across-channel correlations in the low-frequency components.
Hence, the correlation of one channel with other channels after low-pass filtering
can allow us to detect bad channels. If two bad channels are incidentally correlated
with each other, we can attempt to predict one channel using other channels. The
predictor channels can be randomly selected from the remaining channels. Often,
a contaminated channel exhibits relatively large energy in high-frequency bands.
Thus, we can measure a ratio of the power of high-frequency components to that of
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low-frequency components and detect a bad channel showing a ratio higher than a
threshold.

Once being detected, bad channels are replaced with virtual healthy channels
created by the interpolation from neighboring channels, in order to reconstruct the
global brain responses [8, 31]. There exist a number of interpolation schemes useful
for channel reconstruction, including spherical splines [87], higher-order polynomi-
als [4], nearest-neighbor averaging [15] and radial basis function [53]. Using spher-
ical splines allows accurate estimation of scalp potentials if the electrode mapping
is sufficiently dense [38, 97]. Interpolation using a statistical method such as radial
basis functions has advantages of cost-effectiveness with less computational loads.

2.3 Artifact Removal

In this section, we briefly review the potential sources of artifacts mixed in the EEG
signal and the techniques to remove or reduce artifacts.Weprimarily dealwith artifact
removal techniques, forgoing other steps of artifact management such as artifact
detection. However, it does not mean that other methods including artifact detection
or artifact avoidance are less crucial than artifact removal. In fact, artifact removal
is often accompanied by artifact detection for efficient processing of artifacts. There
have been a number of methods for artifact detection that the interested readers can
refer to [3, 14, 32, 52, 81, 84].

2.3.1 Sources of Artifacts

The sources of EEGartifacts can be categorized into two classes: internal and external
sources. The internal sources originate from the physiological systems of self and
include electromagnetic activities of heart, eyes, muscle and so on. The external
sources include all other possible signals from environments that can contaminate
EEG such as wireless telecommunication signals, electrode attachment, recording
equipment and cable movements [93]. Recently. the handling of external artifacts
has become more important as EEG applications tend to move out of laboratories
toward in-home healthcare systems [100]. Yet, the external sources, owing to their
origins, can be inhibited once being identified.On the other hand, the internal artifacts
physiologically permeate EEG, making it difficult to prevent them from occurring
in advance. Therefore, most artifact removal methods have been focused on dealing
with the internal artifacts and here we also pay our attention to the most pronounced
internal artifacts that have been handled by EEG artifact removal methods.

Ocular artifacts include electric activities generated by eye movements or eye
blinking [22, 23]. Interference by ocular artifacts is strong enough to be visible
in EEG waveforms. EEG channels proximal to eyes are more vulnerable to ocular
artifacts. Ocular artifacts can be detected by electrooculogram (EOG)measurements.
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EOG recorded simultaneously with EEG offers an opportunity to readily remove
ocular artifacts from EEG as it helps identify true profiles of artifacts. Once knowing
the waveforms of ocular artifacts, removal algorithms can be developed to subtract
them from the EEG signal without a need to reject contaminated EEG segments.
To measure EOG for ocular artifact removal, it is recommended to record vertical
(vEOG), horizontal (hEOG) and radial (rEOG) oculomotor signals [88].

Muscle artifacts include electric activities originating from muscle contraction of
the body parts, including face, head, neck, limbs and others. Compared to ocular
artifacts, muscle artifacts generate more various forms depending of the sources
of muscles and related movements. The electrical signals associated with muscle
artifacts can be measured by electromyogram (EMG). However, widespread sources
of muscle artifacts over the body make it challenging to identify true profiles of
artifacts. In addition, the spectral properties of cranial muscle artifacts vary across
sources, corrupting high-frequency EEG components as well as low-frequency ones
[93, 105]. The spatial distribution of muscle artifacts is wider than ocular artifacts,
almost uniform over the entire scalp [44]. Temporal patterns of muscle artifacts are
often associated with tasks as movements of subjects naturally occur in response
to task requirements [95]. Considering all these issues, it still remains a significant
challenge to remove muscle artifacts from EEG [76, 77, 95].

Cardiac artifacts originate from electric activities of the heart. Cardiac artifacts
generally show low amplitudes compared to other artifacts. Cardiac electric activ-
ity can be measured by electrocardiography (ECG). They have well-known regular
characteristics, which resemble epileptic EEG activity and thus possibly leading to
incorrect seizure diagnosis [30]. However, for the perspective of removal algorithms,
regular cardiac waveforms make it easier to correct in EEG.When an EEG electrode
is positioned over a scalp artery, its contact with the skin can alter periodically due
to recurrent motion of a pulsating vessel, which is likely to rhythmic electric activity
similar to EEG oscillations [68]. But this pulsation effect shows periodicity syn-
chronous with the heart, rendering itself being identified by ECG.

2.3.2 Artifact Removal Methods

Artifact removal methods aim to cancel or correct artifacts in EEG with minimal
distortions in the brain signal. Herewe briefly overview the computationalmethods to
remove artifacts fromEEG [52, 104]. Along this path, we avoid describing the details
of mathematical backgrounds underlying each method (e.g. blind source separation
(BSS), regression, linear transformation of multivariate Gaussian, etc.). Overall, an
EEG artifact removal method belongs to one of the two kinds: a group of methods
that corrects a single channel independently or another group that processes the
whole channels all together. The single-channel processing methods employ various
techniques including linear regression, filtering, wavelet transform and empirical
mode decomposition (EMD). The whole-channel processing methods are based on
BSS to estimate a set of hidden sources from an observed mixture of those sources
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with only limited information. Below we present several basic methods from both
groups that have been most widely used in EEG studies.

2.3.2.1 Linear Regression

Assuming that artifact reference channels are available and contain thorough wave-
forms of artifacts, linear regression has been one of the main vehicles used to cancel
artifacts from the EEG signal due to its simplicity and ease-of-use. A basic proce-
dure is to estimate a portion of EEG contaminated by artifacts using regression and
to subtract the regressed portion from the contaminated EEG [22, 23, 45]. Linear
regression assumes that an EEG signal is the sum of an original brain signal and
a fraction of the artifact represented in reference. It estimates this fractional factor
from both the observed EEG signal and reference channel. The major drawbacks
of linear regression are that one or more reference channels must be available (e.g.
EOG or ECG), that it assumes a linear combination of EEG and artifacts where the
EEG signal may possess internal nonlinear dynamics and non-stationary, and that
it only applies well to a few types of artifacts such as EOG and ECG. However,
if reference channels are available, linear regression is still an effective solution to
remove artifacts [36, 107].

Linear regression methods operate particularly well with ocular artifacts since
EOG can be directly measured or indirectly inferred from EEG [13, 42]. However,
simple subtraction of a regressed portion of ocular artifacts from EEG can also take
out cerebral components. This problem is termed bidirectional contamination [91].
Many methods have been proposed to address bidirectional contamination among
which the aligned-artifact average procedure demonstrates promising results of can-
celing artifacts from eye movements or blinks while minimizing EEG contamination
[21–23].

2.3.2.2 Filtering

Filters used for artifact removal build a statistical machine whose parameters are
adaptively estimated with certain objectives, learning rules, model structures as well
as data. Three types of filters have been primarily adopted for EEG artifact removal
[104].

Adaptive filters model the way artifacts contaminate the EEG signal by adjusting
the filter weights according to a learning rule formed by an optimization algorithm
[47]. They assume no correlation between the EEG signal and artifacts. For example,
let x[n] be an observed EEG signal mixed with an unknown clean EEG signal y[n]
and an additive artifact signal z[n] (i.e. x[n]�y[n]+ z[n]). If the reference to artifact,
r[n], is available, the adaptive filter adjusts its weights, w, to minimize error between
x[n] and wTr[n]. Since r[n] is assumed to be uncorrelated with y[n], the optimal
weights would make wTr[n] as close to z[n] as possible. Then, a difference, {x[n] −
wTr[n]} will become close to y[n] (Fig. 2.2). Many learning algorithms are available
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Fig. 2.2 EEG denoising with adaptive filtering and reference to artifacts

to adjust weights, including least mean squares (LMS) and recursive least squares
(RLS) [47]. It has been shown that adaptive filters are superior to linear regression
because proportion factors are less constrained [91]. However, as in linear regression,
adaptive filters still require reference channels.

The Wiener filter is a linear time-invariant (LTI) filter that minimizes the mean
squared error between desired response and filter output [47]. Optimal weights of the
filter are estimated based on theWiener-Hopf equation. Learning the weights is done
offline with training samples that contain EEG and artifact signals. Having learned
its weights, the Wiener filter can operate with the contaminated EEG signals without
reference. However, the Wiener filter performance may deteriorate over time if a
proportion of EEG contaminated by artifacts changes over time (i.e. non-stationary).

Bayesian filters in a linear or nonlinear form can overcome some shortcomings
of both linear regression and the Wiener filter as they can sequentially update the
states online without the need of reference channels. Here the states approximate
unknown clean EEG signals. The system model in Bayesian filters approximates the
sequential transition of clean EEG data according to the first-order Markov process
and the observation model estimates the posterior probability distribution of clean
EEG data after observing contaminated EEG data using a likelihood model and
Bayesian approximation. The parameters of the system and observation models need
to be learned from the training data as in the case of the Wiener filter. Although it
is computationally expensive to estimate probability distributions in general, with
some assumptions, Bayesian filters can reduce to simpler forms such as the Kalman
filter or the particle filter. In particular, the Kalman filter has been widely applied for
artifact removal for EEG [50, 59, 82].
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2.3.2.3 Wavelet Transform and Empirical Mode Decomposition

EEG denoising can be achieved by decomposing a single-channel EEG signal into a
set of fundamental basis signals, with a premise that some basis signals may contain
the information of artifacts only. As such, we can find those artifact-related basis
signals and remove them from the decomposed set. Two representative methods for
decomposition of an EEG signal are presented below.

Wavelet transform convolves a given signal with a scaled and shifted version of
a mother wavelet function. It results in a set of coefficients corresponding to each
scale and time shift. The coefficients represent a similarity between a segment of the
signal and themother wavelet at a given scale. The discrete wavelet transform (DWT)
is derived from continuous wavelet transform with discrete-time sampling. A basic
procedure of theDWT is filtering a signalwith low- and high-pass filters, respectively,
where the low-pass filter works similar to the scaling function and the high-pass filter
works similar to the mother wavelet function [52]. Then, the low-pass filtered output
is passed to the next level of filtering with low- and high-pass filters again. This
procedure is repeated up to K levels and yields one approximation coefficient and K
detail coefficients where the approximation coefficient is obtained from the final low-
pass filtering and the detail coefficients are obtained from a series of the high-pass
filtering through K levels. Then, for denoising, a threshold is applied to the detail
coefficients to sort out the ones with small magnitudes. It draws upon a hypothesis
that the signal can be strongly correlated with a properly chosenmother wavelet basis
at some levels whereas artifacts cannot be [104]. Finally, the artifact-reduced signal
is reconstructed by the refined detail coefficients and the approximation coefficient
[94]. Systematic ways of selecting a threshold can be found in some studies [34].

Empirical model decomposition (EMD) is a data-driven technique that decom-
poses a signal into a sum of the band-limited basis functions, called intrinsic mode
functions (IMFs) [49]. The IMFs have zero means and are amplitude and frequency
modulated. EMD has been shown to perform well with nonlinear and non-stationary
signals. If different sets of IMFs can separately represent the signal and artifacts,
we can reconstruct a clean EEG signal by removing artifact-related IMFs from the
decomposed set. EMD has been successfully applied to artifact removal of EEG
[70, 94, 115]. More advanced methods to overcome shortcomings of EMD (e.g. low
robustness against noise, no mathematical background), including ensemble EMD
(EEMD) [99, 116] and multivariate EMD (MEMD) [108], have also been adopted
for artifact removal.

2.3.2.4 Blind Source Separation

Blind source separation (BSS) has been most widely used for artifact removal when
the information about artifacts is limited—for instance, no reference is provided.
The basic BSS methods used for artifact removal assume a linear mixture model in
which the observed multi-channel EEG signals are assumed to be a linear mixture of
unknown sourceswith little knowledge about sources or amixingmatrix. The optimal
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estimate of sources and a mixing matrix, thus, is achieved by certain assumptions
on the sources such that the sources are mutually independent or uncorrelated. For
instance, let x be an observed EEG signal vector, which is a mixture of an unknown
source vector s with a mixing matrix A, given by:

x � As + n (2.1)

where n denotes additive white noise.
Then, BSS methods estimate A to make sources in s as independent as possible.

Once the estimate of A is obtained, its inverse matrix W � A−1 is used to find the
sources given by:

s � Wx. (2.2)

These estimated sources are then inspected either empirically (by visual inspec-
tion, for example) or automatically (by automatic source selection algorithms [109,
111, 119]) to identify artifact-related sources. The reduced set of sources after remov-
ing artifactual ones are then used to reconstruct artifact-free EEG data using A.

Despite its prevalence in EEG preprocessing, BSS suffers from limitations that it
requires multi-channel EEG data and that there is always a possibility that removed
sources may also carry information about brain activity. In addition, researchers
should take into consideration the assumptions each BSS method works under,
including independence, uncorrelatedness, and non-Gaussianity [54, 71]. A variety
of BSS methods, however, have been successfully applied to remove artifacts from
biomedical signals. Below are described several methods that have been widely used
for EEG artifact removal.

Independent component analysis (ICA) is a BSS method based on assumptions
of mutual linear independence between sources and non-Gaussianity [7]. ICA algo-
rithms are based on either second-order or higher-order statistics [54]. The ICA
algorithms based on higher-order statistics estimate W by maximizing statistical
independence of the probability density functions of individual sources using mutual
information or negentropy [7, 19]. The ICA algorithms based on second-order statis-
tics estimate W by decorrelating the time-series data using the second-order blind
identification (SOBI) [20, 103]. ICA has been reported to perform well in EEG arti-
fact removal due to its reasonable assumption of statistical independence between the
EEG signals and artifacts (e.g. see [2]). However, to explore statistical independence,
ICA needs the sufficient amount of EEG data [56]. Also, ICA works best when the
artifacts and the EEG signals remain stationary during the period of analysis, which
may not be the case in general. To ensure stationarity, studies have suggested an
epoch of 10 s or less, or a sample size in the order of multiples of

√
C where C

is the number of channels [56, 92]. When only a limited number of data samples
are available, studies have suggested using the ICA algorithms with second-order
statistics [28, 55].

Principal component analysis (PCA) has been proposed as a means to remove
artifacts from EEG [39, 67, 102]. PCA transforms presumably correlated multi-
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channel EEGdata tomutually uncorrelated principal components (PCs) that preserve
variance of the EEG data as much as possible. A set of PCs can represent artifacts if
artifacts and brain signals are uncorrelated with each other. PCA also assumes joint
normal distributions of the data. Often, it suffers from its restricted assumption that
sources including brain activities are orthogonal to each other [39]. Hence, PCA is
now seldom used directly for artifact removal but instead used for other essential
preprocessing such as whitening [35].

Canonical correlation analysis (CCA) has also been extensively used for artifact
removal from EEG [29, 43, 118]. Basically, CCA seeks for canonical variables that
maximize correlations between two multivariate datasets. For EEG denoising, CCA
finds canonical variables between the original data and its time-shifted version (typi-
cally one step behind). In doing so, canonical variables inferred in sequence represent
the autocorrelation from the highest to the lowest. By assuming that brain activities
aremore correlated in time than artifacts, CCA identifies and removes canonical com-
ponents with lower autocorrelations that may correspond to artifacts. The advantage
of CCA over ICA is that it can take temporal correlations of the signals into account
and use less computational resources [52].

Besides the three BSS methods described above, there are other BSS methods
recently proposed for EEG artifact removal. Morphological component analysis
(MCA) can decompose artifacts from EEG if the morphological template of the
target artifacts is available [96]. Singular spectrum analysis (SSA) is a projective sub-
space method that projects a single-channel EEG signal onto a higher-dimensional
space by time embedding, decomposes the embedded signal vector into uncorrelated
components and reconstructs the EEG signal by projecting the embedded signals in
the directions with large eigenvalues [24, 25, 101]. The sparse time artifact removal
algorithm identifies and removes artifactual components of EEG that are sparse in
both space and time [27].

2.3.2.5 Hybrid Artifact Removal Methods

Recent studies have proposed hybrid approaches for EEG artifact removal by com-
bining more than one artifact removal algorithms. Many studies blend one algorithm
from the BSS family and the other with decomposition (e.g. wavelet transform or
EMD). A hybrid method can be characterized by the order of the applications of the
selected algorithms. One group of methods first decomposes an EEG signal and then
applies a BSS algorithm later whereas a different group of methods first estimates
components using a BSS algorithm followed by a decomposition algorithm. The
former usually corrects a single-channel EEG signal whereas the latter processes
multi-channel EEG signals (Fig. 2.3). The hybrid approaches are generally designed
to overcome the limitations of a single artifact removal approach and thus exhibit
better performance, but require more careful choices of algorithms that fit adequately
to the data and/or system requirements (e.g. computational complexity). The exam-
ples of the first group of hybrid methods for artifact removal, decomposition-BSS for
single channels, can be found in various forms, applying wavelet transform followed
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Fig. 2.3 Types of hybrid methods for EEG artifact removal

by (f.b.) ICA [11, 74, 75], EMD f.b. ICA [79, 117], and EMD f.b. CCA [16, 99]. The
examples of the second group, BSS-decomposition for multiple channels, can also
be found in different forms, including ICA f.b. wavelet [1, 12], stationary subspace
analysis f.b. EMD [115], ICA f.b. EMD [70], ICA f.b. regression analysis [61], and
ICA f.b. adaptive filtering [46].

2.4 Discussion

This chapter presents an overview of essential preprocessing steps for EEG. More
detailed guidelines of practical preprocessing procedures can be found in existing
literature (for instance, see [8, 52, 100, 104]). Although there has been substantial
progress in the development of EEG preprocessing methods until recently, continu-
ous advances in EEG-based research keep demanding innovations in preprocessing
techniques. For instance, pervasive and ambulatory applications using EEG foster
the development of preprocessing methods that can work with only a few channels
in real time [78, 86]. Recent neuroscience approaches to use multi-modal brain mea-
surements demand new ways of preprocessing EEG along with other signals such
as functional magnetic resonance imaging (fMRI) [17]. EEG hyperscanning tech-
niques recording brain activities simultaneously in more than one person, possibly
over different sites, need a more systematic preprocessing procedure [6]. Here, we
briefly discuss some ongoing issues and suggestions in the studies involving EEG
preprocessing.

When comparing the artifact removal performance of different algorithms, often
for the demonstration of the superiority of a newly proposed algorithm to existing
ones, we can encounter the issue of the lack of ground truth. Since it is generally
unknown about the exact waveform of a genuine EEG signal of interest, it is diffi-
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cult to assess how much a noisy EEG signal become purified by an artifact removal
algorithm [52]. One way to address this issue is to synthesize simulated signals
mixed with putative true EEG signals and artifacts and evaluate an algorithm with
the simulated signals [60, 64, 92]. Others have suggested using a well-known EEG
waveform evoked by an established cognitive task to test artifact removal methods
[104]. For example, an audio-visual task evoking the auditory N100 event-related
potential may provide a validation dataset with which researchers can evaluate differ-
ent artifact removalmethods by assessingN100waveforms after eliminating artifacts
by different methods (see [88] for more details).

Besides performance evaluation discussed above, there are other issues to address
for the development of an EEG artifact removal method. First, many recent EEG
applications demand online preprocessing of artifacts [26, 43, 86]. Such online pre-
processing is capable of detecting and removing artifacts even for non-stationary
environments so that it can adaptively update the parameters of algorithms by track-
ing environmental changes. As such, the requirement of online processing sometimes
weakens the advantages of certain algorithms that rely on the estimation of model
parameters using a chunk of the training data (e.g. ICA or EMD). Also, computation-
ally expensivemachine learning algorithms (e.g. thosewith deep learning algorithms)
may need further justification to be used for online processing. Yet, in the course
of the development of a new artifact removal algorithm, it would be more effective
to consider online implementation if possible. A fully automated artifact removal
algorithm will underpin online implementation [26, 84]. Second, the availability of
reference channels should be taken into consideration for artifact removal. If no ref-
erence channel is available, we need to use prior knowledge about artifacts or infer
artifacts directly from EEG data [62, 72, 86]. Generally, using an explicit reference
channel may help customizing algorithms for each individual, yielding a more pre-
cise preprocessing method. Depending on the types of artifacts, it may be useful for
improving EEG preprocessing to utilize reference channels, often acquired with a
separate device, such as: EOG channel [22, 23, 61], ECG channel [30], eye tracker
[85], accelerometer [24, 25], and contact impedance [119]. Third, it would be crucial
to match the properties of an algorithm with statistical and physiological character-
istics of the artifacts to remove. The readers may refer to Urigüen et al. [104] for the
suggestions of artifact removal algorithms suitable for different types of artifacts.
Fourth, researchers often opt to utilize public software tools for EEG preprocessing
as well as other EEG data analyses (see [52] for the list of available software tools).
Even though a number of software tools offer complete preprocessing routines and
user interfaces for EEG studies, it is recommended to intensively explore the theoret-
ical backgrounds and technical details of a tool being used. Otherwise, it is difficult
to understand how EEG signals are processed at each preprocessing step. Fifth, it is
helpful to inform study participants about the problems of artifacts in EEG record-
ings such that participants can minimize their movements during the main tasks
[89]. Although it would be also problematic if participants pay too much attention
to movement restriction throughout the whole experiment, a short training phase for
participants to minimize movements during the task periods interleaved with more
flexible breaks can help acquiring high-quality EEG data at the stage of recording.
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This instruction would be especially crucial for the studies recruiting younger par-
ticipants. Sixth, not only highly contaminated channels but also highly contaminated
trials are often eliminated from the analysis. The elimination of contaminated trials
is usually conducted after all the preprocessing steps but its operational principle
is similar to other preprocessing methods. Generally, the trials containing the EEG
signal magnitude greater than a threshold level (e.g.±150µV) are classified as being
contaminated [89]. Here, the threshold must be specified depending on experimen-
tal conditions. Rejection of too many trials would cause a shortage of the amount
of data in the subsequent analyses, so a careful interactive investigation between
preprocessing methods and trial rejection should be considered. Finally, a devel-
oped preprocessing pipeline may call for assessments based on feedbacks from the
designated applications (e.g. classification of the user intention for brain-computer
interfaces). Consequently, it isworth deliberating an end-to-end design ofEEGsignal
processing, from the recording to the interpretation of EEG as a whole.
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Chapter 3
EEG Spectral Analysis

Do-Won Kim and Chang-Hwan Im

Abstract Electroencephalogram (EEG) spectral analysis quantifies the amount of
rhythmic (or oscillatory) activity of different frequency in EEGs. Based on numerous
studies that reported significant relationship between the EEG spectrum and human
behavior, cognitive state, or mental illnesses, EEG spectral analysis is now accepted
as one of the principal analysis methods in the field of neuroscience. Despite the
tremendous amount of research related to its usefulness, EEG spectral analysis still
exhibits inconsistent results among studies. This might be partly because of the
various methodological decisions the researchers have to make during EEG spectral
analysis. Indeed, there is no standardized analysis procedure. In this chapter, we cover
some background principles of spectral analysis and introduce important issues that
researchers must consider during EEG spectral analysis.

3.1 Introduction

The human electroencephalogram (EEG) is one of the most complex sets of biomed-
ical signals. It is believed to reflect a variety of processes of the brain, especially the
neocortex, in which our cognitive function and sensorimotor information are pro-
cessed. Since the first report of successful recording of the human EEG by neuropsy-
chiatrist Hans Berger [6, 12], the EEG has been used extensively to help understand
the functions of the brain. Although we still do not have enough understanding to
describe every detail of the brain’s dynamics, extensive neuroscience studies provide
us with pieces of information on how the human brain operates in certain conditions,
e.g., reaction to a given stimulus.

EEGs can be analyzed qualitatively, as Berger did in his report on the human EEG,
or quantitatively, by using various computational EEG analysis methods. Qualitative
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analysis is still used routinely in neurology and sleep studies, mainly to find abnormal
signal patterns or roughly categorize well-known states of the brain that can be easily
recognized by visual inspection [5, 18]. For instance, clinicians determine the origin
of epileptic activity from ictal EEG recordings acquired during epileptic seizure [19,
38]. Another good example of qualitative EEG analysis is EEG-based sleep stage
scoring, using visually evident patterns in the signal (e.g., slowing rhythm, existence
of K-complex or spindle) [15, 37]. Naturally, the experience and expertise of the rater
may influence the outcome, and this motivated researchers to develop less subjective
measures. Quantitative analysis uses mathematical and statistical methods to find
evident features to characterize the given EEG signal, even ones that are difficult
to detect by visual inspection. Each approach classifies the EEG signal in terms
of frequency or period, amplitude, phase relations, and morphology (waveform,
topology, abundance, reactivity, and variability of these parameters) [7].

Among the various quantitative features of EEGs, one of the basic and com-
mon features is the frequency power of the EEG signal. From the earliest stages
of EEG research, probably from the first report of the existence of alpha waves by
Hans Berger, different velocities of the EEG recording were believed to reflect dif-
ferent states of the brain. Based on extensive research, now it is widely accepted
that we can define distinct frequency bands with different roles and characteristics,
namely, the delta (1–3 Hz), theta (4–7 Hz), alpha (8–12 Hz), beta (15–30 Hz), and
gamma (30–100 Hz) frequency bands. The frequency ranges of each band slightly
vary among different studies and researchers; however, it is generally accepted that a
subtle difference (less than 1 Hz) in defining the frequency range does not make
a significant difference [29]. Normally, the lower frequency band is believed to
reflect subconscious states, mostly showing dominant activation during deep sleep
or drowsiness, while relatively higher frequency bands reflect more alerted, active
states or are associated with higher cognitive functions [20, 35].

Two important factors are mainly considered in traditional EEG spectral analysis:
the amount (usually reported as power) of a specific frequency band and its spatial
distribution—see Fig. 3.1a. The power represents the amount of the frequency band
included in the signal, where both increase and decrease of EEG power are meaning-
ful information to understand the underlying brain function. The spatial distribution
of the power is also considered to be crucial, because the power changes in differ-
ent brain areas may represent different processes of the brain. EEG spectral powers
are generally represented as topological distributions on the scalp surface, and this
is usually referred to as quantitative EEG (qEEG) analysis, allowing for intuitive
comparison among groups or conditions in clinical applications. For instance, tradi-
tional qEEG analysis was done by comparing the individual data with a normative
database [22, 23]. The normative database basically contains frequency band power
data carefully collected by several hundreds of healthy subjects with diverse ages.
The spectral power of the individual EEG is usually converted to z-score, which
highlights whether the spectral powers of any EEG channel are enhanced or reduced
compared with the normative database.

In the initial stage of development of spectral analysis methods, it was not easy
to track the temporal variations of the frequency spectrum, because the temporo-
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Fig. 3.1 a Examples of topographies showing spatial distributions of average absolute spectral
powers for five frequency bands: delta (1–5 Hz), theta (5–8 Hz), alpha (8–12 Hz), beta (15–30 Hz),
and gamma (30–55 Hz). The EEGs were recorded from a normal person in resting state with
eyes open (top row) and eyes closed (bottom row). b Examples of time–frequency maps: grand
average of time–frequency spectra from 20 normal controls (left) and 20 adults with attention
deficit/hyperactivity disorder (ADHD) (right)

spectral EEG analyses need sufficient length of data to secure minimum frequency
resolution. Therefore, early spectral analysis studies were mostly done on long-
lasting and stable EEG recordings, e.g., EEG acquired during resting state or sleep,
for which the exact timing is relatively less important compared with time-locked or
stimulus-dependent experiments. However, after the mathematical background for
estimating the spectral power in a short time window was established [42], it became
possible to investigate the temporal changes of EEG power over a relatively short
time interval, allowing for investigations of time–frequency dynamics of EEGs with
respect to external or internal cues—see Fig. 3.1b.

Spectral analysis is a fundamental computational EEG analysis method that can
provide information on power, spatial distribution, or event-related temporal change
of a frequency of interest. However, EEG spectral analysis often has been regarded
as an unreliable and imprecise method by some neuroscientists and clinicians [29]
owing to the inconsistent results among studies that used spectral analysis. The
inconsistency is partly due to the absence of a golden standard in the analysis pro-
cedure [22]. The researchers confront a series of choices of experimental factors,
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including locations of a reference electrode and recording electrodes, preprocess-
ing methods, and some necessary methodological parameters, such as epoch length,
types of windowing functions, and frequency resolution. What makes it worse is
that a large number of studies often fail to report key factors or parameters, making
new researchers in this field arbitrarily guess the factors/parameters or use default
values provided by analysis software without any concrete background knowledge.
Therefore, in this chapter, we cover not only the basic methodological background
of EEG spectral analysis but also a number of crucial concepts and factors that one
needs to be aware of before and during performing EEG spectral analysis.

3.2 Methodological Background

3.2.1 Continuous Fourier Transform

Fourier transform is a straightforward method to calculate the power spectrum of a
signal. In this chapter, we cover only the basic properties of the Fourier transform,
beginning with how it can estimate the power of a certain frequency in the signal.
Detailed derivation of each equation can be found in signal-processing textbooks [30,
34]. First, we start with the general case of a continuous nonperiodic signal. Assume
x(t) as a signal that is infinite in length and continuous in time. The continuous
Fourier transform (CFT) of a function x(t) is then defined as

X (ω) �
+∞∫

−∞
x(t)e−jωtdt, (3.1)

where e−jωt(� cosωt − j sinωt) are the complex exponentials, and ω is the angular
frequency corresponding to the linear frequency f (ω � 2π f ). Equation (3.1) quan-
tifies the amount of contribution of each frequency ω in constituting the original
signal. If the signal x(t) is defined for all real numbers t, for any ω ∈ R, integrating
x(t) against e−jωt with respect to t produces a complex-valued function of ω. The
square magnitude of X (ω) (|X (ω)|2) is called the power spectrum or power spectral
density (PSD), where the angle � X (ω) denotes the phase at the given frequency ω.
In the frequency domain analysis of EEG, our major interest is the power spectrum
of a given EEG signal, which contains information on how much each frequency
component is contained in the given signal.

The definition in (3.1) can also be considered as a correlation between the signal
x(t) and the complex sinusoidal functions e−jωt . Therefore, Fourier transform can
be more intuitively understood as representing how similar the given signal is to the
complex exponential of a given frequency. The higher the correlation is with the
sinusoidal with frequency ω, the more influence of the frequency ω exists in the
original signal x(t).
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Using the frequency domain characteristic of x(t), we can also transform the
signal spectrum back to the time series signal using the inverse Fourier transform.
The inverse Fourier transform is defined as

x(t) � 1

2π

+∞∫

−∞
X (ω)ejωtdω. (3.2)

3.2.2 Discrete Fourier Transform

The CFT described in the previous section assumes that the signal is continuous
in time and infinite in length. However, in any modern EEG recording, the signal
is recorded in a limited time interval and stored digitally after it is amplified. In
other words, the recorded EEG signal that we want to analyze is neither infinite nor
continuous in time. Therefore, we use the discrete Fourier transform (DFT) instead
of the CFT. The DFT assumes that its input signal is one period of a periodic signal.
Its output is the discrete frequency spectrum of this periodic signal.

Consider a discrete signal x[n], the length of which is finite and n � 1, 2,…, N .
The signal is derived by sampling a continuous signal x(t) with an equal time interval
Δt or a sampling frequency f s � 1/Δt. The signal length is fixed to a finite length of
T � N Δt. The discrete form of the Fourier transform is defined as:

X [k] �
N−1∑
n�0

x[n]e−j2πkn/N , where k � 0, . . . , N − 1. (3.3)

The DFT gives the frequency spectrum at discrete frequencies f k , where the
following relationship is given:

fk � k

N�t
, (3.4)

when the frequency resolution of the spectral density is given by

�f � 1

T
� 1

N�t
. (3.5)

The frequency resolution is determined only by the length (number of samples) of
the signal. According to the Shannon sampling theorem [36], the highest frequency
of the power spectrum is limited to the Nyquist frequency f N given by

fN � fs
2

� 1

2�t
. (3.6)
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It is important to understand that the sampling frequency f s is the only factor that
determines the Nyquist frequency.

As in the CFT, the Fourier coefficients X[k] are complex numbers. Therefore,
X[k] can be expressed as the following in Cartesian form:

X [k] � XRe[k] + jXIm[k], (3.7)

where XRe[k] and XIm[k] are the real and imaginary parts of X [k], respectively. From
(3.7), the magnitude |X [k]| and the phase Φ[k] can be expressed as

|X [k]| �
√
X 2
Re[k] + X 2

Im[k], (3.8)

Φ[k] � tan−1 XIm[k]

XRe[k]
. (3.9)

The inverse DFT transforms the Fourier coefficient X[k] back into the discrete
time series x[n], as follows:

x[n] � 1

N

N−1∑
n�0

X [k]ej2πkn/N . (3.10)

3.2.3 Fast Fourier Transform

The fast Fourier transform (FFT) is a particular implementation of theDFT that gives
identical results with reduced calculations [10]. The calculation of (3.4) requires N2

complex multiplications, because, for each of the N discrete frequencies, it is nec-
essary to calculate the sum of N multiplications of complex exponentials. However,
in cases when N is a power of 2 (e.g., 64, 128, 512, 1024, …), many of these multi-
plications result in identical values, and many of the complex exponentials are zero
or 1. When redundant computations are removed, the number of multiplications is
reduced to N log2(N) rather than N2, reducing the computational burden, especially
when N is large. Spectral estimation based on the FFT assumes that the signal is
stationary and slowly varying.

3.2.4 Aliasing and Leakage

Spectral estimation based on the FFT has intrinsic properties called aliasing and
leakage [28], which need to be considered carefully. To understand the aliasing, con-
sider a continuous signal with a single frequency, as shown in Fig. 3.2. As the signal
is recorded, the original signal is sampled to a discrete-time signal, depending on
the sampling frequency (or interval) of the analog-to-digital converter (ADC). If the
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Fig. 3.2 Anexample of an aliasing effect. If the original signal (red bold) is sampledwith a sampling
frequency that does not satisfy the Shannon Sampling Theorem, the sampled signal (black dotted)
will not able to reconstruct the original signal, but rather it will be presented as a signal with a
spurious frequency

signal is sampled with a relatively high sampling frequency that fulfills the Shannon
sampling theorem, the frequency domain characteristics of the original signal can be
fully reconstructed. However, if the signal is sampled at a sampling frequency lower
than the Nyquist frequency of the original signal (e.g., five black dots in Fig. 3.2),
the frequency information of the original signal cannot be fully reconstructed or
estimated solely using the sampled signal. This undersampling rather creates an
activation in a different frequency (see the dotted line in Fig. 3.2), thereby resulting
in a phantomor spurious power at a frequency that is not present in the original signal.
This effect is called aliasing. To avoid the aliasing effect, antialiasing low-pass filters
should be applied before the digitization of the signal. Antialiasing filters restrict the
bandwidth of the original signal so that the sampling frequency of the system can
fulfill the Shannon sampling theorem.

Another important issue to be considered in the evaluation of the power spectral
density of a finite signal using FFT is the existence of spectral leakage. Asmentioned
before, the DFT assumes that the input signal is one period of a periodic signal.
Consider a periodic signal, as shown in Fig. 3.3a, and assume that we have recorded
a window of the given signal, as shown in Fig. 3.3b. If the window length is the
same as the periodic cycle of the original signal, as in Fig. 3.3c, the power spectra
of the original and repeated signals are identical. However, if the repeated signal,
as in Fig. 3.4c, of the truncated signal, shown in Fig. 3.4b, has some discontinuities
in the time domain, the frequency spectrum gets attenuated, i.e., the original power
spectrum spreads out to nearby frequencies.

Therefore, the simplest way to avoid the spectral leakage would be to decide
carefully the length of the measuring window, so the repeated signal does not have
any discontinuity. This is possible only if we know the exact frequency composition
of the recording signal or if the signal is periodic, which is usually impossible in real
recording situations where multiple frequency components are mixed together.

For example, Fig. 3.5a is a 5 Hz sine wave of a 2 s window including 10 full
cycles of sinusoids. The power spectrum of the signal is presented in Fig. 3.5b,
which correctly shows the spectrum of the original signal. However, a signal in
Fig. 3.5c has identical amplitude, phase, and frequency characteristics to those of the
signal in Fig. 3.5a, but it includes a noninteger number of cycles (reduced window
size), leading to a discontinuous waveform when it is repeated. This, consequently,
results in leakage in the power spectrum when Fourier-based methods are used—see
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Fig. 3.3 An example of a
case where the length of the
measurement window
matches the periodic cycle of
the original signal (a). The
captured signal (b) is
assumed to repeat itself in
time and creates the identical
continuous signal (c)

Fig. 3.5d. The power is spread out around the original frequency (5 Hz), and the
sum of the power does not match the total power of the original signal. The leakage
effect can be reduced to some extent by using an appropriate windowing function.
Figure 3.5e shows a signal after multiplying the signal in Fig. 3.5c by a Hanning
window function with the same length. Figure 3.5f shows the frequency spectrum of
the signal in Fig. 3.5e, where it can be observed that the leakage shown in Fig. 3.5d
was somewhat reduced. A more detailed description of the windowing functions can
be found in Sect. 3.3.3.

Fig. 3.4 An example of a
case where the length of the
measurement window does
not match the periodic cycle
of the original signal (a). The
captured signal (b) is
assumed to repeat itself in
time but creates a
discontinuous signal (c) that
is not identical to the original
signal (a)
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Fig. 3.5 a A 5–Hz sinusoidal signal over 2 s and b its power spectrum calculated using Fourier
transform. c, d A sinusoidal signal with noninteger cycles can cause power leakage around the
main peak. e, f The leakage can be reduced using proper windowing functions, such as the Hanning
window

3.2.5 Short-Time Fourier Transform

DFT calculates the spectral composition of a finite time interval. It provides a good
estimate of the frequency spectrum of the given signal; however, it is not easy to
track the temporal change of the power spectrum over a relatively short time period.
Since EEG is generally considered a nonstationary and time-variant signal, a non-
negligible amount of temporal details is lost by the spectral analysis based on the
DFT. To address this issue, Welch [42] proposed a method called short-time Fourier
transform (STFT), the mathematical definition of which is given as

X (τ, ω) �
+∞∫

−∞
x(t)w(t − τ )e−jωtdt. (3.11)

STFT is identical to the CFT of a signal x(t)w(t − τ ), where w(t − τ ) is a window
function that is shifted by τ . Now, we have a two-dimensional output X(τ , ω) that
estimates the spectra for both time and frequency, where the window is centered at
t � τ . The discrete version of the STFT can be written as
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X [m, k] �
+∞∑

n�−∞
x[n]w[n − m]e−j2πkn/N . (3.12)

Likewise, (3.12) estimates the phase and amplitude spectra of a signal x[n]w[n −
m], where w[n − m] is the discrete version of the window function w(t − τ ). STFT
differs from CFT or DFT in that the input signal is truncated by the window function
w(t) or w[n], and the center of the window function is shifted throughout the whole
signal.

The most distinct difference between DFT and STFT can be seen in the following
example. Assume that we have to analyze the spectral power of the signal given in
Fig. 3.6a. The given signal can be divided into three subranges: (0–1 s), a sinusoidal
wave of 6 Hz; (1–2 s), a sinusoidal wave of 17 Hz; and (2–3 s), a sinusoidal wave
of 31 Hz. Therefore, the dominant frequency of the signal changes over time. If
we analyze the whole signal with DFT, we obtain the power spectrum shown in
Fig. 3.6b.We expect that there are three dominant frequencies in the signal; however,
the spectrum does not provide the temporal dynamics of the given signal. Therefore,
wemaymisinterpret that the given signal has three dominant frequencies, throughout
the entire time segment. Indeed, Fig. 3.6c shows a signal that yields a similar spectral
profile to that of the signal shown in Fig. 3.6a. Strictly speaking, however, the DFT
of Fig. 3.6c will have fewer sidelobes than that in Fig. 3.6a; they are mainly caused
by the discontinuity of the signal at t � 1 and t � 2. Figure 3.6d shows a result of the
STFT analysis of the same signal shown in Fig. 3.6a. The x- and y-axis denote time
and frequency, respectively, and the power is color-coded, following (3.12). We can
observe the temporal dynamics of the given signal—the dominant frequency of the
signal changes every 1 s.

3.3 Practical Remarks on EEG Spectral Analysis

3.3.1 Choosing Adequate Sampling Frequency

According to the Shannon sampling theorem, the sampling frequencymust be at least
twice the frequency that needs to be observed. For instance, to precisely estimate the
spectral power of the gamma band (30–60 Hz), the sampling frequency must be at
least 120 Hz. Researchers should keep in mind that the Shannon sampling theorem
provides the minimum restriction for choosing the sampling frequency. In practice,
it is generally recommended to set a sampling frequency higher than the Nyquist
frequency, mostly three times larger than the maximum frequency of interest [2],
considering the transition band of the antialiasing low-pass filter.

Modern EEG amplifiers usually provide options to adjust the sampling frequency
based on user demand, mostly from 256 to 2048 Hz. The sampling frequency does
not influence the frequency resolution of the spectrum, but it has a direct relationship
with the amount of data storage needed for each recording. The higher the sampling
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Fig. 3.6 a A sample signal with different dominant frequencies over time; 6 Hz for 0–1 s, 17 Hz
for 1–2 s, and 31 Hz for 2–3 s. b Power spectrum evaluated using the whole signal of (a). c A signal
with 6, 17, and 31 Hz components simultaneously, which has a power spectrum like that in (b). d
STFT result of signal (a), where the temporal dynamics of the signal are accurately represented

frequency, the more data storage is required. Therefore, long-term EEG recordings
(e.g., sleep EEG or epileptic EEG monitoring) tend to use relatively lower sampling
frequencies compared with short-term recordings, such as resting-state EEG [3].
Keep in mind that downsampling is always possible, but upsampling is impossible
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once the signal recording is done. For instance, it is impossible to observe high
frequency oscillations (HFO, >100 Hz) once the recording is done with a sampling
rate of 200 Hz.

3.3.2 Analysis Window Size and Frequency Resolution

Suppose that we have a set of EEG data continuously recorded from a subject for
relatively long duration (e.g., 2 min). It is possible to estimate the power spectrum of
the signal by applying FFT to whole recording data; however, using so much data for
spectral estimation is not generally recommended because of the high computational
burden and possible artifacts that could be included during the long-term recordings
(e.g., gross motion artifacts or ocular artifacts). Long-term recordings may increase
the frequency resolution; however, because our main interest is usually the average
power in a certain frequency band (e.g., alpha band power), overly high frequency
resolution is generally regarded as excessive information. In addition, for an objective
comparison, it is important that the total data length used for data analysis should be
uniform among subjects. Therefore, a common procedure for EEG spectral analysis
is to divide the long-term recording into smaller pieces, called epochs, and take an
average of the spectral analysis results over artifact-free epochs [32].

The length of the epoch is a crucial factor, because it determines the frequency
resolutionof the spectrum.The frequency resolution f c is determinedby the following
equation:

fc � fs
N

, (3.13)

where f s is the sampling frequency, and N is the number of samples in the epoch.
Hence, for a fixed sampling frequency, the number of samples, which is proportional
to time, determines the frequency resolution. Because the sampling frequency is fixed
before recording, researchers can change the frequency resolution of the spectrum
by adjusting the length of the analysis window.

Another issue regarding the frequency resolution is the so-called picket fence
effect [21, 31]. Since the Fourier transform is applied to a sampled (discrete) signal,
the spectrum has values only at discrete frequency samples that are multiples of the
fundamental frequency f c. Therefore, the spectral information is accurate only when
the frequency of the original signal matches nf c (n � 0, 1, 2,…, N − 1); otherwise,
leaked frequency components can be observed in adjacent frequency samples. For
instance, suppose a signal has a convex spectrum peaking at f 1, as shown in Fig. 3.7a.
With the frequency resolution f c, the main peak of the signal power spectrum can
be correctly represented at f 1. However, if the peak of the spectrum is located at
f 2, which is the middle point of f 1 and the next frequency sample (=(f 1 + f c)/2),
the spectral characteristics of the signal cannot be correctly estimated, as shown in
Fig. 3.7b.
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(a)

(b)

(c)

Fig. 3.7 a An illustration of a discrete power spectrum (solid stem) when the frequency resolution
can correctly estimate the main peak of the underlying spectrum (dotted line). bHowever, if the fre-
quency resolution is not enough to estimate the spectrum, leakage might occur to nearby frequency
bins. c This picket-fence effect can be circumvented by increasing frequency resolution using zero
padding

This is a common problem arising when one wants to use a window size of 2N for
analyzing EEG data recorded with an EEG system that does not provide sampling
frequencies of the form of 2N (250, 500, 1000 Hz, etc.). For example, assume that
we want to evaluate the alpha band (8–12 Hz) power of an EEG signal recorded at a
sampling frequency of 250 Hz. If the analysis window size is set to be 512 samples
(=2.048 s) to take the full advantage of FFT, the resultant power spectrum would
have discrete values at every multiple of 0.448 Hz (=250/512). Now, it is difficult
to decide how to evaluate the average alpha band power, because the spectrum does
not provide power values at 8 and 12 Hz. The available frequency samples adjacent
to 8 Hz are 7.813 and 8.301 Hz, whereas those adjacent to 12 Hz are 11.719 and
12.207 Hz. Therefore, we must make a choice among possible frequency pairs; the
choice might result in some differences in the band power estimates.

Zero-padding before FFT can be a possible solution to address the issues presented
in the previous paragraph [31]. Zero-padding is a simple concept; it refers to adding
a series of zeros to the end of an epoch to increase the length of the epoch. Zero-
padding can increase the frequency resolution, therebymatching the required samples
for FFT. However, it should be noted that zero-padding decreases only the frequency
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spacing, but it does not influence the sensitivity of the spectrum; zero-padding should
be regarded as a kind of interpolation of a given power spectrum, not a solution to
decrease leakage. In the example shown in Fig. 3.7, the spectral peak of the signal
in Fig. 3.7b can be precisely detected by increasing the frequency resolution by a
factor of two via zero-padding—see Fig. 3.7c.

There is no standard on how to choose the epoch length, so it is recommended to
make the epoch length be a multiplication of a multiple of two and the sampling fre-
quency. This enables all integer frequency samples to be harmonics of f c. Therefore,
most EEG researchers have used either 2 or 4 s epochs [25], because both epoch
lengths provide adequate frequency resolution (0.5 and 0.25 Hz, respectively) and
also have sufficient temporal margin to reject epochs with excessive artifacts.

3.3.3 Reducing Leakage

To reduce spectral leakage, two recommendations can be made [26]. The most ideal
solution is to increase the length of the epoch; however, it is not easy to increase
the epoch size due to some practical reasons described in the previous section. An
alternative approach to reducing the spectral leakage is to taper both ends of the epoch
by multiplying the epoch by an appropriate window function [40]. Figure 3.4e is an
example of applying a Hanning window on the same signal shown in Fig. 3.4c. As
shown in Fig. 3.4f, the use of a Hanning window could effectively reduce the spectral
leakage. This procedure is known aswindowing. There are many types of windowing
functions, such as rectangular, Barlett, Hanning, Hamming, and Backman [13]; each
window has its own characteristic to shape the spectrum—Table 3.1; see Prabhu et al.
[33] for the detailed performance comparison among window functions.

It should be noted that the window function must be used before the signal is
padded with zeros, because window functions are used to smooth the endpoints of
the truncated signal while preserving the spectral power of the original signal.

3.3.4 Window Function for STFT

Two factors must be carefully determined for STFT analysis: the type and size of
the window function. Various types of window function can be considered, such
as rectangular, Hanning, Hamming, Gaussian, and Blackman, all of which can be
used to suppress spectral leakage but are slightly different from each other in their
performance [33]. Among them, Hanning and Hamming windows have been most
widely used in EEG spectral analysis. However, the length of the window function is
more difficult to decide. As the window size increases, the frequency resolution also
increases, but the analysis results become less sensitive to time.Use of a shortwindow
size would provide good temporal resolution but give poor frequency resolution. The
window should be narrow enough to ensure that the signal truncated by thewindow is
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Table 3.1 Common windowing functions and their characteristics, adapted from Prabhu et al. [33]

Name Function Peak
side-lobe
amplitude
(dB)

Mainlobe
width

Minimum
Stopband
Attenuation
(dB)

Rectangular ω(n) � 1, 0 ≤ n ≤ N − 1 −13 4π/N −21

Barlett ω(n)

{
2/N , 0 ≤ n ≤ (N − 1)/2

22n/N , (N − 1)/2 ≤ n ≤ N − 1
−25 8π/N −25

Hanning
ω(n) � 0.5 × (1 − cos(2πn/N ),

0 ≤ n ≤ N − 1
−31 8π/N −44

Hamming
ω(n) � 0.54 − 0.46 cos(2πn/N ),

0 ≤ n ≤ N − 1
−43 8π/N −53

Backman
ω(n) � 0.42 − 0.5 cos(2πn/N )

+0.08 cos(4πn/N ), 0 ≤ n ≤ N − 1
−57 12π/N −74

stationary, but it should not be too narrow to secure adequate frequency resolution for
analysis. If the window size does not fulfill the desired frequency resolution, consider
using zero-padding to increase the frequency resolution, but not excessively, because
the result can be distorted by chance. The temporal resolution of STFT can also be
increased by shifting the window in a small step over time. The amount of shift of
the window over time can also be defined as the overlap ratio of the window. As
the overlap ratio increases, fewer samples of the upcoming signal are included in the
window. Also, the temporal resolution will increase as the overlap ratio increases;
therefore, the frequency change over time shows a continuous-like function; however,
using too much the overlap will increase computational burden.

3.3.5 Absolute Power Versus Relative Power

Absolute power is a measure directly indicating the amount of spectral power of
a specific frequency, and it is straightforward to interpret. However, the spectral
pattern and/or the overall power of EEG are diverse, not only among age groups,
gender, or cognitive states (drowsiness, sleep, attention, etc.) [9, 14, 41], but also
among individuals under the same experimental conditions [17, 27]. Also, the power
spectrumof theEEGshows an exponential decreasewith increasing frequency,which
means the lower-frequency components, such as the delta and theta band activities,
are much bigger than the higher-frequency components, such as alpha and beta band
activities [4]; therefore, the absolute power might not effectively detect the small
changes in higher frequencies. Moreover, it is generally difficult to compare datasets
recorded with different EEG amplifiers because of the unique frequency response
of each amplifier. Therefore, it is sometimes useful to evaluate the relative power of
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each frequency band by dividing the absolute power of each band by the total power
(usually, 1–50/60 Hz) or by the sum of powers in the frequency bands of interest. The
relative power represents the proportion of each band to the given signal. According
to Klimesch [24], the relative power of the alpha band highlighted the increase of
alpha power in children with respect to age, although it was hard to observe such a
trend in absolute power.

In comparison with absolute power, relative power could be an intuitive indicator
to track changes in overall dominance of each band over time or under different
conditions. However, some researchers insist that relative power may lead to mis-
interpretation of the data. Indeed, an increase of relative power in one frequency
band could be interpreted as a decrease of relative power in another band, even when
the absolute power of the latter frequency band did not change [8]. In addition, the
definition of frequency bands is not standardized, making it difficult to compare
the analysis results among studies. Nevertheless, both absolute and relative powers
contributed to many important findings in the field of neuroscience; therefore, they
should be treated equally.

3.3.6 Other Considerations in Spectral Analysis

There is no restriction in the number of electrodes used for spectral analysis; however,
at least 19 (according to the international 10–20 system) or more electrodes are
recommended to observe the overall spatial distribution of spectral power for each
frequency band [2]. It is common to use reference electrodes placed at electrically
neutral places, such as nose tip reference and linked-ear reference; however, some
researchers prefer to use reference-free methods, such as common average reference
(CAR). Physical reference electrodes often suffer from local contamination but have
an advantage that each electrode can be treated independently. On the other hand,
CARgenerally requires a number of evenly distributed electrodes on the scalp surface
to fulfill its mathematical assumption [11]. Moreover, CAR is sensitive to an artifact
(e.g., eye blink artifact and electromyogram artifact), because the artifact is evenly
distributed to other electrodes. Therefore, if one decides to use CAR, it is important to
reject epochs including artifacts or remove/reduce the artifacts before the application
of CAR using signal processing procedures, e.g., independent component analysis
(ICA).

In practical EEG analysis, it is a widely accepted process to group a few adja-
cent electrodes within a specific region of interest and calculate the average spectral
power of the region. Division of the regions is generally made according to hemi-
spheres (left/right) or lobes (frontal/central/temporal/occipital) or by combiningboth.
Grouping the electrodes by regions or hemispheres can better highlight regional dif-
ferences—for instance, alpha asymmetry [16] of left and right hemispheres. Aver-
aging the spectral power in small areas might be reasonable, considering the low
spatial resolution of EEGs. Moreover, grouping nearby electrodes is advantageous
not only to increase the reliability of the power spectrum by averaging, but also
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to relieve the necessity of multiple-testing correction by decreasing the number of
simultaneous comparisons. Likewise, the basic frequency bands (delta, theta, alpha,
beta, and gamma) can also be divided into multiple subbands. Alpha and beta bands
are sometimes fragmented by (1) the low-alpha and high-alpha and (2) the low-beta
and high-beta subbands, to investigate the functions of more specific bands [1, 39].
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Chapter 4
The Analysis of Event-Related Potentials

Marco Congedo

Abstract In this chapter, we provide an introduction to the major methods used
for the analysis and classification of Event-Related Potentials (ERPs). We start by
considering the problem of estimating ERP ensemble averages in the time domain.
An estimator allowing for weights and time shifts for each trial is discussed. Then
we consider spatial, temporal and spatio-temporal multivariate filters for improving
the estimation, including principal component analysis, the common spatial pattern
and blind source separation. Then, we review time-frequency analysis methods. The
reader is provided with definitions in order to understand the most commonly used
linear and non-linear measures used in the time-frequency domain.We continue with
a brief discussion on the importance of the analysis in the spatial domain, includ-
ing topographic maps and tomographies. Next, we review procedures for applying
inferential statistics to ERP studies. Emphasis is given to procedures based on per-
mutation tests, which account for the multiple comparison problem and adapt to
the form and degree of correlation between hypotheses. Finally, we consider the
problem of classifying ERP single-trials, pointing to recent literature covering the
most promising methods currently available, namely, Riemannian geometry, random
forests and neural networks.

4.1 Introduction

Event-Related Potentials (ERPs) are a fundamental class of phenomena that can be
observed by means of electroencephalography (EEG). They are defined as poten-
tial difference fluctuations that are both time-locked and phase-locked to a discrete
physical, mental, or physiological occurrence, referred to as the event. ERPs are
usually described as a number of positive and negative peaks characterized by their
polarity, shape, amplitude, latency and spatial distribution on the scalp. All these
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characteristics depend on the type (class) of event. Each realization of an ERP is
named a sweep or trial. Important pioneering discoveries of ERPs include the con-
tingent negative variation [96], the P300 [88], the mismatch negativity [68] and the
error-related negativity [31]. Another class of time-locked phenomena are the Event-
Related De/Synchronizations (ERDs/ERSs, [77]), which are not phase-locked. In
order to keep a clear distinction between the two, ERD/ERS are referred to as induced
phenomena, while ERPs are referred to as evoked phenomena [89]. Traditionally,
ERPs have been conceived as stereotypical fluctuations with approximately fixed
polarity, shape, latency, amplitude and spatial distribution. Accordingly, the ERP
fluctuations are independent from the ongoing EEG and superimpose to it in a time-
and phase-locked fashion with respect to the triggering event. This yields the so-
called additive generative model. Several observations have challenged this model
[23], suggesting the possibility that evoked responses may be caused by a process
of phase resetting, that is, an alignment of the phase of the spontaneous neuronal
activity with respect to the event [44, 57, 62]. According to this model, ERPs result
from time/frequency modulations of the ongoing activity of specific neuronal pop-
ulations. Still another generative model of ERPs was introduced by [65] and [69].
These authors pointed out that ongoing EEG activity is commonly non-symmetric
around zero, as can be seen clearly in sub-dural recordings of alpha rhythms [58].
They proposed that averaging amplitude-asymmetric oscillations may create evoked
responses with slow components.

In this chapter, we consider several major methods currently used to analyze and
classify ERPs. In modern EEG, using a multitude of electrodes is the rule rather than
the exception, thus emphasis is given on multivariate methods, since these methods
can exploit spatial information and achieve higher signal-to-noise ratio (SNR) as
compared to single-electrode recordings.Weconsider the analysis in the timedomain,
in the time-frequency domain and in the spatial domain. We also consider inter-
trial amplitude and latency variability as well as the case of overlapping ERPs.
We then consider useful tools for inferential statistics and classifiers for machine
learning specifically targeting ERP data. All the time-domain methods described in
this chapter are implicitly based on the additive model, but they may give meaningful
results even if the data is generated under other models. Time-frequency domain
methods can explicitly study the phase consistency of ERP components. We will
show an example analysis for each section. The real data examples in all but the
last figure concerns a visual P300 experiments where healthy adults play a brain-
computer interface video-game namedBrain Invaders [21]. This experiment is based
on the classical oddball paradigm and yields ERPs pertaining to a target class, evoked
by infrequent stimuli, and a non-target class, evoked by frequent stimuli.
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4.2 General Considerations in ERP Analysis

ERPanalysis is always preceded by a pre-processing step inwhich the data is digitally
filtered. Notch filters for suppressing power line contamination and band-pass filters
are common practice to increase the SNR and remove the direct current level [61].
If the high-pass margin of the filter is lower than 0.5 Hz, the direct current level can
be eliminated by subtracting the average potential (baseline) computed on a short
window before the ERP onset (typically 250ms long). Researchers and clinicians are
often unaware of the signal changes that can be introduced by a digital signal filter, yet
the care injected in this pre-processing stage is well rewarded, since severe distortion
in signal shape, amplitude, latency and even scalp distribution can be introduced by
an inappropriate choice of digital filter [98].

There is consensus today that for a given class of ERPs only the polarities of
the peaks may be considered consistent for a given electrical reference used in the
EEG recording; the shape, latency, amplitude and spatial distribution of ERPs are
highly variable among individuals. Furthermore, even if within each individual the
shape may be assumed stable on average, there may be a non-negligible amplitude
and latency inter-sweep variability. Furthermore, the spatial distribution can be con-
sidered stable within the same individual and within a recording session, but may
vary from session to session, for instance, due to slight differences in electrode
positioning. Inter-sweep variability is caused by the combination of several experi-
mental, biological and instrumental factors. Experimental and biological factors may
affect both latency and amplitude. Examples of experimental factors are the stimulus
intensity and the number of items in a visual search task [61]. Examples of biolog-
ical factors are the subject’s fatigue, attention, vigilance, boredom and habituation
to the stimulus. Instrumental factors mainly affect the latency variability; the ERP
marking on the EEG recordingmay introduce a jitter, whichmay be non-negligible if
the marker is not recorded directly on the EEG amplification unit and appropriately
synchronized therein, or if the stimulation device features a variable stimulus deliv-
ery delay. An important factor of amplitude variability is the ongoing EEG signal;
large artifacts and high energy background EEG (such as the posterior dominant
rhythm) may affect differently the sweeps, depending on their amplitude and phase,
artificially enhancing or suppressing ERP peaks.

Special care in ERP analysis must be undertaken when we record overlapping
ERPs, since in this case simple averaging results in biased estimations [85, 99, 100].
ERPs are non-overlapping if the minimum inter-stimulus interval (ISI) is longer than
the length of the latest recordableERP.There is today increasing interest in paradigms
eliciting overlapping ERPs, such as some odd-ball paradigms [21] and rapid image
triage [104], which are heavily employed in brain-computer interfaces for increasing
the information transfer rate [101] and in the study of eye-fixation potentials, where
the “stimulus onset” is the time of an eye fixation and saccades follow rapidly [86].
The strongest distortion is observedwhen the ISI is fixed. Less severe is the distortion
when the ISI is drawn at random from an exponential distribution [21, 85].
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Amplitude/latency inter-sweep variability as well as the occurrence of overlap-
ping ERPs call for specific analysis methods. In general, such methods result in an
improved ensemble average estimation. For a review of such methods, the reader is
referred to Congedo and Lopes da Silva [23].

4.3 Time Domain Analysis

The main goal of the analysis in the time domain is to estimate the ensemble average
of several sweeps and characterize the ERP peaks in terms of amplitude, shape and
latency. Using matrix algebra notation, we will denote by x(t), the column vector
holding themultivariate EEG recording at N electrodes and at time sample t, whereas
N×Tmatrix Xk will denote a data epoch holding the kth observed sweep for a given
class of ERP signals. These sweeps last T samples and start at event time±an offset
that depends on the ERP class. For instance, the ERPs and ERDs/ERSs follow a
visual presentation but precede a button press. The sweep onset must therefore be
set accordingly adjusting the offset. We will assume along this chapter that T>N,
i.e., that the sweeps comprise more samples than sensors. We will index the sweeps
for a given class by k∈{1, …, K}, where K is the number of available sweeps for the
class under analysis.

4.3.1 The Additive Generative Model

The additive generative model for the observed sweep of a given class can be written
as

Xk � σkQ(τk) + Nk , (4.1)

where Q is an N×T matrix representing the stereotypical evoked responses for
the class under analysis, σ k are positive scaling factors accounting for inter-sweep
variations in the amplitude of Q, τ k are time-shifts, in samples units, accounting for
inter-sweep variations in the latency ofQ andNk are N×Tmatrices representing the
noise term added to the kth sweep. Here by ‘noise’ we refer to all non-evoked activity,
including ongoing and induced activity, plus all artifacts. According to this model,
the evoked response inQ is continuously modulated in amplitude and latency across
sweeps by the aforementioned instrumental, experimental and biological factors.
Therefore, the single-sweep SNR is the ratio between the variance of σ k Q(τ k) and
the variance of Nk . Since the amplitude of ERP responses on the average is in the
order of a fewμV , whereas the noise is in the order of several tens ofμV , the SNR of
single sweeps is very low. The classical way to improve the SNR is averaging several
sweeps. This enhances evoked fluctuations by constructive interference, since they
are the only time- and phase-locked fluctuations.
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4.3.2 Ensemble Average Estimations

The usual arithmetic ensemble average of the K sweeps is given by

X̄ � 1
K

K∑

k�1

Xk . (4.2)

This estimator is unbiased if the noise term is zero-mean, uncorrelated to the
signal, spatially and temporally uncorrelated and stationary. It is actually optimal
if the noise is also Gaussian [56]. However, these conditions are never matched in
practice. For instance, EEG data are both spatially and temporally correlated and
typically contain outliers and artifacts, thus are highly non-stationary. As a rule of
thumb, the SNR of the arithmetic ensemble average improves proportionally to the
square root of the number of sweeps. In practice, it is well known that the arithmetic
mean is an acceptable ensemble average estimator provided that sweeps with low
SNR are removed and that enough sweeps are available. A better estimate is obtained
by estimating the weights σ k and shift τ k to be given to each sweep before averaging.
The resulting weighted and aligned arithmetic ensemble average is given by

X̄ �
∑K

k�1 (σkXk(τk))∑K
k�1 σk

. (4.3)

Of course, with all weights equal and all time-shifts equal to zero, ensemble aver-
age estimation (4.3) reduces to (4.2). Importantly, when ERP overlaps, as discussed
above, estimators (4.2) or (4.3) should be replaced by a multivariate regression ver-
sion, which is given by (1.9) in Congedo et al. [22].

4.3.3 Multivariate Filtering Methods

A large family of multivariate methods have been developed with the aim of improv-
ing the estimation of ERP ensemble averages bymeans of spatial, temporal or spatio-
temporal filtering. These filters transform the original time-series of the ensemble
average in a number of components, which are linear combinations of the original
data. A spatial filter outputs components in the form of time-series, which are linear
combinations of sensors for each sample, along with the spatial patterns correspond-
ing to each component. A temporal filter outputs components in the form of spatial
maps, which are linear combinations of samples for each sensor, along with the
temporal patterns corresponding to each component. A spatio-temporal filter out-
puts components that are linear combinations of sensor and samples at the same
time, along with the corresponding spatial and temporal patterns. Given an ensemble
average estimation such as in (4.2) or (4.3), the output of the spatial, temporal, and
spatio-temporal filters are the components given by



60 M. Congedo

⎧
⎪⎪⎨

⎪⎪⎩

Ȳ � BT X̄ spatial

Ȳ � X̄ D temporal

Ȳ � BT X̄D spatio - temporal

. (4.4)

For both the N×P spatial filter matrix B and the T×P temporal filter matrix D,
we require 0<P<N, where P is named the subspace dimension. The upper bound
for P is due to the fact that for our data N<T and that filtering is achieved effectively
by discarding from the ensemble average the N-P components not accounted for by
the filters, that is, at least one component must be discarded. The task of a filter is
indeed to decompose the data in a small number of meaningful components so as
to suppress noise while enhancing the relevant signal. Once designed the matrices
B and/or D, the filtered ensemble average estimation is obtained by projecting back
the components onto the sensor space, as

⎧
⎪⎪⎨

⎪⎪⎩

X̄ ′ � ABT X̄ spatial

X̄ ′ � X̄ DET temporal

X̄ ′ � ABT X̄DET spatio - temporal

, (4.5)

where N×P matrix A and T×P matrix E are readily found so as to verify

BTA � ETD � I . (4.6)

In the spatio-temporal setting the columns of matrix A and E are the aforemen-
tioned spatial and temporal patterns, respectively. In the spatial setting, only the
spatial patterns in A are available, however the components in the rows of Ȳ (spatial)
in (4.4) will play the role of the temporal patterns. Similarly, in the temporal setting,
only the temporal patterns inE are available, however the components in the columns
of Ȳ (temporal) in (4.4) will play the role of the spatial patterns. So, regardless the
type of chosen filter, in this kind of analysis it is customary to visualize the spatial
patterns in the form of scalp topographic or tomographic maps and the temporal
pattern in the form of associated time-series. This way one can evaluate the spatial
and/or temporal patterns of the components that should be retained and those that
should be discarded so as to increase the SNR. Nonetheless, we stress here that in
general these patterns bear no physiological meaning. A notable exception are the
patterns found by the family of blind source separation methods, discussed below,
which, under a number of assumptions, allow such interpretation.

4.3.4 Principal Component Analysis

Principal component analysis (PCA) has been the first multivariate filter of this kind
to be applied to ERP data [28, 45] and has been often employed [12, 27, 51]. A long-
lasting debate has concerned the choice of the spatial vs. temporal PCA [27, 79],
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however we hold here that the debate is resolved by performing a spatio-temporal
PCA, combining the advantages of both. The PCA seeks uncorrelated components
maximizing the variance of the ensemble average estimation (4.2) or (4.3); the first
component explains the maximum of its variance, while the remaining components
explain the maximum of its remaining variance, subjected to being uncorrelated
to all the previous. Hence, the variance explained by the N-P discarded components
explains the variance of the ‘noise’ that has been filtered out by the PCA. In symbols,
the PCA seeks matrices B and/or D with orthogonal columns so as to maximize the
variance of X̄ ′. Note that for any choice of 0<P<N, the filtered ensemble average
estimator X̄ ′ obtained by PCA is the best P-rank approximation to X̄ in the least-
squares sense, i.e., for any 0<P<N, the matrices B and/or D as found by PCA attain
the minimum variance of X̄ − X̄ ′.

The PCA is obtained as it follows: let

X̄ � UWVT (4.7)

be the singular-value decomposition of the ensemble average estimation, where
N×T matrix W holds along the principal diagonal the N non-null singular val-
ues in decreasing order (w1≥ · · · ≥wN ) and where N×NmatrixU and T×Tmatrix
V hold in their columns the left and right singular vectors, respectively. Note that
the columns of U and V are also the eigenvectors of X̄ X̄ T and X̄ T X̄ , respectively,
with corresponding eigenvalues in both cases being the square of the singular values
inW and summing to the variance of X̄ ′. The spatial PCA is obtained filling B with
the first P column vectors of U, the temporal PCA is obtained filling D with the first
P column vectors of V and the spatio-temporal PCA is obtained filling them both.
The appropriate version of (4.4) and (4.5) then applies to obtain the components and
the sought filtered ensemble average estimation, respectively. In all cases 0<P<N
is the chosen subspace dimension. Note that since for PCA the vectors of the spatial
and/or temporal filter matrix are all pair-wise orthogonal, (4.6) is simply verified by
setting A=B and/or E=D.

An example of spatio-temporal PCA applied to an ERP data set is shown in
Fig. 4.1, using estimator (4.2) in the second column and estimator (4.3) in the fourth
column. The ERP of this subject features a typical N1/P2 complex at occipital loca-
tions and an oscillatory process from about 50–450 ms, better visible at central and
parietal location, ending with a large positivity peaking at 375 ms (the “P300”). We
see that by means of only four components the PCA effectively compresses the ERP,
retaining the relevant signal; however, eye-related artefacts are also retained (see
traces at electrodes FP1 and FP2). This happens because the variance of these arte-
facts is very high, thus as long as the artefacts are somehow spatially and temporally
consistent across sweeps, they will be retained in early components along with the
consistent (time and phase-locked) ERPs, even if estimator (4.3) is used. For this
reason, artefact rejection is generally necessary before applying a PCA.
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Fig. 4.1 Comparison of several filtered ensemble average estimations via (4.5) using several spatio-
temporal filtering methods. One second of data starting at target (infrequent stimulus) presentation
averaged across 80 sweeps is displayed. No artifact rejection was performed. The green shaded
area is the global field power (Lehmann and Skrandies [52] in arbitrary units, Legend “Ar. EA”�
non-filtered arithmetic mean ensemble average given by (4.2). “ST PCA”� spatio-temporal PCA
with P�4. “CSTP”�CSTP with P�12; These two filters have been applied to estimator (4.2).
“*” The filters are applied on the weighted and aligned estimator (4.3) using the adaptive method
of Congedo et al. [22]. All plots have the same horizontal and vertical scales

4.3.5 The Common Pattern

In order to improve upon the PCA we need to define a measure of the SNR, so that
we can devise a filter maximizing the variance of the evoked signal, like PCA does,
while also minimizing the variance of the noise. Consider the average spatial and
temporal sample covariancematrixwhen the average is computed across all available
sweeps, such as

S � 1
K

K∑
k�1

COV (Xk), T � 1
K

K∑
k�1

COV
(
X T
k

)
(4.8)

and the covariance matrices of the ensemble averages, namely,
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S̄ � COV
(
X̄

)
, T̄ � COV

(
X̄ T

)
. (4.9)

The quantities in (4.8) and (4.9) are very different; in fact S and T hold the
covariance of all EEG processes that are active during the sweeps, regardless the fact
they are time and phase-locked or not, while in S̄ and T̄ the non-phase-locked signals
have been attenuated by computing the ensemble average in the time domain. That is
to say, referring to model (4.1), S and T contain the covariance of the signal plus the
covariance of the noise, whereas S̄ and T̄ contain the covariance of the signal plus
an attenuated covariance of the noise. A useful definition of the SNR for the filtered
ensemble average estimation is then

SNR
(
X̄ ′) � VAR

(
ABT X̄DET

)

1
K

∑K
k�1 VAR

(
ABT X̄kDET

) . (4.10)

The common spatio-temporal pattern (CSTP), presented in Congedo et al. [22], is
the filtering method maximizing this SNR. It can be used as well when the data
contains several classes of ERPs. The sole spatial or temporal common pattern
approaches are obtained as special cases. Both conceptually and algorithmically,
the CSTP can be understood as a PCA performed on whitened data. So, the PCA
can be obtained as a special case of the CSTP by omitting the whitening step. The
reader is referred to Congedo et al. [22] for all details and reference to available
code libraries. An example of CSTP is shown in Fig. 4.1. In contrast to the spatio-
temporal PCA, the CSTP has removed almost completely the eye-related artefact.
The last two plots in Fig. 4.1 show the filtered ensemble average estimation obtained
by spatio-temporal PCA and CSTP using the adaptive method presented in Congedo
et al. [22] for estimating the weights and shift so as to use (4.3) instead of (4.2);
the CSTP estimator is even better in this case, as residual eye-related artefacts at
electrodes FP1 and FP2 have been completely eliminated.

4.3.6 Blind Source Separation

Over the past 30 years, Blind Source Separation (BSS) has established itself as a core
methodology for the analysis of data in a very large spectrum of engineering appli-
cations such as speech, image, satellite, radar, sonar, antennas and biological signal
analysis [17]. In EEG, BSS is often employed for denoising/artifact rejection (e.g.,
[26]) and in the analysis of continuously recorded EEG, ERDs/ERSs and ERPs. Tra-
ditionally, BSS operates by spatially filtering the data. Therefore, it can be casted out
in the framework of spatial filters we have previously presented, that is, using the first
of the three expressions in (4.4) and (4.5). We have seen that PCA and the common
pattern filter seek abstract components optimizing some criterion: the signal variance
for PCA and an SNR for the common pattern. In contrast, BSS aims at estimating
the true brain dipolar components resulting in the observed scalp measurement. For
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doing so, BSS makes a number of assumptions. The common one for all BSS meth-
ods is that the observed EEG potential results from an instantaneous linear mixing
of a number of cortical dipolar electric fields. Although this is an approximation of
the physical process of current generation in the brain and diffusion through the head
[70], physical and physiological knowledge support such generative model for scalp
potentials [9]. In particular, the model fits well low-frequency electrical phenomena
with low spatial resolution, which yield the strongest contribution to the recordable
EEG. The model reads

x(t) � As(t), (4.11)

where, as before, x(t) is the observed N-dimensional sensor measurement vector,
s(t) the unknown P-dimensional vector holding the true dipolar source process (with
0<P≤N), and A, also assumed unknown in BSS, is named the mixing matrix. BSS
entails the estimation of a demixing matrix B allowing source process estimation

y(t) � BTx(t). (4.12)

We say that the source process can be identified if

y(t) ≈ Gs(t), (4.13)

where P×PmatrixG=BTA is a scaled permutation matrix, i.e., a square matrix with
only one non-null element in each row and each column.MatrixG cannot be observed
since A is unknown. It enforces a shuffling of the order and amplitude (including
possible sign switching) of the estimated source components, which cannot be solved
byBSS. Equation (4.13)means that in BSS the actualwaveform of the source process
has been approximately identified, albeit the sign, scaling and order of the estimated
source process is arbitrary. Such identification is named blind because no knowledge
on the source waveform s(t) nor on the mixing process A is assumed. Fortunately,
condition (4.13) can be achieved under some additional assumptions relating to the
statistical properties of the dipolar source components (see [11, 78]).

Two important families of BSS methods operate by canceling inter-sensor second
order statistics (SOS) or higher (than two) order statistics (HOS); the latter fam-
ily being better known as independent component analysis (ICA) (see [17], for an
overview). In doing so, both assume some form of independence among the source
processes, which is specified by inter-sensor statistics that are estimated from the
data. The difference between the two families resides in the assumption about the
nature of the source process; since Gaussian processes are defined exhaustively by
their mean and variance (SOS), ICAmay succeed only when at most one of the com-
ponents is Gaussian. On the other hand, SOSmethods can identify the source process
components regardless of their distribution, i.e., even if they are all Gaussian, but
source components must have a unique power spectrum signature and/or a unique
pattern of energy variation across time, across experimental conditions or, in the case
of ERPs, across ERP classes (see [20, 24]). For HOS methods the available EEG
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can be used directly as input of the algorithms [26]. For BSS methods, either lagged
covariance matrices or Fourier co-spectral matrices are estimated on the available
data, then the demixing matrix B is estimated as the approximate joint diagonalizer
of all these matrices [20]. Details on the application of BSS methods to ERP data
can be found in Congedo et al. [24].

Figure 4.2 shows the result of a SOS-basedBSS analysis applied to P300 data; here
the ensemble averages have been aligned using the method described by Congedo
et al. [22]. Analyzing both the temporal course and spatial distribution, we see that
the BSS analysis finds two relevant source components: S7 features a topographic
map (spatial pattern) with maximum at the vertex and an ERP (temporal pattern)
with maximum at 370 ms, clearly describing the P300. S13 features a topographic
map with maximum at parietal and occipital bilateral derivations and an ERP with
the classical P100/N200 complex describing a visual ERP. Both source components
are present only in the target sweeps. Further analysis of these components will
be presented in the Sect. 4.4. time-frequency domain analysis. Clearly, BSS has
successfully separated the two ERP components.

It is worth mentioning that while traditionally only spatial BSS is performed,
a spatio-temporal BSS method for ERPs has been presented in Korczowski et al.
[49]. Just as in the case of PCA and common pattern, a spatio-temporal approach is
preferable for ERP analysis, thus it should be pursued further (Fig. 4.2).

4.4 Time-Frequency Domain Analysis

Time-FrequencyAnalysis (TFA) complements and expands the time domain analysis
of ERP thanks to a number of unique features. While the analysis in the time domain
allows the study of phase-locked ERP components only, TFA allows the study of
both phase-locked (evoked) and non-phase-locked (induced) ERP components. In
addition to timing, theTFAprovides information about the frequency (both for evoked
and induced components) and about the phase (evoked components only) of the
underlying physiological processes. This is true for the analysis of a single time
series (univariate) as well as for the analysis of the dependency between two time-
series (bivariate), the latter not being treated here. In all cases, the time series under
analysis may be the sweeps derived at significant scalp derivations or BSS source
components with specific physiological meaning as obtained by themethodswe have
discussed above. In this section we introduce several univariate TFA measures.

A time-frequency analysis (TFA) decomposes a signal in a two dimensional plane,
with one dimension being the time and the other being the frequency.Whereas several
possible time-frequency representations exist, nowadays in ERP studies we mainly
encounterwavelets [50, 89] or theanalytic signal resulting from theHilbert transform
[13, 84, 90]. Several studies comparingwavelets and theHilbert transformhave found
that the two representations give similar results [8, 53].

The examplewe provide below employs theHilbert transform [37],which is easily
and efficiently computed by means of the fast Fourier transform [64]. By applying
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Fig. 4.2 SOS-based blind source separation of ERP. From left to right of the top panel: theweighted
and aligned ensemble average (4.3) of the non-target sweeps (Ar. EA NT) and of the target sweeps
(Ar. EA TA), the BSS components for non-target (BSS Comp. NT) and target (BSS Comp. TA)
ensemble average (obtained via (4.4), first expression), the same filtered ensemble average retaining
source component 7 for the non-target (S7 @ NT) and target sweeps (S7 @ TA) and the filtered
ensemble average obtained retaining source component 13 for the non-target (S13@NT) and target
sweeps (S13 @ TA). +: arbitrary vertical units for each trace. The bottom panel shows the spatial
patterns (columns of the inverse of matrix B) of the BSS components in the form of monochromatic
topographic maps. The sign of the potential is arbitrary in BSS analysis. Each map is scaled to its
own maximum. Note the separation of two source components: S7 which accounts for the P300,
with maximum at the vertex and an ERP with maximum at 370 ms, and S13, which accounts for
the classic P100/N200 visual ERP, with maximum at parietal and occipital bilateral derivations. As
expected, both source components are present only in the target sweeps, whereas other components
are visible in both the target and non-target sweeps

a filter bank to the signal, that is, a series of band-pass filters centered at successive
frequencies f (for example, centered at 1 Hz, 2 Hz,…) and by computing the Hilbert
transform for each filtered signal, we obtain the analytic signal in the time-frequency
representation. Each time-frequency point of the analytic signal is a complex number
ztf =atf + ibtf (Fig. 4.3). For each sample of the original signal we obtain from ztf
the instantaneous amplitude rtf , also known as the envelope, as its modulus rtf = |ztf |
and the instantaneous phase ϕtf as its argument ϕtf =Arg (ztf ). The amplitude rtf
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Fig. 4.3 In the complex plane the abscissa is the real line and the ordinate is the imaginary line
endowed with the imaginary unit i, which is defined as i2 �−1. A complex number can be repre-
sented in Cartesian form as the point z � a + ib in such plane, where a is the real coordinate and
ib is the imaginary coordinate. The point can be represented also by a position vector, that is, the
vector joining the origin and the point, with length r and angle ϕ (in the left part of the figure the
point is on the unit circle). r and ϕ are known as the polar coordinates. In trigonometric form the
coordinates are rcosϕ and irsinϕ, therefore, using Euler’s formula ei � cosϕ + isinϕ, we can also
express any complex number as z � rei

is expressed in μV units. The phase ϕtf is a cyclic quantity usually reported in the
interval (−π, …,π], but can be equivalently reported in any interval such as (−1,…,
1], (0, …, 1] or in degrees (0°, …, 360°]. The physical meaning and interpretation
of the analytic signal, the instantaneous amplitude and the instantaneous phase are
illustrated in Fig. 4.4. Besides illustrating these concepts, the simple examples in
Fig. 4.4 shows how prone to errors may be the interpretation of the analytic signal if
a filter bank is not used.

There are two ways of averaging the analytic signal across sweeps. The first
is sensitive to evoked (phase-locked) ERP components. The second is sensitive to
both evoked and induced (non-phase-locked) components. Thus, we obtain comple-
mentary information using the two averaging procedures. In order to study evoked
components we average directly the analytic signal at each time-frequency point,
such as

z̄tf � 1

K

∑

k

aktf + i
1

K

∑

k

bktf (4.14)

from which the average instantaneous amplitude (envelope) is given by

r̄ft � ∣∣z̄tf
∣∣ (4.15)
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Fig. 4.4 Three 2-second signals were generated (input Signal). Time is on the abscissa. The vertical
scaling is arbitrary. The Hilbert transform of the input signal is shown in the second traces. The
next two traces are the instantaneous amplitude (envelope) and instantaneous phase. Note that the
envelope is a non-negative quantity. a The input signal is a sine wave at 4 Hz. The instantaneous
amplitude is constant in the whole epoch. The phase oscillates regularly in between its bounds at
4 Hz. b The input signal is a sine wave at 4 Hz with a phase discontinuity occurring exactly in
the middle of the epoch. The instantaneous amplitude now drops in the middle of the epoch. As
expected, the instantaneous phase features a discontinuity in the middle of the epoch. c the input
signal is a sine wave at 4 Hz multiplied by a sine wave at 0.5 Hz with the same amplitude. The result
input signal is a sine wave at 4 Hz, which amplitude and phase are modulated by the sine wave at
0.5 Hz. The Instantaneous amplitude is the envelope of the sine at 0.5 Hz. The instantaneous phase
is like the one in B, but is now caused by the multiplication with the 0.5 Hz wave

and the average instantaneous phase is given by

ϕ̄tf � arg
(
z̄tf

)
(4.16)

Note that in this case the envelope may be high only if the sweeps at that time-
frequency point have a preferred phase, whereas if the phase is randomly distributed
from sweep to sweep, the average envelope will tend toward zero. This phenomenon
is illustrated in Fig. 4.5.

While the Hilbert transform is a linear operator, non-linear versions of measures
(4.15) and (4.16) may be obtained by adding a simple normalization of the analytic
signal at each sweep [74]; before computing the average in (4.14), replace aktf by

aktf
/
rktf and bktf by bktf

/
rktf , where rktf �

√
a2ktf + b2ktf is the modulus. This means

that at all time-frequency points and for each sweep the complex vector aktf + ibktf is
stretched or contracted so as to be constrained on the unit complex circle (Fig. 4.6).
The average instantaneous amplitude (4.15) and phase (4.16) after the normalization
will be actually sensitive to the stability of the phase across sweeps, regardless of
amplitude. Such non-linear measure is known as inter-trial phase coherence (ITPC:
[62]), but has been named by different authors also as “inter-trial phase clustering”,
“phase coherence” among other ways [14].
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Fig. 4.5 In each diagram six complex numbers are represented as position vectors (gray arrows)
in the complex plane (see Fig. 4.3). Consider these vectors as representing the analytic signal for a
given time-frequency point estimated on six different sweeps. In each diagram the black arrow is
the position vector corresponding to the average of the six complex numbers as per (4.15). In the
left diagram the vectors are distributed within one half circle, featuring a preferred direction. In the
right diagram the vectors are more randomly distributed around the circle; the resulting mean vector
is much smaller, although the average length of the six vectors in the two diagram is approximately
equal

Fig. 4.6 The left diagram is the same as in Fig. 4.5. The vectors in the right diagram have been
normalized to unit length (non-linear normalization). Note that the mean vector on the right points
in a different direction as compared to the mean vector on the left, albeit the vectors have the same
direction in the two diagrams; while on the left diagram the amplitude of the vectors weights the
average, on the right diagram the amplitude is ignored
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If induced components are of interest, instead of using (4.14) we average the
envelope computed on each sweep as

r̄tf � 1

K

∑

k

|zktf |� 1

K

∑

k

√
a2ktf + b2ktf (4.17)

In this case, the average envelope depends on the amplitude of the coefficients in
each sweep and is not affected by the randomness of the analytic signal phase. Note
that it does not make sense to average phase values ϕktf estimated at each sweep, as
we have done with amplitude in (4.17), since the phase is a circular quantity.1

Measures (4.15), (4.16) and their normalized (non-linear) versions can be modi-
fied computing a weighted average of the normalized analytic signal. Note that the
non-normalized average analytic signal is equal to the normalized average analytic
signal weighted by its own envelope. Choosing the weights differently, we obtain
quite different measures of phase consistency. For instance, weights can be given
by experimental or behavioral variables such as reaction time, stimulus luminance,
etc. In this way, we can discover phase consistency effects that are specific to certain
properties of the stimulus or certain behavioral responses [14, 15]. Taking as weight
the envelope of the signal at the frequency under analysis and the analytic signal of
another frequency (that we name here the modulating frequency) we obtain a mea-
sure of phase-amplitude coupling named modulation index (MI: [10, 14, p. 413]). If
the distribution of the modulating phase is uniform, high values of MI reveal depen-
dency between the two frequencies. The modulating frequency is usually lower than
the frequency under analysis. Note that by weighting the normalized analytic signal
arbitrarily, the obtained average amplitude is no longer guaranteed to be bounded
superiorly by 1.0. Furthermore, such measures are subjected to several confounding
effects and must be standardized using resampling methods (for details see [10, 14,
pp. 253–257, 413–418]). An alternative to the MI measure that does not require such
standardization is the phase-amplitude coupling (PAC), which is the MI normalized
by the amplitude [72]. Measures such as MI and PAC and other variants, along with
bivariate counterparts (e.g., [94]), are used to study an important class of phenomena
that can be found in the literature under the name of amplitude-amplitude, phase-
amplitude and phase-phase nesting (or coupling, interaction, binding…), amplitude
modulation and more [16, 36, 54, 55, 73, 93].

Several measures of amplitude and phase in the time-frequency plane are shown
in the following real-data example. Figure 4.7 shows a time-frequency analysis of
source S7 and S13 of Fig. 4.2. The analysis has been performed on the average of the
80 target sweeps, from−1000 to +1000mswith respect to the flash (visual stimulus),
indicated on the abscissa as the time “0”. Successively, the first and last 200 ms have
been trimmed at both sides to remove edge effects. See the caption of the figure for
explanations and the interpretation of results.

1The time of the day is also a circular quantity and provides a good example. The appropriate
average of 22 h and 1 h is 23 h 30, but this is very far from their arithmetic mean. See also Cohen
[14, pp. 214–246].
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Fig. 4.7 Time-Frequency analysis of the source component S13 (left column) andS7 (right column)
shown in Fig. 4.2. a Estimated instantaneous amplitude for frequency going from 1 Hz (top of
the plot) to 20 Hz (bottom of the plot), in 0.5 Hz steps, computed using (4.17). This method is
sensitive to both phase-locked and non-phase-locked components. The instantaneous amplitude is
color coded, with white coding the minimum and black coding the maximum. The amplitude in a
features a maximum in the time-frequency plane at around 6 Hz happening 170 ms post-stimulus,
corresponding to the P100/N200 complex (see Fig. 4.2). We also notice a sustained activity around
2.5 Hz from about 200 to 700 ms post-stimulus. Note that at 2.5 Hz substantial power is present
also before the stimulus, but this does not happen at 6 Hz. b Estimated instantaneous amplitude
obtained with (4.15). This method is sensitive to phase-locked components. Note that both post-
stimulus maxima at around 2.5 and 6 Hz survive, whereas anywhere else in the time-frequency plot
the amplitude becomes negligible, including pre-stimulus activity around 2.5 Hz. Note also that the
2.5 Hz activity post-stimulus now is weaker. Taken together the analyses in a and b suggest that
the activity around 6 Hz may be strictly phase-locked, whereas the activity at 2.5 Hz may be mixed
with non-phase-locked components. Plot c shows the instantaneous phase of S13 in the closed
interval (−π …−π], for frequencies in the range 2 Hz, …, 7 Hz, in 1 Hz increments. This has been
computed using (4.16), hence it is the phase spectrum corresponding to b. At about 220 ms post-
stimulus, in correspondence to the end of the maximum at 6 Hz, the phase alines at all frequencies
in the range 2 Hz, …, 7 Hz. The amplitude spectrum in d and corresponding phase spectrum in
e are the non-linear (normalized) version of b and c, respectively. The results are very similar to
those seen in b and c, although they appear a bit noisier. For S7, the instantaneous amplitude (4.17)
features only one strong maximum at about 3 Hz in between 280 and 570 ms (a, right column).
This maximum corresponds to the P300 peak (Fig. 4.2). The same activity is seen also in b and
d, although they appear noisier. This analysis suggests that the P300 is strictly phase-locked to the
stimulus
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We end up this section with some considerations about TFA analysis. The Hilbert
transform can be obtained by the FFT algorithm [64]. The use of this algorithm
requires the choice of a tapering window in the time domain to counteract spectral
leakage due to finite window size (see Harris [39]). As illustrated in Fig. 4.4, the
analytic signal does not necessarily represent adequately the phase of the original
signal. The study of Chavez et al. [13] has stressed that this is the case in general only
if the original signal is a simple oscillator with a narrow-band frequency support.
These authors have provided useful measures to check empirically the goodness of
the analytic signal representation. Because of this limitation, for a signal displaying
multiple spectral power peaks or broad-band behavior, which is the case in general
of EEG and ERP, the application of a filter bank to extract narrow-band behavior
is necessary. When applying the filter bank, one has to make sure not to distort the
phase of the signal. In general, a finite impulse response filter with linear phase
response is adopted (see Widmann et al. [98], for a review). The choice of the filters
band width and frequency resolution is usually a matter of trials and errors; the band
width should be large enough to capture the oscillating behavior and small enough
to avoid capturing several oscillators in adjacent frequencies. Also, the use of filter
banks engenders edge effects, that is, severe distortions of the analytic signal at the
left and right extremities of the time window under analysis [67]. This latter problem
is easily solved defining a larger time window centered at the window of interest and
successively trimming an adequate number of samples at both sizes, as we have done
in the example of Fig. 4.7. The estimation of instantaneous phase for sweeps, time
sample and frequencies featuring a low SNR are meaningless; the phase being an
angle, it is defined for vectors of any length, even if the length (i.e., the amplitude) is
negligible. However, phase measures can be interpreted only where the amplitude is
high [7]. The effect is exacerbated if we apply the non-linear normalization, since in
this case very small coefficients are weighted as the others in the average, whereas
they should better be ignored.

4.5 Spatial Domain Analysis

Scalp topography and tomography (source localization) of ERPs are the basic tools
to perform analysis in the spatial domain of the electrical activity generating ERPs.
This is fundamental for linking experimental results to brain anatomy and physiol-
ogy. It also represents an important dimension for studying ERP dynamics per se,
complementing the information provided in time and/or frequency dimensions [52].
The spatial pattern of ERP scalp potential or of an ERP source component provides
useful information to recognize and categorize ERP features, as well as to identify
artifacts and background EEG. Early ERP research was carried out using only a
few electrodes. Current research typically uses several tens and even hundreds of
electrodes covering the whole scalp surface. More and more high-density EEG stud-
ies involve realistic head models for increasing the precision of source localization
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methods. Advanced spatial analysis has therefore become common practice in ERP
research.

In contrast to continuous EEG, ERP studies allow spatial analysis with high-
temporal resolution, i.e., they allow the generation of topographical and/or tomo-
graphical maps for each time sample. This is due to the SNR gain engendered by
averaging across sweeps. Thus, as compared to continuous EEG, ERPs offer an anal-
ysis in the spatial domain with much higher temporal resolution. The SNR increases
with the number of averaged sweeps. One can further increase the SNR by using a
multivariate filteringmethod, as previously discussed. One can also increase the SNR
by averaging spatial information in adjacent samples. The spatial patterns observed
at all samples forming a peak in the global field power2 can safely be averaged, since
within the same peak the spatial pattern is supposed to be constant [52].

When using a source separation method (see Fig. 4.2 for an example) the spatial
pattern related to each source component is given by the corresponding columnvector
of the estimated mixing matrix, i.e., the pseudo-inverse of the estimated matrix BT .
In fact, a source separation method decomposes the ensemble average in a number
of source components, each one having a different and fixed spatial pattern. These
patterns are analyzed separately as a topographic map and are fed individually to
a source localization method as input data vector. Source localization methods in
general perform well when the data is generated by one or two dipoles only, while
if the data is generated by multiple dipoles the accuracy of the reconstruction is
questionable [95]. BSS effectively decomposes the ensemble average in a number of
simple source components, typically generated by one or two dipoles each [25]. As a
consequence, spatial patterns decomposed by source separation can be localizedwith
high accuracy by means of source localization methods. Note that applying a generic
filtering method such as PCA and CSTP, the components given by the filter are still
mixed and so are the spatial patterns held as column vectors by the matrix inverse
of the spatial filter, that is, the pseudo-inverse of BT . This prevents any physiologi-
cal interpretation of the corresponding spatial patterns. Source separation methods
are therefore optimal candidates for performing high-resolution spatial analysis by
means of ERPs. An example of topographical analysis is presented in Figs. 4.2 and
4.8. For an example of tomographic analysis refer to Congedo et al. [24].

4.6 Inferential Statistics

Aswe have seen, in time-domain ERP studies it is of interest to localize experimental
effects along the dimension of space (scalp location) and time (latency and duration
of the ERP components). Analysis in the time-frequency-domain involves the study
of amplitude and phase in the time-frequency plane. The dimensions retained by

2The global field power is defined for each time sample as the sum of the squares of the potential
difference at all electrodes. It is very useful in ERP analysis to visualize ERP peaks regardless their
spatial distribution [52].
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Fig. 4.8 a Ensemble average error-related potentials (19 subjects) for “Correct” and “Error” trials
at electrode Cz. The supra-threshold cluster size permutation test was applied in the time and spatial
dimension, with a � 0.05, to compare the “Correct” and “Error” condition. A significant positivity
for error trials was found at time window 320–400 ms at electrode Cz (p < 0.01), a significant
negativity for error trials at time window 450–550 ms at clustered electrodes Fz, FCz, Cz (p < 0.01)
and a significant positivity for error trials at time 650–775 ms at clustered electrodes Fz, FCz
(p � 0.025). Significant time windows are indicated by grey areas in (a) and significant clustered
derivations by white disks in (b). The supra-threshold cluster size test display good power while
controlling the FWER. Data is from the study of Congedo et al. [24]

the experimenter for the statistical analysis actually are combined to create a multi-
dimensional measurement space. For example, if a time-frequency representation
is chosen and amplitude is the variable of interest, the researcher defines a statis-
tical hypothesis at the intersection of each time and frequency measurement point.
Typical hypotheses in ERP studies concern differences in central location (mean or
median) within and between subjects (t-tests), the generalization of these tests to
multiple experimental factors including more than two levels, including their inter-
action (ANOVA) and the correlation between ERP variables and demographic or
behavioral variables such as response-time, age of the participants, complexity of
the cognitive task, etc. (linear and non-linear regression, ANCOVA).

The goal of a statistical test is to either reject or accept the corresponding null
hypothesis for a given type I error (α), which is the a priori chosen probability to
reject a null hypothesis when this is indeed true (false discovery). By definition,
our conclusion will be wrong with probability α, which is typically set to 0.05.
Things becomesmore complicated when several tests are performed simultaneously;
performing a statistical test independently for each hypothesis inflates the type I error
rate proportionally to the number of tests. This is known as the multiple-comparison
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problem [41, 97] and is very common in ERP studies, where several points in time,
space and frequency are to be investigated. Let M be the number of hypotheses to
be tested and M0 be the number of true null hypotheses. Testing each hypothesis
independently at the α level, the expectation of false discoveries is M0 ×α. Thus,
if all null hypotheses are actually true, i.e., M0 �M, we expect to commit on the
average (100 ×α) % false discoveries. This is, of course, an unacceptable error rate.
Nonetheless, themore hypotheses are false and themore they are correlated, themore
the error rate is reduced. ERP data is highly correlated along adjacent time points,
spatial derivations and frequency. Therefore, special care should be undertaken in
ERP statistical analysis to ensure that the error rate is controlled while preserving
statistical power, that is, while preserving an acceptable chance to detect those null
hypotheses that are false. Two families of statistical procedures have been employed
in ERP studies with this aim: those controlling the family-wise error rate (FWER)
and those controlling the false-discovery rate (FDR).

The family-wise error rate (FWER) is the probability of making one or more false
discoveries among all hypotheses. A procedure controlling the FWER at the α level
ensures that the probability of committing even only one false discovery is less than or
equal to α, regardless the number of tests and howmany null hypotheses are actually
true. The popular Bonferroni procedure belongs to this family; each hypothesis is
tested at level α/M instead that at level α. Sequential Bonferroni-like procedures like
the one proposed byHolm [42] also control the FWER,while featuring higher power.
However, all Bonferroni-like procedures fail to take into consideration explicitly the
correlation structure of the hypotheses, thus they are unduly conservative, the more
so the higher the number of hypotheses to be tested.

An important general class of test procedures controlling the FWER is known as
p-min permutation tests [75, 97], tracing back to the seminal work of Fisher [35] and
Pitman [80–82]. Permutation tests are able to account adaptively for any correlation
structure of hypotheses, regardless of its form and degree. Also, they do not need a
distributional model for the observed variables, e.g., Gaussianity, as required by t-
tests, ANOVAetc. [6, 30, 35, 43, 46, 75, 80–82, 91, 92, 97]. Evenmore appealing, one
may extract whatever variable from the data and perform a valid test, thus we are not
limited to test on central location, correlation, etc. Depending on the experimental
design, even the random sampling assumption may be relaxed [30]. Given these
characteristics, permutation tests are ideal options for testing hypotheses in ERP
studies and have receivedmuch attention in the neuroimaging community [1, 43, 76].

Permutation tests are available for classical correlation, within- and between-
subject mean difference tests, as well as for testing the main effects in ANOVA
designs [30]. However, a straightforward permutation test for interaction effects in
ANOVA designs does not exist, although some solutions have been proposed [75].
This is a major limitation if more than one independent variable is manipulated in the
experiment. Also, like other resampling methods such as bootstrap andMonte Carlo,
permutation tests require intense computations. For large data sets, permutation tests
may be time consuming, although this is rarely a concern with modern computers
and the typical size of data sets in ERP analysis.
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Another kind of FWER-controlling permutation test in ERP analysis is the supra-
threshold cluster size test [43]. A variant of this test has been implemented in the
EEG toolbox Fieldtrip [71], following the review ofMaris and Oostenveld [63]. This
procedure assesses the probability to observe a concentration of the effect simulta-
neously along one or more studied dimensions. For example, in testing the mean
amplitude difference of a P300 ERP, one expects the effect to be concentrated both
along time, around 300–500 ms, and along space, at midline central and adjacent
parietal locations. This leads to a typical correlation structure of hypothesis in ERP
data; under the null hypothesis the effect would instead be scattered all over both time
and spatial dimensions. An example of the supra-threshold cluster size test applied
in the time-space ERP domain is shown in Fig. 4.8.

Another family of testing procedures controls the false discovery rate (FDR). The
FDR is the expected proportion of falsely rejected hypotheses [3]. Indicating by R
the number of rejected hypotheses and by F the number of those that have been
falsely rejected, the FDR controls the expectation of the ratio F/R. This is clearly a
less stringent criterion as compared to the FWER, since, as the number of discoveries
increases, we allow proportionally more errors. The original FDR procedure of Ben-
jamini andHochberg [3] assumes that all hypotheses are independent,which is clearly
not the case in general for ERP data. A later work has extended the FDR procedure
to the case of arbitrary dependence structure among variables [4], however, contrary
to what one would expect, the resulting procedure is more conservative, yielding low
power in practice. The FDR procedure and its version for dependent hypotheses have
been the subject of several improvements (e.g., [38, 87]). Recent research on FDR-
controlling procedures attempts to increase their power by sorting the hypotheses
based on a priori information [32]. Such sorting may be guided by previous find-
ings in similar experiments, by the total variance of the variables when using central
location tests, or by any criterion that is independent to the test-statistics. Another
trend in this direction involves arranging the hypotheses in hierarchical trees prior to
testing [102] and in analyzing experimental replicability [40]. The FDR procedures
tend to be unduly conservativewhen the number of hypotheses is very large, although
much less so than Bonferroni-like procedures. In contrast to FWER-controlling pro-
cedures, FDR-controlling procedures are much simpler and faster to compute. They
offer, however, a much looser guarantee against the actual type I error rates and, like
Bonferroni-like procedures, do not take explicitly into consideration the correlation
structure of ERP data.

4.7 Single-Sweep Classification

The goal of a classification method is to automatically estimate the class to which a
single-sweep belongs. The task is challenging because of the very low amplitude of
ERPs as compared to the background EEG. Large artifacts, the non-stationary nature
of EEG and inter-sweep variability exacerbate the difficulty of the task. Although
single-sweep classification has been investigated since a long time [29], it has recently
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received a strong impulsion thanks to development of ERP-based brain computer
interfaces (BCI: [101]). In fact, a popular family of such interfaces is based on the
recognition of the P300 ERP. The most famous example is the P300 Speller [34], a
system allowing the user to spell text without moving, but just by focusing attention
on symbols (e.g., letters) that are flashed on a virtual keyboard.

The fundamental criterion for choosing a classification method is the achieved
accuracy for the data at hand.However, other criteriamaybe relevant. InBCI systems,
the training of the classifier starts with a calibration session carried out just before the
actual session. Such calibration phase makes the usage of BCI system impractical
and annoying. To avoid this, there are at least two other desirable characteristics
that a classification method should possess [60]: its ability to generalize and its
ability to adapt. Generalization allows the so-called transfer learning, thanks to
which data from other sessions and/or other subjects can be used to initialize a BCI
system so as to avoid the calibration phase. Transfer learning may involve using data
from previous sessions of the same subject (“cross-session”) and/or data from other
subjects (“cross-subject”). The continuous (on-line) adaptation of the classifier [47,
48] ensures that optimal performance is achieved once the initialization is obtained by
transfer learning [18]. Taken together, generalization and on-line adaptation ensure
also the stability of the system in adverse situations, that is, when the SNR of the
incoming data is low and when there are sudden environmental, instrumental or
biological changes during the session. This is very important for effective use of a
BCI outside the controlled environment of research laboratories.

Classification methods differ from each other in the way they define the set of fea-
tures and in the discriminant function they employ. Traditionally, the classification
approaches for ERPs have given emphasis to the optimization of either one or the
other aspect in order to increase accuracy. The approaches emphasizing the definition
of the set of features try to increase the SNR of single-sweeps by using multivariate
filtering, as those we have encountered in the section on time domain analysis, but
specifically designed to increase the separation of the classes in a reduced feature
space where the filter projects the data [83, 104]. For data filtered in this way, the
choice of the discriminant function is not critical, in the sense that similar accuracy is
obtained using several types of discriminant functions. In general, these approaches
perform well even if the training set is small, but generalize poorly across sessions
and across subjects because the spatial filters are optimal only for the session and
subject on whom they are estimated. Instead, the approaches emphasizing the dis-
criminant function use sharp machine learning algorithms on raw data or on data that
has underwent little-preprocessing. Many machine learning algorithms have been
tried in the BCI literature for this purpose [59, 60]. The three traditional approaches
that have been found effective in P300 single-sweep classification are the support-
vector machine, the stepwise linear discriminant analysis and the Bayesian linear
discriminant analysis. In general, those require large training sets and have high
computational complexity, but generalize fairly well across sessions and across sub-
jects. The use of a random forest classifier is currently gaining popularity in the BCI
community, incited by good accuracy properties [33]. However, its generalization
and adaptation capability have not been established yet. The deep neural networks
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learning [5] has recently been shown to be very promising in other fields of research.
Studies testing its performance on ERP data are not conclusive so far. An approach
that features at the same time good accuracy, good generalization and good adapta-
tion capabilities in the case of ERP data has been recently borrowed from the field of
differential geometry. This approach makes use of the Riemannian geometry on the
manifold of symmetric positive definite (SPD) matrices. Covariance matrices are of
this kind. A very simple classifier can be obtained based on the minimum distance
to mean (MDM) method [2]: every sweep is represented as a covariance matrix,
i.e., as a point on the multidimensional space of SPD matrices. The training set is
used to estimate the center of mass of training points for each class, i.e., a point best
representing the class. An unlabeled sweep is then simply assigned to the class the
center of mass of which is the closest to the unlabeled sweep. This approach as well
as other classifiers based on Riemannian geometry have been shown to possess good
accuracy, generalization and robustness properties [19, 66, 103, 105]

References

1. S. Arndt, T. Cizadlo, N.C. Andreasen et al., Tests for comparing images based on randomiza-
tion and permutation methods. J. Cereb. Blood Flow Metab. 16, 1271–1279 (1996)

2. A.Barachant, S. Bonnet,M.Congedo et al.,Multi-class brain computer interface classification
by riemannian geometry. IEEE Trans. Biomed. Eng. 59, 920–928 (2012)

3. Y. Benjamini, Y. Hochberg, Controlling the false discovery rate: a practical and powerful
approach to multiple testing. J. Roy. Stat. Soc. Ser. B Stat. Methodol. 57, 289–300 (1995)

4. Y. Benjamini, D. Yukutieli, The control of the false discovery rate in multiple testing under
dependency. Ann. Stat. 29, 1165–1188 (2001)

5. Y. Bengio, Learning deep architectures for AI. Found. Trends Mach. Learn. 2, 1–12 (2009)
6. R.C. Blair, J.F. Troendle, R.W. Beck, Control of familywise errors in multiple assessments

via stepwise permutation tests. Stat. Med. 15, 1107–1121 (1996)
7. P. Bloomfield, Fourier Analysis of Time Series. An Introduction, 2nd edn. (Wiley, Hoboken,

New Jersey, 2000), p. 261
8. A. Burns, Fourier-, Hilbert- and wavelet-based signal analysis: are they really independent

approaches? J. Neurosci. Methods 137, 321–332 (2004)
9. G. Buszáki, C.A. Anastassiou, C. Koch, The origin of extracellular fields and currents—EEG,

ECoG, LFP and spikes. Nat. Rev. Neurosci. 13, 407–420 (2012)
10. R.T. Canolty, E. Edwards, S.S. Dalal et al., High gamma power is phase-locked to theta

oscillations in human neocortex. Science 313, 1626–1628 (2006)
11. J.-F. Cardoso, Blind signal separation: statistical principles. Proc. IEEE 86, 2009–2025 (1998)
12. R.M. Chapman, J.W. McCrary, EP component identification and measurement by principal

component analysis. Brain Cogn. 27, 288–310 (1995)
13. M.Chavez,M.Besserve,C.Adamet al., Towards a proper estimation of phase synchronization

from time series. J. Neurosci. Methods 154, 149–160 (2006)
14. M.X. Cohen, Analyzing Neural Time Series Data: Theory and Practice (The MIT Press,

Cambridge, Massachusetts, 2014), p. 600
15. M.X. Cohen, J.F. Cavanagh, Single-trial regression elucidates the role of prefrontal theta

oscillations in response conflict. Front. Psychol. 2, 30 (2011)
16. L.L. Colgin, Theta-gamma coupling in the entorhinal-hippocampal system. Curr. Opin. Neu-

robiol. 31, 45–50 (2015)
17. P. Comon, C. Jutten (eds.), Handbook of Blind Source Separation, Independent Component

Analysis and Applications (Academic Press, Cambridge, MA, 2010)



4 The Analysis of Event-Related Potentials 79

18. M. Congedo, EEG Source Analysis. Dissertation, University of Grenoble Alpes, 2013
19. M. Congedo, A. Barachant, R. Bhatia, Riemannian geometry for EEG-based brain-computer

interfaces; a primer and a review. BCI 4, 155–174 (2017)
20. M. Congedo, C. Gouy-Pailler, C. Jutten, On the blind source separation of human electroen-

cephalogram by approximate joint diagonalization of second order statistics. Clin. Neuro-
physiol. 119, 2677–2686 (2008)

21. M. Congedo, M. Goyat, N. Tarrin et al., in “Brain Invaders”: A Prototype of an Open-Source
P300- Based Video Game Working with the OpenViBE. 5th International Brain-Computer
Interface Conference, Graz, Austria, September 2011. (2011), pp. 280–283

22. M. Congedo, L. Korczowski, A. Delorme et al., Spatio-temporal common pattern; a reference
companion method for ERP analysis. J. Neurosci. Methods 267, 74–88 (2016)

23. M. Congedo, F.H. Lopes da Silva, Event-related potentials: general aspects of methodol-
ogy and quantification, in Niedermeyer’s Electroencephalography, Basic Principles, Clinical
Applications, andRelatedFields, ed. byD.L. Schomer, F.H.Lopes daSilva (OxfordUniversity
Press, Oxford, 2017)

24. M. Congedo, S. Rousseau, C. Jutten, An introduction to EEG source analysis with an illus-
tration of a study on error-related potentials, in Guide to Brain-Computer Music Interfacing,
ed. by E. Miranda, J. Castet (Springer, London, 2014), p. 313

25. A. Delorme, J. Palmer, J. Onton et al., Independent EEG sources are dipolar. PLoS One 7,
e30135 (2012)

26. A. Delorme, T. Sejnowski, S. Makeig, Enhanced detection of artifacts in EEG data using
higher-order statistics and independent component analysis. Neuroimage 34, 1443–1449
(2007)

27. J. Dien, Evaluating two-step PCA of ERP data with Geomin, Infomax, Oblimin, Promax, and
Varimax rotations. Psychophysiology 47, 170–183 (2010)

28. E. Donchin, Amultivariate approach to the analysis of average evoked potentials. IEEE Trans.
Biomed. Eng. 3, 131–139 (1966)

29. E. Donchin, Discriminant analysis in average evoked response studies: the study of single
trial data. Electroencephalogr. Clin. Neurophysiol. 27, 311–314 (1969)

30. E.S. Edgington, Randomization Tests, 3rd edn. (Marcel Dekker, New York, 1995)
31. M. Falkenstein, J. Hohnsbein, J. Hoormann et al., Effects of crossmodal divided attention on

late ERP components. II. Error processing in choice reaction tasks. Electroencephalogr. Clin.
Neurophysiol. 78, 447–455 (1991)

32. A. Farcomeni, L. Finos, FDR control with pseudo-gatekeeping based on possibly data driven
order of The hypotheses. Biometrics 69, 606–613 (2013)

33. F. Farooq, P. Kidmose, in Random Forest Classification for P300 Based Brain Computer
Interface Applications. 21th European Signal Processing Conference, Marrakech, Morocco,
September 2013. (2013) pp. 1–5

34. L.A. Farwell, E. Donchin, Talking off the top of your head: toward a mental prothesis utilizing
event-related brain potentials. Electroencephalogr. Clin. Neurophysiol. 70, 510–523 (1988)

35. R.A. Fisher, Design of Experiments (Oliver and Boyd, Edinburgh, 1935)
36. W.J. Freeman, Mechanism and significance of global coherence in scalp EEG. Curr. Opin.

Neurobiol. 31, 199–205 (2015)
37. D. Gabor, Theory of communication. J. IEE (London) 93, 429–457 (1946)
38. W. Guo, M.B. Rao, On control of the false discovery rate under no assumption of dependency.

J. Stat. Plan. Interference 138, 3176–3188 (2008)
39. F.J. Harris, On the use of windows for harmonic analysis with the discrete Fourier transform.

Proc. IEEE 66, 51–83 (1978)
40. R. Heller, D. Yekutieli, Replicability analysis for genome-wide association studies. Ann.

Appl. Stat. 8, 481–498 (2014)
41. Y. Hochberg, A.C. Tamhane, Multiple Comparison Procedures (Wiley, Hoboken, NJ, 1987)
42. S. Holm, A simple sequentially rejective multiple test procedure. Scand. J. Stat. 6, 65–70

(1979)



80 M. Congedo

43. A.P. Holmes, R.C. Blair, J.D.G.Watson et al., Nonparametric analysis of statistic images from
functional mapping experiments. J. Cereb. Blood Flow Metab. 16, 7–22 (1996)

44. B.H. Jansen, G. Agarwal, A. Hedge et al., Phase synchronization of the ongoing EEG and
auditory EP generation. Clin. Neurophysiol. 114, 79–85 (2003)

45. E.R. John, D.S. Ruchkin, J. Vilegas, Experimental background: signal analysis and behavioral
correlates of evoked potential configurations in cats. Ann. N. Y. Acad. Sci. 112, 362–420
(1964)

46. W. Karniski, R.C. Blair, A.D. Snider, An exact statistical method for comparing topographic
maps, with any number of subjects and electrodes. Brain Topogr. 6, 203–210 (1994)

47. P.-J.Kindermans,D.Verstraeten,B. Schrauwen,ABayesianModel forExploitingApplication
Constraints to Enable Unsupervised Training of a P300-based BCI. PLoS ONE 7, e33758
(2012)

48. P.-J. Kindermans,M. Schreuder, B. Schrauwen et al., True zero-training brain-computer inter-
facing—an online study. PLoS One 9, e102504 (2014)

49. L. Korczowski, F. Bouchard, C. Jutten et al., in Mining the Bilinear Structure of Data with
Approximate Joint Diagonalization. 24th European Signal Processing Conference, Budapest,
Hungary, August 2016. (2016) pp. 667–671

50. J.-P. Lachaux, E. Rodriguez, J. Martinerie et al., Measuring phase synchrony in brain signals.
Hum. Brain Mapp. 8, 194–208 (1999)

51. T.D. Lagerlund, F.W. Sharbrough, N.E. Busacker, Spatial filtering of multichannel electroen-
cephalographic recordings through principal component analysis by singular value decom-
position. J. Clin. Neurophysiol. 14, 73–82 (1997)

52. D. Lehmann, W. Skrandies, Reference-free identification of components of checkerboard-
evoked multichannel potential fields. Electroencephalogr. Clin. Neurophysiol. 48, 609–621
(1980)

53. M. Le Van Quyen, J. Foucher, J.-P. Lachaux et al., Comparison of Hilbert transform and
wavelet methods for the analysis of neuronal synchrony. J. Neurosci. Methods 111, 83–98
(2001)

54. J.E. Lisman, O. Jensen, The theta-gamma neural code. Neuron 77, 1002–1016 (2013)
55. R.R. Llinas, The intrinsic electrophysiological properties of mammalian neurons: insights

into central nervous system function. Science 242, 1654–1664 (1988)
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Chapter 5
EEG Source Imaging and Multimodal
Neuroimaging

Yingchun Zhang

Abstract During most common applications, the signals produced by cortical
dipoles are detected at the scalp level. While these measurements can be highly
informative and feature optimal temporal resolution, their spatial detection is hin-
dered by the conduction through the tissues of the head. A deeper understanding
of cortical sources can be provided by source imaging techniques. These methods
first create mathematical models of the head, assigning appropriate properties to
each layer. Brain activity is then calculated based on these assigned models and
the observed EEG measurements, greatly improving the spatial resolution of EEG
measurement and providing insights regarding otherwise hidden cortical dynamics.
Source Imaging approaches can be further enhanced by integrating a second imaging
modality. This is particularly useful with imaging methods that feature high spatial
resolution or whose signals are not blurred by transduction. In the following chapter,
we provide a detailed introduction to the general principles and basic algorithms
of source imaging techniques. The discussion then expands to explore how other
modalities can interact with these techniques to improve our results. At its conclu-
sion, readers should have a good idea on how EEG data can be expanded to provide
cortical insight.

After addressing the complexities of signal processing and analysis, the observation
of EEG and ERP signals has been relatively straightforward. The conductive nature
of these electrical signals opens up an intriguing new possibility for examining brain
activity; usingmathematical approaches to determine themost likely cortical sources
of scalp potentials. Performing this backwards calculation is known as electrical
source imaging (ESI). ESI techniques then present us with appealing imaging prop-
erties by allowing us to more directly observe brain activity while maintaining the
low cost, high efficiency, and noninvasive features of EEG.

Before embarking on a detailed discussion of the algorithms and methods used
in source imaging, it’s first necessary to understand the cells and tissues within the
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head. In previous chapters, we have addressed how EEG signals arise from the dipole
moments of synaptic communication. We have also addressed how EEG signals are
presented anddetected.Calculating cortical source then requires us tomathematically
determine the relationship between our synaptic signals and the recorded potentials.
This will require us to give more attention to the biological environment of corti-
cal activity, as well as the layers separating that source origin from the sensors on
the scalp. By understanding these, we open the pathway to perform accurate elec-
trical source imaging. Once we have this understanding, we can continue forward
into the variety of methods that have been developed to observe brain activity and
how EEG source analysis can interact with other imaging modalities to enhance our
results. Finally, though the discussion below will focus on EEG-based source local-
ization, it is important to acknowledge the process and principles described here are
not exclusive and can be expanded for use with other modalities as well, such as
electrocorticography (ECoG) [85] and electromyography (EMG) [50, 68, 86, 87].

5.1 From the Brain to the Scalp—The Forward Problem

When seeking to perform source analysis, the task can be broken down into two
major parts: (i) the Forward Problem, which models the transference of putative
source activity through the head to the scalp electrodes; and (ii) the Inverse Problem,
which uses the information provided by the forward problem to identify the most
likely locations and strengths of cortical activity. As mentioned above, we will begin
with the cortical sources within the context of their conductive environment. From
there, the discussion will build outward through the biological tissues to the scalp
detection. At that point, we will finally be able to invert our process to observe the
activity of unknown cortical sources.

5.1.1 Volume Source and the Poisson’s Equation

Let us first examine an active synapse, wherein a pre-synaptic axon is communicat-
ing with a post-synaptic dendrite. The small volume enclosing this synapse can be
assigned an overall current density J . The electrical model for the neuronal activity
can then be described using two current monopoles: (i) a current source at the axon
of a cell that injects positive ions into the extracellular space and (ii) a current sink at
the coinciding dendrite that removes positive ions from the extracellular space [38].
Over time, the net current entering and leaving this volume must be zero to ensure
that charge does not amass in the extracellular space, thus, ∇ · J � 0.

This current density J comprises the primary current Jp (also known as the
impressed current) [54] and the volume current Jv (also known as the return cur-
rent) [54]. The primary current is generated by the movement of ions across the
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neuronal membrane, while the volume current is the Ohmic return current caused
from the primary current that completes the circuit.

J � Jp + Jv (5.1)

The electric field resulting from the volume current is given by Ohm’s law as
follows:

Jv � σ E (5.2)

And the relationship between the electric field and potential field is given, under
quasi-static conditions (∇ × E � 0), is given as:

E � −∇(V ) (5.3)

Thus, from (5.1), (5.2), and (5.3), the current density generated by neuronal activ-
ity is:

J � Jp − σ∇(V ) (5.4)

Taking the divergence of (5.4), we obtain:

∇ · J � ∇ · Jp − ∇ · (σ∇(V )) (5.5)

Considering that ∇ · J � 0, (5.5) becomes the Poisson’s equation:

∇ · Jp � ∇ · (σ∇(V )) (5.6)

With the solution for this equation derived as [54]:

V � 1

4πσ

∫

v

Jp · ∇
(
1

r

)
dv (5.7)

As the current propagates throughout different brain tissue compartments, two
characteristic behaviors of electrical charge at tissue boundaries are established: (i)
all charge leaving one compartment (with a conductivity of σ1) must enter the second
compartment (assigned a conductivity value of σ2):

σ1∇(V1)�n � σ2∇(V2)�n (5.8)

where �n is the normal vector at the boundary of the interface; and (ii) no current
leaves the outer surface interfacing with air:

σouter∇(Vouter )�n � 0 (5.9)
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Equations (5.8) and (5.9) are referred to as the Neumann boundary conditions.
Now that we have established some of the necessary parameters ruling tissue con-
ductance in the scalp, we can return to a more in-depth discussion of our cortical
dipole itself.

5.1.2 The Current Dipole

The primary current, Jp, can be used to describe the current flow characteristics of
any large group of pyramidal cells in a small cortical region that gives rise to EEG
measurements. The source of this primary current can be further modeled as a single
equivalent current dipolewith twomonopoles located at rsource and rsink that are given
opposite signs but an equal strength of I . The dipole position rdip can therefore be
described as the midpoint between rsource and rsink . The dipole moment d of a dipole
with the current I and an inter-pole distance of l is defined by an orientation unit vector
ed with the magnitude ‖d‖ � I · l. This dipole moment can be further decomposed
into d � dxex + dyey + dzez, where ex , ey, ez are unit vectors along the Cartesian
axes and dx , dy, dz are magnitudes of the respective dipole moment components.
Thus, a single current dipole consists of 6 parameters: rdip—which includes the 3
position parameters—and d—which accounts for the 3 dipole moment parameters.
A potential field at position r generated by the current dipole d at position rdip in an
infinite, homogeneous volume conductor with a conductivity of σ is then calculated
using the following equation:

V
(
r, rdip, d

) � d · (
r − rdip

)
4πσ

∥∥r − rdip
∥∥3 (5.10)

5.1.3 The Forward Problem—Algebra

Generally speaking, the EEG forward problem aims to formulate the potential at any
arbitrary scalp position that can be generated by any current dipole (rdip, d) in the
brain:

V (r) � g
(
r, rdip, d

) � g
(
r, rdip, ed

) · ‖d‖ (5.11)

The function g
(
r, rdip, ed

)
describing the measured scalp voltage at an arbitrary

point r, which is generated by a current dipole with position rdip and moment d, is
formulated by solving the aforementioned Poisson’s equation. Following the princi-
ple of superposition, a scalp potential generated by multiple current dipole sources
according to (5.11) becomes:
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V (r) �
∑
i

g
(
ri , rdipi , edi

)‖di‖ (5.12)

For N number of scalp measurements and P number of current dipoles over T
number of discrete time samples, (5.12) is written in vector form as:

⎡
⎢⎢⎣

V (r1, 1) · · · V (r1, T )

...
. . .

...
V (rN , 1) · · · V (rN , T )

⎤
⎥⎥⎦

�

⎡
⎢⎢⎢⎣

g
(
r1, rdip1 , ed1

) · · · g
(
r1, rdipP , edP

)
...

. . .
...

g
(
rN , rdip1 , ed1

) · · · g(rN , rdipP , edP
)

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

∥∥d1,1∥∥ · · · ∥∥d1,T∥∥
...

. . .
...∥∥dP,1

∥∥ · · · ∥∥dP,T

∥∥

⎤
⎥⎥⎥⎦ (5.13)

or in matrix form as:

V � GJ (5.14)

A noise or perturbation matrix n is then added to (5.15) to formulate what is
typically termed the forward equation:

V � GJ + n (5.15)

where V ∈ R
N×T is the measurement matrix with N electrodes and T time samples,

G ∈ R
N×P is the gain or the lead-field matrix, and J ∈ R

P×T depicts the dipole
magnitude of P dipoles over T time samples. Solving the EEG forward problem
amounts to the computation of the coefficients of the G matrix, given the locations
and configurations of the dipole sources, recording electrodes, and the characteristics
of the volume conductor.

5.1.4 The Volume Conductor: Type of Models

In the conventional approach, the transfer-coefficients making up the matrix G in
(5.15) are obtained by calculating the surface potentials from dipole sources via
Poisson’s equation. These calculations are made for each dipole position within the
head model and the resulting potentials are recorded at the electrode positions.



88 Y. Zhang

Fig. 5.1 A three-layer concentric spherical model of the volume conductor. Each layer represent a
head compartment: brain, skull, scalp with the corresponding conductivity values [73]

5.1.4.1 Spherical Head Model

In its most simple construction, the head can be modeled as a single-layer homoge-
nous, isotropic, conductive sphere. This greatly simplifies the computation of source
localization, as the relationship between observed scalp potentials and cortical
dipole(s) can be solved directly using (5.10). However, it is not hard to see that this is
an oversimplified head model—human heads are neither spherical nor homogenous.
Ignoring realistic geometries for now, the head model can be improved by estab-
lishing three concentric, spherical regions representing the brain, skull, and scalp
and assigning each an appropriate conductivity value (see [73] and Fig. 5.1). Partly
due to the simplicity of the spherical shape, there exists an analytical solution for
this three-layer concentric spherical model, derived from the Poisson’s equation (see
[74]). Thus, the analytical solution of this spherical model is extensively used to test
and validate the performance of more sophisticated numerical methods on complex
volume conductor models (described in the following sections).

While addressing the inhomogeneity of the head improves the cortical model, the
achieved solution from a spherical head model will still fail to accurately reconstruct
signals until the geometrical complexity of the head (and its constituent tissues) is
addressed. This is particularly important, as the thickness of tissue layers may vary
and the complex curvatures of the gyri and sulci of the brain can significantly affect
the solution. To fully capture the geometrical aspects of the brain when modelling
the volume conductor, the use of realistic head models is becoming common practice
in the field of EEG forward modeling.
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Fig. 5.2 The surface model from a realistic geometry human head. The three layers, from left to
right, are the scalp, skull, and brain. Figure reproduced from [30]

5.1.4.2 Realistic-Head Model

Typically, the volumeconductor constructed froma realistic-headmodel is comprised
of the same 3 surfaces discussed above: the brain, skull, and skin surface. The overall
process starts at the acquisition of images from structural scans of the brain, such as
CT or MRI images. These images are segmented into multiple surfaces in the form
of closed triangular meshes with a finite number of nodes, preserving the structural
integrity of the actual head. The brain, skull, and skin surfaces serve as boundary
layers that encapsulate the volumes of specific tissues (see Fig. 5.2). Homogeneous
volume conductive properties can then be assigned to each defined tissue volume.

Given the geometric complexity of this head model, the potential at any node on
the scalp surface generated by the dipoles in the brain compartment can be estimated
using a numerical technique called the boundary element method (BEM). While the
detailed formulation of theBEMcanbe found elsewhere [38, 57],wewill consider the
resultant primary equation that describes the potential distribution at each boundary
surface:

v � g + Bv (5.16)

where vi is the potential value at the ith vertex, gi is the potential due to the source at
the ith vertex, and matrix B represents the dependency of each vertex point on each
other based on the geometry of the surfaces and conductivities of each compartment.
The accuracy of this estimation partly depends on the resolution of the surfaces
(i.e. the number of nodes and triangle meshes that make up the three compartment
surfaces) [30].

The BEM modelling of the human head volume conductor is inherently limited
in its capability to capture the anisotropic properties and local inhomogeneities of
biological brain tissues. This is due to the nature of the BEM calculation—changes
in tissue properties and their effects on conducted signals are only implemented at
the surface interfaces, and constant conductivity values are assumed for the spaces in
between these boundaries. In cases where the human head volume conductor needs
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Fig. 5.3 An example of a
volume mesh showing a 2D
coronal slice. This 3D
digitization of the head forms
the basis for finite-element
method for the 3D volume
model of the human head
volume conductor. Figure
reproduced from [38]

to be represented as a proper volume (particularly, the presence of altered tissue
properties or implanted devices [83, 84]), the solution to the forward model in a 3D
volume can instead be obtained through the use of the finite element method (FEM)
[81, 82]. Figure 5.3 shows a 2D coronal slice digitization of the head used in FEM.

Following the FEM, the potential V is calculated at each node of the 3D mesh as:

V (x, y, z) �
n∑

i�1

Viϕi (x, y, z) (5.17)

where ϕi (x, y, z) is a set of basis functions, n is the total number of vertices in the
entire volume conductor�, and Vi is the potential associatedwith the ith node. Along
with the Neumann boundary condition (5.9), the “weak formulation” for the FEM is
obtained based on the Galerkin approach as:

−
∫

�

∇ϕ · (σ∇(V ))d� �
∫

�

∇ · Jpd� (5.18)

This formulation can be written as a linear system of equations in matrix form by
substituting (5.17) into (5.18) (see the detailed derivations in [56, 81, 82]):

KV � J (5.19)

where K refers to the stiffness matrix, incorporating the geometry and conductivity
properties of the volume conductor,V is the potential vector at each of the nodes in�,
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and J is the source term obtained from the right hand side integration of (5.18). This
system of equations can then be solved using a number of iterative linear methods.
A comprehensive review of these methods is given in [38].

5.1.5 A Note on Tissue Conductivity Values

The conductivity values for the different tissues in the brain contribute significantly
to the accuracy of the forward model. The conductivity for the cerebro-spinal fluid
(CSF) is widely accepted to be 1.79 S/m [8]. The conductivity values for the brain
and scalp compartment were also reported to be 0.33 S/m with good agreement
in the field [33, 36, 45], while the soft tissue to skull conductivity ratio remains a
subject of debate, leading to a multitude of studies conducted to arrive at a more
accurate number. For instance, the brain-to-skull ratio was originally suggested to
be 80 by multiple research groups using different analysis techniques [16, 31, 72].
More recently, however, the ratio was estimated to be 15 based on in vitro and in vivo
experiments performed by Oostendorp et al. [62]. In 2004, Guttierrez et al. reported
the soft tissue to skull conductivity of 26 using EEG scalp measurement and a 4-
sphere head model [36], while Lai et al. suggested using spherical head model a
ratio of 25 from the in vivo cortical imaging of 5 epilepsy patients in 2005 [45].
Subsequently, using a realistic geometry inhomogeneous head model, Zhang et al.
estimated a brain-to-skull conductivity ratio of 18.7 through in vivo experiments of
intracranial electrical stimulation in two epilepsy patients [83, 84].

5.2 From the Scalp to the Brain—The Inverse Problem

Now that we have defined the relationship between dipoles and the potentials they
generate on the scalp layer, we can attempt to invert this relationship to determine
which parts of the brain are active from their associated scalp potentials. This process
is referred to as EEG source localization. EEG source localization begins at the
forward problem (see 5.15):

V � GJ + n

and formulates the inverse problem as:

Ĵ � MV (5.20)

whereV ∈ R
N×T is themeasurementmatrix ofN electrodes andT time samples,G ∈

R
N×P is the gain or the lead-field matrix, J ∈ R

P×T depicts the dipole magnitude
of P dipoles over T time samples, M ∈ R

P×N is the inverse operator, and Ĵ is
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the estimated J. As such, the EEG inverse problem amounts to the calculation of
matrix M that would result in a satisfactory value for Ĵ and the best fit with the
observed scalp potentials. The EEG inverse problem is an ill-posed problem due to
the non-uniqueness of its solution (the number of unknown sources is much larger
than the number of scalp measurements; P � N ). To this end, there exists a number
of mathematical optimization schemes that provide solutions to the inverse problem
depending on the different configurations of the forwardmodel. Specifically, different
assumptions can be made regarding the properties of the source space, such as the
number and/or the spatial distribution of the source current dipoles, and whether
the positions, magnitudes, and orientations of potential dipoles are fixed or varied.
Given the different forward model configurations, there are two main approaches to
the EEG inverse problem: parametric and non-parametric optimization methods.

5.2.1 Parametric Optimization Methods

In the family of parametric optimization methods, the source space usually com-
prises a single dipole or a few dipoles with unknown position(s), magnitude(s), and
orientation(s). These configurations are also known as equivalent current dipole
(ECD) models, wherein the solutions are obtained by searching for the “equivalent
dipole(s)” that best explain the observed scalp potentials.We present in the following
sections several popular representative methods for the EEG inverse problem of the
ECD model.

5.2.1.1 The Least-Squares Method

In a source model involving a single dipole, the solution can be obtained using the
non-linear least-squares method. This method solves for a single dipole with an
unknown position and moment that result in a global minimization of the resid-
ual error between the estimated and observed EEG signals. Thus, the cost function
involving the position and moment parameters can be written in the form of an
L2-norm as follows:

min
(rdip,d)

‖V −
(
G Ĵ + n

)
‖22 (5.21)

An iterative process is then employed to search for the best fit solution. This pro-
cess begins by fixing the dipole at an estimated position, then adjusting the dipole
orientation andmagnitude and computing the least-squares error.Anewdipole source
position is then selected and the process is repeated until a global minimum least-
square error is achieved, yielding the solution dipole with the best-fit position and
moment. This non-linear least-squares method can be extended for multiple dipoles
in a similar fashion, where the number of potential dipoles is chosen by the operator
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before the iterative process. With each iterative step requiring multiple calculations
of the forward solution using the test dipole(s), the least-squares method has a high
computational demand that is greatly increased when attempting to model mul-
tiple dipoles. To assuage this, several search methods have been commonly imple-
mented—including the gradient, Nelder-Meade downhill search,multi-start simplex,
genetic algorithms [78]. Furthermore, the least-squares method faces two significant
drawbacks: (i) the solution with the minimum least-squares error is not necessarily
closest to the true underlying sources and (ii) The true number of active dipoles is
unknown and likely too large to be represented by a single “equivalent dipole”.

5.2.1.2 Beamforming Approaches

Another class of the parametric inverse solution is the beamformingmethods. Unlike
the least-squares method, beamforming approaches do not search for equivalent
dipole(s) that fully explain the measured potentials. Instead, the contribution of a
single dipole source to the detected field is estimated, meaning that the number of
dipoles does not have to be assumed a priori. The beamformer acts as a spatial filter
that monitors the activity originating from one dipole source of interest and filters
out contributions from all other sources. The 3-element vector of the dipole moment
(the x-, y-, and z-components of the dipole moment) representing the contribution of
dipole source at the known position rdip is estimated using the following formulation:

y � W T
(
rdip

)
v(t) (5.22)

where y is the 3-component dipole moment vector, v is the scalp potential measure-
ments at time t, and W is the spatial filter matrix for dipole source at position rdip.
Ideally, the spatial filter is designed as a passband that selects only the sources within
a small distance δ from rdip while serving as a stopband for sources elsewhere, thus
it must satisfy the following constraints on the forward model G:

W T
(
rdip

)
G(r) �

{
I f or‖rdip − r‖ ≤ δ

0 f or‖rdip − r‖ > δ
(5.23)

Using the linearly constrained minimum variance (LCMV) approach [80], the
estimation of W amounts to:

min
W T

tr
{
Cy

}
subject to W T

(
rdip

)
G

(
rdip

) � I (5.24)

whereCy � W TCvW , andCv is the signal covariancematrix obtained from themea-
surements, and tr denotes the trace of a matrix. Applying the Lagrange multipliers,
the solution for W can be derived as [79]:

W
(
rdip

) �
[
G

(
rdip

)T
C−1
v G

(
rdip

)]−1
G

(
rdip

)T
C−1
v (5.25)
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To obtain the time-course of activity of the current source at rdip, one can apply the
spatial filter matrixW to each of the measurement vectors v(t) for all t � 1, . . . , T .
Furthermore, this approach can reconstruct the dipole activity at any location by
simply changing the rdip, so long as the new source position is anatomically realistic.
Beamforming techniques may, however, struggle in cases where highly correlated,
spatially distinct sources are active [70, 80]. A straightforward strategy to handle
this problem is the introduction of longer time windows, as the high correlation
between sources is less likely to persist across the longer period. Brookes et al.
proposed a modified source model in a dual source beamformer technique that could
successfully reconstruct correlated sources in a simulation study [12], while other
simulation studies have suggested that the LCMVmethod is robust against moderate
level of source correlation [76, 80].

5.2.2 Non-parametric Optimization Methods

In contrast to ECD models, which assume that underlying sources can be repre-
sented by a single or small group of equivalent dipoles that explain the observed
measurements, non-parametric optimization methods make use of cortically dis-
tributed source (CDS) models. The CDS models base on the assumption that the
primary current sources are the cortical pyramidal neurons that span the cortex and
orient normally to the surface. Thus, the source space is constructed with a current
dipole assigned at each of the mesh element of the cortical layer, with dipole orienta-
tions either fixed to the local surface normal or left as unknown. In practice, cortical
surface models are usually extracted from brain anatomical images (e.g. MRI, CT)
through segmentation algorithms [17, 18, 24, 25]. In this setting, the dipole locations
are known and the parameter of interest is the dipole moment of each source loca-
tion. The number of source points on the cortical mesh will vary depending on the
chosen model and mesh element properties, but is typically on the order of several
thousands. This again makes the inverse problem highly underdetermined (P � N ).
The inverse solutions are thus obtained by applying some form of regularization to
the cost function. The formulation of the EEG inverse problem is presented again
below, with the various regularization schemes and their limitations described in
subsequent sections. Consider the following linear formulations of the forward and
inverse problems:

V � GJ + n

Ĵ � MV

where we assume a priori that statistical distributions of the dipole moment J and
sensor vector n exist such that J ∼ N (0, R) andn ∼ N (0,C).MatrixM is the linear
inverse operator that maps the EEG measurements V into the estimated source Ĵ .
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The matrix multiplication of the forward and inverse operator, GM, is referred to as
the resolutionmatrix and ideally equals to the identitymatrix I, representing a perfect
inverse solution. The inverse problem then amounts to the following generalized cost
function:

min
M

{
‖
(
G Ĵ + n

)
− V‖2p + λL

(
Ĵ
)}

(5.26)

where ‖ · ‖p denotes the L p-norm and L
(
Ĵ
)
is some regularization scheme or

a priori constraint on the estimated sources with a scalar regularization parameter
λ. The regularization parameter λ represents the balance between maximizing the

goodness of fit and minimizing the constraint term L
(
Ĵ
)
. λ is typically selected

using, among others [35], two common approaches: the generalized cross-validation
(GCV)method [32] and the L-curvemethod [40]. The optimal value for λ is obtained
in the GCV method by minimizing a function of λ:

GCV (λ) �
‖
(
G Ĵ(λ) + n

)
− V‖2

(tr(I − GM))2
(5.27)

The numerator represents the residual error resulting froma solution Ĵ regularized
by a particular λ value, while the denominator depicts the inaccuracy in the resolution
matrix. On the other hand, the L-curve is a log-plot of the norm of the residual error

term
(
G Ĵ + n

)
− V against the norm of the regularized solution term L

(
Ĵ
)
at

multiple values for the regularization parameter λ. Figure 5.4 demonstrates the L-
curve plot and the effect of different λ values on the inverse solution. Typically, a
regularization parameter λ is chosen to be near the “characteristic corner” of the
L-curve and, as such, generally yields a good balance between a small residual norm
and a small solution norm.

5.2.2.1 The Minimum-Norm Estimates

The minimum-norm estimates (MNE) [39] produces the inverse solution that mini-
mize the overall power of the estimated source activity. Here, the L2-norm is applied

on the error term, and L
(
Ĵ
)

� ‖ Ĵ‖22, yielding the solutions as:

MMNE � GT
(
GGT + λI

)−1
(5.28)

In such expression, the source and noise covariance matrices, R, and C, are
assumed to be an identity matrix I. A more generalized expression of MNE that
explicitly accounts for the covariance matrix is given as [17]:

MMNE � RGT
(
GRGT + λC

)−1
(5.29)
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Fig. 5.4 The L-curve method for selecting the optimal value for the regularization parameter λ.
Top—the plot of the norm of the regularized solution norm against the norm of the residual at various
value of λ. Bottom—the fitting of the inverse solution (thicker-line) to the ground-truth (thinner-
line) at under-constrained (left), optimally constrainted (middle) and over-constrained (right) values
of λ. Figure reproduced from [40]

This general expression for the MNE solution can be shown to be equivalent to
the Tikhonov regularization method, as well as the solution derived using a Bayesian
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framework (for a detailed derivation and description, see [35]). The MNE solution
is generally suitable for the estimation of superficially distributed sources; however,
MNE is also known to underestimate deeper sources.

To alleviate the depth-bias ofMNE, aweightedminimum-normestimates (wMNE)
algorithm was introduced, in which:

L
(
Ĵ
)

� ‖W Ĵ‖22 (5.30)

whereW is the weighting matrix used to compensate for deeper sources, constructed
from the norm of each column of the lead field matrix G. This is expressed as:

W � � ⊗ I3 (5.31)

where� is a diagonal matrix of size P× P, �i i equals to the norm of the ith column
of the lead field matrix, and the inverse operator is expressed as:

MwMNE � (
W TW

)−1
GT

(
G

(
W TW

)−1
GT + λI

)−1
(5.32)

5.2.2.2 Low Resolution Electromagnetic Tomography

The low resolution electromagnetic tomography (LORETA) method [64] aims to
incorporate physiological principles into the EEG inverse solution; specifically, the
idea that neighboring neural sources are activated simultaneously and synchronously.
To this end, LORETA implements a smoothing operation on the source space in
the form of a Laplacian operator. The inverse solution obtained from the LORETA
method is then presented as:

MLORET A � (
W TW

)−1
GT

(
G

(
W TW

)−1
GT + λI

)−1

W � (� ⊗ I3)BT B(� ⊗ I3)
(5.33)

whereB is a discrete spatial Laplacian operator.When given the task of localizing two
simultaneous point sources (one deep and one superficial) within the same simulation
study, LORETA achieved superior source localization accuracy when compared to
MNE and wMNE. The minimum-norm approaches were unable to reproduce the
deep source, while LORETA yielded a highly blurred reconstruction [65].

5.2.2.3 Standardized Solutions of Minimum-Norm Estimates

Another method applied to aid in the reconstruction of deep sources was the stan-
dardization of theMNE solution. Themost popular accepted standardizations are the
dynamic statistical parametric mapping (dSPM) method and standardized low res-
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olution electromagnetic tomography (sLORETA) introduced by Dale et al. [19] and
Pascual-Marqui et al. [66], respectively.While the solutions obtained fromdSPMand
sLORETA both take the form of theMNE solution Ĵ standardized by the variance of
the estimated current density SĴ , they differ significantly in their assumptions and
the formulations of SĴ . dSPM assumes that the source of variation in the estimated
current is solely from the measurement noise, thus:

SdSPM
Ĵ

� MMNE (λI N )MT
MNE (5.34)

In contrast, the derivation of the variance for the estimated current density in
sLORETA also takes into account variability from both the noisy measurement as
well as variance within the actual source itself. This variance term is expressed as
follows (see [66] for detailed derivation):

SsLORET A
Ĵ

� MMNE
(
GGT + λI N

)
MT

MNE

� GT
[
GGT + λI N

]−1
G (5.35)

Finally, the standardized current density for dSPM and sLORETA is computed
as:

(
Ĵ i

)2

[
SĴ

]
i i

(5.36)

where Ĵ i is the dipole moment at the ith source and
[
SĴ

]
i i
is the ith diagonal element

ofmatrix SĴ . In comparisonwith dSPM and theminimum-norm solution, sLORETA
is claimed to be able to achieve zero localization error for a point source in a noise-less
environment and the lowest localization error in noisy environments [66]. However,
it has been shown [41] that while standardized solutions are effective at lowering
localization error, they generally result in much larger spatial dispersion than non-
standardized solutions (minimum-norm) (see Fig. 5.5). Moreover, while sLORETA
yielded best accuracy in a single point source, LORETA appeared to perform better
in cases where multiple distinct sources were active [10].

5.2.2.4 Inverse Solution in the Bayesian Framework

Finally, shifting from theminimization of error and cost function, a separate approach
to source localization can be found through probabilistic Bayesian methods. In this
context, solving for the inverse problem seeks to identify the probability distribution
of the source activation given the observed scalp potentials. This is known as the
posterior probability and can be expressed as:

p(J |V ) � p(V |J)p(J)

p(V )
∝ p(V |J)p(J) (5.37)
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Fig. 5.5 Source localization performance of three EEG non-parametric inverse methods: MNE
(top row), dSPM (middle row), and sLORETA (bottom row) at three source locations. The true
location of the point-source is shown as a blue dot. Performance is evaluated in terms of dipole
localization error (DLE) and spatial dispersion (SD). Figure reproduced from [41]

Again, assuming that source activity and noise are normally distributed with zero
means and the respective covariance matrices R and C, the likelihood and prior can
be written as:

p(V |J) ∝ exp

{
−1

2
(GJ − V )TC−1(GJ − V )

}

p(J) ∝ exp

{
−1

2
JT R−1 J

}
(5.38)

where the solution canbeobtained as themaximum aposteriori (MAP) estimate, in the

form similar to that of (5.26) [7, 19, 35]: MAP
(
Ĵ
)

� ‖
(
G Ĵ + n

)
−V‖2 +λ f

(
Ĵ
)
,
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where f
(
Ĵ
)
is the energy function associatedwith the prior, which can be interpreted

identically to the L
(
Ĵ
)
term presented above.

Extending on this framework, Friston et al. introduced an EEG inverse method
called Multiple Sparse Priors (MSP) [27, 28] which formulates the forward problem
using a parametric empirical Bayesian approach on a hierarchical model [27–29].
MSP allows for the incorporation of multiple spatial covariance components into
the data model, weighted by a set of hyperparameters to be estimated empirically.
Specifically, the spatial source covariance matrix R is formulated as:

R
(
λR) �

∑
exp

(
λR
j

)
QR

j (5.39)

where each QR
j represent a potential source spatial covariance matrix weighted by

the set of hyperparameters λR
j . The source activity and the hyperparameters for the

source covariance can be estimated simultaneously using an iterative algorithm of the
Expectation Maximization (EM). However, considering the linear model discussed
here, the EM scheme is equivalent to the use of a restricted maximum likelihood
(ReML) estimation of the hyperparameters, and the source activity is subsequently
determined using a MAP approach (for more detailed formulation, see [29]). The
main advantage of thismethod lies in its capability to determine the best source spatial
priormodel from a set of source covariance components. In fact, theweightingmatrix
in the classicalMNE,wMNE, andLORETAcan also be represented by the expression
of R in (5.39), and MSP was found to outperform MNE, wMNE, LORETA in both
spatial and temporal accuracy due to the flexibility of its spatial priors [27, 28].

We wish to emphasize the role of the source covariance matrix R in incorporating
any possible prior knowledge about the spatial distribution of the sources into the
inverse model. Specifically, the presented formulation of the inverse problem in this
fashion has allows for many multimodal integration techniques that incorporate into
R the spatial information provided by other imaging modalities (e.g. magnetoen-
cephalography (MEG), functional MRI, functional NIRS).

5.3 Multimodal Integration

We have now covered how EEG from the scalp can be used to calculate and recon-
struct cortical activity. EEG, of course, is not the only modality capable of view-
ing the brain; other methods are frequently utilized to gain a more direct view of
the functional activity. Functional magnetic resonance imaging (fMRI), functional
near-infrared spectroscopy (fNIRS), and positron emission tomography (PET) have
all been used to obtain images of cortical activity without the complex calculations
and volume conduction problems that come with the EEG methods. Conversely,
these methods also do not have the high temporal resolution of EEG and are orders
of magnitude slower than the activity they attempt to detect. We then have many
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approaches with different properties, which recent research has sought to combine
into singular techniques that are both fast and accurate. In the following sections,
we will provide a brief background for the complimentary modalities that are com-
bined with EEG and then dig further into some of the algorithmic techniques used.
Please note that much of this research is still ongoing and under discussion; many
of the methods presented here are not as established as those in the source localiza-
tion section, so the discussion will seek to broadly discuss the major developments
within the field. Moreover, many of these methods exist as possible alternatives to
one another with no single dominant approach or overriding theory. This comes at
the cost of some algorithmic depth, though appropriate papers and groups will be
cited for the readers’ reference.

5.3.1 MEG and EEG Combinations

While the fundamentals underlying their signal detection differ greatly, MEG and
EEG both represent the neural activity originated from a common source—the elec-
tric current resulting from the activity of a population of neurons. In contrast to the
EEG’s measurement of scalp electrical potentials through the volume conductor,
MEG instead records the magnetic fields generated by the currents (both primary
and volume) associated with sources in the brain (which can again be modelled as
current dipoles). The amplitude of themagnetic fieldmeasureable outside of the head
is on the order of a few hundred femtotesla (10−15). This extremely small magnetic
field is detected by MEG sensors known as superconducting quantum interference
devices (SQUIDs). SQUID sensors are highly sensitive to small fluctuations in mag-
netic field strength, and therefore require a specially shielded recording environment
to attenuate any external magnetic fields. MEG measurement also generally comes
at a much higher cost than its EEG counterpart - a cost that arises due to both the
shielding of the equipment and the permanent helium-cooling required to maintain
the superconductive property of the SQUID sensors. In practice, a MEG recording is
almost always accompanied by simultaneous EEG recording, providing possibilities
for both parallel and integrated data analyses.

Like EEG,MEG signals also represent the superimposition of all primary and vol-
ume currents induced by the current sources in the brain. Naturally, source imaging
techniques are also employable and desirable for MEG signals. However, the gener-
ation of the forward model for MEG signals is distinctly different from that of EEG
due to the fundamental differences signaling characteristics. First, an important fea-
ture of MEG measurement is its insensitivity to sources that are radially-oriented to
the scalp—it is only capable of measuring signals from “tangential” sources. Briefly,
this is due to the fact that magnetic coils placed parallel to the scalp will pick up
magnetic fields that are perpendicular to the coil (since the magnetic flux through the
coil is measured). Radial current sources produce a magnetic field that is parallel to
the sensor because of their orientation, making them invisible to the coils (see [1] for
further discussion of the effect of source orientation). Secondly, the magnetic field is
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not distorted by the conductive properties of tissues, since the magnetic permeability
of biological tissue is similar to that of empty space. As a result, MEG signals are not
affected by the volume conduction problem and the modelling of the volume con-
ductor is not needed. A detailed description and formulation of the forward problem
for MEG is provided in [37]. Methods pertaining to solving the inverse problem are
similar for both EEG and MEG.

While insensitive to radial sources, the resistance of MEG measurements to the
blurring and distortion effects of volume conduction allows for better spatial reso-
lution and accuracy. On the other hand, EEG signals are capable of capturing both
“radial” and “tangential” sources, yet the resolution suffers due to volume conduc-
tion problem. These features are clearly complementary, making methods for the
data integration analysis of these two modalities highly desirable. Owing to the fact
the MEG and EEG signals are generated by the same underlying current sources,
the integration analysis of MEG and EEG is made straightforwardly by combin-
ing the forward models of each individual method. Let us define a vector j of the
unknown dipole strengths of the current source, with the electric and magnetic lead
fieldmatrices of G andB, respectively, and the vectors of the corresponding recorded
scalp potentials v and magnetic valuesm. The combined forward expressions is then
written in a concatenated form as:

[
G
B

][
j
] �

[
v
m

]
(5.40)

A scaling procedure is implemented by normalizing the rows of G and B to their
respective norms and performing the same scaling operation on the measurement
vectors v and m [6]. The resulting linear system is presented as:

y � A j + n (5.41)

where y is the measurement vector representing the combined normalized elec-
tric and magnetic values, A is the combined normalized lead field matrix, and n
is the measurement noise vector. This formulation is analogous to the EEG forward
problem presented above, such that the same inversion scheme, with the same limita-
tions, discussed for EEG can be applied to this system. Using a computer simulation
study, the EEG+MEG integration analysis was demonstrated to be able to achieve
significantly superior localization performance (in terms of residual error and tempo-
ral accuracy) in comparison to the separate unimodal analyses of EEG andMEG [6].
Further, EEG+MEGanalysis results showed the best correspondencewith the spatial
pattern of neural activity obtained by functional MRI results [77] (see Fig. 5.6).
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Fig. 5.6 Source localization results from unimodal EEG, MEG, and multimodal integration of
EEG and MEG, in comparison with activation map obtained from fMRI data. MEG+EEG source
analysis provided the best correspondence with fMRI results. Figure reproduced from [77]

5.3.2 FMRI and EEG-FMRI Combinations

While the combination of EEG and MEG can provide for effective source localiza-
tion, researchers often prefer to combine EEG with modalities that feature a greater
inherent spatial resolution, such as fMRI. To understand the nature of EEG-fMRI
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imaging, it will first be necessary to understand the nature of 4D magnetic resonance
imaging; fMRI is a complex imaging modality that requires some investigation to
appreciate, especially when contrasted with the more direct and simple EEG detec-
tion. For this, we will not be focused on the actual electrical activity of the brain, but
will instead address the blood circulating within the cortical tissues.

5.3.2.1 The Basics of FMRI Acquisition and Analysis

Whenneuronsfirewithin the brain, large amounts of energy are necessarily consumed
by cells in the process of regulating and restoring their ionic gradients. The energy for
this is provided in the form of blood borne glucose and oxygen, whose consumption
creates a local decrease in oxy-hemoglobin. This decrease, paired with the local
release of neurotransmitters, is perceived by astrocytes in the area of activity. The
astrocytes then alter the blood flow of the brain, creating a sharp influx of oxygenated
to compensate for the deficit caused by functional activity. This association between
neural activity and cerebral blood flow is known as neurovascular coupling (NVC).
The compensatory increase in local oxygen then serves as the basis for fMRI imaging.

fMRI takes advantage of this coupling, along with the fact that oxygenated and
deoxygenated blood present with very different magnetic properties, to provide an
indirect depiction of cortical activity. A series of magnetic fields are applied and
pulsed across the sample or subject to rotate and displace the dipole moments of
blood-borne hemoglobin. As these displaced dipoles return to their original states,
the extra energy imparted by the magnetic field is released as a radiofrequency signal
that travels unhindered through the skull, scalp, and open air. The detection of this
signal is interpreted to produce greyscale images of the whole brain, one slice at a
time. Statistical analyses are typically applied to identify which specific regions (in
the form of voxels) show statistically significant differences between conditions. The
result of this process is an image that is slow and indirect, but very spatially accurate.
This forms a complimentary imaging modality to EEG, which is both fast and direct
in its depiction of cortical activity but struggles with spatial blurring and inaccuracy.

While it is not considered a primary focus of interest, it will be worthwhile to
spend some extra time discussing the primary statistical methods of fMRI. When
MRI data is acquired, it comes in the form of greyscale 3D volumes. Anatomical
scans will consist of a single high resolution volume while functional scans will
consist of multiple lower resolution images taken at each timepoint during the scan.
Each image will be made up of a series of 3D voxels, which are analogous to the
pixels measured on 2D displays. Over the course of the scan, the intensity of each
voxel will fluctuate both due to noise and actual shifts in the magnetic properties
of the underlying tissues. A general linear model (GLM) is then constructed to
determine the statistically significant changes in greyscale value that can be attributed
to changes in the experimental condition. Following the simple, ideal form of the
GLM, the intensity of a voxel (Y) should be linearly related to the condition (X)
following the simple formula:
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Fig. 5.7 Formulation of the estimates to the BOLD response. Here, the regressors for different
theoretical events (indicated by event color) is convolved with the hemodynamic response function
(HRF). Note the summation that occurs when events repeat quickly. Figure modified from [69]

Y � XB (5.42)

where X is a representation of your experimental condition (for example, the X may
be set up so that 1 represents an active task while 0 represents an inactive task) and
B is a static coefficient. While this is an elegant representation, it is overly simple;
cortical oxygenation does not operate in such a straightforward manner. The cerebral
blood flow instead follows a specific pattern, known as a hemodynamic response
function (HRF). To better match this cortical response, a numerical representation
of the condition is convolved with the HRF, resulting in an elongated waveform. An
example of this convolution can be seen in Fig. 5.7, where the HRF is convolved
with small blocks of stimuli, whose color represents event type or task.

This gets us closer to a realistic model, but it is still insufficient—considering the
complex setting of MRI recordings, a variety of factors outside of the experimental
conditions may be seen to influence the voxel intensity. These can include a variety
of directional or rotational movements, changes in the baseline voxel value, and even
random error. Thankfully, we can expand the linear model to include each of these
factors:

Y � X1B1 + X2B2 + X3B3 . . .XjBj + e (5.43)

where each X represents each condition or factor (convolved with the HRF) and
B represents the corresponding coefficient for each factor. Note the addition of a
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constant “e” at the end of the equation, which represents the error of the model at the
particular voxel and timepoint. This term is added to account for the variation that
does not result from the variation in the known X factors. The model is considered
optimized when error is minimized—an e-value of 0 would be ideal; however such
a case never really occurs in practice. Instead, B values are chosen in such a manner
that the ‘e’-value of the equation is minimized in accordance with the shifting X
factors, resulting in an optimized model.

At this point, we have modeled the intensity of a single voxel at a single point in
time. Considering the number of timepoints and large number of possible factors, it
becomes easier to rewrite this model in matrix form. We will then rewrite this as:

y � xβ + e (5.44)

where y is a t × 1 matrix of the greyscale intensity of the volume at the t timepoints,
x is a j × t matrix representing the timecourse of the j regressors within the model
(known as the Design Matrix), β is the j × 1 matrix of static regressor coefficients,
and e is the t×1 matrix representing the appropriately distributed error of the system
at any given time point. This is the essence of fMRI analysis—a GLM is established
and T- or F-tests are applied to identify specific voxels or regions of activity that are
significantly different from their baseline value. An example of this construction can
be seen in Fig. 5.8.

For many years, MRI stood as a singular imaging platform that was unable to
be a part of simultaneous data acquisition due to the use of strong magnetic fields.
More recent technological advances, however, have been enabling simultaneous
EEG-fMRI. This advent of MRI-capable EEG devices has brought with it the
search for algorithmic methods to capitalize on the temporal features of EEG and
spatial features of fMRI. At the time of writing, a number of methods are available
which can be broadly split into Asymmetrical Methods and Symmetrical Methods
depending on how they treat the information from each modality. A broad overview
of the topic can be seen in Fig. 5.9.

5.3.2.2 Asymmetrical Methods

Asymmetrical Methods were among the first devised which, in accordance with their
name, place a stronger value on one modality over another. This typically takes the
form of one modality generating the actual observed results while the secondary
method provides a guiding influence. Once more, these approaches will split into
categories to allow for a clearer analysis investigation.

fMRI-Constrained EEG

fMRI-informed EEG is perhaps themost fundamental of themultimodal approaches.
Under this architecture, static fMRI maps are used to constrain EEG source localiza-
tion results. The most straightforward method of combination is to restrict the source
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Fig. 5.8 Graphical representation of the general linear model method of modelling fMRI BOLD
responses to the possible regressors. Figure reproduced from [58]

space so that dipoles are only placed at the MRI-active regions. This limited dipole
seeding is less popular, however, as it no longer represents a distributed source model
and again faces the problems seen by dipole fittingmethods. An alternative approach,
proposed by Anders Dale and Martin Sereno [17], applied a direct constraint from
MRI on the distributed minimum-norm solution. Recall that the equation for the
classical minimum-norm estimates (see (5.29) above):

M � RGT
(
GRGT + λC

)−1

whereM is the optimal linear inverse operator and R and C are again the respective
source and noise covariance matrices, which are set to identity matrices in classical
MNE. The multimodal constraint in this case will be applied directly on the source
covariance matrix R, changing the weight of each source according to whether or not
it is within an fMRI-active region. This method requires experimenters to establish
both the threshold at which sources will be considered fMRI-active (typically in α, p,
or q-values) as well as the weight to apply each to each individual source. Common
application of this method sets the p or q threshold for the fMRI map at 0.05 with
the diagonal term of R for the significantly activated sources receiving a source
covariance value of 1 and non-significant sources receiving a source covariance value
of 0.1 [49], the off-diagonal terms are set to zeros, reflecting a lack of hemodynamic
coupling to other cortical sources. On the other hand, Babiloni et al. [6] introduced a
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Fig. 5.9 An overview of different data analysis schemes for the multimodal integration between
EEG and fMRI data. Figure reproduced from [44]

formulation of R that describes the spatial coupling of the hemodynamic responses
of cortical sources by modelling the off-diagonal terms in R as proportional to the
correlation found in the fMRI time-courses of the corresponding pair of cortical
sources. In any case, fMRI-informed EEG source localization results in significant
improvement in localization accuracy over EEG-only inversion methods [6, 49].

The result of the above method is very similar to the typical MNE-based source
localization, applied on the experimenter’s model of choice. Completed reconstruc-
tion has a similar temporal scale and rapid detection, with some accompanying
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uncertainty in the calculation of the cortical current sources. The fMRI activation
map, in this case, serves only to restrict the potential activity of sources in the
cortical layer by penalizing sources in fMRI-inactive regions. This is emblematic
of asymmetrical methods; one imaging modality provides the directly observed
results while the remaining method acts as a guiding influence. There are also a
few considerations which must be made for this fMRI-MNE method. First, strong
activity in the cortical reconstruction can overcome the penalty imposed by the
fMRI map. This means that the erroneous activity of sufficient strength may still
be present in the results. Second, the MRI constraint does not interact with other
noise-normalized estimates (dSPM, sLORETA, etc.). While MNE itself aims to
provide a reconstruction of cortical currents, these noise-normalization algorithms
seek to identify where cortical activity is different from baseline noise. This function
is essentially the same as fMRI, which identifies the 3D voxels that are significantly
different from background noise. Thirdly, in the above implementation, fMRI spatial
information acts as a “hard” constraints; it is assumed to be the absolute truth, in spite
of cases where fMRI “extra” sources (sources deemed active in fMRI but not EEG,
[49, 51]) can be found. Finally, there is a built-in assumption that the constraints
provided by fMRI are applicable at each time instance of the EEG measurement.
The fMRI activation map employed in this method is static, regardless of the time
point use in analysis—this means that any erroneous activity at an MRI-active voxel
will be amplified similarly to true activation. To alleviate the issue of temporal
mismatch between fMRI and EEG, Liu and He [52] proposed an EEG inversion
approach that utilized the fMRI information as time-variant spatial constraints. The
fMRI-derived prior spatial weights are adaptively varied at each time instance of
the EEG time-course based on all the EEG single-trials before averaging. On the
other hand, Daunizeau et al. addressed the fMRI “hard” constraint issue by dividing
the fMRI activation map into multiple submaps and estimating the optimal subset
of fMRI weights using model comparison approach in the parametric empirical
Bayesian framework [20]. fMRI spatial information can be utilized in a spatiotem-
poral specific fashion [60], employing an appropriate subset of the fMRI activation
map as spatial priors for a sliding-window of EEG time segments, thus improving
the spatial and temporal accuracy in complex and dynamic brain activity [61].

EEG-Informed fMRI

The abovemethodhas showna commoncombination,wherein fMRI is used as a basis
to constrain EEG-based source localization. The lofty temporal resolution of this
approach makes it ideal for investigative or computational approaches. Oftentimes,
however, clinical and scientific researchers may instead wish to highlight or localize
a specific feature or spike in EEG activity. In these cases, they may wish to rely
more heavily upon the high spatial resolution of fMRI than the temporal speed of
EEG. This can be particularly valuable when the events targeted for characterization
fall into one of the following categories: (1) events that are largely uncontrolled or
unpredictable (investigations of epileptic activity); (2) events with a large degree of
variability; and (3) events that are invisible to fMRI alone. Serving as an converse
method to fMRI-informed EEG, results obtained by EEG-informed fMRI are similar
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to results from MRI alone; they are largely static and comprised of a small number
maps (or a single map) of activated 3D voxels. As with fMRI, results are not subject
to the volume conduction problem or intense calculation and are not susceptible to
the error that may arise from EEG source localization. While the lack of temporal
resolutionmay lead researchers to overlook EEG-informed fMRIwhen attempting to
characterize cortical activity, the robust nature of the MRI results and guiding effects
of EEG have made this a clinically valuable and worthwhile imaging approach.

When attempting to performEEG-informed fMRI,wemust recall that our primary
data method of choice is fMRI. Whereas fMRI-informed EEG built results from the
fMRI into the EEG source localization framework via the source covariance matrix,
we will turn once more to the General Linear model presented in the section on fMRI
analysis. Recall the model:

y � xβ + e

where y is a t × 1 time-course of bold activity for every voxel within the MRI vol-
ume, x is an r × t matrix representing the timecourse, t, of the r regressors within
the model, β is the r × 1 matrix of static regressor coefficients, and e is the t × 1
matrix representing the error of the system at any given time point. Recall further
that the r regressors used within the model are a series of t ×1 signals used to model
the status of the various factors that can directly impact voxel intensity—motion,
drift, noise, stimuli of interest, etc.—which are ultimately convolved with gen-
eral or subject-specific models of the cortical hemodynamic response. Logically,
an EEG signal of the activity of interest can be incorporated directly into this
model as one of these regressors. Integration of this type may require some extra
steps during this processing, as EEG signals would need to be downsampled to
match the timescale of collected fMRI. Once appropriate processing has been per-
formed, however, this incorporation becomes straightforward and requires only
that the EEG data of interest be added to the x matrix as a regressor of interest
for the fMRI statistical analysis. More pressing questions, then, are exactly what
EEG feature is selected and how that selection is performed-questions that will fall
to individual researchers.

5.3.2.3 Symmetrical Methods

At this point, we have discussed the predominate asymmetrical methods for combin-
ing EEG and fMRI. These methods have been used broadly and have significantly
impacted the field of biomedical imaging. Reviewing these applications and their
biases, however, it becomes clear that the multimodal integration is only imple-
mented as an extension of existing unimodal methods. It is natural that continued
development would focus instead on novel methods that better utilize both methods.
The inherent differences between EEG and fMRI have made this advancement dif-
ficult, however, requiring more mathematically advanced methods to achieve these
tasks. Unlike the EEG-informed fMRI and fMRI-constrained EEG, which each have
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a standard approach, symmetrical methods have yet to present singular methods for
discussion. It may be better to explore this topic in a historical manner, then, review-
ing major landmark developments. Once more, however, we can simplify the topic
by splitting it into two major categories: data driven approaches and model-based
methods.

Data-Driven Integration

Data-driven methods are those that focus predominately on integrating the datasets
from EEG and fMRI. Under these paradigms, little attention is given to the actual
structures and dynamics of neural populations or how they interactwith cortical blood
flow. It is instead assumed that the numerical methods will provide the necessary
context for application. This means that the methods are generally straightforward
and computationally accessible.

Perhaps the earliest effort to appear as a symmetrical data-driven approach was
presented by Martinez-Montes et al. in 2004 [55]. Under their approach, a multiway
Partial Least-Squares (PLS) method was used to decompose EEG and fMRI data
into a sum of elements, which were called “atoms.” Following this method, EEG
atoms contained three main properties—their spatial, temporal, and spectral signa-
tures—following a method of Parallel Factor Analysis, where the EEG Signal was
represented as a trilinear model of these parts:

Sdwt �
Nk∑
k�1

adkbwkctk + εdwt (5.45)

where S is the EEG signal; a, b, and c are normalized vectors influenced by d, w, and
t, which respectively represent electrode (spatial), frequency (spectral), and time
(temporal) components; Nk is the number of components; k specifies the current
component; and ε is the error. fMRI is similarly modeled considering time and voxel
as their key dimensions:

Fst �
Nk∑
k�1

uskvtk + εst (5.46)

where Fst is the fMRI signal; u and v represent the two signatures defined by their
voxel (spatial component represented by s) and time (temporal component repre-
sented by t). Once more, Nk and k are the number of components and the current
component, and ε is the error. These representations can be seen in Fig. 5.10.

The method then sought to maximize the covariance between the temporal prop-
erties of the EEG and fMRI signals (the c and v vectors in Fig. 5.10), matching
the signals. EEG signals were further broken down into frequency bands of interest,
focusing on only one band at a time and identifying which frequencies presented a
significant correlation with the fMRI signal and how they were distributed through-
out the brain. As in EEG-informed fMRI, this integration required that EEG data
be downsampled and convolved with an appropriate HRF to exist within the same
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Fig. 5.10 A depiction of how EEG and fMRI data sets are represented as the sum of their con-
stituent signatures and subsequently broken down in the PLS method. EEG data features three
signatures—time, frequency, and channel—while fMRI data has two—time and voxel. The data
sets are then temporally aligned bymaximizing their temporal covariance. Subsequent analysis here
involved selecting individual frequencies and identifying the significant correlations between the
respective spatial dimensions of the EEG and fMRI signals. The figure is reproduced from [55]

temporal scale as the fMRI data. A LORETA-based source localization algorithm
was used to provide the spatial signature for each EEG atom for covariance analysis
(note: LORETA itself could not be used as EEG atoms were defined by spectral
power and not voltage). While the algorithm did face limitations when accounting
for spatial blurring, uniformity, and the interactions between the three properties of
interest, it served as a noteworthy advancement and one of the first examples ofmul-
timodal data fusion. Methods like these would become more common as the field
moved forward.

A similar, more ERP-oriented method known as Joint ICA was presented shortly
after as another fusionmethod [15, 59]. To do this, ERPswere first derived from scalp
EEG signals following an auditory oddball experiment. A single focal scalp electrode
(Cz in their case) was chosen for the fusion analysis along with the fMRI data. The
two data sets were represented as the respective generative models following the
infomax principle [9]:

xE � AsE and xF � AsF (5.47)

where x and s respectively represent the mixed data from each subject and the source
as obtained by either fMRI (xF, sF) or EEG (xE, sE), andA is a shared linearmixing
matrix. Data vectors can then be formed for each subject as:
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xi � [
xF
i x

E
i

]
and si � [sFi s

E
i ] (5.48)

where i indicates the data from the i-th subject. A resulting update equation is used
to compute a shared unmixing matrix and the fused ERP fMRI sources (uF and uE)
as:

�W � η
{
I − 2 yE

(
uE)T − 2I F

(
uF)T}

W (5.49)

where yE � g
(
uE

)
, yF � g

(
uF

)
, and g(x) � 1/(1 + e−x ), which represents the

nonlinearity of the neural network. Independent components could then be isolated
from the fused data sets and used to identify important motifs and patterns of brain
response. It would then be up to the experimenter to determine which components
are important or meaningful based on their own criteria and evaluation. Localiza-
tion within the source paper was then performed for the N spatial and temporal
components by rewriting them as:

T � [t1 . . . t N ] and S � [s1 . . . sN ] (5.50)

where t i is a T × 1 vector of the T timepoints and s is a V × 1 vector of the V brain
voxels within the MRI space. An overall fMRI movie (MF) and ERP timecourse
(ME) were then calculated using the respective equations of:

MF � |T | × ST and ME � T × |S|T (5.51)

The result of this procedure is a technique that combines both EEG and fMRI
into a single, joint data space that accounts for the independent features of both
modalities. Unlike the PLS method, neither modality here is treated as dependent or
independent and, thanks to the use of MRI for localization, the method does not rely
on cortical models with fixed numbers of dipoles or potentially blurred calculation
through cortical layers. On the other hand, the method only accounts for EEG data
from a single focal electrode and does not incorporate the larger spectrum of data
collected throughout the scalp. Joint ICA also requires that data are fitted to the maps
obtained through fMRI, and any misalignment between theses may cause errors in
the results or interpretation. Finally, while this is useful for specific ERP analysis,
it is unable to address the broader context of EEG without serial calculation. This
may pose issues for those seeking to understand brain connectivity or the dynamic
cortical activity that may be incurred during complex tasks. In practice, Joint ICA has
been used to explore brain activity in schizophrenia [26] and during error-monitoring
tasks [22].

Moving away from joint feature spaces, Bayesianmethods represent another inter-
esting direction for symmetrical integration. The first landmark method for this inte-
gration was proposed in 2007 and made use of a generative model in somewhat of
a similar manner to that seen in the Joint ICA [21]. The model in this case jointly
incorporated EEG/fMRI sources as unknown hierarchical priors within a Variatonal
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Bayesian learning scheme, resulting in an estimate of the common spatial profile
for the modalities. Included as a part of this approach is an estimation of the spa-
tial structure of the EEG/fMRI coupling and uncoupling. As with EEG-only data,
probabilistic approaches are of great interest because they are robust to imprecision
and accommodate a degree of error without greatly inhibiting localization ability.
Returning briefly to the simplified form of Bayes’ rule discussed earlier, we have:

p(J |V ) � p(V |J)p(J)

p(V )

where p(J |V ) is the probability density function (pdf) of J given the dataV , p(V |J)

is the data likelihood, p(J) is the prior pdf of J, and p(V ) is the data “evidence”.
Unwritten in this formulation are a series of other hyperparameters that control the
distributions of these probabilities. An expanded form of Bayes’ rule can be written
as:

p
(
J |σ 2, ε2V , H

) � p
(
V |J, σ 2

)
p(J |σ 2, ε2, H )

p(V |σ 2, ε2, H )
(5.52)

where σ 2 and ε2 represent a set of mutually independent hyperparameters
and H is an undefined hypothesis. In the absence of fMRI data, the hypothesis H is
established as an uninformative prior, represented by using an identity matrix In as
a prior covariance matrix:

J j ∼ N

(
0n,

σ 2

ε2
In

)
, j � 1, . . . t (5.53)

Knowing the fMRI activationmap,Z, we can instead introduce it as an informative
hypothesis wherein the source intensities at time j are a function of that fMRI map.

J j ∼ N

(
0n,

σ 2

ε2
f (Z)

)
, j � 1, . . . t (5.54)

Following this model, the source localization results are not directly dependent
on the EEG alone or the fMRI, instead relying on factors from each to control the
probabilistic model. This creates a favorable interaction between the unknowns of
each method without relying too heavily on either or making excessive assumptions
regarding the correctness of either.

The development of these methods served as the advent of data-driven symmet-
rical EEG-fMRI integration. These approaches do not account for all of the devel-
opment within the field; however, as existing approaches are continually refined
and new methods are brought forth. The techniques that we have presented here
serve only as major landmarks within the field, which can help us both understand
and develop newer integration algorithms. For example, one later-developed method
used ICA to isolate the temporal and spatial components from EEG and fMRI sep-



5 EEG Source Imaging and Multimodal Neuroimaging 115

arately, which was then linked using an Empirical Bayesian model [46]. This, in
essence, performs both of the previous asymmetric methods and uses a Bayesian
approach to fuse them as a newer combination. Alternative methods have extracted
EEG and fMRI features (BOLD and ERP peak latency and amplitude, BOLD per-
cent signal change, RMS measure, etc.), establishing the probability distribution of
each and using these to determine the information shared by the components [63].
Others have created spatially adaptive priors for use within Bayesian frameworks,
developed by implementing measures of Total Variation [53]. Finally, some have
sought to introduce measures of graph theory or connectivity into the framework.
An early method for this performed functional network analysis on the fMRI and
EEG signals using spatial ICA and Granger Causality, again linking these within an
Empirical Bayesian Framework [47]. The important message to derive from all of
these is not just the individual approaches, but also the numerous ways that they can
be combined, adjusted, or refined to improve on current technology. Though much
has been accomplished, it is certain that many more methods will be developed with
the potential to both advance multimodal imaging and translate across fields.

Model-Based Approaches

Model-based approaches, on the other hand, are founded upon the development of
realistic models of the biological and physical factors that give rise to the detected
BOLD and EEG signals [71]. In general, this means that data-driven approaches are
simpler and better suited to naïve cases while model-driven approaches are more
conceptually complete and informative, albeit with an increased computational cost.
It alsomeans that model-based approaches require a somewhat deeper understanding
of the factors connecting EEG to fMRI. For example, we have established that neu-
rovascular coupling as the underlying mechanism that connects the EEG and fMRI
modalities. This coupling is not constant, however—decoupling between the BOLD
and EEG signals can be informative depending on the situation. Decoupling has been
observed in a variety of specific cases, including decoupling in the frontal lobe dur-
ing locomotion and in cases of cerebral amyloid angiopathy [67] or seizure [75]. An
ideal model will also need to deal with the dynamics of whole neuronal populations
and once again address how these dynamics are represented at the scalp level. These
populations may show complex activity, including both inhibitory and excitatory
interactions within context of a population firing pattern that may be conditionally
rhythmic or transient. True neurophysiologic models are then difficult to generate;
the core principles for them are highly complex and any errors will be amplified as
the model is built outward from the cell populations and their properties [71]. Thank-
fully, our current discussion has provided a firm basis in EEG source localization and
reconstruction, which accounts for one major aspect of neurogenerative modelling.

The general pattern of the forward model and inverse problem, as explored above,
reappears here. Forward models will serve to represent the processes that generate
EEG and fMRI data while the inverse calculation will identify the model conditions
responsible for observed data [42]. Early single and double columnar models of
neuronal population activity were generated following a biological representation
of excitatory pyramidal cells modulated by inhibitory interneurons and excitatory
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stellate cells [43]. This method proved to be effective at reproducing a variety of
oscillating and spiking patterns that closely resembled experimental data. The model
has since been expanded to cover a single or multiple cortical areas with the added
context of hemodynamic coupling [4, 5]. While these models have shown a remark-
able amount detail, it will be easier to illustrate the overall process of neurogenerative
modelling using simpler approaches, such as that presented by Buxton et al. in 2004
[14], which modeled the total neural activity as the difference between excitatory
and inhibitory inputs in the following equations:

N (t) � s(t) − I (t) (5.55)

dI

dt
� κN (t) − I (t)

τ1
(5.56)

where N(t) is the neural activity, s(t) is the excitatory input, I(t) is the inhibitory
input, κ is a gain factor, and τ 1 is a time constant. Other models have also been
developed and presented, including models specific to cortical regions [34], though
there has yet to be a broadly accepted model for the collective activity of neuronal
populations [11].

Havingmodeled the neural population of interest, the next aspect to be addressed is
the connection from this population to the associated hemodynamics. As an example
of this, we will turn to a model generated by Buxton et al. that describes the vascular
BOLD response as a balloon fed by a vascular compartment [13, 14]. Following this
model, two main variables—the total deoxyhemoglobin (q(t)) and volume of the
compartment (v)—are described as:

dq

dt
� 1

τMTT

[
f (t)

E(t)

E0
− q(t)

v(t)
fout (v, t)

]
(5.57)

dv

dt
� 1

τMTT
[ f (t) − fout (v, t)] (5.58)

where τMTT is the mean transit time through the balloon at rest (~3 s), f is the
bloodflow into the compartment, fout is the bloodflow out, E(t) is the O2 extraction
fraction at the time t, E0 is the baseline O2 extraction fraction, q(t) is the basline-
normalized deoxyhemoglobin, and v(t) is the baseline-normalized cerebral blood
volume (CBV). Considering the viscoelastic properties of venous walls, fout can be
further modeled as a function of the volume of the balloon compartment:

fout � v
1
α + τ

dv

dt
(5.59)

where τ is a time constant that can take different values during inflation and defla-
tion and α is a constant used to describe the relationship between flow and volume
at steady state (~0.4). Modeling the neurovascular coupling between these hemody-
namic representations and the actions of neural populations rises as the next point
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of interest. Continuing with Buxton’s model and assuming a neural activity of N(t),
the cerebral blood flow (CBF) and CMRO2 are respectively modeled as

f (t) � 1 + ( f1 − 1)h
(
t − δt f

) ∗ N (t) (5.60)

and

m(t) � 1 + (m1 − 1)g(t − δtm) ∗ N (t) (5.61)

where f 1 and m1 represent the normalized CBF and CMRO2 responses, δt f and δtm
are the relative delay of each response from the stimulus, * indicates convolution, and
g(t) and h(t) are impulse response functions. The BOLD signal change can finally
be modeled as:

�S

S0
� A · (

1 − f α−βmβ
)

(5.62)

where �S is the change in MR signal, S0 is the resting signal, A is the maximum
possible change in BOLD signal (contingent on MRI acquisition factors) and β is a
constant related largely to MRI field strength (~1.5 for 1.5T or 3T machines).

At this point, we have followed amodel beginning with a neuronal population and
extending outward to influence both BOLD and EEG signals. While the approaches
presented here have been important to the field, it is important to remember that neu-
rogenerative modeling techniques are highly customizable and different models can
be combined and altered in a number of ways to suit the case at hand. This flexibility
and the explanatory power of the models make them valuable approaches within the
field—particularly when attempting to verify or validate an existing hypothesis.

5.3.3 EEG-FNIRS

fNIRS can be seen as a relative of fMRI.While it does not utilize the strong magnetic
fields of MRI, fNIRS provides researchers with a similar measurement of cortical
hemodynamics. Signals in this case are created by near-infrared light fromeither laser
diode or LED sources distributed throughout the scalp, which emit light between the
wavelengths of 650 and 950 nm. Light within this range is able to transmit through
the tissues of the head (cortex, skin, skull, scalp, CSF, etc.), though scattering from
these intermediate tissues causes the near-infrared signal to curve through the head in
a banana-shaped pattern. This allows the light achieve a probing depth of~3 cm and
return back towards the scalp surface, where separate optodes are placed to detect
any changes in the signal intensity (see Fig. 5.11).

As with the magnetic field of MRI, the main focus for detection for fNIRS is
hemoglobin, which serves as the main chromophore in blood and presents with
different absorption spectra depending on whether or not it has bound oxygen. To
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Fig. 5.11 A schematic of the signal acquisition in functional Near-Infrared Spectroscopy. Light
from the source scatters through the brain tissue in a banana-shaped path before being picked up
by the detector. Figure reproduced from [55]

suit this, NIRS systems will typically inject two or more wavelengths of light, with
at least one in the range of 810–860 nm and one in the range of 710–770 nm. These
will serve for the respective detection of oxy- and deoxy-hemoglobin in accordance
with the absorption spectra for each chromophore.

Thanks to the use of scalp-based sources and detectors, fNIRS provides a portable
and affordable method for detecting the same BOLD response observed by fMRI.
The light-based signal is also resilient to motion noise and can make highly specific
measurements of the BOLD signal, including non-relative measurements of the oxy,
deoxy, and total hemoglobin within the cortex. On the other hand, while the signals
of fNIRS can detect hemoglobin within the cortex, it does not provide any true
anatomical detail for the signals. While signals are not as blurred as EEG and some
locations can be inferred by fiducials, the resultant signal is most frequently seen as
a scalp topography. Further, the light-based detection only reaches sources 2–3 cm
deep and cannot measure deep-seated sources within the brain, making the detection
of the insular or cingulate cortices a challenge. Finally, while fNIRS instrumentation
may feature a high sampling rate, the underlying BOLD signal is still relatively slow
and does not operate on the same temporal scale as cell populations. Regardless of the
potential limitations of the hemodynamic detection, low cost, motion resilience, and
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portable nature of fNIRS have made it an intriguing counterpart to EEG, particularly
in BCI applications [2].

As a relatively young modality, signal processing for fNIRS alone has been fairly
simple. Methods have often included simple observation or T-tests/ANOVAs based
on average signals. Fourier analysis has also been applied, assuming that hemody-
namic peaks occurring with the same frequency as a stimulus should be attributable
to the task. Statistical Parametric Mapping (SPM) and the GLM were also adopted
for fNIRS in a similar manner to their use in fMRI. Full integration between EEG and
fNIRS has yet to be fully explored, in part due to the relative youth of the technology.
Current methods adopted procedures such as using the β coefficients do determine
informative EEG channels for BCI classification [48], while others have derived
the independent band powers from both EEG and fNIRS frequency bands for use
in linear discriminant analysis and subsequent classification in a hybrid BCI [23].
Bayesian approaches have also appeared here, wherein fNIRS data is incorporated
as a hierarchical prior [3]. Though the field is still young, we can see here the incor-
poration of methods established earlier (Bayesian methods, GLM-based analyses,
etc.). These represent common themes that pervade many multimodal methods that
will continue to serve EEG combinations in the future, even as new approaches and
imaging modalities are developed.

5.4 Conclusion

EEG-based source localization and multimodal imaging stand as burgeoning topics
within the field of biomedical imaging, and research into both topics has remarkable
breadth and depth. New approaches are constantly arising in this field, pushing it fur-
ther as more accurate (and often more complex) methods arise. We have sought here
to provide a functional basis from which the general principles and seminal meth-
ods of source localization can be understood. This necessarily has driven through
discussions of cortical modeling, types of models, and the forward and inverse cal-
culations used to connect EEG to its potential sources. Continuing beyond this, we
have explored a variety of the possible multimodal combinations that EEG features
in and provided both algorithmic and practical examples for how these fusions are
performed. It is important at this stage to remember that none of this discussion
is comprehensive; even the topics explored more heavily in this chapter have not
achieved their full depth. The readers are instead encouraged to look through the
cited materials on their own, for many of the individual topics that we have touched
on could be the subject of full books.
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Chapter 6
Methods for Functional Connectivity
Analysis

Jeong Woo Choi and Kyung Hwan Kim

Abstract The purpose of this chapter is to provide comprehensive and useful guide-
lines for the methods of the functional connectivity analysis (FCA) for electroen-
cephalogram (EEG) and its application. After presenting the detailed procedure for
the FCA, we described various methods for quantifying functional connectivity. The
problem of volume conduction and the means to diminish its confounding effects on
the FCAwas thoroughly reviewed. As a useful preprocessing for the FCA, spatial fil-
tering of the time-series measured on the scalp or transformation to current densities
on cortical surface were described. We also reviewed ongoing efforts toward devel-
oping FC measures which are inherently robust to the volume conduction problem.
Finally, we illustrated the procedures for determining significance of the FC among
specific pair of regions, which exploit surrogate data generation or the characteristics
of event-related data.

6.1 Introduction

Cognition and behavior is enabled by coordinated and integrated activities of neu-
ronal populations of relevant regions in the brain. Beyond spatial and temporal pattern
of brain activation, investigating the interaction between those neuronal populations,
i.e., the functional connectivity analysis (FCA), is essential for proper understanding
of human brain function [6, 17, 49, 56]. Now the FCA is regarded as one of the major
tools for functional brain imaging.

In functional neuroimaging studies, mainly using functional magnetic resonance
imaging (fMRI), intrinsic cortical networks such as default mode and saliency net-
works, have been identified during both resting state and task performance by the
FCA [7, 17, 55]. The functional brain network is obviously dynamic although most
fMRI-based FCA studies so far implicitly assumed static functional connectivity
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pattern. Dynamic FCA of fMRI blood oxygen level-dependent (BOLD) signals is
currently under active investigation [26].

Considering the intrinsic limitation in temporal resolution of fMRI, electrophys-
iological recordings of neural activity are better suited for the dynamic FCA, espe-
cially for the investigation of short-term neural phenomena with temporal resolution
of millisecond scale. Either invasive or noninvasive recording techniques can be
used for the FCA. However, noninvasive methods, i.e. electroencephalogram (EEG)
and magnetoencephalogram (MEG), are to be used for human behavioral/cognitive
neuroscience studies under experimental task or task-free resting state.

The EEG/MEG signals are obtained from an array of sensors placed on the scalp,
so the spread of electromagnetic fields prohibits direct interpretation of spatial ori-
gin of the signals from a single channel. Localization of cortical current sources is
obtained by solving an electromagnetic inverse problem [4, 33, 41], and it may be
applied prior to the FCA to investigate the connectivity between specific brain regions
[20, 46]. This may be even crucial for valid interpretation of the FCA results in that
functional connection between specific cortical regions can be identified. Source
imaging techniques using distributed source models are being combined with vari-
ous measures of the FC, providing significant results on cognitive, behavioral, and
clinical results [1, 2, 11, 25, 29, 39]. The high temporal resolution of EEG/MEG
can also be utilized to investigate coupling between different rhythms in various
frequency bands present within neural activities.

The FC measures should reflect the association of neural activities in different
brain regions. Hence, they should quantify the correlation and/or causality between
the time-series of neural activities of multiple brain areas [6, 15, 42, 47]. Linear
correlation coefficient is still one of the most commonly used measure of the FCA
for fMRI. Various measures have origins from various disciplines such as statistical
signal processing, nonlinear dynamics, and information theory, and they have been
adopted for the FCA analysis in order to deal with complicated interaction between
neuronal populations [6, 15, 42, 47].

It is recognized that oscillatory neural activities represent formation of local neu-
ronal populations [9], andunderlie dynamic coordination of brain function and synap-
tic plasticity [6, 50, 60]. Therefore, the interaction between oscillatory rhythmic
activities should provide valuable insights on inter-regional communication among
neuronal population, andMEG and EEG are themost suitable for this purpose. Novel
measures for better analysis of the couplings between rhythmic activities are under
active research and being applied for the FCAofEEG/MEG [5, 20, 24], exploiting the
high resolution of these electrophysiological signals. Beyond coupling of rhythms
within a single frequency band, cross-frequency couplings have been explored by
quantifying either phase-phase or phase-amplitude couplings [10, 45, 59].

The purpose of this review article is to provide comprehensive and useful guide-
lines on the methods and to illustrate application of the FCA for EEG. Although
the target is on EEG, the contents may be useful for the FCA of MEG as well. The
focus is on how the FCA can be properly applied to cognitive neuroscience studies
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Fig. 6.1 Illustration of the procedure for the FCA of multichannel EEGs

and clinical investigations. The merits and pitfalls of each FC measures are to be
illustrated so that the readers may find this article useful to select the best method
among many options available.

6.2 Procedure for the FCA

Figure 6.1 illustrates the detailed procedure for the FCA of EEG. Multichannel
signals are preprocessed, primarily for the removal of artifacts including eye blinks
and movements, muscle activity, and skin potentials. Bandpass filtering is often
applied to extract the oscillatory rhythms within the frequency bands of interest. For
the FCA between cortical regions, the time-series in the sensor space are projected
onto the cortical source space using distributed source imaging techniques [4, 33,
40]. The multiple time-series are then subject to the calculation of FC measures
between channels or cortical regions, which yields a functional connectivity matrix.
Each element of the matrix quantifies the connectivity between two specific regions.

Sometimes the elements of the FCmatrix are transformed to either 1 or 0 by deter-
mining the significant and insignificant connections by comparing the threshold level
determined by surrogate data [15, 30, 54]. Then statistical comparisons are applied
in order to determine the significant differences among experimental conditions or
subject groups. Multivariate pattern analysis based on machine-learning can also be
applied so that the information regarding conditions or groups can be decoded from
the connectivity matrix [31, 35]. The adjacency matrix can be regarded as a graph
with nodes and edges [8, 53], and thus, the pattern of the connectivity can be further
characterized by graph theory [13, 14, 51, 57].

6.3 FC Metrics

There are many FC metrics with different theoretical backgrounds such as statistical
signal processing, time-series forecasting, information theory, and nonlinear dynam-
ics [6, 15, 42, 44]. It is often unclear which method should be used. They can be
categorized by their features including theoretical basis, directionality, and signal
domains. Table 6.1 summarizes various FC metrics to be described in depth in this
review article, in terms of these features.
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Table 6.1 Categorization of various FC metrics

Category CCF COH PLV PLI MI GC PDC TE DCM

Directionality Non-directed
√ √ √ √ √

Directed
√ √ √ √

Theoretical
basis

Data-driven
√ √ √ √ √ √

Information-
based

√ √

Model-based
√

Signal
domain

Amplitude
√ √ √ √ √ √ √

Phase
√ √ √

FC functional connectivity, CCF Cross-correlation function, COH Coherence, PLV phase locking
value, PLI phase lag index, MI mutual information, GC Granger’s causality, PDC partial directed
coherence, TE transfer entropy, DCM dynamic causal modeling

6.3.1 Cross-Correlation Function (CCF)

CCF is defined as the linear correlation between two signals represented as a function
of the time delay between them. The CCF between two signals, x(t) and y(t), is
calculated as follows:

CCFx,y(τ ) � 1

N − τ

N−τ∑

t�1

(
x(t + τ ) − x̄

σx

)(
y(t) − ȳ

σy

)
. (6.1)

Here, N is the total number of samples of the signals, and τ is the time delay
between the two signals. x̄ and σx denote mean and standard deviation of the signal
x, respectively. The CCF ranges between −1 (perfect inverse correlation) and 1
(perfect correlation), and equals zero for the case of no correlation at the time delay
τ . The CCF at time delay of 0 is the Pearson’s correlation coefficient.

6.3.2 Coherence

The coherence represents the linear correlation between two signals x and y calculated
in the frequency domain, which is calculated as follows:

COHx,y( f ) �
∣∣〈Sx,y( f )

〉∣∣
√〈

Sx,x ( f )
〉 · 〈

Sy,y( f )
〉 . (6.2)
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Here 〈·〉 indicates average over a predetermined time interval. Sx,y represents the
cross spectral density function (CSDF) of two signals, x and y, which is derived by
Fourier transform of the CCF in Sect. 6.3.1. The definition of coherence includes the
normalization of CSDF Sx,y by auto-spectral density functions, Sx,x and Sy,y , so that
the range of coherence becomes between 0 and 1.

It should be noted that the coherence is still sensitive to spectral power even though
its definition contains the normalization by spectral powers of the two signals. Thus,
it is often unclear whether the coherence at a specific frequency is dominated by
powers of the signals and/or phase relationships between them [30].

6.3.3 Phase Locking Value (PLV)

PLVmeasures the degree of phase locking between two signals over time, by observ-
ing whether the phase difference between them is relatively constant within a tem-
poral interval. Prior to calculating the PLV, the signals are first transformed into
narrowband signal in the frequency band of interest (e.g., theta or gamma band)
by bandpass filtering. The instantaneous phase angle, φ(t) is calculated from the
narrowband signal x(t) and its Hilbert transform, x̃(t), as follows [23, 30]:

φ(t) � arctan
x̃(t)

x(t)
.

The PLV between two signals x and y is calculated by averaging the phase differ-
ence over N time points as follows [30]:

PLV x, y � 1

N

∣∣∣∣∣

N∑

t�1

exp[i{φx (t) − φy(t)}]
∣∣∣∣∣. (6.3)

Here, φx (t) and φy(t) represent the instantaneous phase angles for each time point
t for two signals, x and y, respectively. PLV ranges between 0 (no synchronization)
and 1 (perfect synchronization).

6.3.4 Phase Lag Index (PLI)

The PLI was developed to mitigate the spurious phase synchrony resulting from
common sources, due to volume conduction or active reference electrodes [52]. This
will be described in detail later in Sect. 6.4. The PLI is defined to quantify the
asymmetry of the distribution of phase differences between two signals (i.e. either
positive or negative phase differences). This asymmetry implies the presence of non-
zero phase difference (i.e., time lag) between two signals. If the phase synchrony is



130 J. W. Choi and K. H. Kim

due to the common sources, the phase differences are expected to be symmetrically
distributed around zero.

The calculation of PLI is similar to that of the PLV, and involves bandpass filtering
and Hilbert transform as follows [52]:

PL Ix,y � 1

N

∣∣∣∣∣

N∑

t�1

sign(φx (t) − φy(t))

∣∣∣∣∣. (6.4)

here sign represents the sign of the phase difference (i.e., −1 for negative, 1 for
positive, and 0 for zero values, respectively). The PLI ranges between 0 (no synchro-
nization) and 1 (perfect synchronization).

6.3.5 Mutual Information (MI)

MI quantifies the amount of information that two signals share each other based on a
basic measure of information, Shannon entropy [48]. Shannon entropy is defined as
the average amount of information (or code) which is necessary to encode a discrete
variable [42, 48]. The entropy H (X ) is calculated as follows:

H (X ) � −
n∑

i�1

p(xi ) log2 p(xi ). (6.5)

Here, p(xi ) is the probability of the values of the signal x in the ith bin, and n
represents the number of bins used to construct a histogram which approximates the
probability density function (PDF) of x. The entropy is positive and has a unit in
bits, and unrelated to the temporal structure of the signal. It is important to estimate
the appropriate number of bins, since the approximation of PDF by a histogram
is sensitive to the number of bins [15]. Diaconis and Freedman [16] suggested a
guideline for an optimal number of bins as follows [16]:

nbins �
[
max(x) − min(x)

2Qxn−1/3

]
, (6.6)

whereQx is the range between the 25th and the 75th percentiles of data distributionX,
n represents the total number of data points, andmax(x) andmin(x) are themaximum
and minimum values of x, respectively.

From the entropies of the two signals x and y, and their joint entropy, i.e., H(X),
H(y), and H(X,Y ), MI is calculated as follows:

MIx,y � H (X ) + H (Y ) − H (X,Y ). (6.7)

Also, H (X,Y ) is the joint entropy between two signals, and defined as follows:
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H (X,Y ) � −
m∑

j�1

n∑

i�1

p(xi , y j ) log2 p(xi , y j ), (6.8)

where p(xi , y j ) is the joint probability of the values of the signal x in the ith bin
and the signal y in the jth bin. If there is no relationship between two signals at all,
X and Y are independent, and thus, the joint probability p(xi , y j ) is equivalent to
p(xi )p(y j ). Hence, the joint entropy H (X,Y ) will be H (X ) + H (Y ), and the MI
becomes zero. Otherwise, the MI should be positive and would show the maximum
value when two signals are equal.

6.3.6 Granger Causality (GC)

The idea of GC is that signal x causes signal y if the prediction error of y estimated by
autoregressive (AR) modeling is significantly reduced when it is estimated by joint
AR modeling of x and y [19]. This can be assessed by comparing the univariate and
bivariate AR models for the two signals, x and y.

The univariate AR models for each signal, x and y, are described as follows [42]:

x(t) �
p∑

n�1

ax,nx(t − n)+ex (t), y(t) �
p∑

n�1

ay,n y(t − n)+ey(t). (6.9)

Here, p denotes the number of lagged observations included in the model (i.e.,
model order), and ax,n and ay,n are the model coefficients at time lag n, and ex and ey
are the prediction error for each signal estimated by the model. The prediction error
depends on the past values of the signal.

Alternatively, the joint, bivariate AR model of x and y is as follows:

x(t) �
p∑

n�1

ax,y,nx(t − n)+
p∑

n�1

bx,y,n y(t − n)+ex,y(t)

y(t) �
p∑

n�1

ay,x,n y(t − n)+
p∑

n�1

by,x,nx(t − n)+ey,x (t)

. (6.10)

Here, p is the model order, a and b contain the coefficients of the model, and ex,y
and ey,x denote the prediction errors of the signals estimated by the model. Here the
prediction error depends on the past values of both signals.

The prediction performances of the univariate and bivariate models can be com-
pared quantitatively from the variances of the prediction errors as follows:

Vx |x � var(ex ) and Vy|y � var(ey) for univariate AR model,
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Vx |x,y � var(ex,y) and Vy|y,x � var(ey,x ) for bivariate AR model.

Here, var(·) denotes the variance.
The Granger causality between two signals, x and y, is calculated as the log-ratio

of variances follows:

GCx→y � ln

(
Vy|y
Vy|y,x

)
for the measure of ‘signal x causes signal y’

GCy→x � ln

(
Vx |x
Vx |x,y

)
for the measure of ‘signal y causes signal x’

The prediction error of y should not be reduced whether x is considered or not for
the estimation of y, if there exist no causal influence from x to y. This implies that the
variances Vy|y and Vy|y,x are identical, and thus,GCx→y is close to zero. On the other
hand, causal influence of x to y reduces the prediction error of ywhen x is considered.
Hence, GCx→y becomes a positive value. The GC measure is directional. If the GCs
of both directions are high, it can be interpreted as a bidirectional connectivity [42].

6.3.7 Partial Directed Coherence (PDC)

PDC is a frequency domain equivalent of the GC, based on multivariate autoregres-
sive (MVAR) modeling of multichannel signals [3]. Let’s assume that the simulta-
neously recorded m channel signals x(t) � [x1(t), . . . , xm(t)]T can be described by
an MVAR model as follows:

x(t) �
p∑

n�1

Anx(t − n) + e(t). (6.11)

here, p is the model order, An �

⎡

⎢⎢⎣

a1,1(n) · · · a1,m(n)
...

. . .
...

am,1(n) · · · am,m(n)

⎤

⎥⎥⎦ is the matrix of model

coefficients at time lag n, and e(t) � [e1(t), . . . , em(t)]T is a multivariate Gaussian
white noise with zero mean and covariance matrix �. The model coefficients am,m

indicate the influence among the signals (e.g., a1,2(n) is the influence of x2(t − n) on
x1(t)).

This time domain representation can be transformed into frequency domain by
Fourier transform (FT). Ā( f ) � I −A( f ) � [ā1( f )ā2( f ) . . . ām], where A(f ) is the
FT of the model coefficients and āi, j ( f ) is the i, jth element of Ā( f ). The PDC from
signal xi to signal x j can be calculated as follows:
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PDCi→ j ( f ) � āi, j ( f )√
āH
j ( f )ā j ( f )

, (6.12)

where H indicates the transpose and complex conjugate operator. Thus, the PDC
quantifies relative strength of the influence of the signal xi on the signal x j at fre-
quency f .

Another metric based on a MVAR model, directed transfer function (DTF), was
proposed [27]. The DTF is quite similar to the PDC metric in that it reveals causal
relations between time-series based on a MVAR model. However, the DTF can be
calculated from the transfer function matrix,H, instead of A for the PDC calculation,
where those two matrices are related as H ( f ) � Ā−1( f ). Because of the matrix
inversion, DTF demands higher computational loads and may suffer from numerical
imprecisions due to potential ill-conditioning of Ā( f ) [3]. If the structure of the
matrix H ( f ) is preserved upon inversion, the DTF and PDC lead to identical results
for the effective connectivity [3].

6.4 Volume Conduction Problem

As explained above, there exist numerous methods for the FCA of EEG (and MEG),
which originated from various theoretical backgrounds. Considering the possibility
of combining various preprocessing, FCmeasure, and postprocessingmethods avail-
able, the choice of appropriate FCA method is far from obvious in most applications
since each method has its own pros and cons, rendering the interpretation of the
results ambiguous.

There exist several issues that deserve caution when interpreting the FCA results.
For example, the estimated FCmay reflect the true neuronal interaction or not. This is
related to the fact that EEG (MEGaswell) signals include both relevant and irrelevant
signals and/or noises. Moreover, it is not possible to make sure whether the observed
connectivity is due to direct or indirect one through an unobserved pathway. Besides,
common reference problem and low signal-to-ratio causes significant amount of
errors. In addition to the noise or artifact, the FCA results may be affected by the
difference of signal-to-noise ratio between channels. Especially this has a huge effect
on the estimation of information flow direction. A recent review paper provides a
detailed discussion on these issues focusing on oscillatory coupling [6].

Methods have been developed to overcome aforementioned issues. For example,
in the case of the FCA based on coupling between rhythmic oscillatory neural activ-
ities, the volume conduction problem may be alleviated from the fact that the phases
of two rhythmic signals at any pair of locations are different by either 0° or 180°,
since the effect of volume conduction and field spread can be regarded as instanta-
neous [36]. The measures of oscillatory coupling taking this into account have been
developed, e.g., PLI [52], imaginary coherence [36], and phase slope index (Nolte
et al. [37]). Converting scalp EEGs to current densities on cortical surfaces may be
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Fig. 6.2 An illustration of
the effects of volume
conduction on scalp EEGs

greatly helpful since common factors in the signals are significantly reduced. It is
investigated whichmethods for the cortical source localization and FCA provide best
results for the FCA [20, 22]. In this section, we try to provide a guideline to reduce
the confounding effects of volume conduction in the FCA.

6.4.1 FCA Between the Signals from Surface Electrodes

An EEG electrode placed on scalp surface captures electric potential at a specific
location on the scalp.Multiple cortical sources distributed over awide area on cortical
surface contribute to the voltage at a point on the scalp.Conversely, the electric current
caused by a localized cortical current source is propagated to awide area on the scalp.
This field spread or volume conduction problem prohibits a rigorous FCAusing scalp
EEG, and incorrectly emphasizes the functional connections between proximate
regions. Figure 6.2 shows examples of volume conduction effect. A single current
source (A) affects more than one electrode (1 and 2). Also, the electromagnetic
field originating from a single source (B) spreads to multiple adjacent electrodes
(2 and 3) through brain tissues such as cerebrospinal fluid, dura, scalp, and skull.
These common sources lead to spurious connectivity between scalp EEG channels
even though all the cortical current sources are independent [6, 15, 38, 52]. Hence,
caution should be made when calculating and interpreting the FC metrics.

Unpredictable phenomena may occur due to the volume conduction effect as
illustrated in Fig. 6.3 which is generated from actual 64 channel EEG recordings
during an auditory oddball task [12]. First, the phase differences between the EEGs
from two nearby electrodes, Fpz and Fp1, were found to be concentrated at zero
degree (Fig. 6.3a). Second, it was also found that the strength of connectivity is
inversely correlated to the distance between two electrodes (Fig. 6.3b). In particular,
the PLV between two closest neighbors showed almost perfect locking (i.e., PLV
was close to 1). It was also observed that the connectivity strength is significantly
correlated to the spectral power (Fig. 6.3c). Although these are only a few among
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Fig. 6.3 Examples of spurious connectivity (PLV) due to the volume conduction. a Distributions
of phase differences between two EEG channels in gamma band (30–50 Hz), solid lines denote the
phase difference between two channels at a single temporal point, the length of the black arrow
corresponds to the magnitude of average PLV. b Correlation between PLV and inter-electrode
distance in gamma band. c Correlation between PLV and spectral power in gamma band

the potential problem of the FC analysis using surface EEG, at least they should be
checked to verify whether the conclusions are made by spurious effects of volume
conduction.

6.4.2 Spatial Filtering

Surface Laplacian is amethod to estimate the amount of current source density (CSD)
at the scalp, and behaves as a spatial highpass filter [43]. The potential distribution
of EEGs on the scalp usually have low spatial frequency component due to volume
conduction. When the surface Laplacian is properly used, the spurious low spatial
frequency components may be reduced. As a result, its confounding effect on FC
may be eliminated as well (For review of the algorithm of surface Laplacian, see [28,
43]).
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Fig. 6.4 Spatial filtering (surface Laplacian) can reduce the spurious effects of volume conduction.
a Phase difference between two nearby channels became widely distributed after applying surface
Laplacian. The correlation between PLV and inter-electrode distance b and between PLV and
spectral power c became reduced compared to Fig. 6.3

We found that the spurious effects of volume conduction illustrated in Fig. 6.4
were greatly reduced or eliminated by applying surface Laplacian before the FC
analysis. After applying the surface Laplacian, the phase differences between two
nearby channels (Fpz and Fp1) were much more widely distributed (Fig. 6.4a),
in contrast to the previous case of raw EEGs where the phase differences were
concentrated around zero degree (Fig. 6.3a). The PLV was decreased to 0.55 after
applying surface Laplacian, from 0.86. The correlation between the FC strength
and inter-electrode distance was mitigated (from −0.787 to −0.467, Fig. 6.4b). The
correlation between the spectral power and the FC in a frequency band became
insignificant as well (Fig. 6.4c). In conclusion, the surface Laplacian may provide a
partially useful method to reduce the confounding effects of the volume conduction
in FC analysis of surface EEG.
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6.4.3 FC Measures Robust to Volume Conduction Effect

Another solution is to use the FC metrics which is inherently robust to the volume
conduction [34, 36, 38, 52, 58]. Nunez et al. [38] proposed a modified version of
coherence, called the reduced coherence. It is calculated by subtracting the ran-
dom coherence from the measured coherence. Alternatively, partial coherence was
introduced, which removes the linear effect of the third time-series (considered as
common source) from the coherence calculated from a pair of time-series [34].

Nolte et al. [36] suggested imaginary coherence (ImC). It is based on the hypoth-
esis that the imaginary part of coherence (i.e., the non-zero phase difference) cannot
be affected by the volume conduction [36]. In the same vein, Stam et al. [52] pro-
posed the PLI based on how much the non-zero phase differences are distributed to
negative (phase lag) or positive (phase lead) sides of the x axis on the complex plane
[52]. More recently, an extended version of PLI, called the weighted PLI (WPLI),
was suggested to take into account the magnitude as well as the distribution of the
phase differences [58].

Figure 6.5 illustrates the advantage of PLI to mitigate the volume conduction
effects, as compared to the PLV. The phase differences between EEGs of two nearby
channels Fpz and Fp1 are distributed symmetrically around zero degree, which
resulted in much lower value of PLI as compared to the PLV (0.09 vs. 0.86). In
addition, the correlation between the FC and the inter-electrode distance became
drastically reduced to −0.174, from −0.787 in the case of PLV (Fig. 6.5b). The
correlation with the spectral power became insignificant as well (Fig. 6.5c). All the
results in Fig. 6.5 shows that spurious FC due to the volume connection can be
alleviated by using the PLI. Vinck et al. [58] pointed out the problems of the PLI.
Temporal discontinuity may occur when there exist small perturbations which lead
to phase lags from phase leads (and vice versa) between two time-series. Also, the
estimation of PLI is statistically biased, hence its calculation may suffer from the
small sample size [52, 58]. Modified versions of the PLI (weighted PLI and debiased
weighted PLI) have been proposed to overcome these limitations [58].

6.5 EEG FC Analysis on Source Space

Spatial filters such as surface Laplacian can be applied before the FCA to lessen the
effect of volume conduction as shown above. More recently, the reconstruction of
cortical current sources is performed prior to the FCA by solving an inverse problem
[4, 33, 40]. This provides time-series of cortical current densities at numerous vertices
on cortical surface, which enables the calculation of FC measures among cortical
regions. The FCA at the cortical source space is advantageous also for the better
explanation of the obtained results, since each pair of connection has anatomical
interpretation [46].
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Fig. 6.5 The spurious effects of volume conduction can be reduced by using phase lag index
(PLI). a Distribution of phase difference between two time-series. The red and blue colors indicate
phase lead and phase lag, respectively. b Correlation between PLI and inter-electrode distance. c
Correlation between PLI and spectral power

Figure 6.6 illustrates the detailed procedure of FCA on cortical source space,
where solutions of an electromagnetic inverse problem are used to estimate the cor-
tical sources and reconstruct their temporal dynamics. Among several approaches
proposed so far, methods based on a distributed cortical source model are appropri-
ate since they aim to provide cortical current time-series at every cortical location
(Fig. 6.6b). The most popular ones include the minimum norm estimate (MNE) and
its variants (weighted MNE, wMNE), low resolution brain electromagnetic tomog-
raphy (LORETA), and standardized LORETA (sLORETA). Beamforming methods
are also applicable. It is also feasible that themixed cortical sources due to the volume
conduction are ‘demixed’ by blind source separation [21].

Estimated time-series represent current densities on cortical surface, and they are
subject to FC measure calculation. Spatial sampling is commonly used to reduce the
number of time-series, or regions of interest (ROIs) are selected before the FCA.
The ROI selection is of crucial importance, and based on either a prior knowledge
(Fig. 6.6c, image source: http://freesurfer.net) or the results of functional neuroimag-
ing (Fig. 6.6d). Often, the most important ROIs are determined and the cortical maps
which represent the crucial regions functionally connected to those ROIs.

http://freesurfer.net
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Fig. 6.6 An illustration of procedure of FCA on cortical source space

Hassan et al. [20] reported a comparative study on the processing methods for
the FCA on cortical source space [20]. They showed that the results are highly
dependent on the selected processing methods as well as the number of electrodes.
The combination ofwMNEandPLVwas found to yield themost relevant result. Their
results imply that an optimal combination of source estimation and FCA is essential
to correctly identify the functional cortical networks, and thus, the EEG source FCA
should be performed carefully in terms of the detailed processing method.

It should be noted that there exist some cases where the spurious result is unavoid-
able. For example, when the FCA is performed on preselected ROIs, inappropriate
ROI selection should lead to incorrect conclusions. The signal-to-noise ratio affects
the FCA and may vary systematically according to experimental condition, thereby
incorrect significant difference among conditions may be unavoidable.

Aforementioned two-step approaches, consisting of source estimation and FC
measure calculation, may yield undesirable incorrect results as has been shown by
simulation studies [21], due to several reasons. The unmixing of the scalp EEG
signals is far from being perfect regardless of the methods of source estimation.
Schoffelen and Gross [46] provides a review of methods for the FCA in cortical
source space, focusing on selecting FC measure and region of interests (ROI) [46].
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It is warranted that the field spread effect is not completely removed in the source
space so that the FCA results should be carefully interpreted. The use of FCmeasures
which are inherently insensitive to the instantaneous mixing, such as imaginary part
of coherence (imagcoh), can be recommended to alleviate this problem [46].

Marzetti et al. [32] developed a method to decorrelate the reconstructed sources
using principal component analysis (PCA) [32]. Assuming orthogonality between
the estimated sources, further demixing is performed using an algorithm called mini-
mum overlap component analysis. The locations of interacting sources are estimated
underminimumoverlap constraint after identifying the spatial topographyof interact-
ing sources from the sensor-space cross-spectral density. Gomez-Herrero et al. [18]
presented a method for effective connectivity estimation based on the independent
component decomposition of the residuals of the MVAR model, which are proba-
bly due to the field spread [18]. The spatial topography of the interacting sources is
obtained from the ICA mixing matrix. More recently, Haufe [21] proposed a novel
measure of effective connectivity based on physiologically-motivatedmodel of inter-
acting sources and sparse connectivity graph [21]. A one-shot calculation method
for the blind source separation and inverse source reconstruction, which yields the
source time series, their spatial distribution, and the connectivity structure.

6.6 Determination of Significance

The calculated FC metrics may include false positives due to several confounding
effects such as residual artifacts, volume conduction, and common reference. Hence
it is important to determine statistical significance. As shown in Fig. 6.7a, null distri-
bution of the FC can be generated from a surrogate data obtained by random shuffling
and used to determine significance, which is often defined by the upper 5 or 1% of
the null distribution.

Several methods can be used to generate the surrogate data from the experimental
data [15, 30, 54]. Random shuffling of the time samples of one of the two time-
series destroys the temporal structure. If all time samples are randomly shuffled and
the temporal structure is completely destroyed, the null distribution obtained from
the surrogate data may result in excessively high false positive rate, i.e., inflate the
statistical significance. This can be understood from the fact that the FC measure
calculated from any experimental data would be much higher than those calculated
from surrogate data, in which the temporal structure is completely destroyed. An
alternative is illustrated in Fig. 6.7b, which is called ‘time-shift’ method [15]. Here
one time-series is separated into two segments at a randomly chosen temporal point,
and then, a new surrogate time-series is generated by exchanging temporal positions
of those two segments.

Instead of the random shuffling in time domain, it can also be performed in the
frequency domain as shown in Fig. 6.7c [54]. Briefly, the procedure includes fast
Fourier transform (FFT), shuffling the phase of the signal in the frequency domain,
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Fig. 6.7 a Determination of the significance of FC values using a null distribution, generated by
surrogate data. bGeneration of a surrogate time-series by time shuffling. cGeneration of a surrogate
time-series by phase shuffling (FFT: fast Fourier transform)

Fig. 6.8 Generation of a surrogate data by shuffling trials for an event-related data. Each grey thin
solid line on the circles represents the phase difference between two time-series at each temporal
point for a single trial. The black thick solid lines on the circles represent the vector sum of the
phase differences over trials, and their lengths mean the phase synchronization strength

and then, the inverse FFT. The amplitude spectrum is preserved, but any nonlinear
structure is destroyed after this procedure [54].

In the event-related data with a plenty of trials, shuffling the order of trials of the
second time-series provides an alternative method to surrogate data [30]. Figure 6.8
shows an example for the phase-based FC metrics. For experimental recordings for
which phase synchrony are expected, the phase differences between two time-series
would be narrowly distributed. Contrarily, the phase differences from surrogate data
would be widely distributed randomly, and thus, may provide a null distribution
of FC values. This method does not require a prior hypothesis on the time-series
such as linearity and stationarity, however, when the trial-to-trial variability of phase
relationships between two time-series is relatively low, it can be so conservative that
many FC values may be incorrectly rejected, resulting in high false negative rate.
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6.7 Conclusions

In this review, we tried to describe essential factors for successful FCA using multi-
channel EEG (andMEG aswell) time-series. After illustrating the detailed procedure
for the FCA, we presented various methods for quantifying functional connectiv-
ity. Especially, the FC measures based on oscillatory interactions among neuronal
population was described comprehensively, due to its importance for elucidating
coordinated activities of brain networks and synaptic plasticity. The problem of vol-
ume conduction and the means to diminish its confounding effects on the FCA was
thoroughly reviewed. Spatial filtering of the time-series measured on the scalp or
transformation to current densities on cortical surface, which are performed as a pre-
processing for the FCA, were described. Also, we reviewed ongoing efforts toward
developing FCmeasures which are inherently robust to the volume conduction prob-
lem. Finally, we illustrated the procedures for determining significance of the FC
among specific pair of regions, which exploit surrogate data generation or the char-
acteristics of event-related data. We hope that this review would provide guidelines
for the better application of the FCA and the development of novel methods.
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Chapter 7
Computational EEG Analysis for the
Diagnosis of Psychiatric Illnesses

Seung-Hwan Lee and Yeonsoo Park

Abstract Electroencephalography (EEG) holds promise as a tool to diagnose psy-
chiatric disorders. While it has some major advantages such as high temporal reso-
lution, relative affordability, and easy accessibility, even its shortcomings are being
addressed through the advancement in its analysis. As a result, numerous researches
have been examining EEG components as potential biomarkers of various psychi-
atric diseases. In this chapter, we discuss several promising EEG markers, ranging
from resting state EEG to stimuli induced ERP components, from electrodes level
to source level, and from band power to functional connectivity networks. In addi-
tion, we present the findings of previous studies with an emphasis on how each EEG
component vary depending of the specific psychiatric illnesses. The psychiatric dis-
orders discussed in this chapter are (1) schizophrenia, (2) bipolar disorder, (3) major
depressive disorder, (4) anxiety related disorders (e.g., post-traumatic stress disorder
and obsessive compulsive disorder) and (5) disorders related to cognitive impair-
ments (e.g., dementia and minimal cognitive impairment. Lastly, we introduce how
the limitations of EEG, which mostly occur as a byproduct of sensor-level analysis,
can be addressed through source-level analysis.

7.1 Introduction

Traditionally, psychiatric disorders have been diagnosed primarily through face-
to-face interviews, and biological measures that could effectively capture clinical
features of mental illnesses were relatively scant. To overcome such unmet needs,
many researchers placed meticulous effort into developing biomarkers that could
reliably detect the clinical characteristics of specific psychopathologies or psychi-
atric illnesses. Among the various biomarkers, electroencephalography (EEG) is a
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promising approach with high potential in measuring the pathologies of mental ill-
nesses. It possesses several crucialmerits, such as high temporal resolution, relatively
low economic burden, and easy accessibility compared to other neuroimaging meth-
ods [e.g., magnetic resonance imaging (MRI), positron-emission tomography (PET),
and magnetoencephalography (MEG)].

During the past few decades, the EEG analysis methods have rapidly evolved in
line with the advancement of technology in fields such as engineering and physics.
While EEG analysis at the electrode level (surface of scalp) had critical limitations
as neuronal signals of the brain would blur or fade as they reached the scalp, the
development of source level analysis methods has brought an evolution by allow-
ing signals to represent the characteristics of the cortical level. This evolution has
enabled researchers to conduct more sophisticated studies that inspect region spe-
cific biomarkers, because the source level analysis could use the information of
brain anatomical region. Currently, we are at the midpoint of developing a variety
of future biomarkers that accurately portray pathological features. During this stage,
the development of EEG biomarkers is expected to play a pivotal role.

In this chapter, we will first review the candidate EEG biomarkers that have
been studied in relations to various psychiatric disorders. General characteristics of
these EEG biomarkers will be introduced. In the following section, we will look
into specific disorders and discuss how the previously mentioned EEG biomarkers
manifest to make them reliable markers of specific mental illnesses.

7.2 Promising EEG Biomarker Candidates

7.2.1 P300

P300 is the most widely studied event-related potential (ERP) component reflect-
ing brain functions such as attention, working memory, and cognitive decline. It
appears most ostensibly at the centro-parietal scalp areas and is usually elicited
within 250–500 ms after the stimulus presentation. There are unique distinctions
between two regionally dependent P3 components, specifically the frontally maxi-
mal P3a component and the parietally maximal P3b component. The P3a component
is triggered by infrequent distinct tones presented within a series of frequent tones
during a resting state. The P3b component is a task-relevant potential elicited during
target stimulus processing. The P3a component has been associated with attention
mechanisms and novel stimulus processing, while P3b has been more related to
stimulus evaluation and decision making [111]. When experts of neurophysiology
mention the P3 component, they usually refer to the P3b [84, 111].

Because of its reflections of cognitive functioning, P3 components have been
widely studied in respect to psychiatric illnesses that are characterized by cogni-
tive impairments. Although most studies have been confined to the electrode level,
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changes of amplitude and latency of P3 have been confirmed in various neuropsy-
chiatric disorders.

7.2.2 Functional Connectivity Network

Functional network analysis can be conducted on a wide range of EEG data. One
material that can be used universally to examine functional connectivity is the resting
state EEG. Resting state EEG holds many advantages because it is easy to obtain,
relatively stable, not difficult to handle, and independent from task characteristics.
Yet, several inevitable qualities require researchers to be cautious when dealing with
resting state EEG. For example, resting state EEG that is measured during an eyes-
closed condition can contain unwanted artifacts, which result from drowsiness. This
leads to questions regarding the length and the number of epochs required in order to
obtain stable statistical power and how expert consensus on the standardization for
data qualification ought to be driven. While these points can pose some threat as to
the reliability of the measure, they are not insoluble and can be adequately addressed
[33]. Resting state EEG clearly has more advantages than weaknesses. Hence, EEG
functional connectivity of the resting state will be mainly discussed throughout this
text.

An increasing number of researchers have assumed that alterations in the cortical
connectivity network might provide insights to the underlying neural mechanisms of
mental illnesses. Many of these studies adopted the graph theory to quantify global
and local changes in the cortical functional connectivity network [12, 115, 121, 125].
In particular, the small-world network has been regarded as one of the most suitable
models to elucidate information transfer in the human brain [10]. The small-world
network is the middle ground between random network and regular network, and is
characterized by a higher clustering coefficient than random networks, and a shorter
path length than regular networks. The clustering coefficient and the path length each
reflect the amount of segregation of highly inter-connected units and the amount of
integration of the whole network [140]. Therefore, the small-world characteristics of
the brain allow for more efficient information transfer among distant brain regions.

On the other hand, a weighted network is a network where the ties among nodes
have weights assigned to them. Because of this nature, weighted networks are more
difficult to analyze than unweighted binary networks in which ties are simply present
or absent. Despite the difficulty of its analysis, a number of network measures have
been proposed for weighted networks including the following:

• Strength, which refers to the strength of the connection in the network, is estimated
by the sum of weights of links connected to the brain regions.

• Clustering coefficient (CC), which refers to the degree in which a node is clustered
with neighbor nodes, is calculated for the whole network.

• Path length (PL), which refers to the summation of lengths between two nodes in
the whole network, indicates overall connectedness of the whole network.
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Fig. 7.1 Loudness dependence of auditory evoked potential (LDAEP) could reflect sensitivity
and impulsivity because both reflect serotonin related regulation. Theoretically, LDAEP could be
correlatedwith emotional and sensory processing sensitivity.Moreover, LDAEPmight be associated
with impulsivity, which influences motor and cognitive systems. Cited from the article of Kim et al.
[62]

• Efficiency refers to the efficiency of information processing in the brain.

7.2.3 Loudness Dependence of Auditory Evoked Potential

The loudness dependence of auditory evoked potential (LDAEP) has been suggested
as a validmarker of central serotonergic activity. Empirical studies have found signif-
icant inverse correlations between LDAEP and central serotonergic activity, indicat-
ing that high LDAEP reflects low levels of serotonergic neurotransmission [53]. The
LDAEP is measured through calculating the amplitude change of the evoked N1/P2
components in response to auditory stimuli that vary in intensity [38], O’neill et al.
[97]. Greater amplitude changes reflect sensitivity to auditory stimuli, which then
again corresponds to the strength of LDAEP. Based on their associations with central
serotonin activity, the relationship between LDAEP and sensitivity (i.e., emotional
and sensory) and impulsivity has been studied [62] (see Fig. 7.1).

Both sensitivity and impulsivity not only are central characteristics of various
psychiatric disorders but they also heavily influence their progression. Impulsivity is
defined as the inability to inhibit inappropriate behaviors [6, 126]. Previous literature
has reported that the serotonin system plays a critical role in behavioral inhibition and
impulsivity [41, 85, 126], and dysregulations of the serotonin system in sub-regions
of the prefrontal cortex are associated with maladaptive behaviors. Considering the
associations between impulsivity and central serotonin system, and serotonin activ-
ity and LDAEP, a significant relationship between LDAEP and impulsivity can be
assumed.

Although, the relationship between sensory sensitivity and impulsivity is not con-
clusive and might differ in various clinical populations, a relationship between the
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two constructs can be assumed when considering the serotonin system as a mediator.
Therefore, more studies examining LDAEP as a candidate of clinical markers for
sensitivity and impulsivity demand greater clinical attention.

7.2.4 The 40-Hz Auditory Steady-State Response

The 40-Hz auditory steady-state response (ASSR) measures oscillatory responses
following auditory stimulation at gamma-band frequency [130]. Gamma-band oscil-
lations play an important role in establishing temporal precisions in local cortical
networks [133], and are candidate mechanisms of perceptual integration, attentional
selection, and working memory [116, 133]. Because of its importance in a variety
of cognitive functions, abnormal gamma oscillations have been actively studied in
schizophrenia and bipolar disorder, which include a wide set of cognitive and per-
ceptual anomalies as their primary symptoms [98, 100, 112].

Abnormal gamma oscillations are a critical element in current disease models of
schizophrenia, including N-methyl-d-aspartate (NMDA) receptor hypofunction and
altered excitation and inhibition balance models. Indeed, the generation of gamma
oscillations has been shown to depend on the integrity of neural circuits involv-
ing fast-spiking parvalbumin-expressing cells, and the hypofunction of the NMDA
receptor on these interneurons has been suspected to underlie psychosis [29, 55, 77].
Importantly, pharmacological and genetic animal studies imply that mechanisms
of gamma oscillation generation are relatively well-articulated and may converge
across species, rendering gamma oscillation, and consequently the 40-Hz ASSR a
potentially promising target of translational research [88].

7.2.5 Mismatch Negativity

Mismatch negativity (MMN) is an automatically generated ERP component when a
sequence of relatively uniform stimuli is interrupted by the infrequent presentation
of deviant stimuli. Initially discovered in an auditory experimental procedure, MMN
is thought to reflect an automated detection of perceptual change or a sensory prereq-
uisite of cognition and has been closely examined in relation to attentional processes
[94]. In particular, the MMN latency defines the response time change in the sensory
stimulus [131].

Although MMN can occur in any sensory system, it has been most frequently
studied in the visual and the auditory systems. In the case of auditory stimuli, MMN
occurs after an infrequent change in a repetitive sequence of sounds. The deviant
sound can differ from the standards in one or more perceptual features such as pitch,
duration, or loudness. In addition, MMN is usually evoked either by a change in
frequency, intensity, duration, and by apparent spatial locus of origin. Deficiency
in MMN appears to be an index of cognitive decline, irrespective of the specific
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symptomatology and etiologies of the involved disorders [95]. Source analysis of
MMN in EEG and MEG signals localizes MMN to the auditory cortex, adjacent
areas of the superior temporal lobe, middle and inferior frontal gyrus, and anterior
cingulate cortex.

Furthermore, MMN has several clinical implications. For example, it correlates
with disease severity, cognitive dysfunction, impaired social functioning, and brain
alterations such as reductions in gray matter. Reductions inMMNmay imply deficits
in NMDA receptors, which function abnormally in patients with schizophrenia. It
has been reported that individuals with chronic schizophrenia exhibit reduced MMN
amplitudes, 0.94 standard deviation (SD) smaller for pitch deviants and 1.23 SDs
smaller for duration deviants, compared with healthy controls. Moreover, MMN
deficits also appear to be more severe in schizophrenia compared to individuals with
bipolar disorder or Alzheimer’s disease.

7.2.6 Alpha Asymmetry

Alpha asymmetry has been extensively studied in both clinical and nonclinical sam-
ples. Among various psychiatric disorders, it has been studied mostly in depression
and anxiety disorders. Alpha asymmetry is characterized by an asymmetrical alpha-
band activity (8–12 Hz) in the left and right hemispheres [36], and known to be a
reflection of cortical activity [18]. Thus, increased alpha indicates decreased corti-
cal activity and decreased alpha indicates increased cortical activity. Studies have
identified alpha asymmetry mostly in the frontal and the parietal regions of the brain.

Perhaps, the most referred explanation of the relationship between alpha asym-
metry and psychiatric disorders is the behavioral activation/inhibition systems
(BAS/BIS). Initially proposed by Gray to understand the psychophysiology of per-
sonality configurations [32], the BAS/BIS have been applied to studies examin-
ing different psychopathologies. For example, empirical research has suggested that
depression is characterized by hypofunctioning of the BAS, which signifies that
depressive individuals demonstrate an indifference towards positive stimuli [56].
Davidson argued that both the BAS and BIS are lateralized hemispherically, whereby
the left hemisphere regulates theBASand the right hemisphere regulates theBIS [19].
Results supporting the relationship between alpha asymmetry and BAS have been
more constant that those between alpha asymmetry and BIS [16, 36, 129]. There are
still inconstant reports about alpha symmetry and major depressive disorder. Comor-
bid anxiety disorder, subtype of depressive disorder considering individual variance
of characteristics in terms of BIA/BAS, and the presence of suicidal ideation should
possibly be considered to obtainmore coherent findings in future. Nonetheless, alpha
asymmetry seems to have promising value as a marker of psychiatric disorders.
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7.3 Psychiatric Disorders and EEG Biomarkers

7.3.1 Schizophrenia

7.3.1.1 Auditory Steady-State Response (ASSR)

As was mentioned in the previous section, abnormal gamma oscillation is an impor-
tant biomarker of schizophrenia; it is thought to be related to NMDA receptor hypo-
function and altered excitation and inhibition balance models. Most of human stud-
ies on 40-Hz ASSR reported reductions of evoked power and phase measure in
schizophrenia [130]. However, these results are not entirely consistent. Hong and
colleagues rather found enhanced evoked powers in patients with schizophrenia who
were taking new generation antipsychotics [43]. Hamm et al. also reported higher
phase measure in patients with schizophrenia compared with healthy controls, where
they employed novel stimulus parameters including broadband auditory noise and
wide inter-stimulus interval (ISI) [35]. Notably, a new line of research investigating
the level of spontaneous (non-phase locked) gamma-band activity, found enhanced
gamma activity during both ASSR stimulus presentation and task baseline, but not
in a resting-state [42]. This finding could be significant because it resonates with
animal findings where NMDA receptor antagonists and genetic reduction of NMDA
receptor function induced increases in spontaneous gamma power [22, 66].

A reason underlying the inconsistency might be the obscure definition of ASSR
components as researchers use different ASSR components from classifications that
have not reached consensus. Recently, Mathalon and Sohal systematically classified
the ASSR components into stimulus-evoked oscillations (evoked power), stimulus-
induced oscillations (total power), and stimulus independent oscillations (baseline
or resting-state power) [86]. This classification holds importance because the sig-
nals reflect different aspects of information processing. For example, the evoked
power reflects bottom-up sensory encoding,while spontaneous gamma (the stimulus-
induced and stimulus independent oscillations) are related to emerging dynamic pro-
cesses in cortical networks [46]. Although the argument to distinguish ASSR signals
has been already established, only a few studies have explicitly used it to date. In
order to reduce the inconsistency in the results, future research ought to take this into
consideration.

Considering that cortical pyramidal cell and interneurons are major sources of
gamma band oscillations [133], another important question is how the 40-Hz ASSR
would be associated with well-known neuropathological features of schizophrenia
such as gray matter loss and symptoms [34]. A major brain area thought to be
involved in generating the 40-Hz ASSR is the primary auditory cortex located in
the superior temporal gyrus (STG) [40]. Recently, Kim and colleagues reported that
the ASSR gamma power was significantly increased in patients with schizophrenia
compared with healthy controls [63] (see Fig. 7.2). The discrepancy about ASSR
gamma power might have occurred because the inter-train interval of ASSR stimuli
train was different among studies. The study of Kim and colleagues used longer
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Fig. 7.2 The grand average of time-frequency maps of total power and inter-trial phase coherence
at Cz in the 40Hz frequency for patients with schizophrenia and healthy controls. In contrast tomost
earlier results, total power and inter-trial phase coherence were significantly increased in patients
with schizophrenia compared with healthy controls. Inter-train interval (3050–3500 ms) was used
in this study, which was longer than that used in most previous ASSR studies

inter-train interval (3000 ms), while others used rather short ISI (less than 1000 ms).
Longer ISI might contribute to generating the gamma band response by modulating
the refractory time of pyramidal cells and interneurons in patientswith schizophrenia.

7.3.1.2 Functional Connectivity

In previous EEG studies, patients with schizophrenia consistently showed disrupted
small-world networks characterized by decreased clustering coefficients and pro-
longed path lengths in the resting state [47, 91, 114] and during working memory
tasks [119]. However, most EEG network analysis, including the examples men-
tioned above, were confined to connectivity analysis at the electrodes (sensor) level.
Therefore, these studies failed to report the specific cortical regions that contribute to
disruptions of the small-world cortical functional network. EEG topographies cannot
be directly matched with the underlying cortical regions, since electrodes (sensors)
may contain information from multiple brain sources, some of which might over-
lap. In addition, topographicmaps are sometimes smeared out due to inhomogeneous



7 Computational EEG Analysis for the Diagnosis of Psychiatric … 157

Fig. 7.3 Schematic sequence of psychiatric disease classification using EEG. The EEG signals can
be transformed into functional connectivity indices, and the functional connectivity index can be
subsequently recalculated to network measures. After feature selection, classifiers could be applied
for differential diagnosis of psychiatric illness

conductivity distributions in the human head. This so-called volume conduction effect
can cause spurious connectivity between scalp EEG channels [37], eventually lead-
ing to failure in identifying the region-specific changes in functional connectivity
networks. This shortcoming has been addressed by Fallani et al., who performed
the first network analysis (node degree and network density) of EEG source-level
functional connectivity in patients with schizophrenia during the 2-back working
memory task [24].

A noteworthy limitation of previous studies on functional connectivity in
schizophrenia patients is that the majority of studies applied binary (unweighted)
functional networks to estimate small-worldness. This method utilizes arbitrary
threshold values to convert the original functional connectivity network into a binary
form. During this process, information regarding the strength of interactions poten-
tially useful in identifying small-world characteristics in patients with schizophrenia,
can be lost. Therefore, weighted functional networks is necessary to obtainmore real-
istic functional networks in schizophrenia.

Previously, our group published a small-world cortical functional connectivity
network during an auditory oddball paradigm task in patients with schizophrenia
[122]. The results suggested that the small-world functional network is disrupted in
patients with schizophrenia. Moreover, the negative and cognitive symptom compo-
nents of positive and negative symptom scales were negatively correlated with the
clustering coefficient and positively correlated with path length. With these informa-
tion about brain anatomy-based knowledge, further research should be conducted for
distinguishing patients with schizophrenia from those with other psychotic mental
illnesses. To accomplish this, the machine learning and deep learning technology
would be used as pivotal tools of classifier with the feature selection from various
clinical data (see Fig. 7.3).
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7.3.1.3 Mismatch Negativity (MMN)

Multiple studies have identified MMN deficits in patients with schizophrenia [79,
80, 117, 141]. A primary advantage of MMN is that it has been known to be rel-
atively uninfluenced by the effects of antipsychotic medication [14, 135, 136]. In
addition, its deficits are thought to reflect the progression of a disease and premor-
bid neurocognitive impairment [134]. According to a study by Şevik et al. [120],
patients with schizophrenia demonstrated nearly identical MMN amplitudes to an
age- and education-matched sibling group. However, their MMN amplitudes were
significantly lower than those of healthy controls [120]. Similar findings were also
reported by Lee et al. [72, 74], who showed that patients with schizophrenia exhibited
comparable MMN amplitudes compared to that of first degree relatives, but signifi-
cantly lower than education-matched healthy controls. In addition, the MMN ampli-
tude of frontal electrodes and functional outcomes measurements showed the most
powerful correlations compared to other psychological measurements in patients
with schizophrenia.

The major pathology of MMN deficit appears to originate from dysfunctions
of the NMDA receptor system [48, 137]. NMDA-receptor-mediated glutamatergic
dysfunction may well explain the pathology of both schizophrenia and other neu-
ropsychiatric diseases, which explicitly reflect MMN deficits [137].

Several studies have reported correlations between MMN and global social func-
tioning in patients with chronic schizophrenia [57, 59, 72, 74, 79, 80], and one study
found a stable association over a 1-year period [79, 80]. A significant association
between MMN and Global Assessment of Functioning (GAF) scores have also been
noted in healthy participants [81], indicating that deficits in MMN can impact social
functioning not only in patients but in community samples as well.

Studies measuring MMN reduction in patients with first-episode schizophrenia-
spectrum showed a negligible effect size of 0.04 SD for MMN to a pitch-deviant
and a small to medium effect size of 0.47 SD for MMN to a duration-deviant. Effect
sizes for MMN reductions in patients with chronic schizophrenia were around 1
SD compared with controls, suggesting that the MMN deficit increases with the
progression of the disease. Despite the marked MMN reductions in patients with
chronic schizophrenia, the deficit does not seem to be severe during the first episode.
There is no consistent evidence for a marked deficit in pitch MMN in patients with
first-episode schizophrenia spectrum, while MMN may show a small to medium
effect size along with the progression of the disorder (Fig. 7.4).

7.3.2 Bipolar Disorder

Bipolar disorder is a major psychiatric illness characterized by recurrent manic,
depressive, mixed, and euthymic phases. Emotional dysregulation and cognitive
impairments, which possibly reflect structural and functional brain connectivity dis-
turbances [11, 15], seem to be involved in the disorder [68]. Alterations in white mat-
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Fig. 7.4 Topographic maps of MMN and MMN waves at FCz in patients with schizophrenia and
healthy controls. MMN, mismatch negativity

ter frontolimbic circuitry, inter-hemispheric connectivity, and fronto-parietotemporal
connections, which have been reported in patients with bipolar disorder [11], may
support the emergence of functional disturbances. However, direct evidence for neu-
ral circuitry abnormalities in bipolar disorder is still inconclusive.

Studies have mostly focused on examining intra- and inter-hemispheric EEG con-
nectivity in patients with bipolar disorder in comparison to patients with schizophre-
nia and healthy controls. The comparisons have been usually conducted either in
resting state or during visual or motor tasks. Representative measures of connec-
tivity have been EEG coherence and synchronization likelihood (SL). The EEG
coherence measures the extent of linear oscillatory coupling between two signals
[54], and SL is sensitive to linear and nonlinear dependencies between two sig-
nals [93]. In addition, some studies extracted topological network parameters (e.g.,
modularity, path length, and clustering coefficient), which allow the identification of
key organizational principles governing the brain networks [12]. However, most of
the studies did not account for the possible effects of pharmacological therapies on
electrophysiological activity of patients with bipolar disorder.

Studies examining the patterns of EEG coherence in the delta, theta, alpha, and
beta frequency bands have been usually conducted during the resting state. The only
results that were consistent across frequency bands were reported by Bhattacharya
[9], who found a lower degree of long-range phase synchrony in patients with manic
bipolar disorder than in healthy controls [9]. Other studies have rather produced
inconsistent results. In Barttfeld et al. [7], patients with euthymic bipolar disor-
der showed higher SL values than healthy controls, especially among frontal and
occipital cortices [7]. Additionally, patients with bipolar disorder exhibited altered
network topology with higher nodal degree, but shorter characteristic path length and
lower modularity than healthy controls. Kam and colleagues found reduced frontal
interhemispheric EEG coherence and reduced intrahemispheric EEG coherence in
patients with bipolar disorder patients compared with healthy controls and patients
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with schizophrenia, respectively [54]. On the other hand, Kim and colleagues were
unable to identify any differences between patients with bipolar disorder and healthy
controls [60]. Despite these inconsistencies, the bipolar disorder seems to be asso-
ciated with a disorganized connectivity pattern in the delta band, characterized by
higher density of connections and lower path length and modular organization.

When compared to patients with schizophrenia, the patients with bipolar disorder
exhibited lower inter-hemispheric theta coherence in the parietal region and higher
intra-hemispheric beta1 (12–20 Hz) coherence [54]. With regard to the alpha band
(8–12/13 Hz), the results are more consistent and abnormal neuronal connectivity
is found in patients with bipolar disorder when compared with healthy controls [9,
54, 60]. Specifically, enhanced intra-hemispheric parieto-temporal and centroparietal
coherence were observed in patients with bipolar disorder [54]. Kim and colleagues
showed that patients with bipolar disorder had lower SL values and nodal strength,
especially in a fronto-central-parietal network [60]. In addition, patients with bipolar
disorder had lower clustering coefficient and global efficiency, but higher values of
characteristic path length than healthy controls. Similarly, Bhattacharya observed
the strongest reduction in the degree of long-range phase synchrony in the alpha
band [9]. Furthermore, alpha EEG coherence abnormalities seem to persist even in
patients with bipolar disorder who are in an active phase (manic and/or depressive)
[101].

Özerdem and colleagues used a visual oddball paradigm to investigate the event-
related gamma coherence in patients with manic [104] and euthymic [103] bipolar
disorder. The authors showed that patients with manic bipolar disorder exhibited
reduced fronto-temporal coherence in the right hemisphere. Interestingly, this dif-
ference was also confirmed in patients with euthymic bipolar disorder. In Valesques
et al. [138], gamma EEG coherence was explored in patients with depression and
manic bipolar disorder and manic bipolar disorder alone compared with healthy con-
trols during a prosaccadic paradigm [138]. Interestingly, patients with manic bipolar
disorder exhibited higher gamma coherence in the bilateral frontal region, whereas
patients with depression and bipolar disorder showed increased coherence in the
right frontal region in comparison with healthy controls. These results suggest that
abnormal information processing in bipolar disorder may rely either on increased
or decreased gamma coherence, depending on the functionality of each brain region
during the examined task.

In a recent review,Özerdemet al. reported that (a) the decrease of higher frequency
theta (6–8 Hz) response might reflect impaired cognition in bipolar disorder, (b)
breaks of spontaneous alpha oscillation might indicate a deficit of the central nerve
system in bipolar disorder, and (c) beta oscillations might reflect treatment response
in bipolar disorder [102] (see Fig. 7.5).
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Fig. 7.5 Results from potential electrophysiological biomarkers in bipolar disorder. All depicted
comparisons were made with healthy controls. Thickness of arrows indicate significance of the dif-
ference (Thick, significant; Narrow, non-significant). The direction of the arrows indicates increase,
decrease, or similar results between patients with bipolar disorder and healthy controls. Cited from
the article of Ozerdem et al. (Supplements to Clinical neurophysiology. 2013;62:207–21) [102]

7.3.3 Major Depressive Disorder

Major depressive disorder is associated with high lifetime prevalence, estimated
between 13.2 and 16.5% [139]. Its socio-economic burden and, more importantly,
its impact on the quality of life of the patients have triggered efforts to identify
biomarkers that might help to predict better its prognosis and response to treatment.

7.3.3.1 Alpha Asymmetry

Alpha asymmetry of the frontal lobe might possibly be one of the most frequently
studied biomarkers of major depressive disorder. Empirical research has constantly
reported a greater relative alpha power in the left hemisphere than the right in patients
with major depressive disorder [31, 39]. Conversely, cortical activation has been
known to appear in an opposite pattern with alpha activity, and depressive individuals
typically demonstrate a hypoactivation in the left frontal hemisphere [20, 31, 49].

Attempts to understand the significance of alpha asymmetry in patients withmajor
depressive disorder have been conducted through the BAS and the BIS. The left
frontal hemisphere has been postulated to be operated by the BAS, which oversees
approach behaviors in the presence of rewards or incentives. The depressive symp-
toms of major depressive disorder might be attributable to a hypofunctioning left
frontal hemisphere, which is reflected by asymmetrical increased alpha activity of
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left frontal region [19]. Empirical research has been in support of such hypothe-
sis as increased relative alpha activity in the left hemisphere has been associated
with decreased scores on self-reported questionnaires of BAS in depressive patients
[21, 25].

Although theoretically supported, there are several confounding factors that ought
to be regarded in further studies on alpha asymmetry. Foremost, frontal alpha asym-
metry is assumed to reflect the activity of the frontal lobe and any biological condi-
tions that could influence its functioning should be controlled in order to properly
examine the effects of alpha asymmetry. Several conditions have been suggested to
influence frontal lobe functioning in major depressive disorder. First the subtypes of
depression (for example, melancholic vs. atypical depression) should be controlled
due to its different pathophysiology in relation to frontal lobe function. Second, the
various symptom manifestations (e.g., suicide ideation) that might influence frontal
lobe function ought to be considered. Frontal lobe function could be significantly
influenced by suicidal ideation. The disturbed functioning as well as reduced vol-
umes of the orbitofrontal cortex have been reported to be associated with increased
impulsivity and aggression, which are vulnerabilities of suicidal behavior [87, 92].
Third, comorbid disorders ought to be regarded as different psychiatric disorders
are thought to have distinct alpha asymmetry patterns. For example, patients with
anxiety disorders often reveal an opposite pattern of alpha asymmetry in that greater
relative alpha power in the right hemisphere than the left [25].

7.3.3.2 Loudness Dependence of Auditory Evoked Potential (LDAEP)

The LDAEP has been related to depression, anxiety, and mood lability in clinical
samples as well as healthy participants. Several studies have suggested that sensory
processing sensitivity is associated with depression and anxiety. More specifically,
patientswith anxiety or depression reported higher pain sensitivity, skin conductance,
or somatic sensations. Considering that LDAEP might reflect sensitivity (i.e., emo-
tional and sensory) through its relations to central serotonin systems [62], LDAEP
might also reflect vulnerabilities toward depression.

The LDAEP has not only been associated with sensitivity but also with impul-
sivity. Previous studies reported that impulsive persons demonstrated faster reaction
time and more false alarm rates in a Go/No-go task. The LDAEP appears to reflect
impulsivity as the changes of No-go P3 amplitude correlated with LDAEP [62].
Additionally, LDAEP has been postulated to reflect impulsivity as represented by
motor and cognitive inhibition. An increasing number of researches have been sup-
porting the relationship among LDAEP, impulsivity, and sensitivity, suggesting the
possibility of LDAEP as a valid biomarker of psychopathology.

In addition, LDAEP could be a trait-like state marker of mood disorder. While
LDAEP showed a similar pattern between patients and healthy controls, it was
known to predict treatment response of mood and anxiety symptom that were con-
sidered serotonin disturbances in their background pathology. There is a significant
correlation between a strong LDAEP—indicating low serotonergic function—and
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Fig. 7.6 Distribution of the N 100 amplitude slope (LDAEP) in 166 patients with major depres-
sion (38 men and 128 women) aged 47.6±18.4 years. Individuals with lower LDAEP could have
lower antidepressant responsiveness because they have relatively high level of serotonergic activity,
while individuals with high LDAEP could have better antidepressants responsiveness, even induced
hypomania in extreme cases, because they have relatively low level of serotonergic activity. Cited
from the article of Seung-Hwan Lee et al. with the permission of Korean College of Neuropsy-
chopharmacology [73]

a favorable response to SSRIs in patients with major depressive disorder and
generalized anxiety disorder [69, 108]. In addition, there is some evidence that
LDAEP could reflect the treatment response of mood disorder including lithium
treatment [52]. For example, patients with an extreme level of LDAEP (too high or
too low) could show aberrant response for antidepressants treatment or treatment
responsiveness for antidepressant or lithium treatment (Fig. 7.6).

7.3.3.3 Functional Connectivity

Most EEG studies of major depressive disorder have provided information about the
electrode (sensor) level’s coupling between distinct cortical areas with non-linear
(phase synchronization) and linear (amplitude) properties of the time series that
allow analysis of relevant network activity in EEG data.

Some early studies reported differences of the EEG coherence, between patients
with major depressive disorder and healthy controls [78, 96]. Since then, different
measures (e.g., partial directed coherence, Granger causality, structural synchrony
index, phase synchrony index) have emerged that might help to assess alterations
of EEG-based connectivity in major depressive disorder. Multiple studies reported a
decreased EEG coherence measures in major depressive disorder [64, 75, 106, 128].
In contrast, other studies found an increased EEG connectivity in major depressive
disorder, most consistently in the alpha band [26, 50, 76]. In order to substantiate
functional connectivity as a robust indicator of depression, research ought to clarify
why the direction of the alterations (i.e., decrease or increase of connectivity mea-
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sures) differ depending on the independent studies. Critical discussions about the
impact of EEG amplitude and volume conduction on the different connectivity mea-
suresmight providemeaningful suggestions. The alpha amplitude shows big variance
among individuals, which may reflect unrevealed individual personal characteristics.
If the researchers want to study the resting state alpha activity, the sleepiness during
EEGmeasurement should be rigorously controlled to rule out contamination of alpha
power by smearing theta power effect on EEG. If these confounding factors could
be well controlled, more uniform results from functional connectivity and network
analysiswould be drawn in psychiatric illnesses, includingmajor depressive disorder.

7.3.4 Anxiety Disorder

Most EEG studies have reported alterations of multiple spectral bands in anxiety
disorders. Alterations of the theta (4–8 Hz) and alpha (8–13 Hz) bands are often
observed [5]. However, the beta and gamma band abnormality were also recently
reported in patients with post-traumatic stress disorder (PTSD) [72, 74, 121]. None
of the qEEG alterations are refrained to anxiety disorders. However, they are thought
to be related to symptoms of anxiety disorders and have been targets of neurological
treatments such as neurofeedback training [124]. Among the various anxiety disor-
ders, PTSD and obsessive-compulsive disorder are some that have received the most
empirical attention.

7.3.4.1 Post-traumatic Stress Disorder (PTSD)

Similar to major depressive disorder, frontal alpha asymmetry is a frequently studied
biomarker of PTSD [30, 58]. Relatively greater left frontal activity is regarded as
being related to appetitive motivation, and lower levels of depressive and anxious
symptoms in patients with PTSD [90]. However, the implication of alpha asymmetry
in PTSD is not definitive; a study comparing alpha asymmetry between patients with
PTSD and healthy controls reported no significant differences [30].

Connectivity measures have also been to be of interest when studying EEG
biomarkers of PTSD. Patients with PTSD, when compared with controls, were
found to have decreased resting-state EEG frontal connectivity, especially in beta
and gamma frequency bands. In addition, nodal values (connection strength) of these
two frequency bands were significantly correlated with PTSD symptom severity, and
with depression and increased arousal [72, 74].

In addition, significant associations have been found between PTSD symptoms,
and P200 and P300 ERP components [82]. A recent study by Shu et al. reported
that alterations of ERP components (N200 and P300 amplitudes) accurately classi-
fied whether a group of veterans associated with the development of PTSD or not
[123]. Moreover, a source level study by Bae and colleagues reported reduced source
density of P300 in patients with PTSD when compared with healthy controls [4].
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In addition, specific symptoms were related to different neural activity at different
cortical regions.

Recently, a study that examined the source level functional connectivity of resting-
state EEG reflected source level abnormalities in patient with PTSD [121]. In this
study, theta and low beta frequency bands were significantly impaired in patients
with PTSD compared with healthy control. As for the nodal clustering coefficients,
that of the theta band negatively correlated with rumination and re-experience symp-
tom scores, while that of the low beta band correlated positively with anxiety and
pain severity. In theta frequency band, the right posterior cingulate cortex and left
temporal cortex were significantly correlated with impact event scale of patients with
PTSD. As evidenced in Fig. 7.7, brain anatomy-based information can be given in
source-level EEG functional connectivity analysis. It could be a promising biomarker
of PTSD as well as other psychiatric illness, as not only a disease classifier but
also treatment response indicator of various psychotropic medication and cognitive
behavioral treatment.

7.3.4.2 Obsessive Compulsive Disorder (OCD)

Patients with obsessive compulsive disorder (OCD) are characterized by inclinations
tomonitor their thoughts and behaviors with a desire tomaintain control. Neurophys-
iological studies on OCD have focused on their tendency to monitor performance
and patterns in processing errors. In particular, the error-related negativity (ERN), a
neural alteration that occurs 50–100 ms after committing errors, has been of special
interest. The ERN is thought to reflect activity of the response-monitoring system
and greater magnitude ERNs are observed in patients with OCD [28, 51]. A major
advantage of the ERN is that its enhancement in OCD seems to be independent of
pharmacological or psychological interventions [23, 127]. In addition, similar pat-
terns have been identified in subclinical OCD symptoms [99, 118], and non-affected
first-degree relatives of patients with OCD, which suggest the possibility of a bio-
logical influence [13, 113].

Studies examining cortical activities in OCD have reported significant results as
well. A study by Kopřivová and colleagues, who applied low-resolution electromag-
netic tomography (LORETA) and independent component analysis (ICA), identified
medial frontal hyperactivation in OCD [65]. In addition, patients with OCD were
found to have greater relative power of lower alpha (8–10 Hz) frequency band in the
left hemisphere at rest and during presentations of neutral, aversive, andOCD-related
pictures. These changes in hemispheric alpha band has been proposed as biomarker
for increased avoidance motivation in patients with OCD [45].
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�Fig. 7.7 Effect-size of differences of nodal clustering coefficients between post-traumatic stress
disorder (PTSD) and healthy controls in three frequency bands. The threshold value was set as 0.06
(medium effect). In the brain model, the density of colors and size of circles represent the difference
direction and effect-size, respectively. *η240.06. Cited from the article of Shim et al. [121]

7.4 Diagnosis for Cognitive Impairment: Dementia
and Minimal Cognitive Impairment

Neurophysiological markers, including EEG and ERP components, have been pro-
posed in the literature to serve as indicators of cognitive decline [105]. This can further
assist identification of current disease stage [3], and even treatment assessment [132].
Slowing of the EEG rhythm has been reported in dementia of the Alzheimer’s (AD)
type [83]. More specifically, theta band power has been found to increase and the
alpha power to decrease in the left hemisphere for patients with AD. Simultaneously,
all band powers showed decreased activity in the right hemisphere [1]. D’Onofrio and
colleagues reported that the increase of delta and theta activity, and decrease of alpha
distinguish normal aging, minimal cognitive impairment (MCI) and AD [17]. In a
more recent study, Kim and colleagues reported that patients with ADwith moderate
severity had significantly increased theta and decreased beta power compared with
healthy controls [61]. In patients with AD, theta power was significantly correlated
with a poor performance for global cognition. However, beta power was positively
correlated with a good performance for global cognition, attention, memory, visu-
ospatial function, and executive function. Source activity analysis identified superior
temporal gyrus, transverse temporal gyrus, insula, postcentral gyrus, cuneus, and
lingual gyrus regions to be significantly affected in patients with AD.

It has been shown that MMN amplitude decreases with aging when short ISIs
are used, while memory trace decays faster in patients with AD when long ISIs
are applied [110]. The MMN has also been used as a feature of prognosis in MCI
progression to AD [105].

As previously mentioned, P300 is one of the most studied ERP components with
regards to attention, working memory, and cognitive decline. Therefore, it has been
often studied in respect to dementia and cognitive impairment. The P3a has been
associated with attention mechanisms and novel stimulus processing, while P3b, the
second subcomponent, has been more related to stimulus evaluation and decision
making [111]. The latency and amplitude of P300 have been shown to aptly reflect
neurodegeneration progress [67, 89], and significant differences in its characteristics
have been found between controls and MCI or AD patients [8, 27, 44, 105, 109].
However, several studies have reported minor variability in P300 features as well [2,
70], which raises questions to whether the P300 can act as a reliable biomarker of
cognitive impairment.

Park et al. [107] computed the global field synchronization (GFS), a measure
of functional synchronization, which were lower in beta1, beta2, beta3, and full
bands in AD patients than in healthy controls. These values positively correlated
with the mini mental state examination (MMSE) and clinical dementia rating (CDR)
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scores [107]. Lee and colleagues inspected the global synchronization index (GSI),
which quantifies synchronization between neuronal signals at multiple sites [71].
They found that in patients with AD, GSI values were negatively correlated with
MMSE scores in the delta bands, but positively correlated in the beta1 and gamma
band. In addition, GSI values were positively correlated with CDR scores in the
delta bands, but negatively correlated in the gamma band. The EEG measurements
could be promising biomarker of dementia. However, tight artifact removal and data
collection criteria should precede the measurements for standardized settings for
researchers working in various experimental situations.

7.5 Conclusion

In this chapter, we reviewed possible EEG biomarkers of major psychiatric disor-
ders. Among the various EEG characteristics, P300, functional connectivity network,
LDAEP, ASSR, MMN, and alpha asymmetry are promising EEG biomarkers that
demandmore attention in the future. In concordancewith the development of compu-
tational analytic methods, source level functional connectivity network could make
a new breakthrough for EEG based diagnosis of various neuropsychiatric disorder,
namely in schizophrenia, PTSD, major depressive disorder, and dementia of various
types. In patientswithmajor depressive disorder, alpha asymmetry could be a promis-
ing biomarker. However, more research should be done to uncover the confounding
factor of the core pathophysiology of major depressive disorders.

Sensor-level analysis could be contaminated with volume conduction and various
movement artifacts. However, source-level analysis could be used relatively free of
those artifacts, even though there are some technical burden compared to sensor-level
analysis. Importantly, information about brain regional abnormality could be gained
from these source-level analyses, and this information could be a big step to discover
diagnostic and prognosis biomarkers of various neuropsychiatric disorders.
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coherence in bipolar disorder. Prog. Neuropsychopharmacol. Biol. Psychiatry 34(6), 861–5
(2010)



174 S.-H. Lee and Y. Park

105. V. Papaliagkas, V. Kimiskidis, M. Tsolaki, G. Anogianakis, Cognitive event-related poten-
tials: longitudinal changes in mild cognitive impairment. Clin. Neurophysiol. 122(7), 1322–6
(2011)

106. C.A. Park, R.-J. Kwon, S. Kim, H.-R. Jang, J.-H. Chae, T. Kim, J. Jeong (ed.) Decreased
phase synchronization of the EEG in patients with major depressive disorder, in World
Congress on Medical Physics and Biomedical Engineering 2006 (Springer, Berlin, 2007)

107. Y.-M. Park, H.-J. Che, C.-H. Im, H.-T. Jung, S.-M. Bae, S.-H. Lee, Decreased EEG synchro-
nization and its correlation with symptom severity in Alzheimer’s disease. Neurosci. Res.
62(2), 112–7 (2008)

108. Y.-M. Park, D.-W. Kim, S. Kim, C.-H. Im, S.-H. Lee, The loudness dependence of the
auditory evoked potential (LDAEP) as a predictor of the response to escitalopram in patients
with generalized anxiety disorder. Psychopharmacology 213(2–3), 625–32 (2011)

109. R.V. Pedroso, F.J. Fraga, D.I. Corazza, C.A.A. Andreatto, F.G. de Melo Coelho, J.L.R. Costa,
R.F. Santos-Galduróz, P300 latency and amplitude in Alzheimer’s disease: a systematic
review. Braz. J. Otorhinolaryngol. 78(4), 126–32 (2012)

110. E. Pekkonen, Mismatch negativity in aging and in Alzheimer’s and Parkinson’s diseases.
Audiol. Neurotol. 5(3–4), 216–24 (2000)

111. J. Polich, Updating P300: an integrative theory of P3a and P3b. Clin. Neurophysiol. 118(10),
2128–48 (2007)

112. O. Rass, G. Krishnan, C.A. Brenner, W.P. Hetrick, C.C. Merrill, A. Shekhar, B.F. O’Donnell,
Auditory steady state response in bipolar disorder: relation to clinical state, cognitive perfor-
mance, medication status, and substance disorders. Bipolar Disord. 12(8), 793–803 (2010)

113. A. Riesel, T. Endrass, C. Kaufmann, N. Kathmann, Overactive error-related brain activity
as a candidate endophenotype for obsessive-compulsive disorder: evidence from unaffected
first-degree relatives. Am. J. Psychiatry 168(3), 317–24 (2011)

114. M. Rubinov, S.A. Knock, C.J. Stam, S. Micheloyannis, A.W. Harris, L.M. Williams,
M. Breakspear, Small-world properties of nonlinear brain activity in schizophrenia. Hum.
Brain Mapp. 30(2), 403–16 (2009)

115. M. Rubinov, O. Sporns, Complex network measures of brain connectivity: uses and
interpretations. Neuroimage 52(3), 1059–69 (2010)

116. E. Salinas, T.J. Sejnowski, Correlated neuronal activity and the flow of neural information.
Nat. Rev. Neurosci. 2(8), 539 (2001)

117. D.F. Salisbury, M.E. Shenton, C.B. Griggs, A. Bonner-Jackson, R.W. McCarley, Mismatch
negativity in chronic schizophrenia and first-episode schizophrenia. Arch. Gen. Psychiatry
59(8), 686–94 (2002)

118. D.L. Santesso, S.J. Segalowitz, L.A. Schmidt, Error-related electrocortical responses are
enhanced in children with obsessive–compulsive behaviors. Dev. Neuropsychol. 29(3),
431–45 (2006)

119. S. Schinkel, G. Zamora-López, O. Dimigen,W. Sommer, J. Kurths, Functional network analy-
sis reveals differences in the semantic priming task. J.Neurosci.Methods197(2), 333–9 (2011)
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Chapter 8
Analysis of EEG in Medically Intractable
Epilepsy

Ki-Young Jung

Abstract EEG is an electrophysiologic technique that directly measures neural
activity from the brain with high temporal resolution. EEG has been used in various
neurological disorders to monitor functional brain states such as impaired conscious-
ness including brain death, epilepsy, sleep disorders and cerebrovascular diseases.
Epilepsy is a neurological disorder characterized by producing epileptic seizure
caused by abnormal excessive or synchronous neuronal activity in the brain. EEG
is an essential method to make diagnosis, classification, and localization of seizure
focus in epilepsy, and is actually most commonly used in epilepsy and seizure dis-
orders. In this chapter, I’ll focus on how EEG analysis can contribute to the clinical
diagnosis and treatment of epilepsy, particularly to epilepsy surgery. As detailed the-
oretical and technological aspects of EEG analyses are introduced in other chapters,
only clinical applicability and significance of these methods will be reviewed here.

8.1 Overview of Epilepsy and Epilepsy Surgery

Epilepsy is a chronic, neurologic disorder characterized by spontaneous, recurrent
seizures. The prevalence of epilepsy is ranging from 2 to 10 per 1000 people, affect-
ing approximately 70 million people of all ages worldwide [25]. About 20–40% of
people with epilepsy are medically intractable or drug-resistant despite that a vari-
ety of antiepileptic drugs have been developed for the past two decades. Epilepsy
surgery has been the gold standard therapeutic option for cases in which medications
have failed [31]. About two third of patients who had surgical treatment exhibited
good outcome [44]. The aim of resective epilepsy surgery is to achieve freedom of
seizure bymeans of complete elimination of epileptogenic zone in the epileptic brain.
Epileptogenic zone is a theoretical concept indicating brain area that is necessary and
sufficient for initiating seizures and whose removal or disconnection is necessary for
abolition of seizures [12]. We can only identify epileptogenic zone after achieving
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seizure-free by resection of brain region presumed to be epileptogenic zone. Since
epileptogenic zone cannot be measured directly, its location should be inferred indi-
rectly by defining other zones including irritative zone, epileptogenic lesion, and
symptomatogenic zone, and functional deficit zone [35].

Presurgical evaluation for epilepsy include high-resolution magnetic resonance
imaging (MRI) scan and video-EEG monitoring. Functional neuroimagings such
as single photon emission tomography (SPECT) and positron emission tomography
(PET) are frequently used as ancillary tools especially in case of no discernible lesion
on brainMRI. Seizure onset zone (SOZ), or ictal onset zone, is the area of cortex from
which seizures are generated, which can be measured by noninvasive and invasive
EEG recordings. As epileptogenic zone involves SOZ, accurate localization of SOZ
is imperative for successful seizure control. Scalp EEG is noninvasive electrophys-
iologic test which helps to identify SOZ. However, the accuracy of scalp EEG for
localization or lateralization is reported less than 50% [18, 24, 26].

Invasive EEG recording using intracranial placement of electrodes such as depth
electrode, subdural strip and grid is necessary when discordant findings among
presurgical evaluations are present or epileptogenic zone cannot be determined by
surface EEG recording. Intracranial EEG provides much higher spatial information,
which is able to pick up potential changes occurring over only a few millimeters
of cortex. However, apart from invasiveness, the spatial sampling is restricted by
the number of electrodes, which may lead to fail to identify SOZ [37]. Despite the
invasiveness, localization of SOZ by intracranial EEGmonitoring is still regarded as
a gold standard. BrainMRI technology is developing rapidly and has huge impact on
the diagnosis of various neurological diseases such as stroke, epilepsy, and demen-
tia. It can provide us with high spatial resolution with accurate location and pre-
cise information about structural alterations in the brain. However, because of the
poor temporal resolution of MRI, it cannot tell much about information on rapidly
time-varying processes in the brain such as epileptic discharges and neurocognitive
processes.

Thanks to the recent advances in computer technologies, EEG in conjunction
with neuroimaging technologies have allowed us to extend its clinical utility for
the evaluation of patients with epilepsy [33]. Application of EEG source imaging
(ESI) and high frequency oscillation (HFO) for the presurgical evaluation have had
significant impact on the identification of epileptogenic zone and understanding
epileptogenesis. In this chapter, clinical utilities of ESI and HFO in the presurgical
evaluation of epilepsy will be discussed. I will review clinical trials or applications
of these techniques with relatively large samples, and discuss how these methods
contribute to the surgical treatment of epilepsy.

8.2 EEG Source Imaging

ESI is a model-based imaging technique that integrates temporal and spatial com-
ponents of EEG to identify the sources generating electrical potentials recorded on
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the scalp [22]. ESI has been introduced in the late 1990s and anecdotally used in the
presurgical evaluation in a few large epilepsy surgery centers. At that time, simple
spherical head model with a standardMRI template and lower numbers of electrodes
(usually less than 32 channels) were used, and thus it usually provided only a coarse
estimation of source locations in the standard brain models. With advanced comput-
ing technology and power, high density electrodes (up to 256), and realistic head
model constructed using patient’s own MRI data can now be used for ESI, and thus
the accuracy and feasibility of ESI have been significantly increased.

In spite of the advances in computational and integrative imaging, ESI has not
become routine everywhere [27]. One of the important problems is that clinical
utility of ESI was largely limited because of the complicated methods without stan-
dardization and additionally required workforce and time [30]. A survey conducted
among 25 European epilepsy surgery centers showed that ESI was performed by 12
centers: exclusively with magnetoencephalography (MEG) in 3 centers, exclusively
with EEG in 5 centers, and with both MEG and EEG in 4 centers. Furthermore, a
total of 14 different combinations of inverse methods and volume conduction models
were used: 7 for MEG and 13 for EEG [30]. Therefore, it is apparent that consider-
able gap between technological advancement and clinical utility exists in the field of
ESI. At present, however, ESI seems to be a promising technique that can positively
contribute to visual EEG analysis for the localization of epileptic spikes, and plays
a role in epilepsy surgery evaluation [22]. ESI can be applied on either interictal
epileptiform discharges (IEDs) or ictal discharges.

8.2.1 Interictal ESI

The IED is transient waves or complexes clearly distinguishable from background
activity, and generally shows a pointed peak with a duration of 20–200 ms usually
followed by a slow wave. The potential should be reflected in physically adjacent
electrodes and perhaps in synaptically linked regions such as the contralateral hemi-
sphere [14]. The IEDs are not accompanied by clinical or subclinical seizure. The
IEDs are generated by the synchronous discharges of a group of neurons in a region
referred to as the epileptic focus. IEDs are so highly correlated with spontaneous
seizures that their presence is used to support the diagnosis of epilepsy and are con-
sidered as hallmark of epilepsy [41]. Thus, evaluation of the interictal EEG is an
integral part of the presurgical evaluation.

At least 10–20 cm2 of synchronous active cortex is usually necessary to produce
a recognizable scalp potential. In other word, cortical areas that are active but small
cannot be detected by the scalp electrodes due to the low conductivity of interven-
ing tissues especially skull between cerebral cortex and scalp. Spikes arising from
deep cortical areas cannot be detectable in scalp EEG until it propagates to more
superficial areas. The site of IEDs represents irritative zone, and it can be extensive,
usually much larger than epileptogenic zone [11]. Patients with focal IEDs included
in surgical resection have good surgical outcomes. The presence of IEDs extending
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beyond the area of resection correlates with poor surgical outcome in patients with
extrahippocampal epilepsy [3]. Thus, identification of interictal spike area is helpful
for surgical treatment of epilepsy.

There are several studies reporting various levels of accuracies of interictal ESI.
Inconsistent results may be partly attributed to the complicated steps for ESI and
absence of standardized methods for ESI. The processes for ESI include generation
of head model from brainMRI, calculation of inverse solution, and co-registration of
electrode coordinates with brainMRI (refer to Fig. 1 in Brodbeck et al. [8]). There are
various methodologies that can be possibly adopted for ESI, in terms of brain MRI
(individual vs. standard template), headmodel (spherical, boundary element method,
and finite element method), number of electrodes, electrode coordinates (individual
vs. standard), and inverse methods (discrete vs. distributed). As numerous methods
can be generated from the combination of the above-mentioned methods at each step
of ESI, the diverse results are inevitable.

Furthermore, a variety of gold standards for estimating accuracy of ESI have
been adopted, such as phantom simulation, comparison with spike location using
intracranial electrodes, distance from surgical resection margin, and postoperative
surgical outcome. For these reasons, care should be taken not to misinterpret the
results of ESI. The best way to assess clinical impact of ESI on epilepsy surgery
seems to evaluate the correlation of the results of ESI with prospective long-term (a
minimum 2 years follow-up) postoperative surgical outcomes. There are only few
studies referring to surgical outcomes.

Brodbeck and his colleagues prospectively evaluated clinical utility of ESI as a
part of the pre-surgical work-up from 152 patients with a variety of partial epilepsies
who underwent surgical treatment for intractable seizures [8]. Two third of patients
had temporal lobe epilepsy and 77% had good surgical outcome, which was assessed
at least 1 year after surgery. Standard clinical EEG using less than 32 electrodes was
obtained basically, and a high-resolution EEG with 128 or 256 electrodes was also
recorded in 55 patients. However, the method for coordination of electrode location
(i.e.,measured vs. standard template coordinate)was not described.A simple realistic
head model using spherical model with anatomical constraints (SMAC) method was
generated from individual MRI, and the linear distributed inverse algorithm known
as local autoregressive average (LAURA) was used to estimate intracranial sources
for IEDs. The rising phase of averaged IED from themost prevalent IEDswas subject
to the source estimation.

Good surgical outcome (Engel class I and II) was considered to be the gold stan-
dard for correct localization of the epileptogenic focus. Sensitivity was defined as
the percentage of patients with focus localization within the resected zone of all
patients who were seizure-free (n�117). Specificity was defined as the percentage
of patients with localized focus outside the resected zone of all patients who had
an Engel Class III or IV outcome after surgery (n�19). Sensitivity and specificity
were compared among various source estimation conditions, and among other neu-
roimaging methods. The sensitivity and specificity of ESI were highest when high
resolution EEG and individual MRI were adopted, which showed 84.1 and 87.5%,
respectively. When compared to other imaging modalities, these values were higher
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than those of structuralMRI (76% sensitivity, 53% specificity), PET (69% sensitivity,
44% specificity) and ictal SPECT (58% sensitivity, 47% specificity). The accuracy
of ESI was higher in case of temporal lobe epilepsy than extratemporal lobe epilepsy,
although the difference did not reach statistical significance. The sensitivity of ESI
in extratemporal lobe epilepsy was 75%, which was sharply contrasted to clinical
localization of scalp EEG in which the diagnostic sensitivity of IEDs was reported
to 37.1% in a large series of surgical cases of neocortical epilepsy [24].

The same group has extended their study to determine which procedure or com-
bination of procedures is the most predictive of seizure-free outcome in patients
undergoing epilepsy surgery in 190 patients with partial epilepsy patients [23]. The
predictive value of non-invasive techniques including high-density electric source
imaging (HD-ESI), MRI, PET, and SPECT in terms of sensitivity, specificity, pre-
dictive value and diagnostic odds ratio (OR) in relation to postoperative outcome
which was evaluated at least 12 months after surgery (mean 26.6±27 months).
EEGs were obtained with 64, 128, or 256 electrodes in 85 patients. Averaged spikes
were used and ESI was estimated by LAURA. Among 58 patients who underwent
all tests, the adjusted prognostic OR was 13.1 for HD-ESI and 10.9 for MRI (both
p�0.004). 92.3% were seizure-free when combination of MRI and HD-ESI were
positive, and none was seizure-free if both tests were negative.

Feng et al. [13] reported accuracy of ESI in forty-three patients with tempo-
ral lobe epilepsy (age ranged from 9 to 48 years old) [13]. ESI was estimated
from EEG recording acquired with high density 256-channel. Forward model was
a realistic atlas head model based on the finite difference method (FDM), and Low
resolution electromagnetic tomography (LORETA) method was used for inverse
estimation. Postoperative surgical outcome was used as a gold standard for epilepto-
genic zone (follow-up duration: minimum 7months, median�14months, average�
13.6 months). 35 patients had good surgical outcome (Engel class I or II), and eight
patients had Engel class III or IV. Sensitivity and specificity were measured with
reference to surgical resection margin. At the sublobule level, the sensitivity and
specificity of high density ESI were 91.4% and 75%, respectively, which showed
the best performance compared to other noninvasive neuroimaging modalities (PET:
80% sensitivity and 50% specificity, MRI: 77.1% sensitivity and more than 60%
specificity). The accuracy of high density ESI was comparable to that of the previous
study [8].

It is remarkable that they investigated the relationship between the high density
ESI source patterns and surgical outcome with the Kaplan–Meier survival analysis
which showed that cases with single source had better prognosis than cases with
multiple sources (88.9% vs. 42.9%, respectively). Furthermore, surgical prognosis
was better when sources are present within the resection margin than when sources
are beyond the resection margin (94.1% vs. 33.3%, respectively). However, they did
not report how many patients had lesion on MRI, and how many patients had mesial
or lateral temporal lobe epilepsy. It was not also reported how many patients were
of children.

ESI can also be successfully applied on children with epilepsy. Russo et al. [36]
retrospectively evaluated the diagnostic utility of ESI in 60 pediatric epilepsy patients
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who were younger than 18 years old [36]. EEG data were recorded with electrodes
less than 32 channels (conventional 10–20 system plus 4–10 extra-channels over the
suspected epileptogenic region). ESI was done with the realistic subject-dependent
head models with a boundary element model (BEM) using a single rotating dipole
for each spike or sharp wave. Accuracy of ESI was evaluated whether the single
dipole was localized within surgical resection cavity after at least 1 year of follow-
up. Epileptogenic focus in 65%of patients could be localized by single rotating dipole
with low-resolution EEG, which was comparable to ictal SPECT (68%) and superior
to PET (55.5%). Correct localizationwas significantly higher in case of temporal lobe
epilepsy compared to extratemporal lobe epilepsy (84.6% vs. 48.0%). MRI-negative
patients showed tendency to be more frequently localized within surgical resection
cavity compared toMRI-positive cases (78.6%vs. 60.9%). Sensitivity and specificity
of ESI in relation to 2-year surgical outcome were 60.6 and 50.0%, respectively.
Although these figures are somewhat lower than those of previous reports, it is
acceptable and reasonable considering lower number of electrodes adopted in this
study, compared to high density (from 64 to 256 channels) EEG. Nonetheless, low-
resolution electrode ESI was superior to PET or ictal SPECT images in the present
study. Therefore, this study is encouraging that using only low-resolution EEG can be
helpful in presurgical evaluation of intractable focal epilepsy at least with pediatric
patients.

In summary, interictal ESI can be a relatively inexpensive, noninvasive modality
for the evaluation of focal intractable epilepsy, and should be encouraged to use in
routine presurgical evaluation in clinical practice. However, standardization of ESI
processing steps and determination of IEDs should be provided for use in routine
clinical practices. More strong data such as data from double-blinded randomized
controlled study with large sample size are also needed.

8.2.2 Ictal ESI

Ictal EEG activity is characterized as a run of EEG rhythm that changes the EEG
background and evolves over time in waveform frequency, amplitude, and morphol-
ogy [28]. Ictal EEG is usually accompanied by clinical seizure. Rarely, no seizure
can be associated with apparent ictal discharges, so-called subclinical EEG seizure,
which occurs in cases when very small cortical areas are synchronized, which is only
noted during electrocorticography rather than scalp EEG, and in cases of simple par-
tial seizures that do not evolve complex partial or generalized seizure.

Ictal onset zones are areas of cortex where seizures are generated including areas
of early propagation under certain circumstances, and can be identified by the source
localization at ictal EEG onset time. Ictal onset zone can be either within the distri-
bution of irritative zone or distinct from irritative zone. In other words, ictal onset
zone is not necessarily the same as irritative zone. Nevertheless, the ictal ESI results
are largely in agreement with interictal ESI results in temporal lobe epilepsy [34].
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Since the aimof resective epilepsy surgery is to achieve freedomof seizure by com-
plete elimination of epileptogenic zone, ictal EEG is considered to bemore important
than IEDs to determine the resection margin in surgical treatment of epilepsy. How-
ever, ictal ESI is largely limited by several reasons. For example, in a series of 100
presurgical candidates, ictal dipole source localization could be performed in only
31% of patients [5]. One of the reasons is that seizures with vigorous motor activities
inevitably accompany many muscle and movement artifacts which lower signal-to-
noise ratio hampering proper source localization. Ictal EEG activities often show
bilateral or nonlateralized pattern, which also makes ESI difficult to correctly local-
ize SOZ. It is not uncommon that patient do not have seizure during long-term EEG
monitoring. Another important reason is that ictal rhythm can only be seen at the
scalp when the cortical areas are sufficiently synchronized. Furthermore, seizures
originating from medial side of cortex or deep sulci cannot be picked up by scalp
electrodes until ictal activities propagate to lateral or superficial cortices. This means
that ictal ESI identifies not only the ictal onset zone but also the cortex to which
seizure discharges spread during an early ictal event [22].

Contrary to interictal ESI, there are relatively few clinical studies on the source
localization of the ictal epileptiform activity. Source localization of rhythmic ictal
scalp EEG activity has been reported on 42 patients with focal epilepsy, aged between
9 and 69 years (mean 35.9, median 38 years) by Danish group [4]. EEGwas recorded
using a standard 25 electrode (19 electrodes of the international 10–20 system with
extra-electrodes in the inferior temporal chain). For the sake of clinical feasibility,
standard electrode positions and template MRI (MNI template) were used for source
localization in this study. The earliest rhythmic ictal activities that are stable in terms
of frequency identified by spectral analysis and spatial distribution identified by
voltage map were selected for the ictal ESI. The duration of these epochs ranged
between 1 and 11 s (median 3 s). LAURA was used for the source localization. The
predictive values were estimated based on the surgical outcome, as evaluated 1 year
after the operation.

Ictal source localization at the sublobar level could be performed in 72% of the
patients who had at least one epileptic seizure in the presurgical evaluation. The
sensitivity of the ictal ESI was 69.7% and the specificity was 75.7% with regard to
reference standard that was determined by the consensus conclusion of the multidis-
ciplinary epilepsy surgery team. It has been reported that the seizure onset at the lobar
level with reference to 2-year surgical outcome was correctly localized in 76–83% of
temporal seizures and 47–65%of extratemporal seizures by visual inspection of scalp
ictal EEG [43]. However, only 21–38% of scalp ictal EEG agreed with depth EEG
at the sublobar level [38]. Therefore, it is remarkable that ictal ESI can significantly
increase the accuracy of localization with higher precision than visual interpretation
of scalp ictal EEG. Twenty patients underwent surgery and 16 patients (80%) became
seizure-free. The PPV of the ictal source localization was 92%, and the NPV was
42.8%. Furthermore, the positive likelihood ratio for the concordant results (ictal
source localization matching the reference standard) was 3.0 which is the nine times
higher than the negative likelihood ratio of the discordant results (0.33, mismatch
between ictal source localization and the reference standard).
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In another study, ictal source localization using high-density scalp EEG data (128-
or 256-electrode) was reported in 14 patients with focal epilepsy (eight male, mean
age 26.3 years, range 10–45 years) [32]. Among them, 8 patients underwent epilepsy
surgery and were followed up for at least 1 year after surgery. Dominant frequency of
EEG rhythm was filtered with narrow band (±1 Hz) from epochs of early rhythmic
ictal changes (mean 2 s, range 1.5–2.5 s), which was used for the source localization.
The locally spherical model with anatomical constraints (LSMAC) for head model
and LORETA for inverse method were used in this study. LORETA was performed
at each time point of the filtered ictal EEG data and then averaged across the defined
early ictal epoch. Six of eight patients who underwent epilepsy surgery were seizure
free. Five of them showed the maximum current density of ictal ESI within the
resected area, indicating ictal ESI correctly localized the SOZ in the resection area.
On the other hand, two of the operated patients who had a less favorable outcome
revealed that the maximal ictal ESI solution was not included in the resected area.
Remarkably, the agreement between interictal and ictal ESI were concordant (9) or
partially concordant (4) in 13 of 14 patients (93%).

Although there are still limited number of studies, ictal ESI provides more direct
information about SOZ compared with interictal ESI (providing irritative zone), and
it is feasible in clinical practice. Larger studies are needed to determine the clinical
feasibility of ictal ESI as a valuable presurgical evaluation tool. Standardization and
automation of processing steps, and multimodal approaches combining electrophys-
iology and neuroimages are strongly required for wider application of ictal ESI in
clinical practice.

8.3 High Frequency Oscillation (HFOs)

The frequencies of conventional EEG recordings range from 0.5 to 70 Hz. However,
high frequency EEG oscillatory activities (HFOs) above 70 Hz have been recognized
during physiological and pathological conditions in intracranial recordings [9, 15].
HFOs refer to distinct types of brain activity occurring in a frequency band range
between 80 and 500 Hz. Since HFO was discovered in epileptogenic hippocampus
in patients with mesial temporal lobe epilepsy and in animal model of epilepsy using
microelectrodes [6, 7], it has been considered to be a new biological marker for
potential epileptogenecity although more convincing evidences are still needed.

Conventionally, IEDs have been considered as biological markers of epilepsy
because almost all patients with epilepsy show IEDs at some time points. However,
it is not uncommon that IEDs can be seen in healthy people or in some patients with
neuropsychiatric disorders such as attention deficit hyperkinetic disorder, autism
spectrum disorder, and developmental disorders. In addition, IEDs represent only
irritative zones of cerebral cortex, neither epileptogenic zones nor SOZs. The identi-
fication of HFOs in epileptogenic tissues is one of the major discoveries in epilepsy
research over the past two decades [21], because no clearly identified biological
marker for epilepsy has been developed yet. HFOs are now increasingly used to
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identify and localize epileptogenic zones in presurgical evaluation of intractable
epilepsy patients.

HFOs are subdivided into ripples ranging from 80 to 250 Hz and fast ripples
>250 Hz [16]. Cellular and network mechanisms generating ripples and fast rip-
ples remain unclear. Ripples reflect fast inhibitory postsynaptic potentials (IPSPs)
on the soma of pyramidal cells. Ripples are observed in non-epileptic hippocampi
and entorhinal cortices, and may play a role in memory consolidation by phase syn-
chronization [20]. On the other hand, fast ripples are found only in the epileptogenic
region and may reflect pathological hypersynchronous population spikes of bursting
pyramidal cells.

8.3.1 What Are HFOs and How to Recognize HFOs

HFOs are defined as all physiologic and pathologic oscillatory EEG activities within
a limited frequency band from 80 to 500 Hz range that clearly stand out from the
baseline and persist for at least four oscillation cycles [49].

To record HFOs, there should be special considerations in terms of both hardware
and software. In the beginning of HFOs discovery, HFOs were detected using micro-
electrodes (40µmwires) implanted in the hippocampus and entorhinal cortex. Then,
it has been also reported that HFOs can be picked up bymacro-intracranial electrodes
such as subdural and depth electrodes, which are clinically used to localize SOZ in
presurgical evaluation. HFOs can be recorded even with scalp EEG. Therefore, it
seems that any clinically used electrodes can now record HFOs.

The sampling rate of EEG amplifiers should be at least 4 times higher than the
upper frequency of interest. For identifying ripples (80–250 Hz), proper sampling
rate of amplifiers should be at least 1000 Hz, and a sampling rate of 2000 Hz or
above should be used to record HFOs over 250 Hz [48]. Software for reviewing data
should have a capability of a high-order finite impulse response (FIR) filter, and of
extended time scale up to 0.6 s/page, and of amplitude scale changeable to 1 uV/mm
[48, 49].

8.3.2 Interictal HFOs

The first recording of HFOs during interictal period in human mesial temporal
epilepsy with or without hippocampal sclerosis was performed by the University
of California at Los Angeles group [39, 40]. Depth electrodes were inserted in both
hippocampi and entorhinal cortices (i.e., epileptic side and healthy side). They found
two distinct oscillatory groups composed of the lower-frequency ripple group hav-
ing a mean frequency of 96 Hz and the higher-frequency fast ripple group having
a mean frequency of 262 Hz. The ratio of the number of fast ripples to ripples was
significantly higher in the sites ipsilateral to seizure onset with hippocampal atrophy
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Table 8.1 Comparison of sensitivity, specificity and accuracywith regard to detecting seizure onset
zone

Intracraniala Scalpb

Spike (%) Ripple
(80–250Hz)
(%)

Fast ripple
(>250 Hz)
(%)

Spike (%) Gamma
(40–80 Hz)
(%)

Ripple
(>80 Hz)
(%)

Sensitivity 91 91 66 100 82 48

Specificity 30 42 80 30 68 89

Accuracy 44 54 76 43 70 81

aData from [1]
bData from [2]

compared with sites contralateral to both seizure onset and hippocampal atrophy.
These findings indicate the strong association between fast ripple and epileptogenic
zone.

Interictal HFOs were observed in neocortical epilepsy with and without lesion in
addition to limbic epilepsy which was firstly reported by Worrell et al. [45]. They
recorded EEG activity using clinical subdural and depth electrodes. They found that
HFOs (60–100 Hz) confined in the contacts of SOZ in all six patients. Thus, HFOs
is identified not only in mesial temporal lobe epilepsy but also commonly observed
in the focal neocortical epilepsy.

It is worth comparing spatiotemporal relationship between interictal HFOs and
IEDs. It has been repeatedly reported that the interictal HFOs were consistent with
the SOZ. HFOs are more frequently identified in the SOZ than outside SOZ [1,
2, 10]. However, HFOs are not limited to the SOZ but usually extended beyond
seizure generating area. HFOs occurred to a large extent independently of spikes
[19]. Although HFOs are found in spiking as well as nonspiking channels, HFOs
generating zones have usually smaller spatial extent than the irritative zones [48].
HFOs often occur with close association with IEDs in terms of temporal relation-
ship. 81% of HFOs occurs with IEDs, mostly superimposed over epileptic spikes
[42], 19% occurred completely independently of spikes in timing and localization.
In another study, 63% of ripple co-occurred with IEDs [2].

Andrade-Valença et al. evaluated specificity, sensitivity and accuracy of inter-
ictal HFOs and IEDs to determine the SOZ from 17 patients with intractable focal
seizures with normal MRIs during 5–10 min of sleep recording of intracranial EEGs.
The accuracy of HFOs (both ripple and fast ripple) for localizing SOZ was higher
compared with that of IEDs [1]. Interictal HFOs can be identified in scalp EEG,
and the accuracy of gamma (40–80 Hz) and ripple oscillations (>80 Hz) are higher
compared with IEDs [2]. Thus, it seems that both intracranial and scalp recorded
fast oscillations are less sensitive but much more specific and accurate than IEDs to
delineate the SOZ (Table 8.1).
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Taken together, interictal HFOs are more specific and accurate than IEDs to delin-
eate the SOZ.HFOs can be considered as a reliablemarker for SOZ, better than IEDs.

8.3.3 HFOs at Seizure Onset (Ictal HFOs)

HFOs occur during preictal and seizure onset periods. It is noted that high-frequency
activity (60–100 Hz) increases significantly in the 20 min prior to neocortical seizure
onset in 62% of all seizures [46].

HFOs were identified at the time of seizure onset in 7 of the 10 patients with focal
epilepsy [20]. HFOs were present in very limited distributions with high frequency
events (100–200 Hz) confined to 1–3 contacts and with very high frequency events
(250–500 Hz) confined to 1–2 contacts of the same depth electrode. The distribution
of HFOs correlates well with the SOZ determined by the comprehensive presurgical
evaluation [20].

Modur et al. demonstrated HFOs (>70 Hz) at seizure onset (ictal HFOs) in six
patients with neocortical epilepsy. Ictal HFOs had a widespread activity at seizure
onset but evolved subsequently in a restricted manner (HFOs+). HFOs+ occurred
earlier and with a smaller distribution than the seizure onset defined by the con-
ventional frequency activity (<40 Hz). Furthermore, five out of six patients (83%)
showed favorable postoperative outcome over a mean follow-up of 27months, which
included mainly the HFOs+ channels [29].

HFOs show a remarkable reliability as it appears in the same channels during
interictal, preictal and ictal periods in depth electrode recordings. On the other hand,
epileptic spikes are more widespread and occur on different channels in ictal and
interictal periods [47]. Therefore, HFOs are most likely linked to epileptogenesis.

8.3.4 HFOs and Surgical Outcome

The clinical utility of HFOs has been exemplified by better surgical outcome when
resecting cortical areas generatingHFOs comparedwith resecting conventional SOZ.
Cho et al. evaluated the occurrence rate and extent between HFO distribution and the
SOZ in 15 patients with neocortical epilepsy. They found that resection of high-rate
HFO regions was significantly associated with favorable outcome. Interestingly, the
extent/ratio of SOZ or spiking region resection did not differ between seizure-free
and non-seizure-free groups [10].

A meta-analysis which included 11 studies investigated surgical outcomes based
on resection ratio of HFOs, that is the ratio between the number of channels on
which HFOs were detected and, among these, the number of channels that were
inside the resected area [17]. Postoperative good surgical outcome is related to a
higher resection ratio of HFOs compared with poor surgical outcome. The effect
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sizes are significant but small. Therefore, randomized controlled clinical trials are
required to make convincing evidences in clinical practice.

8.3.5 Illustrated Case

This is a case of a 36-year-old man with epilepsy who showed the usefulness of HFO
in epilepsy surgery. He was right-handed and had no febrile convulsion episode,
and his seizures started at age of 22 years. The patient had no previous medical
history other than epilepsy. The patient had three types of seizure semiology: (1)
rotation rightwardwithout impaired awareness and slightly impaired responsiveness,
(2) automotor or hypermotor seizure and (3) secondary generalized tonic-clonic
seizure. He had seizures two times a week while taking multiple AEDs including
carbamazepine 1200 mg, valproate 1200 mg, topiramate 200 mg and levetiracetam
1000 mg daily divided in two doses. Brain MRI, PET and interictal SPECT revealed
no definite abnormalities.

In scalp video-EEG monitoring, interictal spikes were observed in right frontal
and midline (F4 and Fz maximum) areas (Fig. 8.1). Several episodes of automotor
seizures mainly involving right leg were observed and ictal EEG showed that (1) both
frontal and temporal onset rhythmic activities, or (2) left temporal onset rhythmic

Fig. 8.1 Scalp EEG shows interictal spikes over frontal region. F4 and Fz electrodes shows maxi-
mum negativity against the common average reference
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Fig. 8.2 Inserted electrodes. Red circles show the irritative zones and a black circle indicates the
recommended resection margin

Fig. 8.3 Invasive EEG: (upper) Interictal EEG, (lower) Ictal EEG. Red vertical line shows the
onset of seizure. The frequency of HFO in channel 33 was around 70 Hz after the seizure onset,
and decreased to around 30 Hz after 5 s
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theta activity, immediately spreading to both frontal areas. Ictal SPECT showed
hypoperfusion in right frontal lobe, possibly indicating postictal status.

Subsequent invasive study covering right frontal areaswas planned (Fig. 8.1). Two
depth electrodes targeting right medial frontal area, (channel 1–4, 5–8) two grids on
right medial frontal cortex, (channel 9–12, 21–26) and four grids covering most area
of right frontal cortex (channel 13–16, 27–36, 37–46, 47–50) were applied.

Invasive EEG revealed interictal spikes and HFOs in posterior upper frontal lobe
(channel 28, 29, 32, 33, 36, 40, 45, 46; Fig. 8.2). Especially, ictal EEG started as a
form of HFO in channel 33 (precentral gyrus in upper frontal lobe) and spread to
neighboring channels (Fig. 8.3). The corticectomy including channel 33 and irritative
zones with medial frontal cortex was performed. During 20 months after the surgery,
the patient remained seizure free maintaining only the carbamazepine 800 mg daily
in out-patient clinic. Cortical functioning was also significantly improved when the
general intelligence was evaluated using Full Scale Intelligence Quotient with the
resultant score increasing from preoperative 88 to postoperative 110.
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Chapter 9
Computational EEG Analysis
for Brain-Computer Interfaces

Garett D. Johnson and Dean J. Krusienski

Abstract EEG activity can be actively or passively modulated in a way to provide
commands to external devices. The feedback provided by interacting with the EEG-
controlled device creates a closed-loop systemwith the user in the loop. Such a system
is known as a Brain-Computer Interface (BCI). The selection of an analysis approach
for BCIs should be guided by the nature of the signals in consideration. This chapter
presents the most fundamental and widely-used EEG analysis techniques organized
by the type of control signal.

9.1 Brain-Computer Interfaces

9.1.1 Introduction

ABrain-Computer Interface (BCI) uses brain responses to deliberately-designed sen-
sory stimuli or spontaneousmental activity to provide commands to external devices.
A block diagram of a typical BCI is shown in Fig. 9.1. The digitized signals are com-
monly preprocessed, which includes preemptive elimination of known interference
(i.e., artifacts) or irrelevant information, and/or the enhancement of spatial, spectral,
or temporal characteristics of the signal that are particularly relevant to the applica-
tion. The preprocessed signals are passed to the feature extraction stage, which can
represent a variety of techniques for effectively isolating the relevant information in
the signals for BCI control. Commonly, more than one feature are extracted from the
signals and the resulting set of features for a given observation interval is processed
as a feature vector. This feature vector is then passed to the classifier (or regressor),
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Fig. 9.1 Block diagram of a Brain-Computer Interface (BCI)

where it is converted into device commands and feedback to the user. It is important
to note that in certain designs (e.g., artificial neural networks), a single transforma-
tion is used to convert the digital signals directly into device commands and there is
no clear distinction between the feature extraction and classification stages.

Accurate and robust feature extraction can greatly simplify the subsequent classi-
fication, and produces more accurate and reliable actions and more natural feedback
to the user. On the other hand, it is possible to compensate for somewhat poor or
non-specific feature extraction by using a more complex classification algorithm to
produce equally effective results. It is important to recognize that feature extraction
and translation go hand-in-hand and that practical BCI systems balance the emphasis
between these two stages to ensure that they work together effectively.

BCI systems for disabled users aim to facilitate communication and/or environ-
mental interaction capabilities which have been lost or impaired by injury or disease.
The most straightforward and flexible approach to satisfying the immediate needs of
this disabled user population is to enable the user to control a personal computer. In
this way, the user can control standard or custom software applications such as Inter-
net browsers, word processors, and email; as well as interface with limitless external
devices such as appliances, robotic arms, climate controllers, etc. Accordingly, most
BCI outputs aim to mimic the two most ubiquitous computer input devices: the
continuous dimensional control of a mouse and the discrete selection control of a
keyboard. Control of such low degree-of-freedom devices is typically amenable to
localized and low-density recordings (i.e., using few electrodes).

For a BCI keyboard-type output, the user is presented (visually, aurally, or tac-
tilely) with a variety of selectable options, each representing a character, word, func-
tion, or an evenmore complex device commandor series of commands. These options
are selected using transient changes in the user’s brain activity, which correspond to
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the task. Selection of one or more of these options in sequence allows the user to type
messages, navigate menus, engage preprogrammed actions of an external device, etc.
Continuous mouse-like control is achieved by translating the coordinated modula-
tion of the user’s brain activity into the intended directional control commands. This
allows the user to navigate a cursor to icons on a computer screen, freehand draw, and
can be directly extended to achieve continuous control of a robotic arm, a wheelchair,
or other devices that require continuous dimensional control.

Although achieving reliable 1-, 2-, or 3- degree of freedom control is useful and
sufficient for most assistive applications, a more ambitious objective is to design a
BCI that attempts to replicate natural, high degree-of-freedom function in a manner
that ismore transparent to the user. For example, for communication, language cortex
signals during imagined speech would be decoded by the BCI and replicated using
a speech synthesizer in real-time. Similarly, for motor control, motor cortex signals
during imagined limbmovements would be decoded by the BCI and replicated using
a prosthetic limb, orthosis, or even neuromuscular stimulation of the impaired limb
in real-time.

Approaching transparent replication of natural function via a BCI proves to be
very challenging for a variety of reasons. For instance, given the distributed com-
plexities of motor and language processes in the brain, it is difficult to capture all
of the subtle nuances needed to reliably reproduce completely natural function from
limited recording sites (even on the order of thousands of single neuron or local
field potential recordings). Related to this point, it is expected that only invasive
recordings can provide the appropriate signals and resolution required to achieve
this type of high-level intrinsic control. Additionally, other difficult issues such as
the role of sensory feedback and proprioception in the replication of natural func-
tion must be considered. Consequently, simplified approaches that require fewer
recording sites and less sophistication, such as limited vocabulary speech and lim-
ited degree-of-freedom motor commands, can serve as more practical alternatives as
the technology continues to advance.

Any of a variety of brain signals can be translated by a BCI to achieve a particular
device output. For example, brain activity from relevant language areas recorded
while a user imagines vocalizing a word can be used to control a speech synthesizer.
This same brain activity could also be used to control a hand orthosis, where the
presence of a particular imagined word would close the orthosis and another imag-
ined word would open it, for instance. Another example is a BCI that records from a
single neuron (not necessarily frommotor cortex) that has been conditioned to adjust
the spike firing rate when the user wants to open/close the orthosis. Likewise, a sig-
nal generated over the sensorimotor cortex during imagined hand movement could
be decoded by the BCI and used to open/close the hand orthosis corresponding to
the imagery. This same sensorimotor signal could be used by a BCI in a communi-
cation application to select sequentially highlighted letters in a visual keyboard at
the moment when the imagined movement is detected. The resulting typed message
could also be synthesized as speech, thus achieving the same effective output as the
first example using a completely unrelated signal and interface.
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9.1.2 Types of BCIs

BCIs can generally be grouped into three categories: Reactive, Active, and Passive;
based on how the brain response is elicited [34].

9.1.2.1 Reactive

The use of sensory stimuli to induce predictable changes in the EEG creates a
“reactive” control paradigm wherein the EEG control signal and its detection are
dependent upon the parameters of the sensory stimulus, which is typically visual,
auditory, or tactile [2]. The P300 oddball paradigm and its extension, the P300
speller, are examples of reactive paradigms [10]. Such paradigms are commonly
designed so that the EEG response differs depending on the characteristics of tem-
porally and/or spatially multiplexed sensory stimuli, which individually represent
various selection options for the control interface. In general, reactive paradigms
are inherently synchronous systems, where timing of the user’s intended device
commands is dependent on the timing of the presented stimuli. Synchronous systems
do not allow for completely spontaneous communication or control.

9.1.2.2 Active

In contrast to reactive paradigms, volitionalmental imagery or cognitive state switch-
ing creates an “active” control paradigm wherein the changes in the EEG are due
to endogenous cognitive actions and not external stimuli. An example of an active
control paradigm is sensorimotor rhythm cursor control where the user imagines
left/right hand movements to move a computer cursor to the left/right, respectively
[32, 33]. Active paradigms are better suited for achieving asynchronous communi-
cation or control, although synchronous designs with cued mental imagery are also
used.

9.1.2.3 Passive

The concept of passive BCIs where the user is not volitionally modulating the EEG
for direct device control will not be presented in this chapter. However, most passive
BCI scenarios and analyses are closely related to active/reactive paradigms and the
techniques discussed in this chapter are directly applicable [35].
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9.1.3 Types of EEG Responses for BCI Control

For achieving different modes of control, EEG responses can be further categorized
into transient and continuous responses.

9.1.3.1 Transient

Transient responses are momentary changes in the EEG that can be associated with
a transition of a sensory stimulus (reactive), or a transition in mental imagery or
cognitive state such as a single hand grasp (active). Such transient responses are
well-suited for making discrete selections in applications such as BCI typing.

9.1.3.2 Continuous

Continuous responses represent ongoing EEG activity that differs from resting-state
activity. In reactive paradigms, this is associated with repetitive sensory stimuli that
likewise produce repetitive “steady-state” patterns in the EEG. In active paradigms,
continuousmental imagery or cognitive state entrainment produce sustained changes
in the EEG that, in some cases, can also produce graded modulation with training
to allow more refined control. Such continuous responses are well-suited for contin-
uous dimensional-control applications such as controlling a cursor or a motorized
wheelchair.

9.1.4 Organization of the Chapter

The selection of a processing approach must be guided by the nature of the signals
in consideration. Most BCIs can be classified within the taxonomy of active/reactive
and transient/continuous (see Table 9.1). Within this taxonomy, the conventional
associated EEG analysis techniques are largely unique and distinctive. Thus, this
chapter presents the most fundamental and widely-used EEG analysis techniques
organized by this taxonomy.

9.2 Active Paradigms

The EEG responses associated with common active paradigms generally form dis-
tinct spatial patternswithin a specific frequency range(s). Thus, techniques that detect
the spatial patterns in frequency bands associated with mental imagery (i.e.,μ and β)
are commonly employed for this detection problem.Two fundamental approaches are
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Table 9.1 Taxonomy of EEG responses

Response type Trigger Basic methods Example

Active transient Spontaneous mental
imagery/state

Spatio-spectral
analysis, common
spatial patterns (CSP)

Single imagined hand
grasp

Active continuous Spontaneous mental
imagery/state

Spatio-spectral
analysis, CSP

Sustained motor
imagery

Reactive transient Transient sensory
stimulus

Spatio-temporal
discriminant analysis

P300 evoked potential

Reactive continuous Repetitive sensory
stimulus

Spatio-spectral
analysis, canonical
correlation analysis
(CCA)

Steady-state visual
evoked potential
(SSVEP)

outlined. The first approach is an intuitive combination of data-independent spatial
filtering and traditional spectral analysis, followed by a classification or regression
model for producing the output command. The second approach, known as common
spatial patterns, generates a data-dependent spatial filter that optimizes discrimina-
tion.

9.2.1 Traditional Spectral Analysis

9.2.1.1 Preprocessing

Assuming that the control signal is spatially-localized such as motor imagery (MI),
it is prudent to employ a spatial filter such as a Large Laplacian over the relevant
area(s) of the motor cortex to increase the SNR [22]. The Large Laplacian filter
and associated weights are computed based on distance from the center electrode as
follows:

V LAP
i � V ER

i −
∑

jεSi

gi j V
ER
j (9.1)

where

gi j � 1/di j∑
jεSi

1/di j
(9.2)

refers to the ear-referenced voltage, Si is the set of electrodes surrounding the i-th
electrode, and di j is the distance between electrodes i and j (where j is a member of
Si ). The Large Laplacian filter essentially acts as a data-independent beamformer by
subtracting the average of surrounding electrodes from a central electrode of interest.
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Referring to Fig. 9.2, the central electrode C3 is directly of the right-hand area of the
sensorimotor cortex. Note how the spatial filter distinctly enhances the μ rhythm in
both the time and frequency domains for improved detection and tracking.

Because MI is characterized in the μ (8–12 Hz) and β (18–24 Hz) frequency
bands, it is common to bandpass filter between 0.1–5 Hz for the highpass cutoff and
between 15–30 Hz for the lowpass cutoff, depending on the frequency band(s) used.
Since the event is generally not time-locked to a stimulus, the EEG is evaluated in a
continuous fashion over sliding data windows. Commonly sliding detectionwindows
for BCI are in the range of 0.5–1 s with update rates of 0.5 s or less.

Fig. 9.2 Spectral analysis for a sensorimotor rhythmBCI.ALarge-Laplacian spatial filter is applied
centered on electrode C3, corresponding to the right-hand area of the sensorimotor cortex. The
shaded region of the spatial filtered signal indicates a 400 ms data window. The FFT is computed
with a 2-Hz resolution and the 12-Hz frequency bin corresponding to the rhythm is highlighted.
This bin can be normalized and assigned to a 1-dimensional control variable with an update rate of
50 ms
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The lower panel of Fig. 9.3, disregarding the stimulus labels from the upper panel,
illustrates thewindowing for asynchronous paradigmswhere the initialwindowonset
begins with the data recording and does not correspond to any other external event.
Subsequent windows are captured for analysis depending on the update rate, which
can be as frequent as every signal sample. Assuming that a control command is issued
for every data window, the update rate should be selected to minimize system output
latency while accounting for the temporal dynamics of the control signal.

Similarly, the data window length should be selected to provide sufficient data for
accurately classifying or translating the data while also accounting for the temporal
dynamics of the control signal. The update rate and the data window also have an
interaction. For example, a longer data window with respect to the update rate will
tend to smooth the output for shorter update rates. However, longer data windows
also decrease reactiveness of the system to changes in the user’s EEG, deliberate
or otherwise. Thus, these parameters must be carefully selected to balance output
accuracy, system latency, and reactivity for a given control task.

9.2.1.2 Feature Extraction and Classification

Because motor imagery is characterized by modulations in spectral amplitude, it is
typical to perform a spectral analysis based on bandpower estimates, the fast Fourier
transform (FFT), autoregressive (AR) models, or wavelet transforms, for instance
[4].

One of the most straightforward and intuitive methods for tracking amplitude
modulations at a particular frequency, known as bandpower estimation, is to first
isolate the frequency of interest by filtering the signal with a narrow-band bandpass
filter. This produces a signal that is approximately an amplitude-modulated sinusoid.

Fig. 9.3 Graphical depiction
of data windowing for BCI
processing. The upper panel
shows the data labels
corresponding to the sample
EEG channel in the lower
panel. For asynchronous
designs, the data windows do
not correspond to specific
labeled events and are
initiated at the beginning of
the recording and updated
according to the specified
update rate
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The signal is then rectified by squaring the signal or by computing its absolute value.
The resulting rectified peaks are temporally smoothed together using a lowpass filter.

This process is illustrated in Fig. 9.4. Although the smoothed signal tracks the
magnitude envelope of the frequency of interest, the resulting instantaneous magni-
tude estimate will be slightly delayed due to the filtering and smoothing steps. When
multiple-frequency band tracking is required, it is generally more efficient to use an
FFT- or AR-based method rather than using multiple bandpass filters and computing
the band power of each output.

In contrast to bandpower estimation, the FFT provides the full frequency spectrum
of the signal via a linear transform from the time to the frequency domain [28]. The
FFT efficiently computes the discrete Fourier transform (DFT) given below:

X [k] �
N−1∑

n�0

x[n]e(−2π jnk/N ), (9.3)

where x[n] is the time-domain signal, X [k] is the frequency-domain representation,
and N is the length of the DFT. Taking x[n] as an EEG data window of length N ,
X [k] will have N uniformly-spaced frequency bins between ±(sampling rate)/2.
To achieve frequency bins with different spacings, x[n] can be zero-padded [28]. It
is important to note that, while zero padding provides an interpolated spectrum, it
does not increase the spectral resolution, which is limited to the length of the signal
window before zero-padding (i.e., spectral resolution � sampling rate/the number
of signal samples).

Computation of the DFT/FFT inherently causes spectral leakage, where the signal
energy can “leak” into adjacent frequency bins. This leaked energy contributes to
what are known as undesirable side lobes in the spectrum, flanking the main lobe of
the desired signal energy. One approach to reducing spectral leakage is to multiply

Fig. 9.4 The extraction of
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Fig. 9.5 Comparison of spectra generated by FFT, FFT with Hanning window, and AR models
of 3 different orders. The left panel shows the time-domain signal before and after applying the
Hanning window, also showing the shape of the Hanning window envelope, scaled for effect. The
right panel shows The FFT of the original signal, the FFT of the Hanning-windowed signal, and
spectra for 3 AR model orders using the original signal

the signal segment by a tapered window prior to the DFT computation as illustrated
in Fig. 9.5. Note the side lobes that flank the 12 Hz peak of the regular FFT. While
these side lobes are attenuated for thewindowed FFT, it is observed that themain lobe
around 12 Hz is broadened for the windowed FFT. There is a trade-off between main
lobe width (i.e., spectral resolution) and side lobe-suppression that must be balanced
based on the needs of the application. When tracking the amplitude of spectral peaks
in standard frequency bands (e.g.,μ, β) for BCI applications, windowing is generally
preferred because high spectral resolution is typically not necessary for signal peaks
in these frequency ranges. Additionally, keeping the signal energy in the main lobe
tends to lead to more reliable amplitude estimates when accounting for signal noise.

AR models are also commonly used for spectrum estimation in BCI due to the
fact that spectral resolution is not inherently limited by the length of the data window
like the DFT [3]. The power spectrum for an AR model is given below:

P̂AR(ω) �
∣∣∣b̂(0)

∣∣∣
2

|1 + ∑P
k�1 âp(k)e− jkω|2 , (9.4)

where âp(k) are the coefficients of the AR model and p is the model order. Because
the AR model is an all-pole model, it nicely represents peaks in the spectrum such
as EEG oscillations. Note that the frequency variable ω, in contrast to the frequency
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Fig. 9.6 Thediagramon the right indicates the time-frequency tiling achieved by awavelet analysis.
Note that the higher-frequency content of a signal is computed over shorter time intervals (A), and the
lower-frequency content is computed over longer time intervals (C). The time-domain waveforms
on the left represent different scales of an example mother wavelet that could be used to compute
the wavelet coefficient for the corresponding time-frequency tile

variable k in the DFT, is continuous. Thus, it is theoretically possible to estimate
any frequency from a single model, although the practical frequency resolution is
still fundamentally linked to the length of the data window. The trade-off with AR
modeling is that the validity of the estimated spectrum depends on proper selection
of the model order. Selecting a model order that is too low will result in an overly-
smoothed spectrum, while a model order that is overestimated can create spurious
peaks in the spectrum. See Fig. 9.5 for an example. Depending on types of filters
applied in preprocessing and the dynamics of the signal for the intended application,
common AR model orders for EEG range from 3 to 20, where the model order
roughly approximates the number of spectral peaks to be captured [24].

Time-frequency approaches such as wavelet analysis aim to improve the balance
between window length and spectral resolution [20, 29]. The concept is, rather than
evaluating all frequencies over the same window size, high frequencies are evaluated
over shorter windows while low frequencies are evaluated over longer windows. In
wavelet analysis a characteristic time-limited pulse shape, called the mother wavelet,
is correlated with the signal of interest at different time-shifts and time-scales. Since
each scaled mother wavelet has a unique temporal length and represents a unique
oscillation-frequency characteristic, the output of the correlation at each scale/shift
represents a unique time-frequency component of the signal. This scheme results in
a more effective, nonuniform time-frequency tiling compared to the FFT because
changes in high-frequency characteristics can be identified over shorter time inter-
vals than with the segment length used by the FFT. This time-frequency tiling and
corresponding mother-wavelet scaling are illustrated in Fig. 9.6.

There are a wide variety of mother wavelets, and each has specific time-frequency
characteristics and mathematical properties. In addition, application-specific mother
wavelets can be developed if general pulse characteristics are known or desired. Just
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as the FFT provides an efficient computation of the Fourier Transform for digital
signals, the discrete wavelet transform (DWT) provides an efficient computation of
the wavelet transform using specific scale and shift factors that minimize redundancy
in the time-frequency representation.

For a given spectral analysis approach, the resulting spectral amplitudes are typ-
ically evaluated in the and/or frequency bands. These frequency bins are commonly
used to train a classification or regression model, such as Fischer’s Linear Discrim-
inant or Support Vector Machine [18]. A classification model is more appropri-
ate for providing discrete selections, while a regression model is more appropriate
for achieving continuous, graded control [31]. Another consideration is whether to
implement linear or non-linear models. In general, it has been found that linear mod-
els can have several advantages over non-linear models for BCI applications [25].
Linear models are less prone to over-fitting with limited training data, and can offer
added simplicity for computation, user training, and data interpretation.

Labeled events from a calibration session can be used to a train classifica-
tion/regression model. The resulting classification will be performed on every slid-
ing window, producing a continuous output if the update rate is sufficiently short. A
block diagram of the preprocessing and feature extraction for sensorimotor rhythms
is shown in Fig. 9.2. A similar approach can also be used to detect transient imagery
events [21].

9.2.2 Common Spatial Patterns

A widely-used alternative to the traditional spectrum analysis approaches described
in the previous section is the method of common spatial patterns (CSP) [26, 30]. CSP
generates spatial filters that simultaneously minimize the variance for one class and
maximize the variance for the other class, thus resulting in a simple classification
based on the projected signal variances. An illustration of the CSP feature space for
a 2-class scenario with 2 features is shown in Fig. 9.7. First, the signals are bandpass
filtered in the range of interest. The CSP decomposition of a feature matrix is given
as:

Y � WX, (9.5)

where X is an N feature×T observancematrix,W is an L×Nmatrix (L≤N)whose
L rows represent the individual components of the decomposition, and Y is an L× T
matrix subspace of X . For a two-class classification problem, W can be determined
to decompose the feature matrix such that the resulting projections corresponding
to the extreme eigenvalues of the transformed covariance matrices have maximal
variance for one class and minimal variance for the other class. First, for the two
classes (1 and 2), the class-labeled observations are sorted by the respective class
and the class-specific covariance matrices are determined:
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Fig. 9.7 Illustration of the CSP feature space for a 2-class scenario with 2 features. Note that, for
a given orthogonal feature dimension, the CSP projections simultaneously minimize the variance
for one class while maximizing the variance for the other class

�1 � X(1)X
T
(1)and Σ2 � X(2)X

T
(2). (9.6)

The task is defined as finding the transformation to create projections that simul-
taneously maximize the variance for one class and minimize the variance for the
other:

W�1W
T � D and W�2W

T � I − D, (9.7)

where D is a diagonal matrix with elements in [0,1]. This can be accomplished
through simultaneous diagonalization of the two covariancematrices. First, a whiten-
ing transformation is performed:

P(�1 + �2)P
T � I. (9.8)

Using spectral theory, the eigenvalue decomposition is then performed for the
transformed classes:

P�1P
T � RDRT and P�2P

T � R(I − D)RT , (9.9)

where the columns of are the eigenvectors and the diagonal elements of and are the
eigenvalues of classes 1 and 2, respectively. Note that the maximum eigenvalues for
one class correspond to the minimum eigenvalues for the other class. By selecting
only the eigenvectors corresponding to the largest and smallest eigenvalues that
provide the best discrimination between classes, the subspace projection matrix is
defined as:

W̃ � R̃T P. (9.10)
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The actual EEG patterns corresponding to the two mental states can be visualized
by inverting the filtering matrix W . For standard CSP analysis of EEG, the features
of X are simply the instantaneous bandpass filtered voltages at each electrode. The
incoming data is projected onto the CSP subspace and the variance for each pro-
jection is computed. Thresholds or classifiers can be implemented on the resulting
variances to identify the appropriate class. Extensions of the CSP algorithm have
been developed to further exploit the temporal and spectral characteristics of the
underlying signals [9, 16].

9.3 Reactive Paradigms

9.3.1 Transient Evoked Potentials

Transient responses in reactive paradigms, known as evoked potentials (EPs), are
time-locked to an external sensory stimulus. Thus, segments of EEG are analyzed
over a predefined temporal windowwith respect to the onset of the stimulus. Because
the signal-to-noise ratio (SNR) of EEG is low, multiple transient response observa-
tions are typically averaged to attenuate the background noise and produce a more
reliable detection. While EPs can exhibit transient frequency bursts, they are most
commonly analyzed using time-domain techniques. Thus, forms of spatio-temporal
template matching are typically implemented to detect the relevant combination of
amplitude deflections (e.g., voltages) at various channels that best characterize the
response to the stimulus. The following describes a fundamental methodology for
detecting and classifying EPs such as the P300 response [11].

9.3.1.1 Preprocessing

The appropriate channels must be identified for the EP to be analyzed, which are
well-defined in the literature [2, 15].Alternately, subspace decomposition approaches
such as principle component analysis (PCA) [8] or independent component analysis
(ICA) [12, 19] can be used to create a spatial filter that enhances the representation of
the response for detection. Because EPs are generally comprised of low-frequency
oscillations, it is common to bandpass filter the signals in the range of 0.1–0.5 Hz
for the highpass cutoff and 10–30 Hz for the lowpass cutoff. It is also common to
decimate the resulting signals based on the lowpass cutoff according to the Nyquist
rate [28] to further reduce the dimensionality of the data.
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9.3.1.2 Feature Extraction and Classification

The responses are collected based on the onset of each stimulus. Temporal windows
for responses are typically around 1 s in length, but can vary depending on the applica-
tion. Additionally, the window can begin prior to the onset of the stimulus to provide
information about the baseline prior to the stimulus. Figure 9.3 illustrates the timing
and associated EEG alignment of a typical synchronous stimulus presentation. The
Stimulus Label in the upper panel (solid trace) indicates the onset and duration of
each sensory stimulus. The lower panel shows the time-aligned EEG corresponding
to the stimulus labels. The three shaded regions are example 800 ms windows cor-
responding to the onset of the first three stimuli in the upper panel. Similar response
windows would be collected for all subsequent stimulus labels.

Assuming a binary detection scenario of predicting if the response was generated
by a target or non-target stimulus, the collected EPs can be labeled and used to train a
classifier [14]. For instance, in Fig. 9.3, all responses corresponding to Target Trial�
1 and all responses corresponding to Target Trial � 0 would be parsed for training
the binary classifier. Figure 9.8 shows an example of the averaged P300 responses
for target and non-target stimuli for the commonly-used electrode locations. Simple
yet effective classifiers select the individual spatio-temporal features (circled) that
optimize a regression model shown at the bottom. Using this approach, all features
with high univariate correlation with the task are not necessarily selected for the
model since they might have high covariance. Additionally, features with low uni-
variate correlation may be included in the model to reduce noise or compensate for
other selected features. This can also be generalized to multi-class problems. For
classifying independent data, the resulting classifier scores are averaged over each
stimulus label and the stimulus associated with the largest average score is classified
as the selected target.

9.3.2 Steady-State Evoked Potentials

Steady-state responses such as steady-state visual evoked potentials (SSVEP) and
steady-state somatosensory evoked potentials (SSSEP) in reactive paradigms gener-
ally present multiple, spatially-distinct stimuli, each at a unique frequency. Because
the user focuses attention on a single stimulus (target) at a time in the presence of
the other stimuli (distractors), the objective is to detect features of the EEG that are
associated with the current target frequency. This forms a multiclass detection prob-
lem. Ideally, the EEG signal power at the target frequency and its harmonics will
dominate compared to the distractor frequencies (and their respective harmonics) but
this is not always the case for various reasons and more sophisticated techniques are
employed to improve the detection.
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Fig. 9.8 Electrode locations and feature extraction for the visual P300 Speller. The averaged P300
ERPs for the target and non-target stimuli are shown for the commonly used electrode locations.
Simple yet effective classifiers select the individual spatio-temporal features (circled) that optimize
a regression model shown at the bottom. Using this approach, all features with high univariate
correlation with the task are not necessarily selected for the model since they might have high
covariance. Additionally, features with low univariate correlation may be included in the model to
reduce noise or compensate for other selected features

9.3.2.1 Preprocessing

The appropriate channels must be identified for the response to be analyzed (e.g.,
SSVEP, SSSEP), which are well-defined in the literature [1, 13, 27]. The EEG can be
bandpass filtered between 0.1Hz (or just below the lowest stimulation frequency) and
just above the frequency of the maximum stimulus harmonic of interest to eliminate
noise outside of the frequency range of interest. Similar to Sect. 2.2.1, the EEG is
evaluated continuously using overlapping windows. In this case the window length
typically ranges from 1 to 2 s with a 0.5 s update rate.

9.3.2.2 Feature Extraction and Classification

While spectral analysis approaches similar to those discussed in Sect. 9.2.1 can be
used to detect and classify SSVEP responses, the most widely accepted algorithm
for such stimuli is canonical correlation analysis (CCA) [6, 17]. CCA is a multi-
dimensional statistical analysis technique that finds underlying linear correlations
between two sets of data. For BCI, the CCA algorithm effectively generates a spatial
filter associated with each target frequency that produces the highest correlation
for a given data window. The spatial filter that produces the highest correlation
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designates the current target of the user’s attention. This approach has an advantage
over standard spectral analysis, e.g., techniques based on the Fourier Transform, in
that it simultaneously combines spatial and spectral information in the classification
decision and tends to provide more reliable performance. This approach does not
require calibration or training prior to online operation and allows for continuous,
asynchronous operation.

Given two multi-dimensional data sets, X and Y , linear combinations x � XTWx

and y � Y TWy can be found that maximize the correlation between x and y. CCA
finds the weight vectors Wx and Wy by solving the following optimization problem:

max
Wx ,Wy

E
[
WT

x XY TWy
]

√(
E

[
WT

x X XTWx
]
E

[
WT

y YY
TWy

]) . (9.11)

In practice, this can be solved using the singular-value decomposition method to
diagonalize the covariance matrices as the maximum canonical correlation corre-
sponds to the square-root of the largest eigenvalue.

For BCI, CCA generates a spatial filter for multichannel EEG data, X , that max-
imizes the correlation between a set of sinusoidal templates Y f at each target fre-
quency. This reference set consists of sine and cosine signals at the fundamental
and harmonic frequencies of each stimulus, and results in reference waveforms that
match the temporal length of the EEG window. The idea is that the sinusoidal tem-
plates corresponding to the target frequency should better match the EEG than the
templates at the other frequencies. The reference signal Y f (9.12) can be derived
using Nh harmonics, where f is the fundamental frequency and t is time.

Yf �

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

sin(2π f t)

cos(2π f t)

...
sin(2πNh f t)

cos(2πNh f t)

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

. (9.12)

EEGdata is canonically correlatedwith each reference signal and the classification
output is determined as fs � max

i
ρ( f ), where f � f1, f2, . . . fk and K is the

total number of classes (target frequencies) in the BCI. See Fig. 9.9 for a graphical
depiction of CCA.

Both sine and cosine templates are used because a linear combination of the two
can represent a single sinusoid with arbitrary phase, matching the characteristics of
the EEG observation. Typically, only 2 or 3 harmonics are needed for an accurate
classification, but the number of harmonics can be easily reconfigured to meet the
performance needs. For each EEG data segment, CCA is performed for the tem-
plate corresponding to each target frequency. CCA returns a set of optimized spatial
weights for the EEG channels and the CCA sinusoidal templates that maximize the
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Fig. 9.9 Graphical depiction of canonical correlation analysis (CCA) for an n-class SSVEP
paradigm. For each of N targets, a weighted sum of EEG channels is correlated with a weighted
sum of sinusoidal templates at the harmonic frequencies (3 in this case) of the respective target
stimulus. The optimal weights are computed separately for each target via CCA, which produces
a maximized Pearson correlation coefficient. The resulting correlation coefficients are compared
across targets. The target that produced the maximum correlation is output as the current selection.
Note that distinct EEG signal weights are generated for each target, corresponding to the subscript
of the weight matrix

resulting correlation, as well as the value of this correlation. The target frequency
corresponding to the CCA template that produces the largest correlation for the given
data segment is selected as the output. This process is repeated for each subsequent
EEG data window for asynchronous operation. Additionally, null-state detection can
be implemented with an appropriate threshold on the correlation values. Similar
and more sophisticated approaches have been developed for code-modulated visual
evoked potentials [5] and very high information transfer rate SSVEP paradigms [7].
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9.4 Other Considerations

9.4.1 Artifact Removal

When needed, BCIs implement many of the same artifact removal techniques dis-
cussed inChap. 2.However, for certainBCI applications, itmaynot beworth the addi-
tional effort and computational resources to design and implement artifact removal
for rare or inconsequential artifacts such as eye blinks, for instance. It is common to
design processing and classification stages to be tuned to the control signal of interest
and inherently immune to artifacts. For many of the aforementioned BCI paradigms,
the control signals have a distinct spatial and spectral distribution from common
artifacts, which can be sufficiently attenuated via standard spatial or spectral filter-
ing without the need for specialized artifact characterization or processing. Without
careful design, an artifact removal technique may also further distort the control
signal and increase computational resources such that there is ultimately little or no
practical benefit over excluding artifact removal from the processing chain.

9.4.2 Real-Time Processing

With the considerable advances available in modern computing technology, the real-
time processing requirements for BCIs are no longer as constraining as they once
were. All of the methods presented in this chapter are fully able to be implemented
with minimal delays due to signal processing.

Most standard signal preprocessing steps such as spatial and spectral filtering can
be efficiently implemented to achieve real-time feedback. For instance, spatial filter
parameters can be computed offline with online implementations that require negli-
gible computational resources. Online computation of spatial filters such as online
ICA requires significant computational resources for real-time feedback and are not
commonly implemented for BCIs. For spectral filtering, infinite impulse response
(IIR) filter structures are preferred over finite impulse response (FIR) structures. For
causal online filtering, symmetric FIR filters introduce a delay equivalent to half
the filter length, while IIR filters with comparable frequency characteristics can be
designed having significantly shorter latencies. The trade-off for IIR filters compared
to FIR is that they introduce phase distortion in signals. Depending on the applica-
tion, this may be tolerable or included in the classifier design without detriment. If
phase distortion is not tolerable, zero-phase filtering can be implemented to elimi-
nate the phase distortion while effectively doubling the latency compared to using
the equivalent filter without a zero-phase implementation [28].

However, it should still be noted that BCIs based on continuous responses are
often far more restrictive than those based on transient responses. For instance, con-
sider a continuous BCI using SSVEP. The processing should occur within a single
data window in order to prevent a lagged control feedback to the user, which could
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prove distracting and detrimental to usability and performance. If many stimulus
frequencies are used, sufficient computational resources are needed to maximize the
correlation between the sinusoidal templates and the EEG to avoid an appreciable
lag in the feedback.

9.4.3 User Versus System Adaptation

For generally stable responses such as P300 and SSVEP, BCI designs with static
processing and classification are typically adequate. For some paradigms such as
motor imagery, the user can learn to better focus and modulate brain responses via
training [33]. Additionally, the brain state and background brain activity of the user
can change over time, even within a session. Thus, static designs where the user is
forced to adapt to the BCI feedback can be suboptimal. Alternately, the BCI can
be designed to adapt its processing and classification to the user’s changes in brain
activity and/or performance.The challenge is that this systemadaptationmust bedone
using periodic calibration sessions, orwithout calibration sessions in an unsupervised
or semi-supervisedmanner. Furthermore, it is imperative to select an appropriate rate
of adaptation, which can be user-dependent [23]. Ultimately, the implementation of
an adaptive BCI results in a co-adaptive system since the user will inevitably adapt
to the provided feedback. Co-adaptive systems can be highly prone to instability and
it is vital to carefully design and select the adaptation parameters.
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Chapter 10
Computational EEG Analysis
for Hyperscanning and Social
Neuroscience

Dan Zhang

Abstract Hyperscanning, the technique that simultaneously records neural activi-
ties from multiple interacting participants, has attracted increasing attention in the
field of social neuroscience. EEG is among the most popular neuroimaging tech-
niques for hyperscanning, as its high portability enables neural signal recordings in
naturalistic social interaction scenarios. This chapter summarizes the state-of-the-art
progress on the computational EEG analysis methods for hyperscanning and social
neuroscience. These methods are divided into two categories, focusing on social per-
ception and social interaction, respectively. A variety of computational models have
been proposed and implemented to quantitatively describe the hyperlinks among
interacting brains, and significant hyperlinks have been reported in social tasks cov-
ering typical social activities. As the development of hyperscanning methods is still
at its early beginning, future perspectives are discussed at the end of the chapter.

10.1 Introduction

Humans are fundamentally a social species, rather than individualists. Social activi-
ties are hereby essential for humans. With the rapid development of neuroscientific
research techniques, increasing interest has been drawn toward social neuroscience,
which is an interdisciplinary field devoted to the understanding of biological imple-
mentation of social processes and behaviors [37, 60]. To explore the neural basis
of social behaviors, the conventional single-brain approach has been widely used
and great progresses have been made. Based on data collected from both patients
with social function disorders and healthy people, the important brain regions for
social functioning, such as the fusiform area for perceiving facial information, the
Broca’s and the Wernicke’s areas for processing speech information, the mirror neu-
ron network for interpreting actions, etc., have been identified and theories about
their working mechanisms have been (partially) elucidated [19, 65]. Despite its great
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success, the single-brain approach has recently been criticized, mostly for its lim-
itations on ecological validity [8, 32, 38, 49]: the experimental paradigms of the
single-brain approach often employ ‘off-line’ social cognition tasks with abstract
stimuli, resulting in reduced generalizability of the findings. Although paradigms
of high ecological validity are always preferred, naturalistic social stimuli and real-
time online social interactions pose great challenges for developing effective research
methods.

To further pursue neural mechanisms of our social brain, the hyperscanning tech-
nique has been developed and applied for neuroscience research in the past two
decades [2, 14, 23]. The hyperscanning technique aims at collecting and analyzing
neural signals from multiple persons involved in naturalistic social scenarios. The
collection of neural signals from interacting brains is believed to overcome the major
critiques on the single-brain approach: our brains should be better activated during
real social activities, rather than in isolated single-brain paradigms. To date, a variety
of brain imaging techniques has been employed in hyperscanning studies. The very
first study in 1965 by Duane and Behrendt utilized dual-EEG to explore a possible
extrasensory electroencephalographic induction between identical twins [12]. The
modern hyperscanning studies started from an fMRI study by Montague and col-
leagues, demonstrating a hyperlink between two persons playing a simple deception
game in simultaneously recording fMRI scanners [39]. Since then, more than 80
papers have been published (source: PubMed), using fMRI, EEG or fNIRS. While
fMRI has the best spatial resolution, EEG and fNIRS has gained increasing popular-
ity in recent years, for their high portability and low running cost. Compared to both
fMRI and fNIRS, EEG has unique advantages for its rich temporal and spectral infor-
mation. More importantly, the millisecond-scale high temporal resolution of EEG
is capable of following the fast temporal dynamics of human social activities. Nev-
ertheless, further development of computational EEG analysis methods is required,
as EEG-based interacting-brain approach emphasizes the interplay among multiple
persons, for which the conventional single-brain based analysis methods cannot be
directly applied. While substantial progress has been made toward hyperscanning-
specific analysis methods in the past decade, we are still at the early beginning of
exploring the ‘hyperlinks’ among interacting brains.

In this chapter, we review recent works on computational EEG analysis methods
for social neuroscience studies using the interacting-brain approach (by employing
the EEG-based hyperscanning technique). Our review is further divided into two
sessions, ‘social perception’ and ‘social interaction’.Whereas the ‘social perception’
section introduces these methods on perceiving naturalistic social information, the
‘social interaction’ section focuses on methods for characterizing the inter-person
social activities.
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10.2 Hyperlink for Social Perception

Perception of social information is the foundation for human social behaviors. Our
brain has been shown to have highly specified regions for efficiently processing social
information, such as faces and voices [60]. The state-of-the-art findings, however, are
mostly conducted using single-brain approaches and the event-related method has
been the most popular and most widely-used technique. Due to the complicated and
strong noise in neural signals, the event-related method normally requires a highly
controlled experimental environment, with a sufficient number of repetition of the
target social stimuli. These requirements, however, lead to experimental setups that
are quite different from real-world naturalistic social scenarios. In addition, neural
responses in the event-related method are defined by activities significantly different
from a certain pre-selected baseline that is expected to be free of stimulus-related
brain activities. Due to the non-stationarity nature of neural activities [28], these
baselines are suggested to be temporally close to the time of the stimuli, e.g. up to
several hundredmilliseconds prior to the onset of the stimuli for EEGs. The stimulus-
free baseline periods, again, is not likely to be feasible in real-world situations as
people are always involved in continuous perception of social information.

Calculating the hyperlink among a group of people perceiving the same social
stimuli, is proposed to be a promising tool to explore the neural responses during
social perception (Fig. 10.1). In contrast to the conventional event-related methods,
the hyperlink methods define social relevant neural responses as activities showing
significant similarities across participants. Hyperlink works on the basis of the reli-
ability of neural responses, hereby avoids the challenging issue of defining events
in the complex and naturalistic social stimulation streams. Although simultaneous

Fig. 10.1 Illustration of the methodology for calculating hyperlink for social perception
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recording of multiple participants is preferred, this kind of hyperlink can be applied
to ‘off-line’ recorded data as well, as long as the data are from participants receiving
identical social stimulations.

Indeed, a number of studies have shown that human brain activities can be highly
reliable under naturalistic stimulus conditions. Originally termed as inter-subject cor-
relation (ISC) and applied for fMRI data, significant hyperlinks were found when a
group of five participants watched half an hour of a popular movie. Results revealed
that hyperlinks existed beyond the primary and secondary visual cortex, including
higher-level visual processing regions, auditory regions, etc. [21]. Follow-up fMRI
studies reported that ISC spatial patterns could be modulated by the content of the
visual stimuli, with unstructured movie clips showing the minimal hyperlink-based
activation and highly structured movie clips eliciting a reliable hyperlink across a
widespread brain network including the parietal and frontal regions as well [22].
Another ISC-based fMRI study reported a bilateral network for speech production,
extending our previous understanding of left lateralized network [57]. The calcu-
lated hyperlink could also predict human behaviors, for instance, the powerfulness
of political speeches [51]. The hyperlink in fMRI data is usually calculated using
the inter-subject correlation method, which is the average of all pair-wise Pearson
correlations for each individual voxel, as follows:

ISC � 1

m(m − 1)/2

m∑

i�1

m∑

j�2, j>i

ri j (10.1)

wherem is the number of participants, and rij represents the temporal (Pearson’s) cor-
relation between participant i and j, given a specific voxel or channel. Such a pairwise
correlation based ISC calculation has also been applied for EEG data analysis. Reli-
able pairwise ISCs have been observed when a variety of different naturalistic social
stimulations for brain regions responsible for both low-level sensory processing and
high-level social functioning [3, 4, 27].

Pairwise ISCs can be calculated on a single-channel basis, as well as in a multi-
variate manner. The most widely used method to date, is the correlated component
analysis (CoCA) [9]. CoCA seeks to find spatial filters that maximize the correlation
among two multivariate datasets. As multi-channel EEGs from different participants
are supposed to perceive identical social stimuli, the spatial filters w in CoCA are
formulated to be identical for the two multivariate datasets X1 and X2 (channel by
sample)

max Corr
(
wT X1,w

T X2
) � max

wT X1 · (
wT X2

)T
∣∣wT X1

∣∣ · ∣∣wT X2

∣∣

� max
wT R12w√

wT R11w · √
wT R22w

(10.2)

where R11, R22, and R12 represent the covariance matrices
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Ri j � Xi · XT
j . (10.3)

The above spatial filters w can be obtained via a generalized eigenvalue decom-
position based on solving the following optimization problem [17, 44]:

λ · (R11 + R22) · w � R12 · w . (10.4)

Although the above formula is originally designed for two multivariate datasets,
Dmochowski and colleagues proposed to construct two datasets that include all
unique combination of pairs of participants [9]. A three-participant version is shown
below

X1 � [XP1XP1XP2],

X2 � [XP2XP3XP3], (10.5)

where XPi represents multi-channel EEG data (channel by sample) from the i-th
participant. By employing such a multivariate construct, the CoCA method hereby
can obtain the spatial filters that maximize the ‘correlation’ among EEG data from
all participants. It is worthwhile to note that the number of extracted CoCA com-
ponents (each corresponding to a specific spatial filter) are normally substantially
reduced compared to the number of original EEG channels, therefore the manual
efforts needed for further data analysis can be greatly reduced. More importantly, as
the optimization problem is defined based on a relatively simple and straightforward
assumption about reliability across participants, the obtained spatial filters findneuro-
physiologically plausible components representing shared neural activities. Indeed,
the extracted components have been reported to be specifically responsive to certain
social stimuli, including face, hand, or high-level social emotions such as surprise,
tension, anticipation, etc. [10, 30, 69].

Beside the exploration in the spatial domain, inter-brain hyperlink has also been
investigated in the spectral and temporal domains as well, but to a less extent. Neural
oscillations at different frequency bands such as alpha, theta, delta, etc., have long
been known to have important functional roles for human cognition [52, 56]. It
is hereby reasonable to assume that inter-brain hyperlink may rely on oscillatory
brain activities. Although exploration in this direction are just beginning, it has been
reported that hyperlink in the delta band had primary contribution to behaviorally
measured audience preference [3]. In the time domain, the most critical question is
the optimal timewindow length for calculating hyperlink. Due to the non-stationarity
of EEG signals, calculating temporal correlation with a long time window may lead
to unstable results. To date, the reported studies have used time windows ranging
from 200 ms (e.g. [4] up to several minutes (e.g. [3, 10]. Although time window as
short as 200 ms has been demonstrated to be capable of capturing neural reliability,
hyperlinks based on different time window lengths may have different functional
implications, which can be considered as the counterpart for the spectral domain
analysis. In addition, dissociation of EEG temporal signals into phase and amplitude
may worth further exploration, as they have long been postulated to have distinct
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roles for a variety of human cognition functions [48, 68, 70], hereby it is reasonable
to expect different functional roles for hyperlinks as well.

Another important aspect to be explored is the number of participants for reliable
hyperlink estimation. While such a question has been addressed using fMRI and
20 is suggested to be the minimal requirement [43], a systematical investigation
for EEG-based hyperlink is lacking. The number of participants employed in EEG-
based studies ranged from 4 to approximately 20. Further studies with a substantially
increased number of participants (preferably to be offline collections) are necessary
to evaluate the suitable number of participants.

10.3 Hyperlink for Social Interaction

Interaction with other human beings, is the essential building element of our
society. Studies on hyperlink for social interaction normally demand simultaneous
recording of multiple brains, with only a few exceptions, in which the researchers
were interested in uni-directional information transfer (e.g. [61]. Consequently, here
different interacting participants are likely to have different roles and their brain
activities cannot be simply considered to comprise similar information (Fig. 10.2).

Fig. 10.2 Illustration of the methodology for calculating hyperlink for social interaction
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Hereby, more advanced data analysis methods are required to describe the dynamic
interaction across different brains.

The very first hyperlink study on social interaction was also conducted using
fMRI. Montague and colleagues reported a significant correlation in supplementary
motor areas between two persons playing a deception game [39]. Their further and
more influential work revealed an fMRI-based neuro-link between two players in
a trust game that could predict the intention to trust [31]. Speech, as a dominant
social interaction type, has also been studied using fMRI-based hyperscanning. The
dynamic neural coupling between a speaker and a listener was shown to have differ-
ent patterns in different brain regions: while the auditory related regions exhibited
a delayed coupling of the listener as compared to the speaker, the frontal regions
revealed a leading coupling by the listener possibly responsible for speech anticipa-
tion [61]. Furthermore, it has been suggested that interactive experience and skills
play enabling roles in social cognitive functions [7, 8]. Hyperlink hereby provides a
promising new perspective for probing the interactive nature of our brain.

The first EEG hyperscanning study for social interaction by Babiloni and col-
leagues involved sets of four individuals playing Tressette, a bridge-like game
(Babiloni et al. [1]. The portability of EEG has enabled researchers to extend the
exploration into more realistic conditions. To date, researchers have recorded multi-
personEEGs in scenarios representing themajority of our social interaction activities,
ranging from simple motor actions to complex activities such as making a conversa-
tion, performing music, playing games, etc. [2]. As different participants may have
different roles, the informationflowamongparticipantsmayhavedifferent directions,
with some participants leading the others. The methods for characterizing hyperlinks
can be summarized into the following three categories: (1) undirectional hyperlink
methods; (2) directional hyperlink methods; (3) machine-learning methods.

10.3.1 Undirectional Hyperlink Methods

This category of methods is straightforwardly derived from the inter-subject correla-
tional methods as used for describing social perception. The fundamental hypothesis
underlying most of the correlational methods is that different brains have similar and
synchronized time courses of neural activities, therefore suitable for the cases when
participants have balanced roles. Pairwise Pearson’s correlation can be calculated
for EEG signals filtered at different frequency bands. Inter-brain correlation of the
amplitudes of theta and alpha over right temporal-parietal junction (TPJ), the ampli-
tudes of alpha and beta over frontal regions, have been reported to be associated with
the understanding of others’ intention and high-level cooperative strategies [29, 58].
Phase-locking analysis is another type of method that has been frequently employed.
Phase-locking analysis focuses on the circular correlation of the phases of the neural
oscillations, usually termed as the phase-locking value (PLV), as follows:



222 D. Zhang

PLV(t) �
∣∣∣
∑N

i�1 exp( jϕi (t))
∣∣∣

N
, (10.6)

where ϕi (t) is the phase of the neural oscillation at a certain frequency band for
the i-th participant at time point t, and N is the number of participants. PLV is
a measure independent of amplitude fluctuation: a high inter-brain PLV implies
a more synchronized pace among the participants’ neural activities. Significant
inter-brain PLVs are frequently observed in relatively low frequency bands, such
as delta, theta, alpha, covering a variety of social interaction paradigms [13, 18, 26,
41, 45, 62].

The correlational methods can be extended to a multivariate version as well,
by incorporating the conventional canonical correlation analysis (CCA) method, as
follows:

max Corr
(
wT
1 X1,w

T
2 X2

) � max
wT
1 X1 · (

wT
2 X2

)T
∣∣wT

1 X1

∣∣ · ∣∣wT
2 X2

∣∣ , (10.7)

where X1 and X2 are two multivariate EEG datasets and w1 and w2 are two to-
be-calculated spatial filters that maximize the linear correlations between the two
datasets. The optimization problem is similar to CoCA [see (10.2)] but the spatial
filters are allowed to be different for the two datasets, thus supporting different roles
for different brains. However, we only found one study that utilized CCA to measure
the correlation between listeners’ and speakers’ EEGs and the authors reported an
attentional modulation of the listener-speaker hyperlink [35]. Nevertheless, multi-
variate analysis methods are a necessary extension of the present univariate methods
for characterizing the complex inter-brain coupling during social interaction. CCA
for multiple datasets (i.e. more than two datasets) is a promising candidate for further
exploration, as it fits very well with the nature of the multi-brain design [54, 68, 70].

10.3.2 Directional Hyperlink Methods

Methods for calculating the directional hyperlink constitute the second category in
the present categorization. A directional hyperlink can be generally applied to all
social interaction scenarios, where different participants have different social roles.
The simplest method is probably the cross-correlation analysis, which measured the
time lagged Pearson’s correlation between two datasets (e.g. [29, 35]. The most
popular methods, however, are those based on multivariate auto-regression model
(MVAR), e.g. Granger’s causality (GC), directed transfer function (DTF), partial
directed coherence (PDC), etc. The MVAR model describes the underlying order of
amultivariate data bymodelling the current value of the variables as aweighted linear
sum of all the previous values. In the present hyperlink context, it can be formulated
as below
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where x Sk
Chj (n) is the EEG data from participant Sk, at channel j and sampling point

n; Ai is coefficient matrix for time lag i; and w is the prediction error. MVAR char-
acterizes dependencies within the multivariate data (i.e. the multi-channel EEG data
from multiple participants), specifically in terms of the historical influence of one
variable on another. The MVAR-based methods hereby yield results in the form of
neural connectivity patterns across different brain regions, both within and across
participants. One necessary preprocessing procedure for hyperlink-based MVAR
is a within-participant normalization before pooling all data together, considering
the inter-participant differences in EEG signals [63]. Among these MVAR-based
methods, PDC has been suggested to be of particular interest, as it can distinguish
between direct and indirect connectivity flows in the estimated connectivity pattern
[47]. Using such methods, significant directional hyperlinks have been reported in
a number of studies (e.g. [1, 53, 63]). Many other advanced EEG signal processing
methods, such as mutual information, entropy and so on, however, have not been
widely applied for analyzing EEG-based hyperlinks. Considering their successes in
single-brain analysis (see [40, 59] for reviews), these methods are expected to help
us better model hyperlinks and therefore further extend our understanding of social
neuroscience.

10.3.3 Machine-Learning Methods for Hyperlinks

In contrast to the above two categories, machine-learning methods aim at predicting
certain behavioral or mental states on the basis of multi-brain data. The rationale
behind this approach is: Different social conditions are expected to be linked with
distinguishable hyperlink patterns; machine-learning methods therefore can com-
putationally learn the condition-specific patterns. Machine-learning methods can be
appliedonboth the rawmulti-brain data, or extractedneural features, e.g., byusing the
above-mentioned two types of hyperlink methods as well. Popular machine-learning
methods for neural signal processing include linear discriminant analysis, support
vector machine, random forest, etc. [36]. These methods have been widely used for
decoding different mental states for individuals, towards brain-computer interface
applications [16, 67] as well as basic neuroscience research [25]. Compared to the
unidirectional and directional hyperlink methods, machine-learning methods output
predictive models that do not necessarily fit the underlying neurophysiological prop-
erties of our brain. Even if these models can effectively predict different behavioral
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or mental states, they are not informative about the underlying neural mechanism
by themselves, i.e. lacking explanatory power [55]. Nevertheless, machine-learning
methods are advantageous when mining vast amounts of high-dimensional data, as
in the case of multi-brain analysis [33, 46].

Researchers are starting to take the machine-learning approach for analyzing
multi-brain EEG data. Movement directions can be predicted with accuracies from
66% in a single-brain condition to 95% when data from 20 brains were included
[66]. Enhanced perceptual decision accuracy was achieved by aggregating EEG
activities from a group of participants, for both a discrimination task [15] and a
visual search task [64]. In a more interactive scenario, frontal alpha oscillations
could effectively distinguish between leaders from followers involved in a motor
coordination task [34]. More studies in this direction are expected to emerge in the
near future, translating the already reported hyperlink findings into predictive power
and thus facilitating hyperlink-based applications, e.g., evaluating and training of
social interaction abilities.

10.4 Future Perspectives

Thedevelopment of hyperscanningmethods is at its early beginning.While the hyper-
scanning technique is bringing exciting findings to the field of social neuroscience,
critical methodological challenges remain to be further addressed, as summarized
below.

First, EEG recordings in naturalistic social interaction environmentwill inevitably
be affected by extensive artifacts due to necessarymovements of the eyes, faces, limbs
etc., as well as electrical noises in the normally unshielded environment. Therefore,
artifact rejection need to be treated with high priority and caution need to be taken
when validating its effectiveness. Whereas conventional artifact rejection methods
targeting at modelling environmental or physiological noises can be readily applied,
more advanced methods are needed to be developed, in order to better remove the
possibly stronger artifacts during social interactions. For instance, it has recently
been demonstrated that artifact reduction could be achieved by modelling the valid
signals [5, 6, 11, 42].

Second, a new methodological framework need to be defined in order to deal
with data coming from different brains. Most of the EEG signal processing meth-
ods to date are based on the assumption that the neural signals are generated by
the same system (i.e. brain). Although progress has been to address this issue by
normalization of the individual brain’s data, or extraction of non-individual-specific
information [2], these latest methods work mainly within the signal space, on the
basis of temporal, spectral or spatial features. In other words, the reported hyperlinks
imply similarities across individuals in the EEG signal space. Possible similarity
in higher cognitive levels, has not been systematically investigated. Nevertheless,
the success of representational similarity analysis for visual objection recognition in
fMRI provide strong evidence for the existence of such across-individual similarity
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[24]: different brains might encode stimuli in different ways, but the mental distances
among these encoded stimuli are expected to remain largely invariant. Therefore, it
is reasonable to hypothesize the existence of inter-brain hyperlinks in a higher-level
representational space. As such a representational space is more closely related to
ourmental world than the signal space, representational hyperlinks should havemore
important theoretical implications, as compared to our current findings.

Last but not least, the latest development in artificial intelligence and machine
learning methods, such as the deep learning neural networks, may help facilitate our
exploration ofmulti-brain data [20, 50]. Thesemethods are expected to extract critical
information from high-dimensional multi-brain data without explicit modelling and
extensive labor, speeding up the development of the social neuroscience field.
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